

## **Draft Initial Study/Proposed Mitigated Negative Declaration**

North County Sanitary Landfill and Recycling Center Solid Waste Facility
Permit Revision Project

San Joaquin County, Lodi, California





## Prepared for:

San Joaquin County Public Works 1810 East Hazelton Avenue Stockton, CA 95201

Attn: Mark Houghton <a href="mailto:mhoughton@sjgov.org">mhoughton@sjgov.org</a>

April 2025

## Prepared by:

WRA, Inc. 2169 G East Francisco Boulevard San Rafael, CA 94901

Attn: Crystal Mainolfi crystal.mainolfi@wra-ca.com

WRA#26261-5

## **Contents**

| 1.0 | INTRO | DUCTIO  | N AND PURPOSE                                      | 1  |
|-----|-------|---------|----------------------------------------------------|----|
| 2.0 | PROJE | CT INFO | PRMATION                                           | 1  |
|     | 2.1   | Project | Title                                              | 1  |
|     | 2.2   | Lead A  | gency Name and Address                             | 1  |
|     | 2.3   | Contac  | ct Person and Phone Number                         | 1  |
|     | 2.4   | Project | Location                                           | 1  |
|     | 2.5   | Existin | g General Plan Designation and Zoning District     | 5  |
|     | 2.6   | Surrou  | nding Land Uses and Setting                        | 5  |
| 3.0 | PROJE | CT DESC | CRIPTION                                           | 5  |
|     | 3.1   | Existin | g Setting                                          | 5  |
|     | 3.2   | Detaile | ed Description of Proposed Project                 | 6  |
|     | 3.3   | Project | -Related Approvals, Agreements, and Permits        | 8  |
|     |       | 3.3.1   | San Joaquin County Environmental Health Department | 8  |
| 4.0 | ENVIR | ONMEN   | TAL FACTORS POTENTIALLY AFFECTED                   | 9  |
|     | 4.1   | Determ  | nination                                           | 9  |
|     | 4.2   | Initial | Study Checklist                                    | 10 |
|     |       | 4.2.1   | Aesthetics                                         | 11 |
|     |       | 4.2.2   | Agricultural and Forestry Resources                | 13 |
|     |       | 4.2.3   | Air Quality                                        | 15 |
|     |       | 4.2.4   | Biological Resources                               | 26 |
|     |       | 4.2.5   | Cultural Resources                                 | 29 |
|     |       | 4.2.6   | Energy                                             | 31 |
|     |       | 4.2.7   | Geology and Soils                                  | 32 |
|     |       | 4.2.8   | Greenhouse Gas Emissions                           | 36 |
|     |       | 4.2.9   | Hazards and Hazardous Materials                    | 44 |
|     |       | 4.2.10  | Hydrology and Water Quality                        | 48 |
|     |       | 4.2.11  | Land Use and Planning                              | 52 |
|     |       | 4.2.12  | Mineral Resources                                  | 53 |
|     |       | 4.2.13  | Noise                                              | 54 |
|     |       | 4.2.14  | Population and Housing                             | 57 |
|     |       | 4.2.15  | Public Services                                    | 58 |
|     |       | 4.2.16  | Recreation                                         | 60 |
|     |       | 4.2.17  | Transportation                                     | 61 |
|     |       | 4.2.18  | Tribal Cultural Resources                          | 65 |
|     |       |         |                                                    |    |

|          | 4.          | 2.19 U   | tilities and Service Systems                                                         | 68 |
|----------|-------------|----------|--------------------------------------------------------------------------------------|----|
|          | 4.          | 2.20 W   | ildfire                                                                              | 70 |
|          | 4.          | 2.21 M   | andatory Findings of Significance                                                    | 72 |
| 5.0      | REFEREN     | CES      |                                                                                      | 74 |
| 6.0      | REPORT F    | PREPAR   | ERS                                                                                  | 76 |
|          |             |          |                                                                                      |    |
| List o   | of Table    | es       |                                                                                      |    |
| Table 1  | L. Air Qual | ity Thre | sholds of Significance                                                               | 20 |
|          |             |          | al Criteria Air Pollutant and Precursor Emissions from Non-Permitted (tons per year) | 23 |
|          |             |          | al Criteria Air Pollutant and Precursor Emissions from Permitted LFG<br>per year)    | 24 |
| Table 4  | l. Health F | Risks Du | ring Project Operation                                                               | 25 |
|          |             |          |                                                                                      |    |
| List o   | of Figur    | es       |                                                                                      |    |
| Figure : | 1. Project  | Locatio  | n Map                                                                                | 2  |
| Figure : | 2. Project  | Site Pla | ın                                                                                   | 3  |
| Figure   | 3. Transpo  | rtation  | Study Areas                                                                          | 4  |
| Figure 4 | 4. Haul Ro  | utes     |                                                                                      | 7  |
| Figure   | 5. Project  | Site and | d Sensitive Receptor Locations                                                       | 18 |
|          |             |          |                                                                                      |    |
| List o   | of Appe     | endic    | es                                                                                   |    |
| Append   | dix A. Ai   | r Qualit | y Technical Study                                                                    |    |
| Append   | dix B. No   | oise and | d Vibration Technical Study                                                          |    |
| Append   | dix C. Tr   | ansport  | ation Impact Study                                                                   |    |
| Append   | dix D. Gr   | eenhou   | se Gas Emissions Study                                                               |    |

## **List of Acronyms and Abbreviations**

AB Assembly Bill

ABAG Association of Bay Area Governments

APE Area of Potential Effect
APN Assessor's Parcel Number

**BAU** Business as Usual

BMPs best management practices
BPS Best Performance Standards

CAAQS California ambient air quality standards

CAL FIRE California Department of Forestry and Fire Protection

**Caltrans** California Department of Transportation

Cal/OSHA California Division of Occupational Safety and Health

CAP Clean Air Plan

CCAP California Air Resources Board
CCAP Climate Change Action Plan
CCR California Code of Regulations

**CDFW** California Department of Fish and Wildlife

CEQA California Environmental Quality Act
CESA California Endangered Species Act
CFGC California Fish and Game Code
CFR Code of Federal Regulations

CH₄ methane

CHRIS California Historical Information System

CITY City of Lodi

CMP Congestion Management Plan

CNDDB California Natural Diversity Database
CNEL Community Noise Equivalent Level
CNPS California Native Plant Society

County
CO
Carbon monoxide
CO<sub>2</sub>
CO<sub>3</sub>
CO<sub>4</sub>
CO<sub>5</sub>
CO<sub>6</sub>
CO<sub>7</sub>

**CPA** California Power Authority

CRHR California Register of Historic Resources

CWA Clean Water Act
CY cubic yards
dB decibel

dBA A-weighted sound level DOE Department of Energy

**DOT** Department of Transportation **DPM** diesel particulate matter

**DTSC** Department of Toxic Substances Control

**EG** Emission Guidelines

ELGs effluent limitation guidelines
EPA Environmental Protection Agency
EPP Environmentally Preferable Purchasing

**ESA** Endangered Species Act

**FEMA** Federal Emergency Management Agency

FIRM Fire Hazard Severity Zone
FIRM Federal Insurance Rate Maps

**FMMP** Farmland Mapping and Monitoring Program

FTA Federal Transit Administration

**GHG** greenhouse gas

IPac Information for Planning and Consultation

**kWh** kilowatt-hour

LandGEMLandfill Gas Emission ModelLandday-night average noise levelLeaenergy-equivalent noise level

**LFG** landfill gas

Los maximum noise level
Los Level of Service

**LRA** Local Responsibility Area

LUST leaking underground storage tank
MEIR maximally exposed individual resident

MND Mitigated Negative Declaration

mpg miles per gallonMSW Municipal Solid Waste

MT metric tons

NAAQS National Ambient Air Quality Standard
NAHC Native American Heritage Commission

NFHL National Flood Hazard Layer
NMOC non-methane organic compound

NO<sub>x</sub> nitrogen oxides

NPDES National Pollution Discharge Elimination System

NSPS New Source Performance Standards

OEHHA Office of Environmental Health Hazard Assessment

 $O_3$  ozone

PG&E Pacific Gas and Electric Company

PM particulate matter
PM<sub>2.5</sub> fine particulate matter
PM<sub>10</sub> respirable particulate matter

**PPV** peak particle velocity

Project North County Sanitary Landfill and Recycling Center Solid Waste Facility

Permit Amendment Project

RCRA Resource Conservation and Recovery Act

**ROG** reactive organic gas

**RWQCB** Regional Water Quality Control Board

SB Senate Bill

SIC Standard Industrial Classification
SJCOG San Joaquin Council of Governments

SJVAB San Joaquin Valley Air Basin
SLCP Short-Lived Climate Pollutant

 $SO_x$  sulfur oxide

SRA State Responsibility Area
SWFP Solid Waste Facility Permit

**SWPPP** Stormwater Pollution Prevention Plan **SWRCB** State Water Resources Control Board



TAC toxic air containment

Valley Air District San Joaquin Valley Air Pollution Control District

VdB vibration decibels
VMT vehicle miles traveled
VOC volatile organic compound

WRA, Inc.

**ZEVs** zero-emission vehicles

#### 1.0 INTRODUCTION AND PURPOSE

This Initial Study of environmental impacts is being prepared to conform to the requirements of the California Environmental Quality Act (CEQA), the CEQA Guidelines (California Code of Regulations 15000 et. seq.), and the regulations and policies of the San Joaquin County. This Initial Study evaluates the potential environmental impacts which might reasonably be anticipated to result from implementation of the North County Sanitary Landfill and Recycling Center Solid Waste Facility Permit Amendment Project (project).

San Joaquin County (County) is the Lead Agency under CEQA and has prepared this Initial Study to address the impacts of implementing the proposed project. The purpose of the project is to revise the provisions of Solid Waste Facilities Permit (SWFP) SWIS 39-AA-0022 issued by the San Joaquin County Environmental Health Department. This permit allows a maximum tonnage of 1,200 tons of solid waste intake per day and a traffic volume of 850 vehicles per day. The projected closure year is 2048. However, to improve financial efficiency, the County plans to consolidate waste disposal services. Therefore, the County is proposing those limits be increased to 4,000 tons and 1,200 vehicles per day. As no site changes are proposed, the project will enable the County to consolidate solid waste disposal services.

#### 2.0 PROJECT INFORMATION

## 2.1 Project Title

North County Sanitary Landfill and Recycling Center Solid Waste Facility Permit Revision Project

## 2.2 Lead Agency Name and Address

**San Joaquin County** 44 North San Joaquin Street Stockton, CA 95202

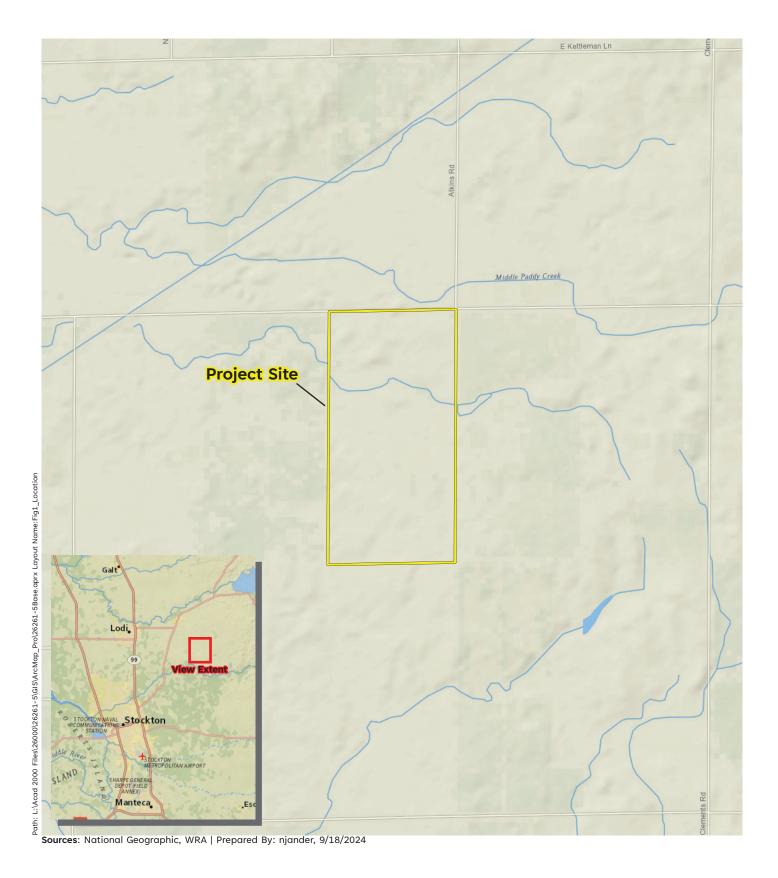
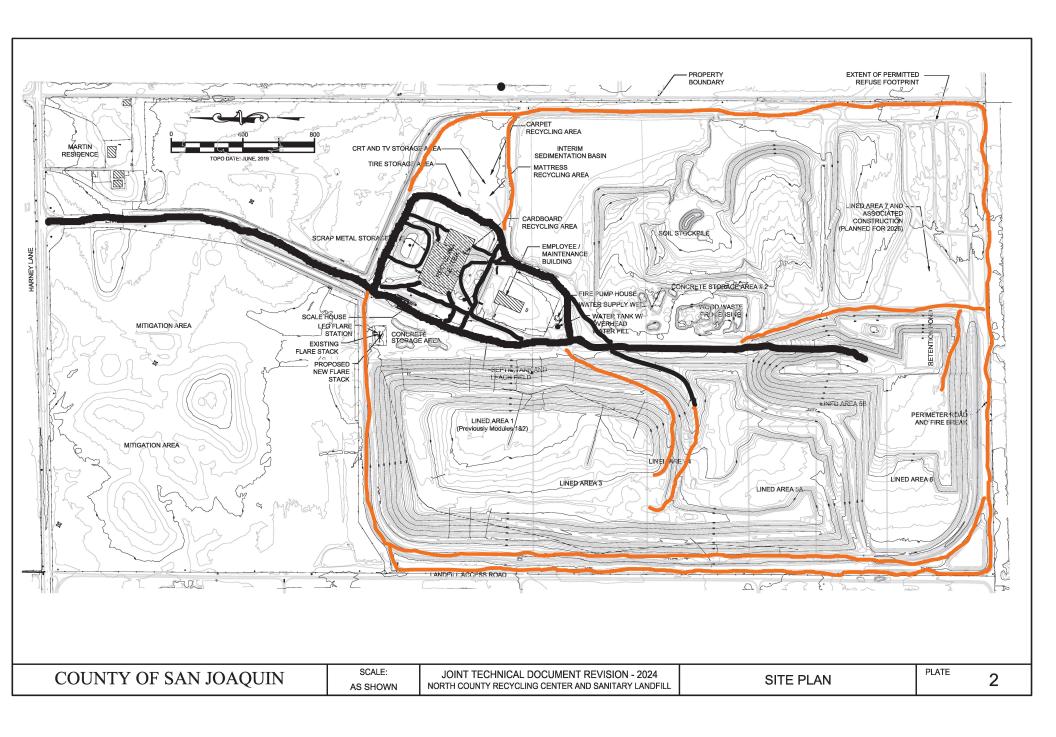
## 2.3 Contact Person and Phone Number

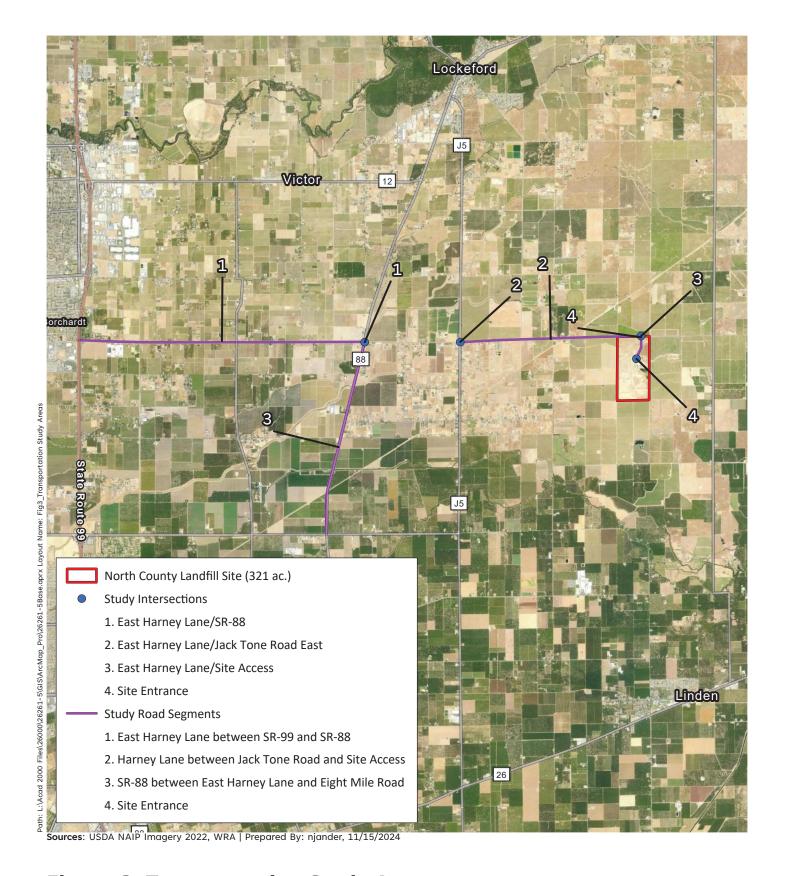
Mark Houghton PO Box 1810 1810 E Hazelton Avenue Stockton, CA 95201 (209) 468-3066

## 2.4 Project Location

The project site is located within San Joaquin County on a relatively flat parcel (Assessor's Parcel Number [APN] 065-12-004) (Figure 1); it is owned and operated by the County. The project site is bounded by undeveloped agricultural land to the north, south, east, and west. The landfill is approximately 320 acres, 185 of which is used for the disposal of various types of non-hazardous solid waste.





Figure 1. Project Site Regional Location Map

North County Sanitary Landfill and Recycling Center Solid Waste Facility Permit Amendment Project

0 0.25 0.5 Miles







## **Figure 3. Transportation Study Areas**

North County Sanitary Landfill and Recycling Center Solid Waste Facility Permit Amendment Project





## 2.5 Existing General Plan Designation and Zoning District

**General Plan Designation:** General Agriculture (A/G)

Zoning District: General Agriculture (AG-40)

## 2.6 Surrounding Land Uses and Setting

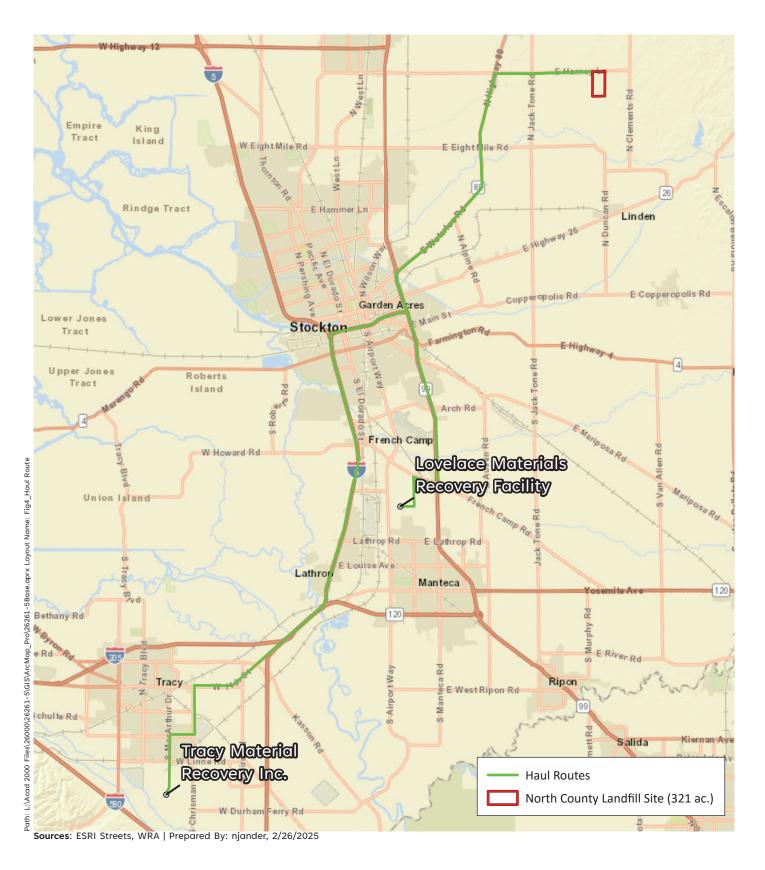
The project site is immediately adjacent to East Harney Lane to the north, connected to the facility's access road. Surrounding land uses also include undeveloped agricultural parcels to the south, east, north, and west of the project. Scattered structures, including residences, are also within a mile of the project site.

## 3.0 PROJECT DESCRIPTION

## 3.1 Existing Setting

The project site is located at 17720 East Harney Lane, east of the City of Lodi. The site is located less than a half mile south of East Harney Lane, connected via an access road that is the only direct route to the facility. State Route 88 is approximately four miles to the west, and the center of Lodi is approximately eight miles to the west. The project site has operated as a solid waste disposal and transfer/processing facility since 1991. It currently operates from 7:00 am to 5:00 pm, seven days per week. The overall topography of the project site is flat with elevations ranging from approximately 110 to 120 feet above sea level. Adjacent land uses within 1,000 feet of the facility consist primarily of agricultural land, including vineyards, pastures, field crops, and fruit and nut orchards. There are also several structures, including residences, built on properties which are within a half mile or more from the landfill.

According to the Storm Water Pollution Prevention Plan (SWPP), the facility operates under the Standard Industrial Classification (SIC) code 4953 for "landfills, land application sites, and open dumps". It is a permitted Class III non-hazardous municipal solid waste landfill. The surface drainage system consists of ditches, culverts, and drains designed to convey surface water runoff and control erosion by reducing water velocities. The North County Landfill facility has two storm water discharge points. An on-site sedimentation basin receives the majority of surface water runoff from the landfill areas. Generally, water in the basin is retained for use on site, but when filled, the basin will discharge water into a grassy swale that drains to the mitigation area in the northern portion of the property. The sedimentation basin allows sediment and other pollutants to settle before water is discharged to the mitigation area. The mitigation area was contoured when the landfill was first constructed in 1992 to preserve wetlands in the landfill's footprint. Outside of the landfill, South Paddy Creek was an intermittent stream that crosses the mitigation area north of the recycling center. The mitigation area holds most of the spill over from the sedimentation basin and other on-site drainage and only discharges to Paddy Creek in extreme events. Paddy Creek discharges into Bear Creek (approximately 2.8 miles southwest of the facility) and is part of the Bear Creek watershed. Bear Creek ultimately discharges into Disappointment Slough, which is tributary to the San Joaquin River and the California Delta. Due to a culvert pipe which connects the eastern adjacent parcel and North County Landfill, there is potential for run-on to enter the property from the east. However, grading of the east property has reduced or eliminated the historic channel to the point that there is minimal potential for run on from the east.


The total permitted area for all facility operations is 320 acres and the landfilling area is 185 acres. The designated landfilling area is divided into 11 modules. Modules are excavated for refuse fill as needed, generally in numerical order. When filling each module, refuse is placed in lifts, ranging from 6 to 10 feet thick, then spread and compacted in layers two feet thick on a sloped working face. Waste is covered at the end of each day to control fires, odor, windblown litter, and other hazards. All earthwork is done in accordance with the Valley Air District regulations. Other industrial activities at the facility include fueling, parts replacement, changing of vehicle fluids, vehicle and equipment washing, equipment storage, and repair. In addition to the waste disposal area, the four main buildings on site are a recycling center, office/maintenance building, water pump house building, and scale house. Accessory structures on site include a gate house, truck weigh scale, parking for landfill personnel and visitors, and a covered recycling center with a tipping area. There is a permanent berm, set back 100 feet from the property line, surrounding the project site's perimeter. Temporary berms are used to divert surface runoff water away from the working face as needed.

The current Solid Waste Facility Permit allows 1,200 tons of solid waste intake per day; at current operational levels, the projected closure year of the landfill is 2046. The landfill accepts residential refuse, commercial/industrial waste, green waste, wood waste, metals, paper products, glass, tires, plastic, agricultural waste, construction/demolition waste, household hazardous waste, dead animals, inert waste, and treated waste. The amount of solid waste accepted has increased steadily since the landfill opened, 2015, 2021, and 2023 were the only years the landfill exceeded 200,000 tons accepted. In 2023, the landfill accepted approximately 267,154 tons of solid waste. Currently, the landfill averages 37,648 garbage truck, transfer truck, and miscellaneous commercial vehicle roundtrips annually.

## 3.2 Detailed Description of Proposed Project

The project consists of a proposed revision to the Solid Waste Facility Permit to increase the maximum allowed daily refuse disposal and the number of daily incoming refuse vehicles from 1,200 tons per day and 850 vehicles per day to 4,000 tons and 1,200 vehicles per day. This increase would involve a change in refuse truck routing; approximately 50 transfer trucks that currently go to the Foothill Landfill would be re-routed to the North County Landfill. The projected annual intake would increase from 250,000 tons in 2024 to 660,000 tons in 2026, then increase 3 percent annually thereafter. The operating hours would also be altered, allowing the acceptance of commercial waste at 6:00 am and remaining open until 5:00 pm seven days per week. Up to six new employees would be needed for the increase in waste disposal and truck trip-related activity.

No new construction is proposed, and the landfill's capacity would not change. The existing site is depicted in Figure 2. Thus, because of the permit modifications without expanding current capacity, the projected closure date would move from 2048 to 2043. The rate of additional cell and module construction on the project site would increase to accommodate the amount of waste accepted. Existing temporary and permanent waste cover methods would remain unchanged, and the haul routes would remain the same. However, total vehicle round trips per year are projected to increase to 38,334 annually, primarily by diverting trucks originating from Tracy Material Recovery and the Lovelace Transfer Station that currently disposes of waste at Foothill Landfill. Though the number of truck trips would increase, partially due to routing changes, the total vehicle round trip miles expected to be generated by landfill operation would be projected to decrease from 1,678,144 annually to 1,582,797.



## Figure 4. Haul Route

North County Sanitary Landfill and Recycling Center Solid Waste Facility Permit Amendment Project





## 3.3 Project-Related Approvals, Agreements, and Permits

This IS/MND has been prepared by the County to evaluate the proposed project, which consists of a revision of the existing solid waste facility permit to allow an increase to the maximum permitted daily tonnage and traffic volume. In order to assess the likely environmental consequences of the project, this IS/MND evaluates the increase in truck volume, employee trips, and maximum tonnage. In the future, if additional modifications to the permit are proposed, the County would review additional activities not discussed in this document and render a determination as to whether additional CEQA analysis is necessary.

#### 3.3.1 San Joaquin County Environmental Health Department

Solid Waste Facility Permit Revision

Additional approvals by the County and, potentially, other agencies, would be required for future SWFP amendments or revisions associated with the project site. Such approvals may include an updated stormwater control plan.

## 4.0 ENVIRONMENTAL FACTORS POTENTIALLY AFFECTED

The environmental factors checked below would be potentially affected by this project, involving at least one impact that is potentially significant unless mitigation is incorporated, as indicated by the checklist on the following pages.

|             | Aesthetics             | $\boxtimes$ | Greenhouse Gas Emissions        | $\boxtimes$ | Public Services                    |
|-------------|------------------------|-------------|---------------------------------|-------------|------------------------------------|
|             | Agricultural Resources |             | Hazards and Hazardous Materials |             | Recreation                         |
| $\boxtimes$ | Air Quality            |             | Hydrology and Water Quality     | $\boxtimes$ | Transportation                     |
|             | Biological Resources   |             | Land Use/Planning               | $\boxtimes$ | Tribal Cultural Resources          |
| $\boxtimes$ | Cultural Resources     |             | Mineral Resources               |             | Utilities / Service Systems        |
|             | Energy                 |             | Noise                           |             | Wildfire                           |
|             | Geology and Soils      |             | Population and Housing          |             | Mandatory Findings of Significance |

| 4.1 | <b>Determi</b> | ination |
|-----|----------------|---------|
|     |                |         |

| On the | he basis of this initial evaluation:                                                                                                                                                                                                                                                                 |                                                                                                                                           |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
|        | I find that the project COULD NOT have a signif NEGATIVE DECLARATION will be prepared.                                                                                                                                                                                                               | icant effect on the environment and a                                                                                                     |
|        | I find that although the project could have a sig<br>there will not be a significant effect in this case<br>been made by or agreed to by the project propo<br>DECLARATION will be prepared.                                                                                                          | because revisions in the project have                                                                                                     |
|        | I find that the project MAY have a significant ef ENVIRONMENTAL IMPACT REPORT is required.                                                                                                                                                                                                           | fect on the environment, and an                                                                                                           |
|        | I find that the project MAY have a "Potentially significant unless mitigated" impact on the envibeen adequately analyzed in an earlier documer standards, and 2) has been addressed by mitigation analysis as described on attached sheets. An EN required, but it must analyze only the effects the | ronment, but at least one effect 1) has at pursuant to applicable legal ation measures based on the earlier IVIRONMENTAL IMPACT REPORT is |
|        | I find that although the project could have a sig<br>because all potentially significant effects (a) have<br>earlier EIR or NEGATIVE DECLARATION pursuant<br>been avoided or mitigated pursuant to that earl<br>including revisions or mitigation measures that<br>nothing further is required.      | ve been analyzed adequately in an<br>to applicable standards, and (b) have<br>ier EIR or NEGATIVE DECLARATION,                            |
| Signat | ature                                                                                                                                                                                                                                                                                                | <br>Date                                                                                                                                  |
|        | ne and Title: Mark Houghton, P.E.                                                                                                                                                                                                                                                                    |                                                                                                                                           |

## 4.2 Initial Study Checklist

This section describes the existing environmental conditions in and near the Project Area and evaluates environmental impacts associated with the proposed project. The environmental checklist, as recommended in the CEQA Guidelines (Appendix G), was used to identify environmental impacts that could occur if the proposed project is implemented. The right-hand column in the checklist lists the source(s) for the answer to each question. The cited sources are identified at the end of this section.

Each of the environmental categories was fully evaluated, and one of the following four determinations was made for each checklist question:

**"No Impact"** means that no impact to the resource would occur as a result of implementing the project.

**"Less-than-Significant Impact"** means that implementation of the project would not result in a substantial and/or adverse change to the resource, and no mitigation measures are required.

**"Less-than-Significant Impact with Mitigation Incorporated"** means that the incorporation of one or more mitigation measures is necessary to reduce the impact from potentially significant to .

**"Potentially Significant Impact"** means that there is either substantial evidence that a project-related effect may be significant, or, due to a lack of existing information, could have the potential to be significant.

#### 4.2.1 Aesthetics

|    | Would the project:                                                                                                                                                                                                                                                                                                                                                       | Potentially<br>Significant<br>Impact | Less-than-<br>Significant<br>Impact with<br>Mitigation<br>Incorporated | Less-than-<br>Significant<br>Impact | No<br>Impact |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------|-------------------------------------|--------------|
| a) | Have a substantial adverse effect on a scenic vista?                                                                                                                                                                                                                                                                                                                     |                                      |                                                                        |                                     |              |
| b) | Substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic buildings within a state scenic highway?                                                                                                                                                                                                                    |                                      |                                                                        |                                     |              |
| c) | In non-urbanized areas, substantially degrade the existing visual character or quality of public views of the site and its surroundings? (Public views are those that are experienced from publicly accessible vantage point). If the Project is in an urbanized area, would the Project conflict with applicable zoning and other regulations governing scenic quality? |                                      |                                                                        |                                     |              |
| d) | Create a new source of substantial light or glare which would adversely affect day or nighttime views in the area?                                                                                                                                                                                                                                                       |                                      |                                                                        |                                     |              |

#### **ENVIRONMENTAL SETTING**

The project site is adjacent to agricultural land in all directions with sparse residences and agricultural development throughout the surrounding area; agricultural uses include vineyards, orchards, grazing pastures and associated infrastructure. The site is visible from other properties in the vicinity, as well as public roads in the area, specifically along East Harney Lane, Clements Road. Within areas where active project operations are occurring, the visual character within the landfill includes exposed dirt, scattered equipment, haul trucks, bulldozers, and compactors. No scenic resources are present on-site.

#### **DISCUSSION OF IMPACTS**

a, b) Have a substantial adverse effect on a scenic vista? Substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic buildings within a state scenic highway?

#### No Impact

The proposed project is limited to operational activities within the landfill and no site modifications would occur. Therefore, landfill slopes would continue to blend in with the natural topography of the surrounding area. The project's proposed operational activities and increase in waste acceptance would not affect the existing visual character or quality of public views of the

site. Furthermore, State Route 88, which is approximately four miles away from the project site, is the nearest eligible state scenic highway (Caltrans 2025). Thus, *no impact* would occur.

a) In non-urbanized areas, substantially degrade the existing visual character or quality of public views of the site and its surroundings? If the project is in an urbanized area, would the project conflict with applicable zoning and other regulations governing scenic quality?

#### No Impact

The project site is located in a non-urbanized area; it is primarily surrounded by agricultural land, agricultural facilities, and scattered residences. Project activities are solely operational and no site modifications are proposed. Therefore, there would be *no impact* to the existing visual character or quality of public views of the site or its surroundings.

d) Create a new source of substantial light or glare which would adversely affect day or nighttime views in the area?

Less-than-Significant Impact

The project would expand landfill operating hours and would be open to the acceptance of commercial waste starting at 6:00 a.m.; the landfill would still stop commercial waste acceptance at 5:00 pm. Thus, operational activities would extend one hour into the nighttime. However, no project activities would require additional lighting; lighting fixtures are currently mounted to the exterior of buildings at the project site and no new lighting is proposed. Therefore, the project would not create additional light or glare during the day and a minimal amount of new light or glare at night. Thus, impacts relating to light or glare which could adversely affect views in the area would be *less than significant*.

#### 4.2.2 Agricultural and Forestry Resources

|    | Would the project:                                                                                                                                                                                                                                                                      | Potentially<br>Significant<br>Impact | Less-than-<br>Significant<br>Impact with<br>Mitigation<br>Incorporated | Less-<br>than-<br>Significant<br>Impact | No<br>Impact |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------|-----------------------------------------|--------------|
| a) | Convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to non-agricultural use?                                             |                                      |                                                                        |                                         |              |
| b) | Conflict with existing zoning for agricultural use, or a Williamson Act contract?                                                                                                                                                                                                       |                                      |                                                                        |                                         | $\boxtimes$  |
| c) | Conflict with existing zoning for, or cause rezoning of, forest land (as defined in Public Resources Code section 12220(g)), timberland (as defined by Public Resources Code section 4526), or timberland zoned Timberland Production (as defined by Government Code section 51104(g))? |                                      |                                                                        |                                         | $\boxtimes$  |
| d) | Result in the loss of forest land or conversion of forest land to non-forest use?                                                                                                                                                                                                       |                                      |                                                                        |                                         | $\boxtimes$  |
| e) | Involve other changes in the existing environment, which, due to their location or nature, could result in conversion of Farmland, to non-agricultural use or conversion of forest land to non-forest use?                                                                              |                                      |                                                                        |                                         |              |

### **ENVIRONMENTAL SETTING**

The project site is located in an unincorporated area of San Joaquin County, surrounded by properties designated for agricultural use, active agricultural operations, and scattered residences. The project site itself is an existing landfill on a parcel designated for agricultural use and has operated since 1991.

#### **DISCUSSION OF IMPACTS**

a-e) Convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to non-agricultural use?

No Impact

The project is limited to the expansion of landfill operations, no site expansion would occur. There is no existing agricultural land within the landfill site. Therefore, the project would not

| convert farmland, forest land, or timber land to non-agricultural use, or conflict with an existing coning for agricultural use or a Williamson Act contract. <i>No impact</i> would occur. |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                                                                                                                                             |  |  |
|                                                                                                                                                                                             |  |  |
|                                                                                                                                                                                             |  |  |
|                                                                                                                                                                                             |  |  |
|                                                                                                                                                                                             |  |  |
|                                                                                                                                                                                             |  |  |
|                                                                                                                                                                                             |  |  |
|                                                                                                                                                                                             |  |  |
|                                                                                                                                                                                             |  |  |
|                                                                                                                                                                                             |  |  |
|                                                                                                                                                                                             |  |  |
|                                                                                                                                                                                             |  |  |
|                                                                                                                                                                                             |  |  |
|                                                                                                                                                                                             |  |  |
|                                                                                                                                                                                             |  |  |
|                                                                                                                                                                                             |  |  |
|                                                                                                                                                                                             |  |  |
|                                                                                                                                                                                             |  |  |
|                                                                                                                                                                                             |  |  |
|                                                                                                                                                                                             |  |  |
|                                                                                                                                                                                             |  |  |
|                                                                                                                                                                                             |  |  |
|                                                                                                                                                                                             |  |  |
|                                                                                                                                                                                             |  |  |
|                                                                                                                                                                                             |  |  |
|                                                                                                                                                                                             |  |  |

#### 4.2.3 Air Quality

Where available, the significance criteria established by the applicable air quality management or air pollution control district may be relied upon to make the following determinations.

|    | Would the project:                                                                                                                                                                                | Potentially<br>Significant<br>Impact | Less-than-<br>Significant<br>Impact with<br>Mitigation<br>Incorporated | Less-<br>than-<br>Significant<br>Impact | No<br>Impact |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------|-----------------------------------------|--------------|
| a) | Conflict with or obstruct implementation of the applicable air quality plan?                                                                                                                      |                                      |                                                                        |                                         |              |
| b) | Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is in non-attainment under an applicable federal or state ambient air quality standard? |                                      |                                                                        | $\boxtimes$                             |              |
| c) | Expose sensitive receptors to substantial pollutant concentrations?                                                                                                                               |                                      |                                                                        | $\boxtimes$                             |              |
| d) | Result in other emissions (such as those leading to odors) affecting a substantial number of people?                                                                                              |                                      |                                                                        | $\boxtimes$                             |              |

An Air Quality Technical Study for the project was prepared by Baseline Environmental Consulting. The results of the study were documented in an Air Quality Technical Study Memorandum prepared in March 2025 (Appendix A). The information in this section is based on and adapted from the findings of the Air Quality Technical Study.

#### **ENVIRONMENTAL SETTING**

#### Regional Climate, Meteorology, and Topography

The project site is located within the San Joaquin Valley Air Basin (SJVAB), which encompasses eight counties, including Fresno, Kern (western and central), Kings, Madera, Merced, San Joaquin, Stanislaus, and Tulare. Air basins have characteristics that limit the ability of natural processes to either dilute or transport air pollutants. The major determinants of air pollution transport and dilution are climatic and topographic factors such as wind, atmospheric stability, terrain that influences air movement, and sunshine.

The San Joaquin Valley is bordered by the Sierra Nevada Mountains in the east, the Coast Ranges in the west, and the Tehachapi mountains in the south. The surrounding mountains create a bowl-shaped topography, limiting movement of pollutants out of the Valley. The Valley has a mediterranean climate characterized by wet winters with sparse rainfall, and hot and dry summers. In addition, persistent temperature inversions occur in the Valley, preventing vertical dilution of pollutants and increases in the concentrations of pollutants at or near the ground.

#### Criteria Air Pollutants

The California Air Resources Board (CARB) and United States Environmental Protection Agency (EPA) focus on the following air pollutants as regional indicators of ambient air quality:

- Ozone
- Coarse particulate matter (PM<sub>10</sub>)
- Fine particulate matter (PM<sub>2.5</sub>)
- Nitrogen dioxide (NO<sub>x</sub>)
- Carbon monoxide (CO)
- Sulfur dioxide (SO<sub>x</sub>)
- Lead

These are referred to as "criteria air pollutants" because they are the most prevalent air pollutants known to be harmful to human health based on extensive criteria documents. In accordance with the Federal Clean Air Act and California Clean Air Act (described in the Regulatory Setting section below), areas in California are classified as either in attainment, maintenance, or nonattainment of the National Ambient Air Quality Standards (NAAQS) and California ambient air quality standards (CAAQS) for each criteria air pollutant.

At the Federal level, SJVAB is currently designated as extreme nonattainment for the 8-hour ozone standard and is designated nonattainment for the  $PM_{2.5}$  standard. At the State level, the SJVAB is designated as nonattainment for the 8-hour ozone,  $PM_{10}$ , and  $PM_{2.5}$  standards (CARB 2023). The SJVAB is designated as an attainment or unclassified area for all other pollutants at the Federal and State level. Therefore, the primary criteria air pollutants of concern in the SJVAB are ground-level ozone formed through reactions of  $NO_x$  and reactive organic gases (ROG),  $PM_{10}$ , and  $PM_{2.5}$  due to the nonattainment designations.

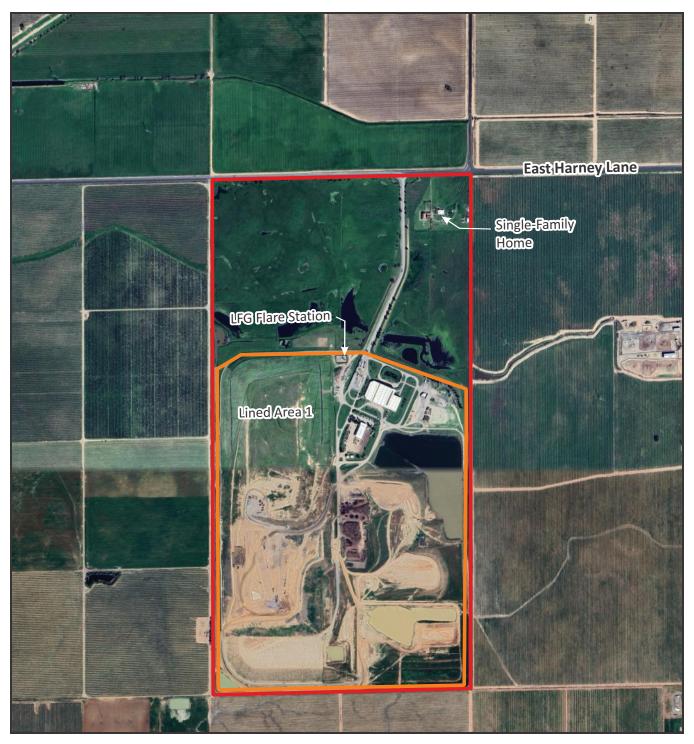
#### **Toxic Air Contaminants**

In addition to criteria air pollutants, individual projects may emit toxic air contaminants (TACs). TACs include a diverse group of air pollutants that can adversely affect human health and include diesel particulate matter (DPM)s, lead, benzene, formaldehyde, and hexavalent chromium, among others. In addition, substances which have been listed as federal hazardous air pollutants are TACs under the state's air toxics program. TACs are not subject to ambient air quality standards but are regulated through state and local risk management programs.

Unlike criteria air pollutants, which generally affect regional air quality, TAC emissions are evaluated based on estimations of localized concentrations and risk assessments. The adverse health effects a person may experience following exposure to any chemical depend on several factors, including the amount (dose), duration, chemical form, and any simultaneous exposure to other chemicals.

#### **Landfill Gas**

Landfill gas (LFG) is primarily made up of methane (CH<sub>4</sub>) and carbon dioxide (CO<sub>2</sub>), which are produced by the natural process of bacterial decomposition of organic material within the landfill under anaerobic conditions. In addition to these main components, LFG contains small amounts


of nitrogen, oxygen, and hydrogen, less than 1 percent non-methane organic compounds (NMOCs), and trace amounts of inorganic compounds, some of which have strong, pungent odors.

Exposure to uncontrolled LFG can lead to adverse health effects due to the presence of volatile organic compounds (VOCs). Existing regulations under the Federal Clean Air Act require landfills of a certain size to install and operate a gas collection and control system, which is mainly targeted at municipal solid waste landfill emissions.

#### **Existing Sensitive Receptors**

Sensitive receptors are areas where individuals are more susceptible to the adverse effects of poor air quality. Sensitive receptors include, but are not limited to, hospitals, schools, daycare facilities, elderly housing, and convalescent facilities. Residential areas are also considered sensitive receptors because people are often at home for extended periods, thereby increasing the duration of exposure to potential air contaminants.

The surrounding land uses are primarily agricultural with scattered single-family residences within a one-mile radius. The closest sensitive receptor is a residence located on-site about 460 feet southeast of the intersection of East Harney Lane and the North County Landfill access road (Figure 5). In addition, sensitive receptors are located along the truck haul route as close as approximately 65 feet to the centerline of East Harney Lane. Schools including Harmony Grove Elementary School and the Adelita Montessori School are also located as close as approximately 70 feet to the centerline of East Harney Lane.



## Legend

Project Site Boundary
Planned Fill Area





Figure 5
Project Site and
Sensitive Receptor Locations

#### **REGULATORY SETTING**

#### **Federal and State Regulations**

The Clean Air Act was laid out by Congress in 1970, and major revisions were made in 1977 and again in 1990. The Clean Air Act is implemented by the United States EPA, who is responsible for establishing and reviewing the NAAQS and judging the adequacy of State Implementation Plans to attain the NAAQS. A State Implementation Plan must integrate federal, state, and local plan components and regulations to identify specific measures to reduce pollution in nonattainment areas, using a combination of performance standards and market-based programs.

In 1988, California passed the California Clean Air Act (California Health and Safety Code sections 39600 et seq.), which is implemented by CARB. CARB is responsible for establishing and reviewing the CAAQS, developing and managing the State Implementation Plan, identifying TACs, and overseeing the activities of regional air quality management districts. To achieve the CAAQS, criteria air pollutant emissions are managed through control measures that are described in regional air quality plans as well as by emission limitations placed on permitted stationary sources. In California, mobile emissions sources (e.g., construction equipment, trucks, automobiles) are regulated by CARB, and stationary emissions sources (e.g., industrial facilities) are regulated by the regional air quality management districts.

In 2016, the EPA established two regulations — the New Source Performance Standards (NSPS) for new landfills and the Emission Guidelines for existing landfills — aimed at reducing methane emissions from landfill gas. The Emissions Guidelines require the installation of an LFG collection and control system at municipal solid waste landfills that exceed a specified design capacity and NMOC emission threshold. These federal requirements are regulated under local air district rules. Similarly, at the State level, CARB adopted the Landfill Methane Regulation in 2010, which requires municipal solid waste landfills to reduce methane and other air pollutant emissions through emissions monitoring and capturing fugitive methane emissions.

### **Regional Regulations**

The project is located in the SJVAB, which is under the jurisdiction of the Valley Air District. The Valley Air District has adopted several air quality attainment plans for particulate matter and ozone over the years that identify measures needed in the SJVAB to attain NAAQS. The Valley Air District has implemented these plans and adopted nearly 650 rules that have resulted in significant emissions reductions. Specific rules applicable to the proposed project include the following:

• Rule 2201 (New and Modified Stationary Source Review Rule). This rule, also known as New Source Review, applies to all new stationary sources and all modifications to existing stationary sources which are subject to the Valley Air District permit requirements and after construction emit or may emit one or more regulated pollutants (e.g. criteria air pollutants and precursors). This rule requires new and modified stationary sources to mitigate emissions using Best Available Control Technology and to offset emissions when estimated emissions are above specified thresholds. Valley Air District implementation of New Source Review ensures that there is no net increase in emissions above specified thresholds from new and modified Stationary Sources for all nonattainment pollutants and their precursors.

- Rule 4102 (Nuisance). This rule prohibits discharge of air contaminants or other materials
  which cause injury, detriment, nuisance or annoyance to any considerable number of
  persons or to the public or which endanger the comfort, repose, health or safety of any
  such person or the public or which cause or have a natural tendency to cause injury or
  damage to business or property.
- Rule 4642 (Solid Waste Disposal Sites). This rule limits volatile organic compound emissions from solid waste disposal sites.
- Regulation VIII (Fugitive PM10 Prohibitions). This regulation consists of a series of rules
  requiring the implementation of dust control measures to reduce fugitive dust emissions
  generated by human activity.

#### ASSESSMENT METHODOLOGY

#### **Regional Air Quality**

Consistent with Appendix G of the CEQA Guidelines, the Valley Air District has adopted thresholds of significance to assist lead agencies in the evaluation and mitigation of air quality impacts under CEQA (Valley Air District 2015). The District's thresholds establish levels at which emissions of ozone precursors (ROG and NO<sub>x</sub>), PM<sub>10</sub>, PM<sub>2.5</sub>, carbon monoxide, sulfur oxides (SO<sub>x</sub>), TACs, and odors could cause significant air quality impacts. The Valley Air District's thresholds of significance that are used in this analysis are summarized below in Table 1.

**Table 1. Air Quality Thresholds of Significance** 

| IMPACT ANALYSIS          | POLLUTANT         | THRESHOLD OF SIGNIFICANCE                  |
|--------------------------|-------------------|--------------------------------------------|
| Criteria Air Pollutants  | СО                | 100 tons per year                          |
| (Construction and        | NO <sub>x</sub>   | 10 tons per year                           |
| Operation <sup>1</sup> ) | ROG               | 10 tons per year                           |
|                          | SO <sub>x</sub>   | 27 tons per year                           |
|                          | PM <sub>10</sub>  | 15 tons per year                           |
|                          | PM <sub>2.5</sub> | 15 tons per year                           |
| Health Risks and Hazards | Toxic Air         | For the Maximally Exposed Individual:      |
| (Combined)               | Contaminant       | Cancer risk increase > 20.0 in one million |
|                          |                   | Chronic hazard index > 1.0                 |
|                          |                   | Acute hazard index > 1.0                   |

<sup>&</sup>lt;sup>1</sup> Construction emissions, operational emission from permitted equipment and activities, and operational emissions from non-permitted equipment and activities are evaluated separately.

Source: Valley Air District 2015

#### **Carbon Monoxide Hotspots**

In addition, the Valley Air District has established that preliminary screening can be used to determine with a fair level of certainty that the effect a project has on any given intersection would not result in a carbon monoxide hotspot. According to the Valley Air District, a project would result in a less-than-significant impact related to localized carbon monoxide

concentrations if neither of the following screening criteria are met at all intersections affected by the development project:

- A traffic study for the project indicates that the Level of Service (LOS) on one or more streets or at one or more intersections in the project vicinity will be reduced to LOS E or F; nor
- A traffic study indicates that the project will substantially worsen an already existing LOS F on one or more streets or at one or more intersections in the project vicinity.

#### **Toxic Air Contaminants**

For risk assessment purposes, TACs are separated into carcinogens and non-carcinogens. Carcinogens are assumed to have no safe threshold below which health impacts would not occur, and cancer risk is expressed as excess cancer cases per 1 million exposed individuals over a lifetime of exposure. Non-carcinogenic substances are generally assumed to have a safe threshold below which health impacts would not occur. Acute and chronic exposure to non-carcinogens is expressed as a hazard index, which is the sum of expected exposure levels divided by the corresponding acceptable exposure levels.

#### **Odors**

The Valley Air District has identified some common types of facilities that have been known to produce odors, including sanitary landfills, and has established screening levels for potential odor sources, in the form of screening distances, to semi-quantitatively assess a project's potential to adversely affect area receptors. For projects that would result in sensitive receptors being located closer than the screening level distances, the Valley Air District has established the following significance threshold for odor problems:

- More than one confirmed complaint per year averaged over a three-year period, or
- Three or more unconfirmed complaints per year averaged over a three-year period.

#### **DISCUSSION OF IMPACTS**

#### a) Conflict with or obstruct implementation of the applicable air quality plan?

Less-than-Significant Impact

As discussed in the Regulatory Setting section above, the Valley Air District has adopted several air quality attainment plans for particulate matter and ozone that identify measures needed in the SJVAB to attain NAAQS. Since the Valley Air District's CEQA thresholds of significance were developed to be consistent with other air quality attainment plans and regulations, projects with emissions below the thresholds of significance for criteria pollutants would be determined to not conflict with or obstruct implementation of the Valley Air District's air quality plans. As discussed in Impact b) below, the project's emissions of criteria air pollutants from permitted and non-permitted equipment and activities would be below the thresholds of significance. In addition, the project would be required to comply with applicable rules and regulations of the Valley Air District, such as Regulation VIII, which requires dust control measures to control the release of fugitive PM<sub>10</sub> emissions. Therefore, the project would not conflict with or obstruct any applicable air quality plan. The impact would be *less than significant*.

b) Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard?

Less-than-Significant Impact

The project would not change the capacity of the North County Landfill and would not involve the construction of any new facilities. The project would increase the maximum amount of allowed daily refuse disposal and number of daily incoming refuse trucks from 1,200 tons per day and 850 trucks per day to 4,000 tons and 1,200 trucks per day. This increase would require a change in refuse truck routing; that is, approximately 50 transfer trucks that currently go to the Foothill Landfill would be re-routed to the North County Landfill. The increase in daily refuse disposal would also increase the use of off-road equipment associated with landfill operations. Up to six new employees would be needed for the increase in waste disposal and truck trip-related activity.

These changes in operational activities at the North County Landfill would generate criteria pollutant emissions that could potentially impact regional air quality. The primary pollutant emissions of concern during project operation would be ozone precursors (ROG and NOx), PM<sub>10</sub>, PM<sub>2.5</sub>, and emissions of LFG. Implementation of the project would result in net increases in off-road equipment usage on the project site, and project-generated vehicle trips along the haul route. Although the project would not change the North County Landfill design capacity, the rate of additional cell and module construction on the project site would increase to accommodate the amount of waste accepted with the proposed increase in maximum allowed daily refuse disposal. Compared to the current operation conditions, the project could increase fugitive emissions from the landfill surface, and exhaust emissions from LFG control devices (e.g., flare) due to the increase in LFG generated and collected. An analysis of estimated emissions that are expected to occur from implementation of the project is provided below.

#### Off-Road Equipment and On-Road Mobile Sources

Criteria air pollutant emissions from off-road equipment for the current operation condition (2024) of the landfill and project condition were calculated using the California Emissions Estimator Model (CalEEMod) version 2022.1.

Emissions associated with off-road equipment and refuse vehicles are characterized as mobile sources. The project would increase the allowed number of daily incoming refuse vehicles from 850 to 1,200 vehicles per day, and it was assumed that the project would generate 12 one-way worker commute trips per day for the six new employees.

The project would also generate fugitive PM<sub>10</sub> and PM<sub>2.5</sub> emissions from on-site earthwork activities, on-road vehicle brake wear and tire wear, resuspended road dust on paved and unpaved roads, and windblown landfill sediment and cover. Earthwork at the North County Landfill is conducted in accordance with the Valley Air District's Regulation VIII, using water trucks and sweepers for dust control. It was assumed that the exposed areas will be watered twice per day.

The primary data used to estimate criteria air pollutant emissions associated with operation of the project were provided by the project applicant and included information about the current operation condition and project off-road construction equipment inventory and usage, off-site haul truck trips, on-site water trucks trips, other on-site service truck trips, and travel distances for each trip category.

As shown below in Table 2, the project's estimated net change in ROG,  $NO_x$ ,  $PM_{10}$ ,  $PM_{2.5}$ , CO, and  $SO_x$  emissions during operation are below the Valley Air District's threshold of significance and would not result in a cumulatively considerable net increase in criteria air pollutants for which the region is in nonattainment; therefore, the project's impact on regional air quality would be *less than significant*.

Table 2. Estimated Annual Criteria Air Pollutant and Precursor Emissions from Non-Permitted Equipment and Activities (tons per year)

| EMISSION SCENARIOS             | ROG  | NO <sub>x</sub> | PM <sub>10</sub> | PM <sub>2.5</sub> | со    | SO <sub>x</sub> |  |
|--------------------------------|------|-----------------|------------------|-------------------|-------|-----------------|--|
| OFF-ROAD EQUIPMENT             |      |                 |                  |                   |       |                 |  |
| Baseline Condition             | 0.24 | 6.79            | 1.06             | 0.63              | 7.60  | 0.01            |  |
| Project Condition              | 0.35 | 7.82            | 1.87             | 1.07              | 12.73 | 0.02            |  |
| Net Difference                 | 0.11 | 1.04            | 0.81             | 0.44              | 5.13  | 0.01            |  |
| ON-ROAD MOBILE SOURCES         |      |                 |                  |                   |       |                 |  |
| Baseline Condition             | 0.13 | 3.70            | 1.40             | 0.31              | 0.18  | 0.03            |  |
| Project Condition              | 0.13 | 3.54            | 1.48             | 0.31              | 0.18  | 0.04            |  |
| Net Difference                 | 0.01 | -0.16           | 0.08             | 0.00              | 0.002 | 0.004           |  |
| Total Net Difference           | 0.11 | 0.88            | 0.90             | 0.45              | 5.13  | 0.01            |  |
| Valley Air District Thresholds | 10   | 10              | 15               | 15                | 100   | 27              |  |
| Threshold Exceeded?            | No   | No              | No               | No                | No    | No              |  |

Source: Attachment A.

#### **Landfill Gas**

Operation of the project would increase criteria air pollutant emissions attributable to the potential increases in exhaust emissions from the flare. The reported emission inventory for the North County Landfill in 2023 was provided by the applicant and is summarized in Table 3 as a representation of the baseline condition.

As shown in Table 3, under the baseline condition, emissions of ROG,  $NO_x$ ,  $PM_{10}$ , CO, and  $SO_x$  from the flare are relatively low – approximately two orders of magnitudes lower than the applicable Valley Air District operation thresholds for permitted sources. For the project condition, the maximum criteria air pollutant emissions from the flare were conservatively estimated using emission limits obtained from the project's current Title V permit and the heat input to flare obtained from the 2023 inventory. For the project condition, the conservatively estimated maximum emissions from the flare are below the Valley Air District's thresholds of significance. Therefore, the project's impact from LFG-related criteria air pollutant emissions would be *less than significant*.

Table 3. Estimated Annual Criteria Air Pollutant and Precursor Emissions from Permitted LFG Collection System (tons per year)

|                                | EMISSIONS (TONS PER YEAR) |                 |                  |       |                 |  |
|--------------------------------|---------------------------|-----------------|------------------|-------|-----------------|--|
| EMISSION SCENARIO              | ROG <sup>2</sup>          | NO <sub>x</sub> | PM <sub>10</sub> | со    | SO <sub>x</sub> |  |
| Baseline Condition¹            | <0.01                     | 0.04            | 0.09             | <0.01 | 0.02            |  |
| Project Condition              | 1.41                      | 6.41            | 3.63             | 9.62  | 3.21            |  |
| Net Difference                 | 1.41                      | 6.37            | 3.54             | 9.62  | 3.19            |  |
| Valley Air District Thresholds | 10                        | 10              | 15               | 100   | 27              |  |
| Threshold Exceeded?            | No                        | No              | No               | No    | No              |  |

<sup>&</sup>lt;sup>1</sup> Based on 2023 inventory for the North County Landfill.

Source: Appendix A, Attachments B and C.

Therefore, the project would not result in a cumulatively considerable net increase in any criteria air pollutant for which the region is in nonattainment, or for LFG. The impact would be less than significant.

#### c) Expose sensitive receptors to substantial pollutant concentrations?

Less-than-Significant Impact

#### **Exposure to Toxic Air Contaminants**

Operation of the project would generate LFG-related emissions and DPM emissions from the exhaust of on-road heavy-duty diesel haul trucks and on-site off-road diesel construction equipment. As discussed in the Environmental Setting section above, the closest sensitive receptor to the landfill is a residence located on-site approximately 2,100 feet northeast from the top of Lined Area 1, and approximately 1,800 feet northeast from the existing LFG flare station (Figure 5). Because the closest sensitive receptor is not located within 1,000 feet of the fill area and flare station, exposure to on-site TACs during project operation was not evaluated. Although LFG may contain trace amount of TACs, the health risk from flare emissions is typically very low as the combustion process would destroy most toxic substances contained in the flared gas. Per the project's Title V permit, VOC destruction efficiency for the flare shall be at least 98 percent by weight.

For sensitive receptors along the truck haul route, a health risk assessment was conducted to estimate the incremental increase in cancer risk and chronic hazard index from exposure to DPM emissions from trucks. This assessment followed guidance outlined by the Valley Air District and the Office of Environmental Health Hazard Assessment (OEHHA) (Valley Air District 2015, OEHHA 2015).

The on-road DPM emissions from trucks travelling by sensitive receptors along the haul route were estimated based on the net increase in average daily truck trips in the project vicinity. Emission data was taken from CARB's database, and air quality models were used to estimate DPM concentrations along the route. Based on the annual average concentrations of DPM estimated using air dispersion modeling, potential health risks were evaluated for the maximally exposed individual resident (MEIR), which represents the most sensitive individual who could be exposed to adverse air quality conditions in the vicinity of the haul route.

<sup>&</sup>lt;sup>2</sup> ROG emissions based on total VOC emissions.

The estimated health risks at the MEIR due to DPM emissions from project operation are summarized and compared to the Valley Air District's thresholds of significance in Table 4. The estimated cancer risk and chronic hazard index for DPM at the MEIR were below the Valley Air District's thresholds of significance. Therefore, the project would not expose sensitive receptors to substantial pollutant concentrations. The impact would be less than significant.

Table 4. Health Risks During Project Operation

|                            |            | DIESEL PARTICULATE MATTER    |                         |  |
|----------------------------|------------|------------------------------|-------------------------|--|
| EMISSIONS SCENARIO         | RECEPTOR   | Cancer Risk<br>(per million) | Chronic<br>Hazard Index |  |
| Baseline Condition         | Haul Route | 0.8                          | <0.01                   |  |
| Project Condition          | MEIR       | 1.5                          | <0.01                   |  |
| Net Difference             |            | 0.7                          | <0.01                   |  |
| Thresholds of Significance |            | 10                           | 1.0                     |  |
| Exceed Threshold?          |            | No                           | No                      |  |

Source: Appendix A, Attachment C

### **Exposure to Carbon Monoxide Emissions**

Heavy traffic congestion at intersections can be local hotspots of carbon monoxide emissions. Although the project would increase truck trips associated with operation of the landfill, as discussed in Section 4.2.17, Transportation, the project would not cause any intersection to operate at LOS E or F. Therefore, the project would not conflict with the Valley Air District's thresholds of significance related to carbon monoxide hotspots, nor would it result in a net increase in the potential exposure of existing sensitive receptors to carbon monoxide concentrations from project-generated truck trips. The impact would be less than significant.

# d) Result in other emissions (such as those leading to odors) adversely affecting a substantial number of people?

#### Less-than-Significant Impact

Landfills are known to produce odors that could adversely affect area receptors. Odors are currently generated at the landfill working face due to tipping and dumping putrescible waste. The main method for controlling odor at the landfill working face is by applying cover material. In addition, fugitive LFG that escape through the LFG collection and control system can contribute to odors.

As explained in the Methodology section above, the Valley Air District has identified that a project would have a significant impact related to odors if it would generate more than one confirmed complaint per year averaged over a three-year period, or three or more unconfirmed complaints per year averaged over a three-year period. According to the applicant, no complaints have been received for the North County Landfill over the past three years. Since the project would not change the odor control method or the LFG collection and control system, the increase in maximum allowed daily refuse disposal is not expected to substantially increase odor generation. Therefore, the project's odor impact would be *less than significant*.

## **4.2.4** Biological Resources

|    | Would the project:                                                                                                                                                                                                                                                                                            | Potentially<br>Significant<br>Impact | Less-than-<br>Significant<br>Impact with<br>Mitigation<br>Incorporated | Less-than-<br>Significant<br>Impact | No<br>Impact |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------|-------------------------------------|--------------|
| a) | Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special-status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Game or U.S. Fish and Wildlife Service? |                                      |                                                                        |                                     |              |
| b) | Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, or regulations or by the California Department of Fish and Game or U.S. Fish and Wildlife Service?                                                            |                                      |                                                                        |                                     |              |
| c) | Have a substantial adverse effect on state or federally protected wetlands (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means?                                                                                     |                                      |                                                                        |                                     |              |
| d) | Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites?                                                                               |                                      |                                                                        |                                     |              |
| e) | Conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance?                                                                                                                                                                              |                                      |                                                                        |                                     |              |
| f) | Conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan?                                                                                                                             |                                      |                                                                        |                                     |              |

#### **ENVIRONMENTAL SETTING**

There are no special-status species or habitats within the project area. The project area is developed with existing buildings, modules for refuse disposal, and other accessory structures. No wetlands are in the project area. An on-site sedimentation basin is present along the eastern

boundary of the project area, which receives stormwater runoff from the landfill modules. Generally, water in the storm basin is retained for use on site, but the County may elect to discharge water to the mitigation area in the northern portion of the property. The storm basin enables pollutants to settle before the water is discharged to the mitigation area. The mitigation area is north of the project area and associated with South Paddy Creek. South Paddy Creek is a stream located to the north of the recycling center and discharges to Bear Creek. Bear Creek discharges into Disappointment Slough, a tributary to both the San Joaquin River and the California Delta. A narrow band of riparian habitat is present along the northern and western perimeter of the sedimentation basin.

#### **REGULATORY SETTING**

#### San Joaquin Multi-Species Habitat Conservation Plan

The San Joaquin County Multi-Species Habitat Conservation and Open Space Plan provides a framework to manage open space preservation with the need to convert open space uses while protecting special status species and habitats. It covers the entirety of San Joaquin County and guides the management of plant, fish, and wildlife species, specifically those that are currently listed or may be listed in the future under the Federal Endangered Species Act (ESA) or the California Endangered Species Act (CESA).

#### **DISCUSSION OF IMPACTS**

a, b) Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Wildlife (CDFW) or United States Fish and Wildlife Service (USFWS)? Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, regulations, or by the CDFW or USFWS?

#### No Impact

The project is limited to operational changes and is located within an existing developed area. No special status plants or animals are present on the project site, nor does the site contain suitable habitat for special-status plants. While there may be areas outside of the project area that could support special status species, project activities are operational and will not expand the landfill's footprint into these areas. Consequently, the project would not conflict with the County's Multi-Species Habitat Conservation and Open Space Plan or the mitigation area north of the landfill. There would be *no impact* to any special status species, protected habitats, or conflicts with the County's Habitat Conservation Plan.

c, d) Have a substantial adverse effect on state or federally protected wetlands (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means? Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites?

#### No Impact

The project does not include any site modifications. Project activities are limited to an increase in solid waste acceptance within the landfill's existing footprint. No wetlands or migratory

corridors have been identified on the project site. The sedimentation basin on the project site and mitigation area outside of the landfill would not be affected by the project's operational activities, as there will be no site expansion or construction activities. Therefore, there would be **no impact** related to wetlands or migratory corridors.

Conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance? Conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan?

#### No Impact

Local policies and ordinances protecting biological resources are primarily contained within the San Joaquin County Multi-Species Habitat Conservation and Open Space Plan. As discussed in Impacts a) and b), due to the project being strictly limited to operational changes, the landfill's footprint would not expand and there would be no change to current conditions, and the proposed project activities are in compliance with the County's Habitat Conservation and Open Space Plan General Plan. The project would not conflict with any County policies or ordinances protecting biological resources, and there would be *no impact*.

#### 4.2.5 Cultural Resources

|    | Would the project:                                                                                                | Potentially<br>Significant<br>Impact | Less-than-<br>Significant<br>Impact with<br>Mitigation<br>Incorporated | Less-than-<br>Significant<br>Impact | No<br>Impact |
|----|-------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------|-------------------------------------|--------------|
| a) | Cause a substantial adverse change in the significance of a historical resource pursuant to Section 15064.5?      |                                      |                                                                        |                                     | $\boxtimes$  |
| b) | Cause a substantial adverse change in the significance of an archaeological resource pursuant to Section 15064.5? |                                      |                                                                        |                                     |              |
| c) | Disturb any human remains, including those interred outside of dedicated cemeteries?                              |                                      |                                                                        |                                     |              |

#### **ENVIRONMENTAL SETTING**

The project site is located in a primarily agricultural area. Land uses in the area include agricultural operations and scattered residences. The landfill was constructed in the early 1990s and operated within the same area, thus the footprint of the project site has not expanded since then. Though the project site itself has been disturbed by landfill activities, no historic or cultural resources have been identified within the project site.

#### **DISCUSSION OF IMPACTS**

a) Cause a substantial adverse change in the significance of a historical resource pursuant to CEQA Guidelines Section 15064.5?

Less-than-Significant Impact

The proposed project is limited to the expansion of operational activities within the footprint of an existing landfill and no additional development or physical expansion is proposed. No previously identified historical resources have been documented within the project area. Therefore, *no impact* on the significance of a historical resource would result from project implementation.

b, c) Cause a substantial adverse change in the significance of an archaeological resource pursuant to CEQA Guidelines Section 15064.5? Disturb any human remains, including those interred outside of dedicated cemeteries?

Ground disturbing activities on the project site may impact unknown cultural resources. The likelihood is low given the excavation activities that already occur as part of the landfill's existing operations. However, It is possible that previously disturbed areas may still contain undiscovered archeological resources, cultural resources, or human remains. The implementation of CUL-1 would reduce potential impacts to undiscovered archeological and cultural resources to less than significant.

#### **MITIGATION MEASURES**

# Mitigation Measure CUL-1: Accidental Discovery of Archeological Resources or Human Remains

If suspected archaeological materials or paleontological resources are uncovered, work at the place of discovery shall be halted immediately until a qualified archaeologist or paleontologist can evaluate the finds as required by the CEQA Guidelines §15064.5(f). Prehistoric archaeological site indicators include the following: obsidian and chert flakes and chipped stone tools, grinding and mashing implements (e.g., slabs and hand stones, and mortars and pestles), bedrock outcrops and boulders with mortar cups, and locally darkened midden soils. Midden soils may contain a combination of any previously listed items with the possible addition of bone and shell remains, and fire-affected stones. Historic period site indicators generally include the following: fragments of glass, ceramic, and metal objects; milled and split lumber; and structure and feature remains such as building foundations and discrete trash deposits.

If human remains are encountered, excavation or disturbance of the location shall be halted in the vicinity of the find, and the county coroner shall be contacted. If the coroner determines the remains are Native American, the coroner shall contact the Native American Heritage Commission (NAHC). The NAHC shall identify the person or persons believed to be most likely descended from the deceased Native American. The most likely descendant shall make recommendations regarding the treatment of the remains with appropriate dignity.

### **4.2.6** Energy

|    | Would the project:                                                                                                                                                             | Potentially<br>Significant<br>Impact | Less-than-<br>Significant<br>Impact with<br>Mitigation<br>Incorporated | Less-<br>than-<br>Significant<br>Impact | No<br>Impact |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------|-----------------------------------------|--------------|
| a) | Result in potentially significant environmental impact due to wasteful, inefficient, or unnecessary consumption of energy resources, during project construction or operation? |                                      |                                                                        | $\boxtimes$                             |              |
| b) | Conflict with or obstruct a state or local plan for renewable energy or energy efficiency?                                                                                     |                                      |                                                                        | $\boxtimes$                             |              |

#### **ENVIRONMENTAL SETTING**

Pacific Gas and Electric (PG&E) is the primary utilities provider for residents and businesses in San Joaquin County. Currently, the County does not have a specific plan relating to energy usage. However, the General Plan does include multiple energy resource policies that encourage projects to incorporate sustainable energy technology when feasible. Efforts to promote sustainability in County operations include using Environmentally Preferable Purchasing (EPP) in procurement, reducing waste and increasing recycling, increasing energy efficiency, generating renewable energy, conserving water, and the use of fuel-efficient vehicles into County facilities, operations, and activities (General Plan 2016).

### **DISCUSSION OF IMPACTS**

 a, b) Result in a potentially significant environmental impact due to wasteful, inefficient, or unnecessary consumption of energy resources, during project construction or operation?
 Conflict with or obstruct a state or local plan for renewable energy or energy efficiency?

### Less-than-Significant Impact

The project consists of a modification of landfill operations, which consists of expanded operating hours, increased truck trips, and the addition of approximately six new employees. Within the General Plan, there are policies related to the project to ensure that energy usage related to landfill operations incorporates energy efficient measures when possible. Specifically, Policy IS-3.5, which mandates the County purchase lower-emission and/or electric efficient equipment when purchasing new fleet vehicles and maintenance/construction equipment; Policy IS-3.6, which requires the County to use available clean energy and fuel sources where feasible to operate its buildings, vehicles, and maintenance/construction equipment; and Policy IS-3.7, which encourages employees to reduce vehicle idling and trips, and encourages efficient routing and the use of public transportation. Due to the incorporation of these policies into continued operation of the landfill, impacts related to energy consumption would be minimized. The project would not alter the operational characteristics of the landfill in such a manner as to result in wasteful, inefficient, or unnecessary consumption of energy resources. The project would not conflict with or obstruct implementation of a state or local plan for renewable energy or energy efficiency. Therefore, project impacts would be *less than significant*.

# 4.2.7 Geology and Soils

|    | Would the project:                                                                                                                                                                                                               | Potentially<br>Significant<br>Impact | Less-than-<br>Significant<br>Impact with<br>Mitigation<br>Incorporated | Less-than-<br>Significant<br>Impact | No<br>Impact |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------|-------------------------------------|--------------|
| a) | Directly or indirectly cause potential substant or death involving:                                                                                                                                                              | ial adverse ef                       | fects, including                                                       | the risk of los                     | ss, injury,  |
|    | i) Rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known fault?          |                                      |                                                                        |                                     |              |
|    | ii) Strong seismic ground shaking?                                                                                                                                                                                               |                                      |                                                                        |                                     |              |
|    | iii) Seismic-related ground failure, including liquefaction?                                                                                                                                                                     |                                      |                                                                        |                                     |              |
|    | iv) Landslides?                                                                                                                                                                                                                  |                                      |                                                                        |                                     |              |
| b) | Result in substantial soil erosion or the loss of topsoil?                                                                                                                                                                       |                                      |                                                                        |                                     |              |
| c) | Be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the project, and potentially result in on- or off-site landslide, lateral spreading, subsidence, liquefaction, or collapse? |                                      |                                                                        |                                     |              |
| d) | Be located on expansive soil, as defined in Table 18-1-B of the Uniform Building Code, creating substantial direct or indirect risks to life or property?                                                                        |                                      |                                                                        |                                     | $\boxtimes$  |
| e) | Have soils incapable of adequately supporting the use of septic tanks or alternative wastewater disposal systems where sewers are not available for the disposal of wastewater?                                                  |                                      |                                                                        |                                     |              |
| f) | Directly or indirectly destroy a unique paleontological resource or site or unique geologic feature?                                                                                                                             |                                      |                                                                        |                                     |              |

#### **ENVIRONMENTAL SETTING**

The project site is located in an unincorporated area of San Joaquin County, east of Lodi. Like other areas located in seismically active California, the project area is susceptible to strong ground shaking during an earthquake. However, the project site is not located within an earthquake fault zone (California Department of Conservation 2024). Also, slopes within the landfill are maintained at a 3:1 horizontal to vertical ratio to lower the probability of landslides induced by seismic events. When the landfill was originally constructed, the native soil was extensively disturbed or replaced with imported material. However, solid waste facilities are subject to Title 27 of the California Code of Regulations, which sets the parameters for the siting, design, and construction of landfills. These standards are meant to ensure that the facilities can withstand seismic events without damage to the structures which control surface drainage and erosion.

#### **DISCUSSION OF IMPACTS**

a-i) Directly or indirectly cause potential substantial adverse effects, including the risk of loss, injury, or death involving: Rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known fault?

### No Impact

No active faults have been identified in the immediate vicinity of the project site. The project site is not within any Earthquake Fault Zone designated by the state under the Alquist-Priolo Earthquake Fault Zoning Act (California Department of Conservation 2024). Operation of the proposed project would be similar to existing conditions and would not cause substantial effects associated with rupture of a known earthquake fault. Therefore, the project would not cause substantial effects including the risk of loss, injury, or death associated with rupture of a known earthquake fault. There would be *no impact* related to adverse effects from the rupture of a known earthquake fault.

a-ii) Directly or indirectly cause potential substantial adverse effects, including the risk of loss, injury, or death involving: Strong seismic ground shaking?

### No Impact

Project operation would not result in any substantial effects related to strong seismic ground shaking because project activities are limited to an increase in waste accepted by the landfill; no site modifications are proposed. Therefore, the proposed project would not result in substantial effects associated with strong seismic ground shaking and *no impact* would occur.

a-iii, a-iv)
Directly or indirectly cause potential substantial adverse effects, including the risk of loss, injury, or death involving: Seismic-related ground failure, including liquefaction? Directly or indirectly cause potential substantial adverse effects, including the risk of loss, injury, or death involving: Landslides?

## No Impact

The project site is not located within a known earthquake fault zone or designated landslide zone. Project activities are operational and do not involve site expansion. Furthermore, as mentioned in the environmental setting, existing slopes within the landfill are maintained at a 3:1 ratio, lowering the potential of landslide damage. Also, the project site is not located in a

liquefaction zone identified by the CGS (CGS 2024). Therefore, project activities would have **no impact** related to landslides or liquefication due to seismic events.

b) Result in substantial soil erosion or the loss of topsoil?

### No Impact

The project would not involve any construction activities, as it is limited to the expansion of existing landfill operations. Surface soils within the project site have previously been disturbed during previous construction and landfill operations. No additional grading or unplanned excavation would occur, and existing erosion control methods will remain unchanged. Therefore, the project would not result in substantial erosion or the loss of topsoil in relation to current conditions, thus there would be *no impact* related to soil erosion or the loss of topsoil.

c) Be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the project, and potentially result in on- or off-site landslide, lateral spreading, subsidence, liquefaction, or collapse?

# No Impact

Various soil units are present within the project area. The project would not expand the landfill's current footprint; the project is limited to operational activities within the landfill. No construction or expansion activities would occur as a result of the project. Thus, there would be **no impact** related to unstable soils.

d) Be located on expansive soil, as defined in Table 18 1 B of the Uniform Building Code, creating substantial direct or indirect risks to life or property?

### No Impact

The proposed project does not entail construction or the expansion of existing facilities and would not expand the landfill footprint. Furthermore, compliance with Title 27 of the California Code of Regulations regarding landfill siting and operations has previously established the project site as being suitable for landfill operations. Consequently, there would *no impact* related to risk of damage as a result of expansive soils.

e) Have soils incapable of adequately supporting the use of septic tanks or alternative wastewater disposal systems where sewers are not available for the disposal of wastewater?

# No Impact

The project would not include the construction of septic tanks or alternative wastewater disposal systems. *No impact* would occur.

f) Directly or indirectly destroy a unique paleontological resource or site or unique geologic feature?

Less-than-Significant with Mitigation Incorporated

The project site is an existing landfill and previous studies have not identified any paleontological resources or unique geologic features. However unlikely, the potential for paleontological resources to occur on the project site cannot be precluded, as the expansion of the landfill's operations will entail the excavation of modules within the project site. The project

will implement Mitigation Measure CUL-1, which pertains to the accidental discovery of buried archaeological or paleontological resources. With implementation of this measure, the project would not destroy a unique paleontological resource or site or unique geological feature. The impact would be less-than-significant with mitigation incorporated.

#### 4.2.8 Greenhouse Gas Emissions

|    | Would the project:                                                                                                                           | Potentially<br>Significant<br>Impact | Less-than-<br>Significant<br>Impact with<br>Mitigation<br>Incorporated | Less-<br>than-<br>Significant<br>Impact | No<br>Impact |
|----|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------|-----------------------------------------|--------------|
| a) | Generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment?                     |                                      |                                                                        | $\boxtimes$                             |              |
| b) | Conflict with any applicable plan, policy, or regulation of an agency adopted for the purpose of reducing the emissions of greenhouse gases? |                                      |                                                                        |                                         | $\boxtimes$  |

A Greenhouse Gas Emissions Technical Study for the project was prepared by Baseline Environmental Consulting. The results of the study were documented in a Greenhouse Gas Technical Study Memorandum prepared in March 2025 (Appendix D). The information in this section is based on and adapted from the findings of the Greenhouse Gas Emissions Technical Study.

#### **ENVIRONMENTAL SETTING**

Landfill gas (LFG) is a natural byproduct of the decomposition of organic material in landfills. Methane and carbon dioxide are the primary constituents of LFG and are produced by the decomposition of organic material within the landfill under anaerobic conditions. By volume, LFG is typically comprised of about 50 percent methane and 50 percent carbon dioxide and water vapor. In addition to these main components, LFG contains small amounts of nitrogen, oxygen, and hydrogen, less than 1 percent non-methane organic compounds (NMOCs), and trace amounts of inorganic compounds. The rate of methane generation is influenced by the amount of bioavailable carbon, the characteristics of the waste (e.g., composition and age), and the environmental conditions that support anaerobic bacterial activity. As waste is continuously deposited in the landfill, methane production gradually increases throughout the landfill's operational life, typically reaching its highest level within several years after the final year of waste disposal, often referred to as the landfill closure year. After closure and capping the landfill, the rate of methane generation typically declines due to reduced moisture infiltration.

According to the Title V Permit (N-119-1-12) for the North County Landfill, the flare for the LFG collection system must attain a methane destruction efficiency of at least 99 percent by weight. In other words, flare combustion must convert at least 99 percent of the methane in LFG to carbon dioxide (a less potent GHG) and other compounds.

### **REGULATORY SETTING**

### Clean Air Act

On April 2, 2007, the U.S. Supreme Court ruled that CO<sub>2</sub> is an air pollutant as defined under the Clean Air Act, and that the Environmental Protection Agency (EPA) has the authority to regulate emissions of GHGs (U.S. Supreme Court, 2007). The EPA made two distinct findings regarding GHGs under Section 202(a) of the Clean Air Act, as follows:

- Endangerment Finding: The current and projected concentrations of the six key well-mixed GHGs (CO<sub>2</sub>, CH<sub>4</sub>, N<sub>2</sub>O, hydrofluorocarbons, perfluorocarbons, and sulfur Hexafluoride) in the atmosphere threaten the public health and welfare of current and future generations. The EPA also found that the combined emissions of these GHGs from new motor vehicles and new motor vehicle engines contribute to the GHG pollution that endangers public health and welfare under Clean Air Act Section 202(a).
- Endangerment Finding: The current and projected concentrations of the six key well-mixed GHGs (CO<sub>2</sub>, CH<sub>4</sub>, N<sub>2</sub>O, hydrofluorocarbons, perfluorocarbons, and sulfur Hexafluoride) in the atmosphere threaten the public health and welfare of current and future generations. The EPA also found that the combined emissions of these GHGs from new motor vehicles and new motor vehicle engines contribute to the GHG pollution that endangers public health and welfare under Clean Air Act Section 202(a).

In 2016, the EPA established two regulations — the New Source Performance Standards (NSPS) for new landfills and the Emission Guidelines (EG) for existing landfills — aimed at reducing methane emissions from landfill gas. The EG requires the installation of an LFG collection and control system at municipal solid waste (MSW) landfills that exceed a specified design capacity and NMOC emission threshold.

## **State Regulations**

### Assembly Bill (AB) 32, Senate Bill (SB) 32, AB 1279

The State has established the following GHG reduction goals:

- AB 32: Reduce GHG emissions to 1990 levels by 2020.
- SB 32: Reduce GHG emissions to 40 percent below 1990 levels by 2030.
- AB 1279: Achieve carbon neutrality as soon as possible, but no later than 2045 and maintain net negative GHG emissions thereafter; and reduce GHG emissions to 85 percent below 1990 levels by 2045.

### **Landfill Methane Regulation**

The California Air Resources Board (CARB) adopted the Landfill Methane Regulation in 2010, which requires MSW landfills to reduce methane and other air pollutant emissions through emissions monitoring and capturing fugitive methane emissions. Municipal solid waste (MSW) landfills are regulated under local air district rules that implement the federal requirements of the New Source Performance Standards (NSPS) and EG, 40 Code of Federal Regulations Part 60 Subparts WWW and Cc, for MSW landfills. CARB and 22 air districts, including the San Joaquin Valley Air Pollution Control District (Valley Air District), entered into memoranda of understanding to enable the districts to implement and enforce the Landfill Methane Regulation.

### The Short-Lived Climate Pollutant (SLCP) Reduction Strategy and SB 1383

Promulgated in 2016, SB 1383 set a statewide target to reduce organic waste disposed of in landfills of 50 percent by 2020 and 75 percent by 2025. In addition, SB 1383 requires recovering at least 20 percent of disposed edible food for human consumption by 2025. As organic waste is a primary substance that generates LFG, diverting organic waste from landfills can reduce LFG emissions.

The Short-Lived Climate Pollutant (SLCP) Reduction Strategy, adopted by CARB in 2017, is California's plan for reducing emissions of high global-warming potential gases with short atmospheric lifetimes. SLCPs include methane, hydrofluorocarbons, and anthropogenic black

carbon. In accordance with SB 1383, the SLCP Reduction Strategy has set the following targets for statewide reductions in SLCP emissions:

- 40 percent below 2013 levels by 2030 for methane and hydrofluorocarbons; and
- 50 percent below 2013 levels by 2030 for anthropogenic black carbon.

The SLCP Reduction Strategy also provides specific direction for reductions from dairy and livestock operations and from landfills by diverting organic materials.

## California On-Road Vehicle Emission Regulations

The State of California has established statewide emission and fuel economy regulations for vehicles that align with or supersede the national standards. The key state regulations related to vehicles emissions are as follows:

- The Pavley Regulations (AB 1493), as amended in 2009, required a 30 percent reduction in state GHG emissions from new passenger vehicles from 2009 through 2016.
- The Advanced Clean Cars Program extends the Pavley Regulations beyond 2016 and established a technology mandate for zero-emission vehicles (ZEVs).
- The Advanced Clean Cars II Program requires all new passenger cars, trucks, and sport utility vehicles sold in California to be ZEVs by 2035.
- Executive Order N-79-20 established a goal that 100 percent of in-state sales of new passenger cars and light-duty trucks will be zero-emission by 2035, which is supported by the Advanced Clean Cars II Regulations.
- The Advanced Clean Trucks regulation requires between 40 and 75 percent of new medium- and heavy-duty vehicles sold in California to be ZEVs or near-zeroemissions vehicles by 2035.
- The Low-Carbon Fuel Standard (Executive Order S-1-07), as amended in 2019, requires a 20 percent reduction in the carbon intensity of California's transportation fuels by 2030.
- SB 375 establishes regional GHG emissions reduction targets from passenger vehicles for 2020 and 2035 by requiring metropolitan planning organizations to develop and implement Sustainable Communities Strategies that align regional transportation planning efforts with regional housing allocation needs.
- The Truck and Bus Regulation, as amended in 2014, requires heavy-duty diesel
  vehicles that operate in California to reduce toxic air containment (TAC) emissions
  from their exhaust. As of January 1, 2023, nearly all trucks and buses are required to
  have 2010 or newer model year engines, to reduce particulate matter and oxides of
  nitrogen emissions.
- The Tractor-Trailer GHG Regulation (13 CCR 1956), adopted by CARB in 2008, requires tractors and trailers to use aerodynamic technologies and low rolling resistance tires, to reduce fuel use and emissions.

### California's Climate Change Scoping Plan

In December 2008, CARB adopted the Climate Change Scoping Plan to identify how the state can achieve its 2020 climate action goal under AB 32. In 2017, CARB updated the Scoping Plan to identify how the state can achieve its 2030 climate action goal under SB 32 and substantially advance toward its 2050 climate action goal under Executive Order S-3-05. The 2017 Scoping Plan includes the regulatory programs identified above, such as the Advanced Clean Cars

Program, Low-Carbon Fuel Standard, Renewable Portfolio Standard Program, energy efficiency standards, SLCP Reduction Strategy, and Cap-and-Trade Program (CARB 2017).

In December 2022, CARB adopted the 2022 Scoping Plan for Achieving Carbon Neutrality (2022 Scoping Plan), which outlines a roadmap to achieve targets for carbon neutrality and reduce anthropogenic GHG emissions by 85 percent below 1990 levels no later than 2045. Building on the 2017 Scoping Plan, the 2022 Scoping Plan evaluates the progress made toward meeting the 2030 GHG reduction target established in SB 32 and identifies a technologically feasible, costeffective, and equity-focused path to achieve carbon neutrality by 2045. The 2022 Scoping Plan presents an approach for an aggressive reduction of fossil fuels and a rapid transition to renewable energy resources and zero-emission vehicles; it identifies key sectors such as transportation sustainability, clean electricity grid, sustainable manufacturing and buildings, carbon dioxide removal and capture, short-lived climate pollutants, and natural and working lands. The 2022 Scoping Plan identifies actions and outcomes such as rapidly moving to zeroemission transportation; electrifying cars, buses, trains, and trucks; phasing out the use of fossil gas used for heating homes and buildings; clamping down on chemicals and refrigerants; providing communities with sustainable options for walking, biking, and public transit; building out clean, renewable energy resources (such as solar arrays and wind turbine capacity) to displace fossil-fuel fired electrical generation; and scaling up new options such as renewable hydrogen and biomethane.

The 2022 Scoping Plan outlines several strategies to reduce methane emissions from landfills, with a focus on organic waste diversion, composting and anerobic digestion capacity expansion, and existing landfill operational practice improvement.

### **Regional Regulations**

The project is located in the San Joaquin Valley Air Basin, which is under the jurisdiction of the Valley Air District. The Valley Air District has implemented these plans and adopted nearly 650 rules that have resulted in significant emissions reductions. Rule 4642 (Solid Waste Disposal Sites) limits volatile organic compound emissions from solid waste disposal sites.

Climate change is not caused by any individual emissions source but by a large number of sources around the world emitting GHGs that collectively create a significant cumulative impact. CEQA requires agencies in California to analyze such impacts by evaluating whether a proposed project would make a "cumulatively considerable" contribution to the significant cumulative impact on climate change.

In 2008, Valley Air District adopted the Climate Change Action Plan (CCAP). The CCAP directed the District Air Pollution Control Officer to develop guidance to assist Lead Agencies, project proponents, permit applicants, and interested parties in assessing and reducing the impacts of project specific GHG emissions on global climate change. In 2009, the Valley Air District adopted the Guidance for Valley Land-use Agencies in Addressing GHG Emission Impacts for New Projects under CEQA and a policy entitled Addressing GHG Emission Impacts for Stationary Source Projects Under CEQA When Serving as the Lead Agency (Policy). In 2015, the Valley Air District adopted thresholds of significance to assist lead agencies in the evaluation and mitigation of air quality impacts under CEQA (CEQA Guidance). The Valley Air District has not established a numerical GHG emissions threshold in the absence of supporting scientific evidence. Instead, the Valley Air

District recommends assessing project-specific GHG emission impacts on global climate change based on the tiered approach specified in the Policy:

- Projects complying with an approved GHG emission reduction plan or GHG mitigation program which avoids or substantially reduces GHG emissions within the geographic area in which the project is located would be determined to have a less than significant individual and cumulative impact for GHG emissions. Such plans or programs must be specified in law or approved by the Lead Agency with jurisdiction over the affected resource and supported by a CEQA compliant environmental review document adopted by the Lead Agency. Projects complying with an approved GHG emission reduction plan or GHG mitigation program would not be required to implement Best Performance Standards (BPS).
- Projects implementing BPS would not require quantification of project specific GHG emissions. Consistent with the CEQA Guidelines, such projects would be determined to have a less-than-significant individual and cumulative impact for GHG emissions.
- Projects not implementing BPS would require quantification of project specific GHG emissions and demonstration that project-specific GHG emissions would be reduced or mitigated by at least 29 percent compared to Business as Usual (BAU), including GHG emission reductions achieved since the 2002-2004 baseline period, consistent with GHG emission reduction targets established in CARB's 2008 Scoping Plan. Projects achieving at least a 29 percent GHG emission reduction compared to BAU would be determined to have a less-than-significant individual and cumulative impact for GHG emissions.

The Valley Air District has not approved BPS for landfills but does require compliance with the CARB regulations related to the reduction of methane emissions from MSWs.

### **DISCUSSION OF IMPACTS**

a) Generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment?

Less-than-Significant Impact

The project would not change the North County Landfill's design capacity of 41.2 million cubic yards of disposal and would not involve construction of new facilities. The amount of waste-in-place when the landfill reaches its design capacity would remain the same. The project would increase the maximum amount of allowed daily refuse disposal and the number of daily incoming refuse trucks from 1,200 tons per day and 850 trucks per day to 4,000 tons and 1,200 trucks per day. This increase would involve a change in refuse truck routing; approximately 51 transfer trucks that currently go to the Foothill Landfill would be re-routed to the North County Landfill. The average trip distance for the re-routed trucks is expected to decrease due to the location of the North County Landfill. Although the number of truck trips to North County Landfill would increase, partially due to routing changes, the total vehicle miles travelled by refuse trucks would decrease by approximately 5.7 percent from 1,678,144 miles to 1,582,797 miles in 2026. The increase in daily refuse disposal would increase the use of off-road equipment associated with landfill operations. However, this would be offset due to the reduction of off-road equipment at Foothill Landfill.

Implementation of the project would result in net increases in off-road equipment usage on the project site, and project-generated vehicle trips along the haul route. Although the project would

not change the North County Landfill design capacity, the rate of additional cell and module construction on the project site would increase to accommodate the amount of waste accepted with the proposed increase in maximum allowed daily refuse disposal. Compared to the current operation conditions, the project could increase the rate of LFG generated and collected but is not expected to substantially change the total amount of LFG generated over the lifetime of the landfill since the total waste-in-place would remain the same once landfill capacity is reached.

The long-term LFG emissions of methane for the North County Landfill were estimated using the EPA Landfill Gas Emission Model (LandGEM) version 3.1 and AP-42 default inputs. Information about historical waste acceptance rates (1991 to 2023), closure year (project condition), and predicted annual increases in waste intake were provided by the applicant. For the baseline condition, it was assumed that 250,000 tons of waste was accepted in 2024, and a three percent increase in waste disposal rate per year thereafter. Under this scenario, the North County Landfill would reach the 20.6 million tons design capacity by 2059. For the project condition, it was assumed that the waste disposal rate would increase from 250,000 tons in 2024 to 660,000 tons in 2026, then a three percent increase in waste disposal rate per year thereafter. Under this scenario, the North County Landfill would reach the 20.6 million tons design capacity by 2043.

As described above, LFG-derived CO<sub>2</sub> emissions (including CO<sub>2</sub> from combustion of methane at the flare) are considered biogenic, part of the natural carbon cycle and are not considered an anthropogenic contributor to climate change; therefore, the biogenic CO<sub>2</sub> emissions from LFG are not included in the evaluation of the project's potential impacts on climate change from GHG emissions.

Methane content in the LFG was assumed to be 50 percent. Although the North County Landfill has a landfill gas collection system, those systems are not 100 percent efficient in collecting LFG and hence fugitive emissions of methane would still occur. With the absence of site-specific data, LFG collection system collection efficiencies, which are subject to landfill cover type, were obtained from 40 CFR Part 98 subpart HH. The North County Landfill is only partially built and as such all cover on the site is either daily or intermediate cover. Construction of final covers is planned to be done in conjunction with the excavation and construction of future modules.

According to the North County Landfill Joint Technical Document revised in 2024, a final cover for a portion of the landfill is proposed by 2029. Therefore, it was assumed that most of the landfill areas are covered by intermediate cover between 2024 and 2029 (collection efficiency 65 percent), then 50 percent of the landfill areas will be covered by a final cover between 2030 and the closure year (weighted average collection efficiency 75 percent). After the closure year, it was assumed that all landfill areas will be covered by a final cover (collection efficiency 85 percent). In addition, it was assumed that 10 percent of the fugitive methane emissions are oxidized to CO<sub>2</sub> as the gas passes through the landfill soil cover. The collected LFG would be combusted in a temperature-controlled flare. During combustion, gaseous hydrocarbons react with atmospheric oxygen to form CO<sub>2</sub> and water. The destruction efficiency is defined as the percentage of a specific pollutant in the flare vent gas that is converted to a different compound (such as CO<sub>2</sub>). Methane destruction efficiency for the flare was assumed to be 99 percent based on the Title V Permit.

The project's estimated net increase in average annual GHG emissions from operation would total approximately 2,537 metric tons CO₂e in 2026. GHG emissions from off-road equipment and landfill methane emissions would increase with the implementation of the project due to the

increase in waste intake and associated landfill operations. However, GHG emissions from on-road mobile sources would decrease by 230 metric tons CO<sub>2</sub>e per year, mainly attributable to the shorter truck trip distance of the re-routed trucks. It is to be noted that GHG emissions from off-road and on-road mobile sources in later years would be lower due to the increasingly stringent emissions standards and fleet turnover (including off-road equipment, trucks, and on-road passenger vehicles).

Methane emissions from LFG for 2026 were estimated to represent the project year (2026) impact. As waste is continuously deposited in the landfill, methane production will gradually increase throughout the landfill's operational life. After landfill closure, methane generation typically declines due to reduced moisture infiltration. The overall methane generation rates for the baseline and project conditions were estimated using LandGEM. After the closure year, methane emissions under both conditions decline, and the project condition shows a lower long-term emission rate compared to the baseline condition.

To represent the overall impact of the project, total LFG-derived methane emissions over 50 years past the project year (2026 to 2076) were estimated for the baseline condition and the project condition and then averaged to obtained representative average annual GHG emissions rates. Over 50 years, the LFG generated under baseline and project conditions would result in total CO<sub>2</sub>e emissions of 2,831,406 metric tons (56,628 metric tons per year). On average, the project would increase annual CO<sub>2</sub>e emissions by 1,295 metric tons per year.

The Valley Air District has not established a numerical GHG emissions threshold and recommends evaluating project-level GHG emissions impacts based on compliance with an approved GHG emission reduction plan or GHG mitigation program or implementation of BPS. The North County Landfill is required to comply with the CARB Landfill Methane Regulation, which requires MSW landfills to reduce methane and other air pollutant emissions through emissions monitoring and capturing of methane emissions. Since the project will comply with a statewide plan for GHG reductions, the project would have a *less-than-significant impact* related to GHG emissions.

b) Conflict with any applicable plan, policy, or regulation of an agency adopted for the purpose of reducing the emissions of greenhouse gases?

### No Impact

The 2022 Scoping Plan outlines a roadmap for the state to achieve targets for carbon neutrality and reduce anthropogenic GHG emissions by 85 percent below 1990 levels no later than 2045. The 2022 Scoping Plan identifies actions and outcomes such as rapidly moving to zero-emission transportation; electrifying cars, buses, trains, and trucks; phasing out the use of fossil gas used for heating homes and buildings; reducing down on chemicals and refrigerants; providing communities with sustainable options for walking, biking, and public transit; building out clean, renewable energy resources to displace fossil-fuel fired electrical generation; and scaling up new options such as renewable hydrogen and biomethane. In addition, the 2022 Scoping Plan outlines several strategies to reduce methane emissions from landfills, with a focus on organic waste diversion, composting and anerobic digestion capacity expansion, and existing landfill operational improvements.

As discussed above, the project would result in a net decrease in daily haul truck VMT. For medium and heavy-duty trucks, California has the following regulations, strategies, and plans to reduce GHG emissions: Advanced Clean Truck Regulation, Tractor-Trailer Greenhouse Gas

Regulation, and Truck and Bus Regulation. The trucks visiting the project site would be subject to these regulations, strategies, and plans; therefore, the project would comply with the state GHG emissions reduction strategies for trucks. In addition, if the project is not implemented, it is reasonable to assume that the growing demand for waste disposal in the region may need to be addressed by landfills that are located further away (as demonstrated by the current condition), which would result in higher GHG emissions from haul truck travel. Therefore, the project is in alignment with the 2022 Scoping Plan.

As mentioned above, the North County Landfill is required to comply with the CARB Landfill Methane Regulation. The North County Landfill has implemented an LFG collection system, including a flare, vertical wells, and connecting piping. As landfill operations continue, additional LFG collectors, primarily horizontal collection trenches, will be installed and integrated into the existing system. Furthermore, the majority of incoming waste is either source-separated municipal waste or sorted on-site at the recycling center, ensuring that most green waste is removed from the waste stream. Thus, the project would not conflict with the 2022 Scoping Plan and the Landfill Methane Regulation. There would be *no impact* related to conflict with policies or plans adopted for the reduction of GHG emissions.

# 4.2.9 Hazards and Hazardous Materials

|    | Would the project:                                                                                                                                                                                                                                            | Potentially<br>Significant<br>Impact | Less-than-<br>Significant<br>Impact with<br>Mitigation<br>Incorporated | Less-<br>than-<br>Significant<br>Impact | No<br>Impact |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------|-----------------------------------------|--------------|
| a) | Create a significant hazard to the public or<br>the environment through the routine<br>transport, use, or disposal of hazardous<br>materials?                                                                                                                 |                                      |                                                                        |                                         |              |
| b) | Create a significant hazard to the public or<br>the environment through reasonably<br>foreseeable upset and accident conditions<br>involving the release of hazardous materials<br>into the environment?                                                      |                                      |                                                                        |                                         |              |
| c) | Emit hazardous emissions or handle<br>hazardous or acutely hazardous materials,<br>substances, or waste within one-quarter mile<br>of an existing or proposed school?                                                                                         |                                      |                                                                        |                                         |              |
| d) | Be located on a site which is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5 and, as a result, would it create a significant hazard to the public or the environment?                                   |                                      |                                                                        |                                         | $\boxtimes$  |
| e) | For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project result in a safety hazard for people residing or working in the project area? |                                      |                                                                        |                                         | $\boxtimes$  |
| f) | Impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan?                                                                                                                                        |                                      |                                                                        |                                         | $\boxtimes$  |
| g) | Expose people or structures, either directly or indirectly, to a significant risk of loss, injury or death involving wildland fires?                                                                                                                          |                                      |                                                                        |                                         | $\boxtimes$  |

#### **ENVIRONMENTAL SETTING**

The project site is classified as a Class III Waste Management Unit and designated for "non-hazardous solid waste." The landfill accepts agricultural, residential, commercial, industrial, construction and demolition debris, yard waste, tires, and wood waste. Recyclable material is also accepted. The County maintains a load check program at the facility's entrance to ensure all materials brought to the landfill comply with State and local regulations. Furthermore, the County has a separate landfill that accepts hazardous waste which operates independently from North County Landfill.

### **REGULATORY SETTING**

### California Code of Regulations Title 27 § 20260

Class III landfills shall be located where site characteristics provide adequate separation between nonhazardous solid waste and waters of the state. Class III landfills are subject to State waste containment requirements and SWRCB requirements. New Class III and existing Class II-2 landfills shall be sited where soil characteristics, distance from waste to ground water, and other factors will ensure no impairment of beneficial uses of surface water or of ground water beneath or adjacent to the landfill.

### California Code of Regulations Title 27 § 20220

Non-hazardous solid waste are defined as "all putrescible and non-putrescible solid, semi-solid, and liquid wastes, including garbage, trash, refuse, paper, rubbish, ashes, industrial wastes, demolition and construction wastes, abandoned vehicles and parts, discarded home and industrial appliances, manure, vegetable or animal solid and semi-solid wastes and other discarded waste (whether of solid or semi-solid consistency); provided that such wastes do not contain wastes which must be managed as hazardous wastes, or wastes which contain soluble pollutants in concentrations which exceed applicable water quality objectives, or could cause degradation of waters of the state (i.e., designated waste)."

Nonhazardous solid waste may be discharged at any classified landfill which is authorized to accept such waste, provided that (1) the co-disposal of nonhazardous solid waste with other waste shall not create conditions which could impair the facility's containment features and shall not render designated waste hazardous, and (2) the facility shall ensure to the maximum extent feasible, that only those wastes that are approved for being discharged at that facility.

### San Joaquin County General Plan – Hazardous Materials and Wastes

Policy PHS-7.3 Control Hazardous Materials: The County shall require the use, storage, and disposal of hazardous materials and wastes to comply with local, State, and Federal safety standards.

Policy PHS-7.5 Locate Hazardous Materials Away from Populated Areas: To the extent feasible, the County shall require proposed activities and land uses that use, store, or dispose of hazardous materials or wastes to be located away from existing and planned populated areas.

Policy PHS-7.7 County Hazardous Materials Area Plan: The County shall maintain and implement the County Hazardous Materials Area Plan for emergency response to a release or threatened release of hazardous material within the unincorporated County.



#### **DISCUSSION OF IMPACTS**

a) Create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials?

Less-than-Significant Impact

The SWFP modifications proposed do not include the acceptance or use of hazardous waste. Furthermore, the project does not include any site modifications, thus there would be no construction activities that may necessitate the transport of hazardous waste originating from the project site. As a Class III waste management unit, North County Landfill is not permitted to accept hazardous waste. However, due to the acceptance of commercial waste, it is possible residents may occasionally transport hazardous waste to the landfill, though it would not be accepted. Thus, the transport of hazardous waste would not be a routine part of project operations. The impact would be *less than significant*.

b) Create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment?

### No Impact

As a Class III facility, the project site is not permitted to accept hazardous waste. The project's SWFP modification would not change the project site's designation as a Class III facility. Additionally, the North County Landfill checks waste entering the landfill for disposal to ensure it complies with State and local regulations. Therefore, with adherence to CCR Title 27 § 20220, there would be no reasonably foreseeable scenario in which the expansion of landfill operations would create a significant hazard to the public. There would be *no impact*.

c) Emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school?

# No Impact

No schools are located within one-quarter mile of the project sites. Therefore, there would be **no impact** related to schools related to hazardous waste or materials.

d) Be located on a site which is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5 and, as a result, would it create a significant hazard to the public or the environment?

### No Impact

A search of the GeoTracker and EnviroStor databases compiled by the State Water Resources Control Board (SWRCB) and Department of Toxic Substances Control (DTSC) indicated that the project site is not included on a list of hazardous materials sites compiled to Government Code Section 65962.5 (DTSC 2024, SWRCB 2024). Therefore, *no impact* would occur.

e) For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project result in a safety hazard for people residing or working in the project area?

No Impact

The nearest airport to the project site is in Lodi, and approximately 11 miles away, and the North County Landfill is not located within the airport land use plan. The project is limited to operational landfill activities and would not result in a safety hazard for people residing or working in the project area. Therefore, *no impact* would occur.

f) Impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan?

### No Impact

The project is limited to the modification of landfill operational activities. Project operation would be similar to existing conditions and would not physically interfere with any designated evacuation route or public right-of-way. Therefore, the project would not interfere with any emergency response plan or emergency evacuation plan. There would be *no impact*.

g) Expose people or structures, either directly or indirectly, to a significant risk of loss, injury or death involving wildland fires?

# No Impact

The project is operational only and project activities are limited to an existing landfill. Project operation would be similar to existing conditions and would not expose people or structures to a significant risk of loss, injury, or death involving wildland fires. physically interfere with any designated evacuation route or public right-of-way. Therefore, there would be **no impact**.

# 4.2.10 Hydrology and Water Quality

|    | Would the project:                                                                                                                                                                                     | Potentially<br>Significant<br>Impact | Less-than-<br>Significant<br>Impact with<br>Mitigation<br>Incorporated | Less-<br>than-<br>Significant<br>Impact | No<br>Impact |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------|-----------------------------------------|--------------|
| a) | Violate any water quality standards or waste discharge requirements or otherwise substantially degrade surface or ground water quality?                                                                |                                      |                                                                        |                                         |              |
| b) | Substantially decrease groundwater supplies or interfere substantially with groundwater recharge such that the project may impede sustainable groundwater management of the basin?                     |                                      |                                                                        |                                         |              |
| c) | Substantially alter the existing drainage patter alteration of the course of a stream or river or manner which would:                                                                                  |                                      |                                                                        |                                         |              |
|    | i) result in substantial erosion or siltation on-<br>or off-site;                                                                                                                                      |                                      |                                                                        |                                         |              |
|    | ii) substantially increase the rate or amount of<br>surface runoff in a manner which would result<br>in flooding on- or off-site;                                                                      |                                      |                                                                        |                                         |              |
|    | iii) create or contribute runoff water that<br>would exceed the capacity of existing or<br>planned storm water drainage systems or<br>provide substantial additional sources of<br>polluted runoff; or |                                      |                                                                        |                                         |              |
|    | iv) impede or redirect flood flows?                                                                                                                                                                    |                                      |                                                                        |                                         |              |
| d) | In flood hazard, tsunami, or seiche zones, risk release of pollutants due to project inundation?                                                                                                       |                                      |                                                                        |                                         |              |
| e) | Conflict with or obstruct implementation of a water quality control plan or sustainable groundwater management plan?                                                                                   |                                      |                                                                        |                                         |              |

### **ENVIRONMENTAL SETTING**

As discussed above in *Biological Resources*, no wetlands are located in the project area, although there is a sedimentation basin on the eastern boundary of the project area, which receives stormwater runoff from the project site. There is also a mitigation area north of the landfill connecting to South Paddy Creek, which ultimately flows to Bear Creek then both the San Joaquin River and the California Delta.

#### **REGULATORY SETTING**

### Stormwater Pollution Prevention Plan

The San Joaquin County facility operates under the Standard Industrial Classification (SIC) code 4953 for "landfills, land application sites, and open dumps". Landfills are listed under Category #5 of Attachment A of the General Permit requiring permit coverage. Furthermore, operators of landfills are required to comply with Part 445 of 40 CFR Chapter I, Subchapter N, which specifies effluent limitation guidelines (ELGs) for specific categories of industrial storm water discharges. County staff is responsible for the monitoring and reporting requirements contained within the facility's Stormwater Pollution Prevention Plan (SWPP), as required by Section X of the NPDES, General Industrial Storm Water Permit issued by the State of California SWRCB Water Quality Order 2014-0057-DWQ amended by Order 2015-0122-DWQ and Order 2018-0028-DWQ (General Permit). One of the core components of the SWPP is the identification and evaluation of pollutants that may affect the quality of storm water discharges and authorized non-storm water discharges from the facility. Furthermore, staff must also identify and describe best management practices (BMPs) to reduce or prevent pollutants in industrial storm water discharges.

### California Code of Regulations Title 27 § 20260

Class III landfills shall be located where site characteristics provide adequate separation between nonhazardous solid waste and waters of the state. Class III landfills are subject to State waste containment requirements and SWRCB requirements. New Class III and existing Class II-2 landfills shall be sited where soil characteristics, distance from waste to ground water, and other factors will ensure no impairment of beneficial uses of surface water or of ground water beneath or adjacent to the landfill.

### California Code of Regulations Title 27 § 20220

Non-hazardous solid waste are defined as "all putrescible and non-putrescible solid, semi-solid, and liquid wastes, including garbage, trash, refuse, paper, rubbish, ashes, industrial wastes, demolition and construction wastes, abandoned vehicles and parts, discarded home and industrial appliances, manure, vegetable or animal solid and semi-solid wastes and other discarded waste (whether of solid or semi-solid consistency); provided that such wastes do not contain wastes which must be managed as hazardous wastes, or wastes which contain soluble pollutants in concentrations which exceed applicable water quality objectives, or could cause degradation of waters of the state (i.e., designated waste)."

Nonhazardous solid waste may be discharged at any classified landfill which is authorized to accept such waste, provided that (1) the co-disposal of nonhazardous solid waste with other waste shall not create conditions which could impair the facility's containment features and shall not render designated waste hazardous, and (2) the facility shall ensure to the maximum extent feasible, that only those wastes that are approved for being discharged at that facility.

### Eastern San Joaquin Groundwater Basin Groundwater Management Plan

The purpose of the Groundwater Management Plan is to review, enhance, assess, and coordinate existing groundwater management policies and programs in Eastern San Joaquin County and to develop new policies and programs to ensure the long-term sustainability of groundwater



resources in Eastern San Joaquin County (Eastern San Joaquin Groundwater Management Plan 2014).

### **DISCUSSION OF IMPACTS**

a) Violate any water quality standards or waste discharge requirements or otherwise substantially degrade surface or ground water quality?

# No Impact

The project is limited to landfill operations and will remain subject to the SWPP discussed above, CCR 27 Section 20260, and CCR 27 Section 20220. Class III landfills, such as the North County Landfill, are not allowed to accept hazardous waste materials. Furthermore, per CCR 27 Section 20260, "new Class III and existing Class II-2 landfills shall be sited where soil characteristics, distance from waste to ground water, and other factors will ensure no impairment of beneficial uses of surface water or of ground water beneath or adjacent to the landfill." The landfill will remain subject to the SWPPP and the BMPs contained during project operation. Due to continued compliance with the current SWPPPP and state regulations, there would be *no impact* related to water quality.

b) Substantially decrease groundwater supplies or interfere substantially with groundwater recharge such that the project may impede sustainable groundwater management of the basin?

## Less-than-Significant Impact

Project activities are limited to operational modifications and will not require any construction activity; thus, no new impervious surfaces will be introduced to the project site. Operation of the project would require use of water for irrigation and landfill activities utilizing existing water lines within the project area, however this would not be a substantial increase over what is currently being used. Therefore, the project would result in a *less-than-significant impact* on groundwater supplies.

c) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river or through the addition of impervious surfaces, in a manner which would: (i) result in substantial erosion or siltation on- or off-site; (ii) substantially increase the rate or amount of surface runoff in a manner which would result in flooding on- or off-site; (iii) create or contribute runoff water that would exceed the capacity of existing or planned storm water drainage systems or provide substantial additional sources of polluted runoff; or (iv) impede or redirect flood flows?

## Less-than-Significant Impact

The project would not involve any construction work or site modifications and therefore would not cause substantial erosion or siltation. In addition, as described in Impact a), the project has an existing SWPPP to prevent excessive runoff and erosion and siltation during project operation. Project operation would not result in a substantial increase in impervious surface area which would cause an increase in surface runoff. The impact would be *less than significant*.

d) In flood hazard, tsunami, or seiche zones, risk release of pollutants due to project inundation?

### No Impact

The project site is not located within a flood hazard zone (FEMA 2024). Furthermore, the project area is an existing landfill, and pollutant generation as a result of project operations compared to current conditions would be minimal. Therefore, the project would not substantially increase the risk of pollutant release in event of a flood.

The project area is not within a tsunami hazard zone and would not be subject to inundation by tsunami (Department of Conservation 2024). In addition, the project area is not located near a large inland body of water that could generate a seiche during seismic ground shaking.

Within the project site and immediately surrounding areas, the existing hydrology would not be altered thus runoff will not increase. Therefore, the project would result in **no impact** related to flood hazard, tsunami, or seiche zones.

e) Conflict with or obstruct implementation of a water quality control plan or sustainable groundwater management plan?

### No Impact

The project is limited to the modification of landfill operations, no new construction is proposed. Additionally, as discussed in response (a), the landfill is subject to the operating parameters within the landfill's SWPPP and is also subject to State regulations related to landfills and water quality. Therefore, *no impact* related to the implementation of any water quality control plans or sustainable groundwater management plans would occur.

### 4.2.11 Land Use and Planning

|    | Would the project:                                                                                                                                                                  | Potentially<br>Significant<br>Impact | Less-than-<br>Significant<br>Impact with<br>Mitigation<br>Incorporated | Less-<br>than-<br>Significant<br>Impact | No<br>Impact |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------|-----------------------------------------|--------------|
| a) | Physically divide an established community?                                                                                                                                         |                                      |                                                                        |                                         |              |
| b) | Cause a significant environmental impact due to a conflict with any land use plan, policy, or regulation adopted for the purpose of avoiding or mitigating an environmental effect? |                                      |                                                                        |                                         |              |

### **ENVIRONMENTAL SETTING**

The project site is located in unincorporated San Joaquin County, east of Lodi, in a primarily agricultural area; active agricultural operations and scattered residences are also within the general vicinity of the project site (Figure 1).

### **DISCUSSION OF IMPACTS**

a) Physically divide an established community?

### No Impact

The project would increase the amount of waste accepted on a daily basis, expand operating hours, and provide for additional employees at an existing landfill. Project operations would be relatively similar to existing conditions. Therefore, the project would not physically divide an established community. **No impact** would occur.

b) Cause a significant environmental impact due to a conflict with any land use plan, policy, or regulation adopted for the purpose of avoiding or mitigating an environmental effect?

### No Impact

The project would not conflict with any land use plan, policy, or regulation adopted for the purpose of mitigating an environmental effect. The project would not conflict with any zoning acceptable uses or require a zoning or general plan amendment. *No impact* would occur.

#### 4.2.12 Mineral Resources

|    | Would the project:                                                                                                                                                  | Potentially<br>Significant<br>Impact | Less-than-<br>Significant<br>Impact with<br>Mitigation<br>Incorporated | Less-<br>than-<br>Significant<br>Impact | No<br>Impact |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------|-----------------------------------------|--------------|
| a) | Result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state?                                 |                                      |                                                                        |                                         | $\boxtimes$  |
| b) | Result in the loss of availability of a locally important mineral resource recovery site delineated on a local general plan, specific plan, or other land use plan? |                                      |                                                                        |                                         |              |

#### **ENVIRONMENTAL SETTING**

Mineral resources within San Joaquin County consist primarily of sand and gravel aggregate, with limited mining of peat, gold, and silver. In the past, placer gold deposits have been found in many San Joaquin County rivers and creeks (General Plan 2016). Most peat soil removal occurred during the 1970s and 1980s. Mining operations existing within the County are primarily related to sand and gravel aggregate operations (General Plan 2016).

### **DISCUSSION OF IMPACTS**

a, b) Result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state? Result in the loss of availability of a locally important mineral resource recovery site delineated on a local general plan, specific plan, or other land use plan?

## No Impact

There are no known mineral resources or mines located in the project vicinity (CDC 2016a, CDC 2016b). The project is limited to the minor expansion of landfill operations and no site modifications are planned. The project would not result in a substantial loss of availability of a known mineral resource that would be of value to the region and residents of the State, thus there would be *no impact* from project activities.

#### 4.2.13 Noise

|    | Would the project result in:                                                                                                                                                                                                                                                                           | Potentially<br>Significant<br>Impact | Less-than-<br>Significant<br>Impact with<br>Mitigation<br>Incorporated | Less-than-<br>Significant<br>Impact | No<br>Impact |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------|-------------------------------------|--------------|
| a) | Generation of a substantial temporary or permanent increase in ambient noise levels in the vicinity of the project in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies?                                                         |                                      |                                                                        |                                     |              |
| b) | Generation of excessive groundborne vibration or groundborne noise levels?                                                                                                                                                                                                                             |                                      |                                                                        |                                     |              |
| c) | For a project located within the vicinity of a private airstrip or an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels? |                                      |                                                                        |                                     |              |

A Noise and Vibration Technical Study was conducted for the project by Baseline Environmental Consulting. The results of the study were documented in a Noise and Vibration Technical Study prepared in February 2025 (Appendix B). The information in this section is based on and adapted from the findings of the Noise and Vibration Technical Study.

### **ENVIRONMENTAL SETTING**

The project site is located in a rural area and the primary source of noise in the immediate vicinity is vehicle traffic on East Harney Lane. Surrounding land uses are primarily agricultural; however, there are scattered single-family residences within 2,000 feet of the project site. However, while no construction activities are proposed, to accommodate an increase in waste acceptance and additional equipment on the project site, there will be an increase in vehicular traffic along the main project haul routes will generate noise and vibration compared to existing conditions.

# **REGULATORY SETTING**

## **Federal Transit Administration**

The Federal Transit Administration (FTA) has developed vibration thresholds to prevent disturbances to building occupants based on the frequency of a vibration event. The FTA thresholds of 80 vibration decibels (VdB) and 83 VdB for infrequent events were used in the Noise Study to evaluate disturbance to residences and buildings where people normally sleep and to institutional land uses with primarily daytime use (such as schools and library). Furthermore, the FTA has developed vibration thresholds based on PPV values to evaluate the potential impact of construction vibration on structures. The FTA threshold of 0.2 in/sec peak particle velocity (PPV)

for non-engineered timber and masonry buildings is used to represent the building types near the project site and along the haul route.

# San Joaquin Noise Ordinance

Chapter 9-404.040 establishes standards for noise from transportation sources and stationary sources. For transportation sources, the maximum allowable noise exposure in outdoor areas is 65 dBA. The maximum allowable noise exposure from stationary sources in outdoor activity areas of noise sensitive land uses is 75 dBA during the daytime (7 a.m. to 10 p.m.) and 65 dBA during the nighttime (10 p.m. to 7 a.m.).

### San Joquin County General Plan

The Noise Element in the County's 2035 General Plan states that the County shall require construction projects anticipated to generate a significant amount of vibration to ensure acceptable interior vibration levels at nearby vibration-sensitive uses based on FTA criteria.

### **DISCUSSION OF IMPACTS**

a) Generation of a substantial temporary or permanent increase in ambient noise levels in the vicinity of the project in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies?

Less-than-Significant Impact

The project does not propose any new construction, thus the primary source of noise during project operation would be generated by the increase of equipment on the project site and project-generated vehicle trips. According to the Transportation Impact Analysis prepared for the project, the project will generate an average of 461 new trips per day, including 359 visitor and worker commute trips and 102 haul truck trips.

Traffic noise levels along the haul route would increase with the additional vehicle trips contributed by project operations. The project would generate a total of 9 truck trips and 31 visitor/worker commute trips during the AM peak hours and 8 visitor/worker commute trips during the PM peak hours. The project-generated traffic noise levels were calculated during the AM peak hour to represent the highest traffic noise increase during project operation.

Based on the estimates contained within the Noise Analysis prepared for the project, project related traffic noise would increase by up to 2.0 dBA along the haul route, which is below the County's threshold. Where the project noise levels exceed the County's noise standard, existing and cumulative noise levels have already exceeded the 65-dBA Ldn threshold. Therefore, impacts related to traffic noise increase along the haul route compared to current conditions would be *less than significant*.

b) Generation of excessive groundborne vibration or groundborne noise levels?

Less-than-Significant Impact

The off-road equipment currently used at North County Landfill will continue to be used with the implementation of the project. Landfill operation would not involve equipment or activities that would generate excessive groundborne vibration or groundborne noise levels. While the project

would increase the hours of operation and increase the amount of off-road equipment used on site, both the type of equipment used and the manner of operation will remain the same.

According to the Noise Analysis, typical vibration levels generated by a large bulldozer and loaded trucks at 25 feet would be 0.089 inch per second (87 VdB) and 0.076 inch per second (86 VdB). For potential building damage, vibration levels generated by a large bulldozer and loaded trucks at 25 feet are both below the applicable criteria of 0.2 inch per second recommended by the FTA to prevent damage to structures to non-engineered timber and masonry buildings. Therefore, as the nearest vibration sensitive receptor to the project site is located approximately 2,750 feet from the equipment activity area, and the nearest vibration-sensitive receptor along haul routes is located about 65 feet from the centerline of the road, project operation activities related to vibration levels would be *less than significant*.

c) For a project located within the vicinity of a private airstrip or an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels?

### No Impact

The nearest airport is Wallom Field Airport, approximately six miles southwest of the project site. Therefore, the project would have *no impact* related to the exposure of people to excess noise levels from aircraft.

### 4.2.14 Population and Housing

|    | Would the project:                                                                                                                                                                                               | Potentially<br>Significant<br>Impact | Less-than-<br>Significant<br>Impact with<br>Mitigation<br>Incorporated | Less-<br>than-<br>Significant<br>Impact | No<br>Impact |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------|-----------------------------------------|--------------|
| a) | Induce substantial unplanned population growth in an area, either directly (for example, by proposing new homes and businesses) or indirectly (for example, through extension of roads or other infrastructure)? |                                      |                                                                        |                                         |              |
| b) | Displace substantial numbers of existing people or housing, necessitating the construction of replacement housing elsewhere?                                                                                     |                                      |                                                                        |                                         |              |

### **DISCUSSION OF IMPACTS**

a) Induce substantial unplanned population growth in an area, either directly (for example, by proposing new homes and businesses) or indirectly (for example, through extension of roads or other infrastructure)?

### No Impact

The proposed project is limited to the landfill's operational activities and would not induce substantial unplanned population growth either directly or indirectly. The project would not create new homes or expand the capacity of other infrastructure to accommodate increased population. *No impact* would occur.

b) Displace substantial numbers of existing people or housing, necessitating the construction of replacement housing elsewhere?

# No Impact

The proposed project would not displace any people or existing housing and therefore would not necessitate the construction of replacement housing elsewhere. *No impact* would occur.

### 4.2.15 Public Services

|    | Would the project:                                                                                                                                                                                                                                                                                                                                                                                         | Potentially<br>Significant<br>Impact | Less-than-<br>Significant<br>Impact with<br>Mitigation<br>Incorporated | Less-<br>than-<br>Significant<br>Impact | No<br>Impact |  |  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------|-----------------------------------------|--------------|--|--|
| a) | a) Result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times, or other performance objectives for any of the public services: |                                      |                                                                        |                                         |              |  |  |
|    | Fire protection?                                                                                                                                                                                                                                                                                                                                                                                           |                                      |                                                                        |                                         |              |  |  |
|    | Police protection?                                                                                                                                                                                                                                                                                                                                                                                         |                                      |                                                                        |                                         |              |  |  |
|    | Schools?                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |                                                                        |                                         |              |  |  |
|    | Parks?                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |                                                                        |                                         |              |  |  |
|    | Other public facilities?                                                                                                                                                                                                                                                                                                                                                                                   |                                      |                                                                        |                                         |              |  |  |

### **ENVIRONMENTAL SETTING**

### **Fire Protection**

The project area is located within the Clements Rural Fire Protection District. Clements Fire District provides fire protection, suppression, prevention, inspection, water rescue, and emergency medical services (San Joaquin LAFCO 2024). The service area covers approximately 115 square miles in unincorporated San Joaquin County.

## **Police Protection**

The project area is serviced by the San Joaquin County Sheriff's Office which has an office in French Camp, CA and operates the San Joaquin County Jail in French Camp. The California Highway Patrol also has an office in San Joaquin County, located in Stockton, CA, and provides traffic enforcement and emergency management on state and major roadways.

### **Schools**

There are two schools within five miles of the project site. Harmony Grove Elementary is approximately five miles west and Tokay Colony Elementary is approximately three miles southwest of the project site.

### **Parks**

The parks closest to the landfill are Orchard Lane Park and Salas Park, both of which are approximately nine miles away from the project area.

### Other Public Facilities

The project site is a County-operated landfill and recycling center in an unincorporated area of San Joaquin County. The County also operates Lovelace Materials Recycling Facility and Transfer Station, the Foothill Sanitary Landfill, and a Household Hazardous Waste Facility.

### **DISCUSSION OF IMPACTS**

- a) Result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times, or other performance objectives for any of the public services:
  - Fire Protection?
  - Police Protection?
  - Schools?
  - Parks?
  - Other Public Facilities?

### Less-than-Significant Impact

The proposed project would not provide any new governmental facilities. The project would not induce population growth or increase the use of any existing public facilities such that new facilities would be required. Therefore, the project would not result in substantial adverse impacts associated with the provision or physical alteration of governmental facilities, including fire and police protection services, schools, parks, or other public facilities. On the other hand, the project would re-route trucks from the other County operated sanitary landfill to the existing North County Landfill, which may minimally increase truck traffic on specific haul routes, increase the number of employees by up to six, and modify operating hours. However, impacts related to these factors would not be significant (see Section 4.2.17, Transportation). Furthermore, the project is limited to operational changes related to waste pick-up and disposal at a single landfill and no site expansion or additional waste facilities are proposed. Therefore, the impact would be *less than significant*.

#### 4.2.16 Recreation

|    | Would the project:                                                                                                                                                                        | Potentially<br>Significant<br>Impact | Less-than-<br>Significant<br>Impact with<br>Mitigation<br>Incorporated | Less-<br>than-<br>Significant<br>Impact | No<br>Impact |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------|-----------------------------------------|--------------|
| a) | Increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated? |                                      |                                                                        |                                         | $\boxtimes$  |
| b) | Include recreational facilities or require the construction or expansion of recreational facilities which might have an adverse physical effect on the environment?                       |                                      |                                                                        |                                         |              |

### **ENVIRONMENTAL SETTING**

Eight regional parks, one recreational facility, and Micke Grove Zoo are located in San Joaquin County. There are two parks within ten miles of the project site, in addition to other recreational facilities located throughout San Joaquin County. However, none are within the immediate vicinity of the project site.

### **DISCUSSION OF IMPACTS**

a, b) Increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated? Include recreational facilities or require the construction or expansion of recreational facilities which might have an adverse physical effect on the environment?

# No Impact

The proposed project would not restrict the use of any regional parks or other recreational facilities. The project would not induce population growth by creating new homes or expanding the capacity of other infrastructure and thus would not require the construction or expansion of recreational facilities. *No impact* would occur.

### 4.2.17 Transportation

|    | Would the project:                                                                                                                                            | Potentially<br>Significant<br>Impact | Less-than-<br>Significant<br>Impact with<br>Mitigation<br>Incorporated | Less-<br>than-<br>Significant<br>Impact | No<br>Impact |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------|-----------------------------------------|--------------|
| a) | Conflict with a program, plan, ordinance or policy addressing the circulation system, including transit, roadway, bicycle and pedestrian facilities?          |                                      |                                                                        |                                         | $\boxtimes$  |
| b) | Conflict or be inconsistent with CEQA<br>Guidelines section 15064.3, subdivision (b)?                                                                         |                                      |                                                                        |                                         |              |
| c) | Substantially increase hazards due to a geometric design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)? |                                      |                                                                        |                                         |              |
| d) | Result in inadequate emergency access?                                                                                                                        |                                      |                                                                        | $\boxtimes$                             |              |

A Transportation Impact Study for the project was completed by W-Trans in January 2025 (Appendix C). The results of the study were documented in a Transportation Analysis Technical Study Memorandum prepared in January 2025 (Appendix A). The information in this section is based on and adapted from the findings of the Transportation Technical Study.

### **ENVIRONMENTAL SETTING**

As part of the project, the North County Landfill would expand its daily intake by 51 haul trucks per day, which would result in a new total of 109 haul trucks per day to the North County Landfill. The project would increase the permitted usage of the North County Landfill from 1,200 tons and 850 vehicles per day to 4,000 tons and 1,200 vehicles per day. Currently, the landfill serves approximately 450 vehicles daily. Up to six new full-time employee positions would be added to accommodate the increase in truck trips and waste acceptance, in addition to the 35 full-time and 13 part-time employee positions that are currently employed at the landfill.

The study area (Figure 3) consists of the project site frontage and access, and the following intersections and roadway segments:

# **Study Intersections**

- East Harney Lane/State Route 88
- East Harney Lane/Jack Tone Access Road
- East Harney Lane Site Access

### **Road Study Segments**

- East Harney Lane between State Route 99 and State Route 88
- East Harney Lane between Jack Tone Road and Site Access Road
- State Route 88 between East Harney Lane and Eight Mile Road

Operating conditions during the a.m. and p.m. peak periods were evaluated to capture the highest potential impacts for the proposed project as well as the highest volumes on the local transportation network. The morning peak hour occurs between 7:00 a.m. and 9:00 a.m. and reflects conditions during the home to work or school commute, while the p.m. peak hour occurs between 4:00 p.m. and 6:00 p.m. and typically reflects the highest level of congestion during the homeward bound commute. Peak hour counts were obtained for the study intersections, and 24-hour counts were obtained for the study segments and site access road on Tuesday, November 19, 2024.

The anticipated trip generation for the proposed project was estimated based on existing vehicle counts into and out of the project site, as well as the projected increase in permitted visitors (i.e., landfill customers including private citizens and contractors), full-time employees and haul trucks. The permitted number of visitors would increase from 850 to 1,200, an increase of 41 percent. For employees, the current 35 full-time employees would increase to 41, or 17 percent. For haul trucks, the count would increase from 58 movements per day to 109, or an 88 percent increase. Because the site is currently occupied by the existing North County Landfill, trip generation of the existing landfill was considered.

During the 24-hour data collection period, there were 872 visitor vehicle entries and exits from the site, including 76 during the a.m. peak hour and 20 during the p.m. peak hour. As site traffic activity is predominantly associated with visitors, increasing the overall site traffic by 41 percent (the permitted increase in visitors) would net an additional 361 daily trips, including 31 trips during the a.m. peak hour and 8 trips during the p.m. peak hour. For employees, given that the proposed increase of 17 percent is lower than the visitor increase of 41 percent and the existing site traffic includes employees as well, a conservative approach was taken to consider the 41 percent increase in site activity as including employees.

Haul trucks were considered separately even though some haul truck trips would be captured in the 41 percent site activity increase. There would be 51 added haul trucks per day, for 102 new daily trips (one trip in and one trip out per haul truck). The ratio of a.m. peak hour trips to daily trips is 9 percent, which would translate to nine new haul truck trips during the a.m. peak hour with five trips in and four trips out assuming an approximately even split between inbound and outbound. During the p.m. peak hour, there were 20 outbound movements and zero inbound. Given this is only 2 percent of the daily total volume with no inbound traffic, zero added haul trucks were assumed during the p.m. peak hour.

The project is expected to generate an average of 461 new trips per day (359 visitor and employee trips and 102 haul truck trips), including 40 trips during the a.m. peak hour (31 visitor and employee trips and nine haul truck trips) and eight visitor and employee trips during the p.m. peak hour (no haul truck trips).

#### **REGULATORY SETTING**

### San Joaquin County General Plan

The County's General Plan (December 2016) states that the County's standard is Level of Service (LOS) C in general, or LOS D for minor arterials or roadways designated in the *Congestion Management Plan* (CMP), San Joaquin Council of Governments (SJCOG), as well as for Caltrans facilities such as SR-88. East Harney Lane, Jack Tone Road and Clements Road are classified as



major collectors per the *General Plan* Figure TM-1. SR-88 is classified as a major arterial and both SR-88 and Jack Tone Road are designated CMP roadways. Therefore, the standard of LOS D was applied to East Harney Lane/SR-88 and East Harney Lane/Jack Tone Road, while a standard of LOS C was applied to the remaining study intersections. Additionally, LOS D is considered acceptable for the study segment of SR-88 between East Harney Lane and Eight Mile Road, while LOS C is considered acceptable for the two East Harney Lane study segments.

### **DISCUSSION OF IMPACTS**

a) Conflict with a program, plan, ordinance or policy addressing the circulation system, including transit, roadway, bicycle and pedestrian facilities?

### No Impact

There are no pedestrian, bicycle, or transit facilities within the study area, and no pedestrian or bicycle movements were recorded during the Transportation Impact Analysis peak period traffic volume collection. East Harney Lane in the vicinity of the project site is not planned for future bicycle facilities per the San Joaquin County Bicycle Master Plan Update, 2010, or the Regional Bicycle, Pedestrian, and Safe Routes to School Master Plan, San Joaquin Council of Governments, 2012. The nearest transit route is Grape Line Route 5 in the City of Lodi, over nine miles away. Furthermore, the project does not include modifications to the site or frontage; it would only increase the permitted traffic at the site and thus have *no impact* on adopted policies regarding pedestrian bicycle, or transit facilities.

b) Conflict or be inconsistent with CEQA Guidelines section 15064.3, subdivision (b)?

### Less-than-Significant Impact

Data provided by the County of San Joaquin Department of Public Works indicates that the current split in operations between the Foothill Landfill and North County Landfill results in an average vehicle miles traveled (VMT) of 5,690 vehicle-miles per weekday for the haul trucks. The consolidation of haul routes to the more centrally located North County Landfill would result in a decrease in VMT of 297 vehicle miles per day, for a daily average of 5,393 vehicle miles. Furthermore, the North County Landfill is more centrally located to its customers than the Foothill Landfill, and the consolidation of activity among the two landfills to just the North County location would reduce VMT. Therefore, the project would have a *less-than-significant* impact on VMT.

c) Substantially increase hazards due to a geometric design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)?

### Less-than-Significant Impact

The potential for the project to impact safety was evaluated in terms of the adequacy of sight distance as well as the adequacy of stacking space at the study intersections to accommodate additional queuing due to adding project-generated trips.

Speed data was collected on East Harney Lane in the vicinity of the North County Landfill during traffic counts during November 2024, and the 85th percentile speed was measured as 66 mph, which was rounded up to 70 mph for the purpose of this analysis. During a field visit conducted in January 2025, sight lines were established to be in excess of 1,000 feet in all directions. Furthermore, according to the Transportation Analysis, with or without project traffic under either

existing or future volumes, the queues on each intersection approach would be within 200 feet, well within the distance to the next upstream intersection. Likewise, the maximum queue distances for the two left-turn pockets at East Harney Lane/SR-88 would be shorter than the available storage for each lane under all scenarios assessed. Therefore, the addition of traffic associated with the project would result in a *less-than-significant* impact on safety in the form of queuing and sight distance.

# d) Result in inadequate emergency access?

Less-than-Significant Impact

As shown by the operational analysis, the addition of project traffic to the study area would increase intersection delays by less than one second per scenario and study intersection, with most increases below one-half second. Furthermore, since all roadway users must yield the right-of-way to emergency vehicles when using their sirens and lights, the added project-generated traffic is expected to have a less-than-significant impact on emergency response. Thus, project impacts would result in a *less-than-significant* impact on emergency access.

#### 4.2.18 Tribal Cultural Resources

|     | Would the project:                                                                                                                                                                                                                                                                                                                                                                                                    | Potentially<br>Significant<br>Impact | Less-than-<br>Significant<br>Impact with<br>Mitigation<br>Incorporated | Less-<br>than-<br>Significant<br>Impact | No<br>Impact |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------|-----------------------------------------|--------------|
| a)  | Cause a substantial adverse change in the significance of a tribal cultural resource, defined in Public Resources Code section 21074 as either a site, feature, place, cultural landscape that is geographically defined in terms of size and scope of the landscape, sacred place, or object with cultural value to a California Native American tribe, and that is:                                                 |                                      |                                                                        |                                         |              |
| i)  | Listed or eligible for listing in the California<br>Register of Historical Resources, or in a local<br>register of historical resources as defined in<br>Public Resources Code section 5020.1(k)?                                                                                                                                                                                                                     |                                      | $\boxtimes$                                                            |                                         |              |
| ii) | A resource determined by the lead agency, in its discretion and supported by substantial evidence, to be significant pursuant to criteria set forth in subdivision (c) of Public Resources Code section 5024.1? In applying the criteria set forth in subdivision (c) of Public Resources Code section 5024.1, the lead agency shall consider the significance of the resource to a California Native American tribe. |                                      |                                                                        |                                         |              |

### **ENVIRONMENTAL SETTING**

The area of potential effect (APE) of the project would be limited to the North County Landfill, a waste disposal facility which has been previously disturbed, and no construction activities are proposed. However, it remains possible that future ground disturbing activities on the project site may uncover tribal cultural resources. On January 9, 2025, the County consulted Native American tribes who may have knowledge of cultural resources in the project area. Notification letters were issued to the Amah Mutsun Tribal Band, Buena Vista Rancheria of Me-Wuk Indians, Calaveras Baned of Mi-Wuk Indians, Chicken Ranch Rancheria of Me-Wuk Indians, Confederated Villages of Lisjan Nation, Ione Band of Miwok Indians, Jackson Rancheria Band of Miwuk Indians, Muwekma Ohlone Tribe of the SF Bay Area, Nashville Enterprise Miwok-Maidu-Nishinam Tribe, Northern Balley Yokut/Ohlone Tribe, Pakan'yani Maidu of Strawberry Balley Rancheria, Tule River Indian Tribe, United Auburn Indian Community of the Auburn Rancheria, and Wilson Rancheria. None of these tribal organizations requested formal consultation with the County regarding the project.

### **REGULATORY SETTING**

### Tribal Cultural Resources Assembly Bill 52 (AB 52)

AB 52 (Chapter 532, Statutes 2014) required an update of the CEQA Guidelines to include questions related to impacts to tribal cultural resources. AB 52 establishes a consultation process with all California Native American Tribes on the Native American Heritage Commission List,

Federal and Non-Federal Recognized Tribes. AB 52 also establishes a new class of resources: Tribal Cultural Resources. Key components of AB 52 include consideration of Tribal Cultural Values in determination of project impacts and mitigation and required Tribal notice and meaningful consultation.

PRC Section 21080.3.2(b) states that consultation ends when either 1) parties agree to mitigation measures or avoid a significant effect on a tribal cultural resource, or 2) a party, acting in good faith and after reasonable effort concludes that mutual agreement cannot be reached.

### State of California Public Resources Code

Section 21074 of the PRC defines historical resources related to tribal cultural resources.

- a) "Tribal cultural resources" are either of the following:
  - Sites, features, places, cultural landscapes, sacred places, and objects with cultural value to a California Native American tribe that are either of the following:
    - A. Included or determined to be eligible for inclusion in the California Register of Historical Resources.
    - B. Included in a local register of historical resources as defined in subdivision (k) of Section 5020.1.
  - 2. A resource determined by the lead agency, in its discretion and supported by substantial evidence, to be significant pursuant to criteria set forth in subdivision (c) of Section 5024.1. In applying the criteria set forth in subdivision (c) of Section 5024.1 for the purposes of this paragraph, the lead agency shall consider the significance of the resource to a California Native American tribe.
- b) A cultural landscape that meets the criteria of subdivision (a) is a tribal cultural resource to the extent that the landscape is geographically defined in terms of the size and scope of the landscape.
- c) A historical resource described in Section 21084.1, a unique archaeological resource as defined in subdivision (g) of Section 21083.2, or a "nonunique archaeological resource" as defined in subdivision (h) of Section 21083.2 may also be a tribal cultural resource if it conforms with the criteria of subdivision (a).

Section 5020.1(k) defines "Local register of historical resources" as a list of properties officially designated or recognized as historically significant by a local government pursuant to a local ordinance or resolution.

Section 5024.1 is the establishment of the California Register of Historical Resources (California Register).

### **DISCUSSION OF IMPACTS**

 a) Cause a substantial adverse change in the significance of a tribal cultural resource, defined in Public Resources Code section 21074 as either a site, feature, place, cultural landscape that is geographically defined in terms of size and scope of the landscape, sacred place, or object with cultural value to a California Native American tribe, and that is:

- i) Listed or eligible for listing in the California Register of Historical Resources, or in a local register of historical resources as defined in Public Resources Code section 5020.1(k)?
- ii) A resource determined by the lead agency, in its discretion and supported by substantial evidence, to be significant pursuant to criteria set forth in subdivision (c) of Public Resources Code section 5024.1? In applying the criteria set forth in subdivision (c) of Public Resources Code section 5024.1, the lead agency shall consider the significance of the resource to a California Native American tribe.

Less-than-Significant Impact with Mitigation Incorporated

The potential exists for unknown tribal cultural resources to be discovered during earth-disturbing landfill activities, such as excavation, that could occur in the course of future operational activities. Thus, the project would have a *potentially significant impact*.

### **MITIGATION MEASURES**

Implementation of Mitigation Measure CUL-1 (see Section 4.2.5, Cultural Resources) would ensure that any accidentally discovered tribal cultural resources would be treated with proper care during future ground-disturbing activity at the project site. With implementation of Mitigation Measure CUL-1, the project's potential impact would be reduced to a *less-than-significant* level.

### 4.2.19 Utilities and Service Systems

|    | Would the project:                                                                                                                                                                                                                                                                | Potentially<br>Significant<br>Impact | Less-than-<br>Significant<br>Impact with<br>Mitigation<br>Incorporated | Less-<br>than-<br>Significant<br>Impact | No<br>Impact |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------|-----------------------------------------|--------------|
| a) | Require or result in the relocation or construction of new or expanded water, wastewater treatment or storm water drainage, electric power, natural gas, or telecommunications facilities, the construction or relocation of which could cause significant environmental effects? |                                      |                                                                        | $\boxtimes$                             |              |
| b) | Have sufficient water supplies available to serve the project and reasonably foreseeable future development during normal, dry, and multiple dry years?                                                                                                                           |                                      |                                                                        | $\boxtimes$                             |              |
| c) | Result in a determination by the wastewater treatment provider which serves or may serve the project that it has adequate capacity to serve the project's projected demand in addition to the provider's existing commitments?                                                    |                                      |                                                                        | $\boxtimes$                             |              |
| d) | Generate solid waste in excess of state or local standards, or in excess of the capacity of local infrastructure, or otherwise impair the attainment of solid waste reduction goals?                                                                                              |                                      |                                                                        | $\boxtimes$                             |              |
| e) | Comply with federal, state, and local management and reduction statutes and regulations related to solid waste?                                                                                                                                                                   |                                      |                                                                        |                                         | $\boxtimes$  |

### **ENVIRONMENTAL SETTING**

Pacific Gas and Electric (PG&E) provides natural gas and electricity to the project site. Spectrum is the largest telecommunications provider in the County, amongst other regional providers. The County's Department of Public Works is responsible for wastewater collection and treatment, in addition to solid waste disposal. The County owns and operates the Lovelace Materials Recovery Facility and Transfer Station and North County Recycling Center and Sanitary Landfill, while the Foothill Sanitary Landfill and Hazardous Household Waste Facility is publicly owned but privately operated. Each landfill serves San Joaquin County.

### **DISCUSSION OF IMPACTS**

a) Require or result in the relocation or construction of new or expanded water, wastewater treatment or storm water drainage, electric power, natural gas, or telecommunications

# facilities, the construction or relocation of which could cause significant environmental effects?

Less-than-Significant Impact

The project would not result in the relocation or construction of new utility-related infrastructure. The project is limited to minor operational changes, and the demand for utilities will not significantly increase. Therefore, project impacts would be *less than significant*.

b) Have sufficient water supplies available to serve the project and reasonably foreseeable future development during normal, dry, and multiple dry years?

Less-than-Significant Impact

The project is limited to operational modifications at an existing landfill; any change in demand related to water supply would be minimal. The impact would be *less than significant*.

c) Result in a determination by the wastewater treatment provider which serves or may serve the project that it has adequate capacity to serve the project's projected demand in addition to the provider's existing commitments?

Less-than-Significant Impact

The project is limited to the modification of landfill operations at an existing landfill. Demand for wastewater treatment or provider capacity would be minimal and primarily associated with the increase of six on-site employees. Thus, impacts related to wastewater treatment and demand would be *less than significant*.

d) Generate solid waste in excess of state or local standards, or in excess of the capacity of local infrastructure, or otherwise impair the attainment of solid waste reduction goals?

Less-than-Significant Impact

Project operation would be limited to an increase in solid waste intake by redirecting trucks that currently pick up and dispose of waste at other landfills within the County and an increase in the permitted tonnage of commercial waste accepted. Under the facility's current SWFP, the estimated closure year is 2048. Upon project implementation, the North County Landfill is estimated to reach capacity in 2043. However, once the landfill reaches capacity, the County has the option to expand the landfill via purchase of adjacent property. Project implementation itself would not generate additional solid waste, therefore, no new infrastructure is proposed as part of the project to accommodate additional waste at any County landfill. Therefore, the project would not exceed the capacity of current infrastructure nor impair the implementation of waste reduction goals. The impact of the project would be *less than significant*.

e) Comply with federal, state, and local management and reduction statutes and regulations related to solid waste?

No Impact

The project would not implement operational changes related to solid waste collection until the facility's permit is amended. Thereafter, project operations would comply with the amended SWFP. Thus, there is no conflict with federal, state, and local management regulations related to solid waste. *No impact* would occur.

### 4.2.20 Wildfire

|    | ocated in or near state responsibility areas<br>r lands classified as very high fire hazard<br>severity zones, would the project:                                                                                                                               | Potentially<br>Significant<br>Impact | Less-than-<br>Significant<br>Impact with<br>Mitigation<br>Incorporated | Less-<br>than-<br>Significant<br>Impact | No<br>Impact |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------|-----------------------------------------|--------------|
| a) | Substantially impair an adopted emergency response plan or emergency evacuation plan?                                                                                                                                                                           |                                      |                                                                        |                                         |              |
| b) | Due to slope, prevailing winds, and other factors, exacerbate wildfire risks, and thereby expose project occupants to pollutant concentrations from a wildfire or the uncontrolled spread of a wildfire?                                                        |                                      |                                                                        |                                         |              |
| c) | Require the installation or maintenance of associated infrastructure (such as roads, fuel breaks, emergency water sources, power lines or other utilities) that may exacerbate fire risk or that may result in temporary or ongoing impacts to the environment? |                                      |                                                                        |                                         |              |
| d) | Expose people or structures to significant risks, including downslope or downstream flooding or landslides, as a result of runoff, post-fire slope instability, or drainage changes?                                                                            |                                      |                                                                        |                                         | $\boxtimes$  |

### **ENVIRONMENTAL SETTING**

The project site is a landfill and project activities are limited to operational changes; no site expansion or construction activities are proposed. It is not located within a state responsibility area and not within a designated fire hazard severity zone (CAL FIRE 2024).

### **REGULATORY SETTING**

The General Plan Public Health and Safety Element outlines policies for fire hazards in the County (General Plan 2016). Four communities within the County were identified as being at risk for wildfire: Bellota, Clements, Linden and Lockeford); General Plan Policies 4.1 – 4.6 address measures for fire resilience in these Fire Hazard Severity Zones.

### **DISCUSSION OF IMPACTS**

a) Substantially impair an adopted emergency response plan or emergency evacuation plan?

### No Impact

The project site is located near Lodi in unincorporated San Joaquin County and not identified in the General Plan as an area at risk for wildfire. Furthermore, project activities are limited to landfill operations and would not physically interfere with any designated evacuation route or public right-of-way. Therefore, the project would not substantially impair an adopted emergency response plan or emergency evacuation plan, *no impact* would occur.

b) Due to slope, prevailing winds, and other factors, exacerbate wildfire risks, and thereby expose project occupants to pollutant concentrations from a wildfire or the uncontrolled spread of a wildfire?

### No Impact

The project site is an existing landfill. Operational modifications would not result in changes to slopes or other factors that would exacerbate wildfire risks. *No impact* would occur.

c) Require the installation or maintenance of associated infrastructure (such as roads, fuel breaks, emergency water sources, power lines or other utilities) that may exacerbate fire risk or that may result in temporary or ongoing impacts to the environment?

### No Impact

The project would not result in the installation of any infrastructure that may exacerbate wildfire risk or result in temporary or ongoing impacts to the environment. *No impact* would occur.

d) Expose people or structures to significant risks, including downslope or downstream flooding or landslides, as a result of runoff, post-fire slope instability, or drainage changes?

### No Impact

The project does not propose any site modifications. All project activities are operational and would not result in drainage changes or post-fire runoff risks. *No impact* would occur.

### 4.2.21 Mandatory Findings of Significance

| a) | Does the project have the potential to substantially degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to                                                                                                                                         | Potentially<br>Significant<br>Impact | Less-than-<br>Significant<br>Impact with<br>Mitigation<br>Incorporated | Less-<br>than-<br>Significant<br>Impact | No<br>Impact |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------|-----------------------------------------|--------------|
|    | drop below self-sustaining levels, threaten to eliminate a plant or animal community, substantially reduce the number or restrict the range of a rare or endangered plant or animal or eliminate important examples of the major periods of California history or prehistory?                                                               |                                      |                                                                        |                                         |              |
| b) | Does the project have impacts that are individually limited, but cumulatively considerable? ("Cumulatively considerable" means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects)? |                                      |                                                                        |                                         |              |
| c) | Does the project have environmental effects that will cause substantial adverse effects on human beings, either directly or indirectly?                                                                                                                                                                                                     |                                      |                                                                        |                                         |              |

### **DISCUSSION OF IMPACTS**

a) Does the project have the potential to substantially degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, substantially reduce the number or restrict the range of a rare or endangered plant or animal or eliminate important examples of the major periods of California history or prehistory?

Less-than-Significant Impact with Mitigation Incorporated

As discussed in Section 4.2.4, Biological Resources, the project does not have the potential to impact special-status species and sensitive natural communities. The project is limited to operational changes at an existing landfill and no construction activities or site expansion have been proposed. Furthermore, the project site is required to comply with the San Joaquin County Multi-Species Habitat Conservation and Open Space Plan and SWPP. As no construction activities are proposed, neither the sedimentation basin nor mitigation area north of the project site will be impacted compared to current conditions. In summation, none of the project's operational changes would have an impact on wildlife, habitats, or stormwater runoff into the creeks surrounding the project site. The impacts would be less than significant.

Furthermore, project activities would not impact known cultural or tribal cultural resources. As discussed in *Section 4.2.5, Cultural Resources*, and *Section 4.2.18, Tribal* Cultural *Resources*, there

are no known historical or cultural resources located within the project site. Mitigation Measure CUL-1 would ensure that any accidentally discovered cultural resources would be treated with proper care if there is future ground-disturbing construction activity at the project site. Therefore, the impacts would be *less than significant with mitigation incorporated*.

b) Does the project have impacts that are individually limited, but cumulatively considerable? ("Cumulatively considerable" means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects)?

Less-than-Significant Impact

The project is limited to the increase of waste acceptance and operating hours at an existing landfill; solid waste would be diverted from other County landfills to North County Landfill. The project is not connected to any past projects or anticipated future projects with which its incremental effects would be deemed cumulatively considerable. Landfill operations would be expanded, and upon the landfill's closure, there is one other sanitary landfill, a recycling center and transfer station, and a hazardous household waste facility to serve the County. Also, the County will have the option of expanding the landfill via purchase of adjacent property. No site expansion is proposed by the project and would thus not encourage further growth or development within the County. The project's cumulative impacts would be *less than significant*.

c) Does the project have environmental effects that will cause substantial adverse effects on human beings, either directly or indirectly?

Less-than-Significant Impact

Based upon the impact evaluations in *Sections 4.2.1*, *Aesthetics*, through *4.2.20*, *Wildfire*, the project does not have the potential to result in environmental effects that will cause substantial adverse effects on human beings. Two environmental impacts may be caused by the project, related to cultural resources and tribal cultural resources. However, the project would implement mitigation measure CUL-1, reducing project related impacts that may affect cultural resources and tribal cultural resources to a less than significant level. Therefore, the project does not have the potential to cause substantial adverse effects on human beings.

### 5.0 REFERENCES

- California Air Resources Board (CARB), 2017. California's 2017 Climate Change Scoping Plan, November.
- California Air Resources Board (CARB). 2023. Maps of State and Federal Area Designations.

  Accessed Feb 14, 2025, at https://ww2.arb.ca.gov/resources/documents/maps-state-and-federal-area-designations.
- California Air Resources Board (CARB). 2022. Scoping Plan for Achieving Carbon Neutrality. 2022. Accessed March 11, 2025. https://ww2.arb.ca.gov/our-work/programs/ab-32-climate-change-scoping-plan/2022-scoping-plan-documents
- California Department of Conservation. Earthquakes. 2024. Accessed November 6, 2024. https://www.conservation.ca.gov/cgs/earthquakes
- California Department of Forestry and Fire Protection (CAL FIRE). 2024. Fire Hazard Severity Zones. Accessed December 6, 2024, at <a href="https://osfm.fire.ca.gov/what-we-do/community-wildfire-preparedness-and-mitigation/fire-hazard-severity-zones">https://osfm.fire.ca.gov/what-we-do/community-wildfire-preparedness-and-mitigation/fire-hazard-severity-zones</a>.
- California Department of Conservation. California Geological Survey. 2024. Accessed November 6, 2024. https://www.conservation.ca.gov/cgs/pages/index.aspx
- California Department of Conservation. California Tsunami Maps. 2024. Accessed December 9, 2024, at <a href="https://www.conservation.ca.gov/cgs/tsunami/maps">https://www.conservation.ca.gov/cgs/tsunami/maps</a>.
- California State Water Resources Control Board. GeoTracker. Accessed November 15, 2024, at <a href="https://geotracker.waterboards.ca.gov/profile\_report?global\_id=L10001621439">https://geotracker.waterboards.ca.gov/profile\_report?global\_id=L10001621439</a>.
- California Department of Conservation. 2016a. CGS Information Warehouse: Mineral Land Classification. California.gov. Accessed November 7, 2024, at <a href="https://maps.conservation.ca.gov/cgs/informationwarehouse/index.html?map=mlc">https://maps.conservation.ca.gov/cgs/informationwarehouse/index.html?map=mlc</a>.
- California Department of Conservation. 2016b. Mines Online. Accessed November 7, 2024, at https://maps.conservation.ca.gov/mol/index.html.
- California Department of Transportation. 2025. California State Scenic Highway Map. Accessed March 7, 2025, at <a href="https://caltrans.maps.arcgis.com/apps/webappviewer/index.html?id=465dfd3d807c46cc8e">https://caltrans.maps.arcgis.com/apps/webappviewer/index.html?id=465dfd3d807c46cc8e</a> 8057116f1aacaa.
- California Geological Survey (CGS) Department of Conservation. 2019. Earthquake Zones of Required Investigation Maps and Reports. Available at:

  <a href="https://maps.conservation.ca.gov/cgs/informationwarehouse/regulatorymaps/">https://maps.conservation.ca.gov/cgs/informationwarehouse/regulatorymaps/</a>. Most recently accessed: March 2025.
- Department of Toxic Substances Control. 2024. EnviroStor. Accessed November 15, 2024, at https://www.envirostor.dtsc.ca.gov/public/map/?myaddress=north+county+landfill+lodi.

- Federal Emergency Management Agency. 2024. Flood Maps. Accessed November 18, 2024, at <a href="https://www.fema.gov/flood-maps/national-flood-hazard-layer">https://www.fema.gov/flood-maps/national-flood-hazard-layer</a>.
- Greater San Joaquin County Regional Water Coordinating Committee. 2014. Eastern San Joaquin Basin Groundwater Management Plan. Accessed December 9, 2024, at <a href="https://www.esjirwm.org/Studies-Projects/2004-Groundwater-Management-Plan">https://www.esjirwm.org/Studies-Projects/2004-Groundwater-Management-Plan</a>.
- Office of Environmental Health Hazard Assessment (OEHHA), 2015. Air Toxics Hot Spots Program Guidance Manual for Preparation of Health Risk Assessments, May.
- San Joaquin Valley Air Pollution Control District (Valley Air District), 2015. Guidance for Assessing and Mitigating Air Quality Impacts (CEQA Guidance), March 19.
- San Joaquin LAFCO. 2024. Fire Districts Map. Accessed November 7, 2024, at <a href="https://www.sjlafco.org/fire-districts-map">https://www.sjlafco.org/fire-districts-map</a>.
- San Joaquin County. 2016. San Joaquin County General Plan 2035. Accessed November 5, 2024, at <a href="https://www.sjgov.org/commdev/cgi-bin/cdyn.exe/file/Planning/General%20Plan%202035/General%20Plan%202035.pdf">https://www.sjgov.org/commdev/cgi-bin/cdyn.exe/file/Planning/General%20Plan%202035/General%20Plan%202035.pdf</a>.
- San Joaquin County. 2000. San Joaquin County Multi-Species Habitat Conservation and Open Space Plan. Accessed November 4, 2024, at <a href="https://www.sjcog.org/DocumentCenter/View/5/Habitat-Planpdf?bidld="https://www.sjcog.org/DocumentCenter/View/5/Habitat-Planpdf?bidld="https://www.sjcog.org/DocumentCenter/View/5/Habitat-Planpdf?bidld="https://www.sjcog.org/DocumentCenter/View/5/Habitat-Planpdf?bidld="https://www.sjcog.org/DocumentCenter/View/5/Habitat-Planpdf?bidld="https://www.sjcog.org/DocumentCenter/View/5/Habitat-Planpdf?bidld="https://www.sjcog.org/DocumentCenter/View/5/Habitat-Planpdf?bidld="https://www.sjcog.org/DocumentCenter/View/5/Habitat-Planpdf?bidld="https://www.sjcog.org/DocumentCenter/View/5/Habitat-Planpdf?bidld="https://www.sjcog.org/DocumentCenter/View/5/Habitat-Planpdf?bidld="https://www.sjcog.org/DocumentCenter/View/5/Habitat-Planpdf?bidld="https://www.sjcog.org/DocumentCenter/View/5/Habitat-Planpdf?bidld="https://www.sjcog.org/DocumentCenter/View/5/Habitat-Planpdf?bidld="https://www.sjcog.org/DocumentCenter/View/5/Habitat-Planpdf?bidld="https://www.sjcog.org/DocumentCenter/View/5/Habitat-Planpdf?bidld="https://www.sjcog.org/DocumentCenter/View/5/Habitat-Planpdf?bidld="https://www.sjcog.org/DocumentCenter/View/5/Habitat-Planpdf?bidld="https://www.sjcog.org/DocumentCenter/View/5/Habitat-Planpdf?bidld="https://www.sjcog.org/DocumentCenter/View/5/Habitat-Planpdf?bidld="https://www.sjcog.org/DocumentCenter/View/5/Habitat-Planpdf?bidld="https://www.sjcog.org/DocumentCenter/View/5/Habitat-Planpdf?bidld="https://www.sjcog.org/DocumentCenter/View/5/Habitat-Planpdf?bidld="https://www.sjcog.org/DocumentCenter/View/5/Habitat-Planpdf?bidld="https://www.sjcog.org/DocumentCenter/View/5/Habitat-Planpdf?bidld="https://www.sjcog.org/DocumentCenter/View/5/Habitat-Planpdf?"https://www.sjcog.org/DocumentCenter/View/5/Habitat-Planpdf?bidld="https://www.sjcog.org/DocumentCenter/View/5/Habitat-Planpdf?"https://www.sjcog.org/DocumentCenter/View/5/Habitat-Planpdf?"https://www.sjcog.org/DocumentCenter/View/5/Habi
- San Joaquin Valley Air Pollution Control District, 2009. District Policy Addressing GHG Emission Impacts for Stationary Source Projects Under CEQA When Serving as the Lead Agency.

  Available at: <a href="https://ww2.valleyair.org/media/disb2jna/2-ccap-final-district-policy-ceqa-ghg-dec-17-2009.pdf">https://ww2.valleyair.org/media/disb2jna/2-ccap-final-district-policy-ceqa-ghg-dec-17-2009.pdf</a>
- State Water Resources Control Board (SWRCB). 2025. Geotracker. Available at:
  <a href="https://www.waterboards.ca.gov/water\_issues/programs/groundwater/sb4/geotracker/">https://www.waterboards.ca.gov/water\_issues/programs/groundwater/sb4/geotracker/</a>.

  Most recently accessed: March 2025.
- United States Environmental Protection Agency (EPA). 2020. Documentation For Greenhouse Gas Emission and Energy Factors Used in the Waste Reduction Model (WARM). Management Practices Chapters. November. <a href="https://www.epa.gov/sites/default/files/2020-12/documents/warm\_management\_practices\_v15\_10-29-2020.pdf">https://www.epa.gov/sites/default/files/2020-12/documents/warm\_management\_practices\_v15\_10-29-2020.pdf</a>. Accessed March 11, 2025.
- United States Environmental Protection Agency (EPA), 2025. Green Book; Current Nonattainment Counties for All Criteria Pollutants. https://www3.epa.gov/airquality/greenbook/ancl.html. Last updated January 31, 2025.
- United States Supreme Court. 2007. Massachusetts, et al. v. U.S. Envtl. Prot. Agency, et al. (2007) 549 U.S. 497.

## 6.0 REPORT PREPARERS

- Crystal Mainolfi, Environmental Planning Director
- Rob Carnachan, Senior Environmental Planner
- Liv Niederer, Environmental Planner





### **MEMORANDUM**

**Date:** March 25, 2025 **Job No.:** 21202-23

**To:** Rob Carnachan, Senior Environmental Planner, WRA, Inc.

From: Yilin Tian, Project Environmental Engineer, Baseline Environmental Consulting

Subject: Air Quality Technical Study, North County Sanitary Landfill and Recycling Center

Solid Waste Facility Permit Amendment Project, Lodi, California

Baseline Environmental Consulting (Baseline) has prepared this technical study to evaluate the potential air quality impacts associated with the proposed North County Sanitary Landfill and Recycling Center (North County Landfill) Solid Waste Facility Permit Amendment Project (project) located in Lodi, California. This technical memorandum includes an overview of existing air quality conditions and regulations, and an analysis of the potential air quality impacts associated with the implementation of the project. This study will be used to support the environmental review for the project under the California Environmental Quality Act (CEQA).

### **PROJECT DESCRIPTION**

The project site is located at 17720 East Harney Lane and approximately 0.35 miles south of East Harney Lane via an access road (**Figure 1**). The project site has operated as a solid waste disposal and transfer/processing facility since 1991. The total permitted area for all facility operations is 320 acres and the landfilling area is 185 acres. The northern one-third of the property between the landfill and Harney Lane is a mitigation area established to preserve wetlands in the landfill's footprint. In addition to the waste disposal area, the four main buildings on site are a recycling center, office/maintenance building, water pump house building, and scale house. There is a permanent berm, set back 100 feet from the property line, surrounding the project site's perimeter.

The project consists of a proposed amendment to the Solid Waste Facility Permit to increase the maximum allowed daily refuse disposal and the number of daily incoming refuse vehicles from 1,200 tons per day and 850 vehicles per day to 4,000 tons and 1,200 vehicles per day. This increase would involve a change in refuse truck routing; approximately 50 transfer trucks that currently go to the Foothill Landfill would be re-routed to the North County Landfill. The refuse trucks would access the North County Landfill via East Harney Lane and the North County Landfill access road. The projected annual intake would increase from 250,000 tons in 2024 to 660,000 tons in 2026, then increase 3% annually thereafter. In addition, the North County Landfill currently operates from 7:00 am to 5:00 pm, seven days per week. The project would



March 25, 2025 Page 2

add one more hour to the Noth County Landfill's daily operations between 6:00 am and 7:00 am to allow the acceptance of commercial waste during this time period. The project would not change the North County Landfill's capacity and would not involve new construction. At current operational levels, the projected closure year of the landfill is 2046. With the implementation of the project, the projected closure date would move up three years to 2043.

In 2006, the North County Landfill installed a landfill gas (LFG) collection system, including a flare, vertical wells, and connecting piping. Additional LFG collectors, primarily horizontal collection trenches, will continue to be installed in the refuse and connected to the LFG collection system as the landfill is constructed. Collected LFG is combusted in a temperature-controlled flare in accordance with the existing San Joaquin Valley Air Pollution Control District (Valley Air District) Title V permit (N-119-1-13). A new 1,200 standard cubic feet per minute low nitrogen oxides (NOx) flare was installed in October 2024 and is currently used as the primary flare. The previous flare will be used as back-up.

### **ENVIRONMENTAL SETTING**

### Regional Climate, Meteorology, and Topography

The project site is located within the San Joaquin Valley Air Basin (SJVAB). The SJVAB encompasses eight counties, including Fresno, Kern (western and central), Kings, Madera, Merced, San Joaquin, Stanislaus, and Tulare. Air basins have characteristics that limit the ability of natural processes to either dilute or transport air pollutants. The major determinants of air pollution transport and dilution are climatic and topographic factors such as wind, atmospheric stability, terrain that influences air movement, and sunshine. Wind and terrain can combine to transport pollutants away from upwind areas, while solar energy can chemically transform pollutants in the air to create secondary photochemical pollutants such as ozone.

The San Joaquin Valley (Valley) is bordered by the Sierra Nevada Mountains in the east, the Coast Ranges in the west, and the Tehachapi mountains in the south. The surrounding mountains created a bowl-shaped topography, limiting movement of pollutants out of the Valley. The Valley has a mediterranean climate characterized by wet winters with sparse rainfall, and hot and dry summers. In addition, persistent temperature inversions occur in the Valley, preventing vertical dilution of pollutants and increase the concentrations of pollutants at or near the ground. Summertime high temperatures in the Valley often exceed 100 degrees Fahrenheit, while wintertime high-pressure events drop the temperature into the 30s degrees Fahrenheit. During summer, prevailing winds primarily originate from the northwest, directing the airflow toward the southwestern end of the Valley. Additionally, a notable secondary wind pattern comes from the southeast, attributable to nighttime drainage winds, prefrontal conditions, and summer monsoons. During winter, stagnant conditions characterized by very weak winds often occur between storms. The high-pressure and light winds allow cold moist air to accumulate on the San Joaquin Valley floor, contributing to the formation of Tule fog. The



March 25, 2025 Page 3

project site is located in the City of Lodi, San Joaquin County, which receives an average of 17.6 inches of precipitation per year.<sup>1</sup>

### **Criteria Air Pollutants**

The California Air Resources Board (CARB) and United States (U.S.) Environmental Protection Agency (EPA) focus on the following air pollutants as regional indicators of ambient air quality:

- ozone
- coarse particulate matter (PM<sub>10</sub>)
- fine particulate matter (PM<sub>2.5</sub>)
- nitrogen dioxide
- carbon monoxide
- sulfur dioxide
- lead

These are referred to as "criteria air pollutants" because they are the most prevalent air pollutants known to be harmful to human health based on extensive criteria documents.

In accordance with the Federal Clean Air Act and California Clean Air Act (see Regulatory Setting below), areas in California are classified as either in attainment, maintenance (i.e., former nonattainment), or nonattainment of the National Ambient Air Quality Standards (NAAQS) and California ambient air quality standards (CAAQS) for each criteria air pollutant. At the Federal level, SJVAB is currently designated as extreme nonattainment for the 8-hour ozone standard and is designated nonattainment for the PM<sub>2.5</sub> standard. At the State level, the SJVAB is designated as nonattainment for the 8-hour ozone, PM<sub>10</sub>, and PM<sub>2.5</sub> standards. The SJVAB is designated as an attainment or unclassified area for all other pollutants at the Federal and State level. Therefore, the primary criteria air pollutants of concern in the SJVAB are ground-level ozone formed through reactions of NO<sub>x</sub> and reactive organic gases (ROG), PM<sub>10</sub>, and PM<sub>2.5</sub> due to the nonattainment designations.

### **Toxic Air Contaminants**

In addition to criteria air pollutants, individual projects may emit toxic air contaminants (TACs). TACs include a diverse group of air pollutants that can adversely affect human health and include diesel particulate matter (DPM)s, lead, benzene, formaldehyde, and hexavalent chromium, among others. In addition, substances which have been listed as federal hazardous air pollutants (HAPs) are TACs under the state's air toxics program. TACs are not subject to

<sup>&</sup>lt;sup>1</sup> Western Regional Climate Center. Lodi, California (045032), Period of Record Monthly Climate Summary (01/01/1893 to 01/30/2015). Available via: https://wrcc.dri.edu/cgi-bin/cliMAIN.pl?ca5032.



March 25, 2025 Page 4

ambient air quality standards but are regulated through state and local risk management programs.

Unlike criteria air pollutants, which generally affect regional air quality, TAC emissions are evaluated based on estimations of localized concentrations and risk assessments. The adverse health effects a person may experience following exposure to any chemical depend on several factors, including the amount (dose), duration, chemical form, and any simultaneous exposure to other chemicals.

For risk assessment purposes, TACs are separated into carcinogens and non-carcinogens. Carcinogens are assumed to have no safe threshold below which health impacts would not occur, and cancer risk is expressed as excess cancer cases per 1 million exposed individuals over a lifetime of exposure. Non-carcinogenic substances are generally assumed to have a safe threshold below which health impacts would not occur. Acute and chronic exposure to non-carcinogens is expressed as a hazard index, which is the sum of expected exposure levels divided by the corresponding acceptable exposure levels.

### **Landfill Gas**

Methane (CH<sub>4</sub>) and carbon dioxide (CO<sub>2</sub>) are the primary constituents of LFG and are produced by the natural process of bacterial decomposition of organic material within the landfill under anaerobic conditions. By volume, LFG is typically about 50 percent methane and 50 percent carbon dioxide and water vapor. In addition to these main components, LFG contains small amounts of nitrogen, oxygen, and hydrogen, less than 1 percent non-methane organic compounds (NMOCs), and trace amounts of inorganic compounds. Some of these compounds have strong, pungent odors (for example, hydrogen sulfide).

Volatile organic compounds (VOC), including approximately 30 TACs, have been identified in uncontrolled LFG, including benzene, toluene, ethyl benzene, and vinyl chloride. Exposure to these pollutants can lead to adverse health effects. Existing regulations under the Federal Clean Air Act, as discussed below under Regulatory Setting, require landfills of a certain size to install and operate a gas collection and control system. These regulations target municipal solid waste (MSW) landfill emissions. The regulations require NMOCs to be measured as a surrogate for LFG and owner/operators to collect and combust their LFG.

The rate of LFG generation is influenced by the amount of bioavailable carbon, the type of material containing it, and the environmental conditions that support anaerobic bacterial activity. As waste is continuously deposited in the landfill, LFG production gradually increases throughout the landfill's operational life, reaching its highest level on the final day of waste disposal, often referred to as the landfill's closure. After closure and capping, LFG generation may decline further due to reduced moisture infiltration.



March 25, 2025 Page 5

### **Existing Sensitive Receptors**

Sensitive receptors are areas where individuals are more susceptible to the adverse effects of poor air quality. Sensitive receptors include, but are not limited to, hospitals, schools, daycare facilities, elderly housing, and convalescent facilities. Residential areas are also considered sensitive receptors because people are often at home for extended periods, thereby increasing the duration of exposure to potential air contaminants.

The surrounding land uses are primarily agricultural with scattered single-family residences within 1-mile radius. The closest sensitive receptor is a residence located on-site about 460 feet southeast of the intersection of East Harney Lane and the North County Landfill access road (**Figure 1**). This residence is located approximately 2,100 feet northeast from the top of Lined Area 1, and approximately 1,800 feet northeast from the existing LFG flare station.

As mentioned above, the project-generated trucks would access the North County Landfill via East Harney Lane and the North County Landfill access road. Sensitive receptors along the haul route include residences as close as approximately 65 feet to the centerline of East Harney Lane and schools, including Harmony Grove Elementary School and the Adelita Montessori School, as close as approximately 70 feet to the centerline of East Harney Lane.

### **REGULATORY SETTING**

### **Federal and State Regulations**

The foundational framework of the Federal Clean Air Act was laid out by Congress in 1970, and major revisions were made in 1977 and again in 1990. The U.S. EPA is responsible for implementing programs established under the Federal Clean Air Act, such as establishing and reviewing the NAAQS and judging the adequacy of State Implementation Plans to attain the NAAQS. A State Implementation Plan must integrate federal, state, and local plan components and regulations to identify specific measures to reduce pollution in nonattainment areas, using a combination of performance standards and market-based programs. In accordance with the U.S. EPA Green Book, San Joaquin Valley is currently designated as extreme nonattainment for the 8-hour ozone standard and is designated nonattainment for the PM<sub>2.5</sub> standard based on the NAAQS.

The Federal Clean Air Act requires the EPA to identify HAPs that are known or suspected to cause cancer or other serious health effects, to protect public health and welfare, and to establish national emission standards for HAPs. The Federal Clean Air Act Amendments in 1990

<sup>&</sup>lt;sup>2</sup> United States Environmental Protection Agency (EPA), 2025. Green Book; Current Nonattainment Counties for All Criteria Pollutants. https://www3.epa.gov/airquality/greenbook/ancl.html. Last updated January 31, 2025.



March 25, 2025 Page 6

identified 188 hazardous air pollutants that EPA is required to control. Regulation of HAPs is achieved through federal, state, and local controls on industrial, mobile, and indoor sources.

In 1988, California passed the California Clean Air Act (California Health and Safety Code sections 39600 et seq.), which, like its federal counterpart, required the designation of areas as attainment or non-attainment, but based these designations on state ambient air quality standards rather than the federal standards. CARB is responsible for establishing and reviewing the CAAQS, developing and managing the State Implementation Plan, identifying TACs, and overseeing the activities of regional air quality management districts. To achieve the CAAQS, criteria air pollutant emissions are managed through control measures that are described in regional air quality plans as well as by emission limitations placed on permitted stationary sources. In California, mobile emissions sources (e.g., construction equipment, trucks, automobiles) are regulated by CARB, and stationary emissions sources (e.g., industrial facilities) are regulated by the regional air quality management districts. According to CARB, San Joaquin Valley is designated as nonattainment for the 8-hour ozone, PM<sub>10</sub>, and PM<sub>2.5</sub> standards and is designated an attainment or unclassified area for all other pollutants based on the CAAQS.

In 2016, the EPA established two regulations—the New Source Performance Standards (NSPS) for new landfills and the Emission Guidelines (EG) for existing landfills—aimed at reducing methane emissions from landfill gas. The EG require the installation of a LFG collection and control system (GCCS) at MSW landfills that exceed a specified design capacity and NMOC emission threshold. At the State level, in response to California Assembly Bill 32, CARB adopted the Landfill Methane Regulation in 2010, which requires MSW landfills to reduce methane and other air pollutant emissions through emissions monitoring and capturing fugitive methane emissions. Promulgated in 2016, California Senate Bill (SB) 1383 set a statewide target to reduce organic waste disposed of in landfills of 50 percent by 2020 and 75 percent by 2025. In addition, SB 1383 requires recovering at least 20 percent of disposed edible food for human consumption by 2025. As organic waste is a primary substance that generates LFG, diverting organic waste from landfills can reduce LFG emissions. In addition, MSW landfills are regulated under local air district rules that implement the federal requirements of the NSPS and EG, 40 Code of Federal Regulations Part 60 Subparts WWW and Cc, for MSW landfills.

### **Regional Regulations**

The project is located in the SJVAB, which is under the jurisdiction of the Valley Air District. The mission of the Valley Air District is to improve the health and quality of life for all Valley residents through efficient, effective and entrepreneurial air quality management strategies. The Valley Air District has adopted several air quality attainment plans for particulate matter and ozone over the years that identify measures needed in the SJVAB to attain NAAQS. The

<sup>&</sup>lt;sup>3</sup> California Air Resources Board (CARB), 2023. Maps of State and Federal Area Designations. Available at: https://ww2.arb.ca.gov/resources/documents/maps-state-and-federal-area-designations. Accessed Feb 14, 2025.



March 25, 2025 Page 7

Valley Air District has implemented these plans and adopted nearly 650 rules that have resulted in significant emissions reductions. Specific rules applicable to the proposed project include the following:

- Rule 2201 (New and Modified Stationary Source Review Rule). This rule, also known as New Source Review, applies to all new stationary sources and all modifications to existing stationary sources which are subject to the Valley Air District permit requirements and after construction emit or may emit one or more regulated pollutant (e.g. criteria air pollutants and precursors). This rule requires new and modified stationary sources to mitigate emissions using Best Available Control Technology and to offset emissions when estimated emissions are above specified thresholds. Valley Air District implementation of New Source Review ensures that there is no net increase in emissions above specified thresholds from new and modified Stationary Sources for all nonattainment pollutants and their precursors.
- Rule 4102 (Nuisance). This rule prohibits discharge of air contaminants or other
  materials which cause injury, detriment, nuisance or annoyance to any considerable
  number of persons or to the public or which endanger the comfort, repose, health or
  safety of any such person or the public or which cause or have a natural tendency to
  cause injury or damage to business or property.
- Rule 4642 (Solid Waste Disposal Sites). This rule limits volatile organic compound emissions from solid waste disposal sites.
- Regulation VIII (Fugitive PM10 Prohibitions). This regulation consists of a series of rules
  requiring the implementation of dust control measures to reduce fugitive dust
  emissions generated by human activity.

Consistent with CEQA Guideline Appendix G, the Valley Air District has adopted thresholds of significance to assist lead agencies in the evaluation and mitigation of air quality impacts under CEQA (CEQA Guidance).<sup>4</sup> The District's thresholds establish levels at which emissions of ozone precursors (ROG and NO<sub>x</sub>), PM<sub>10</sub>, PM<sub>2.5</sub>, carbon monoxide, sulfur oxides (SO<sub>x</sub>), TACs, and odors could cause significant air quality impacts. The Valley Air District's thresholds of significance that are used in this analysis are summarized in **Table 1** below.

21202-23 North County Landfill\_AQ\_0307

<sup>&</sup>lt;sup>4</sup> Joaquin Valley Air Pollution Control District (Valley Air District), 2015. Guidance for Assessing and Mitigating Air Quality Impacts (CEQA Guidance), March 19.



March 25, 2025 Page 8

Table 1. Air Quality Thresholds of Significance

| Impact Analysis                            | Pollutant         | Threshold of Significance                  |
|--------------------------------------------|-------------------|--------------------------------------------|
|                                            | СО                | 100 tons per year                          |
|                                            | NO <sub>x</sub>   | 10 tons per year                           |
| Criteria Air Pollutants                    | ROG               | 10 tons per year                           |
| (Construction and Operation <sup>1</sup> ) | SO <sub>x</sub>   | 27 tons per year                           |
| ,                                          | PM <sub>10</sub>  | 15 tons per year                           |
|                                            | PM <sub>2.5</sub> | 15 tons per year                           |
|                                            |                   | For the Maximally Exposed Individual:      |
| Health Risks and Hazards                   | Tox air           | Cancer risk increase > 20.0 in one million |
| (Combined)                                 | Contaminant       | Chronic hazard index > 1.0                 |
|                                            |                   | Acute hazard index > 1.0                   |

<sup>&</sup>lt;sup>1</sup> Construction emissions, operational emission from permitted equipment and activities, and operational emissions from non-permitted equipment and activities are evaluated separately.

Source: Valley Air District, 2015

The Valley Air District has established that preliminary screening can be used to determine with a fair level of certainty that the effect a project has on any given intersection would not result in a CO hotspot. According to the Valley Air District, a project would result in a less-than-significant impact related to localized CO concentrations if neither of the following screening criteria are met at all intersections affected by the development project:

- A traffic study for the project indicates that the Level of Service (LOS) on one or more streets or at one or more intersections in the project vicinity will be reduced to LOS E or F; nor
- A traffic study indicates that the project will substantially worsen an already existing LOS F on one or more streets or at one or more intersections in the project vicinity.

The Valley Air District identified some common types of facilities that have been known to produce odors, including sanitary landfills, and established screening levels for potential odor sources, in the form of screening distances, to semi-quantitatively assess a project's potential to adversely affect area receptors. For projects that would result in sensitive receptors being located closer than the screening level distances, the Valley Air District has established the following significance threshold for odor problems:

- More than one confirmed complaint per year averaged over a three-year period, or
- Three or more unconfirmed complaints per year averaged over a three-year period.



March 25, 2025 Page 9

### SIGNIFICANCE CRITERIA

Based on Appendix G of the CEQA Guidelines, implementation of the proposed project would result in a significant air quality impact if it would:

- 1) Conflict with or obstruct implementation of the applicable air quality plan;
- 2) Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is nonattainment under an applicable federal or state ambient air quality standard:
- 3) Expose sensitive receptors to substantial pollutant concentrations; or
- 4) Result in other emissions (such as those leading to odors) adversely affecting a substantial number of people.

The thresholds of significance for criteria air pollutant emissions, TACs, and odor established by the Valley Air District are used in this study to evaluate the project's air quality impacts. For criteria air pollutants, the Valley Air District established these thresholds of significance based on District New Source Review offset requirements for stationary sources, with the resulting emission reductions playing a critical role in the Valley Air District's air quality plans. Thus, projects with emissions below the thresholds of significance for criteria pollutants are determined to not conflict with or obstruct the implementation of the Valley Air District's air quality plan. For localized air quality impacts, such as exposure to TACs, the potential for adverse air quality impacts decreases as the distance between the source of emissions and receptors increases. The Valley Air District has not established a specific zone of influence within which health risks to sensitive receptors must be analyzed. However, the Bay Area Air Quality Management District recommends evaluating project's potential health risks to sensitive receptors within 1,000 feet of the project site.

Air districts such as the Valley Air District use regional air dispersion models to evaluate regional criteria air pollutants. However, these dispersion models have limited sensitivity to the relatively small (or negligible) changes in criteria air pollutant concentrations associated with an individual project. Therefore, providing reliable estimates of specific health risks associated with regional air pollutant emissions from an individual project is not feasible and would result



March 25, 2025 Page 10

in speculative results.<sup>5,6</sup> The methodology used in this analysis is consistent with the California Supreme Court's ruling regarding *Sierra Club v. County of Fresno*.<sup>7</sup>

### **ANALYSIS AND FINDINGS**

### **Consistency with Air Quality Plan**

As discussed above, the Valley Air District has adopted several air quality attainment plans for particulate matter and ozone over the years that identify measures needed in the SJVAB to attain NAAQS. Emission reductions achieved through implementation of the Valley Air District New Source Review offset requirements are a major component of the Vally Air District's air quality plans. Since the Valley Air District's thresholds of significance were developed based on New Source Review offset requirements, projects with emissions below the thresholds of significance for criteria air pollutants would be determined to not conflict or obstruct implementation of the Valley Air District's air quality plans. As discussed below, the project's emissions of criteria air pollutants of concern from permitted equipment and activities, as well as from non-permitted equipment and activities, would be below the thresholds of significance. In addition, the project would be required to comply with applicable rules and regulations, such a Regulation VIII (Fugitive PM<sub>10</sub> Prohibitions). Therefore, the project would not conflict with or obstruct implementation of applicable air quality plans.

### **Criteria Air Pollutant Emissions**

The project would not change the North County Landfill's design capacity of 41.2 million cubic yards of disposal and would not involve construction of new facilities. The project would increase the maximum amount of allowed daily refuse disposal and the number of daily incoming refuse trucks from 1,200 tons per day and 850 trucks per day to 4,000 tons and 1,200 trucks per day. This increase would involve a change in refuse truck routing; approximately 51 transfer trucks that currently go to the Foothill Landfill would be re-routed to the North County Landfill. The increase in daily refuse disposal would also increase the use of off-road equipment associated with landfill operations. Up to six new employees would be needed for the increase in waste disposal and truck trip-related activity.

<sup>&</sup>lt;sup>5</sup> Brief for South Coast Air Quality Management District as Amicus Curiae Supporting Respondents, Sierra Club, Revive the San Joaquin, and League of Women Voters Fresno v. County of Fresno and Friant Ranch (SCAQMD Amicus Curiae), 2018, 6 Cal.5th 502, Case No. S219783.

<sup>&</sup>lt;sup>6</sup> Brief for San Joaquin Valley Unified Air Pollution Control District as Amicus Curiae Supporting Respondents, Sierra Club, Revive the San Joaquin, and League of Women Voters Fresno v. County of Fresno and Friant Ranch (SJVUAP Amicus Curiae), 2018, 6 Cal.5th 502, Case No. S219783.

<sup>&</sup>lt;sup>7</sup> California Supreme Court, 2018. Sierra Club, Revive the San Joaquin, and League of Women Voters Fresno v. County of Fresno and Friant Ranch, 6 Cal.5th 502, Case No. S219783.



March 25, 2025 Page 11

Operation of the Project would generate criteria pollutant emissions that could potentially impact regional air quality. The primary pollutant emissions of concern during project operation would be ozone precursors (ROG and NOx), PM<sub>10</sub>, PM<sub>2.5</sub>, and emissions of LFG. Implementation of the project would result in net increases in off-road equipment usage on the project site, and project-generated vehicle trips along the haul route. Although the project would not change the North County Landfill design capacity, the rate of additional cell and module construction on the project site would increase to accommodate the amount of waste accepted with the proposed increase in maximum allowed daily refuse disposal. Compared to the current operation condition, the project could increase fugitive emissions from the landfill surface, and exhaust emissions from LFG control devices (e.g., flare) due to the increase in LFG generated and collected.

### Off-Road Equipment and On-Road Mobile Sources

The heavy off-road equipment currently used at the North County Landfill will continue to be used with implementation of the project. As mentioned above, the project would increase off-road equipment usage on site, in terms of hours of operation and number of off-road equipment used. Criteria air pollutant emissions from off-road equipment for the current operation condition (2024) and project condition were calculated using CalEEMod version 2022.1 methodologies.

For mobile sources, the project would increase the maximum allowed number of daily incoming refuse vehicles from 850 vehicles per day to 1,200 vehicles per day. This increase would involve a change in refuse truck routing; approximately 50 transfer trucks that currently go to the Foothill Landfill would be re-routed to the North County Landfill. In addition, it was assumed that the project would generate 12 one-way worker commute trips per day for the six new employees. Emissions of criteria air pollutants from mobile sources were estimated for the current operation condition and project condition using the year 2024 emission factors from CARB's EMFAC2021 database. Because statewide vehicle emission standards are required to improve over time in accordance with vehicle emission regulations, using the emission factors for the baseline year (2024) provides the maximum expected annual emissions.

The project would generate fugitive  $PM_{10}$  and  $PM_{2.5}$  emissions from onsite earthwork activities, on-road vehicle brake wear and tire wear, resuspended road dust on paved and unpaved roads, and windblown landfill sediment and cover. Earthwork is conducted in accordance with the Valley Air District's Regulation VIII. Water trucks and sweepers are used for dust control. It was assumed that the exposed areas will be watered twice per day.

The primary input data used to estimate criteria air pollutant emissions associated with operation of the project were provided by the applicant and included information about the current operation condition and project off-road construction equipment inventory and usage, off-site haul truck trips, on-site water trucks trips, other on-site service truck trips, and travel



March 25, 2025

Page 12

distances for each trip category. The input parameters and assumptions used to estimate criteria air pollutant emissions from off-road heavy construction equipment and mobile sources are provided in **Attachment A**.

The estimated annual emissions during operation of the project are presented in **Table 2**. As shown in **Table 2**, the project's estimated net change in ROG,  $NO_x$ ,  $PM_{10}$ ,  $PM_{2.5}$ , CO, and  $SO_x$  emissions during operation are below the Valley Air District's threshold of significance and would not result in a cumulatively considerable net increase in criteria air pollutants for which the region is in nonattainment; therefore, the project's impact on regional air quality would be less than significant.

Table 2. Estimated Annual Criteria Air Pollutant and Precursor Emissions from Non-Permitted Equipment and Activities (tons per year)

| <b>Emission Scenarios</b>      | ROG  | NO <sub>x</sub> | PM <sub>10</sub> | PM <sub>2.5</sub> | со    | SO <sub>x</sub> |
|--------------------------------|------|-----------------|------------------|-------------------|-------|-----------------|
| Off-Road Equipment             |      |                 |                  |                   |       |                 |
| Baseline Condition             | 0.24 | 6.79            | 1.06             | 0.63              | 7.60  | 0.01            |
| Project Condition              | 0.35 | 7.82            | 1.87             | 1.07              | 12.73 | 0.02            |
| Net Difference                 | 0.11 | 1.04            | 0.81             | 0.44              | 5.13  | 0.01            |
| On-Road Mobile Sources         |      |                 |                  |                   |       |                 |
| Baseline Condition             | 0.13 | 3.70            | 1.40             | 0.31              | 0.18  | 0.03            |
| Project Condition              | 0.13 | 3.54            | 1.48             | 0.31              | 0.18  | 0.04            |
| Net Difference                 | 0.01 | -0.16           | 0.08             | 0.00              | 0.002 | 0.004           |
| Total Net Difference           | 0.11 | 0.88            | 0.90             | 0.45              | 5.13  | 0.01            |
| Valley Air District Thresholds | 10   | 10              | 15               | 15                | 100   | 27              |
| Threshold Exceeded?            | No   | No              | No               | No                | No    | No              |

Source: Attachment A.

### **Landfill Gas**

As discussed above, the project would increase criteria air pollutant emissions attributable to the potential increases in exhaust emissions from the flare. The reported emission inventory for the North County Landfill in 2023 was provided by the applicant (**Attachment B**) and is summarized in **Table 3** as a representation of the baseline condition. As shown in **Table 3**, under the baseline condition, emissions of ROG,  $NO_x$ ,  $PM_{10}$ , CO, and  $SO_x$  from the flare are relatively low – approximately two orders of magnitudes lower than the applicable Valley Air District operation thresholds for permitted sources. For the project condition, the maximum criteria air pollutant emissions from the flare were conservatively estimated using emission limits obtained from the project's current Title V permit and the heat input to flare obtained from the 2023 inventory. Detailed calculations are provided in **Attachment A**. For the project



March 25, 2025 Page 13

condition, the conservatively estimated maximum emissions from the flare are below the Valley Air District's thresholds of significance. Therefore, the impact associated with LFG-related criteria air pollutant emissions would be less than significant.

Table 3. Estimated Annual Criteria Air Pollutant and Precursor Emissions from Permitted LFG Collection System (tons per year)

|                                 |                  | Emissi          | ons (tons per    | year) |                 |
|---------------------------------|------------------|-----------------|------------------|-------|-----------------|
| Emission Scenario               | ROG <sup>2</sup> | NO <sub>x</sub> | PM <sub>10</sub> | СО    | SO <sub>x</sub> |
| Baseline Condition <sup>1</sup> | <0.01            | 0.04            | 0.09             | <0.01 | 0.02            |
| Project Condition               | 1.41             | 6.41            | 3.63             | 9.62  | 3.21            |
| Net Difference                  | 1.41             | 6.37            | 3.54             | 9.62  | 3.19            |
| Valley Air District Thresholds  | 10               | 10              | 15               | 100   | 27              |
| Threshold Exceeded?             | No               | No              | No               | No    | No              |

<sup>&</sup>lt;sup>1</sup> Based on 2023 inventory for the North County Landfill.

Source: Attachments A and B.

### **Exposure to Toxic Air Contaminants**

Project operation would generate LFG-related emissions and DPM emissions from the exhaust of on-road heavy-duty diesel haul trucks and on-site off-road diesel construction equipment. As discussed above, the closest sensitive receptor is a residence located on-site approximately 2,100 feet northeast from the top of Lined Area 1, and approximately 1,800 feet northeast from the existing LFG flare station (**Figure 1**). Because the closest sensitive receptor is not located within 1,000 feet of the fill area and flare station, exposure to on-site TACs during project operation was not evaluated. Although LFG may contain trace amount of TACs, the health risk from flare emissions is typically very low as the combustion process would destroy most toxic substances contained in the flared gas. Per the project's Title V permit, VOC destruction efficiency for the flare shall be at least 98 percent by weight.

For sensitive receptors along the haul route, a health risk assessment was conducted to estimate the incremental increase in cancer risk and chronic hazard index (HI) from exposure to DPM emissions from trucks in accordance with guidance from the Valley Air District<sup>8</sup> and the Office of Environmental Health Hazard Assessment (OEHHA).<sup>9</sup>

<sup>&</sup>lt;sup>2</sup> ROG emissions based on total VOC emissions.

<sup>&</sup>lt;sup>8</sup> Joaquin Valley Air Pollution Control District (Valley Air District), 2015. Guidance for Assessing and Mitigating Air Quality Impacts (CEQA Guidance), March 19.

<sup>&</sup>lt;sup>9</sup> Office of Environmental Health Hazard Assessment (OEHHA), 2015. Air Toxics Hot Spots Program Guidance Manual for Preparation of Health Risk Assessments, May.



March 25, 2025 Page 14

The on-road DPM emissions from trucks travelling by sensitive receptors along the haul route were estimated based on the net increase in average daily truck trips in the project vicinity. Emission factors for exhaust and fugitive emissions were derived from CARB's EMFAC2021 database. The model input parameters, assumptions, and results are summarized in **Attachment C**.

The annual average concentrations of DPM during project operation at sensitive receptors along the haul route were estimated using the American Meteorological Society/U.S. EPA regulatory air dispersion model (AERMOD). For the analysis, emissions of exhaust  $PM_{10}$  were used as a surrogate for DPM, which is a conservative assumption because more than 90 percent of DPM is less than 1 micron in diameter. The input parameters and assumptions used for estimating emission rates of DPM from trucks are included in **Attachment C**.

PM<sub>10</sub> emissions from off-site trucks were modeled as a line source along a representative section of the haul route (East Harney Lane between SR-88 and North County Landfill entrance road). The North County Landfill operates from 7:00 am to 5:00 pm, seven days per week. The AERMOD model input parameters included five years of Valley Air District meteorological data from the Stockton Met Site (Site ID 23237) located approximately 16 miles to the southwest of the North County Landfill.

For sensitive receptors along the haul route, a uniform grid of receptors spaced approximately 50 meters apart with receptor heights of 1.8 meters was placed along the haul route as a means of developing isopleths (i.e., concentration contours) that illustrate the air dispersion pattern. In addition, lines of discrete receptors spaced approximately 20 meters apart and approximately 20 meters (65 feet) away from the haul route centerline were created for ground level receptors at heights of 1.8 meters to calculate concentrations at the closest sensitive receptors to the haul route. Comparing to other sensitive receptors identified above, the residential receptors identified along the haul route are among the receptors that are closest to the road and have a longer exposure duration and frequency than other sensitive receptors along the haul rout, such as school children. Therefore, the discrete residential receptors modeled at 20 meters (65 feet) from the centerline of the haul route represent a reasonable worst-case scenario.

Based on the annual average concentrations of DPM estimated using AERMOD, potential health risks were evaluated for the maximally exposed individual resident (MEIR) along the haul route. The incremental increase in cancer risk at the MEIR was assessed for an individual initially exposed to DPM as a fetus during the third trimester of pregnancy until the age of 18, assuming 18 years of exposure to project operation emissions (between 2025 to 2043). This exposure scenario represents the most sensitive individual who could be exposed to adverse air quality conditions in the vicinity of the haul route. The input parameters and results of the health risk assessment are included in **Attachment C**.



March 25, 2025 Page 15

The estimated health risks at the MEIR due to DPM emissions from project operation are summarized and compared to the Valley Air District's thresholds of significance in **Table 4**. The estimated cancer risk and chronic HI for DPM at the MEIR were below the Valley Air District's thresholds. Therefore, the project would not expose sensitive receptors to substantial pollutant concentrations. The impact would be less than significant.

Table 4. Health Risks during Project Operation

|                    |                | Diesel Partico               | ulate Matter            |
|--------------------|----------------|------------------------------|-------------------------|
| Emissions Scenario | Receptor       | Cancer Risk<br>(per million) | Chronic<br>Hazard Index |
| Baseline Condition | Haul Route     | 0.8                          | <0.01                   |
| Project Condition  | MEIR           | 1.5                          | <0.01                   |
| N                  | et Difference  | 0.7                          | <0.01                   |
| Thresholds o       | f Significance | 10                           | 1.0                     |
| Excee              | d Threshold?   | No                           | No                      |

Source: Attachment C.

### **Exposure to Carbon Monoxide Emissions**

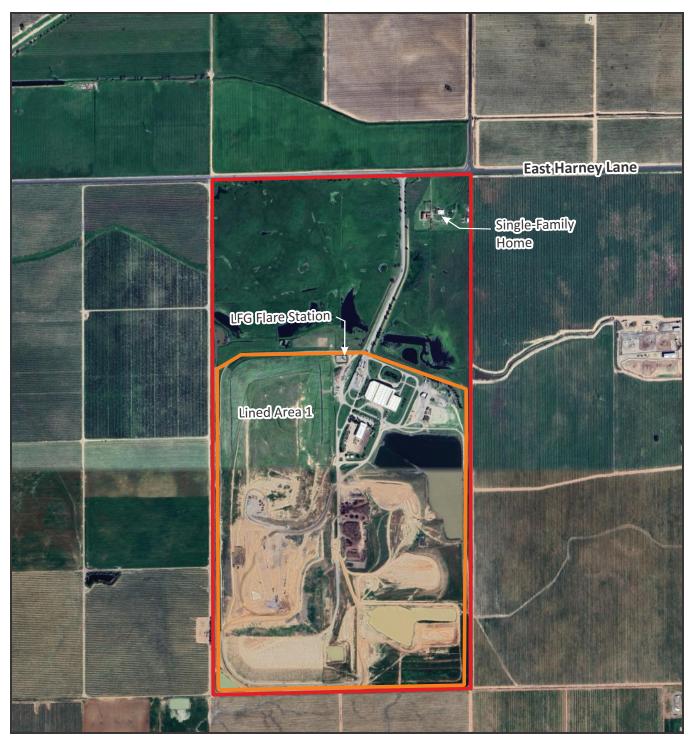
The source of local carbon monoxide concentrations is often associated with heavy traffic congestion at nearby intersections. According to the Transportation Impact Analysis for the project, <sup>10</sup> the project would generate 461 trips per day in average. The studied intersections and road segments would operate acceptably at LOS C or better under existing and future volumes without or with the addition of project-generated trips. Since the project would not reduce LOS on streets or intersections in the project vicinity to LOS E or F, the project does not meet the Valley Air District's screening level for potentially significant carbon monoxide impacts. Therefore, the project would not result in a net increase in the potential exposure of existing sensitive receptors to carbon monoxide concentrations from project-generated traffic and this impact would be less than significant.

### Odor

Landfills have the potential to produce odors that could adversely affect area receptors. Odors are generated at the landfill working face due to tipping and dumping putrescible waste. The main method for controlling odor at the landfill working face is by applying cover material. In addition, fugitive LFG that escape through the LFG collection and control system can contribute to odors. According to the applicant, no complaints have been received for the North County Landfill over the past three years. Since the project would not change the odor control method

<sup>&</sup>lt;sup>10</sup> W-Trans, 2025. Draft Transportation Impact Analysis for the North County Recycling Center and Sanitary Landfill Project. January 23.




March 25, 2025 Page 16

or the LFG collection and control system, the increase in maximum allowed daily refuse disposal is not expected to substantially increase odor generation. Therefore, the project's odor impact would be less than significant.

### **CONCLUSIONS**

Based on the analysis above, the project would not result in a cumulatively considerable net increase in criteria air pollutants for which the region is in nonattainment and would not conflict with or obstruct implementation of applicable air quality plans. The project would not expose sensitive receptors to substantial pollutant concentrations and the impact would be less than significant. The project impacts related to odors and other emissions would be less than significant.





# Legend

Project Site Boundary
Planned Fill Area





Figure 1
Project Site and
Sensitive Receptor Locations

# ATTACHMENT A CRITERIA AIR POLLUTANT EMISSION CALCULATION DETAILS

# Appendix A-1: Off-Road Equipment Model Input Parameters and Emissions Calculations

Information about existing and project off-road diesel equipment usage was provided by the project applicant. Exhaust emissions of criteria air pollutants and greenhouse gases from off-road equipment use were estimated using the methodology from the California Emissions Estimator Model (CalEEMod) version 2022.1.1.

Summary of Off-Road Equipment Usage

### 468 1,768 156 330 520 156 104 129 156 104 1,612 1,612 1,664 2,184 1,872 416 2,080 988 676 312 468 156 50 52 156 520 624 52 104 52 728 104 312 52 104 50 52 52 52 50 0.0 Weekly Usage Hours 6.3 4 Existing 32 42 0.40 0.36 0.40 0.30 0.40 0.40 0.41 0.34 0.40 Tier 4 Interin Tier 1 Gas Tier 4 Interim Tier 4 Interim Tier 4 Interim Tier 4 Interim Fier 4 Interim Fier 4 Interim Tier 4 Interim Fier 4 Interim Average Tier 1 Average Tier 1 Tier 1 Tier 2 Tier 2 Tier 2 Tier 1 Tier 2 Tier 2 Tier 1 Gas 49 49 49 199 599 49 24 599 599 299 299 1199 1199 1199 49 49 49 49 49 49 299 299 299 199 299 299 174 599 49 25 75 300 25 300 300 175 25 175 175 120 300 25 75 75 300 300 300 315 30 25 40 100 365 25 10 360 525 540 265 217 150 15 310 110 270 150 165 325 110 400 165 20 20 25 200 200 225 225 265 Diesel Gas Number CalEEMod Equipment Category Other General Industrial Equipment ractors/Loaders/Backhoes ractors/Loaders/Backhoes Rubber Tired Loaders Rubber Tired Loaders orklifts Rubber Tired Loaders Off-Highway Trucks Off-Highway Trucks Rubber Tired Dozers ubber Tired Loaders **Rubber Tired Loaders** weepers/Scrubbers **Ubber Tired Dozers Ubber Tired Dozers** ubber Tired Dozers ubber Tired Dozers **Subber Tired Dozers** ubber Tired Dozers ubber Tired Dozers ubber Tired Dozers ubber Tired Dozers **Ubber Tired Dozers** ressure Washers skid Steer Loaders erial Lifts raders ARPOMATIC Landfill Covers - 04-001 ARCHER PRESSURE WASHER 3-908 Sterling Water Truck (tan) 0-908 International Water Truck 025 CAT LPG D-6 Finish Dozer -909 AL-JON 81K - Compactor -020 JD 1050K LARGE DOZER 5-18571 Portable Light Tower -071 JD 310SL/HL BACKHOE -041 JD 644K Hybrid Loader -073 JD 755K Track Loader -042 CAT 836K Compactor -071 CAT 420 F2 Backhoe -009 JD SKID STEER 333G 26 CAT 836 Compactor 025 Storm Water Pump 1-042 836G COMPACTOR 5-003 Forklift-Clark 5-041 Cat 950F Loader 2-035 623 Scraper 125-26 CAT 623 Scraper 3-112 Pressure Washer -073 JD Track Loader 1-075 JD 850C Dozer -075 JD 850K Dozer -020 CAT D8 Dozer 125-26 Large Dozer 3-041 CAT 950H 1-971 JD Grader -910 Sweeper 002 Genie

were used for the corresponding equipment categories. Assumed fire pump and storm water pump, which are for emergency uses, will be used 50 hours per year. Water truck usage was converted from vehicle miles travelled assuming 5 mph speed.

| ë  |
|----|
| ᅙ  |
| ī  |
| ŝ  |
| =  |
| ⋍  |
| ш  |
| CJ |
| ō  |
| ž  |
| _  |
| ≧  |
| ₫  |
| ε. |
| ᇗ  |
| ₹  |
| ≠  |
| ш  |
| _  |
| ×  |
| 8  |
| ~  |
| 7  |
| ±  |
|    |

|                                                         |                                    |        |           | Horse- |        |         |                    |                 | ш                               | ROG Emissions (Ibs per year) | (lbs per year) |
|---------------------------------------------------------|------------------------------------|--------|-----------|--------|--------|---------|--------------------|-----------------|---------------------------------|------------------------------|----------------|
| Project Equipment                                       | CalEEMod Equipment Category        | Number | Fuel Type | power  | Low HP | High HP | <b>Engine Tier</b> | Load Factor     | (g/hp-hr)                       | Existing                     | Project        |
| 94-073 825C Compactor                                   | Rubber Tired Dozers                | 1      | Diesel    | 315    | 300    | 665     | Tier 1             | 0.4             | 0.29                            | 12.57                        | 13.86          |
| 95-025 Storm Water Pump                                 | Pumps                              | 1      | Diesel    | 30     | 25     | 49      | Average            | 0.74            | 0.401                           | 0.98                         | 0.98           |
| 96-002 Genie                                            | Aerial Lifts                       | 1      | Diesel    | 25     | 25     | 49      | Tier 1             | 0.31            | 1.32                            | 1.17                         | 1.17           |
| 96-003 Forklift-Clark                                   | Forklifts                          | 1      | Diesel    | 40     | 25     | 49      | Average            | 0.2             | 0.401                           | 1.10                         | 1.10           |
| 96-041 Cat 950F Loader                                  | Rubber Tired Loaders               | 1      | Diesel    | 100    | 75     | 199     | Tier 1             | 0.36            | 6.0                             | 37.14                        | 44.57          |
| 02-035 623 Scraper                                      | Scrapers                           | 1      | Diesel    | 365    | 300    | 669     | Tier 1             | 0.48            | 0.29                            | 06.69                        | 81.55          |
| 02-910 Sweeper                                          | Sweepers/Scrubbers                 | 1      | Diesel    | 25     | 25     | 49      | Tier 1             | 0.46            | 1.32                            | 1.74                         | 2.58           |
| 23-112 Pressure Washer                                  | Pressure Washers                   | 1      | Gas       | 10     | 0      | 24      | Gas                | 0.3             | 3.93                            | 2.70                         | 2.70           |
| 03-909 AL-JON 81K - Compactor                           | Rubber Tired Dozers                | 1      | Diesel    | 360    | 300    | 299     | Tier 1             | 0.4             | 0.29                            | 4.79                         | 11.88          |
| 04-042 836G COMPACTOR                                   | Rubber Tired Dozers                | 1      | Diesel    | 525    | 300    | 669     | Tier 2             | 0.4             | 60.0                            | 67.17                        | 71.50          |
| 04-075 JD 850C Dozer                                    | Rubber Tired Dozers                | 1      | Diesel    | 265    | 175    | 299     | Tier 2             | 0.4             | 0.11                            | 18.71                        | 20.05          |
| 04-971 JD Grader                                        | Graders                            | 1      | Diesel    | 217    | 175    | 299     | Tier 1             | 0.41            | 0.29                            | 5.92                         | 8.87           |
| 06-041 CAT 950H                                         | Rubber Tired Loaders               | 1      | Diesel    | 150    | 120    | 174     | Tier 2             | 0.36            | 0.15                            | 29.71                        | 31.57          |
| 06-18571 Portable Light Tower                           | Other General Industrial Equipment | 1      | Diesel    | 15     | 25     | 49      | Tier 2             | 0.34            | 0.22                            | 0.77                         | 0.82           |
| 10-020 CAT D8 Dozer                                     | Rubber Tired Dozers                | 1      | Diesel    | 512    | 300    | 299     | Tier 2             | 0.4             | 60.0                            | 88.75                        | 92.97          |
| 15-071 CAT 420 F2 Backhoe                               | Tractors/Loaders/Backhoes          | 1      | Diesel    | 110    | 75     | 199     | Tier 4 Interim     | 0.37            | 0.08                            | 3.36                         | 3.73           |
| 18-042 CAT 836K Compactor                               | Rubber Tired Dozers                | 1      | Diesel    | 540    | 300    | 665     | Tier 4 Interim     | 0.4             | 90.0                            | 46.06                        | 49.03          |
| 18-075 JD 850K Dozer                                    | Rubber Tired Dozers                | 1      | Diesel    | 270    | 175    | 588     | Tier 4 Interim     | 0.4             | 90.0                            | 16.34                        | 17.83          |
| 19-041 JD 644K Hybrid Loader                            | Rubber Tired Loaders               | 1      | Diesel    | 150    | 75     | 199     | Tier 4 Interim     | 0.36            | 0.08                            | 17.83                        | 18.82          |
| 19-073 JD Track Loader                                  | Rubber Tired Loaders               | 1      | Diesel    | 165    | 75     | 199     | Tier 4 Interim     | 0.36            | 0.08                            | 1.09                         | 1.63           |
| 20-009 JD SKID STEER 333G                               | Skid Steer Loaders                 | 1      | Diesel    | 80     | 75     | 199     | Tier 4 Interim     | 0.37            | 0.08                            | 2.17                         | 2.44           |
| 20-020 JD 1050K LARGE DOZER                             | Rubber Tired Dozers                | 1      | Diesel    | 325    | 300    | 299     | Tier 4 Interim     | 0.4             | 90.0                            | 35.77                        | 37.56          |
| 20-071 JD 310SL/HL BACKHOE                              | Tractors/Loaders/Backhoes          | 1      | Diesel    | 110    | 75     | 199     | Tier 4 Interim     | 0.37            | 0.08                            | 7.09                         | 7.47           |
| 20-714 KUBOTA                                           | Tractors/Loaders/Backhoes          | 1      | Diesel    | 40     | 25     | 49      | Tier 4 Interim     | 0.37            | 60.0                            | 1.99                         | 2.04           |
| 22-073 JD 755K Track Loader                             | Tractors/Loaders/Backhoes          | 1      | Diesel    | 165    | 75     | 199     | Tier 4 Interim     | 0.37            | 0.08                            | 3.36                         | 3.36           |
| TARPOMATIC Landfill Covers - 04-001 Rubber Tired Dozers | Rubber Tired Dozers                | 1      | Diesel    | 20     | 25     | 49      | Tier 1             | 0.4             | 1.32                            | 1.21                         | 2.42           |
| TARPOMATIC Landfill Covers - 18-002 Rubber Tired Dozers | Rubber Tired Dozers                | 1      | Diesel    | 20     | 25     | 49      | Tier 4 Interim     | 0.4             | 60.0                            | 0.17                         | 0.25           |
| Fire Pump                                               | Pumps                              | 1      | Diesel    | 25     | 25     | 49      | Tier 1             | 0.74            | 1.32                            | 2.69                         | 2.69           |
| KARCHER PRESSURE WASHER                                 | Pressure Washers                   | 1      | Gas       | 10     | 0      | 24      | Gas                | 0.3             | 3.93                            | 1.35                         | 2.70           |
| 03-908 Sterling Water Truck (tan)                       | Off-Highway Trucks                 | 1      | Diesel    | 200    | 175    | 299     | Average            | 0.38            | 0.187                           | 3.26                         | 4.49           |
| 20-908 International Water Truck                        | Off-Highway Trucks                 | 1      | Diesel    | 225    | 175    | 588     | Tier 4 Interim     | 0.38            | 90.0                            | 2.94                         | 3.92           |
| 2025 CAT LPG D-6 Finish Dozer                           | Rubber Tired Dozers                | 1      | Diesel    | 265    | 175    | 299     | Tier 4 Final       | 0.4             | 0.05                            | 00:00                        | 29.21          |
| 2025-26 CAT 836 Compactor                               | Plate Compactors                   | 1      | Diesel    | 540    | 300    | 599     | Tier 4 Final       | 0.43            | 0.05                            | 0.00                         | 60.15          |
| 2025-26 CAT 623 Scraper                                 | Scrapers                           | 1      | Diesel    | 370    | 300    | 669     | Tier 4 Final       | 0.48            | 0.05                            | 00:00                        | 19.58          |
| 2025-26 Large Dozer                                     | Rubber Tired Dozers                | 1      | Diesel    | 400    | 300    | 665     | Tier 4 Final       | 0.4             | 0.05                            | 0.00                         | 39.68          |
| 2025 Loader mid size                                    | Rubber Tired Loaders               | 1      | Diesel    | 165    | 120    | 174     | Tier 4 Final       | 0.36            | 0.05                            | 0.00                         | 12.44          |
|                                                         |                                    |        |           |        |        |         |                    | Total emission  | Total emissions per Year (Ibs)  | 490                          | 708            |
|                                                         |                                    |        |           |        |        |         |                    | Total emissions | Total emissions per Year (tons) | 0.24                         | 0.35           |
|                                                         |                                    |        |           |        |        |         |                    |                 | /                               |                              | 55:0           |

Assumptions
Grams per pound
2,000

Work days per year

Abbreviations

ROG = reactive organic gases; EF= emission factor; g/hp-hr = gram per horsepower-hour; lbs = pounds

Emission factors were obtained from CalEEMod based on equipment type, fuel type, horsepower, and engine tier.

Equations:
Emissions [lbs] = emission factor [g/hp-gr] × number of pieces of equipment × horsepower × load factor × hours of annual operation/ 453.592 grams per pound

| _        |
|----------|
| ਨ        |
| .≃       |
| S        |
| S        |
| =        |
| ς.       |
|          |
| ш        |
| ×        |
|          |
| 0        |
| z        |
|          |
| Ħ        |
| ÷        |
| a)       |
| _        |
| ⊑        |
| ቧ        |
| =        |
| _        |
| σ        |
| Ŵ.       |
|          |
| O        |
|          |
| ō        |
| 9        |
| ~        |
| Т        |
| <b>—</b> |
|          |

| cutor         Rubber Tired Dozers         1 Diesel         315         300           Rump         Pumps         1 Diesel         315         300           Rump         Pumps         1 Diesel         315         300           Redia Lifes         1 Diesel         30         25           Redia Lifes         1 Diesel         30         25           Redia Lifes         1 Diesel         40         25           Stragers         1 Diesel         10         75           Stragers         1 Diesel         365         300           Street         Sweepers/Scrubbers         1 Diesel         365         30           Street         Rubber Tired Dozers         1 Diesel         365         30           Act TOR         Rubber Tired Dozers         1 Diesel         360         30           Act TOR         Rubber Tired Dozers         1 Diesel         36         30           Backhoe         Irred Looders         1 Diesel         37         30           Backhoe         Irred Looders         1 Diesel         36         37           Backhoe         Irred Looders         1 Diesel         37         30           Backhoe         Irred Lood                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | High HP Engi          | Engine Tier Loa                        | Load Factor<br>0.4 | (g/hp-hr)<br>5.93               | Existing<br>256.97 | Project<br>283.33 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------|--------------------|---------------------------------|--------------------|-------------------|
| Rubber Tired Loaders         1         Diesel         31.9         3.5           Pumps         Forkliffs         1         Diesel         3.0         2.5           Forkliffs         1         Diesel         2.5         2.5           Forkliffs         1         Diesel         4.0         2.5           Sweeper/Scrubbers         1         Diesel         3.0         2.5           Sweeper/Scrubbers         1         Diesel         3.6         3.00           Pressure Washer         1         Diesel         3.5         3.0           Rubber Tired Dozers         1         Diesel         5.2         3.0           Rubber Tired Dozers         1         Diesel         5.2         3.0           Archors Chooders/Backhoes         1         Diesel         1.7         1.7           Rubber Tired Loaders         1         Diesel         1.0         7.5           Rubber Tired Loaders         1         Diesel         1.0         7.5           SCA         1         Diesel         1.0         7.5           Britan         1         Diesel         1.0         7.5           Auber Tired Loaders/Backhoes         1         Diesel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | e. T                                   | 4.0                | 5.93                            | 759.37             | 783.33            |
| Pumps         Pumps         1         Diesel         30         25           Rubber Tired Loaders         1         Diesel         30         25           Rubber Tired Loaders         1         Diesel         40         25           Surgepers/Scrubbers         1         Diesel         100         75           Proxibition         Pressure Woshers         1         Diesel         25         25           Proxibition         Proxibition         1         Diesel         25         25           Rubber Tired Dozers         1         Diesel         25         25           Rubber Tired Dozers         1         Diesel         25         300           Wer         Other General Industrial Equipment         1         Diesel         150         175           Rubber Tired Dozers         1         Diesel         150         175           Ar         Rubber Tired Loaders         1         Diesel         175         25           Br         Rubber Tired Loaders         1         Diesel         10         75           Br         Rubber Tired Loaders         1         Diesel         20         25           Br         Incrtors/Loaders/Backhoes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |                                        | ;                  |                                 |                    | 0                 |
| Fortifitits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                     | a)                                     | 0.74               | 3.53                            | 8.64               | 8.64              |
| Prohititis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 49 T                  | Tier 1                                 | 0.31               | 5.26                            | 4.67               | 4.67              |
| Rubber Tired Loaders   1   Diesel   100   75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 49 Av                 | Average                                | 0.2                | 3.53                            | 9.71               | 9.71              |
| Scropers         1         Diesel         365         300           Persestre Worshers         1         Diesel         25         35           Pressure Worshers         1         Diesel         25         25           Reportor         Rubber Tired Dozers         1         Diesel         255         300           Rubber Tired Dozers         1         Diesel         255         300           Rubber Tired Dozers         1         Diesel         255         300           Rubber Tired Loaders         1         Diesel         150         120           Ower         Other General Industrial Equipment         1         Diesel         150         25           Action         Rubber Tired Loaders         1         Diesel         150         150           Action         Rubber Tired Loaders         1         Diesel         150         150           Action         Rubber Tired Loaders         1         Diesel         150         150           Action         Rubber Tired Loaders         1         Diesel         165         155           Action         Tractors/Loaders/Backhoes         1         Diesel         250         255           Action                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 199 T                 | Tier 1                                 | 0.36               | 6.54                            | 269.91             | 323.89            |
| Number   N | 599 T                 | Tier 1                                 | 0.48               | 5.93                            | 1,429.25           | 1,667.46          |
| pressure Washers         1         Gas         10         0           Rubber Tired Dozers         1         Diesel         360         300           Rubber Tired Dozers         1         Diesel         555         300           Rubber Tired Dozers         1         Diesel         265         175           Graders         Graders         1         Diesel         150         175           Ower         Chrief General Industrial Equipment         1         Diesel         150         175           Rubber Tired Loaders/Backhoes         1         Diesel         150         175           ctor         Rubber Tired Dozers         1         Diesel         170         175           coder         Rubber Tired Dozers         1         Diesel         170         175           coder         Rubber Tired Dozers         1         Diesel         175         175           ArlOE         Rubber Tired Dozers         1         Diesel         175         175           ArlOE         Tractors/Loaders/Backhoes         1         Diesel         165         175           ArlOE         Tractors/Loaders/Backhoes         1         Diesel         165         175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 49 T                  | Tier 1                                 | 0.46               | 5.26                            | 6.93               | 10.27             |
| Reportor         Rubber Tired Dozers         1         Diesel         360         300           Rubber Tired Dozers         1         Diesel         525         300           Rubber Tired Dozers         1         Diesel         267         175           Graders         Rubber Tired Looders         1         Diesel         15         25           Fubber Tired Looders         1         Diesel         15         25           Incorosts/Looders/Bockhoes         1         Diesel         15         300           ctor         Rubber Tired Dozers         1         Diesel         175         300           ctor         Rubber Tired Looders         1         Diesel         176         75           ctor         Rubber Tired Looders         1         Diesel         176         75           ctor         Rubber Tired Looders         1         Diesel         176         75           3G         Skid Steer Looders/Backhoes         1         Diesel         10         75           AHOE         Tractors/Looders/Backhoes         1         Diesel         20         175           ciers - 18-00         Rubber Tired Dozers         1         Diesel         20         175<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       | Gas                                    | 0.3                | 3.44                            | 2.37               | 2.37              |
| R         Rubber Tired Dozers         1         Diesel         525         300           Rubber Tired Dozers         1         Diesel         265         175           Graders         1         Diesel         265         175           Rubber Tired Loaders         1         Diesel         150         120           Fower         Other General Industrial Equipment         1         Diesel         15         25           rower         Other General Industrial Equipment         1         Diesel         150         120           ctor         Rubber Tired Dozers         1         Diesel         10         75           ctor         Rubber Tired Dozers         1         Diesel         170         75           ctor         Rubber Tired Loaders         1         Diesel         150         75           ctor         Rubber Tired Loaders         1         Diesel         150         75           AchOE         Rubber Tired Dozers         1         Diesel         150         75           AchOE         Tractors/Loaders/Backhoes         1         Diesel         150         75           AchOE         Tractors/Loaders/Backhoes         1         Diesel         150 </td <td>299 T</td> <td>Tier 1</td> <td>0.4</td> <td>5.93</td> <td>97.89</td> <td>242.85</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 299 T                 | Tier 1                                 | 0.4                | 5.93                            | 97.89              | 242.85            |
| Rubber Tired Lozers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | T 2669                | Tier 2                                 | 0.4                | 3.79                            | 2,828.51           | 3,011.00          |
| Graders         1         Diesel         217         175           Nower         Rubber Tired Looders         1         Diesel         150         120           Rubber Tired Dozers         1         Diesel         150         120           ce         Troctors/Looders/Backhoes         1         Diesel         110         75           ctor         Rubber Tired Dozers         1         Diesel         170         75           ctor         Rubber Tired Looders         1         Diesel         170         75           300         Rubber Tired Looders         1         Diesel         170         75           300         Rubber Tired Looders         1         Diesel         170         75           300         Rubber Tired Looders         1         Diesel         10         75           300         Rubber Tired Dozers         1         Diesel         10         75           440E         Tractors/Looders/Backhoes         1         Diesel         10         75           ArtOE         Tractors/Looders/Backhoes         1         Diesel         20         25           Person         Rubber Tired Dozers         1         Diesel         20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       | Tier 2                                 | 0.4                | 4.15                            | 706.02             | 756.46            |
| Rubber Tired Loaders         1         Diesel         150         120           Other General Industrial Equipment         1         Diesel         15         25           e         Rubber Tired Dozers         1         Diesel         10         75           ctor         Rubber Tired Dozers         1         Diesel         176         300           ctor         Rubber Tired Loaders         1         Diesel         176         75           oder         Rubber Tired Loaders         1         Diesel         176         75           3G         Skid Steer Loaders         1         Diesel         160         75           3G         Skid Steer Loaders/Backhoes         1         Diesel         160         75           3G         Skid Steer Loaders/Backhoes         1         Diesel         10         75           ArtOE         Tractors/Loaders/Backhoes         1         Diesel         10         75           ArtOE         Tractors/Loaders/Backhoes         1         Diesel         20         25           ArtOE         Tractors/Loaders/Backhoes         1         Diesel         20         25           Lers - 18-00         Rubber Tired Dozers         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |                                        | 0.41               | 5.93                            | 120.97             | 181.45            |
| Tower         Other General Industrial Equipment         1         Diesel         15         25           oe         Rubber Tired Dozers         1         Diesel         512         300           of         Rubber Tired Dozers         1         Diesel         510         300           ctor         Rubber Tired Dozers         1         Diesel         570         175           oder         Rubber Tired Loaders         1         Diesel         150         75           3G         Skid Ster Loaders         1         Diesel         160         75           AHOE         Tractors/Loaders/Backhoes         1         Diesel         10         75           Actor         Tractors/Loaders/Backhoes         1         Diesel         10         25           der         -18-002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                        | 0.36               | 4.15                            | 822.11             | 873.49            |
| oe         Rubber Tired Dozers         1         Diesel         512         300           ctor         Rubber Tired Dozers         1         Diesel         540         75           ctor         Rubber Tired Dozers         1         Diesel         270         175           ooder         Rubber Tired Dozers         1         Diesel         150         75           3G         Skid Ster Loaders         1         Diesel         156         75           3G         Skid Ster Loaders         1         Diesel         156         75           3G         Skid Ster Loaders         1         Diesel         156         75           AchOE         Rubber Tired Dozers         1         Diesel         10         75           AchOE         Troctors/Loaders/Backhoes         1         Diesel         10         25           AchOE         Troctors/Loaders/Backhoes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                                        | 0.34               | 4.63                            | 16.24              | 17.18             |
| oe         Tractors/Loaders/Backhoes         1         Diesel         110         75           ctor         Rubber Tired Dozers         1         Diesel         540         300           Rubber Tired Dozers         1         Diesel         175         175           Sde         Rubber Tired Loaders         1         Diesel         165         75           SGER         Rubber Tired Loaders         1         Diesel         165         75           AHOE         Tractors/Loaders/Backhoes         1         Diesel         10         75           AHOE         Tractors/Loaders/Backhoes         1         Diesel         10         75           AHOE         Tractors/Loaders/Backhoes         1         Diesel         10         75           AHOE         Tractors/Loaders/Backhoes         1         Diesel         20         25           AHOE         Tractors/Loaders/Backhoes         1         Diesel         20         25           Ander         Pumps         1         Diesel         20         25           Ander         Off-Highway Trucks         1         Diesel         20         25           Bozer         Plate Tired Dozers         1         Diesel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       | Tier 2                                 | 0.4                | 3.79                            | 3,737.29           | 3,915.25          |
| Rubber Tired Dozers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       | Tier 4 Interim                         | 0.37               | 2.15                            | 90.28              | 100.32            |
| Aubber Tired Dozers         1         Diesel         270         175           3G         Rubber Tired Loaders         1         Diesel         150         75           3G         Skid Ster Loaders         1         Diesel         165         75           3G         Skid Ster Loaders         1         Diesel         10         75           AHOE         Tractors/Loaders/Backhoes         1         Diesel         10         75           Arto         Tractors/Loaders/Backhoes         1         Diesel         10         25           Ader         Tractors/Loaders/Backhoes         1         Diesel         10         25           Ader         Tractors/Loaders/Backhoes         1         Diesel         20         25           Ader         Tractors/Loaders/Backhoes         1         Diesel         20         25           Ader         Tractors/Loaders/Backhoes         1         Diesel         20         25           Ader         Pumps         1         Diesel         20         25           Ader         Pumps         1         Diesel         20         175           Ader         Off-Highway Trucks         1         Diesel         540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       | Tier 4 Interim                         | 0.4                | 1.29                            | 990.25             | 1,054.13          |
| ooder         Rubber Tired Looders         1         Diesel         155         75           3G         Skd Ster Looders         1         Diesel         165         75           3G         Skd Ster Looders         1         Diesel         165         75           3G         Rubber Tired Dozers         1         Diesel         10         75           CHOE         Tractors/Looders/Backhoes         1         Diesel         10         75           AchOE         Tractors/Looders/Backhoes         1         Diesel         10         25           Jode         Tractors/Looders/Backhoes         1         Diesel         16         75           Jode         Tractors/Looders/Backhoes         1         Diesel         20         25           Jode         Tractors/Looders/Backhoes         1         Diesel         20         25           Jode         Purps         1         Diesel         20         25           Jers         Off-Highway Trucks         1         Gasel         20         175           Joo         Off-Highway Trucks         1         Diesel         50         300           Scropers         Rubber Tired Dozers         1         D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | Tier 4 Interim                         | 0.4                | 1.29                            | 351.38             | 383.32            |
| Gubber Tired Loaders         1         Diesel         165         75           3GG         Skid Steer Loaders         1         Diesel         80         75           202ER         Rubber Tired Dozers         1         Diesel         325         300           AHOE         Tractors/Loaders/Backhoes         1         Diesel         10         75           Acters - Od-0201         Tractors/Loaders/Backhoes         1         Diesel         40         25           Acters - Ad-021         Rubber Tired Dozers         1         Diesel         20         25           Acters - 18-002         Rubber Tired Dozers         1         Diesel         20         25           Acters - 18-002         Rubber Tired Dozers         1         Diesel         20         25           Burn R         Pressure Washers         1         Diesel         20         175           Buck (tan)         Off-Highway Tracks         1         Diesel         265         175           Bozer         Rubber Tired Dozers         1         Diesel         370         300           Acropers         Rubber Tired Dozers         1         Diesel         400         300           Rubber Tired Loaders <td< td=""><td></td><td>Tier 4 Interim</td><td>0.36</td><td>2.15</td><td>479.15</td><td>505.77</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       | Tier 4 Interim                         | 0.36               | 2.15                            | 479.15             | 505.77            |
| 3G         Skid Steer Loaders         1         Diesel         80         75           DOZER         Rubber Tired Dozers         1         Diesel         3.25         300           AHOE         Tractors/Loaders/Backhoes         1         Diesel         40         25           Incotors/Loaders/Backhoes         1         Diesel         40         25           Incotors/Loaders/Backhoes         1         Diesel         20         25           rers - 18-002         Rubber Tired Dozers         1         Diesel         20         25           rers - 18-002         Rubber Tired Dozers         1         Diesel         20         25           JHER         Pressure Washers         1         Diesel         20         25           Juck (tan)         Off-Highway Trucks         1         Diesel         200         175           Bozer         Rubber Tired Dozers         1         Diesel         300         300           Scrapers         Rubber Tired Loaders         1         Diesel         400         300           Rubber Tired Loaders         1         Diesel         400         300           Rubber Tired Loaders         1         Diesel         165         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 199 Tier 4            | Tier 4 Interim                         | 0.36               | 2.15                            | 29.28              | 43.92             |
| OOZER         Rubber Tired Dozers         1         Diesel         325         300           KHOE         Troctors/Loaders/Backhoes         1         Diesel         110         75           Ader         Troctors/Loaders/Backhoes         1         Diesel         165         75           Ader         Troctors/Loaders/Backhoes         1         Diesel         165         75           Ader         Troctors/Loaders/Backhoes         1         Diesel         20         25           Aders - 18-002         Rubber Tired Dozers         1         Diesel         20         25           Amps         Pumps         Troctors/Loaders/Backhoes         1         Diesel         20         25           Alf-R         Pumps         Tried Dozers         1         Diesel         20         175           Alf-R         Pressure Washer         1         Diesel         200         175           Bozer         Pubber Tired Dozers         1         Diesel         340         300           Atoper         Rubber Tired Loaders         1         Diesel         440         300           Atops         Rubber Tired Loaders         1         Diesel         165         120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 199 Tier 4            | Tier 4 Interim                         | 0.37               | 2.15                            | 58.37              | 99:59             |
| (HOE         Tractors/Loaders/Backhoes         1         Diesel         110         75           ractors/Loaders/Backhoes         1         Diesel         40         25           rets         1         Diesel         16         75           rets         1         Diesel         20         25           rets         1         Diesel         20         25           rets         1         Diesel         20         25           Jumps         1         Diesel         20         25           Uck (tan)         0ff-Highway Trucks         1         Diesel         200         175           Bozer         Off-Highway Trucks         1         Diesel         205         175           Bozer         Off-Highway Trucks         1         Diesel         300         175           Bozer         Pubber Tired Dozers         1         Diesel         540         300           Acropers         Rubber Tired Loaders         1         Diesel         400         300           Rubber Tired Loaders         1         Diesel         165         120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 599 Tier 2            | Tier 4 Interim                         | 0.4                | 1.29                            | 769.01             | 807.46            |
| Tractors/Loaders/Backhoes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 199 Tier <sup>2</sup> | Tier 4 Interim                         | 0.37               | 2.15                            | 190.60             | 200.63            |
| older         Troctors/Loaders/Backhoes         1         Diesel         165         75           rers - 04-001         Rubber Tired Dozers         1         Diesel         20         25           rers - 18-002         Rubber Tired Dozers         1         Diesel         20         25           Pumps         Pressure Washers         1         Diesel         25         25           SHER         Pressure Washers         1         Gas         10         0           uck (tan)         Off-Highway Trucks         1         Diesel         225         175           Dozer         Rubber Triced Dozers         1         Diesel         265         175           Storopers         1         Diesel         370         300           Rubber Tired Dozers         1         Diesel         370         300           Rubber Tired Loaders         1         Diesel         400         300           Rubber Tired Loaders         1         Diesel         165         120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       | Tier 4 Interim                         | 0.37               | 4.55                            | 100.36             | 102.88            |
| rers - O4-001         Rubber Tired Dozers         1         Diesel         20         25           rers - 18-002         Rubber Tired Dozers         1         Diesel         20         25           SHER         Pressure Washers         1         Diesel         25         25           SHER         Pressure Washers         1         Gas         10         0           uck (tan)         Off-Highway Trucks         1         Diesel         200         175           Bozer         Rubber Tired Dozers         1         Diesel         540         300           Scrapers         Scrapers         1         Diesel         370         300           Rubber Tired Dozers         1         Diesel         400         300           Rubber Tired Loaders         1         Diesel         400         300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 199 Tier 4            | Tier 4 Interim                         | 0.37               | 2.15                            | 90.28              | 90.28             |
| Purps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 49 T                  | Tier 1                                 | 0.4                | 5.26                            | 4.82               | 9.65              |
| Pumps   Pumps   1   Diesel   25   25   25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 49 Tier 4             | Tier 4 Interim                         | 0.4                | 4.55                            | 8.35               | 12.52             |
| Diesel   Diesel   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 49 T                  | Tier 1                                 | 0.74               | 5.26                            | 10.73              | 10.73             |
| uck (tan)         Off-Highway Trucks         1         Diesel         200         175           ef Tuck         Off-Highway Trucks         1         Diesel         225         175           Dozer         Rubber Tired Dozers         1         Diesel         5.00         300           scrapers         1         Diesel         370         300           Rubber Tired Looders         1         Diesel         400         300           Rubber Tired Looders         1         Diesel         400         300           Rubber Tired Looders         1         Diesel         150         120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       | Gas                                    | 0.3                | 3.44                            | 1.18               | 2.37              |
| er Truck         Off-Highway Trucks         1         Diesel         225         175           Bozer         Rubber Tired Dozers         1         Diesel         265         175           Stropers         1         Diesel         370         300           Rubber Tired Loaders         1         Diesel         400         300           Rubber Tired Loaders         1         Diesel         120         300           453.592         2,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       | Average                                | 0.38               | 1.15                            | 20.04              | 27.63             |
| Note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 299 Tier 4            | Tier 4 Interim                         | 0.38               | 1.29                            | 63.22              | 84.28             |
| Plate Compactors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 299 Tier              | Tier 4 Final                           | 0.4                | 0.26                            | 0.00               | 151.90            |
| Scropers   Diesel   370   300     Rubber Tired Loaders   1   Diesel   400   300     Rubber Tired Loaders   1   Diesel   165   120     453.592   2,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 599 Tier              | Tier 4 Final                           | 0.43               | 0.26                            | 0.00               | 312.78            |
| Rubber Tired Loaders         1         Diesel         400         300           Rubber Tired Loaders         1         Diesel         1.65         1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                                        | 0.48               | 0.26                            | 00.00              | 101.80            |
| Rubber Tired Loaders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       | Tier 4 Final                           | 0.4                | 0.26                            | 0.00               | 206.35            |
| 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 174 Tier              | Tier 4 Final                           | 0.36               | 0.26                            | 0.00               | 64.69             |
| 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       | Tota                                   | ıl emissions       | Total emissions per Year (lbs)  | 13,575             | 15,647            |
| 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       | Total                                  | emissions p        | Total emissions per Year (tons) | 6.79               | 7.82              |
| 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       | Annual Average emissions per Day (lbs) | ge emissions       | per Day (lbs)                   | 37.19              | 42.87             |
| AA AA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |                                        |                    |                                 |                    |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                        |                    |                                 |                    |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                        |                    |                                 |                    |                   |
| Work days per vear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |                                        |                    |                                 |                    |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                        |                    |                                 |                    |                   |
| NOX = nitrogen oxides FE = emission factor: a/ha-hr = aram ner horsenower-hour: lhs = nounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |                                        |                    |                                 |                    |                   |
| Notes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                                        |                    |                                 |                    |                   |
| Emission factors were obtained from CalEEMod based on equipment type, fuel type, horsepower, and engine tier.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                        |                    |                                 |                    |                   |
| Faintine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                                        |                    |                                 |                    |                   |

Off-Road Equipment PM<sub>10E</sub> Emissions

| Project Farijament                                     | CalEEMod Farripment Category       | Nimber | Fire Type | Horse- | dH wo I | ан чын | Fnoine Tier    | Load Factor     | (14-04/b)<br>33                        | PM <sub>10E</sub> Emissions (Ibs per year) | s (Ibs per year) |
|--------------------------------------------------------|------------------------------------|--------|-----------|--------|---------|--------|----------------|-----------------|----------------------------------------|--------------------------------------------|------------------|
| olect Edulpment                                        | carring reprint caregory           | 200    | 2001      | 2000   |         |        | Ligino I       | בממן ומכנסו     | /iii dii /6)                           | EXISTING                                   | Project          |
| 94-073 825C Compactor                                  | Rubber Tired Dozers                | 1      | Diesel    | 315    | 300     | 599    | Tier 1         | 0.4             | 0.12                                   | 5.20                                       | 5.73             |
| 95-025 Storm Water Pump                                | Pumps                              | 1      | Diesel    | 30     | 25      | 64     | Average        | 0.74            | 660'0                                  | 0.24                                       | 0.24             |
| 96-002 Genie                                           | Aerial Lifts                       | 1      | Diesel    | 25     | 25      | 49     | Tier 1         | 0.31            | 0.48                                   | 0.43                                       | 0.43             |
| 96-003 Forklift-Clark                                  | Forklifts                          | 1      | Diesel    | 40     | 25      | 49     | Average        | 0.2             | 660'0                                  | 0.27                                       | 0.27             |
| 96-041 Cat 950F Loader                                 | Rubber Tired Loaders               | 1      | Diesel    | 100    | 52      | 199    | Tier 1         | 0.36            | 0.55                                   | 22.70                                      | 27.24            |
| 02-035 623 Scraper                                     | Scrapers                           | 1      | Diesel    | 365    | 300     | 669    | Tier 1         | 0.48            | 0.12                                   | 28.92                                      | 33.74            |
| 02-910 Sweeper                                         | Sweepers/Scrubbers                 | 1      | Diesel    | 25     | 25      | 49     | Tier 1         | 0.46            | 0.48                                   | 0.63                                       | 0.94             |
| 23-112 Pressure Washer                                 | Pressure Washers                   | 1      | Gas       | 10     | 0       | 24     | Gas            | 0.3             | 0.207                                  | 0.14                                       | 0.14             |
| 33-909 AL-JON 81K - Compactor                          | Rubber Tired Dozers                | 1      | Diesel    | 360    | 300     | 599    | Tier 1         | 0.4             | 0.12                                   | 1.98                                       | 4.91             |
| 04-042 836G COMPACTOR                                  | Rubber Tired Dozers                | 1      | Diesel    | 525    | 300     | 669    | Tier 2         | 0.4             | 60'0                                   | 67.17                                      | 71.50            |
| 04-075 JD 850C Dozer                                   | Rubber Tired Dozers                | 1      | Diesel    | 265    | 175     | 299    | Tier 2         | 0.4             | 60.0                                   | 15.31                                      | 16.41            |
| 04-971 JD Grader                                       | Graders                            | 1      | Diesel    | 217    | 175     | 588    | Tier 1         | 0.41            | 0.12                                   | 2.45                                       | 3.67             |
| 06-041 CAT 950H                                        | Rubber Tired Loaders               | 1      | Diesel    | 150    | 120     | 174    | Tier 2         | 0.36            | 0.13                                   | 25.75                                      | 27.36            |
| 06-18571 Portable Light Tower                          | Other General Industrial Equipment | 1      | Diesel    | 15     | 25      | 49     | Tier 2         | 0.34            | 0.28                                   | 0.98                                       | 1.04             |
| 10-020 CAT D8 Dozer                                    | Rubber Tired Dozers                | 1      | Diesel    | 512    | 300     | 669    | Tier 2         | 0.4             | 60'0                                   | 88.75                                      | 92.97            |
| 15-071 CAT 420 F2 Backhoe                              | Tractors/Loaders/Backhoes          | 1      | Diesel    | 110    | 22      | 199    | Tier 4 Interim | 0.37            | 0.01                                   | 0.42                                       | 0.47             |
| 8-042 CAT 836K Compactor                               | Rubber Tired Dozers                | 1      | Diesel    | 540    | 300     | 669    | Tier 4 Interim | 0.4             | 0.01                                   | 7.68                                       | 8.17             |
| L8-075 JD 850K Dozer                                   | Rubber Tired Dozers                | 1      | Diesel    | 270    | 175     | 568    | Tier 4 Interim | 0.4             | 0.01                                   | 2.72                                       | 2.97             |
| 19-041 JD 644K Hybrid Loader                           | Rubber Tired Loaders               | 1      | Diesel    | 150    | 75      | 199    | Tier 4 Interim | 0.36            | 0.01                                   | 2.23                                       | 2.35             |
| 19-073 JD Track Loader                                 | Rubber Tired Loaders               | 1      | Diesel    | 165    | 42      | 199    | Tier 4 Interim | 0.36            | 0.01                                   | 0.14                                       | 0.20             |
| 20-009 JD SKID STEER 333G                              | Skid Steer Loaders                 | 1      | Diesel    | 80     | 75      | 199    | Tier 4 Interim | 0.37            | 0.01                                   | 0.27                                       | 0.31             |
| 20-020 JD 1050K LARGE DOZER                            | Rubber Tired Dozers                | 1      | Diesel    | 325    | 300     | 665    | Tier 4 Interim | 0.4             | 0.01                                   | 5.96                                       | 6.26             |
| 20-071 JD 310SL/HL BACKHOE                             | Tractors/Loaders/Backhoes          | 1      | Diesel    | 110    | 75      | 199    | Tier 4 Interim | 0.37            | 0.01                                   | 0.89                                       | 0.93             |
| 20-714 KUBOTA                                          | Tractors/Loaders/Backhoes          | 1      | Diesel    | 40     | 25      | 49     | Tier 4 Interim | 0.37            | 0.13                                   | 2.87                                       | 2.94             |
| 22-073 JD 755K Track Loader                            | Tractors/Loaders/Backhoes          | 1      | Diesel    | 165    | 75      | 199    | Tier 4 Interim | 0.37            | 0.01                                   | 0.42                                       | 0.42             |
| FARPOMATIC Landfill Covers - 04-001                    | Rubber Tired Dozers                | 1      | Diesel    | 20     | 25      | 49     | Tier 1         | 0.4             | 0.48                                   | 0.44                                       | 0.88             |
| ARPOMATIC Landfill Covers - 18-002 Rubber Tired Dozers | Rubber Tired Dozers                | Н      | Diesel    | 20     | 25      | 49     | Tier 4 Interim | 0.4             | 0.13                                   | 0.24                                       | 0.36             |
| Fire Pump                                              | Pumps                              | 1      | Diesel    | 25     | 25      | 49     | Tier 1         | 0.74            | 0.48                                   | 0.98                                       | 0.98             |
| KARCHER PRESSURE WASHER                                | Pressure Washers                   | 1      | Gas       | 10     | 0       | 24     | Gas            | 0.3             | 0.207                                  | 0.07                                       | 0.14             |
| 03-908 Sterling Water Truck (tan)                      | Off-Highway Trucks                 | 1      | Diesel    | 200    | 175     | 299    | Average        | 0.38            | 0.044                                  | 0.77                                       | 1.06             |
| 20-908 International Water Truck                       | Off-Highway Trucks                 | 1      | Diesel    | 225    | 175     | 299    | Tier 4 Interim | 0.38            | 0.01                                   | 0.49                                       | 0.65             |
| 2025 CAT LPG D-6 Finish Dozer                          | Rubber Tired Dozers                | 1      | Diesel    | 265    | 175     | 299    | Tier 4 Final   | 0.4             | 0.01                                   | 0.00                                       | 5.84             |
| 2025-26 CAT 836 Compactor                              | Plate Compactors                   | 1      | Diesel    | 540    | 300     | 665    | Tier 4 Final   | 0.43            | 0.01                                   | 00.00                                      | 12.03            |
| 2025-26 CAT 623 Scraper                                | Scrapers                           | 1      | Diesel    | 370    | 300     | 599    | Tier 4 Final   | 0.48            | 0.01                                   | 0.00                                       | 3.92             |
| 2025-26 Large Dozer                                    | Rubber Tired Dozers                | 1      | Diesel    | 400    | 300     | 299    | Tier 4 Final   | 0.4             | 0.01                                   | 00.00                                      | 7.94             |
| 2025 Loader mid size                                   | Rubber Tired Loaders               | 1      | Diesel    | 165    | 120     | 174    | Tier 4 Final   | 0.36            | 0.01                                   | 0.00                                       | 2.49             |
|                                                        |                                    |        |           |        |         |        |                | Total emission  | Total emissions per Year (lbs)         | 288                                        | 348              |
|                                                        |                                    |        |           |        |         |        |                | Total emissions | Total emissions per Year (tons)        | 0.14                                       | 0.17             |
|                                                        |                                    |        |           |        |         |        | Annual A       | verage emission | Annual Average emissions per Day (lbs) | 0.79                                       | 0.95             |

Assumptions

di arms per pound
2,000

Work days per year

Abbreviations
Pounds per ton
365

Abbreviations
Physe = coarse particulate matter (exhaust); EF = emission factor; g/hp-hr = gram per horsepower-hour; lbs = pounds

<u>Notes:</u>
Emission factors were obtained from CalEEMod based on equipment type, fuel type, horsepower, and engine tier.
<u>Equations:</u>
Emissions [lbs] = emission factor [g/hp-gr] × number of pieces of equipment × horsepower × load factor × hours of annual operation/ 453.592 grams per pound

Off-Road Equipment PM<sub>2.5E</sub> Emissions

|                                                         |                                    |        |           | Horse- |        |         |                |                 | 73                                     | PM <sub>2.5E</sub> Emissions (Ibs per year | s (lbs per year) |
|---------------------------------------------------------|------------------------------------|--------|-----------|--------|--------|---------|----------------|-----------------|----------------------------------------|--------------------------------------------|------------------|
| Project Equipment                                       | CalEEMod Equipment Category        | Number | Fuel Type | power  | Low HP | High HP | Engine Tier    | Load Factor     | (g/hp-hr)                              | Existing                                   | Project          |
| 94-073 825C Compactor                                   | Rubber Tired Dozers                | 1      | Diesel    | 315    | 300    | 599     | Tier 1         | 0.4             | 0.11                                   | 4.77                                       | 5.26             |
| 95-025 Storm Water Pump                                 | sdwnd                              | 1      | Diesel    | 30     | 25     | 49      | Average        | 0.74            | 0.091                                  | 0.22                                       | 0.22             |
| 96-002 Genie                                            | Aerial Lifts                       | 1      | Diesel    | 25     | 25     | 49      | Tier 1         | 0.31            | 0.44                                   | 0.39                                       | 0.39             |
| 96-003 Forklift-Clark                                   | Forklifts                          | 1      | Diesel    | 40     | 25     | 49      | Average        | 0.2             | 0.091                                  | 0.25                                       | 0.25             |
| 96-041 Cat 950F Loader                                  | Rubber Tired Loaders               | 1      | Diesel    | 100    | 22     | 199     | Tier 1         | 0.36            | 0.51                                   | 21.05                                      | 25.26            |
| 02-035 623 Scraper                                      | Scrapers                           | 1      | Diesel    | 365    | 300    | 299     | Tier 1         | 0.48            | 0.11                                   | 26.51                                      | 30.93            |
| 02-910 Sweeper                                          | Sweepers/Scrubbers                 | 1      | Diesel    | 25     | 25     | 49      | Tier 1         | 0.46            | 0.44                                   | 0.58                                       | 98.0             |
| 23-112 Pressure Washer                                  | Pressure Washers                   | 1      | Gas       | 10     | 0      | 24      | Gas            | 0.3             | 0.156                                  | 0.11                                       | 0.11             |
| 03-909 AL-JON 81K - Compactor                           | Rubber Tired Dozers                | 1      | Diesel    | 360    | 300    | 299     | Tier 1         | 0.4             | 0.11                                   | 1.82                                       | 4.50             |
| 04-042 836G COMPACTOR                                   | Rubber Tired Dozers                | 1      | Diesel    | 525    | 300    | 299     | Tier 2         | 0.4             | 0.08                                   | 59.70                                      | 63.56            |
| 04-075 JD 850C Dozer                                    | Rubber Tired Dozers                | 1      | Diesel    | 265    | 175    | 299     | Tier 2         | 0.4             | 0.08                                   | 13.61                                      | 14.58            |
| 04-971 JD Grader                                        | Graders                            | 1      | Diesel    | 217    | 175    | 299     | Tier 1         | 0.41            | 0.11                                   | 2.24                                       | 3.37             |
| 06-041 CAT 950H                                         | Rubber Tired Loaders               | 1      | Diesel    | 150    | 120    | 174     | Tier 2         | 0.36            | 0.12                                   | 23.77                                      | 25.26            |
| 06-18571 Portable Light Tower                           | Other General Industrial Equipment | 1      | Diesel    | 15     | 25     | 49      | Tier 2         | 0.34            | 0.26                                   | 0.91                                       | 96.0             |
| 10-020 CAT D8 Dozer                                     | Rubber Tired Dozers                | 1      | Diesel    | 512    | 300    | 599     | Tier 2         | 0.4             | 0.08                                   | 78.89                                      | 82.64            |
| 15-071 CAT 420 F2 Backhoe                               | Tractors/Loaders/Backhoes          | 1      | Diesel    | 110    | 22     | 199     | Tier 4 Interim | 0.37            | 0.01                                   | 0.42                                       | 0.47             |
| 18-042 CAT 836K Compactor                               | Rubber Tired Dozers                | 1      | Diesel    | 540    | 300    | 599     | Tier 4 Interim | 0.4             | 0.01                                   | 7.68                                       | 8.17             |
| 18-075 JD 850K Dozer                                    | Rubber Tired Dozers                | 1      | Diesel    | 270    | 175    | 588     | Tier 4 Interim | 0.4             | 0.01                                   | 2.72                                       | 2.97             |
| 19-041 JD 644K Hybrid Loader                            | Rubber Tired Loaders               | 1      | Diesel    | 150    | 22     | 199     | Tier 4 Interim | 0.36            | 0.01                                   | 2.23                                       | 2.35             |
| 19-073 JD Track Loader                                  | Rubber Tired Loaders               | 1      | Diesel    | 165    | 22     | 199     | Tier 4 Interim | 0.36            | 0.01                                   | 0.14                                       | 0.20             |
| 20-009 JD SKID STEER 333G                               | Skid Steer Loaders                 | 1      | Diesel    | 80     | 75     | 199     | Tier 4 Interim | 0.37            | 0.01                                   | 0.27                                       | 0.31             |
| 20-020 JD 1050K LARGE DOZER                             | Rubber Tired Dozers                | 1      | Diesel    | 325    | 300    | 299     | Tier 4 Interim | 0.4             | 0.01                                   | 5.96                                       | 6.26             |
| 20-071 JD 310SL/HL BACKHOE                              | Tractors/Loaders/Backhoes          | 1      | Diesel    | 110    | 75     | 199     | Tier 4 Interim | 0.37            | 0.01                                   | 0.89                                       | 0.93             |
| 20-714 KUBOTA                                           | Tractors/Loaders/Backhoes          | 1      | Diesel    | 40     | 25     | 49      | Tier 4 Interim | 0.37            | 0.12                                   | 2.65                                       | 2.71             |
| 22-073 JD 755K Track Loader                             | Tractors/Loaders/Backhoes          | 1      | Diesel    | 165    | 75     | 199     | Tier 4 Interim | 0.37            | 0.01                                   | 0.42                                       | 0.42             |
| TARPOMATIC Landfill Covers - 04-001                     | Rubber Tired Dozers                | П      | Diesel    | 20     | 25     | 49      | Tier 1         | 0.4             | 0.44                                   | 0.40                                       | 0.81             |
| TARPOMATIC Landfill Covers - 18-002 Rubber Tired Dozers | Rubber Tired Dozers                | 1      | Diesel    | 20     | 25     | 49      | Tier 4 Interim | 0.4             | 0.12                                   | 0.22                                       | 0.33             |
| Fire Pump                                               | Pumps                              | П      | Diesel    | 25     | 25     | 49      | Tier 1         | 0.74            | 0.44                                   | 06:0                                       | 06:0             |
| KARCHER PRESSURE WASHER                                 | Pressure Washers                   | 1      | Gas       | 10     | 0      | 24      | Gas            | 0.3             | 0.156                                  | 0.05                                       | 0.11             |
| 03-908 Sterling Water Truck (tan)                       | Off-Highway Trucks                 | 1      | Diesel    | 200    | 175    | 299     | Average        | 0.38            | 0.041                                  | 0.71                                       | 0.99             |
| 20-908 International Water Truck                        | Off-Highway Trucks                 | 1      | Diesel    | 225    | 175    | 299     | Tier 4 Interim | 0.38            | 0.01                                   | 0.49                                       | 0.65             |
| 2025 CAT LPG D-6 Finish Dozer                           | Rubber Tired Dozers                | 1      | Diesel    | 265    | 175    | 299     | Tier 4 Final   | 0.4             | 0.01                                   | 00:00                                      | 5.84             |
| 2025-26 CAT 836 Compactor                               | Plate Compactors                   | 1      | Diesel    | 540    | 300    | 299     | Tier 4 Final   | 0.43            | 0.01                                   | 0.00                                       | 12.03            |
| 2025-26 CAT 623 Scraper                                 | Scrapers                           | 1      | Diesel    | 370    | 300    | 599     | Tier 4 Final   | 0.48            | 0.01                                   | 00:00                                      | 3.92             |
| 2025-26 Large Dozer                                     | Rubber Tired Dozers                | 1      | Diesel    | 400    | 300    | 599     | Tier 4 Final   | 0.4             | 0.01                                   | 00.00                                      | 7.94             |
| 2025 Loader mid size                                    | Rubber Tired Loaders               | 1      | Diesel    | 165    | 120    | 174     | Tier 4 Final   | 0.36            | 0.01                                   | 00.00                                      | 2.49             |
|                                                         |                                    |        |           |        |        |         |                | Total emission  | Total emissions per Year (lbs)         | 261                                        | 319              |
|                                                         |                                    |        |           |        |        |         |                | Total emissions | Total emissions per Year (tons)        | 0.13                                       | 0.16             |
|                                                         |                                    |        |           |        |        |         | Annual         | Verage emission | Annual Average emissions per Day (Ibs) | 0.71                                       | 0.87             |

Assumptions

deforms per pound

2,000

Work days per year

Abbreviations

Pounds per (exhaust); EF = emission factor; g/hp-hr = gram per horsepower-hour; lbs = pounds

<u>Notes:</u>
Emission factors were obtained from CalEEMod based on equipment type, fuel type, horsepower, and engine tier.
<u>Equations:</u>
Emissions [lbs] = emission factor [g/hp-gr] × number of pieces of equipment × horsepower × load factor × hours of annual operation/ 453.592 grams per pound

| Ë  |
|----|
| ᅙ  |
| Š  |
| Ö  |
| ⋷  |
| _  |
| ш  |
| 0  |
| ŭ  |
| ÷  |
| =  |
| Ф  |
| Ξ  |
| ≂  |
| =  |
| 3  |
| σ  |
| Ŵ. |
| -  |
| 2  |
| 0  |
| 0  |
| œ  |
| 1  |
| #  |
| =  |

|                                                         |                                    |        |           | ם מפון |        |         |                    |                        | ;                                      |          | ( mg ( mg ) a mg ) |
|---------------------------------------------------------|------------------------------------|--------|-----------|--------|--------|---------|--------------------|------------------------|----------------------------------------|----------|--------------------|
| Project Equipment                                       | CalEEMod Equipment Category        | Number | Fuel Type | power  | Low HP | High HP | <b>Engine Tier</b> | Load Factor            | (g/hp-hr)                              | Existing | Project            |
| 94-073 825C Compactor                                   | Rubber Tired Dozers                | 1      | Diesel    | 315    | 300    | 599     | Tier 1             | 0.4                    | 8.5                                    | 368.34   | 406.12             |
| 95-025 Storm Water Pump                                 | Pumps                              | 1      | Diesel    | 30     | 25     | 49      | Average            | 0.74                   | 3.94                                   | 9.64     | 9.64               |
| 96-002 Genie                                            | Aerial Lifts                       | 1      | Diesel    | 25     | 25     | 49      | Tier 1             | 0.31                   | 4.1                                    | 3.64     | 3.64               |
| 96-003 Forklift-Clark                                   | Forklifts                          | 1      | Diesel    | 40     | 25     | 49      | Average            | 0.2                    | 3.94                                   | 10.84    | 10.84              |
| 96-041 Cat 950F Loader                                  | Rubber Tired Loaders               | 1      | Diesel    | 100    | 75     | 199     | Tier 1             | 98.0                   | 8.5                                    | 350.80   | 420.96             |
| 02-035 623 Scraper                                      | Scrapers                           | 1      | Diesel    | 365    | 300    | 599     | Tier 1             | 0.48                   | 8.5                                    | 2,048.67 | 2,390.12           |
| 02-910 Sweeper                                          | Sweepers/Scrubbers                 | 1      | Diesel    | 25     | 25     | 49      | Tier 1             | 0.46                   | 4.1                                    | 5.41     | 8.00               |
| 23-112 Pressure Washer                                  | Pressure Washers                   | 1      | Gas       | 10     | 0      | 24      | Gas                | 6.0                    | 262                                    | 180.21   | 180.21             |
| 03-909 AL-JON 81K - Compactor                           | Rubber Tired Dozers                | 1      | Diesel    | 360    | 300    | 599     | Tier 1             | 0.4                    | 8.5                                    | 140.32   | 348.10             |
| 04-042 836G COMPACTOR                                   | Rubber Tired Dozers                | 1      | Diesel    | 525    | 300    | 599     | Tier 2             | 0.4                    | 2.6                                    | 1,940.40 | 2,065.59           |
| 04-075 JD 850C Dozer                                    | Rubber Tired Dozers                | 1      | Diesel    | 265    | 175    | 299     | Tier 2             | 0.4                    | 2.6                                    | 442.33   | 473.92             |
| 04-971 JD Grader                                        | Graders                            | 1      | Diesel    | 217    | 175    | 299     | Tier 1             | 0.41                   | 8.5                                    | 173.39   | 260.09             |
| 06-041 CAT 950H                                         | Rubber Tired Loaders               | 1      | Diesel    | 150    | 120    | 174     | Tier 2             | 0.36                   | 3.7                                    | 732.97   | 778.78             |
| 06-18571 Portable Light Tower                           | Other General Industrial Equipment | 1      | Diesel    | 15     | 25     | 49      | Tier 2             | 0.34                   | 4.1                                    | 14.38    | 15.21              |
| 10-020 CAT D8 Dozer                                     | Rubber Tired Dozers                | 1      | Diesel    | 512    | 300    | 299     | Tier 2             | 0.4                    | 2.6                                    | 2,563.84 | 2,685.93           |
| 15-071 CAT 420 F2 Backhoe                               | Tractors/Loaders/Backhoes          | 1      | Diesel    | 110    | 75     | 199     | Tier 4 Interim     | 0.37                   | 3.7                                    | 155.37   | 172.64             |
| 18-042 CAT 836K Compactor                               | Rubber Tired Dozers                | 1      | Diesel    | 540    | 300    | 599     | Tier 4 Interim     | 0.4                    | 2.6                                    | 1,995.84 | 2,124.61           |
| 18-075 JD 850K Dozer                                    | Rubber Tired Dozers                | 1      | Diesel    | 270    | 175    | 299     | Tier 4 Interim     | 0.4                    | 2.6                                    | 708.20   | 772.59             |
| 19-041 JD 644K Hybrid Loader                            | Rubber Tired Loaders               | 1      | Diesel    | 150    | 75     | 199     | Tier 4 Interim     | 0.36                   | 3.7                                    | 824.59   | 870.40             |
| 19-073 JD Track Loader                                  | Rubber Tired Loaders               | 1      | Diesel    | 165    | 75     | 199     | Tier 4 Interim     | 0.36                   | 3.7                                    | 50.39    | 75.59              |
| 20-009 JD SKID STEER 333G                               | Skid Steer Loaders                 | 1      | Diesel    | 80     | 75     | 199     | Tier 4 Interim     | 0.37                   | 3.7                                    | 100.44   | 113.00             |
| 20-020 JD 1050K LARGE DOZER                             | Rubber Tired Dozers                | 1      | Diesel    | 325    | 300    | 599     | Tier 4 Interim     | 0.4                    | 2.6                                    | 1,549.94 | 1,627.44           |
| 0-071 JD 310SL/HL BACKHOE                               | Tractors/Loaders/Backhoes          | 1      | Diesel    | 110    | 75     | 199     | Tier 4 Interim     | 0.37                   | 3.7                                    | 328.01   | 345.27             |
| 20-714 KUBOTA                                           | Tractors/Loaders/Backhoes          | 1      | Diesel    | 40     | 25     | 49      | Tier 4 Interim     | 0.37                   | 4.1                                    | 90.43    | 92.71              |
| 22-073 JD 755K Track Loader                             | Tractors/Loaders/Backhoes          | 1      | Diesel    | 165    | 75     | 199     | Tier 4 Interim     | 0.37                   | 3.7                                    | 155.37   | 155.37             |
| TARPOMATIC Landfill Covers - 04-001                     | . Rubber Tired Dozers              | 1      | Diesel    | 20     | 25     | 49      | Tier 1             | 0.4                    | 4.1                                    | 3.76     | 7.52               |
| TARPOMATIC Landfill Covers - 18-002 Rubber Tired Dozers | 2 Rubber Tired Dozers              | 1      | Diesel    | 20     | 25     | 49      | Tier 4 Interim     | 0.4                    | 4.1                                    | 7.52     | 11.28              |
| Fire Pump                                               | Pumps                              | 1      | Diesel    | 25     | 25     | 49      | Tier 1             | 0.74                   | 4.1                                    | 8.36     | 8.36               |
| KARCHER PRESSURE WASHER                                 | Pressure Washers                   | 1      | Gas       | 10     | 0      | 24      | Gas                | 6.0                    | 262                                    | 90.11    | 180.21             |
| 03-908 Sterling Water Truck (tan)                       | Off-Highway Trucks                 | 1      | Diesel    | 200    | 175    | 299     | Average            | 86.0                   | 1.23                                   | 21.43    | 29.55              |
| 20-908 International Water Truck                        | Off-Highway Trucks                 | 1      | Diesel    | 225    | 175    | 299     | Tier 4 Interim     | 88.0                   | 2.6                                    | 127.42   | 169.86             |
| 2025 CAT LPG D-6 Finish Dozer                           | Rubber Tired Dozers                | 1      | Diesel    | 265    | 175    | 299     | Tier 4 Final       | 0.4                    | 2.6                                    | 0.00     | 1,518.99           |
| 2025-26 CAT 836 Compactor                               | Plate Compactors                   | 1      | Diesel    | 540    | 300    | 599     | Tier 4 Final       | 0.43                   | 2.6                                    | 0.00     | 3,127.79           |
| 2025-26 CAT 623 Scraper                                 | Scrapers                           | 1      | Diesel    | 370    | 300    | 599     | Tier 4 Final       | 0.48                   | 2.6                                    | 0.00     | 1,018.01           |
| 2025-26 Large Dozer                                     | Rubber Tired Dozers                | 1      | Diesel    | 400    | 300    | 599     | Tier 4 Final       | 0.4                    | 2.6                                    | 0.00     | 2,063.53           |
| 2025 Loader mid size                                    | Rubber Tired Loaders               | 1      | Diesel    | 165    | 120    | 174     | Tier 4 Final       | 0.36                   | 3.7                                    | 0.00     | 920.61             |
|                                                         |                                    |        |           |        |        |         |                    | Total emission         | Total emissions per Year (Ibs)         | 15,202   | 25,462             |
|                                                         |                                    |        |           |        |        |         |                    | <b>Fotal emissions</b> | Total emissions per Year (tons)        | 7.60     | 12.73              |
|                                                         |                                    |        |           |        |        |         | Annual A           | verage emissior        | Annual Average emissions per Day (lbs) | 41.65    | 92'69              |

|             | 453.592         | 2,000          | 365                |
|-------------|-----------------|----------------|--------------------|
| Assumptions | Grams per pound | Pounds per ton | Work days per year |

 $<sup>\</sup>label{eq:absence} \begin{tabular}{ll} Abbreviations \\ CO= carbon monoxide; EF = emission factor; g/hp-hr = gram per horsepower-hour; lbs = pounds \\ \end{tabular}$ 

Nates:
Emission factors were obtained from CalEEMod based on equipment type, fuel type, horsepower, and engine tier.
Equations:
Equations:
Emissions [lbs] = emission factor [g/hp-gr] × number of pieces of equipment × horsepower × load factor × hours of annual operation/ 453.592 grams per pound

| S         |
|-----------|
| _         |
| 0         |
| •==       |
| SS        |
| .=        |
| _         |
| Ξ.        |
| ш         |
| ×         |
| a.        |
|           |
| S         |
| _         |
| _         |
| Ð         |
| _         |
| ÷         |
| 0         |
| =         |
| =         |
|           |
| ш         |
| ਰ         |
| ŏ         |
| ŏ         |
| $\approx$ |
| ij.       |
| ı.        |
| ≖         |
|           |

|                                                         |                                    |        |           | Horse- |        |         |                |                        | Ħ                                      | SO <sub>x</sub> Emissions | SO <sub>x</sub> Emissions (lbs per year) |
|---------------------------------------------------------|------------------------------------|--------|-----------|--------|--------|---------|----------------|------------------------|----------------------------------------|---------------------------|------------------------------------------|
| Project Equipment                                       | CalEEMod Equipment Category        | Number | Fuel Type | power  | Low HP | High HP | Engine Tier    | Load Factor            | (g/hp-hr)                              | Existing                  | Project                                  |
| 94-073 825C Compactor                                   | Rubber Tired Dozers                | 1      | Diesel    | 315    | 300    | 599     | Tier 1         | 0.4                    | 0.0049                                 | 0.21                      | 0.23                                     |
| 95-025 Storm Water Pump                                 | Pumps                              | 1      | Diesel    | 30     | 25     | 49      | Average        | 0.74                   | 0.0049                                 | 0.01                      | 0.01                                     |
| 96-002 Genie                                            | Aerial Lifts                       | 1      | Diesel    | 25     | 25     | 49      | Tier 1         | 0.31                   | 0.0054                                 | 0.00                      | 0.00                                     |
| 96-003 Forklift-Clark                                   | Forklifts                          | 1      | Diesel    | 40     | 25     | 49      | Average        | 0.2                    | 0.0049                                 | 0.01                      | 0.01                                     |
| 96-041 Cat 950F Loader                                  | Rubber Tired Loaders               | 1      | Diesel    | 100    | 75     | 199     | Tier 1         | 98.0                   | 0.0049                                 | 0.20                      | 0.24                                     |
| 02-035 623 Scraper                                      | Scrapers                           | 1      | Diesel    | 365    | 300    | 599     | Tier 1         | 0.48                   | 0.0049                                 | 1.17                      | 1.37                                     |
| 02-910 Sweeper                                          | Sweepers/Scrubbers                 | 1      | Diesel    | 25     | 25     | 49      | Tier 1         | 0.46                   | 0.0049                                 | 0.01                      | 0.01                                     |
| 23-112 Pressure Washer                                  | Pressure Washers                   | 1      | Gas       | 10     | 0      | 24      | Gas            | 6.0                    | 0.0053                                 | 0.00                      | 0.00                                     |
| 03-909 AL-JON 81K - Compactor                           | Rubber Tired Dozers                | 1      | Diesel    | 360    | 300    | 599     | Tier 1         | 0.4                    | 0.0049                                 | 0.08                      | 0.20                                     |
| 04-042 836G COMPACTOR                                   | Rubber Tired Dozers                | 1      | Diesel    | 525    | 300    | 599     | Tier 2         | 0.4                    | 0.0049                                 | 3.64                      | 3.87                                     |
| 04-075 JD 850C Dozer                                    | Rubber Tired Dozers                | 1      | Diesel    | 265    | 175    | 299     | Tier 2         | 0.4                    | 0.0054                                 | 0.92                      | 66.0                                     |
| 04-971 JD Grader                                        | Graders                            | 1      | Diesel    | 217    | 175    | 299     | Tier 1         | 0.41                   | 0.0054                                 | 0.11                      | 0.17                                     |
| 06-041 CAT 950H                                         | Rubber Tired Loaders               | 1      | Diesel    | 150    | 120    | 174     | Tier 2         | 98'0                   | 0.0054                                 | 1.07                      | 1.14                                     |
| 06-18571 Portable Light Tower                           | Other General Industrial Equipment | 1      | Diesel    | 15     | 25     | 49      | Tier 2         | 0.34                   | 0.0049                                 | 0.02                      | 0.02                                     |
| 10-020 CAT D8 Dozer                                     | Rubber Tired Dozers                | 1      | Diesel    | 512    | 300    | 599     | Tier 2         | 0.4                    | 0.0049                                 | 4.81                      | 5.04                                     |
| 15-071 CAT 420 F2 Backhoe                               | Tractors/Loaders/Backhoes          | 1      | Diesel    | 110    | 75     | 199     | Tier 4 Interim | 78.0                   | 0.0049                                 | 0.21                      | 0.23                                     |
| 18-042 CAT 836K Compactor                               | Rubber Tired Dozers                | 1      | Diesel    | 540    | 300    | 599     | Tier 4 Interim | 0.4                    | 0.0049                                 | 3.74                      | 3.98                                     |
| 18-075 JD 850K Dozer                                    | Rubber Tired Dozers                | 1      | Diesel    | 270    | 175    | 299     | Tier 4 Interim | 0.4                    | 0.0054                                 | 1.47                      | 1.61                                     |
| 19-041 JD 644K Hybrid Loader                            | Rubber Tired Loaders               | 1      | Diesel    | 150    | 75     | 199     | Tier 4 Interim | 98'0                   | 0.0049                                 | 1.09                      | 1.15                                     |
| 19-073 JD Track Loader                                  | Rubber Tired Loaders               | 1      | Diesel    | 165    | 75     | 199     | Tier 4 Interim | 98'0                   | 0.0049                                 | 0.07                      | 0.10                                     |
| 20-009 JD SKID STEER 333G                               | Skid Steer Loaders                 | 1      | Diesel    | 80     | 75     | 199     | Tier 4 Interim | 0.37                   | 0.0049                                 | 0.13                      | 0.15                                     |
| 20-020 JD 1050K LARGE DOZER                             | Rubber Tired Dozers                | 1      | Diesel    | 325    | 300    | 599     | Tier 4 Interim | 0.4                    | 0.0049                                 | 2.91                      | 3.05                                     |
| 20-071 JD 310SL/HL BACKHOE                              | Tractors/Loaders/Backhoes          | 1      | Diesel    | 110    | 75     | 199     | Tier 4 Interim | 0.37                   | 0.0049                                 | 0.43                      | 0.46                                     |
| 20-714 KUBOTA                                           | Tractors/Loaders/Backhoes          | 1      | Diesel    | 40     | 25     | 49      | Tier 4 Interim | 0.37                   | 0.0049                                 | 0.11                      | 0.11                                     |
| 22-073 JD 755K Track Loader                             | Tractors/Loaders/Backhoes          | 1      | Diesel    | 165    | 75     | 199     | Tier 4 Interim | 0.37                   | 0.0049                                 | 0.21                      | 0.21                                     |
| TARPOMATIC Landfill Covers - 04-001                     | Rubber Tired Dozers                | 1      | Diesel    | 20     | 25     | 49      | Tier 1         | 0.4                    | 0.0049                                 | 0.00                      | 0.01                                     |
| TARPOMATIC Landfill Covers - 18-002 Rubber Tired Dozers | Rubber Tired Dozers                | 1      | Diesel    | 20     | 25     | 49      | Tier 4 Interim | 0.4                    | 0.0049                                 | 0.01                      | 0.01                                     |
| Fire Pump                                               | Pumps                              | 1      | Diesel    | 25     | 25     | 49      | Tier 1         | 0.74                   | 0.0049                                 | 0.01                      | 0.01                                     |
| KARCHER PRESSURE WASHER                                 | Pressure Washers                   | 1      | Gas       | 10     | 0      | 24      | Gas            | 0.3                    | 0.0053                                 | 0.00                      | 0.00                                     |
| 03-908 Sterling Water Truck (tan)                       | Off-Highway Trucks                 | 1      | Diesel    | 200    | 175    | 299     | Average        | 0.38                   | 0.0054                                 | 0.09                      | 0.13                                     |
| 20-908 International Water Truck                        | Off-Highway Trucks                 | 1      | Diesel    | 225    | 175    | 299     | Tier 4 Interim | 0.38                   | 0.0054                                 | 0.27                      | 0.35                                     |
| 2025 CAT LPG D-6 Finish Dozer                           | Rubber Tired Dozers                | 1      | Diesel    | 265    | 175    | 299     | Tier 4 Final   | 0.4                    | 0.0054                                 | 0.00                      | 3.16                                     |
| 2025-26 CAT 836 Compactor                               | Plate Compactors                   | 1      | Diesel    | 540    | 300    | 599     | Tier 4 Final   | 0.43                   | 0.0049                                 | 0.00                      | 5.86                                     |
| 2025-26 CAT 623 Scraper                                 | Scrapers                           | 1      | Diesel    | 370    | 300    | 599     | Tier 4 Final   | 0.48                   | 0.0049                                 | 0.00                      | 1.91                                     |
| 2025-26 Large Dozer                                     | Rubber Tired Dozers                | 1      | Diesel    | 400    | 300    | 599     | Tier 4 Final   | 0.4                    | 0.0049                                 | 0.00                      | 3.87                                     |
| 2025 Loader mid size                                    | Rubber Tired Loaders               | 1      | Diesel    | 165    | 120    | 174     | Tier 4 Final   | 0.36                   | 0.0054                                 | 0.00                      | 1.35                                     |
|                                                         |                                    |        |           |        |        |         |                | Total emission         | Total emissions per Year (lbs)         | 23                        | 41                                       |
|                                                         |                                    |        |           |        |        |         |                | <b>Fotal emissions</b> | Total emissions per Year (tons)        | 0.01                      | 0.02                                     |
|                                                         |                                    |        |           |        |        |         | Annual A       | verage emissio         | Annual Average emissions per Day (lbs) | 90.0                      | 0.11                                     |

Assumptions
Grams per pound
Grounds per toon
2,000
Work days per year
Abbreviations
SOA= sulfur oxides; EF = emission factor; g/hp-hr = gram per horsepower-hour; lbs = pounds

Emission factors were obtained from CalEEMod based on equipment type, fuel type, horsepower, and engine tier.

Equations:

Emissions [lbs] = emission factor [g/hp-gr] x number of pieces of equipment x horsepower x load factor x hours of annual operation/ 453.592 grams per pound

Off-Road Construction Equipment  ${\rm CO_2}$  Emissions

|                                                         |                                    |        |           | Horse- |        |         |                          |                 | EF                                                      | CO <sub>2</sub> Emissions | CO <sub>2</sub> Emissions (lbs per year) |
|---------------------------------------------------------|------------------------------------|--------|-----------|--------|--------|---------|--------------------------|-----------------|---------------------------------------------------------|---------------------------|------------------------------------------|
| Project Equipment                                       | CalEEMod Equipment Category        | Number | Fuel Type | power  | Low HP | High HP | <b>Engine Tier</b>       | Load Factor     | (g/hp-hr)                                               | Existing                  | Project                                  |
| 94-073 825C Compactor                                   | Rubber Tired Dozers                | 1      | Diesel    | 315    | 300    | 665     | Tier 1                   | 0.4             | 528                                                     | 22,880.40                 | 25,227.11                                |
| 95-025 Storm Water Pump                                 | Pumps                              | 1      | Diesel    | 30     | 25     | 49      | Average                  | 0.74            | 568                                                     | 1,389.97                  | 1,389.97                                 |
| 96-002 Genie                                            | Aerial Lifts                       | 1      | Diesel    | 25     | 25     | 49      | Tier 1                   | 0.31            | 528                                                     | 469.11                    | 469.11                                   |
| 96-003 Forklift-Clark                                   | Forklifts                          | 1      | Diesel    | 40     | 25     | 49      | Average                  | 0.2             | 568                                                     | 1,562.78                  | 1,562.78                                 |
| 96-041 Cat 950F Loader                                  | Rubber Tired Loaders               | 1      | Diesel    | 100    | 75     | 199     | Tier 1                   | 0.36            | 528                                                     | 21,790.86                 | 26,149.03                                |
| 02-035 623 Scraper                                      | Scrapers                           | 1      | Diesel    | 365    | 300    | 299     | Tier 1                   | 0.48            | 528                                                     | 127,258.63                | 148,468.40                               |
| 02-910 Sweeper                                          | Sweepers/Scrubbers                 | 1      | Diesel    | 25     | 25     | 49      | Tier 1                   | 0.46            | 528                                                     | 696.10                    | 1,030.76                                 |
| 23–112 Pressure Washer                                  | Pressure Washers                   | 1      | Gas       | 10     | 0      | 24      | Gas                      | 0.3             | 429                                                     | 295.08                    | 295.08                                   |
| 03-909 AL-JON 81K - Compactor                           | Rubber Tired Dozers                | 1      | Diesel    | 360    | 300    | 665     | Tier 1                   | 0.4             | 528                                                     | 8,716.34                  | 21,623.24                                |
| 04-042 836G COMPACTOR                                   | Rubber Tired Dozers                | 1      | Diesel    | 525    | 300    | 665     | Tier 2                   | 0.4             | 528                                                     | 394,051.39                | 419,474.06                               |
| 04-075 JD 850C Dozer                                    | Rubber Tired Dozers                | 1      | Diesel    | 265    | 175    | 299     | Tier 2                   | 0.4             | 528                                                     | 89,826.77                 | 96,242.97                                |
| 04-971 JD Grader                                        | Graders                            | 1      | Diesel    | 217    | 175    | 588     | Tier 1                   | 0.41            | 528                                                     | 10,770.74                 | 16,156.11                                |
| 06-041 CAT 950H                                         | Rubber Tired Loaders               | 1      | Diesel    | 150    | 120    | 174     | Tier 2                   | 0.36            | 528                                                     | 104,596.13                | 111,133.39                               |
| 06-18571 Portable Light Tower                           | Other General Industrial Equipment | 1      | Diesel    | 15     | 25     | 49      | Tier 2                   | 0.34            | 528                                                     | 1,852.22                  | 1,959.08                                 |
| 10-020 CAT D8 Dozer                                     | Rubber Tired Dozers                | 1      | Diesel    | 512    | 300    | 299     | Tier 2                   | 0.4             | 528                                                     | 520,656.29                | 545,449.45                               |
| 15-071 CAT 420 F2 Backhoe                               | Tractors/Loaders/Backhoes          | 1      | Diesel    | 110    | 75     | 199     | Tier 4 Interim           | 0.37            | 528                                                     | 22,172.20                 | 24,635.78                                |
| 18-042 CAT 836K Compactor                               | Rubber Tired Dozers                | 1      | Diesel    | 540    | 300    | 299     | Tier 4 Interim           | 0.4             | 528                                                     | 405,310.01                | 431,459.04                               |
| 18-075 JD 850K Dozer                                    | Rubber Tired Dozers                | 1      | Diesel    | 270    | 175    | 299     | Tier 4 Interim           | 0.4             | 528                                                     | 143,819.68                | 156,894.20                               |
| 19–041 JD 644K Hybrid Loader                            | Rubber Tired Loaders               | 1      | Diesel    | 150    | 75     | 199     | Tier 4 Interim           | 0.36            | 528                                                     | 117,670.65                | 124,207.90                               |
| 19-073 JD Track Loader                                  | Rubber Tired Loaders               | 1      | Diesel    | 165    | 75     | 199     | Tier 4 Interim           | 0.36            | 528                                                     | 7,190.98                  | 10,786.48                                |
| 20-009 JD SKID STEER 333G                               | Skid Steer Loaders                 | 1      | Diesel    | 80     | 75     | 199     | Tier 4 Interim           | 0.37            | 528                                                     | 14,333.54                 | 16,125.24                                |
| 20-020 JD 1050K LARGE DOZER                             | Rubber Tired Dozers                | 1      | Diesel    | 325    | 300    | 299     | Tier 4 Interim           | 0.4             | 528                                                     | 314,756.87                | 330,494.72                               |
| 20-071 JD 310SL/HL BACKHOE                              | Tractors/Loaders/Backhoes          | 1      | Diesel    | 110    | 75     | 199     | Tier 4 Interim           | 0.37            | 528                                                     | 46,807.98                 | 49,271.56                                |
| 20-714 KUBOTA                                           | Tractors/Loaders/Backhoes          | 1      | Diesel    | 40     | 25     | 49      | Tier 4 Interim           | 0.37            | 528                                                     | 11,646.00                 | 11,938.88                                |
| 22-073 JD 755K Track Loader                             | Tractors/Loaders/Backhoes          | 1      | Diesel    | 165    | 22     | 199     | Tier 4 Interim           | 0.37            | 528                                                     | 22,172.20                 | 22,172.20                                |
| TARPOMATIC Landfill Covers - 04-001                     | Rubber Tired Dozers                | 1      | Diesel    | 20     | 25     | 49      | Tier 1                   | 0.4             | 528                                                     | 484.24                    | 968.48                                   |
| TARPOMATIC Landfill Covers - 18-002 Rubber Tired Dozers | Rubber Tired Dozers                | 1      | Diesel    | 20     | 25     | 49      | Tier 4 Interim           | 0.4             | 528                                                     | 968.48                    | 1,452.72                                 |
| Fire Pump                                               | Pumps                              | 1      | Diesel    | 25     | 25     | 49      | Tier 1                   | 0.74            | 528                                                     | 1,076.74                  | 1,076.74                                 |
| KARCHER PRESSURE WASHER                                 | Pressure Washers                   | 1      | Gas       | 10     | 0      | 24      | Gas                      | 0.3             | 429                                                     | 147.54                    | 295.08                                   |
| 03-908 Sterling Water Truck (tan)                       | Off-Highway Trucks                 | 1      | Diesel    | 200    | 175    | 299     | Average                  | 0.38            | 526                                                     | 9,165.73                  | 12,638.14                                |
| 20-908 International Water Truck                        | Off-Highway Trucks                 | 1      | Diesel    | 225    | 175    | 588     | Tier 4 Interim           | 0.38            | 528                                                     | 25,876.65                 | 34,495.56                                |
| 2025 CAT LPG D-6 Finish Dozer                           | Rubber Tired Dozers                | 1      | Diesel    | 265    | 175    | 299     | Tier 4 Final             | 0.4             | 528                                                     | 00.00                     | 308,471.05                               |
| 2025-26 CAT 836 Compactor                               | Plate Compactors                   | 1      | Diesel    | 540    | 300    | 299     | Tier 4 Final             | 0.43            | 528                                                     | 00.00                     | 635,182.63                               |
| 2025-26 CAT 623 Scraper                                 | Scrapers                           | 1      | Diesel    | 370    | 300    | 599     | Tier 4 Final             | 0.48            | 528                                                     | 0.00                      | 206,733.80                               |
| 2025-26 Large Dozer                                     | Rubber Tired Dozers                | 1      | Diesel    | 400    | 300    | 599     | Tier 4 Final             | 0.4             | 528                                                     | 0.00                      | 419,055.01                               |
| 2025 Loader mid size                                    | Rubber Tired Loaders               | 1      | Diesel    | 165    | 120    | 174     | Tier 4 Final             | 0.36            | 528                                                     |                           | 131,373.75                               |
|                                                         |                                    |        |           |        |        |         |                          | Total emission  | Total emissions per Year (lbs)                          | 2,450,412                 | 4,346,359                                |
|                                                         |                                    |        |           |        |        |         | Total e                  | missions per Ye | Total emissions per Year (metric tons)                  | 1,111                     | 1,971                                    |
|                                                         |                                    |        |           |        |        |         | Total CO <sub>2e</sub> e | missions per Ye | Total CO <sub>2e</sub> emissions per Year (metric tons) | 1,111                     | 1,971                                    |

Assumptions
Grams per pound
Pounds per metric ton
Global Warming Potential

453.592 2,205

 $\label{eq:bounds} \begin{tabular}{ll} Abbreviations \\ CO_z = carbon \ dioxide; \ EF = emission \ factor; \ g/hp-hr = gram \ per \ horsepower-hour; \ lbs = pounds \ \end{tabular}$ 

Notes: Emission factors were obtained from CalEEMod.

Equations:
Emissions [lbs] = emission factor [g/hp-gr] × number of pieces of equipment × horsepower × load factor × hours of annual operation/ 453.592 grams per pound

Off-Road Construction Equipment CH4 Emissions

|                                                         |                                    |        |           | Horse- |        |         |                          |                 | ь                                                    | CH₄ Emissions (Ibs per year) | (Ibs per year) |
|---------------------------------------------------------|------------------------------------|--------|-----------|--------|--------|---------|--------------------------|-----------------|------------------------------------------------------|------------------------------|----------------|
| Project Equipment                                       | CalEEMod Equipment Category        | Number | Fuel Type | power  | Low HP | High HP | Engine Tier              | Load Factor     | (g/hp-hr)                                            | Existing                     | Project        |
| 94-073 825C Compactor                                   | Rubber Tired Dozers                | 1      | Diesel    | 315    | 300    | 599     | Tier 1                   | 0.4             | 0.021                                                | 0.91                         | 1.00           |
| 95-025 Storm Water Pump                                 | bumps                              | 1      | Diesel    | 30     | 25     | 49      | Average                  | 0.74            | 0.023                                                | 90'0                         | 90.0           |
| 96-002 Genie                                            | Aerial Lifts                       | 1      | Diesel    | 25     | 25     | 49      | Tier 1                   | 0.31            | 0.021                                                | 0.02                         | 0.02           |
| 96-003 Forklift-Clark                                   | Forklifts                          | 1      | Diesel    | 40     | 25     | 49      | Average                  | 0.2             | 0.023                                                | 90:0                         | 0.06           |
| 96-041 Cat 950F Loader                                  | Rubber Tired Loaders               | 1      | Diesel    | 100    | 75     | 199     | Tier 1                   | 0.36            | 0.021                                                | 0.87                         | 1.04           |
| 02-035 623 Scraper                                      | Scrapers                           | 1      | Diesel    | 365    | 300    | 599     | Tier 1                   | 0.48            | 0.021                                                | 5.06                         | 5.90           |
| 02-910 Sweeper                                          | Sweepers/Scrubbers                 | 1      | Diesel    | 25     | 25     | 46      | Tier 1                   | 0.46            | 0.021                                                | 0.03                         | 0.04           |
| 23-112 Pressure Washer                                  | Pressure Washers                   | 1      | gas       | 10     | 0      | 24      | gas                      | 0.3             | 0.018                                                | 0.01                         | 0.01           |
| 03-909 AL-JON 81K - Compactor                           | Rubber Tired Dozers                | 1      | Diesel    | 360    | 300    | 299     | Tier 1                   | 0.4             | 0.021                                                | 0.35                         | 0.86           |
| 04-042 836G COMPACTOR                                   | Rubber Tired Dozers                | 1      | Diesel    | 525    | 300    | 299     | Tier 2                   | 0.4             | 0.021                                                | 15.67                        | 16.68          |
| 04-075 JD 850C Dozer                                    | Rubber Tired Dozers                | 1      | Diesel    | 265    | 175    | 299     | Tier 2                   | 0.4             | 0.021                                                | 3.57                         | 3.83           |
| 04-971 JD Grader                                        | Graders                            | 1      | Diesel    | 217    | 175    | 299     | Tier 1                   | 0.41            | 0.021                                                | 0.43                         | 0.64           |
| 06-041 CAT 950H                                         | Rubber Tired Loaders               | 1      | Diesel    | 150    | 120    | 174     | Tier 2                   | 0.36            | 0.021                                                | 4.16                         | 4.42           |
| 06-18571 Portable Light Tower                           | Other General Industrial Equipment | 1      | Diesel    | 15     | 25     | 49      | Tier 2                   | 0.34            | 0.021                                                | 20.0                         | 0.08           |
| 10-020 CAT D8 Dozer                                     | Rubber Tired Dozers                | 1      | Diesel    | 512    | 300    | 299     | Tier 2                   | 0.4             | 0.021                                                | 20.71                        | 21.69          |
| 15-071 CAT 420 F2 Backhoe                               | Tractors/Loaders/Backhoes          | 1      | Diesel    | 110    | 75     | 199     | Tier 4 Interim           | 0.37            | 0.021                                                | 0.88                         | 0.98           |
| 18-042 CAT 836K Compactor                               | Rubber Tired Dozers                | 1      | Diesel    | 540    | 300    | 599     | Tier 4 Interim           | 0.4             | 0.021                                                | 16.12                        | 17.16          |
| 18-075 JD 850K Dozer                                    | Rubber Tired Dozers                | 1      | Diesel    | 270    | 175    | 299     | Tier 4 Interim           | 0.4             | 0.021                                                | 5.72                         | 6.24           |
| 19-041 JD 644K Hybrid Loader                            | Rubber Tired Loaders               | 1      | Diesel    | 150    | 75     | 199     | Tier 4 Interim           | 0.36            | 0.021                                                | 4.68                         | 4.94           |
| 19-073 JD Track Loader                                  | Rubber Tired Loaders               | 1      | Diesel    | 165    | 75     | 199     | Tier 4 Interim           | 0.36            | 0.021                                                | 0.29                         | 0.43           |
| 20-009 JD SKID STEER 333G                               | Skid Steer Loaders                 | 1      | Diesel    | 80     | 75     | 199     | Tier 4 Interim           | 0.37            | 0.021                                                | 0.57                         | 0.64           |
| 20-020 JD 1050K LARGE DOZER                             | Rubber Tired Dozers                | 1      | Diesel    | 325    | 300    | 599     | Tier 4 Interim           | 0.4             | 0.021                                                | 12.52                        | 13.14          |
| 20-071 JD 310SL/HL BACKHOE                              | Tractors/Loaders/Backhoes          | 1      | Diesel    | 110    | 75     | 199     | Tier 4 Interim           | 0.37            | 0.021                                                | 1.86                         | 1.96           |
| 20-714 KUBOTA                                           | Tractors/Loaders/Backhoes          | 1      | Diesel    | 40     | 25     | 49      | Tier 4 Interim           | 0.37            | 0.021                                                | 0.46                         | 0.47           |
| 22-073 JD 755K Track Loader                             | Tractors/Loaders/Backhoes          | 1      | Diesel    | 165    | 75     | 199     | Tier 4 Interim           | 0.37            | 0.021                                                | 0.88                         | 0.88           |
| TARPOMATIC Landfill Covers - 04-001                     | Rubber Tired Dozers                | 1      | Diesel    | 20     | 25     | 49      | Tier 1                   | 0.4             | 0.021                                                | 0.02                         | 0.04           |
| TARPOMATIC Landfill Covers - 18-002 Rubber Tired Dozers | Rubber Tired Dozers                | н      | Diesel    | 20     | 25     | 49      | Tier 4 Interim           | 0.4             | 0.021                                                | 0.04                         | 90.0           |
| Fire Pump                                               | Pumps                              | 1      | Diesel    | 25     | 25     | 49      | Tier 1                   | 0.74            | 0.021                                                | 0.04                         | 0.04           |
| KARCHER PRESSURE WASHER                                 | Pressure Washers                   | 1      | gas       | 10     | 0      | 24      | Gas                      | 0.3             | 0.018                                                | 0.01                         | 0.01           |
| 03-908 Sterling Water Truck (tan)                       | Off-Highway Trucks                 | 1      | Diesel    | 200    | 175    | 299     | Average                  | 0.38            | 0.021                                                | 0.37                         | 0.50           |
| 20-908 International Water Truck                        | Off-Highway Trucks                 | 1      | Diesel    | 225    | 175    | 299     | Tier 4 Interim           | 0.38            | 0.021                                                | 1.03                         | 1.37           |
| 2025 CAT LPG D-6 Finish Dozer                           | Rubber Tired Dozers                | 1      | Diesel    | 265    | 175    | 299     | Tier 4 Final             | 0.4             | 0.021                                                | 0.00                         | 12.27          |
| 2025-26 CAT 836 Compactor                               | Plate Compactors                   | 1      | Diesel    | 540    | 300    | 599     | Tier 4 Final             | 0.43            | 0.021                                                | 0.00                         | 25.26          |
| 2025-26 CAT 623 Scraper                                 | Scrapers                           | 1      | Diesel    | 370    | 300    | 599     | Tier 4 Final             | 0.48            | 0.021                                                | 0.00                         | 8.22           |
| 2025-26 Large Dozer                                     | Rubber Tired Dozers                | 1      | Diesel    | 400    | 300    | 599     | Tier 4 Final             | 0.4             | 0.021                                                | 0.00                         | 16.67          |
| 2025 Loader mid size                                    | Rubber Tired Loaders               | 1      | Diesel    | 165    | 120    | 174     | Tier 4 Final             | 0.36            | 0.021                                                | 0.00                         | 5.23           |
|                                                         |                                    |        |           |        |        |         | Tol                      | al CH₄ emission | otal CH₄ emissions per Year (Ibs)                    | 26                           | 173            |
|                                                         |                                    |        |           |        |        |         | Total CH₄ e              | missions per Ye | Total CH4 emissions per Year (metric tons)           | 0.04                         | 0.08           |
|                                                         |                                    |        |           |        |        |         | Total CO <sub>2e</sub> e | missions per Ye | Total CO $_{ m 2e}$ emissions per Year (metric tons) | 11.1                         | 1.96           |
| Assumptions                                             |                                    |        |           |        |        |         |                          |                 |                                                      |                              |                |
|                                                         | 001                                |        |           |        |        |         |                          |                 |                                                      |                              |                |

### Grams per pound Pounds per metric ton Global Warming Potential

453.592 2,205 25 CARB 2022. GHG Global Warming Potentials. Available at via https://www2.arb.ca.gov/ghg-gwps. Accessed on September 9, 2024.

 $\label{eq:charge_eq} \begin{tabular}{ll} Abbreviations \\ CH_{\alpha} = methane; EF = emission factor; g/hp-hr = gram per horsepower-hour; lbs = pounds \\ \end{tabular}$ 

Notes.

Emission factors were obtained from CalEEMod.

Equations:

Emission [lbs] = emission factor [g/hp-gr] × number of pieces of equipment × horsepower × load factor × hours of annual operation/ 453.592 grams per pound

Off-Road Construction Equipment N<sub>2</sub>O Emissions

|                                                         |                                    |        |           |       |        |         |                          |                                   |                                            | ( f )    | , , , , , , , , , , , , , , , , , , , , |
|---------------------------------------------------------|------------------------------------|--------|-----------|-------|--------|---------|--------------------------|-----------------------------------|--------------------------------------------|----------|-----------------------------------------|
| Project Equipment                                       | CalEEMod Equipment Category        | Number | Fuel Type | power | Low HP | High HP | Engine Tier              | Load Factor                       | (g/hp-hr)                                  | Existing | Project                                 |
| 94-073 825C Compactor                                   | Rubber Tired Dozers                | 1      | Diesel    | 315   | 300    | 599     | Tier 1                   | 0.4                               | 0.004                                      | 0.173    | 0.191                                   |
| 95-025 Storm Water Pump                                 | Pumps                              | 1      | Diesel    | 30    | 25     | 49      | Average                  | 0.74                              | 0.005                                      | 0.012    | 0.012                                   |
| 96-002 Genie                                            | Aerial Lifts                       | 1      | Diesel    | 25    | 25     | 49      | Tier 1                   | 0.31                              | 0.004                                      | 0.004    | 0.004                                   |
| 96-003 Forklift-Clark                                   | Forklifts                          | 1      | Diesel    | 40    | 25     | 46      | Average                  | 0.2                               | 0.005                                      | 0.014    | 0.014                                   |
| 96-041 Cat 950F Loader                                  | Rubber Tired Loaders               | 1      | Diesel    | 100   | 75     | 199     | Tier 1                   | 0.36                              | 0.004                                      | 0.165    | 0.198                                   |
| 02-035 623 Scraper                                      | Scrapers                           | 1      | Diesel    | 365   | 300    | 599     | Tier 1                   | 0.48                              | 0.004                                      | 0.964    | 1.125                                   |
| 02-910 Sweeper                                          | Sweepers/Scrubbers                 | 1      | Diesel    | 25    | 25     | 49      | Tier 1                   | 0.46                              | 0.004                                      | 0.005    | 0.008                                   |
| 23-112 Pressure Washer                                  | Pressure Washers                   | 1      | Gas       | 10    | 0      | 24      | Gas                      | 0.3                               | 0.004                                      | 0.003    | 0.003                                   |
| 03-909 AL-JON 81K - Compactor                           | Rubber Tired Dozers                | 1      | Diesel    | 360   | 300    | 299     | Tier 1                   | 0.4                               | 0.004                                      | 990'0    | 0.164                                   |
| 04-042 836G COMPACTOR                                   | Rubber Tired Dozers                | 1      | Diesel    | 525   | 300    | 599     | Tier 2                   | 0.4                               | 0.004                                      | 2.985    | 3.178                                   |
| 04-075 JD 850C Dozer                                    | Rubber Tired Dozers                | 1      | Diesel    | 265   | 175    | 299     | Tier 2                   | 0.4                               | 0.004                                      | 0.681    | 0.729                                   |
| 04-971 JD Grader                                        | Graders                            | 1      | Diesel    | 217   | 175    | 299     | Tier 1                   | 0.41                              | 0.004                                      | 0.082    | 0.122                                   |
| 06-041 CAT 950H                                         | Rubber Tired Loaders               | 1      | Diesel    | 150   | 120    | 174     | Tier 2                   | 0.36                              | 0.004                                      | 0.792    | 0.842                                   |
| 06-18571 Portable Light Tower                           | Other General Industrial Equipment | 1      | Diesel    | 15    | 25     | 46      | Tier 2                   | 0.34                              | 0.004                                      | 0.014    | 0.015                                   |
| 10-020 CAT D8 Dozer                                     | Rubber Tired Dozers                | 1      | Diesel    | 512   | 300    | 299     | Tier 2                   | 0.4                               | 0.004                                      | 3.944    | 4.132                                   |
| 15-071 CAT 420 F2 Backhoe                               | Tractors/Loaders/Backhoes          | 1      | Diesel    | 110   | 75     | 199     | Tier 4 Interim           | 0.37                              | 0.004                                      | 0.168    | 0.187                                   |
| 18-042 CAT 836K Compactor                               | Rubber Tired Dozers                | 1      | Diesel    | 540   | 300    | 299     | Tier 4 Interim           | 0.4                               | 0.004                                      | 3.071    | 3.269                                   |
| 18-075 JD 850K Dozer                                    | Rubber Tired Dozers                | 1      | Diesel    | 270   | 175    | 299     | Tier 4 Interim           | 0.4                               | 0.004                                      | 1.090    | 1.189                                   |
| 19-041 JD 644K Hybrid Loader                            | Rubber Tired Loaders               | 1      | Diesel    | 150   | 75     | 199     | Tier 4 Interim           | 0.36                              | 0.004                                      | 0.891    | 0.941                                   |
| 19-073 JD Track Loader                                  | Rubber Tired Loaders               | 1      | Diesel    | 165   | 75     | 199     | Tier 4 Interim           | 0.36                              | 0.004                                      | 0.054    | 0.082                                   |
| 20-009 JD SKID STEER 333G                               | Skid Steer Loaders                 | 1      | Diesel    | 80    | 75     | 199     | Tier 4 Interim           | 0.37                              | 0.004                                      | 0.109    | 0.122                                   |
| 20-020 JD 1050K LARGE DOZER                             | Rubber Tired Dozers                | 1      | Diesel    | 325   | 300    | 599     | Tier 4 Interim           | 0.4                               | 0.004                                      | 2.385    | 2.504                                   |
| 20-071 JD 310SL/HL BACKHOE                              | Tractors/Loaders/Backhoes          | 1      | Diesel    | 110   | 75     | 199     | Tier 4 Interim           | 0.37                              | 0.004                                      | 0.355    | 0.373                                   |
| 20-714 KUBOTA                                           | Tractors/Loaders/Backhoes          | 1      | Diesel    | 40    | 25     | 49      | Tier 4 Interim           | 0.37                              | 0.004                                      | 0.088    | 0.090                                   |
| 22-073 JD 755K Track Loader                             | Tractors/Loaders/Backhoes          | 1      | Diesel    | 165   | 75     | 199     | Tier 4 Interim           | 0.37                              | 0.004                                      | 0.168    | 0.168                                   |
| TARPOMATIC Landfill Covers - 04-001                     | Rubber Tired Dozers                | 1      | Diesel    | 20    | 25     | 49      | Tier 1                   | 0.4                               | 0.004                                      | 0.004    | 0.007                                   |
| TARPOMATIC Landfill Covers - 18-002 Rubber Tired Dozers | Rubber Tired Dozers                | 1      | Diesel    | 20    | 25     | 49      | Tier 4 Interim           | 0.4                               | 0.004                                      | 0.007    | 0.011                                   |
| Fire Pump                                               | Pumps                              | 1      | Diesel    | 25    | 25     | 49      | Tier 1                   | 0.74                              | 0.004                                      | 0.008    | 0.008                                   |
| KARCHER PRESSURE WASHER                                 | Pressure Washers                   | 1      | Gas       | 10    | 0      | 24      | Gas                      | 0.3                               | 0.004                                      | 0.001    | 0.003                                   |
| 03-908 Sterling Water Truck (tan)                       | Off-Highway Trucks                 | 1      | Diesel    | 200   | 175    | 299     | Average                  | 0.38                              | 0.004                                      | 0.070    | 0.096                                   |
| 20-908 International Water Truck                        | Off-Highway Trucks                 | 1      | Diesel    | 225   | 175    | 299     | Tier 4 Interim           | 0.38                              | 0.004                                      | 0.196    | 0.261                                   |
| 2025 CAT LPG D-6 Finish Dozer                           | Rubber Tired Dozers                | 1      | Diesel    | 265   | 175    | 299     | Tier 4 Final             | 0.4                               | 0.004                                      | 0.000    | 2.337                                   |
| 2025-26 CAT 836 Compactor                               | Plate Compactors                   | 1      | Diesel    | 540   | 300    | 299     | Tier 4 Final             | 0.43                              | 0.004                                      | 0.000    | 4.812                                   |
| 2025-26 CAT 623 Scraper                                 | Scrapers                           | 1      | Diesel    | 370   | 300    | 599     | Tier 4 Final             | 0.48                              | 0.004                                      | 0.000    | 1.566                                   |
| 2025-26 Large Dozer                                     | Rubber Tired Dozers                | 1      | Diesel    | 400   | 300    | 299     | Tier 4 Final             | 0.4                               | 0.004                                      | 0.000    | 3.175                                   |
| 2025 Loader mid size                                    | Rubber Tired Loaders               | 1      | Diesel    | 165   | 120    | 174     | Tier 4 Final             | 0.36                              | 0.004                                      | 0.000    | 0.995                                   |
|                                                         |                                    |        |           |       |        |         | Tol                      | otal N2O emissions per Year (Ibs) | s per Year (Ibs)                           | 19       | 33                                      |
|                                                         |                                    |        |           |       |        |         | Total N <sub>2</sub> O e | missions per Ye                   | Total N2O emissions per Year (metric tons) | 0.008    | 0.015                                   |
|                                                         |                                    |        |           |       |        |         | C                        | (                                 |                                            |          |                                         |

### Grams per pound Pounds per metric ton Global Warming Potential Assumptions

453.592 2,205 298 CARB 2022. GHG Global Warming Potentials. Available at via https://www2.arb.ca.gov/ghg-gwps. Accessed on September 9, 2024.

 $\label{eq:Abbreviations} Abbreviations \\ N_2O = nitrous \ oxide; \ EF = emission factor; \ g/hp-hr = gram \ per \ horsepower-hour; \ lbs = pounds$ 

Nates:

Emission factors were obtained from CalEEMod.

Equations:

Emissions [bs] = emission factor [g/hp-gr] × number of pieces of equipment × horsepower × load factor × hours of annual operation/ 453.592 grams per pound

# Appendix A-2: Earthmoving Activity Model Input Parameters and Dust Emissions Calculations

Information about grading and bulldozing activities was provided by the project applicant. Emissions of fugitive dust from earthmoving activities were estimated using emissions factors from the U.S. Environmental Protection Agency's Compilation of Air Pollutant Emissions Factors (AP-42), Section 11.9 Western Surface Coal Mining and guidance from the California Emissions Estimator Model (CalEEMod) version 2022.1.1.

### Summary of Earthmoving Activity

|                               |            | 44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4       | 1          | 1               | •        | 7 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A |
|-------------------------------|------------|----------------------------------------------|------------|-----------------|----------|-----------------------------------------|
|                               |            | Cale Elvioa Eduipment                        | Annual nou | rs or Operation | Anna     | di vivil                                |
| Project Equipment             | Activity   | Category                                     | Existing   | Project         | Existing | Project                                 |
| 02-035 623 Scraper            | Grading    | Scrapers                                     | 624        | 728             | 54       | 63                                      |
| 04-971 JD Grader              | Grading    | Graders                                      | 104        | 156             | 4        | 13                                      |
| 2025-26 CAT 623 Scraper       | Grading    | Scrapers                                     | 0          | 1,000           | 0        | 98                                      |
|                               |            | CalEEMod Equipment Annual Hours of Operation | Annual Hou | rs of Operation |          |                                         |
| Project Equipment             | Activity   | Category                                     | Existing   | Project         |          |                                         |
| 04-075 JD 850C Dozer          | Bulldozing | Rubber Tired Dozers                          | 728        | 780             |          |                                         |
| 10-020 CAT D8 Dozer           | Bulldozing | Rubber Tired Dozers                          | 2,184      | 2,288           |          |                                         |
| 18-075 JD 850K Dozer          | Bulldozing | Rubber Tired Dozers                          | 1,144      | 1,248           |          |                                         |
| 20-020 JD 1050K LARGE DOZER   | Bulldozing | Rubber Tired Dozers                          | 2,080      | 2,184           |          |                                         |
| 2025 CAT LPG D-6 Finish Dozer | Bulldozing | Rubber Tired Dozers                          | 0          | 2,500           |          |                                         |
| 2025-26 Large Dozer           | Bulldozing | Rubber Tired Dozers                          | 0          | 2,250           |          |                                         |

Assumptions
Square feet per acre (C1)
Feet per mile (C2)

Acres graded per hours for scrapers (As)
Acres graded per hours for graders (As)
Blade width (ft) of grading equipment (Wb)

43,560 5,280 0,125 South Coast Air Quality Management District Construction Survey 0,0625 South Coast Air Quality Management District Construction Survey 12 CalEEMod default

### Equation:

Vehicle Miles Travelled (VMT) = Hours operation \* As / Wb \* C1 / C2

Earth Moving PM<sub>10</sub> Dust Emissions

|                               |            |                     |              |                                        | Controlled Pi | Controlled PM <sub>100</sub> Emissions |
|-------------------------------|------------|---------------------|--------------|----------------------------------------|---------------|----------------------------------------|
|                               |            | CalEEMod Equipment  | Emissi       | Emission Factor                        | d sql)        | (Ibs per year)                         |
| Project Equipment             | Activity   | Category            | EF           | Unit                                   | Existing      | Project                                |
| 02-035 623 Scraper            | Grading    | Scrapers            | 1.54         | Ibs/VMT                                | 32.3          | 37.6                                   |
| 04-971 JD Grader              | Grading    | Graders             | 1.54         | Ibs/VMT                                | 2.7           | 8.1                                    |
| 2025-26 CAT 623 Scraper       | Grading    | Scrapers            | 1.54         | Ibs/VMT                                | 0             | 51.7                                   |
| 04-075 JD 850C Dozer          | Bulldozing | Rubber Tired Dozers | 0.75         | lbs/hour                               | 213.7         | 229.0                                  |
| 10-020 CAT D8 Dozer           | Bulldozing | Rubber Tired Dozers | 0.75         | lbs/hour                               | 641.2         | 671.7                                  |
| 18-075 JD 850K Dozer          | Bulldozing | Rubber Tired Dozers | 0.75         | lbs/hour                               | 335.9         | 366.4                                  |
| 20-020 JD 1050K LARGE DOZER   | Bulldozing | Rubber Tired Dozers | 0.75         | lbs/hour                               | 610.6         | 641.2                                  |
| 2025 CAT LPG D-6 Finish Dozer | Bulldozing | Rubber Tired Dozers | 0.75         | lbs/hour                               | 0.0           | 733.9                                  |
| 2025-26 Large Dozer           | Bulldozing | Rubber Tired Dozers | 0.75         | lbs/hour                               | 0.0           | 660.5                                  |
|                               |            | Tc                  | tal emission | Total emissions per Year (lbs)         | 1,836         | 3,400                                  |
|                               |            | Tot                 | al emissions | Total emissions per Year (tons)        | 0.92          | 1.70                                   |
|                               |            | Annual Aver         | age emission | Annual Average emissions per Day (lbs) | 5.03          | 9.32                                   |

|             | 453.6           | 2,000          | 365                |
|-------------|-----------------|----------------|--------------------|
| Assumptions | Grams per pound | Pounds per ton | Work days per year |

7.1 AP-42 Table 11.9-3 0.051 AP-42 Table 11.9-1 2.00 AP-42 Table 11.9-1 Mean vehicle speed (S) Scraping Coefficient (SC) Scraping Constant (Sa)

0.6 AP-42 Table 11.9-1 SC\*S<sup>5a</sup>\*SF AP-42 Table 11.9-1 Scraping  $\mathrm{PM}_{10}$  Scaling Factor (SF) Bulldozing Coefficient (BC) Bulldozing Constant (Ba) Bulldozing Constant (Bb) Scraping EF (Ibs/VMT)

BC\*s<sup>BO</sup>/M<sup>BD</sup>\*BF AP-42 Table 11.9-1 61% Watering exposed area every three hours (WRAP Fugitive Dust Handbook, Table 6-7) 1.0 AP-42 Table 11.9-1 1.5 AP-42 Table 11.9-1 1.4 AP-42 Table 11.9-1 6.9 AP-42 Table 11.9-3 7.9 AP-42 Table 11.9-4 0.75 AP-42 Table 11.9-1 Bulldozing PM<sub>10</sub> Scaling Factor (BF) Material moisture content (M) Bulldozing EF (lbs/hour) Dust Control Efficiency Material Silt Content (s)

EF = emission factor; lbs = pounds; VMT = vehicle mile travelled; PM<sub>10D</sub> = coarse particulate matter (dust)

### Abbreviations

### Equation:

Scraping Emissions = VMT \* Emission Factor \* (1 - Dust Control Efficiency) Bulldozing Emissions = Hours of Operation \* Emission Factor \* (1 - Dust Control Efficiency)

### Earth Moving PM<sub>2.5</sub> Dust Emissions

|                               |            | CalEEMod Equipment  | Emissi       | Emission Factor                        | Controlled PN | Controlled PM <sub>2.5D</sub> Emissions |
|-------------------------------|------------|---------------------|--------------|----------------------------------------|---------------|-----------------------------------------|
| Project Equipment             | Activity   | Category            | EF           | Unit                                   | Existing      | Project                                 |
| 02-035 623 Scraper            | Grading    | Scrapers            | 0.17         | Ibs/VMT                                | 3.5           | 4.1                                     |
| 04-971 JD Grader              | Grading    | Graders             | 0.17         | Ibs/VMT                                | 0.3           | 6.0                                     |
| 2025-26 CAT 623 Scraper       | Grading    | Scrapers            | 0.17         | Ibs/VMT                                | 00:00         | 5.6                                     |
| 04-075 JD 850C Dozer          | Bulldozing | Rubber Tired Dozers | 0.41         | lbs/hour                               | 117.48        | 125.9                                   |
| 10-020 CAT D8 Dozer           | Bulldozing | Rubber Tired Dozers | 0.41         | lbs/hour                               | 352.44        | 369.2                                   |
| 18-075 JD 850K Dozer          | Bulldozing | Rubber Tired Dozers | 0.41         | lbs/hour                               | 184.61        | 201.4                                   |
| 20-020 JD 1050K LARGE DOZER   | Bulldozing | Rubber Tired Dozers | 0.41         | lbs/hour                               | 335.66        | 352.4                                   |
| 2025 CAT LPG D-6 Finish Dozer | Bulldozing | Rubber Tired Dozers | 0.41         | lbs/hour                               | 0.00          | 403.4                                   |
| 2025-26 Large Dozer           | Bulldozing | Rubber Tired Dozers | 0.41         | lbs/hour                               | 0.00          | 363.1                                   |
|                               |            | To                  | tal emission | Fotal emissions per Year (Ibs)         | 994           | 1,826                                   |
|                               |            | Toto                | al emissions | Total emissions per Year (tons)        | 0.50          | 0.91                                    |
|                               |            | Annual Aver         | age emission | Annual Average emissions per Day (Ibs) | 2.73          | 00 1                                    |

| ns |
|----|
| .ō |
| pt |
| Ε  |
| sn |
| S  |

453.6 2,000 365 7.1 AP-42 Table 11.9-3 0.04 AP-42 Table 11.9-1 SC\*S<sup>5a</sup>\*SF AP-42 Table 11.9-1 2.5 AP-42 Table 11.9-1 0.031 AP-42 Table 11.9-1 Scraping PM<sub>2.5</sub> Scaling Factor (SF) Mean vehicle speed (S) Scraping Coefficient (SC) Scraping Constant (Sa) Scraping EF (Ibs/VMT) Work days per year Grams per pound Pounds per ton

5.7 AP-42 Table 11.9-1 1.2 AP-42 Table 11.9-1 1.3 AP-42 Table 11.9-1

6.9 AP-42 Table 11.9-3 7.9 AP-42 Table 11.9-4 0.11 AP-42 Table 11.9-1 Bulldozing PM<sub>2.5</sub> Scaling Factor (BF) Material moisture content (M) Bulldozing Coefficient (BC) Bulldozing Constant (Ba) Bulldozing Constant (Bb) Material Silt Content (s)

61% Watering exposed area every three hours (WRAP Fugitive Dust Handbook, Table 6-7)  $BC*s^{Ba}/M^{Bb}*BF$  AP-42 Table 11.9-1 Bulldozing EF (lbs/hour) Dust Control Efficiency

### Abbreviations

EF = emission factor; lbs = pounds; VMT = vehicle mile travelled;  $PM_{2.5D}$  = fine particulate matter (dust)

### Equation:

Scroping Emissions = VMT \* Emission Factor \* (1 - Dust Control Efficiency) Bulldozing Emissions = Hours of Operation \* Emission Factor \* (1 - Dust Control Efficiency)

# Appendix A-3: On-Road Vehicle Model Input Parameters and Emissions Calculations

### verview

Information about on-road vehicles used for on-site activities and off-site travel was provided by the project applicant. Emissions of criteria air pollutants and greenhouse gases from on-road vehicles were estimated using emissions factors from the California Air Resources Board's EMFAC2021 database for the San Joaquin Valley Air District. Baseline year 2024 emission factors were used in this analysis to be conservative. The total dust emissions calculated for the on-road vehicles is associated with tire wear and brake wear. Fugitive dust and resuspended dust emissions from travel along unpaved and paved roads are reported in Appendices A-4 and A-5, respectively.

### Summary of On-Road Vehicle Miles Travelled (VMT)

| manage of the second of the se | ·                 | /·                   |                |           |             |                        |          |            |            |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------|----------------|-----------|-------------|------------------------|----------|------------|------------|---------|
| Activity Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ription           |                      | Vehicle        | Model     | Fuel        | Annual Trips (One-Way) | One-Way) |            | Annual VMT | VMT     |
| Origin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Destination       | Vehicle Type         | Classification | Year      | Туре        | Existing               | Project  | Miles/Trip | Existing   | Project |
| Tracy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Foothill Landfill | 48' Transfer         | HHDT           | Aggregate | Diesel      | 13,728                 | 0        | 48.0       | 658,944    | 0       |
| Lovelace TS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Foothill Landfill | 48' Transfer         | HHDT           | Aggregate | Diesel      | 15,600                 | 0        | 31.1       | 485,160    | 0       |
| Lovelace TS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Forward Landfill  | 48' Transfer         | HHDT           | Aggregate | Diesel      | 2,496                  | 0        | 8.0        | 19,968     | 0       |
| Tracy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | 48' Transfer         | HHDT           | Aggregate | Diesel      | 0                      | 13,728   | 43.0       | 0          | 590,304 |
| Lovelace TS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   | 48' Transfer         | HHDT           | Aggregate | Diesel      | 8,736                  | 26,832   | 26.4       | 230,630    | 708,365 |
| Lodi TS - WM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | North County      | 48' Transfer         | HHDT           | Aggregate | Diesel      | 7488                   | 7488     | 11.7       | 87,610     | 87,610  |
| Stockton Scavenger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Landfill          | Garbage Truck        | MHDT (NG)      | Aggregate | Natural Gas | 4160                   | 4160     | 17.0       | 70,720     | 70,720  |
| Cal Waste - Area F/Galt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | Garbage Truck        | MHDT           | Aggregate | Diesel      | 8112                   | 8112     | 15.0       | 121,680    | 121,680 |
| Regional                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   | Misc Comm            | LHDT1          | Aggregate | Diesel      | 8,112                  | 8,112    | 15.0       | 121,680    | 121,680 |
| Worker Commute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   | Worker cars          | LDA            | Aggregate | Gas         | 35,040                 | 39,420   | 11.9       | 416,626    | 468,704 |
| On-Site Transfer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   | 48' Transfer         | HHDT           | Aggregate | Diesel      | 6864                   | 8236.8   | 0.5        | 3,432      | 4,118   |
| of our Contract Contract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   | Service Truck, Roll- | LIOT4          | 400000    |             | 322 0                  | 089 01   | 9          | 4 000      | 240     |
| OII-31te 3el vice i lacks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   | off Truck, Gator     | בוחוד          | Aggregare | Diesei      | 9,776                  | 10,000   | n.         | 4,000      | 5,540   |

| _      |
|--------|
| 0      |
| ·Ē     |
| ŝ      |
| ·      |
| _      |
| ш      |
| _      |
| G      |
| ŏ      |
| ×      |
| _      |
| e      |
| 7      |
| .≃     |
| _      |
| Ф      |
| >      |
| _      |
| o      |
| ō      |
| 0      |
| œ      |
|        |
| _      |
| $\sim$ |

| :                 | :  | :                    |           |           |             |       | i     |       | DIURN+                                 |                                 | ROG Emissions (lbs per year) | os per year) |
|-------------------|----|----------------------|-----------|-----------|-------------|-------|-------|-------|----------------------------------------|---------------------------------|------------------------------|--------------|
| Cocitoritad       |    | Vehicle Type         | Vehicle   | Model     | Fuel        | RUNEX | IDLEX | STREX | HOTSOAK                                | RUNLOSS                         | - initial                    | foicing      |
| Foothill Landfill | -1 | 48' Transfer         | HHDT      | Aggregate | Diesel      | 0.014 | 0.398 | 0.000 | 0000                                   | 000.0                           | 32.9                         | 0.0          |
| Foothill Landfill |    | 48' Transfer         | HHDT      | Aggregate | Diesel      | 0.014 | 0.398 | 00000 | 0.000                                  | 000'0                           | 29.0                         | 0.0          |
| Forward Landfill  |    | 48' Transfer         | HHDT      | Aggregate | Diesel      | 0.014 | 0.398 | 0.000 | 0.000                                  | 000.0                           | 2.8                          | 0.0          |
|                   | 1  | 48' Transfer         | HHDT      | Aggregate | Diesel      | 0.014 | 0.398 | 0.000 | 0.000                                  | 000'0                           | 0.0                          | 30.7         |
|                   |    | 48' Transfer         | HHDT      | Aggregate | Diesel      | 0.014 | 0.398 | 0.000 | 0.000                                  | 0000                            | 15.0                         | 46.0         |
| North County      |    | 48' Transfer         | HHDT      | Aggregate | Diesel      | 0.014 | 0.398 | 0000  | 000'0                                  | 000'0                           | 6.3                          | 9.3          |
| Landfill          |    | Garbage Truck        | MHDT (NG) | Aggregate | Natural Gas | 0.011 | 0.005 | 0000  | 0.000                                  | 0000                            | 1.8                          | 1.8          |
|                   |    | Garbage Truck        | MHDT      | Aggregate | Diesel      | 0.026 | 0.005 | 0.000 | 0.000                                  | 0.000                           | 7.2                          | 7.2          |
|                   |    | Misc Comm            | LHDT1     | Aggregate | Diesel      | 0.219 | 600.0 | 0.000 | 0.000                                  | 0.000                           | 6.83                         | 58.9         |
|                   |    | Worker cars          | LDA       | Aggregate | Gas         | 600'0 | 0.000 | 0.324 | 0.446                                  | 0.028                           | 63.2                         | 104.8        |
|                   |    | 48' Transfer         | HHDT      | Aggregate | Diesel      | 0.014 | 0.398 | 0.000 | 0.000                                  | 0.000                           | 6.1                          | 7.3          |
|                   |    | Service Truck, Roll- | LINIT1    | A 2000000 | -           | 0100  | 000   | 000   | 0000                                   | 0000                            | 3 6                          | 0            |
|                   |    | off Truck, Gator     | 100       | Agglegate | Diesei      | 0.213 | 0.00  | 000.0 | 0.00.0                                 | 0.00                            | 6.3                          | 7.0          |
|                   | ı  |                      |           |           |             |       |       |       | Total emissior                         | Total emissions per Year (Ibs)  | 258.87                       | 268.94       |
|                   |    |                      |           |           |             |       |       |       | Total emissions                        | Total emissions per Year (tons) | 0.129                        | 0.134        |
|                   |    |                      |           |           |             |       |       | Anunc | Annual Average emissions per Day (Ibs) | ons per Day (lbs)               | 12'0                         | 0.74         |
|                   | ۱  |                      |           |           |             |       |       |       |                                        |                                 |                              |              |

453.592 2,000 365 Assumptions
Grams per pound
Pounds per ton
Work days per year

Abbreviations
ROG = reactive organic gases; lbs = pounds; g = grams; VMT = vehicle mile travelled; RUNEX = running exhaust emission factor; IDLEX = idle exhaust emission factor; STREX = start exhaust emission factor
DIURN = diumal evaporation emission factor; HOTSOAK = hot soak evaporation emission factor

<u>Equations:</u> Emissions = [Annual VMT \* (RUNEX+RUNLOSS) + Annual trips\* (STREX+IDLEX+DIURN+HOTSOAK)]/ 453.592 grams per pound

### On-Road Vehicle NOx Emissions

| Origin Destination Tracy Foothil Landfill Lovelace TS Foothil Landfill Lovelace TS Forward Landfill | ion         |                                          |                |           |             |              |                                        |                                 |          |          |
|-----------------------------------------------------------------------------------------------------|-------------|------------------------------------------|----------------|-----------|-------------|--------------|----------------------------------------|---------------------------------|----------|----------|
| rigin<br>Foot<br>Foot                                                                               | ion<br>Hill |                                          | Vehicle        | Mode      | Fuel        | RUNEX        | IDLEX                                  | STREX                           |          |          |
|                                                                                                     | ıfill       | Vehicle Type                             | Classification | Year      | Туре        | (g/VMT)      | (g/trip)                               | (g/trip)                        | Existing | Project  |
|                                                                                                     |             | 48' Transfer                             | HHDT           | Aggregate | Diesel      | 1.676        | 4.720                                  | 2.830                           | 2663.8   | 0.0      |
|                                                                                                     | lfill       | 48' Transfer                             | HHDT           | Aggregate | Diesel      | 1.676        | 4.720                                  | 2.830                           | 2052.7   | 0.0      |
|                                                                                                     | Idfill      | 48' Transfer                             | HHDT           | Aggregate | Diesel      | 1.676        | 4.720                                  | 2.830                           | 115.3    | 0.0      |
| Tracy                                                                                               | 48'         | 48' Transfer                             | HHDT           | Aggregate | Diesel      | 1.676        | 4.720                                  | 2.830                           | 0:0      | 2410.1   |
| Lovelace TS                                                                                         | 48'         | 48' Transfer                             | HHDT           | Aggregate | Diesel      | 1.676        | 4.720                                  | 2.830                           | 92.766   | 3064.55  |
| Lodi TS - WM North County                                                                           |             | 48' Transfer                             | HHDT           | Aggregate | Diesel      | 1.676        | 4.720                                  | 2.830                           | 448.42   | 448.42   |
| Stockton Scavenger Landfill                                                                         | Gar         | Garbage Truck                            | MHDT (NG)      | Aggregate | Natural Gas | 0.088        | 0.130                                  | 0.000                           | 14.97    | 14.97    |
| Cal Waste - Area F/Galt                                                                             | Gar         | Garbage Truck                            | MHDT           | Aggregate | Diesel      | 1.141        | 0.269                                  | 0.404                           | 318.00   | 318.00   |
| Regional                                                                                            | Mis         | Misc Comm                                | LHDT1          | Aggregate | Diesel      | 2.168        | 0.177                                  | 0.000                           | 584.89   | 584.89   |
| Worker Commute                                                                                      | Wor         | Worker cars                              | LDA            | Aggregate | Gas         | 0.041        | 0.000                                  | 0.257                           | 57.85    | 62.08    |
| On-Site Transfer                                                                                    | 48'         | 48' Transfer                             | HHDT           | Aggregate | Diesel      | 1.676        | 4.720                                  | 2.830                           | 126.94   | 152.32   |
| On-Site Service Trucks                                                                              | Ser.        | Service Truck, Roll-<br>off Truck, Gator | LHDT1          | Aggregate | Diesel      | 2.168        | 0.177                                  | 00000                           | 27.19    | 29.71    |
|                                                                                                     |             |                                          |                |           |             | Tot          | al emissions                           | Total emissions per Year (Ibs)  | 7,407.84 | 7,088.06 |
|                                                                                                     |             |                                          |                |           |             | Tota         | l emissions p                          | Total emissions per Year (tons) | 3.70     | 3.54     |
|                                                                                                     |             |                                          |                |           |             | Annual Avera | Annual Average emissions per Day (Ibs) | per Day (lbs)                   | 20.30    | 19.42    |

Assumptions
Grams per pound
2,000
Pounds per ton
2,000

Work days per vear
365

Abbreviations

NX = introgen oxides; lbs = pounds; g = grams; VMT = vehicle mile travelled; RUNEX = running exhaust emission factor; IDLEX = idle exhaust emission factor; STREX = start exhaust emission factor

Equations:
Emissions = [Annual VMT \* RUNEX + Annual trips \* (IDLEX+STREX)] / 453.592 grams per pound

### On-Road Vehicle CO Emissions

| Activity Description      | ription           |                      | Vehicle        | Model                                   | Fuel        | RUNEX        | IDLEX                                  | STREX          | CO Emissions (lbs per year) | (lbs per year) |
|---------------------------|-------------------|----------------------|----------------|-----------------------------------------|-------------|--------------|----------------------------------------|----------------|-----------------------------|----------------|
| Origin                    | Destination       | Vehicle Type         | Classification | Year                                    | Type        | (g/VMT)      | (g/trip)                               | (g/trip)       | Existing                    | Project        |
| Tracy                     | Foothill Landfill | 48' Transfer         | TOHH           | Aggregate                               | Diesel      | 0.016        | 0.453                                  | 000'0          | 37.5                        | 0.0            |
| Lovelace TS               | Foothill Landfill | 48' Transfer         | HHDT           | Aggregate                               | Diesel      | 0.016        | 0.453                                  | 0.000          | 33.1                        | 0.0            |
| Lovelace TS               | Forward Landfill  | 48' Transfer         | TOHH           | Aggregate                               | Diesel      | 0.016        | 0.453                                  | 00000          | 3.2                         | 0.0            |
| Tracy                     |                   | 48' Transfer         | HHDT           | Aggregate                               | Diesel      | 0.016        | 0.453                                  | 00000          | 0.0                         | 35.0           |
| Lovelace TS               |                   | 48' Transfer         | TOHH           | Aggregate                               | Diesel      | 0.016        | 0.453                                  | 000'0          | 17.04                       | 52.33          |
| Lodi TS - WM              | North County      | 48' Transfer         | HHDT           | Aggregate                               | Diesel      | 0.016        | 0.453                                  | 00000          | 10.63                       | 10.63          |
| Stockton Scavenger        | Landfill          | Garbage Truck        | MHDT (NG)      | Aggregate                               | Natural Gas | 608.0        | 0.330                                  | 000.0          | 129.23                      | 129.23         |
| Cal Waste - Area F/Galt   |                   | Garbage Truck        | MHDT           | Aggregate                               | Diesel      | 0:030        | 9000                                   | 000'0          | 8.18                        | 8.18           |
| Regional                  |                   | Misc Comm            | LHDT1          | Aggregate                               | Diesel      | 0.249        | 0.010                                  | 00000          | 67.08                       | 67.08          |
| Worker Commute            |                   | Worker cars          | LDA            | Aggregate                               | Gas         | 0.013        | 0.000                                  | 0.354          | 38.96                       | 43.83          |
| On-Site Transfer          |                   | 48' Transfer         | TOHH           | Aggregate                               | Diesel      | 0.016        | 0.453                                  | 00000          | 6.97                        | 8.37           |
| adough opinios of S-aO    |                   | Service Truck, Roll- | TAN            | *************************************** | -           | 0 240        | 010                                    | 000            | 00 c                        | 0 17           |
| OII-31te 3el vice 11 dens |                   | off Truck, Gator     | דומוד          | Aggregate                               | Diesei      | 0.243        | 0.010                                  | 0.000          | 2.90                        | 3.17           |
|                           |                   |                      |                |                                         |             | Tot          | Total emissions per Year (Ibs)         | per Year (Ibs) | 354.74                      | 357.81         |
|                           |                   |                      |                |                                         |             | Tota         | Total emissions per Year (tons)        | er Year (tons) | 0.18                        | 0.18           |
|                           |                   |                      |                |                                         |             | Annual Avera | Annual Average emissions per Day (Ibs) | per Day (lbs)  | 0.97                        | 0.98           |

Assumptions
Grams per pound
2.000
Pounds per ton
2.000
Abbreviage year
365
Abbreviations
CO = carbon monoxide; lbs = pounds; g = grams; VMT = vehicle mile travelled; RUNEX = running exhaust emission factor; IDLEX = idle exhaust emission factor grams factor
Equations:
Emissions = [Annual VMT \* RUNEX + Annual trips \* (IDLEX+STREX)] / 453.592 grams per pound

### On-Road Vehicle SOx Emissions

| Activity Description    | ription           |                      | Vehicle        | Model     | Fuel        | RUNEX        | IDLEX                                  | STREX          | SOx Emissions (lbs per year) | (Ibs per year) |
|-------------------------|-------------------|----------------------|----------------|-----------|-------------|--------------|----------------------------------------|----------------|------------------------------|----------------|
| Origin                  | Destination       | Vehicle Type         | Classification | Year      | Type        | (g/VMT)      | (g/trip)                               | (g/trip)       | Existing                     | Project        |
| Tracy                   | Foothill Landfill | 48' Transfer         | HHDT           | Aggregate | Diesel      | 0.000        | 0.000                                  | 000'0          | 0.0                          | 0.0            |
| Lovelace TS             | Foothill Landfill | 48' Transfer         | HHDT           | Aggregate | Diesel      | 0.000        | 0.000                                  | 00000          | 0.0                          | 0.0            |
| Lovelace TS             | Forward Landfill  | 48' Transfer         | HHDT           | Aggregate | Diesel      | 0.000        | 0.000                                  | 0.000          | 0.0                          | 0.0            |
| Tracy                   |                   | 48' Transfer         | HHDT           | Aggregate | Diesel      | 0.000        | 0.000                                  | 00000          | 0.0                          | 0.0            |
| Lovelace TS             |                   | 48' Transfer         | HHDT           | Aggregate | Diesel      | 0.000        | 0.000                                  | 00000          | 0.0                          | 0.0            |
| Lodi TS - WM            | North County      | 48' Transfer         | HHDT           | Aggregate | Diesel      | 0.000        | 0.000                                  | 0.000          | 0.0                          | 0.0            |
| Stockton Scavenger      | Landfill          | Garbage Truck        | MHDT (NG)      | Aggregate | Natural Gas | 0.000        | 0.000                                  | 00000          | 0.0                          | 0.0            |
| Cal Waste - Area F/Galt |                   | Garbage Truck        | MHDT           | Aggregate | Diesel      | 0.000        | 0.000                                  | 00000          | 0.0                          | 0.0            |
| Regional                |                   | Misc Comm            | LHDT1          | Aggregate | Diesel      | 0.000        | 0.000                                  | 00000          | 0.0                          | 0.0            |
| Worker Commute          |                   | Worker cars          | LDA            | Aggregate | Gas         | 0.041        | 0.095                                  | 0.242          | 63.5                         | 71.4           |
| On-Site Transfer        |                   | 48' Transfer         | HHDT           | Aggregate | Diesel      | 0.000        | 0.000                                  | 00000          | 0.0                          | 0.0            |
| On-Site Service Trucks  |                   | Service Truck, Roll- | I HDT1         | Aggregate | losoiO      | 000          | 0000                                   | 000            | 0                            | 0.0            |
|                         |                   | off Truck, Gator     | 1 2 2 2        | 3383.684  | 5630        | 0000         | 999                                    | 200:0          | 2                            | 2:             |
|                         |                   |                      |                |           |             | Tot          | Total emissions per Year (Ibs)         | per Year (Ibs) | 63.47                        | 71.40          |
|                         |                   |                      |                |           |             | Tota         | Total emissions per Year (tons)        | er Year (tons) | 0.03                         | 0.04           |
|                         |                   |                      |                |           |             | Annual Avera | Annual Average emissions per Day (Ibs) | per Day (lbs)  | 0.17                         | 0.20           |

Assumptions
Grams per pound
Grams per pound
Pounds per ton
2,000
Work days per year
365
Abbreviations
SOx = sulfur oxides; lbs = pounds; g = grams; VMT = vehicle mile travelled; RUNEX = running exhaust emission factor; IDLEX = idle exhaust emission factor; STREX = start exhaust emission factor Equations:
Equations:
Emissions = [Annual VMT \* RUNEX + Annual trips \* (IDLEX+STREX)] / 453.592 grams per pound

### On-Road Vehicle PM<sub>10E</sub> Emissions

| Activity Description    | cription          |                      | Vehicle        | Model     | Fuel        | RUNEX    | IDLEX                                  | STREX          | PM <sub>10E</sub> Emissions (Ibs per year) | (lbs per year) |
|-------------------------|-------------------|----------------------|----------------|-----------|-------------|----------|----------------------------------------|----------------|--------------------------------------------|----------------|
| Origin                  | Destination       | Vehicle Type         | Classification | Year      | Type        | (g/VMT)  | (g/trip)                               | (g/trip)       | Existing                                   | Project        |
| Tracy                   | Foothill Landfill | 48' Transfer         | HHDT           | Aggregate | Diesel      | 0.0292   | 0.0020                                 | 0.0000         | 42.5                                       | 0.0            |
| Lovelace TS             | Foothill Landfill | 48' Transfer         | HHDT           | Aggregate | Diesel      | 0.0292   | 0.0020                                 | 0.0000         | 31.3                                       | 0.0            |
| Lovelace TS             | Forward Landfill  | 48' Transfer         | HHDT           | Aggregate | Diesel      | 0.0292   | 0.0020                                 | 0.0000         | 1.3                                        | 0.0            |
| Tracy                   |                   | 48' Transfer         | HHDT           | Aggregate | Diesel      | 0.0292   | 0.0020                                 | 0.0000         | 0.0                                        | 38.0           |
| Lovelace TS             |                   | 48' Transfer         | HHDT           | Aggregate | Diesel      | 0.0292   | 0.0020                                 | 0.0000         | 14.9                                       | 45.7           |
| Lodi TS - WM            | North County      | 48' Transfer         | HHDT           | Aggregate | Diesel      | 0.0292   | 0.0020                                 | 0.0000         | 5.7                                        | 5.7            |
| Stockton Scavenger      | Landfill          | Garbage Truck        | MHDT (NG)      | Aggregate | Natural Gas | 0.0016   | 0.0005                                 | 0.0000         | 0.2                                        | 0.2            |
| Cal Waste - Area F/Galt |                   | Garbage Truck        | MHDT           | Aggregate | Diesel      | 0.0130   | 0.0006                                 | 0.0000         | 3.5                                        | 3.5            |
| Regional                |                   | Misc Comm            | LHDT1          | Aggregate | Diesel      | 0.0501   | 0.0022                                 | 0.0000         | 13.5                                       | 13.5           |
| Worker Commute          |                   | Worker cars          | LDA            | Aggregate | Gas         | 0.0013   | 0.0000                                 | 0.0021         | 1.3                                        | 1.5            |
| On-Site Transfer        |                   | 48' Transfer         | HHDT           | Aggregate | Diesel      | 0.0292   | 0.0020                                 | 0.0000         | 0.3                                        | 6.0            |
| On-Site Service Trucks  |                   | Service Truck, Roll- | 1 HDT1         | Addredate | Djesel      | 0.0501   | 0.000                                  | 00000          | 90                                         | 90             |
|                         |                   | off Truck, Gator     | 1              | 2562.662  |             |          |                                        |                |                                            |                |
|                         |                   |                      |                |           |             | Tot      | Total emissions per Year (Ibs)         | per Year (lbs) | 114.98                                     | 109.07         |
|                         |                   |                      |                |           |             | Tota     | Total emissions per Year (tons)        | er Year (tons) | 0.057                                      | 0.055          |
|                         |                   |                      |                |           |             | Aurian A | (all) A year enciosione consum A layer | (adl) (adl     | 000                                        | 06.0           |

Assumptions
Grams per pound
2,000
Pounds per ton
2,000
Work days per year
Abbreviations
Pounds; g = grams; VMT = vehicle mile travelled; RUNEX = running exhaust emission factor; IDLEX = idle exhaust emission factor; STREX = start exhaust emission factor

 $\underline{\text{Equations:}} \\ \text{Emissions} = [\text{Annual VMT} * \text{RUNEX} + \text{Annual trips} * (\text{IDLEX+STREX})] / 453.592 \text{ grams per pound} \\$ 

On-Road Vehicle PM<sub>10D</sub> Emissions (Brake and Tires Only)

| Activity Description    | ription           |                      | Vehicle        | Model     | Fuel         | PMTW                                   | PMBW          | PM <sub>10D</sub> Emissi | PM <sub>10D</sub> Emissions (lbs per year) |
|-------------------------|-------------------|----------------------|----------------|-----------|--------------|----------------------------------------|---------------|--------------------------|--------------------------------------------|
| Origin                  | Destination       | Vehicle Type         | Classification | Year      | Туре         | (g/VMT)                                | (g/VMT)       | Existing                 | Project                                    |
| Tracy                   | Foothill Landfill | 48' Transfer         | HHDT           | Aggregate | Diesel       | 0.0357                                 | 0.0762        | 162.6                    | 0.0                                        |
| Lovelace TS             | Foothill Landfill | 48' Transfer         | HHDT           | Aggregate | Diesel       | 0.0357                                 | 0.0762        | 119.7                    | 0.0                                        |
| Lovelace TS             | Forward Landfill  | 48' Transfer         | HHDT           | Aggregate | Diesel       | 0.0357                                 | 0.0762        | 4.9                      | 0.0                                        |
| Tracy                   |                   | 48' Transfer         | HHDT           | Aggregate | Diesel       | 0.0357                                 | 0.0762        | 0.0                      | 145.7                                      |
| Lovelace TS             |                   | 48' Transfer         | HHDT           | Aggregate | Diesel       | 0.0357                                 | 0.0762        | 56.9                     | 174.8                                      |
| Lodi TS - WM            | North County      | 48' Transfer         | HHDT           | Aggregate | Diesel       | 0.0357                                 | 0.0762        | 21.6                     | 21.6                                       |
| Stockton Scavenger      | Landfill          | Garbage Truck        | MHDT (NG)      | Aggregate | Natural Gas  | 0.0120                                 | 0.0457        | 0.6                      | 0.6                                        |
| Cal Waste - Area F/Galt |                   | Garbage Truck        | MHDT           | Aggregate | Diesel       | 0.0120                                 | 0.0450        | 15.3                     | 15.3                                       |
| Regional                |                   | Misc Comm            | LHDT1          | Aggregate | Diesel       | 0.0120                                 | 0.0780        | 24.1                     | 24.1                                       |
| Worker Commute          |                   | Worker cars          | LDA            | Aggregate | Gas          | 0.0080                                 | 0.0071        | 13.9                     | 15.6                                       |
| On-Site Transfer        |                   | 48' Transfer         | HHDT           | Aggregate | Diesel       | 0.0357                                 | 0.0762        | 0.8                      | 1.0                                        |
| adought approved ation  |                   | Service Truck, Roll- | 11011          | 400000    | losoid       | 00100                                  | 08200         | 0,                       | 1.1                                        |
| OIL-SILE SELVICE LIGGES |                   | off Truck, Gator     | יו חרו         | Agglegate | Diesel       | 0.0120                                 | 0.0.0         | ).<br> -                 | T:T                                        |
|                         |                   |                      |                |           | Tot          | Total emissions per Year (lbs)         | er Year (Ibs) | 429.89                   | 408.19                                     |
|                         |                   |                      |                |           | Toto         | Total emissions per Year (tons)        | r Year (tons) | 0.215                    | 0.204                                      |
|                         |                   |                      |                |           | Annual Avero | Annual Average emissions per Day (lbs) | ser Day (lbs) | 1.18                     | 1.12                                       |

Assumptions
Grams per pound
Pounds per ron
2,000
Work by per year
365
Abbeviolations
Physical exporticulate matter (dust); Ibs = pounds; g = grams; VMT = vehicle mile travelled; PMTW = tire wear emission factor; PMBW = brake wear emission factor

Equations:
Equations:
Emissions = [Annual VMT \* (PMBW + PMTW)] / 453.592 grams per pound

### On-Road Vehicle PM<sub>2.5E</sub> Emissions

| Activity Description    | ription           |                      |                |           |             |              |                                        |                                 | PM <sub>2.5E</sub> Emissions (lbs per year) | (lbs per year) |
|-------------------------|-------------------|----------------------|----------------|-----------|-------------|--------------|----------------------------------------|---------------------------------|---------------------------------------------|----------------|
|                         |                   |                      | Vehicle        | Mode      | Fuel        | RUNEX        | IDLEX                                  | STREX                           |                                             |                |
| Origin                  | Destination       | Vehicle Type         | Classification | Year      | Туре        | (g/VMT)      | (g/trip)                               | (g/trip)                        | Existing                                    | Project        |
| Tracy                   | Foothill Landfill | 48' Transfer         | HHDT           | Aggregate | Diesel      | 0.0279       | 0.0019                                 | 0.0000                          | 43.4                                        | 0.0            |
| Lovelace TS             | Foothill Landfill | 48' Transfer         | HHDT           | Aggregate | Diesel      | 0.0279       | 0.0019                                 | 0.0000                          | 31.9                                        | 0.0            |
| Lovelace TS             | Forward Landfill  | 48' Transfer         | HHDT           | Aggregate | Diesel      | 0.0279       | 0.0019                                 | 0.0000                          | 1.3                                         | 0.0            |
| Tracy                   |                   | 48' Transfer         | HHDT           | Aggregate | Diesel      | 0.0279       | 0.0019                                 | 0.0000                          | 0.0                                         | 38.8           |
| Lovelace TS             |                   | 48' Transfer         | HHDT           | Aggregate | Diesel      | 0.0279       | 0.0019                                 | 0.0000                          | 15.2                                        | 46.6           |
| Lodi TS - WM            | North County      | 48' Transfer         | HHDT           | Aggregate | Diesel      | 0.0279       | 0.0019                                 | 0.0000                          | 5.8                                         | 5.8            |
| Stockton Scavenger      | Landfill          | Garbage Truck        | MHDT (NG)      | Aggregate | Natural Gas | 0.0014       | 0.0004                                 | 0.0000                          | 0.3                                         | 6.0            |
| Cal Waste - Area F/Galt |                   | Garbage Truck        | MHDT           | Aggregate | Diesel      | 0.0125       | 9000'0                                 | 0.0000                          | 3.5                                         | 3.5            |
| Regional                |                   | Misc Comm            | LHDT1          | Aggregate | Diesel      | 0.0479       | 0.0021                                 | 0.0000                          | 13.4                                        | 13.4           |
| Worker Commute          |                   | Worker cars          | LDA            | Aggregate | Gas         | 0.0011       | 0.0000                                 | 0.0019                          | 2.8                                         | 3.2            |
| On-Site Transfer        |                   | 48' Transfer         | HHDT           | Aggregate | Diesel      | 0.0279       | 0.0019                                 | 0.0000                          | 0.2                                         | 6.0            |
| Palatine Society        |                   | Service Truck, Roll- | LTG11          | 0         |             | 0.0470       | 10000                                  | 0000                            | ц                                           | 90             |
| OII-SITE SELVICE LIGERS |                   | off Truck, Gator     | רחטוד          | annainne  | Diesei      | 0.047.9      | 0.0021                                 | 0.0000                          | 6.0                                         | 0.0            |
|                         |                   |                      |                |           |             | Tot          | Total emissions per Year (lbs)         | oer Year (Ibs)                  | 118.37                                      | 112.50         |
|                         |                   |                      |                |           |             | Tota         | l emissions pe                         | Total emissions per Year (tons) | 0.059                                       | 950'0          |
|                         |                   |                      |                |           |             | Annual Avera | Annual Average emissions per Day (lbs) | per Day (lbs)                   | 0.32                                        | 0.31           |

Assumptions

Grams per pound 25.00

Pounds per ton 2.000

Bounds per ton 365

Abbreviations

Pounds per ton 365

Abbreviations

PN<sub>2, se</sub> = fine particulate matter (exhaust); lbs = pounds; g = grams; VMT = vehicle mile travelled; RUNEX = running exhaust emission factor; IDLEX = idle exhaust emission factor; STREX = start exhaust emission factor Equations:

Equations:

Equations:

Equations:

Equations:

Emissions = [Annual VMT \* RUNEX + Annual trips \* (IDLEX+STREX)] / 453.592 grams per pound

On-Road Vehicle PM<sub>2.5D</sub> Emissions (Brake and Tires Only)

|                                             |         |                |                   |                   |                  |              |              |              |                    |                         |           |                |                  |                                          |                                |                                 | П                                      |
|---------------------------------------------|---------|----------------|-------------------|-------------------|------------------|--------------|--------------|--------------|--------------------|-------------------------|-----------|----------------|------------------|------------------------------------------|--------------------------------|---------------------------------|----------------------------------------|
| PM <sub>2.5D</sub> Emissions (Ibs per year) |         | Project        | 0.0               | 0.0               | 0.0              | 46.3         | 55.6         | 6.9          | 3.0                | 5.0                     | 8.1       | 4.6            | 6.0              | 0.4                                      | 130.25                         | 90'0                            | 0.36                                   |
| PM <sub>2.5D</sub> Emissi                   |         | Existing       | 51.7              | 38.1              | 1.6              | 0.0          | 18.1         | 6.9          | 3.0                | 5.0                     | 8.1       | 4.1            | 0.3              | 0.3                                      | 137.19                         | 690'0                           | 0.38                                   |
|                                             | PMBW    | (g/VMT)        | 0.027             | 0.027             | 0.027            | 0.027        | 0.027        | 0.027        | 0.016              | 0.016                   | 0.027     | 0.002          | 0.027            | 0.027                                    | er Year (Ibs)                  | r Year (tons)                   | er Day (lbs)                           |
|                                             | PMTW    | (g/VMT)        | 00:00             | 00:00             | 00:00            | 600.0        | 0.009        | 0.009        | 0.003              | 0.003                   | 0.003     | 0.002          | 600.0            | 0.003                                    | Total emissions per Year (Ibs) | Total emissions per Year (tons) | Annual Average emissions per Day (lbs) |
|                                             | Fuel    | Type           | Diesel            | Diesel            | Diesel           | Diesel       | Diesel       | Diesel       | Natural Gas        | Diesel                  | Diesel    | Gas            | Diesel           | Diesel                                   | Tol                            | Toto                            | Annual Averc                           |
|                                             | Model   | Year           | Aggregate         | Aggregate         | Aggregate        | Aggregate    | Aggregate    | Aggregate    | Aggregate          | Aggregate               | Aggregate | Aggregate      | Aggregate        | Aggregate                                |                                |                                 |                                        |
|                                             | Vehicle | Classification | HHDT              | HHDT              | HHDT             | HHDT         | HHDT         | HHDT         | MHDT (NG)          | MHDT                    | LHDT1     | LDA            | HHDT             | LHDT1                                    |                                |                                 |                                        |
|                                             |         | Vehicle Type   | 48' Transfer      | 48' Transfer      | 48' Transfer     | 48' Transfer | 48' Transfer | 48' Transfer | Garbage Truck      | Garbage Truck           | Misc Comm | Worker cars    | 48' Transfer     | Service Truck, Roll-<br>off Truck, Gator |                                |                                 |                                        |
| ription                                     |         | Destination    | Foothill Landfill | Foothill Landfill | Forward Landfill |              |              | North County | Landfill           |                         |           |                |                  |                                          |                                |                                 |                                        |
| Activity Description                        |         | Origin         | Tracy             | Lovelace TS       | Lovelace TS      | Tracy        | Lovelace TS  | Lodi TS - WM | Stockton Scavenger | Cal Waste - Area F/Galt | Regional  | Worker Commute | On-Site Transfer | On-Site Service Trucks                   |                                |                                 |                                        |

Assumptions
Grams per pound
Pounds per ton
2,000
Work oper vor
365
Abbreviations
PM<sub>3,50</sub> = fine particulate matter (dust); lbs = pounds; g = grams; VMT = vehicle mile travelled; PMTW = tire wear emission factor; PMBW = brake wear emission factor

Equations:
Emissions = [Annual VMT \* (PMBW + PMTW)] / 453.592 grams per pound

### On-Road Vehicle CO<sub>2</sub> Emissions

453.6

Assumptions
Grams per pound
Pounds per metric ton
CO<sub>2</sub> GWP

Abbeviations

CO<sub>2</sub> = carbon dioxide; lbs = pounds; g = grams; VMT = vehicle mile travelled; RUNEX = running exhaust emission factor; IDLEX = idle exhaust emission factor; STREX = start exhaust emission factor

Equations:

Emissions = [Annual VMT \* RUNEX + Annual trips \* (IDLEX+STREX)]/ 453.592 grams per pound

### On-Road Vehicle CH4 Emissions

| Describ | Activity Description |                                          | Vehicle        | Model     | Fuel        | RUNEX                                       | IDLEX                                  | STREX          | CH4 Emissions (lbs per year) | lbs per year) |
|---------|----------------------|------------------------------------------|----------------|-----------|-------------|---------------------------------------------|----------------------------------------|----------------|------------------------------|---------------|
|         | Destination          | Vehicle Type                             | Classification | Year      | Type        | (g/VMT)                                     | (g/trip)                               | (g/trip)       | Existing                     | Project       |
| ĸ       | Foothill Landfill    | 48' Transfer                             | HHDT           | Aggregate | Diesel      | 0.0056                                      | 0.0185                                 | 0.0000         | 35.0                         | 0.0           |
| 포       | Foothill Landfill    | 48' Transfer                             | HHDT           | Aggregate | Diesel      | 0.0056                                      | 0.0185                                 | 0.0000         | 25.8                         | 0.0           |
| ĸ       | Forward Landfill     | 48' Transfer                             | HHDT           | Aggregate | Diesel      | 0.0056                                      | 0.0185                                 | 0.0000         | 1.1                          | 0.0           |
|         |                      | 48' Transfer                             | HHDT           | Aggregate | Diesel      | 0.0056                                      | 0.0185                                 | 0.0000         | 0.0                          | 31.4          |
|         |                      | 48' Transfer                             | HHDT           | Aggregate | Diesel      | 0.0056                                      | 0.0185                                 | 0.0000         | 12.3                         | 37.6          |
| Ż       | North County         | 48' Transfer                             | HHDT           | Aggregate | Diesel      | 0.0056                                      | 0.0185                                 | 0.0000         | 4.7                          | 4.7           |
| ĭ       | Landfill             | Garbage Truck                            | MHDT (NG)      | Aggregate | Natural Gas | 0.7931                                      | 0.3233                                 | 0.0000         | 174.1                        | 174.1         |
|         |                      | Garbage Truck                            | MHDT           | Aggregate | Diesel      | 0.0012                                      | 0.0002                                 | 0.0000         | 0.4                          | 0.4           |
|         |                      | Misc Comm                                | LHDT1          | Aggregate | Diesel      | 0.0288                                      | 0.0004                                 | 0.0000         | 7.8                          | 7.8           |
|         |                      | Worker cars                              | LDA            | Aggregate | Gas         | 0.0198                                      | 0.0000                                 | 0.0715         | 83.9                         | 94.4          |
|         |                      | 48' Transfer                             | HHDT           | Aggregate | Diesel      | 0.0056                                      | 0.0185                                 | 0.0000         | 0.2                          | 0.2           |
|         |                      | Service Truck, Roll-<br>off Truck, Gator | LHDT1          | Aggregate | Diesel      | 0.0288                                      | 0.0004                                 | 0.0000         | 0.3                          | 0.3           |
|         |                      |                                          |                |           |             | Tot                                         | Total emissions per Year (Ibs)         | per Year (lbs) | 345.5                        | 350.9         |
|         |                      |                                          |                |           |             | Total emiss                                 | Total emissions per Year (Metric tons) | (Metric tons)  | 0.157                        | 0.159         |
|         |                      |                                          |                |           | To          | Total CO2e emissions per Year (metric tons) | ions per Year                          | (metric tons)  | 3.92                         | 3.98          |

453.6 2,205 25 CARB 2022. GHG Global Warming Potentials. Available at via https://ww2.arb.ca.gov/ghg-gwps. Accessed on September, 9, 2024. Assumptions
Grams per pound
2,205
Global Warming Potentials. Available at via https://ww2.arb.ca.gov/ghg-gwps. Accessed on September, 9, 202
Abbreviations
CH<sub>4</sub> = methane; g = grams; VMT = vehicle mile travelled; RUNEX = running exhaust emission factor; IDLEX = idle exhaust emission factor; STREX = start exhaust emission factor

<u>Equations:</u> Emissions = [Annual VMT \* RUNEX + Annual trips \* (IDLEX+STREX)]/ 453.592 grams per pound

### On-Road Vehicle N<sub>2</sub>O Emissions

| SCF | Activity Description |                                          | Vehicle        | Model     | Fuel        | RUNEX                                       | IDLEX                                  | STREX          | N <sub>2</sub> O Emissions (Ibs per year) | lbs per year) |
|-----|----------------------|------------------------------------------|----------------|-----------|-------------|---------------------------------------------|----------------------------------------|----------------|-------------------------------------------|---------------|
|     | Destination          | Vehicle Type                             | Classification | Year      | Type        | (g/VMT)                                     | (g/trip)                               | (g/trip)       | Existing                                  | Project       |
|     | Foothill Landfill    | 48' Transfer                             | HHDT           | Aggregate | Diesel      | 0.2474                                      | 0.1458                                 | 0.0000         | 571.1                                     | 0.0           |
| П   | Foothill Landfill    | 48' Transfer                             | HHDT           | Aggregate | Diesel      | 0.2474                                      | 0.1458                                 | 0.0000         | 420.5                                     | 0.0           |
| П   | Forward Landfill     | 48' Transfer                             | HHDT           | Aggregate | Diesel      | 0.2474                                      | 0.1458                                 | 0.0000         | 17.3                                      | 0.0           |
|     |                      | 48' Transfer                             | HHDT           | Aggregate | Diesel      | 0.2474                                      | 0.1458                                 | 0.0000         | 0.0                                       | 511.6         |
|     |                      | 48' Transfer                             | HHDT           | Aggregate | Diesel      | 0.2474                                      | 0.1458                                 | 0.0000         | 199.9                                     | 613.9         |
|     | North County         | 48' Transfer                             | HHDT           | Aggregate | Diesel      | 0.2474                                      | 0.1458                                 | 0.0000         | 75.9                                      | 75.9          |
|     | Landfill             | Garbage Truck                            | MHDT (NG)      | Aggregate | Natural Gas | 0.2036                                      | 0.0229                                 | 0.0000         | 35.3                                      | 35.3          |
|     |                      | Garbage Truck                            | MHDT           | Aggregate | Diesel      | 0.1769                                      | 0.0073                                 | 0.0000         | 49.4                                      | 49.4          |
|     |                      | Misc Comm                                | LHDT1          | Aggregate | Diesel      | 0.1007                                      | 0.0017                                 | 0.0000         | 27.5                                      | 27.5          |
| ı   |                      | Worker cars                              | LDA            | Aggregate | Gas         | 0.0047                                      | 0.0000                                 | 0.0334         | 35.0                                      | 39.4          |
|     |                      | 48' Transfer                             | HHDT           | Aggregate | Diesel      | 0.2474                                      | 0.1458                                 | 0.0000         | 3.0                                       | 3.6           |
|     |                      | Service Truck, Roll-<br>off Truck, Gator | LHDT1          | Aggregate | Diesel      | 0.1007                                      | 0.0017                                 | 0.0000         | 1.1                                       | 1.2           |
| ı   |                      | *                                        |                |           |             | Tot                                         | Total emissions per Year (Ibs)         | per Year (Ibs) | 1,435.9                                   | 1,357.8       |
|     |                      |                                          |                |           |             | Total emiss                                 | Total emissions per Year (Metric tons) | (Metric tons)  | 0.651                                     | 0.616         |
|     |                      |                                          |                |           | TO          | Total CO2e emissions per Year (metric tons) | ions per Year                          | (metric tons)  | 194.06                                    | 183.50        |

Assumptions
Grams per pound
Grams per pound
Grams per pound
2,205

Bounds per metric ton
2,205

Abbreviations
Abbreviations
N<sub>2</sub> = grams; VMT = vehicle mile travelled; RUNEX = running exhaust emission factor, IDLEX = idle exhaust emission factor, STREX = start exhaust emission factor

Equations:
Equations:
Equations:
Emissions = [Annual VMT \* RUNEX + Annual trips \* (IDLEX+STREX)]/ 453.592 grams per pound

# Appendix A-4: Unpaved Road Model Input Parameters and Dust Emissions Calculations

### erview

Information about on-site vehicle activities was provided by the project applicant. The main entry roads are paved, while the access roads extending to the fill areas and the perimeter road are unpaved. Emissions factors (AP-42), Section 13.2.2 fugitive dust from on-site vehicle travel on unpaved roads were estimated using emissions factors from the U.S. Environmental Protection Agency's Compilation of Air Pollutant Emissions Factors (AP-42), Section 13.2.2 Unpaved Roads .

## Summary of On-Road Vehicle Miles Travelled (VMT) for On-Site Activities

|                        |                                      | Vehicle        | Ann      | nual VMT |
|------------------------|--------------------------------------|----------------|----------|----------|
| Activity Description   | Vehicle Type                         | Classification | Existing | Project  |
| On-Site Transfer       | 48' Transfer                         | HHDT           | 3,432    | 4,118    |
| On-Site Service Trucks | Service Truck, Roll-off Truck, Gator | LHDT1          | 4,888    | 5,340    |

### On-Site $\mathsf{PM}_{10}$ Dust Emissions from Unpaved Roads

|                        |                                      | Vehicle                                | EF                              | PM <sub>10D</sub> Emissions (Ibs per year) | (lbs per year) |
|------------------------|--------------------------------------|----------------------------------------|---------------------------------|--------------------------------------------|----------------|
| Activity Description   | Vehicle Type                         | Classification                         | (Ibs/VMT)                       | Existing                                   | Project        |
| On-Site Transfer       | 48' Transfer                         | HHDT                                   | 0.958                           | 829                                        | 994            |
| On-Site Service Trucks | Service Truck, Roll-off Truck, Gator | LHDT1                                  | 0.428                           | 527                                        | 929            |
|                        |                                      | Total emissic                          | Total emissions per Year (lbs)  | 1,355                                      | 1,570          |
|                        |                                      | Total emission                         | Total emissions per Year (tons) | 0.7                                        | 0.8            |
|                        | Ann                                  | Annual Average emissions per Day (Ibs) | ons per Day (Ibs)               | 3.71                                       | 4.30           |

### umptions

|             | 2,000          | 365                | 44% Limit speed to 15 mph (WRAP Fugitive Dust Handbook, Table 6-6) | 55% Water twice per day (WRAP Fugitive Dust Handbook, Table 6-6) | 2.6 Percent (AP-42, 13.2.2-1, Unpaved Road Surface Material Silt Content Values Used in the 1999 NEI) | 5 Tons based on upper-bound LHDT1 weight | 30 Tons based on upper-bound HHDT weight (total weight of the truck combined with its maximum capacity when loaded) | 1.5 lbs/VMT, AP-42, Table 13.2.2-2 | 0.9 AP-42, Table 13.2.2-2 | 0.45 AP-42, Table 13.2.2-2 | 37.4 CalEEMod Default for the project location | $k^*(s/12)^{a_*}(W/3)^{b_*}[(365-P)/365]$ AP-42, Equation 13.2.2. (1a) |
|-------------|----------------|--------------------|--------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------|----------------------------|------------------------------------------------|------------------------------------------------------------------------|
| Assumptions | Pounds per ton | Work days per year | Dust control efficiency - Speed                                    | Dust control efficiency - Watering                               | Surface Material Silt Content (s)                                                                     | Mean Vehicle Weight (W) - Service Truck  | Mean Vehicle Weight (W) - Haul Trucks                                                                               | Empirical Constant k               | Empirical Constant a      | Empirical Constant b       | Days of Precipitation (P)                      | Emission Factor (Ibs/VMT)                                              |

### Abbreviations

EF = emission factor; g = grams; m = meter; VMT = vehicle miles travelled; PM<sub>100</sub> = coarse particulate matter (dust); lbs = pounds

### Equation:

Emissions = Daily VMT \* Emission Factor \* (1 - Dust Control Efficiency)

### On-Site PM<sub>2.5</sub> Dust Emissions from Unpaved Roads

|                        |                                      | Vehicle                 | Н                               | PM <sub>2.5D</sub> Emissions (Ibs per year) | (lbs per year) |
|------------------------|--------------------------------------|-------------------------|---------------------------------|---------------------------------------------|----------------|
| Activity Description   | Vehicle Type                         | Classification          | (Ibs/vMT)                       | Existing                                    | Project        |
| On-Site Transfer       | 48' Transfer                         | HHDT                    | 960'0                           | 82.9                                        | 99.4           |
| On-Site Service Trucks | Service Truck, Roll-off Truck, Gator | LHDT1                   | 0.043                           | 52.7                                        | 57.6           |
|                        |                                      | Total emissic           | Total emissions per Year (lbs)  | 136                                         | 157            |
|                        |                                      | Total emission          | Fotal emissions per Year (tons) | 0.07                                        | 0.08           |
|                        | and A                                | Vadl) was an animinated | (241) (201 200                  | 0.37                                        | 0.43           |

| Assumptions | Pounds per ton |
|-------------|----------------|

2,000
365 Information provided by project applicant
44& Limit speed to 25 mph (WRAP Fugitive Dust Handbook, Table 6-6)
55& Watter twice per day (WRAP Fugitive Dust Handbook, Table 6-6)
2.6 Percent (AP-42, 13.2.2-1, Unpaved Road Surface Material Silt Content Values Used in the 1999 NEI) Dust control efficiency - Watering Surface Material Silt Content (s) Dust control efficiency - Speed Work days per year

Mean Vehicle Weight (W) - Service Truck Mean Vehicle Weight (W) - Haul Trucks

5 Tons based on upper-bound LHDT1 weight
30 Tons based on upper-bound HHDT weight (total weight of the truck combined with its maximum capacity when loaded)
0.15 Ibs/NMT, AP-42, Table 13.2.2-2
0.9 AP-42, Table 13.2.2-2
0.45 AP-42, Table 13.2.2-2

37.4 CalEEMod Default for the project location

 $k^*(s/12)^{a_*}(W/3)^{b_*}[(365-P)/365]$  AP-42, Equation 13.2.2.(1a)

Emission Factor (Ibs/VMT) Days of Precipitation (P) Empirical Constant k Empirical Constant a Empirical Constant b

Abbreviations

EF = emission factor; g = grams; m = meter; VMT = vehicle miles travelled; PM<sub>2.50</sub> = fine particulate matter (dust); lbs = pounds

Emissions = Daily VMT \* Emission Factor \* (1 - Dust Control Efficiency)

# Appendix A-5: Paved Road Model Input Parameters and Dust Emissions Calculations

### Overview

Information about off-site vehicle activities was provided by the project applicant. Emissions of resuspended dust along paved roads were estimated using emission factors from the U.S. Environmental Protection Agency's Compilation of Air Pollutant Emissions Factors (AP-42), Section 13.2.1 Paved Roads and guidance from the California Emissions Estimator Model (CalEEMod) version 2022.1.1.

## Summary of On-Road Vehicle Miles Travelled (VMT) for Off-Site Activities

| Activity Description    | ption                 |               | Vehicle        | Annu     | Annual VMT |
|-------------------------|-----------------------|---------------|----------------|----------|------------|
| Origin                  | Destination           | Vehicle Type  | Classification | Existing | Project    |
| Tracy                   | Foothill Landfill     | 48' Transfer  | HHDT           | 658,944  | 0          |
| Lovelace TS             | Foothill Landfill     | 48' Transfer  | HHDT           | 485,160  | 0          |
| Lovelace TS             | Forward Landfill      | 48' Transfer  | HHDT           | 19,968   | 0          |
| Tracy                   |                       | 48' Transfer  | HHDT           | 0        | 590,304    |
| Lovelace TS             | ı                     | 48' Transfer  | HHDT           | 230,630  | 708,365    |
| Lodi TS - WM            | Higher Standy 4to N   | 48' Transfer  | HHDT           | 87,610   | 87,610     |
| Stockton Scavenger      | Notice County Edition | Garbage Truck | MHDT (NG)      | 70,720   | 70,720     |
| Cal Waste - Area F/Galt | ı                     | Garbage Truck | MHDT           | 121,680  | 121,680    |
| Regional                |                       | Misc Comm     | LHDT1          | 121,680  | 121,680    |
| Worker Commute          |                       | Worker cars   | LDA            | 416,626  | 468,704    |

### Off-Site PM<sub>10</sub> Dust Emissions from Paved Roads

| Activity Description    | otion               |               | Vehicle                                | Ш                              | PM <sub>10D</sub> Emission | PM <sub>10D</sub> Emissions (lbs per year) |
|-------------------------|---------------------|---------------|----------------------------------------|--------------------------------|----------------------------|--------------------------------------------|
| Origin                  | Destination         | Vehicle Type  | Classification                         | (Ibs/VMT)                      | Existing                   | Project                                    |
| Tracy                   | Foothill Landfill   | 48' Transfer  | HHDT                                   | 0.00041                        | 267                        | 0                                          |
| Lovelace TS             | Foothill Landfill   | 48' Transfer  | HHDT                                   | 0.00041                        | 197                        | 0                                          |
| Lovelace TS             | Forward Landfill    | 48' Transfer  | HHDT                                   | 0.00041                        | 8                          | 0                                          |
| Tracy                   |                     | 48' Transfer  | HHDT                                   | 0.00041                        | 0                          | 239                                        |
| Lovelace TS             |                     | 48' Transfer  | HHDT                                   | 0.00041                        | 94                         | 287                                        |
| Lodi TS - WM            | 1970                | 48' Transfer  | HHDT                                   | 0.00041                        | 36                         | 36                                         |
| Stockton Scavenger      | Notes County Edites | Garbage Truck | MHDT (NG)                              | 0.00041                        | 29                         | 29                                         |
| Cal Waste - Area F/Galt |                     | Garbage Truck | MHDT                                   | 0.00041                        | 49                         | 49                                         |
| Regional                |                     | Misc Comm     | LHDT1                                  | 0.00041                        | 49                         | 49                                         |
| Worker Commute          |                     | Worker cars   | LDA                                    | 0.00041                        | 169                        | 190                                        |
|                         |                     |               | Total emissions                        | Total emissions per Year (lbs) | 868                        | 880                                        |
|                         |                     |               | Total emissions per Year (tons)        | per Year (tons)                | 0.45                       | 0.44                                       |
|                         |                     | Annua         | Annual Average emissions per Day (Ibs) | ıs per Day (lbs)               | 2.46                       | 2.41                                       |

### Assumptions

2.4 tons (CalEEMod guidance) 34 CalEEMod Station USC00049699, POWAY 3.2NE, CA US  $0.06 \text{ g/m}^2$ , AP-42, Table 13.2.1-2 (ADT >5,000) 2,000 365 0.0022 lbs/VMT, AP-42, Table 13.2.1-1 Average weight all vehicles on road (W) Days of Precipitation (P) Road surface silt loading (sL) Particle size multiplier (k) Work days per year Pounds per ton

 $k^*(sL)^{0.91}*(W)^{1.02}*[1-P/(4N)]$  AP-42, Equation 13.2.1.3 (2) 365 days Day in averaging period (N)

### Emission Factor (Ibs/VMT) Abbreviations

EF = emission factor; g = grams; m= meter; VMT = vehicle miles travelled; PM<sub>100</sub> = coarse particulate matter (dust); lbs = pounds Equation:

Emissions = Daily VMT \* Emission Factor

Off-Site PM<sub>2.5</sub> Dust Emissions from Paved Roads

| Activity Description    | otion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | Vehicle                                | EF                             | PM <sub>2.5D</sub> Emissions (Ibs per year) | ıs (Ibs per year) |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------------------------|--------------------------------|---------------------------------------------|-------------------|
| Origin                  | Destination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Vehicle Type  | Classification                         | (Ibs/VMT)                      | Existing                                    | Project           |
| Tracy                   | Foothill Landfill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 48' Transfer  | HHDT                                   | 0.00010                        | 99                                          | 0                 |
| Lovelace TS             | Foothill Landfill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 48' Transfer  | TOHH                                   | 0.00010                        | 48                                          | 0                 |
| Lovelace TS             | Forward Landfill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 48' Transfer  | HHDT                                   | 0.00010                        | 2                                           | 0                 |
| Tracy                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 48' Transfer  | HHDT                                   | 0.00010                        | 0                                           | 59                |
| Lovelace TS             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 48' Transfer  | HHDT                                   | 0.00010                        | 23                                          | 71                |
| Lodi TS - WM            | = 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 × 2 × 197 | 48' Transfer  | HHDT                                   | 0.00010                        | 6                                           | 6                 |
| Stockton Scavenger      | Notes County Landing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Garbage Truck | MHDT (NG)                              | 0.00010                        | 7                                           | 7                 |
| Cal Waste - Area F/Galt |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Garbage Truck | MHDT                                   | 0.00010                        | 12                                          | 12                |
| Regional                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Misc Comm     | LHDT1                                  | 0.00010                        | 12                                          | 12                |
| Worker Commute          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Worker cars   | LDA                                    | 0.00010                        | 41                                          | 47                |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | Total emission                         | Total emissions per Year (lbs) | 220                                         | 216               |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | Total emissions per Year (tons)        | per Year (tons)                | 0.11                                        | 0.11              |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Annua         | Annual Average emissions per Day (Ibs) | ıs per Day (Ibs)               | 0.85                                        | 0.83              |

|   | ¢  | r              |
|---|----|----------------|
|   | \$ |                |
|   | (  | ٥              |
| • | :  | 5              |
| ľ | Š  | 3              |
|   | 8  | Ξ              |
|   | :  | 3              |
|   | ¢  | n              |
|   | ¢  | n              |
| ٠ | ¢  | 1              |
|   |    | Accitometion A |

Work days per year Particle size multiplier (k) Pounds per ton

Average weight all vehicles on road (W) Days of Precipitation (P) Road surface silt loading (sL)

Day in averaging period (N) Emission Factor (lbs/VMT)

2,000
260 Information provided by project applicant
0,00054 Ibs/VMT, AP-42, Table 13.2.1-1
0.06 g/m², AP-42, Table 13.2.1-2 (ADT >5,000)
2.4 tons (CalEEMod guidance)
34. CalEEMod Station USC00049699, POWAY 3.2NE, CA US
365 days
8 365 days
AP-42, Equation 13.2.1.3 (2)

EF = emission factor; g = grams; m= meter; VMT = vehicle miles travelled; PW<sub>2.50</sub> = fine particulate matter (dust); lbs = pounds **Abbreviations** 

Emissions = Daily VMT \* Emission Factor Equation:

# Appendix A-6: Landfill Gas Flare Input Parameters and Emissions Calculations

Information about criteria air pollutant emissions limits was obtained from the project's current Title V permit. Average heat input to flare was obtained from the 2023 emission inventory.

### Summary of Maximum Criteria Air Pollutant Emissions

| Title V Emission Limit | ion Limit              |          |                  | Maximum Emi | Maximum Emissions from Flare |
|------------------------|------------------------|----------|------------------|-------------|------------------------------|
|                        |                        |          | Flare Heat Input |             |                              |
| Pollutant              | <b>Emission Factor</b> | Unit     | (MMbtu/hour)     | lb/hour     | Tons/year                    |
| NOX                    | 90.0                   | lb/MMbtu |                  | 1.464       | 6.41                         |
| SOx                    | 0.03                   | lb/MMbtu |                  | 0.732       | 3.21                         |
| 00                     | 0.09                   | lb/MMbtu | 74.4             | 2.196       | 9.62                         |
| $PM_{\mathtt{10}}$     | 0.034                  | lb/MMbtu |                  | 0.8296      | 3.63                         |
| NOC                    | 20                     | hmyd     | 1                | 0.32        | 1.41                         |

### Assumptions

Pounds per ton Work days per year Flare Heat Input VOC Molecuar Weight (as hexane) Flare flow rate

2,000 365 24.4 MMbtu/hr; 2023 emission inventory 86.18 g/mol 1200 scfm

### ATTACHMENT B NORTH COUNTY LANDFILL 2023 EMISSON INVENTORY

### Emission Statement - Calendar Year 2023 Emissions

Date / Time Printed 1/16/2024 / 11:03:17 AM

UTM Zone:

10

UTM East: 666,405

UTM North: 4218.98 Please Sign and Return to:

San Joaquin Valley APCD

1990 E. Gettysburg Ave.

Fresno, CA 93726

Facility ID# TAD#

N - 1119 39 - 1119

SIC#

4953

Facility Name NORTH COUNTY SANITARY LANDFILL

TOXID#

3170

Planning Inventory

Update Summary

CTR V

|      |                   |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                  |                  |                  |                 |                   |                   | Note: NH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |
|------|-------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------|------------------|------------------|-----------------|-------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|      | Process<br>Number | Equipment Type                       | Yearly<br>Process Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Units<br>Source Classification Code | NOX<br>Lb / Unit | VOC<br>Lb / Unit | SOX<br>Lb / Unit | CO<br>Lb / Unit | PM10<br>Lb / Unit | NH3*<br>Lb / Unit | emissions a<br>in lbs / yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |
| 1    | 1                 | 24.4 MMBTU/HR FLARE - LPG PILOT FUEL | 0.3197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1000 GALLONS                        | 8.8              | .47              | 86.5             | 1.8             | .26               | .0                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|      |                   | COMBUSTION                           | e de la companya de l | 50290010                            | .0               | .0               | .01              | .0              | _0_               | .0                | (Tons/Yr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |
| 1 2  | 2                 | 24.4 MMBTU/HR FLARE - PROCESS GAS    | 272.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MILLION FT3 BURNED                  | .29              | .01              | .03              | .03             | .0                | .0                | 100 Table Ta |           |
| 2015 |                   | COMBUSTION                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | COMBUSTION 545,6                    |                  | 50100410         |                  | .0              |                   | .0 .0             | .0 .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (Tons/Yr) |
| 1    | 3                 | 12.4 MMCM CAPACITY MSW DISPOSAL      | 71.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ACRES OF LANDFILL                   | .0               | .0               | .0               | .0              | 2.6               | .0                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|      |                   |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50200602                            | .0               | .0               | _0_              | .0              | .09               | .03               | (Tons/Yr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |
|      |                   |                                      | Totals For                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | the Facility (Tons / Year)          | 0.04             | 0.00             | 0.02             | 0.0             | 0.09              | 0.03              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |

Contact

Mark Houghton

Company

NORTH COUNTY SANITARY LANDFIL

Address City,State,Zip

STOCKTON, CA 95201

Telephone Email:

(209) 468 - 8504

P O BOX 1810

Location of

facility if different 17720 E HARNEY LN

NORTH COUNTY SANITARY LANDFIL

from above LODI, CA 95240 Name and Title of Responsible Official

Billy Baier, Taj Bahadon, Desi Reno

Mark Houghton

I certify that I am authorized by the owner or operator of the facility to submit the annual emissions report, and that to the best of my knowledge, all information submitted is true, complete, and correct. Additionally, if the CTR box above is checked, this information will be transmitted to the California Air Resources Board on my behalf pursuant to the Regulation for the Reporting of Criteria Air Pollutants and Toxic Air Contaminants (17 CCR Section 93400-93410)(CTR).

Signature of Responsible Official and Date

To submit a request to the District to designate information as confidential, please forward a completed "Request for Confidential Classification of Source Data" to the District, which can be found online at www.valleyair.org. Upon receiving the form, District staff will assess the request and determine whether the information can be classified as confidential under District Rule 1030.

### ATTACHMENT C HEALTH RISK ASSESSMENT CALCULATION DETAILS

# Appendix C-1: AERMOD Parameters, Assumptions, and Results for DPM Emissions from Haul Trucks along the Haul Route

### Overview

factors from the California Air Resources Board's EMFAC2021 database for the San Joaquin Valley Air Pollution Control District. The results from AERMOD, which were Information about haul truck trips was provided by the project applicant. Emissions of DPM from haul trucks were estimated for the project condition using emissions Exhaust emissions of DPM from offsite haul trucks travel were used to model the annual average concentrations of DPM at sensitive receptors near the haul route. based on a unit emission rate (1 gram/second), were updated based on the actual DPM emission rates for each source area and year of operation.

# AERMOD Results for Annual Average DPM Concentrations based on Unit Emission Rate (μg/m³)

|                   | Receptor Distance | Maximum                    |  |
|-------------------|-------------------|----------------------------|--|
| Source Area       | (feet)            | Concentration <sup>1</sup> |  |
| Haul Truck Travel | 65                | 22.19                      |  |

### **Model Assumptions for Haul Truck Travel**

| Line-Area Source    | 6.7 Double-lane road with 22 feet | 12.7 Width of a two-lane road + 6 meter | 1,140 Haul road segment | 4.0 Typical height of heavy-duty trucks | 6.8 1.7 * vertical height (consider traffic-induced r | 3.4 AERMOD Haul Road Area Source Calculator | 3.16 AERMOD Haul Road Area Source Calculator |
|---------------------|-----------------------------------|-----------------------------------------|-------------------------|-----------------------------------------|-------------------------------------------------------|---------------------------------------------|----------------------------------------------|
| Modeled Source Type | Road Width (meters)               | Length of Side (meters)                 | Line Length (meters)    | Vehicle Height (meters)                 | Plume Height (meters)                                 | Release Height (meters)                     | Initial Vertical Dimension (meters)          |

mixing)

### Notes:

DPM = diesel particulate matter

 $\mu g/m^3 = micrograms per cubic meter$ 

<sup>1</sup> Based on the Maximally Exposed Individual Receptor at 65 feet from the haul route.

Attachment C HRA

### Actual DPM Emission Rates and Scaling Factors

| Source Area       | Units       | Existing | Project  |
|-------------------|-------------|----------|----------|
| Haul Truck Travel | gram/second | 0.000052 | 0.000098 |

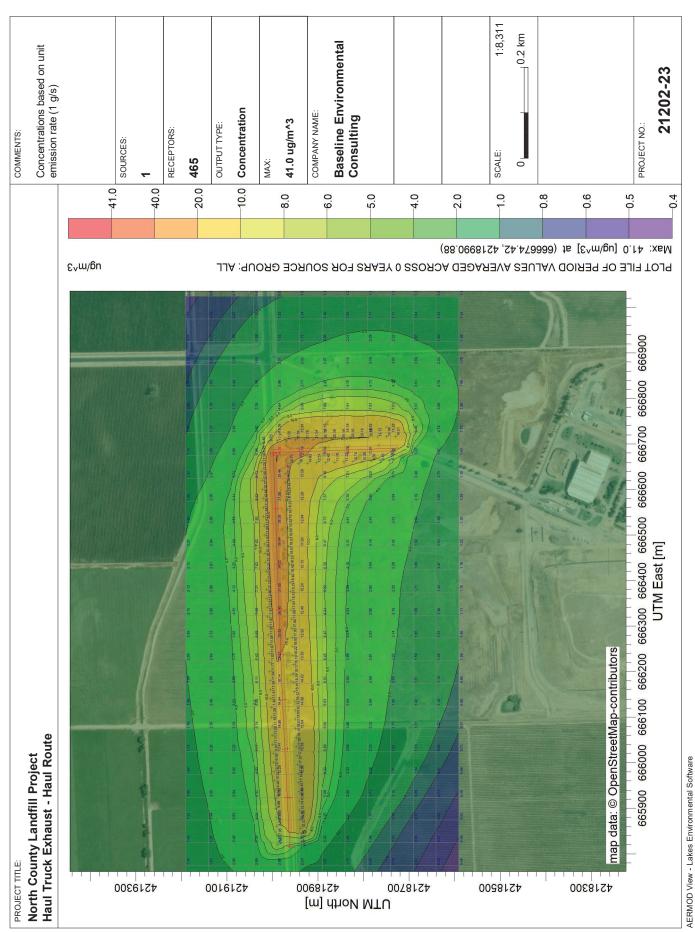
### Assumptions

0.029 EMFAC2021 Emission Rates in Valley Air District in 2024; aggregate model years; aggregate speed. 36,608 Current Condition (excluding trucks currently routed to Foothill and Forward Landfill). 100 Current Condition (excluding trucks currently routed to Foothill and Forward Landfill). 71.05 Current Condition. Based on modeled line source length and one-way trips. 132.81 Project Condition. Based on modeled line source length and one-way trips. 0.71 Modeled line source length along haul route. 11 Everyday: 6 am to 5 pm 187 Project Condition. 68,432 Project Condition. 39,600 Haul trucks one-way trips per work day Haul trucks one-way trips per work day Haul trips per year (one-way) Haul trips per year (one-way) Average hours/work day PM<sub>10</sub> RUNEX EF (g/mile) Seconds per work day Work days per year Trip length (miles) VMT/work day VMT/work day

DPM = diesel particulate matter

g/s = grams per second

RUNEX = Engine Running Exhaust Emission Factor


Truck Travel Emission Rate (g/s) = VMT/day \* RUNEX EF \* conversion

# AERMOD Results for Annual Average DPM Concentrations based on Actual Emission Rates $(\mu \mathrm{g}/\mathrm{m}^3)$

|                   | Receptor Distance |           |           |
|-------------------|-------------------|-----------|-----------|
| Source Area       | (feet)            | Existing  | Project   |
| Haul Truck Travel | 9                 | 0.0011618 | 0.0021717 |

DPM = diesel particulate matter

 $\mu g/m^3 = micrograms per cubic meter$ 



# Appendix C-2: Health Risk Assessment Parameters, Assumptions, and Results

### Overview

In accordance with guidance from the Office of Environmental Health Hazard Assessment (OEHHA, 2015), the incremental increase in cancer risk and chronic hazard index for sensitive receptors exposed to DPM emissions from the haul trucks.

### **Existing Condition**

Health Risk Assessment Parameters and Results for Exposure to DPM at the Maximally Exposed Individual Receptor 65 feet from the Haul Route

|                                           |                           | 3rd       | 0-2 Year  | 2-16 Year | > 16 Year |                                                    |
|-------------------------------------------|---------------------------|-----------|-----------|-----------|-----------|----------------------------------------------------|
| Inhalation Cancer Risk Assessment         | Units                     | Trimester | Infant    | Child     | Adult     | Notes                                              |
| Concentration (C)                         | µg/m³                     | 0.00116   | 0.00116   | 0.00116   | 0.00116   | AERMOD Annual Average                              |
| Daily Breathing Rate (DBR)                | L/kg-day                  | 361       | 1090      | 572       | 621       | 95th percentile (OEHHA, 2015)                      |
| Inhalation absorption factor (A)          | unitless                  | 1.0       | 1.0       | 1.0       | 1.0       | ОЕННА, 2015                                        |
| Exposure Frequency (EF)                   | unitless                  | 96'0      | 96.0      | 96.0      | 96'0      | 350 days/365 days in a year (OEHHA, 2015)          |
| Dose Conversion Factor (CF <sub>D</sub> ) | mg-m³/µg-L                | 0.000001  | 0.000001  | 0.000001  | 0.000001  | 0.000001 Conversion of µg to mg and L to m³        |
| Dose (D)                                  | mg/kg/day                 | 0.0000004 | 0.0000012 | 0.0000006 | 0.0000007 | 0.0000007 C*DBR*A*EF*CF <sub>D</sub> (OEHHA, 2015) |
| Cancer Potency Factor (CPF)               | (mg/kg/day) <sup>-1</sup> | 1.1       | 1.1       | 1.1       | 1.1       | ОЕННА, 2015                                        |
| Age Sensitivity Factor (ASF)              | unitless                  | 10        | 10        | 3         | 1         | ОЕННА, 2015                                        |
| Annual Exposure Duration (ED)             | years                     | 0.25      | 2.00      | 14.00     | 13.75     | Assumes 30 years of exposure                       |
| Averaging Time (AT)                       | years                     | 02        | 70        | 70        | 0/        | 70 years for residents (OEHHA, 2015)               |
| Fraction of time at home (FAH)            | unitless                  | 0.85      | 0.85      | 0.85      | 0.85      | ОЕННА, 2015                                        |
| Cancer Risk Conversion Factor (CF)        | m³/L                      | 1000000   | 1000000   | 1000000   | 1000000   | Chances per million (OEHHA, 2015)                  |
| Cancer Risk                               | per million               | 0.013     | 0.32      | 0.36      | 0.13      | D*CPF*ASF*ED/AT*FAH*CF (OEHHA, 2015)               |
| Total Cancer Risk                         | per million               |           | 0.82      | 82        |           | Threshold = 10.0                                   |
| Chronic Reference Exposure Level (REL)    | µg/m³                     | 2.0       | 5.0       | 5.0       | 5.0       | ОЕННА, 2015                                        |
| Chronic Hazard Quotient                   | unitless                  | 0.00023   | 0.00023   | 0.00023   | 0.00023   | С/REL (ОЕННА, 2015)                                |
| Maximum Chronic Hazard Index              | unitless                  |           | 0.00      | 0.00023   |           | Threshold = 1.0                                    |

### Notes:

DPM = diesel particulate matter

 $\mu g/m^3 = micrograms per cubic meter$ 

L/kg-day = liters per kilogram-day

mg/L = milligrams per liter

 $m^3/\mu g = cubic meters per microgram$ 

 $m^3/L = cubic meters per liter$ 

mg/kg/day = milligrams per kilogram per day

Office of Environmental Health Hazard Assessment (OEHHA), 2015. Air Toxics Hot Spots Program Guidance Manual for Preparation of Health Risk Assessments.

Attachment C HRA

**Project Condition** 

Health Risk Assessment Parameters and Results for Exposure to DPM at the Maximally Exposed Individual Receptor 65 feet from the Haul Route

|                                           |                           | 2,4       | 0.2 Von   | 2.16 Von  | 16 Voor   |                                                         |
|-------------------------------------------|---------------------------|-----------|-----------|-----------|-----------|---------------------------------------------------------|
| Inhalation Cancer Risk Assessment         | Units                     | Trimester | Infant    | Child     | Adult     | Notes                                                   |
| Concentration (C)                         | mg/m <sub>3</sub>         | 0.00217   | 0.00217   | 0.00217   | 0.00217   | AERMOD Annual Average                                   |
| Daily Breathing Rate (DBR)                | L/kg-day                  | 361       | 1090      | 572       | 621       | 95th percentile (OEHHA, 2015)                           |
| Inhalation absorption factor (A)          | unitless                  | 1.0       | 1.0       | 1.0       | 1.0       | ОЕННА, 2015                                             |
| Exposure Frequency (EF)                   | unitless                  | 96.0      | 96.0      | 96.0      | 96.0      | 350 days/365 days in a year (OEHHA, 2015)               |
| Dose Conversion Factor (CF <sub>D</sub> ) | mg-m³/µg-L                | 0.000001  | 0.000001  | 0.000001  | 0.000001  | 0.000001 Conversion of µg to mg and L to m <sup>3</sup> |
| Dose (D)                                  | mg/kg/day                 | 0.0000008 | 0.0000023 | 0.0000012 | 0.0000013 | 0.0000013 C*DBR*A*EF*CF <sub>D</sub> (OEHHA, 2015)      |
| Cancer Potency Factor (CPF)               | (mg/kg/day) <sup>-1</sup> | 1.1       | 1.1       | 1.1       | 1.1       | ОЕННА, 2015                                             |
| Age Sensitivity Factor (ASF)              | unitless                  | 10        | 10        | 3         | 1         | ОЕННА, 2015                                             |
| Annual Exposure Duration (ED)             | years                     | 0.25      | 2.00      | 14.00     | 13.75     | Assumes 30 years of exposure                            |
| Averaging Time (AT)                       | years                     | 70        | 70        | 70        | 0/        | 70 years for residents (OEHHA, 2015)                    |
| Fraction of time at home (FAH)            | unitless                  | 0.85      | 0.85      | 0.85      | 0.85      | ОЕННА, 2015                                             |
| Cancer Risk Conversion Factor (CF)        | m <sub>3</sub> /L         | 1000000   | 1000000   | 1000000   | 1000000   | Chances per million (OEHHA, 2015)                       |
| Cancer Risk                               | per million               | 0.025     | 0.61      | 0.67      | 0.24      | D*CPF*ASF*ED/AT*FAH*CF (OEHHA, 2015)                    |
| Total Cancer Risk                         | per million               |           | 1.54      | 54        |           | Threshold = 10.0                                        |
| Chronic Reference Exposure Level (REL)    | µg/m³                     | 5.0       | 5.0       | 5.0       | 5.0       | ОЕННА, 2015                                             |
| Chronic Hazard Quotient                   | unitless                  | 0.00043   | 0.00043   | 0.00043   | 0.00043   | С/REL (ОЕННА, 2015)                                     |
| Maximum Chronic Hazard Index              | unitless                  |           | 0.00043   | 043       |           | Threshold = 1.0                                         |

### Notes:

DPM = diesel particulate matter

 $\mu g/m^3 = micrograms per cubic meter$ 

L/kg-day = liters per kilogram-day

mg/L = milligrams per liter

 $m^3/\mu g = cubic meters per microgram$ 

 $m^3/L = cubic$  meters per liter

mg/kg/day = milligrams per kilogram per day

Office of Environmental Health Hazard Assessment (OEHHA), 2015. Air Toxics Hot Spots Program Guidance Manual for Preparation of Health Risk Assessments.





### **MEMORANDUM**

**Date:** February 26, 2025 **Job No.:** 21202-23

**To:** Rob Carnachan, Senior Environmental Planner, WRA, Inc.

From: Yilin Tian, Project Environmental Engineer, Baseline Environmental Consulting

Subject: Noise and Vibration Technical Study, North County Sanitary Landfill and Recycling

Center Solid Waste Facility Permit Amendment Project, Lodi, California

Baseline Environmental Consulting (Baseline) has prepared this technical study to evaluate the potential noise and vibration impacts associated with the proposed North County Sanitary Landfill and Recycling Center (North County Landfill) Solid Waste Facility Permit Amendment Project (project) located in Lodi, California. This technical memorandum includes an overview of fundamental noise and vibration concepts, a description of the existing sensitive receptors and noise conditions in the project vicinity, and an analysis of the potential noise and vibration impacts associated with the implementation of the project. This study will be used to support environmental review for the project under the California Environmental Quality Act (CEQA).

### PROJECT DESCRIPTION

The project site is located at 17720 East Harney Lane and approximately 0.35 miles south of East Harney Lane via an access road (**Figure 1**). The project site has operated as a solid waste disposal and transfer/processing facility since 1991. The total permitted area for all facility operations is 320 acres and the landfilling area is 185 acres. In addition to the waste disposal area, the four main buildings on site are a recycling center, office/maintenance building, water pump house building, and scale house. There is a permanent berm, set back 100 feet from the property line, surrounding the project site's perimeter.

The project consists of a proposed amendment to the Solid Waste Facility Permit to increase the maximum allowed daily refuse disposal and the number of daily incoming refuse vehicles from 1,200 tons per day and 850 vehicles per day to 4,000 tons and 1,200 vehicles per day. This increase would involve a change in refuse truck routing; approximately 50 transfer trucks that currently go to the Foothill Landfill would be re-routed to the North County Landfill. The refuse trucks would access the North County Landfill via East Harney Lane and the North County Landfill access road. The projected annual intake would increase from 250,000 tons in 2024 to 660,000 tons in 2026, then increase 3% annually thereafter. In addition, the North County Landfill currently operates from 7:00 am to 5:00 pm, seven days per week. The project would add one more hour to the Noth County Landfill's daily operations between 6:00 am and



### Memorandum

February 26, 2025 Page 2

7:00 am to allow the acceptance of commercial waste during this time period. The project would not change the North County Landfill's capacity and would not involve new construction.

### **NOISE AND VIBRATION CONCEPTS**

### **Noise Concepts and Terminology**

Noise is commonly defined as unwanted sound that annoys or disturbs people and can have an adverse psychological or physiological effect on human health. Sound is measured in decibels (dB), which is a logarithmic scale. Decibels describe the purely physical intensity of sound based on changes in air pressure, but they cannot accurately describe sound as perceived by the human ear since the human ear is only capable of hearing sound within a limited frequency range. For this reason, a frequency-dependent weighting system is used, and monitoring results are reported in A-weighted decibels (dBA). Decibels and other acoustical terms are defined in **Table 1**.

**Table 1. Definition of Acoustical Terms** 

| Term                   | Definition                                                                        |
|------------------------|-----------------------------------------------------------------------------------|
| Frequency (Hz)         | The number of complete pressure fluctuations per second above and below           |
| Frequency (HZ)         | atmospheric pressure.                                                             |
|                        | A unit describing the amplitude of sound on a logarithmic scale. Sound            |
| Decibel (dB)           | described in decibels is usually referred to as sound or noise "level." This unit |
| Deciber (db)           | is not used in this analysis because it includes frequencies that the human       |
|                        | ear cannot detect.                                                                |
|                        | The sound pressure level in decibels as measured on a sound level meter           |
| A-Weighted Sound       | using the A-weighting filter network. The A-weighting filter de-emphasizes        |
| Level (dBA)            | the very low and very high frequency components of the sound, in a manner         |
| Level (ubA)            | similar to the frequency response of the human ear, and correlates well with      |
|                        | subjective reactions to noise. All sound levels in this report are A-weighted.    |
| Maximum Sound Levels   | The maximum sound level measured during a given measurement period.               |
| (Lmax)                 | The maximum sound level measured during a given measurement period.               |
| Exceedance Level (Ln)  | The A-weighted noise levels that are exceeded 10%, 50%, and 90% (L10, L50,        |
| Exceedance Level (LII) | L90, respectively) of the time during the measurement.                            |
| Equivalent Noise       | The average A-weighted noise level during the measurement period. For this        |
| Level (Leq)            | evaluation, Leq refers to a 1-hour period unless otherwise stated.                |
| Day/Night Noise        | The average A-weighted noise level during a 24-hour day, obtained after           |
| Level (Ldn)            | addition of 10 decibels to sound levels during the night between 10:00 p.m.       |
| Level (Luli)           | and 7:00 a.m.                                                                     |



February 26, 2025

Page 3

| Term                    | Definition                                                                     |  |  |  |  |
|-------------------------|--------------------------------------------------------------------------------|--|--|--|--|
| Ambient Noise Level     | The existing level of environmental noise at a given location from all sources |  |  |  |  |
| Ambient Noise Level     | near and far.                                                                  |  |  |  |  |
| Vibration Decibel (VdB) | A unit describing the amplitude of vibration on a logarithmic scale.           |  |  |  |  |
| Peak Particle Velocity  | The maximum instantaneous peak of a vibration signal.                          |  |  |  |  |
| (PPV)                   |                                                                                |  |  |  |  |
| Root Mean Square (RMS)  | The average of the squared amplitude of a vibration signal.                    |  |  |  |  |
| Velocity                |                                                                                |  |  |  |  |

Sources: Charles M. Salter Associates, Inc., 1998. Acoustics – Architecture, Engineering, the Environment, William Stout Publishers.

Federal Transit Administration, 2018. Transit Noise and Vibration Impact Assessment Manual, FTA Report No.0123, September.

A typical method for determining a person's subjective reaction to a new noise is by comparing it to existing conditions. The following describes the general effects of noise on people:

- A 3-dBA increase is considered barely noticeable.
- A 5-dBA increase is considered clearly noticeable, but not dramatic.
- A 10-dBA increase is perceived as a doubling in loudness.

Traffic noise levels are often expressed in terms of the hourly dBA. The noise levels generated by vehicular sources mainly depend on traffic volume, the speed, and the percent of trucks within the fleet. Increases in these three factors will lead to higher noise levels. Doubling the number of sources, such as traffic volume, increases the noise level by approximately 3 dBA due to the logarithmic nature of noise levels.<sup>1</sup>

In an unconfined space, such as outdoors, noise attenuates with distance. Noise levels at a known distance from point sources are reduced by 6 dBA for every doubling of that distance for hard surfaces (e.g., asphalt) and by 7.5 dBA for every doubling of distance for soft surfaces (e.g., vegetative areas).

# **General Information on Vibration**

Vibration is an oscillatory motion through a solid medium in which the motion's amplitude can be described in terms of displacement, velocity, or acceleration. Typically, ground-borne vibration generated by human activities attenuates rapidly with distance from the source of the vibration. Vibration amplitudes are usually expressed as either Peak Particle Velocity (PPV) or as Root Mean Square (RMS) velocity. The PPV is defined as the maximum instantaneous peak of

<sup>&</sup>lt;sup>1</sup> Federal Highway Administration (FHWA), 2018. Techniques for Reviewing Noise Analyses and Associated Noise Reports.



February 26, 2025 Page 4

the vibration signal. PPV is appropriate for evaluating potential damage to buildings, but it is not suitable for evaluating human response to vibration because it takes the human body time to respond to vibration signals. The response of the human body to vibration is dependent on the average amplitude of a vibration event. The RMS of a signal is the average of the squared amplitude of the signal and is more appropriate for evaluating human response to vibration. PPV is normally described in units of inches per second (in/sec) and RMS is often described in vibration decibels (VdB).

Vibration can be felt or heard by humans well below a level that would result in damage to a structure. Except for long-term occupational exposure, vibration levels rarely affect human health. Instead, most people consider vibration to be an annoyance that can affect concentration or disturb sleep. According to the Federal Transit Administration (FTA), a vibration level of 75 VdB is the approximate dividing line between barely perceptible and distinctly perceptible.<sup>2</sup>

## **ENVIRONMENTAL SETTING**

# **Existing Ambient Noise Conditions**

The project site located in a rural area. The primary sources of existing noise in the project vicinity are vehicular traffic along East Harney Lane. The existing noise environment in the vicinity of the project site was characterized through an ambient noise monitoring survey conducted on February 7, 2025. The survey consisted of three short-term measurements (ST-1 through ST-3). The noise measurement locations are illustrated in **Figure 1**. Sound level measurements were conducted using Type 1 sound level meters with slow response and "A" weighting. The noise monitoring equipment for the short-term measurements were collected using a tripod at 5 feet above ground level. The microphones were protected from the effects of wind noises. The noise meters were field calibrated immediately prior to and post use. Ambient noise measurement locations, monitoring periods, and corresponding results are summarized in **Table 2** and the supporting noise measurement reports are included in **Attachment A**.

<sup>2</sup> Federal Transit Administration (FTA), 2018. Transit Noise and Vibration Impact Assessment Manual, FTA Report

No.0123, September.



February 26, 2025 Page 5

Table 2. Summary of Existing Noise Level Measurements

| ID   | Location                                                                                                                                                      | Monitoring<br>Period    | Noise<br>Level<br>(dBA Leq) | Dominant Source of Noise                                                           |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------|------------------------------------------------------------------------------------|
| ST-1 | About 430 feet south to the intersection of East Harney Lane and the North County Landfill access road (about 30 feet from the centerline of the access road) | 09:45 am to<br>10:00 am | 69.4                        | Automobiles and trucks on the access road                                          |
| ST-2 | Adjacent northeast corner of the project site near East Harney Lane (about 25 feet from the centerline)                                                       | 10:42 am to<br>11:00 am | 78.7                        | Automobiles and trucks on East<br>Harney Lane                                      |
| ST-3 | Access road at western boundary of the North County Landfill                                                                                                  | 10:15 am to<br>10:30 am | 55.9                        | Aircraft overflights, nearby worker activities (pick-up truck and workers talking) |

Source: Attachment A.

# **Existing Sensitive Receptors**

Noise-sensitive receptors are locations where people are more susceptible to elevated noise levels than others due to the amount of noise exposure and the types of activities typically involved. Sensitive receptors include, but are not limited to residences, schools, places of worship, hospitals, convalescent homes, hotels, and libraries. Vibration-sensitive receptors are locations where people are more susceptible to the adverse effects of vibration. These include residences and other buildings where people normally sleep, as well as buildings that have the potential for activity interference (e.g., vibration sensitive equipment, schools, and places of worship). In certain situations, vibration also can cause structural damage.

The surrounding land uses are primarily agricultural with scattered single-family residences. The closest sensitive receptor to the project site is a residence located on-site about 460 feet southeast of the intersection of East Harney Lane and the North County Landfill access road (**Figure 1**). As mentioned above, the project-generated trucks would access the North County Landfill via East Harney Lane and the North County Landfill access road. Sensitive receptors along the haul route include residences as close as approximately 65 feet to the centerline of East Harney Lane and schools, including Harmony Grove Elementary School and the Adelita Montessori School, as close as approximately 70 feet to the centerline of East Harney Lane.



February 26, 2025 Page 6

## REGULATORY FRAMEWORK

## **Federal Transit Administration**

The Federal Transit Administration (FTA) has developed vibration thresholds to prevent disturbances to (i.e., annoyance of) building occupants based on the frequency of a vibration event.<sup>3</sup> Vibrations that are equal to or exceed the vibration thresholds could result in potential disturbance to people or activities. The FTA thresholds of 80 VdB and 83 VdB for infrequent events<sup>4</sup> are used in this analysis to evaluate disturbance to residences and buildings where people normally sleep and to institutional land uses with primarily daytime use (such as schools and library), respectively.

The FTA has also developed vibration thresholds based on PPV values to evaluate the potential impact of construction vibration on structures. Construction vibrations that are equal to or exceed the vibration thresholds could result in potential damage to structures. The FTA threshold of 0.2 in/sec PPV for non-engineered timber and masonry buildings is used to represent the building types near the project site and along the haul route based on the apparent age of the buildings.

# **San Joaquin County Noise Ordinance**

San Joaquin County regulates noise via the County's noise ordinance (Code of Ordinance Chapter 9-404). Chapter 9-404.040 establishes standards for noise from transportation sources and stationary sources, as presented in **Tables 3** and **4**, respectively. For transportation sources, the noise ordinance chapter 9-404.040.(a) requires private development projects involving new or expanded transportation facilities to mitigate noise levels that exceed the standards specified in **Table 3**. For stationary noise sources, the noise ordinance chapter 9-404.040.(b) requires projects involving new or expanded stationary noise sources to mitigate noise levels that exceed the noise level standards specified in **Table 4**.

Table 3. San Joaquin County Maximum Allowable Noise Exposure from Transportation Noise Sources

| Noise Sensitive Land Use                   | Outdoor Activity Areas <sup>1</sup><br>(dBA Ldn) | Interior Spaces<br>(dBA Ldn) |
|--------------------------------------------|--------------------------------------------------|------------------------------|
| Residential                                | 65                                               | 45                           |
| College and Trade School                   | 65                                               | 45                           |
| Commercial Use Types not separately listed | -                                                | 45                           |

<sup>&</sup>lt;sup>3</sup> Federal Transit Administration (FTA), 2018. Transit Noise and Vibration Impact Assessment Manual, FTA Report No.0123, September.

<sup>&</sup>lt;sup>4</sup> Infrequent events = less than 30 events per day. The "infrequent events" threshold is appropriate for off-road equipment in this analysis based on the nature of the landfill operational activities.



February 26, 2025

Page 7

| Noise Sensitive Land Use              | Outdoor Activity Areas <sup>1</sup> (dBA Ldn) | Interior Spaces<br>(dBA Ldn) |
|---------------------------------------|-----------------------------------------------|------------------------------|
| Community Assembly/Religious Assembly | 65                                            | 45                           |
| Cultural Institutions                 | 65                                            | 45                           |
| Hospitals and Clinics                 | 65                                            | 45                           |
| Offices                               | -                                             | 45                           |
| Parks and Recreation Facilities       | 65                                            | 45                           |
| Schools                               | 65                                            | 45                           |

<sup>&</sup>lt;sup>1</sup> Where the location of outdoor activity areas is unknown or is not applicable, the noise standard shall be applied at the property line of the receiving land use. When determining the effectiveness of noise mitigation measures, the standards shall be applied on the receiving side of noise barriers or other property line noise mitigation measures.

Source: San Joaquin County Code of Ordinance Table 9-404.040.

Table 4. San Joaquin County Maximum Allowable Noise Exposure from Stationary Noise Sources

|                                                       | Outdoor Activity Areas of I | Noise Sensitive Land Uses <sup>1</sup> |
|-------------------------------------------------------|-----------------------------|----------------------------------------|
| Sound Level                                           | Daytime <sup>2</sup>        | Nighttime <sup>2</sup>                 |
|                                                       | (7 a.m. to 10 p.m.)         | (10 p.m. to 7 a.m.)                    |
| Hourly Equivalent Sound Level (Leq), dBA <sup>3</sup> | 55                          | 45                                     |
| Maximum Sound Level (Lmax), dBA                       | 75                          | 65                                     |

<sup>&</sup>lt;sup>1</sup> Where the location of outdoor activity areas is unknown or is not applicable, the noise standard shall be applied at the property line of the receiving land use. When determining the effectiveness of noise mitigation measures, the standards shall be applied on the receiving side of noise barriers or other property line noise mitigation measures.

Source: San Joaquin County Code of Ordinance Table 9-404.040.

# San Joaquin County General Plan, Noise Element

Besides the noise standards presented in **Tables 3** and **4**, the San Joaquin County 2035 General Plan (General Plan)<sup>5</sup> includes the following policies related to noise and vibration:

**PHS-9.4 Acceptable Vibration Levels**. The County shall require construction projects anticipated to generate a significant amount of vibration to ensure acceptable interior vibration levels at nearby vibration-sensitive uses based on FTA criteria.

<sup>&</sup>lt;sup>2</sup> Each of the noise level standards specified shall be reduced by 5 dB for impulsive noise, single tone noise, or noise consisting primarily of speech or music.

<sup>&</sup>lt;sup>3</sup> If the noise source operates for less than 30 minutes per hour, then the maximum sound level standard shall apply.

<sup>&</sup>lt;sup>5</sup> Mintier Harnish Planning Consultants, 2016. San Joaquin County General Plan Policy Document, December.



February 26, 2025 Page 8

**PHS-9.6 Enforcement of State and Federal Noise Regulations.** The County shall continue to enforce State and Federal noise laws regarding vehicle operation, equipment, and building insulation.

## SIGNIFICANCE CRITERIA

Implementation of the project would result in a significant impact related to noise and vibration if it would:

- 1. Generate a substantial temporary or permanent increase in ambient noise levels in the vicinity of the project in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies;
- 2. Generate excessive groundborne vibration or groundborne noise levels; or
- For a project located within the vicinity of a private airstrip or an airport land use plan
  or, where such a plan has not been adopted, within two miles of a public airport or
  public use airport, expose people residing or working in the project area to excessive
  noise levels.

The off-road equipment associated with the landfill facility operations is considered a stationary noise source. The noise levels generated by additional off-road equipment at the project site were evaluated using the noise standards for stationary sources established in San Joaquin County noise ordinance chapter 9-404.040.(b), as presented in **Table 4** above. In accordance with the San Joaquin County's General Plan, the FTA vibration impact criteria were used to evaluate potential vibration impacts associated with implementation of the project.

Noise levels along the project haul route would increase because of the additional vehicle trips contributed by project operations. This analysis evaluates if the project would result in a substantial permanent increase in traffic noise levels based on the standards established in San Joaquin County noise ordinance chapter 9-404.040.(a), as presented in **Table 3**, and a conservative threshold of 3 dBA above the existing conditions. According to the noise criteria from Caltrans's Technical Noise Supplement, a 3 dBA increase above ambient noise levels is considered barely perceptible.

<sup>&</sup>lt;sup>6</sup> California Department of Transportation (Caltrans), Division of Environmental Analysis. 2013. Technical Noise Supplement to the Traffic Noise Analysis Protocol. September.



February 26, 2025 Page 9

## **ANALYSIS AND FINDINGS**

# **Operation Noise**

The project would not involve construction of new facilities at the North County Landfill. The primary source of noise during project operation would be due to a net increase in off-road equipment on the project site and project-generated vehicle trips along the haul route. The project would increase the maximum amount of allowed daily refuse disposal and the number of daily incoming refuse trucks from 1,200 tons per day and 850 trucks per day to 4,000 tons and 1,200 trucks per day. This increase would involve a change in refuse truck routing; approximately 51 transfer trucks that currently go to the Foothill Landfill would be re-routed to the North County Landfill. The increase in daily refuse disposal would also increase the use of off-road equipment associated with landfill operations. According to the Transportation Impact Analysis prepared for the project, <sup>7</sup> the project will generate an average of 461 new trips per day, including 359 visitor and worker commute trips and 102 haul truck trips.

## **Landfill Off-Road Equipment Noise**

The heavy off-road equipment currently used at the North County Landfill will continue to be used with implementation of the project. Compared to the current operation condition, the project would increase the hours of operation and increase the number of off-road equipment used on site (one compactor, one scraper, two dozers, and one loader), but would not change the type of equipment used or the manner of operation. It was assumed that heavy off-road equipment will primarily be used at the designated waste disposal areas.

Noise levels from landfill off-road equipment usage were calculated using a conservative outdoor noise propagation methodology that did not consider sound attenuation from intervening buildings or terrain. The nearest noise sensitive receptor to the project site is a single-family home located approximately 2,100 feet northeast from the top of Lined Area 1 (**Figure 1**). Two scenarios were modeled to evaluate the potential noise impacts from off-road equipment operations at the project site:

- 1) Maximum Noise Level Scenario
- 2) Typical Noise Level Scenario

Under the Maximum Noise Level Scenario, it was conservatively assumed that all of the off-road equipment for the project (existing and proposed) would operate simultaneously near the top perimeter of Lined Area 1 for up to 30 minutes. It should be noted that this is a very conservative analysis because it is highly unlikely that all of the off-road equipment would be used simultaneously in this manner, and the existing cells within Lined Area 1 have been filled

<sup>&</sup>lt;sup>7</sup> W-Trans, 2025. DRAFT Transportation Impact Analysis for the North County Recycling Center and Sanitary Landfill Project. January 23.



February 26, 2025 Page 10

and only nominal additions of refuse to this area are expected prior to final closure of the landfill. The combined noise from all off-road equipment under the Maximum Noise Level Scenario was compared to the Lmax thresholds in the County Noise Ordinance for stationary sources referenced in **Table 4**.

Under the Typical Noise Level Scenario, it was assumed that the two loudest pieces of equipment would operate simultaneously near the perimeter of Lined Area 1 throughout the workday (i.e., more than 30 minutes). As discussed above, this is a conservative analysis because Lined Area 1 is currently inactive and only nominal additions of refuse to this area are expected prior to final closure of the landfill. The combined noise from off-road equipment under the Typical Noise Level Scenario was compared to the Leq thresholds in the County Noise Ordinance for stationary sources referenced in **Table 4**.

Modeling the potential noise impact at the closest noise-sensitive receptor is also conservative because it represents a worst-case scenario for all nearby sensitive receptors exposed to noise during project operation. An "acoustical usage factor" was used to account for the fact that equipment would not operate at maximum capacity 100 percent of the time and was based on assumptions that have been developed by the Federal Highway Administration.<sup>8</sup> The types of heavy off-road equipment that would be used on the project site (e.g., backhoe, dozer, and grader) were provided by the project applicant (**Attachment A**).

As shown in **Table 5**, the estimated noise levels at the nearest noise-sensitive receptor for both the Maximum Noise Level Scenario and Typical Noise Level Scenario are below the applicable County Noise Ordinance daytime and nighttime noise standards for stationary sources. The project would also result in a less than 1 dBA increase in ambient noise levels at the nearest noise-sensitive receptor under the Maximum Noise Level Scenario, which would make no perceptible difference. Therefore, the project's use of off-road equipment would not generate substantial noise levels at nearby noise-sensitive receptors during project operations.

Table 5. Potential Noise Impact at Nearest Sensitive Receptor from Off-Road Equipment

| Operation Scenario   | Maximum Noise Level Scenario (dBA Lmax) | Typical Noise Level Scenario<br>(dBA Leq) |
|----------------------|-----------------------------------------|-------------------------------------------|
| Existing Condition   | 57.1                                    | 44.0                                      |
| Project              | 58.0                                    | 44.0                                      |
| Daytime Thresholds   | 75                                      | 55                                        |
| Nighttime Thresholds | 65                                      | 45                                        |
| Exceed Thresholds?   | No                                      | No                                        |

Source: Noise calculations included in Attachment A.

<sup>&</sup>lt;sup>8</sup> U.S. Department of Transportation, 2006. FHWA Highway Construction Noise Handbook. August.



February 26, 2025 Page 11

## **Traffic Noise**

Noise levels along the haul route would increase with the additional vehicle trips contributed by project operations. The project would generate a total of 9 truck trips and 31 visitor/worker commute trips during the AM peak hours and 8 visitor/worker commute trips during the PM peak hours. The project-generated traffic noise levels were calculated during the AM peak hour to represent the highest traffic noise increase during project operation. Traffic noise impacts are evaluated for the Existing plus Project condition, which is the 2024 existing condition plus the project-generated trips, and the Cumulative plus Project condition, which is the 2046 horizon year condition plus the project-generate trips. Traffic volumes during the AM peak hour and associated traffic composition were used in the Federal Highway Administration's Traffic Noise Model (TNM2.5) to estimate traffic noise levels for the Existing condition, Existing plus Project condition, Cumulative condition, and Cumulative plus Project condition. The traffic model inputs and outputs are included in **Attachment A**.

The estimated Existing, Existing plus Project, Cumulative, and Cumulative plus Project traffic noise levels for the studied road segments along the haul route are summarized in **Table 6**. The noise levels reported in **Table 6** are AM peak hour Leq levels, but were presented as Ldn levels for comparison with the San Joaquin County's noise standard of 65-dBA Ldn at noise-sensitive land uses for transportation sources as referenced in **Table 3**. Generally, during the peak traffic hour under normal traffic conditions, Ldn is within plus or minus 2 dBA of the Leq.<sup>9</sup>

Based on these estimates, the project would increase traffic noise by up to 2.0 dBA along the haul route compared to the Existing condition and Cumulative condition, which is below the conservative 3-dBA threshold. It is to be noted that where the Existing plus Project and/or Cumulative plus Project noise levels exceed the San Joaquin County's noise standard of 65-dBA Ldn, the corresponding Existing and Cumulative noise levels have already exceeded the 65-dBA Ldn threshold. Implementation of the project would not result in a new exceedance of the San Joaquin County's noise standards for transportation sources. Therefore, the project-generated traffic noise increase along the haul route would be less than significant.

## Vibration

The project does not include any new construction. Landfill operation would not involve equipment (such as vibratory rollers and crack-and-seat equipment) or activities (such as pile driving) that would generate excessive groundborne vibration or groundborne noise levels. Typical vibration-generating heavy equipment, such as bulldozers and loaded trucks, is currently being used at the North County Landfill. The project would increase the hours of operation and increase the number of off-road equipment, namely one compactor, one scraper, two dozers, and one loader, but would not change the type of equipment used or the

<sup>&</sup>lt;sup>9</sup> Caltrans, 2013. Technical Noise Supplement to the Traffic Noise Analysis Protocol. September.



February 26, 2025 Page 12

manner of operation. Therefore, the project vibration impacts are substantially similar to the existing condition.

According to the FTA, <sup>10</sup> typical vibration levels generated by a large bulldozer and loaded trucks at 25 feet would be 0.089 inch per second (87 VdB) and 0.076 inch per second (86 VdB), respectively. For potential building damage, the vibration levels generated by a large bulldozer and loaded trucks at 25 feet are both below the applicable criteria of 0.2 inch per second recommended by the FTA to prevent damage to structures to non-engineered timber and masonry buildings. Therefore, project operation activities would not generate excessive vibration levels that could potentially cause structure damages.

For human disturbance, a large bulldozer would require a larger buffer distance to avoid generating vibration levels that could potentially cause human disturbance compared to loaded trucks. Vibration from a large bulldozer could exceed the 80-VdB FTA thresholds at residences and the 83-VdB FTA threshold at institutional land uses located within 43 feet and 34 feet, respectively (vibration calculations are provided in **Attachment A**). Since the nearest vibration-sensitive receptor to the project site is located about 2,750 feet from the equipment activity area and the nearest vibration-sensitive receptor along haul route is located about 65 feet from the centerline of the road, project operation activities would not generate excessive vibration levels that could potentially cause human disturbance.

<sup>10</sup> FTA, 2018. Transit Noise and Vibration Impact Assessment Manual, FTA Report No.0123, September.



February 26, 2025

Page 13

Table 6 Existing and Projected Traffic Noise Levels along Haul Route

|             |                                             |          | Traffic Noise Levels (dBA Ldn at 50 feet from centerline <sup>1</sup> ) |           |      |            |           |  |  |
|-------------|---------------------------------------------|----------|-------------------------------------------------------------------------|-----------|------|------------|-----------|--|--|
|             | Road Segment                                |          | Existing plus                                                           | Estimated |      | Cumulative | Estimated |  |  |
|             |                                             | Existing | Project                                                                 | Increase  |      | Increase   |           |  |  |
|             | West of SR-88                               | 66.2     | 66.5                                                                    | 0.3       | 67.8 | 68.0       | 0.2       |  |  |
|             | Between SR-88 and Jack Tone Road            | 66.4     | 67.3                                                                    | 0.9       | 67.3 | 68.0       | 0.7       |  |  |
| East Harney | Between Jack Tone Road and Landfill Access  | 65.0     | 66.8                                                                    | 1.0       | 66.4 | 67.3       | 0.0       |  |  |
| Lane        | Road                                        | 65.8     | 00.8                                                                    | 1.0       | 00.4 | 67.2       | 0.8       |  |  |
|             | Between Landfill Entrance and Clements Road | 62.0     | 62.3                                                                    | 0.3       | 63.1 | 63.3       | 0.2       |  |  |
|             | East of Clements Road                       | 53.6     | 53.6                                                                    | 0         | 53.6 | 53.6       | 0         |  |  |
| CD 00       | North of East Harney Lane                   | 69.8     | 69.8                                                                    | 0         | 72.1 | 72.1       | 0         |  |  |
| SR-88       | South of East Harney Lane                   | 69.7     | 70.0                                                                    | 0.3       | 71.8 | 71.9       | 0.1       |  |  |
| Landfill    | Courts of Fact Harmon Land                  | F7 /     | FO 4                                                                    | 2.0       | F7.4 | FO 4       | 2.0       |  |  |
| Access Road | South of East Harney Lane                   | 57.4     | 59.4                                                                    | 2.0       | 57.4 | 59.4       | 2.0       |  |  |
| Clements    | North of East Harney Lane                   |          | 63.8                                                                    | 0.1       | 66.5 | 66.5       | 0         |  |  |
| Road        | South of East Harney Lane                   | 63.5     | 63.7                                                                    | 0.2       | 66.4 | 66.5       | 0.1       |  |  |
|             | Thresholds                                  | 65       | 65                                                                      | 3         | 65   | 65         | 3         |  |  |
|             | Exceed Both Thresholds?                     |          |                                                                         | No        |      |            | No        |  |  |

**Bold** values indicate exceedance of applicable threshold.

Sources: See Attachment A

<sup>&</sup>lt;sup>1</sup> The noise levels reported in Table 6 are AM peak hour Leq levels, but were presented as Ldn levels for comparison with the San Joaquin County's noise standard of 65-dBA Ldn at noise-sensitive land uses for transportation sources. Generally, during the peak traffic hour under normal traffic conditions, Ldn is within plus or minus 2 dBA of the Leq (Caltrans, 2013).



February 26, 2025 Page 14

# **Airport Noise**

The project site is not located within the vicinity of a private airstrip or within two miles of a public use airport. The nearest airport is the Wallom Field Airport (8CA8) located about 5.7 miles southwest to the project site. Therefore, the project would have no impact related to the exposure of people to excess noise levels from aircraft.

# **CONCLUSION**

Based on the analysis above, implementation of the project would not result in any significant noise and vibration impacts.





# Legend

Noise Measurement Location

Project Site Boundary





Figure 1
Project Site and
Noise Measurement Locations

# **ATTACHMENT A**

**Supporting Noise and Vibration Calculations** 

|          | 2 |                             |
|----------|---|-----------------------------|
|          | Š | 2                           |
|          |   |                             |
|          | Š |                             |
|          | ē | ,                           |
| `        | - |                             |
|          | Š |                             |
| •        | t | 7                           |
|          | 5 |                             |
| ١        | 1 |                             |
|          | Š | 3 1 2 1                     |
| •        | ï |                             |
| į        | ٤ |                             |
|          | ų | 9                           |
|          | ċ |                             |
| :        |   |                             |
| -        | Ì | 3                           |
|          | Č |                             |
| (        |   | ׅ֝֝֝֟֝֝֝֟֝֝֓֓֓֓֩֝֜֜֜֓֓֓֓֓֡֩ |
|          | q |                             |
|          | 2 |                             |
|          | ž |                             |
|          | ; |                             |
|          | ā | Ü                           |
|          | ٤ |                             |
|          | 2 | 2                           |
|          | 2 | 2                           |
| ı        | 1 |                             |
|          |   | į                           |
| ,        | ς |                             |
| 250 1131 | į |                             |
| 2        | ۲ |                             |
|          | = |                             |
| 3        | Ė |                             |
| 7        | ۶ |                             |

|                             |                             |                        | Acoustical          | Maximum<br>Noise Level | Typical             | Doforogo          | Distance to       | pullous      | Maximum             | Typical             | Maximim     | Tvnical          |
|-----------------------------|-----------------------------|------------------------|---------------------|------------------------|---------------------|-------------------|-------------------|--------------|---------------------|---------------------|-------------|------------------|
|                             | USDOT                       | No.                    | Usage               | @ 50 feet              | @ 50 feet           | Distance          | Receptor          | Absorption   | Receptor            | at Receptor         | Noise Level | Noise Level      |
| Equipment Type <sup>1</sup> | Equipment Type <sup>2</sup> | Equipment <sup>1</sup> | Factor <sup>2</sup> | (Lmax) <sup>3</sup>    | (dBA <sub>1</sub> ) | (D <sub>1</sub> ) | (D <sub>2</sub> ) | Constant (G) | (dBA <sub>2</sub> ) | (dBA <sub>2</sub> ) | Scenario    | Scenario         |
|                             |                             | Unit:                  | %                   | dBA Lmax               | dBA Led             | feet              | feet              | unitless     | dBA Lmax            | dBA Leq             | dBA Lmax    | dBA Leg          |
| Soil Compactor              | Compactor (ground)          | 1                      | 20                  | 82                     | 75                  | 20                | 2000              | 0.5          | 42                  | 35                  |             |                  |
| Emergency Pump              | Pumps                       | 2                      | 50                  | 77                     | 74                  | 50                | 2000              | 0.5          | 37                  | 34                  |             |                  |
| Genie Lift                  | Man lift                    | 1                      | 20                  | 85                     | 78                  | 50                | 2000              | 0.5          | 45                  | 38                  |             |                  |
| Loader                      | Front End Loader            | 5                      | 40                  | 80                     | 92                  | 20                | 2000              | 0.5          | 40                  | 36                  |             |                  |
| Scraper                     | Scraper                     | 1                      | 40                  | 85                     | 81                  | 20                | 2000              | 0.5          | 45                  | 41                  |             |                  |
| Sweeper                     | Vacuum Street Sweeper       | 2                      | 10                  | 80                     | 70                  | 50                | 2000              | 0.5          | 40                  | 30                  |             |                  |
| Landfill Compactor          | Compactor (ground)          | 3                      | 20                  | 82                     | 75                  | 50                | 2000              | 0.5          | 42                  | 35                  | 1           | (                |
| Dozers                      | Dozer                       | 4                      | 40                  | 85                     | 81                  | 20                | 2000              | 0.5          | 45                  | 41                  | 57.1        | 0. <del>14</del> |
| Backhoe                     | Backhoe                     | 2                      | 40                  | 80                     | 92                  | 20                | 2000              | 0.5          | 40                  | 36                  |             |                  |
| Grader                      | Grader                      | 2                      | 40                  | 85                     | 81                  | 50                | 2000              | 0.5          | 45                  | 41                  |             |                  |
| Skid Steer                  | Backhoe                     | 1                      | 40                  | 80                     | 92                  | 50                | 2000              | 0.5          | 40                  | 36                  |             |                  |
| KUBOTA Tracker              | Tractor                     | 1                      | 40                  | 84                     | 80                  | 20                | 2000              | 0.5          | 44                  | 40                  |             |                  |
| Tarpomatic Landfill Covers  | Dozer                       | 2                      | 40                  | 85                     | 81                  | 20                | 2000              | 0.5          | 45                  | 41                  |             |                  |
| Backup Alarm                | Backup Alarm <sup>4</sup>   | 1                      | 5                   | 80                     | 29                  | 50                | 2000              | 0.5          | 40                  | 27                  |             |                  |
|                             |                             |                        |                     |                        |                     |                   |                   |              |                     |                     |             |                  |

Notes:

Noise level at the receptor calculated based on the following equation:<sup>4</sup>

 $dBA_2 = dBA_1 + 10 * log_{10}(D_1/D_2)^{2+G}$ 

Where:

 $dBA_2$  = Noise level at receptor

 $dBA_1$  = Noise level at reference distance

D<sub>1</sub> = Reference distance

 $D_2$  = Receptor distance

G = Ground absorption constant (0 for hard surface, 0.5 for soft surface)

Combined noise levels at receptor using decibel addition:

 $L = 10 * log_{10} (10^{\wedge}(L_1/10) + 10^{\wedge}(L_2/10) ... + 10^{\wedge}(Ln/10))$ 

L = Combined noise level

 $L_1 = Noise level for first noisiest piece of equipment$ 

 $L_2 = Noise level for second noisiest piece of equipment$ 

 $L_n =$  Noise level for the  $n^{\text{th}}$  noisiest piece of equipment

 $<sup>^{\</sup>mathrm{1}}$  The type of construction equipment is based on construction equipment list provided by the applicant.

<sup>&</sup>lt;sup>2</sup> U.S. Department of Transportation, 2006. FHWA Highway Construction Noise Handbook, Table 9.1. August.

<sup>&</sup>lt;sup>3</sup> Federal Transit Administration, 2018. Transit Noise and Vibration Impact Assessment Manual, Table 7-1. September.

<sup>&</sup>lt;sup>4</sup> National Cooperative Highway Research Program (NCHRP), 1999. Mitigation of Nighttime Construction Noise, Vibrations, and Other Nuisances. NCHRP Synthesis 218.

<sup>&</sup>lt;sup>5</sup> California Department of Transportation, 1998. Technical Noise Supplement (TeNS). Equation N-2141.2. October.

21202-23 Noise Cal PS

| Landfill Off-Road Equipment Noise Calculations for the Project |         |
|----------------------------------------------------------------|---------|
| ill Off-Road Equipment Noise Calculations for the              | ect     |
| ill Off-Road Equipment Noise Calculations for the              | Proj    |
| ill Off-                                                       | he      |
| ill Off-                                                       | ort     |
| ill Off-                                                       | ns f    |
| ill Off-                                                       | atio    |
| ill Off-                                                       | jn<br>J |
| ill Off-                                                       | Ca      |
| ill Off-                                                       | oise    |
| ill Off-                                                       | Ž       |
| ill Off-                                                       | mer     |
| ill Off-                                                       | qin     |
| ill Off-                                                       | y Eq    |
| ill Off-                                                       | Road    |
| Landfill C                                                     | ##E     |
| Land                                                           | E       |
|                                                                | Land    |

| Com                                       | - B                   | Equipment <sup>1</sup> | Acoustical<br>Usage | Noise Level<br>@ 50 feet | Noise Level<br>@ 50 feet | Reference<br>Distance | Distance to<br>Receptor | Ground       | Noise Level at<br>Receptor | Noise Level         | Maximum<br>Noise Level | Typical<br>Noise Level |
|-------------------------------------------|-----------------------|------------------------|---------------------|--------------------------|--------------------------|-----------------------|-------------------------|--------------|----------------------------|---------------------|------------------------|------------------------|
| dı                                        | (ground)              |                        | Factor <sup>2</sup> | (Lmax) <sup>3</sup>      | (dBA <sub>1</sub> )      | (D <sub>1</sub> )     | (D <sub>2</sub> )       | Constant (G) | (dBA <sub>2</sub> )        | (dBA <sub>2</sub> ) | Scenario               | Scenario               |
| actor<br>y Pump                           | (ground)              | Unit:                  | %                   | dBA Lmax                 | dBA Leg                  | feet                  | feet                    | unitless     | dBA Lmax                   | dBA Leg             | dBA Lmax               | dBA Leq                |
| Emergency Pumps Pumps Gania Lift Man Lift |                       | 1                      | 20                  | 82                       | 75                       | 50                    | 2000                    | 0.5          | 42                         | 35                  |                        |                        |
|                                           |                       | 2                      | 20                  | 77                       | 74                       | 20                    | 2000                    | 0.5          | 37                         | 34                  |                        |                        |
|                                           |                       | 1                      | 20                  | 85                       | 78                       | 50                    | 2000                    | 0.5          | 45                         | 38                  |                        |                        |
| Loader Front End Loader                   | oader                 | 9                      | 40                  | 80                       | 92                       | 50                    | 2000                    | 0.5          | 40                         | 36                  |                        |                        |
| Scraper Scraper                           |                       | 2                      | 40                  | 85                       | 81                       | 20                    | 2000                    | 0.5          | 45                         | 41                  |                        |                        |
| Sweeper Vacuum Str                        | Vacuum Street Sweeper | 2                      | 10                  | 80                       | 70                       | 50                    | 2000                    | 0.5          | 40                         | 30                  |                        |                        |
| Landfill Compactor (ground)               | (ground)              | 4                      | 20                  | 82                       | 75                       | 50                    | 2000                    | 0.5          | 42                         | 35                  | C                      | (                      |
| Dozers Dozer                              |                       | 9                      | 40                  | 85                       | 81                       | 50                    | 2000                    | 0.5          | 45                         | 41                  | 28.0                   | 44.0                   |
| Backhoe                                   |                       | 2                      | 40                  | 80                       | 92                       | 50                    | 2000                    | 0.5          | 40                         | 36                  |                        |                        |
| Grader Grader                             |                       | 2                      | 40                  | 85                       | 81                       | 50                    | 2000                    | 0.5          | 45                         | 41                  |                        |                        |
| Skid Steer Backhoe                        |                       | 1                      | 40                  | 80                       | 92                       | 50                    | 2000                    | 0.5          | 40                         | 36                  |                        |                        |
| KUBOTA Tracker                            |                       | 1                      | 40                  | 84                       | 80                       | 20                    | 2000                    | 0.5          | 44                         | 40                  |                        |                        |
| Farpomatic Landfill Covers Dozer          |                       | 2                      | 40                  | 85                       | 81                       | 20                    | 2000                    | 0.5          | 45                         | 41                  |                        |                        |
| Backup Alarm Backup Alarm <sup>4</sup>    | rm <sup>4</sup>       | 1                      | 5                   | 80                       | 29                       | 50                    | 2000                    | 0.5          | 40                         | 27                  |                        |                        |

Notes:

Noise level at the receptor calculated based on the following equation: 4

 $dBA_2 = dBA_1 + 10 * log_{10}(D_1/D_2)^{2+G}$ 

 $dBA_2$  = Noise level at receptor Where:

 $dBA_1$  = Noise level at reference distance

D<sub>1</sub> = Reference distance

 $D_2$  = Receptor distance

G = Ground absorption constant (0 for hard surface, 0.5 for soft surface)

Combined noise levels at receptor using decibel addition:  $L = 10 * log_{10} (10^{\wedge}(L_1/10) + 10^{\wedge}(L_2/10) ... + 10^{\wedge}(Ln/10))$ 

L = Combined noise level

L<sub>1</sub> = Noise level for first noisiest piece of equipment

 $L_2$  = Noise level for second noisiest piece of equipment

 $L_n = Noise$  level for the  $n^{th}$  noisiest piece of equipment

 $<sup>^{\</sup>mathrm{1}}$  The type of construction equipment is based on construction equipment list provided by the applicant.

<sup>&</sup>lt;sup>2</sup> U.S. Department of Transportation, 2006. FHWA Highway Construction Noise Handbook, Table 9.1. August.

<sup>&</sup>lt;sup>3</sup> Federal Transit Administration, 2018. Transit Noise and Vibration Impact Assessment Manual, Table 7-1. September.

<sup>&</sup>lt;sup>4</sup> National Cooperative Highway Research Program (NCHRP), 1999. Mitigation of Nighttime Construction Noise, Vibrations, and Other Nuisances. NCHRP Synthesis 218.

<sup>&</sup>lt;sup>5</sup> California Department of Transportation, 1998. Technical Noise Supplement (TeNS). Equation N-2141.2. October.

## **Construction Vibration Calculations for Potential Disturbance**

|                        | Typical Vibration<br>Level @ 25 Feet <sup>2</sup> | 1                         |     | Reference<br>Distance | Annoyan     | Distance to<br>ace Threshold<br>(D2) |
|------------------------|---------------------------------------------------|---------------------------|-----|-----------------------|-------------|--------------------------------------|
| Equipment <sup>1</sup> | (RMS <sub>1</sub> )                               | Residential Institutional |     | (D <sub>1</sub> )     | Residential | Institutional                        |
| Unit                   | VdB                                               | VdB                       | VdB | feet                  | feet        |                                      |
| Large bulldozer        | 87                                                | 80                        | 83  | 25                    | 43          | 34                                   |
| Loaded trucks          | 86                                                | 80                        | 83  | 25                    | 40          | 31                                   |
| Small bulldozer        | 58                                                | 80                        | 83  | 25                    | 5           | 4                                    |

Notes:

Buffer distance to vibration threshold for human annoyance calculated based on the following equation:<sup>3</sup>

 $D_2 = D_1 * 10^{\circ} ((RMS_1 - RMS_2) / 30)$ 

Where:

RMS<sub>1</sub> = Vibration level at reference distance

RMS<sub>2</sub> = Vibration threshold for human disturbance

 $D_1$  = Reference distance

D<sub>2</sub> = Buffer distance to vibration threshold for human annoyance

## **Construction Vibration Calculations for Potential Building Damage**

| Equipment <sup>1</sup> Unit | Typical Vibration Level @ 25 Feet <sup>2</sup> (PPV <sub>1</sub> ) in/sec |     | Reference Distance (D <sub>1</sub> ) feet | Buffer Distance to Damage Threshold (D <sub>2</sub> ) feet |
|-----------------------------|---------------------------------------------------------------------------|-----|-------------------------------------------|------------------------------------------------------------|
| Large bulldozer             | 0.089                                                                     | 0.3 | 25                                        | 11                                                         |
| Loaded trucks               | 0.076                                                                     | 0.3 | 25                                        | 10                                                         |
| Small bulldozer             | 0.003                                                                     | 0.3 | 25                                        | 1                                                          |

Notes:

Buffer distance to vibration threshold for building damage calculated based on the following equation:<sup>3</sup>

 $D_2 = (PPV_1 / PPV_2)^{(1/1.5)} * D_1$ 

Where:

PPV<sub>1</sub> = Vibration level at reference distance

PPV<sub>2</sub> = Vibration threshold for building damage

D<sub>1</sub> = Reference distance

D<sub>2</sub> = Buffer distance to vibration threshold for building damage

21202-23 Noise Cal PS Page 1 of 1

<sup>&</sup>lt;sup>1</sup> Demolition equipment provided by project applicant, and other equipment based on the CalEEMod default generated for the project. Only equipment that generates substantial vibration is shown.

<sup>&</sup>lt;sup>2</sup> Federal Transit Administration, 2018. Transit Noise and Vibration Impact Assessment Manual, Table 7-4. September.

<sup>&</sup>lt;sup>3</sup> Federal Transit Administration, 2018. Transit Noise and Vibration Impact Assessment Manual, Equations 7-2 and 7-3. September.

## **Traffic Counts on Studied Road Segment**

**Assumptions:** 

Speed limit: 55 mph on East Harney Lane

25 mph on Landfill Entrance Access Road

AM peak hour trip

generation: 31 visitor/worker commute trips and 9 haul truck trips, evenly split between inbound and outbound.

### Source:

Traffic volumes at each studied intersections for the 2024 existing condition, the 2046 cumulative condition, project-generated vehicle trips during peak hours, and trip distribution assumptions were provided by the transportation consultant.

## **Traffic Counts during AM Peak Hour**

|                   | Road Segment                                 | Vehicle Type          | Existing | Existing plus<br>Project | Cumulative | Cumulative plus Project |
|-------------------|----------------------------------------------|-----------------------|----------|--------------------------|------------|-------------------------|
|                   | West of SR-88                                |                       | 330      | 342                      | 477        | 489                     |
|                   | Between SR-88 and Jack Tone Road             | ] [                   | 280      | 316                      | 354        | 390                     |
| East Harney Lane  | Between Jack Tone Road and Landfill Entrance |                       | 195      | 231                      | 218        | 254                     |
|                   | Between Landfill Entrance and Clements Road  | T                     | 87       | 91                       | 109        | 113                     |
|                   | East of Clements Road                        | Total (visitor/worker | 16       | 16                       | 16         | 16                      |
| SR-88             | North of East Harney Lane                    | commute               | 579      | 581                      | 1,002      | 1,004                   |
| 31-00             | South of East Harney Lane                    | vehicles and          | 575      | 597                      | 931        | 953                     |
| Jack Tone Road    | North of East Harney Lane                    | trucks )              | 244      | 244                      | 568        | 568                     |
| Jack Toffe Road   | South of East Harney Lane                    |                       | 237      | 237                      | 514        | 514                     |
| Landfill Entrance | South of East Harney Lane                    |                       | 76       | 116                      | 76         | 116                     |
| Clamonts Boad     | North of East Harney Lane                    | ] [                   | 153      | 155                      | 298        | 300                     |
| Clements Road     | South of East Harney Lane                    |                       | 165      | 167                      | 312        | 314                     |
|                   | West of SR-88                                |                       | 13       | 16                       | 19         | 22                      |
|                   | Between SR-88 and Jack Tone Road             | ] [                   | 23       | 31                       | 26         | 34                      |
| East Harney Lane  | Between Jack Tone Road and Landfill Entrance |                       | 26       | 34                       | 30         | 38                      |
|                   | Between Landfill Entrance and Clements Road  | ] [                   | 10       | 11                       | 13         | 14                      |
|                   | East of Clements Road                        | ] [                   | 1        | 1                        | 1          | 1                       |
| SR-88             | North of East Harney Lane                    | Truck                 | 54       | 54                       | 89         | 89                      |
| 3188              | South of East Harney Lane                    | ] ITUCK               | 52       | 57                       | 82         | 87                      |
| Jack Tone Road    | North of East Harney Lane                    |                       | 19       | 19                       | 42         | 42                      |
| Jack Toffe Road   | South of East Harney Lane                    |                       | 16       | 16                       | 35         | 35                      |
| Landfill Entrance | South of East Harney Lane                    |                       | 15       | 24                       | 15         | 24                      |
| Clements Road     | North of East Harney Lane                    | ] [                   | 12       | 12                       | 21         | 21                      |
| Ciements Road     | South of East Harney Lane                    |                       | 9        | 10                       | 18         | 19                      |

## **Project-Generated Trip Distribution Assumption**

|                   |                                              |         |           | AM    | Trips     |       |
|-------------------|----------------------------------------------|---------|-----------|-------|-----------|-------|
|                   | Route                                        | Percent | Inbo      | und   | Outb      | ound  |
|                   |                                              |         | Passenger | Truck | Passenger | Truck |
| Landfill Entrance | South of East Harney Lane                    | 100%    | 18        | 5     | 13        | 4     |
| East Harney Lane  | Between Landfill Entrance and Clements Road  | 10%     | 2         | 1     | 1         | 0     |
| ast namey Lane    | Between Jack Tone Road and Landfill Entrance | 90%     | 16        | 4     | 12        | 4     |
|                   | Between SR-88 and Jack Tone Road             | 90%     | 16        | 4     | 12        | 4     |
|                   | West of SR-88                                | 30%     | 5         | 2     | 4         | 1     |
| SR-88             | North of East Harney Lane                    | 5%      | 1         | 0     | 1         | 0     |
| 3K-88             | South of East Harney Lane                    | 55%     | 10        | 2     | 7         | 3     |
| Clements Road     | North of East Harney Lane                    | 5%      | 1         | 0     | 1         | 0     |
| Ciements Road     | South of East Harney Lane                    | 5%      | 1         | 1     | 0         | 0     |

## Existing AM - Total (visitor/worker commute vehicles)

| INTID | Intersection                          | NBL | NBT | NBR | SBL | SBT | SBR | EBL | EBT | EBR | WBL | WBT | WBR |
|-------|---------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 1     | SR-88 and E Harney Ln                 | 18  | 179 | 22  | 11  | 299 | 51  | 22  | 78  | 24  | 33  | 137 | 17  |
| 2     | Jack Tone Rd and E Harney Ln          | 34  | 78  | 16  | 17  | 70  | 39  | 15  | 62  | 13  | 26  | 98  | 25  |
| 3     | 17720 E Harney Ln Dwy and E Harney Ln | 29  | 0   | 3   | 0   | 0   | 0   | 0   | 31  | 39  | 5   | 47  | 0   |
| 4     | Clements Rd and E Harney Ln           | 32  | 47  | 3   | 2   | 65  | 18  | 19  | 5   | 14  | 4   | 0   | 2   |

## Cumulative AM - Total (visitor/worker commute vehicles+ trucks)

| INTID | Intersection                          | NBL | NBT | NBR | SBL | SBT | SBR | EBL | EBT | EBR | WBL | WBT | WBR |
|-------|---------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 1     | SR-88 and E Harney Ln                 | 19  | 302 | 22  | 11  | 502 | 87  | 65  | 82  | 44  | 42  | 180 | 35  |
| 2     | Jack Tone Rd and E Harney Ln          | 58  | 239 | 16  | 21  | 162 | 83  | 21  | 62  | 13  | 26  | 98  | 42  |
| 3     | 17720 E Harney Ln Dwy and E Harney Ln | 29  | 0   | 3   | 0   | 0   | 0   | 0   | 37  | 39  | 5   | 66  | 0   |
| 4     | Clements Rd and E Harney Ln           | 39  | 89  | 3   | 2   | 160 | 24  | 21  | 5   | 17  | 4   | 0   | 2   |

# **Existing and Cumulative AM - Truck Percent**

It was assumed that the truck percentages for the existing and cumulative conditions would be the same

| INTID | Intersection                          | NBL | NBT | NBR | SBL | SBT | SBR | EBL | EBT | EBR | WBL | WBT | WBR |
|-------|---------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 1     | SR-88 and E Harney Ln                 | 0%  | 11% | 23% | 36% | 8%  | 6%  | 5%  | 5%  | 0%  | 9%  | 4%  | 12% |
| 2     | Jack Tone Rd and E Harney Ln          | 0%  | 8%  | 13% | 18% | 7%  | 0%  | 13% | 15% | 15% | 4%  | 10% | 12% |
| 3     | 17720 E Harney Ln Dwy and E Harney Ln | 21% | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  | 10% | 23% | 0%  | 13% | 0%  |
| 4     | Clements Rd and E Harney Ln           | 9%  | 4%  | 0%  | 0%  | 6%  | 22% | 11% | 20% | 0%  | 0%  | 0%  | 0%  |

# Existing AM - Truck

| INTID | Intersection                          | NBL | NBT | NBR | SBL | SBT | SBR | EBL | EBT | EBR | WBL | WBT | WBR |
|-------|---------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 1     | SR-88 and E Harney Ln                 | 0   | 20  | 5   | 4   | 24  | 3   | 1   | 4   | 0   | 3   | 5   | 2   |
| 2     | Jack Tone Rd and E Harney Ln          | 0   | 6   | 2   | 3   | 5   | 0   | 2   | 9   | 2   | 1   | 10  | 3   |
| 3     | 17720 E Harney Ln Dwy and E Harney Ln | 6   | 0   | 0   | 0   | 0   | 0   | 0   | 3   | 9   | 0   | 6   | 0   |
| 4     | Clements Rd and E Harney Ln           | 3   | 2   | 0   | 0   | 4   | 4   | 2   | 1   | 0   | 0   | 0   | 0   |

# **Cumulative AM - Truck**

| INTID | Intersection                          | NBL | NBT | NBR | SBL | SBT | SBR | EBL | EBT | EBR | WBL | WBT | WBR |
|-------|---------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 1     | SR-88 and E Harney Ln                 | 0   | 33  | 5   | 4   | 40  | 5   | 3   | 4   | 0   | 4   | 7   | 4   |
| 2     | Jack Tone Rd and E Harney Ln          | 0   | 19  | 2   | 4   | 11  | 0   | 3   | 9   | 2   | 1   | 10  | 5   |
| 3     | 17720 E Harney Ln Dwy and E Harney Ln | 6   | 0   | 0   | 0   | 0   | 0   | 0   | 4   | 9   | 0   | 9   | 0   |
| 4     | Clements Rd and E Harney Ln           | 4   | 4   | 0   | 0   | 10  | 5   | 2   | 1   | 0   | 0   | 0   | 0   |

# **Project Trip Generation - Vistor/Worker Commute Trips**

| INTID | Intersection                          | NBL | NBT | NBR | SBL | SBT | SBR | EBL | EBT | EBR | WBL | WBT | WBR |
|-------|---------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 1     | SR-88 and E Harney Ln                 |     |     | 10  | 1   |     |     |     | 5   |     | 7   | 4   | 1   |
| 2     | Jack Tone Rd and E Harney Ln          |     |     |     |     |     |     |     | 16  |     |     | 12  |     |
| 3     | 17720 E Harney Ln Dwy and E Harney Ln | 12  |     | 1   |     |     |     |     |     | 16  | 2   |     |     |
| 4     | Clements Rd and E Harney Ln           | 1   |     |     |     |     | 1   | 1   |     | 0   |     |     |     |

# **Project Trip Generation - Haul Truck Trips**

| INTID | Intersection                          | NBL | NBT | NBR | SBL | SBT | SBR | EBL | EBT | EBR | WBL | WBT | WBR |
|-------|---------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 1     | SR-88 and E Harney Ln                 |     |     | 2   | 0   |     |     |     | 2   |     | 3   | 1   | 0   |
| 2     | Jack Tone Rd and E Harney Ln          |     |     |     |     |     |     |     | 4   |     |     | 4   |     |
| 3     | 17720 E Harney Ln Dwy and E Harney Ln | 4   |     | 0   |     |     |     |     |     | 4   | 1   |     |     |
| 4     | Clements Rd and E Harney Ln           | 1   |     |     |     |     | 0   | 0   |     | 0   |     |     |     |

# Existing AM plus Project-Total (visitor/worker commute vehicles+ trucks)

| INTID | Intersection                          | NBL | NBT | NBR | SBL | SBT | SBR | EBL | EBT | EBR | WBL | WBT | WBR |
|-------|---------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 1     | SR-88 and E Harney Ln                 | 18  | 179 | 34  | 12  | 299 | 51  | 22  | 85  | 24  | 43  | 142 | 18  |
| 2     | Jack Tone Rd and E Harney Ln          | 34  | 78  | 16  | 17  | 70  | 39  | 15  | 82  | 13  | 26  | 114 | 25  |
| 3     | 17720 E Harney Ln Dwy and E Harney Ln | 45  | 0   | 4   | 0   | 0   | 0   | 0   | 31  | 59  | 8   | 47  | 0   |
| 4     | Clements Rd and E Harney Ln           | 34  | 47  | 3   | 2   | 65  | 19  | 20  | 5   | 14  | 4   | 0   | 2   |

# **Cumulative AM plus Project- Total (visitor/worker commute vehicles+ trucks)**

| INTID | Intersection                          | NBL | NBT | NBR | SBL | SBT | SBR | EBL | EBT | EBR | WBL | WBT | WBR |
|-------|---------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 1     | SR-88 and E Harney Ln                 | 19  | 302 | 34  | 12  | 502 | 87  | 65  | 89  | 44  | 52  | 185 | 36  |
| 2     | Jack Tone Rd and E Harney Ln          | 58  | 239 | 16  | 21  | 162 | 83  | 21  | 82  | 13  | 26  | 114 | 42  |
| 3     | 17720 E Harney Ln Dwy and E Harney Ln | 45  | 0   | 4   | 0   | 0   | 0   | 0   | 37  | 59  | 8   | 66  | 0   |
| 4     | Clements Rd and E Harney Ln           | 41  | 89  | 3   | 2   | 160 | 25  | 22  | 5   | 17  | 4   | 0   | 2   |

## **Existing AM plus Project - Truck**

| INTID | Intersection                          | NBL | NBT | NBR | SBL | SBT | SBR | EBL | EBT | EBR | WBL | WBT | WBR |
|-------|---------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 1     | SR-88 and E Harney Ln                 | 0   | 20  | 7   | 4   | 24  | 3   | 1   | 6   | 0   | 6   | 6   | 2   |
| 2     | Jack Tone Rd and E Harney Ln          | 0   | 6   | 2   | 3   | 5   | 0   | 2   | 13  | 2   | 1   | 14  | 3   |
| 3     | 17720 E Harney Ln Dwy and E Harney Ln | 10  | 0   | 0   | 0   | 0   | 0   | 0   | 3   | 13  | 1   | 6   | 0   |
| 4     | Clements Rd and E Harney Ln           | 4   | 2   | 0   | 0   | 4   | 4   | 2   | 1   | 0   | 0   | 0   | 0   |

# **Cumulative AM plus Project - Truck**

| INTID | Intersection                          | NBL | NBT | NBR | SBL | SBT | SBR | EBL | EBT | EBR | WBL | WBT | WBR |
|-------|---------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 1     | SR-88 and E Harney Ln                 | 0   | 33  | 7   | 4   | 40  | 5   | 3   | 6   | 0   | 7   | 8   | 4   |
| 2     | Jack Tone Rd and E Harney Ln          | 0   | 19  | 2   | 4   | 11  | 0   | 3   | 13  | 2   | 1   | 14  | 5   |
| 3     | 17720 E Harney Ln Dwy and E Harney Ln | 10  | 0   | 0   | 0   | 0   | 0   | 0   | 4   | 13  | 1   | 9   | 0   |
| 4     | Clements Rd and E Harney Ln           | 5   | 4   | 0   | 0   | 10  | 5   | 2   | 1   | 0   | 0   | 0   | 0   |

| orthCounty  |
|-------------|
| \MillerRd\N |
| 25\Program  |
| C:\TNM      |

|                                   |                                        |          |            |          |                  | 7   | 21202-23 |     |            |     |             |      |
|-----------------------------------|----------------------------------------|----------|------------|----------|------------------|-----|----------|-----|------------|-----|-------------|------|
| Baseline Environmental Consulting |                                        |          |            | 5 Febru  | 25 February 2025 | 55  |          |     |            |     |             |      |
| Baseline Env                      |                                        |          | <b>—</b>   | TNM 2.5  | _                |     | _        |     |            |     |             |      |
| INPUT: TRAFFIC FOR LAeq1h Volumes |                                        |          |            |          |                  |     |          |     |            |     |             |      |
| PROJECT/CONTRACT:                 | 21202-23                               |          |            |          |                  |     |          |     |            |     |             |      |
| RUN:                              | North County Landfill Permit Amendment | andfill. | Permit A   | mendm    | ent              |     |          |     |            |     |             |      |
| Roadway                           | Points                                 |          |            |          |                  |     |          |     |            |     |             |      |
| Name                              | Name                                   | No.      | Segment    |          |                  |     |          |     |            |     |             |      |
|                                   |                                        |          | Autos      | _        | MTrucks          |     | HTrucks  |     | Buses      |     | Motorcycles | cles |
|                                   |                                        |          | <u>s</u>   | <u> </u> |                  | S   | >        | S   | >          | S   | >           | S    |
|                                   |                                        |          | veh/hr   n | v hdm    | veh/hr mph       | mph | veh/hr   | mph | veh/hr mph | mph | veh/hr      | mph  |
| E Harney Ln, West of SR-88 E      | point1                                 | _        | 317        | 22       | 0                | 0   | 13       | 55  | 0          | 0   | 0           | 0    |
|                                   | point2                                 | 2        |            |          |                  |     |          |     |            |     |             |      |

| ELS                  |  |
|----------------------|--|
| RESULTS: SOUND LEVEL |  |

| RESULTS: SOUND LEVELS             |    |          |                       |                                        |         |                        | 21202-23         |                         |               |                                              |            |            |
|-----------------------------------|----|----------|-----------------------|----------------------------------------|---------|------------------------|------------------|-------------------------|---------------|----------------------------------------------|------------|------------|
| Bacalina Environmental Consulting |    |          |                       |                                        |         |                        | 25 Echristy 2025 | 2008                    |               |                                              |            |            |
|                                   |    |          |                       |                                        |         |                        | 20 1 02 1        | , y 2020                |               |                                              |            |            |
| Baseline Env                      |    |          |                       |                                        |         |                        | <b>INM 2.5</b>   |                         |               |                                              |            |            |
|                                   |    |          |                       |                                        |         |                        | Calculate        | Calculated with TNM 2.5 | 2.5           |                                              |            |            |
| RESULTS: SOUND LEVELS             |    |          |                       |                                        |         |                        |                  |                         |               |                                              |            |            |
| PROJECT/CONTRACT:                 |    | 21202-23 | 23                    |                                        |         |                        |                  |                         |               |                                              |            |            |
| RUN:                              |    | North (  | Sounty Lar            | North County Landfill Permit Amendment | mendmer | Ħ                      |                  |                         |               |                                              |            |            |
| BARRIER DESIGN:                   |    | INPUT    | INPUT HEIGHTS         |                                        |         |                        |                  | Average p               | avement typ   | Average pavement type shall be used unless   | sq nuless  |            |
|                                   |    |          |                       |                                        |         |                        |                  | a State hiç             | ıhway agenc   | a State highway agency substantiates the use | es the use |            |
| ATMOSPHERICS:                     |    | 98 dec   | 68 deg F, 50% RH      | _                                      |         |                        |                  | of a differ             | ant type with | of a different type with approval of FHWA.   | HWA.       |            |
| Receiver                          |    |          |                       |                                        |         |                        |                  |                         |               |                                              |            |            |
| Name                              | Š. | #DNs     | Existing              | No Barrier                             |         |                        |                  |                         | With Barrier  |                                              |            |            |
|                                   |    |          | LAeq1h                | LAeq1h                                 |         | Increase over existing | r existing       | Type                    | Calculated    | Noise Reduction                              | tion       |            |
|                                   |    |          |                       | Calculated                             | Crit'n  | Calculated             | Crit'n           | Impact                  | LAeq1h        | Calculated Goal                              | Goal       | Calculated |
|                                   |    |          |                       |                                        |         |                        | Sub'l Inc        |                         |               |                                              |            | minus      |
|                                   |    |          |                       |                                        |         |                        |                  |                         |               |                                              |            | Goal       |
|                                   |    |          | dBA                   | dBA                                    | dBA     | dB                     | 용                |                         | dBA           | dВ                                           | фB         | dB         |
| Receiver1                         | 1  |          | 1 0.0                 | ) 66.2                                 |         | 65 66.2                | 2 3              | Snd LvI                 | 66.2          | 0.0                                          |            | 0.0        |
| Dwelling Units                    |    | # DNs    | # DUs Noise Reduction | duction                                |         |                        |                  |                         |               |                                              |            |            |
|                                   |    |          | Min                   | Avg                                    | Max     |                        |                  |                         |               |                                              |            |            |
|                                   |    |          | дB                    | dВ                                     | ф       |                        |                  |                         |               |                                              |            |            |
| All Selected                      |    |          | 0.0                   | 0.0                                    | 0.0     | 0                      |                  |                         |               |                                              |            |            |
| All Impacted                      |    |          | 1 0.0                 | 0.0                                    |         | 0.0                    |                  |                         |               |                                              |            |            |
| All that meet NR Goal             |    |          | 0.0                   | 0.0                                    | 0.0     | 0                      |                  |                         |               |                                              |            |            |

| 25\Program\MillerRd\NorthCounty |
|---------------------------------|
| C:\TNN                          |

| Baseline Environmental Consulting |                                        |         |            | 25 Febr        | 25 February 2025 | 25  |         |     |        |     |             |       |
|-----------------------------------|----------------------------------------|---------|------------|----------------|------------------|-----|---------|-----|--------|-----|-------------|-------|
| Baseline Env                      |                                        |         | _          | <b>TNM 2.5</b> | D.               |     |         |     |        |     |             |       |
| INPUT: TRAFFIC FOR LAeq1h Volumes |                                        |         |            |                |                  |     |         |     |        |     |             |       |
| PROJECT/CONTRACT:                 | 21202-23                               |         |            |                |                  |     |         |     |        |     |             |       |
| RUN:                              | North County Landfill Permit Amendment | andfil. | I Permit A | \mendn         | nent             |     |         |     |        |     |             |       |
| Roadway                           | Points                                 |         |            |                |                  |     |         |     |        |     |             |       |
| Name                              | Name                                   | No.     | Segment    |                |                  |     |         |     |        |     |             |       |
|                                   |                                        |         | Autos      | , <del></del>  | MTrucks          | (0  | HTrucks |     | Buses  |     | Motorcycles | rcles |
|                                   |                                        |         | >          | s              | >                | S   | >       | S   | >      | တ   | >           | S     |
|                                   |                                        |         | veh/hr     | mph `          | veh/hr           | mph | veh/hr  | mph | veh/hr | mph | veh/hr      | mph   |
| E Harney Ln, West of SR-88 E+P    | point1                                 | _       | 326        | 22             | 0                | 0   | 16      | 55  | 0      | 0   |             | 0     |
|                                   | point2                                 | 2       |            |                |                  |     |         |     |        |     |             |       |
|                                   |                                        |         |            |                |                  |     |         |     |        |     |             |       |

21202-23

INPUT: TRAFFIC FOR LAeq1h Volumes

| /ELS    |  |
|---------|--|
| 回       |  |
| OUND L  |  |
| ::<br>S |  |

| RESULTS: SOUND LEVELS             |     |                       |          |                                        |        |             | 21202-23               |                         |               |                                              |            |            |
|-----------------------------------|-----|-----------------------|----------|----------------------------------------|--------|-------------|------------------------|-------------------------|---------------|----------------------------------------------|------------|------------|
| Baseline Environmental Consulting |     |                       |          |                                        |        |             | 25 February 2025       | ry 2025                 |               |                                              |            |            |
| Baseline Env                      |     |                       |          |                                        |        |             | <b>TNM 2.5</b>         |                         |               |                                              |            |            |
|                                   |     |                       |          |                                        |        |             | Calculate              | Calculated with TNM 2.5 | 12.5          |                                              |            |            |
| RESULTS: SOUND LEVELS             |     |                       |          |                                        |        |             |                        |                         |               |                                              |            |            |
| PROJECT/CONTRACT:                 |     | 21202-23              |          |                                        |        |             |                        |                         |               |                                              |            |            |
| RUN:                              |     | North Co              | unty Lar | North County Landfill Permit Amendment | Amendm | lent        |                        |                         |               |                                              |            |            |
| BARRIER DESIGN:                   |     | INPUT HEIGHTS         | EIGHTS   |                                        |        |             |                        | Average p               | avement typ   | Average pavement type shall be used unless   | ed unless  |            |
|                                   |     |                       |          |                                        |        |             |                        | a State hi              | ghway agen    | a State highway agency substantiates the use | tes the us | ø.         |
| ATMOSPHERICS:                     |     | 68 deg F, 50% RH      | 50% R    | _                                      |        |             |                        | of a differ             | ent type with | of a different type with approval of FHWA.   | FHWA.      |            |
| Receiver                          |     |                       |          |                                        |        |             |                        |                         |               |                                              |            |            |
| Name                              | No. | #DUS E                | Existing | No Barrier                             |        |             |                        |                         | With Barrier  | _                                            |            |            |
|                                   |     |                       | LAeq1h   | LAeq1h                                 |        | Increase ov | Increase over existing | Type                    | Calculated    | Noise Reduction                              | ction      |            |
|                                   |     |                       |          | Calculated Crit'n                      | Crit'n | Calculated  | Crit'n                 | Impact                  | LAeq1h        | Calculated Goal                              | Goal       | Calculated |
|                                   |     |                       |          |                                        |        |             | Sub'l Inc              |                         |               |                                              |            | minus      |
|                                   |     |                       |          |                                        |        |             |                        |                         |               |                                              |            | Goal       |
|                                   |     | ਰ                     | dBA      | dBA                                    | dBA    | dB          | 용                      |                         | dBA           | <del>명</del>                                 | dВ         | dB         |
| Receiver1                         |     | 1                     | 0.0      | 99 (0.5)                               | 2      | 99 99       | 66.5                   | Snd Lvl                 | 66.5          |                                              | 0.0        | 0.0        |
| Dwelling Units                    |     | # DUs Noise Reduction | loise Re | duction                                |        |             |                        |                         |               |                                              |            |            |
|                                   |     | _                     | Min      | Avg                                    | Max    |             |                        |                         |               |                                              |            |            |
|                                   |     | 7                     | фB       | 용                                      | ф      |             |                        |                         |               |                                              |            |            |
| All Selected                      |     | _                     | 0.0      | 0.0                                    | 0      | 0.0         |                        |                         |               |                                              |            |            |
| All Impacted                      |     | _                     | 0.0      | 0.0                                    | 0      | 0.0         |                        |                         |               |                                              |            |            |
| All that meet NR Goal             |     | _                     | 0.0      | 0.0                                    | 0      | 0.0         |                        |                         |               |                                              |            |            |

| Program\MillerRd\NorthCounty |
|------------------------------|
| C:\TNM25\!                   |

| INPUT: TRAFFIC FOR LAeq1h Volumes        |                |         |                                         |         |                  | 2   | 21202-23 |            |        |     |             |      |
|------------------------------------------|----------------|---------|-----------------------------------------|---------|------------------|-----|----------|------------|--------|-----|-------------|------|
|                                          |                |         |                                         |         |                  |     |          |            |        |     |             |      |
| <b>Baseline Environmental Consulting</b> |                |         |                                         | 25 Febr | 25 February 2025 | 25  |          |            |        |     |             |      |
| Baseline Env                             |                |         |                                         | TNM 2.5 | 10               |     | _        |            |        |     |             |      |
|                                          |                |         |                                         |         |                  |     |          |            |        |     |             |      |
| INPUT: TRAFFIC FOR LAeq1h Volumes        |                |         |                                         |         |                  |     |          |            |        |     |             |      |
| PROJECT/CONTRACT:                        | 21202-23       |         |                                         |         |                  |     |          |            |        |     |             |      |
| RUN:                                     | North County I | Landfil | <b>County Landfill Permit Amendment</b> | \mendn  | nent             |     |          |            |        |     |             |      |
| Roadway                                  | Points         |         |                                         |         |                  |     |          |            |        |     |             |      |
| Name                                     | Name           | No.     | Segment                                 |         |                  |     |          |            |        |     |             |      |
|                                          |                |         | Autos                                   |         | MTrucks          | (4  | HTrucks  | <i>(</i> * | Buses  |     | Motorcycles | cles |
|                                          |                |         | <u> </u>                                | _<br>s  | _                | S   | >        | S          | >      | တ   | >           | S    |
|                                          |                |         | veh/hr r                                | v Hdm   | veh/hr           | mph | veh/hr   | mph        | veh/hr | mph | veh/hr      | mph  |
| E Harney Ln, West of SR-88 C             | point1         | 1       | 458                                     | 22      | 0                | 0   | 19       | 22         | 0      | 0   | 0           | 0    |
|                                          | point2         | 2       |                                         |         |                  |     |          |            |        |     |             |      |

| U | 0            |  |
|---|--------------|--|
|   | SOOIND LEVEL |  |
|   | NEGOLI S.    |  |

| RESULTS: SOUND LEVELS             |   |          |                       |                                        |        |                        | 21202-23         |                         |               |                                              |            |            |
|-----------------------------------|---|----------|-----------------------|----------------------------------------|--------|------------------------|------------------|-------------------------|---------------|----------------------------------------------|------------|------------|
|                                   |   |          |                       |                                        |        |                        |                  |                         |               |                                              |            |            |
| Baseline Environmental Consulting |   |          |                       |                                        |        |                        | 25 February 2025 | ıry 2025                |               |                                              |            |            |
| Baseline Env                      |   |          |                       |                                        |        |                        | <b>TNM 2.5</b>   |                         |               |                                              |            |            |
|                                   |   |          |                       |                                        |        |                        | Calculate        | Calculated with TNM 2.5 | 2.5           |                                              |            |            |
| RESULTS: SOUND LEVELS             |   |          |                       |                                        |        |                        |                  |                         |               |                                              |            |            |
| PROJECT/CONTRACT:                 |   | 21202-23 | 13                    |                                        |        |                        |                  |                         |               |                                              |            |            |
| RUN:                              |   | North C  | ounty Lar             | North County Landfill Permit Amendment | mendme | ent                    |                  |                         |               |                                              |            |            |
| BARRIER DESIGN:                   |   | INPUT    | INPUT HEIGHTS         |                                        |        |                        |                  | Average p               | avement typ   | Average pavement type shall be used unless   | ed unless  | -          |
|                                   |   |          |                       |                                        |        |                        |                  | a State hig             | ghway agenc   | a State highway agency substantiates the use | es the use | -          |
| ATMOSPHERICS:                     |   | 68 deg   | 68 deg F, 50% RH      | _                                      |        |                        |                  | of a differ             | ent type with | of a different type with approval of FHWA.   | HWA.       |            |
| Receiver                          |   |          |                       |                                        |        |                        |                  |                         |               |                                              |            |            |
| Name                              | 9 | #DNs     | Existing              | No Barrier                             |        |                        |                  |                         | With Barrier  |                                              |            |            |
|                                   |   |          | LAeq1h                | LAeq1h                                 |        | Increase over existing | existing         | Type                    | Calculated    | Noise Reduction                              | tion       |            |
|                                   |   |          |                       | Calculated                             | Crit'n | Calculated             | Crit'n           | Impact                  | LAeq1h        | Calculated Goal                              | Goal       | Calculated |
|                                   |   |          |                       |                                        |        |                        | Sub'l Inc        |                         |               |                                              |            | minus      |
|                                   |   |          |                       |                                        |        |                        |                  |                         |               |                                              |            | Goal       |
|                                   |   |          | dBA                   | dBA                                    | dBA    | dB                     | ФВ               |                         | dBA           | 명<br>명                                       | ф          | dB         |
| Receiver1                         |   |          | 0.0                   | 67.8                                   | 8      | 65 67.8                | 3                | Snd Lvl                 | 67.8          | 0.0                                          |            | 0.0        |
| Dwelling Units                    |   | # DNs    | # DUs Noise Reduction | duction                                |        |                        |                  |                         |               |                                              |            |            |
|                                   |   |          | Min                   | Avg                                    | Мах    |                        |                  |                         |               |                                              |            |            |
|                                   |   |          | dВ                    | dВ                                     | dВ     |                        |                  |                         |               |                                              |            |            |
| All Selected                      |   |          | 0.0                   | 0.0                                    |        | 0.0                    |                  |                         |               |                                              |            |            |
| All Impacted                      |   | _        | 0.0                   | 0.0                                    |        | 0.0                    |                  |                         |               |                                              |            |            |
| All that meet NR Goal             |   | _        | 0.0                   | 0.0                                    |        | 0.0                    |                  |                         |               |                                              |            |            |

| TNM25/Brogram/MillerRd/NorthCollety |   |
|-------------------------------------|---|
| C                                   | ) |

| Baseline Environmental Consulting |                                        |        |          | 25 Febi        | 25 February 2025 | 25  |         |     |        |     |             |      |
|-----------------------------------|----------------------------------------|--------|----------|----------------|------------------|-----|---------|-----|--------|-----|-------------|------|
| Baseline Env                      |                                        |        |          | <b>TNM 2.5</b> | 2                |     |         |     |        |     |             |      |
|                                   |                                        |        |          |                |                  |     |         |     |        |     |             |      |
| INPUT: TRAFFIC FOR LAeq1h Volumes |                                        |        |          |                |                  |     |         |     |        |     |             |      |
| PROJECT/CONTRACT:                 | 21202-23                               |        |          |                |                  |     |         |     |        |     |             |      |
| RUN:                              | North County Landfill Permit Amendment | andfil | Permit / | \mendr         | nent             |     |         |     |        |     |             |      |
| Roadway                           | Points                                 |        |          |                |                  |     |         |     |        |     |             |      |
| Name                              | Name                                   | No.    | Segment  |                |                  |     |         |     |        |     |             |      |
|                                   |                                        |        | Autos    | , <del>-</del> | MTrucks          | (4  | HTrucks |     | Buses  |     | Motorcycles | cles |
|                                   |                                        |        | >        | S              | >                | တ   | >       | တ   | >      | S   | >           | S    |
|                                   |                                        |        | veh/hr   | , hdm          | veh/hr           | mph | veh/hr  | udu | veh/hr | udu | veh/hr      | mph  |
| E Harney Ln, West of SR-88 C+P    | point1                                 | _      | 467      | 22             | 0                | 0   | 22      | 22  | 0      | 0   | 0           | 0    |
|                                   | point2                                 | 2      |          |                |                  |     |         |     |        |     |             |      |
|                                   |                                        |        |          |                |                  |     |         |     |        |     |             |      |

21202-23

INPUT: TRAFFIC FOR LAeq1h Volumes

| 21202           |  |
|-----------------|--|
|                 |  |
|                 |  |
|                 |  |
|                 |  |
|                 |  |
|                 |  |
|                 |  |
| VELS            |  |
| 무무              |  |
| TS: SOUND LEVEL |  |
| TS:             |  |

| RESULTS: SOUND LEVELS             |                                        |                 |         | 21202-23               |                         |               |                                              |            |
|-----------------------------------|----------------------------------------|-----------------|---------|------------------------|-------------------------|---------------|----------------------------------------------|------------|
| Baseline Environmental Consulting |                                        |                 |         | 25 Febru               | 25 February 2025        |               |                                              |            |
| Baseline Env                      |                                        |                 |         | TNM 2.5                |                         |               |                                              |            |
|                                   |                                        |                 |         | Calculat               | Calculated with TNM 2.5 | 12.5          |                                              |            |
| RESULTS: SOUND LEVELS             |                                        |                 |         |                        |                         |               |                                              |            |
| PROJECT/CONTRACT:                 | 21202-23                               |                 |         |                        |                         |               |                                              |            |
| RUN:                              | North County Landfill Permit Amendment | ndfill Permit A | mendmen | =                      |                         |               |                                              |            |
| BARRIER DESIGN:                   | INPUT HEIGHTS                          |                 |         |                        | Average                 | pavement typ  | Average pavement type shall be used unless   | -          |
|                                   |                                        |                 |         |                        | a State hi              | ghway agenc   | a State highway agency substantiates the use | Ф          |
| ATMOSPHERICS:                     | 68 deg F, 50% RI                       | _               |         |                        | of a differ             | ent type with | of a different type with approval of FHWA.   |            |
| Receiver                          |                                        |                 |         |                        |                         |               |                                              |            |
| Name                              | No. #DUs Existing                      | No Barrier      |         |                        |                         | With Barrier  |                                              |            |
|                                   | LAeq1h                                 | LAeq1h          | -       | Increase over existing | Type                    | Calculated    | Noise Reduction                              |            |
|                                   |                                        | Calculated      | Crit'n  | Calculated Crit'n      | Impact                  | LAeq1h        | Calculated Goal                              | Calculated |
|                                   |                                        |                 |         | Sub'l Inc              |                         |               |                                              | minus      |
|                                   |                                        |                 |         |                        |                         |               |                                              | Goal       |
|                                   | dBA                                    | dBA             | dBA     | dB<br>dB               |                         | dBA           | dB dB                                        | dB         |
| Receiver1                         | 1 1 0.0                                | 0.89            |         | 65 68.0                | 3 Snd Lvl               | 0.89          | 0.0                                          | 0.0        |
| Dwelling Units                    | # DUS Noise Re                         | duction         |         |                        |                         |               |                                              |            |
|                                   | Min                                    | Avg             | Max     |                        |                         |               |                                              |            |
|                                   | dВ                                     | dB              | dВ      |                        |                         |               |                                              |            |
| All Selected                      | 1 0.0                                  | 0.0             | 0.0     | 0                      |                         |               |                                              |            |
| All Impacted                      | 1 0.0                                  | 0.0             | 0.0     | 0                      |                         |               |                                              |            |
| All that meet NR Goal             | 1 0.0                                  | 0.0             | 0.0     | 0                      |                         |               |                                              |            |

| 25\Program\MillerRd\NorthCounty |
|---------------------------------|
| C:\TNN                          |

| Baseline Environmental Consulting |                                        |         |            | 25 Febr        | 25 February 2025 | 25  |         |     |        |     |             |      |
|-----------------------------------|----------------------------------------|---------|------------|----------------|------------------|-----|---------|-----|--------|-----|-------------|------|
| Baseline Env                      |                                        |         |            | <b>TNM 2.5</b> | 2                |     |         |     |        |     |             |      |
|                                   |                                        |         |            |                |                  |     |         |     |        |     |             |      |
| INPUT: TRAFFIC FOR LAeq1h Volumes |                                        |         |            |                |                  |     |         |     |        |     |             |      |
| PROJECT/CONTRACT:                 | 21202-23                               |         |            |                |                  |     |         |     |        |     |             |      |
| RUN:                              | North County Landfill Permit Amendment | andfil- | l Permit ⊿ | \mendr         | nent             |     |         |     |        |     |             |      |
| Roadway                           | Points                                 |         |            |                |                  |     |         |     |        |     |             |      |
| Name                              | Name                                   | No.     | Segment    |                |                  |     |         |     |        |     |             |      |
|                                   |                                        |         | Autos      |                | MTrucks          |     | HTrucks |     | Buses  |     | Motorcycles | cles |
|                                   |                                        |         | >          | S              | >                | တ   | >       | S   | >      | တ   | >           | S    |
|                                   |                                        |         | veh/hr     | . udm          | veh/hr           | mph | veh/hr  | mph | veh/hr | mph | veh/hr      | mph  |
| E Harney Ln, SR-88 E& Jack Tone E | point1                                 | _       | 257        | 22             | 0                | 0   | 23      | 55  | 0      | 0   | 0           | 0    |
|                                   | point2                                 | 2       |            |                |                  |     |         |     |        |     |             |      |
|                                   |                                        |         |            |                |                  |     |         |     |        |     |             |      |

21202-23

INPUT: TRAFFIC FOR LAeq1h Volumes

| 21202-23           |  |
|--------------------|--|
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
| D LEVELS           |  |
| ULTS: SOUND LEVELS |  |
| RESU               |  |

| Baseline Environmental Consulting |    |          |                       |         |            |                                        |            | 25 Febr                | 25 February 2025        |                                              |                        |           |            |     |
|-----------------------------------|----|----------|-----------------------|---------|------------|----------------------------------------|------------|------------------------|-------------------------|----------------------------------------------|------------------------|-----------|------------|-----|
| Baseline Env                      |    |          |                       |         |            |                                        |            | <b>TNM 2.5</b>         |                         |                                              |                        |           |            |     |
|                                   |    |          |                       |         |            |                                        |            | Calcula                | Calculated with TNM 2.5 | M 2.5                                        |                        |           |            |     |
| RESULTS: SOUND LEVELS             |    |          |                       |         |            |                                        |            |                        |                         |                                              |                        |           |            |     |
| PROJECT/CONTRACT:                 |    | 21202-23 | -23                   |         |            |                                        |            |                        |                         |                                              |                        |           |            |     |
| RUN:                              |    | North    | County I              | -andfil | Permit A   | North County Landfill Permit Amendment | <b>+</b>   |                        |                         |                                              |                        |           |            |     |
| BARRIER DESIGN:                   |    | INPU     | INPUT HEIGHTS         | Z       |            |                                        |            |                        | Average                 | Average pavement type shall be used unless   | e shall be use         | ed unless |            | -   |
|                                   |    |          |                       |         |            |                                        |            |                        | a State I               | a State highway agency substantiates the use | y substantiat          | es the us | e          |     |
| ATMOSPHERICS:                     |    | 68 de    | 68 deg F, 50% RH      | Æ       |            |                                        |            |                        | of a diffe              | of a different type with approval of FHWA.   | approval of F          | HWA.      |            |     |
| Receiver                          |    |          |                       |         |            |                                        |            |                        |                         |                                              |                        |           |            |     |
| Name                              | Š. | #DUs     | Existing              |         | No Barrier |                                        |            |                        |                         | With Barrier                                 |                        |           |            |     |
|                                   |    |          | LAeq1h                |         | LAeq1h     |                                        | Increase o | Increase over existing | Type                    | Calculated                                   | <b>Noise Reduction</b> | ction     |            |     |
|                                   |    |          |                       | ပ္မ     | Calculated | Crit'n                                 | Calculated | Crit'n                 | Impact                  | LAeq1h                                       | Calculated Goal        | Goal      | Calculated | eq  |
|                                   |    |          |                       |         |            |                                        |            | Sub'l Inc              | ပ                       |                                              |                        |           | minus      |     |
|                                   |    |          |                       |         |            |                                        |            |                        |                         |                                              |                        |           | Goal       |     |
|                                   |    |          | dBA                   | dBA     | A          | dBA                                    | dB         | 용                      |                         | dBA                                          | фB                     | дB        | ВВ         |     |
| Receiver1                         |    | 1        | 1                     | 0.0     | 66.4       |                                        | 65 6       | 66.4                   | 3 Snd Lvl               | 1 66.4                                       | 4 0.0                  |           | 0          | 0.0 |
| Dwelling Units                    |    | # DO     | # DUs Noise Reduction | Reduc   | tion       |                                        |            |                        |                         |                                              |                        |           |            |     |
|                                   |    |          | Min                   | Avg     | g/         | Max                                    |            |                        |                         |                                              |                        |           |            |     |
|                                   |    |          | dВ                    | dВ      | 8          | dВ                                     |            |                        |                         |                                              |                        |           |            |     |
| All Selected                      |    |          | _                     | 0.0     | 0.0        |                                        | 0.0        |                        |                         |                                              |                        |           |            |     |
| All Impacted                      |    |          | 1                     | 0.0     | 0.0        |                                        | 0.0        |                        |                         |                                              |                        |           |            |     |
| All that meet NR Goal             |    |          | 1                     | 0.0     | 0.0        |                                        | 0.0        |                        |                         |                                              |                        |           |            |     |

| Program\MillerRd\NorthCounty |
|------------------------------|
| C:\TNM25\!                   |

| Baseline Environmental Consulting  Baseline Env  INPUT: TRAFFIC FOR LAeq1h Volumes PROJECT/CONTRACT: RUN: Roadway  25 February  27 February  Annual County Landfill Permit Amendment Points |                 |                  |          |     |         |     |        |     |             |      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------|----------|-----|---------|-----|--------|-----|-------------|------|
|                                                                                                                                                                                             |                 | 25 Fobrishy 2025 | 200 /20  | Ľ   |         |     |        |     |             |      |
|                                                                                                                                                                                             | 4               | n ide i c        | al y 202 | 2   |         |     |        |     |             |      |
|                                                                                                                                                                                             |                 | <b>TNM 2.5</b>   |          |     |         |     |        |     |             |      |
|                                                                                                                                                                                             |                 |                  |          |     |         |     |        |     |             |      |
| /CONTRACT:                                                                                                                                                                                  |                 |                  |          |     |         |     |        |     |             |      |
|                                                                                                                                                                                             |                 |                  |          |     |         |     |        |     |             |      |
|                                                                                                                                                                                             | ndfill Permit A | mendm            | ent.     |     |         |     |        |     |             |      |
|                                                                                                                                                                                             |                 |                  |          |     |         |     |        |     |             |      |
| Name No.                                                                                                                                                                                    | Segment         |                  |          |     |         |     |        |     |             |      |
|                                                                                                                                                                                             | Autos           | Σ                | MTrucks  |     | HTrucks |     | Buses  |     | Motorcycles | cles |
|                                                                                                                                                                                             | >               | >                |          | S   | >       | S   | >      | S   | >           | S    |
|                                                                                                                                                                                             | veh/hr n        | mph ve           | veh/hr   | mph | veh/hr  | mph | veh/hr | mph | veh/hr      | mph  |
| E Harney Ln, SR-88 E& Jack Tone E+P point1                                                                                                                                                  | 1 285           | 22               | 0        | 0   | 31      | 55  | 0      | 0   | 0           | 0    |
| point2 2                                                                                                                                                                                    | 2               |                  |          |     |         |     |        |     |             |      |

| LEVELS    |  |
|-----------|--|
| TS: SOUND |  |
| RESUL     |  |

| RESULTS: SOUND LEVELS             |    |          |                       |                                        |        |                        | 21202-23         |                         |               |                                              |            |            |
|-----------------------------------|----|----------|-----------------------|----------------------------------------|--------|------------------------|------------------|-------------------------|---------------|----------------------------------------------|------------|------------|
|                                   |    |          |                       |                                        |        |                        |                  |                         |               |                                              |            |            |
| Baseline Environmental Consulting |    |          |                       |                                        |        |                        | 25 February 2025 | ıry 2025                |               |                                              |            |            |
| Baseline Env                      |    |          |                       |                                        |        |                        | <b>TNM 2.5</b>   |                         |               |                                              |            |            |
|                                   |    |          |                       |                                        |        |                        | Calculate        | Calculated with TNM 2.5 | 2.5           |                                              |            |            |
| RESULTS: SOUND LEVELS             |    |          |                       |                                        |        |                        |                  |                         |               |                                              |            |            |
| PROJECT/CONTRACT:                 |    | 21202-23 | 23                    |                                        |        |                        |                  |                         |               |                                              |            |            |
| RUN:                              |    | North C  | ounty Lar             | North County Landfill Permit Amendment | mendme | ant                    |                  |                         |               |                                              |            |            |
| BARRIER DESIGN:                   |    | INPUT    | INPUT HEIGHTS         |                                        |        |                        |                  | Average p               | avement typ   | Average pavement type shall be used unless   | ed unless  | -          |
|                                   |    |          |                       |                                        |        |                        |                  | a State hig             | ghway agenc   | a State highway agency substantiates the use | es the use | -          |
| ATMOSPHERICS:                     |    | 68 deg   | 68 deg F, 50% RH      | _                                      |        |                        |                  | of a differ             | ent type with | of a different type with approval of FHWA.   | HWA.       |            |
| Receiver                          |    |          |                       |                                        |        |                        |                  |                         |               |                                              |            |            |
| Name                              | Š. | #DNs     | Existing              | No Barrier                             |        |                        |                  |                         | With Barrier  |                                              |            |            |
|                                   |    |          | LAeq1h                | LAeq1h                                 |        | Increase over existing | existing         | Type                    | Calculated    | Noise Reduction                              | tion       |            |
|                                   |    |          |                       | Calculated                             | Crit'n | Calculated             | Crit'n           | Impact                  | LAeq1h        | Calculated Goal                              | Goal       | Calculated |
|                                   |    |          |                       |                                        |        |                        | Sub'l Inc        |                         |               |                                              |            | minus      |
|                                   |    |          |                       |                                        |        |                        |                  |                         |               |                                              |            | Goal       |
|                                   |    |          | dBA                   | dBA                                    | dBA    | dB                     | ФВ               |                         | dBA           | 명<br>명                                       | ф          | dB         |
| Receiver1                         | _  |          | 0.0                   | 67.3                                   | 8      | 65 67.3                | 3 3              | Snd Lvl                 | 67.3          | 0.0                                          |            | 0.0        |
| Dwelling Units                    |    | # DNs    | # DUs Noise Reduction | duction                                |        |                        |                  |                         |               |                                              |            |            |
|                                   |    |          | Min                   | Avg                                    | Max    |                        |                  |                         |               |                                              |            |            |
|                                   |    |          | ф                     | dВ                                     | dВ     |                        |                  |                         |               |                                              |            |            |
| All Selected                      |    |          | 0.0                   | 0.0                                    |        | 0.0                    |                  |                         |               |                                              |            |            |
| All Impacted                      |    | _        | 0.0                   | 0.0                                    |        | 0.0                    |                  |                         |               |                                              |            |            |
| All that meet NR Goal             |    | _        | 0.0                   | 0.0                                    |        | 0.0                    |                  |                         |               |                                              |            |            |

| IlerRd\NorthCounty  |  |
|---------------------|--|
| C:\TNM25\Program\Mi |  |

| INPUT: TRAFFIC FOR LAeq1h Volumes        | -                   |         |                                  |                |                  | 7   | 21202-23 |     |        |     |             |      |
|------------------------------------------|---------------------|---------|----------------------------------|----------------|------------------|-----|----------|-----|--------|-----|-------------|------|
|                                          |                     |         |                                  |                |                  |     |          |     |        |     |             |      |
| <b>Baseline Environmental Consulting</b> |                     |         |                                  | 25 Febr        | 25 February 2025 | 25  |          |     |        |     |             |      |
| Baseline Env                             |                     |         |                                  | <b>TNM 2.5</b> | 10               |     |          |     |        |     |             |      |
|                                          |                     |         |                                  |                |                  |     |          |     |        |     |             |      |
| INPUT: TRAFFIC FOR LAeq1h Volumes        |                     |         |                                  |                |                  |     |          |     |        |     |             |      |
| PROJECT/CONTRACT:                        | 21202-23            |         |                                  |                |                  |     |          |     |        |     |             |      |
| RUN:                                     | <b>North County</b> | Landfil | County Landfill Permit Amendment | Amendn         | nent             |     |          |     |        |     |             |      |
| Roadway                                  | Points              |         |                                  |                |                  |     |          |     |        |     |             |      |
| Name                                     | Name                | No.     | Segment                          | t              |                  |     |          |     |        |     |             |      |
|                                          |                     |         | Autos                            |                | MTrucks          |     | HTrucks  |     | Buses  |     | Motorcycles | cles |
|                                          |                     |         | >                                | S              | <u> </u>         | S   | >        | S   | >      | S   | >           | S    |
|                                          |                     |         | veh/hr                           | v Hdm          | veh/hr           | mph | veh/hr   | mph | veh/hr | mph | veh/hr      | mph  |
| E Harney Ln, SR-88 E& Jack Tone C        | point1              | _       | 328                              | 22             | 0                | 0   | 26       | 55  | 0      | 0   | 0           | 0    |
|                                          | point2              | 2       |                                  |                |                  |     |          |     |        |     |             |      |

| 21202           |  |
|-----------------|--|
|                 |  |
|                 |  |
|                 |  |
|                 |  |
|                 |  |
|                 |  |
|                 |  |
| VELS            |  |
|                 |  |
| TS: SOUND LEVEL |  |
| TS:             |  |

| RESULTS: SOUND LEVELS             |                                        |                 |         | 21202-23               |                         |               |                                              |            |
|-----------------------------------|----------------------------------------|-----------------|---------|------------------------|-------------------------|---------------|----------------------------------------------|------------|
| Baseline Environmental Consulting |                                        |                 |         | 25 Febru               | 25 February 2025        |               |                                              |            |
| Baseline Env                      |                                        |                 |         | TNM 2.5                |                         |               |                                              |            |
|                                   |                                        |                 |         | Calculat               | Calculated with TNM 2.5 | 12.5          |                                              |            |
| RESULTS: SOUND LEVELS             |                                        |                 |         |                        |                         |               |                                              |            |
| PROJECT/CONTRACT:                 | 21202-23                               |                 |         |                        |                         |               |                                              |            |
| RUN:                              | North County Landfill Permit Amendment | ndfill Permit A | mendmen | =                      |                         |               |                                              |            |
| BARRIER DESIGN:                   | INPUT HEIGHTS                          |                 |         |                        | Average I               | pavement typ  | Average pavement type shall be used unless   | -          |
|                                   |                                        |                 |         |                        | a State hi              | ghway agenc   | a State highway agency substantiates the use | Ф          |
| ATMOSPHERICS:                     | 68 deg F, 50% RI                       | _               |         |                        | of a differ             | ent type with | of a different type with approval of FHWA.   |            |
| Receiver                          |                                        |                 |         |                        |                         |               |                                              |            |
| Name                              | No. #DUs Existing                      | No Barrier      |         |                        |                         | With Barrier  |                                              |            |
|                                   | LAeq1h                                 | LAeq1h          | -       | Increase over existing | Type                    | Calculated    | Noise Reduction                              |            |
|                                   |                                        | Calculated      | Crit'n  | Calculated Crit'n      | Impact                  | LAeq1h        | Calculated Goal                              | Calculated |
|                                   |                                        |                 |         | Sub'l Inc              |                         |               |                                              | minus      |
|                                   |                                        |                 |         |                        |                         |               |                                              | Goal       |
|                                   | dBA                                    | dBA             | dBA     | dB dB                  |                         | dBA           | dB dB                                        | dB         |
| Receiver1                         | 1 1 0.0                                | 0.89            |         | 65 68.0                | 3 Snd LvI               | 0.89          | 0.0                                          | 0.0        |
| Dwelling Units                    | # DUS Noise Re                         | duction         |         |                        |                         |               |                                              |            |
|                                   | Min                                    | Avg             | Max     |                        |                         |               |                                              |            |
|                                   | dВ                                     | dB              | dВ      |                        |                         |               |                                              |            |
| All Selected                      | 1 0.0                                  | 0.0             | 0.0     | 0                      |                         |               |                                              |            |
| All Impacted                      | 1 0.0                                  | 0.0             | 0.0     | 0                      |                         |               |                                              |            |
| All that meet NR Goal             | 1 0.0                                  | 0.0             | 0.0     | 0                      |                         |               |                                              |            |

| erRd\NorthCounty    |  |
|---------------------|--|
| C:\TNM25\Program\Mi |  |

| INPUT: TRAFFIC FOR LAeq1h Volumes   |                     |         |                                  |                  |          | 7   | 21202-23 |     |        |     |             |      |
|-------------------------------------|---------------------|---------|----------------------------------|------------------|----------|-----|----------|-----|--------|-----|-------------|------|
|                                     |                     |         |                                  |                  |          |     |          |     |        |     |             |      |
| Baseline Environmental Consulting   |                     |         |                                  | 25 February 2025 | uary 20; | 25  |          |     |        |     |             |      |
| Baseline Env                        |                     |         |                                  | <b>TNM 2.5</b>   | 10       | _   |          |     |        |     |             |      |
|                                     |                     |         |                                  |                  |          |     |          |     |        |     |             |      |
| INPUT: TRAFFIC FOR LAeq1h Volumes   |                     |         |                                  |                  |          |     |          |     |        |     |             |      |
| PROJECT/CONTRACT:                   | 21202-23            |         |                                  |                  |          |     |          |     |        |     |             |      |
| RUN:                                | <b>North County</b> | Landfil | County Landfill Permit Amendment | <b>Amend</b>     | nent     |     |          |     |        |     |             |      |
| Roadway                             | Points              |         |                                  |                  |          |     |          |     |        |     |             |      |
| Name                                | Name                | No.     | Segment                          | t                |          |     |          |     |        |     |             |      |
|                                     |                     |         | Autos                            |                  | MTrucks  |     | HTrucks  |     | Buses  |     | Motorcycles | cles |
|                                     |                     |         | >                                | S                | <u> </u> | S   | >        | S   | >      | S   | >           | S    |
|                                     |                     |         | veh/hr                           | v Hdm            | veh/hr   | mph | veh/hr   | mph | veh/hr | mph | veh/hr      | mph  |
| E Harney Ln, SR-88 E& Jack Tone C+P | point1              |         | 356                              | 22               | 0        | 0   | 34       | 55  | 0      | 0   | 0           | 0    |
|                                     | point2              | 2       |                                  |                  |          |     |          |     |        |     |             |      |

| <u>П</u> |  |
|----------|--|
| Ċ        |  |
| E<br>U   |  |

| RESULTS: SOUND LEVELS             |    |          |                       |                                        |        |                        | 21202-23         |                         |               |                                              |            |            |
|-----------------------------------|----|----------|-----------------------|----------------------------------------|--------|------------------------|------------------|-------------------------|---------------|----------------------------------------------|------------|------------|
|                                   |    |          |                       |                                        |        |                        |                  |                         |               |                                              |            |            |
| Baseline Environmental Consulting |    |          |                       |                                        |        |                        | 25 February 2025 | ıry 2025                |               |                                              |            |            |
| Baseline Env                      |    |          |                       |                                        |        |                        | <b>TNM 2.5</b>   |                         |               |                                              |            |            |
|                                   |    |          |                       |                                        |        |                        | Calculate        | Calculated with TNM 2.5 | 2.5           |                                              |            |            |
| RESULTS: SOUND LEVELS             |    |          |                       |                                        |        |                        |                  |                         |               |                                              |            |            |
| PROJECT/CONTRACT:                 |    | 21202-23 | 23                    |                                        |        |                        |                  |                         |               |                                              |            |            |
| RUN:                              |    | North C  | ounty Lar             | North County Landfill Permit Amendment | mendme | ent                    |                  |                         |               |                                              |            |            |
| BARRIER DESIGN:                   |    | INPUT    | INPUT HEIGHTS         |                                        |        |                        |                  | Average p               | avement typ   | Average pavement type shall be used unless   | d unless   | -          |
|                                   |    |          |                       |                                        |        |                        |                  | a State hig             | ghway agenc   | a State highway agency substantiates the use | es the use | -          |
| ATMOSPHERICS:                     |    | 68 deg   | 68 deg F, 50% RH      | _                                      |        |                        |                  | of a differ             | ent type with | of a different type with approval of FHWA.   | HWA.       |            |
| Receiver                          |    |          |                       |                                        |        |                        |                  |                         |               |                                              |            |            |
| Name                              | Š. | #DNs     | Existing              | No Barrier                             |        |                        |                  |                         | With Barrier  |                                              |            |            |
|                                   |    |          | LAeq1h                | LAeq1h                                 |        | Increase over existing | r existing       | Type                    | Calculated    | Noise Reduction                              | tion       |            |
|                                   |    |          |                       | Calculated                             | Crit'n | Calculated             | Crit'n           | Impact                  | LAeq1h        | Calculated Goal                              | Goal       | Calculated |
|                                   |    |          |                       |                                        |        |                        | Sub'l Inc        |                         |               |                                              |            | minus      |
|                                   |    |          |                       |                                        |        |                        |                  |                         |               |                                              |            | Goal       |
|                                   |    |          | dBA                   | dBA                                    | dBA    | dB                     | 용                |                         | dBA           | 명<br>명                                       | dВ         | dB         |
| Receiver1                         | 1  | 1        | 0.0                   | 67.3                                   | m      | 65 67.3                | 3 3              | Snd Lvl                 | 67.3          | 0.0                                          |            | 0.0        |
| Dwelling Units                    |    | # DNs    | # DUs Noise Reduction | duction                                |        |                        |                  |                         |               |                                              |            |            |
|                                   |    |          | Min                   | Avg                                    | Мах    |                        |                  |                         |               |                                              |            |            |
|                                   |    |          | dВ                    | dВ                                     | dВ     |                        |                  |                         |               |                                              |            |            |
| All Selected                      |    |          | 0.0                   | 0.0                                    |        | 0.0                    |                  |                         |               |                                              |            |            |
| All Impacted                      |    | _        | 0.0                   | 0.0                                    |        | 0.0                    |                  |                         |               |                                              |            |            |
| All that meet NR Goal             |    | _        | 0.0                   | 0.0                                    |        | 0.0                    |                  |                         |               |                                              |            |            |

| M25\Program\MillerRd\NorthCounty |
|----------------------------------|
| C:\T                             |

| <b>Baseline Environmental Consulting</b> |                                        |         |          | 25 February 2025 | uary 20 | 25  |         |     |        |     |             |       |
|------------------------------------------|----------------------------------------|---------|----------|------------------|---------|-----|---------|-----|--------|-----|-------------|-------|
| Baseline Env                             |                                        |         |          | <b>TNM 2.5</b>   | 10      |     |         |     |        |     |             |       |
|                                          |                                        |         |          |                  |         |     |         |     |        |     |             |       |
| INPUT: TRAFFIC FOR LAeq1h Volumes        |                                        |         |          |                  |         |     |         |     |        |     |             |       |
| PROJECT/CONTRACT:                        | 21202-23                               |         |          |                  |         |     |         |     |        |     |             |       |
| RUN:                                     | North County Landfill Permit Amendment | Landfil | Permit / | Amendn           | nent    |     |         |     |        |     |             |       |
| Roadway                                  | Points                                 |         |          |                  |         |     |         |     |        |     |             |       |
| Name                                     | Name                                   | No.     | Segment  |                  |         |     |         |     |        |     |             |       |
|                                          |                                        |         | Autos    | _                | MTrucks | (0  | HTrucks |     | Buses  |     | Motorcycles | rcles |
|                                          |                                        |         | >        | s                | >       | တ   | >       | တ   | >      | S   | >           | S     |
|                                          |                                        |         | veh/hr   | mph \            | veh/hr  | mph | veh/hr  | mph | veh/hr | mph | veh/hr      | mph   |
| E Harney Ln,JTR & Entrance E             | point1                                 | _       | 169      | 55               | 0       | 0   | 26      | 55  | 0      | 0   |             | 0     |
|                                          | point2                                 | 2       |          |                  |         |     |         |     |        |     |             |       |

INPUT: TRAFFIC FOR LAeq1h Volumes

| RESULTS: SOUND LEVELS             |     |                       |          |                                        |        |             | 21202-23               |                         |              |                                              |             |            |
|-----------------------------------|-----|-----------------------|----------|----------------------------------------|--------|-------------|------------------------|-------------------------|--------------|----------------------------------------------|-------------|------------|
| Baseline Environmental Consulting |     |                       |          |                                        |        |             | 25 February 2025       | ry 2025                 |              |                                              |             |            |
| Baseline Env                      |     |                       |          |                                        |        |             | <b>TNM 2.5</b>         |                         |              |                                              |             |            |
|                                   |     |                       |          |                                        |        |             | Calculate              | Calculated with TNM 2.5 | 12.5         |                                              |             |            |
| RESULTS: SOUND LEVELS             |     |                       |          |                                        |        |             |                        |                         |              |                                              |             |            |
| PROJECT/CONTRACT:                 |     | 21202-23              |          |                                        |        |             |                        |                         |              |                                              |             |            |
| RUN:                              |     | North Co              | unty Lan | North County Landfill Permit Amendment | \mendm | ent         |                        |                         |              |                                              |             |            |
| BARRIER DESIGN:                   |     | INPUT HEIGHTS         | EIGHTS   |                                        |        |             |                        | Average p               | avement ty   | Average pavement type shall be used unless   | sed unless  |            |
|                                   |     |                       |          |                                        |        |             |                        | a State hi              | ghway agen   | a State highway agency substantiates the use | ites the us | 0          |
| ATMOSPHERICS:                     |     | 68 deg F, 50% RH      | 50% RF   | _                                      |        |             |                        | of a differ             | ent type wit | of a different type with approval of FHWA.   | FHWA.       |            |
| Receiver                          |     |                       |          |                                        |        |             |                        |                         |              |                                              |             |            |
| Name                              | No. | #DUS E                | Existing | No Barrier                             |        |             |                        |                         | With Barrier | jr.                                          |             |            |
|                                   |     |                       | LAeq1h   | LAeq1h                                 |        | Increase ov | Increase over existing | Type                    | Calculated   | Noise Reduction                              | rction      |            |
|                                   |     |                       |          | Calculated Crit'n                      | Crit'n | Calculated  | Crit'n                 | Impact                  | LAeq1h       | Calculated Goal                              | Goal        | Calculated |
|                                   |     |                       |          |                                        |        |             | Sub'l Inc              |                         |              |                                              |             | minus      |
|                                   |     |                       |          |                                        |        |             |                        |                         |              |                                              |             | Goal       |
|                                   |     | p                     | dBA      | dBA                                    | dBA    | dB          | dВ                     |                         | dBA          | dB                                           | dВ          | dB         |
| Receiver1                         |     | 1 1                   | 0.0      | 65.8                                   | 8      | 65 65       | 65.8                   | Snd LvI                 | 65           | 65.8 0                                       | 0.0         | 0.0        |
| Dwelling Units                    |     | # DUs Noise Reduction | loise Re | duction                                |        |             |                        |                         |              |                                              |             |            |
|                                   |     | _                     | Min      | Avg                                    | Max    |             |                        |                         |              |                                              |             |            |
|                                   |     | 0                     | dB       | dB                                     | dB     |             |                        |                         |              |                                              |             |            |
| All Selected                      |     | _                     | 0.0      | 0.0                                    | 0      | 0.0         |                        |                         |              |                                              |             |            |
| All Impacted                      |     | _                     | 0.0      | 0.0                                    | 0      | 0.0         |                        |                         |              |                                              |             |            |
| All that meet NR Goal             |     | 1                     | 0.0      | 0.0                                    | 0      | 0.0         |                        |                         |              |                                              |             |            |

| unt  |
|------|
| ည    |
| lort |
| Sd/N |
| ller |
| n/Mi |
| grar |
| \Pro |
| M25  |
| INT  |
| ပ်   |

| INPUT: TRAFFIC FOR LAeq1h Volumes |                                        |         |            |               |                  | 7   | 21202-23 |      |        |     |             |      |
|-----------------------------------|----------------------------------------|---------|------------|---------------|------------------|-----|----------|------|--------|-----|-------------|------|
| Baseline Environmental Consulting |                                        |         |            | 25 Febr       | 25 February 2025 | 25  |          |      |        |     |             |      |
| Baseline Env                      |                                        |         |            | TNM 2.5       | ıc               | _   | _        |      |        |     |             |      |
| INPUT: TRAFFIC FOR LAeq1h Volumes |                                        |         |            |               |                  |     |          |      |        |     |             |      |
| PROJECT/CONTRACT:                 | 21202-23                               |         |            |               |                  |     |          |      |        |     |             |      |
| RUN:                              | North County Landfill Permit Amendment | Landfil | I Permit A | \mendn        | nent             |     |          |      |        |     |             |      |
| Roadway                           | Points                                 |         |            |               |                  |     |          |      |        |     |             |      |
| Name                              | Name                                   | No.     | Segment    |               |                  |     |          |      |        |     |             |      |
|                                   |                                        |         | Autos      | , <del></del> | MTrucks          |     | HTrucks  |      | Buses  |     | Motorcycles | cles |
|                                   |                                        |         | >          | S             | >                | တ   | >        | S    | >      | S   | >           | S    |
|                                   |                                        |         | veh/hr     | \ hdm         | veh/hr           | mph | veh/hr   | mph  | veh/hr | mph | veh/hr      | mph  |
| E Harney Ln, JTR & Entrance E+P   | point1                                 | _       | 197        | 22            | 0                | 0   | 34       | 1 55 | 0      | 0   | 0           | 0    |
|                                   | point2                                 | 2       |            |               |                  |     |          |      |        |     |             |      |

| RESULTS: SOUND LEVELS             |     |                                        |                 |                   |        |     |                        | 21202-23         |                         |                                              |                 |         |         |            |     |
|-----------------------------------|-----|----------------------------------------|-----------------|-------------------|--------|-----|------------------------|------------------|-------------------------|----------------------------------------------|-----------------|---------|---------|------------|-----|
| Baseline Environmental Consulting |     |                                        |                 |                   |        |     |                        | 25 February 2025 | ary 2025                |                                              |                 |         |         |            |     |
| Baseline Env                      |     |                                        |                 |                   |        |     |                        | <b>TNM 2.5</b>   |                         |                                              |                 |         |         |            |     |
|                                   |     |                                        |                 |                   |        |     |                        | Calculate        | Calculated with TNM 2.5 | M 2.5                                        |                 |         |         |            |     |
| RESULTS: SOUND LEVELS             |     |                                        |                 |                   |        |     |                        |                  |                         |                                              |                 |         |         |            |     |
| PROJECT/CONTRACT:                 |     | 21202-23                               |                 |                   |        |     |                        |                  |                         |                                              |                 |         |         |            |     |
| RUN:                              |     | North County Landfill Permit Amendment | y Landfil       | I Permit A        | Amendm | ent |                        |                  |                         |                                              |                 |         |         |            |     |
| BARRIER DESIGN:                   |     | INPUT HEIGHTS                          | HTS             |                   |        |     |                        |                  | Average                 | Average pavement type shall be used unless   | pe shall be     | nsed (  | nnless  |            | -   |
|                                   |     |                                        |                 |                   |        |     |                        |                  | a State I               | a State highway agency substantiates the use | ncy substai     | ntiates | the use |            |     |
| ATMOSPHERICS:                     |     | 68 deg F, 50% RH                       | % RH            |                   |        |     |                        |                  | of a diffe              | of a different type with approval of FHWA.   | th approval     | of FHV  | ۷A.     |            |     |
| Receiver                          |     |                                        |                 |                   |        |     |                        |                  |                         |                                              |                 |         |         |            |     |
| Name                              | No. | #DUs Existing                          | _               | No Barrier        |        |     |                        |                  |                         | With Barrier                                 | er              |         |         |            |     |
|                                   |     | LAeq1h                                 |                 | LAeq1h            |        | n   | Increase over existing | existing         | Type                    | Calculated                                   | Noise Reduction | eductio | u       |            |     |
|                                   |     |                                        | ပိ              | Calculated Crit'n | Crit'n | Ca  | Calculated             | Crit'n           | Impact                  | LAeq1h                                       | Calculated Goal | ed G    | oal     | Calculated | eq  |
|                                   |     |                                        |                 |                   |        |     |                        | Sub'l Inc        |                         |                                              |                 |         |         | minus      |     |
|                                   |     |                                        |                 |                   |        |     |                        |                  |                         |                                              |                 |         |         | Goal       |     |
|                                   |     | dBA                                    | dBA             | Ą                 | dBA    | dВ  |                        | dВ               |                         | dBA                                          | dВ              | dB      | 8       | dВ         |     |
| Receiver1                         | 1   | 1                                      | 0.0             | 8.99              | 8      | 9   | 8.99                   |                  | 3 Snd Lvl               |                                              | 8.99            | 0.0     | 0       |            | 0.0 |
| Dwelling Units                    |     | # DUs Nois                             | Noise Reduction | tion              |        |     |                        |                  |                         |                                              |                 |         |         |            |     |
|                                   |     | Min                                    |                 | Avg               | Max    |     |                        |                  |                         |                                              |                 |         |         |            |     |
|                                   |     | В                                      | ф               | m                 | фВ     |     |                        |                  |                         |                                              |                 |         |         |            |     |
| All Selected                      |     | _                                      | 0.0             | 0.0               |        | 0.0 |                        |                  |                         |                                              |                 |         |         |            |     |
| All Impacted                      |     | _                                      | 0.0             | 0.0               |        | 0.0 |                        |                  |                         |                                              |                 |         |         |            |     |
| All that meet NR Goal             |     | -                                      | 0.0             | 0.0               |        | 0.0 |                        |                  |                         |                                              |                 |         |         |            |     |
|                                   |     |                                        |                 |                   |        |     |                        |                  |                         |                                              |                 |         |         |            |     |

| 2:\TNM25\Program\MillerRd\NorthCounty |  |
|---------------------------------------|--|
|                                       |  |

| INPUT: TRAFFIC FOR LAeq1h Volumes |                     |         |                                  |                  |         | 2   | 21202-23 |     |        |     |             |      |
|-----------------------------------|---------------------|---------|----------------------------------|------------------|---------|-----|----------|-----|--------|-----|-------------|------|
|                                   |                     |         |                                  |                  |         |     |          |     |        |     |             |      |
| Baseline Environmental Consulting |                     |         |                                  | 25 February 2025 | uary 20 | 25  |          |     |        |     |             |      |
| Baseline Env                      |                     |         |                                  | <b>TNM 2.5</b>   | 10      |     |          |     |        |     |             |      |
|                                   |                     |         |                                  |                  |         |     |          |     |        |     |             |      |
| INPUT: TRAFFIC FOR LAeq1h Volumes |                     |         |                                  |                  |         |     |          |     |        |     |             |      |
| PROJECT/CONTRACT:                 | 21202-23            |         |                                  |                  |         |     |          |     |        |     |             |      |
| RUN:                              | <b>North County</b> | Landfil | County Landfill Permit Amendment | Amendn           | nent    |     |          |     |        |     |             |      |
| Roadway                           | Points              |         |                                  |                  |         |     |          |     |        |     |             |      |
| Name                              | Name                | No.     | Segment                          |                  |         |     |          |     |        |     |             |      |
|                                   |                     |         | Autos                            |                  | MTrucks |     | HTrucks  |     | Buses  |     | Motorcycles | cles |
|                                   |                     |         | >                                | S                |         | S   | >        | တ   | >      | S   | >           | S    |
|                                   |                     |         | veh/hr                           | \ hdm            | veh/hr  | нdш | veh/hr   | hdm | veh/hr | нdш | veh/hr      | mph  |
| E Harney Ln,JTR & Entrance C      | point1              |         | 189                              | 22               | 0       | 0   | 30       | 22  | 0      | 0   | 0           | 0    |
|                                   | point2              | 2       |                                  |                  |         |     |          |     |        |     |             |      |

| 21202-23           |  |
|--------------------|--|
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
| D LEVELS           |  |
| ULTS: SOUND LEVELS |  |
| RESU               |  |

| Baseline Environmental Consulting |    |          |                       |         |            |                                        |            | 25 Febr                | 25 February 2025        |                                              |                        |           |            |     |
|-----------------------------------|----|----------|-----------------------|---------|------------|----------------------------------------|------------|------------------------|-------------------------|----------------------------------------------|------------------------|-----------|------------|-----|
| Baseline Env                      |    |          |                       |         |            |                                        |            | <b>TNM 2.5</b>         |                         |                                              |                        |           |            |     |
|                                   |    |          |                       |         |            |                                        |            | Calcula                | Calculated with TNM 2.5 | M 2.5                                        |                        |           |            |     |
| RESULTS: SOUND LEVELS             |    |          |                       |         |            |                                        |            |                        |                         |                                              |                        |           |            |     |
| PROJECT/CONTRACT:                 |    | 21202-23 | -23                   |         |            |                                        |            |                        |                         |                                              |                        |           |            |     |
| RUN:                              |    | North    | County I              | -andfil | Permit A   | North County Landfill Permit Amendment | <b>+</b>   |                        |                         |                                              |                        |           |            |     |
| BARRIER DESIGN:                   |    | INPU     | INPUT HEIGHTS         | Z       |            |                                        |            |                        | Average                 | Average pavement type shall be used unless   | e shall be use         | ed unless |            | -   |
|                                   |    |          |                       |         |            |                                        |            |                        | a State I               | a State highway agency substantiates the use | y substantiat          | es the us | e          |     |
| ATMOSPHERICS:                     |    | 68 de    | 68 deg F, 50% RH      | Æ       |            |                                        |            |                        | of a diffe              | of a different type with approval of FHWA.   | approval of F          | HWA.      |            |     |
| Receiver                          |    |          |                       |         |            |                                        |            |                        |                         |                                              |                        |           |            |     |
| Name                              | Š. | #DUs     | Existing              |         | No Barrier |                                        |            |                        |                         | With Barrier                                 |                        |           |            |     |
|                                   |    |          | LAeq1h                |         | LAeq1h     |                                        | Increase o | Increase over existing | Type                    | Calculated                                   | <b>Noise Reduction</b> | ction     |            |     |
|                                   |    |          |                       | ပ္မ     | Calculated | Crit'n                                 | Calculated | Crit'n                 | Impact                  | LAeq1h                                       | Calculated Goal        | Goal      | Calculated | eq  |
|                                   |    |          |                       |         |            |                                        |            | Sub'l Inc              | ပ                       |                                              |                        |           | minus      |     |
|                                   |    |          |                       |         |            |                                        |            |                        |                         |                                              |                        |           | Goal       |     |
|                                   |    |          | dBA                   | dBA     | A          | dBA                                    | dB         | 용                      |                         | dBA                                          | фB                     | дB        | ВВ         |     |
| Receiver1                         |    | 1        | 1                     | 0.0     | 66.4       |                                        | 9 65       | 66.4                   | 3 Snd Lvl               | 1 66.4                                       | 4 0.0                  |           | 0          | 0.0 |
| Dwelling Units                    |    | # DO     | # DUs Noise Reduction | Reduc   | tion       |                                        |            |                        |                         |                                              |                        |           |            |     |
|                                   |    |          | Min                   | Avg     | g/         | Max                                    |            |                        |                         |                                              |                        |           |            |     |
|                                   |    |          | dВ                    | dВ      | 8          | dВ                                     |            |                        |                         |                                              |                        |           |            |     |
| All Selected                      |    |          | _                     | 0.0     | 0.0        |                                        | 0.0        |                        |                         |                                              |                        |           |            |     |
| All Impacted                      |    |          | 1                     | 0.0     | 0.0        |                                        | 0.0        |                        |                         |                                              |                        |           |            |     |
| All that meet NR Goal             |    |          | 1                     | 0.0     | 0.0        |                                        | 0.0        |                        |                         |                                              |                        |           |            |     |

| erRd\NorthCounty    |  |
|---------------------|--|
| C:\TNM25\Program\Mi |  |

| INPUT: TRAFFIC FOR LAeq1h Volumes     |                |          |                                  | ,       |                  | 2   | 21202-23 |     |        |     |             |      |
|---------------------------------------|----------------|----------|----------------------------------|---------|------------------|-----|----------|-----|--------|-----|-------------|------|
| Recoline Environmental Conculting     |                |          |                                  | 25 Fahr | 25 February 2025 | Ϋ́  |          |     |        |     |             |      |
| Daseille Ellvilollilental collegituig |                |          |                                  | 100 107 | uai y 201        | 2   |          |     |        |     |             |      |
| Baseline Env                          |                |          |                                  | TNM 2.5 |                  |     |          |     |        |     |             |      |
| INPUT: TRAFFIC FOR LAeq1h Volumes     |                |          |                                  |         |                  |     |          |     |        |     |             |      |
| PROJECT/CONTRACT:                     | 21202-23       |          |                                  |         |                  |     |          |     |        |     |             |      |
| RUN:                                  | North County L | andfill. | County Landfill Permit Amendment | Amendr  | ent              |     |          |     |        |     |             |      |
| Roadway                               | Points         |          |                                  |         |                  |     |          |     |        |     |             |      |
| Name                                  | Name           | No.      | Segment                          | _       |                  |     |          |     |        |     |             |      |
|                                       |                |          | Autos                            | _       | <b>MTrucks</b>   |     | HTrucks  |     | Buses  |     | Motorcycles | cles |
|                                       |                |          | >                                | _<br>s  |                  | S   | >        | S   | >      | S   | >           | S    |
|                                       |                |          | veh/hr                           | v hdm   | veh/hr           | mph | veh/hr   | mph | veh/hr | mph | veh/hr      | mph  |
| E Harney Ln,JTR & Entrance C+P        | point1         | _        | 217                              | 55      | 0                | 0   | 38       | 55  | 0      | 0   | 0           | 0    |
|                                       | point2         | 2        |                                  |         |                  |     |          |     |        |     |             |      |
|                                       |                |          |                                  |         |                  |     |          |     |        |     |             |      |

| UND LEVELS    |  |
|---------------|--|
| RESULTS: SOUN |  |

| Baseline Environmental Consulting |    |          |                  |                                        |         |                        | 25 February 2025 | ıry 2025                |               |                                              |            |            |
|-----------------------------------|----|----------|------------------|----------------------------------------|---------|------------------------|------------------|-------------------------|---------------|----------------------------------------------|------------|------------|
| Baseline Env                      |    |          |                  |                                        |         |                        | <b>TNM 2.5</b>   |                         |               |                                              |            |            |
|                                   |    |          |                  |                                        |         |                        | Calculate        | Calculated with TNM 2.5 | 2.5           |                                              |            |            |
| RESULTS: SOUND LEVELS             |    |          |                  |                                        |         |                        |                  |                         |               |                                              |            |            |
| PROJECT/CONTRACT:                 |    | 21202-23 | 23               |                                        |         |                        |                  |                         |               |                                              |            |            |
| RUN:                              |    | North (  | ounty La         | North County Landfill Permit Amendment | Amendme | rt<br>T                |                  |                         |               |                                              |            |            |
| BARRIER DESIGN:                   |    | INPUT    | INPUT HEIGHTS    |                                        |         |                        |                  | Average p               | avement type  | Average pavement type shall be used unless   | sq nuless  |            |
|                                   |    |          |                  |                                        |         |                        |                  | a State hiç             | hway agency   | a State highway agency substantiates the use | es the use |            |
| ATMOSPHERICS:                     |    | 68 deg   | 68 deg F, 50% RH | _                                      |         |                        |                  | of a differ             | ent type with | of a different type with approval of FHWA.   | HWA.       |            |
| Receiver                          |    |          |                  |                                        |         |                        |                  |                         |               |                                              |            |            |
| Name                              | Š. | #DNs     | Existing         | No Barrier                             |         |                        |                  |                         | With Barrier  |                                              |            |            |
|                                   |    |          | LAeq1h           | LAeq1h                                 |         | Increase over existing | r existing       | Type                    | Calculated    | Noise Reduction                              | tion       |            |
|                                   |    |          |                  | Calculated                             | Crit'n  | Calculated             | Crit'n           | Impact                  | LAeq1h        | Calculated Goal                              | Goal       | Calculated |
|                                   |    |          |                  |                                        |         |                        | Sub'l Inc        |                         |               |                                              |            | minus      |
|                                   |    |          |                  |                                        |         |                        |                  |                         |               |                                              |            | Goal       |
|                                   |    |          | dBA              | dBA                                    | dBA     | dB                     | dВ               |                         | dBA           | dB                                           | dВ         | dB         |
| Receiver1                         |    | 1        | 0.0              | 0 67.2                                 |         | 65 67.2                | .2 3             | Snd Lvl                 | 67.2          | 0.0                                          | 0          | 0.0        |
| Dwelling Units                    |    | # DNs    | Noise Reduction  | duction                                |         |                        |                  |                         |               |                                              |            |            |
|                                   |    |          | Min              | Avg                                    | Max     |                        |                  |                         |               |                                              |            |            |
|                                   |    |          | фВ               | dВ                                     | dВ      |                        |                  |                         |               |                                              |            |            |
| All Selected                      |    | _        | 0.0              | 0.0                                    |         | 0.0                    |                  |                         |               |                                              |            |            |
| All Impacted                      |    | _        | 0.0              | 0.0                                    |         | 0.0                    |                  |                         |               |                                              |            |            |
| All that meet NR Goal             |    | _        | 0.0              | 0.0                                    |         | 0.0                    |                  |                         |               |                                              |            |            |

| erRd\NorthCounty    |  |
|---------------------|--|
| C:\TNM25\Program\Mi |  |

|                                    |                |          |                                  |                  |          | 7   | 21202-23 |      |        |     |             |      |
|------------------------------------|----------------|----------|----------------------------------|------------------|----------|-----|----------|------|--------|-----|-------------|------|
|                                    |                |          |                                  |                  |          |     |          |      |        |     |             |      |
| Baseline Environmental Consulting  |                |          |                                  | 25 February 2025 | uary 20; | 25  |          |      |        |     |             |      |
| Baseline Env                       |                |          |                                  | <b>TNM 2.5</b>   |          |     |          |      |        |     |             |      |
|                                    |                |          |                                  |                  |          |     |          |      |        |     |             |      |
| INPUT: TRAFFIC FOR LAeq1h Volumes  |                |          |                                  |                  |          |     |          |      |        |     |             |      |
| PROJECT/CONTRACT:                  | 21202-23       |          |                                  |                  |          |     |          |      |        |     |             |      |
| RUN:                               | North County I | Landfill | County Landfill Permit Amendment | <b>Amendm</b>    | ent      |     |          |      |        |     |             |      |
| Roadway                            | Points         |          |                                  |                  |          |     |          |      |        |     |             |      |
| Name                               | Name           | No.      | Segment                          |                  |          |     |          |      |        |     |             |      |
|                                    |                |          | Autos                            | _                | MTrucks  | 45  | HTrucks  | (A)  | Buses  |     | Motorcycles | cles |
|                                    |                |          | >                                | <u>&gt;</u>      | _        | S   | >        | တ    | >      | တ   | >           | S    |
|                                    |                |          | veh/hr                           | v hdm            | veh/hr   | mph | veh/hr   | mph  | veh/hr | mph | veh/hr      | mph  |
| E Harney Ln, Entrance & Clements E | point1         | _        | 78                               | 22               | 0        | 0   | 10       | ) 55 | 0      | 0   | 0           | 0    |
|                                    | point2         | 2        |                                  |                  |          |     |          |      |        |     |             |      |

| RESULTS: SOUND LEVELS |  |
|-----------------------|--|

| RESULTS: SOUND LEVELS             |    |          |                       |                                        |        |                        | 21202-23         |                         |               |                                              |            |            |
|-----------------------------------|----|----------|-----------------------|----------------------------------------|--------|------------------------|------------------|-------------------------|---------------|----------------------------------------------|------------|------------|
|                                   |    |          |                       |                                        |        |                        |                  |                         |               |                                              |            |            |
| Baseline Environmental Consulting |    |          |                       |                                        |        |                        | 25 February 2025 | ry 2025                 |               |                                              |            |            |
| Baseline Env                      |    |          |                       |                                        |        |                        | <b>TNM 2.5</b>   |                         |               |                                              |            |            |
|                                   |    |          |                       |                                        |        |                        | Calculate        | Calculated with TNM 2.5 | 2.5           |                                              |            |            |
| RESULTS: SOUND LEVELS             |    |          |                       |                                        |        |                        |                  |                         |               |                                              |            |            |
| PROJECT/CONTRACT:                 |    | 21202-23 | 83                    |                                        |        |                        |                  |                         |               |                                              |            |            |
| RUN:                              |    | North C  | ounty Lar             | North County Landfill Permit Amendment | mendme | ent                    |                  |                         |               |                                              |            |            |
| BARRIER DESIGN:                   |    | INPUT    | INPUT HEIGHTS         |                                        |        |                        |                  | Average p               | avement typ   | Average pavement type shall be used unless   | sq nuless  | -          |
|                                   |    |          |                       |                                        |        |                        |                  | a State hi              | ghway agenc   | a State highway agency substantiates the use | es the use |            |
| ATMOSPHERICS:                     |    | 68 deg   | 68 deg F, 50% RH      | _                                      |        |                        |                  | of a differ             | ent type with | of a different type with approval of FHWA.   | HWA.       |            |
| Receiver                          |    |          |                       |                                        |        |                        |                  |                         |               |                                              |            |            |
| Name                              | Š. | #DNs     | Existing              | No Barrier                             |        |                        |                  |                         | With Barrier  |                                              |            |            |
|                                   |    |          | LAeq1h                | LAeq1h                                 |        | Increase over existing | existing.        | Type                    | Calculated    | Noise Reduction                              | tion       |            |
|                                   |    |          |                       | Calculated                             | Crit'n | Calculated             | Crit'n           | Impact                  | LAeq1h        | Calculated Goal                              | Goal       | Calculated |
|                                   |    |          |                       |                                        |        |                        | Sub'l Inc        |                         |               |                                              |            | minus      |
|                                   |    |          |                       |                                        |        |                        |                  |                         |               |                                              |            | Goal       |
|                                   |    |          | dBA                   | dBA                                    | dBA    | dB                     | dВ               |                         | dBA           | 명<br>명                                       | dВ         | dB         |
| Receiver1                         | 1  |          | 0.0                   | 62.0                                   | 0      | 65 62.0                | 3                | -                       | 62.0          | 0.0                                          |            | 0.0        |
| Dwelling Units                    |    | # DNs    | # DUs Noise Reduction | duction                                |        |                        |                  |                         |               |                                              |            |            |
|                                   |    |          | Min                   | Avg                                    | Мах    |                        |                  |                         |               |                                              |            |            |
|                                   |    |          | dB                    | dВ                                     | qB     |                        |                  |                         |               |                                              |            |            |
| All Selected                      |    | _        | 0.0                   | 0.0                                    |        | 0.0                    |                  |                         |               |                                              |            |            |
| All Impacted                      |    | 0        | 0.0                   | 0.0                                    |        | 0.0                    |                  |                         |               |                                              |            |            |
| All that meet NR Goal             |    | _        | 0.0                   | 0.0                                    |        | 0.0                    |                  |                         |               |                                              |            |            |

| 2:\TNM25\Program\MillerRd\NorthCounty |  |
|---------------------------------------|--|
|                                       |  |

| <b>Baseline Environmental Consulting</b> |                |          |                                  | 25 February 2025 | uary 203 | 55  |         |     |        |     |             |      |
|------------------------------------------|----------------|----------|----------------------------------|------------------|----------|-----|---------|-----|--------|-----|-------------|------|
| Baseline Env                             |                |          |                                  | <b>TNM 2.5</b>   |          |     |         |     |        |     |             |      |
|                                          |                |          |                                  |                  |          |     |         |     |        |     |             |      |
| INPUT: TRAFFIC FOR LAeq1h Volumes        |                |          |                                  |                  |          |     |         |     |        |     |             |      |
| PROJECT/CONTRACT:                        | 21202-23       |          |                                  |                  |          |     |         |     |        |     |             |      |
| RUN:                                     | North County I | -andfill | County Landfill Permit Amendment | Amendn           | ent      |     |         |     |        |     |             |      |
| Roadway                                  | Points         |          |                                  |                  |          |     |         |     |        |     |             |      |
| Name                                     | Name           | No.      | Segment                          | _                |          |     |         |     |        |     |             |      |
|                                          |                |          | Autos                            |                  | MTrucks  |     | HTrucks |     | Buses  |     | Motorcycles | cles |
|                                          |                |          | >                                | s                |          | S   | >       | S   | >      | S   | >           | တ    |
|                                          |                |          | veh/hr                           | \<br>hdm         | veh/hr   | mph | veh/hr  | mph | veh/hr | mph | veh/hr      | mph  |
| E Harney Ln, Entrance & Clements E+P     | point1         | _        | 81                               | 22               | 0        | 0   | 11      | 22  | 0      | 0   | 0           |      |
|                                          | point2         | 2        |                                  |                  |          |     |         |     |        |     |             |      |
|                                          |                |          |                                  |                  |          |     |         |     |        |     |             |      |

INPUT: TRAFFIC FOR LAeq1h Volumes

| RESULTS: SOUND LEVELS             |          |                  |                                        |          |                        | 21202-23         |                         |                                              |                 |           |
|-----------------------------------|----------|------------------|----------------------------------------|----------|------------------------|------------------|-------------------------|----------------------------------------------|-----------------|-----------|
| Baseline Environmental Consulting |          |                  |                                        |          |                        | 25 February 2025 | ıry 2025                |                                              |                 |           |
| Baseline Env                      |          |                  |                                        |          |                        | <b>TNM 2.5</b>   |                         |                                              |                 |           |
|                                   |          |                  |                                        |          |                        | Calculate        | Calculated with TNM 2.5 | A 2.5                                        |                 |           |
| RESULTS: SOUND LEVELS             |          |                  |                                        |          |                        |                  |                         |                                              |                 |           |
| PROJECT/CONTRACT:                 | 21202-23 | 23               |                                        |          |                        |                  |                         |                                              |                 |           |
| RUN:                              | North    | County Lar       | North County Landfill Permit Amendment | Amendmen | ±                      |                  |                         |                                              |                 |           |
| BARRIER DESIGN:                   | INPU     | INPUT HEIGHTS    |                                        |          |                        |                  | Average                 | Average pavement type shall be used unless   | e shall be use  | d unless  |
|                                   |          |                  |                                        |          |                        |                  | a State hi              | a State highway agency substantiates the use | y substantiat   | s the use |
| ATMOSPHERICS:                     | 98 de    | 68 deg F, 50% RH | _                                      |          |                        |                  | of a differ             | of a different type with approval of FHWA.   | approval of F   | HWA.      |
| Receiver                          |          |                  |                                        |          |                        |                  |                         |                                              |                 |           |
| Name No.                          | #DUs     | Existing         | No Barrier                             |          |                        |                  |                         | With Barrier                                 |                 |           |
|                                   |          | LAeq1h           | LAeq1h                                 | _        | Increase over existing | existing         | Type                    | Calculated                                   | Noise Reduction | tion      |
|                                   |          |                  | Calculated Crit'n                      | Crit'n   | Calculated             | Crit'n           | Impact                  | LAeq1h                                       | Calculated      | Goal      |
|                                   |          |                  |                                        |          |                        | Sub'l Inc        |                         |                                              |                 |           |
|                                   |          |                  |                                        |          |                        |                  |                         |                                              |                 |           |
|                                   |          | dBA              | dBA                                    | dBA      | dB                     | θВ               |                         | dBA                                          | dВ              | дB        |
| Receiver1                         | _        | 1 0.0            | 62.3                                   |          | 65 62.3                | 3                |                         | 62.3                                         | 0.0             |           |
| Dwelling Units                    | # DNs    | Noise Reduction  | duction                                |          |                        |                  |                         |                                              |                 |           |
|                                   |          | Min              | Avg                                    | Мах      |                        |                  |                         |                                              |                 |           |
|                                   |          | dВ               | dВ                                     | dВ       |                        |                  |                         |                                              |                 |           |
| All Selected                      |          | 1 0.0            | 0.0                                    | 0.0      | 0                      |                  |                         |                                              |                 |           |
| All Impacted                      |          | 0.0              | 0.0                                    | 0.0      | 0                      |                  |                         |                                              |                 |           |
| All that meet NR Goal             |          | 1 0.0            | 0.0                                    | 0.0      | 0                      |                  |                         |                                              |                 |           |
|                                   |          |                  |                                        |          |                        |                  |                         |                                              |                 |           |

0.0

Calculated minus
Goal

| 2:\TNM25\Program\MillerRd\NorthCounty |  |
|---------------------------------------|--|
|                                       |  |

| INPUT: TRAFFIC FOR LAeq1h Volumes  |                                        |         | -            |         |                  | 7   | 21202-23 |     |        |     |             |      |
|------------------------------------|----------------------------------------|---------|--------------|---------|------------------|-----|----------|-----|--------|-----|-------------|------|
|                                    |                                        |         |              |         | Č                |     |          |     |        |     |             |      |
| Baseline Environmental Consulting  |                                        |         |              | 25 Febr | 25 February 2025 | 52  |          |     |        |     |             |      |
| Baseline Env                       |                                        |         | •            | TNM 2.5 |                  |     | _        |     |        |     |             |      |
| INPUT: TRAFFIC FOR LAeq1h Volumes  |                                        |         |              |         |                  |     |          |     |        |     |             |      |
| PROJECT/CONTRACT:                  | 21202-23                               |         |              |         |                  |     |          |     |        |     |             |      |
| RUN:                               | North County Landfill Permit Amendment | andfill | Permit A     | mendm   | ent              |     |          |     |        |     |             |      |
| Roadway                            | Points                                 |         |              |         |                  |     |          |     |        |     |             |      |
| Name                               | Name                                   | No.     | Segment      |         |                  |     |          |     |        |     |             |      |
|                                    |                                        |         | Autos        | _       | MTrucks          |     | HTrucks  |     | Buses  |     | Motorcycles | cles |
|                                    |                                        |         | <del>"</del> | _<br>s  | _                | S   | >        | တ   | >      | တ   | >           | S    |
|                                    |                                        |         | veh/hr r     | v Hdm   | veh/hr           | mph | veh/hr   | mph | veh/hr | mph | veh/hr      | mph  |
| E Harney Ln, Entrance & Clements C | point1                                 | _       | 96           | 22      | 0                | 0   | 13       | 55  | 0      | 0   | 0           | 0    |
|                                    | point2                                 | 2       |              |         |                  |     |          |     |        |     |             |      |
|                                    |                                        |         |              |         |                  |     |          |     |        |     |             |      |

| 21202-23           |  |
|--------------------|--|
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
| EVELS              |  |
| SULTS: SOUND LEVEI |  |
| RESULT             |  |

| Baseline Environmental Consulting |     |          |                  |                                        |          |                        | 25 February 2025 | ry 2025                 |               |                                              |            |            |     |
|-----------------------------------|-----|----------|------------------|----------------------------------------|----------|------------------------|------------------|-------------------------|---------------|----------------------------------------------|------------|------------|-----|
| Baseline Env                      |     |          |                  |                                        |          |                        | <b>TNM 2.5</b>   |                         |               |                                              |            |            |     |
|                                   |     |          |                  |                                        |          |                        | Calculated       | Calculated with TNM 2.5 | 2.5           |                                              |            |            |     |
| RESULTS: SOUND LEVELS             |     |          |                  |                                        |          |                        |                  |                         |               |                                              |            |            |     |
| PROJECT/CONTRACT:                 |     | 21202-23 | 23               |                                        |          |                        |                  |                         |               |                                              |            |            |     |
| RUN:                              |     | North    | County La        | North County Landfill Permit Amendment | Amendmer | ¥                      |                  |                         |               |                                              |            |            |     |
| BARRIER DESIGN:                   |     | INPUT    | INPUT HEIGHTS    | 0                                      |          |                        |                  | Average p               | avement typo  | Average pavement type shall be used unless   | d unless   |            |     |
|                                   |     |          |                  |                                        |          |                        |                  | a State high            | hway agency   | a State highway agency substantiates the use | es the use |            |     |
| ATMOSPHERICS:                     |     | 98 dec   | 68 deg F, 50% RH | £                                      |          |                        |                  | of a differ             | ent type with | of a different type with approval of FHWA.   | HWA.       |            |     |
| Receiver                          |     |          |                  |                                        |          |                        |                  |                         |               |                                              |            |            |     |
| Name                              | No. | #DUs     | Existing         | No Barrier                             |          |                        |                  |                         | With Barrier  |                                              |            |            |     |
|                                   |     |          | LAeq1h           | LAeq1h                                 | -        | Increase over existing | r existing       | Type                    | Calculated    | Noise Reduction                              | tion       |            |     |
|                                   |     |          |                  | Calculated                             | Crit'n   | Calculated             | Crit'n           | Impact                  | LAeq1h        | Calculated Goal                              | Goal       | Calculated | 70  |
|                                   |     |          |                  |                                        |          |                        | Sub'l Inc        |                         |               |                                              |            | minus      |     |
|                                   |     |          |                  |                                        |          |                        |                  |                         |               |                                              |            | Goal       |     |
|                                   |     |          | dBA              | dBA                                    | dBA      | dB                     | dВ               |                         | dBA           | dВ                                           | dВ         | dB         |     |
| Receiver1                         | ·   |          | 1 0              | 0.0                                    |          | 65 63.1                | 1 3              | -                       | 63.1          | 0.0                                          |            | 0          | 0.0 |
| Dwelling Units                    |     | # DUS    | Noise F          | # DUs Noise Reduction                  |          |                        |                  |                         |               |                                              |            |            |     |
|                                   |     |          | Min              | Avg                                    | Max      |                        |                  |                         |               |                                              |            |            |     |
|                                   |     |          | фВ               | ф                                      | дB       |                        |                  |                         |               |                                              |            |            |     |
| All Selected                      |     |          | 0                | 0.0                                    | 0.0      | 0                      |                  |                         |               |                                              |            |            |     |
| All Impacted                      |     |          | 0                | 0.0                                    | 0.0      | 0                      |                  |                         |               |                                              |            |            |     |
| All that meet NR Goal             |     |          | 0                | 0.0                                    | 0.0 0.0  | 0                      |                  |                         |               |                                              |            |            |     |

| M25\Program\MillerRd\NorthCounty |
|----------------------------------|
| C:\T                             |

| INPUT: TRAFFIC FOR LAeq1h Volumes    |                                        |         |            |                |                  | 7       | 21202-23   |     |        |     |             |      |
|--------------------------------------|----------------------------------------|---------|------------|----------------|------------------|---------|------------|-----|--------|-----|-------------|------|
|                                      |                                        |         |            |                | Č                | L       |            |     |        |     |             |      |
| Baseline Environmental Consulting    |                                        |         |            | ZO FEDE        | 25 repruary 2025 | 22      |            |     |        |     |             |      |
| Baseline Env                         |                                        |         | •          | <b>TNM 2.5</b> | 10               |         |            |     |        |     |             |      |
|                                      |                                        |         |            |                |                  |         |            |     |        |     |             |      |
| INPUT: TRAFFIC FOR LAeq1h Volumes    |                                        |         |            |                |                  |         |            |     |        |     |             |      |
| PROJECT/CONTRACT:                    | 21202-23                               |         |            |                |                  |         |            |     |        |     |             |      |
| RUN:                                 | North County Landfill Permit Amendment | Landfil | I Permit A | \mendn         | nent             |         |            |     |        |     |             |      |
| Roadway                              | Points                                 |         |            |                |                  |         |            |     |        |     |             |      |
| Name                                 | Name                                   | No.     | Segment    |                |                  |         |            |     |        |     |             |      |
|                                      |                                        |         | Autos      | _              | MTrucks          | <b></b> | HTrucks    | S   | Buses  |     | Motorcycles | cles |
|                                      |                                        |         | >          | S              | >                | ഗ       | >          | တ   | >      | S   | >           | S    |
|                                      |                                        |         | veh/hr     | , hdm          | veh/hr mph       | mph     | veh/hr mph | mph | veh/hr | mph | veh/hr      | mph  |
| E Harney Ln, Entrance & Clements C+P | point1                                 | _       | 66         | 55             | 0                | 0       | 14         | 55  | 0      | 0   | 0           | 0    |
|                                      | point2                                 | 2       |            |                |                  |         |            |     |        |     |             |      |

| U | 2 |
|---|---|
|   |   |
|   | • |

| RESULTS: SOUND LEVELS             | -        | -                |           |                                        |        |                        | 21202-23         |                         | -                                                                                       |                        |                           |            |     |
|-----------------------------------|----------|------------------|-----------|----------------------------------------|--------|------------------------|------------------|-------------------------|-----------------------------------------------------------------------------------------|------------------------|---------------------------|------------|-----|
| Baseline Environmental Consulting |          |                  |           |                                        |        |                        | 25 February 2025 | ıry 2025                |                                                                                         |                        |                           |            |     |
| Baseline Env                      |          |                  |           |                                        |        |                        | <b>TNM 2.5</b>   |                         |                                                                                         |                        |                           |            |     |
|                                   |          |                  |           |                                        |        |                        | Calculate        | Calculated with TNM 2.5 | M 2.5                                                                                   |                        |                           |            |     |
| RESULTS: SOUND LEVELS             |          |                  |           |                                        |        |                        |                  |                         |                                                                                         |                        |                           |            |     |
| PROJECT/CONTRACT:                 | 21202-23 | 2-23             |           |                                        |        |                        |                  |                         |                                                                                         |                        |                           |            |     |
| RUN:                              | Nort     | ι Cour           | ity Land  | North County Landfill Permit Amendment | mendme | ent                    |                  |                         |                                                                                         |                        |                           |            |     |
| BARRIER DESIGN:                   | INPL     | INPUT HEIGHTS    | GHTS      |                                        |        |                        |                  | Average                 | Average pavement type shall be used unless                                              | e shall be             | nsed unless               |            |     |
| ATMOSPHERICS:                     | p 89     | 68 deg F, 50% RI | 0% RH     |                                        |        |                        |                  | a State h<br>of a diffe | a State highway agency substantiates the use of a different type with approval of FHWA. | y substant<br>approval | iates the uso<br>of FHWA. | 0          |     |
| Receiver                          |          |                  |           |                                        |        |                        |                  |                         |                                                                                         |                        |                           |            |     |
| Name                              | No. #DUs |                  | Existing  | No Barrier                             |        |                        |                  |                         | With Barrier                                                                            |                        |                           |            |     |
|                                   |          | ľ                | LAeq1h    | LAeq1h                                 |        | Increase over existing | r existing       | Type                    | Calculated                                                                              | Noise Reduction        | duction                   |            |     |
|                                   |          |                  |           | Calculated                             | Crit'n | Calculated             | Crit'n           | Impact                  | LAeq1h                                                                                  | Calculated             | d Goal                    | Calculated | þ   |
|                                   |          |                  |           |                                        |        |                        | Sub'l Inc        |                         |                                                                                         |                        |                           | minus      |     |
|                                   |          |                  |           |                                        |        |                        |                  |                         |                                                                                         |                        |                           | Goal       |     |
|                                   |          | dBA              |           | dBA                                    | dBA    | dB                     | dВ               |                         | dBA                                                                                     | ф                      | dВ                        | dB         |     |
| Receiver1                         | 1        | _                | 0.0       | 63.3                                   | 3      | 65 63.3                | 3 3              |                         | 63.3                                                                                    | 3                      | 0.0                       | 0          | 0.0 |
| Dwelling Units                    | # DNs    |                  | Noise Red | duction                                |        |                        |                  |                         |                                                                                         |                        |                           |            |     |
|                                   |          | Min              |           | Avg                                    | Max    |                        |                  |                         |                                                                                         |                        |                           |            |     |
|                                   |          | dВ               |           | dB                                     | dВ     |                        |                  |                         |                                                                                         |                        |                           |            |     |
| All Selected                      |          | -                | 0.0       | 0.0                                    |        | 0.0                    |                  |                         |                                                                                         |                        |                           |            |     |
| All Impacted                      |          | 0                | 0.0       | 0.0                                    |        | 0.0                    |                  |                         |                                                                                         |                        |                           |            |     |
| All that meet NR Goal             |          | -                | 0.0       | 0.0                                    |        | 0.0                    |                  |                         |                                                                                         |                        |                           |            |     |

| 2:\TNM25\Program\MillerRd\NorthCounty |  |
|---------------------------------------|--|
|                                       |  |

| INPUT: TRAFFIC FOR LAeq1h Volumes |                     |         |                                  |                  |          | 7   | 21202-23 |     |        |     |             |      |
|-----------------------------------|---------------------|---------|----------------------------------|------------------|----------|-----|----------|-----|--------|-----|-------------|------|
|                                   |                     |         |                                  |                  |          |     |          |     |        |     |             |      |
| Baseline Environmental Consulting |                     |         |                                  | 25 February 2025 | uary 20; | 25  |          |     |        |     |             |      |
| Baseline Env                      |                     |         |                                  | <b>TNM 2.5</b>   |          |     |          |     |        |     |             |      |
|                                   |                     |         |                                  |                  |          |     |          |     |        |     |             |      |
| INPUT: TRAFFIC FOR LAeq1h Volumes |                     |         |                                  |                  |          |     |          |     |        |     |             |      |
| PROJECT/CONTRACT:                 | 21202-23            |         |                                  |                  |          |     |          |     |        |     |             |      |
| RUN:                              | <b>North County</b> | Landfil | County Landfill Permit Amendment | Amendn           | ent      |     |          |     |        |     |             |      |
| Roadway                           | Points              |         |                                  |                  |          |     |          |     |        |     |             |      |
| Name                              | Name                | No.     | Segment                          | <b>.</b>         |          |     |          |     |        |     |             |      |
|                                   |                     |         | Autos                            |                  | MTrucks  |     | HTrucks  | (0  | Buses  |     | Motorcycles | cles |
|                                   |                     |         | >                                | S                | _        | S   | >        | တ   | >      | S   | >           | S    |
|                                   |                     |         | veh/hr                           | \ hdm            | veh/hr   | mph | veh/hr   | mph | veh/hr | mph | veh/hr      | mph  |
| SR 88 South of E Harney Ln E      | point1              | _       | 523                              | 22               | 0        | 0   | 52       | 55  | 0      | 0   | 0           | 0    |
|                                   | point2              | 2       |                                  |                  |          |     |          |     |        |     |             |      |

| į                                       | 1 | ו<br>נ                                                                        |
|-----------------------------------------|---|-------------------------------------------------------------------------------|
| ֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜ | 1 | ֭֭֭֭֭֭֭֡֝֝֡֜֝֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֡֓֜֜֜֜֜֡֡֡֜֜֜֡֡֡֡֜֜֜֡֡֡֡֜֜֜֡֡֡֡֜֜֜֡֡֡֡֡֜֜֜֡֡֡֡ |
| -                                       | Z | י                                                                             |

| RESULTS: SOUND LEVELS             |     |          |                   |                                        |         |             | 21202-23               |                         |                                              |                 |             |            |
|-----------------------------------|-----|----------|-------------------|----------------------------------------|---------|-------------|------------------------|-------------------------|----------------------------------------------|-----------------|-------------|------------|
| Baseline Environmental Consulting |     |          |                   |                                        |         |             | 25 February 2025       | ry 2025                 |                                              |                 |             |            |
| Baseline Env                      |     |          |                   |                                        |         |             | <b>TNM 2.5</b>         |                         |                                              |                 |             |            |
|                                   |     |          |                   |                                        |         |             | Calculate              | Calculated with TNM 2.5 | 12.5                                         |                 |             |            |
| RESULTS: SOUND LEVELS             |     |          |                   |                                        |         |             |                        |                         |                                              |                 |             |            |
| PROJECT/CONTRACT:                 |     | 21202-23 | က                 |                                        |         |             |                        |                         |                                              |                 |             |            |
| RUN:                              |     | North C  | ounty La          | North County Landfill Permit Amendment | Amendme | nt          |                        |                         |                                              |                 |             |            |
| BARRIER DESIGN:                   |     | INPUT    | INPUT HEIGHTS     | "                                      |         |             |                        | Average p               | Average pavement type shall be used unless   | e shall be us   | sed unless  |            |
| - SCIEDING SOME                   |     | 200      | E 50%             |                                        |         |             |                        | a State hi              | a State highway agency substantiates the use | y substantia    | ites the us | Φ.         |
| AIMOSPHERICS.                     |     | fien oo  | oo deg r, ou % Kr | 5                                      | _       |             |                        | ol a ullier             | oi a uillereilt type with approval of FRWA.  | approval or     |             |            |
| Receiver                          |     |          |                   |                                        |         |             |                        |                         |                                              |                 |             |            |
| Name                              | No. | #DUs     | Existing          | No Barrier                             |         |             |                        |                         | With Barrier                                 |                 |             |            |
|                                   |     |          | LAeq1h            | LAeq1h                                 |         | Increase ov | Increase over existing | Type                    | Calculated                                   | Noise Reduction | nction      |            |
|                                   |     |          |                   | Calculated                             | Crit'n  | Calculated  | Crit'n                 | Impact                  | LAeq1h                                       | Calculated Goal | Goal        | Calculated |
|                                   |     |          |                   |                                        |         |             | Sub'l Inc              |                         |                                              |                 |             | minus      |
|                                   |     |          |                   |                                        |         |             |                        |                         |                                              |                 |             | Goal       |
|                                   |     |          | dBA               | dBA                                    | dBA     | dB          | ф                      |                         | dBA                                          | dB              | dВ          | dB         |
| Receiver1                         | 1   | 1        | 0                 | 0.0                                    | 69.7    | 9 9         | 69.7                   | Snd Lvl                 | 2.69                                         |                 | 0.0         | 0.0        |
| Dwelling Units                    |     | # DNs    | Noise F           | # DUs Noise Reduction                  |         |             |                        |                         |                                              |                 |             |            |
|                                   |     |          | Min               | Avg                                    | Мах     |             |                        |                         |                                              |                 |             |            |
|                                   |     |          | dВ                | ф                                      | ф       |             |                        |                         |                                              |                 |             |            |
| All Selected                      |     | _        | 0                 | 0.0                                    | 0.0     | 0.0         |                        |                         |                                              |                 |             |            |
| All Impacted                      |     | _        | 0                 | 0.0                                    | 0.0     | 0.0         |                        |                         |                                              |                 |             |            |
| All that meet NR Goal             |     | 1        | 0                 | 0.0                                    | 0.0     | 0.0         |                        |                         |                                              |                 |             |            |

| 2:\TNM25\Program\MillerRd\NorthCounty |  |
|---------------------------------------|--|
|                                       |  |

| INPUT: TRAFFIC FOR LAeq1h Volumes |                     |         |                                         |                  |                | 7   | 21202-23 |      |        |     |             |       |
|-----------------------------------|---------------------|---------|-----------------------------------------|------------------|----------------|-----|----------|------|--------|-----|-------------|-------|
|                                   |                     |         |                                         |                  |                |     |          |      |        |     |             |       |
| Baseline Environmental Consulting |                     |         |                                         | 25 February 2025 | uary 20        | 25  |          |      |        |     |             |       |
| Baseline Env                      |                     |         |                                         | <b>TNM 2.5</b>   | 10             | _   | _        | _    |        |     |             |       |
| INPUT: TRAFFIC FOR LAeq1h Volumes |                     |         |                                         |                  |                |     |          |      |        |     |             |       |
| PROJECT/CONTRACT:                 | 21202-23            |         |                                         |                  |                |     |          |      |        |     |             |       |
| RUN:                              | <b>North County</b> | Landfil | <b>County Landfill Permit Amendment</b> | Amendn           | nent           |     |          |      |        |     |             |       |
| Roadway                           | Points              |         |                                         |                  |                |     |          |      |        |     |             |       |
| Name                              | Name                | No.     | Segment                                 | ,                |                |     |          |      |        |     |             |       |
|                                   |                     |         | Autos                                   | _                | <b>MTrucks</b> |     | HTrucks  | S    | Buses  |     | Motorcycles | rcles |
|                                   |                     |         | >                                       | S                | <u> </u>       | တ   | >        | တ    | >      | S   | >           | S     |
|                                   |                     |         | veh/hr                                  | hdm              | veh/hr         | mph | veh/hr   | mph  | veh/hr | mph | veh/hr      | mph   |
| SR 88 South of E Harney Ln E+P    | point1              | _       | 540                                     | 22               | 0              | 0   | 57       | 7 55 | 0      | 0   | 0           | 0     |
|                                   | point2              | 2       |                                         |                  |                |     |          |      |        |     |             |       |

| 14                  |  |
|---------------------|--|
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
| S                   |  |
| ب                   |  |
| 핃                   |  |
| Ш                   |  |
| $\exists$           |  |
| Ω                   |  |
| Z                   |  |
| $\supseteq$         |  |
| Ö                   |  |
| (1)                 |  |
| တ်                  |  |
| $\mathbf{H}$        |  |
|                     |  |
| $\exists$           |  |
| SULTS: SOUND LEVELS |  |
| U)                  |  |
| RESUL               |  |

| RESULTS: SOUND LEVELS             |    |          |                       |                                        |         |                        | 21202-23         |                         |               |                                              |            |            |
|-----------------------------------|----|----------|-----------------------|----------------------------------------|---------|------------------------|------------------|-------------------------|---------------|----------------------------------------------|------------|------------|
| Basalina Environmental Consultina |    |          |                       |                                        |         |                        | 25 Echristy 2025 | 2008                    |               |                                              |            |            |
|                                   |    |          |                       |                                        |         |                        | 20 1 02 1        | , y 2020                |               |                                              |            |            |
| Baseline Env                      |    |          |                       |                                        |         |                        | <b>TNM 2.5</b>   |                         |               |                                              |            |            |
|                                   |    |          |                       |                                        |         |                        | Calculate        | Calculated with TNM 2.5 | 2.5           |                                              |            |            |
| RESULTS: SOUND LEVELS             |    |          |                       |                                        |         |                        |                  |                         |               |                                              |            |            |
| PROJECT/CONTRACT:                 |    | 21202-23 | 23                    |                                        |         |                        |                  |                         |               |                                              |            |            |
| RUN:                              |    | North (  | Sounty Lar            | North County Landfill Permit Amendment | mendmer | Ħ                      |                  |                         |               |                                              |            |            |
| BARRIER DESIGN:                   |    | INPUT    | INPUT HEIGHTS         |                                        |         |                        |                  | Average p               | avement typ   | Average pavement type shall be used unless   | sq nuless  |            |
|                                   |    |          |                       |                                        |         |                        |                  | a State hiç             | jhway agenc   | a State highway agency substantiates the use | es the use |            |
| ATMOSPHERICS:                     |    | 98 dec   | 68 deg F, 50% RH      | _                                      |         |                        |                  | of a differ             | ent type with | of a different type with approval of FHWA.   | HWA.       |            |
| Receiver                          |    |          |                       |                                        |         |                        |                  |                         |               |                                              |            |            |
| Name                              | Š. | #DNs     | Existing              | No Barrier                             |         |                        |                  |                         | With Barrier  |                                              |            |            |
|                                   |    |          | LAeq1h                | LAeq1h                                 |         | Increase over existing | r existing       | Type                    | Calculated    | Noise Reduction                              | tion       |            |
|                                   |    |          |                       | Calculated                             | Crit'n  | Calculated             | Crit'n           | Impact                  | LAeq1h        | Calculated Goal                              | Goal       | Calculated |
|                                   |    |          |                       |                                        |         |                        | Sub'l Inc        |                         |               |                                              |            | minus      |
|                                   |    |          |                       |                                        |         |                        |                  |                         |               |                                              |            | Goal       |
|                                   |    |          | dBA                   | dBA                                    | dBA     | dB                     | 명<br>명           |                         | dBA           | дB                                           | фB         | dB         |
| Receiver1                         | 1  |          | 1 0.0                 | 0.07                                   |         | 65 70.0                | 0 3              | Snd LvI                 | 70.0          | 0.0                                          |            | 0.0        |
| Dwelling Units                    |    | # DNs    | # DUs Noise Reduction | duction                                |         |                        |                  |                         |               |                                              |            |            |
|                                   |    |          | Min                   | Avg                                    | Мах     |                        |                  |                         |               |                                              |            |            |
|                                   |    |          | dB                    | dВ                                     | ф       |                        |                  |                         |               |                                              |            |            |
| All Selected                      |    |          | 0.0                   | 0.0                                    | 0.0     | 0                      |                  |                         |               |                                              |            |            |
| All Impacted                      |    |          | 1 0.0                 | 0.0                                    |         | 0.0                    |                  |                         |               |                                              |            |            |
| All that meet NR Goal             |    |          | 0.0                   | 0.0                                    | 0.0     | 0                      |                  |                         |               |                                              |            |            |

| 2:\TNM25\Program\MillerRd\NorthCounty |  |
|---------------------------------------|--|
|                                       |  |

| Baseline Environmental Consulting  Baseline Env                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |             |                  |                |     |         |     |        |     |             |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------|------------------|----------------|-----|---------|-----|--------|-----|-------------|------|
| Baseline Env                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |             | 25 February 2025 | <br> ary 202   | 2   |         |     |        |     |             |      |
| TO TO THE PROPERTY OF THE PROP |                                         |             | TNM 2.5          | _              |     |         |     |        |     |             |      |
| INPOL: I RAFFIC FOR LAGGIN VOIUMES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |             |                  |                |     |         |     |        |     |             |      |
| PROJECT/CONTRACT: 21202-23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ~                                       |             |                  |                |     |         |     |        |     |             |      |
| RUN: North Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>Sounty Landfill Permit Amendment</b> | II Permit A | \mendm           | ent            |     |         |     |        |     |             |      |
| Roadway                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |             |                  |                |     |         |     |        |     |             |      |
| Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | No.                                     | Segment     |                  |                |     |         |     |        |     |             |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | Autos       | Σ                | <b>MTrucks</b> |     | HTrucks | 4.5 | Buses  |     | Motorcycles | cles |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | >           | <u>&gt;</u>      |                | s   | >       | S   | >      | S   | >           | S    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | veh/hr      | mph ve           | veh/hr         | mph | veh/hr  | mph | veh/hr | mph | veh/hr      | mph  |
| SR 88 South of E Harney Ln C point1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         | 849         | 25               | 0              | 0   | 82      | 55  |        | 0   | 0           |      |
| point2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                       | •           |                  |                |     |         |     |        |     |             |      |

| EVELO |  |
|-------|--|
|       |  |
|       |  |

| RESULTS: SOUND LEVELS             |    |          |                       |                                        |         |                        | 21202-23          |                         |               |                                              |            |            |
|-----------------------------------|----|----------|-----------------------|----------------------------------------|---------|------------------------|-------------------|-------------------------|---------------|----------------------------------------------|------------|------------|
| Raseline Environmental Consulting |    |          |                       |                                        |         |                        | 25 Fehrijary 2025 | rv 2025                 |               |                                              |            |            |
| Baseline Env                      |    |          |                       |                                        |         |                        | TNM 2.5           |                         |               |                                              |            |            |
|                                   |    |          |                       |                                        |         |                        | Calculate         | Calculated with TNM 2.5 | 2.5           |                                              |            |            |
| RESULTS: SOUND LEVELS             |    |          |                       |                                        |         |                        |                   |                         |               |                                              |            |            |
| PROJECT/CONTRACT:                 |    | 21202-23 | 23                    |                                        |         |                        |                   |                         |               |                                              |            |            |
| RUN:                              |    | North (  | Sounty Lar            | North County Landfill Permit Amendment | mendmer | Ħ                      |                   |                         |               |                                              |            |            |
| BARRIER DESIGN:                   |    | INPUT    | INPUT HEIGHTS         |                                        |         |                        |                   | Average p               | avement typ   | Average pavement type shall be used unless   | sq nuless  |            |
|                                   |    |          |                       |                                        |         |                        |                   | a State hig             | jhway agenc   | a State highway agency substantiates the use | es the use |            |
| ATMOSPHERICS:                     |    | 98 dec   | 68 deg F, 50% RH      | _                                      |         |                        |                   | of a differ             | ent type with | of a different type with approval of FHWA.   | HWA.       |            |
| Receiver                          |    |          |                       |                                        |         |                        |                   |                         |               |                                              |            |            |
| Name                              | Š. | #DNs     | Existing              | No Barrier                             |         |                        |                   |                         | With Barrier  |                                              |            |            |
|                                   |    |          | LAeq1h                | LAeq1h                                 |         | Increase over existing | r existing        | Type                    | Calculated    | Noise Reduction                              | tion       |            |
|                                   |    |          |                       | Calculated                             | Crit'n  | Calculated             | Crit'n            | Impact                  | LAeq1h        | Calculated Goal                              | Goal       | Calculated |
|                                   |    |          |                       |                                        |         |                        | Sub'l Inc         |                         |               |                                              |            | minus      |
|                                   |    |          |                       |                                        |         |                        |                   |                         |               |                                              |            | Goal       |
|                                   |    |          | dBA                   | dBA                                    | dBA     | dB                     | ф                 |                         | dBA           | ф                                            | фB         | dB         |
| Receiver1                         | 1  |          | 1 0.0                 | 71.8                                   |         | 65 71.8                | 3                 | Snd LvI                 | 71.8          | 0.0                                          |            | 0.0        |
| Dwelling Units                    |    | # DNs    | # DUs Noise Reduction | duction                                |         |                        |                   |                         |               |                                              |            |            |
|                                   |    |          | Min                   | Avg                                    | Мах     |                        |                   |                         |               |                                              |            |            |
|                                   |    |          | dB                    | dВ                                     | ф       |                        |                   |                         |               |                                              |            |            |
| All Selected                      |    | Ì        | 0.0                   | 0.0                                    | 0.0     | 0                      |                   |                         |               |                                              |            |            |
| All Impacted                      |    |          | 1 0.0                 | 0.0                                    | 0.0     | 0                      |                   |                         |               |                                              |            |            |
| All that meet NR Goal             |    | `        | 0.0                   | 0.0                                    | 0.0     | 0                      |                   |                         |               |                                              |            |            |

| 2:\TNM25\Program\MillerRd\NorthCounty |  |
|---------------------------------------|--|
|                                       |  |

| INPUT: TRAFFIC FOR LAeq1h Volumes        |                     |         |                                         |                  |                | 7   | 21202-23 |      | ,      |     |             |      |
|------------------------------------------|---------------------|---------|-----------------------------------------|------------------|----------------|-----|----------|------|--------|-----|-------------|------|
|                                          |                     |         |                                         |                  |                |     |          |      |        |     |             |      |
| <b>Baseline Environmental Consulting</b> |                     |         |                                         | 25 February 2025 | uary 20        | 25  |          |      |        |     |             |      |
| Baseline Env                             |                     |         |                                         | <b>TNM 2.5</b>   | 10             | _   | _        | _    |        |     |             |      |
| INPUT: TRAFFIC FOR LAeq1h Volumes        |                     |         |                                         |                  |                |     |          |      |        |     |             |      |
| PROJECT/CONTRACT:                        | 21202-23            |         |                                         |                  |                |     |          |      |        |     |             |      |
| RUN:                                     | <b>North County</b> | Landfil | <b>County Landfill Permit Amendment</b> | Amendn           | nent           |     |          |      |        |     |             |      |
| Roadway                                  | Points              |         |                                         |                  |                |     |          |      |        |     |             |      |
| Name                                     | Name                | No.     | Segment                                 | t t              |                |     |          |      |        |     |             |      |
|                                          |                     |         | Autos                                   | , —              | <b>MTrucks</b> |     | HTrucks  | (S   | Buses  |     | Motorcycles | cles |
|                                          |                     |         | >                                       | S                | <u> </u>       | S   | >        | တ    | >      | S   | >           | S    |
|                                          |                     |         | veh/hr                                  | , hdm            | veh/hr         | mph | veh/hr   | mph  | veh/hr | mph | veh/hr      | mph  |
| SR 88 South of E Harney Ln C+P           | point1              | _       | 866                                     | 55               | 0              |     | 0 87     | 7 55 | 0      | 0   | 0           | 0    |
|                                          | point2              | 2       |                                         |                  |                |     |          |      |        |     |             |      |

| Æ             |
|---------------|
| ULTS: SOUND L |

| RESULTS: SOUND LEVELS             |    |          |                       |                                        |         |                        | 21202-23         |                         |               |                                              |            |            |
|-----------------------------------|----|----------|-----------------------|----------------------------------------|---------|------------------------|------------------|-------------------------|---------------|----------------------------------------------|------------|------------|
| Raseline Environmental Consulting |    |          |                       |                                        |         |                        | 25 February 2025 | rv 2025                 |               |                                              |            |            |
| Baseline Env                      |    |          |                       |                                        |         |                        | TNM 2.5          |                         |               |                                              |            |            |
|                                   |    |          |                       |                                        |         |                        | Calculate        | Calculated with TNM 2.5 | 2.5           |                                              |            |            |
| RESULTS: SOUND LEVELS             |    |          |                       |                                        |         |                        |                  |                         |               |                                              |            |            |
| PROJECT/CONTRACT:                 |    | 21202-23 | 23                    |                                        |         |                        |                  |                         |               |                                              |            |            |
| RUN:                              |    | North (  | County Lar            | North County Landfill Permit Amendment | mendmer | Ħ                      |                  |                         |               |                                              |            |            |
| BARRIER DESIGN:                   |    | INPUT    | INPUT HEIGHTS         |                                        |         |                        |                  | Average p               | avement typ   | Average pavement type shall be used unless   | sq nuless  | -          |
|                                   |    |          |                       |                                        |         |                        |                  | a State hig             | jhway agenc   | a State highway agency substantiates the use | es the use | -          |
| ATMOSPHERICS:                     |    | 98 dec   | 68 deg F, 50% RH      | _                                      |         |                        |                  | of a differ             | ent type with | of a different type with approval of FHWA.   | HWA.       |            |
| Receiver                          |    |          |                       |                                        |         |                        |                  |                         |               |                                              |            |            |
| Name                              | Š. | #DNs     | Existing              | No Barrier                             |         |                        |                  |                         | With Barrier  |                                              |            |            |
|                                   |    |          | LAeq1h                | LAeq1h                                 |         | Increase over existing | r existing       | Type                    | Calculated    | Noise Reduction                              | tion       |            |
|                                   |    |          |                       | Calculated                             | Crit'n  | Calculated             | Crit'n           | Impact                  | LAeq1h        | Calculated Goal                              | Goal       | Calculated |
|                                   |    |          |                       |                                        |         |                        | Sub'l Inc        |                         |               |                                              |            | minus      |
|                                   |    |          |                       |                                        |         |                        |                  |                         |               |                                              |            | Goal       |
|                                   |    |          | dBA                   | dBA                                    | dBA     | dB                     | 용                |                         | dBA           | ф                                            | фB         | dB         |
| Receiver1                         | 1  |          | 1 0.0                 | 71.9                                   |         | 65 71.9                | 9 3              | Snd LvI                 | 71.9          | 0.0                                          |            | 0.0        |
| Dwelling Units                    |    | # DNs    | # DUs Noise Reduction | duction                                |         |                        |                  |                         |               |                                              |            |            |
|                                   |    |          | Min                   | Avg                                    | Мах     |                        |                  |                         |               |                                              |            |            |
|                                   |    |          | dB                    | dВ                                     | ф       |                        |                  |                         |               |                                              |            |            |
| All Selected                      |    | Ì        | 0.0                   | 0.0                                    | 0.0     | 0                      |                  |                         |               |                                              |            |            |
| All Impacted                      |    |          | 1 0.0                 | 0.0                                    |         | 0.0                    |                  |                         |               |                                              |            |            |
| All that meet NR Goal             |    |          | 0.0                   | 0.0                                    | 0.0     | 0                      |                  |                         |               |                                              |            |            |

| INPUT: TRAFFIC FOR LAeq1h Volumes |                                        |         |            |          |                  | 2   | 21202-23 |      |        |     |             |       |
|-----------------------------------|----------------------------------------|---------|------------|----------|------------------|-----|----------|------|--------|-----|-------------|-------|
| Baseline Environmental Consulting |                                        |         |            | 25 Febru | 25 February 2025 | 25  |          |      |        |     |             |       |
| Baseline Env                      |                                        |         |            | TNM 2.5  |                  |     |          |      |        |     |             |       |
| INPUT: TRAFFIC FOR LAeq1h Volumes |                                        |         |            |          |                  |     |          |      |        |     |             |       |
| PROJECT/CONTRACT:                 | 21202-23                               |         |            |          |                  |     |          |      |        |     |             |       |
| RUN:                              | North County Landfill Permit Amendment | Landfil | I Permit A | mendr    | ent              |     |          |      |        |     |             |       |
| Roadway                           | Points                                 |         |            |          |                  |     |          |      |        |     |             |       |
| Name                              | Name                                   | No.     | Segment    |          |                  |     |          |      |        |     |             |       |
|                                   |                                        |         | Autos      | _        | MTrucks          |     | HTrucks  | (0   | Buses  |     | Motorcycles | rcles |
|                                   |                                        |         | >          | _<br>s   | _                | S   | >        | တ    | >      | S   | >           | S     |
|                                   |                                        |         | veh/hr r   | v Hdm    | veh/hr           | mph | veh/hr   | mph  | veh/hr | mph | veh/hr      | mph   |
| SR 88 North of E Harney Ln E      | point1                                 | _       | 525        | 22       | 0                | 0   | 54       | . 55 | 0      | 0   | 0           | 0     |
|                                   | point2                                 | 2       |            |          |                  |     |          |      |        |     |             |       |

|         | •                                        |
|---------|------------------------------------------|
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
| U       | •                                        |
|         | 2                                        |
|         | ננס                                      |
| ū       | רוב<br>רוב                               |
| ū       | - V L L O                                |
| ū       | LALEO                                    |
| ū       | LLVILO                                   |
|         | 7 11 11 11 11 11 11 11 11 11 11 11 11 11 |
|         | T LLVILO                                 |
|         |                                          |
|         |                                          |
|         | COND LEVELS                              |
|         | COOLE LEVELS                             |
| INDIEVE | COOLE LEVELS                             |
|         | J. COOLD LEVELS                          |

| RESULTS: SOUND LEVELS             |    |            |                       |                                        |          |            | 21202-23               |                         |              |                                              |              |            |
|-----------------------------------|----|------------|-----------------------|----------------------------------------|----------|------------|------------------------|-------------------------|--------------|----------------------------------------------|--------------|------------|
| Baseline Environmental Consulting |    |            |                       |                                        |          |            | 25 February 2025       | ry 2025                 |              |                                              |              |            |
| Baseline Env                      |    |            |                       |                                        |          |            | <b>TNM 2.5</b>         |                         |              |                                              |              |            |
|                                   |    |            |                       |                                        |          |            | Calculate              | Calculated with TNM 2.5 | 12.5         |                                              |              |            |
| RESULTS: SOUND LEVELS             |    |            |                       |                                        |          |            |                        |                         |              |                                              |              |            |
| PROJECT/CONTRACT:                 |    | 21202-23   | 23                    |                                        |          |            |                        |                         |              |                                              |              |            |
| RUN:                              |    | North      | County La             | North County Landfill Permit Amendment | Amend    | ment       |                        |                         |              |                                              |              |            |
| BARRIER DESIGN:                   |    | INPUT      | INPUT HEIGHTS         |                                        |          |            |                        | Average p               | avement ty   | Average pavement type shall be used unless   | nsed unles   | -          |
|                                   |    |            |                       |                                        |          |            |                        | a State hi              | ghway ager   | a State highway agency substantiates the use | iates the us | Φ.         |
| ATMOSPHERICS:                     |    | )<br>98 de | 68 deg F, 50% RH      | Į.                                     |          |            |                        | of a differ             | ent type wir | of a different type with approval of FHWA.   | of FHWA.     |            |
| Receiver                          |    |            |                       |                                        |          |            |                        |                         |              |                                              |              |            |
| Name                              | Š. | #DUs       | Existing              | No Barrier                             |          |            |                        |                         | With Barrier | er                                           |              |            |
|                                   |    |            | LAeq1h                | LAeq1h                                 |          | Increase o | Increase over existing | Type                    | Calculated   | Noise Reduction                              | duction      |            |
|                                   |    |            |                       | Calculated                             | d Crit'n | Calculated | Crit'n                 | Impact                  | LAeq1h       | Calculated Goal                              | d Goal       | Calculated |
|                                   |    |            |                       |                                        |          |            | Sub'l Inc              |                         |              |                                              |              | minus      |
|                                   |    |            |                       |                                        |          |            |                        |                         |              |                                              |              | Goal       |
|                                   |    |            | dBA                   | dBA                                    | dBA      | dB         | dВ                     |                         | dBA          | В                                            | dВ           | dB         |
| Receiver1                         |    | 1          | 1 0                   | 0.0                                    | 8.69     | 9 99       | 69.8                   | Snd Lvl                 | 39           | 8.69                                         | 0.0          | 0.0        |
| Dwelling Units                    |    | # DNs      | # DUs Noise Reduction | eduction                               |          |            |                        |                         |              |                                              |              |            |
|                                   |    |            | Min                   | Avg                                    | Max      |            |                        |                         |              |                                              |              |            |
|                                   |    |            | dВ                    | dВ                                     | dВ       |            |                        |                         |              |                                              |              |            |
| All Selected                      |    |            | 0                     | 0.0                                    | 0.0      | 0.0        |                        |                         |              |                                              |              |            |
| All Impacted                      |    |            | 0                     | 0.0                                    | 0.0      | 0.0        |                        |                         |              |                                              |              |            |
| All that meet NR Goal             |    | Ì          | 0                     | 0.0                                    | 0.0      | 0.0        |                        |                         |              |                                              |              |            |

| 2:\TNM25\Program\MillerRd\NorthCounty |  |
|---------------------------------------|--|
|                                       |  |

| INPUT: TRAFFIC FOR LAeq1h Volumes        |                     |         |                                         |                |                  | 7   | 21202-23 |      | ,      |     |             |       |
|------------------------------------------|---------------------|---------|-----------------------------------------|----------------|------------------|-----|----------|------|--------|-----|-------------|-------|
|                                          |                     |         |                                         |                |                  |     |          |      |        |     |             |       |
| <b>Baseline Environmental Consulting</b> |                     |         |                                         | 25 Febr        | 25 February 2025 | 25  |          |      |        |     |             |       |
| Baseline Env                             |                     |         |                                         | <b>TNM 2.5</b> | 10               |     | _        | _    |        |     |             |       |
| INPUT: TRAFFIC FOR LAeq1h Volumes        |                     |         |                                         |                |                  |     |          |      |        |     |             |       |
| PROJECT/CONTRACT:                        | 21202-23            |         |                                         |                |                  |     |          |      |        |     |             |       |
| RUN:                                     | <b>North County</b> | Landfil | <b>County Landfill Permit Amendment</b> | Amendn         | nent             |     |          |      |        |     |             |       |
| Roadway                                  | Points              |         |                                         |                |                  |     |          |      |        |     |             |       |
| Name                                     | Name                | No.     | Segment                                 | +              |                  |     |          |      |        |     |             |       |
|                                          |                     |         | Autos                                   | , —            | <b>MTrucks</b>   | "   | HTrucks  | S    | Buses  |     | Motorcycles | rcles |
|                                          |                     |         | >                                       | S              | >                | S   | >        | တ    | >      | S   | >           | S     |
|                                          |                     |         | veh/hr                                  | mph            | veh/hr           | mph | veh/hr   | mph  | veh/hr | mph | veh/hr      | mph   |
| SR 88 North of E Harney Ln E+P           | point1              | _       | 527                                     | 55             | 0                | 0   | 54       | 4 55 | 0      | 0   | 0           | 0     |
|                                          | point2              | 2       |                                         |                |                  |     |          |      |        |     |             |       |

|         | •                                        |
|---------|------------------------------------------|
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
|         |                                          |
| U       | •                                        |
|         | 2                                        |
|         | ננס                                      |
| ū       | רוב<br>רוב                               |
| ū       | - V L L O                                |
| ū       | LALEO                                    |
| ū       | LLVILO                                   |
|         | 7 11 11 11 11 11 11 11 11 11 11 11 11 11 |
|         | T LLVILO                                 |
|         |                                          |
|         |                                          |
|         | COND LEVELS                              |
|         | COOLE LEVELS                             |
| INDIEVE | COOLE LEVELS                             |
|         | J. COOLD LEVELS                          |

| RESULTS: SOUND LEVELS             |    |            |                       |                                        |          |            | 21202-23               |                         |              |                                              |              |            |
|-----------------------------------|----|------------|-----------------------|----------------------------------------|----------|------------|------------------------|-------------------------|--------------|----------------------------------------------|--------------|------------|
| Baseline Environmental Consulting |    |            |                       |                                        |          |            | 25 February 2025       | ry 2025                 |              |                                              |              |            |
| Baseline Env                      |    |            |                       |                                        |          |            | <b>TNM 2.5</b>         |                         |              |                                              |              |            |
|                                   |    |            |                       |                                        |          |            | Calculate              | Calculated with TNM 2.5 | 12.5         |                                              |              |            |
| RESULTS: SOUND LEVELS             |    |            |                       |                                        |          |            |                        |                         |              |                                              |              |            |
| PROJECT/CONTRACT:                 |    | 21202-23   | 23                    |                                        |          |            |                        |                         |              |                                              |              |            |
| RUN:                              |    | North      | County La             | North County Landfill Permit Amendment | Amend    | ment       |                        |                         |              |                                              |              |            |
| BARRIER DESIGN:                   |    | INPUT      | INPUT HEIGHTS         |                                        |          |            |                        | Average p               | avement ty   | Average pavement type shall be used unless   | nsed unles   | -          |
|                                   |    |            |                       |                                        |          |            |                        | a State hi              | ghway ager   | a State highway agency substantiates the use | iates the us | Φ.         |
| ATMOSPHERICS:                     |    | )<br>98 de | 68 deg F, 50% RH      | Į.                                     |          |            |                        | of a differ             | ent type wir | of a different type with approval of FHWA.   | of FHWA.     |            |
| Receiver                          |    |            |                       |                                        |          |            |                        |                         |              |                                              |              |            |
| Name                              | Š. | #DUs       | Existing              | No Barrier                             |          |            |                        |                         | With Barrier | er                                           |              |            |
|                                   |    |            | LAeq1h                | LAeq1h                                 |          | Increase o | Increase over existing | Type                    | Calculated   | Noise Reduction                              | duction      |            |
|                                   |    |            |                       | Calculated                             | d Crit'n | Calculated | Crit'n                 | Impact                  | LAeq1h       | Calculated Goal                              | d Goal       | Calculated |
|                                   |    |            |                       |                                        |          |            | Sub'l Inc              |                         |              |                                              |              | minus      |
|                                   |    |            |                       |                                        |          |            |                        |                         |              |                                              |              | Goal       |
|                                   |    |            | dBA                   | dBA                                    | dBA      | dB         | dВ                     |                         | dBA          | В                                            | dВ           | dB         |
| Receiver1                         |    | 1          | 1 0                   | 0.0                                    | 8.69     | 9 99       | 69.8                   | Snd Lvl                 | 39           | 8.69                                         | 0.0          | 0.0        |
| Dwelling Units                    |    | # DNs      | # DUs Noise Reduction | eduction                               |          |            |                        |                         |              |                                              |              |            |
|                                   |    |            | Min                   | Avg                                    | Max      |            |                        |                         |              |                                              |              |            |
|                                   |    |            | dВ                    | dВ                                     | dВ       |            |                        |                         |              |                                              |              |            |
| All Selected                      |    |            | 0                     | 0.0                                    | 0.0      | 0.0        |                        |                         |              |                                              |              |            |
| All Impacted                      |    |            | 0                     | 0.0                                    | 0.0      | 0.0        |                        |                         |              |                                              |              |            |
| All that meet NR Goal             |    | Ì          | 0                     | 0.0                                    | 0.0      | 0.0        |                        |                         |              |                                              |              |            |

| M25\Program\MillerRd\NorthCounty |
|----------------------------------|
| C:\T                             |

| Baseline Environmental Consulting |                                        |         | - •        | 25 Febr                               | 25 February 2025 | 25  |         |      |        |     |             |       |
|-----------------------------------|----------------------------------------|---------|------------|---------------------------------------|------------------|-----|---------|------|--------|-----|-------------|-------|
| Baseline Env                      |                                        |         | -          | <b>TNM 2.5</b>                        | LC.              |     |         |      |        |     |             |       |
| INPUT: TRAFFIC FOR LAeq1h Volumes |                                        |         |            |                                       |                  |     |         |      |        |     |             |       |
| PROJECT/CONTRACT:                 | 21202-23                               |         |            |                                       |                  |     |         |      |        |     |             |       |
| RUN:                              | North County Landfill Permit Amendment | Landfil | I Permit A | \mendn                                | nent             |     |         |      |        |     |             |       |
| Roadway                           | Points                                 |         |            |                                       |                  |     |         |      |        |     |             |       |
| Name                              | Name                                   | No.     | Segment    |                                       |                  |     |         |      |        |     |             |       |
|                                   |                                        |         | Autos      |                                       | MTrucks          | (0  | HTrucks | S    | Buses  |     | Motorcycles | rcles |
|                                   |                                        |         | >          | s                                     | >                | တ   | >       | တ    | >      | S   | >           | S     |
|                                   |                                        |         | veh/hr     | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | veh/hr           | mph | veh/hr  | mph  | veh/hr | mph | veh/hr      | mph   |
| SR 88 North of E Hamey Ln C       | point1                                 | _       | 913        | 55                                    | 0                | 0   | 88      | 9 55 | 0      | 0   | 0           | 0     |
|                                   | point2                                 | 2       |            |                                       |                  |     |         |      |        |     |             |       |

INPUT: TRAFFIC FOR LAeq1h Volumes

| - | 2 |
|---|---|
|   | _ |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |

| RESULTS: SOUND LEVELS             |          |          |                 |                                        |        |                        | 21202-23                |              |                                                                                        |                 |                    |            |
|-----------------------------------|----------|----------|-----------------|----------------------------------------|--------|------------------------|-------------------------|--------------|----------------------------------------------------------------------------------------|-----------------|--------------------|------------|
| Baseline Environmental Consulting |          |          |                 |                                        |        |                        | 25 February 2025        | ry 2025      |                                                                                        |                 |                    |            |
| Baseline Env                      |          |          |                 |                                        |        |                        | <b>TNM 2.5</b>          |              |                                                                                        |                 |                    |            |
|                                   |          |          |                 |                                        |        |                        | Calculated with TNM 2.5 | with TNM     | 2.5                                                                                    |                 |                    |            |
| RESULTS: SOUND LEVELS             |          |          |                 |                                        |        |                        |                         |              |                                                                                        |                 |                    |            |
| PROJECT/CONTRACT:                 | 212      | 21202-23 |                 |                                        |        |                        |                         |              |                                                                                        |                 |                    |            |
| RUN:                              | No       | rth Co   | unty La         | North County Landfill Permit Amendment | mendme | Ħ                      |                         |              |                                                                                        |                 |                    |            |
| BARRIER DESIGN:                   | Z        | PUTH     | INPUT HEIGHTS   |                                        |        |                        |                         | Average p    | Average pavement type shall be used unless                                             | e shall be us   | ed unless          | -          |
| ATMOSPHERICS:                     | œ        |          | 68 deg E 50% RE | ı                                      |        |                        |                         | a State high | a State highway agency substantiates the use of a different type with approval of FHWA | y substantia    | tes the us<br>FHW∆ | •          |
|                                   | 3        | - Gan    | , 50 /0 1       | = -                                    |        |                        |                         | ol a diller  | ant type with                                                                          | appioval        |                    |            |
| Receiver                          |          |          |                 |                                        |        |                        |                         |              |                                                                                        |                 |                    |            |
| Name                              | No. #DUs |          | Existing        | No Barrier                             |        |                        |                         |              | With Barrier                                                                           |                 |                    |            |
|                                   |          | _        | LAeq1h          | LAeq1h                                 |        | Increase over existing |                         | Type         | Calculated                                                                             | Noise Reduction | ıction             |            |
|                                   |          |          |                 | Calculated                             | Crit'n | Calculated             | Crit'n                  | Impact       | LAeq1h                                                                                 | Calculated      | Goal               | Calculated |
|                                   |          |          |                 |                                        |        |                        | Sub'l Inc               |              |                                                                                        |                 |                    | minus      |
|                                   |          |          |                 |                                        |        |                        |                         |              |                                                                                        |                 |                    | Goal       |
|                                   |          | ס        | dBA             | dBA                                    | dBA    | dB                     | dВ                      |              | dBA                                                                                    | dВ              | dВ                 | dB         |
| Receiver1                         | ~        | _        | 0.0             | 0 72.1                                 |        | 65 72.1                | 1 3                     | Snd LvI      | 72.1                                                                                   |                 | 0.0                | 0.0        |
| Dwelling Units                    | #        | # DNs    | Noise R         | Noise Reduction                        |        |                        |                         |              |                                                                                        |                 |                    |            |
|                                   |          |          | Min             | Avg                                    | Max    |                        |                         |              |                                                                                        |                 |                    |            |
|                                   |          |          | dВ              | dВ                                     | dВ     |                        |                         |              |                                                                                        |                 |                    |            |
| All Selected                      |          | _        | 0.0             | 0.0                                    |        | 0.0                    |                         |              |                                                                                        |                 |                    |            |
| All Impacted                      |          | ~        | 0.0             | 0.0                                    |        | 0.0                    |                         |              |                                                                                        |                 |                    |            |
| All that meet NR Goal             |          | _        | 0.0             | 0.0                                    |        | 0.0                    |                         |              |                                                                                        |                 |                    |            |

| 2:\TNM25\Program\MillerRd\NorthCounty |  |
|---------------------------------------|--|
|                                       |  |

| INPUT: TRAFFIC FOR LAeq1h Volumes |                     |         |                                  |                  |          | 2   | 21202-23 |     |        |     |             |      |
|-----------------------------------|---------------------|---------|----------------------------------|------------------|----------|-----|----------|-----|--------|-----|-------------|------|
|                                   |                     |         |                                  |                  |          |     |          |     |        |     |             |      |
| Baseline Environmental Consulting |                     |         |                                  | 25 February 2025 | uary 20, | 25  |          |     |        |     |             |      |
| Baseline Env                      |                     |         |                                  | <b>TNM 2.5</b>   | 10       |     |          |     |        |     |             |      |
|                                   |                     |         |                                  |                  |          |     |          |     |        |     |             |      |
| INPUT: TRAFFIC FOR LAeq1h Volumes |                     |         |                                  |                  |          |     |          |     |        |     |             |      |
| PROJECT/CONTRACT:                 | 21202-23            |         |                                  |                  |          |     |          |     |        |     |             |      |
| RUN:                              | <b>North County</b> | Landfil | County Landfill Permit Amendment | Amendn           | ent      |     |          |     |        |     |             |      |
| Roadway                           | Points              |         |                                  |                  |          |     |          |     |        |     |             |      |
| Name                              | Name                | No.     | Segment                          | t                |          |     |          |     |        |     |             |      |
|                                   |                     |         | Autos                            | _                | MTrucks  |     | HTrucks  |     | Buses  |     | Motorcycles | cles |
|                                   |                     |         | >                                | S                | _        | S   | >        | S   | >      | S   | >           | S    |
|                                   |                     |         | veh/hr                           | \ hdm            | veh/hr   | mph | veh/hr   | mph | veh/hr | mph | veh/hr      | mph  |
| SR 88 North of E Harney Ln C+P    | point1              | _       | 915                              | 22               | 0        | 0   | 89       | 55  | 0      | 0   | 0           | 0    |
|                                   | point2              | 2       |                                  |                  |          |     |          |     |        |     |             |      |

| u      |  |
|--------|--|
| EVEL O |  |
| ш      |  |
| 5      |  |
| Ĺ      |  |
|        |  |

| RESULTS: SOUND LEVELS             |     |          |                       |                                        |         |             | 21202-23               |                         |              | -                                            |                 |            |
|-----------------------------------|-----|----------|-----------------------|----------------------------------------|---------|-------------|------------------------|-------------------------|--------------|----------------------------------------------|-----------------|------------|
| Baseline Environmental Consulting |     |          |                       |                                        |         |             | 25 February 2025       | ry 2025                 |              |                                              |                 |            |
| Baseline Env                      |     |          |                       |                                        |         |             | <b>TNM 2.5</b>         |                         |              |                                              |                 |            |
|                                   |     |          |                       |                                        |         |             | Calculate              | Calculated with TNM 2.5 | 12.5         |                                              |                 |            |
| RESULTS: SOUND LEVELS             |     |          |                       |                                        |         |             |                        |                         |              |                                              |                 |            |
| PROJECT/CONTRACT:                 |     | 21202-23 | 23                    |                                        |         |             |                        |                         |              |                                              |                 |            |
| RUN:                              |     | North (  | Sounty La             | North County Landfill Permit Amendment | Amendn  | nent        |                        |                         |              |                                              |                 |            |
| BARRIER DESIGN:                   |     | INPUT    | INPUT HEIGHTS         |                                        |         |             |                        | Average p               | avement ty   | Average pavement type shall be used unless   | nsed unless     | -          |
|                                   |     |          |                       |                                        |         |             |                        | a State hi              | ghway agel   | a State highway agency substantiates the use | tiates the us   | Φ          |
| ATMOSPHERICS:                     |     | 98 deç   | 68 deg F, 50% RH      | I                                      |         |             | ,                      | of a differ             | ent type wi  | of a different type with approval of FHWA.   | of FHWA.        |            |
| Receiver                          |     |          |                       |                                        |         |             |                        |                         |              |                                              |                 |            |
| Name                              | No. | #DUs     | Existing              | No Barrier                             |         |             |                        |                         | With Barrier | er                                           |                 |            |
|                                   |     |          | LAeq1h                | LAeq1h                                 |         | Increase ov | Increase over existing | Type                    | Calculated   | d Noise Reduction                            | duction         |            |
|                                   |     |          |                       | Calculated                             | Crit'n  | Calculated  | Crit'n                 | Impact                  | LAeq1h       | Calculate                                    | Calculated Goal | Calculated |
|                                   |     |          |                       |                                        |         |             | Sub'l Inc              |                         |              |                                              |                 | minus      |
|                                   |     |          |                       |                                        |         |             |                        |                         |              |                                              |                 | Goal       |
|                                   |     |          | dBA                   | dBA                                    | dBA     | dB          | ф                      |                         | dBA          | dВ                                           | dВ              | dB         |
| Receiver1                         |     | 1        | 0.0                   | 0 72.1                                 | <u></u> | 29          | 72.1                   | Snd LvI                 | 7.           | 72.1                                         | 0.0             | 0.0        |
| Dwelling Units                    |     | # DUs    | # DUs Noise Reduction | eduction                               |         |             |                        |                         |              |                                              |                 |            |
|                                   |     |          | Min                   | Avg                                    | Max     |             |                        |                         |              |                                              |                 |            |
|                                   |     |          | dВ                    | dВ                                     | dВ      |             |                        |                         |              |                                              |                 |            |
| All Selected                      |     |          | 0.0                   |                                        | 0.0     | 0.0         |                        |                         |              |                                              |                 |            |
| All Impacted                      |     |          | 1 0.0                 |                                        | 0.0     | 0.0         |                        |                         |              |                                              |                 |            |
| All that meet NR Goal             |     |          | 0.0                   |                                        | 0.0     | 0.0         |                        |                         |              |                                              |                 |            |

| M25/Program\MillerRd\NorthCounty |
|----------------------------------|
|                                  |

| INPUT: TRAFFIC FOR LAeq1h Volumes |                                        |         |          |                |                  | 7   | 21202-23 |     |        |     |             |      |
|-----------------------------------|----------------------------------------|---------|----------|----------------|------------------|-----|----------|-----|--------|-----|-------------|------|
|                                   |                                        |         |          | L              | Č                |     |          |     |        |     |             |      |
| Baseline Environmental Consulting |                                        |         |          | Z6 Febr        | 26 February 2025 | 52  |          |     |        |     |             |      |
| Baseline Env                      |                                        |         |          | <b>TNM 2.5</b> | ω.               |     |          |     |        |     |             |      |
|                                   |                                        |         |          |                |                  |     |          |     |        |     |             |      |
| INPUT: TRAFFIC FOR LAeq1h Volumes |                                        |         |          |                |                  |     |          |     |        |     |             |      |
| PROJECT/CONTRACT:                 | 21202-23                               |         |          |                |                  |     |          |     |        |     |             |      |
| RUN:                              | North County Landfill Permit Amendment | Landfil | Permit / | \mendn         | nent             |     |          |     |        |     |             |      |
| Roadway                           | Points                                 |         |          |                |                  |     |          |     |        |     |             |      |
| Name                              | Name                                   | No.     | Segment  |                |                  |     |          |     |        |     |             |      |
|                                   |                                        |         | Autos    |                | MTrucks          |     | HTrucks  |     | Buses  |     | Motorcycles | cles |
|                                   |                                        |         | >        | S              | >                | S   | >        | တ   | >      | S   | >           | S    |
|                                   |                                        |         | veh/hr   | , hdm          | veh/hr           | mph | veh/hr   | mph | veh/hr | mph | veh/hr      | mph  |
| Landfill Access Rd E & C          | point1                                 | _       | 61       | 25             | 0                | 0   | 15       | 25  | 0      | 0   | 0           | 0    |
|                                   | point2                                 | 2       |          |                |                  |     |          |     |        |     |             |      |

| 21202-23              |  |
|-----------------------|--|
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
| RESULTS: SOUND LEVELS |  |

|                                   |     |          |                  |                                        |           |      |                        | 2 101 1                 |             |               |                                              |            |            | Γ |
|-----------------------------------|-----|----------|------------------|----------------------------------------|-----------|------|------------------------|-------------------------|-------------|---------------|----------------------------------------------|------------|------------|---|
|                                   |     |          |                  |                                        |           |      |                        |                         |             |               |                                              |            |            |   |
| Baseline Environmental Consulting |     |          |                  |                                        |           |      |                        | 26 February 2025        | ry 2025     |               |                                              |            |            |   |
| Baseline Env                      |     |          |                  |                                        |           |      |                        | <b>TNM 2.5</b>          |             |               |                                              |            |            |   |
|                                   |     |          |                  |                                        |           |      |                        | Calculated with TNM 2.5 | with TNN    | 2.5           |                                              |            |            |   |
| RESULTS: SOUND LEVELS             |     |          |                  |                                        |           |      |                        |                         |             |               |                                              |            |            |   |
| PROJECT/CONTRACT:                 |     | 21202-23 | 23               |                                        |           |      |                        |                         |             |               |                                              |            |            |   |
| RUN:                              |     | North C  | ounty L          | North County Landfill Permit Amendment | nit Amend | ment |                        |                         |             |               |                                              |            |            |   |
| BARRIER DESIGN:                   |     | INPUT    | INPUT HEIGHTS    | S                                      |           |      |                        |                         | Average p   | avement typo  | Average pavement type shall be used unless   | d unless   |            |   |
|                                   |     |          |                  |                                        |           |      |                        |                         | a State hi  | ghway agenc   | a State highway agency substantiates the use | es the use |            |   |
| ATMOSPHERICS:                     |     | 68 deg   | 68 deg F, 50% RH | ₩                                      |           |      |                        |                         | of a differ | ent type with | of a different type with approval of FHWA.   | HWA.       |            |   |
| Receiver                          |     |          |                  |                                        |           |      |                        |                         |             |               |                                              |            |            |   |
| Name                              | No. | #DNs     | Existing         | No Barrier                             | ier       |      |                        |                         |             | With Barrier  |                                              |            |            |   |
|                                   |     |          | LAeq1h           | LAeq1h                                 |           | _    | Increase over existing | existing                | Type        | Calculated    | Noise Reduction                              | tion       |            |   |
|                                   |     |          |                  | Calculated                             | ed Crit'n |      | Calculated             | Crit'n                  | Impact      | LAeq1h        | Calculated Goal                              | Goal       | Calculated |   |
|                                   |     |          |                  |                                        |           |      |                        | Sub'l Inc               |             |               |                                              |            | minus      |   |
|                                   |     |          |                  |                                        |           |      |                        |                         |             |               |                                              |            | Goal       |   |
|                                   |     |          | dBA              | dBA                                    | dBA       |      | dB                     | dВ                      |             | dBA           | dB                                           | dВ         | dB         |   |
| Receiver1                         | _   | _        |                  | 0.0                                    | 57.4      | 65   | 57.4                   | 3                       | 1           | 57.4          | 0.0                                          |            | 0.0        | 0 |
| Dwelling Units                    |     | # DNs    |                  | Noise Reduction                        |           |      |                        |                         |             |               |                                              |            |            |   |
|                                   |     |          | Min              | Avg                                    | Max       |      |                        |                         |             |               |                                              |            |            |   |
|                                   |     |          | dВ               | ф                                      | dВ        |      |                        |                         |             |               |                                              |            |            |   |
| All Selected                      |     | 1        |                  | 0.0                                    | 0.0       | 0.0  |                        |                         |             |               |                                              |            |            |   |
| All Impacted                      |     | 0        |                  | 0.0                                    | 0.0       | 0.0  |                        |                         |             |               |                                              |            |            |   |
| All that meet NR Goal             |     | _        |                  | 0.0                                    | 0.0       | 0.0  |                        |                         |             |               |                                              |            |            |   |

| TNM25/Brogram/MillerRd/NorthCollety |   |
|-------------------------------------|---|
| C                                   | ) |

| <b>Baseline Environmental Consulting</b> |              |         |                                         | 26 Febi        | 26 February 2025 | 25  |         |     |        |     |             |      |
|------------------------------------------|--------------|---------|-----------------------------------------|----------------|------------------|-----|---------|-----|--------|-----|-------------|------|
| Baseline Env                             |              |         |                                         | <b>TNM 2.5</b> | 2                |     |         |     |        |     |             |      |
|                                          |              |         |                                         |                |                  |     |         |     |        |     |             |      |
| INPUT: TRAFFIC FOR LAeq1h Volumes        |              |         |                                         |                |                  |     |         |     |        |     |             |      |
| PROJECT/CONTRACT:                        | 21202-23     |         |                                         |                |                  |     |         |     |        |     |             |      |
| RUN:                                     | North County | Landfil | <b>County Landfill Permit Amendment</b> | \mendr         | nent             |     |         |     |        |     |             |      |
| Roadway                                  | Points       |         |                                         |                |                  |     |         |     |        |     |             |      |
| Name                                     | Name         | Š.      | Segment                                 |                |                  |     |         |     |        |     |             |      |
|                                          |              |         | Autos                                   |                | <b>MTrucks</b>   | S   | HTrucks | S   | Buses  |     | Motorcycles | cles |
|                                          |              |         | >                                       | S              | >                | S   | >       | တ   | >      | S   | >           | S    |
|                                          |              |         | veh/hr                                  | hdm            | veh/hr           | mph | veh/hr  | mph | veh/hr | mph | veh/hr      | mph  |
| Landfill Access Rd E+P & C+P             | point1       |         | 92                                      | 25             | 0                | 0   | 24      | 25  | 0      | 0   | 0           | 0    |
|                                          | point2       | 2       |                                         |                |                  |     |         |     |        |     |             |      |

INPUT: TRAFFIC FOR LAeq1h Volumes

| RESULTS: SOUND LEVELS             | 21202-23         |
|-----------------------------------|------------------|
|                                   |                  |
| Baseline Environmental Consulting | 26 February 2025 |
| Baseline Env                      | TNM 2.5          |

| <b>Baseline Environmental Consulting</b> |     |          |                  |                                        |          |                        | 26 February 2025 | ıry 2025                |                                              |                 |          |            |     |
|------------------------------------------|-----|----------|------------------|----------------------------------------|----------|------------------------|------------------|-------------------------|----------------------------------------------|-----------------|----------|------------|-----|
| Baseline Env                             |     |          |                  |                                        |          |                        | <b>TNM 2.5</b>   |                         |                                              |                 |          |            |     |
|                                          |     |          |                  |                                        |          |                        | Calculate        | Calculated with TNM 2.5 | M 2.5                                        |                 |          |            |     |
| RESULTS: SOUND LEVELS                    |     |          |                  |                                        |          |                        |                  |                         |                                              |                 |          |            |     |
| PROJECT/CONTRACT:                        |     | 21202-23 | 9                |                                        |          |                        |                  |                         |                                              |                 |          |            |     |
| RUN:                                     |     | North C  | ounty La         | North County Landfill Permit Amendment | Amendmer | ¥                      |                  |                         |                                              |                 |          |            |     |
| BARRIER DESIGN:                          |     | INPUT    | INPUT HEIGHTS    |                                        |          |                        |                  | Average                 | Average pavement type shall be used unless   | shall be use    | d unless | -          | -   |
|                                          |     |          |                  |                                        |          |                        |                  | a State h               | a State highway agency substantiates the use | y substantiat   | s the us | ø.         |     |
| ATMOSPHERICS:                            |     | 68 deg   | 68 deg F, 50% RH | _                                      |          |                        |                  | of a diffe              | of a different type with approval of FHWA.   | approval of F   | HWA.     |            |     |
| Receiver                                 |     |          |                  |                                        |          |                        |                  |                         |                                              |                 |          |            |     |
| Name                                     | No. | #DNs     | Existing         | No Barrier                             |          |                        |                  |                         | With Barrier                                 |                 |          |            |     |
|                                          |     |          | LAeq1h           | LAeq1h                                 | _        | Increase over existing | r existing       | Type                    | Calculated                                   | Noise Reduction | tion     |            |     |
|                                          |     |          |                  | Calculated                             | Crit'n   | Calculated             | Crit'n           | Impact                  | LAeq1h                                       | Calculated      | Goal     | Calculated | þ   |
|                                          |     |          |                  |                                        |          |                        | Sub'l Inc        |                         |                                              |                 |          | minus      |     |
|                                          |     |          |                  |                                        |          |                        |                  |                         |                                              |                 |          | Goal       |     |
|                                          |     |          | dBA              | dBA                                    | dBA      | dB                     | В                |                         | dBA                                          | dВ              | dВ       | ф          |     |
| Receiver1                                |     | _        | 0.0              | 59.4                                   |          | 65 59.4                | 4 3              | -                       | 59.4                                         | 0.0             |          | 0          | 0.0 |
| Dwelling Units                           |     | # DNs    | Noise Reduction  | duction                                |          |                        |                  |                         |                                              |                 |          |            |     |
|                                          |     |          | Min              | Avg                                    | Max      |                        |                  |                         |                                              |                 |          |            |     |
|                                          |     |          | фВ               | ф                                      | ф        |                        |                  |                         |                                              |                 |          |            |     |
| All Selected                             |     | 1        | 0.0              | 0.0                                    |          | 0.0                    |                  |                         |                                              |                 |          |            |     |
| All Impacted                             |     | 0        | 0.0              | 0.0                                    |          | 0.0                    |                  |                         |                                              |                 |          |            |     |
| All that meet NR Goal                    |     | _        | 0.0              | 0.0                                    |          | 0.0                    |                  |                         |                                              |                 |          |            |     |

| w/Millord/MorthCollery |                |
|------------------------|----------------|
| C.\TNIM26\Drog         | C.LINIMESITION |

| INPUT: TRAFFIC FOR LAeq1h Volumes   |                                        |         |            |         |                  | 2        | 21202-23 |     |        |     |             |      |
|-------------------------------------|----------------------------------------|---------|------------|---------|------------------|----------|----------|-----|--------|-----|-------------|------|
| Raseline Environmental Consulting   |                                        |         |            | 26 Feb  | 26 February 2025 | 25       |          |     |        |     |             |      |
|                                     |                                        |         |            |         | י ממי א          | )        |          |     |        |     |             |      |
| Baseline Env                        |                                        |         |            | TNM 2.5 | 2                |          | _        |     |        |     |             |      |
| INPLIT: TRAFFIC FOR I Aed1h Volumes |                                        |         |            |         |                  |          |          |     |        |     |             |      |
| PROJECT/CONTRACT:                   | 21202-23                               |         |            |         |                  |          |          |     |        |     |             |      |
| RUN:                                | North County Landfill Permit Amendment | Landfil | I Permit A | Amendr  | nent             |          |          |     |        |     |             |      |
| Roadway                             | Points                                 |         |            |         |                  |          |          |     |        |     |             |      |
| Name                                | Name                                   | No.     | Segment    |         |                  |          |          |     |        |     |             |      |
|                                     |                                        |         | Autos      | 1       | <b>MTrucks</b>   | <b>S</b> | HTrucks  | S   | Buses  |     | Motorcycles | cles |
|                                     |                                        |         | >          | S       | >                | တ        | >        | တ   | >      | S   | >           | S    |
|                                     |                                        |         | veh/hr     | mph     | veh/hr           | mph      | veh/hr   | mph | veh/hr | mph | veh/hr      | mph  |
| Clements Rd North of E Harney Ln E  | point1                                 |         | 141        | 55      | 0                | 0        | 12       | 55  | 0      | 0   | 0           | 0    |
|                                     | point2                                 | 2       |            |         |                  |          |          |     |        |     |             |      |

| 21202-23       |  |
|----------------|--|
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
| ) LEVELS       |  |
| RESULTS: SOUND |  |

| Baseline Environmental Consulting |    |          |                  |                                        |         |                        | 26 February 2025 | ıry 2025                |                                              |                 |            |            |
|-----------------------------------|----|----------|------------------|----------------------------------------|---------|------------------------|------------------|-------------------------|----------------------------------------------|-----------------|------------|------------|
| Baseline Env                      |    |          |                  |                                        |         |                        | <b>TNM 2.5</b>   |                         |                                              |                 |            |            |
|                                   |    |          |                  |                                        |         |                        | Calculate        | Calculated with TNM 2.5 | 12.5                                         |                 |            |            |
| RESULTS: SOUND LEVELS             |    |          |                  |                                        |         |                        |                  |                         |                                              |                 |            |            |
| PROJECT/CONTRACT:                 |    | 21202-23 | 23               |                                        |         |                        |                  |                         |                                              |                 |            |            |
| RUN:                              |    | North (  | Sounty Lar       | North County Landfill Permit Amendment | Amendme | ±                      |                  |                         |                                              |                 |            |            |
| BARRIER DESIGN:                   |    | INPUT    | INPUT HEIGHTS    |                                        |         |                        |                  | Average p               | Average pavement type shall be used unless   | e shall be use  | d unless   | -          |
|                                   |    |          |                  |                                        |         |                        |                  | a State hi              | a State highway agency substantiates the use | y substantiate  | es the use |            |
| ATMOSPHERICS:                     |    | 68 deg   | 68 deg F, 50% RH | _                                      |         |                        |                  | of a differ             | of a different type with approval of FHWA.   | approval of F   | HWA.       |            |
| Receiver                          |    |          |                  |                                        |         |                        |                  |                         |                                              |                 |            |            |
| Name                              | Š. | #DNs     | Existing         | No Barrier                             |         |                        |                  |                         | With Barrier                                 |                 |            |            |
|                                   |    |          | LAeq1h           | LAeq1h                                 |         | Increase over existing | r existing       | Type                    | Calculated                                   | Noise Reduction | tion       |            |
|                                   |    |          |                  | Calculated                             | Crit'n  | Calculated             | Crit'n           | Impact                  | LAeq1h                                       | Calculated Goal | Goal       | Calculated |
|                                   |    |          |                  |                                        |         |                        | Sub'l Inc        |                         |                                              |                 |            | minus      |
|                                   |    |          |                  |                                        |         |                        |                  |                         |                                              |                 |            | Goal       |
|                                   |    |          | dBA              | dBA                                    | dBA     | dB                     | ф                |                         | dBA                                          | 명<br>명          | dВ         | dB         |
| Receiver1                         | _  | _        | 0.0              | 63.7                                   |         | 65 63.7                | .7 3             |                         | 63.7                                         | 0.0             |            | 0.0        |
| Dwelling Units                    |    | # DNs    | Noise Reduction  | duction                                |         |                        |                  |                         |                                              |                 |            |            |
|                                   |    |          | Min              | Avg                                    | Max     |                        |                  |                         |                                              |                 |            |            |
|                                   |    |          | dВ               | дB                                     | фВ      |                        |                  |                         |                                              |                 |            |            |
| All Selected                      |    |          | 0.0              | 0.0                                    |         | 0.0                    |                  |                         |                                              |                 |            |            |
| All Impacted                      |    | 0        | 0.0              | 0.0                                    |         | 0.0                    |                  |                         |                                              |                 |            |            |
| All that meet NR Goal             |    |          | 0.0              | 0.0                                    |         | 0.0                    |                  |                         |                                              |                 |            |            |

| 25\Program\MillerRd\NorthCounty |
|---------------------------------|
| C:\TNN                          |

| INPUT: TRAFFIC FOR LAeq1h Volumes    |                                        |         |            |                |                  | 2   | 21202-23   |    |            |     |             |      |
|--------------------------------------|----------------------------------------|---------|------------|----------------|------------------|-----|------------|----|------------|-----|-------------|------|
|                                      |                                        |         |            | L              | Č                | Ļ   |            |    |            |     |             |      |
| Baseline Environmental Consulting    |                                        |         |            | zo repr        | 26 repruary 2025 | 22  |            |    |            |     |             |      |
| Baseline Env                         |                                        |         | •          | <b>TNM 2.5</b> | 10               |     |            |    |            |     |             |      |
|                                      |                                        |         |            |                |                  |     |            |    |            |     |             |      |
| INPUT: TRAFFIC FOR LAeq1h Volumes    |                                        |         |            |                |                  |     |            |    |            |     |             |      |
| PROJECT/CONTRACT:                    | 21202-23                               |         |            |                |                  |     |            |    |            |     |             |      |
| RUN:                                 | North County Landfill Permit Amendment | -andfil | I Permit A | \mendn         | nent             |     |            |    |            |     |             |      |
| Roadway                              | Points                                 |         |            |                |                  |     |            |    |            |     |             |      |
| Name                                 | Name                                   | No.     | Segment    |                |                  |     |            |    |            |     |             |      |
|                                      |                                        |         | Autos      | _              | MTrucks          | 40  | HTrucks    | 6  | Buses      |     | Motorcycles | cles |
|                                      |                                        |         | >          | S              | >                | S   | >          | တ  | >          | S   | >           | S    |
|                                      |                                        |         | veh/hr     | , hdm          | veh/hr mph       | mph | veh/hr mph |    | veh/hr mph | mph | veh/hr      | mph  |
| Clements Rd North of E Harney Ln E+P | point1                                 | _       | 143        | 55             | 0                | 0   | 12         | 55 | 0          | 0   | 0           | 0    |
|                                      | point2                                 | 2       |            |                |                  |     |            |    |            |     |             |      |

| RESULTS: SOUND LEVELS             |         |          |                  |                                        |         |                        | 21202-23                |            |                |                                              |              |
|-----------------------------------|---------|----------|------------------|----------------------------------------|---------|------------------------|-------------------------|------------|----------------|----------------------------------------------|--------------|
| Baseline Environmental Consulting |         |          |                  |                                        |         |                        | 26 February 2025        | ıry 2025   |                |                                              |              |
| Baseline Env                      |         |          |                  |                                        |         |                        | <b>TNM 2.5</b>          |            |                |                                              |              |
|                                   |         |          |                  |                                        |         |                        | Calculated with TNM 2.5 | d with TNI | M 2.5          |                                              |              |
| RESULTS: SOUND LEVELS             |         |          |                  |                                        |         |                        |                         |            |                |                                              |              |
| PROJECT/CONTRACT:                 | 212     | 21202-23 |                  |                                        |         |                        |                         |            |                |                                              |              |
| RUN:                              | No      | rth Co   | unty Lan         | North County Landfill Permit Amendment | mendmer | ±                      |                         |            |                |                                              |              |
| BARRIER DESIGN:                   | Ξ       | PUT H    | INPUT HEIGHTS    |                                        |         |                        |                         | Average    | pavement typ   | Average pavement type shall be used unless   | less         |
|                                   |         |          |                  |                                        |         |                        |                         | a State h  | ighway agenc   | a State highway agency substantiates the use | e nse        |
| ATMOSPHERICS:                     | 89      | deg F    | 68 deg F, 50% RH |                                        |         |                        |                         | of a diffe | rent type with | of a different type with approval of FHWA.   |              |
| Receiver                          |         |          |                  |                                        |         |                        |                         |            |                |                                              |              |
| Name                              | No. #DI | #DOS     | Existing         | No Barrier                             |         |                        |                         |            | With Barrier   |                                              |              |
|                                   |         | _        | LAeq1h           | LAeq1h                                 | -       | Increase over existing | er existing             | Type       | Calculated     | Noise Reduction                              |              |
|                                   |         |          |                  | Calculated                             | Crit'n  | Calculated             | Crit'n                  | Impact     | LAeq1h         | Calculated Goal                              | l Calculated |
|                                   |         |          |                  |                                        |         |                        | Sub'l Inc               |            |                |                                              | minus        |
|                                   |         |          |                  |                                        |         |                        |                         |            |                |                                              | Goal         |
|                                   |         | ъ        | dBA              | dBA                                    | dBA     | dB                     | dВ                      |            | dBA            | dB dB                                        | dB           |
| Receiver1                         | 1       | _        | 0.0              | 63.8                                   |         | 65 63                  | 63.8                    |            | 63.8           | 0.0                                          | 0.0          |
| Dwelling Units                    | #       | # DNs    | Noise Reduction  | duction                                |         |                        |                         |            |                |                                              |              |
|                                   |         |          | Min              | Avg                                    | Max     |                        |                         |            |                |                                              |              |
|                                   |         |          | dВ               | dВ                                     | dВ      |                        |                         |            |                |                                              |              |
| All Selected                      |         | -        | 0.0              | 0.0                                    | 0.0     | 0                      |                         |            |                |                                              |              |
| All Impacted                      |         | 0        | 0.0              | 0.0                                    | 0.0     | 0                      |                         |            |                |                                              |              |
| All that meet NR Goal             |         | _        | 0.0              | 0.0                                    | 0.0     | 0                      |                         |            |                |                                              |              |

| 5\Program\MillerRd\NorthCounty |
|--------------------------------|
| C:\TNM2                        |

| <b>Baseline Environmental Consulting</b> |                                        |         |          | 26 Febr        | 26 February 2025 | 25  |         |     |        |     |             |       |
|------------------------------------------|----------------------------------------|---------|----------|----------------|------------------|-----|---------|-----|--------|-----|-------------|-------|
| Baseline Env                             |                                        |         |          | <b>TNM 2.5</b> | 2                |     |         |     |        |     |             |       |
|                                          |                                        |         |          |                |                  |     |         |     |        |     |             |       |
| INPUT: TRAFFIC FOR LAeq1h Volumes        |                                        |         |          |                |                  |     |         |     |        |     |             |       |
| PROJECT/CONTRACT:                        | 21202-23                               |         |          |                |                  |     |         |     |        |     |             |       |
| RUN:                                     | North County Landfill Permit Amendment | andfil- | Permit / | <b>Amenda</b>  | nent             |     |         |     |        |     |             |       |
| Roadway                                  | Points                                 |         |          |                |                  |     |         |     |        |     |             |       |
| Name                                     | Name                                   | No.     | Segment  |                |                  |     |         |     |        |     |             |       |
|                                          |                                        |         | Autos    | ,              | MTrucks          |     | HTrucks |     | Buses  |     | Motorcycles | /cles |
|                                          |                                        |         | >        | S              | >                | S   | >       | တ   | >      | S   | >           | တ     |
|                                          |                                        |         | veh/hr   | \              | veh/hr           | udu | veh/hr  | нdш | veh/hr | udu | veh/hr      | mph   |
| Clements Rd North of E Harney Ln C       | point1                                 | _       | 277      | 22             | 0                | 0   | 21      | 22  | 0      | 0   | 0           | 0     |
|                                          | point2                                 | 2       |          |                |                  |     |         |     |        |     |             |       |
|                                          |                                        |         |          |                |                  |     |         |     |        |     |             |       |

INPUT: TRAFFIC FOR LAeq1h Volumes

| Baseline Environmental Consulting |     |                  |           |                                        |         |            | 26 Fet                 | 26 February 2025        |                                              |                 |             |            |
|-----------------------------------|-----|------------------|-----------|----------------------------------------|---------|------------|------------------------|-------------------------|----------------------------------------------|-----------------|-------------|------------|
| Baseline Env                      |     |                  |           |                                        |         |            | <b>TNM 2.5</b>         | ίς:                     |                                              |                 |             |            |
|                                   |     |                  |           |                                        |         |            | Calcul                 | Calculated with TNM 2.5 | IM 2.5                                       |                 |             |            |
| RESULTS: SOUND LEVELS             |     |                  |           |                                        |         |            |                        |                         |                                              |                 |             |            |
| PROJECT/CONTRACT:                 |     | 21202-23         |           |                                        |         |            |                        |                         |                                              |                 |             |            |
| RUN:                              |     | North Cou        | inty Lan  | North County Landfill Permit Amendment | \mendme | nt         |                        |                         |                                              |                 |             |            |
| BARRIER DESIGN:                   |     | INPUT HEIGHTS    | :IGHTS    |                                        |         |            |                        | Average                 | Average pavement type shall be used unless   | e shall be us   | ed unless   |            |
|                                   |     |                  |           |                                        |         |            |                        | a State                 | a State highway agency substantiates the use | cy substantia   | tes the use |            |
| ATMOSPHERICS:                     |     | 68 deg F, 50% RH | 50% RH    |                                        |         |            |                        | of a diff               | of a different type with approval of FHWA.   | approval of     | FHWA.       |            |
| Receiver                          |     |                  |           |                                        |         |            |                        |                         |                                              |                 |             |            |
| Name                              | No. | #DUs Ex          | Existing  | No Barrier                             |         |            |                        |                         | With Barrier                                 | _               |             |            |
|                                   |     |                  | LAeq1h    | LAeq1h                                 |         | Increase   | Increase over existing | g Type                  | Calculated                                   | Noise Reduction | ction       |            |
|                                   |     |                  |           | Calculated                             | Crit'n  | Calculated | d Crit'n               |                         | LAeq1h                                       | Calculated      | Goal        | Calculated |
|                                   |     |                  |           |                                        |         |            | Sub'l Inc              | nc                      |                                              |                 |             | minus      |
|                                   |     |                  |           |                                        |         |            |                        |                         |                                              |                 |             | Goal       |
|                                   |     | 岁                | dBA       | dBA                                    | dBA     | ф          | <del>8</del>           |                         | dBA                                          | dВ              | фB          | dB         |
| Receiver1                         |     | 1                | 0.0       | 66.5                                   |         | 65         | 66.5                   | 3 Snd Lvl               | 1 66.5                                       | 5 0.0           |             | 0.0        |
| Dwelling Units                    |     | # DOS N          | Noise Red | duction                                |         |            |                        |                         |                                              |                 |             |            |
|                                   |     | Σ                | Min       | Avg                                    | Max     |            |                        |                         |                                              |                 |             |            |
|                                   |     | ס                | dB        | dВ                                     | dВ      |            |                        |                         |                                              |                 |             |            |
| All Selected                      |     | -                | 0.0       | 0.0                                    |         | 0.0        |                        |                         |                                              |                 |             |            |
| All Impacted                      |     | 1                | 0.0       | 0.0                                    |         | 0.0        |                        |                         |                                              |                 |             |            |
| All that meet NR Goal             |     | -                | 0.0       | 0.0                                    |         | 0.0        |                        |                         |                                              |                 |             |            |
|                                   | -   |                  |           |                                        |         |            |                        |                         |                                              |                 |             |            |

RESULTS: SOUND LEVELS

| w/Millord/MorthCollery |                |
|------------------------|----------------|
| C.\TNIM26\Drog         | C.LINIMESITION |

| <b>Baseline Environmental Consulting</b> |                                        |         |            | 26 Febr                               | 26 February 2025 | 25  |         |     |        |     |             |      |
|------------------------------------------|----------------------------------------|---------|------------|---------------------------------------|------------------|-----|---------|-----|--------|-----|-------------|------|
| Baseline Env                             |                                        |         | _          | <b>TNM 2.5</b>                        | D.               |     |         |     |        |     |             |      |
|                                          |                                        |         |            |                                       |                  |     |         |     |        |     |             |      |
| INPUT: TRAFFIC FOR LAeq1h Volumes        |                                        |         |            |                                       |                  |     |         |     |        |     |             |      |
| PROJECT/CONTRACT:                        | 21202-23                               |         |            |                                       |                  |     |         |     |        |     |             |      |
| RUN:                                     | North County Landfill Permit Amendment | andfil. | I Permit A | \mendn                                | nent             |     |         |     |        |     |             |      |
| Roadway                                  | Points                                 |         |            |                                       |                  |     |         |     |        |     |             |      |
| Name                                     | Name                                   | No.     | Segment    |                                       |                  |     |         |     |        |     |             |      |
|                                          |                                        |         | Autos      | , <del></del>                         | MTrucks          | (4  | HTrucks |     | Buses  |     | Motorcycles | cles |
|                                          |                                        |         | >          | s                                     | >                | တ   | >       | တ   | >      | S   | >           | S    |
|                                          |                                        |         | veh/hr     | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | veh/hr           | mph | veh/hr  | mph | veh/hr | mph | veh/hr      | mph  |
| Clements Rd North of E Harney Ln C+P     | point1                                 | 1       | 279        | 22                                    | 0                | 0   | 21      | 22  | 0      | 0   | 0           | 0    |
|                                          | point2                                 | 2       |            |                                       |                  |     |         |     |        |     |             |      |
|                                          |                                        |         |            |                                       |                  |     |         |     |        |     |             |      |

INPUT: TRAFFIC FOR LAeq1h Volumes

| Baseline Environmental Consulting |     |                  |           |                                        |         |            | 26 Fet                 | 26 February 2025        |                                              |                 |             |            |
|-----------------------------------|-----|------------------|-----------|----------------------------------------|---------|------------|------------------------|-------------------------|----------------------------------------------|-----------------|-------------|------------|
| Baseline Env                      |     |                  |           |                                        |         |            | <b>TNM 2.5</b>         | ίς:                     |                                              |                 |             |            |
|                                   |     |                  |           |                                        |         |            | Calcul                 | Calculated with TNM 2.5 | IM 2.5                                       |                 |             |            |
| RESULTS: SOUND LEVELS             |     |                  |           |                                        |         |            |                        |                         |                                              |                 |             |            |
| PROJECT/CONTRACT:                 |     | 21202-23         |           |                                        |         |            |                        |                         |                                              |                 |             |            |
| RUN:                              |     | North Cou        | inty Lan  | North County Landfill Permit Amendment | \mendme | nt         |                        |                         |                                              |                 |             |            |
| BARRIER DESIGN:                   |     | INPUT HEIGHTS    | :IGHTS    |                                        |         |            |                        | Average                 | Average pavement type shall be used unless   | e shall be us   | ed unless   |            |
|                                   |     |                  |           |                                        |         |            |                        | a State                 | a State highway agency substantiates the use | cy substantia   | tes the use |            |
| ATMOSPHERICS:                     |     | 68 deg F, 50% RH | 50% RH    |                                        |         |            |                        | of a diff               | of a different type with approval of FHWA.   | approval of     | FHWA.       |            |
| Receiver                          |     |                  |           |                                        |         |            |                        |                         |                                              |                 |             |            |
| Name                              | No. | #DUs Ex          | Existing  | No Barrier                             |         |            |                        |                         | With Barrier                                 | _               |             |            |
|                                   |     |                  | LAeq1h    | LAeq1h                                 |         | Increase   | Increase over existing | g Type                  | Calculated                                   | Noise Reduction | ction       |            |
|                                   |     |                  |           | Calculated                             | Crit'n  | Calculated | d Crit'n               |                         | LAeq1h                                       | Calculated      | Goal        | Calculated |
|                                   |     |                  |           |                                        |         |            | Sub'l Inc              | nc                      |                                              |                 |             | minus      |
|                                   |     |                  |           |                                        |         |            |                        |                         |                                              |                 |             | Goal       |
|                                   |     | 岁                | dBA       | dBA                                    | dBA     | ф          | <del>8</del>           |                         | dBA                                          | dВ              | фB          | dB         |
| Receiver1                         |     | 1                | 0.0       | 66.5                                   |         | 65         | 66.5                   | 3 Snd Lvl               | 1 66.5                                       | 5 0.0           |             | 0.0        |
| Dwelling Units                    |     | # DOS N          | Noise Red | duction                                |         |            |                        |                         |                                              |                 |             |            |
|                                   |     | Σ                | Min       | Avg                                    | Max     |            |                        |                         |                                              |                 |             |            |
|                                   |     | ס                | dB        | dВ                                     | dВ      |            |                        |                         |                                              |                 |             |            |
| All Selected                      |     | -                | 0.0       | 0.0                                    |         | 0.0        |                        |                         |                                              |                 |             |            |
| All Impacted                      |     | 1                | 0.0       | 0.0                                    |         | 0.0        |                        |                         |                                              |                 |             |            |
| All that meet NR Goal             |     | -                | 0.0       | 0.0                                    |         | 0.0        |                        |                         |                                              |                 |             |            |
|                                   | -   |                  |           |                                        |         |            |                        |                         |                                              |                 |             |            |

RESULTS: SOUND LEVELS

| 25\Program\MillerRd\NorthCounty |
|---------------------------------|
| C:\TNN                          |

| INPUT: TRAFFIC FOR LAeq1h Volumes  |                                        |         |            |         |                  | 2   | 21202-23 |      |        |     |             |      |
|------------------------------------|----------------------------------------|---------|------------|---------|------------------|-----|----------|------|--------|-----|-------------|------|
| :                                  |                                        |         |            |         |                  |     |          |      |        |     |             |      |
| Baseline Environmental Consulting  |                                        |         |            | 26 Febr | 26 February 2025 | 25  |          |      |        |     |             |      |
| Baseline Env                       |                                        |         |            | TNM 2.5 | 21               |     | _        | -    |        |     |             |      |
|                                    |                                        |         |            |         |                  |     |          |      |        |     |             |      |
| INPUI: I KAFFIC FOR LAGGIN VOIUMES |                                        |         |            |         |                  |     |          |      |        |     |             |      |
| PROJECT/CONTRACT:                  | 21202-23                               |         |            |         |                  |     |          |      |        |     |             |      |
| RUN:                               | North County Landfill Permit Amendment | -andfil | I Permit A | \mendn  | nent             |     |          |      |        |     |             |      |
| Roadway                            | Points                                 |         |            |         |                  |     |          |      |        |     |             |      |
| Name                               | Name                                   | No.     | Segment    |         |                  |     |          |      |        |     |             |      |
|                                    |                                        |         | Autos      | _       | MTrucks          |     | HTrucks  | S    | Buses  |     | Motorcycles | cles |
|                                    |                                        |         | >          | S       | >                | တ   | >        | S    | >      | တ   | >           | S    |
|                                    |                                        |         | veh/hr     | mph \   | veh/hr mph       | mph | veh/hr   | mph  | veh/hr | mph | veh/hr      | mph  |
| Clements Rd South of E Harney Ln E | point1                                 | _       | 156        | 55      | 0                | 0   |          | 9 55 | 0      | 0   | 0           | 0    |
|                                    | point2                                 | 2       |            |         |                  |     |          |      |        |     |             |      |

| <b>Baseline Environmental Consulting</b> |     |          |                  |                                        |        |            | 26 February 2025       | ary 2025                |                                                                                             |                                 |                    |            |
|------------------------------------------|-----|----------|------------------|----------------------------------------|--------|------------|------------------------|-------------------------|---------------------------------------------------------------------------------------------|---------------------------------|--------------------|------------|
| Baseline Env                             |     |          |                  |                                        |        |            | <b>TNM 2.5</b>         |                         |                                                                                             |                                 |                    |            |
|                                          |     |          |                  |                                        |        |            | Calculate              | Calculated with TNM 2.5 | M 2.5                                                                                       |                                 |                    |            |
| RESULTS: SOUND LEVELS                    |     |          |                  |                                        |        |            |                        |                         |                                                                                             |                                 |                    |            |
| PROJECT/CONTRACT:                        |     | 21202-23 | က                |                                        |        |            |                        |                         |                                                                                             |                                 |                    |            |
| RUN:                                     |     | North C  | ounty Lar        | North County Landfill Permit Amendment | \mendm | ent        |                        |                         |                                                                                             |                                 |                    |            |
| BARRIER DESIGN:                          |     | INPUT    | INPUT HEIGHTS    |                                        | _      |            |                        | Average                 | Average pavement type shall be used unless                                                  | e shall be use                  | ed unless          |            |
| ATMOSPHERICS:                            |     | 68 deg   | 68 deg F, 50% RH |                                        |        |            |                        | of a diffe              | a state nignway agency substantiates fire use<br>of a different type with approval of FHWA. | sy substantiat<br>approval of I | es me use<br>FHWA. |            |
| Receiver                                 |     |          |                  |                                        |        |            |                        |                         |                                                                                             |                                 |                    |            |
| Name                                     | No. | #DNs     | Existing         | No Barrier                             |        |            |                        |                         | With Barrier                                                                                |                                 |                    |            |
|                                          |     |          | LAeq1h           | LAeq1h                                 |        | Increase   | Increase over existing | Type                    | Calculated                                                                                  | Noise Reduction                 | ction              |            |
|                                          |     |          |                  | Calculated                             | Crit'n | Calculated | ted Crit'n             | Impact                  | LAeq1h                                                                                      | Calculated                      | Goal               | Calculated |
|                                          |     |          |                  |                                        |        |            | Sub'l Inc              |                         |                                                                                             |                                 |                    | minus      |
|                                          |     |          |                  |                                        |        |            |                        |                         |                                                                                             |                                 |                    | Goal       |
|                                          |     |          | dBA              | dBA                                    | dBA    | ф          | dВ                     |                         | dBA                                                                                         | dB                              | dВ                 | dB         |
| Receiver1                                | 1   | 1        | 0.0              | 63.5                                   | 5      | 92         | 63.5                   | 3                       | 63.5                                                                                        | 5 0.0                           | 0                  | 0.0        |
| Dwelling Units                           |     | # DNs    | Noise Red        | duction                                |        |            |                        |                         |                                                                                             |                                 |                    |            |
|                                          |     |          | Min              | Avg                                    | Max    |            |                        |                         |                                                                                             |                                 |                    |            |
|                                          |     |          | dВ               | dВ                                     | dВ     |            |                        |                         |                                                                                             |                                 |                    |            |
| All Selected                             |     | 1        | 0.0              | 0.0                                    |        | 0.0        |                        |                         |                                                                                             |                                 |                    |            |
| All Impacted                             |     | 0        | 0.0              | 0.0                                    |        | 0.0        |                        |                         |                                                                                             |                                 |                    |            |
| All that meet NR Goal                    |     | 1        | 0.0              | 0.0                                    |        | 0.0        |                        |                         |                                                                                             |                                 |                    |            |
|                                          |     |          |                  |                                        |        |            |                        |                         |                                                                                             |                                 |                    |            |

RESULTS: SOUND LEVELS

| 5\Program\MillerRd\NorthCounty |
|--------------------------------|
| C:\TNM2                        |

| INPUT: TRAFFIC FOR LAeq1h Volumes    |                                        |         |          |                |          | 2   | 21202-23 |     |        |     |             |      |
|--------------------------------------|----------------------------------------|---------|----------|----------------|----------|-----|----------|-----|--------|-----|-------------|------|
| Bacolino Environmontal               |                                        |         |          |                |          | ц   |          |     |        |     |             |      |
| Daseille Elivirollilental consulting |                                        |         | •        | IGAL 05        | uaiy 201 | 9   |          |     |        |     |             |      |
| Baseline Env                         |                                        |         | _        | <b>TNM 2.5</b> |          |     |          |     |        |     |             |      |
|                                      |                                        |         |          |                |          |     |          |     |        |     |             |      |
| INPUT: TRAFFIC FOR LAeq1h Volumes    |                                        |         |          |                |          |     |          |     |        |     |             |      |
| PROJECT/CONTRACT:                    | 21202-23                               |         |          |                |          |     |          |     |        |     |             |      |
| RUN:                                 | North County Landfill Permit Amendment | andfill | Permit A | mendr          | ent      |     |          |     |        |     |             |      |
| Roadway                              | Points                                 |         |          |                |          |     |          |     |        |     |             |      |
| Name                                 | Name                                   | No.     | Segment  |                |          |     |          |     |        |     |             |      |
|                                      |                                        |         | Autos    | _              | MTrucks  |     | HTrucks  |     | Buses  |     | Motorcycles | cles |
|                                      |                                        |         | <u> </u> | _<br>s         |          | S   | >        | တ   | >      | S   | >           | S    |
|                                      |                                        |         | veh/hr r | v hdm          | veh/hr   | mph | veh/hr   | mph | veh/hr | mph | veh/hr      | mph  |
| Clements Rd South of E Harney Ln E+P | point1                                 | _       | 157      | 25             | 0        | 0   | 10       | 55  | 0      | 0   | 0           | 0    |
|                                      | point2                                 | 2       |          |                |          |     |          |     |        |     |             |      |
|                                      |                                        |         |          |                |          |     |          |     |        |     |             |      |

| 21202-23       |  |
|----------------|--|
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
| ) LEVELS       |  |
| RESULTS: SOUND |  |

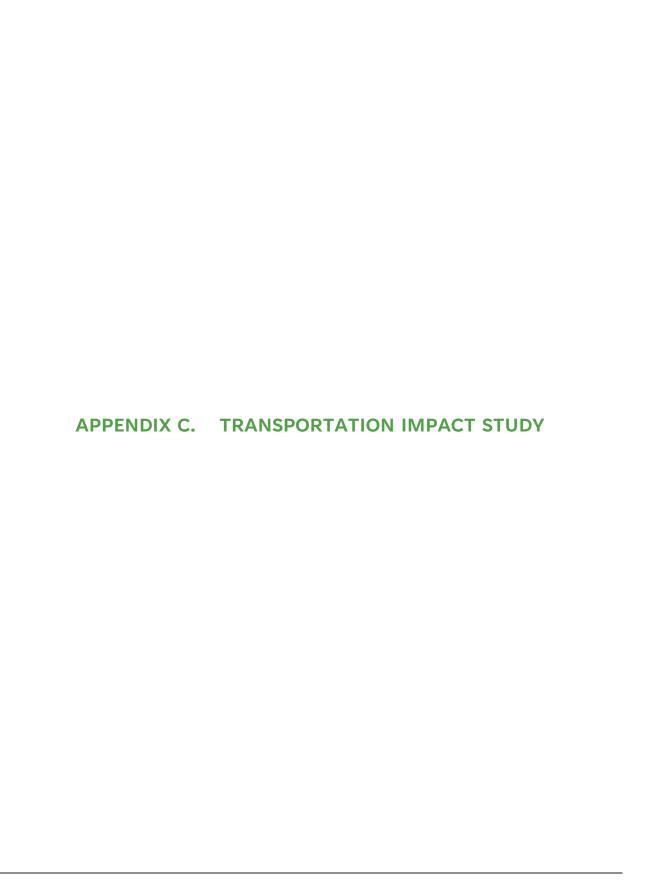
| Baseline Environmental Consulting |    |          |                  |                                        |         |                        | 26 February 2025 | ıry 2025                |                                              |                 |            |            |
|-----------------------------------|----|----------|------------------|----------------------------------------|---------|------------------------|------------------|-------------------------|----------------------------------------------|-----------------|------------|------------|
| Baseline Env                      |    |          |                  |                                        |         |                        | <b>TNM 2.5</b>   |                         |                                              |                 |            |            |
|                                   |    |          |                  |                                        |         |                        | Calculate        | Calculated with TNM 2.5 | 12.5                                         |                 |            |            |
| RESULTS: SOUND LEVELS             |    |          |                  |                                        |         |                        |                  |                         |                                              |                 |            |            |
| PROJECT/CONTRACT:                 |    | 21202-23 | 23               |                                        |         |                        |                  |                         |                                              |                 |            |            |
| RUN:                              |    | North (  | Sounty Lar       | North County Landfill Permit Amendment | Amendme | ±                      |                  |                         |                                              |                 |            |            |
| BARRIER DESIGN:                   |    | INPUT    | INPUT HEIGHTS    |                                        |         |                        |                  | Average p               | Average pavement type shall be used unless   | e shall be use  | d unless   | -          |
|                                   |    |          |                  |                                        |         |                        |                  | a State hi              | a State highway agency substantiates the use | y substantiate  | es the use |            |
| ATMOSPHERICS:                     |    | 68 deg   | 68 deg F, 50% RH | _                                      |         |                        |                  | of a differ             | of a different type with approval of FHWA.   | approval of F   | HWA.       |            |
| Receiver                          |    |          |                  |                                        |         |                        |                  |                         |                                              |                 |            |            |
| Name                              | Š. | #DNs     | Existing         | No Barrier                             |         |                        |                  |                         | With Barrier                                 |                 |            |            |
|                                   |    |          | LAeq1h           | LAeq1h                                 |         | Increase over existing | r existing       | Type                    | Calculated                                   | Noise Reduction | tion       |            |
|                                   |    |          |                  | Calculated                             | Crit'n  | Calculated             | Crit'n           | Impact                  | LAeq1h                                       | Calculated Goal | Goal       | Calculated |
|                                   |    |          |                  |                                        |         |                        | Sub'l Inc        |                         |                                              |                 |            | minus      |
|                                   |    |          |                  |                                        |         |                        |                  |                         |                                              |                 |            | Goal       |
|                                   |    |          | dBA              | dBA                                    | dBA     | dB                     | ф                |                         | dBA                                          | 명<br>명          | dВ         | dB         |
| Receiver1                         | _  | _        | 0.0              | 63.7                                   |         | 65 63.7                | .7 3             |                         | 63.7                                         | 0.0             |            | 0.0        |
| Dwelling Units                    |    | # DNs    | Noise Reduction  | duction                                |         |                        |                  |                         |                                              |                 |            |            |
|                                   |    |          | Min              | Avg                                    | Max     |                        |                  |                         |                                              |                 |            |            |
|                                   |    |          | dВ               | дB                                     | фВ      |                        |                  |                         |                                              |                 |            |            |
| All Selected                      |    |          | 0.0              | 0.0                                    |         | 0.0                    |                  |                         |                                              |                 |            |            |
| All Impacted                      |    | 0        | 0.0              | 0.0                                    |         | 0.0                    |                  |                         |                                              |                 |            |            |
| All that meet NR Goal             |    |          | 0.0              | 0.0                                    |         | 0.0                    |                  |                         |                                              |                 |            |            |

| 25\Program\MillerRd\NorthCounty |
|---------------------------------|
| C:\TNN                          |

| <b>Baseline Environmental Consulting</b> |                                        |         |          | 26 Febr        | 26 February 2025 | 25  |         |     |        |     |             |       |
|------------------------------------------|----------------------------------------|---------|----------|----------------|------------------|-----|---------|-----|--------|-----|-------------|-------|
| Baseline Env                             |                                        |         |          | <b>TNM 2.5</b> | 10               |     |         |     |        |     |             |       |
|                                          |                                        |         |          |                |                  |     |         |     |        |     |             |       |
| INPUT: TRAFFIC FOR LAeq1h Volumes        |                                        |         |          |                |                  |     |         |     |        |     |             |       |
| PROJECT/CONTRACT:                        | 21202-23                               |         |          |                |                  |     |         |     |        |     |             |       |
| RUN:                                     | North County Landfill Permit Amendment | Landfil | Permit / | Amendn         | nent             |     |         |     |        |     |             |       |
| Roadway                                  | Points                                 |         |          |                |                  |     |         |     |        |     |             |       |
| Name                                     | Name                                   | No.     | Segment  |                |                  |     |         |     |        |     |             |       |
|                                          |                                        |         | Autos    | _              | MTrucks          |     | HTrucks |     | Buses  |     | Motorcycles | rcles |
|                                          |                                        |         | >        | s              | _                | S   | >       | တ   | >      | S   | >           | S     |
|                                          |                                        |         | veh/hr   | \ hdm          | veh/hr           | mph | veh/hr  | mph | veh/hr | mph | veh/hr      | mph   |
| Clements Rd South of E Harney Ln C       | point1                                 | _       | 294      | 22             | 0                | 0   | 18      | 55  | 0      | 0   | 0           | 0     |
|                                          | point2                                 | 2       |          |                |                  |     |         |     |        |     |             |       |

INPUT: TRAFFIC FOR LAeq1h Volumes

| LEVELS   |  |
|----------|--|
| SOUND    |  |
| RESULTS: |  |


| RESULTS: SOUND LEVELS             |     |          |                  |                                        |        |                        | 21202-23                |             |                                              |                 |            |            |
|-----------------------------------|-----|----------|------------------|----------------------------------------|--------|------------------------|-------------------------|-------------|----------------------------------------------|-----------------|------------|------------|
|                                   |     |          |                  |                                        |        |                        | L                       |             |                                              |                 |            |            |
| baseline Environmental Consulting |     |          |                  |                                        |        |                        | zo repruary zuzo        | ry 2025     |                                              |                 |            |            |
| Baseline Env                      |     |          |                  |                                        |        |                        | <b>TNM 2.5</b>          |             |                                              |                 |            |            |
|                                   |     |          |                  |                                        |        |                        | Calculated with TNM 2.5 | with TNN    | 12.5                                         |                 |            |            |
| RESULTS: SOUND LEVELS             |     |          |                  |                                        |        |                        |                         |             |                                              |                 |            |            |
| PROJECT/CONTRACT:                 |     | 21202-23 | 23               |                                        |        |                        |                         |             |                                              |                 |            |            |
| RUN:                              |     | North C  | ounty Lan        | North County Landfill Permit Amendment | mendme | nt                     |                         |             |                                              |                 |            |            |
| BARRIER DESIGN:                   |     | INPUT    | INPUT HEIGHTS    |                                        |        |                        |                         | Average p   | Average pavement type shall be used unless   | shall be use    | ed unless  | _          |
|                                   |     |          |                  |                                        |        |                        |                         | a State hi  | a State highway agency substantiates the use | y substantiat   | es the use | 40         |
| ATMOSPHERICS:                     |     | 68 deg   | 68 deg F, 50% RH |                                        |        |                        |                         | of a differ | of a different type with approval of FHWA.   | approval of F   | HWA.       |            |
| Receiver                          |     |          |                  |                                        |        |                        |                         |             |                                              |                 |            |            |
| Name                              | No. | #DUs     | Existing         | No Barrier                             |        |                        |                         |             | With Barrier                                 |                 |            |            |
|                                   |     |          | LAeq1h           | LAeq1h                                 |        | Increase over existing | er existing             | Type        | Calculated                                   | Noise Reduction | tion       |            |
|                                   |     |          |                  | Calculated                             | Crit'n | Calculated             | Crit'n                  | Impact      | LAeq1h                                       | Calculated      | Goal       | Calculated |
|                                   |     |          |                  |                                        |        |                        | Sub'l Inc               |             |                                              |                 |            | minus      |
|                                   |     |          |                  |                                        |        |                        |                         |             |                                              |                 |            | Goal       |
|                                   |     |          | dBA              | dBA                                    | dBA    | dB                     | В                       |             | dBA                                          | фB              | dB         | dB         |
| Receiver1                         |     | 1        | 0.0              | 66.4                                   |        | 99 96                  | 66.4                    | Snd Lvl     | 66.4                                         | 0.0             |            | 0.0        |
| Dwelling Units                    |     | # DNs    | Noise Reduction  | duction                                |        |                        |                         |             |                                              |                 |            |            |
|                                   |     |          | Min              | Avg                                    | Max    |                        |                         |             |                                              |                 |            |            |
|                                   |     |          | dВ               | dВ                                     | dВ     |                        |                         |             |                                              |                 |            |            |
| All Selected                      |     | _        | 0.0              | 0.0                                    |        | 0.0                    |                         |             |                                              |                 |            |            |
| All Impacted                      |     | _        | 0.0              | 0.0                                    |        | 0.0                    |                         |             |                                              |                 |            |            |
| All that meet NR Goal             |     | 1        | 0.0              | 0.0                                    |        | 0.0                    |                         |             |                                              |                 |            |            |

| 25\Program\MillerRd\NorthCounty |
|---------------------------------|
| C:\TNN                          |

| INPUT: TRAFFIC FOR LAeq1h Volumes    |                                        |         |            |                |                  | 7   | 21202-23 |     |        |     |             |      |
|--------------------------------------|----------------------------------------|---------|------------|----------------|------------------|-----|----------|-----|--------|-----|-------------|------|
|                                      |                                        |         |            |                | Č                | L,  |          |     |        |     |             |      |
| Baseline Environmental Consulting    |                                        |         |            | zo repr        | zo repruary zuzo | 22  |          |     |        |     |             |      |
| Baseline Env                         |                                        |         | •          | <b>TNM 2.5</b> | 10               |     |          |     |        |     |             |      |
|                                      |                                        |         |            |                |                  |     |          |     |        |     |             |      |
| INPUT: TRAFFIC FOR LAeq1h Volumes    |                                        |         |            |                |                  |     |          |     |        |     |             |      |
| PROJECT/CONTRACT:                    | 21202-23                               |         |            |                |                  |     |          |     |        |     |             |      |
| RUN:                                 | North County Landfill Permit Amendment | -andfil | I Permit A | \mendn         | nent             |     |          |     |        |     |             |      |
| Roadway                              | Points                                 |         |            |                |                  |     |          |     |        |     |             |      |
| Name                                 | Name                                   | No.     | Segment    |                |                  |     |          |     |        |     |             |      |
|                                      |                                        |         | Autos      | _              | MTrucks          | 40  | HTrucks  | S   | Buses  |     | Motorcycles | cles |
|                                      |                                        |         | >          | S              | >                | S   | >        | တ   | >      | တ   | >           | S    |
|                                      |                                        |         | veh/hr     | , hdm          | veh/hr mph       | mph | veh/hr   | mph | veh/hr | mph | veh/hr      | mph  |
| Clements Rd South of E Harney Ln C+P | point1                                 | _       | 295        | 55             | 0                | 0   | 19       | 55  | 0      | 0   | 0           | 0    |
|                                      | point2                                 | 2       |            |                |                  |     |          |     |        |     |             |      |

| Baseline Environmental Consulting |     |                  |           |                                        |         |            | 26 Fet                 | 26 February 2025        |                                              |                 |             |            |
|-----------------------------------|-----|------------------|-----------|----------------------------------------|---------|------------|------------------------|-------------------------|----------------------------------------------|-----------------|-------------|------------|
| Baseline Env                      |     |                  |           |                                        |         |            | <b>TNM 2.5</b>         | ίς:                     |                                              |                 |             |            |
|                                   |     |                  |           |                                        |         |            | Calcul                 | Calculated with TNM 2.5 | IM 2.5                                       |                 |             |            |
| RESULTS: SOUND LEVELS             |     |                  |           |                                        |         |            |                        |                         |                                              |                 |             |            |
| PROJECT/CONTRACT:                 |     | 21202-23         |           |                                        |         |            |                        |                         |                                              |                 |             |            |
| RUN:                              |     | North Cou        | inty Lan  | North County Landfill Permit Amendment | \mendme | nt         |                        |                         |                                              |                 |             |            |
| BARRIER DESIGN:                   |     | INPUT HEIGHTS    | :IGHTS    |                                        |         |            |                        | Average                 | Average pavement type shall be used unless   | e shall be us   | ed unless   |            |
|                                   |     |                  |           |                                        |         |            |                        | a State                 | a State highway agency substantiates the use | cy substantia   | tes the use |            |
| ATMOSPHERICS:                     |     | 68 deg F, 50% RH | 50% RH    |                                        |         |            |                        | of a diff               | of a different type with approval of FHWA.   | approval of     | FHWA.       |            |
| Receiver                          |     |                  |           |                                        |         |            |                        |                         |                                              |                 |             |            |
| Name                              | No. | #DUS Ex          | Existing  | No Barrier                             |         |            |                        |                         | With Barrier                                 | _               |             |            |
|                                   |     |                  | LAeq1h    | LAeq1h                                 |         | Increase   | Increase over existing | g Type                  | Calculated                                   | Noise Reduction | ction       |            |
|                                   |     |                  |           | Calculated                             | Crit'n  | Calculated | d Crit'n               |                         | LAeq1h                                       | Calculated      | Goal        | Calculated |
|                                   |     |                  |           |                                        |         |            | Sub'l Inc              | nc                      |                                              |                 |             | minus      |
|                                   |     |                  |           |                                        |         |            |                        |                         |                                              |                 |             | Goal       |
|                                   |     | 岁                | dBA       | dBA                                    | dBA     | ф          | <del>8</del>           |                         | dBA                                          | dВ              | фB          | dB         |
| Receiver1                         |     | 1                | 0.0       | 66.5                                   |         | 65         | 66.5                   | 3 Snd Lvl               | 1 66.5                                       | 5 0.0           |             | 0.0        |
| Dwelling Units                    |     | # DOS N          | Noise Red | duction                                |         |            |                        |                         |                                              |                 |             |            |
|                                   |     | Σ                | Min       | Avg                                    | Max     |            |                        |                         |                                              |                 |             |            |
|                                   |     | ס                | dB        | dВ                                     | dВ      |            |                        |                         |                                              |                 |             |            |
| All Selected                      |     | -                | 0.0       | 0.0                                    |         | 0.0        |                        |                         |                                              |                 |             |            |
| All Impacted                      |     | 1                | 0.0       | 0.0                                    |         | 0.0        |                        |                         |                                              |                 |             |            |
| All that meet NR Goal             |     | -                | 0.0       | 0.0                                    |         | 0.0        |                        |                         |                                              |                 |             |            |
|                                   | -   |                  |           |                                        |         |            |                        |                         |                                              |                 |             |            |

RESULTS: SOUND LEVELS





March 6, 2025

Mr. Rob Carnachan WRA, Inc. 2169-G East Francisco Blvd San Rafael, CA 94901

# Transportation Impact Analysis for the North County Recycling Center and Sanitary Landfill Project

Dear Mr. Carnachan;

As requested, W-Trans has prepared a transportation impact analysis for the North County Recycling Center and Sanitary Landfill (North County Landfill) project in the County of San Joaquin. The purpose of this letter is to address potential transportation-related operational effects and environmental impacts associated with expanding the permitted capacity of this existing landfill located at 17720 East Harney Lane, approximately nine miles east of SR-99 and the City of Lodi.

## **Project Description**

The proposed project would increase the permitted usage of the North County Landfill from 1,200 tons and 850 vehicles per day to 4,000 tons and 1,200 vehicles per day. It should be noted that the current traffic to the site is approximately 450 vehicles per day and the project as proposed does not include plans to expand the existing facilities on site. As part of the project, six new full-time employee positions would be added to the current roster of 35 full-time and 13 part-time employee positions. The existing Foothill Landfill would be closed and the North County Landfill would absorb its 51 haul trucks per day, which would result in 109 total haul trucks per day to the North County Landfill.

#### **Study Area**

The study area consists of the project site frontage and access, and the following intersections and roadway segments.

#### **Study Intersections**

- 1. East Harney Lane/SR-88
- 2. East Harney Lane/Jack Tone Road
- 3. East Harney Lane/Site Access
- 4. East Harney Lane/Clements Road

#### **Study Segments**

- 1. East Harney Lane between SR-99 and SR-88
- 2. East Harney Lane between Jake Tone Road and Site Access Road
- 3. SR-88 between East Harney Lane and Eight Mile Road

Operating conditions during the a.m. and p.m. peak periods were evaluated to capture the highest potential impacts for the proposed project as well as the highest volumes on the local transportation network. The morning peak hour occurs between 7:00 a.m. and 9:00 a.m. and reflects conditions during the home to work or school commute, while the p.m. peak hour occurs between 4:00 p.m. and 6:00 p.m. and typically reflects the highest level of congestion during the homeward bound commute. Peak hour counts were obtained for the study intersections and 24-hour counts were obtained for the study segments and site access road on Tuesday, November 19, 2024; both types include heavy vehicle counts while the segment volumes also contain speed data. Copies of the traffic counts are enclosed.

# **Collision History**

The collision history for the study area was reviewed to determine any trends or patterns that may indicate a safety issue. Collision rates were calculated based on records available from the California Highway Patrol as published in their Statewide Integrated Traffic Records System (SWITRS) reports. The most current five-year period available is July 1, 2019, through June 30, 2024.

As presented in Table 1, the calculated collision rates for the study intersections were compared to average collision rates for similar facilities statewide, as indicated in 2022 Collision Data on California State Highways, California Department of Transportation (Caltrans). These average rates statewide are for intersections in the same environment (urban, suburban, or rural), with the same number of approaches (three or four), and the same controls (all-way stop, two-way stop, or traffic signal). The calculated collision rates for the study intersections are less than or equal to the statewide averages for similar facilities, except for East Harney Lane/Clements Road, which is higher than the statewide average. Records at this intersection were further reviewed as detailed below. The collision rate calculations are enclosed.

| Table 1 – Collision Ra | tes for the Study Into | ersections                             |                                         |                                                |
|------------------------|------------------------|----------------------------------------|-----------------------------------------|------------------------------------------------|
| Study Intersection     |                        | Number of<br>Collisions<br>(2019-2024) | Calculated<br>Collision Rate<br>(c/mve) | Statewide Average<br>Collision Rate<br>(c/mve) |
| 1. E Harney Ln/SR-88   | 3                      | 10                                     | 0.52                                    | 0.74                                           |
| 2. E Harney Ln/Jack    | Гone Rd                | 3                                      | 0.31                                    | 0.59                                           |
| 3. E Harney Ln/Site A  | Access                 | 1                                      | 0.29                                    | 0.29                                           |
| 4. E Harney Ln/Clem    | ents Rd                | 5                                      | 1.25                                    | 0.36                                           |

Note: c/mve = collisions per million vehicles entering; **Bold** text = collision rate exceeds statewide average

Collision rates for the study segments and comparisons to the statewide averages for similar facilities are indicated in Table 2, with collision rate calculations enclosed.

| Tal | ble 2 – Collision Rates for the Study Segment | S                                      |                                         |                                                |
|-----|-----------------------------------------------|----------------------------------------|-----------------------------------------|------------------------------------------------|
| Stu | udy Roadway Segments                          | Number of<br>Collisions<br>(2019-2024) | Calculated<br>Collision Rate<br>(c/mvm) | Statewide Average<br>Collision Rate<br>(c/mvm) |
| 1.  | E Harney Ln between SR-99 and SR-88           | 42                                     | 1.19                                    | 1.09                                           |
| 2.  | E Harney Ln between Jack Tone Rd and Site     | 8                                      | 0.78                                    | 1.09                                           |
| 3.  | SR-88 between E Harney Ln and Eight Mile Rd   | 29                                     | 0.62                                    | 1.09                                           |

 $Note: \textit{c/mvm} = \textit{collisions per million vehicles miles}; \textbf{Bold} \ \textit{text} = \textit{collision rate exceeds statewide average}$ 

At the intersection of East Harney Lane/Clements Road there were five reported collisions during the study period, all of which were broadside collisions. Three of the five broadside collisions cited right-of-way violations as the primary collision factor, one to driving under the influence and one to driving on the wrong side of the road. There are no projects identified at this unsignalized intersection in the *San Joaquin County Local Roadway Safety Plan* (LRSP). However, typical low-cost upgrades at unsignalized intersections mentioned in the LRSP that the County could consider implementing include double stop signs, larger stop signs, traffic islands on stop approaches, and striping stop bars.

The reported collisions along the roadway segment of East Harney Lane between SR-99 and SR-88 included 18 broadside, six head-on, six hit-object, three sideswipe, three rear-end, three other/unknown, two vehicle-pedestrian and one overturned vehicle. The three most common primary collision factors included right-of-way violations for 16 collisions, improper turning leading to seven collisions, and speeding with six crashes. The most common location for right-of-way violations was Harney Lane/Beckman Road. Similar to East Harney Lane/Clements Road, this location is not identified as a priority intersection in the LRSP; however, various techniques such as oversized stop signs and other visual enhancements may reduce this collision type.

#### **Pedestrian Safety**

The collision history for the study area was reviewed to determine any trends or patterns that may indicate a safety issue for pedestrians. Collision records available from the California Highway Patrol as published in their Statewide Integrated Traffic Records System (SWITRS) reports were reviewed for the most current five-year period available, which was July 1, 2019, through June 30, 2024, at the time of the analysis. During the five-year study period there were no reported collisions involving pedestrians on East Harney Lane within a mile of the project site.

#### **Bicyclist Safety**

Collision records for the study area were reviewed to determine if there had been any bicyclist-involved crashes. There were no bicyclist-involved collisions reported on East Harney Lane within a mile of the project site during the study period.

## **Project Trip Generation and Distribution**

## **Trip Generation**

The anticipated trip generation for the proposed project was estimated based on existing vehicle counts into and out of the project site, as well as the projected increase in permitted visitors (i.e., landfill customers including private citizens and contractors), full-time employees and haul trucks. The permitted number of visitors would increase from 850 to 1200, an increase of 41 percent. For employees, the current 35 full-time employees would increase to 41, or 17 percent. For haul trucks, the count would increase from 58 movements per day to 109, or an 88-percent increase. Because the site is currently occupied by the existing North County Landfill, trip generation of the existing landfill was considered.

During the 24-hour data collection period, there were 872 visitor vehicle entries and exits from the site, including 76 during the a.m. peak hour and 20 during the p.m. peak hour. As site traffic activity is predominantly associated with visitors, increasing the overall site traffic by 41 percent (the permitted increase in visitors) would net an additional 361 daily trips, including 31 trips during the a.m. peak hour and 8 trips during the p.m. peak hour. For employees, given that the proposed increase of 17 percent is lower than the visitor increase of 41 percent and the existing site traffic counts include employees as well, it would appear to be conservative to consider the 41-percent increase in site activity to include employees.

Haul trucks were considered separately even though some haul truck trips would be captured in the 41-percent site activity increase. There would be 51 added haul trucks per day, for 102 new daily trips (one trip in and one trip out per haul truck). The ratio of a.m. peak hour trips to daily trips is nine percent, which would translate to nine new haul truck trips during the a.m. peak hour with five trips in and four trips out assuming an approximately even split between inbound and outbound. During the p.m. peak hour, there were 20 outbound movements and zero inbound. Given this is only two percent of the daily total volume with no inbound traffic, zero added haul trucks were assumed during the p.m. peak hour.

The proposed project is expected to generate an average of 461 new trips per day (359 visitor and employee trips and 102 haul truck trips), including 40 trips during the a.m. peak hour (31 visitor and employee trips and nine haul truck trips) and eight visitor and employee trips during the p.m. peak hour (no haul truck trips) as indicated in Table 3. These new trips represent the increase in traffic associated with the project compared to existing volumes.

| Table 3 – Trip Generation | n Summary |       |       |          |     |       |          |     |
|---------------------------|-----------|-------|-------|----------|-----|-------|----------|-----|
| Scenario                  | Permitted | Daily | AN    | 1 Peak H | our | PN    | l Peak H | our |
|                           | Visitors  | Trips | Trips | In       | Out | Trips | In       | Out |
| Existing                  | 850       | 872   | 76    | 44       | 32  | 20    | 0        | 20  |
| Proposed                  | 1,200     | 1,333 | 116   | 67       | 49  | 28    | 0        | 28  |
| Visitors/Employees        | -         | 359   | 31    | 18       | 13  | 8     | 0        | 8   |
| Haul Trucks               | -         | 102   | 9     | 5        | 4   | 0     | 0        | 0   |
| Net New Total             | 350       | 461   | 40    | 23       | 17  | 8     | 0        | 8   |

### **Trip Distribution**

In developing the applied trip distribution it was assumed that the general public traffic would follow a similar distribution to the haul trucks since the haul truck service area likely coincides with the same catchment area as public use. The applied trip distribution assumptions and resulting trips are shown in Table 4, which are based on the directionality of the 109 daily haul trucks that would visit the site rounded to the nearest five percent.

| Table 4 – Trip Distribution Assumptions |         |             |          |          |
|-----------------------------------------|---------|-------------|----------|----------|
| Route                                   | Percent | Daily Trips | AM Trips | PM Trips |
| SR-88 North of E Harney Ln              | 5%      | 23          | 2        | 0        |
| SR-88 South of E Harney Ln              | 55%     | 254         | 22       | 6        |
| E Harney Ln West of SR-88               | 30%     | 138         | 12       | 2        |
| Clements Rd North of E Harney Ln        | 5%      | 23          | 2        | 0        |
| Clements Rd South of E Harney Ln        | 5%      | 23          | 2        | 0        |
| TOTAL                                   | 100%    | 461         | 40       | 8        |

# **Operational Analysis**

Level of Service (LOS) is used to rank traffic operation on various types of facilities based on traffic volumes and roadway capacity using a series of letter designations ranging from A to F. Generally, Level of Service A represents free flow conditions and Level of Service F represents forced flow or breakdown conditions. A unit of measure that indicates a level of delay generally accompanies the LOS designation.

#### **Operational Standard**

The San Joaquin County General Plan, 2016, states that the County's standard is LOS C in general, or LOS D for minor arterials or roadways designated in the Congestion Management Plan (CMP), San Joaquin Council of Governments (SJCOG), as well as for Caltrans facilities such as SR-88. East Harney Lane, Jack Tone Road and Clements Road are classified as major collectors per the General Plan Figure TM-1. SR-88 is classified as a major arterial and both SR-88 and Jack Tone Road are designated CMP roadways. Therefore, a standard of LOS D was applied to East Harney Lane/SR-88 and East Harney Lane/Jack Tone Road, while a standard of LOS C was applied to the remaining study intersections. Additionally, LOS D is considered acceptable for the study segment of SR-88 between East Harney Lane and Eight Mile Road, while LOS C is considered acceptable for the two East Harney Lane study segments.

## **Intersection Level of Service Methodologies**

The study intersections were analyzed using methodologies published in the *Highway Capacity Manual* (HCM), 6<sup>th</sup> *Edition*, Transportation Research Board, 2016. This source contains methodologies for various types of intersection control, all of which are related to a measurement of delay in average number of seconds per vehicle.

The Levels of Service for the intersections with side street stop controls, or those which are unsignalized and have one or two approaches stop controlled (East Harney Lane/Site Access and East Harney Lane/ Clements Road), were analyzed using the "Two-Way Stop-Controlled" intersection capacity method from the HCM. This methodology determines a level of service for each minor turning movement by estimating the level of average delay in seconds per vehicle. Results are presented for individual movements together with the weighted overall average delay for the intersection.

The study intersection with stop signs on all approaches (East Harney Lane/Jack Tone Road) was analyzed using the "All-Way Stop-Controlled" intersection methodology from the HCM. This methodology evaluates delay for each approach based on turning movements, opposing and conflicting traffic volumes, and the number of lanes. Average vehicle delay is computed for the intersection as a whole, and is then related to a Level of Service.

The study intersection that is currently controlled by a traffic signal (East Harney Lane/SR-88) was evaluated using the signalized methodology from the HCM. This methodology is based on factors including traffic volumes, green time for each movement, phasing, whether the signals are coordinated or not, truck traffic, and pedestrian activity. Average stopped delay per vehicle in seconds is used as the basis for evaluation in this LOS methodology. For purposes of this study, delays were calculated using signal timing obtained from Caltrans.

The ranges of delay associated with the various levels of service are indicated in Table 5.

| Table | e 5 – Intersection Level of Service C                                                                                                                                           | riteria                                                                                                                                                                                          |                                                                                                                                        |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| LOS   | Two-Way Stop-Controlled                                                                                                                                                         | All-Way Stop-Controlled                                                                                                                                                                          | Signalized                                                                                                                             |
| A     | Delay of 0 to 10 seconds. Gaps in traffic are readily available for drivers exiting the minor street.                                                                           | Delay of 0 to 10 seconds. Upon stopping, drivers are immediately able to proceed.                                                                                                                | Delay of 0 to 10 seconds. Most vehicles arrive during the green phase, so do not stop at all.                                          |
| В     | Delay of 10 to 15 seconds. Gaps in<br>traffic are somewhat less readily<br>available than with LOS A, but no<br>queuing occurs on the minor street.                             | Delay of 10 to 15 seconds. Drivers may wait for one or two vehicles to clear the intersection before proceeding from a stop.                                                                     | Delay of 10 to 20 seconds. More vehicles stop than with LOS A, but many drivers still do not have to stop.                             |
| С     | Delay of 15 to 25 seconds.<br>Acceptable gaps in traffic are less<br>frequent, and drivers may approach<br>while another vehicle is already<br>waiting to exit the side street. | Delay of 15 to 25 seconds. Drivers will enter a queue of one or two vehicles on the same approach, and wait for vehicle to clear from one or more approaches prior to entering the intersection. | Delay of 20 to 35 seconds. The<br>number of vehicles stopping is<br>significant, although many still<br>pass through without stopping. |
| D     | Delay of 25 to 35 seconds. There are fewer acceptable gaps in traffic, and drivers may enter a queue of one or two vehicles on the side street.                                 | Delay of 25 to 35 seconds. Queues of more than two vehicles are encountered on one or more approaches.                                                                                           | Delay of 35 to 55 seconds. The influence of congestion is noticeable, and most vehicles have to stop.                                  |
| E     | Delay of 35 to 50 seconds. Few acceptable gaps in traffic are available, and longer queues may form on the side street.                                                         | Delay of 35 to 50 seconds. Longer queues are encountered on more than one approach to the intersection.                                                                                          | Delay of 55 to 80 seconds. Most, if not all, vehicles must stop and drivers consider the delay excessive.                              |
| F     | Delay of more than 50 seconds.<br>Drivers may wait for long periods<br>before there is an acceptable gap in<br>traffic for exiting the side streets,<br>creating long queues.   | Delay of more than 50 seconds.<br>Drivers enter long queues on all<br>approaches.                                                                                                                | Delay of more than 80 seconds.<br>Vehicles may wait through<br>more than one cycle to clear the<br>intersection.                       |

Reference: Highway Capacity Manual, 6th Edition, Transportation Research Board, 2016

## **Intersection Existing and Existing plus Project Conditions**

The Existing Conditions scenario provides an evaluation of current operation based on existing traffic volumes during the weekday a.m. and p.m. peak periods. This condition does not include project-generated traffic volumes. Under existing volumes, the study intersections operate acceptably at LOS B or better. Upon the addition of project-related traffic to the existing volumes, the study intersections would be expected to continue operating acceptably at the same Levels of Service as without it. A summary of the intersection LOS calculations is contained in Table 6. Copies of the calculations for all evaluated scenarios are enclosed.

| Tal | ble 6 – Existing and Existing plus Proj | ect Peak | Hour In   | tersectio | n Levels | s of Servi            | ce   |         |     |  |  |
|-----|-----------------------------------------|----------|-----------|-----------|----------|-----------------------|------|---------|-----|--|--|
| Stu | ıdy Intersection                        | Ex       | cisting ( | Condition | ıs       | Existing plus Project |      |         |     |  |  |
|     | Approach                                | AM F     | Peak      | PM P      | eak      | AM F                  | Peak | PM Peak |     |  |  |
|     |                                         | Delay    | LOS       | Delay     | LOS      | Delay                 | LOS  | Delay   | LOS |  |  |
| 1.  | E Harney Ln/SR-88                       | 11.6     | В         | 12.2      | В        | 11.9                  | В    | 12.2    | В   |  |  |
| 2.  | E Harney Ln/Jack Tone Rd                | 9.2      | Α         | 9.5       | Α        | 9.4                   | Α    | 9.6     | Α   |  |  |
| 3.  | E Harney Ln/Site Access                 | 2.2      | Α         | 1.6       | Α        | 2.7                   | Α    | 2.1     | Α   |  |  |
|     | Northbound (Site Access) Approach       | 9.3      | Α         | 9.1       | Α        | 9.6                   | Α    | 9.2     | Α   |  |  |
| 4.  | E Harney Ln/Clements Rd                 | 3.3      | Α         | 3.1       | Α        | 3.4                   | Α    | 3.1     | Α   |  |  |
|     | Eastbound (E Harney) Approach           | 10.0     | В         | 9.6       | Α        | 10.0                  | В    | 9.6     | Α   |  |  |
|     | Westbound (E Harney) Approach           | 9.7      | Α         | 10.3      | В        | 9.7                   | Α    | 10.3    | В   |  |  |

Note: Delay is measured in average seconds per vehicle; LOS = Level of Service; Results for minor approaches to two-way stop-controlled intersections are indicated in *italics* 

## **Segment Level of Service Methodology**

The roadway segment Level of Service methodology found in Chapter 15, "Two-Lane Highways," of the *Highway Capacity Manual* is the basis of the automobile LOS analysis. The methodology considers traffic volumes, terrain, roadway cross-section, the proportion of heavy vehicles, and the availability of passing zones. There are two different sets of LOS criteria for two-lane highways based on the posted speed limit, including higher-speed highways with a posted speed limit of 50 miles per hour (mph) or more and lower-speed highways with a posted speed limit of less than 50 mph. The measure of effectiveness by which LOS is determined is follower density, which is a function of density and the percentage of vehicles that are part of a platoon following a slower driver. As both East Harney Lane and SR-88 have a posted speed limit of 55 mph along the study segments, LOS criteria for higher-speed highways were applied.

A summary of the LOS criteria is presented in Table 7.

| Table 7 | – Segment Level of Service Criteria                   |
|---------|-------------------------------------------------------|
| LOS     | Higher-Speed Highways<br>Posted Speed Limit ≥ 50 mi/h |
|         | Follower Density (followers/mi/lane)                  |
| Α       | ≤ 2.0                                                 |
| В       | > 2.0 - 4.0                                           |
| C       | > 4.0 - 8.0                                           |
| D       | > 8.0 - 12.0                                          |
| E       | > 12                                                  |

Reference: Highway Capacity Manual, Transportation Research Board, 7th Edition, 2022

#### **Segment Existing and Existing plus Project Conditions**

The study segments operate acceptably at LOS B or better in both directions under existing volumes. With traffic associated with the project added to these existing volumes, the study segments would be expected to continue

operating at the same Levels of Service in both directions as without project-related traffic. A summary of the roadway segment level of service calculations is presented in Table 8 and copies of the calculations are enclosed.

| Tal | ble 8 – Existing and Existing plus Project Pea | k Hour | Roadwa   | ay Segr | nent Le | vels of S                    | Service |         |     |  |
|-----|------------------------------------------------|--------|----------|---------|---------|------------------------------|---------|---------|-----|--|
| Stu | ıdy Segment                                    | Ex     | isting C | onditio | ons     | <b>Existing plus Project</b> |         |         |     |  |
|     | Direction                                      | AM     | Peak     | PM      | Peak    | AM                           | Peak    | PM Peak |     |  |
|     |                                                | FD     | LOS      | FD      | LOS     | FD                           | LOS     | FD      | LOS |  |
| 1.  | E Harney Ln - SR-88 to SR-99                   |        |          |         |         |                              |         |         |     |  |
|     | Eastbound                                      | 0.5    | Α        | 1.3     | Α       | 0.5                          | Α       | 1.3     | Α   |  |
|     | Westbound                                      | 1.3    | Α        | 8.0     | Α       | 1.3                          | Α       | 0.8     | Α   |  |
| 2.  | E Harney Ln - Jack Tone Rd to Site             |        |          |         |         |                              |         |         |     |  |
|     | Eastbound                                      | 0.2    | Α        | 0.1     | Α       | 0.2                          | Α       | 0.1     | Α   |  |
|     | Westbound                                      | 0.2    | Α        | 0.2     | Α       | 0.2                          | Α       | 0.2     | Α   |  |
| 3.  | SR-88 - E Harney Ln to Eight Mile Rd           |        |          |         |         |                              |         |         |     |  |
|     | Northbound                                     | 3.3    | В        | 2.9     | В       | 3.5                          | В       | 2.9     | В   |  |
|     | Southbound                                     | 1.5    | Α        | 3.7     | В       | 1.6                          | Α       | 3.8     | В   |  |

Note: FD = Follower Density, measured in followers per lane per mile; LOS = Level of Service

#### **Future and Future plus Project Conditions**

Segment volumes for the horizon year of 2046 were obtained from the SJCOG travel demand model and translated to turning movement volumes at each of the study intersections using the "Furness" method. This is an iterative process that employs existing turn movement data, existing link volumes and future link volumes to project likely turning future movement volumes at intersections.

Under the anticipated future volumes, and with no changes to existing geometrics or controls, all of the study intersections are expected to continue operating acceptably during both peak hours. Upon the addition of project-generated traffic to the anticipated future volumes, the study intersections would continue operating acceptably. Operating conditions are summarized in Table 9.

| Tal | Table 9 – Future and Future plus Project Peak Hour Intersection Levels of Service |       |         |          |     |                     |      |         |     |  |  |  |  |  |  |
|-----|-----------------------------------------------------------------------------------|-------|---------|----------|-----|---------------------|------|---------|-----|--|--|--|--|--|--|
| Stu | ıdy Intersection                                                                  | F     | uture C | ondition | s   | Future plus Project |      |         |     |  |  |  |  |  |  |
|     | Approach                                                                          | AM F  | Peak    | PM P     | eak | AM F                | Peak | PM Peak |     |  |  |  |  |  |  |
|     |                                                                                   | Delay | LOS     | Delay    | LOS | Delay               | LOS  | Delay   | LOS |  |  |  |  |  |  |
| 1.  | E Harney Ln/SR-88                                                                 | 13.7  | В       | 13.2     | В   | 14.1                | В    | 13.1    | В   |  |  |  |  |  |  |
| 2.  | E Harney Ln/Jack Tone Rd                                                          | 11.6  | В       | 10.1     | В   | 12.1                | В    | 10.1    | В   |  |  |  |  |  |  |
| 3.  | E Harney Ln/Site Access                                                           | 1.9   | Α       | 1.2      | Α   | 2.4                 | Α    | 1.6     | Α   |  |  |  |  |  |  |
|     | Northbound (Site Access) Approach                                                 | 9.4   | Α       | 9.2      | Α   | 9.6                 | Α    | 9.3     | Α   |  |  |  |  |  |  |
| 4.  | E Harney Ln/Clements Rd                                                           | 2.3   | Α       | 2.8      | Α   | 2.4                 | Α    | 2.8     | Α   |  |  |  |  |  |  |
|     | Eastbound (E Harney) Approach                                                     | 10.8  | В       | 10.1     | В   | 10.8                | В    | 10.1    | В   |  |  |  |  |  |  |
|     | Westbound (E Harney) Approach                                                     | 10.5  | В       | 11.0     | В   | 10.5                | В    | 11.0    | В   |  |  |  |  |  |  |

Note: Delay is measured in average seconds per vehicle; LOS = Level of Service; Results for minor approaches to two-way stop-controlled intersections are indicated in *italics* 

It should be noted that with the addition of future traffic volumes, average delay at the intersections of East Harney Lane/Site Access and East Harney Lane/Clements Road is shown as decreasing during both peak hours. While this is counter-intuitive, this condition occurs when volumes are added to movements that are currently underutilized or have delays that are below the intersection average, resulting in a better balance between approaches and lower overall average delay. In this case, future traffic would be primarily added to the uncontrolled through movement, which has an average delay of zero, resulting in a slight reduction in the overall average delay of the intersection.

Likewise, the addition of project traffic to future traffic volumes is shown as resulting in a minor decrease of 0.1 seconds to the average p.m. peak hour delay at East Harney Lane/SR-88. This is because the project traffic would be added to the westbound approach, which has a lower delay than the overall average for the intersection. The conclusion could incorrectly be drawn that the project actually improves operation based on this data alone; however, it is more appropriate to conclude that the project trips are expected to make use of excess capacity, so drivers will experience little, if any, change in conditions as a result of the project.

#### **Segment Future and Future plus Project Conditions**

The assumed growth rates in intersection volumes was also applied to the study segment existing volumes to estimate future segment volumes. It was determined that the study segments would continue to operate acceptably under these future volumes, without or with the addition of project-generated traffic. A summary of the future roadway segment Level of Service calculations is presented in Table 10.

| Tal | ble 10 – Future and Future plus Project Peak | Hour R | oadway   | Segm   | ent Leve | els of Se           | ervice |         |     |  |
|-----|----------------------------------------------|--------|----------|--------|----------|---------------------|--------|---------|-----|--|
| Stu | ıdy Segment                                  | F      | uture Co | nditio | ns       | Future plus Project |        |         |     |  |
|     | Direction                                    | AM     | Peak     | PM     | Peak     | AM                  | Peak   | PM Peak |     |  |
|     |                                              | FD     | LOS      | FD     | LOS      | FD                  | LOS    | FD      | LOS |  |
| 1.  | E Harney Ln - SR-88 to SR-99                 |        |          |        |          |                     |        |         |     |  |
|     | Eastbound                                    | 1.0    | Α        | 1.6    | Α        | 1.1                 | Α      | 1.6     | Α   |  |
|     | Westbound                                    | 2.2    | В        | 8.0    | Α        | 2.3                 | В      | 8.0     | Α   |  |
| 2.  | E Harney Ln - Jack Tone Rd to Site           |        |          |        |          |                     |        |         |     |  |
|     | Eastbound                                    | 0.2    | Α        | 0.1    | Α        | 0.3                 | Α      | 0.1     | Α   |  |
|     | Westbound                                    | 0.2    | Α        | 0.2    | Α        | 0.3                 | Α      | 0.2     | Α   |  |
| 3.  | SR-88 - E Harney Ln to Eight Mile Rd         |        |          |        |          |                     |        |         |     |  |
|     | Northbound                                   | 5.2    | C        | 3.9    | В        | 5.4                 | C      | 3.9     | В   |  |
|     | Southbound                                   | 2.6    | В        | 4.5    | C        | 2.7                 | В      | 4.6     | C   |  |

Note: FD = Follower Density, measured in followers per lane per mile; LOS = Level of Service

**Finding** – The study intersections and segments would operate acceptably at the same Levels of Service with the addition of project traffic as without it, including under existing or future volumes during both peak hours.

# **Pedestrian, Bicycle and Transit Facilities**

The first transportation bullet point on the CEQA checklist relates to the potential for a project to conflict with a program, plan, ordinance, or policy addressing the circulation system, including transit, roadway, bicycle, and pedestrian facilities.

There are no pedestrian, bicycle, or transit facilities within the study area, and no pedestrian or bicycle movements were recorded during the peak period traffic volume collection. East Harney Lane in the vicinity of the project site is not planned for future bicycle facilities per the *San Joaquin County Bicycle Master Plan Update*, 2010, or the *Regional Bicycle, Pedestrian, and Safe Routes to School Master Plan*, San Joaquin Council of Governments, 2012. The nearest transit route is GrapeLine Route 5 in the City of Lodi, over nine miles away. Further, the project does not include modifications to the site or frontage; rather it would simply increase the permitted traffic at the site.

**Finding** – The project would not conflict with adopted policies regarding pedestrian, bicycle, or transit facilities.

## **Vehicle Miles Traveled**

The potential for the project to conflict or be inconsistent with CEQA Guidelines § 15064.3, subdivision (b) was evaluated based the project's anticipated Vehicle Miles Traveled (VMT).

The CEQA Transportation Analysis Manual, County of San Joaquin, 2020, prescribes thresholds for determining VMT impacts under CEQA. Per Table 1 of the Manual, public services are to be considered using the "Retail and Other Projects" threshold of significance, which states that the project would be within the threshold of significance (result in a less-than-significant impact) if it would not increase VMT. Data provided by the County of San Joaquin Department of Public Works indicates that the current split in operations between the Foothill Landfill and North County Landfill results in an average VMT of 5,690 vehicle-miles per weekday for the haul trucks. As shown in Table 11, consolidation of haul routes to the more centrally located North County Landfill would result in a decrease in VMT of 297 vehicle miles per day, to a daily average of 5,393 vehicle-miles.

| Table 11 – Vehicle Mi | les Traveled            |                                |          |                  |                                |          |  |
|-----------------------|-------------------------|--------------------------------|----------|------------------|--------------------------------|----------|--|
| Activity Origin       | Landfill<br>Destination | Average Round<br>Trip Distance |          | Trips per<br>Day | VMT per Day (Vehicle<br>Miles) |          |  |
|                       |                         | (Miles)                        | Existing | Proposed         | Existing                       | Proposed |  |
| Tracy                 | Foothill                | 96                             | 22       | 0                | 2,112                          | 0        |  |
| Lovelace TS           | Foothill                | 62                             | 25       | 0                | 1,550                          | 0        |  |
| Lovelace TS           | Forward                 | 16                             | 4        | 0                | 64                             | 0        |  |
| Tracy                 | North County            | 86                             | 0        | 22               | 0                              | 1,892    |  |
| Lovelace TS           | North County            | 53                             | 12       | 41               | 636                            | 2,173    |  |
| Lodi TS               | North County            | 23                             | 12       | 12               | 276                            | 276      |  |
| Stockton Scavenger    | North County            | 34                             | 8        | 8                | 272                            | 272      |  |
| Area F/Galt           | North County            | 30                             | 13       | 13               | 390                            | 390      |  |
| Regional              | North County            | 30                             | 13       | 13               | 390                            | 390      |  |
| Total VMT             |                         |                                |          |                  | 5,690                          | 5,393    |  |

Source: County of San Joaquin Department of Public Works Note: VMT = vehicle miles traveled, TS = transfer station

While Table 11 demonstrates that there would be a decrease in haul truck VMT with this project, the *Technical Advisory on Evaluating Transprotation Impacts in CEQA*, Office of Planning and Research, 2018, which lays the statewide groundwork for VMT analysis, specifies that VMT should be considered for automobiles only, where "automobiles" is defined as inclusive of passenger cars and light trucks. The County's *CEQA Transportation Analysis Manual* recites this definition. Haul trucks are classified as "heavy trucks" for which VMT thresholds do not apply; nonetheless the potential reduction in haul truck VMT is assumed to be similar to the potential reduction in automobile VMT given that employees and visitors in automobiles would likely have a similar distribution as the haul trucks, as defined previously under Trip Distribution.

**Finding** – As the North County Landfill is more centrally located to its userbase than the Foothill Landfill, the consolidation of activity among the two landfills to just the North County location would reduce VMT and therefore this project would be presumed to have a less-than-significant impact to VMT.

#### Safety

The potential for the project to impact safety was evaluated in terms of the adequacy of sight distance and need for turn lanes at the project access as well as the adequacy of stacking space at the study intersections to accommodate additional queuing due to adding project-generated trips. This section addresses the third transportation bullet on the CEQA checklist which is whether or not the project would substantially increase hazards due to a geometric design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment).

#### **Site Access**

#### Sight Distance

Sight distances along East Harney Lane were evaluated based on sight distance criteria contained in the *Highway Design Manual* (HDM), Caltrans, 2020. The HDM requires adequate corner sight distance to be available for drivers entering from the driveway of traffic on the cross street, as well as stopping sight distance for a driver on the cross street following another motorist that is slowing to turn into the site. Per speed data collected on East Harney Lane

in the vicinity of the North County Landfill during the November 2024 counts, the 85<sup>th</sup> percentile (or "critical") speed was measured as 66 mph, which was rounded up to 70 mph for the purpose of this analysis. The HDM lists the design vehicle to use for rural intersections as the "passenger car." However, the more conservative "single-unit truck" design vehicle was selected given the prevalence of truck traffic using the site.

With a 70-mph design speed and single-unit-truck design vehicle, corner sight distances for motorists on the driveway approach of 980 feet to the left and 875 feet to the right are required. For drivers turning into the site from the road, a stopping sight distance of 750 is prescribed. During a field visit conducted in January 2025, sight lines were established to be in excess of 1,000 feet in all directions.

**Finding** – There is sufficient sight distance in all directions at the existing site driveway on East Harney Lane, resulting in a less-than-significant impact of the project on safety via sight distance.

#### Turn Lane Warrants

The need for a left-turn lane on East Harney Lane was evaluated based on criteria contained in the *Intersection Channelization Design Guide*, National Cooperative Highway Research Program (NCHRP) Report No. 279, Transportation Research Board, 1985, as well as an update of the methodology developed by the Washington State Department of Transportation and published in the *Method For Prioritizing Intersection Improvements*, 1997. The NCHRP report references a methodology developed by M. D. Harmelink that includes equations that can be applied to expected or actual traffic volumes to determine the need for a left-turn pocket based on safety issues.

Under future volumes with the addition of traffic associated with the project to the a.m. peak hour, a left-turn lane into the project site from East Harney Lane would not be warranted. As all other scenarios have lower traffic volumes, by inspection a left-turn lane would not be warranted under these other scenarios as well. The worksheet for the turn lane warrant assessment is enclosed.

**Finding** – A left-turn lane into the project site would not be warranted under any volume scenario assessed, so the project would have a less-than-significant impact on the safety of site access.

## Queuing

Under each scenario, the projected maximum queues approaching each intersection along with the maximum queues estimated for the two left-turn pockets at East Harney Lane/SR-88 were determined using the SIMTRAFFIC application of Synchro and averaging the maximum projected queue for each of ten runs. Summarized in Table 12 are the predicted queue lengths, for which copies of the SIMTRAFFIC projections are enclosed.

| Tal | ble 12 – Maximum Queues   |                      |     |        |        |        |              |     |     |     |
|-----|---------------------------|----------------------|-----|--------|--------|--------|--------------|-----|-----|-----|
| Stı | udy Intersection          | Available            |     |        | М      | aximur | n Queı       | ies |     |     |
|     | Approach or Lane          | Storage <sup>1</sup> |     | AM Pea | ak Hou | r      | PM Peak Hour |     |     |     |
|     |                           |                      | E   | E+P    | F      | F+P    | E            | E+P | F   | F+P |
| 1.  | E Harney Ln/SR-88         |                      |     |        |        |        |              |     |     |     |
|     | Eastbound                 | 5,220                | 78  | 88     | 147    | 170    | 125          | 129 | 167 | 156 |
|     | Westbound                 | 3,230                | 113 | 129    | 169    | 223    | 92           | 98  | 102 | 110 |
|     | Northbound Left-Turn Lane | 125                  | 30  | 32     | 37     | 45     | 30           | 33  | 41  | 41  |
|     | Northbound                | 1,860                | 89  | 98     | 121    | 152    | 118          | 108 | 174 | 180 |
|     | Southbound Left-Turn Lane | 140                  | 50  | 44     | 48     | 48     | 48           | 49  | 64  | 59  |
|     | Southbound                | 5,430                | 131 | 131    | 237    | 238    | 119          | 116 | 139 | 134 |
| 2.  | E Harney Ln/Jack Tone Rd  |                      |     |        |        |        |              |     |     |     |
|     | Eastbound                 | 1,240                | 60  | 70     | 64     | 76     | 48           | 47  | 54  | 55  |
|     | Westbound                 | 1,550                | 68  | 84     | 81     | 88     | 50           | 53  | 55  | 56  |
|     | Northbound                | 3,780                | 47  | 47     | 96     | 104    | 48           | 48  | 67  | 66  |
|     | Southbound                | 5,380                | 49  | 50     | 73     | 81     | 52           | 50  | 61  | 60  |
| 3.  | E Harney Ln/Site Access   |                      |     |        |        |        |              |     |     |     |
|     | Westbound                 | 660                  | 2   | NA     | NA     | 3      | NA           | NA  | NA  | NA  |
|     | Northbound                | 1,890                | 56  | 68     | 54     | 68     | 35           | 39  | 35  | 40  |
| 4.  | E Harney Ln/Clements Rd   |                      |     |        |        |        |              |     |     |     |
|     | Eastbound                 | 5,230                | 49  | 50     | 50     | 56     | 43           | 43  | 53  | 54  |
|     | Westbound                 | 5,100                | 21  | 18     | 21     | 21     | 11           | 11  | 9   | 9   |
|     | Northbound                | 10,560               | 21  | 18     | 32     | 30     | 14           | 13  | 19  | 18  |
|     | Southbound                | 5,280                | NA  | 3      | 4      | 5      | NA           | NA  | NA  | NA  |

Note: Maximum Queue based on the average of the maximum value from ten SIMTRAFFIC runs; all distances are measured in feet; E = Existing Conditions; E+P = Existing plus Project Conditions; F = Future Conditions; F+P = Future plus Project Conditions; NA = queue length not calculated due to low incidence of queues forming

1 Storage capacity is measured as the distance to the next upstream intersection for intersection approaches, turn pocket length for turn lanes, and on-site throat length for the Site Access approach to East Harney Lane

As shown, without or with project traffic under either existing or future volumes, the queues on each intersection approach would be within 200 feet, well within the distance to the next upstream intersection. Likewise, the maximum queue distances for the two left-turn pockets at East Harney Lane/SR-88 would be shorter than the available storage for each lane under all scenarios assessed.

**Finding** – The addition of traffic associated with the project would result in a less-than-significant impact to safety in the form of queuing, as stacking distance on intersection approaches would not extend to upstream intersections and would be contained within existing turn pockets.

## **Emergency Access**

The final transportation bullet on the CEQA checklist requires an evaluation as to whether the project would result in inadequate emergency access or not.

As shown by the operational analysis, the addition of project traffic to the study area would increase intersection delays by less than one second per scenario and study intersection, with most increases below one-half second. Further, since all roadway users must yield the right-of-way to emergency vehicles when using their sirens and lights, the added project-generated traffic is expected to have a less-than-significant impact on emergency response.

**Significance Finding** – The proposed project would not impede emergency responders, resulting in a less-than-significant impact on emergency response.

#### **Conclusions and Recommendations**

- The proposed project would increase the visitors permitted to the North County Landfill from 850 vehicles
  per day to 1,200 vehicles per day. This would be expected to increase the daily volume by an average of 461
  trips, including 40 net new trips during the a.m. peak hour and eight additional trips during the p.m. peak
  hour.
- The four study intersections and three study segments would operate acceptably at LOS C or better under existing and future volumes without or with the addition of project-generated trips.
- The project would not conflict with adopted policies regarding pedestrian, bicycle, or transit facilities, resulting in a less-than-significant impact.
- The consolidation of activity from the Foothill Landfill to the North County Landfill would reduce VMT, resulting in a less-than-significant impact to VMT per County standards for public facilities.
- There is adequate sight distance at the project driveway connection to East Harney Lane, a left-turn lane into
  the site is not warranted at this time, and queues at the study intersections would be acceptable without or
  with project traffic added to existing and future volumes. Therefore, the project's impact to transportation
  safety would be less than significant.
- The project impact on emergency access would be less than significant given the minimal effect of the project on intersection delay.

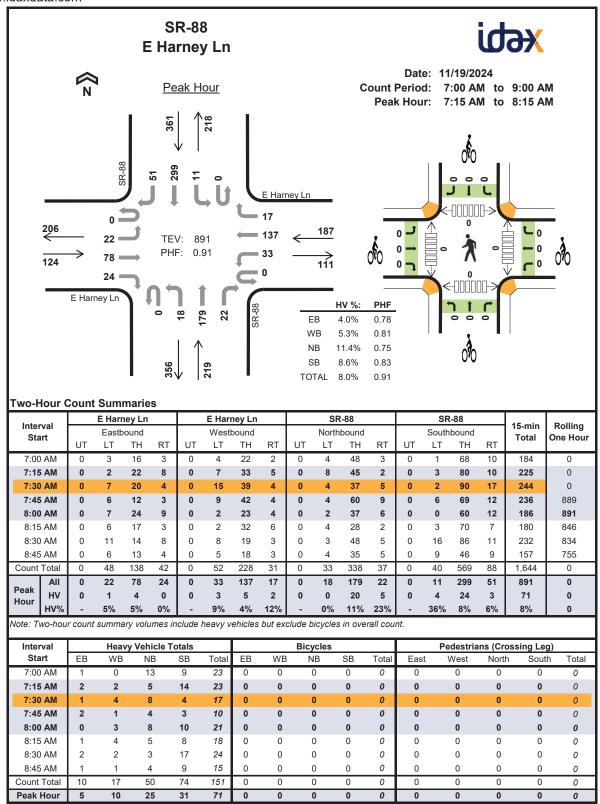
Thank you for giving W-Trans the opportunity to provide these services. Please call if you have any questions.

Sincerely,

Alyssa Labrador, EIT Assistant Engineer

Kevin Carstens, PE (Civil, Traffic)

Traffic Engineer

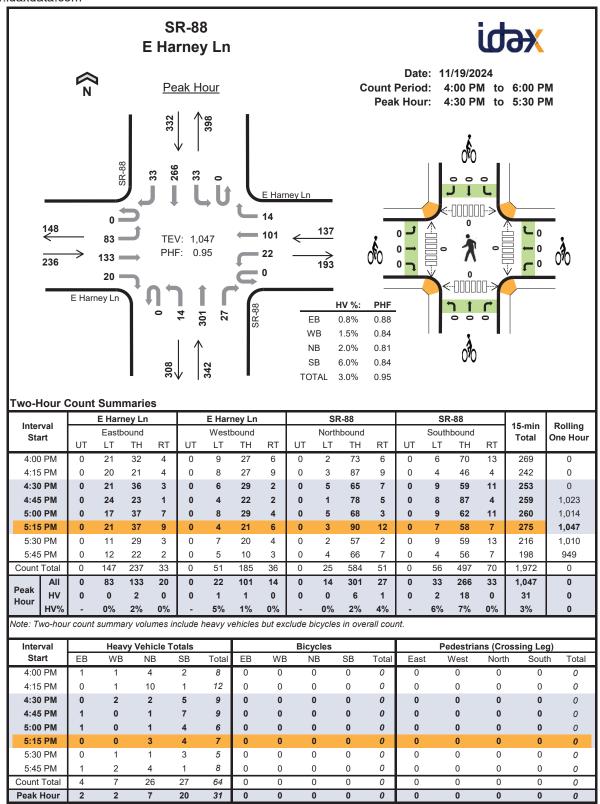

ack Matley, AICP

Principal

ZM/krc-agl/SJX015.L1

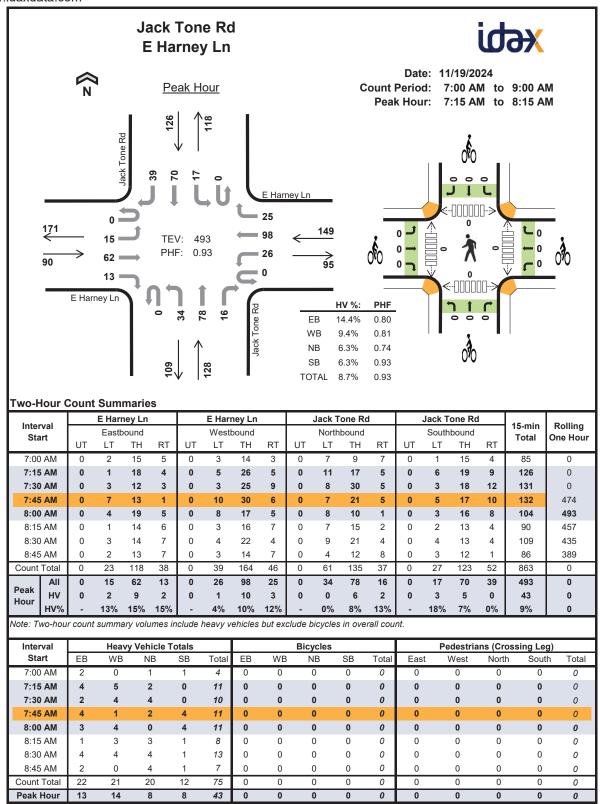
Enclosures: Traffic Count Data, Collision Rate Calculations, Intersection Level of Service Calculations, Segment

Level of Service Calculations, Turn Lane Warrant Worksheet, Queuing Calculations



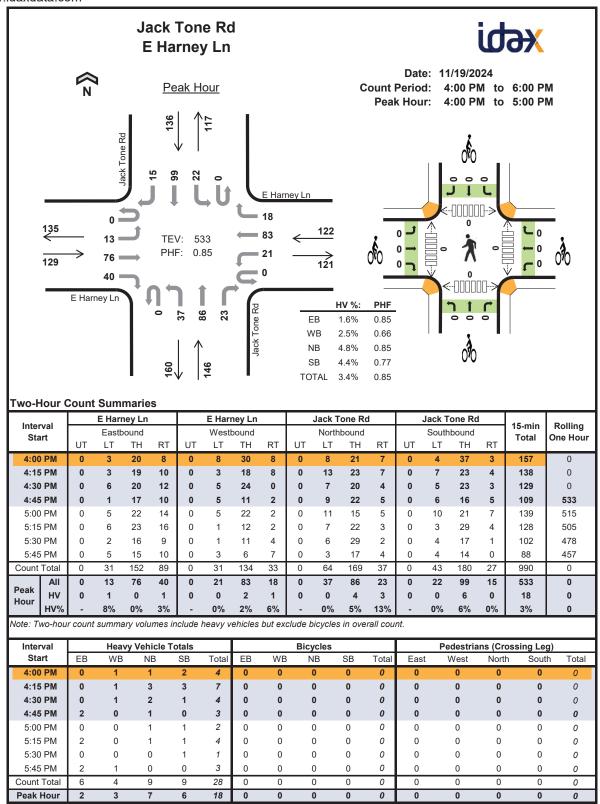

| Interval    | E Harney Ln |    |    |           | E Harney Ln |    |    |            | SR-88 |    |    |            | SR-88 |    |    |                     | Dallina |         |
|-------------|-------------|----|----|-----------|-------------|----|----|------------|-------|----|----|------------|-------|----|----|---------------------|---------|---------|
| Start       | Eastbound   |    |    | Westbound |             |    |    | Northbound |       |    |    | Southbound |       |    |    | Rolling<br>One Hour |         |         |
| Otart       | UT          | LT | TH | RT        | UT          | LT | TH | RT         | UT    | LT | TH | RT         | UT    | LT | TH | RT                  | Total   | Ono mou |
| 7:00 AM     | 0           | 0  | 1  | 0         | 0           | 0  | 0  | 0          | 0     | 0  | 12 | 1          | 0     | 0  | 9  | 0                   | 23      | 0       |
| 7:15 AM     | 0           | 0  | 2  | 0         | 0           | 0  | 2  | 0          | 0     | 0  | 5  | 0          | 0     | 2  | 11 | 1                   | 23      | 0       |
| 7:30 AM     | 0           | 0  | 1  | 0         | 0           | 3  | 1  | 0          | 0     | 0  | 8  | 0          | 0     | 1  | 2  | 1                   | 17      | 0       |
| 7:45 AM     | 0           | 1  | 1  | 0         | 0           | 0  | 0  | 1          | 0     | 0  | 2  | 2          | 0     | 1  | 2  | 0                   | 10      | 73      |
| 8:00 AM     | 0           | 0  | 0  | 0         | 0           | 0  | 2  | 1          | 0     | 0  | 5  | 3          | 0     | 0  | 9  | 1                   | 21      | 71      |
| 8:15 AM     | 0           | 0  | 1  | 0         | 0           | 0  | 2  | 2          | 0     | 0  | 5  | 0          | 0     | 0  | 8  | 0                   | 18      | 66      |
| 8:30 AM     | 0           | 0  | 0  | 2         | 0           | 2  | 0  | 0          | 0     | 0  | 3  | 0          | 0     | 4  | 12 | 1                   | 24      | 73      |
| 8:45 AM     | 0           | 1  | 0  | 0         | 0           | 1  | 0  | 0          | 0     | 0  | 4  | 0          | 0     | 1  | 8  | 0                   | 15      | 78      |
| Count Total | 0           | 2  | 6  | 2         | 0           | 6  | 7  | 4          | 0     | 0  | 44 | 6          | 0     | 9  | 61 | 4                   | 151     | 0       |
| Peak Hour   | 0           | 1  | 4  | 0         | 0           | 3  | 5  | 2          | 0     | 0  | 20 | 5          | 0     | 4  | 24 | 3                   | 71      | 0       |

# Two-Hour Count Summaries - Bikes


| Interval    | E Harney Ln |    |    | E Harney Ln |    |    | SR-88      |    |    |            | SR-88 | 15-min | Dalling |                     |
|-------------|-------------|----|----|-------------|----|----|------------|----|----|------------|-------|--------|---------|---------------------|
| Start       | Eastbound   |    |    | Westbound   |    |    | Northbound |    |    | Southbound |       |        | Total   | Rolling<br>One Hour |
| Otare       | LT          | TH | RT | LT          | TH | RT | LT         | TH | RT | LT         | TH    | RT     | Total   | One near            |
| 7:00 AM     | 0           | 0  | 0  | 0           | 0  | 0  | 0          | 0  | 0  | 0          | 0     | 0      | 0       | 0                   |
| 7:15 AM     | 0           | 0  | 0  | 0           | 0  | 0  | 0          | 0  | 0  | 0          | 0     | 0      | 0       | 0                   |
| 7:30 AM     | 0           | 0  | 0  | 0           | 0  | 0  | 0          | 0  | 0  | 0          | 0     | 0      | 0       | 0                   |
| 7:45 AM     | 0           | 0  | 0  | 0           | 0  | 0  | 0          | 0  | 0  | 0          | 0     | 0      | 0       | 0                   |
| 8:00 AM     | 0           | 0  | 0  | 0           | 0  | 0  | 0          | 0  | 0  | 0          | 0     | 0      | 0       | 0                   |
| 8:15 AM     | 0           | 0  | 0  | 0           | 0  | 0  | 0          | 0  | 0  | 0          | 0     | 0      | 0       | 0                   |
| 8:30 AM     | 0           | 0  | 0  | 0           | 0  | 0  | 0          | 0  | 0  | 0          | 0     | 0      | 0       | 0                   |
| 8:45 AM     | 0           | 0  | 0  | 0           | 0  | 0  | 0          | 0  | 0  | 0          | 0     | 0      | 0       | 0                   |
| Count Total | 0           | 0  | 0  | 0           | 0  | 0  | 0          | 0  | 0  | 0          | 0     | 0      | 0       | 0                   |
| Peak Hour   | 0           | 0  | 0  | 0           | 0  | 0  | 0          | 0  | 0  | 0          | 0     | 0      | 0       | 0                   |

Note: U-Turn volumes for bikes are included in Left-Turn, if any.




| Interval    |    | E Harı | ney Ln |    |    | E Har | ney Ln |    |    | SR    | -88   |    |    | SR    | -88   |    | 15-min | Rolling   |
|-------------|----|--------|--------|----|----|-------|--------|----|----|-------|-------|----|----|-------|-------|----|--------|-----------|
| Start       |    | Easth  | oound  |    |    | West  | bound  |    |    | North | bound |    |    | South | bound |    | Total  | One Hour  |
| Otart       | UT | LT     | TH     | RT | UT | LT    | TH     | RT | UT | LT    | TH    | RT | UT | LT    | TH    | RT | Total  | One riour |
| 4:00 PM     | 0  | 0      | 0      | 1  | 0  | 0     | 1      | 0  | 0  | 0     | 4     | 0  | 0  | 0     | 2     | 0  | 8      | 0         |
| 4:15 PM     | 0  | 0      | 0      | 0  | 0  | 0     | 1      | 0  | 0  | 1     | 9     | 0  | 0  | 0     | 1     | 0  | 12     | 0         |
| 4:30 PM     | 0  | 0      | 0      | 0  | 0  | 1     | 1      | 0  | 0  | 0     | 2     | 0  | 0  | 0     | 5     | 0  | 9      | 0         |
| 4:45 PM     | 0  | 0      | 1      | 0  | 0  | 0     | 0      | 0  | 0  | 0     | 1     | 0  | 0  | 1     | 6     | 0  | 9      | 38        |
| 5:00 PM     | 0  | 0      | 1      | 0  | 0  | 0     | 0      | 0  | 0  | 0     | 1     | 0  | 0  | 0     | 4     | 0  | 6      | 36        |
| 5:15 PM     | 0  | 0      | 0      | 0  | 0  | 0     | 0      | 0  | 0  | 0     | 2     | 1  | 0  | 1     | 3     | 0  | 7      | 31        |
| 5:30 PM     | 0  | 0      | 0      | 0  | 0  | 0     | 1      | 0  | 0  | 0     | 1     | 0  | 0  | 0     | 2     | 1  | 5      | 27        |
| 5:45 PM     | 0  | 0      | 1      | 0  | 0  | 0     | 2      | 0  | 0  | 0     | 3     | 1  | 0  | 0     | 1     | 0  | 8      | 26        |
| Count Total | 0  | 0      | 3      | 1  | 0  | 1     | 6      | 0  | 0  | 1     | 23    | 2  | 0  | 2     | 24    | 1  | 64     | 0         |
| Peak Hour   | 0  | 0      | 2      | 0  | 0  | 1     | 1      | 0  | 0  | 0     | 6     | 1  | 0  | 2     | 18    | 0  | 31     | 0         |

| Interval    | Е  | Harney I | _n | Е  | Harney I | Ln |    | SR-88     |    |    | SR-88    |    | 15-min | Rolling  |
|-------------|----|----------|----|----|----------|----|----|-----------|----|----|----------|----|--------|----------|
| Start       | Е  | Eastboun | d  | V  | Vestboun | ıd | N  | Northbour | nd | S  | outhbour | nd | Total  | One Hour |
| Otare       | LT | TH       | RT | LT | TH       | RT | LT | TH        | RT | LT | TH       | RT | Total  | One riou |
| 4:00 PM     | 0  | 0        | 0  | 0  | 0        | 0  | 0  | 0         | 0  | 0  | 0        | 0  | 0      | 0        |
| 4:15 PM     | 0  | 0        | 0  | 0  | 0        | 0  | 0  | 0         | 0  | 0  | 0        | 0  | 0      | 0        |
| 4:30 PM     | 0  | 0        | 0  | 0  | 0        | 0  | 0  | 0         | 0  | 0  | 0        | 0  | 0      | 0        |
| 4:45 PM     | 0  | 0        | 0  | 0  | 0        | 0  | 0  | 0         | 0  | 0  | 0        | 0  | 0      | 0        |
| 5:00 PM     | 0  | 0        | 0  | 0  | 0        | 0  | 0  | 0         | 0  | 0  | 0        | 0  | 0      | 0        |
| 5:15 PM     | 0  | 0        | 0  | 0  | 0        | 0  | 0  | 0         | 0  | 0  | 0        | 0  | 0      | 0        |
| 5:30 PM     | 0  | 0        | 0  | 0  | 0        | 0  | 0  | 0         | 0  | 0  | 0        | 0  | 0      | 0        |
| 5:45 PM     | 0  | 0        | 0  | 0  | 0        | 0  | 0  | 0         | 0  | 0  | 0        | 0  | 0      | 0        |
| Count Total | 0  | 0        | 0  | 0  | 0        | 0  | 0  | 0         | 0  | 0  | 0        | 0  | 0      | 0        |
| Peak Hour   | 0  | 0        | 0  | 0  | 0        | 0  | 0  | 0         | 0  | 0  | 0        | 0  | 0      | 0        |



| Interval    |    | E Har | ney Ln |    |    | E Har | ney Ln |    |    | Jack T | one Ro | l  |    | Jack T | one Rd | l  | 15-min | Rolling  |
|-------------|----|-------|--------|----|----|-------|--------|----|----|--------|--------|----|----|--------|--------|----|--------|----------|
| Start       |    | Eastl | ound   |    |    | West  | bound  |    |    | North  | bound  |    |    | South  | bound  |    | Total  | One Hour |
| Otart       | UT | LT    | TH     | RT | UT | LT    | TH     | RT | UT | LT     | TH     | RT | UT | LT     | TH     | RT | Total  | One near |
| 7:00 AM     | 0  | 0     | 2      | 0  | 0  | 0     | 0      | 0  | 0  | 0      | 1      | 0  | 0  | 0      | 1      | 0  | 4      | 0        |
| 7:15 AM     | 0  | 0     | 3      | 1  | 0  | 1     | 3      | 1  | 0  | 0      | 1      | 1  | 0  | 0      | 0      | 0  | 11     | 0        |
| 7:30 AM     | 0  | 0     | 1      | 1  | 0  | 0     | 2      | 2  | 0  | 0      | 3      | 1  | 0  | 0      | 0      | 0  | 10     | 0        |
| 7:45 AM     | 0  | 1     | 3      | 0  | 0  | 0     | 1      | 0  | 0  | 0      | 2      | 0  | 0  | 2      | 2      | 0  | 11     | 36       |
| 8:00 AM     | 0  | 1     | 2      | 0  | 0  | 0     | 4      | 0  | 0  | 0      | 0      | 0  | 0  | 1      | 3      | 0  | 11     | 43       |
| 8:15 AM     | 0  | 0     | 1      | 0  | 0  | 1     | 2      | 0  | 0  | 0      | 2      | 1  | 0  | 0      | 1      | 0  | 8      | 40       |
| 8:30 AM     | 0  | 0     | 2      | 2  | 0  | 1     | 3      | 0  | 0  | 0      | 3      | 1  | 0  | 0      | 1      | 0  | 13     | 43       |
| 8:45 AM     | 0  | 0     | 2      | 0  | 0  | 0     | 0      | 0  | 0  | 1      | 0      | 3  | 0  | 0      | 1      | 0  | 7      | 39       |
| Count Total | 0  | 2     | 16     | 4  | 0  | 3     | 15     | 3  | 0  | 1      | 12     | 7  | 0  | 3      | 9      | 0  | 75     | 0        |
| Peak Hour   | 0  | 2     | 9      | 2  | 0  | 1     | 10     | 3  | 0  | 0      | 6      | 2  | 0  | 3      | 5      | 0  | 43     | 0        |

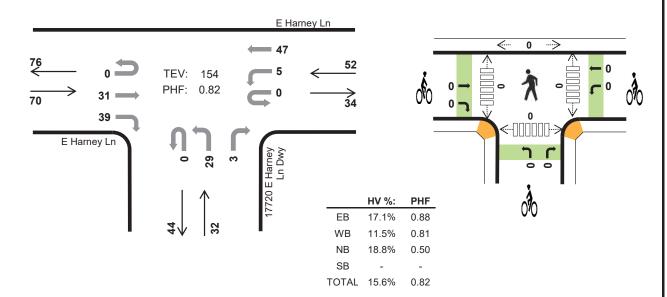
| Interval    | Е  | Harney I | Ln | Е  | Harney   | Ln | Ja | ck Tone   | Rd | Ja | ck Tone  | Rd | 15-min | Rolling     |
|-------------|----|----------|----|----|----------|----|----|-----------|----|----|----------|----|--------|-------------|
| Start       | Е  | Eastboun | d  | ٧  | Vestbour | ıd | N  | lorthbour | nd | S  | outhbour | nd | Total  | One Hour    |
|             | LT | TH       | RT | LT | TH       | RT | LT | TH        | RT | LT | TH       | RT |        | 0.101.104.1 |
| 7:00 AM     | 0  | 0        | 0  | 0  | 0        | 0  | 0  | 0         | 0  | 0  | 0        | 0  | 0      | 0           |
| 7:15 AM     | 0  | 0        | 0  | 0  | 0        | 0  | 0  | 0         | 0  | 0  | 0        | 0  | 0      | 0           |
| 7:30 AM     | 0  | 0        | 0  | 0  | 0        | 0  | 0  | 0         | 0  | 0  | 0        | 0  | 0      | 0           |
| 7:45 AM     | 0  | 0        | 0  | 0  | 0        | 0  | 0  | 0         | 0  | 0  | 0        | 0  | 0      | 0           |
| 8:00 AM     | 0  | 0        | 0  | 0  | 0        | 0  | 0  | 0         | 0  | 0  | 0        | 0  | 0      | 0           |
| 8:15 AM     | 0  | 0        | 0  | 0  | 0        | 0  | 0  | 0         | 0  | 0  | 0        | 0  | 0      | 0           |
| 8:30 AM     | 0  | 0        | 0  | 0  | 0        | 0  | 0  | 0         | 0  | 0  | 0        | 0  | 0      | 0           |
| 8:45 AM     | 0  | 0        | 0  | 0  | 0        | 0  | 0  | 0         | 0  | 0  | 0        | 0  | 0      | 0           |
| Count Total | 0  | 0        | 0  | 0  | 0        | 0  | 0  | 0         | 0  | 0  | 0        | 0  | 0      | 0           |
| Peak Hour   | 0  | 0        | 0  | 0  | 0        | 0  | 0  | 0         | 0  | 0  | 0        | 0  | 0      | 0           |



| Interval    |    | E Harı | ney Ln |    |    | E Har | ney Ln |    |    | Jack T | one Ro | ı  |    | Jack T | one Rd | l  | 15-min | Rolling   |
|-------------|----|--------|--------|----|----|-------|--------|----|----|--------|--------|----|----|--------|--------|----|--------|-----------|
| Start       |    | Easth  | oound  |    |    | West  | bound  |    |    | North  | bound  |    |    | South  | bound  |    | Total  | One Hour  |
|             | UT | LT     | TH     | RT | UT | LT    | TH     | RT | UT | LT     | TH     | RT | UT | LT     | TH     | RT |        | 0.10 1.10 |
| 4:00 PM     | 0  | 0      | 0      | 0  | 0  | 0     | 0      | 1  | 0  | 0      | 0      | 1  | 0  | 0      | 2      | 0  | 4      | 0         |
| 4:15 PM     | 0  | 0      | 0      | 0  | 0  | 0     | 1      | 0  | 0  | 0      | 2      | 1  | 0  | 0      | 3      | 0  | 7      | 0         |
| 4:30 PM     | 0  | 0      | 0      | 0  | 0  | 0     | 1      | 0  | 0  | 0      | 2      | 0  | 0  | 0      | 1      | 0  | 4      | 0         |
| 4:45 PM     | 0  | 1      | 0      | 1  | 0  | 0     | 0      | 0  | 0  | 0      | 0      | 1  | 0  | 0      | 0      | 0  | 3      | 18        |
| 5:00 PM     | 0  | 0      | 0      | 0  | 0  | 0     | 0      | 0  | 0  | 1      | 0      | 0  | 0  | 1      | 0      | 0  | 2      | 16        |
| 5:15 PM     | 0  | 1      | 0      | 1  | 0  | 0     | 0      | 0  | 0  | 0      | 1      | 0  | 0  | 0      | 1      | 0  | 4      | 13        |
| 5:30 PM     | 0  | 0      | 0      | 0  | 0  | 0     | 0      | 0  | 0  | 0      | 0      | 0  | 0  | 0      | 1      | 0  | 1      | 10        |
| 5:45 PM     | 0  | 1      | 1      | 0  | 0  | 0     | 1      | 0  | 0  | 0      | 0      | 0  | 0  | 0      | 0      | 0  | 3      | 10        |
| Count Total | 0  | 3      | 1      | 2  | 0  | 0     | 3      | 1  | 0  | 1      | 5      | 3  | 0  | 1      | 8      | 0  | 28     | 0         |
| Peak Hour   | 0  | 1      | 0      | 1  | 0  | 0     | 2      | 1  | 0  | 0      | 4      | 3  | 0  | 0      | 6      | 0  | 18     | 0         |

| Interval    | Е  | Harney I | Ln | Е  | Harney   | Ln | Ja | ck Tone   | Rd | Ja | ck Tone  | Rd | 15-min | Rolling  |
|-------------|----|----------|----|----|----------|----|----|-----------|----|----|----------|----|--------|----------|
| Start       | Е  | Eastboun | d  | ٧  | Vestbour | ıd | N  | lorthbour | nd | S  | outhbour | nd | Total  | One Hour |
| Otare       | LT | TH       | RT | LT | TH       | RT | LT | TH        | RT | LT | TH       | RT | - otai | One riou |
| 4:00 PM     | 0  | 0        | 0  | 0  | 0        | 0  | 0  | 0         | 0  | 0  | 0        | 0  | 0      | 0        |
| 4:15 PM     | 0  | 0        | 0  | 0  | 0        | 0  | 0  | 0         | 0  | 0  | 0        | 0  | 0      | 0        |
| 4:30 PM     | 0  | 0        | 0  | 0  | 0        | 0  | 0  | 0         | 0  | 0  | 0        | 0  | 0      | 0        |
| 4:45 PM     | 0  | 0        | 0  | 0  | 0        | 0  | 0  | 0         | 0  | 0  | 0        | 0  | 0      | 0        |
| 5:00 PM     | 0  | 0        | 0  | 0  | 0        | 0  | 0  | 0         | 0  | 0  | 0        | 0  | 0      | 0        |
| 5:15 PM     | 0  | 0        | 0  | 0  | 0        | 0  | 0  | 0         | 0  | 0  | 0        | 0  | 0      | 0        |
| 5:30 PM     | 0  | 0        | 0  | 0  | 0        | 0  | 0  | 0         | 0  | 0  | 0        | 0  | 0      | 0        |
| 5:45 PM     | 0  | 0        | 0  | 0  | 0        | 0  | 0  | 0         | 0  | 0  | 0        | 0  | 0      | 0        |
| Count Total | 0  | 0        | 0  | 0  | 0        | 0  | 0  | 0         | 0  | 0  | 0        | 0  | 0      | 0        |
| Peak Hour   | 0  | 0        | 0  | 0  | 0        | 0  | 0  | 0         | 0  | 0  | 0        | 0  | 0      | 0        |

## 17720 E Harney Ln Dwy E Harney Ln






Peak Hour

Date: 11/19/2024

Count Period: 7:00 AM to 9:00 AM Peak Hour: 7:15 AM to 8:15 AM



#### Two-Hour Count Summaries

| Into         | n rol |    | E Har | ney Ln |     |    | E Har | ney Ln |    | 1772 | 0 E Har | ney Lr | າ Dwy |    | n     | /a    |    | 45 min          | Rolling   |
|--------------|-------|----|-------|--------|-----|----|-------|--------|----|------|---------|--------|-------|----|-------|-------|----|-----------------|-----------|
| Inter<br>Sta |       |    | East  | bound  |     |    | West  | bound  |    |      | Northb  | oound  |       |    | South | bound |    | 15-min<br>Total | One Hour  |
| 010          |       | UT | LT    | TH     | RT  | UT | LT    | TH     | RT | UT   | LT      | TH     | RT    | UT | LT    | TH    | RT | Total           | One rioui |
| 7:00         | ) AM  | 0  | 0     | 8      | 9   | 0  | 0     | 10     | 0  | 0    | 1       | 0      | 0     | 0  | 0     | 0     | 0  | 28              | 0         |
| 7:15         | AM    | 0  | 0     | 5      | 14  | 0  | 2     | 10     | 0  | 0    | 13      | 0      | 3     | 0  | 0     | 0     | 0  | 47              | 0         |
| 7:30         | AM    | 0  | 0     | 13     | 7   | 0  | 1     | 15     | 0  | 0    | 8       | 0      | 0     | 0  | 0     | 0     | 0  | 44              | 0         |
| 7:45         | AM    | 0  | 0     | 8      | 6   | 0  | 1     | 12     | 0  | 0    | 4       | 0      | 0     | 0  | 0     | 0     | 0  | 31              | 150       |
| 8:00         | AM    | 0  | 0     | 5      | 12  | 0  | 1     | 10     | 0  | 0    | 4       | 0      | 0     | 0  | 0     | 0     | 0  | 32              | 154       |
| 8:15         | AM.   | 0  | 0     | 11     | 5   | 0  | 0     | 6      | 0  | 0    | 10      | 0      | 1     | 0  | 0     | 0     | 0  | 33              | 140       |
| 8:30         | ) AM  | 0  | 0     | 5      | 12  | 0  | 1     | 9      | 0  | 0    | 8       | 0      | 1     | 0  | 0     | 0     | 0  | 36              | 132       |
| 8:45         | 5 AM  | 0  | 0     | 5      | 13  | 0  | 0     | 9      | 0  | 0    | 4       | 0      | 1     | 0  | 0     | 0     | 0  | 32              | 133       |
| Count        | Total | 0  | 0     | 60     | 78  | 0  | 6     | 81     | 0  | 0    | 52      | 0      | 6     | 0  | 0     | 0     | 0  | 283             | 0         |
| Dook         | All   | 0  | 0     | 31     | 39  | 0  | 5     | 47     | 0  | 0    | 29      | 0      | 3     | 0  | 0     | 0     | 0  | 154             | 0         |
| Peak<br>Hour | HV    | 0  | 0     | 3      | 9   | 0  | 0     | 6      | 0  | 0    | 6       | 0      | 0     | 0  | 0     | 0     | 0  | 24              | 0         |
| Hour         | HV%   | -  | -     | 10%    | 23% | -  | 0%    | 13%    | -  | -    | 21%     | -      | 0%    | -  | -     | -     | -  | 16%             | 0         |

Note: Two-hour count summary volumes include heavy vehicles but exclude bicycles in overall count.

| Interval    |    | Heavy | Vehicle | Totals |       |    |    | Bicycles | 3  |       |      | Pedestria | ıns (Cross | ing Leg) |       |
|-------------|----|-------|---------|--------|-------|----|----|----------|----|-------|------|-----------|------------|----------|-------|
| Start       | EB | WB    | NB      | SB     | Total | EB | WB | NB       | SB | Total | East | West      | North      | South    | Total |
| 7:00 AM     | 1  | 0     | 0       | 0      | 1     | 0  | 0  | 0        | 0  | 0     | 0    | 0         | 0          | 0        | 0     |
| 7:15 AM     | 3  | 1     | 4       | 0      | 8     | 0  | 0  | 0        | 0  | 0     | 0    | 0         | 0          | 0        | 0     |
| 7:30 AM     | 4  | 3     | 1       | 0      | 8     | 0  | 0  | 0        | 0  | 0     | 0    | 0         | 0          | 0        | 0     |
| 7:45 AM     | 2  | 1     | 0       | 0      | 3     | 0  | 0  | 0        | 0  | 0     | 0    | 0         | 0          | 0        | 0     |
| 8:00 AM     | 3  | 1     | 1       | 0      | 5     | 0  | 0  | 0        | 0  | 0     | 0    | 0         | 0          | 0        | 0     |
| 8:15 AM     | 2  | 0     | 3       | 0      | 5     | 0  | 0  | 0        | 0  | 0     | 0    | 0         | 0          | 0        | 0     |
| 8:30 AM     | 2  | 0     | 2       | 0      | 4     | 0  | 0  | 0        | 0  | 0     | 0    | 0         | 0          | 0        | 0     |
| 8:45 AM     | 6  | 0     | 0       | 0      | 6     | 0  | 0  | 0        | 0  | 0     | 0    | 0         | 0          | 0        | 0     |
| Count Total | 23 | 6     | 11      | 0      | 40    | 0  | 0  | 0        | 0  | 0     | 0    | 0         | 0          | 0        | 0     |
| Peak Hr     | 12 | 6     | 6       | 0      | 24    | 0  | 0  | 0        | 0  | 0     | 0    | 0         | 0          | 0        | 0     |

Peak Hour

| lasta musik       |    | E Harr | ney Ln |    |    | E Harr | ney Ln |    | 1772 | 0 E Hai | rney Ln | Dwy |    | n     | /a    |    | 45              | D - 111             |
|-------------------|----|--------|--------|----|----|--------|--------|----|------|---------|---------|-----|----|-------|-------|----|-----------------|---------------------|
| Interval<br>Start |    | Eastb  | ound   |    |    | West   | oound  |    |      | North   | bound   |     |    | South | bound |    | 15-min<br>Total | Rolling<br>One Hour |
| Otart             | UT | LT     | TH     | RT | UT | LT     | TH     | RT | UT   | LT      | TH      | RT  | UT | LT    | TH    | RT | Total           | One riour           |
| 7:00 AM           | 0  | 0      | 0      | 1  | 0  | 0      | 0      | 0  | 0    | 0       | 0       | 0   | 0  | 0     | 0     | 0  | 1               | 0                   |
| 7:15 AM           | 0  | 0      | 0      | 3  | 0  | 0      | 1      | 0  | 0    | 4       | 0       | 0   | 0  | 0     | 0     | 0  | 8               | 0                   |
| 7:30 AM           | 0  | 0      | 2      | 2  | 0  | 0      | 3      | 0  | 0    | 1       | 0       | 0   | 0  | 0     | 0     | 0  | 8               | 0                   |
| 7:45 AM           | 0  | 0      | 1      | 1  | 0  | 0      | 1      | 0  | 0    | 0       | 0       | 0   | 0  | 0     | 0     | 0  | 3               | 20                  |
| 8:00 AM           | 0  | 0      | 0      | 3  | 0  | 0      | 1      | 0  | 0    | 1       | 0       | 0   | 0  | 0     | 0     | 0  | 5               | 24                  |
| 8:15 AM           | 0  | 0      | 0      | 2  | 0  | 0      | 0      | 0  | 0    | 3       | 0       | 0   | 0  | 0     | 0     | 0  | 5               | 21                  |
| 8:30 AM           | 0  | 0      | 0      | 2  | 0  | 0      | 0      | 0  | 0    | 2       | 0       | 0   | 0  | 0     | 0     | 0  | 4               | 17                  |
| 8:45 AM           | 0  | 0      | 0      | 6  | 0  | 0      | 0      | 0  | 0    | 0       | 0       | 0   | 0  | 0     | 0     | 0  | 6               | 20                  |
| Count Total       | 0  | 0      | 3      | 20 | 0  | 0      | 6      | 0  | 0    | 11      | 0       | 0   | 0  | 0     | 0     | 0  | 40              | 0                   |

6

0

0

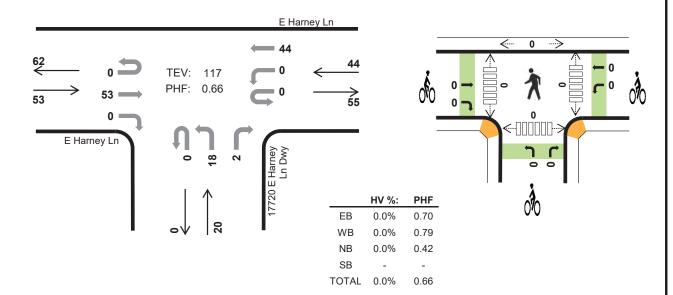
0

#### Two-Hour Count Summaries - Bikes

0

| Interval          | Е  | Harney I | Ln | Е  | Harney   | Ln | 17720 E | E Harney  | Ln Dwy |    | n/a      |    | 45              | Dalling             |
|-------------------|----|----------|----|----|----------|----|---------|-----------|--------|----|----------|----|-----------------|---------------------|
| Interval<br>Start | Е  | Eastboun | d  | V  | Vestbour | nd | ١       | Northbour | nd     | S  | outhbour | nd | 15-min<br>Total | Rolling<br>One Hour |
| Otare             | LT | TH       | RT | LT | TH       | RT | LT      | TH        | RT     | LT | TH       | RT | l otal          | Ono nou             |
| 7:00 AM           | 0  | 0        | 0  | 0  | 0        | 0  | 0       | 0         | 0      | 0  | 0        | 0  | 0               | 0                   |
| 7:15 AM           | 0  | 0        | 0  | 0  | 0        | 0  | 0       | 0         | 0      | 0  | 0        | 0  | 0               | 0                   |
| 7:30 AM           | 0  | 0        | 0  | 0  | 0        | 0  | 0       | 0         | 0      | 0  | 0        | 0  | 0               | 0                   |
| 7:45 AM           | 0  | 0        | 0  | 0  | 0        | 0  | 0       | 0         | 0      | 0  | 0        | 0  | 0               | 0                   |
| 8:00 AM           | 0  | 0        | 0  | 0  | 0        | 0  | 0       | 0         | 0      | 0  | 0        | 0  | 0               | 0                   |
| 8:15 AM           | 0  | 0        | 0  | 0  | 0        | 0  | 0       | 0         | 0      | 0  | 0        | 0  | 0               | 0                   |
| 8:30 AM           | 0  | 0        | 0  | 0  | 0        | 0  | 0       | 0         | 0      | 0  | 0        | 0  | 0               | 0                   |
| 8:45 AM           | 0  | 0        | 0  | 0  | 0        | 0  | 0       | 0         | 0      | 0  | 0        | 0  | 0               | 0                   |
| Count Total       | 0  | 0        | 0  | 0  | 0        | 0  | 0       | 0         | 0      | 0  | 0        | 0  | 0               | 0                   |
| Peak Hour         | 0  | 0        | 0  | 0  | 0        | 0  | 0       | 0         | 0      | 0  | 0        | 0  | 0               | 0                   |

## 17720 E Harney Ln Dwy E Harney Ln






Peak Hour

Date: 11/19/2024

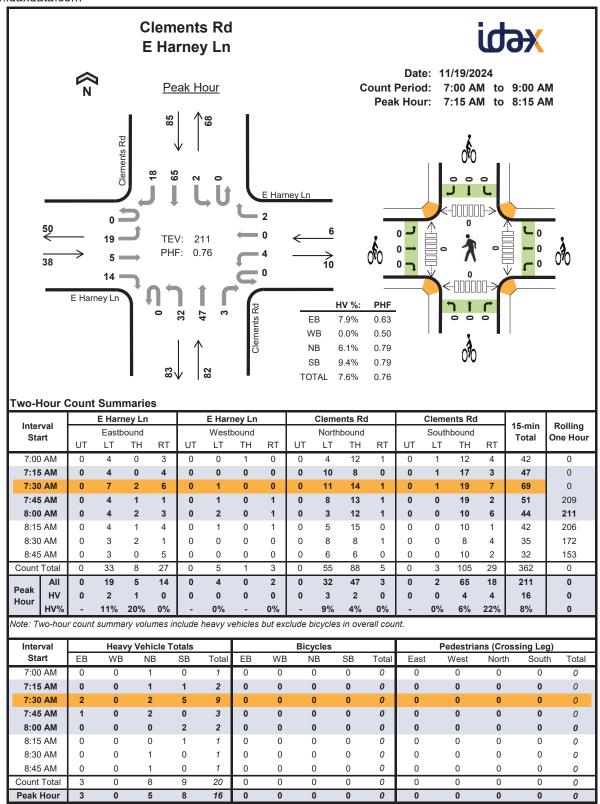
Count Period: 4:00 PM to 6:00 PM Peak Hour: 4:15 PM to 5:15 PM



#### Two-Hour Count Summaries

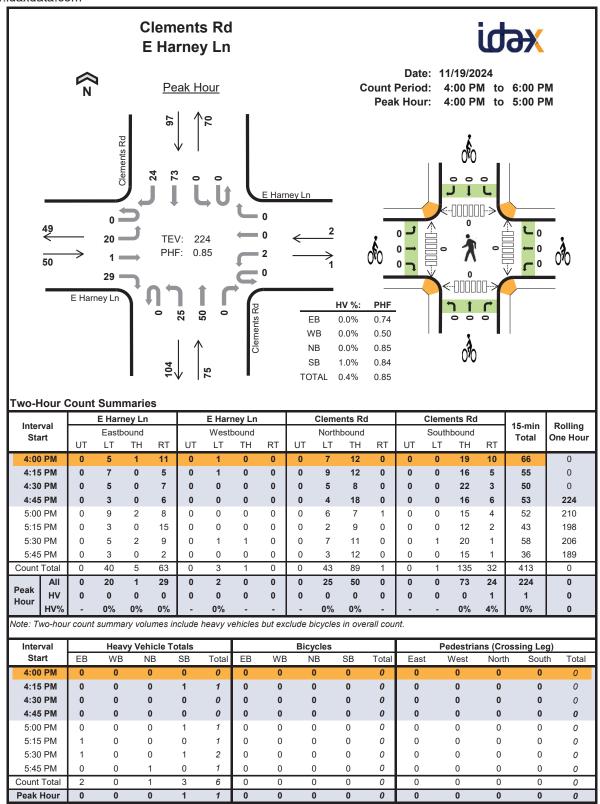
| Into         | n a l |    | E Har | ney Ln |    |    | E Har | ney Ln |    | 1772 | 0 E Haı | rney Lr | n Dwy |    | n     | /a    |    | 45 min          | Rolling  |
|--------------|-------|----|-------|--------|----|----|-------|--------|----|------|---------|---------|-------|----|-------|-------|----|-----------------|----------|
| Inter<br>Sta |       |    | Eastl | oound  |    |    | West  | bound  |    |      | North   | bound   |       |    | South | bound |    | 15-min<br>Total | One Hour |
| 318          |       | UT | LT    | TH     | RT | UT | LT    | TH     | RT | UT   | LT      | TH      | RT    | UT | LT    | TH    | RT | Total           | One Hour |
| 4:00         | PM    | 0  | 0     | 19     | 0  | 0  | 0     | 18     | 0  | 0    | 5       | 0       | 0     | 0  | 0     | 0     | 0  | 42              | 0        |
| 4:15         | PM    | 0  | 0     | 12     | 0  | 0  | 0     | 14     | 0  | 0    | 0       | 0       | 0     | 0  | 0     | 0     | 0  | 26              | 0        |
| 4:30         | PM    | 0  | 0     | 13     | 0  | 0  | 0     | 8      | 0  | 0    | 7       | 0       | 0     | 0  | 0     | 0     | 0  | 28              | 0        |
| 4:45         | PM    | 0  | 0     | 9      | 0  | 0  | 0     | 9      | 0  | 0    | 1       | 0       | 0     | 0  | 0     | 0     | 0  | 19              | 115      |
| 5:00         | PM    | 0  | 0     | 19     | 0  | 0  | 0     | 13     | 0  | 0    | 10      | 0       | 2     | 0  | 0     | 0     | 0  | 44              | 117      |
| 5:15         | PM    | 0  | 0     | 16     | 0  | 0  | 0     | 4      | 0  | 0    | 0       | 0       | 0     | 0  | 0     | 0     | 0  | 20              | 111      |
| 5:30         | PM    | 0  | 0     | 15     | 0  | 0  | 0     | 7      | 0  | 0    | 0       | 0       | 0     | 0  | 0     | 0     | 0  | 22              | 105      |
| 5:45         | PM    | 0  | 0     | 6      | 0  | 0  | 0     | 5      | 0  | 0    | 0       | 0       | 0     | 0  | 0     | 0     | 0  | 11              | 97       |
| Count        | Total | 0  | 0     | 109    | 0  | 0  | 0     | 78     | 0  | 0    | 23      | 0       | 2     | 0  | 0     | 0     | 0  | 212             | 0        |
| Dook         | All   | 0  | 0     | 53     | 0  | 0  | 0     | 44     | 0  | 0    | 18      | 0       | 2     | 0  | 0     | 0     | 0  | 117             | 0        |
| Peak<br>Hour | HV    | 0  | 0     | 0      | 0  | 0  | 0     | 0      | 0  | 0    | 0       | 0       | 0     | 0  | 0     | 0     | 0  | 0               | 0        |
| Hour         | HV%   | -  | -     | 0%     | -  | -  | -     | 0%     | -  | -    | 0%      | -       | 0%    | -  | -     | -     | -  | 0%              | 0        |

Note: Two-hour count summary volumes include heavy vehicles but exclude bicycles in overall count.


| Interval    |    | Heavy | Vehicle | Totals |       |    |    | Bicycles | ;  |       |      | Pedestria | ns (Cross | ing Leg) |       |
|-------------|----|-------|---------|--------|-------|----|----|----------|----|-------|------|-----------|-----------|----------|-------|
| Start       | EB | WB    | NB      | SB     | Total | EB | WB | NB       | SB | Total | East | West      | North     | South    | Total |
| 4:00 PM     | 0  | 0     | 0       | 0      | 0     | 0  | 0  | 0        | 0  | 0     | 0    | 0         | 0         | 0        | 0     |
| 4:15 PM     | 0  | 0     | 0       | 0      | 0     | 0  | 0  | 0        | 0  | 0     | 0    | 0         | 0         | 0        | 0     |
| 4:30 PM     | 0  | 0     | 0       | 0      | 0     | 0  | 0  | 0        | 0  | 0     | 0    | 0         | 0         | 0        | 0     |
| 4:45 PM     | 0  | 0     | 0       | 0      | 0     | 0  | 0  | 0        | 0  | 0     | 0    | 0         | 0         | 0        | 0     |
| 5:00 PM     | 0  | 0     | 0       | 0      | 0     | 0  | 0  | 0        | 0  | 0     | 0    | 0         | 0         | 0        | 0     |
| 5:15 PM     | 0  | 0     | 0       | 0      | 0     | 0  | 0  | 0        | 0  | 0     | 0    | 0         | 0         | 0        | 0     |
| 5:30 PM     | 0  | 0     | 0       | 0      | 0     | 0  | 0  | 0        | 0  | 0     | 0    | 0         | 0         | 0        | 0     |
| 5:45 PM     | 1  | 1     | 0       | 0      | 2     | 0  | 0  | 0        | 0  | 0     | 0    | 0         | 0         | 0        | 0     |
| Count Total | 1  | 1     | 0       | 0      | 2     | 0  | 0  | 0        | 0  | 0     | 0    | 0         | 0         | 0        | 0     |
| Peak Hr     | 0  | 0     | 0       | 0      | 0     | 0  | 0  | 0        | 0  | 0     | 0    | 0         | 0         | 0        | 0     |

Peak Hour

| lusta musal       |    | E Harı | ney Ln |    |    | E Harı | ney Ln |    | 1772 | 0 E Haı | ney Ln | Dwy |    | n     | /a    |    | 45              | Dallina             |
|-------------------|----|--------|--------|----|----|--------|--------|----|------|---------|--------|-----|----|-------|-------|----|-----------------|---------------------|
| Interval<br>Start |    | Eastb  | ound   |    |    | Westl  | bound  |    |      | North   | bound  |     |    | South | bound |    | 15-min<br>Total | Rolling<br>One Hour |
| Otart             | UT | LT     | TH     | RT | UT | LT     | TH     | RT | UT   | LT      | TH     | RT  | UT | LT    | TH    | RT | Total           | One riour           |
| 4:00 PM           | 0  | 0      | 0      | 0  | 0  | 0      | 0      | 0  | 0    | 0       | 0      | 0   | 0  | 0     | 0     | 0  | 0               | 0                   |
| 4:15 PM           | 0  | 0      | 0      | 0  | 0  | 0      | 0      | 0  | 0    | 0       | 0      | 0   | 0  | 0     | 0     | 0  | 0               | 0                   |
| 4:30 PM           | 0  | 0      | 0      | 0  | 0  | 0      | 0      | 0  | 0    | 0       | 0      | 0   | 0  | 0     | 0     | 0  | 0               | 0                   |
| 4:45 PM           | 0  | 0      | 0      | 0  | 0  | 0      | 0      | 0  | 0    | 0       | 0      | 0   | 0  | 0     | 0     | 0  | 0               | 0                   |
| 5:00 PM           | 0  | 0      | 0      | 0  | 0  | 0      | 0      | 0  | 0    | 0       | 0      | 0   | 0  | 0     | 0     | 0  | 0               | 0                   |
| 5:15 PM           | 0  | 0      | 0      | 0  | 0  | 0      | 0      | 0  | 0    | 0       | 0      | 0   | 0  | 0     | 0     | 0  | 0               | 0                   |
| 5:30 PM           | 0  | 0      | 0      | 0  | 0  | 0      | 0      | 0  | 0    | 0       | 0      | 0   | 0  | 0     | 0     | 0  | 0               | 0                   |
| 5:45 PM           | 0  | 0      | 1      | 0  | 0  | 0      | 1      | 0  | 0    | 0       | 0      | 0   | 0  | 0     | 0     | 0  | 2               | 2                   |
| Count Total       | Λ  | Λ      | 1      | Λ  | Λ  | Λ      | 1      | Λ  | Λ    | Λ       | Λ      | Λ   | Λ  | Λ     | Λ     | Λ  | 2               | Ω                   |


#### Two-Hour Count Summaries - Bikes

| lusta m rad       | Е  | Harney I | _n | Е  | Harney I | Ln | 17720 E | E Harney  | Ln Dwy |    | n/a      |    | 45              | Dalling             |
|-------------------|----|----------|----|----|----------|----|---------|-----------|--------|----|----------|----|-----------------|---------------------|
| Interval<br>Start | E  | Eastboun | d  | ٧  | Vestboun | ıd | ١       | Northbour | nd     | S  | outhbour | nd | 15-min<br>Total | Rolling<br>One Hour |
| Start             | LT | TH       | RT | LT | TH       | RT | LT      | TH        | RT     | LT | TH       | RT | . ota.          | ono noui            |
| 4:00 PM           | 0  | 0        | 0  | 0  | 0        | 0  | 0       | 0         | 0      | 0  | 0        | 0  | 0               | 0                   |
| 4:15 PM           | 0  | 0        |    |    |          | 0  | 0       | 0         | 0      | 0  | 0        |    |                 |                     |
| 4:30 PM           | 0  | 0        | 0  | 0  | 0        | 0  | 0       | 0         | 0      | 0  | 0        | 0  | 0               | 0                   |
| 4:45 PM           | 0  | 0        | 0  | 0  | 0        | 0  | 0       | 0         | 0      | 0  | 0        | 0  | 0               | 0                   |
| 5:00 PM           | 0  | 0        | 0  | 0  | 0        | 0  | 0       | 0         | 0      | 0  | 0        | 0  | 0               | 0                   |
| 5:15 PM           | 0  | 0        | 0  | 0  | 0        | 0  | 0       | 0         | 0      | 0  | 0        | 0  | 0               | 0                   |
| 5:30 PM           | 0  | 0        | 0  | 0  | 0        | 0  | 0       | 0         | 0      | 0  | 0        | 0  | 0               | 0                   |
| 5:45 PM           | 0  | 0        | 0  | 0  | 0        | 0  | 0       | 0         | 0      | 0  | 0        | 0  | 0               | 0                   |
| Count Total       | 0  | 0        | 0  | 0  | 0        | 0  | 0       | 0         | 0      | 0  | 0        | 0  | 0               | 0                   |
| Peak Hour         | 0  | 0        | 0  | 0  | 0        | 0  | 0       | 0         | 0      | 0  | 0        | 0  | 0               | 0                   |



| Interval    |    | E Har | ney Ln |    |    | E Har | ney Ln |    |    | Cleme | nts Rd |    |    | Cleme | nts Rd |    | 45              | Dalling             |
|-------------|----|-------|--------|----|----|-------|--------|----|----|-------|--------|----|----|-------|--------|----|-----------------|---------------------|
| Start       |    | Easth | ound   |    |    | West  | bound  |    |    | North | bound  |    |    | South | bound  |    | 15-min<br>Total | Rolling<br>One Hour |
| Otart       | UT | LT    | TH     | RT | Total           | One near            |
| 7:00 AM     | 0  | 0     | 0      | 0  | 0  | 0     | 0      | 0  | 0  | 0     | 1      | 0  | 0  | 0     | 0      | 0  | 1               | 0                   |
| 7:15 AM     | 0  | 0     | 0      | 0  | 0  | 0     | 0      | 0  | 0  | 1     | 0      | 0  | 0  | 0     | 1      | 0  | 2               | 0                   |
| 7:30 AM     | 0  | 1     | 1      | 0  | 0  | 0     | 0      | 0  | 0  | 0     | 2      | 0  | 0  | 0     | 2      | 3  | 9               | 0                   |
| 7:45 AM     | 0  | 1     | 0      | 0  | 0  | 0     | 0      | 0  | 0  | 2     | 0      | 0  | 0  | 0     | 0      | 0  | 3               | 15                  |
| 8:00 AM     | 0  | 0     | 0      | 0  | 0  | 0     | 0      | 0  | 0  | 0     | 0      | 0  | 0  | 0     | 1      | 1  | 2               | 16                  |
| 8:15 AM     | 0  | 0     | 0      | 0  | 0  | 0     | 0      | 0  | 0  | 0     | 0      | 0  | 0  | 0     | 1      | 0  | 1               | 15                  |
| 8:30 AM     | 0  | 0     | 0      | 0  | 0  | 0     | 0      | 0  | 0  | 0     | 1      | 0  | 0  | 0     | 0      | 0  | 1               | 7                   |
| 8:45 AM     | 0  | 0     | 0      | 0  | 0  | 0     | 0      | 0  | 0  | 0     | 1      | 0  | 0  | 0     | 0      | 0  | 1               | 5                   |
| Count Total | 0  | 2     | 1      | 0  | 0  | 0     | 0      | 0  | 0  | 3     | 5      | 0  | 0  | 0     | 5      | 4  | 20              | 0                   |
| Peak Hour   | 0  | 2     | 1      | 0  | 0  | 0     | 0      | 0  | 0  | 3     | 2      | 0  | 0  | 0     | 4      | 4  | 16              | 0                   |

| Intomial          | Е  | Harney I | Ln | Е  | Harney   | Ln | CI | ements    | Rd | CI | ements   | Rd | 45              | Dalling             |
|-------------------|----|----------|----|----|----------|----|----|-----------|----|----|----------|----|-----------------|---------------------|
| Interval<br>Start | E  | Eastboun | d  | ٧  | Vestbour | nd | N  | lorthbour | nd | S  | outhbour | nd | 15-min<br>Total | Rolling<br>One Hour |
| Otart             | LT | TH       | RT | LT | TH       | RT | LT | TH        | RT | LT | TH       | RT | Total           | One Hour            |
| 7:00 AM           | 0  | 0        | 0  | 0  | 0        | 0  | 0  | 0         | 0  | 0  | 0        | 0  | 0               | 0                   |
| 7:15 AM           | 0  | 0        | 0  | 0  | 0        | 0  | 0  | 0         | 0  | 0  | 0        | 0  | 0               | 0                   |
| 7:30 AM           | 0  | 0        | 0  | 0  | 0        | 0  | 0  | 0         | 0  | 0  | 0        | 0  | 0               | 0                   |
| 7:45 AM           | 0  | 0        | 0  | 0  | 0        | 0  | 0  | 0         | 0  | 0  | 0        | 0  | 0               | 0                   |
| 8:00 AM           | 0  | 0        | 0  | 0  | 0        | 0  | 0  | 0         | 0  | 0  | 0        | 0  | 0               | 0                   |
| 8:15 AM           | 0  | 0        | 0  | 0  | 0        | 0  | 0  | 0         | 0  | 0  | 0        | 0  | 0               | 0                   |
| 8:30 AM           | 0  | 0        | 0  | 0  | 0        | 0  | 0  | 0         | 0  | 0  | 0        | 0  | 0               | 0                   |
| 8:45 AM           | 0  | 0        | 0  | 0  | 0        | 0  | 0  | 0         | 0  | 0  | 0        | 0  | 0               | 0                   |
| Count Total       | 0  | 0        | 0  | 0  | 0        | 0  | 0  | 0         | 0  | 0  | 0        | 0  | 0               | 0                   |
| Peak Hour         | 0  | 0        | 0  | 0  | 0        | 0  | 0  | 0         | 0  | 0  | 0        | 0  | 0               | 0                   |



| Interval    |    | E Harr                                          | ney Ln |   |   | E Har | ney Ln        |   |   | Cleme | nts Rd |   |   | Cleme | nts Rd |   | 15-min | Rolling  |
|-------------|----|-------------------------------------------------|--------|---|---|-------|---------------|---|---|-------|--------|---|---|-------|--------|---|--------|----------|
| Start       |    | Eastb                                           | ound   |   |   | West  | bound         |   |   | North | bound  |   |   | South | bound  |   | Total  | One Hour |
|             | UT | UT LT TH RT UT LT TH RT UT LT TH RT UT LT TH RT |        |   |   |       | 0.10 1.10 4.1 |   |   |       |        |   |   |       |        |   |        |          |
| 4:00 PM     | 0  | 0                                               | 0      | 0 | 0 | 0     | 0             | 0 | 0 | 0     | 0      | 0 | 0 | 0     | 0      | 0 | 0      | 0        |
| 4:15 PM     | 0  | 0                                               | 0      | 0 | 0 | 0     | 0             | 0 | 0 | 0     | 0      | 0 | 0 | 0     | 0      | 1 | 1      | 0        |
| 4:30 PM     | 0  | 0                                               | 0      | 0 | 0 | 0     | 0             | 0 | 0 | 0     | 0      | 0 | 0 | 0     | 0      | 0 | 0      | 0        |
| 4:45 PM     | 0  | 0                                               | 0      | 0 | 0 | 0     | 0             | 0 | 0 | 0     | 0      | 0 | 0 | 0     | 0      | 0 | 0      | 1        |
| 5:00 PM     | 0  | 0                                               | 0      | 0 | 0 | 0     | 0             | 0 | 0 | 0     | 0      | 0 | 0 | 0     | 1      | 0 | 1      | 2        |
| 5:15 PM     | 0  | 0                                               | 0      | 1 | 0 | 0     | 0             | 0 | 0 | 0     | 0      | 0 | 0 | 0     | 0      | 0 | 1      | 2        |
| 5:30 PM     | 0  | 0                                               | 0      | 1 | 0 | 0     | 0             | 0 | 0 | 0     | 0      | 0 | 0 | 1     | 0      | 0 | 2      | 4        |
| 5:45 PM     | 0  | 0                                               | 0      | 0 | 0 | 0     | 0             | 0 | 0 | 1     | 0      | 0 | 0 | 0     | 0      | 0 | 1      | 5        |
| Count Total | 0  | 0                                               | 0      | 2 | 0 | 0     | 0             | 0 | 0 | 1     | 0      | 0 | 0 | 1     | 1      | 1 | 6      | 0        |
| Peak Hour   | 0  | 0                                               | 0      | 0 | 0 | 0     | 0             | 0 | 0 | 0     | 0      | 0 | 0 | 0     | 0      | 1 | 1      | 0        |

| Interval    | Е  | Harney I | Ln | Е  | Harney   | Ln | CI | ements    | Rd | CI | ements   | Rd | 45              | Delline             |
|-------------|----|----------|----|----|----------|----|----|-----------|----|----|----------|----|-----------------|---------------------|
| Start       | E  | Eastboun | d  | ٧  | Vestbour | nd | N  | lorthbour | nd | S  | outhbour | nd | 15-min<br>Total | Rolling<br>One Hour |
| Otart       | LT | TH       | RT | LT | TH       | RT | LT | TH        | RT | LT | TH       | RT | Total           | One Hour            |
| 4:00 PM     | 0  | 0        | 0  | 0  | 0        | 0  | 0  | 0         | 0  | 0  | 0        | 0  | 0               | 0                   |
| 4:15 PM     | 0  | 0        | 0  | 0  | 0        | 0  | 0  | 0         | 0  | 0  | 0        | 0  | 0               | 0                   |
| 4:30 PM     | 0  | 0        | 0  | 0  | 0        | 0  | 0  | 0         | 0  | 0  | 0        | 0  | 0               | 0                   |
| 4:45 PM     | 0  | 0        | 0  | 0  | 0        | 0  | 0  | 0         | 0  | 0  | 0        | 0  | 0               | 0                   |
| 5:00 PM     | 0  | 0        | 0  | 0  | 0        | 0  | 0  | 0         | 0  | 0  | 0        | 0  | 0               | 0                   |
| 5:15 PM     | 0  | 0        | 0  | 0  | 0        | 0  | 0  | 0         | 0  | 0  | 0        | 0  | 0               | 0                   |
| 5:30 PM     | 0  | 0        | 0  | 0  | 0        | 0  | 0  | 0         | 0  | 0  | 0        | 0  | 0               | 0                   |
| 5:45 PM     | 0  | 0        | 0  | 0  | 0        | 0  | 0  | 0         | 0  | 0  | 0        | 0  | 0               | 0                   |
| Count Total | 0  | 0        | 0  | 0  | 0        | 0  | 0  | 0         | 0  | 0  | 0        | 0  | 0               | 0                   |
| Peak Hour   | 0  | 0        | 0  | 0  | 0        | 0  | 0  | 0         | 0  | 0  | 0        | 0  | 0               | 0                   |





Count Direction: Eastbound / Westbound

Date Range: 11/19/2024 to 11/19/2024

Site Code: 01

| Direction  |      |                  |       |      |      | FHWA Ve | FHWA Vehicle Classification | sification |      |      |      |      |      | Total        |
|------------|------|------------------|-------|------|------|---------|-----------------------------|------------|------|------|------|------|------|--------------|
|            | 1    | 2                | 3     | 4    | 5    | 9       |                             | 8          | 6    | 10   | 11   | 12   | 13   |              |
| Pari 04400 | 3    | 1,396            | 009   | 12   | 139  | 6       | 0                           | 0          | 17   | 0    | 3    | 0    | 1    | 2 400        |
| Eastbouild | 0.1% | 0.1% 64.0% 27.5% | 27.5% | %9.0 | 6.4% | 0.4%    | %0.0                        | %0.0       | 0.8% | %0.0 | 0.1% | %0.0 | 0.0% | 2, 100       |
| Mocthody   | _    | 1,316            | 602   | 11   | 141  | 7       | 0                           | 2          | 22   | 0    | 2    | 0    | 0    | 2 404        |
| Mestadulia | %0.0 | 0.0% 62.5% 28.6% | 28.6% | 0.5% | %2.9 | 0.3%    | %0.0                        | 0.1%       | 1.0% | %0.0 | 0.1% | %0.0 | 0.0% | 2, 104       |
| T.0421     | 4    | 2,712            | 1,202 | 23   | 280  | 16      | 0                           | 2          | 39   | 0    | 2    | 0    | _    | V 20 V       |
| lotal      | 0.1% | 63.3% 28.1%      | 28.1% | 0.5% | 6.5% | 0.4%    | %0.0                        | %0.0       | %6.0 | %0.0 | 0.1% | %0.0 | 0.0% | <b>1</b> ,70 |

| FHWA Vehicle Classification                              |                                                    |
|----------------------------------------------------------|----------------------------------------------------|
| Class 1 - Motorcycles                                    | Class 8 - Four or Fewer Axle Single-Trailer Trucks |
| Class 2 - Passenger Cars                                 | Class 9 - Five-Axle Single-Trailer Trucks          |
| Class 3 - Other Two-Axle, Four-Tire Single Unit Vehicles | Class 10 - Six or More Axle Single-Trailer Trucks  |
| Class 4 - Buses                                          | Class 11 - Five or fewer Axle Multi-Trailer Trucks |
| Class 5 - Two-Axle, Six-Tire, Single-Unit Trucks         | Class 12 - Six-Axle Multi-Trailer Trucks           |
| Class 6 - Three-Axle Single-Unit Trucks                  | Class 13 - Seven or More Axle Multi-Trailer Trucks |
| Class 7 - Four or More Axle Single-Unit Trucks           |                                                    |



E Harney Ln, Between SR-99 & SR-88 11/19/2024 to 11/19/2024 01 Location: Date Range: Site Code:

Tuesday, November 19, 2024 Eastbound

| F        |          |       |       |      |      | FHWA Ve | FHWA Vehicle Classification | sification |      |      |      |      |      | Total  |
|----------|----------|-------|-------|------|------|---------|-----------------------------|------------|------|------|------|------|------|--------|
| IIIIe    | 1        | 2     | 3     | 4    | 2    | 9       | 7                           | 8          | 6    | 10   | 11   | 12   | 13   | Volume |
| 2:00 AM  | 0        | 0     | 2     | 0    | 0    | 0       | 0                           | 0          | 0    | 0    | 1    | 0    | 0    | က      |
| 1:00 AM  | 0        | _     | _     | 0    | 0    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 2      |
| 2:00 AM  | 0        | 4     | 2     | 0    | 0    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 9      |
| 3:00 AM  | 0        | က     | 0     | 0    | 0    | 0       | 0                           | 0          | 0    | 0    | _    | 0    | 0    | 4      |
| 4:00 AM  | 0        | 7     | 2     | 0    | _    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 10     |
| 5:00 AM  | 0        | 25    | 13    | 0    | 2    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 40     |
| 6:00 AM  | 0        | 20    | 24    | 0    | 80   | 2       | 0                           | 0          | က    | 0    | ~    | 0    | 0    | 88     |
| 7:00 AM  | 0        | 99    | 25    | ~    | 7    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 86     |
| 8:00 AM  | _        | 89    | 46    | ~    | 4    | _       | 0                           | 0          | -    | 0    | 0    | 0    | 0    | 122    |
| 9:00 AM  | 0        | 49    | 59    | 2    | 0    | 2       | 0                           | 0          | 2    | 0    | 0    | 0    | 0    | 93     |
| 10:00 AM | τ-       | 22    | 37    | 0    | 10   | _       | 0                           | 0          | 2    | 0    | 0    | 0    | _    | 107    |
| 11:00 AM | 0        | 83    | 48    | ~    | 7    | _       | 0                           | 0          | 2    | 0    | 0    | 0    | 0    | 146    |
| 12:00 PM | 0        | 98    | 42    | 0    | 7    | 0       | 0                           | 0          | 2    | 0    | 0    | 0    | 0    | 141    |
| 1:00 PM  | 0        | 109   | 48    | 4    | 80   | 0       | 0                           | 0          | 7    | 0    | 0    | 0    | 0    | 171    |
| 2:00 PM  | 0        | 115   | 52    | 2    | 14   | 0       | 0                           | 0          | 2    | 0    | 0    | 0    | 0    | 185    |
| 3:00 PM  | <b>~</b> | 140   | 19    | 0    | 0    | _       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 212    |
| 4:00 PM  | 0        | 148   | 22    | 0    | 13   | 0       | 0                           | 0          | _    | 0    | 0    | 0    | 0    | 219    |
| 5:00 PM  | 0        | 140   | 52    | 0    | 15   | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 207    |
| 6:00 PM  | 0        | 81    | 17    | 0    | 4    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 102    |
| 7:00 PM  | 0        | 62    | 16    | 0    | 7    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 82     |
| 8:00 PM  | 0        | 44    | 18    | _    | 4    | _       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 89     |
| 9:00 PM  | 0        | 28    | 9     | 0    | 2    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 36     |
| 10:00 PM | 0        | 23    | ~     | 0    | 0    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 24     |
| 1:00 PM  | 0        | 10    | _     | 0    | 0    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 11     |
| Total    | 3        | 1,396 | 009   | 12   | 139  | 6       | 0                           | 0          | 17   | 0    | 3    | 0    | 1    | 2 180  |
|          | 0.1%     | 64.0% | 27.5% | %9.0 | 6.4% | 0.4%    | %0.0                        | %0.0       | %8.0 | %0.0 | 0.1% | %0.0 | %0.0 | 2,100  |





DATA SOLUTIONS

01 Site Code: Tuesday, November 19, 2024 Westbound

| Ë        |      |       |       |      |      | FHWA Ve | FHWA Vehicle Classification | sification |      |      |      |      |      | Total  |
|----------|------|-------|-------|------|------|---------|-----------------------------|------------|------|------|------|------|------|--------|
|          | 1    | 2     | 3     | 4    | 2    | 9       |                             | 8          | 6    | 10   | 11   | 12   | 13   | Volume |
| 12:00 AM | 0    | 2     | 0     | 0    | _    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | ဗ      |
| 1:00 AM  | 0    | 0     | 0     | 0    | 0    | 0       | 0                           | 0          | 0    | 0    | _    | 0    | 0    | -      |
| 2:00 AM  | 0    | 2     | 2     | 0    | 0    | 0       | 0                           | 0          | -    | 0    | 0    | 0    | 0    | 22     |
| 3:00 AM  | 0    | 7     | 0     | 0    | 0    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 7      |
| 4:00 AM  | 0    | 15    | 2     | 0    | 2    | 0       | 0                           | 0          | 0    | 0    | _    | 0    | 0    | 23     |
| 5:00 AM  | 0    | 22    | 16    | _    | 9    | 0       | 0                           | _          | ~    | 0    | 0    | 0    | 0    | 47     |
| 6:00 AM  | 0    | 99    | 31    | 0    | 9    | 0       | 0                           | 0          | ~    | 0    | 0    | 0    | 0    | 94     |
| 7:00 AM  | 0    | 135   | 09    | 0    | 18   | 2       | 0                           | 0          | 2    | 0    | 0    | 0    | 0    | 217    |
| 8:00 AM  | 0    | 103   | 46    | _    | 10   | _       | 0                           | 0          | 4    | 0    | 0    | 0    | 0    | 165    |
| 9:00 AM  | 0    | 81    | 51    | _    | 2    | 0       | 0                           | 0          | က    | 0    | 0    | 0    | 0    | 141    |
| 10:00 AM | 0    | 73    | 46    | 0    | 13   | _       | 0                           | 0          | 3    | 0    | 0    | 0    | 0    | 136    |
| 11:00 AM | 0    | 82    | 43    | _    | 12   | 0       | 0                           | 0          | ~    | 0    | 0    | 0    | 0    | 139    |
| 12:00 PM | 0    | 83    | 40    | _    | 12   | 2       | 0                           | 0          | ~    | 0    | 0    | 0    | 0    | 139    |
| 1:00 PM  | 0    | 85    | 43    | 0    | 7    | ~       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 140    |
| 2:00 PM  | 0    | 130   | 99    | _    | 13   | 0       | 0                           | _          | _    | 0    | 0    | 0    | 0    | 212    |
| 3:00 PM  | 0    | 123   | 47    | က    | 7    | 0       | 0                           | 0          | _    | 0    | 0    | 0    | 0    | 185    |
| 4:00 PM  | 0    | 109   | 44    | _    | 9    | 0       | 0                           | 0          | _    | 0    | 0    | 0    | 0    | 161    |
| 5:00 PM  | _    | 92    | 36    | 0    | 4    | 0       | 0                           | 0          | 2    | 0    | 0    | 0    | 0    | 135    |
| 6:00 PM  | 0    | 44    | 6     | 0    | 4    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 22     |
| 7:00 PM  | 0    | 30    | 9     | 0    | 4    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 40     |
| 8:00 PM  | 0    | 20    | 9     | _    | _    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 28     |
| 9:00 PM  | 0    | 12    | 2     | 0    | _    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 15     |
| 10:00 PM | 0    | 80    | 2     | 0    | _    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 11     |
| 11:00 PM | 0    | 2     | _     | 0    | 0    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | က      |
| Total    | 1    | 1,316 | 602   | 11   | 141  | 7       | 0                           | 2          | 22   | 0    | 2    | 0    | 0    | 2 404  |
| Otal     | %0.0 | 62.5% | 28.6% | 0.5% | %2.9 | 0.3%    | %0.0                        | 0.1%       | 1.0% | %0.0 | 0.1% | %0.0 | 0.0% | 2,104  |



E Harney Ln, Between SR-99 & SR-88 11/19/2024 to 11/19/2024 01 Location: Date Range:

DATA SOLUTIONS

Site Code:

Total Study Average Eastbound

| i          |      |       |       |              |         | FHWA Ve | FHWA Vehicle Classification | sification |      |      |      |      |      | Total  |
|------------|------|-------|-------|--------------|---------|---------|-----------------------------|------------|------|------|------|------|------|--------|
| allie<br>- | 1    | 2     | 3     | 4            | 2       | 9       |                             | 8          | 6    | 10   | 11   | 12   | 13   | Volume |
| 12:00 AM   | 0    | 0     | 2     | 0            | 0       | 0       | 0                           | 0          | 0    | 0    | ~    | 0    | 0    | 3      |
| 1:00 AM    | 0    | _     | ~     | 0            | 0       | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 2      |
| 2:00 AM    | 0    | 4     | 2     | 0            | 0       | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 9      |
| 3:00 AM    | 0    | က     | 0     | 0            | 0       | 0       | 0                           | 0          | 0    | 0    | _    | 0    | 0    | 4      |
| 4:00 AM    | 0    | 7     | 2     | 0            | _       | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 10     |
| 5:00 AM    | 0    | 25    | 13    | 0            | 2       | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 40     |
| 6:00 AM    | 0    | 20    | 24    | 0            | ∞       | 2       | 0                           | 0          | က    | 0    | ~    | 0    | 0    | 88     |
| 7:00 AM    | 0    | 65    | 25    | _            | 7       | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 86     |
| 8:00 AM    | ~    | 89    | 46    | _            | 4       | ~       | 0                           | 0          | _    | 0    | 0    | 0    | 0    | 122    |
| 9:00 AM    | 0    | 49    | 59    | 2            | 0       | 2       | 0                           | 0          | 2    | 0    | 0    | 0    | 0    | 93     |
| 10:00 AM   | _    | 22    | 37    | 0            | 10      | ~       | 0                           | 0          | 2    | 0    | 0    | 0    | _    | 107    |
| 11:00 AM   | 0    | 83    | 48    | _            | 7       | ~       | 0                           | 0          | 2    | 0    | 0    | 0    | 0    | 146    |
| 12:00 PM   | 0    | 98    | 42    | 0            | 7       | 0       | 0                           | 0          | 7    | 0    | 0    | 0    | 0    | 141    |
| 1:00 PM    | 0    | 109   | 48    | 4            | ∞       | 0       | 0                           | 0          | 2    | 0    | 0    | 0    | 0    | 171    |
| 2:00 PM    | 0    | 115   | 52    | 2            | 4       | 0       | 0                           | 0          | 2    | 0    | 0    | 0    | 0    | 185    |
| 3:00 PM    | ~    | 140   | 61    | 0            | <u></u> | ~       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 212    |
| 4:00 PM    | 0    | 148   | 22    | 0            | 13      | 0       | 0                           | 0          | _    | 0    | 0    | 0    | 0    | 219    |
| 5:00 PM    | 0    | 140   | 52    | 0            | 15      | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 207    |
| 6:00 PM    | 0    | 81    | 17    | 0            | 4       | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 102    |
| 7:00 PM    | 0    | 62    | 16    | 0            | 7       | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 85     |
| 8:00 PM    | 0    | 44    | 18    | _            | 4       | _       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 89     |
| 9:00 PM    | 0    | 28    | 9     | 0            | 7       | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 36     |
| 10:00 PM   | 0    | 23    | _     | 0            | 0       | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 24     |
| 11:00 PM   | 0    | 10    | _     | 0            | 0       | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 11     |
| Total      | 3    | 1,396 | 009   | 12           | 139     | 6       | 0                           | 0          | 17   | 0    | 3    | 0    | 1    | 2 180  |
| -0.0       | 0.1% | 64.0% | 27.5% | <b>%9</b> .0 | 6.4%    | 0.4%    | %0.0                        | %0.0       | %8.0 | %0.0 | 0.1% | %0.0 | 0.0% | 2,100  |

Note: Average only condsidered on days with 24-hours of data.



E Harney Ln, Between SR-99 & SR-88 11/19/2024 to 11/19/2024 01 Location: Date Range:

DATA SOLUTIONS

Site Code:

Total Study Average Westbound

| i        |      |       |       |              |      | FHWA Ve | FHWA Vehicle Classification | sification |      |      |      |      |      | Total  |
|----------|------|-------|-------|--------------|------|---------|-----------------------------|------------|------|------|------|------|------|--------|
| LIMe     | -    | 2     | ဗ     | 4            | 2    | 9       | 7                           | 80         | 6    | 10   | 11   | 12   | 13   | Volume |
| 12:00 AM | 0    | 2     | 0     | 0            | _    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | ဗ      |
| 1:00 AM  | 0    | 0     | 0     | 0            | 0    | 0       | 0                           | 0          | 0    | 0    | ~    | 0    | 0    | _      |
| 2:00 AM  | 0    | 2     | 2     | 0            | 0    | 0       | 0                           | 0          | ~    | 0    | 0    | 0    | 0    | 2      |
| 3:00 AM  | 0    | 7     | 0     | 0            | 0    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 7      |
| 4:00 AM  | 0    | 15    | 2     | 0            | 2    | 0       | 0                           | 0          | 0    | 0    | ~    | 0    | 0    | 23     |
| 5:00 AM  | 0    | 22    | 16    | _            | 9    | 0       | 0                           | _          | ~    | 0    | 0    | 0    | 0    | 47     |
| 6:00 AM  | 0    | 26    | 31    | 0            | 9    | 0       | 0                           | 0          | ~    | 0    | 0    | 0    | 0    | 94     |
| 7:00 AM  | 0    | 135   | 09    | 0            | 18   | 2       | 0                           | 0          | 2    | 0    | 0    | 0    | 0    | 217    |
| 8:00 AM  | 0    | 103   | 46    | _            | 10   | _       | 0                           | 0          | 4    | 0    | 0    | 0    | 0    | 165    |
| 9:00 AM  | 0    | 81    | 51    | _            | 2    | 0       | 0                           | 0          | က    | 0    | 0    | 0    | 0    | 141    |
| 10:00 AM | 0    | 73    | 46    | 0            | 13   | _       | 0                           | 0          | 3    | 0    | 0    | 0    | 0    | 136    |
| 11:00 AM | 0    | 82    | 43    | _            | 12   | 0       | 0                           | 0          | _    | 0    | 0    | 0    | 0    | 139    |
| 12:00 PM | 0    | 83    | 40    | <del>-</del> | 12   | 2       | 0                           | 0          | _    | 0    | 0    | 0    | 0    | 139    |
| 1:00 PM  | 0    | 85    | 43    | 0            | 7    | _       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 140    |
| 2:00 PM  | 0    | 130   | 99    | _            | 13   | 0       | 0                           | _          | _    | 0    | 0    | 0    | 0    | 212    |
| 3:00 PM  | 0    | 123   | 47    | က            | 7    | 0       | 0                           | 0          | ~    | 0    | 0    | 0    | 0    | 185    |
| 4:00 PM  | 0    | 109   | 44    | _            | 9    | 0       | 0                           | 0          | _    | 0    | 0    | 0    | 0    | 161    |
| 5:00 PM  | _    | 92    | 36    | 0            | 4    | 0       | 0                           | 0          | 2    | 0    | 0    | 0    | 0    | 135    |
| 6:00 PM  | 0    | 44    | 6     | 0            | 4    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 22     |
| 7:00 PM  | 0    | 30    | 9     | 0            | 4    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 40     |
| 8:00 PM  | 0    | 20    | 9     | _            | ~    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 28     |
| 9:00 PM  | 0    | 12    | 2     | 0            | ~    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 15     |
| 10:00 PM | 0    | 80    | 2     | 0            | _    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 1      |
| 11:00 PM | 0    | 2     | _     | 0            | 0    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 3      |
| Total    | 1    | 1,316 | 602   | 11           | 141  | 7       | 0                           | 2          | 22   | 0    | 2    | 0    | 0    | 2 404  |
|          | 0.0% | 62.5% | 28.6% | 0.5%         | 6.7% | 0.3%    | %0.0                        | 0.1%       | 1.0% | 0.0% | 0.1% | %0.0 | 0.0% | 2, 101 |

Note: Average only condsidered on days with 24-hours of data.

# Vehicle Speed Report Summary



Location: E Harney Ln, Between SR-99 & SR-88

Direction: Eastbound / Westbound

Date Range: 11/19/2024 to 11/19/2024

Site Code: 01

| Direction  |        |         |         |         |         |         |         | Spee    | d Range | (mph)   |         |         |         |         |         |         |      | Total<br>Volume |
|------------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|------|-----------------|
|            | 0 - 10 | 10 - 15 | 15 - 20 | 20 - 25 | 25 - 30 | 30 - 35 | 35 - 40 | 40 - 45 | 45 - 50 | 50 - 55 | 55 - 60 | 60 - 65 | 65 - 70 | 70 - 75 | 75 - 80 | 80 - 85 | 85 + | Volume          |
| Eastbound  | 0      | 3       | 1       | 1       | 2       | 9       | 39      | 116     | 372     | 604     | 622     | 306     | 76      | 14      | 13      | 2       | 0    | 2,180           |
| Lastbouriu | 0.0%   | 0.1%    | 0.0%    | 0.0%    | 0.1%    | 0.4%    | 1.8%    | 5.3%    | 17.1%   | 27.7%   | 28.5%   | 14.0%   | 3.5%    | 0.6%    | 0.6%    | 0.1%    | 0.0% | 2,100           |
| Westbound  | 0      | 0       | 1       | 1       | 4       | 19      | 45      | 93      | 188     | 442     | 618     | 428     | 181     | 51      | 25      | 7       | 1    | 2,104           |
| westbound  | 0.0%   | 0.0%    | 0.0%    | 0.0%    | 0.2%    | 0.9%    | 2.1%    | 4.4%    | 8.9%    | 21.0%   | 29.4%   | 20.3%   | 8.6%    | 2.4%    | 1.2%    | 0.3%    | 0.0% | 2,104           |
| Total      | 0      | 3       | 2       | 2       | 6       | 28      | 84      | 209     | 560     | 1,046   | 1,240   | 734     | 257     | 65      | 38      | 9       | 1    | 4,284           |
| iotai      | 0.0%   | 0.1%    | 0.0%    | 0.0%    | 0.1%    | 0.7%    | 2.0%    | 4.9%    | 13.1%   | 24.4%   | 28.9%   | 17.1%   | 6.0%    | 1.5%    | 0.9%    | 0.2%    | 0.0% | 4,204           |

| Total Study Percentile Speed | d Summ | ary | Total Study Spee     | d Statistics |     |
|------------------------------|--------|-----|----------------------|--------------|-----|
| Eastbound                    |        |     | Eastbou              | nd           |     |
| 50th Percentile (Median)     | 54.6   | mph | Mean (Average) Speed | 54.3         | mph |
| 85th Percentile              | 61.1   | mph | 10 mph Pace          | 50.2 - 60.2  | mph |
| 95th Percentile              | 64.8   | mph | Percent in Pace      | 56.2         | %   |
| Westbound                    |        |     | Westbou              | nd           |     |
| 50th Percentile (Median)     | 57.2   | mph | Mean (Average) Speed | 56.7         | mph |
| 85th Percentile              | 64.2   | mph | 10 mph Pace          | 51.7 - 61.7  | mph |
| 95th Percentile              | 68.9   | mph | Percent in Pace      | 52.9         | %   |

Date Range: 11/19/2024 to 11/19/2024

Site Code: 01



## Tuesday, November 19, 2024

#### Eastbound

| Time     |        |         |         |         |         |         |         | Spee    | d Range | (mph)   |         |         |         |         |         |         |      | Total  |
|----------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|------|--------|
| Time     | 0 - 10 | 10 - 15 | 15 - 20 | 20 - 25 | 25 - 30 | 30 - 35 | 35 - 40 | 40 - 45 | 45 - 50 | 50 - 55 | 55 - 60 | 60 - 65 | 65 - 70 | 70 - 75 | 75 - 80 | 80 - 85 | 85 + | Volume |
| 12:00 AM | 0      | 0       | 0       | 0       | 0       | 1       | 0       | 0       | 0       | 0       | 2       | 0       | 0       | 0       | 0       | 0       | 0    | 3      |
| 1:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 1       | 0       | 1       | 0       | 0       | 0       | 0       | 0    | 2      |
| 2:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 1       | 1       | 0       | 1       | 1       | 1       | 1       | 0       | 0    | 6      |
| 3:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 2       | 2       | 0       | 0       | 0       | 0       | 0    | 4      |
| 4:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 2       | 1       | 2       | 3       | 0       | 0       | 2       | 0       | 0    | 10     |
| 5:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 1       | 1       | 5       | 9       | 8       | 9       | 4       | 1       | 1       | 1       | 0    | 40     |
| 6:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 3       | 2       | 8       | 20      | 28      | 17      | 7       | 2       | 1       | 0       | 0    | 88     |
| 7:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 9       | 15      | 22      | 25      | 25      | 2       | 0       | 0       | 0       | 0    | 98     |
| 8:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 4       | 4       | 23      | 31      | 38      | 19      | 3       | 0       | 0       | 0       | 0    | 122    |
| 9:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 5       | 18      | 23      | 30      | 8       | 8       | 1       | 0       | 0       | 0    | 93     |
| 10:00 AM | 0      | 0       | 0       | 1       | 0       | 1       | 1       | 6       | 19      | 36      | 26      | 14      | 3       | 0       | 0       | 0       | 0    | 107    |
| 11:00 AM | 0      | 0       | 0       | 0       | 0       | 1       | 1       | 6       | 32      | 45      | 40      | 17      | 2       | 1       | 1       | 0       | 0    | 146    |
| 12:00 PM | 0      | 0       | 0       | 0       | 1       | 1       | 4       | 11      | 30      | 32      | 36      | 22      | 3       | 0       | 1       | 0       | 0    | 141    |
| 1:00 PM  | 0      | 0       | 1       | 0       | 0       | 1       | 8       | 14      | 23      | 45      | 53      | 16      | 9       | 1       | 0       | 0       | 0    | 171    |
| 2:00 PM  | 0      | 0       | 0       | 0       | 0       | 1       | 2       | 10      | 38      | 49      | 59      | 21      | 3       | 1       | 1       | 0       | 0    | 185    |
| 3:00 PM  | 0      | 0       | 0       | 0       | 0       | 0       | 1       | 11      | 34      | 58      | 70      | 29      | 6       | 1       | 1       | 1       | 0    | 212    |
| 4:00 PM  | 0      | 0       | 0       | 0       | 0       | 1       | 1       | 7       | 18      | 70      | 77      | 36      | 9       | 0       | 0       | 0       | 0    | 219    |
| 5:00 PM  | 0      | 3       | 0       | 0       | 0       | 1       | 5       | 11      | 53      | 78      | 43      | 12      | 1       | 0       | 0       | 0       | 0    | 207    |
| 6:00 PM  | 0      | 0       | 0       | 0       | 0       | 1       | 4       | 3       | 24      | 30      | 28      | 10      | 0       | 1       | 1       | 0       | 0    | 102    |
| 7:00 PM  | 0      | 0       | 0       | 0       | 0       | 0       | 1       | 5       | 15      | 27      | 21      | 9       | 6       | 1       | 0       | 0       | 0    | 85     |
| 8:00 PM  | 0      | 0       | 0       | 0       | 0       | 0       | 1       | 4       | 4       | 16      | 17      | 15      | 9       | 1       | 1       | 0       | 0    | 68     |
| 9:00 PM  | 0      | 0       | 0       | 0       | 0       | 0       | 1       | 2       | 5       | 5       | 10      | 10      | 0       | 2       | 1       | 0       | 0    | 36     |
| 10:00 PM | 0      | 0       | 0       | 0       | 1       | 0       | 1       | 5       | 3       | 3       | 5       | 5       | 0       | 0       | 1       | 0       | 0    | 24     |
| 11:00 PM | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 2       | 2       | 2       | 5       | 0       | 0       | 0       | 0       | 0    | 11     |
| Total    | 0      | 3       | 1       | 1       | 2       | 9       | 39      | 116     | 372     | 604     | 622     | 306     | 76      | 14      | 13      | 2       | 0    | 2,180  |
| Total    | 0.0%   | 0.1%    | 0.0%    | 0.0%    | 0.1%    | 0.4%    | 1.8%    | 5.3%    | 17.1%   | 27.7%   | 28.5%   | 14.0%   | 3.5%    | 0.6%    | 0.6%    | 0.1%    | 0.0% | 2,100  |

| Daily Percentile Speed   | Summary |     | Speed Stat           | istics      |     |
|--------------------------|---------|-----|----------------------|-------------|-----|
| 50th Percentile (Median) | 54.6    | mph | Mean (Average) Speed | 54.3        | mph |
| 85th Percentile          | 61.1    | mph | 10 mph Pace          | 50.2 - 60.2 | mph |
| 95th Percentile          | 64.8    | mph | Percent in Pace      | 56.2        | %   |

Date Range: 11/19/2024 to 11/19/2024

Site Code: 01



### Tuesday, November 19, 2024

#### Westbound

| Time     |        |         |         |         |         |         |         | Speed   | l Range | (mph)   |         |         |         |         |         |         |      | Total  |
|----------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|------|--------|
| Time     | 0 - 10 | 10 - 15 | 15 - 20 | 20 - 25 | 25 - 30 | 30 - 35 | 35 - 40 | 40 - 45 | 45 - 50 | 50 - 55 | 55 - 60 | 60 - 65 | 65 - 70 | 70 - 75 | 75 - 80 | 80 - 85 | 85 + | Volume |
| 12:00 AM | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 1       | 1       | 0       | 0       | 0       | 0       | 0       | 1       | 0       | 0    | 3      |
| 1:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 1       | 0       | 0       | 0       | 0       | 0    | 1      |
| 2:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 1       | 0       | 0       | 0       | 4       | 0       | 0       | 0       | 0       | 0       | 0    | 5      |
| 3:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 1       | 1       | 0       | 0       | 0       | 1       | 3       | 1       | 0       | 0       | 0    | 7      |
| 4:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 5       | 8       | 3       | 5       | 1       | 0       | 1       | 0    | 23     |
| 5:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 1       | 0       | 4       | 9       | 10      | 13      | 2       | 3       | 2       | 3       | 0    | 47     |
| 6:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 2       | 1       | 7       | 17      | 28      | 20      | 11      | 7       | 1       | 0       | 0    | 94     |
| 7:00 AM  | 0      | 0       | 0       | 0       | 0       | 1       | 1       | 12      | 17      | 37      | 54      | 56      | 25      | 9       | 5       | 0       | 0    | 217    |
| 8:00 AM  | 0      | 0       | 0       | 0       | 0       | 2       | 1       | 3       | 6       | 25      | 58      | 39      | 24      | 6       | 0       | 1       | 0    | 165    |
| 9:00 AM  | 0      | 0       | 0       | 0       | 1       | 1       | 2       | 4       | 9       | 29      | 45      | 32      | 13      | 2       | 2       | 0       | 1    | 141    |
| 10:00 AM | 0      | 0       | 0       | 0       | 0       | 2       | 3       | 5       | 17      | 24      | 41      | 32      | 9       | 3       | 0       | 0       | 0    | 136    |
| 11:00 AM | 0      | 0       | 0       | 0       | 1       | 2       | 0       | 8       | 10      | 36      | 51      | 21      | 9       | 0       | 1       | 0       | 0    | 139    |
| 12:00 PM | 0      | 0       | 0       | 0       | 0       | 4       | 2       | 5       | 19      | 23      | 37      | 31      | 7       | 6       | 5       | 0       | 0    | 139    |
| 1:00 PM  | 0      | 0       | 1       | 0       | 0       | 2       | 3       | 2       | 16      | 32      | 33      | 31      | 16      | 3       | 1       | 0       | 0    | 140    |
| 2:00 PM  | 0      | 0       | 0       | 1       | 0       | 1       | 8       | 16      | 18      | 44      | 72      | 36      | 13      | 1       | 2       | 0       | 0    | 212    |
| 3:00 PM  | 0      | 0       | 0       | 0       | 0       | 3       | 5       | 16      | 11      | 55      | 49      | 35      | 10      | 0       | 0       | 1       | 0    | 185    |
| 4:00 PM  | 0      | 0       | 0       | 0       | 0       | 0       | 5       | 6       | 27      | 42      | 44      | 22      | 12      | 3       | 0       | 0       | 0    | 161    |
| 5:00 PM  | 0      | 0       | 0       | 0       | 0       | 0       | 4       | 4       | 17      | 30      | 42      | 25      | 10      | 2       | 0       | 1       | 0    | 135    |
| 6:00 PM  | 0      | 0       | 0       | 0       | 0       | 0       | 1       | 1       | 5       | 12      | 16      | 15      | 4       | 0       | 3       | 0       | 0    | 57     |
| 7:00 PM  | 0      | 0       | 0       | 0       | 0       | 1       | 1       | 3       | 1       | 11      | 16      | 2       | 3       | 1       | 1       | 0       | 0    | 40     |
| 8:00 PM  | 0      | 0       | 0       | 0       | 0       | 0       | 1       | 4       | 1       | 5       | 6       | 9       | 0       | 1       | 1       | 0       | 0    | 28     |
| 9:00 PM  | 0      | 0       | 0       | 0       | 1       | 0       | 1       | 1       | 1       | 4       | 2       | 2       | 2       | 1       | 0       | 0       | 0    | 15     |
| 10:00 PM | 0      | 0       | 0       | 0       | 1       | 0       | 2       | 0       | 1       | 2       | 0       | 2       | 2       | 1       | 0       | 0       | 0    | 11     |
| 11:00 PM | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 2       | 0       | 1       | 0       | 0       | 0       | 0    | 3      |
| Total    | 0      | 0       | 1       | 1       | 4       | 19      | 45      | 93      | 188     | 442     | 618     | 428     | 181     | 51      | 25      | 7       | 1    | 2,104  |
|          | 0.0%   | 0.0%    | 0.0%    | 0.0%    | 0.2%    | 0.9%    | 2.1%    | 4.4%    | 8.9%    | 21.0%   | 29.4%   | 20.3%   | 8.6%    | 2.4%    | 1.2%    | 0.3%    | 0.0% |        |

| Daily Percentile Speed   | Summary |     | Speed Stat           | istics      |     |
|--------------------------|---------|-----|----------------------|-------------|-----|
| 50th Percentile (Median) | 57.2    | mph | Mean (Average) Speed | 56.7        | mph |
| 85th Percentile          | 64.2    | mph | 10 mph Pace          | 51.7 - 61.7 | mph |
| 95th Percentile          | 68.9    | mph | Percent in Pace      | 52.9        | %   |

Date Range: 11/19/2024 to 11/19/2024

Site Code: 01

# DATA SOLUTIONS

## **Total Study Average**

#### Eastbound

| Time     |        |         |         |         |         |         |         | Spee    | d Range | (mph)   |         |         |         |         |         |         |      | Total          |
|----------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|------|----------------|
| Time     | 0 - 10 | 10 - 15 | 15 - 20 | 20 - 25 | 25 - 30 | 30 - 35 | 35 - 40 | 40 - 45 | 45 - 50 | 50 - 55 | 55 - 60 | 60 - 65 | 65 - 70 | 70 - 75 | 75 - 80 | 80 - 85 | 85 + | Volume         |
| 12:00 AM | 0      | 0       | 0       | 0       | 0       | 1       | 0       | 0       | 0       | 0       | 2       | 0       | 0       | 0       | 0       | 0       | 0    | 3              |
| 1:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 1       | 0       | 1       | 0       | 0       | 0       | 0       | 0    | 2              |
| 2:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 1       | 1       | 0       | 1       | 1       | 1       | 1       | 0       | 0    | 6              |
| 3:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 2       | 2       | 0       | 0       | 0       | 0       | 0    | 4              |
| 4:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 2       | 1       | 2       | 3       | 0       | 0       | 2       | 0       | 0    | 10             |
| 5:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 1       | 1       | 5       | 9       | 8       | 9       | 4       | 1       | 1       | 1       | 0    | 40             |
| 6:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 3       | 2       | 8       | 20      | 28      | 17      | 7       | 2       | 1       | 0       | 0    | 88             |
| 7:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 9       | 15      | 22      | 25      | 25      | 2       | 0       | 0       | 0       | 0    | 98             |
| 8:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 4       | 4       | 23      | 31      | 38      | 19      | 3       | 0       | 0       | 0       | 0    | 122            |
| 9:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 5       | 18      | 23      | 30      | 8       | 8       | 1       | 0       | 0       | 0    | 93             |
| 10:00 AM | 0      | 0       | 0       | 1       | 0       | 1       | 1       | 6       | 19      | 36      | 26      | 14      | 3       | 0       | 0       | 0       | 0    | 107            |
| 11:00 AM | 0      | 0       | 0       | 0       | 0       | 1       | 1       | 6       | 32      | 45      | 40      | 17      | 2       | 1       | 1       | 0       | 0    | 146            |
| 12:00 PM | 0      | 0       | 0       | 0       | 1       | 1       | 4       | 11      | 30      | 32      | 36      | 22      | 3       | 0       | 1       | 0       | 0    | 141            |
| 1:00 PM  | 0      | 0       | 1       | 0       | 0       | 1       | 8       | 14      | 23      | 45      | 53      | 16      | 9       | 1       | 0       | 0       | 0    | 171            |
| 2:00 PM  | 0      | 0       | 0       | 0       | 0       | 1       | 2       | 10      | 38      | 49      | 59      | 21      | 3       | 1       | 1       | 0       | 0    | 185            |
| 3:00 PM  | 0      | 0       | 0       | 0       | 0       | 0       | 1       | 11      | 34      | 58      | 70      | 29      | 6       | 1       | 1       | 1       | 0    | 212            |
| 4:00 PM  | 0      | 0       | 0       | 0       | 0       | 1       | 1       | 7       | 18      | 70      | 77      | 36      | 9       | 0       | 0       | 0       | 0    | 219            |
| 5:00 PM  | 0      | 3       | 0       | 0       | 0       | 1       | 5       | 11      | 53      | 78      | 43      | 12      | 1       | 0       | 0       | 0       | 0    | 207            |
| 6:00 PM  | 0      | 0       | 0       | 0       | 0       | 1       | 4       | 3       | 24      | 30      | 28      | 10      | 0       | 1       | 1       | 0       | 0    | 102            |
| 7:00 PM  | 0      | 0       | 0       | 0       | 0       | 0       | 1       | 5       | 15      | 27      | 21      | 9       | 6       | 1       | 0       | 0       | 0    | 85             |
| 8:00 PM  | 0      | 0       | 0       | 0       | 0       | 0       | 1       | 4       | 4       | 16      | 17      | 15      | 9       | 1       | 1       | 0       | 0    | 68             |
| 9:00 PM  | 0      | 0       | 0       | 0       | 0       | 0       | 1       | 2       | 5       | 5       | 10      | 10      | 0       | 2       | 1       | 0       | 0    | 36             |
| 10:00 PM | 0      | 0       | 0       | 0       | 1       | 0       | 1       | 5       | 3       | 3       | 5       | 5       | 0       | 0       | 1       | 0       | 0    | 24             |
| 11:00 PM | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 2       | 2       | 2       | 5       | 0       | 0       | 0       | 0       | 0    | 11             |
| Total    | 0      | 3       | 1       | 1       | 2       | 9       | 39      | 116     | 372     | 604     | 622     | 306     | 76      | 14      | 13      | 2       | 0    | 2,180          |
| Total    | 0.0%   | 0.1%    | 0.0%    | 0.0%    | 0.1%    | 0.4%    | 1.8%    | 5.3%    | 17.1%   | 27.7%   | 28.5%   | 14.0%   | 3.5%    | 0.6%    | 0.6%    | 0.1%    | 0.0% | <b>2</b> , 100 |

Note: Average only condsidered on days with 24-hours of data.

| Total Study Percentile Spe | ed Summ | ary | Total Study Spee     | d Statistics |     |
|----------------------------|---------|-----|----------------------|--------------|-----|
| 50th Percentile (Median)   | 54.6    | mph | Mean (Average) Speed | 54.3         | mph |
| 85th Percentile            | 61.1    | mph | 10 mph Pace          | 50.2 - 60.2  | mph |
| 95th Percentile            | 64.8    | mph | Percent in Pace      | 56.2         | %   |

Project Manager: (415) 310-6469 project.manager.ca@idaxdata.com

Date Range: 11/19/2024 to 11/19/2024

Site Code: 01

# DATA SOLUTIONS

### **Total Study Average**

#### Westbound

| Time     |        |         |         |         |         |         |         | Speed   | l Range | (mph)   |         |         |         |         |         |         |      | Total  |
|----------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|------|--------|
| Time     | 0 - 10 | 10 - 15 | 15 - 20 | 20 - 25 | 25 - 30 | 30 - 35 | 35 - 40 | 40 - 45 | 45 - 50 | 50 - 55 | 55 - 60 | 60 - 65 | 65 - 70 | 70 - 75 | 75 - 80 | 80 - 85 | 85 + | Volume |
| 12:00 AM | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 1       | 1       | 0       | 0       | 0       | 0       | 0       | 1       | 0       | 0    | 3      |
| 1:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 1       | 0       | 0       | 0       | 0       | 0    | 1      |
| 2:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 1       | 0       | 0       | 0       | 4       | 0       | 0       | 0       | 0       | 0       | 0    | 5      |
| 3:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 1       | 1       | 0       | 0       | 0       | 1       | 3       | 1       | 0       | 0       | 0    | 7      |
| 4:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 5       | 8       | 3       | 5       | 1       | 0       | 1       | 0    | 23     |
| 5:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 1       | 0       | 4       | 9       | 10      | 13      | 2       | 3       | 2       | 3       | 0    | 47     |
| 6:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 2       | 1       | 7       | 17      | 28      | 20      | 11      | 7       | 1       | 0       | 0    | 94     |
| 7:00 AM  | 0      | 0       | 0       | 0       | 0       | 1       | 1       | 12      | 17      | 37      | 54      | 56      | 25      | 9       | 5       | 0       | 0    | 217    |
| 8:00 AM  | 0      | 0       | 0       | 0       | 0       | 2       | 1       | 3       | 6       | 25      | 58      | 39      | 24      | 6       | 0       | 1       | 0    | 165    |
| 9:00 AM  | 0      | 0       | 0       | 0       | 1       | 1       | 2       | 4       | 9       | 29      | 45      | 32      | 13      | 2       | 2       | 0       | 1    | 141    |
| 10:00 AM | 0      | 0       | 0       | 0       | 0       | 2       | 3       | 5       | 17      | 24      | 41      | 32      | 9       | 3       | 0       | 0       | 0    | 136    |
| 11:00 AM | 0      | 0       | 0       | 0       | 1       | 2       | 0       | 8       | 10      | 36      | 51      | 21      | 9       | 0       | 1       | 0       | 0    | 139    |
| 12:00 PM | 0      | 0       | 0       | 0       | 0       | 4       | 2       | 5       | 19      | 23      | 37      | 31      | 7       | 6       | 5       | 0       | 0    | 139    |
| 1:00 PM  | 0      | 0       | 1       | 0       | 0       | 2       | 3       | 2       | 16      | 32      | 33      | 31      | 16      | 3       | 1       | 0       | 0    | 140    |
| 2:00 PM  | 0      | 0       | 0       | 1       | 0       | 1       | 8       | 16      | 18      | 44      | 72      | 36      | 13      | 1       | 2       | 0       | 0    | 212    |
| 3:00 PM  | 0      | 0       | 0       | 0       | 0       | 3       | 5       | 16      | 11      | 55      | 49      | 35      | 10      | 0       | 0       | 1       | 0    | 185    |
| 4:00 PM  | 0      | 0       | 0       | 0       | 0       | 0       | 5       | 6       | 27      | 42      | 44      | 22      | 12      | 3       | 0       | 0       | 0    | 161    |
| 5:00 PM  | 0      | 0       | 0       | 0       | 0       | 0       | 4       | 4       | 17      | 30      | 42      | 25      | 10      | 2       | 0       | 1       | 0    | 135    |
| 6:00 PM  | 0      | 0       | 0       | 0       | 0       | 0       | 1       | 1       | 5       | 12      | 16      | 15      | 4       | 0       | 3       | 0       | 0    | 57     |
| 7:00 PM  | 0      | 0       | 0       | 0       | 0       | 1       | 1       | 3       | 1       | 11      | 16      | 2       | 3       | 1       | 1       | 0       | 0    | 40     |
| 8:00 PM  | 0      | 0       | 0       | 0       | 0       | 0       | 1       | 4       | 1       | 5       | 6       | 9       | 0       | 1       | 1       | 0       | 0    | 28     |
| 9:00 PM  | 0      | 0       | 0       | 0       | 1       | 0       | 1       | 1       | 1       | 4       | 2       | 2       | 2       | 1       | 0       | 0       | 0    | 15     |
| 10:00 PM | 0      | 0       | 0       | 0       | 1       | 0       | 2       | 0       | 1       | 2       | 0       | 2       | 2       | 1       | 0       | 0       | 0    | 11     |
| 11:00 PM | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 2       | 0       | 1       | 0       | 0       | 0       | 0    | 3      |
| Total    | 0      | 0       | 1       | 1       | 4       | 19      | 45      | 93      | 188     | 442     | 618     | 428     | 181     | 51      | 25      | 7       | 1    | 2,104  |
|          | 0.0%   | 0.0%    | 0.0%    | 0.0%    | 0.2%    | 0.9%    | 2.1%    | 4.4%    | 8.9%    | 21.0%   | 29.4%   | 20.3%   | 8.6%    | 2.4%    | 1.2%    | 0.3%    | 0.0% |        |

Note: Average only condsidered on days with 24-hours of data.

| Total Study Percentile Spe | ed Summ | ary | Total Study Spee     | d Statistics |     |
|----------------------------|---------|-----|----------------------|--------------|-----|
| 50th Percentile (Median)   | 57.2    | mph | Mean (Average) Speed | 56.7         | mph |
| 85th Percentile            | 64.2    | mph | 10 mph Pace          | 51.7 - 61.7  | mph |
| 95th Percentile            | 68.9    | mph | Percent in Pace      | 52.9         | %   |

Project Manager: (415) 310-6469 project.manager.ca@idaxdata.com



Location: E Harney Ln, Between SR-99 & SR-88 Date Range: 11/19/2024 - 11/25/2024 Site Code: 01

| Time            | ± £   | Tuesday<br>11/19/2024 | - 4          | W 1 | Wednesday<br>11/20/2024 | \$ <b>4</b> | £ 5 | Thursday<br>11/21/2024 |       | Friq<br>11/22 | Friday<br>11/22/2024 |     | Saturday<br>11/23/2024 | 24<br>24 | 11/2<br>11/2 | Sunday<br>11/24/2024 |       | Monday<br>11/25/2024 | day<br>2024 | Mid   | Mid-Week Average | rerage       |
|-----------------|-------|-----------------------|--------------|-----|-------------------------|-------------|-----|------------------------|-------|---------------|----------------------|-----|------------------------|----------|--------------|----------------------|-------|----------------------|-------------|-------|------------------|--------------|
|                 | 8     | WB                    | Total        | 8   | WB                      | Total       | 8   | WB T                   | Total | EB W          | WB Total             | E   | WB                     | Total    | 8            | WB T                 | Total | EB WB                | 3 Total     | 8     | WB               | Total        |
| 12:00 AM        | 3     | က                     | 9            |     | ,                       | -           |     |                        | -     |               |                      | '   |                        |          |              |                      | ,     |                      | ٠           | 3     | က                | 9            |
| 1:00 AM         | 2     | _                     | က            | 1   | 1                       | ,           | ,   |                        | 1     | 1             | 1                    | 1   | 1                      |          |              | 1                    | 1     | 1                    |             | 2     | _                | က            |
| 2:00 AM         | 9     | 2                     | 1            | ,   | ,                       | ,           |     | ,                      | ,     |               | 1                    | '   | ,                      | ,        | ,            | ,                    | ,     |                      |             | 9     | 2                | 11           |
| 3:00 AM         | 4     | 7                     | 7            |     |                         | 1           |     | 1                      | 1     | 1             | 1                    | 1   | 1                      | ,        |              | 1                    | 1     | 1                    |             | 4     | 7                | 1            |
| 4:00 AM         | 10    | 23                    | 33           | ,   |                         | ,           |     | ,                      | ,     | '             |                      | '   |                        | ,        |              | ,                    | ,     | '                    |             | 10    | 23               | 33           |
| 5:00 AM         | 40    | 47                    | 87           | ı   |                         | 1           | 1   | 1                      | 1     |               | 1                    | 1   | 1                      |          |              | 1                    | 1     |                      |             | 40    | 47               | 87           |
| 6:00 AM         | 88    | 94                    | 182          | ,   | ,                       | ,           |     | ,                      | ,     |               |                      | ,   | ,                      | ,        |              | ,                    | ,     |                      |             | 88    | 8                | 182          |
| 7:00 AM         | 86    | 217                   | 315          | 1   | 1                       | 1           | 1   | 1                      | 1     |               | 1                    | 1   | 1                      | 1        | 1            | 1                    | 1     | 1                    |             | 86    | 217              | 315          |
| 8:00 AM         | 122   | 165                   | 287          | ,   | ,                       | ,           |     | ,                      | ,     |               |                      | ,   |                        | ,        |              | ,                    | ,     |                      |             | 122   | 165              | 287          |
| 9:00 AM         | 93    | 141                   | 234          |     | ,                       | ,           | ,   | ,                      | 1     |               | 1                    | 1   | 1                      |          |              | 1                    | 1     |                      |             | 93    | 141              | 234          |
| 10:00 AM        | 107   | 136                   | 243          | ,   | ,                       | ,           |     | ,                      | ,     |               |                      | '   |                        | ,        | ,            | ,                    | 1     |                      |             | 107   | 136              | 243          |
| 11:00 AM        | 146   | 139                   | 285          | ,   | 1                       | 1           |     | 1                      | 1     |               | 1                    | 1   | 1                      | ,        | 1            | 1                    | 1     | ,                    |             | 146   | 139              | 285          |
| 12:00 PM        |       | 139                   | 280          | ,   | ,                       | ,           | ,   | ,                      | ,     | -             |                      | '   | ,                      | ,        | ,            | ,                    | ,     | -                    | '           | 141   | 139              | 280          |
| 1:00 PM         | 171   | 140                   | 311          | ,   | 1                       | 1           | ,   | 1                      | 1     | ,             | 1                    | 1   | 1                      | ,        | ,            | 1                    | 1     | ,                    |             | 171   | 140              | 311          |
| 2:00 PM         | 185   | 212                   | 397          | ,   |                         | 1           | ,   | ,                      | ,     |               |                      | 1   | 1                      |          | ,            | ,                    | 1     |                      |             | 185   | 212              | 397          |
| 3:00 PM         | 212   | 185                   | 397          | 1   | 1                       | 1           | 1   | 1                      | 1     | 1             | 1                    | 1   | 1                      | 1        | 1            | 1                    | 1     | 1                    |             | 212   | 185              | 397          |
| 4:00 PM         | 219   | 161                   | 380          | 1   | ı                       | 1           |     |                        |       |               |                      | 1   |                        | 1        |              |                      | 1     |                      |             | 219   | 161              | 380          |
| 5:00 PM         | 207   | 135                   | 342          | ı   |                         | ,           |     | 1                      |       | 1             | 1                    | 1   | 1                      |          |              | 1                    | 1     | -                    |             | 207   | 135              | 342          |
| 6:00 PM         | 102   | 22                    | 159          | ,   |                         | 1           |     |                        | ,     | 1             | 1                    | 1   |                        |          |              |                      | 1     | 1                    |             | 102   | 22               | 159          |
| 7:00 PM         | 82    | 40                    | 125          | ,   |                         | ,           |     | 1                      | 1     |               | 1                    | 1   | 1                      | ,        |              | 1                    | 1     |                      |             | 82    | 40               | 125          |
| 8:00 PM         | 89    | 28                    | 96           | ,   |                         | ,           |     |                        | ,     |               |                      | 1   |                        | ,        |              | ,                    | 1     |                      |             | 89    | 28               | 96           |
| 9:00 PM         | 36    | 15                    | 21           |     |                         | ,           |     | 1                      |       | 1             | 1                    | 1   |                        | 1        |              | 1                    |       |                      | 1           | 36    | 15               | 51           |
| 10:00 PM        | 24    | 1                     | 35           | ,   | ı                       | ,           | ,   |                        | ,     | 1             | 1                    | 1   |                        | ,        |              |                      | 1     | 1                    |             | 24    | 1                | 35           |
| 11:00 PM        | 11    | 3                     | 14           | -   |                         | 1           | -   | 1                      | -     | _             | 1                    | 1   | 1                      | 1        | 1            | 1                    | -     | -                    | 1           | 11    | 3                | 14           |
|                 |       | 2,104                 | 4,284        |     |                         |             |     |                        |       |               |                      | ٠   |                        |          |              |                      |       |                      |             | 2,180 |                  | 4,284        |
| Percent         |       | 46%                   |              |     |                         |             |     |                        |       |               |                      | ٠   | •                      |          |              |                      |       |                      |             | 21%   |                  |              |
| AM Peak<br>Vol. | 11:00 | 07:00                 | 07:00<br>315 |     |                         | 1 1         |     |                        |       |               |                      | 1 1 |                        | 1 1      |              |                      | 1 1   |                      |             | 11:00 | 07:00            | 07:00<br>315 |
| PM Peak         | ۱_    | 14:00                 | 14:00        |     |                         |             |     |                        |       |               | 1                    | 1   | 1                      |          | 1            | 1                    | 1     |                      |             | 16:00 | 1                | 1,           |
| Vol.            | 219   | 212                   | 397          | 1   | ,                       |             |     |                        |       | 1             | 1                    | ٠   | 1                      | 1        | ı            | 1                    | 1     | 1                    | •           | 219   | 212              | 397          |

1. Mid-week average includes data between Tuesday and Thursday.

Project Manager: (415) 310-6469 project.manager.ca@idaxdata.com





Count Direction: Eastbound / Westbound

Date Range: 11/19/2024 to 11/19/2024

Site Code: 02

| Direction  |      |                  |       |      |      | FHWA Ve | FHWA Vehicle Classi | sification |      |      |      |      |      | Total |
|------------|------|------------------|-------|------|------|---------|---------------------|------------|------|------|------|------|------|-------|
|            | 1    | 2                | 3     | 4    | 5    | 9       | 7                   | 8          | 6    | 10   | 11   | 12   | 13   |       |
| Factballed | 7    | 418              | 423   | 10   | 92   | 30      | 0                   | 4          | 37   | 0    | 3    | 0    | 0    | 1 004 |
| Eastbouild | 0.1% | 0.1% 40.9% 41.4% | 41.4% | 1.0% | 9.3% | 2.9%    | %0.0                | 0.4%       | 3.6% | %0.0 | 0.3% | %0.0 | 0.0% | 1,041 |
| banoqtooM  | 2    | 388              | 392   | 10   | 78   | 33      | 0                   | 2          | 38   | 0    | 3    | ~    | 0    | 050   |
| Mestadalia | 0.2% | 40.8% 41.3%      | 41.3% | 1.1% | 8.2% | 3.5%    | %0.0                | 0.5%       | 4.0% | %0.0 | 0.3% | 0.1% | 0.0% | 000   |
| Total      | 3    | 908              | 815   | 20   | 173  | 63      | 0                   | 6          | 75   | 0    | 9    | ~    | 0    | 1 074 |
| וסומו      | 0.2% | 0.2% 40.9% 41.3% | 41.3% | 1.0% | 8.8% | 3.2%    | %0.0                | 0.5%       | 3.8% | %0.0 | 0.3% | 0.1% | 0.0% | 1,6,1 |

| FHWA Vehicle Classification                              |                                                    |
|----------------------------------------------------------|----------------------------------------------------|
| Class 1 - Motorcycles                                    | Class 8 - Four or Fewer Axle Single-Trailer Trucks |
| Class 2 - Passenger Cars                                 | Class 9 - Five-Axle Single-Trailer Trucks          |
| Class 3 - Other Two-Axle, Four-Tire Single Unit Vehicles | Class 10 - Six or More Axle Single-Trailer Trucks  |
| Class 4 - Buses                                          | Class 11 - Five or fewer Axle Multi-Trailer Trucks |
| Class 5 - Two-Axle, Six-Tire, Single-Unit Trucks         | Class 12 - Six-Axle Multi-Trailer Trucks           |
| Class 6 - Three-Axle Single-Unit Trucks                  | Class 13 - Seven or More Axle Multi-Trailer Trucks |
| Class 7 - Four or More Axle Single-Unit Trucks           |                                                    |



E Harney Ln, Between Jack Tone Rd & 17720 E Harney Ln Dwy 11/19/2024 to 11/19/2024 Location: Date Range:

SATA SOLUTIONS

02 Site Code: Tuesday, November 19, 2024 Eastbound

| Z seri L |      |       |       |      |      | FHWA Ve | FHWA Vehicle Classification | sification |      |      |      |      |      | Total  |
|----------|------|-------|-------|------|------|---------|-----------------------------|------------|------|------|------|------|------|--------|
| Đ        | 1    | 2     | 3     | 4    | 2    | 9       | 7                           | 8          | 6    | 10   | 11   | 12   | 13   | Volume |
| 12:00 AM | 0    | 0     | 0     | 0    | 0    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 0      |
| 1:00 AM  | 0    | 0     | 0     | 0    | 0    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 0      |
| 2:00 AM  | 0    | ~     | 0     | 0    | 0    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | -      |
| 3:00 AM  | 0    | ~     | 2     | _    | 0    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 4      |
| 4:00 AM  | 0    | က     | 0     | 0    | 0    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | က      |
| 5:00 AM  | 0    | 18    | တ     | 0    | _    | 0       | 0                           | 0          | 2    | 0    | 0    | 0    | 0    | 30     |
| 6:00 AM  | 0    | 79    | 31    | 0    | _    | 4       | 0                           | 0          | 4    | 0    | 0    | 0    | 0    | 119    |
| 7:00 AM  | 0    | 21    | 30    | 0    | 12   | 2       | 0                           | 0          | 4    | 0    | 0    | 0    | 0    | 69     |
| 8:00 AM  | 0    | 18    | 35    | 0    | 2    | က       | 0                           | _          | 4    | 0    | 0    | 0    | 0    | 99     |
| 9:00 AM  | 0    | 17    | 29    | 2    | 10   | က       | 0                           | 0          | 2    | 0    | 2    | 0    | 0    | 65     |
| 10:00 AM | 0    | 13    | 37    | _    | 1    | 7       | 0                           | 0          | 7    | 0    | 0    | 0    | 0    | 92     |
| 11:00 AM | 0    | 17    | 48    | 0    | 7    | 2       | 0                           | 0          | 2    | 0    | _    | 0    | 0    | 77     |
| 12:00 PM | 0    | 12    | 30    | က    | 10   | 4       | 0                           | 0          | 4    | 0    | 0    | 0    | 0    | 63     |
| 1:00 PM  | 0    | 59    | 35    | _    | 2    | က       | 0                           | 0          | 9    | 0    | 0    | 0    | 0    | 79     |
| 2:00 PM  | _    | 33    | 20    | _    | 0    | 2       | 0                           | 0          | 2    | 0    | 0    | 0    | 0    | 86     |
| 3:00 PM  | 0    | 36    | 32    | _    | 10   | 0       | 0                           | _          | 0    | 0    | 0    | 0    | 0    | 80     |
| 4:00 PM  | 0    | 27    | 25    | 0    | က    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 55     |
| 5:00 PM  | 0    | 36    | 16    | 0    | 4    | 0       | 0                           | _          | 0    | 0    | 0    | 0    | 0    | 22     |
| 6:00 PM  | 0    | 15    | 4     | 0    | က    | 0       | 0                           | _          | 0    | 0    | 0    | 0    | 0    | 23     |
| 7:00 PM  | 0    | 0     | က     | 0    | 2    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 14     |
| 8:00 PM  | 0    | 7     | 4     | 0    | _    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 16     |
| 9:00 PM  | 0    | 80    | 2     | 0    | _    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 7      |
| 10:00 PM | 0    | 7     | 0     | 0    | 0    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 7      |
| 11:00 PM | 0    | 7     | _     | 0    | 0    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 8      |
| Total    | 1    | 418   | 423   | 10   | 92   | 30      | 0                           | 4          | 37   | 0    | 3    | 0    | 0    | 1 004  |
| וסומו    | 0.1% | 40.9% | 41.4% | 1.0% | 9.3% | 2.9%    | %0.0                        | 0.4%       | 3.6% | %0.0 | 0.3% | %0.0 | %0.0 | 1,041  |



E Harney Ln, Between Jack Tone Rd & 17720 E Harney Ln Dwy 11/19/2024 to 11/19/2024 Location: Date Range:

DATA SOLUTIONS

02 Site Code: Tuesday, November 19, 2024 Westbound

| , E      |      |       |       |              |      | FHWA Ve | FHWA Vehicle Classification | sification |      |      |      |      |      | Total  |
|----------|------|-------|-------|--------------|------|---------|-----------------------------|------------|------|------|------|------|------|--------|
|          | 1    | 2     | 3     | 4            | 2    | 9       | 7                           | 8          | 6    | 10   | 11   | 12   | 13   | Volume |
| 12:00 AM | 0    | 0     | 0     | 0            | _    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 1      |
| 1:00 AM  | 0    | 0     | 0     | 0            | 0    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 0      |
| 2:00 AM  | 0    | 0     | 0     | 0            | 0    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 0      |
| 3:00 AM  | 0    | က     | ~     | 0            | 0    | 0       | 0                           | 0          | 0    | 0    | 0    | _    | 0    | 2      |
| 4:00 AM  | 0    | က     | _     | 0            | 0    | 0       | 0                           | _          | 0    | 0    | 0    | 0    | 0    | 2      |
| 5:00 AM  | 0    | 12    | 7     | 0            | 2    | 0       | 0                           | _          | 0    | 0    | 0    | 0    | 0    | 22     |
| 6:00 AM  | 0    | တ     | 2     | 0            | ~    | 0       | 0                           | 0          | 2    | 0    | 0    | 0    | 0    | 17     |
| 7:00 AM  | 0    | 32    | 29    | 0            | 4    | 4       | 0                           | 0          | 4    | 0    | 0    | 0    | 0    | 73     |
| 8:00 AM  | _    | 20    | 26    | _            | 6    | 2       | 0                           | _          | 22   | 0    | 0    | 0    | 0    | 65     |
| 9:00 AM  | 0    | 22    | 41    | 2            | က    | 4       | 0                           | 0          | 7    | 0    | 0    | 0    | 0    | 79     |
| 10:00 AM | 0    | 26    | 37    | 0            | 11   | 2       | 0                           | 0          | 2    | 0    | _    | 0    | 0    | 85     |
| 11:00 AM | 0    | 20    | 39    | _            | 9    | 4       | 0                           | 0          | 2    | 0    | 0    | 0    | 0    | 72     |
| 12:00 PM | 0    | 23    | 44    | 0            | 80   | က       | 0                           | 0          | 4    | 0    | 2    | 0    | 0    | 84     |
| 1:00 PM  | 0    | 19    | 30    | 2            | 7    | 2       | 0                           | 0          | 4    | 0    | 0    | 0    | 0    | 29     |
| 2:00 PM  | 0    | 29    | 4     | <del>-</del> | 7    | 4       | 0                           | 0          | က    | 0    | 0    | 0    | 0    | 85     |
| 3:00 PM  | 0    | 82    | 20    | က            | 6    | _       | 0                           | 0          | 7    | 0    | 0    | 0    | 0    | 147    |
| 4:00 PM  | 0    | 39    | 25    | 0            | 3    | _       | 0                           | _          | 0    | 0    | 0    | 0    | 0    | 69     |
| 5:00 PM  | ~    | 25    | 1     | 0            | 2    | 0       | 0                           | _          | 0    | 0    | 0    | 0    | 0    | 40     |
| 6:00 PM  | 0    | 6     | 3     | 0            | _    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 13     |
| 7:00 PM  | 0    | 7     | 2     | 0            | 2    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 9      |
| 8:00 PM  | 0    | 2     | 0     | 0            | _    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 9      |
| 9:00 PM  | 0    | 2     | 0     | 0            | 0    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 2      |
| 10:00 PM | 0    | _     | 0     | 0            | ~    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 7      |
| 11:00 PM | 0    | 2     | 0     | 0            | 0    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 2      |
| Total    | 2    | 388   | 392   | 10           | 78   | 33      | 0                           | 2          | 38   | 0    | 3    | 1    | 0    | 950    |
|          | 0.2% | 40.8% | 41.3% | 1.1%         | 8.2% | 3.5%    | %0.0                        | 0.5%       | 4.0% | %0.0 | 0.3% | 0.1% | 0.0% |        |



E Harney Ln, Between Jack Tone Rd & 17720 E Harney Ln Dwy 11/19/2024 to 11/19/2024 Location: Date Range:

02 Site Code:

Total Study Average Eastbound

|          |      |       |       |      |      | FHWA Ve | FHWA Vehicle Classification | sification |      |      |      |      |      | Total  |
|----------|------|-------|-------|------|------|---------|-----------------------------|------------|------|------|------|------|------|--------|
| Lime     | -    | 2     | ဗ     | 4    | 2    | 9       | 7                           | 8          | 6    | 10   | 11   | 12   | 13   | Volume |
| 12:00 AM | 0    | 0     | 0     | 0    | 0    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 0      |
| 1:00 AM  | 0    | 0     | 0     | 0    | 0    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 0      |
| 2:00 AM  | 0    | _     | 0     | 0    | 0    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | _      |
| 3:00 AM  | 0    | _     | 2     | _    | 0    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 4      |
| 4:00 AM  | 0    | က     | 0     | 0    | 0    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | က      |
| 5:00 AM  | 0    | 18    | 0     | 0    | ~    | 0       | 0                           | 0          | 2    | 0    | 0    | 0    | 0    | 30     |
| 6:00 AM  | 0    | 79    | 31    | 0    | _    | 4       | 0                           | 0          | 4    | 0    | 0    | 0    | 0    | 119    |
| 7:00 AM  | 0    | 21    | 30    | 0    | 12   | 2       | 0                           | 0          | 4    | 0    | 0    | 0    | 0    | 69     |
| 8:00 AM  | 0    | 18    | 35    | 0    | 2    | 3       | 0                           | ~          | 4    | 0    | 0    | 0    | 0    | 99     |
| 9:00 AM  | 0    | 17    | 29    | 2    | 10   | က       | 0                           | 0          | 2    | 0    | 2    | 0    | 0    | 65     |
| 10:00 AM | 0    | 13    | 37    | _    | 7    | 7       | 0                           | 0          | 7    | 0    | 0    | 0    | 0    | 92     |
| 11:00 AM | 0    | 17    | 48    | 0    | 7    | 2       | 0                           | 0          | 2    | 0    | _    | 0    | 0    | 77     |
| 12:00 PM | 0    | 12    | 30    | က    | 10   | 4       | 0                           | 0          | 4    | 0    | 0    | 0    | 0    | 63     |
| 1:00 PM  | 0    | 29    | 35    | _    | 2    | က       | 0                           | 0          | 9    | 0    | 0    | 0    | 0    | 79     |
| 2:00 PM  | _    | 33    | 20    | _    | 6    | 2       | 0                           | 0          | 2    | 0    | 0    | 0    | 0    | 86     |
| 3:00 PM  | 0    | 36    | 32    | _    | 10   | 0       | 0                           | ~          | 0    | 0    | 0    | 0    | 0    | 80     |
| 4:00 PM  | 0    | 27    | 25    | 0    | 3    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 22     |
| 5:00 PM  | 0    | 36    | 16    | 0    | 4    | 0       | 0                           | _          | 0    | 0    | 0    | 0    | 0    | 22     |
| 6:00 PM  | 0    | 15    | 4     | 0    | လ    | 0       | 0                           | _          | 0    | 0    | 0    | 0    | 0    | 23     |
| 7:00 PM  | 0    | 0     | က     | 0    | 2    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 14     |
| 8:00 PM  | 0    | 7     | 4     | 0    | ~    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 16     |
| 9:00 PM  | 0    | ∞     | 2     | 0    | _    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 7      |
| 10:00 PM | 0    | 7     | 0     | 0    | 0    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 7      |
| 11:00 PM | 0    | 7     | _     | 0    | 0    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 8      |
| Total    | 1    | 418   | 423   | 10   | 92   | 30      | 0                           | 4          | 37   | 0    | 3    | 0    | 0    | 1 024  |
|          | 0.1% | 40.9% | 41.4% | 1.0% | 9.3% | 2.9%    | %0.0                        | 0.4%       | 3.6% | %0.0 | 0.3% | %0.0 | %0.0 | 1.50,1 |

Note: Average only condsidered on days with 24-hours of data.



DATA SOLUTIONS

Date Range: 11/19/2024 to 11/19/2024

Site Code: 02

Total Study Average Westbound

Volume Total 73 79 85 72 84 67 67 85 147 13 950 22 %0.0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1% 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 7 0 0 0 0 0 0 0 0 %0'0 9 0 0 4.0% 300000008 0 0 0 0 0 0 4 10 17 10 10 4 4 က FHWA Vehicle Classification **%**9.0 **%0.0** 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.5% 33 7 0 0 0 7 - 4 0 3 9 ω 7 6 8 LO 1.1% 9 41.3%  $\overline{\phantom{a}}$ m 0 0 0 5 7 7 0 0 0 0 40.8% 388 32 20 22 22 22 20 20 23 23 23 29 29 39 25 8 000000-000000 - 0 0 0 0 0 0 Time Total 1:00 AM 12:00 PM 2:00 AM 9:00 AM 0:00 AM 2:00 PM 4:00 PM 10:00 PM 1:00 PM 2:00 AM 3:00 AM 4:00 AM 8:00 AM :00 PM 3:00 PM 5:00 PM 6:00 PM 9:00 PM :00 AM 5:00 AM 6:00 AM 7:00 AM 7:00 PM 8:00 PM

Note: Average only condsidered on days with 24-hours of data.

Project Manager: (415) 310-6469 project.manager.ca@idaxdata.com

## Vehicle Speed Report Summary



Location: E Harney Ln, Between Jack Tone Rd & 17720 E Harney Ln Dwy

Direction: Eastbound / Westbound

Date Range: 11/19/2024 to 11/19/2024

Site Code: 02

| Direction  |        |         |         |         |         |         |         | Speed   | d Range | (mph)   |         |         |         |         |         |         |      | Total<br>Volume |
|------------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|------|-----------------|
|            | 0 - 10 | 10 - 15 | 15 - 20 | 20 - 25 | 25 - 30 | 30 - 35 | 35 - 40 | 40 - 45 | 45 - 50 | 50 - 55 | 55 - 60 | 60 - 65 | 65 - 70 | 70 - 75 | 75 - 80 | 80 - 85 | 85 + | Volume          |
| Eastbound  | 0      | 0       | 4       | 2       | 9       | 15      | 19      | 36      | 85      | 197     | 288     | 206     | 97      | 42      | 13      | 7       | 1    | 1,021           |
| Lastboulla | 0.0%   | 0.0%    | 0.4%    | 0.2%    | 0.9%    | 1.5%    | 1.9%    | 3.5%    | 8.3%    | 19.3%   | 28.2%   | 20.2%   | 9.5%    | 4.1%    | 1.3%    | 0.7%    | 0.1% | 1,021           |
| Westbound  | 0      | 3       | 1       | 2       | 2       | 8       | 9       | 24      | 64      | 177     | 269     | 233     | 98      | 39      | 6       | 8       | 7    | 950             |
| Westbound  | 0.0%   | 0.3%    | 0.1%    | 0.2%    | 0.2%    | 0.8%    | 0.9%    | 2.5%    | 6.7%    | 18.6%   | 28.3%   | 24.5%   | 10.3%   | 4.1%    | 0.6%    | 0.8%    | 0.7% | 950             |
| Total      | 0      | 3       | 5       | 4       | 11      | 23      | 28      | 60      | 149     | 374     | 557     | 439     | 195     | 81      | 19      | 15      | 8    | 1,971           |
| Total      | 0.0%   | 0.2%    | 0.3%    | 0.2%    | 0.6%    | 1.2%    | 1.4%    | 3.0%    | 7.6%    | 19.0%   | 28.3%   | 22.3%   | 9.9%    | 4.1%    | 1.0%    | 0.8%    | 0.4% | 1,971           |

| Total Study Percentile Speed | d Summ | ary | Total Study Spee     | d Statistics |     |
|------------------------------|--------|-----|----------------------|--------------|-----|
| Eastbound                    |        |     | Eastbou              | nd           |     |
| 50th Percentile (Median)     | 57.7   | mph | Mean (Average) Speed | 57.0         | mph |
| 85th Percentile              | 65.3   | mph | 10 mph Pace          | 53.6 - 63.6  | mph |
| 95th Percentile              | 71.1   | mph | Percent in Pace      | 51.8         | %   |
| Westbound                    |        |     | Westbou              | nd           |     |
| 50th Percentile (Median)     | 58.0   | mph | Mean (Average) Speed | 58.2         | mph |
| 85th Percentile              | 65.9   | mph | 10 mph Pace          | 53.1 - 63.1  | mph |
| 95th Percentile              | 71.2   | mph | Percent in Pace      | 55.3         | %   |

Date Range: 11/19/2024 to 11/19/2024

Site Code: 02



## Tuesday, November 19, 2024

#### Eastbound

| Time     |        |         |         |         |         |         |         | Speed   | d Range | (mph)   |         |         |         |         |         |         |      | Total  |
|----------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|------|--------|
| Time     | 0 - 10 | 10 - 15 | 15 - 20 | 20 - 25 | 25 - 30 | 30 - 35 | 35 - 40 | 40 - 45 | 45 - 50 | 50 - 55 | 55 - 60 | 60 - 65 | 65 - 70 | 70 - 75 | 75 - 80 | 80 - 85 | 85 + | Volume |
| 12:00 AM | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 0      |
| 1:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 0      |
| 2:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 1       | 0       | 0       | 0    | 1      |
| 3:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 1       | 0       | 2       | 0       | 0       | 0       | 1       | 0       | 0    | 4      |
| 4:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 2       | 0       | 0       | 1       | 0       | 0       | 0    | 3      |
| 5:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 1       | 3       | 10      | 8       | 4       | 2       | 0       | 1       | 1    | 30     |
| 6:00 AM  | 0      | 0       | 0       | 0       | 2       | 3       | 2       | 2       | 7       | 18      | 23      | 25      | 20      | 12      | 2       | 3       | 0    | 119    |
| 7:00 AM  | 0      | 0       | 2       | 0       | 3       | 0       | 4       | 1       | 10      | 9       | 16      | 14      | 6       | 3       | 0       | 1       | 0    | 69     |
| 8:00 AM  | 0      | 0       | 0       | 0       | 0       | 1       | 2       | 4       | 6       | 16      | 19      | 11      | 2       | 4       | 1       | 0       | 0    | 66     |
| 9:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 2       | 2       | 6       | 17      | 20      | 14      | 4       | 0       | 0       | 0       | 0    | 65     |
| 10:00 AM | 0      | 0       | 0       | 0       | 1       | 1       | 2       | 4       | 14      | 21      | 18      | 11      | 4       | 0       | 0       | 0       | 0    | 76     |
| 11:00 AM | 0      | 0       | 1       | 1       | 0       | 0       | 1       | 1       | 6       | 18      | 32      | 11      | 3       | 3       | 0       | 0       | 0    | 77     |
| 12:00 PM | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 7       | 4       | 13      | 21      | 11      | 6       | 1       | 0       | 0       | 0    | 63     |
| 1:00 PM  | 0      | 0       | 0       | 0       | 0       | 2       | 2       | 1       | 7       | 16      | 21      | 24      | 4       | 1       | 1       | 0       | 0    | 79     |
| 2:00 PM  | 0      | 0       | 0       | 0       | 0       | 4       | 3       | 8       | 9       | 11      | 35      | 17      | 8       | 0       | 2       | 1       | 0    | 98     |
| 3:00 PM  | 0      | 0       | 1       | 1       | 1       | 4       | 1       | 2       | 8       | 21      | 18      | 13      | 8       | 2       | 0       | 0       | 0    | 80     |
| 4:00 PM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 3       | 1       | 4       | 11      | 16      | 13      | 6       | 0       | 1       | 0    | 55     |
| 5:00 PM  | 0      | 0       | 0       | 0       | 1       | 0       | 0       | 0       | 4       | 13      | 20      | 10      | 5       | 1       | 3       | 0       | 0    | 57     |
| 6:00 PM  | 0      | 0       | 0       | 0       | 1       | 0       | 0       | 0       | 0       | 4       | 6       | 6       | 3       | 2       | 1       | 0       | 0    | 23     |
| 7:00 PM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 1       | 1       | 5       | 3       | 3       | 1       | 0       | 0       | 0       | 0    | 14     |
| 8:00 PM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 2       | 4       | 4       | 5       | 1       | 0       | 0       | 0    | 16     |
| 9:00 PM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 4       | 4       | 0       | 1       | 2       | 0       | 0    | 11     |
| 10:00 PM | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 1       | 2       | 2       | 1       | 1       | 0       | 0       | 0    | 7      |
| 11:00 PM | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 5       | 1       | 2       | 0       | 0       | 0       | 0       | 0    | 8      |
| Total    | 0      | 0       | 4       | 2       | 9       | 15      | 19      | 36      | 85      | 197     | 288     | 206     | 97      | 42      | 13      | 7       | 1    | 1,021  |
| Total    | 0.0%   | 0.0%    | 0.4%    | 0.2%    | 0.9%    | 1.5%    | 1.9%    | 3.5%    | 8.3%    | 19.3%   | 28.2%   | 20.2%   | 9.5%    | 4.1%    | 1.3%    | 0.7%    | 0.1% | 1,021  |

| Daily Percentile Speed   | Summary |     | Speed Stat           | istics      |     |
|--------------------------|---------|-----|----------------------|-------------|-----|
| 50th Percentile (Median) | 57.7    | mph | Mean (Average) Speed | 57.0        | mph |
| 85th Percentile          | 65.3    | mph | 10 mph Pace          | 53.6 - 63.6 | mph |
| 95th Percentile          | 71.1    | mph | Percent in Pace      | 51.8        | %   |

Date Range: 11/19/2024 to 11/19/2024

Site Code: 02



## Tuesday, November 19, 2024

#### Westbound

| Time     |        |         |         |         |         |         |         | Speed   | l Range | (mph)   |         |         |         |         |         |         |      | Total  |
|----------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|------|--------|
| Time     | 0 - 10 | 10 - 15 | 15 - 20 | 20 - 25 | 25 - 30 | 30 - 35 | 35 - 40 | 40 - 45 | 45 - 50 | 50 - 55 | 55 - 60 | 60 - 65 | 65 - 70 | 70 - 75 | 75 - 80 | 80 - 85 | 85 + | Volume |
| 12:00 AM | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 1    | 1      |
| 1:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 0      |
| 2:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 0      |
| 3:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 1       | 1       | 0       | 2       | 1       | 0       | 0       | 0    | 5      |
| 4:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 1       | 1       | 2       | 0       | 0       | 1       | 0       | 0       | 0    | 5      |
| 5:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 3       | 3       | 3       | 9       | 1       | 0       | 2       | 1    | 22     |
| 6:00 AM  | 0      | 0       | 0       | 0       | 1       | 0       | 0       | 0       | 1       | 0       | 6       | 2       | 6       | 1       | 0       | 0       | 0    | 17     |
| 7:00 AM  | 0      | 0       | 0       | 1       | 0       | 0       | 1       | 4       | 5       | 18      | 16      | 18      | 7       | 1       | 0       | 1       | 1    | 73     |
| 8:00 AM  | 0      | 0       | 0       | 0       | 0       | 1       | 0       | 1       | 2       | 11      | 19      | 16      | 8       | 6       | 1       | 0       | 0    | 65     |
| 9:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 4       | 18      | 21      | 22      | 8       | 5       | 0       | 0       | 1    | 79     |
| 10:00 AM | 0      | 0       | 0       | 0       | 0       | 0       | 1       | 4       | 10      | 12      | 29      | 17      | 10      | 1       | 1       | 0       | 0    | 85     |
| 11:00 AM | 0      | 0       | 0       | 0       | 0       | 1       | 1       | 5       | 6       | 17      | 18      | 19      | 5       | 0       | 0       | 0       | 0    | 72     |
| 12:00 PM | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 1       | 4       | 15      | 30      | 25      | 6       | 0       | 1       | 2       | 0    | 84     |
| 1:00 PM  | 0      | 3       | 1       | 0       | 0       | 0       | 0       | 1       | 5       | 9       | 23      | 17      | 5       | 1       | 2       | 0       | 0    | 67     |
| 2:00 PM  | 0      | 0       | 0       | 0       | 0       | 2       | 2       | 2       | 4       | 27      | 25      | 17      | 4       | 2       | 0       | 0       | 0    | 85     |
| 3:00 PM  | 0      | 0       | 0       | 1       | 1       | 1       | 2       | 5       | 15      | 32      | 38      | 27      | 10      | 10      | 0       | 2       | 3    | 147    |
| 4:00 PM  | 0      | 0       | 0       | 0       | 0       | 1       | 1       | 1       | 3       | 5       | 21      | 24      | 8       | 5       | 0       | 0       | 0    | 69     |
| 5:00 PM  | 0      | 0       | 0       | 0       | 0       | 2       | 1       | 0       | 4       | 6       | 8       | 10      | 6       | 2       | 1       | 0       | 0    | 40     |
| 6:00 PM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 1       | 7       | 3       | 1       | 0       | 0       | 1       | 0    | 13     |
| 7:00 PM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 1       | 2       | 2       | 1       | 0       | 0       | 0    | 6      |
| 8:00 PM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 1       | 0       | 5       | 0       | 0       | 0       | 0       | 0    | 6      |
| 9:00 PM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 5       | 0       | 0       | 0       | 0       | 0    | 5      |
| 10:00 PM | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 1       | 1       | 0       | 0       | 0    | 2      |
| 11:00 PM | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 1       | 1       | 0       | 0       | 0       | 0       | 0    | 2      |
| Total    | 0      | 3       | 1       | 2       | 2       | 8       | 9       | 24      | 64      | 177     | 269     | 233     | 98      | 39      | 6       | 8       | 7    | 950    |
|          | 0.0%   | 0.3%    | 0.1%    | 0.2%    | 0.2%    | 0.8%    | 0.9%    | 2.5%    | 6.7%    | 18.6%   | 28.3%   | 24.5%   | 10.3%   | 4.1%    | 0.6%    | 0.8%    | 0.7% |        |

| Daily Percentile Speed   | Summary |     | Speed Stat           | istics      |     |
|--------------------------|---------|-----|----------------------|-------------|-----|
| 50th Percentile (Median) | 58.0    | mph | Mean (Average) Speed | 58.2        | mph |
| 85th Percentile          | 65.9    | mph | 10 mph Pace          | 53.1 - 63.1 | mph |
| 95th Percentile          | 71.2    | mph | Percent in Pace      | 55.26       | %   |

Date Range: 11/19/2024 to 11/19/2024

Site Code: 02

# DATA SOLUTIONS

### **Total Study Average**

#### Eastbound

| Time     |        |         |         |         |         |         |         | Speed   | l Range | (mph)   |         |         |         |         |         |         |      | Total  |
|----------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|------|--------|
| Time     | 0 - 10 | 10 - 15 | 15 - 20 | 20 - 25 | 25 - 30 | 30 - 35 | 35 - 40 | 40 - 45 | 45 - 50 | 50 - 55 | 55 - 60 | 60 - 65 | 65 - 70 | 70 - 75 | 75 - 80 | 80 - 85 | 85 + | Volume |
| 12:00 AM | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 0      |
| 1:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 0      |
| 2:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 1       | 0       | 0       | 0    | 1      |
| 3:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 1       | 0       | 2       | 0       | 0       | 0       | 1       | 0       | 0    | 4      |
| 4:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 2       | 0       | 0       | 1       | 0       | 0       | 0    | 3      |
| 5:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 1       | 3       | 10      | 8       | 4       | 2       | 0       | 1       | 1    | 30     |
| 6:00 AM  | 0      | 0       | 0       | 0       | 2       | 3       | 2       | 2       | 7       | 18      | 23      | 25      | 20      | 12      | 2       | 3       | 0    | 119    |
| 7:00 AM  | 0      | 0       | 2       | 0       | 3       | 0       | 4       | 1       | 10      | 9       | 16      | 14      | 6       | 3       | 0       | 1       | 0    | 69     |
| 8:00 AM  | 0      | 0       | 0       | 0       | 0       | 1       | 2       | 4       | 6       | 16      | 19      | 11      | 2       | 4       | 1       | 0       | 0    | 66     |
| 9:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 2       | 2       | 6       | 17      | 20      | 14      | 4       | 0       | 0       | 0       | 0    | 65     |
| 10:00 AM | 0      | 0       | 0       | 0       | 1       | 1       | 2       | 4       | 14      | 21      | 18      | 11      | 4       | 0       | 0       | 0       | 0    | 76     |
| 11:00 AM | 0      | 0       | 1       | 1       | 0       | 0       | 1       | 1       | 6       | 18      | 32      | 11      | 3       | 3       | 0       | 0       | 0    | 77     |
| 12:00 PM | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 7       | 4       | 13      | 21      | 11      | 6       | 1       | 0       | 0       | 0    | 63     |
| 1:00 PM  | 0      | 0       | 0       | 0       | 0       | 2       | 2       | 1       | 7       | 16      | 21      | 24      | 4       | 1       | 1       | 0       | 0    | 79     |
| 2:00 PM  | 0      | 0       | 0       | 0       | 0       | 4       | 3       | 8       | 9       | 11      | 35      | 17      | 8       | 0       | 2       | 1       | 0    | 98     |
| 3:00 PM  | 0      | 0       | 1       | 1       | 1       | 4       | 1       | 2       | 8       | 21      | 18      | 13      | 8       | 2       | 0       | 0       | 0    | 80     |
| 4:00 PM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 3       | 1       | 4       | 11      | 16      | 13      | 6       | 0       | 1       | 0    | 55     |
| 5:00 PM  | 0      | 0       | 0       | 0       | 1       | 0       | 0       | 0       | 4       | 13      | 20      | 10      | 5       | 1       | 3       | 0       | 0    | 57     |
| 6:00 PM  | 0      | 0       | 0       | 0       | 1       | 0       | 0       | 0       | 0       | 4       | 6       | 6       | 3       | 2       | 1       | 0       | 0    | 23     |
| 7:00 PM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 1       | 1       | 5       | 3       | 3       | 1       | 0       | 0       | 0       | 0    | 14     |
| 8:00 PM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 2       | 4       | 4       | 5       | 1       | 0       | 0       | 0    | 16     |
| 9:00 PM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 4       | 4       | 0       | 1       | 2       | 0       | 0    | 11     |
| 10:00 PM | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 1       | 2       | 2       | 1       | 1       | 0       | 0       | 0    | 7      |
| 11:00 PM | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 5       | 1       | 2       | 0       | 0       | 0       | 0       | 0    | 8      |
| Total    | 0      | 0       | 4       | 2       | 9       | 15      | 19      | 36      | 85      | 197     | 288     | 206     | 97      | 42      | 13      | 7       | 1    | 1,021  |
|          | 0.0%   | 0.0%    | 0.4%    | 0.2%    | 0.9%    | 1.5%    | 1.9%    | 3.5%    | 8.3%    | 19.3%   | 28.2%   | 20.2%   | 9.5%    | 4.1%    | 1.3%    | 0.7%    | 0.1% |        |

Note: Average only condsidered on days with 24-hours of data.

| Total Study Percentile Spe | ed Summ | ary | Total Study Spee     | d Statistics |     |
|----------------------------|---------|-----|----------------------|--------------|-----|
| 50th Percentile (Median)   | 57.7    | mph | Mean (Average) Speed | 57.0         | mph |
| 85th Percentile            | 65.3    | mph | 10 mph Pace          | 53.6 - 63.6  | mph |
| 95th Percentile            | 71.1    | mph | Percent in Pace      | 51.8         | %   |

Date Range: 11/19/2024 to 11/19/2024

Site Code: 02

# DATA SOLUTIONS

### **Total Study Average**

#### Westbound

| Time     |        |         |         |         |         |         |         | Speed   | d Range | (mph)   |         |         |         |         |         |         |      | Total  |
|----------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|------|--------|
| Time     | 0 - 10 | 10 - 15 | 15 - 20 | 20 - 25 | 25 - 30 | 30 - 35 | 35 - 40 | 40 - 45 | 45 - 50 | 50 - 55 | 55 - 60 | 60 - 65 | 65 - 70 | 70 - 75 | 75 - 80 | 80 - 85 | 85 + | Volume |
| 12:00 AM | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 1    | 1      |
| 1:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 0      |
| 2:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 0      |
| 3:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 1       | 1       | 0       | 2       | 1       | 0       | 0       | 0    | 5      |
| 4:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 1       | 1       | 2       | 0       | 0       | 1       | 0       | 0       | 0    | 5      |
| 5:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 3       | 3       | 3       | 9       | 1       | 0       | 2       | 1    | 22     |
| 6:00 AM  | 0      | 0       | 0       | 0       | 1       | 0       | 0       | 0       | 1       | 0       | 6       | 2       | 6       | 1       | 0       | 0       | 0    | 17     |
| 7:00 AM  | 0      | 0       | 0       | 1       | 0       | 0       | 1       | 4       | 5       | 18      | 16      | 18      | 7       | 1       | 0       | 1       | 1    | 73     |
| 8:00 AM  | 0      | 0       | 0       | 0       | 0       | 1       | 0       | 1       | 2       | 11      | 19      | 16      | 8       | 6       | 1       | 0       | 0    | 65     |
| 9:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 4       | 18      | 21      | 22      | 8       | 5       | 0       | 0       | 1    | 79     |
| 10:00 AM | 0      | 0       | 0       | 0       | 0       | 0       | 1       | 4       | 10      | 12      | 29      | 17      | 10      | 1       | 1       | 0       | 0    | 85     |
| 11:00 AM | 0      | 0       | 0       | 0       | 0       | 1       | 1       | 5       | 6       | 17      | 18      | 19      | 5       | 0       | 0       | 0       | 0    | 72     |
| 12:00 PM | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 1       | 4       | 15      | 30      | 25      | 6       | 0       | 1       | 2       | 0    | 84     |
| 1:00 PM  | 0      | 3       | 1       | 0       | 0       | 0       | 0       | 1       | 5       | 9       | 23      | 17      | 5       | 1       | 2       | 0       | 0    | 67     |
| 2:00 PM  | 0      | 0       | 0       | 0       | 0       | 2       | 2       | 2       | 4       | 27      | 25      | 17      | 4       | 2       | 0       | 0       | 0    | 85     |
| 3:00 PM  | 0      | 0       | 0       | 1       | 1       | 1       | 2       | 5       | 15      | 32      | 38      | 27      | 10      | 10      | 0       | 2       | 3    | 147    |
| 4:00 PM  | 0      | 0       | 0       | 0       | 0       | 1       | 1       | 1       | 3       | 5       | 21      | 24      | 8       | 5       | 0       | 0       | 0    | 69     |
| 5:00 PM  | 0      | 0       | 0       | 0       | 0       | 2       | 1       | 0       | 4       | 6       | 8       | 10      | 6       | 2       | 1       | 0       | 0    | 40     |
| 6:00 PM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 1       | 7       | 3       | 1       | 0       | 0       | 1       | 0    | 13     |
| 7:00 PM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 1       | 2       | 2       | 1       | 0       | 0       | 0    | 6      |
| 8:00 PM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 1       | 0       | 5       | 0       | 0       | 0       | 0       | 0    | 6      |
| 9:00 PM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 5       | 0       | 0       | 0       | 0       | 0    | 5      |
| 10:00 PM | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 1       | 1       | 0       | 0       | 0    | 2      |
| 11:00 PM | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 1       | 1       | 0       | 0       | 0       | 0       | 0    | 2      |
| Total    | 0      | 3       | 1       | 2       | 2       | 8       | 9       | 24      | 64      | 177     | 269     | 233     | 98      | 39      | 6       | 8       | 7    | 950    |
| Total    | 0.0%   | 0.3%    | 0.1%    | 0.2%    | 0.2%    | 0.8%    | 0.9%    | 2.5%    | 6.7%    | 18.6%   | 28.3%   | 24.5%   | 10.3%   | 4.1%    | 0.6%    | 0.8%    | 0.7% | 330    |

Note: Average only condsidered on days with 24-hours of data.

| Total Study Percentile Spe | ed Summary | /   | Total Study Speed    | d Statistics |     |
|----------------------------|------------|-----|----------------------|--------------|-----|
| 50th Percentile (Median)   | 58.0 m     | nph | Mean (Average) Speed | 58.2         | mph |
| 85th Percentile            | 65.9 m     | nph | 10 mph Pace          | 53.1 - 63.1  | mph |
| 95th Percentile            | 71.2 m     | nph | Percent in Pace      | 55.3         | %   |



Location: E Harney Ln, Between Jack Tone Rd & 17720 E Harney Ln Dwy Date Range: 11/19/2024 - 11/25/2024 Site Code: 02

| Time     | T.    | Tuesday<br>11/19/2024 | 4     | × + | Wednesday<br>11/20/2024 | Ş 4   | ± 5 | Thursday<br>11/21/2024 |       | Fri<br>11/22 | Friday<br>11/22/2024 |    | Saturday<br>11/23/2024 | lay<br>024 | ., <del>E</del> | Sunday<br>11/24/2024 | 4     | Mo<br>11/2 | Monday<br>11/25/2024 | Mid   | -Week   | Mid-Week Average |
|----------|-------|-----------------------|-------|-----|-------------------------|-------|-----|------------------------|-------|--------------|----------------------|----|------------------------|------------|-----------------|----------------------|-------|------------|----------------------|-------|---------|------------------|
|          | 83    | WB                    | Total | 8   | WB                      | Total | 8   | WB                     | Total | EB           | WB Total             | al | WB                     | Total      | 83              | WB                   | Total | EB         | WB Total             | E     | WB      | Total            |
| 12:00 AM | 0     | -                     | -     | ,   | ,                       | ,     |     | ,                      | ,     | ,            |                      | _  |                        | ,          | ,               |                      | ,     |            |                      | 0     | ~       | -                |
| 1:00 AM  | 0     | 0                     | 0     | 1   | ,                       | 1     | 1   | 1                      | - 1   | 1            | 1                    | 1  | 1                      |            | ,               |                      | 1     | 1          | 1                    | 0     | 0       | 0                |
| 2:00 AM  | -     | 0                     | -     | ,   | ,                       | ,     | ,   | ,                      | ,     |              | '                    | '  | ,                      | 1          | ,               | ,                    | ,     |            |                      | -     | 0       | -                |
| 3:00 AM  | 4     | 2                     | 6     |     |                         |       | 1   | 1                      | - 1   |              | 1                    | 1  | 1                      | 1          | 1               |                      | 1     |            | 1                    | 4     | 2       | 6                |
| 4:00 AM  | က     | 2                     | 00    |     |                         |       |     | ,                      | ,     |              | '                    | '  |                        | ,          | ,               | ,                    | ,     |            |                      | ю     | 2       | œ                |
| 5:00 AM  | 30    | 22                    | 52    |     | ,                       |       |     | 1                      | 1     | -            | 1                    | 1  | 1                      | 1          |                 |                      | 1     |            | 1                    | 30    | 22      | 52               |
| 6:00 AM  | 119   | 17                    | 136   | ,   | ,                       | ,     | ,   | ,                      | ,     |              |                      | '  | ,                      | 1          | ,               | ,                    | ,     |            |                      | 119   | 17      | 136              |
| 7:00 AM  | 69    | 73                    | 142   |     |                         | 1     | 1   | 1                      | - 1   | 1            | 1                    | 1  | 1                      |            | ,               |                      | 1     |            | 1                    | 69    | 73      | 142              |
| 8:00 AM  | 99    | 65                    | 131   | ,   | ,                       | ,     | ,   | ,                      | ,     |              |                      | '  | ,                      | ,          | ,               | ,                    | ,     |            |                      | 99    | 65      | 131              |
| 9:00 AM  | 65    | 62                    | 144   |     | ,                       |       |     |                        | - 1   |              | 1                    | 1  | 1                      | 1          | ,               |                      | ,     |            | 1                    | 65    | 79      | 44               |
| 10:00 AM | 92    | 85                    | 161   | ,   | ,                       | ,     | ,   | ,                      | ,     |              | 1                    | 1  | ,                      | 1          | ,               | ,                    | ,     |            |                      | 9/    | 85      | 161              |
| 11:00 AM | 77    | 72                    | 149   |     | 1                       | 1     | 1   | 1                      | 1     | 1            | 1                    | 1  | 1                      |            | 1               |                      | 1     |            | 1                    | 77    | 72      | 149              |
| 12:00 PM | 63    | 84                    | 147   | ,   | ,                       | ,     | ,   | ,                      | ,     | ,            | -                    | '  | 1                      | _          | ı               | ,                    | ,     | ,          | -                    |       |         | 147              |
| 1:00 PM  | 79    | 29                    | 146   |     | ,                       |       | ,   | 1                      |       |              | 1                    | 1  | 1                      | 1          | ,               |                      | ,     |            | 1                    | 79    | 29      | 146              |
| 2:00 PM  | 86    | 85                    | 183   | ,   |                         | ,     | ,   | ,                      | ,     |              |                      | '  | ,                      |            | ,               | ,                    | ,     | ,          | 1                    | 98    | 82      | 183              |
| 3:00 PM  | 80    | 147                   | 227   |     |                         |       | 1   | 1                      | 1     |              |                      | 1  | 1                      |            | 1               |                      | 1     |            | 1                    | 80    | 147     | 227              |
| 4:00 PM  | 22    | 69                    | 124   | ,   |                         |       | ,   | ,                      | ,     |              |                      | '  | ,                      | ,          | ,               | ,                    | ,     |            |                      | 22    | 69      | 124              |
| 5:00 PM  | 22    | 40                    | 97    |     |                         |       | ı   | 1                      | 1     |              | 1                    | 1  | 1                      | 1          | ,               | ı                    | ,     | 1          | 1                    | 57    | 40      | 26               |
| 6:00 PM  | 23    | 13                    | 36    |     | ,                       | 1     |     | ,                      | ,     | ,            | 1                    | 1  | 1                      | 1          | 1               | ,                    | 1     | ,          | 1                    | 23    | 13      | 36               |
| 7:00 PM  | 14    | 9                     | 20    | ı   | 1                       | ı     | 1   | ı                      | 1     | 1            | 1                    | 1  | 1                      | 1          | 1               | 1                    | 1     | 1          | 1                    | 14    | 9       | 20               |
| 8:00 PM  | 16    | 9                     | 22    |     |                         |       |     | ,                      | ,     |              | 1                    | -  | 1                      | 1          | ,               | ,                    | ,     |            | 1                    | 16    | 9       | 22               |
| 9:00 PM  | 11    | 2                     | 16    | ı   | ,                       | 1     |     | 1                      | 1     | 1            | 1                    | 1  | 1                      | 1          | 1               | ı                    | 1     | 1          | 1                    | 1     | 2       | 16               |
| 10:00 PM | 7     | 2                     | 0     |     | ,                       | 1     |     | ,                      |       |              | 1                    | 1  | 1                      | ı          | 1               | ,                    | 1     |            | 1                    | 7     | 2       | 6                |
| 11:00 PM | œ     | 2                     | 10    | ı   |                         |       | ,   | 1                      |       |              | 1                    | 1  | 1                      | 1          |                 | ı                    |       | 1          | 1                    | ∞     | 2       | 10               |
| Total    |       | 950                   | 1,971 |     |                         |       |     |                        |       |              |                      | •  |                        |            |                 |                      |       |            |                      | 1,021 |         | 1,971            |
| Percent  |       | 48%                   |       |     |                         |       |     |                        |       |              |                      | •  |                        |            |                 |                      |       |            |                      | 25%   | 48%     |                  |
| AM Peak  | 06:00 | 10:00                 | 10:00 |     |                         |       |     |                        |       |              |                      |    |                        |            |                 |                      |       |            |                      | 06:00 | 0 10:00 | 16.10            |
| PM Peak  | 1_    | 15:00                 | 15:00 |     | ,                       | ,     |     | ,                      |       | 1            | 1                    | ,  | 1                      | ı          |                 |                      |       | 1          |                      | 14:00 | -       | 1                |
| Vol.     |       | 147                   | 227   |     |                         |       |     | ı                      | 1     | ı            | 1                    | 1  | 1                      |            | t               |                      | 1     | 1          |                      | 98    |         | 227              |

1. Mid-week average includes data between Tuesday and Thursday.

Project Manager: (415) 310-6469 project.manager.ca@idaxdata.com





Count Direction: Northbound / Southbound

Date Range: 11/19/2024 to 11/19/2024

Site Code: 04

| Direction    |      |                  |       |      |      | FHWA Ve | FHWA Vehicle Classification | ification |      |      |      |      |      | Total |
|--------------|------|------------------|-------|------|------|---------|-----------------------------|-----------|------|------|------|------|------|-------|
|              | 1    | 2                | 3     | 4    | 5    | 9       | 7                           | 8         | 6    | 10   | - 11 | 12   | 13   |       |
| Adh.         | 2    | 87               | 248   | 7    | 40   | 36      | 0                           | _         | 18   | 0    | 0    | 0    | 0    | 420   |
|              | 0.5% | 0.5% 19.8%       | %9.99 | 1.6% | 9.1% | 8.2%    | %0.0                        | 0.5%      | 4.1% | %0.0 | %0.0 | %0.0 | %0.0 |       |
| Pariodd+1100 | 2    | 98               | 249   | 6    | 37   | 33      | 0                           | _         | 15   | 1    | 0    | 0    | 0    | 422   |
| Southbound   | 0.5% | 19.9% 57.5%      | 27.5% | 2.1% | 8.5% | %9'.    | %0.0                        | 0.2%      | 3.5% | 0.2% | %0.0 | %0.0 | 0.0% | 455   |
| Totol        | 4    | 173              | 497   | 16   | 77   | 69      | 0                           | 2         | 33   | 1    | 0    | 0    | 0    | 070   |
| lotal        | 0.5% | 0.5% 19.8% 57.0% | 27.0% | 1.8% | 8.8% | 7.9%    | %0.0                        | 0.5%      | 3.8% | 0.1% | %0.0 | %0.0 | %0.0 | 7/0   |

| FHWA Vehicle Classification                              |                                                    |
|----------------------------------------------------------|----------------------------------------------------|
| Class 1 - Motorcycles                                    | Class 8 - Four or Fewer Axle Single-Trailer Trucks |
| Class 2 - Passenger Cars                                 | Class 9 - Five-Axle Single-Trailer Trucks          |
| Class 3 - Other Two-Axle, Four-Tire Single Unit Vehicles | Class 10 - Six or More Axle Single-Trailer Trucks  |
| Class 4 - Buses                                          | Class 11 - Five or fewer Axle Multi-Trailer Trucks |
| Class 5 - Two-Axle, Six-Tire, Single-Unit Trucks         | Class 12 - Six-Axle Multi-Trailer Trucks           |
| Class 6 - Three-Axle Single-Unit Trucks                  | Class 13 - Seven or More Axle Multi-Trailer Trucks |
| Class 7 - Four or More Axle Single-Unit Trucks           |                                                    |





17720 E Harney Ln Dwy, S/O E Harney Ln 11/19/2024 to 11/19/2024 Location: Date Range: Site Code:

Tuesday, November 19, 2024 Northbound

| Timo                                      |      |       |       |      |      | FHWA Ve | FHWA Vehicle Classification | sification |      |      |      |      |      | Total  |
|-------------------------------------------|------|-------|-------|------|------|---------|-----------------------------|------------|------|------|------|------|------|--------|
| D<br>==================================== | 1    | 2     | 3     | 4    | 2    | 9       | 7                           | 8          | 6    | 10   | 11   | 12   | 13   | Volume |
| 12:00 AM                                  | 0    | 0     | 0     | 0    | 0    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 0      |
| 1:00 AM                                   | 0    | 0     | 0     | 0    | 0    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 0      |
| 2:00 AM                                   | 0    | 0     | 0     | 0    | 0    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 0      |
| 3:00 AM                                   | 0    | 0     | 0     | 0    | 0    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 0      |
| 4:00 AM                                   | 0    | 0     | 0     | 0    | 0    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 0      |
| 5:00 AM                                   | 0    | 0     | 0     | 0    | 0    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 0      |
| 6:00 AM                                   | 0    | 0     | 0     | 0    | 0    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 0      |
| 7:00 AM                                   | 0    | 2     | 17    | 0    | 7    | 4       | 0                           | 0          | _    | 0    | 0    | 0    | 0    | 59     |
| 8:00 AM                                   | -    | _     | 20    | 0    | 4    | 2       | 0                           | 0          | 2    | 0    | 0    | 0    | 0    | 30     |
| 9:00 AM                                   | _    | 10    | 21    | 2    | _    | 9       | 0                           | 0          | 2    | 0    | 0    | 0    | 0    | 46     |
| 10:00 AM                                  | 0    | 6     | 28    | 0    | 7    | 9       | 0                           | 0          | 2    | 0    | 0    | 0    | 0    | 52     |
| 11:00 AM                                  | 0    | 10    | 28    | ~    | က    | 4       | 0                           | 0          | _    | 0    | 0    | 0    | 0    | 47     |
| 12:00 PM                                  | 0    | က     | 40    | 0    | 9    | က       | 0                           | 0          | က    | 0    | 0    | 0    | 0    | 22     |
| 1:00 PM                                   | 0    | 80    | 22    | ~    | 2    | 2       | 0                           | 0          | 2    | 0    | 0    | 0    | 0    | 43     |
| 2:00 PM                                   | 0    | 7     | 26    | _    | 4    | 2       | 0                           | _          | _    | 0    | 0    | 0    | 0    | 45     |
| 3:00 PM                                   | 0    | 19    | 39    | 2    | 2    | _       | 0                           | 0          | _    | 0    | 0    | 0    | 0    | 29     |
| 4:00 PM                                   | 0    | 8     | 2     | 0    | က    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 13     |
| 5:00 PM                                   | 0    | 7     | 2     | 0    | 0    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 12     |
| 6:00 PM                                   | 0    | 0     | 0     | 0    | 0    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 0      |
| 7:00 PM                                   | 0    | 0     | 0     | 0    | 0    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 0      |
| 8:00 PM                                   | 0    | 0     | 0     | 0    | 0    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 0      |
| 9:00 PM                                   | 0    | 0     | 0     | 0    | 0    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 0      |
| 10:00 PM                                  | 0    | 0     | 0     | 0    | 0    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 0      |
| 11:00 PM                                  | 0    | 0     | 0     | 0    | 0    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 0      |
| Total                                     | 2    | 87    | 248   | 7    | 40   | 36      | 0                           | 1          | 18   | 0    | 0    | 0    | 0    | 430    |
|                                           | 0.5% | 19.8% | 26.5% | 1.6% | 9.1% | 8.2%    | %0.0                        | 0.2%       | 4.1% | %0.0 | %0.0 | 0.0% | %0.0 | 624    |





17720 E Harney Ln Dwy, S/O E Harney Ln 11/19/2024 to 11/19/2024 9 Date Range: Location:

Site Code:

Tuesday, November 19, 2024 Southbound

Volume 25 40 43 48 46 433 42 42 47 33 **%0.0** 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 %0.0 000000000000000 **%0.0** 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.2% 9 0 0 0 3.5% 15 0 0 0 0 0 - 2 4 7000 00000000 6 FHWA Vehicle Classification 0.2% **%0.0** 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 **%9**′.2 33 0 0 0 0 0 0 0 0 8 8 8 ω N 4 0 0 0 0 0 LO 0 7 0 6 57.5% 17 25 24 24 30 37 27 27 23 36 0 0 0 0 0 0 0 က 0 0 0 0 0 8 19.9% 0 0 0 0 1 2 1 2 7 ω π 86 4 2 5 **%**9.0 8 70000700007 000000000 0 Time Total 10:00 AM 11:00 AM 12:00 PM 2:00 AM 9:00 AM 2:00 PM 4:00 PM 10:00 PM 1:00 PM 2:00 AM 8:00 AM 1:00 PM 3:00 PM 5:00 PM 6:00 PM 8:00 PM 9:00 PM :00 AM 3:00 AM 4:00 AM 5:00 AM 6:00 AM 7:00 AM 7:00 PM





DATA SOLUTIONS

Location: 17720 E Harney Ln Dw. Date Range: 11/19/2024 to 11/19/202

Site Code: 04

Total Study Average Northbound

| Ë        |      |          |       |      |      | FHWA Ve | FHWA Vehicle Classification | sification |      |      |      |      |      | Total  |
|----------|------|----------|-------|------|------|---------|-----------------------------|------------|------|------|------|------|------|--------|
| allile   | 1    | 2        | 3     | 4    | 2    | 9       |                             | 8          | 6    | 10   | 11   | 12   | 13   | Volume |
| 12:00 AM | 0    | 0        | 0     | 0    | 0    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 0      |
| 1:00 AM  | 0    | 0        | 0     | 0    | 0    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 0      |
| 2:00 AM  | 0    | 0        | 0     | 0    | 0    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 0      |
| 3:00 AM  | 0    | 0        | 0     | 0    | 0    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 0      |
| 4:00 AM  | 0    | 0        | 0     | 0    | 0    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 0      |
| 5:00 AM  | 0    | 0        | 0     | 0    | 0    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 0      |
| 6:00 AM  | 0    | 0        | 0     | 0    | 0    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 0      |
| 7:00 AM  | 0    | 2        | 17    | 0    | 2    | 4       | 0                           | 0          | ~    | 0    | 0    | 0    | 0    | 29     |
| 8:00 AM  | ~    | _        | 20    | 0    | 4    | 2       | 0                           | 0          | 2    | 0    | 0    | 0    | 0    | 30     |
| 9:00 AM  | ~    | 10       | 21    | 2    | _    | 9       | 0                           | 0          | 2    | 0    | 0    | 0    | 0    | 46     |
| 10:00 AM | 0    | <b>o</b> | 28    | 0    | 7    | 9       | 0                           | 0          | 2    | 0    | 0    | 0    | 0    | 52     |
| 11:00 AM | 0    | 10       | 28    | _    | က    | 4       | 0                           | 0          | _    | 0    | 0    | 0    | 0    | 47     |
| 12:00 PM | 0    | က        | 40    | 0    | 9    | 3       | 0                           | 0          | က    | 0    | 0    | 0    | 0    | 22     |
| 1:00 PM  | 0    | 80       | 22    | _    | 2    | 2       | 0                           | 0          | 2    | 0    | 0    | 0    | 0    | 43     |
| 2:00 PM  | 0    | 7        | 26    | _    | 4    | 2       | 0                           | _          | _    | 0    | 0    | 0    | 0    | 45     |
| 3:00 PM  | 0    | 19       | 39    | 2    | 2    | ~       | 0                           | 0          | _    | 0    | 0    | 0    | 0    | 29     |
| 4:00 PM  | 0    | œ        | 2     | 0    | က    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 13     |
| 5:00 PM  | 0    | 7        | 2     | 0    | 0    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 12     |
| 6:00 PM  | 0    | 0        | 0     | 0    | 0    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 0      |
| 7:00 PM  | 0    | 0        | 0     | 0    | 0    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 0      |
| 8:00 PM  | 0    | 0        | 0     | 0    | 0    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 0      |
| 9:00 PM  | 0    | 0        | 0     | 0    | 0    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 0      |
| 10:00 PM | 0    | 0        | 0     | 0    | 0    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 0      |
| 11:00 PM | 0    | 0        | 0     | 0    | 0    | 0       | 0                           | 0          | 0    | 0    | 0    | 0    | 0    | 0      |
| Total    | 2    | 87       | 248   | 7    | 40   | 36      | 0                           | 1          | 18   | 0    | 0    | 0    | 0    | 730    |
| - 018    | 0.5% | 19.8%    | 26.5% | 1.6% | 9.1% | 8.2%    | %0.0                        | 0.2%       | 4.1% | %0.0 | %0.0 | %0.0 | 0.0% | 5      |

Note: Average only condsidered on days with 24-hours of data.





Location: 17720 E Harney Ln Dwy, S/O E Harney Ln Date Range: 11/19/2024 to 11/19/2024

Site Code: 04

Total Study Average Southbound

|          |      |       |       |      |      | ELIWA VO | EHWA Webiele Classification | o ification |      |      |      |      |      | Total  |
|----------|------|-------|-------|------|------|----------|-----------------------------|-------------|------|------|------|------|------|--------|
| Time     |      |       |       |      |      | DA YALL  | IIICIE CIAS                 | SIIICALIOII | Î    |      |      |      |      | - 01al |
|          | 1    | 2     | 3     | 4    | 2    | 9        | 7                           | 8           | 6    | 10   | 1    | 12   | 13   | Volume |
| 12:00 AM | 0    | 0     | 0     | 0    | 0    | 0        | 0                           | 0           | 0    | 0    | 0    | 0    | 0    | 0      |
| 1:00 AM  | 0    | 0     | 0     | 0    | 0    | 0        | 0                           | 0           | 0    | 0    | 0    | 0    | 0    | 0      |
| 2:00 AM  | 0    | 0     | 0     | 0    | 0    | 0        | 0                           | 0           | 0    | 0    | 0    | 0    | 0    | 0      |
| 3:00 AM  | 0    | 0     | 0     | _    | 0    | 0        | 0                           | 0           | 0    | 0    | 0    | 0    | 0    | -      |
| 4:00 AM  | 0    | 0     | 0     | 0    | 0    | 0        | 0                           | 0           | 0    | 0    | 0    | 0    | 0    | 0      |
| 5:00 AM  | 0    | 9     | _     | 0    | 0    | 0        | 0                           | 0           | 0    | 0    | 0    | 0    | 0    | 7      |
| 6:00 AM  | _    | 12    | ∞     | 0    | 0    | က        | 0                           | 0           | ~    | 0    | 0    | 0    | 0    | 25     |
| 7:00 AM  | 0    | 13    | 17    | 0    | 2    | က        | 0                           | 0           | 2    | 0    | 0    | 0    | 0    | 40     |
| 8:00 AM  | 0    | 7     | 25    | 0    | က    | 2        | 0                           | ~           | 4    | 0    | 0    | 0    | 0    | 42     |
| 9:00 AM  | 0    | ∞     | 24    | 2    | 4    | 4        | 0                           | 0           | _    | 0    | 0    | 0    | 0    | 43     |
| 10:00 AM | 0    | 13    | 30    | _    | 2    | 7        | 0                           | 0           | 2    | _    | 0    | 0    | 0    | 29     |
| 11:00 AM | 0    | 4     | 37    | 0    | က    | 2        | 0                           | 0           | 2    | 0    | 0    | 0    | 0    | 48     |
| 12:00 PM | _    | 7     | 27    | 2    | 80   | 4        | 0                           | 0           | 2    | 0    | 0    | 0    | 0    | 46     |
| 1:00 PM  | 0    | 13    | 23    | 0    | က    | က        | 0                           | 0           | 0    | 0    | 0    | 0    | 0    | 42     |
| 2:00 PM  | 0    | 4     | 36    | _    | 2    | က        | 0                           | 0           | _    | 0    | 0    | 0    | 0    | 47     |
| 3:00 PM  | 0    | 4     | 21    | 2    | 4    | 2        | 0                           | 0           | 0    | 0    | 0    | 0    | 0    | 33     |
| 4:00 PM  | 0    | 0     | 0     | 0    | 0    | 0        | 0                           | 0           | 0    | 0    | 0    | 0    | 0    | 0      |
| 5:00 PM  | 0    | 0     | 0     | 0    | 0    | 0        | 0                           | 0           | 0    | 0    | 0    | 0    | 0    | 0      |
| 6:00 PM  | 0    | 0     | 0     | 0    | 0    | 0        | 0                           | 0           | 0    | 0    | 0    | 0    | 0    | 0      |
| 7:00 PM  | 0    | 0     | 0     | 0    | 0    | 0        | 0                           | 0           | 0    | 0    | 0    | 0    | 0    | 0      |
| 8:00 PM  | 0    | 0     | 0     | 0    | 0    | 0        | 0                           | 0           | 0    | 0    | 0    | 0    | 0    | 0      |
| 9:00 PM  | 0    | 0     | 0     | 0    | 0    | 0        | 0                           | 0           | 0    | 0    | 0    | 0    | 0    | 0      |
| 10:00 PM | 0    | 0     | 0     | 0    | 0    | 0        | 0                           | 0           | 0    | 0    | 0    | 0    | 0    | 0      |
| 11:00 PM | 0    | 0     | 0     | 0    | 0    | 0        | 0                           | 0           | 0    | 0    | 0    | 0    | 0    | 0      |
| Total    | 2    | 86    | 249   | 6    | 37   | 33       | 0                           | 1           | 15   | 1    | 0    | 0    | 0    | 733    |
|          | 0.5% | 19.9% | 27.5% | 2.1% | 8.5% | %9.7     | 0.0%                        | 0.2%        | 3.5% | 0.5% | %0.0 | %0.0 | 0.0% | 2      |

Note: Average only condsidered on days with 24-hours of data.

Project Manager: (415) 310-6469 project.manager.ca@idaxdata.com

# Vehicle Speed Report Summary



Location: 17720 E Harney Ln Dwy, S/O E Harney Ln

Direction: Northbound / Southbound

Date Range: 11/19/2024 to 11/19/2024

Site Code: 04

| Direction  |        |         |         |         |         |         |         | Speed   | d Range | (mph)   |         |         |         |         |         |         |      | Total<br>Volume |
|------------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|------|-----------------|
|            | 0 - 10 | 10 - 15 | 15 - 20 | 20 - 25 | 25 - 30 | 30 - 35 | 35 - 40 | 40 - 45 | 45 - 50 | 50 - 55 | 55 - 60 | 60 - 65 | 65 - 70 | 70 - 75 | 75 - 80 | 80 - 85 | 85 + | Volume          |
| Northbound | 1      | 6       | 13      | 70      | 136     | 132     | 75      | 6       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 439             |
| Northbound | 0.2%   | 1.4%    | 3.0%    | 15.9%   | 31.0%   | 30.1%   | 17.1%   | 1.4%    | 0.0%    | 0.0%    | 0.0%    | 0.0%    | 0.0%    | 0.0%    | 0.0%    | 0.0%    | 0.0% | 433             |
| Southbound | 2      | 8       | 30      | 105     | 169     | 88      | 24      | 5       | 1       | 1       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 433             |
| Southbound | 0.5%   | 1.8%    | 6.9%    | 24.2%   | 39.0%   | 20.3%   | 5.5%    | 1.2%    | 0.2%    | 0.2%    | 0.0%    | 0.0%    | 0.0%    | 0.0%    | 0.0%    | 0.0%    | 0.0% | 455             |
| Total      | 3      | 14      | 43      | 175     | 305     | 220     | 99      | 11      | 1       | 1       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 872             |
| Total      | 0.3%   | 1.6%    | 4.9%    | 20.1%   | 35.0%   | 25.2%   | 11.4%   | 1.3%    | 0.1%    | 0.1%    | 0.0%    | 0.0%    | 0.0%    | 0.0%    | 0.0%    | 0.0%    | 0.0% | 072             |

| Total Study Percentile Speed | Summ | ary | Total Study Spee     | d Statistics |     |
|------------------------------|------|-----|----------------------|--------------|-----|
| Northbound                   |      |     | Northbou             | ınd          |     |
| 50th Percentile (Median)     | 29.8 | mph | Mean (Average) Speed | 29.5         | mph |
| 85th Percentile              | 35.6 | mph | 10 mph Pace          | 23.4 - 33.4  | mph |
| 95th Percentile              | 38.4 | mph | Percent in Pace      | 64.0         | %   |
| Southbound                   |      |     | Southbou             | ınd          |     |
| 50th Percentile (Median)     | 27.0 | mph | Mean (Average) Speed | 27.0         | mph |
| 85th Percentile              | 32.6 | mph | 10 mph Pace          | 21.1 - 31.1  | mph |
| 95th Percentile              | 36.4 | mph | Percent in Pace      | 66.1         | %   |

Date Range: 11/19/2024 to 11/19/2024

Site Code: 04



# Tuesday, November 19, 2024

## Northbound

| Time     |        |         |         |         |         |         |         | Spee    | d Range | (mph)   |         |         |         |         |         |         |      | Total  |
|----------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|------|--------|
| Time     | 0 - 10 | 10 - 15 | 15 - 20 | 20 - 25 | 25 - 30 | 30 - 35 | 35 - 40 | 40 - 45 | 45 - 50 | 50 - 55 | 55 - 60 | 60 - 65 | 65 - 70 | 70 - 75 | 75 - 80 | 80 - 85 | 85 + | Volume |
| 12:00 AM | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 0      |
| 1:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 0      |
| 2:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 0      |
| 3:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 0      |
| 4:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 0      |
| 5:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 0      |
| 6:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 0      |
| 7:00 AM  | 0      | 0       | 0       | 5       | 10      | 8       | 6       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 29     |
| 8:00 AM  | 1      | 1       | 0       | 6       | 7       | 11      | 4       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 30     |
| 9:00 AM  | 0      | 0       | 1       | 7       | 15      | 16      | 6       | 1       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 46     |
| 10:00 AM | 0      | 1       | 1       | 9       | 15      | 19      | 7       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 52     |
| 11:00 AM | 0      | 1       | 1       | 9       | 17      | 14      | 5       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 47     |
| 12:00 PM | 0      | 0       | 4       | 5       | 17      | 19      | 8       | 2       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 55     |
| 1:00 PM  | 0      | 0       | 3       | 10      | 13      | 11      | 5       | 1       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 43     |
| 2:00 PM  | 0      | 2       | 2       | 9       | 14      | 9       | 8       | 1       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 45     |
| 3:00 PM  | 0      | 0       | 0       | 8       | 23      | 20      | 15      | 1       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 67     |
| 4:00 PM  | 0      | 0       | 1       | 2       | 2       | 3       | 5       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 13     |
| 5:00 PM  | 0      | 1       | 0       | 0       | 3       | 2       | 6       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 12     |
| 6:00 PM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 0      |
| 7:00 PM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 0      |
| 8:00 PM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 0      |
| 9:00 PM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 0      |
| 10:00 PM | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 0      |
| 11:00 PM | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 0      |
| Total    | 1      | 6       | 13      | 70      | 136     | 132     | 75      | 6       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 439    |
| lotai    | 0.2%   | 1.4%    | 3.0%    | 15.9%   | 31.0%   | 30.1%   | 17.1%   | 1.4%    | 0.0%    | 0.0%    | 0.0%    | 0.0%    | 0.0%    | 0.0%    | 0.0%    | 0.0%    | 0.0% | 400    |

| Daily Percentile Speed   | Summary |     | Speed Stat           | istics      |     |
|--------------------------|---------|-----|----------------------|-------------|-----|
| 50th Percentile (Median) | 29.8    | mph | Mean (Average) Speed | 29.5        | mph |
| 85th Percentile          | 35.6    | mph | 10 mph Pace          | 23.4 - 33.4 | mph |
| 95th Percentile          | 38.4    | mph | Percent in Pace      | 64.0        | %   |

Date Range: 11/19/2024 to 11/19/2024

Site Code: 04



# Tuesday, November 19, 2024

## Southbound

| Time     |        |         |         |         |         |         |         | Spee    | d Range | (mph)   |         |         |         |         |         |         |      | Total  |
|----------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|------|--------|
| Time     | 0 - 10 | 10 - 15 | 15 - 20 | 20 - 25 | 25 - 30 | 30 - 35 | 35 - 40 | 40 - 45 | 45 - 50 | 50 - 55 | 55 - 60 | 60 - 65 | 65 - 70 | 70 - 75 | 75 - 80 | 80 - 85 | 85 + | Volume |
| 12:00 AM | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 0      |
| 1:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 0      |
| 2:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 0      |
| 3:00 AM  | 0      | 1       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 1      |
| 4:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 0      |
| 5:00 AM  | 1      | 1       | 1       | 0       | 2       | 1       | 0       | 0       | 1       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 7      |
| 6:00 AM  | 0      | 4       | 2       | 0       | 7       | 10      | 0       | 2       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 25     |
| 7:00 AM  | 0      | 1       | 1       | 4       | 15      | 13      | 3       | 2       | 0       | 1       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 40     |
| 8:00 AM  | 0      | 0       | 4       | 11      | 16      | 10      | 0       | 1       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 42     |
| 9:00 AM  | 0      | 1       | 0       | 11      | 20      | 6       | 5       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 43     |
| 10:00 AM | 0      | 0       | 6       | 22      | 25      | 5       | 1       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 59     |
| 11:00 AM | 0      | 0       | 5       | 12      | 20      | 8       | 3       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 48     |
| 12:00 PM | 0      | 0       | 5       | 11      | 21      | 5       | 4       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 46     |
| 1:00 PM  | 0      | 0       | 2       | 11      | 17      | 11      | 1       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 42     |
| 2:00 PM  | 1      | 0       | 3       | 14      | 12      | 12      | 5       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 47     |
| 3:00 PM  | 0      | 0       | 1       | 9       | 14      | 7       | 2       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 33     |
| 4:00 PM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 0      |
| 5:00 PM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 0      |
| 6:00 PM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 0      |
| 7:00 PM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 0      |
| 8:00 PM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 0      |
| 9:00 PM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 0      |
| 10:00 PM | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 0      |
| 11:00 PM | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 0      |
| Total    | 2      | 8       | 30      | 105     | 169     | 88      | 24      | 5       | 1       | 1       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 433    |
| Total    | 0.5%   | 1.8%    | 6.9%    | 24.2%   | 39.0%   | 20.3%   | 5.5%    | 1.2%    | 0.2%    | 0.2%    | 0.0%    | 0.0%    | 0.0%    | 0.0%    | 0.0%    | 0.0%    | 0.0% | 400    |

| Daily Percentile Speed   | Summary |     | Speed Stat           | istics      |     |
|--------------------------|---------|-----|----------------------|-------------|-----|
| 50th Percentile (Median) | 27.0    | mph | Mean (Average) Speed | 27          | mph |
| 85th Percentile          | 32.6    | mph | 10 mph Pace          | 21.1 - 31.1 | mph |
| 95th Percentile          | 36.4    | mph | Percent in Pace      | 66.05       | %   |

Date Range: 11/19/2024 to 11/19/2024

Site Code: 04

# DATA SOLUTIONS

# **Total Study Average**

# Northbound

| Time     |        |         |         |         |         |         |         | Spee    | d Range | (mph)   |         |         |         |         |         |         |      | Total  |
|----------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|------|--------|
| Time     | 0 - 10 | 10 - 15 | 15 - 20 | 20 - 25 | 25 - 30 | 30 - 35 | 35 - 40 | 40 - 45 | 45 - 50 | 50 - 55 | 55 - 60 | 60 - 65 | 65 - 70 | 70 - 75 | 75 - 80 | 80 - 85 | 85 + | Volume |
| 12:00 AM | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 0      |
| 1:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 0      |
| 2:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 0      |
| 3:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 0      |
| 4:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 0      |
| 5:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 0      |
| 6:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 0      |
| 7:00 AM  | 0      | 0       | 0       | 5       | 10      | 8       | 6       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 29     |
| 8:00 AM  | 1      | 1       | 0       | 6       | 7       | 11      | 4       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 30     |
| 9:00 AM  | 0      | 0       | 1       | 7       | 15      | 16      | 6       | 1       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 46     |
| 10:00 AM | 0      | 1       | 1       | 9       | 15      | 19      | 7       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 52     |
| 11:00 AM | 0      | 1       | 1       | 9       | 17      | 14      | 5       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 47     |
| 12:00 PM | 0      | 0       | 4       | 5       | 17      | 19      | 8       | 2       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 55     |
| 1:00 PM  | 0      | 0       | 3       | 10      | 13      | 11      | 5       | 1       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 43     |
| 2:00 PM  | 0      | 2       | 2       | 9       | 14      | 9       | 8       | 1       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 45     |
| 3:00 PM  | 0      | 0       | 0       | 8       | 23      | 20      | 15      | 1       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 67     |
| 4:00 PM  | 0      | 0       | 1       | 2       | 2       | 3       | 5       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 13     |
| 5:00 PM  | 0      | 1       | 0       | 0       | 3       | 2       | 6       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 12     |
| 6:00 PM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 0      |
| 7:00 PM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 0      |
| 8:00 PM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 0      |
| 9:00 PM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 0      |
| 10:00 PM | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 0      |
| 11:00 PM | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 0      |
| Total    | 1      | 6       | 13      | 70      | 136     | 132     | 75      | 6       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 439    |
| IOtal    | 0.2%   | 1.4%    | 3.0%    | 15.9%   | 31.0%   | 30.1%   | 17.1%   | 1.4%    | 0.0%    | 0.0%    | 0.0%    | 0.0%    | 0.0%    | 0.0%    | 0.0%    | 0.0%    | 0.0% | 400    |

Note: Average only condsidered on days with 24-hours of data.

| Total Study Percentile Spe | ed Summ | ary | Total Study Spee     | d Statistics |     |
|----------------------------|---------|-----|----------------------|--------------|-----|
| 50th Percentile (Median)   | 29.8    | mph | Mean (Average) Speed | 29.5         | mph |
| 85th Percentile            | 35.6    | mph | 10 mph Pace          | 23.4 - 33.4  | mph |
| 95th Percentile            | 38.4    | mph | Percent in Pace      | 64.0         | %   |

Date Range: 11/19/2024 to 11/19/2024

Site Code: 04

# DATA SOLUTIONS

# **Total Study Average**

## Southbound

| Time     |        |         |         |         |         |         |         | Speed   | d Range | (mph)   |         |         |         |         |         |         |      | Total  |
|----------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|------|--------|
| Time     | 0 - 10 | 10 - 15 | 15 - 20 | 20 - 25 | 25 - 30 | 30 - 35 | 35 - 40 | 40 - 45 | 45 - 50 | 50 - 55 | 55 - 60 | 60 - 65 | 65 - 70 | 70 - 75 | 75 - 80 | 80 - 85 | 85 + | Volume |
| 12:00 AM | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 0      |
| 1:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 0      |
| 2:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 0      |
| 3:00 AM  | 0      | 1       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 1      |
| 4:00 AM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 0      |
| 5:00 AM  | 1      | 1       | 1       | 0       | 2       | 1       | 0       | 0       | 1       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 7      |
| 6:00 AM  | 0      | 4       | 2       | 0       | 7       | 10      | 0       | 2       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 25     |
| 7:00 AM  | 0      | 1       | 1       | 4       | 15      | 13      | 3       | 2       | 0       | 1       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 40     |
| 8:00 AM  | 0      | 0       | 4       | 11      | 16      | 10      | 0       | 1       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 42     |
| 9:00 AM  | 0      | 1       | 0       | 11      | 20      | 6       | 5       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 43     |
| 10:00 AM | 0      | 0       | 6       | 22      | 25      | 5       | 1       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 59     |
| 11:00 AM | 0      | 0       | 5       | 12      | 20      | 8       | 3       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 48     |
| 12:00 PM | 0      | 0       | 5       | 11      | 21      | 5       | 4       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 46     |
| 1:00 PM  | 0      | 0       | 2       | 11      | 17      | 11      | 1       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 42     |
| 2:00 PM  | 1      | 0       | 3       | 14      | 12      | 12      | 5       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 47     |
| 3:00 PM  | 0      | 0       | 1       | 9       | 14      | 7       | 2       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 33     |
| 4:00 PM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 0      |
| 5:00 PM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 0      |
| 6:00 PM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 0      |
| 7:00 PM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 0      |
| 8:00 PM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 0      |
| 9:00 PM  | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 0      |
| 10:00 PM | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 0      |
| 11:00 PM | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 0      |
| Total    | 2      | 8       | 30      | 105     | 169     | 88      | 24      | 5       | 1       | 1       | 0       | 0       | 0       | 0       | 0       | 0       | 0    | 433    |
| Total    | 0.5%   | 1.8%    | 6.9%    | 24.2%   | 39.0%   | 20.3%   | 5.5%    | 1.2%    | 0.2%    | 0.2%    | 0.0%    | 0.0%    | 0.0%    | 0.0%    | 0.0%    | 0.0%    | 0.0% | 100    |

Note: Average only condsidered on days with 24-hours of data.

| Total Study Percentile Spe | ed Summ | ary | Total Study Spee     | d Statistics |     |
|----------------------------|---------|-----|----------------------|--------------|-----|
| 50th Percentile (Median)   | 27.0    | mph | Mean (Average) Speed | 27.0         | mph |
| 85th Percentile            | 32.6    | mph | 10 mph Pace          | 21.1 - 31.1  | mph |
| 95th Percentile            | 36.4    | mph | Percent in Pace      | 66.1         | %   |



Location: 17720 E Harney Ln Dwy, S/O E Harney Ln Date Range: 11/19/2024 - 11/25/2024 Site Code: 04

| Time            | 11/t          | Tuesday<br>11/19/2024 | 4     | We<br>11/ | Wednesday<br>11/20/2024 | >     | ± = =  | Thursday<br>11/21/2024 |       | Frid<br>11/22/ | Friday<br>11/22/2024 |        | Saturday<br>11/23/2024 | ay<br>24 | s /t | Sunday<br>11/24/2024 |       | Moi<br>11/25 | Monday<br>11/25/2024 | Mic   | -Week / | Mid-Week Average |
|-----------------|---------------|-----------------------|-------|-----------|-------------------------|-------|--------|------------------------|-------|----------------|----------------------|--------|------------------------|----------|------|----------------------|-------|--------------|----------------------|-------|---------|------------------|
|                 | NB<br>B       | SB                    | Total | B<br>B    | SB                      | Total | N<br>B | SB T                   | Total | NB SB          | B Total              | a<br>B | SB                     | Total    | B    | SB                   | Total | NB<br>S      | SB Total             | NB NB | SB      | Total            |
| 12:00 AM        | 0             | 0                     | 0     |           | ,                       | ,     |        | ,                      | ,     |                | 1                    | '      |                        |          |      | ,                    | ,     |              |                      | 0     | 0       | 0                |
| 1:00 AM         | 0             | 0                     | 0     | 1         | 1                       | 1     | 1      | 1                      | 1     |                | 1                    | 1      | 1                      | 1        | ,    | 1                    | 1     | 1            | 1                    | 0     | 0       | 0                |
| 2:00 AM         | 0             | 0                     | 0     | ,         | ,                       | ,     | ,      | ,                      | ,     |                | 1                    | 1      |                        | 1        |      | ,                    | ,     | ,            | 1                    | 0     | 0       | 0                |
| 3:00 AM         | 0             | <b>←</b>              | -     | ,         | ,                       | 1     |        | 1                      | 1     |                | 1                    | 1      | 1                      | 1        |      |                      | 1     | 1            | 1                    | 0     | _       | ~                |
| 4:00 AM         | 0             | 0                     | 0     | ,         | ,                       |       | ,      | ,                      | ,     | '              | 1                    | '      |                        |          |      | ,                    | ,     |              | ,                    | 0     | 0       | 0                |
| 5:00 AM         | 0             | 7                     | 7     |           | 1                       | 1     | 1      | 1                      | 1     |                | 1                    | 1      | 1                      |          |      | 1                    | 1     | 1            | 1                    | 0     | 7       | 7                |
| 6:00 AM         | 0             | 25                    | 52    | ,         | ,                       |       | ,      | ,                      | ,     |                | 1                    | ,      |                        |          |      | ,                    | ,     |              |                      | 0     | 25      | 25               |
| 7:00 AM         | 59            | 40                    | 69    | ,         | -                       | 1     | 1      | 1                      | 1     |                | 1                    | 1      | 1                      | 1        |      | 1                    | 1     | 1            | 1                    | 29    | 40      | 69               |
| 8:00 AM         | 30            | 42                    | 72    | ,         | ,                       |       | ,      | ,                      | ,     |                | 1                    | '      | ,                      | ,        |      | ,                    | ,     |              |                      | 30    | 42      | 72               |
| 9:00 AM         | 46            | 43                    | 88    | ,         | ,                       | ,     | ,      | 1                      | 1     | 1              | 1                    | 1      | 1                      |          | ,    | ,                    | ,     |              | 1                    | 46    | 43      | 88               |
| 10:00 AM        | 52            | 29                    | 111   | ,         | ,                       | ,     | ,      | ,                      | ,     |                | 1                    | '      |                        | ,        | ,    | ,                    | ,     | ,            |                      | 52    | 29      | 111              |
| 11:00 AM        |               | 48                    |       | 1         | 1                       | ,     | 1      | 1                      | 1     | 1              |                      | 1      | 1                      |          | 1    | 1                    |       |              | 1                    |       |         | 92               |
| 12:00 PM        | 55            |                       | 101   | ,         | ,                       | ,     | ,      | ,                      | ,     | -              | 1                    | '      | ,                      | ,        | ,    | ,                    | ,     | ,            | -                    | 55    | 46      | 101              |
| 1:00 PM         | 43            | 42                    | 85    | ,         | ,                       |       | ,      | 1                      | ,     | 1              | 1                    | 1      | 1                      |          | ,    | ,                    | ,     | 1            | 1                    | 43    | 42      | 85               |
| 2:00 PM         | 45            | 47                    | 95    | ,         | ,                       | ,     |        | ,                      | ,     |                | 1                    | '      | ,                      | ,        |      | ,                    | ,     | ,            | 1                    | 45    | 47      | 92               |
| 3:00 PM         | 29            | 33                    | 100   | 1         | 1                       | 1     | 1      | 1                      | 1     | 1              | 1                    | 1      | 1                      | 1        | 1    | 1                    | 1     | 1            | 1                    | 67    | 33      | 100              |
| 4:00 PM         | 13            | 0                     | 13    | ,         | ,                       | ,     |        | ,                      | ,     |                |                      | 1      |                        | ,        | ,    | ,                    | 1     | ,            | 1                    | 13    | 0       | 13               |
| 5:00 PM         | 12            | 0                     | 12    | ,         | 1                       | 1     | ,      | 1                      | 1     | 1              | 1                    | 1      | 1                      | 1        | 1    | 1                    | 1     | ,            | 1                    | 12    | 0       | 12               |
| 6:00 PM         | 0             | 0                     | 0     | ,         | ,                       | ,     |        | ,                      | 1     | 1              | 1                    | 1      |                        |          |      | ,                    | 1     |              | 1                    | 0     | 0       | 0                |
| 7:00 PM         | 0             | 0                     | 0     | ,         |                         | ,     | 1      | 1                      | 1     | 1              | 1                    | 1      | 1                      |          |      |                      |       |              | 1                    | 0     | 0       | 0                |
| 8:00 PM         | 0             | 0                     | 0     | ,         | ,                       | ,     |        | ,                      | ,     |                | 1                    | 1      |                        |          |      |                      |       |              | 1                    | 0     | 0       | 0                |
| 9:00 PM         | 0             | 0                     | 0     | ,         |                         |       |        | 1                      |       | 1              | 1                    | 1      |                        | 1        | ,    |                      |       | 1            | 1                    | 0     | 0       | 0                |
| 10:00 PM        | 0             | 0                     | 0     | ,         | ,                       |       |        | ,                      | 1     |                | 1                    | 1      |                        |          | ,    |                      | 1     |              | 1                    | 0     | 0       | 0                |
| 11:00 PM        | 0             | 0                     | 0     | ı         | ,                       |       |        | 1                      |       | 1              | 1                    | 1      |                        | ī        | ,    | ,                    | ,     | 1            | 1                    | 0     | 0       | 0                |
| Total           |               | 433                   | 872   |           |                         |       |        |                        |       |                |                      | ٠      |                        | ٠        |      |                      |       |              |                      | 439   |         | 872              |
|                 |               | 20%                   |       |           |                         |       |        |                        |       |                |                      | ٠      |                        |          |      |                      |       |              |                      | 20%   | %05 %   |                  |
| AM Peak<br>Vol. | 10:00 1<br>52 | 10:00                 | 10:00 |           |                         |       |        |                        | 1 1   |                |                      | 1 1    |                        | 1 1      |      |                      | 1 1   |              |                      | 10:00 | 0 10:00 | 10:00            |
| Peak            | 0             | 0                     | 12:00 |           |                         | 1     |        | 1                      | ,     | 1              | 1                    | 1      |                        | ,        | 1    |                      | 1     |              |                      | 15:00 |         | 1,_              |
| Vol.            | 29            | 47                    | 101   |           | 1                       | 1     | 1      | 1                      | 1     | 1              | 1                    | 1      | 1                      |          | 1    | 1                    | 1     | 1            | 1                    | 67    | 47      | 101              |

1. Mid-week average includes data between Tuesday and Thursday.

Project Manager: (415) 310-6469 project.manager.ca@idaxdata.com

## Intersection Collision Rate Worksheet

## Foothill and North County Landfills ISMND

Intersection # 1: SR-88 & E Harney Ln

Date of Count: Tuesday, November 19, 2024

Number of Collisions: 10 Number of Injuries: 10 Number of Fatalities: 0 Average Daily Traffic (ADT): 10500

Start Date: July 1, 2019 End Date: June 30, 2024 Number of Years: 5

Intersection Type: Four-Legged Control Type: Signals Area: Rural

Collision Rate = Number of Collisions x 1 Million
ADT x Days per Year x Number of Years

Collision Rate =  $\frac{10}{10,500} \times \frac{1,000,000}{x}$ 

|                    | Collis | ion Rate | Fatality Rate | Injury Rate |
|--------------------|--------|----------|---------------|-------------|
| Study Intersection | 0.52   | c/mve    | 0.0%          | 100.0%      |
| Statewide Average* | 0.74   | c/mve    | 0.6%          | 34.2%       |

NOTES
ADT = average daily total vehicles entering intersection
c/mve = collisions per million vehicles entering intersection
\* 2022 Collision Data on California State Highways, Caltrans

Intersection # 2: E Harney Ln & Jake Tone Rd

Date of Count: Tuesday, November 19, 2024

Number of Collisions: 3 

> Intersection Type: Four-Legged Control Type: 4 Way Stop Area: Rural

Collision Rate = Number of Collisions x 1 Million
ADT x Days per Year x Number of Years

Collision Rate =  $\frac{3}{5,300} \times \frac{1,000,000}{365} \times \frac{1}{x}$ 

 Study Intersection Statewide Average\*
 Collision Rate | Fatality Rate | Injury Rate | 0.0% | 100.0% | 100.0% | 100.0% | 100.0% | 1.0% | 33.3% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% | 1.0% |

Notes

ADT = average daily total vehicles entering intersection

c/mve = collisions per million vehicles entering intersection \* 2022 Collision Data on California State Highways, Caltrans

12/10/2024 W-Trans Page 1 of 2

## **Intersection Collision Rate Worksheet**

## Foothill and North County Landfills ISMND

Intersection # 3: E Harney Ln & Site Access Date of Count: Tuesday, November 19, 2024

Number of Collisions: 1 Number of Injuries: 1
Number of Fatalities: 0 Average Daily Traffic (ADT): 1900
Start Date: July 1, 2019
End Date: June 30, 2024
Number of Years: 5

Intersection Type: Tee
Control Type: Stop & Yield Controls
Area: Rural

Collision Rate = Number of Collisions x 1 Million
ADT x Days per Year x Number of Years

Collision Rate =  $\frac{1}{1,900} \times \frac{1,000,000}{365} \times \frac{1}{x}$ 

|                    | Collisi | ion Rate | Fatality Rate | Injury Rate |
|--------------------|---------|----------|---------------|-------------|
| Study Intersection | 0.29    | c/mve    | 0.0%          | 100.0%      |
| Statewide Average* | 0.29    | c/mve    | 1.7%          | 39.8%       |

Notes
ADT = average daily total vehicles entering intersection c/mve = collisions per million vehicles entering intersection

\* 2022 Collision Data on California State Highways, Caltrans

Intersection # 4: E Harney Ln & Clements Rd

Date of Count: Tuesday, November 19, 2024

Number of Collisions: 5 Number of Injuries: 5 Number of Fatalities: 0

Average Daily Traffic (ADT): 2200

Start Date: July 1, 2019

End Date: June 30, 2024

Number of Years: 5

Intersection Type: Four-Legged Control Type: Stop & Yield Controls Area: Rural

Collision Rate = Number of Collisions x 1 Million
ADT x Days per Year x Number of Years

x 365 Collision Rate =  $\frac{5}{2,200}$  x 1,000,000 x

|                    | Collisi | on Rate | Fatality Rate | Injury Rate |
|--------------------|---------|---------|---------------|-------------|
| Study Intersection | 1.25    | c/mve   | 0.0%          | 100.0%      |
| Statewide Average* | 0.36    | c/mve   | 2.4%          | 43.4%       |

Notes
ADT = average daily total vehicles entering intersection c/mve = collisions per million vehicles entering intersection

\* 2022 Collision Data on California State Highways, Caltrans

12/10/2024 W-Trans Page 2 of 2

## **Roadway Segment Collision Rate Worksheet**

Foothill and North County Landfills ISMND

Location: E Harney Ln Btwn SR-99 & SR-88

Date of Count: Tuesday, November 19, 2024

Average Daily Traffic (ADT): 4,300

Number of Collisions: 42 Number of Injuries: 41 Number of Fatalities: 0

Start Date: July 1, 2019 End Date: June 30, 2024

Number of Years: 5

Highway Type: Conventional 2 lanes or less

Area: Rural Design Speed: ≤55 Terrain: Flat

Segment Length: 4.5 miles Direction: East/West

Number of Collisions x 1 Million Collision Rate = -

ADT x Days per Year x Segment Length x Number of Years

x 1,000,000 x 365 x Collision Rate = -4,300 4.5

|                    | Collisi | on Rate | <b>Fatality Rate</b> | Injury Rate |
|--------------------|---------|---------|----------------------|-------------|
| Study Segment      | 1.19    | c/mvm   | 0.0%                 | 97.6%       |
| Statewide Average* | 1.09    | c/mvm   | 3.0%                 | 40.7%       |

## Notes

ADT = average daily traffic volume c/mvm = collisions per million vehicle miles

\* 2022 Collision Data on California State Highways, Caltrans

Location: E Harney Ln Btwn Jake Tone Rd & Site

Date of Count: Tuesday, November 19, 2024

Average Daily Traffic (ADT): 2,000

Number of Collisions: 8 Number of Injuries: 8 Number of Fatalities: 0

Start Date: July 1, 2019 End Date: June 30, 2024

Number of Years: 5

Highway Type: Conventional 2 lanes or less

Area: Rural **Design Speed:** ≤55 Terrain: Flat

Segment Length: 2.8 miles Direction: East/West

Number of Collisions x 1 Million Collision Rate = -

ADT x Days per Year x Segment Length x Number of Years

x 1,000,000 x 365 x Collision Rate = ---2,000 2.8

|                    | Collisi | on Rate | Fatality Rate | Injury Rate |  |
|--------------------|---------|---------|---------------|-------------|--|
| Study Segment      | 0.78    | c/mvm   | 0.0%          | 100.0%      |  |
| Statewide Average* | 1.09    | c/mvm   | 3.0%          | 40.7%       |  |

## Notes

ADT = average daily traffic volume

c/mvm = collisions per million vehicle miles

\* 2022 Collision Data on California State Highways, Caltrans

W-Trans Page 1 of 2

## **Roadway Segment Collision Rate Worksheet**

Foothill and North County Landfills ISMND

Location: SR-88 Btwn E Harney Ln & Eight Mile Rd

Date of Count: Tuesday, November 19, 2024

Average Daily Traffic (ADT): 8,300

Number of Collisions: 29 Number of Injuries: 29 Number of Fatalities: 29

Start Date: July 1, 2019 End Date: June 30, 2024

Number of Years: 5

Highway Type: Conventional 2 lanes or less

Area: Rural

**Design Speed:** ≤55 Terrain: Flat

Segment Length: 3.1 miles Direction: North/South

Number of Collisions x 1 Million

ADT x Days per Year x Segment Length x Number of Years

Collision Rate = x 365 x 8,300 3.1 x

|                    | Collisi | on Rate | <b>Fatality Rate</b> | Injury Rate |
|--------------------|---------|---------|----------------------|-------------|
| Study Segment      | 0.62    | c/mvm   | 100.0%               | 100.0%      |
| Statewide Average* | 1.09    | c/mvm   | 3.0%                 | 40.7%       |

## Notes

Collision Rate = -

ADT = average daily traffic volume

c/mvm = collisions per million vehicle miles
\* 2022 Collision Data on California State Highways, Caltrans

Location: Site Access Driveway

Date of Count: Tuesday, November 19, 2024

Average Daily Traffic (ADT): 870

Number of Collisions: 0 Number of Injuries: 0 Number of Fatalities: 0

Start Date: July 1, 2019

End Date: June 30, 2024

Number of Years: 5

**Highway Type:** Conventional 2 lanes or less

Area: Rural

**Design Speed:** <=55 Terrain: Flat

Segment Length: 0.4 miles Direction: North/South

Number of Collisions x 1 Million Collision Rate = -

ADT x Days per Year x Segment Length x Number of Years

1,000,000 Collision Rate = -870 365

Collision Rate Fatality Rate Injury Rate Study Segment 0.00 c/mvm Statewide Average\* 1.09 c/mvm 0.0% 0.0% 3.0% 40.7%

## Notes

ADT = average daily traffic volume c/mvm = collisions per million vehicle miles

\* 2022 Collision Data on California State Highways, Caltrans

W-Trans

HCM 6th Signalized Intersection Summary 1: SR 88 & E Harney Ln

01/02/2025

HCM 6th AWSC 2: Jack Tone Rd & E Harney Ln

01/02/2025

Intersection Delay, s/veh 9.2 Intersection LOS A

39 0.93 0 70 70 70 7 17 17 18 18 0

25 25 0.93 12 27

98 88 0.03 10 10 105 1

13 13 15 14 1 62 62 0.93 15 67

15 0.93 16 0

Lane Configurations Traffic Vol, veh/h Future Vol, veh/h Peak Hour Factor Heavy Vehicles, %

26 26 0.93

37

0 28

Mvmt Flow Number of Lanes

WB NB 2 88 2 8.4 9.4 A

Approach EB
Opposing Approach WB
Opposing Lanes
Z
Conflicting Approach Leff SB
Conflicting Approach RighNB
Conflicting Approach RighNB
Conflicting Lanes Right
Y
HCM Control Delay
HCM LOS
A

Lane
Vol Left, %
Vol Right, %
Sign Control
Traffic Vol by Lane
LT Vol

9 0204 0036 0.149 0.055 5 5499 4.792 5.739 4.748 8 78s 78s 78s 78s 0 551 744 623 751 1 3248 2.541 3.493 2.501 9 0.204 0.036 0.151 0.056 8 9.7 7 9.5 7.8 A A A A A A A A A 1 0.8 0.1 0.5 0.2

0.183 0.023 0.131 0.019 0.5486 4.765 5.714 4.945 5.714 4.945 5.714 4.945 5.714 4.945 5.714 3.238 2.517 3.47 2.701 3.95 7.6 9.3 7.8 A A A A A O.7 0.1 0.4 0.1

Through Vol
RT Vol
Lane Floor
Lane Floor
Begree of Util (X)
Degrature Headway (Hd)
Convergence, YN
Cap
Service Time
HCM Lane VIC Ratio
HCM Lontrol Delay
HCM Lane LOS
HCM Lane LOS
HCM Sthritle Q

| ## Company of the com |             | 4    | Ť    | <i>&gt;</i> | •    | ļ    | 4    | •    | <b>←</b> | •    | ۶    | -    | *    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------|------|-------------|------|------|------|------|----------|------|------|------|------|
| 22 78 24 33 137 17 18 179 22 11 299 22 78 24 33 137 17 18 179 22 11 299 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | EBL  | EBT  | EBR         | WBL  | WBT  | WBR  | NBL  | NBT      | NBR  | SBL  | SBT  | SBR  |
| 22 78 24 33 137 17 18 179 22 11 299 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S           |      | 4    |             |      | ÷    |      | j.   | 4        |      | K-   | 4    |      |
| 22 78 24 33 137 17 18 179 22 11 299 100 100 1.00 1.00 1.00 1.00 1.00 1.00 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Jh)         | 22   | 78   | 54          | 33   | 137  | 17   | 18   | 179      | 22   | =    | 299  | 21   |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | /h)         | 22   | 78   | 54          | 33   | 137  | 17   | 18   | 179      | 52   | =    | 299  | 21   |
| 100 100 100 100 100 100 100 100 100 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | 0    | 0    | 0           | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0    | 0    |
| 100 100 100 100 100 100 100 100 100 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ē           | 1.00 |      | 1.00        | 1.00 |      | 1.00 | 1.00 |          | 1.00 | 1.00 |      | 1.00 |
| 1826   1826   1836   1737   1569   1366   1731   1369   1731   1369   1369   1731   1369   1369   1731   1369   1369   1731   1369   1369   1731   1369   1369   1731   1369   1369   1369   1731   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369   1369      |             | 1.00 | 1.00 | 1.00        | 1.00 | 1.00 | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00 | 1.00 |
| 1886 1886 1900 1767 1841 1722 1900 1737 1559 1366 1781 0.0   24 86 21 36 151 16 20 197 16 12 329 0.0   5 5 0 9 4 12 0.0 177 1659 130 191 0.0   164 227 56 166 252 25 46 499 41 21 475   190 1252 275 205 1389 136 1810 1585 129 1301 1588   1131 0 0 0 0 0 1730 0 0 0 1810 0 174 1301 0 0   1138 0 0 0 0 0 0 1730 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | oach.       |      | 2    |             |      | 2    |      |      | 2        |      |      | 2    |      |
| 24 86 21 36 151 16 20 197 16 12 329  931 031 031 031 031 031 031 031 031 031  154 227 50 166 252 25 46 499 41 21 475  169 1252 205 166 252 25 46 499 41 21 475  100 1252 275 205 189 189 191 031 031 031 031  131 0 0 200 0 0 1730 0 0 0 20 0 213 102  21 0 0 0 0 1730 0 0 0 0 44 0 0 0 32 0 3 0  100 0 0 0 0 0 0 0 44 0 0 0 0 44 0 0 0 32 0 0  100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ē           | 1826 | 1826 | 1900        | 1767 | 1841 | 1722 | 1900 | 1737     | 1559 | 1366 | 1781 | 1811 |
| 194   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0.91   0   | 4           | 24   | 98   | 21          | 36   | 151  | 16   | 20   | 197      | 16   | 12   | 329  | 40   |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | 0.91 | 0.91 | 0.91        | 0.91 | 0.91 | 0.91 | 0.91 | 0.91     | 0.91 | 0.91 | 0.91 | 0.91 |
| 144 27 50 166 252 25 46 499 41 21 475 190 1252 275 205 189 0.18 0.13 0.31 0.02 0.31 131 0 0 203 0 0 0 20 0 213 0.31 0.20 0.31 131 0 0 0 0 1730 0 0 0 20 0 213 12 130 1568 131 0 0 0 0 0 1730 0 0 0 0 40 0 0 3.2 0.3 0.0 131 0 0 0 0 0 0 3.5 0 0 0 0 0 44 0 0 0 3.2 0.3 0.0 132 0 0 0 0 0 0 0 443 0 0 0 44 0 0 0 32 0.3 133 0 0 0 0 0 0 0 0 443 0 0 0 44 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | %           | 2    | 2    | 0           | െ    | 4    | 12   | 0    | 11       | 23   | 36   | ∞    | 9    |
| 0.18 0.18 0.18 0.18 0.18 0.18 0.03 0.31 0.31 0.02 0.31 190 1.252 275 205 1389 136 1810 1885 129 1910 1858 129 1301 1858 129 1301 1858 129 1301 1858 129 1301 1858 129 1301 1858 129 1301 1858 129 1301 1858 129 1301 1858 129 1301 1858 129 1301 1858 129 1301 0.00 0.00 0.00 0.00 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | 164  | 227  | 20          | 166  | 252  | 25   | 46   | 499      | 41   | 21   | 475  | 58   |
| 190   1252   275   205   1389   136   1810   1568   129   1301   1568   131   10   131   10   131   10   131   10   131   10   131   10   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             | 0.18 | 0.18 | 0.18        | 0.18 | 0.18 | 0.18 | 0.03 | 0.31     | 0.31 | 0.02 | 0.31 | 0.31 |
| 131 0 0 203 0 0 213 12 0 0 2178 178 10 0 0 1778 10 0 0 1778 10 0 0 0 1778 10 0 0 1778 10 0 0 0 0 1778 10 0 0 0 1779 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | 190  | 1252 | 275         | 205  | 1389 | 136  | 1810 | 1585     | 129  | 1301 | 1558 | 189  |
| 1778 0 0 1730 0 0 1810 0 1714 1301 0 0 1714 1301 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ڀ           | 131  | 0    | 0           | 203  | 0    | 0    | 20   | 0        | 213  | 12   | 0    | 369  |
| 0.0 0.0 0.0 1.4 0.0 0.0 0.4 0.0 32 0.3 0.0 0.4 0.0 3.5 0.0 0.0 0.4 0.0 3.5 0.0 0.0 0.4 0.0 3.5 0.0 0.0 0.4 0.0 3.5 0.0 0.0 0.4 0.0 3.5 0.0 0.0 0.4 0.0 3.5 0.0 0.0 0.4 0.0 3.5 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n/h/ln      | 1718 | 0    | 0           | 1730 | 0    | 0    | 1810 | 0        | 1714 | 1301 | 0    | 1747 |
| 2.1 0.0 0.0 3.5 0.0 0.0 0.4 0.0 3.2 0.3 0.0 0.8 0.8 0.0 0.8 4.2 0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | 0:0  | 0:0  | 0.0         | 1.4  | 0.0  | 0.0  | 0.4  | 0:0      | 3.2  | 0.3  | 0.0  | 6.1  |
| 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S           | 2.1  | 0.0  | 0.0         | 3.5  | 0.0  | 0.0  | 0.4  | 0.0      | 3.2  | 0.3  | 0.0  | 6.1  |
| 100 0.00 0.00 0.443 0 0 0 46 0 539 21 0 0 1 0 0 0.00 0.00 0.00 0.00 0.00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | 0.18 |      | 0.16        | 0.18 |      | 80.0 | 1.00 |          | 0.08 | 1.00 |      | 0.11 |
| 1136 0.00 0.00 0.46 0.00 0.044 0.00 0.44 0.05 0.00 0.40 0.58 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | h/h         | 442  | 0    | 0           | 443  | 0    | 0    | 46   | 0        | 239  | 21   | 0    | 533  |
| 1186 0 0 1164 0 0 565 0 3137 397 0 0 1 100 1.00 1.00 1.00 1.00 1.00 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | 0.30 | 0.00 | 0.00        | 0.46 | 0.00 | 0.00 | 0.44 | 0.00     | 0.40 | 0.58 | 0.00 | 69.0 |
| 100 100 100 100 100 100 100 100 100 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | J.          | 1136 | 0    | 0           | 1164 | 0    | 0    | 225  | 0        | 3137 | 397  | 0    | 3198 |
| 100 0,00 0,00 1,00 0,00 0,00 1,00 0,00 1,00 0,00 0,00 0,00 1,00 0,00 0,00 0,00 1,00 0,00 0,00 1,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0, |             | 1.00 | 1.00 | 1.00        | 1.00 | 1.00 | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00 | 1.00 |
| 119 00 00 124 00 00 157 00 88 160 00 00 04 00 00 00 00 00 00 00 00 00 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | 1.00 | 0.00 | 0.00        | 1.00 | 0.00 | 0.00 | 1.00 | 0.00     | 1.00 | 1.00 | 0.00 | 1.00 |
| 9.4 0.0 0.0 0.7 0.0 0.0 2.4 0.0 0.3 9.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | sveh        | 11.9 | 0.0  | 0.0         | 12.4 | 0.0  | 0.0  | 15.7 | 0.0      | 8.8  | 16.0 | 0.0  | 10.0 |
| 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ę           | 0.4  | 0.0  | 0.0         | 0.7  | 0.0  | 0.0  | 2.4  | 0.0      | 0.3  | 9.4  | 0.0  | 1.2  |
| syeh  122 0.0 0.0 0.9 0.0 0.0 0.1 0.0 0.6 0.1 0.0  18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /veh        | 0.0  | 0.0  | 0.0         | 0.0  | 0.0  | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0  | 0.0  |
| syeh  12 0.0 0.0 13.1 0.0 0.0 18.1 0.0 9.1 25.4 0.0  12 13 203 233 381  13.1 203 233 381  12.2 13.1 9.9 11.7  12.2 4 5 6 8  13.0 6.0 6.0 20.0 10.0 6.0 20.0  13.1 2.2 4 5 6  13.1 2.4 15.0 6.0  13.1 2.0 4.8 16.0 6.0  13.1 2.4 1 2.4 8.1 5.6  13.1 2.4 1 2.4 8.1 5.6  13.1 2.4 1 2.4 8.1 5.6  14.1 2.4 8.1 2.4 8.1 5.5  14.1 2.4 8.1 5.5  15.5 0.0 0.9 0.5 0.0 16  16.5 0.0 16.5 0.0 16.5  17.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ,veh/ln     | 0.5  | 0.0  | 0.0         | 6.0  | 0.0  | 0.0  | 0.1  | 0.0      | 9.0  | 0.1  | 0.0  | 1.3  |
| 122 0.0 0.0 13.1 0.0 0.0 18.1 0.0 9.1 25.4 0.0 18.1 12.2 13.1 13.1 20.3 23.3 38.1 13.1 12.2 13.1 13.1 20.3 23.3 38.1 13.1 2.0 2.3 3.8 11.7 2.2 13.1 2.0 3.8 11.7 2.2 13.1 2.0 4.8 16.0 12.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | elay, s/veh |      |      |             |      |      |      |      |          |      |      |      |      |
| B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ۲.          | 12.2 | 0.0  | 0.0         | 13.1 | 0.0  | 0.0  | 18.1 | 0.0      | 9.1  | 25.4 | 0.0  | 11.2 |
| 131 203 233<br>122 13.1 99<br>12 4 5 6 8<br>5 4.5 16.3 12.0 4.8 16.0 12.0<br>0,5 10.0 6.0 20.0 10.0 6.0 20.0<br>1),5 2.3 6.2 4.1 2.4 8.1 5.5<br>11.6 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | В    | ٧    | A           | ш    | ٧    | ٧    | ш    | ٧        | ¥    | ပ    | ٧    | В    |
| 12.2 13.1 9.9 B B A B A 3 4.5 16.3 12.0 4.8 16.0 12.0 0, s 10.0 60.0 20.0 10.0 60.0 20.0 1), s 2.3 5.2 4.1 2.4 8.1 5.5 0.0 0.9 0.5 0.0 1.6 0.8 B B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ر           |      | 131  |             |      | 203  |      |      | 233      |      |      | 381  |      |
| 1 2 4 5 6 8 8 A 45 16.3 12.0 4.8 16.0 12.0 6.0 6.0 4.0 6.0 20.0 10.0 60.0 20.0 10.0 60.0 20.0 10.0 60.0 20.0 10.0 60.0 20.0 10.0 60.0 20.0 10.0 60.0 20.0 10.0 60.0 20.0 10.0 60.0 20.0 10.0 10.0 10.0 10.0 10.0 10.0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | /eh         |      | 12.2 |             |      | 13.1 |      |      | 6.6      |      |      | 11.7 |      |
| 1 2 4 5 6<br>4.5 16.3 12.0 4.8 16.0 6.0 4.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |      | В    |             |      | В    |      |      | ∢        |      |      | В    |      |
| \$ 4.5 16.3 12.0 4.8 16.0<br>4.0 6.0 6.0 4.0 6.0<br>1).5 2.3 5.2 4.1 2.4 8.1<br>1).5 2.3 6.2 6.5 0.0 16<br>11.6 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | hs          | _    | 2    |             | 4    | 2    | 9    |      | ∞        |      |      |      |      |
| 4.0 6.0 6.0 4.0 6.0 1.0 1.5 2.3 5.2 4.1 2.4 8.1 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +Rc). s     | 4.5  | 16.3 |             | 12.0 | 4.8  | 16.0 |      | 12.0     |      |      |      |      |
| 0, s 10,0 60,0 20,0 10,0 60,0 2<br>1), s 2,3 5,2 4,1 2,4 8,1 2,0 0,0 0,0 0,5 0,0 1,6 1,6 1,6 1,6 1,6 1,6 1,6 1,6 1,6 1,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Rc), s      | 4.0  | 0.9  |             | 0.9  | 4.0  | 0.9  |      | 0.9      |      |      |      |      |
| g,c+l1),s 2.3 5.2 4.1 2.4 8.1<br>o),s 0.0 0.9 0.5 0.0 1.6<br>ny 11.6<br>B B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (Gmax), s   | 10.0 | 0.09 |             | 20.0 | 10.0 | 0.09 |      | 20.0     |      |      |      |      |
| o), s 0.0 0.9 0.5 0.0 1.6<br>IDY 11.6<br>B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (g_c+I1), s | 2.3  | 5.2  |             | 4.1  | 2.4  | 8.1  |      | 5.5      |      |      |      |      |
| ıry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | c), s       | 0.0  | 6.0  |             | 0.5  | 0.0  | 1.6  |      | 0.8      |      |      |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ary         |      |      |             |      |      |      |      |          |      |      |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,           |      |      | 11.6        |      |      |      |      |          |      |      |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |      |      | മ           |      |      |      |      |          |      |      |      |      |

Foothill and North County Landfills Study - Existing AM W-Trans

Synchro 11 Report Page 1

Foothill and North County Landfills Study - Existing AM W-Trans

HCM 6th TWSC 3: Site Driveway & E Harney Ln

| IIIIeisection            |        |            |        |      |        |       |     |
|--------------------------|--------|------------|--------|------|--------|-------|-----|
| Int Delay, s/veh         | 2.2    |            |        |      |        |       |     |
| Movement                 | EBT    | EBR        | WBL    | WBT  | NBL    | NBR   |     |
| Lane Configurations      | 4      | R_         |        | 4    | -      | R_    |     |
| Traffic Vol, veh/h       | 31     | 39         | 2      | 47   | 53     | က     |     |
| Future Vol, veh/h        | 31     | 33         | 2      | 47   | 53     | က     |     |
| eds, #/hr                |        | 0          | 0      |      | 0      | 0     |     |
|                          | Free   |            | Free   |      | Stop   | Stop  |     |
| RT Channelized           | -      | None       | 1      | None | 1      | None  |     |
| Storage Length           | ٠      | 275        | •      | '    | 0      | 20    |     |
| Veh in Median Storage, # |        | ٠          | •      | 0    | 0      | •     |     |
| Grade, %                 | 0      | ٠          | ٠      | 0    | 0      | ,     |     |
| Peak Hour Factor         | 82     | 82         | 82     | 82   | 82     | 82    |     |
| Heavy Vehicles, %        | 10     | 23         | 0      | 13   | 21     | 0     |     |
| Mvmt Flow                | 36     | 46         | 9      | 22   | 8      | 4     |     |
|                          |        |            |        |      |        |       |     |
| Major/Minor Maj          | Major1 | Σ          | Major2 | Z    | Minor1 |       |     |
| Conflicting Flow All     | 0      | 0          | 82     | 0    | 103    | 36    |     |
| Stage 1                  |        | ٠          |        | ٠    | 36     | ٠     |     |
| Stage 2                  | ٠      | ٠          | •      | 1    | 29     | •     |     |
| Critical Hdwy            |        |            | 4.1    | •    | 6.61   | 6.2   |     |
| Critical Hdwy Stg 1      |        | ٠          | ٠      | ٠    | 5.61   | •     |     |
| Critical Hdwy Stg 2      |        | 1          | 1      | 1    | 5.61   | 1     |     |
| Follow-up Hdwy           | ٠      | ٠          | 2.2    | í    | 3.689  | 3.3   |     |
| Pot Cap-1 Maneuver       |        |            | 1528   | •    | 821    | 1042  |     |
| Stage 1                  | ٠      | 1          | 1      | 1    | 940    | •     |     |
| Stage 2                  |        | •          | •      | 1    | 910    | 1     |     |
| Platoon blocked, %       | ٠      | ٠          |        | 1    |        |       |     |
| Mov Cap-1 Maneuver       |        | •          | 1528   | 1    | 848    | 1042  |     |
| Mov Cap-2 Maneuver       | ٠      | ١          | ١      | ١    | 848    | •     |     |
| Stage 1                  |        | ٠          | ٠      | •    | 940    | •     |     |
| Stage 2                  |        | ٠          | ٠      | ٠    | 906    | ٠     |     |
|                          |        |            |        |      |        |       |     |
| Approach                 | B      |            | WB     |      | 8<br>R |       |     |
| HCM Control Delay, s     | 0      |            | 0.7    |      | 9.3    |       |     |
| HCM LOS                  |        |            |        |      | ⋖      |       |     |
|                          |        |            |        |      |        |       |     |
| Minor Lane/Major Mvmt    | Z      | NBLn1NBLn2 | BLn2   | EBT  | EBR    | WBL   | WBT |
| Capacity (veh/h)         |        | 848 1042   | 1042   |      |        | 1528  |     |
| HCM Lane V/C Ratio       |        | 0.04 (     | 0.003  | •    | •      | 0.004 |     |
| HCM Control Delay (s)    |        | 9.4        | 8.5    | 1    | 1      | 7.4   | 0   |
| HCM Lane LOS             |        | ⋖          | ⋖      | ٠    | ٠      | ⋖     | A   |
| HCM 95th %tile Q(veh)    |        | 0.1        | 0      | •    | •      | 0     |     |

Foothill and North County Landfills Study - Existing AM W-Trans

Synchro 11 Report Page 3

HCM 6th TWSC 4: Clements Rd & E Harney Ln

01/02/2025

01/02/2025

| Majorament                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Int Delay, s/veh       | 3.3    |       |      |        |       |      |        |      |      |        |      |      |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------|-------|------|--------|-------|------|--------|------|------|--------|------|------|--|
| Character   Char   | Movement               | 田田     | EBT   | EBR  |        | WBT   | WBR  |        |      | NBR  | SBL    | SBT  | SBR  |  |
| 19 5 14 4 0 2 32 47 3 2 65 11 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lane Configurations    |        | ÷     |      |        | ÷     |      |        | ÷    |      |        | ÷    |      |  |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Traffic Vol, veh/h     | 19     | 2     | 14   | 4      | 0     | 2    | 32     | 47   | က    | 2      | 65   | 18   |  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Future Vol, veh/h      | 19     | 2     | 4    | 4      | 0     | 7    | 32     | 47   | က    | 7      | 92   | 18   |  |
| 15   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150     | Conflicting Peds, #/hr | 0      | 0     | 0    | 0      | 0     | 0    | 0      | 0    | 0    | 0      | 0    | 0    |  |
| - None -  | Sign Control           | Stop   | Stop  | Stop | Stop   | Stop  | Stop | Free   | Free | Free | Free   | Free | Free |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RT Channelized         | 1      | 1     | None | 1      | 1     | None | 1      | 1    | None | 1      | 1    | None |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Storage Length         | •      | •     | ١    | •      | •     | •    | ١      | ٠    | ٠    | •      | •    |      |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Veh in Median Storage, |        | 0     | 1    | 1      | 0     | 1    | 1      | 0    | ٠    | 1      | 0    | •    |  |
| Minor   Minor   Major   Majo   | Grade, %               | ٠      | 0     | ١    |        | 0     | 1    | ١      | 0    | ٠    | 1      | 0    |      |  |
| 11   20   0   0   0   9   4   0   0   6   2   2   2   6   6   2   2   2   6   6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Peak Hour Factor       | 82     | 82    | 82   | 82     | 82    | 82   | 82     | 82   | 82   | 82     | 88   | 82   |  |
| Minor2  Minor4  Minor4 | Heavy Vehicles, %      | =      | 20    | 0    | 0      | 0     | 0    | တ      | 4    | 0    | 0      | 9    | 22   |  |
| Minor?         Major1         Major2           25         87         23         57         97         0         59         0           134         135         133         133         57         97         0         59         0           134         135         - 102         101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mvmt Flow              | 22     | 9     | 16   | 2      | 0     | 2    | 88     | 22   | 4    | 2      | 9/   | 21   |  |
| Minor         Minor         Major         Major           225         226         87         23         59         0         69         0         69         0         69         0         69         0         69         0         69         0         69         0         69         0         69         0         69         0         69         0         69         0         69         0         69         0         69         0         69         0         69         0         69         0         69         0         69         0         69         0         69         0         69         61         6         2         4,19         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |        |       |      |        |       |      |        |      |      |        |      |      |  |
| 225 226 87 235 234 57 97 0 0 59 0 0 144 135 133 133 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        | linor2 |       | 2    | linor1 |       | _    | /ajor1 |      | 2    | lajor2 |      |      |  |
| 91 91 - 133 133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Conflicting Flow All   | 225    | 226   | 87   | 235    | 234   | 22   | 97     | 0    | 0    | 29     | 0    | 0    |  |
| 134   135   102   101       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Stage 1                | 91     | 91    | •    | 133    | 133   | •    | •      | ٠    | ٠    | •      | •    | ·    |  |
| 721   6.7   6.2   7.1   6.5   6.2   4.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Stage 2                | 134    | 135   |      | 102    | 5     | •    |        | ٠    | ٠    | •      | •    | ,    |  |
| 6.21 5.7 . 6.1 5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Critical Hdwy          | 7.21   | 6.7   | 6.2  | 7.1    | 6.5   | 6.2  | 4.19   | 1    | 1    | 4.1    | 1    | ٠    |  |
| 824 76 - 871 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Critical Hdwy Stg 1    | 6.21   | 5.7   | ١    | 6.1    | 5.5   | •    | ١      | ٠    | ٠    | •      | ١    |      |  |
| 3.559 4.18 3.3 3.5 4 3.3 2.281 - 2.2 - 712 643 977 24 670 1015 1454 - 1558 - 1558 - 848 751 - 909 815 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 1558 - 1588 - 1558 1558 - 1558 1558 - 1558 1558 - 1558 1558 - 1558 1558 - 1558 1558 - 1558 1558 - 1558 - 1558 1558 - 1558 1558 - 1558 1558 - 1558 1558 - 1558 1558 - 1558 1558 - 1558 1558 - 1558 - 1558 1558 - 1558 1558 - 1558 - 1558 - 1558 - 1558 - 1558 - 1558 - 1558 - 1558 - 1558 - 1558 - 1558 - 1558 - 1558 - 1558 - 1558 - 1558 - 1558 - 1558 - 1558 - 1558 - 1558 - 1558 - 1558 - 1558 - 1558 - 1558 - 1558 - 1558 - 1558 - 1558 - 1558 - 1558 - 1558 - 155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Critical Hdwy Stg 2    | 6.21   | 2.7   | 1    | 6.1    | 5.5   | 1    | 1      | 1    | 1    | 1      | 1    | ·    |  |
| F. 712 643 977 724 670 1015 1454 1558 894 786 875 790                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        | 3.599  | 4.18  | 3.3  | 3.5    | 4     | 3.3  | 2.281  | ٠    | ٠    | 2.2    | ,    | ٠    |  |
| 894 786 - 875 790                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pot Cap-1 Maneuver     | 712    | 643   | 977  | 724    | 029   | 1015 | 1454   | ٠    | ٠    | 1558   | •    | ٠    |  |
| ## 751 - 909 815                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Stage 1                | 894    | 286   | ٠    | 875    | 790   | •    | ٠      | ٠    | ٠    | •      | •    |      |  |
| September   Sept   | Stage 2                | 848    | 751   |      | 606    | 815   |      |        | 1    | 1    |        |      |      |  |
| auver 695 625 977 691 651 1015 1454 1558  auver 695 625 691 651                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Platoon blocked, %     |        |       |      |        |       |      |        | ٠    | ٠    |        | 1    |      |  |
| State   Stat   | Mov Cap-1 Maneuver     | 969    | 625   | 977  | 691    | 651   |      | 1454   | 1    | 1    | 1558   | 1    | ٠    |  |
| St.   25   25   25   25   25   25   25   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mov Cap-2 Maneuver     | 695    | 625   | ٠    | 691    | 651   | •    | ٠      | •    | •    | •      | ٠    |      |  |
| 823 731 - 886 814       EB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Stage 1                | 870    | 785   | •    | 821    | 69/   | •    | •      | ٠    | ٠    | •      | •    | ٠    |  |
| EB   WB   NB   NB   NB   NB   NB   NB   N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Stage 2                | 823    | 731   | •    | 988    | 814   | •    | •      | •    | •    | •      | •    |      |  |
| EB   WB   NB   NB   NB   NB   NB   NB   N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |        |       |      |        |       |      |        |      |      |        |      |      |  |
| 184, \$ 10   9.7   2.9   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   | Approach               | 留      |       |      | WB     |       |      | R      |      |      | SB     |      |      |  |
| B A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HCM Control Delay, s   | 10     |       |      | 9.7    |       |      | 5.9    |      |      | 0.2    |      |      |  |
| rr Mvmt NBL NBT NBR EBLn1WBLn1 SBL SBT SB1 1454 - 765 773 1558 - 84io 0.026 - 0.058 0.009 0.002 - 109 (s) 7.5 0 - 10 97 7.3 0 A A - B A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | HCM LOS                | Ф      |       |      | ⋖      |       |      |        |      |      |        |      |      |  |
| rr Mwmt NBL NBT NBR EBLn1WBLn1 SBL SBT SB1 1454 - 776 773 1558 - Ratio 0.026 - 0.058 0.009 0.02 - Iay (s) 7.5 0 - 10 97 7.3 0 A A - B A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |        |       |      |        |       |      |        |      |      |        |      |      |  |
| 1454 - 765 773 1558 - 846 0.026 - 0.088 0.099 0.002 - 10 97 7.3 0 149 (s) A A - B A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Minor Lane/Major Mvmt  |        | NBL   | NBT  | NBR    | BLn1M | BLn1 | SBL    | SBT  | SBR  |        |      |      |  |
| lay (s) 7.5 0 - 0.058 0.009 0.002 - 0.098 (s) 7.5 0 - 10 9.7 7.3 0 A A - B A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Capacity (veh/h)       |        | 1454  | •    | •      | 292   | 773  | 1558   | •    | •    |        |      |      |  |
| lay (s) 7.5 0 - 10 9.7 7.3 0<br>A A - B A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | HCM Lane V/C Ratio     |        | 0.026 |      |        | 0.058 |      | 0.002  | ٠    | ٠    |        |      |      |  |
| A A - B A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | HCM Control Delay (s)  |        | 7.5   | 0    | 1      | 10    | 9.7  | 7.3    | 0    | 1    |        |      |      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HCM Lane LOS           |        | ⋖     | ⋖    | ٠      | ш     | ⋖    | ⋖      | ⋖    | ٠    |        |      |      |  |

Foothil and North County Landfills Study - Existing AM W-Trans

HCM 6th Signalized Intersection Summary 1: SR 88 & E Harney Ln

|                              | 1    | 1    | <i>&gt;</i> | <b>&gt;</b> | ţ    | 4    | •    | -    | •    | ۶    | -    | *    |
|------------------------------|------|------|-------------|-------------|------|------|------|------|------|------|------|------|
| Movement                     | 盟    | EBT  | EBR         | WBL         | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
| Lane Configurations          |      | 4    |             |             | ÷    |      | je.  | 4    |      | K-   | 4    |      |
| Traffic Volume (veh/h)       | 83   | 133  | 20          | 22          | 101  | 14   | 14   | 301  | 27   | 33   | 266  | 33   |
| Future Volume (veh/h)        | 83   | 133  | 20          | 22          | 101  | 4    | 4    | 301  | 27   | 33   | 566  | 33   |
| Initial Q (Qb), veh          | 0    | 0    | 0           | 0           | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Ped-Bike Adj(A_pbT)          | 1:00 |      | 1:00        | 1.00        |      | 1.00 | 1:00 |      | 1.00 | 1:00 |      | 1:00 |
| Parking Bus, Adj             | 1.00 | 1:00 | 1.00        | 1.00        | 1.00 | 1.00 | 1:00 | 1.00 | 1.00 | 1:00 | 1.00 | 1.00 |
| Work Zone On Approach        |      | 2    |             |             | 2    |      |      | 2    |      |      | 2    |      |
| Adj Sat Flow, veh/h/In       | 1900 | 1870 | 1900        | 1826        | 1885 | 1900 | 1900 | 1870 | 1841 | 1811 | 1796 | 1900 |
| Adj Flow Rate, veh/h         | 87   | 140  | 18          | 23          | 106  | 12   | 15   | 317  | 51   | 32   | 280  | 52   |
| Peak Hour Factor             | 0.95 | 0.95 | 0.95        | 0.95        | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 |
| Percent Heavy Veh, %         | 0    | 2    | 0           | 2           | _    | 0    | 0    | 2    | 4    | 9    | 7    | 0    |
| Cap, veh/h                   | 239  | 227  | 56          | 154         | 315  | 32   | 32   | 499  | 33   | 71   | 209  | 40   |
| Arrive On Green              | 0.21 | 0.21 | 0.21        | 0.21        | 0.21 | 0.21 | 0.02 | 0.29 | 0.29 | 0.04 | 0.31 | 0.31 |
| Sat Flow, veh/h              | 466  | 1076 | 122         | 160         | 1491 | 154  | 1810 | 1735 | 115  | 1725 | 1644 | 129  |
| Grp Volume(v), veh/h         | 245  | 0    | 0           | 141         | 0    | 0    | 15   | 0    | 338  | 35   | 0    | 302  |
| Grp Sat Flow(s),veh/h/ln     | 1665 | 0    | 0           | 1805        | 0    | 0    | 1810 | 0    | 1850 | 1725 | 0    | 1773 |
| Q Serve(g_s), s              | 2.3  | 0.0  | 0.0         | 0.0         | 0.0  | 0.0  | 0.3  | 0.0  | 5.5  | 0.7  | 0.0  | 4.9  |
| Cycle Q Clear(g_c), s        | 4.6  | 0.0  | 0.0         | 2.3         | 0.0  | 0.0  | 0.3  | 0.0  | 5.5  | 0.7  | 0.0  | 4.9  |
| Prop In Lane                 | 0.36 |      | 0.07        | 0.16        |      | 60.0 | 1.00 |      | 90:0 | 1.00 |      | 0.07 |
| Lane Grp Cap(c), veh/h       | 492  | 0    | 0           | 205         | 0    | 0    | 32   | 0    | 532  | 71   | 0    | 549  |
| V/C Ratio(X)                 | 0.50 | 0.00 | 0.00        | 0.28        | 0.00 | 0.00 | 0.43 | 0.00 | 0.64 | 0.49 | 0.00 | 0.55 |
| Avail Cap(c_a), veh/h        | 1069 | 0    | 0           | 1125        | 0    | 0    | 250  | 0    | 3191 | 496  | 0    | 3059 |
| HCM Platoon Ratio            | 1.00 | 1.00 | 1.00        | 1.00        | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Upstream Filter(I)           | 1.00 | 0.00 | 0.00        | 1.00        | 0.00 | 0.00 | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 |
| Uniform Delay (d), s/veh     | 12.5 | 0.0  | 0.0         | 11.7        | 0.0  | 0.0  | 16.9 | 0.0  | 10.8 | 16.3 | 0.0  | 10.0 |
| Incr Delay (d2), s/veh       | 0.8  | 0.0  | 0.0         | 0.3         | 0.0  | 0.0  | 3.0  | 0.0  | 6.0  | 1.9  | 0.0  | 9.0  |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0  | 0.0         | 0.0         | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| %ile BackOfQ(50%),veh/ln     | 1.1  | 0.0  | 0.0         | 9.0         | 0.0  | 0.0  | 0.1  | 0:0  | 1.3  | 0.2  | 0.0  | 1.1  |
| Unsig. Movement Delay, s/veh |      |      |             |             |      |      |      |      |      |      |      |      |
| LnGrp Delay(d),s/veh         | 13.3 | 0.0  | 0.0         | 12.0        | 0.0  | 0.0  | 19.9 | 0.0  | 11.7 | 18.3 | 0.0  | 10.6 |
| LnGrp LOS                    | В    | V    | A           | В           | ٧    | V    | В    | A    | В    | В    | A    | В    |
| Approach Vol, veh/h          |      | 245  |             |             | 141  |      |      | 353  |      |      | 337  |      |
| Approach Delay, s/veh        |      | 13.3 |             |             | 12.0 |      |      | 12.1 |      |      | 11.4 |      |
| Approach LOS                 |      | В    |             |             | В    |      |      | В    |      |      | В    |      |
| Timer - Assigned Phs         | _    | 2    |             | 4           | 2    | 9    |      | 00   |      |      |      |      |
| Phs Duration (G+Y+Rc), s     | 5.4  | 16.0 |             | 13.3        | 4.7  | 16.8 |      | 13.3 |      |      |      |      |
| Change Period (Y+Rc), s      | 4.0  | 0.9  |             | 0.9         | 4.0  | 0.9  |      | 0.9  |      |      |      |      |
| Max Green Setting (Gmax), s  | 10.0 | 0.09 |             | 20.0        | 10.0 | 0.09 |      | 20.0 |      |      |      |      |
| Max Q Clear Time (g_c+I1), s | 2.7  | 7.5  |             | 9.9         | 2.3  | 6.9  |      | 4.3  |      |      |      |      |
| Green Ext Time (p_c), s      | 0.0  | 1.4  |             | 6.0         | 0.0  | 1.2  |      | 0.5  |      |      |      |      |
| Intersection Summary         |      |      |             |             |      |      |      |      |      |      |      |      |
| HCM 6th Ctd Delay            |      |      | 12.2        |             |      |      |      |      |      |      |      |      |
| HCM 6th LOS                  |      |      | 1 B         |             |      |      |      |      |      |      |      |      |
| TOWN OFFI                    |      |      | 3           |             |      |      |      |      |      |      |      |      |

Foothill and North County Landfills Study - Existing PM W-Trans

Synchro 11 Report Page 1

HCM 6th AWSC 2: Jack Tone Rd & E Hamey Ln

01/02/2025

01/02/2025

|                               |                  | SBR      | W_                  | 15                 | 15                | 0.85             | 0                 | 18        | <b>—</b>        |          |                   |                |                              |                        |                              |                         |                   |         |
|-------------------------------|------------------|----------|---------------------|--------------------|-------------------|------------------|-------------------|-----------|-----------------|----------|-------------------|----------------|------------------------------|------------------------|------------------------------|-------------------------|-------------------|---------|
|                               |                  | SBT      | 4                   | 66                 | 66                | 0.85             | 9                 | 116       | -               |          |                   |                |                              |                        |                              |                         |                   |         |
|                               |                  | SBL      |                     | 22                 | 22                | 0.85             | 0                 | 56        | 0               | SB       | NB                | 7              | WB                           | 2                      | EB                           | 2                       | 9.7               | ∢       |
|                               |                  | NBR      | W_                  | 23                 | 23                |                  | 13                | 27        | -               |          |                   |                |                              |                        |                              |                         |                   |         |
|                               |                  | NBT      | 4                   | 88                 | 88                | 0.85             | 2                 | 101       | <b>←</b>        |          |                   |                |                              |                        |                              |                         |                   |         |
|                               |                  | BE       |                     | 37                 | 37                |                  |                   | 4         | 0               | NB       | SB                | 2              | 8                            | 7                      | WB                           | 7                       | 9.7               | ⋖       |
|                               |                  | WBR      | ×.                  | 9                  | 18                | 0.85             | 9                 | 51        | <b>←</b>        |          |                   |                |                              |                        |                              |                         |                   |         |
|                               |                  | WBT      | 4                   | 88                 | 83                | 0.85             | 7                 | 88        | <b>←</b>        |          |                   |                |                              |                        |                              |                         |                   |         |
|                               |                  | WBL      |                     | 21                 | 51                | 0.85             | 0                 | 22        | 0               | WB       | 8                 | 2              | 쒿                            | 7                      | SS                           | 7                       | 9.5               | ⋖       |
|                               |                  | EBR      | *                   | 8                  | 8                 | 0.85             | က                 | 47        | -               |          |                   |                |                              |                        |                              |                         |                   |         |
|                               |                  | EBT      | 4                   | 9/                 | 9/                | 0.85             | 0                 | 68        | <b>←</b>        |          |                   |                |                              |                        |                              |                         |                   |         |
| h 9.5                         | ∢                | EB       |                     | 13                 | 13                | 0.85             | ∞                 | 15        | 0               | æ        | WB                | 2              | ff SB                        | 2                      | ghNB                         | 7                       | 9.1               | ⋖       |
| Intersection Delay, s/veh 9.5 | Intersection LOS | Movement | Lane Configurations | Traffic Vol, veh/h | Future Vol, veh/h | Peak Hour Factor | Heavy Vehicles, % | Mvmt Flow | Number of Lanes | Approach | Opposing Approach | Opposing Lanes | Conflicting Approach Left SB | Conflicting Lanes Left | Conflicting Approach RightNB | Conflicting Lanes Right | HCM Control Delay | HCM LOS |
|                               |                  |          |                     |                    |                   |                  |                   |           |                 |          |                   |                |                              |                        |                              |                         |                   |         |

| 3BLn2                                         | %0          | %0          | 100%         | Stop         | 15                  | 0     | 0 83 0 89 0 | 15    | 18             | 7            | 0.024              | 4.867                                           | Yes              | 729 | 2.64         | 0.025                   | 7.8                        | ∢            | 0.1             |
|-----------------------------------------------|-------------|-------------|--------------|--------------|---------------------|-------|-------------|-------|----------------|--------------|--------------------|-------------------------------------------------|------------------|-----|--------------|-------------------------|----------------------------|--------------|-----------------|
| BLn1 S                                        | 18%         | 85%         | %0           | Stop         | 121                 | 22    | 66          | 0     | 142            | 7            | 0.22               | 5.561                                           | Yes              | 641 |              |                         |                            | ∢            | 0.8             |
| /BLn2S                                        | %0          |             | 100%         | Stop         | 9                   | 0     | 0           | 18    | 21             | 7            | 0.029              | 5.606 4.834 5.752 4.836 5.651 4.878 5.561 4.867 | Yes              | 727 | 2.653        | 0.064 0.194 0.029 0.222 | 10 7.8 9.7 7.9 9.8 7.8 9.9 | ⋖            | 0.1             |
| /BLn1W                                        | 20%         | %08         | %0           | Stop         | 104                 | 21    | 8           | 0     | 122            | 7            | 0.192              | 5.651                                           | Yes              | 630 | 3.427        | 0.194                   | 9.8                        | ⋖            | 0.7             |
| EBLn2W                                        | %0          | %0          | 8            | Š            | 4                   | _     | _           | 4     | 4              | -            | 9                  | 836                                             | Yes              | 734 | 2.611        | 0.064                   | 7.9                        | ⋖            | 0.2             |
| EBLn1 E                                       | 15%         | 85%         | %0           | Stop         | 88                  | 13    | 9/          | 0     | 105            | 7            | 0.167              | 5.752                                           | Yes              | 619 | 3.528        | 0.17                    | 9.7                        | ⋖            | 9.0             |
| VBLn2 E                                       | %0          | %0          | 100%         | Stop         | 23                  | 0     | 0           | 23    | 27             | 7            | 0.036              | 4.834                                           | Yes              | 734 | 2.608        | 0.037                   | 7.8                        | ⋖            | 0.1             |
| NBLn1 NBLn2 EBLn1 EBLn2WBLn1WBLn2 SBLn1 SBLn2 | 30%         | %02         | %0           | Stop         | 123                 | 37    | 92 0 98     | 0     | 145            | 7            | 0.225              | 2.606                                           | Yes              | 635 | 3.38         | 0.228                   | 10                         | ∀            | 0.9             |
| Lane                                          | Vol Left, % | Vol Thru, % | Vol Right, % | Sign Control | Traffic Vol by Lane | LTVol | Through Vol | RTVol | Lane Flow Rate | Geometry Grp | Degree of Util (X) | Departure Headway (Hd)                          | Convergence, Y/N | Cap | Service Time | HCM Lane V/C Ratio      | HCM Control Delay          | HCM Lane LOS | HCM 95th-tile Q |

Foothill and North County Landfills Study - Existing PM W-Trans

HCM 6th TWSC 3: Site Driveway & E Harney Ln

| Intersection             |        |             |        |      |        |      |     |
|--------------------------|--------|-------------|--------|------|--------|------|-----|
| Int Delay, s/veh         | 1.6    |             |        |      |        |      |     |
| Movement                 | EBT    | EBR         | WBL    | WBT  | NBL    | NBR  |     |
| Lane Configurations      | *      | *           |        | 4    | F      | R_   |     |
| Traffic Vol, veh/h       | 23     | 0           | 0      | 4    | 18     | 7    |     |
| Future Vol, veh/h        | 23     | 0           | 0      | 4    | 18     | 2    |     |
| Conflicting Peds, #/hr   | 0      | 0           | 0      | 0    | 0      | 0    |     |
|                          | Free   | Free        | Free   | Free | Stop   | Stop |     |
| RT Channelized           | 7      | None        | 1      | None | 1      | None |     |
| Storage Length           |        | 575         | •      | 1    | 0      | 20   |     |
| Veh in Median Storage, # | 0      | 1           | 1      | 0    | 0      | 1    |     |
| Grade, %                 | 0      | ٠           | •      | 0    | 0      | ٠    |     |
| Peak Hour Factor         | 82     | 82          | 82     | 82   | 82     | 88   |     |
| Heavy Vehicles, %        | 0      | 0           | 0      | 0    | 0      | 0    |     |
| Mvmt Flow                | 62     | 0           | 0      | 25   | 21     | 7    |     |
|                          |        |             |        |      |        |      |     |
| Major/Minor Ma           | Major1 | 2           | Major2 | 2    | Minor1 |      |     |
| Conflicting Flow All     | 0      | 0           | 62     | 0    | 114    | 62   |     |
| Stage 1                  | ٠      | •           | •      | ٠    | 62     | ٠    |     |
| Stage 2                  | ٠      | •           | •      | 1    | 25     | •    |     |
| Critical Hdwy            | ŕ      | 1           | 4.1    | ì    | 6.4    | 6.2  |     |
| Critical Hdwy Stg 1      | •      | •           | •      | ٠    | 5.4    | ٠    |     |
| Critical Hdwy Stg 2      | ٠      | 1           | 1      | •    | 5.4    | 1    |     |
| Follow-up Hdwy           | ٠      | •           | 2.2    | •    | 3.5    | 3.3  |     |
| Pot Cap-1 Maneuver       | ٠      | •           | 1554   | •    | 887    | 1009 |     |
| Stage 1                  | ٠      | •           | •      | ١    | 996    | •    |     |
| Stage 2                  | ÷      | 1           | 1      | 1    | 926    | 1    |     |
| Platoon blocked, %       | ٠      | •           |        | 1    |        |      |     |
| Mov Cap-1 Maneuver       | ŕ      | 1           | 1554   | ì    | 887    | 1009 |     |
| Mov Cap-2 Maneuver       | ٠      | •           | •      | 1    | 887    | •    |     |
| Stage 1                  | ٠      | 1           | 1      | •    | 996    | •    |     |
| Stage 2                  | ٠      | ٠           | •      | ٠    | 926    | ٠    |     |
|                          |        |             |        |      |        |      |     |
| Approach                 | B      |             | WB     |      | R      |      |     |
| HCM Control Delay, s     | 0      |             | 0      |      | 9.1    |      |     |
| HCM LOS                  |        |             |        |      | ⋖      |      |     |
|                          |        |             |        |      |        |      |     |
| Minor Lane/Major Mvmt    | Z      | NBLn1NBLn2  | IBLn2  | EBT  | EBR    | WBL  | WBT |
| Capacity (veh/h)         |        | 887         | 1009   |      | •      | 1554 |     |
| HCM Lane V/C Ratio       |        | 0.024 0.002 | 0.002  | 1    | ٠      | ٠    |     |
| HCM Control Delay (s)    |        | 9.5         | 9.8    | 1    | 1      | 0    |     |
| HCM Lane LOS             |        | ¥           | ¥      | 1    | •      | V    |     |
| HCM 95th %tile Q(veh)    |        | 0.1         | 0      | •    | 1      | 0    |     |
|                          |        |             |        |      |        |      |     |

Foothill and North County Landfills Study - Existing PM W-Trans

Synchro 11 Report Page 3

HCM 6th TWSC 4: Clements Rd & E Harney Ln

01/02/2025

01/02/2025

| Int Delay, s/veh         | 3.1    |      |      |             |                |       |         |      |      |        |      |      |  |
|--------------------------|--------|------|------|-------------|----------------|-------|---------|------|------|--------|------|------|--|
| Movement                 | 田田     | EBT  | BR   | EBR WBL WBT | WBT            | WBR   | NBL NBT |      | NBR  | SBL    | SBT  | SBR  |  |
| -ane Configurations      |        | ÷    |      |             | ÷              |       |         | ÷    |      |        | ÷    |      |  |
| raffic Vol, veh/h        | 20     | -    | 53   | 2           | 0              | 0     | 22      | 20   | 0    | 0      | 73   | 54   |  |
| -uture Vol, veh/h        | 20     | -    | 59   | 7           | 0              | 0     | 52      | 20   | 0    | 0      | 73   | 54   |  |
| Conflicting Peds, #/hr   | 0      | 0    | 0    | 0           | 0              | 0     | 0       | 0    | 0    | 0      | 0    | 0    |  |
| Sign Control             | Stop   | Stop | Stop | Stop        | Stop           | Stop  | Free    | Free | Free | Free   | Free | Free |  |
| RT Channelized           | 1      | 1    | None | 1           | 1              | None  | 1       | 1    | None | 1      | 1    | None |  |
| Storage Length           | ٠      | •    | ٠    | ١           | •              | ١     | •       | ١    | ٠    | •      | ١    |      |  |
| /eh in Median Storage, # | *      | 0    | 1    | 1           | 0              | 1     | 1       | 0    | 1    | 1      | 0    | ٠    |  |
| 3rade, %                 | •      | 0    | '    | •           | 0              | •     | •       | 0    | '    | •      | 0    |      |  |
| Peak Hour Factor         | 82     | 82   | 82   | 82          | 82             | 82    | 82      | 82   | 82   | 82     | 82   | 82   |  |
| Heavy Vehicles, %        | 0      | 0    | 0    | 0           | 0              | 0     | 0       | 0    | 0    | 0      | 0    | 4    |  |
| Mvmt Flow                | 24     | _    | 34   | 2           | 0              | 0     | 53      | 29   | 0    | 0      | 98   | 28   |  |
|                          |        |      |      |             |                |       |         |      |      |        |      |      |  |
| Major/Minor M            | Minor2 |      | 2    | Minor1      |                | 2     | Major1  |      | 2    | Major2 |      |      |  |
| Conflicting Flow All     | 217    | 217  | 100  | 235         | 231            | 29    | 114     | 0    | 0    | 29     | 0    | 0    |  |
| Stage 1                  | 100    | 100  | 1    | 117         | 117            |       | 1       | •    | 1    | •      |      |      |  |
| Stage 2                  | 117    | 117  | •    | 118         | 114            |       | 1       | •    | ٠    | •      |      |      |  |
| Critical Hdwy            | 7.1    | 6.5  | 6.2  | 7.1         | 6.5            | 6.2   | 4.1     | ٠    | ٠    | 4.1    | ٠    | ٠    |  |
| Critical Hdwy Stg 1      | 6.1    | 5.5  |      | 6.1         | 5.5            |       | •       |      | ٠    |        |      |      |  |
| Critical Hdwy Stg 2      | 6.1    | 5.5  | •    | 6.1         | 5.5            | •     | •       | ٠    | •    | ٠      | ٠    |      |  |
| Follow-up Hdwy           | 3.5    | 4    | 3.3  | 3.5         | 4              | 3.3   | 2.2     | ٠    | ٠    | 2.2    | ٠    |      |  |
| ot Cap-1 Maneuver        | 744    | 685  | 961  | 724         | 672            | 1012  | 1488    | ٠    | •    | 1558   | ٠    |      |  |
| Stage 1                  | 911    | 816  | ٠    | 892         | 803            | ١     |         | ١    | ٠    | ٠      | ١    | ٠    |  |
| Stage 2                  | 892    | 803  | 1    | 891         | 802            |       | 1       | •    | 1    | •      |      |      |  |
| Platoon blocked, %       |        |      |      |             |                |       |         | •    | ٠    |        | •    |      |  |
| Mov Cap-1 Maneuver       | 733    | 671  | 961  | 687         | 629            | 1012  | 1488    | ٠    | •    | 1558   | ٠    | ٠    |  |
| Mov Cap-2 Maneuver       | 733    | 671  |      | 687         | 629            |       |         |      | ٠    |        |      |      |  |
| Stage 1                  | 893    | 816  | •    | 874         | 787            | •     | •       | ٠    | •    | •      | •    |      |  |
| Stage 2                  | 874    | 787  | •    | 828         | 802            | •     | 1       | ٠    | ٠    | •      | •    | ٠    |  |
|                          |        |      |      |             |                |       |         |      |      |        |      |      |  |
| Approach                 | 留      |      |      | WB          |                |       | R       |      |      | SB     |      |      |  |
| HCM Control Delay, s     | 9.6    |      |      | 10.3        |                |       | 2.5     |      |      | 0      |      |      |  |
| HCM LOS                  | ⋖      |      |      | ш           |                |       |         |      |      |        |      |      |  |
|                          |        |      |      |             |                |       |         |      |      |        |      |      |  |
| Minor Lane/Major Mvmt    |        | NBL  | NBT  | NBR         | NBR EBLn1WBLn1 | /BLn1 | SBL     | SBT  | SBR  |        |      |      |  |
| Capacity (veh/h)         |        | 1488 | 1    | 1           | 848            | 687   | 1558    | 1    | 1    |        |      |      |  |
| HCM Lane V/C Ratio       |        | 0.02 |      | 1           | - 0.069        | 0.003 |         | 1    | 1    |        |      |      |  |
| HCM Control Delay (s)    |        | 7.5  | 0    | 1           | 9.6            | 10.3  | 0       | •    | 1    |        |      |      |  |
| HCM Lane LOS             |        | ⋖    | ⋖    | 1           | ⋖              | ш     | ⋖       | 1    | ٠    |        |      |      |  |
| HCM 95th %tile O(veh)    |        | 0.1  | 1    | •           | 0.2            | 0     | 0       | ٠    | 1    |        |      |      |  |

Foothil and North County Landfills Study - Existing PM W-Trans

HCM 6th Signalized Intersection Summary 1: SR 88 & E Harney Ln

| 42         180         35         19         302         22         11         502         87           42         180         35         19         302         22         11         502         87           100         100         100         100         100         100         100         100           100         100         100         100         100         100         100         100           100         100         100         100         100         100         100         100           14         100         100         100         100         100         100         100           15         268         44         20         14         30         14         8           15         268         43         43         677         34         9         14         8           15         268         44         43         677         34         9         614         8           100         100         100         100         100         100         100         100         100           110         100         100         100         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ↑ <b>□</b> ◆         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100    | 65 82 44<br>65 82 44 |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                    |
| 1841   1722   1900   1737   1559   1366   1781   1500   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   10   | 1.00 1.00            |
| 180   32   19   302   15   11   502     100   100   100   100   100   100   100     286   44   43   677   34   19   614     280   022   024   13   1301   1524     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1826 1900            |
| 100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100    | 85                   |
| 268         44         43         677         34         19         614           0.32         0.20         0.22         0.41         0.41         0.41         0.01         0.40           133.1         219         1810         16.41         0.01         0.40         0.01         0.40         0.01         0.40         0.01         0.40         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.00 1.00 1.00       |
| 0.20         0.20         0.41         0.41         0.41         0.41         0.40           1331         2.19         1810         1641         81         1301         1524           0         0         0         1810         0         1722         1301         0           0         0         0         1810         0         1722         1301         0           0         0         0         4         0         5.7         0.4         0.0           0         0         0         0         0         5.7         0.4         0.0           0         0         0         0         0         1.00         0         0         0           0         0         0         0         0         1.00         1.00         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 180                  |
| 1331   219   1810   1641   81   1301   1524     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.20                 |
| 0 0 19 0 317 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 892                  |
| 0.0 0.0 1810 0 1722 1301 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                    |
| 0.0 0.0 0.4 0.5 0.7 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 0 0                |
| 0.00 0.00 0.44 0.00 0.05 1.00 0.00 0.00 0.00 0.00 0.44 0.00 0.45 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0                  |
| 0 0 44 0.0 149 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |
| 0.00 0.04 0.04 0.05 0.05 0.00 0.00 0.04 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                    |
| 0 0 0 421 0 2402 302 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00                 |
| 0.00 0.00 1.00 0.00 1.00 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 836 0 0              |
| 0.0 0.0 20.7 0.0 9.1 21.1 0.0 0.0 0.0 0.0 20.7 0.0 9.1 21.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00 0.00            |
| 0.0 0.0 0.7 0.0 0.3 10.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0:0                  |
| 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0 0.0 9.0          |
| 0.0 0.0 23.4 0.0 9.4 31.6 0.0 0.0 23.4 0.0 9.4 31.6 0.0 0.0 23.4 0.0 9.4 31.6 0.0 0.0 23.4 0.0 9.4 31.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |
| 0.0 0.0 23.4 0.0 9.4 31.6 0.0 A 2.4 2.4 14.6 7.8 A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A C A A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C |                      |
| A A C A A C C A A C C A A C C A A C C A A C C A A C C A A C C A A C C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C  | 0.0 0.0              |
| 254 336<br>17.1 10.2<br>B B B<br>5.0 23.3 14.7<br>4.0 6.0 6.0<br>2.4 146 7.8<br>0.0 2.7 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | В А А                |
| 17.1 10.2<br>5 6 8<br>5.0 23.3 14.7<br>4.0 6.0 20.0<br>2.4 146 7.8<br>0.0 2.7 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 186                  |
| 5.0 23.3 14.7<br>4.0 6.0 6.0<br>10.0 60.0 20.0<br>2.4 14.6 7.8<br>0.0 2.7 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15.9                 |
| 5 6<br>50 23.3<br>4.0 6.0<br>10.0 60.0<br>2.4 14.6<br>0.0 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | മ                    |
| 5.0 23.3<br>4.0 6.0<br>10.0 60.0 2<br>2.4 14.6<br>0.0 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 2                  |
| 4.0 6.0<br>10.0 60.0<br>2.4 14.6<br>0.0 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.6 23.7 14          |
| 10.0 60.0<br>2.4 14.6<br>0.0 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.9                  |
| 2.4 14.6<br>0.0 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |
| 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.7                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0 1.3              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13.7                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20                   |

Foothill and North County Landfills Study - Future AM W-Trans

Synchro 11 Report Page 1

HCM 6th AWSC 2: Jack Tone Rd & E Hamey Ln

01/12/2025

01/12/2025

| Intersection Delay, s/veh11.6 | 11.6     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          |          |          |         |              |          |       |     |  |
|-------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------|----------|----------|---------|--------------|----------|-------|-----|--|
| Intersection LOS              | В        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          |          |          |         |              |          |       |     |  |
|                               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          |          |          |         |              |          |       |     |  |
| Movement                      | EBL EI   | EBT EBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | WBL WBT  | 3T WBR   | 3R NBL   | L NBT   | T NBR        | R SBI    | SBT   | SBR |  |
| Lane Configurations           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          |          |          |         |              |          |       |     |  |
| Traffic Vol, veh/h            | 21       | 62 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3           |          |          | 42 5     |         |              |          |       |     |  |
| Future Vol, veh/h             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 56       |          |          | 58 239  |              | 16 21    |       | 83  |  |
| Peak Hour Factor              | 1.00 1.  | 1.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _           | _        | _        | .00      |         | <del>-</del> | `        | `     | `   |  |
| Heavy Vehicles, %             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15          |          | 10       |          |         |              |          |       |     |  |
| Mvmt Flow                     |          | 62 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13          | 56       |          |          | 58 239  |              |          | 1 162 |     |  |
| Number of Lanes               | 0        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _           | 0        | _        | _        | 0       | _            | _        | ·     | _   |  |
| Approach                      | 8        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _           | NB<br>NB |          | Z        | NB      |              | SB       | m     |     |  |
| Opposing Approach             | WB       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | e<br>E   |          | S        | SB      |              | NB       |       |     |  |
| Opposing Lanes                | 2        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 2        |          |          | 2       |              |          | 2     |     |  |
| Conflicting Approach Left SB  | t SB     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | g<br>B   |          | Ш        | 88      |              | WB       | _     |     |  |
| Conflicting Lanes Left        | 2        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 2        |          |          | 2       |              |          | 2     |     |  |
| Conflicting Approach RighNB   | PINB     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | SB       |          | ≥        | WB      |              | B        | m     |     |  |
| Conflicting Lanes Right       | 2        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 2        |          |          | 2       |              |          | 2     |     |  |
| HCM Control Delay             | 10.4     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | =           | 10.5     |          | 13.4     | 4       |              | 10.7     | 7     |     |  |
| HCM LOS                       | Ф        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | ш        |          |          | В       |              |          | m     |     |  |
| and                           | <u>a</u> | SIND A TANKA A SEN | S EBI       | <u>a</u> | 19WC     | n1WRI r  | o CRI o | CBL          | C        |       |     |  |
| Vol I eff %                   | 2        | 20% 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2,5         | 25% C    | 0%       | 21% 0    | 0% 11%  | %0           | 1 %      |       |     |  |
| Vol Thru. %                   | 8        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          |          |          |         |              | %        |       |     |  |
| Vol Right, %                  |          | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | =        |          | =        |         |              | ×        |       |     |  |
| Sign Control                  | ಪ        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,          |          | ٠,       |          | 0,      |              | ۵        |       |     |  |
| Traffic Vol by Lane           | 2        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 83       |          | 124 4    | 42 183  |              | 83       |       |     |  |
| LTVol                         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0           |          |          | 56       | 0 21    |              | 0        |       |     |  |
| Through Vol                   | 2        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          | 0        |          |         |              | 0        |       |     |  |
| RT Vol                        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16          |          |          |          |         |              | 83       |       |     |  |
| Lane Flow Rate                | 2        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          |          | 124 4    | 42 183  |              | 83       |       |     |  |
| Geometry Grp                  |          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2           |          |          |          |         |              | 2        |       |     |  |
| Degree of Util (X)            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.023 0.156 |          |          | 0        |         |              | 6        |       |     |  |
| Departure Headway (Hd)        | 5.784    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.116 6.754 | 54 5.949 | 19 6.453 | 53 5.74  | 4 6.114 | 4 5.159      | <u>ල</u> |       |     |  |
| Convergence, Y/N              |          | Yes Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | Yes Y    |          | Yes Ye   | Yes Yes |              | S        |       |     |  |
| Cap                           | 9        | 624 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | 531 6    |          | 557 624  | 4 589   | 9 695        | 5        |       |     |  |
| Service Time                  | 3.5      | 3.514 2.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.846 4.497 | 97 3.692 | 32 4.192 | 92 3.479 | 9 3.846 | 6 2.89       | <u>و</u> |       |     |  |
| HCM Lane V/C Ratio            | 0.4      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.023 0.156 |          |          |          | 7 0.311 | 0            | 6        |       |     |  |
| HCM Control Delay             | 5        | 13.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8           |          |          |          |         |              | 9        |       |     |  |
| 0010001001                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          |          |          |         | ı            |          |       |     |  |
| TOW Lare LOS                  |          | מ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ⋖           | മ        | ×        | m        | _<br>~  | m            | ¥        |       |     |  |

HCM 6th TWSC 3: Site Driveway & E Harney Ln

| HCM btn 1 WSC<br>3: Site Driveway & E Harney Ln | 崱    | Jaru        | ey Lr  | إ    |        |              | 01/12/2025 | 2/2025 |
|-------------------------------------------------|------|-------------|--------|------|--------|--------------|------------|--------|
|                                                 |      |             |        |      |        |              |            |        |
| Intersection                                    |      |             |        |      |        |              |            |        |
| Int Delay, s/veh                                | 1.9  |             |        |      |        |              |            |        |
| Movement                                        | EBT  | EBR         | WBL    | WBT  | NBL    | NBR          |            |        |
| Lane Configurations                             | 4    | R_          |        | 4    | r      | W_           |            |        |
|                                                 | 37   | 39          | 2      | 99   | 53     | က            |            |        |
|                                                 | 37   | 33          | ည      | 99   | 53     | က            |            |        |
| eds, #/hr                                       |      | 0           | 0      | 0    | 0      | 0            |            |        |
|                                                 | Free | Pree        | Free   | ee l | Stop   | Stop         |            |        |
| Ctorogo Logath                                  | _    | None        |        | None | ۰      | None<br>None |            |        |
| Storage #                                       |      | 0.70        |        | ٠    | 0      | 3 '          |            |        |
|                                                 | 0    | ٠           | ľ      | 0    | 0      | ľ            |            |        |
| r Factor 1                                      | 100  | 100         | 100    | 100  | 100    | 100          |            |        |
| . 0                                             | 9    | 23          | 0      | 13   | 51     | 0            |            |        |
| Mvmt Flow                                       | 37   | 33          | 2      | 99   | 53     | က            |            |        |
|                                                 |      |             |        |      |        |              |            |        |
| Major/Minor Major1                              | or1  | 2           | Major2 | 2    | Minor1 |              |            |        |
| Conflicting Flow All                            | 0    | 0           | 9/     | 0    | 113    | 37           |            |        |
| Stage 1                                         | ì    | 1           | 1      | •    | 37     | 1            |            |        |
| Stage 2                                         |      | ٠           | ٠      | •    | 9/     | ٠            |            |        |
| Critical Hdwy                                   |      | •           | 4.1    | •    | 6.61   | 6.2          |            |        |
| Critical Hdwy Stg 1                             |      | ٠           | •      | •    | 5.61   | •            |            |        |
| Critical Hdwy Stg 2                             |      | •           | ' ;    | •    | 2.61   | ' :          |            |        |
| Follow-up Hdwy                                  |      | ٠           | 2.2    | ١    | 3.689  | 3.3          |            |        |
| Pot Cap-1 Maneuver                              | ,    | •           | 1536   | •    | 840    | 1041         |            |        |
| Stage 1                                         | ·    | ٠           | 1      | 1    | 939    | ١            |            |        |
| Stage 2                                         | ÷    | 1           | •      | 1    | 901    | 1            |            |        |
| Platoon blocked, %                              |      | ٠           |        | ١    |        |              |            |        |
| Mov Cap-1 Maneuver                              | ÷    | ٠           | 1536   | •    | 837    | 1041         |            |        |
| Mov Cap-2 Maneuver                              |      | ٠           | ٠      | ٠    | 837    | ١            |            |        |
| Stage 1                                         | ř    | 1           | 1      | 1    | 939    | 1            |            |        |
| Stage 2                                         |      | ٠           | ٠      | •    | 868    | ١            |            |        |
|                                                 |      |             |        |      |        |              |            |        |
| Approach                                        | EB   |             | WB     |      | NB     |              |            |        |
| HCM Control Delay, s                            | 0    |             | 0.5    |      | 9.4    |              |            |        |
| HCM LOS                                         |      |             |        |      | ⋖      |              |            |        |
|                                                 |      |             |        |      |        |              |            |        |
| Minor Lane/Major Mvmt                           | R    | NBLn1 NBLn2 | BLn2   | EBT  | EBR    | WBL          | WBT        |        |
| Capacity (veh/h)                                |      | 837         | 1041   | •    | ٠      | 1536         |            |        |
| HCM Lane V/C Ratio                              | 0    | 0.035 0.003 | 0.003  | 1    | •      | 0.003        |            |        |
| HCM Control Delay (s)                           |      | 9.2         | 8.5    | •    | •      | 7.4          | 0          |        |
| HCM Lane LOS                                    |      | ∢ 5         | ∢ <    | ١    | ٠      | < <          | <b>A</b>   |        |
| HCM 95th %tile Q(ven)                           |      | O.1         | >      |      | •      | >            |            |        |

Foothill and North County Landfills Study - Future AM W-Trans

Synchro 11 Report Page 3

HCM 6th TWSC 4: Clements Rd & E Harney Ln

01/12/2025

| ntersection              |        |       |      |        |                |       |          |      |      |        |      |      |  |
|--------------------------|--------|-------|------|--------|----------------|-------|----------|------|------|--------|------|------|--|
| Int Delay, s/veh         | 2.3    |       |      |        |                |       |          |      |      |        |      |      |  |
| Movement                 | EBE    | EBT   | EBR  | WBL    | WBT            | WBR   | NBL      | NBT  | NBR  | SBL    | SBT  | SBR  |  |
| ane Configurations       |        | 4     |      |        | 4              |       |          | 4    |      |        | 4    |      |  |
| raffic Vol, veh/h        | 21     | 2     | 17   | 4      | 0              | 7     | 33       | 88   | က    | 7      | 160  | 54   |  |
| Future Vol, veh/h        | 21     | വ     | 17   | 4      | 0              | 2     | 33       | 88   | က    | 2      | 160  | 54   |  |
| Conflicting Peds, #/hr   | 0      | 0     | 0    | 0      | 0              | 0     | 0        | 0    | 0    | 0      | 0    | 0    |  |
| Sign Control             | Stop   | Stop  | Stop | Stop   | Stop           | Stop  | Free     | Free | Free | Free   | Free | Free |  |
| RT Channelized           | ì      | 1     | None | 1      | 1              | None  | 1        | 1    | None | 1      | 1    | None |  |
| Storage Length           | ٠      | ٠     | •    | •      | •              | 1     | •        | •    | 1    | •      | •    | •    |  |
| Veh in Median Storage, # | +      | 0     | 1    | 1      | 0              | 1     | 1        | 0    | ٠    | 1      | 0    | ٠    |  |
| Grade, %                 |        | 0     | •    | •      | 0              | 1     | 1        | 0    | '    | •      | 0    | ٠    |  |
| Peak Hour Factor         | 100    | 100   | 100  | 100    | 100            | 100   | 100      | 100  | 100  | 100    | 100  | 100  |  |
| Heavy Vehicles, %        | 7      | 20    | 0    | 0      | 0              | 0     | 6        | 4    | 0    | 0      | 9    | 52   |  |
| Mvmt Flow                | 71     | 2     | 17   | 4      | 0              | 2     | 33       | 83   | က    | 2      | 160  | 24   |  |
|                          |        |       |      |        |                |       |          |      |      |        |      |      |  |
| Major/Minor M            | Minor2 |       | 2    | Minor1 |                | _     | Major1   |      | _    | Major2 |      |      |  |
| Conflicting Flow All     | 346    | 346   | 172  | 326    | 357            | 91    | 184      | 0    | 0    | 95     | 0    | 0    |  |
| Stage 1                  | 176    | 176   | 1    | 169    | 169            | 1     | 1        | 1    | ٠    | 1      | 1    | 1    |  |
| Stage 2                  | 170    | 170   | 1    | 187    | 188            | 1     | 1        | 1    | 1    | 1      | 1    | •    |  |
| Critical Hdwy            | 7.21   | 6.7   | 6.2  | 7.1    | 6.5            | 6.2   | 4.19     | •    | •    | 4.1    | •    | •    |  |
| Critical Hdwy Stg 1      | 6.21   | 2.7   | •    | 6.1    | 5.5            | •     |          | •    | ١    |        |      | ٠    |  |
| Critical Hdwy Stg 2      | 6.21   | 2.7   | •    | 6.1    | 5.5            | •     | •        | •    | •    | •      | •    | •    |  |
| Follow-up Hdwy           |        | 4.18  | 3.3  | 3.5    | 4              | 3.3   | 2.281    | •    | •    | 2.2    |      | ٠    |  |
| Pot Cap-1 Maneuver       | 265    | 549   | 877  | 603    | 572            | 972   | 1350     | 1    | 1    | 1515   | 1    | 1    |  |
| Stage 1                  | 802    | 721   | •    | 838    | 763            | 1     | •        | •    | ١    | •      | •    | ٠    |  |
| Stage 2                  | 811    | 725   | 1    | 819    | 748            | 1     | 1        | 1    | •    | 1      | 1    | 1    |  |
| Platoon blocked, %       |        |       |      |        |                |       |          | 1    | 1    |        | 1    | •    |  |
| Nov Cap-1 Maneuver       | 277    | 532   | 877  | 573    | 224            | 972   | 972 1350 | 1    | 1    | 1515   | 1    | 1    |  |
| Mov Cap-2 Maneuver       | 277    | 532   | •    | 573    | 224            | •     | •        | •    | •    | •      | •    | ٠    |  |
| Stage 1                  | 781    | 720   | 1    | 813    | 49             | 1     | 1        | 1    | 1    | 1      | 1    | 1    |  |
| Stage 2                  | 382    | 703   | ٠    | 797    | 747            | •     | •        | •    | ٠    | ٠      | •    | ٠    |  |
|                          |        |       |      |        |                |       |          |      |      |        |      |      |  |
| Approach                 | æ      |       |      | WB     |                |       | NB       |      |      | SB     |      |      |  |
| HCM Control Delay, s     | 10.8   |       |      | 10.5   |                |       | 2.3      |      |      | 0.1    |      |      |  |
| HCM LOS                  | œ      |       |      | ш      |                |       |          |      |      |        |      |      |  |
|                          |        |       |      |        |                |       |          |      |      |        |      |      |  |
| Minor Lane/Major Mvmt    |        | NBL   | NBT  | NBR E  | NBR EBLn1WBLn1 | /BLn1 | SBL      | SBT  | SBR  |        |      |      |  |
| Capacity (veh/h)         |        | 1350  | 1    | 1      | 099            | 664   | 1515     | 1    | 1    |        |      |      |  |
| HCM Lane V/C Ratio       | 0      | 0.029 |      |        | 0.065 0.009    |       | 0.001    |      |      |        |      |      |  |
| HCM Control Delay (s)    |        | 7.7   | 0 <  |        | 10.8           | 10.5  | 7.4      | 0 <  |      |        |      |      |  |
| TCM Lane LUS             |        | ₹ 5   | ⋖    | ٠      | n c            | ם כ   | < <      | ⋖    | •    |        |      |      |  |
| HCM 95th %tile Q(veh)    |        | 0.    | ١    | ٠      | 0.7            | 0     | >        | ٠    | ١    |        |      |      |  |

Foothil and North County Landfills Study - Future AM W-Trans

HCM 6th Signalized Intersection Summary 1: SR 88 & E Harney Ln

01/12/2025

HCM 6th AWSC 2: Jack Tone Rd & E Harney Ln

01/12/2025

Intersection Delay, s/veh10.1 Intersection LOS B

141 17 141 17 141 17 1.00 1.00 6 0 141 17

0800000

၀ စ္က ၀

**-**889558 ₹ 50 50 50 50 £ £

39 1.00 24 

1.00

Lane Configurations Traffic Vol, veh/h Future Vol, veh/h Peak Hour Factor Heavy Vehicles, %

0 2 8 8 0

Mvmt Flow Number of Lanes

Approach EB
Opposing Approach WB
Opposing Lanes 2
Conflicting Approach Left SB
Conflicting Approach RighNB
Conflicting Approach RighNB
Conflicting Lanes Right 2
HCM Control Delay 9.5
HCM LOS

NBL/1 NBL/12 EBL/12 HBL/12 WBL/13 SBL/13 SBL/13 SBL/13 HBL/12 HB/13 WB/14 WB/1

Lane
Vol Left, %
Vol Right, %
Sign Control
Traffic Vol by Lane
LT Vol

% 0% 20% 18% 0% 89% 0% 89% 0% 89% 0% 80% 0% 80% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100

0.314 0.039 0.168 0. 5.641 4.924 6.094 19 768 768 768 768 768 78 591 3.341 2.644 3.809 2. 0.318 0.04 0.168 0. 10.9 7.8 10 10.9 7.8 10 11.3 0.1 0.6

Through Vol RT Vol Lane Flow Rate Geometry GP Degree of Util (X) Degree of Util (X) Convergence, YN Cap Service Time HCM Lane VIC Ratio HCM Control Delay HCM Lane LOS HCM Lane LOS

| titoris EBL EBT EB titoris to (vehrly) 99 138 3 evehrly 99 138 2 every 99 138 2 evehrly 99 138 2 evehrly 99 138 2 evehrly 99 138 2 evehrly 99 139 973 171 evehrly 99 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         | 1    | †    | -         | -    | <b>↓</b> | 4    | •    | <b>←</b> | •    | ۶    | <b>→</b> | *    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------|------|-----------|------|----------|------|------|----------|------|------|----------|------|
| 99 138 32 27 101 14 14 437 33 33 48 9 188 32 27 101 14 14 437 33 33 34 8 9 188 32 27 101 14 14 437 33 33 34 8 9 188 32 27 101 14 14 437 33 33 34 8 9 188 32 27 101 14 14 437 33 33 34 8 9 188 32 27 101 100 100 100 100 100 100 100 100 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | lovement                | EBL  | EBT  | EBR       | WBL  | WBT      | WBR  | NBL  | NBT      | NBR  | SBL  | SBT      | SBR  |
| 99 138 32 27 101 14 14 437 33 348 99 138 32 27 101 14 14 437 33 348 99 138 32 27 101 14 14 437 33 348 99 138 32 27 101 14 14 437 33 348 99 138 22 27 101 100 100 100 100 100 100 100 100 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ane Configurations      |      | 4    |           |      | 4        |      | je.  | £\$      |      | r    | 2        |      |
| 99 138 32 27 101 14 44 37 33 33 348 1 100 100 100 100 100 100 100 100 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | raffic Volume (veh/h)   | 66   | 138  | 32        | 27   | 101      | 14   | 14   | 437      | 33   | 33   | 348      | 33   |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -uture Volume (veh/h)   | 66   | 138  | 32        | 27   | 101      | 14   | 14   | 437      | 33   | 33   | 348      | 33   |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ا ۵ (۵b), veh           | 0    | 0    | 0         | 0    | 0        | 0    | 0    | 0        | 0    | 0    | 0        | 0    |
| 1900 1870 1900 1828 1885 1900 1900 1900 1900 1970 100 100 100 100 100 100 100 100 100 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Bike Adj(A_pbT)         | 1.00 |      | 1.00      | 1.00 |          | 1.00 | 1.00 |          | 1.00 | 1.00 |          | 1.00 |
| No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ng Bus, Adj             | 1.00 | 1.00 | 1.00      | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 |
| 1900   1870   1900   1826   1900   1870   1841   1841   1776   1990   1870   1940   1870   1841   1841   1776   1991   138   29   27   1011   11   14   437   26   33   348   100   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1. | Zone On Approach        |      | 2    |           |      | 2        |      |      | 2        |      |      | 2        |      |
| 99 188 29 27 101 11 14 437 26 33 348 1100 1.00 1.00 1.00 1.00 1.00 1.00 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | at Flow, veh/h/ln       | 1900 | 1870 | 1900      | 1826 | 1885     | 1900 | 1900 | 1870     | 1841 | 1811 | 1796     | 1900 |
| 100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100  | low Rate, veh/h         | 66   | 138  | 59        | 27   | 101      | 1    | 14   | 437      | 56   | 33   | 348      | 21   |
| 0         2         0         5         1         0         0         2         4         6         74           236         215         40         153         324         33         33         04         035           433         973         179         191         1468         143         1810         174         104         175         1677           266         0         0         139         0         0         14         0         87         33         0         1677         1677         1677         1677         1677         1677         1677         1677         1677         1677         1677         1677         1677         1677         1677         1677         1677         1677         1677         1677         1677         1678         1677         1678         1677         1678         1677         1678         1678         1677         1678         1678         1678         1678         1678         1678         1678         1678         1678         1678         1678         1678         1678         1678         1678         1678         1678         1678         1678         1678         1678 <td< td=""><td>Hour Factor</td><td>1.00</td><td>1.00</td><td>1.00</td><td>1.00</td><td>1.00</td><td>1.00</td><td>1.00</td><td>1.00</td><td>1.00</td><td>1.00</td><td>1.00</td><td>1.00</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Hour Factor             | 1.00 | 1.00 | 1.00      | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 |
| 236         215         40         153         324         31         33         573         34         67         584           022         022         022         022         022         022         023         033         033         034         035           286         0         0         148         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         167         167         167         167         167         167         167         167         167         167         167         167         167         167         167         167         167         167         167         167         167         167         167         167         167         167         167         167         167         167         167         167         167         167         167         167         167         167         167         167         167         167         167         167         167         167         167         167         167         167         167         167         167         167 <td< td=""><td>ant Heav Veh. %</td><td>0</td><td>2</td><td>0</td><td>ις</td><td>-</td><td>0</td><td>0</td><td>2</td><td>4</td><td>9</td><td>7</td><td>0</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ant Heav Veh. %         | 0    | 2    | 0         | ις   | -        | 0    | 0    | 2        | 4    | 9    | 7        | 0    |
| 0.22 0.22 0.22 0.22 0.22 0.02 0.33 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | veh/h                   | 236  | 215  | 40        | 153  | 324      | 31   | 33   | 573      | 34   | 29   | 584      | 35   |
| 433         973         179         191         1468         143         1810         1748         104         1725         1677           266         0         0         1802         0         0         14         0         465         1775         0           32         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0         0         1775         0         0         0         0         1775         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td>On Green</td> <td>0.22</td> <td>0.22</td> <td>0.22</td> <td>0.22</td> <td>0.22</td> <td>0.22</td> <td>0.02</td> <td>0.33</td> <td>0.33</td> <td>0.04</td> <td>0.35</td> <td>0.35</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | On Green                | 0.22 | 0.22 | 0.22      | 0.22 | 0.22     | 0.22 | 0.02 | 0.33     | 0.33 | 0.04 | 0.35     | 0.35 |
| 266         0         139         0         0         14         0         463         33         0           1646         0         0         1812         0         0         1810         0         1822         1725         0         0           5.7         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ow, veh/h               | 493  | 973  | 179       | 191  | 1468     | 143  | 1810 | 1748     | 104  | 1725 | 1677     | 101  |
| 1846 0 0 1802 0 0 1810 0 1852 1725 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 'olume(v), veh/h        | 266  | 0    | 0         | 139  | 0        | 0    | 4    | 0        | 463  | 33   | 0        | 369  |
| 32         0.0         0.0         0.0         0.0         0.3         0.0         87         0.7         0.0           957         0.0         0.1         0.0         0.0         0.0         0.0         87         0.7         0.0           431         0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | at Flow(s),veh/h/ln     | 1646 | 0    | 0         | 1802 | 0        | 0    | 1810 | 0        | 1852 | 1725 | 0        | 1778 |
| 57         0.0         0.0         2.4         0.0         0.0         0.3         0.0         8.7         0.7         0.0           0.37         0.11         0.19         0.09         0         33         0         6.6         1.00           0.54         0.00         0.00         0.27         0.00         0.00         0.07         6.7         0           954         0         0         0.00         0.00         0.00         0.00         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ve(g_s), s              | 3.2  | 0.0  | 0.0       | 0.0  | 0.0      | 0.0  | 0.3  | 0.0      | 8.7  | 0.7  | 0.0      | 9.9  |
| 0.37  0.11 0.19  0.08 1.00  0.06 1.00  0.05 1.00  0.05 1.00  0.05 1.00  0.05 1.00  0.05 1.00  0.05 1.00  0.05 1.00  0.05 1.00  0.05 1.00  0.05 1.00  0.05 1.00  0.05 1.00  0.05 1.00  0.05 1.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Q Clear(g c), s         | 2.7  | 0.0  | 0.0       | 2.4  | 0.0      | 0.0  | 0.3  | 0.0      | 8.7  | 0.7  | 0.0      | 9.9  |
| 491         0         609         0         33         0         607         67         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | In Lane                 | 0.37 |      | 0.11      | 0.19 |          | 80.0 | 1.00 |          | 90.0 | 1.00 |          | 90.0 |
| 0.54 0.00 0.00 0.27 0.00 0.043 0.00 0.76 0.50 0.00 0.954 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Grp Cap(c), veh/h       | 491  | 0    | 0         | 209  | 0        | 0    | 33   | 0        | 209  | 29   | 0        | 620  |
| 954 0 0 1006 0 0 467 0 2865 445 0 1 100 100 0 100 100 100 100 100 100 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tatio(X)                | 0.54 | 0.00 | 0.00      | 0.27 | 0.00     | 0.00 | 0.43 | 0.00     | 97.0 | 0.50 | 0.00     | 09:0 |
| 100 100 100 100 100 100 100 100 100 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cap(c_a), veh/h         | 954  | 0    | 0         | 1006 | 0        | 0    | 467  | 0        | 2865 | 445  | 0        | 2751 |
| 100 0.00 0.00 1.00 0.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.33 0.0 1.7 1.8 13.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Platoon Ratio           | 1.00 | 1.00 | 1.00      | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 |
| 13.9 0.0 0.0 12.7 0.0 0.0 18.8 0.0 11.7 18.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 2.1 0.0 0.0 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | eam Filter(I)           | 1.00 | 0.00 | 0.00      | 1.00 | 0.00     | 0.00 | 1.00 | 0.00     | 1.00 | 1.00 | 0.00     | 1.00 |
| 0.9 0.0 0.0 0.3 0.0 0.0 3.3 0.0 15 2.1 0.0 15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | m Delay (d), s/veh      | 13.9 | 0.0  | 0.0       | 12.7 | 0.0      | 0.0  | 18.8 | 0.0      | 11.7 | 18.3 | 0.0      | 10.4 |
| 15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | elay (d2), s/veh        | 6.0  | 0.0  | 0.0       | 0.3  | 0.0      | 0.0  | 3.3  | 0.0      | 1.5  | 2.1  | 0.0      | 0.7  |
| 15 0.0 0.0 0.7 0.0 0.0 0.1 0.0 22 0.3 0.0  18 A A B A C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A C B C B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Q Delay(d3),s/veh       | 0.0  | 0.0  | 0.0       | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  |
| 14.8 0.0 0.0 13.0 0.0 0.0 22.1 0.0 13.2 20.4 0.0 0.0 22.1 0.0 13.2 20.4 0.0 0.0 22.1 0.0 13.2 20.4 0.0 0.0 22.1 0.0 13.2 20.4 0.0 0.0 13.8 2.0 4 477 8 40.2 40.2 41.8 4.7 13.9 4.7 13.4 11.8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | sackOfQ(50%),veh/ln     | 1.5  | 0.0  | 0.0       | 0.7  | 0.0      | 0.0  | 0.1  | 0.0      | 2.2  | 0.3  | 0.0      | 1.5  |
| 148   0,0   0,0   13,0   0,0   0,0   22,1   0,0   13,2   20,4   0,0   0,0   22,1   0,0   13,2   20,4   0,0   0,0   266   139   477   477   402   477   41,8   8   8   8   8   8   8   8   8   8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . Movement Delay, s/veh |      |      |           |      |          |      |      |          |      |      |          |      |
| B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Delay(d),s/veh          | 14.8 | 0.0  | 0.0       | 13.0 | 0.0      | 0.0  | 22.1 | 0.0      | 13.2 | 20.4 | 0.0      | 11.1 |
| 266         139         477           14.8         13.0         13.4           1         2         4         5         6         8           5.5         18.7         14.6         4.7         19.5         14.6           4.0         6.0         6.0         4.0         6.0         6.0           100         6.0         20.0         10.0         60.0         20.0           2.7         7.7         2.8         4.4         4.4           0.0         2.0         1.0         0.0         1.6         0.5           13.2         13.2         13.2         13.2         13.2         13.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SOT                     | മ    | ∢    | ⋖         | മ    | ⋖        | ⋖    | ပ    | ∢        | ш    | ပ    | ⋖        | ш    |
| 14.8     13.0     13.4       B     B     B       1     2     4     5     6     8       55     18.7     14.6     4.7     19.5     14.6       4.0     6.0     4.0     6.0     6.0       100     60.0     20.0     20.0       27     7.7     23.8     4.4       0.0     2.0     1.0     0.0     1.6     0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ach Vol, veh/h          |      | 266  |           |      | 139      |      |      | 477      |      |      | 402      |      |
| 1 2 4 5 6<br>55 187 146 47 195<br>60 60 60 60 40 60<br>27 10.7 7.7 2.3 86<br>0.0 2.0 1.0 00 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ach Delay, s/veh        |      | 14.8 |           |      | 13.0     |      |      | 13.4     |      |      | 11.8     |      |
| 1 2 4 5 6<br>55 18.7 14.6 4.7 19.5<br>4.0 6.0 6.0 4.0 6.0<br>10.0 6.0 20.0 10.6 6.0<br>2.7 10.7 7.7 2.3 86<br>0.0 2.0 1.0 0.0 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ach LOS                 |      | ш    |           |      | В        |      |      | ш        |      |      | Ф        |      |
| 55 18.7 14.6 4.7 19.5 4.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Assigned Phs            | _    | 2    |           | 4    | 2        | 9    |      | œ        |      |      |          |      |
| 40 6.0 6.0 4.0 6.0<br>100 60.0 20.0 10.0 60.0<br>27 10.7 7.7 2.8 6.0<br>0.0 2.0 1.0 0.0 16<br>13.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | uration (G+Y+Rc), s     | 5.5  | 18.7 |           | 14.6 | 4.7      | 19.5 |      | 14.6     |      |      |          |      |
| 100 60.0 20.0 10.0 60.0 27 10.7 7.7 2.3 8.6 0.0 2.0 1.0 0.0 1.6 1.3 13.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ge Period (Y+Rc), s     | 4.0  | 0.9  |           | 0.9  | 4.0      | 0.9  |      | 0.9      |      |      |          |      |
| 2.7 10.7 7.7 2.3 8.6<br>0.0 2.0 1.0 0.0 1.6<br>13.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | breen Setting (Gmax), s | 10.0 | 0.09 |           | 20.0 | 10.0     | 0.09 |      | 20.0     |      |      |          |      |
| 0.0 2.0 1.0 0.0 1.6 13.2 13.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Clear Time (g_c+11), s  | 2.7  | 10.7 |           | 7.7  | 2.3      | 9.8  |      | 4.4      |      |      |          |      |
| ımmary<br>Jelay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ext Time (p_c), s       | 0.0  | 2.0  |           | 1.0  | 0.0      | 1.6  |      | 9.0      |      |      |          |      |
| Jelay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ection Summary          |      |      |           |      |          |      |      |          |      |      |          |      |
| Jeidy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6th Otal Dolaw          |      |      | 12.0      |      |          |      |      |          |      |      |          |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HCM 6th LOS             |      |      | 13.Z<br>B |      |          |      |      |          |      |      |          |      |

Foothill and North County Landfills Study - Future PM W-Trans

Synchro 11 Report Page 1

Foothill and North County Landfills Study - Future PM W-Trans

HCM 6th TWSC 3: Site Driveway & E Harney Ln

|     | œ       | R.                  | 2                 | 2                 | 0                      | de        | . 92 | 50  |                          |   | 100              | 0                 | 2  |        | 80                   |     |   | 6.2 |                     |                    | . 3.3<br>000   |       |     |                    | 986                |                    |     |     |    |                      |     |
|-----|---------|---------------------|-------------------|-------------------|------------------------|-----------|------|-----|--------------------------|---|------------------|-------------------|----|--------|----------------------|-----|---|-----|---------------------|--------------------|----------------|-------|-----|--------------------|--------------------|--------------------|-----|-----|----|----------------------|-----|
|     | NBL NBR | je-                 | 18                | 9                 |                        | Stop Stop |      | 0   | 0                        |   |                  | 0 ;               | 18 | Minor1 |                      | 8 8 |   |     | 5.4                 | 5.4                | _              |       | 975 |                    |                    | 998                | 948 | 975 | NB | c                    | 3.2 |
|     | WBT     | ₩                   | 23                | 23                | 0                      | Free S    | None | ,   | 0                        | 0 | 100              | 0                 | 23 | Ξ      | 0                    | ·   | ÷ | ·   |                     |                    |                |       |     |                    | ·                  | ٠                  | ٠   |     |    |                      |     |
|     | WBL     |                     | 0                 | 0                 | 0                      | Free      | ٠    | '   | 1                        | , | 100              | 0                 | 0  | Major2 | 8                    | •   |   | 4.1 | ٠                   | ' 6                | 7.7            | 3 '   | •   |                    | 1531               | ٠                  | ٠   | ٠   | WB | 0                    |     |
|     | EBR     | ₩.                  | 0                 | 0                 | 0                      | Free      | None | 575 | 1                        | • | 100              | 0                 | 0  | 2      | 0                    | •   | 1 | •   | •                   |                    | •              |       | •   | •                  | 1                  | •                  | •   | ٠   |    |                      |     |
| 1.2 | EBT     | *                   | 8                 | 8                 | 0                      | Free      | 1    | '   | 0 # '                    | 0 | 100              | 0                 | 8  | Major1 | 0                    |     | 1 | •   | 1                   |                    | 1              |       | •   |                    |                    | •                  | •   | •   | 留  | 0                    |     |
|     |         | -ane Configurations | raffic Vol, veh/h | Future Vol, veh/h | Conflicting Peds, #/hr |           |      |     | Veh in Median Storage, # |   | Peak Hour Factor | Heavy Vehicles, % |    |        | Conflicting Flow All |     |   | ı,  | Critical Hdwy Stg 1 | ontical Hdwy Stg 2 | -ollow-up Hdwy | i and |     | Platoon blocked, % | Nov Cap-1 Maneuver | Mov Cap-2 Maneuver |     |     |    | HCM Control Delay, s |     |

Foothill and North County Landfills Study - Future PM W-Trans

Synchro 11 Report Page 3

HCM 6th TWSC 4: Clements Rd & E Harney Ln

01/12/2025

01/12/2025

| 2.8       |      |                                            |                                                  |                                            |                                            |                                                                 |                                                                                                                    |                          |      |      |   |
|-----------|------|--------------------------------------------|--------------------------------------------------|--------------------------------------------|--------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------|------|------|---|
|           |      |                                            |                                                  |                                            |                                            |                                                                 |                                                                                                                    |                          |      |      |   |
| EBL EBT   | EBR  | WBL                                        | WBT                                              | WBR                                        | NBL                                        | NBT                                                             | NBR                                                                                                                | SBL                      | SBT  | SBR  |   |
| 4         |      |                                            | 4                                                |                                            |                                            | ÷                                                               |                                                                                                                    |                          | 4    |      |   |
| 30 1      | 41   | 2                                          | 0                                                | 0                                          | 31                                         | 108                                                             | 0                                                                                                                  | 0                        | 112  | 24   |   |
| 30 1      | 41   | 2                                          | 0                                                | 0                                          | 31                                         | 108                                                             | 0                                                                                                                  | 0                        | 112  | 24   |   |
| 0 0       |      | 0                                          | 0                                                | 0                                          | 0                                          | 0                                                               | 0                                                                                                                  | 0                        | 0    | 0    |   |
| Stop Stop | Stop | Stop                                       | Stop                                             | Stop                                       | Free                                       | Free                                                            | Free                                                                                                               | Free                     | Free | Free |   |
|           |      | 1                                          |                                                  | None                                       | 1                                          | 1                                                               | None                                                                                                               | •                        |      | None |   |
|           | •    | •                                          | ٠                                                | •                                          | ٠                                          | ٠                                                               | •                                                                                                                  | ٠                        | •    | ٠    |   |
| 0 -       | •    | 1                                          | 0                                                | ٠                                          | ٠                                          | 0                                                               | ٠                                                                                                                  | •                        | 0    | ٠    |   |
| 0         | '    | '                                          | 0                                                | •                                          | •                                          | 0                                                               | •                                                                                                                  | •                        | 0    | ٠    |   |
| 100 100   | 100  | 100                                        | 100                                              | 100                                        | 100                                        | 100                                                             | 100                                                                                                                | 100                      | 100  | 100  |   |
|           | 0    | 0                                          | 0                                                | 0                                          | 0                                          | 0                                                               | 0                                                                                                                  | 0                        | 0    | 4    |   |
| 30 1      | 41   | 2                                          | 0                                                | 0                                          | 31                                         | 108                                                             | 0                                                                                                                  | 0                        | 112  | 24   |   |
|           |      |                                            |                                                  |                                            |                                            |                                                                 |                                                                                                                    |                          |      |      |   |
| Minor2    | _    | /linor1                                    |                                                  | 2                                          | lajor1                                     |                                                                 | 2                                                                                                                  | lajor2                   |      |      |   |
| 294 294   | 124  | 315                                        | 306                                              | 108                                        | 136                                        | 0                                                               | 0                                                                                                                  | 108                      | 0    | 0    |   |
|           | 1    | 170                                        | 170                                              | •                                          | 1                                          | 1                                                               | •                                                                                                                  | 1                        | 1    | ì    |   |
|           | 1    | 145                                        | 136                                              | ٠                                          | 1                                          | •                                                               | ٠                                                                                                                  | •                        | •    | 1    |   |
|           |      | 7.1                                        | 6.5                                              | 6.2                                        | 4.1                                        | •                                                               | 1                                                                                                                  | 4.1                      | 1    | ٠    |   |
|           |      | 6.1                                        | 5.5                                              |                                            | ٠                                          |                                                                 |                                                                                                                    |                          |      | ٠    |   |
|           | 1    | 6.1                                        | 5.5                                              | 1                                          | 1                                          | 1                                                               | 1                                                                                                                  | •                        | 1    | ٠    |   |
|           | 3.3  | 3.5                                        | 4                                                | 3.3                                        | 2.5                                        | •                                                               |                                                                                                                    | 2.2                      |      | ٠    |   |
| 662 620   | 932  | 642                                        | 611                                              | 951                                        | 1461                                       | 1                                                               | 1                                                                                                                  | 1495                     | 1    | ٠    |   |
|           | '    | 837                                        | 762                                              |                                            | ٠                                          | 1                                                               |                                                                                                                    |                          | 1    | ٠    |   |
| 837 762   | 1    | 863                                        | 788                                              | 1                                          | 1                                          | 1                                                               | 1                                                                                                                  | 1                        | 1    | ٠    |   |
|           |      |                                            |                                                  |                                            |                                            | ٠                                                               | ٠                                                                                                                  |                          | ٠    | ٠    |   |
| 909 059   |      | 602                                        | 265                                              | 951                                        | 1461                                       | 1                                                               | 1                                                                                                                  | 1495                     | 1    | ì    |   |
|           | •    | 602                                        | 262                                              | ٠                                          | ٠                                          | ٠                                                               | ٠                                                                                                                  | ٠                        | •    | ٠    |   |
|           | •    | 818                                        | 744                                              | ٠                                          | •                                          | •                                                               | ٠                                                                                                                  | ٠                        | •    | ٠    |   |
| 818 744   | ٠    | 824                                        | 788                                              | ٠                                          | ٠                                          | ٠                                                               | ٠                                                                                                                  | ٠                        | ٠    | ٠    |   |
|           |      |                                            |                                                  |                                            |                                            |                                                                 |                                                                                                                    |                          |      |      |   |
| EB        |      | WB                                         |                                                  |                                            | NB                                         |                                                                 |                                                                                                                    | SB                       |      |      |   |
| 10.1      |      | 11                                         |                                                  |                                            | 1.7                                        |                                                                 |                                                                                                                    | 0                        |      |      |   |
| Ф         |      | ω                                          |                                                  |                                            |                                            |                                                                 |                                                                                                                    |                          |      |      |   |
| 2         |      |                                            | 417                                              | 2                                          | 5                                          | FGG                                                             | 0                                                                                                                  |                          |      |      |   |
| NDL.      |      | NDN                                        | DELITIV                                          | DE III                                     | SDL                                        | 200                                                             | אםפ                                                                                                                |                          |      |      |   |
| 1461      | 1    | 1                                          |                                                  | 602                                        | 1495                                       | 1                                                               | r<br>L                                                                                                             |                          |      |      |   |
| 0.021     | •    | •                                          |                                                  | 0.003                                      | •                                          | •                                                               | ٠                                                                                                                  |                          |      |      |   |
| 7.5       | 0    | 1                                          | 10.1                                             | =                                          | 0                                          | 1                                                               | 1                                                                                                                  |                          |      |      |   |
| V         | ⋖    | ٠                                          | Ф                                                | ш                                          | ⋖                                          | •                                                               | ٠                                                                                                                  |                          |      |      |   |
| 0.1       |      | •                                          | 0.3                                              | 0                                          | 0                                          | 1                                                               | •                                                                                                                  |                          |      |      |   |
|           |      | 284 124 124 124 124 124 124 124 124 124 12 | M 294 124 - 1 411 411 411 411 411 411 411 411 41 | 41 2 0   0   0   0   0   0   0   0   0   0 | 1 41 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 41 2 0 0 0     1 41 2 0 0 0     0 0 0 0 0 0 0     0 0 0 0 0 0 | 1 41 2 0 0 31   1 41 2 0 0 0 31   1 41 2 0 0 0 31   0 0 0 0 0 0 0 31   0 0 0 0 0 0 0 0   0 0 0 0 0 0 0 0   0 0 0 0 | 1 41 2 0 0 31 108 0   10 | 1    | 1    | 1 |

Foothil and North County Landfills Study - Future PM W-Trans

HCM 6th Signalized Intersection Summary 1: SR 88 & E Harney Ln

01/02/2025

HCM 6th AWSC 2: Jack Tone Rd & E Harney Ln

01/02/2025

Intersection Delay, s/veh 9.4 Intersection LOS A

39 0.93 0 70 70 70 7 17 17 18 18 0

25 25 0.93 12 27

113 113 122 15 15

13 13 15 14 1 0.93 83 83 **\*** 

15 0.93 16 0

Lane Configurations Traffic Vol, veh/h Future Vol, veh/h Peak Hour Factor Heavy Vehicles, %

37

0 28

Mvmt Flow Number of Lanes

Approach EB
Opposing Approach WB
Opposing Lanes
Z
Conflicting Approach Leff SB
Conflicting Approach RighNB
Conflicting Approach RighNB
Conflicting Lanes Right
Y
HCM Control Delay
HCM LOS
A

Lane
Vol Left, %
Vol Right, %
Sign Control
Traffic Vol by Lane
LT Vol

2 0.229 0.037 0.152 0.057 4 5.524 4.914 5.861 4.869 8 647 724 610 732 9 3.264 2.674 3.617 2.624 2 0.23 0.037 0.154 0.057 8 9.9 7.9 9.7 7.9 8 A A A A A A A A A A A 1 0.9 0.1 0.5 0.2

0.187 0.023 0.167 C 5.596 4.875 5.722 5.7 768 768 768 768 768 768 624 3.362 2.64 3.488 2. 0.188 0.023 0.168 7 9.7 7.8 96 9.7 7.8 96 0.7 0.1 0.6

0.02 (5.094 Pes 698 2.859 (0.02

Through Vol
RT Vol
Lane Floor
Lane Floor
Begree of Util (X)
Degrature Headway (Hd)
Convergence, YN
Cap
Service Time
HCM Lane VIC Ratio
HCM Lontrol Delay
HCM Lane LOS
HCM Lane LOS
HCM Sthritle Q

|                              | 4    | †    | -    | -    | ļ    | 1    | •    | <b>←</b>  | •    | ۶    | <b>→</b> | •    |
|------------------------------|------|------|------|------|------|------|------|-----------|------|------|----------|------|
| Movement                     | EBF  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT       | NBR  | SBL  | SBT      | SBR  |
| Lane Configurations          |      | 4    |      |      | 4    |      | je.  | <b>\$</b> |      | F    | 4        |      |
| Traffic Volume (veh/h)       | 22   | 82   | 54   | 45   | 142  | 18   | 18   | 179       | 32   | 12   | 588      | 51   |
| Future Volume (veh/h)        | 22   | 82   | 54   | 45   | 142  | 18   | 18   | 179       | 32   | 12   | 299      | 51   |
| Initial Q (Qb), veh          | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0         | 0    | 0    | 0        | 0    |
| Ped-Bike Adj(A_pbT)          | 1.00 |      | 1.00 | 1.00 |      | 1.00 | 1.00 |           | 1.00 | 1.00 |          | 1.00 |
| Parking Bus, Adj             | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00      | 1.00 | 1.00 | 1.00     | 1.00 |
| Work Zone On Approach        |      | 8    |      |      | 8    |      |      | 2         |      |      | 2        |      |
| Adj Sat Flow, veh/h/In       | 1826 | 1781 | 1900 | 1618 | 1826 | 1737 | 1900 | 1737      | 1470 | 1278 | 1781     | 1811 |
| Adj Flow Rate, veh/h         | 24   | 93   | 21   | 46   | 156  | 17   | 20   | 197       | 30   | 13   | 329      | 40   |
| Peak Hour Factor             | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91      | 0.91 | 0.91 | 0.91     | 0.91 |
| Percent Heavy Veh, %         | 2    | œ    | 0    | 19   | 2    | 11   | 0    | £         | 58   | 45   | œ        | 9    |
| Cap, veh/h                   | 160  | 243  | 20   | 178  | 256  | 56   | 46   | 454       | 69   | 21   | 468      | 57   |
| Arrive On Green              | 0.19 | 0.19 | 0.19 | 0.19 | 0.19 | 0.19 | 0.03 | 0.31      | 0.31 | 0.02 | 0.30     | 0:30 |
| Sat Flow, veh/h              | 170  | 1256 | 256  | 245  | 1323 | 132  | 1810 | 1472      | 224  | 1217 | 1558     | 189  |
| Grp Volume(v), veh/h         | 138  | 0    | 0    | 219  | 0    | 0    | 20   | 0         | 227  | 13   | 0        | 369  |
| Grp Sat Flow(s),veh/h/ln     | 1682 | 0    | 0    | 1700 | 0    | 0    | 1810 | 0         | 1697 | 1217 | 0        | 1747 |
| Q Serve(g s), s              | 0.0  | 0.0  | 0.0  | 1.5  | 0:0  | 0:0  | 0.4  | 0:0       | 3.6  | 0.4  | 0.0      | 6.2  |
| Cycle Q Clear(g c), s        | 2.3  | 0.0  | 0.0  | 3.9  | 0.0  | 0.0  | 0.4  | 0.0       | 3.6  | 0.4  | 0.0      | 6.2  |
| Prop In Lane                 | 0.17 |      | 0.15 | 0.21 |      | 0.08 | 1.00 |           | 0.13 | 1.00 |          | 0.11 |
| Lane Grp Cap(c), veh/h       | 453  | 0    | 0    | 460  | 0    | 0    | 46   | 0         | 524  | 21   | 0        | 525  |
| V/C Ratio(X)                 | 0.30 | 0.00 | 0.00 | 0.48 | 0.00 | 0.00 | 0.44 | 00:0      | 0.43 | 0.63 | 0.00     | 0.70 |
| Avail Cap(c_a), veh/h        | 1099 | 0    | 0    | 1129 | 0    | 0    | 543  | 0         | 3057 | 365  | 0        | 3149 |
| HCM Platoon Ratio            | 1.00 | 1.00 | 1.00 | 1:00 | 1.00 | 1.00 | 1.00 | 1.00      | 1.00 | 1.00 | 1.00     | 1.00 |
| Upstream Filter(I)           | 1.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 1.00 | 0.00      | 1.00 | 1.00 | 0.00     | 1.00 |
| Uniform Delay (d), s/veh     | 11.8 | 0.0  | 0.0  | 12.3 | 0.0  | 0.0  | 16.0 | 0.0       | 9.5  | 16.3 | 0.0      | 10.3 |
| Incr Delay (d2), s/veh       | 0.4  | 0.0  | 0.0  | 8.0  | 0.0  | 0.0  | 2.4  | 0.0       | 0.4  | 11.1 | 0.0      | 1.3  |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0       | 0.0  | 0.0  | 0.0      | 0.0  |
| %ile BackOfQ(50%),veh/ln     | 9.0  | 0.0  | 0.0  | 1.0  | 0.0  | 0.0  | 0.1  | 0.0       | 0.7  | 0.1  | 0.0      | 1.3  |
| Unsig. Movement Delay, s/veh |      |      |      |      |      |      |      |           |      |      |          |      |
| LnGrp Delay(d),s/veh         | 12.1 | 0.0  | 0.0  | 13.1 | 0.0  | 0.0  | 18.4 | 0.0       | 9.6  | 27.3 | 0.0      | 11.6 |
| LnGrp LOS                    | В    | A    | A    | В    | A    | A    | В    | A         | A    | ပ    | A        | В    |
| Approach Vol, veh/h          |      | 138  |      |      | 219  |      |      | 247       |      |      | 382      |      |
| Approach Delay, s/veh        |      | 12.1 |      |      | 13.1 |      |      | 10.3      |      |      | 12.2     |      |
| Approach LOS                 |      | Ф    |      |      | Ф    |      |      | В         |      |      | Ф        |      |
| Timer - Assigned Phs         | _    | 2    |      | 4    | 2    | 9    |      | 00        |      |      |          |      |
| Phs Duration (G+Y+Rc), s     | 4.6  | 16.3 |      | 12.5 | 4.8  | 16.0 |      | 12.5      |      |      |          |      |
| Change Period (Y+Rc), s      | 4.0  | 0.9  |      | 0.9  | 4.0  | 0.9  |      | 0.9       |      |      |          |      |
| Max Green Setting (Gmax), s  | 10.0 | 0.09 |      | 20.0 | 10.0 | 0.09 |      | 20.0      |      |      |          |      |
| Max Q Clear Time (g_c+I1), s | 2.4  | 9.9  |      | 4.3  | 2.4  | 8.2  |      | 5.9       |      |      |          |      |
| Green Ext Time (p_c), s      | 0.0  | 6.0  |      | 0.5  | 0.0  | 1.6  |      | 0.8       |      |      |          |      |
| Intersection Summary         |      |      |      |      |      |      |      |           |      |      |          |      |
| HCM 6th Ctrl Delay           |      |      | 11.9 |      |      |      |      |           |      |      |          |      |
| HCM 6th LOS                  |      |      | ш    |      |      |      |      |           |      |      |          |      |

Foothiil and North County Landfills Study - Existing plus Project AM W-Trans

HCM 6th TWSC 3: Site Driveway & E Harney Ln

| HCM btn 1 WSC<br>3: Site Driveway & E Harney Ln | — Ж      | Harn        | ey Lr      | ے     |        |      | 01/02/2025 | /2025 |
|-------------------------------------------------|----------|-------------|------------|-------|--------|------|------------|-------|
|                                                 |          |             |            |       |        |      |            |       |
| Intersection                                    |          |             |            |       |        |      |            |       |
| Int Delay, s/veh                                | 2.7      |             |            |       |        |      |            |       |
| Movement                                        | EBT      | EBR         | WBL        | WBT   | NBL    | NBR  |            |       |
| Lane Configurations                             | *        | R_          |            | ₩     | F      | R_   |            |       |
| Traffic Vol, veh/h                              | 31       | 09          | 7          | 47    | 4      | 2    |            |       |
| Future Vol, veh/h                               | 3        | 9           | _          | 47    | 4      | വ    |            |       |
| eds, #/hr                                       |          | 0           | 0          | 0     |        | 0    |            |       |
|                                                 | Free     | Eree        | Free       | Free: | Stop   | Stop |            |       |
| RT Channelized                                  | •        | None        | •          | None  |        | None |            |       |
| Storage Length                                  |          | 275         | 1          | •     |        | න    |            |       |
| Veh in Median Storage, #                        | 0 0      | •           | •          | 0     | 0      | •    |            |       |
| Grade, %                                        | 0        | •           | •          | 0     | 0      | ٠    |            |       |
| Peak Hour Factor                                | 82       | 82          | 88         | 88 4  | 88     | 82   |            |       |
| Heavy Vehicles, %                               | 0L<br>98 | 3 8         | <b>Ο</b> α | 55 13 | 30     | O 4  |            |       |
| MINTE FIOW                                      | 8        | _           | 0          | 8     | 70     | 0    |            |       |
|                                                 |          |             |            |       |        |      |            |       |
|                                                 | Major1   | _           | Major2     | _     | Minor1 |      |            |       |
| Conflicting Flow All                            | 0        | 0           | 107        | 0     | 107    | 98   |            |       |
| Stage 1                                         | ٠        | 1           | 1          | 1     | 99 i   | 1    |            |       |
| Stage 2                                         | ٠        | 1           |            | 1     | Ε,     | •    |            |       |
| Critical Hdwy                                   | ٠        | •           | 4.1        | •     | 6.7    | 6.2  |            |       |
| Critical Hdwy Stg 1                             | ٠        | 1           | 1          | 1     | 5.7    | 1    |            |       |
| Critical Hdwy Stg 2                             | ٠        | 1           | ' '        | 1     | 2.7    | ' :  |            |       |
| Follow-up Hdwy                                  | ٠        | 1           | 2.2        | 1     | 3.77   | 333  |            |       |
| Pot Cap-1 Maneuver                              | ٠        | 1           | 1497       | 1     | 827    | 1042 |            |       |
| Stage 1                                         | ٠        | 1           | 1          | 1     | 919    | ١    |            |       |
| Stage 2                                         | 1        | 1           | 1          | 1     | 882    | 1    |            |       |
| Platoon blocked, %                              | ٠        | •           |            | •     |        |      |            |       |
| Mov Cap-1 Maneuver                              | 1        | 1           | 1497       | 1     | 822    | 1042 |            |       |
| Mov Cap-2 Maneuver                              | ٠        | •           | •          | •     | 822    | •    |            |       |
| Stage 1                                         | ٠        | 1           | 1          | 1     | 919    | 1    |            |       |
| Stage 2                                         | ٠        | 1           | 1          | 1     | 880    | ١    |            |       |
|                                                 |          |             |            |       |        |      |            |       |
| Approach                                        | B        |             | WB         |       | RB     |      |            |       |
| HCM Control Delay, s                            | 0        |             | _          |       | 9.6    |      |            |       |
| HCMLOS                                          |          |             |            |       | ⋖      |      |            |       |
|                                                 |          |             |            |       |        |      |            |       |
| Minor Lane/Major Mvmt                           | Z        | NBLn1NBLn2  | JBLn2      | EBT   | EBR    | WBL  | WBT        |       |
| Capacity (veh/h)                                |          | 822         | 1042       |       |        | 1497 |            |       |
| HCM Lane V/C Ratio                              |          | 0.063 0.006 | 900.0      | 1     | 1      | 9000 | ' C        |       |
| HCM Lane LOS                                    |          | . <         | 0.0        |       |        | t <  |            |       |
| HCM 95th %tile Q(veh)                           |          | 0.2         | ( 0        |       |        | ( 0  | c ''       |       |
| ,                                               |          |             |            |       |        |      |            |       |

Footbill and North County Landfills Study - Existing plus Project AM W-Trans

Synchro 11 Report Page 3

HCM 6th TWSC 4: Clements Rd & E Harney Ln

01/02/2025

| NBL NBT     | NBR  | SBL    | SBT  | SBR  |
|-------------|------|--------|------|------|
| €\$         |      |        | ÷    |      |
| 33 47       | က    | 2      | 65   | 19   |
|             |      | 2      | 9    | 19   |
| 0           |      | 0      | 0    | 0    |
| Free Free   | Free | Free   | Free | Free |
|             | None | •      | •    | None |
|             | •    | ٠      | ٠    |      |
| 0 -         | •    | ٠      | 0    |      |
| 0           | '    | '      | 0    |      |
| 85 85       | 82   | 82     | 82   | 82   |
| 9           | 0    | 0      | ဖ    | 21   |
| 39 55       | 4    | 2      | 9/   | 22   |
|             |      |        |      |      |
| Major1      | _    | Major2 |      |      |
| 98 0        | 0    | 29     | 0    | 0    |
| 1           | •    | 1      | 1    |      |
|             | •    | ٠      | •    |      |
| 4.19        | •    | 4.1    | 1    |      |
|             | '    | '      | ٠    |      |
|             | 1    | 1      | 1    |      |
| 3.3 2.281 - | '    | 2.2    | ٠    |      |
| 1452 -      | 1    | 1558   | 1    |      |
|             | •    | •      | •    |      |
|             | 1    | 1      | 1    | ì    |
|             | •    |        | ٠    |      |
| 1015 1452 - | •    | 1558   | 1    | ì    |
|             | '    | •      | ٠    |      |
|             | •    | •      | ٠    |      |
|             | ٠    | ٠      | ٠    |      |
|             |      |        |      |      |
| NB          |      | SB     |      |      |
| 3           |      | 0.2    |      |      |
|             |      |        |      |      |
|             |      |        |      |      |
| SBL SBT     | SBR  |        |      |      |
| 1558 -      | •    |        |      |      |
| 0.002       |      |        |      |      |
| 7.3 0       | 1    |        |      |      |
| A           | •    |        |      |      |
|             |      |        |      |      |
| 0           |      |        |      |      |

Foothil and North County Landfills Study - Existing plus Project AM W-Trans

HCM 6th Signalized Intersection Summary 1: SR 88 & E Harney Ln

|                              | \    | Ť    | *    | •    |          | ,    | -    |          | _    |      | •     | ,    |
|------------------------------|------|------|------|------|----------|------|------|----------|------|------|-------|------|
| Movement                     | EBL  | EBI  | EBR  | WBL  | WBT      | WBR  | NBL  | NBT      | NBR  | SBL  | SBT   | SBR  |
| Lane Configurations          |      | 4    |      |      | 4        |      | K    | 2        |      | F    | £\$   |      |
| Traffic Volume (veh/h)       | 83   | 133  | 50   | 78   | 103      | 4    | 14   | 301      | 27   | 33   | 266   | 33   |
| Future Volume (veh/h)        | 83   | 133  | 20   | 28   | 103      | 14   | 14   | 301      | 27   | 33   | 266   | 33   |
| Initial Q (Qb), veh          | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0        | 0    | 0    | 0     | 0    |
| Ped-Bike Adj(A_pbT)          | 1.00 |      | 1.00 | 1.00 |          | 1.00 | 1.00 |          | 1.00 | 1.00 |       | 1.00 |
| Parking Bus, Adj             | 1.00 | 1.00 | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00  | 1.00 |
| Work Zone On Approach        |      | 2    |      |      | 2        |      |      | 2        |      |      | 2     |      |
| Adj Sat Flow, veh/h/ln       | 1900 | 1870 | 1900 | 1841 | 1885     | 1900 | 1900 | 1870     | 1841 | 1811 | 1796  | 1900 |
| Adj Flow Rate, veh/h         | 87   | 140  | 18   | 53   | 108      | 12   | 15   | 317      | 21   | 32   | 280   | 22   |
| Peak Hour Factor             | 0.95 | 0.95 | 0.95 | 0.95 | 0.95     | 0.95 | 0.95 | 0.95     | 0.95 | 0.95 | 0.95  | 0.95 |
| Percent Heavy Veh, %         | 0    | 2    | 0    | 4    | -        | 0    | 0    | 2        | 4    | 9    | 7     | 0    |
| Cap, veh/h                   | 239  | 227  | 56   | 166  | 306      | 31   | 32   | 499      | 33   | 71   | 209   | 40   |
| Arrive On Green              | 0.21 | 0.21 | 0.21 | 0.21 | 0.21     | 0.21 | 0.02 | 0.29     | 0.29 | 0.04 | 0.31  | 0.31 |
| Sat Flow, veh/h              | 468  | 1078 | 123  | 202  | 1449     | 145  | 1810 | 1735     | 115  | 1725 | 1644  | 129  |
| Grp Volume(v), veh/h         | 245  | 0    | 0    | 149  | 0        | 0    | 15   | 0        | 338  | 32   | 0     | 302  |
| 3rp Sat Flow(s),veh/h/ln     | 1669 | 0    | 0    | 1796 | 0        | 0    | 1810 | 0        | 1850 | 1725 | 0     | 1773 |
| ی Serve(g_s), s              | 2.2  | 0.0  | 0.0  | 0.0  | 0.0      | 0.0  | 0.3  | 0.0      | 5.5  | 0.7  | 0.0   | 4.9  |
| Cycle Q Clear(g_c), s        | 4.6  | 0.0  | 0.0  | 2.4  | 0.0      | 0.0  | 0.3  | 0.0      | 5.5  | 0.7  | 0.0   | 4.9  |
| Prop In Lane                 | 0.36 |      | 0.07 | 0.19 |          | 0.08 | 1.00 |          | 90:0 | 1.00 |       | 0.07 |
| -ane Grp Cap(c), veh/h       | 492  | 0    | 0    | 203  | 0        | 0    | 32   | 0        | 532  | 71   | 0     | 549  |
| //C Ratio(X)                 | 0.50 | 0.00 | 0.00 | 0.30 | 0.00     | 0.00 | 0.43 | 0.00     | 0.64 | 0.49 | 0.00  | 0.55 |
| Avail Cap(c_a), veh/h        | 1069 | 0    | 0    | 1118 | 0        | 0    | 250  | 0        | 3192 | 496  | 0     | 3059 |
| HCM Platoon Ratio            | 1.00 | 1.00 | 1.00 | 1.00 | 1.00     | 1:00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00  | 1.00 |
| Jpstream Filter(I)           | 1.00 | 0.00 | 0.00 | 1.00 | 0.00     | 0.00 | 1.00 | 0.00     | 1.00 | 1.00 | 0.00  | 1.00 |
| Jniform Delay (d), s/veh     | 12.5 | 0.0  | 0.0  | 11.8 | 0.0      | 0.0  | 16.9 | 0.0      | 10.8 | 16.3 | 0.0   | 10.0 |
| ncr Delay (d2), s/veh        | 0.8  | 0.0  | 0.0  | 0.3  | 0.0      | 0.0  | 3.0  | 0.0      | 0.9  | 1.9  | 0.0   | 9.0  |
| nitial Q Delay(d3),s/veh     | 0.0  | 0.0  | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0   | 0.0  |
| %ile BackOfQ(50%),veh/ln     | 1.1  | 0.0  | 0.0  | 9.0  | 0.0      | 0.0  | 0.1  | 0.0      | 1.3  | 0.2  | 0.0   | 1.1  |
| Jusig. Movement Delay, s/veh |      |      |      |      |          |      |      |          |      |      |       |      |
| _nGrp Delay(d),s/veh         | 13.3 | 0.0  | 0.0  | 12.1 | 0.0      | 0.0  | 19.9 | 0.0      | 11.7 | 18.3 | 0.0   | 10.6 |
| -nGrp LOS                    | m    | ۷ إ  | ⋖    | m    | <b>4</b> | ∢    | m    | <b>∀</b> | m    | m    | V S   | 20   |
| Approach Vol, ven/h          |      | 242  |      |      | 149      |      |      | 353      |      |      | 33/   |      |
| Approach Delay, siven        |      | 13.3 |      |      | 17.1     |      |      | 17.1     |      |      | 4.1.1 |      |
| Apploacii LOS                |      | ۵    |      |      | ۵        |      |      | ۵        |      |      | ۵     |      |
| Timer - Assigned Phs         | 1    | 2    |      | 4    | 2        | 9    |      | 8        |      |      |       |      |
| Phs Duration (G+Y+Rc), s     | 5.4  | 16.0 |      | 13.3 | 4.7      | 16.8 |      | 13.3     |      |      |       |      |
| Change Period (Y+Rc), s      | 4.0  | 0.9  |      | 0.9  | 4.0      | 0.9  |      | 0.9      |      |      |       |      |
| Max Green Setting (Gmax), s  | 10.0 | 0.09 |      | 20.0 | 10.0     | 0.09 |      | 20.0     |      |      |       |      |
| Max Q Clear Time (g_c+11), s |      | 7.5  |      | 9.9  | 2.3      | 6.9  |      | 4.4      |      |      |       |      |
| Green Ext Time (p_c), s      | 0.0  | 1.4  |      | 6.0  | 0.0      | 1.2  |      | 0.5      |      |      |       |      |
| Intersection Summary         |      |      |      |      |          |      |      |          |      |      |       |      |
| HCM 6th Ctrl Delay           |      |      | 12.2 |      |          |      |      |          |      |      |       |      |
| Con on on Daily              |      |      | 7.7  |      |          |      |      |          |      |      |       |      |

Foothill and North County Landfills Study - Existing plus Project PM W-Trans

Synchro 11 Report Page 1

HCM 6th AWSC 2: Jack Tone Rd & E Hamey Ln

01/02/2025

01/02/2025

|                               |                    | 3L WBT WBR NBL NBT NBR | 4 4                 | 18 37                 | 91 18                | 35 0.85 0.85 0.85 0.85 0.85 | 0 2 6 0 5           | 25 107 21 44 101 | 0 1 1 0 1         | WB NB       | EB SB                | 2 2              | NB EB                        | 2 2                      | SB WB                       | 2 2                       | 9.6                   | <b>A</b>  |
|-------------------------------|--------------------|------------------------|---------------------|-----------------------|----------------------|-----------------------------|---------------------|------------------|-------------------|-------------|----------------------|------------------|------------------------------|--------------------------|-----------------------------|---------------------------|-----------------------|-----------|
|                               |                    | EBT EBR WBL            | ¥-                  | 76 40                 | 76 40                | 0.85 0.85 0.85              | 0                   | 89 47            | -                 |             |                      |                  |                              |                          |                             |                           |                       |           |
| Intersection Delay, s/veh 9.6 | Intersection LOS A | Movement EBL           | Lane Configurations | Traffic Vol, veh/h 13 | Future Vol, veh/h 13 | Peak Hour Factor 0.85       | Heavy Vehicles, % 8 | Mvmt Flow 15     | Number of Lanes 0 | Approach EB | Opposing Approach WB | Opposing Lanes 2 | Conflicting Approach Left SB | Conflicting Lanes Left 2 | Conflicting Approach RighNB | Conflicting Lanes Right 2 | HCM Control Delay 9.2 | HCM LOS A |

| SBLn2                                         | %0 9        | %0 9        | 2 100%       |              |                     |       |             | ) 15   |                | 7            | 0.221 0.024        | 1 4.892                                 | Yes Yes          | 1 724   | 7 2.672      | 1 0.025            | 7.8               |              |                        |
|-----------------------------------------------|-------------|-------------|--------------|--------------|---------------------|-------|-------------|--------|----------------|--------------|--------------------|-----------------------------------------|------------------|---------|--------------|--------------------|-------------------|--------------|------------------------|
| NBLn1 NBLn2 EBLn1 EBLn2WBLn1WBLn2 SBLn1 SBLn2 | 0% 18%      | 0% 82%      | 100% 0%      |              |                     |       | 0 99        |        | 21 142         | 7 7          | 029 0.221          | 5.632 4.86 5.766 4.849 5.646 4.88 5.586 | Yes Yes          | 726 638 | 2.659 3.367  | 029 0.223          | 7.8 10            | A<br>A       |                        |
| <b>/BLn1WBI</b>                               |             | 81%         | 0% 10        | Stop S       |                     |       |             | 0      | 132            | 7            | 0.207 0.029        | 5.646 4                                 | Yes              | 631     | 3.426        | 0.064 0.209 0.029  | 6.6               |              | 0                      |
| EBLn2V                                        | %0          | %0          | 100%         | Stop         |                     |       | 0           |        | 47             | 7            | 0.063              | 4.849                                   | Yes              | 731     | 2.63         | 0.064              | ∞                 | ⋖            | 0                      |
| EBLn1                                         |             | 85%         | 1 %0         | Stop         |                     |       |             | 0      |                | 7            | 0.226 0.037 0.168  | 5.766                                   | Yes              | 618     | 3.547        | 0.17               | 7.8 9.7           | ⋖            | 0                      |
| VBLn2 F                                       | %0          | %0          | 100%         | Stop         | 23                  | 0     | 0           | 23     | 27             | 7            | 0.037              | 4.86                                    | Yes              | 729     | 2.64 3.547   | 0.037              | 7.8               | ⋖            | •                      |
| NBLn1 l                                       | 30%         | %02         | %0           | Stop         | 123                 | 37    | 98          | 0      | 145            | 7            | 0.226              | 5.632                                   | Yes              | 632     | 3.412        | 0.229              | 10.1              | Ω            | 0                      |
| Lane                                          | Vol Left, % | Vol Thru, % | Vol Right, % | Sign Control | Traffic Vol by Lane | LTVol | Through Vol | RT Vol | Lane Flow Rate | Geometry Grp | Degree of Util (X) | Departure Headway (Hd)                  | Convergence, Y/N | Cap     | Service Time | HCM Lane V/C Ratio | HCM Control Delay | HCM Lane LOS | O - 13 - 13 O F 10 - 1 |

Foothill and North County Landfills Study - Existing plus Project PM W-Trans

HCM 6th TWSC 3: Site Driveway & E Harney Ln

|             |            |                     |                    |                   |           |      |                |                |                         |                                         |                  |                   |           |   |                |                      |         |         |               |                     |                     |                |                   |         |         |                   |                    |         |         |          |                      |         | WBT                   |                 |                  |                    |
|-------------|------------|---------------------|--------------------|-------------------|-----------|------|----------------|----------------|-------------------------|-----------------------------------------|------------------|-------------------|-----------|---|----------------|----------------------|---------|---------|---------------|---------------------|---------------------|----------------|-------------------|---------|---------|-------------------|--------------------|---------|---------|----------|----------------------|---------|-----------------------|-----------------|------------------|--------------------|
| <b>RL</b> < | <b>K</b> 0 | 7                   |                    | 7                 | 0         | Stop | None           | 20             | 3 '                     |                                         | . 75             | 3 0               | 2         | • |                | 62                   | 1       | •       | 6.2           | 1                   | •                   | 3.3            | 1009              | 1       | •       | 400               | 600                |         |         |          |                      |         | WBL                   | 1554            |                  | ' '                |
| k           | K          | Ī                   | 26                 | 92                | 0         | Stop | 1              | 0              | 0                       | <b>-</b>                                | 25.0             | 3 0               | 33        |   | Minor1         | 114                  | 62      | 25      | 6.4           | 5.4                 | 5.4                 | 3.5            | 887               | 996     | 976     | 1                 | 00 /               | 996     | 976     | R        | 9.5                  | ⋖       | EBR WBL               |                 |                  |                    |
|             |            | ¥                   | 4                  | 4                 | 0         | Free | None           | 2 '            | _                       | <b>&gt; &lt;</b>                        | 25.0             | 3 0               | 52        | 1 | 2              | 0                    | 1       | •       | 1             | 1                   | •                   | ٠              | •                 | 1       | •       | ٠                 |                    |         | ľ       |          |                      |         | EBT                   |                 |                  |                    |
| MM<br>MM    | WBL        |                     | 0                  | 0                 |           | Free | 1              |                |                         |                                         | . 25             | 3 0               | 0         |   | Major2         | 62                   | 1       | ٠       | 4.1           | ٠                   | •                   | 2.2            | 1554              | ٠       | ٠       | 7117              | 100                |         |         | WB       | 0                    |         | 3Ln2                  | 4000            | 900              | 0002               |
| 244         | EBK        | R_                  | 0                  | 0                 | 0         | Free | None           | 575            | 5 '                     |                                         | . 25             | 30                | 0         |   | ≥              | 0                    | 1       | ٠       | ٠             | ٠                   | ٠                   | ٠              | ٠                 | ٠       | ٠       | ٠                 |                    |         |         |          |                      |         | NBLn1NBLn2            | 0007 1000       | 00               | 0.034 0.002        |
| FBT         | EBI        | +                   | 23                 | 23                |           | Free | 7              |                | ===                     |                                         | 25.0             | 3 0               | 62        | ! | Major1         | 0                    | 1       | ٠       | ٠             | ٠                   | ٠                   | ٠              | ٠                 | ٠       | ٠       | ٠                 |                    |         | ٠       | 8        | 0                    |         | Z                     |                 |                  |                    |
| Movement    | Movement   | Lane Configurations | Traffic Vol, veh/h | Future Vol, veh/h | eds, #/hr |      | RT Channelized | Storage Length | Veh in Median Storage # | veri'in iviediari Storage, ≠<br>Grade % | Deak Hour Factor | Heavy Vehicles. % | Mvmt Flow |   | Major/Minor Ma | Conflicting Flow All | Stage 1 | Stage 2 | Critical Hdwy | Critical Hdwy Stg 1 | Critical Hdwy Stg 2 | -ollow-up Hdwy | ot Cap-1 Maneuver | Stage 1 | Stage 2 | latoon blocked, % | Mov Cap-1 Maneuver | Stage 1 | Stage 2 | Approach | HCM Control Delay, s | HCM LOS | Jinor Lane/Major Mvmt | (h/hay) vijoana | apacity (veinity | HCM Lane V/C Ratio |

Footbill and North County Landfills Study - Existing plus Project PM W-Trans

Synchro 11 Report Page 3

HCM 6th TWSC 4: Clements Rd & E Harney Ln

01/02/2025

01/02/2025

| Intersection             |        |              |      |        |                |       |        |      |      |        |      |      |  |
|--------------------------|--------|--------------|------|--------|----------------|-------|--------|------|------|--------|------|------|--|
| Int Delay, s/veh         | 3.1    |              |      |        |                |       |        |      |      |        |      |      |  |
| Movement                 | 田田     | EBT          | EBR  | WBL    | WBT            | WBR   | NBL    | NBT  | NBR  | SBL    | SBT  | SBR  |  |
| Lane Configurations      |        | €            |      |        | €              |       |        | 4    |      |        | €    |      |  |
| Traffic Vol, veh/h       | 20     | . —          | 53   | 7      | 0              | 0     | 52     | 20   | 0    | 0      | 73   | 24   |  |
| Future Vol, veh/h        | 20     | ~            | 59   | 7      | 0              | 0     | 52     | 20   | 0    | 0      | 73   | 54   |  |
| Conflicting Peds, #/hr   | 0      | 0            | 0    | 0      | 0              | 0     | 0      | 0    | 0    | 0      | 0    | 0    |  |
| Sign Control             | Stop   | Stop         | Stop | Stop   | Stop           | Stop  | Free   | Free | Free | Free   | Free | Free |  |
| RT Channelized           | 1      | 1            | None | 1      | 1              | None  | 1      | 1    | None | 1      | 1    | None |  |
| Storage Length           | '      | 1            | '    | 1      | 1              | •     | 1      | 1    | •    | 1      | 1    | ,    |  |
| Veh in Median Storage, # | # "    | 0            | 1    | 1      | 0              | 1     | 1      | 0    | •    | 1      | 0    |      |  |
| Grade, %                 | '      | 0            | '    |        | 0              |       |        | 0    |      |        | 0    |      |  |
| Peak Hour Factor         | 82     | 82           | 82   | 82     | 82             | 82    | 88     | 82   | 88   | 82     | 82   | 82   |  |
| Heavy Vehicles, %        | 0      | 0            | 0    | 0      | 0              | 0     | 0      | 0    | 0    | 0      | 0    | 4    |  |
| Mvmt Flow                | 24     | <del>-</del> | 34   | 2      | 0              | 0     | 53     | 29   | 0    | 0      | 98   | 28   |  |
|                          |        |              |      |        |                |       |        |      |      |        |      |      |  |
| Major/Minor              | Minor2 |              | _    | Minor1 |                | _     | Major1 |      | 2    | Major2 |      |      |  |
| Conflicting Flow All     | 217    | 217          | 100  | 235    | 231            | 29    | 114    | 0    | 0    | 29     | 0    | 0    |  |
| Stage 1                  | 100    | 100          | 1    | 117    | 117            | 1     | 1      | 1    | •    | 1      | 1    |      |  |
| Stage 2                  | 117    | 117          | 1    | 118    | 114            |       |        | •    | •    |        | •    |      |  |
| Critical Hdwy            | 7.1    | 6.5          | 6.2  | 7.1    | 6.5            | 6.2   | 4.1    | 1    | 1    | 4.1    | 1    |      |  |
| Critical Hdwy Stg 1      | 6.1    | 5.5          |      | 6.1    | 5.5            |       |        |      |      |        |      |      |  |
| Critical Hdwy Stg 2      | 6.1    | 5.5          | •    | 6.1    | 5.5            | 1     | 1      | 1    | 1    | 1      | 1    |      |  |
| Follow-up Hdwy           | 3.5    | 4            | 3.3  | 3.5    | 4              | 3.3   | 2.2    |      |      | 2.2    |      |      |  |
| Pot Cap-1 Maneuver       | 744    | 685          | 961  | 724    | 672            | 1012  | 1488   | 1    | 1    | 1558   | 1    | ٠    |  |
| Stage 1                  | 911    | 816          | 1    | 892    | 803            | 1     | 1      | 1    | 1    |        | 1    |      |  |
| Stage 2                  | 892    | 803          | 1    | 891    | 802            |       | 1      | 1    | •    |        | 1    |      |  |
| Platoon blocked, %       |        |              |      |        |                |       |        | •    | ٠    |        | ٠    |      |  |
| Mov Cap-1 Maneuver       | 733    | 671          | 961  | 687    | 629            | 1012  | 1488   | 1    | 1    | 1558   | 1    | ٠    |  |
| Mov Cap-2 Maneuver       | 733    | 671          | •    | 687    | 629            | •     | •      | •    | ٠    | •      | •    | ,    |  |
| Stage 1                  | 893    | 816          | 1    | 874    | 787            | 1     | 1      | 1    | 1    | 1      | 1    | ì    |  |
| Stage 2                  | 874    | 787          | 1    | 828    | 802            | 1     | 1      | 1    | •    | 1      | 1    |      |  |
|                          |        |              |      |        |                |       |        |      |      |        |      |      |  |
| Approach                 | B      |              |      | WB     |                |       | NB     |      |      | SB     |      |      |  |
| HCM Control Delay, s     | 9.6    |              |      | 10.3   |                |       | 2.5    |      |      | 0      |      |      |  |
| HCM LOS                  | ⋖      |              |      | ω      |                |       |        |      |      |        |      |      |  |
|                          |        |              |      |        |                |       |        |      |      |        |      |      |  |
| Minor Lane/Major Mvmt    | ıţ     | NBL          | NBT  | NBR E  | NBR EBLn1WBLn1 | /BLn1 | SBL    | SBT  | SBR  |        |      |      |  |
| Capacity (veh/h)         |        | 1488         | 1    | 1      | 848            | 687   | 1558   | 1    | 1    |        |      |      |  |
| HCM Lane V/C Ratio       |        | 0.02         | 1    |        | 0.069          | 0.003 | 1      | 1    | 1    |        |      |      |  |
| HCM Control Delay (s)    |        | 7.5          | 0    | 1      | 9.6            | 10.3  | 0      | 1    | 1    |        |      |      |  |
| HCM Lane LOS             |        | ⋖            | ⋖    | •      | ⋖              | മ     | ⋖      | •    | ٠    |        |      |      |  |
| HCM 95th %tile Q(veh)    |        | 0.1          | •    | •      | 0.2            | 0     | 0      | •    | •    |        |      |      |  |

Foothil and North County Landfills Study - Existing plus Project PM W-Trans

HCM 6th Signalized Intersection Summary 1: SR 88 & E Harney Ln

01/12/2025

HCM 6th AWSC 2: Jack Tone Rd & E Harney Ln

01/12/2025

Intersection Delay, s/veh12.1 Intersection LOS B

**2** 8 8 6 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 **2** € 0 8 2 162 1.00 7 162 162 21 21 19 21 0

- 4 6 6 6 6 

88 69 4 2 6 2 4 4 4 4 4

26 26 1.00

£ 50 5 £ **★**8889588

22 27 20 24 20 0

Lane Configurations Traffic Vol, veh/h Future Vol, veh/h Peak Hour Factor Heavy Vehicles, %

0 88 0

26 0

Mvmt Flow Number of Lanes

SB NB NB NB 11 2 11 2 EB 2 WB 2 BB 11 2 EB 2 BB 2 BB 11 2 EB 2 BB 11 2

Approach EB
Opposing Approach WB
Opposing Lange 2
Conflicting Approach Leff SB
Conflicting Approach RighNB
Conflicting Approach RighNB
Conflicting Lanes Right 2
HOM Control Delay 11
HCM LOS

Lane
Vol Left, %
Vol Thru, %
Vol Right, %
Sign Control
Traffic Vol by Lane
LT Vol

Through Vol

RT Vol

Lane Flow Rate
Geometry Qip

Degree of Util (X)

Departure Headway (Hd)

Convegence, YNN

Service Time

HCM Lane VIC Ratio

HCM Control Delay

HCM Control Delay

HCM MARINE LCM

HCM MARINE LCM

HCM 1

| Movement Lane Configurations Traffic Volume (vehih) Future Volume (vehih) Initial Q (Qb), veh Ped-Bike Adj/A_pbT) 11 Parking Bus, Adj 11 Parking Bus, Adj 13 Adj Sat Flow, wehir/h 18 | E          | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|------|------|------|------|------|------|------|------|------|------|
| ))<br>ach                                                                                                                                                                             |            | 4    |      |      | 4    |      |      |      |      |      | •    |      |
| ach                                                                                                                                                                                   | -          | \$   |      |      | 1    |      | je.  | 4    |      | K    | 2    |      |
| ach                                                                                                                                                                                   | 92         | 68   | 4    | 51   | 185  | 36   | 19   | 302  | 32   | 12   | 205  | 87   |
| ach                                                                                                                                                                                   | 92         | 68   | 4    | 21   | 185  | 36   | 19   | 302  | 32   | 12   | 502  | 87   |
| ach                                                                                                                                                                                   | 0          | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                                                                                                                                                                                       | 8:         |      | 0.1  | 0.1  |      | 0.1  | 00:1 |      | 1.00 | 1.00 |      | 1.00 |
|                                                                                                                                                                                       | 1.00       | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1:00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| _                                                                                                                                                                                     |            | 2    |      |      | 2    |      |      | 2    |      |      | 2    |      |
|                                                                                                                                                                                       | 1826       | 1781 | 1900 | 1633 | 1826 | 1737 | 1900 | 1737 | 1470 | 1278 | 1781 | 1811 |
| η/h                                                                                                                                                                                   | 65         | 8    | 8    | 21   | 182  | 33   | 9    | 302  | 78   | 12   | 205  | 72   |
|                                                                                                                                                                                       | 1.00       | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| avy Veh, %                                                                                                                                                                            | 2          | œ    | 0    | 18   | 2    | =    | 0    | 1    | 59   | 45   | ∞    | 9    |
|                                                                                                                                                                                       | 194        | 191  | 2    | 144  | 271  | 44   | 43   | 641  | 26   | 19   | 612  | 88   |
| _                                                                                                                                                                                     | .21        | 0.21 | 0.21 | 0.21 | 0.21 | 0.21 | 0.02 | 0.41 | 0.41 | 0.02 | 0.40 | 0.40 |
| Sat Flow, veh/h 44                                                                                                                                                                    | 101        | 902  | 331  | 219  | 1284 | 210  | 1810 | 1566 | 145  | 1217 | 1524 | 219  |
| Grp Volume(v), veh/h                                                                                                                                                                  | 193        | 0    | 0    | 569  | 0    | 0    | 19   | 0    | 330  | 12   | 0    | 574  |
| ,veh/h/ln                                                                                                                                                                             | 336        | 0    | 0    | 1712 | 0    | 0    | 1810 | 0    | 1711 | 1217 | 0    | 1742 |
|                                                                                                                                                                                       | 0.0        | 0.0  | 0.0  | 2.0  | 0.0  | 0.0  | 0.5  | 0.0  | 6.2  | 0.4  | 0.0  | 12.9 |
| Cycle Q Clear(g_c), s 4                                                                                                                                                               | 4.4        | 0.0  | 0.0  | 6.3  | 0.0  | 0.0  | 0.5  | 0.0  | 6.2  | 0.4  | 0.0  | 12.9 |
|                                                                                                                                                                                       | 8          |      | 0.20 | 0.19 |      | 0.12 | 1.00 |      | 0.08 | 1.00 |      | 0.13 |
| p(c), veh/h                                                                                                                                                                           | <b>2</b> 5 | 0    | 0    | 458  | 0    | 0    | 43   | 0    | 701  | 19   | 0    | 700  |
|                                                                                                                                                                                       | .42        | 0.00 | 0.00 | 0.59 | 0.00 | 0.00 | 0.45 | 0.00 | 0.47 | 0.64 | 0.00 | 0.82 |
| Ę                                                                                                                                                                                     | 305        | 0    | 0    | 829  | 0    | 0    | 412  | 0    | 2335 | 277  | 0    | 2378 |
| 0                                                                                                                                                                                     | 0:         | 1.00 | 1:00 | 1.00 | 1.00 | 1.00 | 1.00 | 1:00 | 1.00 | 1.00 | 1.00 | 1.00 |
|                                                                                                                                                                                       | 1.00       | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 |
| ,eh                                                                                                                                                                                   | 5.4        | 0:0  | 0:0  | 16.1 | 0.0  | 0:0  | 21.2 | 0:0  | 9.2  | 21.5 | 0:0  | 11.7 |
|                                                                                                                                                                                       | 9.0        | 0.0  | 0.0  | 1.2  | 0.0  | 0.0  | 2.7  | 0.0  | 0.4  | 12.4 | 0.0  | 1.8  |
|                                                                                                                                                                                       | 0:0        | 0:0  | 0:0  | 0.0  | 0.0  | 0:0  | 0:0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
|                                                                                                                                                                                       | 5.         | 0.0  | 0.0  | 1.9  | 0.0  | 0.0  | 0.2  | 0.0  | 1.4  | 0.2  | 0.0  | 3.2  |
| lay, s/veh                                                                                                                                                                            |            |      |      |      |      |      |      |      |      |      |      |      |
| y(d),s/veh 1                                                                                                                                                                          | 0.9        | 0.0  | 0.0  | 17.3 | 0.0  | 0.0  | 23.9 | 0.0  | 6.6  | 34.0 | 0.0  | 13.6 |
| LnGrp LOS                                                                                                                                                                             | ш          | ∢    | ∢    | ш    | ⋖    | ⋖    | ပ    | ∢    | ∢    | ပ    | ∢    | m    |
| Approach Vol, veh/h                                                                                                                                                                   |            | 193  |      |      | 269  |      |      | 349  |      |      | 286  |      |
| Approach Delay, s/veh                                                                                                                                                                 |            | 16.0 |      |      | 17.3 |      |      | 10.6 |      |      | 14.0 |      |
| Approach LOS                                                                                                                                                                          |            | മ    |      |      | മ    |      |      | Ф    |      |      | Ф    |      |
| Timer - Assigned Phs                                                                                                                                                                  | _          | 2    |      | 4    | 2    | 9    |      | 8    |      |      |      |      |
| c), s                                                                                                                                                                                 | 4.7        | 24.0 |      | 15.3 | 5.0  | 23.7 |      | 15.3 |      |      |      |      |
|                                                                                                                                                                                       | 4.0        | 0.9  |      | 0.9  | 4.0  | 0.9  |      | 0.9  |      |      |      |      |
|                                                                                                                                                                                       | 0.0        | 0.09 |      | 20.0 | 10.0 | 0.09 |      | 20.0 |      |      |      |      |
| c+I1), s                                                                                                                                                                              | 2.4        | 8.2  |      | 6.4  | 2.5  | 14.9 |      | 8.3  |      |      |      |      |
|                                                                                                                                                                                       | 0.0        | 1.4  |      | 0.7  | 0.0  | 2.7  |      | 1.0  |      |      |      |      |
| Intersection Summary                                                                                                                                                                  |            |      |      |      |      |      |      |      |      |      |      |      |
| HCM 6th Ctrl Delay                                                                                                                                                                    |            |      | 14.1 |      |      |      |      |      |      |      |      |      |
| LOW 6th 1 OF                                                                                                                                                                          |            |      | - 0  |      |      |      |      |      |      |      |      |      |

Foothill and North County Landfills Study - Future plus Project AM W-Trans

Synchro 11 Report Page 1

Foothill and North County Landfills Study - Future plus Project AM W-Trans

HCM 6th TWSC 3: Site Driveway & E Harney Ln

| Interception             |        |             |        |      |        |       |     |
|--------------------------|--------|-------------|--------|------|--------|-------|-----|
| Int Delay, s/veh         | 2.4    |             |        |      |        |       |     |
| Movement                 | EBT    | EBR         | WBL    | WBT  | NBL    | NBR   |     |
| Lane Configurations      | *      | R_          |        | ÷    | r      | R_    |     |
| Traffic Vol, veh/h       | 37     | 09          | 7      | 99   | 4      | 2     |     |
| Future Vol, veh/h        | 37     | 09          | 7      | 99   | 4      | 2     |     |
| eds, #/hr                |        | 0           | 0      | 0    |        | 0     |     |
|                          | Free   | Free        | Free   | Free | Stop   | Stop  |     |
| RT Channelized           | 7      | None        | 1      | None | 1      | None  |     |
| Storage Length           | ٠      | 575         | ٠      | ٠    | 0      | 20    |     |
| Veh in Median Storage, # |        | ٠           | ٠      | 0    | 0      | ٠     |     |
| Grade, %                 | 0      | ٠           | ٠      | 0    | 0      | ٠     |     |
| Peak Hour Factor         | 100    | 100         | 100    | 100  | 100    | 100   |     |
| Heavy Vehicles, %        | =      | 30          | 0      | 12   | 30     | 0     |     |
| Mvmt Flow                | 37     | 09          | 7      | 99   | 4      | 2     |     |
|                          |        |             |        |      |        |       |     |
| Major/Minor Ma           | Major1 | 2           | Major2 | Σ    | Minor1 |       |     |
| Conflicting Flow All     | 0      | 0           | 97     | 0    | 117    | 37    |     |
| Stage 1                  | ٠      | 1           | •      | ٠    | 37     | ٠     |     |
| Stage 2                  | ٠      | •           | •      | ٠    | 8      | ٠     |     |
| Critical Hdwy            | ٠      | 1           | 4.1    | •    | 6.7    | 6.2   |     |
| Critical Hdwy Stg 1      | ٠      | ٠           | ٠      | ٠    | 2.7    | ٠     |     |
| Critical Hdwy Stg 2      | 1      | 1           | 1      | 1    | 2.7    | 1     |     |
| Follow-up Hdwy           | ٠      | ٠           | 2.2    | ٠    | 3.77   | 3.3   |     |
| Pot Cap-1 Maneuver       | ٠      | ٠           | 1209   | ٠    | 816    | 1041  |     |
| Stage 1                  | ٠      | •           | ٠      | ٠    | 918    | ٠     |     |
| Stage 2                  | ٠      | 1           | 1      | ٠    | 877    | ٠     |     |
| Platoon blocked, %       | ٠      | ٠           |        | ٠    |        |       |     |
| Mov Cap-1 Maneuver       | ٠      | ٠           | 1209   | ٠    | 812    | 1041  |     |
| Mov Cap-2 Maneuver       | ٠      | ٠           | ٠      | ٠    | 812    | ٠     |     |
| Stage 1                  | ٠      | 1           | •      | ٠    | 918    | ٠     |     |
| Stage 2                  | ٠      | ٠           | ٠      | ٠    | 873    | ٠     |     |
|                          |        |             |        |      |        |       |     |
| Approach                 | EB     |             | WB     |      | NB     |       |     |
| HCM Control Delay, s     | 0      |             | 0.7    |      | 9.6    |       |     |
| HCM LOS                  |        |             |        |      | ⋖      |       |     |
|                          |        |             |        |      |        |       |     |
| Minor Lane/Major Mvmt    | Z      | NBLn1NBLn2  | BLn2   | EBT  | EBR    | WBL   | WBT |
| Capacity (veh/h)         |        | 812         | 1041   | ٠    | ٠      | 1509  |     |
| HCM Lane V/C Ratio       | _      | 0.054 0.005 | 0.005  | ٠    | '      | 0.005 |     |
| HCM Control Delay (s)    |        | 9.7         | 8.5    | •    | •      | 7.4   | 0   |
| HCM Lane LOS             |        | ⋖           | ⋖      | ٠    | ٠      | ⋖     | А   |
| HCM 95th %tile Q(veh)    |        | 0.2         | 0      | •    | •      | 0     |     |

Foothill and North County Landfills Study - Future plus Project AM W-Trans

Synchro 11 Report Page 3

HCM 6th TWSC 4: Clements Rd & E Harney Ln

01/12/2025

01/12/2025

| ntersection                |        |      |      |        |                   |          |          |      |            |        |      |      |   |
|----------------------------|--------|------|------|--------|-------------------|----------|----------|------|------------|--------|------|------|---|
| Int Delay, s/veh           | 2.4    |      |      |        |                   |          |          |      |            |        |      |      |   |
| Movement                   | EBL    | EBT  | EBR  | WBL    | WBT               | WBR      | NBL      | NBT  | NBR        | SBL    | SBT  | SBR  |   |
| Lane Configurations        |        | ÷    |      |        | ÷                 |          |          | ÷    |            |        | ÷    |      |   |
| raffic Vol, veh/h          | 22     | 2    | 9    | 4      | 0                 | 7        | 9        | 88   | က          | 7      | 160  | 52   |   |
| Future Vol, veh/h          | 22     | ည    | 18   | 4      | 0                 | 2        | 40       | 88   | က          | 2      | 160  | 22   |   |
| Conflicting Peds, #/hr     | 0      | 0    | 0    | 0      | 0                 | 0        | 0        | 0    | 0          | 0      | 0    | 0    |   |
| Sign Control               | Stop   | Stop | Stop | Stop   | Stop              | Stop     | Free     | Free | Free       | Free   | Free | Free |   |
| RT Channelized             | 1      | 1    | None | 1      | 1                 | None     | 1        | 1    | None       | 1      | 1    | None |   |
| Storage Length             | 1      | •    | •    | ٠      | •                 | ٠        | ٠        | ٠    | •          | ٠      | •    |      |   |
| Veh in Median Storage, #   | # "    | 0    | 1    | •      | 0                 | 1        | 1        | 0    | 1          | 1      | 0    |      |   |
| Grade, %                   | •      | 0    | •    | •      | 0                 | •        | •        | 0    |            | •      | 0    |      |   |
| Peak Hour Factor           | 100    | 100  | 100  | 100    | 100               | 100      | 100      | 100  | 100        | 100    | 100  | 100  |   |
| Heavy Vehicles, %          | o      | 50   | 0    | 0      | 0                 | 0        | 9        | 4    | 0          | 0      | 9    | 50   |   |
| Mvmt Flow                  | 22     | 2    | 9    | 4      | 0                 | 2        | 40       | 83   | 3          | 2      | 160  | 52   |   |
| Major/Minor P              | Minor2 |      | _    | Minor1 |                   | 2        | Major1   |      | _          | Major2 |      |      |   |
| Conflicting Flow All       | 349    | 349  | 173  | 329    | 360               | 9        | 185      | 0    | 0          | 92     | 0    | 0    |   |
| Stage 1                    | 177    | 177  | 1    | 171    | 171               | 1        | 1        | 1    | 1          | 1      | 1    |      |   |
| Stage 2                    | 172    | 172  | 1    | 188    | 189               | 1        | 1        | 1    | 1          | 1      | 1    |      |   |
| Critical Hdwy              | 7.19   | 6.7  | 6.2  | 7.1    | 6.5               | 6.2      | 4.2      | ٠    | 1          | 4.1    | •    |      |   |
| Critical Hdwy Stg 1        | 6.19   | 2.7  |      | 6.1    | 5.5               |          | ٠        |      |            |        |      |      |   |
| Critical Hdwy Stg 2        | 6.19   | 2.7  | 1    | 6.1    | 5.5               | 1        | 1        | 1    | 1          | 1      | 1    | ,    |   |
| Follow-up Hdwy             | 3.581  | 4.18 | 3.3  | 3.5    | 4                 | 3.3      | 2.29     | ٠    | •          | 2.2    | •    |      |   |
| Pot Cap-1 Maneuver         | 593    | 247  | 876  | 009    | 220               | 972      | 1343     | •    | 1          | 1515   | 1    | ·    |   |
| Stage 1                    | 808    | 720  | 1    | 836    | 761               | 1        | 1        | •    | 1          | 1      | 1    |      |   |
| Stage 2                    | 814    | 724  | 1    | 818    | 748               | 1        | 1        | 1    | 1          | 1      | 1    |      |   |
| Platoon blocked, %         |        |      |      |        |                   |          |          | •    | •          |        | •    |      |   |
| Mov Cap-1 Maneuver         | 218    | 223  | 876  | 269    | 225               | 972      | 972 1343 | 1    | 1          | 1515   | 1    |      |   |
| Mov Cap-2 Maneuver         | 218    | 529  | ٠    | 269    | 225               | ٠        | ٠        | ٠    | •          | ٠      | ٠    |      |   |
| Stage 1                    | 784    | 719  | 1    | 810    | 737               | •        | 1        | •    | 1          | •      | 1    |      |   |
| Stage 2                    | 787    | 702  | 1    | 795    | 747               | •        | •        | ٠    | •          | •      | 1    |      |   |
|                            |        |      |      |        |                   |          |          |      |            |        |      |      |   |
| Approach                   | 8      |      |      | WB     |                   |          | NB       |      |            | SB     |      |      |   |
| HCM Control Delay, s       | 10.8   |      |      | 10.5   |                   |          | 2.4      |      |            | 0.1    |      |      |   |
| HCM LOS                    | Ω      |      |      | Ω      |                   |          |          |      |            |        |      |      |   |
| Min or I amoff Major I A m |        | 2    | F    |        | NIDD FDI 24WDI 24 | <u> </u> | ē        | E    | 0          |        |      |      | ı |
| Winor Lane/iwajor iwymi    | =      | Na s | NBI  | NBK    | BLNIV             |          | SBL      | 281  | NBV<br>NBV |        |      |      |   |
| Capacity (veh/h)           |        | 1343 | 1    | 1      |                   |          | 1515     | 1    | 1          |        |      |      |   |
| HCM Lane V/C Ratio         |        | 0.03 | ١    | •      |                   |          | 0.001    | •    | 1          |        |      |      |   |
| HCM Control Delay (s)      |        | 7.8  | 0    |        | 10.8              | 10.5     | 7.4      | 0    | 1          |        |      |      |   |
| HCM Lane LOS               |        | ¥    | Α    | •      | ш                 | ш        | ⋖        | V    | •          |        |      |      |   |
| HCM 95th %tile Q(veh)      |        | 0.1  | •    | •      | 0.2               | 0        | 0        | •    | •          |        |      |      |   |
|                            |        |      |      |        |                   |          |          |      |            |        |      |      |   |

Foothil and North County Landfils Study - Future plus Project AM W-Trans

HCM 6th Signalized Intersection Summary 1: SR 88 & E Harney Ln

| Main      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 99 138 32 33 103 14 14 437 33 33 48 8 9 138 32 33 103 14 14 437 33 33 48 8 9 138 32 33 103 14 14 437 33 33 348 8 9 138 32 33 103 14 14 437 33 33 348 8 9 138 32 33 103 14 10 100 100 100 100 100 100 100 100 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 99 138 32 33 103 14 447 33 33 348   99 138 32 33 103 14 14 437 33 33 348   99 138 32 33 103 14 14 437 33 33 348   100 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 99 138 32 33 103 14 44 437 33 33 484   100 100 100 100 100 100 100 100 100 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| No 1865 1900 1856 1885 1900 1870 1870 1876 1871 1796 1870 1885 1900 1870 1870 1876 1871 1796 1870 1870 1870 1870 1870 1870 1870 1870                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1900   1885   1900   1886   1885   1900   1900   1870   1866   1811   1759     1901   100   100   1.00   1.00   1.00   1.00   1.00   1.00     100   1.00   1.00   1.00   1.00   1.00   1.00   1.00     237   216   216   222   0.22   0.22   0.22   0.23   0.24   0.35     250   982   181   224   1425   134   1810   1748   104   1725   1677     256   0 0 0 17794   0 0 0 141   0 0 1810   1748   104   1725   1677     256   0 0 0 1 17794   0 0 0 1810   0 182   1725   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 99 138 29 33 103 11 14 437 26 33 348 1100 100 100 100 100 100 100 100 100 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 100 100 100 100 100 100 100 100 100 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0 1 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 237 216 40 165 313 29 33 573 34 67 588  2022 0.22 0.22 0.22 0.22 0.22 0.23 0.03 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.22 0.22 0.22 0.22 0.22 0.02 0.33 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 500         982         181         234         1425         134         1810         1748         104         1725         1677           1868         0         0         147         0         0         14         0         0         482         1725         0           1868         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 266 0 0 147 0 0 14 0 463 33 0 0 1863 0 1794 0 0 1810 0 1852 1725 0 0 1794 0 0 0 1810 0 1852 1725 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1663 0 0 1794 0 0 1810 0 1852 1725 0 0 1 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 30 00 00 0.0 0.0 0.0 0.3 0.0 87 0.7 0.0 0.3 0.0 87 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 9 c), s 56 00 00 26 0.0 00 03 00 87 07 00 00 00 00 00 00 00 00 00 00 00 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Color   Colo   |
| (c), veh/h 493 0 0 508 0 0 33 0 608 67 0 0 0 34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.54 0.00 0.02 0.00 0.43 0.00 0.76 0.50 0.00 0.00 0.44 0.00 0.07 0.00 0.00 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Augle         1         0         1003         0         468         0         2873         446         0         3         446         0         3         446         0         3         446         0         3         446         0         3         446         0         3         446         0         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ratio         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100 </td                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (II)         100         0.00         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100 </td                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (d) s/veh 139 0.0 0.0 128 0.0 0.0 188 0.0 116 18.2 0.0 1, s/veh 139 0.0 0.0 0.3 0.0 0.0 13.3 0.0 15.2 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| s, syeh         0.9         0.0         0.3         0.0         0.0         3.3         0.0         1.5         2.1         0.0           d3), syeh         1.5         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0 <th< td=""></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (3) Syeh 00 00 00 00 00 00 00 00 00 00 00 00 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sp8/y.veh/In         1.5         0.0         0.7         0.0         0.1         0.0         22         0.3         0.0           ent Delay, sveh         18         0.0         0.1         13.1         0.0         0.0         22.1         0.0         13.1         20.3         0.0           Js/veh         148         0.0         0.0         13.1         0.0         0.0         22.1         0.0         13.1         20.3         0.0           y-sveh         266         147         47         477         47         40.2         A         40.2         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ent Delay, s/eh      148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| J, Siveh         14,8         0.0         0.1         0.1         0.0         0.0         22.1         0.0         13.1         20.3         0.0           Welhih         266         147         477         402         402         402         402         402         402         402         402         402         402         402         402         402         402         402         402         402         402         402         402         402         402         402         402         402         402         402         402         402         402         402         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| B         A         B         A         C         A         B         C           vy, s/ehh         148         147         477         477         477         477         477         477         477         477         477         477         477         477         477         477         477         477         477         477         477         477         477         477         477         477         477         477         477         477         477         477         477         477         477         477         477         477         477         477         477         477         477         477         477         477         477         477         477         477         477         477         477         477         477         477         477         477         477         477         477         477         477         477         477         477         477         477         478         478         478         478         478         478         478         478         478         478         478         478         478         478         478         478         478         478         478 <t< td=""></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| veh/h         266         147         477           y, s/eh         148         13.1         13.4           B         B         B         B           ed Phs         1         2         4         5         6         8           G-Y-RCb, S         5.5         187         14.5         14.5         14.5           Iting (Gmax), S         1.0         6.0         6.0         6.0         6.0           Iting (Gmax), S         1.0         60.0         20.0         10.0         6.0         6.0           Iting (Cmax), S         1.0         60.0         2.3         8.6         4.6         6.0           Immany         13.1         13.1         13.1         13.1         13.1         13.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| y, skeh         148         13.1         13.4           ed Phs         B         B         B           Get-VeRO, s         5.5         18.7         14.5         4.7         19.5         14.5           Get-VeRO, s         5.5         18.7         14.5         4.7         19.5         14.5           Get-VeRO, s         5.0         6.0         6.0         4.0         6.0         6.0           ting (Gmax), s         10.0         6.0         20.0         10.0         6.0         20.0           ting (Grax), s         2.7         10.7         7.6         2.3         8.6         4.6           et_p.c), s         0.0         2.0         1.0         0.0         1.6         0.5           mmany         13.1         13.1         13.1         13.1         13.1         13.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ed Phs 1 2 4 5 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| G-Y-Re), s 55 18.7 14.5 4.7 19.5 (Y-Re), s 66 (G-Y-Re), s 40 6.0 6.0 4.0 6.0 (G-Hr) (G-Hr), s 2.7 10.7 7.6 2.3 8.6 (P_0.6), s 0.0 2.0 1.0 0.0 1.6 (G-Hr), s 2.7 10.7 7.6 2.3 8.6 (G-Hr), s 2.0 10.7 1.0 0.0 1.6 (G-Hr) (G-Hr), s 2.7 10.7 1.0 0.0 1.6 (G-Hr) ( |
| G-Y-RO, s 5.5 18.7 14.5 4.7 19.5 (Y-RO, s 4.0 6.0 6.0 4.0 6.0 (10.0 60.0 2.0 10.0 60.0 2.0 10.0 6.0 1.0 6.0 1.0 6.0 1.0 6.0 1.0 6.0 1.0 6.0 1.0 6.0 1.0 6.0 1.0 6.0 1.0 6.0 1.0 6.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| I (Y+Rc), s 4.0 6.0 6.0 4.0 6.0 100 ftmg (Gmax), s 10.0 60.0 20.0 10.0 60.0 100 60.0 100 60.0 100 60.0 100 60.0 100 60.0 100 60.0 100 60.0 100 100 100 100 100 100 100 100 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ting (Gmax), s 10.0 60.0 20.0 10.0 60.0 me (g.c+11), s 2.7 10.7 7.6 2.3 8.6 (p.c.), s 0.0 2.0 1.0 0.0 1.6 mmary 13.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ine (g_c+11), s 2.7 10.7 7.6 2.3 8.6 (g_c+12), s 0.0 2.0 1.0 0.0 1.6 immany 13.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| e (p_c), s 0.0 2.0 1.0 0.0 mmmary 13.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ımmary<br>Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Jelay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Foothill and North County Landfills Study - Future plus Project PM W-Trans

Synchro 11 Report Page 1

HCM 6th AWSC 2: Jack Tone Rd & E Harney Ln

01/12/2025

01/12/2025

| WBL WBT        | 21 91             | 77    | 0.0       |        | 0 | WB | B  | 2   | NB | 7 5 | SB<br>2 | 9.7  | V | ARI na NRI na ERI na ERI na WRI na 1981 na 1881 na | 20%      |          | 0%   | 0,   | 8 6      | 0 79 0 | 0     | 66      | 5 5 5 | 0.169        | 4.947 6.146 5.164 | Yes | 585       |       | 0.169    | 7.9 10.1 8.2 |
|----------------|-------------------|-------|-----------|--------|---|----|----|-----|----|-----|---------|------|---|----------------------------------------------------|----------|----------|------|------|----------|--------|-------|---------|-------|--------------|-------------------|-----|-----------|-------|----------|--------------|
| >              | Z4                |       | 1.00      |        | - | NB | SB | , , | EB | 141 | WB<br>2 | 10.6 | _ | WRI n1WRI n                                        | % 19% 0% | % 81% 0% | 0% 1 | Stop | 3 112 24 |        | 3 0 2 | 3 112 2 | 5 5   | 2 0.186 0.03 | 4 5.974 5.206     | Yes | 4 601 688 | 3.702 | 0.186 0. | 2 10.1 8.1   |
| NBT            | <b>1</b> 92       | 165   | 1.00      | 165    | - | m  |    | 2   |    | 2 5 | 5 B     | 9    | В | 2 SBI n1 SB                                        | % 18%    | 82%      | 0%   | Stop | 30       | 0 141  | 0     | 4 171   | 2     | 5 0.271 0.   | 5.206 5.711 5.0   |     | 633       | 3.417 | 0.27 0.  | 10.5         |
| NBR SBL        | 29 30             | 29 30 | •         | 29 30  |   | SB | NB | 2   | WB | 2 5 | 2 EB    | 10.3 | В | 2                                                  | %0       | %0       | 100% | Stop | _ c      | 0      | 17    | 17      | 2     | 0.024        | 5.019             | Yes | 717       | 2.725 | 0.024    | 7.8          |
| $\overline{S}$ | 141<br>141<br>141 |       | 1.00 1.00 | 141 17 |   |    |    |     |    |     |         |      |   |                                                    |          |          |      |      |          |        |       |         |       |              |                   |     |           |       |          |              |

Foothil and North County Landfills Study - Future plus Project PM W-Trans

HCM 6th TWSC 3: Site Driveway & E Harney Ln

| Intersection           |          |             |            |          |               |      |     |  |
|------------------------|----------|-------------|------------|----------|---------------|------|-----|--|
| Int Delay, s/veh       | 1.6      |             |            |          |               |      |     |  |
| Movement               | EBT      | EBR         | WBL        | WBT      | NBL           | NBR  |     |  |
| Lane Configurations    | *        | R_          |            | ₹        | r             | R.   |     |  |
| Traffic Vol, veh/h     | 8        | 0           | 0          | 23       | 26            | 2    |     |  |
| Future Vol, veh/h      | 8        | 0           | 0          | 23       | 56            | 7    |     |  |
| Conflicting Peds, #/hr | 0        | 0           | 0          | 0        | 0             | 0    |     |  |
| Sign Control           | Free     | Free        | Free       | Free     | Stop          | Stop |     |  |
| RT Channelized         | 1        | None        | 1          | None     |               | None |     |  |
| Storage Length         |          | 275         | 1          | •        | 0             | 20   |     |  |
| Veh in Median Storage, | o o      | •           | 1          | 0 0      | 0             | •    |     |  |
| Grade, %               | 0 5      | ' '         | ' 6        | 0 9      | 0 0           | ' 6  |     |  |
| Peak Hour Factor       | <u>8</u> | 00 0        | 9 9        | 9 9      | 100           | 9 9  |     |  |
| Heavy Vehicles, %      | 0 8      | 0           | 0          | <u>-</u> | <b>&gt;</b> & | 0 0  |     |  |
| MVMT Flow              | 8        | >           | >          | 3        | 9             | 7    |     |  |
|                        |          |             |            |          |               |      |     |  |
| Major/Minor M          | Major1   | _           | Major2     | _        | Minor1        |      |     |  |
| Conflicting Flow All   | 0        | 0           | 8          | 0        | 133           | 8    |     |  |
| Stage 1                | 1        | 1           | 1          | 1        | 8             | 1    |     |  |
| Stage 2                | •        |             |            |          | 23            | ٠    |     |  |
| Critical Hdwy          | 1        | 1           | 4.1        | 1        | 6.4           | 6.2  |     |  |
| Critical Hdwy Stg 1    | •        | •           | •          | •        | 5.4           | ٠    |     |  |
| Critical Hdwy Stg 2    | 1        | 1           | ' '        | 1        | 5.4           |      |     |  |
| Follow-up Hdwy         | 1        | ١           | 2.2        | •        | 3.5           | 33.  |     |  |
| Pot Cap-1 Maneuver     | 1        | •           | 1531       | •        | 998           | 986  |     |  |
| Stage 1                | 1        | •           | 1          | •        | 948           | ١    |     |  |
| Stage 2                | 1        | 1           | 1          | 1        | 975           | 1    |     |  |
| Platoon blocked, %     | 1        | ١           |            | ١        |               |      |     |  |
| Mov Cap-1 Maneuver     | 1        | 1           | 1531       | 1        | 998           | 986  |     |  |
| Mov Cap-2 Maneuver     | 1        | 1           | •          | 1        | 998           | •    |     |  |
| Stage 1                | 1        | 1           | 1          | 1        | 948           | 1    |     |  |
| Stage 2                | •        | •           |            | •        | 975           | •    |     |  |
|                        |          |             |            |          |               |      |     |  |
| Approach               | EB       |             | WB         |          | NB            |      |     |  |
| HCM Control Delay, s   | 0        |             | 0          |          | 9.3           |      |     |  |
| HCM LOS                |          |             |            |          | ⋖             |      |     |  |
|                        |          |             |            |          |               |      |     |  |
| Minor Lane/Major Mvmt  | _        | NBLn1 NBLn2 | JBLn2      | EBT      | EBR           | WBL  | WBT |  |
| Capacity (veh/h)       |          | 998         | 986        |          | 1             | 1531 |     |  |
| HCM Lane V/C Ratio     |          | 0.03        | 0.03 0.002 | 1        | 1             | •    |     |  |
| HCM Control Delay (s)  |          | 9.3         | 8.7        | •        | •             | 0    |     |  |
| HCM Lane LOS           |          | ⋖           | ⋖          | '        | •             | ⋖    |     |  |
| HCM 95th %tile Q(veh)  |          | 0.1         | 0          | •        | •             | 0    |     |  |
|                        |          |             |            |          |               |      |     |  |

Foothill and North County Landfills Study - Future plus Project PM W-Trans

HCM 6th TWSC 4: Clements Rd & E Harney Ln

01/12/2025

| Int Delay, s/veh         | 2.8    |       |         |        |                |       |        |      |      |        |      |      |  |
|--------------------------|--------|-------|---------|--------|----------------|-------|--------|------|------|--------|------|------|--|
| Movement                 | EBF    | EBT   | EBR WBL | WBL    | WBT WBR        |       | BE     | NBT  | NBR  | SBL    | SBT  | SBR  |  |
| Lane Configurations      |        | 4     |         |        | ÷              |       |        | €    |      |        | 4    |      |  |
| Traffic Vol, veh/h       | 9      | _     | 41      | 2      | 0              | 0     | 31     | 108  | 0    | 0      | 112  | 24   |  |
| Future Vol, veh/h        | 30     | -     | 41      | 7      | 0              | 0     | 31     | 108  | 0    | 0      | 112  | 54   |  |
| Conflicting Peds, #/hr   | 0      | 0     | 0       | 0      | 0              | 0     | 0      | 0    | 0    | 0      | 0    | 0    |  |
| Sign Control             | Stop   | Stop  | Stop    | Stop   | Stop           | Stop  | Free   | Free | Free | Free   | Free | Free |  |
| RT Channelized           | . '    |       | None    |        |                | None  | 1      | 1    | None | 1      | 1    | None |  |
| Storage Length           | •      | ,     | ٠       | ٠      | ٠              | ٠     | ٠      | ١    | ١    | ١      | '    | ٠    |  |
| Veh in Median Storage, # | #      | 0     | 1       | ٠      | 0              | ٠     | 1      | 0    | •    | 1      | 0    | ٠    |  |
| Grade, %                 | 1      | 0     | ٠       | ٠      | 0              | ٠     | ٠      | 0    | 1    | ١      | 0    | ٠    |  |
| Peak Hour Factor         | 100    | 100   | 100     | 100    | 100            | 100   | 100    | 100  | 100  | 100    | 100  | 100  |  |
| Heavy Vehicles, %        | 0      | 0     | 0       | 0      | 0              | 0     | 0      | 0    | 0    | 0      | 0    | 4    |  |
| Mvmt Flow                | 30     | _     | 41      | 2      | 0              | 0     | 31     | 108  | 0    | 0      | 112  | 24   |  |
|                          |        |       |         |        |                |       |        |      |      |        |      |      |  |
| Major/Minor N            | Minor2 |       | 2       | Minor1 |                | 2     | Major1 |      | 2    | Major2 |      |      |  |
| Conflicting Flow All     | 294    | 294   | 124     | 315    | 306            | 108   | 136    | 0    | 0    | 108    | 0    | 0    |  |
| Stage 1                  | 124    | 124   | 1       | 170    | 170            | •     | 1      | 1    | •    | 1      | 1    | 1    |  |
| Stage 2                  | 170    | 170   | '       | 145    | 136            | 1     | 1      | 1    | 1    | 1      | 1    |      |  |
| Critical Hdwy            | 7.1    | 6.5   | 6.2     | 7.1    | 6.5            | 6.2   | 4.1    | 1    | 1    | 4.1    | 1    | •    |  |
| Critical Hdwy Stg 1      | 6.1    | 5.5   | '       | 6.1    | 5.5            | •     | ٠      | •    |      |        |      |      |  |
| Critical Hdwy Stg 2      | 6.1    | 5.5   | ٠       | 6.1    | 5.5            | ٠     | ٠      | 1    | •    | 1      | 1    | ٠    |  |
| Follow-up Hdwy           | 3.5    | 4     | 3.3     | 3.5    | 4              | 3.3   | 2.2    | ٠    | ٠    | 2.2    | •    | ٠    |  |
| Pot Cap-1 Maneuver       | 662    | 620   | 932     | 642    | 611            | 951   | 1461   | 1    | 1    | 1495   | 1    | ì    |  |
| Stage 1                  | 882    | 797   | •       | 837    | 762            | ٠     | ٠      | ٠    | ٠    | •      |      |      |  |
| Stage 2                  | 837    | 762   | 1       | 863    | 788            | 1     | 1      | 1    | 1    | 1      | 1    | ì    |  |
| Platoon blocked, %       |        |       |         |        |                |       |        | •    | •    |        | •    | •    |  |
| Mov Cap-1 Maneuver       | 650    | 909   | 932     | 602    | 297            | 921   | 1461   | 1    | 1    | 1495   | 1    | ٠    |  |
| Mov Cap-2 Maneuver       | 650    | 909   | 1       | 602    | 262            | •     | '      | •    | •    | •      | •    | •    |  |
| Stage 1                  | 865    | 797   | 1       | 818    | 744            | 1     | ì      | 1    | 1    | 1      | 1    | ٠    |  |
| Stage 2                  | 818    | 744   | 1       | 824    | 788            | ٠     | •      | 1    | •    | 1      | 1    | ٠    |  |
|                          |        |       |         |        |                |       |        |      |      |        |      |      |  |
| Approach                 | 8      |       |         | WB     |                |       | R      |      |      | SB     |      |      |  |
| HCM Control Delay, s     | 10.1   |       |         | 11     |                |       | 1.7    |      |      | 0      |      |      |  |
| HCM LOS                  | ω      |       |         | ω      |                |       |        |      |      |        |      |      |  |
| Minor Lane/Maior Mvmt    |        | MBL   | NBT     | NBR    | NBR EBLn1WBLn1 | BLn1  | SBL    | SBT  | SBR  |        |      |      |  |
| Capacity (veh/h)         |        | 1461  | 1       |        | 784            | 602   | 1495   |      |      |        |      |      |  |
| HCM Lane V/C Ratio       |        | 0.021 | 1       | •      |                | 0.003 | ٠      |      |      |        |      |      |  |
| HCM Control Delay (s)    |        | 7.5   | 0       | 1      | 10.1           | =     | 0      | 1    | 1    |        |      |      |  |
| HCM Lane LOS             |        | ⋖     | ∢       | ٠      | ш              | ш     | ∢      | ٠    | ٠    |        |      |      |  |
| HCM 95th %tile Q(veh)    |        | 0.1   | •       | ٠      | 0.3            | 0     | 0      | •    | •    |        |      |      |  |

Foothil and North County Landfills Study - Future plus Project PM W-Trans

Synchro 11 Report Page 3

|                                     | HCS Two-La                                               | ne Hig  | ghway Re        | port                        |                                                 |  |
|-------------------------------------|----------------------------------------------------------|---------|-----------------|-----------------------------|-------------------------------------------------|--|
| Project Information                 |                                                          |         |                 |                             |                                                 |  |
| Analyst                             | Alyssa Labrador                                          | Da      | te              |                             | 12/23/2024                                      |  |
| Agency                              | W-Trans                                                  | An      | alysis Year     |                             | 2024                                            |  |
| Jurisdiction                        | San Joaquin County                                       | Tin     | ne Analyzed     |                             | 1 - E Harney Ln btwn<br>SR-99 & SR-88 - E AM EB |  |
| Project Description                 | SJX015                                                   | Un      | its             |                             | U.S. Customary                                  |  |
|                                     | Se                                                       | egmer   | nt 1            |                             |                                                 |  |
| Vehicle Inputs                      |                                                          |         |                 |                             |                                                 |  |
| Segment Type                        | Passing Zone                                             | Ler     | ngth, ft        |                             | 23760                                           |  |
| Lane Width, ft                      | 11                                                       | Sho     | oulder Width, f | t                           | 0                                               |  |
| Speed Limit, mi/h                   | 55                                                       | Ace     | cess Point Dens | sity, pts/mi                | 13.3                                            |  |
| Demand and Capacity                 |                                                          |         |                 |                             |                                                 |  |
| Directional Demand Flow Rate, veh/h | 122                                                      | Ор      | posing Deman    | d Flow Rate, veh/h          | 165                                             |  |
| Peak Hour Factor                    | 1.00                                                     | Tot     | al Trucks, %    |                             | 5.74                                            |  |
| Segment Capacity, veh/h             | 1700                                                     | De      | mand/Capacity   | ' (D/C)                     | 0.07                                            |  |
| Intermediate Results                |                                                          |         |                 |                             |                                                 |  |
| Segment Vertical Class              | 1                                                        | Fre     | e-Flow Speed,   | mi/h                        | 54.4                                            |  |
| Speed Slope Coefficient (m)         | 3.28208                                                  | Spo     | eed Power Coe   | fficient (p)                | 0.54976                                         |  |
| PF Slope Coefficient (m)            | -1.23095                                                 | PF      | Power Coefficie | ent (p)                     | 0.76891                                         |  |
| In Passing Lane Effective Length?   | No                                                       | Fol     | lower Density,  | followers/mi/ln             | 0.5                                             |  |
| %Improvement to Percent Followers   | provement to Percent Followers 0.0 %Improvement to Speed |         |                 | 0.0                         |                                                 |  |
| Subsegment Data                     |                                                          |         |                 |                             |                                                 |  |
| # Segment Type                      | Length, ft                                               | Radius, | ft              | Superelevation, %           | Average Speed, mi/h                             |  |
| 1 Tangent                           | 23760                                                    | -       |                 | -                           | 54.0                                            |  |
| Vehicle Results                     |                                                          |         |                 |                             |                                                 |  |
| Average Speed, mi/h                 | 54.0                                                     | Per     | cent Followers  | , %                         | 21.7                                            |  |
| Segment Travel Time, minutes        | 5.00                                                     | Ad      | j. Follower Den | sity, followers/mi/ln       | 0.5                                             |  |
| Vehicle LOS                         | А                                                        |         |                 |                             |                                                 |  |
| Facility Results                    |                                                          |         |                 |                             |                                                 |  |
| T VMT<br>veh-mi/AP                  | VHD<br>veh-h/p                                           |         |                 | ensity, followers/<br>mi/ln | LOS                                             |  |
| 1 137                               | 0.02                                                     |         |                 | 0.5                         | А                                               |  |

HCS<sup>™</sup> Highways Version 2024 1 - Existing AM (EB).xuf

Generated: 01/02/2025 09:57:46

|                                     | HCS Two-Lar                                        | ne Hig    | hway Re         | port                        |                                                 |  |
|-------------------------------------|----------------------------------------------------|-----------|-----------------|-----------------------------|-------------------------------------------------|--|
| Project Information                 |                                                    |           |                 |                             |                                                 |  |
| Analyst                             | Alyssa Labrador                                    | Dat       | е               |                             | 12/23/2024                                      |  |
| Agency                              | W-Trans                                            | Ana       | lysis Year      |                             | 2024                                            |  |
| Jurisdiction                        | San Joaquin County                                 | Tim       | e Analyzed      |                             | 1 - E Harney Ln btwn<br>SR-99 & SR-88 - E AM WB |  |
| Project Description                 | SJX015                                             | Uni       | ts              |                             | U.S. Customary                                  |  |
|                                     | Se                                                 | egmen     | t 1             |                             |                                                 |  |
| Vehicle Inputs                      |                                                    |           |                 |                             |                                                 |  |
| Segment Type                        | Passing Zone                                       | Len       | gth, ft         |                             | 23760                                           |  |
| Lane Width, ft                      | 11                                                 | Sho       | ulder Width, f  | t                           | 0                                               |  |
| Speed Limit, mi/h                   | 55                                                 | Acc       | ess Point Dens  | sity, pts/mi                | 13.3                                            |  |
| Demand and Capacity                 |                                                    |           |                 |                             |                                                 |  |
| Directional Demand Flow Rate, veh/h | 217                                                | Орг       | oosing Deman    | d Flow Rate, veh/h          | 98                                              |  |
| Peak Hour Factor                    | 1.00                                               | Tota      | al Trucks, %    |                             | 10.14                                           |  |
| Segment Capacity, veh/h             | 1700                                               | Der       | nand/Capacity   | (D/C)                       | 0.13                                            |  |
| Intermediate Results                |                                                    |           |                 |                             |                                                 |  |
| Segment Vertical Class              | 1                                                  | Free      | e-Flow Speed,   | mi/h                        | 54.2                                            |  |
| Speed Slope Coefficient (m)         | 3.24360                                            | Spe       | ed Power Coe    | fficient (p)                | 0.57513                                         |  |
| PF Slope Coefficient (m)            | -1.20751                                           | PF F      | Power Coefficie | ent (p)                     | 0.77577                                         |  |
| In Passing Lane Effective Length?   | No                                                 | Foll      | ower Density,   | followers/mi/ln             | 1.3                                             |  |
| %Improvement to Percent Followers   | ent to Percent Followers 0.0 %Improvement to Speed |           |                 | 0.0                         |                                                 |  |
| Subsegment Data                     |                                                    |           |                 |                             |                                                 |  |
| # Segment Type                      | Length, ft                                         | Radius, f | t               | Superelevation, %           | Average Speed, mi/h                             |  |
| 1 Tangent                           | 23760                                              | -         |                 | -                           | 53.3                                            |  |
| Vehicle Results                     |                                                    |           |                 |                             |                                                 |  |
| Average Speed, mi/h                 | 53.3                                               | Per       | cent Followers  | , %                         | 30.9                                            |  |
| Segment Travel Time, minutes        | 5.07                                               | Adj       | Follower Den    | sity, followers/mi/ln       | 1.3                                             |  |
| Vehicle LOS                         | А                                                  |           |                 |                             |                                                 |  |
| Facility Results                    |                                                    |           |                 |                             |                                                 |  |
| T VMT<br>veh-mi/AP                  | VHD<br>veh-h/p                                     |           |                 | ensity, followers/<br>mi/ln | LOS                                             |  |
| 1 244                               | 0.08                                               |           |                 | 1.3                         | А                                               |  |

HCS<sup>™</sup> Highways Version 2024 1 - Existing AM (WB).xuf

Generated: 01/02/2025 14:03:08

|            |                             | HCS Two-La                                    | ne Hi  | ighway Re        | eport                       |                                                       |  |
|------------|-----------------------------|-----------------------------------------------|--------|------------------|-----------------------------|-------------------------------------------------------|--|
| Project    | Information                 |                                               |        |                  |                             |                                                       |  |
| Analyst    |                             | Alyssa Labrador                               | D      | ate              |                             | 12/23/2024                                            |  |
| Agency     |                             | W-Trans                                       | А      | nalysis Year     |                             | 2024                                                  |  |
| Jurisdicti | ion                         | San Joaquin County                            | Ti     | ime Analyzed     |                             | 2 - E Harney Ln btwn Jack<br>Tone Rd & Site - E AM EB |  |
| Project D  | Description                 | SJX015                                        | U      | nits             |                             | U.S. Customary                                        |  |
|            |                             | Sc                                            | egme   | nt 1             |                             |                                                       |  |
| Vehicle    | e Inputs                    |                                               |        |                  |                             |                                                       |  |
| Segment    | t Type                      | Passing Zone                                  | Le     | ength, ft        |                             | 14784                                                 |  |
| Lane Wid   | dth, ft                     | 11                                            | SI     | houlder Width,   | ft                          | 5                                                     |  |
| Speed Li   | mit, mi/h                   | 55                                            | А      | ccess Point Den  | sity, pts/mi                | 6.8                                                   |  |
| Deman      | nd and Capacity             |                                               |        |                  |                             | ·                                                     |  |
| Direction  | nal Demand Flow Rate, veh/h | 69                                            | 0      | pposing Demar    | nd Flow Rate, veh/h         | 73                                                    |  |
| Peak Ho    | ur Factor                   | 1.00                                          | To     | otal Trucks, %   |                             | 26.09                                                 |  |
| Segment    | t Capacity, veh/h           | 1700                                          | D      | emand/Capacit    | y (D/C)                     | 0.04                                                  |  |
| Interm     | ediate Results              |                                               |        |                  |                             |                                                       |  |
| Segment    | t Vertical Class            | 1                                             | Fr     | ree-Flow Speed,  | , mi/h                      | 58.8                                                  |  |
| Speed SI   | lope Coefficient (m)        | 3.47854                                       | Sį     | peed Power Coe   | efficient (p)               | 0.58752                                               |  |
| PF Slope   | Coefficient (m)             | -1.17904                                      | PI     | F Power Coeffici | ient (p)                    | 0.79518                                               |  |
| In Passin  | g Lane Effective Length?    | No                                            | Fo     | ollower Density, | followers/mi/ln             | 0.2                                                   |  |
| %Improv    | vement to Percent Followers | o Percent Followers 0.0 %Improvement to Speed |        |                  | 0.0                         |                                                       |  |
| Subseg     | ment Data                   |                                               |        |                  |                             |                                                       |  |
| # Se       | gment Type                  | Length, ft                                    | Radius | , ft             | Superelevation, %           | Average Speed, mi/h                                   |  |
| 1 Tar      | ngent                       | 14784                                         | -      |                  | -                           | 58.8                                                  |  |
| Vehicle    | Results                     |                                               |        |                  |                             |                                                       |  |
| Average    | Speed, mi/h                 | 58.8                                          | Pe     | ercent Followers | s, %                        | 13.1                                                  |  |
| Segment    | t Travel Time, minutes      | 2.86                                          | A      | dj. Follower Der | nsity, followers/mi/ln      | 0.2                                                   |  |
| Vehicle L  | .OS                         | А                                             |        |                  |                             |                                                       |  |
| Facility   | Results                     |                                               |        |                  |                             |                                                       |  |
| Т          | VMT<br>veh-mi/AP            | VHD<br>veh-h/p                                |        | Follower D       | ensity, followers/<br>mi/ln | LOS                                                   |  |
| 1          | 48                          | 0.00                                          |        |                  | 0.2                         | А                                                     |  |

HCS<sup>™</sup> Highways Version 2024 2 - Existing AM (EB).xuf

Generated: 01/02/2025 10:02:41

|            |                             | HCS Two-La                                       | ne H   | ighw                              | ay Re       | port                        |                                                 |  |
|------------|-----------------------------|--------------------------------------------------|--------|-----------------------------------|-------------|-----------------------------|-------------------------------------------------|--|
| Project    | Information                 |                                                  |        |                                   |             |                             |                                                 |  |
| Analyst    |                             | Alyssa Labrador                                  | D      | Date                              |             |                             | 12/23/2024                                      |  |
| Agency     |                             | W-Trans                                          | А      | Analysis                          | Year        |                             | 2024                                            |  |
| Jurisdicti | ion                         | San Joaquin County                               | Т      | ime Ana                           | alyzed      |                             | 2 - E Harney Ln btwn J<br>Tone Rd & Site - E AM |  |
| Project D  | Description                 | SJX015                                           | U      | Jnits                             |             |                             | U.S. Customary                                  |  |
|            |                             | S                                                | egme   | ent 1                             |             |                             |                                                 |  |
| Vehicle    | e Inputs                    |                                                  |        |                                   |             |                             |                                                 |  |
| Segment    | t Type                      | Passing Zone                                     | L      | ength, f                          | t           |                             | 14784                                           |  |
| Lane Wid   | dth, ft                     | 11                                               | S      | Shoulde                           | Width, ft   | t                           | 5                                               |  |
| Speed Li   | mit, mi/h                   | 55                                               | А      | Access P                          | oint Dens   | ity, pts/mi                 | 6.8                                             |  |
| Deman      | nd and Capacity             | ·                                                |        |                                   |             |                             | ·                                               |  |
| Direction  | nal Demand Flow Rate, veh/h | 73                                               | С      | Opposin                           | g Deman     | d Flow Rate, veh/h          | 69                                              |  |
| Peak Ho    | ur Factor                   | 1.00                                             | To     | otal Tru                          | cks, %      |                             | 16.44                                           |  |
| Segment    | t Capacity, veh/h           | 1700                                             | D      | Demand                            | /Capacity   | (D/C)                       | 0.04                                            |  |
| Interm     | ediate Results              |                                                  |        |                                   |             |                             |                                                 |  |
| Segment    | t Vertical Class            | 1                                                | F      | ree-Flov                          | w Speed,    | mi/h                        | 59.2                                            |  |
| Speed SI   | lope Coefficient (m)        | 3.49350                                          | S      | Speed Po                          | ower Coef   | 0.58973                     |                                                 |  |
| PF Slope   | Coefficient (m)             | -1.17685                                         | Р      | PF Powe                           | r Coefficie | 0.79524                     |                                                 |  |
| In Passin  | g Lane Effective Length?    | No                                               | F      | Follower Density, followers/mi/ln |             |                             | 0.2                                             |  |
| %Improv    | vement to Percent Followers | t to Percent Followers 0.0 %Improvement to Speed |        |                                   |             | 0.0                         |                                                 |  |
| Subseg     | ment Data                   |                                                  |        |                                   |             |                             |                                                 |  |
| # Se       | gment Type                  | Length, ft                                       | Radius | s, ft                             |             | Superelevation, %           | Average Speed, mi/h                             |  |
| 1 Tai      | ngent                       | 14784                                            | -      |                                   |             | -                           | 59.2                                            |  |
| Vehicle    | Results                     |                                                  |        |                                   |             |                             |                                                 |  |
| Average    | Speed, mi/h                 | 59.2                                             | Р      | Percent F                         | -ollowers,  | %                           | 13.7                                            |  |
| Segment    | t Travel Time, minutes      | 2.84                                             | A      | Adj. Follo                        | ower Dens   | sity, followers/mi/ln       | 0.2                                             |  |
| Vehicle L  | .OS                         | А                                                |        |                                   |             |                             |                                                 |  |
| Facility   | Results                     |                                                  |        |                                   |             |                             |                                                 |  |
| Т          | VMT<br>veh-mi/AP            | VHD<br>veh-h/p                                   |        | Fo                                |             | ensity, followers/<br>mi/ln | LOS                                             |  |
| 1          | 51                          | 0.00                                             |        |                                   |             | 0.2                         | А                                               |  |

HCS<sup>™</sup> Highways Version 2024 2 - Existing AM (WB).xuf

Generated: 01/02/2025 10:02:16

|                                     | HCS Two-Lai              | ne Hig  | ghway Re         | port                        |                                                     |  |  |
|-------------------------------------|--------------------------|---------|------------------|-----------------------------|-----------------------------------------------------|--|--|
| Project Information                 |                          |         |                  |                             |                                                     |  |  |
| Analyst                             | Alyssa Labrador          | Da      | te               |                             | 12/23/2024                                          |  |  |
| Agency                              | W-Trans                  | An      | alysis Year      |                             | 2024                                                |  |  |
| Jurisdiction                        | San Joaquin County       | Tin     | ne Analyzed      |                             | 3 - SR-88 btwn E Harney<br>Ln & 8 Mile Rd - E AM NB |  |  |
| Project Description                 | SJX015                   | Un      | its              |                             | U.S. Customary                                      |  |  |
|                                     | Se                       | egmer   | nt 1             |                             |                                                     |  |  |
| Vehicle Inputs                      |                          |         |                  |                             |                                                     |  |  |
| Segment Type                        | Passing Zone             | Lei     | ngth, ft         |                             | 16368                                               |  |  |
| Lane Width, ft                      | 12                       | Sh      | oulder Width, f  | t                           | 6                                                   |  |  |
| Speed Limit, mi/h                   | 55                       | Ac      | cess Point Dens  | ity, pts/mi                 | 10.0                                                |  |  |
| Demand and Capacity                 | ·                        |         |                  |                             |                                                     |  |  |
| Directional Demand Flow Rate, veh/h | 414                      | Ор      | posing Deman     | d Flow Rate, veh/h          | 222                                                 |  |  |
| Peak Hour Factor                    | 0.85                     | Tot     | al Trucks, %     |                             | 8.24                                                |  |  |
| Segment Capacity, veh/h             | 1700                     | De      | mand/Capacity    | (D/C)                       | 0.24                                                |  |  |
| Intermediate Results                |                          |         |                  |                             |                                                     |  |  |
| Segment Vertical Class              | 1                        | Fre     | e-Flow Speed,    | mi/h                        | 59.9                                                |  |  |
| Speed Slope Coefficient (m)         | 3.60386                  | Sp      | eed Power Coe    | fficient (p)                | 0.53320                                             |  |  |
| PF Slope Coefficient (m)            | -1.22362                 | PF      | Power Coefficie  | ent (p)                     | 0.78091                                             |  |  |
| In Passing Lane Effective Length?   | No                       | Fol     | lower Density,   | followers/mi/ln             | 3.3                                                 |  |  |
| %Improvement to Percent Followers   | 0.0 %Improvement to Spee |         |                  | Speed                       | 0.0                                                 |  |  |
| Subsegment Data                     |                          |         |                  |                             |                                                     |  |  |
| # Segment Type                      | Length, ft               | Radius, | ft               | Superelevation, %           | Average Speed, mi/h                                 |  |  |
| 1 Tangent                           | 16368                    | -       |                  | -                           | 58.0                                                |  |  |
| Vehicle Results                     |                          |         |                  |                             |                                                     |  |  |
| Average Speed, mi/h                 | 58.0                     | Pei     | rcent Followers, | %                           | 45.9                                                |  |  |
| Segment Travel Time, minutes        | 3.21                     | Ad      | j. Follower Den  | sity, followers/mi/ln       | 3.3                                                 |  |  |
| Vehicle LOS                         | В                        |         |                  |                             |                                                     |  |  |
| Facility Results                    |                          |         |                  |                             |                                                     |  |  |
| T VMT<br>veh-mi/AP                  | VHD<br>veh-h/p           |         |                  | ensity, followers/<br>mi/ln | LOS                                                 |  |  |
| 1 273                               | 0.15                     |         |                  | 3.3                         | В                                                   |  |  |

HCS<sup>™</sup> Highways Version 2024 3 - Existing AM (NB).xuf

Generated: 01/02/2025 10:05:56

|               |                           | HCS Two-La         | ne Hi   | ghway Re                               | port                        |                                                     |
|---------------|---------------------------|--------------------|---------|----------------------------------------|-----------------------------|-----------------------------------------------------|
| Project In    | formation                 |                    |         |                                        |                             |                                                     |
| Analyst       |                           | Alyssa Labrador    | Da      | ate                                    |                             | 12/23/2024                                          |
| Agency        |                           | W-Trans            | Ar      | nalysis Year                           |                             | 2024                                                |
| Jurisdiction  |                           | San Joaquin County | Tiı     | me Analyzed                            |                             | 3 - SR-88 btwn E Harney<br>Ln & 8 Mile Rd - E AM SB |
| Project Desc  | cription                  | SJX015             | Ur      | nits                                   |                             | U.S. Customary                                      |
|               |                           | S                  | egme    | nt 1                                   |                             |                                                     |
| Vehicle In    | puts                      |                    |         |                                        |                             |                                                     |
| Segment Ty    | pe                        | Passing Zone       | Le      | ength, ft                              |                             | 16368                                               |
| Lane Width,   | , ft                      | 12                 | Sh      | noulder Width, f                       | t                           | 6                                                   |
| Speed Limit   | , mi/h                    | 55                 | Ac      | ccess Point Dens                       | sity, pts/mi                | 10.0                                                |
| Demand a      | and Capacity              |                    |         |                                        |                             | ·                                                   |
| Directional I | Demand Flow Rate, veh/h   | 249                | Ol      | pposing Deman                          | d Flow Rate, veh/h          | 342                                                 |
| Peak Hour F   | actor                     | 0.85               | То      | otal Trucks, %                         |                             | 9.91                                                |
| Segment Ca    | apacity, veh/h            | 1700               | De      | emand/Capacity                         | / (D/C)                     | 0.15                                                |
| Intermedi     | iate Results              |                    |         |                                        |                             |                                                     |
| Segment Ve    | ertical Class             | 1                  | Fr      | ee-Flow Speed,                         | mi/h                        | 59.9                                                |
| Speed Slope   | e Coefficient (m)         | 3.63808            | Sp      | peed Power Coe                         | fficient (p)                | 0.50688                                             |
| PF Slope Co   | pefficient (m)            | -1.24613           | PF      | Power Coefficion                       | ent (p)                     | 0.77335                                             |
| In Passing L  | ane Effective Length?     | No                 | Fo      | ollower Density,                       | followers/mi/ln             | 1.5                                                 |
| %Improvem     | nent to Percent Followers | 0.0                | %       | Improvement to                         | Speed                       | 0.0                                                 |
| Subsegmo      | ent Data                  |                    |         |                                        |                             |                                                     |
| # Segm        | ent Type                  | Length, ft         | Radius, | , ft                                   | Superelevation, %           | Average Speed, mi/h                                 |
| 1 Tange       | ent                       | 16368              | -       |                                        | -                           | 58.5                                                |
| Vehicle Re    | esults                    |                    |         |                                        |                             |                                                     |
| Average Spe   | eed, mi/h                 | 58.5               | Pe      | Percent Followers, %                   |                             | 34.7                                                |
| Segment Tra   | avel Time, minutes        | 3.18               | Ac      | Adj. Follower Density, followers/mi/ln |                             | 1.5                                                 |
| Vehicle LOS   |                           | А                  |         |                                        |                             |                                                     |
| Facility Re   | esults                    |                    |         |                                        |                             |                                                     |
| Т             | VMT<br>veh-mi/AP          | VHD<br>veh-h/p     |         |                                        | ensity, followers/<br>mi/ln | LOS                                                 |
| 1             | 164                       | 0.07               |         |                                        | 1.5                         | А                                                   |

HCS<sup>™</sup> Highways Version 2024 3 - Existing AM (SB).xuf

Generated: 01/02/2025 10:06:41

|           |                             | HCS Two-La         | ne Hi                | ighway Re                              | eport                        |                                                 |
|-----------|-----------------------------|--------------------|----------------------|----------------------------------------|------------------------------|-------------------------------------------------|
| Project   | t Information               |                    |                      |                                        |                              |                                                 |
| Analyst   |                             | Alyssa Labrador    | D                    | ate                                    |                              | 12/23/2024                                      |
| Agency    |                             | W-Trans            | А                    | nalysis Year                           |                              | 2024                                            |
| Jurisdict | ion                         | San Joaquin County | Ti                   | ime Analyzed                           |                              | 1 - E Harney Ln btwn<br>SR-99 & SR-88 - E PM EB |
| Project [ | Description                 | SJX015             | U                    | nits                                   |                              | U.S. Customary                                  |
|           |                             | S                  | egme                 | nt 1                                   |                              |                                                 |
| Vehicle   | e Inputs                    |                    |                      |                                        |                              |                                                 |
| Segmen    | t Type                      | Passing Zone       | Le                   | ength, ft                              |                              | 23760                                           |
| Lane Wi   | dth, ft                     | 11                 | S                    | houlder Width,                         | ft                           | 0                                               |
| Speed Li  | imit, mi/h                  | 55                 | А                    | ccess Point Der                        | nsity, pts/mi                | 13.3                                            |
| Deman     | nd and Capacity             | ·                  |                      |                                        |                              |                                                 |
| Direction | nal Demand Flow Rate, veh/h | 219                | 0                    | pposing Demai                          | nd Flow Rate, veh/h          | 161                                             |
| Peak Ho   | ur Factor                   | 1.00               | 1.00 Total Trucks    |                                        |                              | 6.39                                            |
| Segmen    | t Capacity, veh/h           | 1700               | D                    | emand/Capacit                          | cy (D/C)                     | 0.13                                            |
| Interm    | ediate Results              |                    |                      |                                        |                              |                                                 |
| Segmen    | t Vertical Class            | 1                  | Fi                   | ree-Flow Speed                         | , mi/h                       | 54.4                                            |
| Speed S   | lope Coefficient (m)        | 3.27928            | S                    | Speed Power Coefficient (p)            |                              | 0.55105                                         |
| PF Slope  | e Coefficient (m)           | -1.22974           | Р                    | F Power Coeffic                        | ient (p)                     | 0.76929                                         |
| In Passin | ng Lane Effective Length?   | No                 | F                    | ollower Density                        | , followers/mi/ln            | 1.3                                             |
| %Improv   | vement to Percent Followers | 0.0                | %                    | Improvement t                          | o Speed                      | 0.0                                             |
| Subsec    | gment Data                  |                    |                      |                                        |                              |                                                 |
| # Se      | egment Type                 | Length, ft         | Radius               | s, ft                                  | Superelevation, %            | Average Speed, mi/h                             |
| 1 Ta      | ngent                       | 23760              | -                    |                                        | -                            | 53.3                                            |
| Vehicle   | Results                     |                    |                      |                                        |                              |                                                 |
| Average   | Speed, mi/h                 | 53.3               | Percent Followers, % |                                        | 31.8                         |                                                 |
| Segmen    | t Travel Time, minutes      | 5.06               | А                    | Adj. Follower Density, followers/mi/ln |                              | 1.3                                             |
| Vehicle L | LOS                         | А                  |                      |                                        |                              |                                                 |
| Facility  | / Results                   |                    |                      |                                        |                              |                                                 |
| Т         | VMT<br>veh-mi/AP            | VHD<br>veh-h/p     |                      | Follower D                             | Density, followers/<br>mi/ln | LOS                                             |
| 1         | 246                         | 0.09               |                      |                                        | 1.3                          | А                                               |

HCS<sup>™</sup> Highways Version 2024 1 - Existing PM (EB).xuf

Generated: 01/02/2025 10:12:33

|                                     | HCS Two-Lai        | ne Hig  | ghway Re                               | port                        |                                                 |
|-------------------------------------|--------------------|---------|----------------------------------------|-----------------------------|-------------------------------------------------|
| Project Information                 |                    |         |                                        |                             |                                                 |
| Analyst                             | Alyssa Labrador    | Da      | te                                     |                             | 12/23/2024                                      |
| Agency                              | W-Trans            | An      | alysis Year                            |                             | 2024                                            |
| Jurisdiction                        | San Joaquin County | Tin     | ne Analyzed                            |                             | 1 - E Harney Ln btwn<br>SR-99 & SR-88 - E PM WB |
| Project Description                 | SJX015             | Un      | its                                    |                             | U.S. Customary                                  |
|                                     | Se                 | egmer   | nt 1                                   |                             |                                                 |
| Vehicle Inputs                      |                    |         |                                        |                             |                                                 |
| Segment Type                        | Passing Zone       | Ler     | ngth, ft                               |                             | 23760                                           |
| Lane Width, ft                      | 11                 | Sho     | oulder Width, f                        | t                           | 0                                               |
| Speed Limit, mi/h                   | 55                 | Aco     | ess Point Dens                         | sity, pts/mi                | 13.3                                            |
| Demand and Capacity                 |                    |         |                                        |                             |                                                 |
| Directional Demand Flow Rate, veh/h | 161                | Ор      | posing Deman                           | d Flow Rate, veh/h          | 219                                             |
| Peak Hour Factor                    | 1.00               | Tot     | Total Trucks, %                        |                             | 4.97                                            |
| Segment Capacity, veh/h             | 1700               | De      | mand/Capacity                          | (D/C)                       | 0.09                                            |
| Intermediate Results                |                    |         |                                        |                             |                                                 |
| Segment Vertical Class              | 1                  | Fre     | e-Flow Speed,                          | mi/h                        | 54.4                                            |
| Speed Slope Coefficient (m)         | 3.30372            | Spe     | Speed Power Coefficient (p)            |                             | 0.53408                                         |
| PF Slope Coefficient (m)            | -1.24549           | PF      | Power Coefficie                        | ent (p)                     | 0.76466                                         |
| In Passing Lane Effective Length?   | No                 | Fol     | lower Density,                         | followers/mi/ln             | 0.8                                             |
| %Improvement to Percent Followers   | 0.0                | %lr     | mprovement to                          | Speed                       | 0.0                                             |
| Subsegment Data                     |                    |         |                                        |                             |                                                 |
| # Segment Type                      | Length, ft         | Radius, | ft                                     | Superelevation, %           | Average Speed, mi/h                             |
| 1 Tangent                           | 23760              | -       |                                        | -                           | 53.7                                            |
| Vehicle Results                     |                    |         |                                        |                             |                                                 |
| Average Speed, mi/h                 | 53.7               | Per     | cent Followers                         | , %                         | 26.5                                            |
| Segment Travel Time, minutes        | 5.03               | Ad      | Adj. Follower Density, followers/mi/ln |                             | 0.8                                             |
| Vehicle LOS                         | А                  |         |                                        |                             |                                                 |
| Facility Results                    |                    |         |                                        |                             |                                                 |
| T VMT<br>veh-mi/AP                  | VHD<br>veh-h/p     |         |                                        | ensity, followers/<br>mi/ln | LOS                                             |
| 1 181                               | 0.05               |         |                                        | 0.8                         | А                                               |

HCS<sup>™</sup> Highways Version 2024 1 - Existing PM (WB).xuf

Generated: 01/02/2025 10:13:28

|           |                             | HCS Two-La         | ne Hi           | ighway R                               | eport                        |                                                       |
|-----------|-----------------------------|--------------------|-----------------|----------------------------------------|------------------------------|-------------------------------------------------------|
| Project   | t Information               |                    |                 |                                        |                              |                                                       |
| Analyst   |                             | Alyssa Labrador    | D               | ate                                    |                              | 12/23/2024                                            |
| Agency    |                             | W-Trans            | А               | nalysis Year                           |                              | 2024                                                  |
| Jurisdict | ion                         | San Joaquin County | Ti              | ime Analyzed                           |                              | 2 - E Harney Ln btwn Jack<br>Tone Rd & Site - E PM EB |
| Project [ | Description                 | SJX015             | U               | Inits                                  |                              | U.S. Customary                                        |
|           |                             | S                  | egme            | nt 1                                   |                              |                                                       |
| Vehicle   | e Inputs                    |                    |                 |                                        |                              |                                                       |
| Segmen    | t Type                      | Passing Zone       | Le              | ength, ft                              |                              | 14784                                                 |
| Lane Wi   | dth, ft                     | 11                 | S               | houlder Width,                         | ft                           | 5                                                     |
| Speed Li  | imit, mi/h                  | 55                 | А               | ccess Point De                         | nsity, pts/mi                | 6.8                                                   |
| Demar     | nd and Capacity             | ·                  |                 |                                        |                              | ·                                                     |
| Direction | nal Demand Flow Rate, veh/h | 57                 | 0               | pposing Dema                           | and Flow Rate, veh/h         | 40                                                    |
| Peak Ho   | our Factor                  | 1.00               | 1.00 Total True |                                        |                              | 8.77                                                  |
| Segmen    | t Capacity, veh/h           | 1700               | D               | emand/Capaci                           | ty (D/C)                     | 0.03                                                  |
| Interm    | nediate Results             |                    |                 |                                        |                              |                                                       |
| Segmen    | t Vertical Class            | 1                  | Fi              | ree-Flow Speed                         | d, mi/h                      | 59.4                                                  |
| Speed S   | lope Coefficient (m)        | 3.48679            | S               | Speed Power Coefficient (p)            |                              | 0.60875                                               |
| PF Slope  | e Coefficient (m)           | -1.16002           | Р               | F Power Coeffic                        | cient (p)                    | 0.79984                                               |
| In Passir | ng Lane Effective Length?   | No                 | F               | ollower Density                        | , followers/mi/ln            | 0.1                                                   |
| %Improv   | vement to Percent Followers | 0.0                | %               | SImprovement                           | to Speed                     | 0.0                                                   |
| Subseg    | gment Data                  |                    |                 |                                        |                              |                                                       |
| # Se      | egment Type                 | Length, ft         | Radius          | s, ft                                  | Superelevation, %            | Average Speed, mi/h                                   |
| 1 Ta      | ingent                      | 14784              | -               |                                        | -                            | 59.4                                                  |
| Vehicle   | e Results                   |                    |                 |                                        |                              |                                                       |
| Average   | Speed, mi/h                 | 59.4               | P               | Percent Followers, %                   |                              | 11.1                                                  |
| Segmen    | t Travel Time, minutes      | 2.83               | А               | Adj. Follower Density, followers/mi/ln |                              | 0.1                                                   |
| Vehicle I | LOS                         | А                  |                 |                                        |                              |                                                       |
| Facility  | y Results                   |                    |                 |                                        |                              |                                                       |
| Т         | VMT<br>veh-mi/AP            | VHD<br>veh-h/p     |                 | Follower I                             | Density, followers/<br>mi/ln | LOS                                                   |
| 1         | 40                          | 0.00               |                 |                                        | 0.1                          | А                                                     |

HCS<sup>™</sup> Highways Version 2024 2 - Existing PM (EB).xuf

Generated: 01/02/2025 10:21:13

|                                     | HCS Two-La         | ne Hig               | ghway Re                               | port               |                                                       |
|-------------------------------------|--------------------|----------------------|----------------------------------------|--------------------|-------------------------------------------------------|
| Project Information                 |                    |                      |                                        |                    |                                                       |
| Analyst                             | Alyssa Labrador    | Da                   | te                                     |                    | 12/23/2024                                            |
| Agency                              | W-Trans            | An                   | alysis Year                            |                    | 2024                                                  |
| Jurisdiction                        | San Joaquin County | Tin                  | ne Analyzed                            |                    | 2 - E Harney Ln btwn Jack<br>Tone Rd & Site - E PM WB |
| Project Description                 | SJX015             | Un                   | its                                    |                    | U.S. Customary                                        |
|                                     | Sc                 | egmer                | nt 1                                   |                    |                                                       |
| Vehicle Inputs                      |                    |                      |                                        |                    |                                                       |
| Segment Type                        | Passing Zone       | Ler                  | ngth, ft                               |                    | 14784                                                 |
| Lane Width, ft                      | 11                 | Sho                  | oulder Width, f                        | t                  | 5                                                     |
| Speed Limit, mi/h                   | 55                 | Acc                  | cess Point Dens                        | sity, pts/mi       | 6.8                                                   |
| Demand and Capacity                 |                    |                      |                                        |                    |                                                       |
| Directional Demand Flow Rate, veh/h | 69                 | Ор                   | posing Deman                           | d Flow Rate, veh/h | 55                                                    |
| Peak Hour Factor                    | 1.00               | Tot                  | Total Trucks, %                        |                    | 7.25                                                  |
| Segment Capacity, veh/h             | 1700               | De                   | mand/Capacity                          | (D/C)              | 0.04                                                  |
| Intermediate Results                |                    |                      |                                        |                    |                                                       |
| Segment Vertical Class              | 1                  | Fre                  | e-Flow Speed,                          | mi/h               | 59.5                                                  |
| Speed Slope Coefficient (m)         | 3.50085            | Spe                  | Speed Power Coefficient (p)            |                    | 0.59816                                               |
| PF Slope Coefficient (m)            | -1.16922           | PF                   | Power Coefficion                       | ent (p)            | 0.79696                                               |
| In Passing Lane Effective Length?   | No                 | Fol                  | lower Density,                         | followers/mi/ln    | 0.2                                                   |
| %Improvement to Percent Followers   | 0.0                | %lr                  | mprovement to                          | Speed              | 0.0                                                   |
| Subsegment Data                     |                    |                      |                                        |                    |                                                       |
| # Segment Type                      | Length, ft         | Radius,              | ft                                     | Superelevation, %  | Average Speed, mi/h                                   |
| 1 Tangent                           | 14784              | -                    |                                        | -                  | 59.5                                                  |
| Vehicle Results                     |                    |                      |                                        |                    |                                                       |
| Average Speed, mi/h                 | 59.5               | Percent Followers, % |                                        | 13.0               |                                                       |
| Segment Travel Time, minutes        | 2.83               | Ad                   | Adj. Follower Density, followers/mi/ln |                    | 0.2                                                   |
| Vehicle LOS                         | А                  |                      |                                        |                    |                                                       |
| Facility Results                    |                    |                      |                                        |                    |                                                       |
| T VMT<br>veh-mi/AP                  | VHD<br>veh-h/p     |                      | Follower Density, followers/<br>mi/ln  |                    | LOS                                                   |
| 1 48                                | 0.00               |                      |                                        | 0.2                | А                                                     |

HCS<sup>™</sup> Highways Version 2024 2 - Existing PM (WB).xuf

Generated: 01/02/2025 10:25:29

|           |                             | HCS Two-La         | ne Hi  | igh                                    | ıway Re        | port                        |     |                                              |
|-----------|-----------------------------|--------------------|--------|----------------------------------------|----------------|-----------------------------|-----|----------------------------------------------|
| Project   | t Information               |                    |        |                                        |                |                             |     |                                              |
| Analyst   |                             | Alyssa Labrador    | D      | Date                                   |                |                             | 12/ | 23/2024                                      |
| Agency    |                             | W-Trans            | А      | Analy                                  | sis Year       |                             | 202 | 24                                           |
| Jurisdict | ion                         | San Joaquin County | Ti     | ime                                    | Analyzed       |                             |     | SR-88 btwn E Harney<br>& 8 Mile Rd - E PM NB |
| Project [ | Description                 | SJX015             | U      | Jnits                                  |                |                             | U.S | . Customary                                  |
|           |                             | S                  | egme   | ent                                    | 1              |                             |     |                                              |
| Vehicle   | e Inputs                    |                    |        |                                        |                |                             |     |                                              |
| Segmen    | t Type                      | Passing Zone       | Le     | .engt                                  | h, ft          |                             | 163 | 368                                          |
| Lane Wi   | dth, ft                     | 12                 | S      | houl                                   | der Width, ft  | :                           | 6   |                                              |
| Speed Li  | imit, mi/h                  | 55                 | А      | Acces                                  | s Point Dens   | ity, pts/mi                 | 10. | 0                                            |
| Demar     | nd and Capacity             | ·                  |        |                                        |                |                             |     |                                              |
| Direction | nal Demand Flow Rate, veh/h | 375                | 0      | Эрро                                   | sing Deman     | d Flow Rate, veh/h          | 405 | ;                                            |
| Peak Ho   | ur Factor                   | 0.85               | To     | otal                                   | Trucks, %      |                             | 3.4 | 5                                            |
| Segmen    | t Capacity, veh/h           | 1700               | D      | Dema                                   | nd/Capacity    | (D/C)                       | 0.2 | 2                                            |
| Interm    | ediate Results              |                    |        |                                        |                |                             |     |                                              |
| Segmen    | t Vertical Class            | 1                  | Fi     | ree-l                                  | Flow Speed,    | mi/h                        | 60. | 1                                            |
| Speed S   | lope Coefficient (m)        | 3.66647            | S      | peed                                   | d Power Coef   | Power Coefficient (p)       |     | 9606                                         |
| PF Slope  | e Coefficient (m)           | -1.25471           | Р      | PF Po                                  | wer Coefficie  | ent (p)                     | 0.7 | 6965                                         |
| In Passir | ng Lane Effective Length?   | No                 | F      | ollov                                  | ver Density, 1 | followers/mi/ln             | 2.9 |                                              |
| %Improv   | vement to Percent Followers | 0.0                | %      | 6lmp                                   | rovement to    | Speed                       | 0.0 |                                              |
| Subsec    | gment Data                  |                    |        |                                        |                |                             |     |                                              |
| # Se      | egment Type                 | Length, ft         | Radius | s, ft                                  |                | Superelevation, %           | Ave | erage Speed, mi/h                            |
| 1 Ta      | ngent                       | 16368              | -      |                                        |                | -                           | 58. | 2                                            |
| Vehicle   | Results                     |                    |        |                                        |                |                             |     |                                              |
| Average   | Speed, mi/h                 | 58.2               | P      | erce                                   | nt Followers,  | %                           | 44. | 6                                            |
| Segmen    | t Travel Time, minutes      | 3.20               | А      | Adj. Follower Density, followers/mi/ln |                | 2.9                         |     |                                              |
| Vehicle I | LOS                         | В                  |        |                                        |                |                             |     |                                              |
| Facility  | / Results                   |                    |        |                                        |                |                             |     |                                              |
| Т         | VMT<br>veh-mi/AP            | VHD<br>veh-h/p     |        |                                        |                | ensity, followers/<br>mi/ln |     | LOS                                          |
| 1         | 247                         | 0.14               |        |                                        |                | 2.9                         |     | В                                            |

HCS<sup>™</sup> Highways Version 2024 3 - Existing PM (NB).xuf

Generated: 01/02/2025 10:28:01

|           |                             | HCS Two-La         | ne Hi  | ghway Re                               | port                        |                                                     |
|-----------|-----------------------------|--------------------|--------|----------------------------------------|-----------------------------|-----------------------------------------------------|
| Project   | t Information               |                    |        |                                        |                             |                                                     |
| Analyst   |                             | Alyssa Labrador    | D      | ate                                    |                             | 12/23/2024                                          |
| Agency    |                             | W-Trans            | А      | nalysis Year                           |                             | 2024                                                |
| Jurisdict | ion                         | San Joaquin County | Ti     | me Analyzed                            |                             | 3 - SR-88 btwn E Harney<br>Ln & 8 Mile Rd - E PM SB |
| Project [ | Description                 | SJX015             | U      | nits                                   |                             | U.S. Customary                                      |
|           |                             | S                  | egme   | nt 1                                   |                             |                                                     |
| Vehicle   | e Inputs                    |                    |        |                                        |                             |                                                     |
| Segmen    | t Type                      | Passing Zone       | Le     | ength, ft                              |                             | 16368                                               |
| Lane Wi   | dth, ft                     | 12                 | SI     | houlder Width, f                       | t                           | 6                                                   |
| Speed Li  | imit, mi/h                  | 55                 | А      | ccess Point Dens                       | sity, pts/mi                | 10.0                                                |
| Deman     | nd and Capacity             |                    |        |                                        |                             |                                                     |
| Direction | nal Demand Flow Rate, veh/h | 445                | 0      | pposing Deman                          | d Flow Rate, veh/h          | 368                                                 |
| Peak Ho   | ur Factor                   | 0.85               | To     | otal Trucks, %                         |                             | 2.65                                                |
| Segmen    | t Capacity, veh/h           | 1700               | D      | emand/Capacity                         | / (D/C)                     | 0.26                                                |
| Interm    | ediate Results              |                    |        |                                        |                             |                                                     |
| Segmen    | t Vertical Class            | 1                  | Fr     | ree-Flow Speed,                        | mi/h                        | 60.1                                                |
| Speed S   | lope Coefficient (m)        | 3.65830            | Sį     | peed Power Coe                         | fficient (p)                | 0.50220                                             |
| PF Slope  | e Coefficient (m)           | -1.24959           | PI     | F Power Coeffici                       | ent (p)                     | 0.77151                                             |
| In Passin | ng Lane Effective Length?   | No                 | Fo     | ollower Density,                       | followers/mi/ln             | 3.7                                                 |
| %Improv   | vement to Percent Followers | 0.0                | %      | Improvement to                         | Speed                       | 0.0                                                 |
| Subsec    | gment Data                  |                    |        |                                        |                             |                                                     |
| # Se      | egment Type                 | Length, ft         | Radius | , ft                                   | Superelevation, %           | Average Speed, mi/h                                 |
| 1 Ta      | ngent                       | 16368              | -      |                                        | -                           | 58.0                                                |
| Vehicle   | Results                     |                    |        |                                        |                             |                                                     |
| Average   | Speed, mi/h                 | 58.0               | Pe     | ercent Followers                       | , %                         | 48.8                                                |
| Segmen    | t Travel Time, minutes      | 3.21               | A      | Adj. Follower Density, followers/mi/ln |                             | 3.7                                                 |
| Vehicle I | LOS                         | В                  |        |                                        |                             |                                                     |
| Facility  | / Results                   |                    |        |                                        |                             |                                                     |
| Т         | VMT<br>veh-mi/AP            | VHD<br>veh-h/p     |        | Follower D                             | ensity, followers/<br>mi/ln | LOS                                                 |
| 1         | 293                         | 0.18               |        |                                        | 3.7                         | В                                                   |

HCS<sup>™</sup> Highways Version 2024 3 - Existing PM (SB).xuf

Generated: 01/02/2025 10:29:09

|                         |                 | HCS Two-La         | ne Hi  | ighway R                               | eport                        |                                                      |
|-------------------------|-----------------|--------------------|--------|----------------------------------------|------------------------------|------------------------------------------------------|
| Project Information     | on              |                    |        |                                        |                              |                                                      |
| Analyst                 |                 | Alyssa Labrador    | D      | ate                                    |                              | 12/23/2024                                           |
| Agency                  |                 | W-Trans            | А      | nalysis Year                           |                              | 2024                                                 |
| Jurisdiction            |                 | San Joaquin County | Ti     | ime Analyzed                           |                              | 1 - E Harney Ln btwn<br>SR-99 & SR-88 - E+P AM<br>EB |
| Project Description     |                 | SJX015             | U      | Inits                                  |                              | U.S. Customary                                       |
|                         |                 | Sc                 | egme   | nt 1                                   |                              |                                                      |
| Vehicle Inputs          |                 |                    |        |                                        |                              |                                                      |
| Segment Type            |                 | Passing Zone       | Le     | ength, ft                              |                              | 23760                                                |
| Lane Width, ft          |                 | 11                 | S      | houlder Width,                         | ft                           | 0                                                    |
| Speed Limit, mi/h       |                 | 55                 | А      | ccess Point De                         | nsity, pts/mi                | 13.3                                                 |
| Demand and Capa         | acity           |                    |        |                                        |                              | ·                                                    |
| Directional Demand Fl   | low Rate, veh/h | 129                | 0      | pposing Dema                           | and Flow Rate, veh/h         | 170                                                  |
| Peak Hour Factor        |                 | 1.00               | To     | otal Trucks, %                         |                              | 7.75                                                 |
| Segment Capacity, vel   | n/h             | 1700               | D      | emand/Capaci                           | ty (D/C)                     | 0.08                                                 |
| Intermediate Resu       | ılts            |                    |        |                                        |                              |                                                      |
| Segment Vertical Class  | 5               | 1                  | Fi     | ree-Flow Speed                         | d, mi/h                      | 54.3                                                 |
| Speed Slope Coefficie   | nt (m)          | 3.28046            | S      | peed Power Co                          | pefficient (p)               | 0.54816                                              |
| PF Slope Coefficient (r | n)              | -1.23240           | Р      | F Power Coeffi                         | cient (p)                    | 0.76858                                              |
| In Passing Lane Effecti | ve Length?      | No                 | F      | ollower Density                        | ,, followers/mi/ln           | 0.5                                                  |
| %Improvement to Per     | cent Followers  | 0.0                | %      | Improvement                            | to Speed                     | 0.0                                                  |
| Subsegment Data         |                 |                    |        |                                        |                              |                                                      |
| # Segment Type          |                 | Length, ft         | Radius | s, ft                                  | Superelevation, %            | Average Speed, mi/h                                  |
| 1 Tangent               |                 | 23760              | -      |                                        | -                            | 53.8                                                 |
| Vehicle Results         |                 |                    |        |                                        |                              |                                                      |
| Average Speed, mi/h     |                 | 53.8               | P      | ercent Followe                         | rs, %                        | 22.5                                                 |
| Segment Travel Time,    | minutes         | 5.01               | А      | Adj. Follower Density, followers/mi/ln |                              | 0.5                                                  |
| Vehicle LOS             |                 | А                  |        |                                        |                              |                                                      |
| Facility Results        |                 |                    |        |                                        |                              |                                                      |
| T                       | VMT<br>eh-mi/AP | VHD<br>veh-h/p     |        | Follower                               | Density, followers/<br>mi/ln | LOS                                                  |
| 1                       | 145             | 0.02               |        |                                        | 0.5                          | А                                                    |

HCS<sup>™</sup> Highways Version 2024 1 - E+P AM (EB).xuf

Generated: 01/02/2025 14:06:54

|                                    | HCS Two-La         | ne Hig               | ghway Re                               | port                        |                                                      |
|------------------------------------|--------------------|----------------------|----------------------------------------|-----------------------------|------------------------------------------------------|
| <b>Project Information</b>         |                    |                      |                                        |                             |                                                      |
| Analyst                            | Alyssa Labrador    | Dat                  | Date                                   |                             | 12/23/2024                                           |
| Agency                             | W-Trans            | Ana                  | alysis Year                            |                             | 2024                                                 |
| Jurisdiction                       | San Joaquin County | Tim                  | ne Analyzed                            |                             | 1 - E Harney Ln btwn<br>SR-99 & SR-88 - E+P AM<br>WB |
| Project Description                | SJX015             | Uni                  | its                                    |                             | U.S. Customary                                       |
|                                    | S                  | egmen                | nt 1                                   |                             |                                                      |
| Vehicle Inputs                     |                    |                      |                                        |                             |                                                      |
| Segment Type                       | Passing Zone       | Len                  | ngth, ft                               |                             | 23760                                                |
| Lane Width, ft                     | 11                 | Sho                  | oulder Width, f                        | t                           | 0                                                    |
| Speed Limit, mi/h                  | 55                 | Acc                  | ess Point Dens                         | sity, pts/mi                | 13.3                                                 |
| Demand and Capacity                | ·                  |                      |                                        |                             | ·                                                    |
| Directional Demand Flow Rate, veh/ | h 222              | Ор                   | posing Deman                           | d Flow Rate, veh/h          | 105                                                  |
| Peak Hour Factor                   | 1.00               | Tot                  | Total Trucks, %                        |                             | 10.81                                                |
| Segment Capacity, veh/h            | 1700               | Der                  | Demand/Capacity (D/C)                  |                             | 0.13                                                 |
| Intermediate Results               |                    |                      |                                        |                             |                                                      |
| Segment Vertical Class             | 1                  | Fre                  | e-Flow Speed,                          | mi/h                        | 54.2                                                 |
| Speed Slope Coefficient (m)        | 3.24600            | Spe                  | eed Power Coe                          | fficient (p)                | 0.57203                                              |
| PF Slope Coefficient (m)           | -1.21034           | PF                   | Power Coefficie                        | ent (p)                     | 0.77500                                              |
| In Passing Lane Effective Length?  | No                 | Fol                  | lower Density,                         | followers/mi/ln             | 1.3                                                  |
| %Improvement to Percent Followers  | 0.0                | %Ir                  | mprovement to                          | Speed                       | 0.0                                                  |
| Subsegment Data                    |                    |                      |                                        |                             |                                                      |
| # Segment Type                     | Length, ft         | Radius, 1            | ft                                     | Superelevation, %           | Average Speed, mi/h                                  |
| 1 Tangent                          | 23760              | -                    |                                        | -                           | 53.2                                                 |
| Vehicle Results                    |                    |                      |                                        |                             |                                                      |
| Average Speed, mi/h                | 53.2               | Percent Followers, % |                                        | 31.4                        |                                                      |
| Segment Travel Time, minutes       | 5.07               | Adj                  | Adj. Follower Density, followers/mi/ln |                             | 1.3                                                  |
| Vehicle LOS                        | А                  |                      |                                        |                             |                                                      |
| Facility Results                   |                    |                      |                                        |                             |                                                      |
| T VMT<br>veh-mi/AP                 | VHD<br>veh-h/p     |                      |                                        | ensity, followers/<br>mi/ln | LOS                                                  |
| 1 250                              | 0.08               |                      |                                        | 1.3                         | А                                                    |

HCS<sup>™</sup> Highways Version 2024 1 - Existing AM (WB).xuf

Generated: 01/02/2025 14:01:13

|                                    | HCS Two-La         | ne Hig               | ghway Re                               | port                        |                                                            |
|------------------------------------|--------------------|----------------------|----------------------------------------|-----------------------------|------------------------------------------------------------|
| Project Information                |                    |                      |                                        |                             |                                                            |
| Analyst                            | Alyssa Labrador    | Da                   | te                                     |                             | 12/23/2024                                                 |
| Agency                             | W-Trans            | An                   | alysis Year                            |                             | 2024                                                       |
| Jurisdiction                       | San Joaquin County | Tin                  | ne Analyzed                            |                             | 2 - E Harney Ln btwn Jack<br>Tone Rd & Site - E+P AM<br>EB |
| Project Description                | SJX015             | Un                   | its                                    |                             | U.S. Customary                                             |
|                                    | S                  | egmer                | nt 1                                   |                             |                                                            |
| Vehicle Inputs                     |                    |                      |                                        |                             |                                                            |
| Segment Type                       | Passing Zone       | Ler                  | ngth, ft                               |                             | 14784                                                      |
| Lane Width, ft                     | 11                 | Sho                  | oulder Width, f                        | t                           | 5                                                          |
| Speed Limit, mi/h                  | 55                 | Acc                  | cess Point Dens                        | sity, pts/mi                | 6.8                                                        |
| Demand and Capacity                |                    |                      |                                        |                             |                                                            |
| Directional Demand Flow Rate, veh/ | /h 90              | Ор                   | posing Deman                           | d Flow Rate, veh/h          | 88                                                         |
| Peak Hour Factor                   | 1.00               | Tot                  | tal Trucks, %                          |                             | 30.00                                                      |
| Segment Capacity, veh/h            | 1700               | De                   | mand/Capacity                          | (D/C)                       | 0.05                                                       |
| Intermediate Results               |                    |                      |                                        |                             |                                                            |
| Segment Vertical Class             | 1                  | Fre                  | e-Flow Speed,                          | mi/h                        | 58.7                                                       |
| Speed Slope Coefficient (m)        | 3.48016            | Spe                  | eed Power Coe                          | fficient (p)                | 0.57982                                                    |
| PF Slope Coefficient (m)           | -1.18590           | PF                   | Power Coefficie                        | ent (p)                     | 0.79335                                                    |
| In Passing Lane Effective Length?  | No                 | Fol                  | lower Density,                         | followers/mi/ln             | 0.2                                                        |
| %Improvement to Percent Followers  | s 0.0              | %lr                  | mprovement to                          | Speed                       | 0.0                                                        |
| Subsegment Data                    |                    |                      |                                        |                             |                                                            |
| # Segment Type                     | Length, ft         | Radius,              | ft                                     | Superelevation, %           | Average Speed, mi/h                                        |
| 1 Tangent                          | 14784              | -                    |                                        | -                           | 58.7                                                       |
| Vehicle Results                    |                    |                      |                                        |                             |                                                            |
| Average Speed, mi/h                | 58.7               | Percent Followers, % |                                        | 16.1                        |                                                            |
| Segment Travel Time, minutes       | 2.86               | Ad                   | Adj. Follower Density, followers/mi/ln |                             | 0.2                                                        |
| Vehicle LOS                        | А                  |                      |                                        |                             |                                                            |
| Facility Results                   |                    |                      |                                        |                             |                                                            |
| T VMT<br>veh-mi/AP                 | VHD<br>veh-h/p     |                      |                                        | ensity, followers/<br>mi/ln | LOS                                                        |
| 1 63                               | 0.00               |                      |                                        | 0.2                         | А                                                          |

HCS<sup>™</sup> Highways Version 2024 2 - Existing AM (EB).xuf

Generated: 01/02/2025 14:07:14

|                                   | HCS Two-La         | ane Hio              | ghway Re                               | port                        |                                                            |
|-----------------------------------|--------------------|----------------------|----------------------------------------|-----------------------------|------------------------------------------------------------|
| <b>Project Information</b>        |                    |                      |                                        |                             |                                                            |
| Analyst                           | Alyssa Labrador    | Da                   | Date                                   |                             | 12/23/2024                                                 |
| Agency                            | W-Trans            | An                   | alysis Year                            |                             | 2024                                                       |
| Jurisdiction                      | San Joaquin County | Tin                  | ne Analyzed                            |                             | 2 - E Harney Ln btwn Jack<br>Tone Rd & Site - E+P AM<br>WB |
| Project Description               | SJX015             | Un                   | its                                    |                             | U.S. Customary                                             |
|                                   |                    | Segmer               | nt 1                                   |                             |                                                            |
| Vehicle Inputs                    |                    |                      |                                        |                             |                                                            |
| Segment Type                      | Passing Zone       | Ler                  | ngth, ft                               |                             | 14784                                                      |
| Lane Width, ft                    | 11                 | Sho                  | oulder Width, f                        | t                           | 5                                                          |
| Speed Limit, mi/h                 | 55                 | Acc                  | cess Point Dens                        | sity, pts/mi                | 6.8                                                        |
| Demand and Capacity               | ·                  |                      |                                        |                             | ·                                                          |
| Directional Demand Flow Rate, ve  | eh/h 88            | Ор                   | posing Deman                           | d Flow Rate, veh/h          | 90                                                         |
| Peak Hour Factor                  | 1.00               | Tot                  | al Trucks, %                           |                             | 21.59                                                      |
| Segment Capacity, veh/h           | 1700               | De                   | mand/Capacity                          | (D/C)                       | 0.05                                                       |
| Intermediate Results              |                    |                      |                                        |                             |                                                            |
| Segment Vertical Class            | 1                  | Fre                  | e-Flow Speed,                          | mi/h                        | 59.0                                                       |
| Speed Slope Coefficient (m)       | 3.49644            | Spe                  | eed Power Coe                          | fficient (p)                | 0.57886                                                    |
| PF Slope Coefficient (m)          | -1.18653           | PF                   | Power Coefficie                        | ent (p)                     | 0.79264                                                    |
| In Passing Lane Effective Length? | No                 | Fol                  | lower Density,                         | followers/mi/ln             | 0.2                                                        |
| %Improvement to Percent Follow    | vers 0.0           | %lr                  | mprovement to                          | Speed                       | 0.0                                                        |
| Subsegment Data                   |                    |                      |                                        |                             |                                                            |
| # Segment Type                    | Length, ft         | Radius,              | ft                                     | Superelevation, %           | Average Speed, mi/h                                        |
| 1 Tangent                         | 14784              | -                    |                                        | -                           | 59.0                                                       |
| Vehicle Results                   |                    |                      |                                        |                             |                                                            |
| Average Speed, mi/h               | 59.0               | Percent Followers, % |                                        | 15.9                        |                                                            |
| Segment Travel Time, minutes      | 2.85               | Ad                   | Adj. Follower Density, followers/mi/ln |                             | 0.2                                                        |
| Vehicle LOS                       | А                  |                      |                                        |                             |                                                            |
| Facility Results                  |                    |                      |                                        |                             |                                                            |
| T VMT<br>veh-mi/AP                | VHD<br>veh-h/p     | )                    |                                        | ensity, followers/<br>mi/ln | LOS                                                        |
| 1 62                              | 0.00               |                      |                                        | 0.2                         | А                                                          |

HCS<sup>™</sup> Highways Version 2024 2 - Existing AM (WB).xuf

Generated: 01/02/2025 14:09:56

|                                  | HCS        | Two-Lane             | e Hig             | hway Re                                | port                        |                                                          |
|----------------------------------|------------|----------------------|-------------------|----------------------------------------|-----------------------------|----------------------------------------------------------|
| <b>Project Information</b>       |            |                      |                   |                                        |                             |                                                          |
| Analyst                          | Alyssa La  | brador               | Date              | )                                      |                             | 12/23/2024                                               |
| Agency                           | W-Trans    |                      | Anal              | ysis Year                              |                             | 2024                                                     |
| Jurisdiction                     | San Joaq   | uin County           | Time              | e Analyzed                             |                             | 3 - SR-88 btwn E Harney<br>Ln & 8 Mile Rd - E+P AM<br>NB |
| Project Description              | SJX015     |                      | Unit              | S                                      |                             | U.S. Customary                                           |
|                                  |            | Seg                  | gmen <sup>†</sup> | : 1                                    |                             |                                                          |
| Vehicle Inputs                   |            |                      |                   |                                        |                             |                                                          |
| Segment Type                     | Passing Z  | one                  | Leng              | ıth, ft                                |                             | 16368                                                    |
| Lane Width, ft                   | 12         |                      | Shou              | ulder Width, ft                        | t                           | 6                                                        |
| Speed Limit, mi/h                | 55         |                      | Acce              | ess Point Dens                         | ity, pts/mi                 | 10.0                                                     |
| Demand and Capacity              |            |                      |                   |                                        |                             |                                                          |
| Directional Demand Flow Rate,    | veh/h 429  |                      | Орр               | osing Deman                            | d Flow Rate, veh/h          | 233                                                      |
| Peak Hour Factor                 | 0.85       |                      | Tota              | l Trucks, %                            |                             | 9.32                                                     |
| Segment Capacity, veh/h          | 1700       |                      | Dem               | and/Capacity                           | (D/C)                       | 0.25                                                     |
| Intermediate Results             |            |                      |                   |                                        |                             |                                                          |
| Segment Vertical Class           | 1          |                      | Free              | -Flow Speed,                           | mi/h                        | 59.9                                                     |
| Speed Slope Coefficient (m)      | 3.60555    |                      | Spee              | ed Power Coef                          | fficient (p)                | 0.53049                                                  |
| PF Slope Coefficient (m)         | -1.22601   |                      | PF P              | ower Coefficie                         | ent (p)                     | 0.78021                                                  |
| In Passing Lane Effective Length | n? No      |                      | Follo             | wer Density, 1                         | followers/mi/ln             | 3.5                                                      |
| %Improvement to Percent Follo    | owers 0.0  |                      | %lm               | provement to                           | Speed                       | 0.0                                                      |
| Subsegment Data                  |            |                      |                   |                                        |                             |                                                          |
| # Segment Type                   | Length, ft | : R                  | Radius, ft        |                                        | Superelevation, %           | Average Speed, mi/h                                      |
| 1 Tangent                        | 16368      | -                    |                   |                                        | -                           | 57.9                                                     |
| Vehicle Results                  |            |                      |                   |                                        |                             |                                                          |
| Average Speed, mi/h              | 57.9       | Percent Followers, % |                   | 47.0                                   |                             |                                                          |
| Segment Travel Time, minutes     | 3.21       |                      | Adj.              | Adj. Follower Density, followers/mi/ln |                             | 3.5                                                      |
| Vehicle LOS                      | В          |                      |                   |                                        |                             |                                                          |
| Facility Results                 |            |                      |                   |                                        |                             |                                                          |
| T VMT<br>veh-mi/AF               |            | VHD<br>veh-h/p       |                   |                                        | ensity, followers/<br>mi/ln | LOS                                                      |
| 1 283                            |            | 0.16                 |                   |                                        | 3.5                         | В                                                        |

HCS<sup>™</sup> Highways Version 2024 3 - Existing AM (NB).xuf

Generated: 01/02/2025 14:11:57

|                                   | HCS Two-La         | ane Hi                                 | ghway Re                              | port               |                                                          |
|-----------------------------------|--------------------|----------------------------------------|---------------------------------------|--------------------|----------------------------------------------------------|
| <b>Project Information</b>        |                    |                                        |                                       |                    |                                                          |
| Analyst                           | Alyssa Labrador    | Da                                     | nte                                   |                    | 12/23/2024                                               |
| Agency                            | W-Trans            | An                                     | nalysis Year                          |                    | 2024                                                     |
| Jurisdiction                      | San Joaquin County | Tir                                    | Time Analyzed                         |                    | 3 - SR-88 btwn E Harney<br>Ln & 8 Mile Rd - E+P AM<br>SB |
| Project Description               | SJX015             | Un                                     | nits                                  |                    | U.S. Customary                                           |
|                                   | 9                  | Segmei                                 | nt 1                                  |                    |                                                          |
| Vehicle Inputs                    |                    |                                        |                                       |                    |                                                          |
| Segment Type                      | Passing Zone       | Le                                     | Length, ft                            |                    | 16368                                                    |
| Lane Width, ft                    | 12                 | Sh                                     | oulder Width, f                       | t                  | 6                                                        |
| Speed Limit, mi/h                 | 55                 | Ac                                     | cess Point Dens                       | ity, pts/mi        | 10.0                                                     |
| Demand and Capacity               |                    |                                        |                                       |                    |                                                          |
| Directional Demand Flow Rate, vel | h/h 260            | Opposing Demand                        |                                       | d Flow Rate, veh/h | 358                                                      |
| Peak Hour Factor                  | 0.85               | To                                     | Total Trucks, %                       |                    | 11.76                                                    |
| Segment Capacity, veh/h           | 1700               | De                                     | Demand/Capacity (D/C)                 |                    | 0.15                                                     |
| Intermediate Results              |                    |                                        |                                       |                    |                                                          |
| Segment Vertical Class            | 1                  | Fre                                    | ee-Flow Speed,                        | mi/h               | 59.8                                                     |
| Speed Slope Coefficient (m)       | 3.63897            | Sp                                     | Speed Power Coefficient (p)           |                    | 0.50408                                                  |
| PF Slope Coefficient (m)          | -1.24859           | PF                                     | Power Coefficie                       | ent (p)            | 0.77261                                                  |
| In Passing Lane Effective Length? | No                 | Fo                                     | llower Density,                       | followers/mi/ln    | 1.6                                                      |
| %Improvement to Percent Follows   | ers 0.0            | %I                                     | mprovement to                         | Speed              | 0.0                                                      |
| Subsegment Data                   |                    |                                        |                                       |                    |                                                          |
| # Segment Type                    | Length, ft         | Radius,                                | ft                                    | Superelevation, %  | Average Speed, mi/h                                      |
| 1 Tangent                         | 16368              | -                                      |                                       | -                  | 58.4                                                     |
| Vehicle Results                   |                    |                                        |                                       |                    |                                                          |
| Average Speed, mi/h               | 58.4               | Pe                                     | rcent Followers,                      | %                  | 35.7                                                     |
| Segment Travel Time, minutes      | 3.19               | Adj. Follower Density, followers/mi/In |                                       | 1.6                |                                                          |
| Vehicle LOS                       | A                  |                                        |                                       |                    |                                                          |
| Facility Results                  |                    |                                        |                                       |                    |                                                          |
| T VMT<br>veh-mi/AP                | VHD<br>veh-h/p     |                                        | Follower Density, followers/<br>mi/ln |                    | LOS                                                      |
| 1 171                             | 0.07               |                                        |                                       | 1.6                | А                                                        |

HCS<sup>™</sup> Highways Version 2024 3 - Existing AM (SB).xuf

Generated: 01/02/2025 14:14:22

| HCS Two-Lane Highway Report         |                    |                                 |                                        |                             |                                                      |  |  |  |  |
|-------------------------------------|--------------------|---------------------------------|----------------------------------------|-----------------------------|------------------------------------------------------|--|--|--|--|
| Project Information                 |                    |                                 |                                        |                             |                                                      |  |  |  |  |
| Analyst                             | Alyssa Labrador    | Da                              | ate                                    |                             | 12/23/2024                                           |  |  |  |  |
| Agency                              | W-Trans            | ıΑ                              | nalysis Year                           |                             | 2024                                                 |  |  |  |  |
| Jurisdiction                        | San Joaquin County | Ti                              | me Analyzed                            |                             | 1 - E Harney Ln btwn<br>SR-99 & SR-88 - E+P PM<br>EB |  |  |  |  |
| Project Description                 | SJX015             | Uı                              | Units                                  |                             | U.S. Customary                                       |  |  |  |  |
|                                     | S                  | egme                            | nt 1                                   |                             |                                                      |  |  |  |  |
| Vehicle Inputs                      |                    |                                 |                                        |                             |                                                      |  |  |  |  |
| Segment Type                        | Passing Zone       | Passing Zone Length, ft         |                                        | 23760                       |                                                      |  |  |  |  |
| Lane Width, ft                      | 11                 | Sh                              | noulder Width, f                       | t                           | 0                                                    |  |  |  |  |
| Speed Limit, mi/h                   | 55                 | Ad                              | ccess Point Dens                       | sity, pts/mi                | 13.3                                                 |  |  |  |  |
| Demand and Capacity                 |                    |                                 |                                        |                             |                                                      |  |  |  |  |
| Directional Demand Flow Rate, veh/h | 219                | 9 Opposing Demand Flow Rate, ve |                                        | d Flow Rate, veh/h          | 163                                                  |  |  |  |  |
| Peak Hour Factor                    | 1.00               | Total Trucks, %                 |                                        | 6.39                        |                                                      |  |  |  |  |
| Segment Capacity, veh/h             | 1700               | De                              | emand/Capacity                         | (D/C)                       | 0.13                                                 |  |  |  |  |
| Intermediate Results                | ·                  |                                 |                                        |                             |                                                      |  |  |  |  |
| Segment Vertical Class              | 1                  | Fr                              | ee-Flow Speed,                         | mi/h                        | 54.4                                                 |  |  |  |  |
| Speed Slope Coefficient (m)         | 3.28010            | Sp                              | Speed Power Coefficient (p)            |                             | 0.55040                                              |  |  |  |  |
| PF Slope Coefficient (m)            | -1.23034           | PF                              | PF Power Coefficient (p)               |                             | 0.76911                                              |  |  |  |  |
| In Passing Lane Effective Length?   | No                 | Fo                              | ollower Density,                       | followers/mi/ln             | 1.3                                                  |  |  |  |  |
| %Improvement to Percent Followers   | 0.0                | %                               | Improvement to                         | Speed                       | 0.0                                                  |  |  |  |  |
| Subsegment Data                     |                    |                                 |                                        |                             |                                                      |  |  |  |  |
| # Segment Type                      | Length, ft         | Radius                          | , ft                                   | Superelevation, %           | Average Speed, mi/h                                  |  |  |  |  |
| 1 Tangent                           | 23760              | -                               |                                        | -                           | 53.3                                                 |  |  |  |  |
| Vehicle Results                     |                    |                                 |                                        |                             |                                                      |  |  |  |  |
| Average Speed, mi/h                 | 53.3               | Pe                              | ercent Followers,                      | , %                         | 31.8                                                 |  |  |  |  |
| Segment Travel Time, minutes        | 5.06               | Ad                              | Adj. Follower Density, followers/mi/ln |                             | 1.3                                                  |  |  |  |  |
| Vehicle LOS                         | А                  |                                 |                                        |                             |                                                      |  |  |  |  |
| Facility Results                    |                    |                                 |                                        |                             |                                                      |  |  |  |  |
| T VMT<br>veh-mi/AP                  | VHD<br>veh-h/p     |                                 |                                        | ensity, followers/<br>mi/ln | LOS                                                  |  |  |  |  |
| 1 246                               | 0.09               |                                 |                                        | 1.3                         | А                                                    |  |  |  |  |

HCS<sup>™</sup> Highways Version 2024 1 - Existing PM (EB).xuf

Generated: 01/02/2025 14:20:52

| Analyst Agency Jurisdiction Project De |                           | Alyssa Labrador W-Trans San Joaquin County |       | Date                        |                             |                                                      |
|----------------------------------------|---------------------------|--------------------------------------------|-------|-----------------------------|-----------------------------|------------------------------------------------------|
| Agency<br>Jurisdiction                 |                           | W-Trans                                    |       | Date                        |                             |                                                      |
| Jurisdiction                           |                           |                                            | ,     |                             |                             | 12/23/2024                                           |
|                                        |                           | San Joaquin County                         |       | Analysis Year               |                             | 2024                                                 |
| Project De                             | scription                 |                                            | -     | Time Analyzed               |                             | 1 - E Harney Ln btwn<br>SR-99 & SR-88 - E+P PM<br>WB |
|                                        | scription                 | SJX015                                     |       | Units                       |                             | U.S. Customary                                       |
|                                        |                           | Se                                         | egmo  | ent 1                       |                             |                                                      |
| Vehicle I                              | nputs                     |                                            |       |                             |                             |                                                      |
| Segment T                              | -                         | Passing Zone                               |       | Length, ft                  |                             | 23760                                                |
| Lane Widtl                             | h, ft                     | 11                                         |       | Shoulder Width, f           | t                           | 0                                                    |
| Speed Lim                              | it, mi/h                  | 55                                         | ,     | Access Point Dens           | sity, pts/mi                | 13.3                                                 |
| Demand                                 | and Capacity              |                                            |       |                             |                             |                                                      |
| Directiona                             | l Demand Flow Rate, veh/h | 163                                        |       | Opposing Deman              | d Flow Rate, veh/h          | 219                                                  |
| Peak Hour                              | eak Hour Factor 1.00      |                                            | -     | Total Trucks, %             |                             | 4.91                                                 |
| Segment C                              | Capacity, veh/h           | 1700                                       | 1     | Demand/Capacity             | (D/C)                       | 0.10                                                 |
| Intermed                               | diate Results             |                                            |       |                             |                             |                                                      |
| Segment V                              | /ertical Class            | 1                                          |       | Free-Flow Speed,            | mi/h                        | 54.4                                                 |
| Speed Slop                             | pe Coefficient (m)        | 3.30383                                    |       | Speed Power Coefficient (p) |                             | 0.53408                                              |
| PF Slope C                             | Coefficient (m)           | -1.24549                                   |       | PF Power Coefficie          | ent (p)                     | 0.76466                                              |
| In Passing                             | Lane Effective Length?    | No                                         |       | Follower Density,           | followers/mi/ln             | 0.8                                                  |
| %Improve                               | ment to Percent Followers | 0.0                                        | (     | %Improvement to             | Speed                       | 0.0                                                  |
| Subsegn                                | nent Data                 |                                            |       |                             |                             |                                                      |
| # Segr                                 | ment Type                 | Length, ft                                 | Radiu | ıs, ft                      | Superelevation, %           | Average Speed, mi/h                                  |
| 1 Tang                                 | jent                      | 23760                                      | -     |                             | -                           | 53.7                                                 |
| Vehicle F                              | Results                   |                                            |       |                             |                             |                                                      |
| Average Sp                             | peed, mi/h                | 53.7                                       |       | Percent Followers           | , %                         | 26.7                                                 |
| Segment T                              | ravel Time, minutes       | 5.03                                       | ,     | Adj. Follower Den           | sity, followers/mi/ln       | 0.8                                                  |
| Vehicle LO                             | S                         | А                                          |       |                             |                             |                                                      |
| Facility F                             | Results                   |                                            |       |                             |                             |                                                      |
| Т                                      | VMT<br>veh-mi/AP          | VHD<br>veh-h/p                             |       |                             | ensity, followers/<br>mi/ln | LOS                                                  |
| 1                                      | 183                       | 0.05                                       |       |                             | 0.8                         | А                                                    |

HCS<sup>™</sup> Highways Version 2024 1 - Existing PM (WB).xuf

Generated: 01/02/2025 14:32:45

|                    |                                                                 | HCS Two-La         | ne F            | High                                   | nway Re               | port                        |                                                            |
|--------------------|-----------------------------------------------------------------|--------------------|-----------------|----------------------------------------|-----------------------|-----------------------------|------------------------------------------------------------|
| Project Inform     | nation                                                          |                    |                 |                                        |                       |                             |                                                            |
| Analyst            |                                                                 | Alyssa Labrador    |                 | Date                                   |                       |                             | 12/23/2024                                                 |
| Agency             |                                                                 | W-Trans            |                 | Analy                                  | sis Year              |                             | 2024                                                       |
| Jurisdiction       |                                                                 | San Joaquin County |                 | Time Analyzed                          |                       |                             | 2 - E Harney Ln btwn Jack<br>Tone Rd & Site - E+P PM<br>EB |
| Project Descriptio | n                                                               | SJX015             |                 | Units                                  |                       |                             | U.S. Customary                                             |
|                    |                                                                 | S                  | egm             | ent                                    | 1                     |                             |                                                            |
| Vehicle Inputs     |                                                                 |                    |                 |                                        |                       |                             |                                                            |
| Segment Type       |                                                                 | Passing Zone       |                 | Length, ft                             |                       |                             | 14784                                                      |
| Lane Width, ft     |                                                                 | 11                 |                 | Shoul                                  | der Width, f          | t                           | 5                                                          |
| Speed Limit, mi/h  | 1                                                               | 55                 |                 | Access Point Density, pts/mi           |                       | ity, pts/mi                 | 6.8                                                        |
| Demand and C       | Capacity                                                        |                    |                 |                                        |                       |                             |                                                            |
| Directional Dema   | nal Demand Flow Rate, veh/h 57 Opposing Demand Flow Rate, veh/h |                    | 48              |                                        |                       |                             |                                                            |
| Peak Hour Factor   |                                                                 | 1.00               | Total Trucks, % |                                        | 8.77                  |                             |                                                            |
| Segment Capacity   | y, veh/h                                                        | 1700               |                 | Demand/Capacity (D/C)                  |                       | (D/C)                       | 0.03                                                       |
| Intermediate I     | Results                                                         |                    |                 |                                        |                       |                             | ·                                                          |
| Segment Vertical   | Class                                                           | 1                  |                 | Free-                                  | Free-Flow Speed, mi/h |                             | 59.4                                                       |
| Speed Slope Coef   | fficient (m)                                                    | 3.49305            |                 | Speed Power Coefficient (p)            |                       |                             | 0.60285                                                    |
| PF Slope Coefficie | ent (m)                                                         | -1.16516           |                 | PF Po                                  | wer Coefficie         | ent (p)                     | 0.79828                                                    |
| In Passing Lane Et | ffective Length?                                                | No                 |                 | Follo                                  | wer Density,          | followers/mi/ln             | 0.1                                                        |
| %Improvement to    | Percent Followers                                               | 0.0                |                 | %lmp                                   | rovement to           | Speed                       | 0.0                                                        |
| Subsegment D       | Data                                                            |                    |                 |                                        |                       |                             |                                                            |
| # Segment Ty       | /pe                                                             | Length, ft         | Radiu           | us, ft                                 |                       | Superelevation, %           | Average Speed, mi/h                                        |
| 1 Tangent          |                                                                 | 14784              | -               |                                        |                       | -                           | 59.4                                                       |
| Vehicle Results    | s                                                               |                    |                 |                                        |                       |                             |                                                            |
| Average Speed, m   | ni/h                                                            | 59.4               |                 | Perce                                  | nt Followers,         | %                           | 11.2                                                       |
| Segment Travel Ti  | ime, minutes                                                    | 2.83               |                 | Adj. Follower Density, followers/mi/ln |                       | sity, followers/mi/ln       | 0.1                                                        |
| Vehicle LOS        |                                                                 | A                  |                 |                                        |                       |                             |                                                            |
| Facility Results   | s                                                               |                    |                 |                                        |                       |                             |                                                            |
| Т                  | VMT<br>veh-mi/AP                                                | VHD<br>veh-h/p     |                 |                                        |                       | ensity, followers/<br>mi/ln | LOS                                                        |
| 1                  | 40                                                              | 0.00               |                 |                                        |                       | 0.1                         | А                                                          |

HCS<sup>™</sup> Highways Version 2024 2 - Existing PM (EB).xuf

Generated: 01/02/2025 14:34:11

|              |                           | HCS Two-La         | ne Hi                            | ighv                                   | vay Re       | port                  |                                                            |
|--------------|---------------------------|--------------------|----------------------------------|----------------------------------------|--------------|-----------------------|------------------------------------------------------------|
| Project Ir   | nformation                |                    |                                  |                                        |              |                       |                                                            |
| Analyst      |                           | Alyssa Labrador    | D                                | ate                                    |              |                       | 12/23/2024                                                 |
| Agency       |                           | W-Trans            | A                                | Analysis Year                          |              |                       | 2024                                                       |
| Jurisdiction |                           | San Joaquin County | Ti                               | Time Analyzed                          |              |                       | 2 - E Harney Ln btwn Jack<br>Tone Rd & Site - E+P PM<br>WB |
| Project Des  | cription                  | SJX015             | U                                | Jnits                                  |              |                       | U.S. Customary                                             |
|              |                           | Se                 | egme                             | nt 1                                   |              |                       |                                                            |
| Vehicle Ir   | nputs                     |                    |                                  |                                        |              |                       |                                                            |
| Segment Ty   | /ре                       | Passing Zone       | Le                               | Length, ft                             |              |                       | 14784                                                      |
| Lane Width   | ı, ft                     | 11                 | Sł                               | houlde                                 | er Width, ft | :                     | 5                                                          |
| Speed Limit  | t, mi/h                   | 55                 | A                                | ccess F                                | Point Dens   | ity, pts/mi           | 6.8                                                        |
| Demand       | and Capacity              |                    |                                  |                                        |              |                       | ·                                                          |
| Directional  | Demand Flow Rate, veh/h   | 77                 | Opposing Demand Flow Rate, veh/h |                                        | 55           |                       |                                                            |
| Peak Hour I  | Factor                    | 1.00               | To                               | Total Trucks, %                        |              |                       | 6.49                                                       |
| Segment Ca   | apacity, veh/h            | 1700               | D                                | emano                                  | d/Capacity   | (D/C)                 | 0.05                                                       |
| Intermed     | liate Results             |                    |                                  |                                        |              |                       |                                                            |
| Segment Ve   | ertical Class             | 1                  | Fr                               | ree-Flo                                | w Speed,     | mi/h                  | 59.5                                                       |
| Speed Slop   | e Coefficient (m)         | 3.50222            | Sp                               | Speed Power Coefficient (p)            |              | fficient (p)          | 0.59816                                                    |
| PF Slope Co  | pefficient (m)            | -1.16920           | PI                               | F Powe                                 | er Coefficie | ent (p)               | 0.79692                                                    |
| In Passing L | ane Effective Length?     | No                 | Fo                               | ollowe                                 | r Density, 1 | followers/mi/ln       | 0.2                                                        |
| %Improven    | nent to Percent Followers | 0.0                | %                                | 6lmpro                                 | vement to    | Speed                 | 0.0                                                        |
| Subsegm      | ent Data                  |                    |                                  |                                        |              |                       |                                                            |
| # Segm       | nent Type                 | Length, ft         | Radius                           | s, ft                                  |              | Superelevation, %     | Average Speed, mi/h                                        |
| 1 Tange      | ent                       | 14784              | -                                |                                        |              | -                     | 59.5                                                       |
| Vehicle R    | esults                    |                    |                                  |                                        |              |                       |                                                            |
| Average Sp   | eed, mi/h                 | 59.5               | Pe                               | ercent                                 | Followers,   | %                     | 14.1                                                       |
| Segment Tr   | avel Time, minutes        | 2.82               | A                                | Adj. Follower Density, followers/mi/ln |              | sity, followers/mi/ln | 0.2                                                        |
| Vehicle LOS  |                           | А                  |                                  |                                        |              |                       |                                                            |
| Facility R   | esults                    |                    |                                  |                                        |              |                       |                                                            |
| Т            | VMT<br>veh-mi/AP          | VHD<br>veh-h/p     |                                  | Follower Density, followers/<br>mi/ln  |              |                       | LOS                                                        |
| 1            | 54                        | 0.00               | Jiahwaye \                       |                                        |              | 0.2                   | A<br>Generated: 01/02/2025 14:25:55                        |

HCS<sup>™</sup> Highways Version 2024 2 - Existing PM (WB).xuf

Generated: 01/02/2025 14:35:58

|                                              | ŀ         | HCS Two-Lar      | ne Hig                | jhway Re                    | port                        |                                                          |
|----------------------------------------------|-----------|------------------|-----------------------|-----------------------------|-----------------------------|----------------------------------------------------------|
| <b>Project Information</b>                   |           |                  |                       |                             |                             |                                                          |
| Analyst                                      | Aly       | ssa Labrador     | Dat                   | e                           |                             | 12/23/2024                                               |
| Agency                                       | W-        | -Trans           | Ana                   | alysis Year                 |                             | 2024                                                     |
| Jurisdiction                                 | Sar       | n Joaquin County | Tim                   | Time Analyzed               |                             | 3 - SR-88 btwn E Harney<br>Ln & 8 Mile Rd - E+P PM<br>NB |
| Project Description                          | SJX       | X015             | Uni                   | ts                          |                             | U.S. Customary                                           |
|                                              |           | Se               | gmen                  | t 1                         |                             |                                                          |
| Vehicle Inputs                               |           |                  |                       |                             |                             |                                                          |
| Segment Type                                 | Pas       | ssing Zone       | Len                   | Length, ft                  |                             | 16368                                                    |
| Lane Width, ft                               | 12        |                  | Sho                   | oulder Width, ft            | t                           | 6                                                        |
| Speed Limit, mi/h                            | 55        |                  | Acc                   | ess Point Dens              | ity, pts/mi                 | 10.0                                                     |
| Demand and Capacity                          |           |                  |                       |                             |                             | ·                                                        |
| Directional Demand Flow Rate                 | veh/h 37! | 5                | Ор                    | posing Deman                | d Flow Rate, veh/h          | 412                                                      |
| Peak Hour Factor                             | 0.8       | 35               | Tot                   | Total Trucks, %             |                             | 3.45                                                     |
| Segment Capacity, veh/h                      | 170       | 00               | Der                   | Demand/Capacity (D/C)       |                             | 0.22                                                     |
| Intermediate Results                         |           |                  |                       |                             |                             |                                                          |
| Segment Vertical Class                       | 1         |                  | Fre                   | e-Flow Speed,               | mi/h                        | 60.1                                                     |
| Speed Slope Coefficient (m)                  | 3.6       | 66828            | Spe                   | Speed Power Coefficient (p) |                             | 0.49493                                                  |
| PF Slope Coefficient (m)                     | -1.       | 25564            | PF                    | Power Coefficie             | ent (p)                     | 0.76929                                                  |
| In Passing Lane Effective Lengt              | h? No     | )                | Fol                   | ower Density,               | followers/mi/ln             | 2.9                                                      |
| %Improvement to Percent Foll                 | owers 0.0 | )                | %Ir                   | nprovement to               | Speed                       | 0.0                                                      |
| Subsegment Data                              |           |                  |                       |                             |                             |                                                          |
| # Segment Type                               | Ler       | ngth, ft         | Radius, 1             | t                           | Superelevation, %           | Average Speed, mi/h                                      |
| 1 Tangent                                    | 163       | 368              | -                     |                             | -                           | 58.1                                                     |
| Vehicle Results                              |           |                  |                       |                             |                             |                                                          |
| Average Speed, mi/h                          | 58.       | .1               | Per                   | cent Followers,             | %                           | 44.6                                                     |
| Segment Travel Time, minutes 3.20 Adj. Follo |           | . Follower Dens  | sity, followers/mi/ln | 2.9                         |                             |                                                          |
| Vehicle LOS                                  | В         |                  |                       |                             |                             |                                                          |
| Facility Results                             |           |                  |                       |                             |                             |                                                          |
| T VMT<br>veh-mi/A                            | P         | VHD<br>veh-h/p   |                       |                             | ensity, followers/<br>mi/ln | LOS                                                      |
| 1 247                                        |           | 0.14             |                       |                             | 2.9                         | В                                                        |

HCS<sup>™</sup> Highways Version 2024 3 - Existing PM (NB).xuf

Generated: 01/02/2025 14:37:18

|            |                             | HCS Two-La         | ne Hi  | ighway Re                              | eport                       |                                                          |
|------------|-----------------------------|--------------------|--------|----------------------------------------|-----------------------------|----------------------------------------------------------|
| Project    | Information                 |                    |        |                                        |                             |                                                          |
| Analyst    |                             | Alyssa Labrador    | D      | ate                                    |                             | 12/23/2024                                               |
| Agency     |                             | W-Trans            | А      | nalysis Year                           |                             | 2024                                                     |
| Jurisdicti | on                          | San Joaquin County | Ti     | ime Analyzed                           |                             | 3 - SR-88 btwn E Harney<br>Ln & 8 Mile Rd - E+P PM<br>SB |
| Project D  | Description                 | SJX015             | U      | Units                                  |                             | U.S. Customary                                           |
|            |                             | Sc                 | egme   | nt 1                                   |                             |                                                          |
| Vehicle    | Inputs                      |                    |        |                                        |                             |                                                          |
| Segment    | туре                        | Passing Zone       | Le     | Length, ft                             |                             | 16368                                                    |
| Lane Wid   | dth, ft                     | 12                 | SI     | houlder Width, f                       | t                           | 6                                                        |
| Speed Liı  | mit, mi/h                   | 55                 | А      | ccess Point Den                        | sity, pts/mi                | 10.0                                                     |
| Deman      | d and Capacity              |                    |        |                                        |                             |                                                          |
| Direction  | nal Demand Flow Rate, veh/h | 452                | 0      | Opposing Demand Flow Rate, veh/h       |                             | 368                                                      |
| Peak Hoι   | ur Factor                   | 0.85               | To     | Total Trucks, %                        |                             | 2.60                                                     |
| Segment    | t Capacity, veh/h           | 1700               | D      | emand/Capacity                         | / (D/C)                     | 0.27                                                     |
| Interm     | ediate Results              |                    |        |                                        |                             |                                                          |
| Segment    | t Vertical Class            | 1                  | Fr     | ree-Flow Speed,                        | mi/h                        | 60.1                                                     |
| Speed Sl   | ope Coefficient (m)         | 3.65839            | Sį     | peed Power Coe                         | efficient (p)               | 0.50220                                                  |
| PF Slope   | Coefficient (m)             | -1.24959           | PI     | F Power Coeffici                       | ent (p)                     | 0.77151                                                  |
| In Passin  | g Lane Effective Length?    | No                 | Fo     | ollower Density,                       | followers/mi/ln             | 3.8                                                      |
| %lmprov    | vement to Percent Followers | 0.0                | %      | Improvement to                         | Speed                       | 0.0                                                      |
| Subseg     | ment Data                   |                    |        |                                        |                             |                                                          |
| # Seg      | gment Type                  | Length, ft         | Radius | , ft                                   | Superelevation, %           | Average Speed, mi/h                                      |
| 1 Tar      | ngent                       | 16368              | -      |                                        | -                           | 57.9                                                     |
| Vehicle    | Results                     |                    |        |                                        |                             |                                                          |
| Average    | Speed, mi/h                 | 57.9               | Pe     | ercent Followers                       | 5, %                        | 49.2                                                     |
| Segment    | t Travel Time, minutes      | 3.21               | А      | Adj. Follower Density, followers/mi/ln |                             | 3.8                                                      |
| Vehicle L  | OS                          | В                  |        |                                        |                             |                                                          |
| Facility   | Results                     |                    |        |                                        |                             |                                                          |
| Т          | VMT<br>veh-mi/AP            | VHD<br>veh-h/p     |        | Follower D                             | ensity, followers/<br>mi/ln | LOS                                                      |
| 1          | 298                         | 0.18               |        |                                        | 3.8                         | В                                                        |

HCS<sup>™</sup> Highways Version 2024 3 - Existing PM (SB).xuf

Generated: 01/02/2025 14:38:53

|            |                             | HCS Two-La                                                   | ne Hi             | ighway                                 | Report               |     |                                                 |
|------------|-----------------------------|--------------------------------------------------------------|-------------------|----------------------------------------|----------------------|-----|-------------------------------------------------|
| Project    | Information                 |                                                              |                   |                                        |                      |     |                                                 |
| Analyst    |                             | Alyssa Labrador                                              | D                 | ate                                    |                      |     | 12/23/2024                                      |
| Agency     |                             | W-Trans                                                      | А                 | nalysis Year                           |                      |     | 2024                                            |
| Jurisdicti | on                          | San Joaquin County                                           | Ti                | Time Analyzed                          |                      |     | 1 - E Harney Ln btwn<br>SR-99 & SR-88 - F AM EB |
| Project D  | Pescription                 | SJX015                                                       | U                 | Units                                  |                      |     | U.S. Customary                                  |
|            |                             | Sc                                                           | egme              | nt 1                                   |                      |     |                                                 |
| Vehicle    | Inputs                      |                                                              |                   |                                        |                      |     |                                                 |
| Segment    | Туре                        | Passing Zone                                                 | Le                | Length, ft                             |                      |     | 23760                                           |
| Lane Wic   | dth, ft                     | 11                                                           | S                 | houlder Wid                            | :h, ft               |     | 0                                               |
| Speed Li   | mit, mi/h                   | 55                                                           | А                 | ccess Point D                          | Pensity, pts/mi      |     | 13.3                                            |
| Deman      | d and Capacity              | ·                                                            |                   |                                        |                      |     |                                                 |
| Direction  | nal Demand Flow Rate, veh/h | Demand Flow Rate, veh/h 188 Opposing Demand Flow Rate, veh/h |                   | n                                      | 229                  |     |                                                 |
| Peak Hou   | ur Factor                   | 1.00                                                         | 0 Total Trucks, % |                                        | ,                    |     | 5.74                                            |
| Segment    | Capacity, veh/h             | 1700                                                         | D                 | Demand/Capacity (D/C)                  |                      |     | 0.11                                            |
| Interm     | ediate Results              |                                                              |                   |                                        |                      |     |                                                 |
| Segment    | : Vertical Class            | 1                                                            | Fi                | ree-Flow Spe                           | ed, mi/h             |     | 54.4                                            |
| Speed SI   | ope Coefficient (m)         | 3.30579                                                      | S                 | Speed Power Coefficient (p)            |                      |     | 0.53149                                         |
| PF Slope   | Coefficient (m)             | -1.24789                                                     | Р                 | F Power Coe                            | fficient (p)         |     | 0.76399                                         |
| In Passin  | g Lane Effective Length?    | No                                                           | F                 | ollower Dens                           | ity, followers/mi/ln |     | 1.0                                             |
| %Improv    | rement to Percent Followers | 0.0                                                          | %                 | 6lmprovemer                            | nt to Speed          |     | 0.0                                             |
| Subseg     | ment Data                   |                                                              |                   |                                        |                      |     |                                                 |
| # Se       | gment Type                  | Length, ft                                                   | Radius            | s, ft                                  | Superelevation,      | %   | Average Speed, mi/h                             |
| 1 Tar      | ngent                       | 23760                                                        | -                 |                                        | -                    |     | 53.5                                            |
| Vehicle    | Results                     |                                                              |                   |                                        |                      |     |                                                 |
| Average    | Speed, mi/h                 | 53.5                                                         | P                 | ercent Follov                          | vers, %              |     | 29.4                                            |
| Segment    | Travel Time, minutes        | 5.05                                                         | A                 | Adj. Follower Density, followers/mi/ln |                      | 'In | 1.0                                             |
| Vehicle L  | OS                          | А                                                            |                   |                                        |                      |     |                                                 |
| Facility   | Results                     |                                                              |                   |                                        |                      |     |                                                 |
| Т          | VMT<br>veh-mi/AP            | VHD<br>veh-h/p                                               |                   | Follower Density, followers/<br>mi/ln  |                      | ′   | LOS                                             |
| 1          | 212                         | 0.07                                                         |                   |                                        | 1.0                  |     | А                                               |

HCS<sup>™</sup> Highways Version 2024 1 - Future AM (EB).xuf

Generated: 01/13/2025 13:14:24

|            |                             | HCS Two-La                                                  | ne Hi                 | ighway R                               | eport             |                                                 |
|------------|-----------------------------|-------------------------------------------------------------|-----------------------|----------------------------------------|-------------------|-------------------------------------------------|
| Project    | Information                 |                                                             |                       |                                        |                   |                                                 |
| Analyst    |                             | Alyssa Labrador                                             | D                     | ate                                    |                   | 12/23/2024                                      |
| Agency     |                             | W-Trans                                                     | А                     | nalysis Year                           |                   | 2024                                            |
| Jurisdicti | on                          | San Joaquin County                                          | Ti                    | ime Analyzed                           |                   | 1 - E Harney Ln btwn<br>SR-99 & SR-88 - F AM WB |
| Project D  | Pescription Pescription     | SJX015                                                      | U                     | Units                                  |                   | U.S. Customary                                  |
|            |                             | Sc                                                          | egme                  | nt 1                                   |                   |                                                 |
| Vehicle    | Inputs                      |                                                             |                       |                                        |                   |                                                 |
| Segment    | Туре                        | Passing Zone                                                | Le                    | Length, ft                             |                   | 23760                                           |
| Lane Wic   | dth, ft                     | 11                                                          | SI                    | houlder Width,                         | ft                | 0                                               |
| Speed Lii  | mit, mi/h                   | 55                                                          | А                     | ccess Point Der                        | nsity, pts/mi     | 13.3                                            |
| Deman      | d and Capacity              |                                                             |                       |                                        |                   |                                                 |
| Direction  | nal Demand Flow Rate, veh/h | emand Flow Rate, veh/h 301 Opposing Demand Flow Rate, veh/h |                       | 151                                    |                   |                                                 |
| Peak Hou   | ur Factor                   | 1.00                                                        | ) Total Trucks, %     |                                        |                   | 10.14                                           |
| Segment    | : Capacity, veh/h           | 1700                                                        | Demand/Capacity (D/C) |                                        | 0.18              |                                                 |
| Interm     | ediate Results              |                                                             |                       |                                        |                   |                                                 |
| Segment    | Vertical Class              | 1                                                           | Fi                    | ree-Flow Speed                         | l, mi/h           | 54.2                                            |
| Speed Sl   | ope Coefficient (m)         | 3.26837                                                     | SI                    | peed Power Co                          | efficient (p)     | 0.55439                                         |
| PF Slope   | Coefficient (m)             | -1.22660                                                    | P                     | F Power Coeffic                        | cient (p)         | 0.77035                                         |
| In Passin  | g Lane Effective Length?    | No                                                          | Fo                    | ollower Density                        | , followers/mi/ln | 2.2                                             |
| %Improv    | rement to Percent Followers | 0.0                                                         | %                     | Improvement t                          | to Speed          | 0.0                                             |
| Subseg     | ment Data                   |                                                             |                       |                                        |                   |                                                 |
| # Seg      | gment Type                  | Length, ft                                                  | Radius                | s, ft                                  | Superelevation, % | Average Speed, mi/h                             |
| 1 Tar      | ngent                       | 23760                                                       | -                     |                                        | -                 | 52.9                                            |
| Vehicle    | Results                     |                                                             |                       |                                        |                   |                                                 |
| Average    | Speed, mi/h                 | 52.9                                                        | Pe                    | ercent Follower                        | rs, %             | 38.5                                            |
| Segment    | Travel Time, minutes        | 5.10                                                        | А                     | Adj. Follower Density, followers/mi/ln |                   | 2.2                                             |
| Vehicle L  | OS                          | В                                                           |                       |                                        |                   |                                                 |
| Facility   | Results                     |                                                             |                       |                                        |                   |                                                 |
| Т          | VMT<br>veh-mi/AP            | VHD<br>veh-h/p                                              |                       | Follower Density, followers/<br>mi/ln  |                   | LOS                                             |
| 1          | 339                         | 0.16                                                        |                       |                                        | 2.2               | В                                               |

HCS<sup>™</sup> Highways Version 2024 1 - Future AM (WB).xuf

Generated: 01/13/2025 13:16:04

|            |                                                                    | HCS Two-La         | ne Hi               | ighwa                                  | y Re    | port                                         |                     |   |
|------------|--------------------------------------------------------------------|--------------------|---------------------|----------------------------------------|---------|----------------------------------------------|---------------------|---|
| Project    | t Information                                                      |                    |                     |                                        |         |                                              |                     |   |
| Analyst    |                                                                    | Alyssa Labrador    | D                   | ate                                    |         |                                              | 12/23/2024          |   |
| Agency     |                                                                    | W-Trans            | А                   | nalysis Yea                            | ar      |                                              | 2024                |   |
| Jurisdicti | ion                                                                | San Joaquin County | Ti                  | Time Analyzed                          |         | 2 - E Harney Ln btwr<br>Tone Rd & Site - F A |                     |   |
| Project D  | Description                                                        | SJX015             | U                   | Units                                  |         | U.S. Customary                               |                     |   |
|            |                                                                    | Sc                 | egme                | nt 1                                   |         |                                              |                     |   |
| Vehicle    | e Inputs                                                           |                    |                     |                                        |         |                                              |                     |   |
| Segment    | t Type                                                             | Passing Zone       | Le                  | Length, ft                             |         | 14784                                        |                     |   |
| Lane Wid   | dth, ft                                                            | 11                 | S                   | houlder W                              | idth, f | t                                            | 5                   |   |
| Speed Li   | imit, mi/h                                                         | 55                 | А                   | ccess Poir                             | t Dens  | ity, pts/mi                                  | 6.8                 |   |
| Deman      | nd and Capacity                                                    |                    |                     |                                        |         |                                              |                     |   |
| Direction  | tional Demand Flow Rate, veh/h 72 Opposing Demand Flow Rate, veh/h |                    | 81                  |                                        |         |                                              |                     |   |
| Peak Ho    | ur Factor                                                          | 1.00               | .00 Total Trucks, % |                                        |         | 26.09                                        |                     |   |
| Segment    | t Capacity, veh/h                                                  | 1700               | D                   | emand/Ca                               | apacity | (D/C)                                        | 0.04                |   |
| Interm     | ediate Results                                                     |                    |                     |                                        |         |                                              |                     |   |
| Segment    | t Vertical Class                                                   | 1                  | Fi                  | ree-Flow S                             | peed,   | mi/h                                         | 58.8                |   |
| Speed SI   | lope Coefficient (m)                                               | 3.48327            | S                   | Speed Power Coefficient (p)            |         |                                              | 0.58330             |   |
| PF Slope   | e Coefficient (m)                                                  | -1.18274           | Р                   | PF Power Coefficient (p)               |         |                                              | 0.79406             |   |
| In Passin  | ng Lane Effective Length?                                          | No                 | F                   | ollower De                             | ensity, | followers/mi/ln                              | 0.2                 |   |
| %Improv    | vement to Percent Followers                                        | 0.0                | %                   | 6lmproven                              | nent to | Speed                                        | 0.0                 |   |
| Subseg     | gment Data                                                         |                    |                     |                                        |         |                                              |                     |   |
| # Se       | gment Type                                                         | Length, ft         | Radius              | s, ft                                  |         | Superelevation, %                            | Average Speed, mi/h | ก |
| 1 Tai      | ngent                                                              | 14784              | -                   |                                        |         | -                                            | 58.8                |   |
| Vehicle    | Results                                                            |                    |                     |                                        |         |                                              |                     |   |
| Average    | Speed, mi/h                                                        | 58.8               | P                   | ercent Fol                             | owers,  | %                                            | 13.6                |   |
| Segment    | t Travel Time, minutes                                             | 2.86               | A                   | Adj. Follower Density, followers/mi/ln |         | 0.2                                          |                     |   |
| Vehicle L  | LOS                                                                | А                  |                     |                                        |         |                                              |                     |   |
| Facility   | Results                                                            |                    |                     |                                        |         |                                              |                     |   |
| T          | VMT<br>veh-mi/AP                                                   | VHD<br>veh-h/p     |                     | Follower Density, followers/<br>mi/ln  |         | LOS                                          |                     |   |
| 1          | 50                                                                 | 0.00               |                     |                                        |         | 0.2                                          | A                   |   |

HCS<sup>™</sup> Highways Version 2024 2 - Future AM (EB).xuf

Generated: 01/13/2025 13:26:25

|           |                              | HCS Two-         | Lane | Highway Re                            | eport                 |                                                       |
|-----------|------------------------------|------------------|------|---------------------------------------|-----------------------|-------------------------------------------------------|
| Projec    | t Information                |                  |      |                                       |                       |                                                       |
| Analyst   |                              | Alyssa Labrador  |      | Date                                  |                       | 12/23/2024                                            |
| Agency    |                              | W-Trans          |      | Analysis Year                         |                       | 2024                                                  |
| Jurisdict | tion                         | San Joaquin Coun | ty   | Time Analyzed                         |                       | 2 - E Harney Ln btwn Jack<br>Tone Rd & Site - F AM WB |
| Project I | Description                  | SJX015           |      | Units                                 |                       | U.S. Customary                                        |
|           |                              |                  | Segn | nent 1                                |                       |                                                       |
| Vehicle   | e Inputs                     |                  |      |                                       |                       |                                                       |
| Segmen    | nt Type                      | Passing Zone     |      | Length, ft                            |                       | 14784                                                 |
| Lane Wi   | idth, ft                     | 11               |      | Shoulder Width, f                     | t                     | 5                                                     |
| Speed L   | imit, mi/h                   | 55               |      | Access Point Dens                     | sity, pts/mi          | 6.8                                                   |
| Demar     | nd and Capacity              |                  |      |                                       |                       |                                                       |
| Directio  | nal Demand Flow Rate, veh/h  | 81               | 81   |                                       | d Flow Rate, veh/h    | 72                                                    |
| Peak Ho   | our Factor                   | 1.00             |      | Total Trucks, %                       |                       | 16.44                                                 |
| Segmen    | nt Capacity, veh/h           | 1700             |      | Demand/Capacity                       | / (D/C)               | 0.05                                                  |
| Interm    | nediate Results              |                  |      |                                       |                       |                                                       |
| Segmen    | nt Vertical Class            | 1                |      | Free-Flow Speed,                      | mi/h                  | 59.2                                                  |
| Speed S   | Slope Coefficient (m)        | 3.49535          |      | Speed Power Coefficient (p)           |                       | 0.58806                                               |
| PF Slope  | e Coefficient (m)            | -1.17831         |      | PF Power Coefficient (p)              |                       | 0.79480                                               |
| In Passir | ng Lane Effective Length?    | No               |      | Follower Density,                     | followers/mi/ln       | 0.2                                                   |
| %Impro    | evement to Percent Followers | 0.0              |      | %Improvement to                       | o Speed               | 0.0                                                   |
| Subse     | gment Data                   |                  |      |                                       |                       |                                                       |
| # Se      | egment Type                  | Length, ft       | Rad  | lius, ft                              | Superelevation, %     | Average Speed, mi/h                                   |
| 1 Ta      | angent                       | 14784            | -    |                                       | -                     | 59.2                                                  |
| Vehicle   | e Results                    |                  |      |                                       |                       |                                                       |
| Average   | e Speed, mi/h                | 59.2             |      | Percent Followers                     | , %                   | 14.8                                                  |
| Segmen    | nt Travel Time, minutes      | 2.84             |      | Adj. Follower Den                     | sity, followers/mi/ln | 0.2                                                   |
| Vehicle   | LOS                          | A                |      |                                       |                       |                                                       |
| Facility  | y Results                    |                  |      |                                       |                       |                                                       |
| Т         | VMT<br>veh-mi/AP             | VHD<br>veh-h/p   |      | Follower Density, followers/<br>mi/ln |                       | LOS                                                   |
| 1         | 57                           | 0.00             | )    |                                       | 0.2                   | А                                                     |

HCS<sup>™</sup> Highways Version 2024 2 - Future AM (WB).xuf

|            |                             | HCS Two-La                                           | ne Hi           | ighway Re                              | port              |                                                     |
|------------|-----------------------------|------------------------------------------------------|-----------------|----------------------------------------|-------------------|-----------------------------------------------------|
| Project    | t Information               |                                                      |                 |                                        |                   |                                                     |
| Analyst    |                             | Alyssa Labrador                                      | D               | ate                                    |                   | 12/23/2024                                          |
| Agency     |                             | W-Trans                                              | А               | nalysis Year                           |                   | 2024                                                |
| Jurisdicti | ion                         | San Joaquin County                                   | Ti              | ime Analyzed                           |                   | 3 - SR-88 btwn E Harney<br>Ln & 8 Mile Rd - F AM NB |
| Project D  | Description                 | SJX015                                               | U               | Units                                  |                   | U.S. Customary                                      |
|            |                             | Sc                                                   | egme            | nt 1                                   |                   |                                                     |
| Vehicle    | e Inputs                    |                                                      |                 |                                        |                   |                                                     |
| Segment    | t Type                      | Passing Zone                                         | Le              | Length, ft                             |                   | 16368                                               |
| Lane Wid   | dth, ft                     | 12                                                   | SI              | houlder Width, f                       | t                 | 6                                                   |
| Speed Li   | imit, mi/h                  | 55                                                   | А               | ccess Point Den                        | sity, pts/mi      | 10.0                                                |
| Deman      | nd and Capacity             |                                                      |                 |                                        |                   |                                                     |
| Direction  | nal Demand Flow Rate, veh/h | low Rate, veh/h 551 Opposing Demand Flow Rate, veh/h |                 | 312                                    |                   |                                                     |
| Peak Ho    | ur Factor                   | 1.00                                                 | Total Trucks, % |                                        | 8.24              |                                                     |
| Segment    | t Capacity, veh/h           | 1700                                                 | D               | emand/Capacity                         | / (D/C)           | 0.32                                                |
| Interm     | ediate Results              |                                                      |                 |                                        |                   |                                                     |
| Segment    | t Vertical Class            | 1                                                    | Fi              | ree-Flow Speed,                        | mi/h              | 59.9                                                |
| Speed SI   | lope Coefficient (m)        | 3.63239                                              | SI              | peed Power Coe                         | fficient (p)      | 0.51275                                             |
| PF Slope   | e Coefficient (m)           | -1.24108                                             | P               | F Power Coeffici                       | ent (p)           | 0.77501                                             |
| In Passin  | ng Lane Effective Length?   | No                                                   | Fo              | ollower Density,                       | followers/mi/ln   | 5.2                                                 |
| %Improv    | vement to Percent Followers | 0.0                                                  | %               | Improvement to                         | Speed             | 0.0                                                 |
| Subseg     | gment Data                  |                                                      |                 |                                        |                   |                                                     |
| # Se       | gment Type                  | Length, ft                                           | Radius          | s, ft                                  | Superelevation, % | Average Speed, mi/h                                 |
| 1 Tai      | ngent                       | 16368                                                | -               |                                        | -                 | 57.5                                                |
| Vehicle    | Results                     |                                                      |                 |                                        |                   |                                                     |
| Average    | Speed, mi/h                 | 57.5                                                 | Pe              | ercent Followers                       | , %               | 54.2                                                |
| Segment    | t Travel Time, minutes      | 3.23                                                 | A               | Adj. Follower Density, followers/mi/ln |                   | 5.2                                                 |
| Vehicle L  | LOS                         | С                                                    |                 |                                        |                   |                                                     |
| Facility   | Results                     |                                                      |                 |                                        |                   |                                                     |
| Т          | VMT<br>veh-mi/AP            | VHD<br>veh-h/p                                       |                 | Follower Density, followers/<br>mi/ln  |                   | LOS                                                 |
| 1          | 427                         | 0.30                                                 |                 |                                        | 5.2               | С                                                   |

HCS<sup>™</sup> Highways Version 2024 3 - Future AM (NB).xuf

Generated: 01/13/2025 14:31:24

|            |                             | HCS Two-La         | ne Hi  | ighway Re                              | port                        |                                                     |
|------------|-----------------------------|--------------------|--------|----------------------------------------|-----------------------------|-----------------------------------------------------|
| Project    | Information                 |                    |        |                                        |                             |                                                     |
| Analyst    |                             | Alyssa Labrador    | D      | ate                                    |                             | 12/23/2024                                          |
| Agency     |                             | W-Trans            | А      | nalysis Year                           |                             | 2024                                                |
| Jurisdicti | on                          | San Joaquin County | Ti     | ime Analyzed                           |                             | 3 - SR-88 btwn E Harney<br>Ln & 8 Mile Rd - F AM SB |
| Project D  | Description                 | SJX015             | U      | nits                                   |                             | U.S. Customary                                      |
|            |                             | Sc                 | egme   | nt 1                                   |                             |                                                     |
| Vehicle    | Inputs                      |                    |        |                                        |                             |                                                     |
| Segment    | t Type                      | Passing Zone       | Le     | ength, ft                              |                             | 16368                                               |
| Lane Wid   | dth, ft                     | 12                 | SI     | houlder Width, f                       | t                           | 6                                                   |
| Speed Li   | mit, mi/h                   | 55                 | А      | ccess Point Dens                       | sity, pts/mi                | 10.0                                                |
| Deman      | d and Capacity              |                    |        |                                        |                             | ·                                                   |
| Direction  | nal Demand Flow Rate, veh/h | 350                | 0      | pposing Deman                          | d Flow Rate, veh/h          | 456                                                 |
| Peak Ho    | ur Factor                   | 1.00               | To     | otal Trucks, %                         |                             | 9.91                                                |
| Segment    | t Capacity, veh/h           | 1700               | D      | emand/Capacity                         | / (D/C)                     | 0.21                                                |
| Interm     | ediate Results              |                    |        |                                        |                             |                                                     |
| Segment    | t Vertical Class            | 1                  | Fr     | ree-Flow Speed,                        | mi/h                        | 59.9                                                |
| Speed SI   | lope Coefficient (m)        | 3.66763            | Sį     | peed Power Coe                         | fficient (p)                | 0.48820                                             |
| PF Slope   | Coefficient (m)             | -1.26158           | PI     | F Power Coefficie                      | ent (p)                     | 0.76750                                             |
| In Passin  | g Lane Effective Length?    | No                 | Fo     | ollower Density,                       | followers/mi/ln             | 2.6                                                 |
| %Improv    | vement to Percent Followers | 0.0                | %      | Improvement to                         | Speed                       | 0.0                                                 |
| Subseg     | ment Data                   |                    |        |                                        |                             |                                                     |
| # Se       | gment Type                  | Length, ft         | Radius | , ft                                   | Superelevation, %           | Average Speed, mi/h                                 |
| 1 Tar      | ngent                       | 16368              | -      |                                        | -                           | 58.0                                                |
| Vehicle    | Results                     |                    |        |                                        |                             |                                                     |
| Average    | Speed, mi/h                 | 58.0               | Pe     | ercent Followers                       | , %                         | 43.1                                                |
| Segment    | t Travel Time, minutes      | 3.21               | A      | Adj. Follower Density, followers/mi/ln |                             | 2.6                                                 |
| Vehicle L  | OS                          | В                  |        |                                        |                             |                                                     |
| Facility   | Results                     |                    |        |                                        |                             |                                                     |
| Т          | VMT<br>veh-mi/AP            | VHD<br>veh-h/p     |        |                                        | ensity, followers/<br>mi/ln | LOS                                                 |
| 1          | 271                         | 0.15               |        |                                        | 2.6                         | В                                                   |

HCS<sup>™</sup> Highways Version 2024 3 - Future AM (SB).xuf

Generated: 01/13/2025 14:33:20

|            |                             | HCS Two-La         | ne H   | ighway R                               | eport               |                                                 |
|------------|-----------------------------|--------------------|--------|----------------------------------------|---------------------|-------------------------------------------------|
| Project    | t Information               |                    |        |                                        |                     |                                                 |
| Analyst    |                             | Alyssa Labrador    | D      | Pate                                   |                     | 12/23/2024                                      |
| Agency     |                             | W-Trans            | А      | nalysis Year                           |                     | 2024                                            |
| Jurisdicti | ion                         | San Joaquin County | Т      | ime Analyzed                           |                     | 1 - E Harney Ln btwn<br>SR-99 & SR-88 - F PM EB |
| Project D  | Description                 | SJX015             | U      | Inits                                  |                     | U.S. Customary                                  |
|            |                             | S                  | egme   | ent 1                                  |                     |                                                 |
| Vehicle    | e Inputs                    |                    |        |                                        |                     |                                                 |
| Segmen     | t Type                      | Passing Zone       | L      | ength, ft                              |                     | 23760                                           |
| Lane Wi    | dth, ft                     | 11                 | S      | houlder Width,                         | ft                  | 0                                               |
| Speed Li   | imit, mi/h                  | 55                 | А      | ccess Point Der                        | nsity, pts/mi       | 13.3                                            |
| Deman      | nd and Capacity             | ·                  |        |                                        |                     | ·                                               |
| Direction  | nal Demand Flow Rate, veh/h | 250                | С      | Opposing Dema                          | nd Flow Rate, veh/h | 161                                             |
| Peak Ho    | ur Factor                   | 1.00               | To     | otal Trucks, %                         |                     | 6.39                                            |
| Segmen     | t Capacity, veh/h           | 1700               | D      | emand/Capacit                          | ty (D/C)            | 0.15                                            |
| Interm     | ediate Results              |                    |        |                                        |                     |                                                 |
| Segmen     | t Vertical Class            | 1                  | F      | ree-Flow Speed                         | l, mi/h             | 54.4                                            |
| Speed SI   | lope Coefficient (m)        | 3.27928            | S      | peed Power Co                          | efficient (p)       | 0.55105                                         |
| PF Slope   | Coefficient (m)             | -1.22974           | Р      | F Power Coeffic                        | ient (p)            | 0.76929                                         |
| In Passin  | ng Lane Effective Length?   | No                 | F      | ollower Density                        | , followers/mi/ln   | 1.6                                             |
| %Improv    | vement to Percent Followers | 0.0                | %      | 6Improvement t                         | to Speed            | 0.0                                             |
| Subseg     | gment Data                  |                    |        |                                        |                     |                                                 |
| # Se       | gment Type                  | Length, ft         | Radius | s, ft                                  | Superelevation, %   | Average Speed, mi/h                             |
| 1 Ta       | ngent                       | 23760              | -      |                                        | -                   | 53.2                                            |
| Vehicle    | Results                     |                    |        |                                        |                     |                                                 |
| Average    | Speed, mi/h                 | 53.2               | P      | ercent Follower                        | rs, %               | 34.5                                            |
| Segmen     | t Travel Time, minutes      | 5.07               | A      | Adj. Follower Density, followers/mi/ln |                     | 1.6                                             |
| Vehicle L  | LOS                         | А                  |        |                                        |                     |                                                 |
| Facility   | Results                     |                    |        |                                        |                     |                                                 |
| Т          | VMT<br>veh-mi/AP            | VHD<br>veh-h/p     |        | Follower Density, followers/<br>mi/In  |                     | LOS                                             |
| 1          | 281                         | 0.11               |        |                                        | 1.6                 | А                                               |

HCS<sup>™</sup> Highways Version 2024 1 - Future PM (EB).xuf

Generated: 01/13/2025 14:36:15

|            |                             | HCS Two-La         | ne Hi  | ighw                                   | ay Re                          | port                        |                                          |     |
|------------|-----------------------------|--------------------|--------|----------------------------------------|--------------------------------|-----------------------------|------------------------------------------|-----|
| Project    | t Information               |                    |        |                                        |                                |                             |                                          |     |
| Analyst    |                             | Alyssa Labrador    | D      | Pate                                   |                                |                             | 12/23/2024                               |     |
| Agency     |                             | W-Trans            | А      | nalysis                                | Year                           |                             | 2024                                     |     |
| Jurisdicti | ion                         | San Joaquin County | Ti     | ime An                                 | alyzed                         |                             | 1 - E Harney Ln btv<br>SR-99 & SR-88 - F |     |
| Project [  | Description                 | SJX015             | U      | Jnits                                  |                                |                             | U.S. Customary                           |     |
|            |                             | S                  | egme   | ent 1                                  |                                |                             |                                          |     |
| Vehicle    | e Inputs                    |                    |        |                                        |                                |                             |                                          |     |
| Segmen     | t Type                      | Passing Zone       | Le     | ength, t                               | ft                             |                             | 23760                                    |     |
| Lane Wi    | dth, ft                     | 11                 | S      | houlde                                 | r Width, ft                    | :                           | 0                                        |     |
| Speed Li   | imit, mi/h                  | 55                 | А      | ccess P                                | oint Dens                      | ity, pts/mi                 | 13.3                                     |     |
| Deman      | nd and Capacity             |                    |        |                                        |                                |                             |                                          |     |
| Direction  | nal Demand Flow Rate, veh/h | 161                | 0      | Opposin                                | oosing Demand Flow Rate, veh/h |                             | 250                                      |     |
| Peak Ho    | ur Factor                   | 1.00               | To     | Total Trucks, %                        |                                |                             | 4.97                                     |     |
| Segmen     | t Capacity, veh/h           | 1700               | D      | emand                                  | /Capacity                      | (D/C)                       | 0.09                                     |     |
| Interm     | ediate Results              |                    |        |                                        |                                |                             |                                          |     |
| Segmen     | t Vertical Class            | 1                  | Fi     | ree-Flo                                | w Speed, i                     | mi/h                        | 54.4                                     |     |
| Speed SI   | lope Coefficient (m)        | 3.31422            | S      | Speed Power Coefficient (p)            |                                |                             | 0.52632                                  |     |
| PF Slope   | e Coefficient (m)           | -1.25271           | Р      | F Powe                                 | r Coefficie                    | ent (p)                     | 0.76252                                  |     |
| In Passin  | ng Lane Effective Length?   | No                 | F      | ollower                                | Density, 1                     | followers/mi/ln             | 0.8                                      |     |
| %Improv    | vement to Percent Followers | 0.0                | %      | ا%lmpro                                | ement to                       | Speed                       | 0.0                                      |     |
| Subseg     | gment Data                  |                    |        |                                        |                                |                             |                                          |     |
| # Se       | gment Type                  | Length, ft         | Radius | s, ft                                  |                                | Superelevation, %           | Average Speed, mi                        | i/h |
| 1 Ta       | ngent                       | 23760              | -      |                                        |                                | -                           | 53.6                                     |     |
| Vehicle    | Results                     |                    |        |                                        |                                |                             |                                          |     |
| Average    | Speed, mi/h                 | 53.6               | P      | ercent                                 | Followers,                     | %                           | 26.7                                     |     |
| Segmen     | t Travel Time, minutes      | 5.03               | А      | Adj. Follower Density, followers/mi/ln |                                | 0.8                         |                                          |     |
| Vehicle L  | LOS                         | А                  |        |                                        |                                |                             |                                          |     |
| Facility   | Results                     |                    |        |                                        |                                |                             |                                          |     |
| T          | VMT<br>veh-mi/AP            | VHD<br>veh-h/p     |        | Fo                                     |                                | ensity, followers/<br>mi/ln | LOS                                      |     |
| 1          | 181                         | 0.05               |        |                                        |                                | 0.8                         | А                                        |     |

HCS<sup>™</sup> Highways Version 2024 1 - Future PM (WB).xuf

Generated: 01/13/2025 14:37:23

|          |                              | HCS Two-L          | ane l | Highway Re                            | eport                 |                                                      |
|----------|------------------------------|--------------------|-------|---------------------------------------|-----------------------|------------------------------------------------------|
| Projec   | ct Information               |                    |       |                                       |                       |                                                      |
| Analyst  | :                            | Alyssa Labrador    |       | Date                                  |                       | 12/23/2024                                           |
| Agency   | 1                            | W-Trans            |       | Analysis Year                         |                       | 2024                                                 |
| Jurisdic | tion                         | San Joaquin County | ′     | Time Analyzed                         |                       | 2 - E Harney Ln btwn Jac<br>Tone Rd & Site - F PM EE |
| Project  | Description                  | SJX015             |       | Units                                 |                       | U.S. Customary                                       |
|          |                              |                    | Segm  | ent 1                                 |                       |                                                      |
| Vehicl   | le Inputs                    |                    |       |                                       |                       |                                                      |
| Segmer   | nt Type                      | Passing Zone       |       | Length, ft                            |                       | 14784                                                |
| Lane W   | /idth, ft                    | 11                 |       | Shoulder Width, f                     | t                     | 5                                                    |
| Speed L  | Limit, mi/h                  | 55                 |       | Access Point Dens                     | sity, pts/mi          | 6.8                                                  |
| Dema     | nd and Capacity              |                    |       |                                       |                       | ·                                                    |
| Directio | onal Demand Flow Rate, veh/h | 65                 |       | Opposing Deman                        | d Flow Rate, veh/h    | 42                                                   |
| Peak Ho  | our Factor                   | 1.00               |       | Total Trucks, %                       |                       | 8.77                                                 |
| Segmer   | nt Capacity, veh/h           | 1700               |       | Demand/Capacity                       | / (D/C)               | 0.04                                                 |
| Intern   | nediate Results              |                    |       |                                       |                       |                                                      |
| Segmer   | nt Vertical Class            | 1                  |       | Free-Flow Speed,                      | mi/h                  | 59.4                                                 |
| Speed S  | Slope Coefficient (m)        | 3.48841            |       | Speed Power Coefficient (p)           |                       | 0.60721                                              |
| PF Slop  | e Coefficient (m)            | -1.16135           |       | PF Power Coefficient (p)              |                       | 0.79943                                              |
| In Passi | ing Lane Effective Length?   | No                 |       | Follower Density,                     | followers/mi/ln       | 0.1                                                  |
| %Impro   | ovement to Percent Followers | 0.0                |       | %Improvement to                       | o Speed               | 0.0                                                  |
| Subse    | gment Data                   |                    |       |                                       |                       |                                                      |
| # Se     | egment Type                  | Length, ft         | Rad   | ius, ft                               | Superelevation, %     | Average Speed, mi/h                                  |
| 1 Ta     | angent                       | 14784              | -     |                                       | -                     | 59.4                                                 |
| Vehicl   | le Results                   |                    |       |                                       |                       |                                                      |
| Average  | e Speed, mi/h                | 59.4               |       | Percent Followers                     | , %                   | 12.2                                                 |
| Segmer   | nt Travel Time, minutes      | 2.83               |       | Adj. Follower Den                     | sity, followers/mi/ln | 0.1                                                  |
| Vehicle  | LOS                          | A                  |       |                                       |                       |                                                      |
| Facilit  | y Results                    |                    |       |                                       |                       |                                                      |
| Т        | VMT<br>veh-mi/AP             | VHD<br>veh-h/p     |       | Follower Density, followers/<br>mi/ln |                       | LOS                                                  |
| 1        | 46                           | 0.00               |       |                                       | 0.1                   | А                                                    |

HCS<sup>™</sup> Highways Version 2024 2 - Future PM (EB).xuf

|            |                             | HCS Two-La         | ne Hi  | ighway R                               | eport               |                                                       |
|------------|-----------------------------|--------------------|--------|----------------------------------------|---------------------|-------------------------------------------------------|
| Project    | Information                 |                    |        |                                        |                     |                                                       |
| Analyst    |                             | Alyssa Labrador    | D      | ate                                    |                     | 12/23/2024                                            |
| Agency     |                             | W-Trans            | А      | nalysis Year                           |                     | 2024                                                  |
| Jurisdicti | on                          | San Joaquin County | Ti     | ime Analyzed                           |                     | 2 - E Harney Ln btwn Jack<br>Tone Rd & Site - F PM WB |
| Project D  | Description                 | SJX015             | U      | Inits                                  |                     | U.S. Customary                                        |
|            |                             | Sc                 | egme   | nt 1                                   |                     |                                                       |
| Vehicle    | Inputs                      |                    |        |                                        |                     |                                                       |
| Segment    | t Type                      | Passing Zone       | Le     | ength, ft                              |                     | 14784                                                 |
| Lane Wid   | dth, ft                     | 11                 | S      | houlder Width,                         | ft                  | 5                                                     |
| Speed Li   | mit, mi/h                   | 55                 | А      | ccess Point Der                        | nsity, pts/mi       | 6.8                                                   |
| Deman      | d and Capacity              |                    |        |                                        |                     | ·                                                     |
| Direction  | nal Demand Flow Rate, veh/h | 72                 | 0      | pposing Dema                           | nd Flow Rate, veh/h | 63                                                    |
| Peak Ho    | ur Factor                   | 1.00               | To     | Total Trucks, %                        |                     | 7.25                                                  |
| Segment    | t Capacity, veh/h           | 1700               | D      | emand/Capacit                          | ty (D/C)            | 0.04                                                  |
| Interm     | ediate Results              |                    |        |                                        |                     |                                                       |
| Segment    | t Vertical Class            | 1                  | Fi     | ree-Flow Speed                         | l, mi/h             | 59.5                                                  |
| Speed SI   | lope Coefficient (m)        | 3.50625            | S      | peed Power Co                          | efficient (p)       | 0.59320                                               |
| PF Slope   | Coefficient (m)             | -1.17355           | Р      | F Power Coeffic                        | cient (p)           | 0.79565                                               |
| In Passin  | g Lane Effective Length?    | No                 | F      | ollower Density                        | , followers/mi/ln   | 0.2                                                   |
| %Improv    | vement to Percent Followers | 0.0                | %      | álmprovement t                         | to Speed            | 0.0                                                   |
| Subseg     | ment Data                   |                    |        |                                        |                     |                                                       |
| # Se       | gment Type                  | Length, ft         | Radius | s, ft                                  | Superelevation, %   | Average Speed, mi/h                                   |
| 1 Tar      | ngent                       | 14784              | -      |                                        | -                   | 59.5                                                  |
| Vehicle    | Results                     |                    |        |                                        |                     |                                                       |
| Average    | Speed, mi/h                 | 59.5               | P      | ercent Follower                        | rs, %               | 13.5                                                  |
| Segment    | t Travel Time, minutes      | 2.83               | А      | Adj. Follower Density, followers/mi/ln |                     | 0.2                                                   |
| Vehicle L  | .OS                         | А                  |        |                                        |                     |                                                       |
| Facility   | Results                     |                    |        |                                        |                     |                                                       |
| Т          | VMT<br>veh-mi/AP            | VHD<br>veh-h/p     |        | Follower Density, followers/<br>mi/ln  |                     | LOS                                                   |
| 1          | 50                          | 0.00               |        |                                        | 0.2                 | А                                                     |

HCS<sup>™</sup> Highways Version 2024 2 - Future PM (WB).xuf

Generated: 01/13/2025 14:40:22

|            |                             | HCS Two-La         | ne Hi   | ghway Re                               | port               |                                                     |
|------------|-----------------------------|--------------------|---------|----------------------------------------|--------------------|-----------------------------------------------------|
| Project    | Information                 |                    |         |                                        |                    |                                                     |
| Analyst    |                             | Alyssa Labrador    | Da      | nte                                    |                    | 12/23/2024                                          |
| Agency     |                             | W-Trans            | An      | nalysis Year                           |                    | 2024                                                |
| Jurisdicti | on                          | San Joaquin County | Tin     | ne Analyzed                            |                    | 3 - SR-88 btwn E Harney<br>Ln & 8 Mile Rd - F PM NB |
| Project D  | Description                 | SJX015             | Un      | nits                                   |                    | U.S. Customary                                      |
|            |                             | S                  | egmer   | nt 1                                   |                    | <u> </u>                                            |
| Vehicle    | Inputs                      |                    |         |                                        |                    |                                                     |
| Segment    | t Type                      | Passing Zone       | Lei     | ngth, ft                               |                    | 16368                                               |
| Lane Wic   | dth, ft                     | 12                 | Sh      | oulder Width, f                        | t                  | 6                                                   |
| Speed Li   | mit, mi/h                   | 55                 | Ac      | cess Point Dens                        | sity, pts/mi       | 10.0                                                |
| Deman      | d and Capacity              | ·                  |         |                                        |                    | ·                                                   |
| Direction  | nal Demand Flow Rate, veh/h | 451                | Ор      | oposing Deman                          | d Flow Rate, veh/h | 455                                                 |
| Peak Hou   | ur Factor                   | 1.00               | Tot     | Total Trucks, %                        |                    | 3.45                                                |
| Segment    | t Capacity, veh/h           | 1700               | De      | emand/Capacity                         | (D/C)              | 0.27                                                |
| Interm     | ediate Results              |                    |         |                                        |                    |                                                     |
| Segment    | t Vertical Class            | 1                  | Fre     | ee-Flow Speed,                         | mi/h               | 60.1                                                |
| Speed SI   | ope Coefficient (m)         | 3.67905            | Sp      | Speed Power Coefficient (p)            |                    | 0.48835                                             |
| PF Slope   | Coefficient (m)             | -1.26100           | PF      | Power Coefficie                        | ent (p)            | 0.76718                                             |
| In Passin  | g Lane Effective Length?    | No                 | Fo      | llower Density,                        | followers/mi/ln    | 3.9                                                 |
| %Improv    | vement to Percent Followers | 0.0                | %I      | mprovement to                          | Speed              | 0.0                                                 |
| Subseg     | ment Data                   |                    |         |                                        |                    |                                                     |
| # Se       | gment Type                  | Length, ft         | Radius, | ft                                     | Superelevation, %  | Average Speed, mi/h                                 |
| 1 Tar      | ngent                       | 16368              | -       |                                        | -                  | 57.9                                                |
| Vehicle    | Results                     |                    |         |                                        |                    |                                                     |
| Average    | Speed, mi/h                 | 57.9               | Per     | rcent Followers,                       | , %                | 49.6                                                |
| Segment    | t Travel Time, minutes      | 3.21               | Ad      | Adj. Follower Density, followers/mi/ln |                    | 3.9                                                 |
| Vehicle L  | OS                          | В                  |         |                                        |                    |                                                     |
| Facility   | Results                     |                    |         |                                        |                    |                                                     |
| Т          | VMT<br>veh-mi/AP            | VHD<br>veh-h/p     |         | Follower Density, followers/<br>mi/ln  |                    | LOS                                                 |
| 1          | 350                         | 0.22               |         |                                        | 3.9                | В                                                   |

HCS<sup>™</sup> Highways Version 2024 3 - Future PM (NB).xuf

Generated: 01/13/2025 14:42:01

|            |                             | HCS Two-La         | ne Hi  | ghway Re                               | port                        |                                                     |
|------------|-----------------------------|--------------------|--------|----------------------------------------|-----------------------------|-----------------------------------------------------|
| Project    | Information                 |                    |        |                                        |                             |                                                     |
| Analyst    |                             | Alyssa Labrador    | D      | ate                                    |                             | 12/23/2024                                          |
| Agency     |                             | W-Trans            | Aı     | nalysis Year                           |                             | 2024                                                |
| Jurisdicti | on                          | San Joaquin County | Ti     | me Analyzed                            |                             | 3 - SR-88 btwn E Harney<br>Ln & 8 Mile Rd - F PM SB |
| Project D  | Pescription                 | SJX015             | Uı     | nits                                   |                             | U.S. Customary                                      |
|            |                             | Sc                 | egme   | nt 1                                   |                             |                                                     |
| Vehicle    | Inputs                      |                    |        |                                        |                             |                                                     |
| Segment    | Туре                        | Passing Zone       | Le     | ength, ft                              |                             | 16368                                               |
| Lane Wic   | dth, ft                     | 12                 | Sł     | houlder Width, f                       | t                           | 6                                                   |
| Speed Li   | mit, mi/h                   | 55                 | A      | ccess Point Dens                       | sity, pts/mi                | 10.0                                                |
| Deman      | d and Capacity              | <u> </u>           |        |                                        |                             |                                                     |
| Direction  | nal Demand Flow Rate, veh/h | 500                | 0      | pposing Deman                          | d Flow Rate, veh/h          | 443                                                 |
| Peak Hou   | ur Factor                   | 1.00               | To     | otal Trucks, %                         |                             | 2.65                                                |
| Segment    | Capacity, veh/h             | 1700               | D      | emand/Capacity                         | (D/C)                       | 0.29                                                |
| Interm     | ediate Results              |                    |        |                                        |                             |                                                     |
| Segment    | : Vertical Class            | 1                  | Fr     | ree-Flow Speed,                        | mi/h                        | 60.1                                                |
| Speed SI   | ope Coefficient (m)         | 3.67756            | Sp     | Speed Power Coefficient (p)            |                             | 0.49012                                             |
| PF Slope   | Coefficient (m)             | -1.25951           | PF     | F Power Coefficie                      | ent (p)                     | 0.76771                                             |
| In Passin  | g Lane Effective Length?    | No                 | Fo     | ollower Density,                       | followers/mi/ln             | 4.5                                                 |
| %Improv    | rement to Percent Followers | 0.0                | %      | Improvement to                         | Speed                       | 0.0                                                 |
| Subseg     | ment Data                   |                    |        |                                        |                             |                                                     |
| # Seg      | gment Type                  | Length, ft         | Radius | , ft                                   | Superelevation, %           | Average Speed, mi/h                                 |
| 1 Tar      | ngent                       | 16368              | -      |                                        | -                           | 57.8                                                |
| Vehicle    | Results                     |                    |        |                                        |                             |                                                     |
| Average    | Speed, mi/h                 | 57.8               | Pe     | ercent Followers                       | , %                         | 52.3                                                |
| Segment    | Travel Time, minutes        | 3.22               | A      | Adj. Follower Density, followers/mi/ln |                             | 4.5                                                 |
| Vehicle L  | OS                          | С                  |        |                                        |                             |                                                     |
| Facility   | Results                     |                    |        |                                        |                             |                                                     |
| Т          | VMT<br>veh-mi/AP            | VHD<br>veh-h/p     |        |                                        | ensity, followers/<br>mi/ln | LOS                                                 |
| 1          | 388                         | 0.26               |        |                                        | 4.5                         | С                                                   |

HCS<sup>™</sup> Highways Version 2024 3 - Future PM (SB).xuf

Generated: 01/13/2025 14:43:30

|                         |                 | HCS Two-La         | ne H   | ighway Re                              | eport               |                                                      |
|-------------------------|-----------------|--------------------|--------|----------------------------------------|---------------------|------------------------------------------------------|
| Project Information     | on              |                    |        |                                        |                     |                                                      |
| Analyst                 |                 | Alyssa Labrador    | D      | Pate                                   |                     | 12/23/2024                                           |
| Agency                  |                 | W-Trans            | А      | nalysis Year                           |                     | 2024                                                 |
| Jurisdiction            |                 | San Joaquin County | Т      | ime Analyzed                           |                     | 1 - E Harney Ln btwn<br>SR-99 & SR-88 - F+P AM<br>EB |
| Project Description     |                 | SJX015             | U      | Inits                                  |                     | U.S. Customary                                       |
|                         |                 | Se                 | egme   | ent 1                                  |                     |                                                      |
| Vehicle Inputs          |                 |                    |        |                                        |                     |                                                      |
| Segment Type            |                 | Passing Zone       | L      | ength, ft                              |                     | 23760                                                |
| Lane Width, ft          |                 | 11                 | S      | houlder Width, 1                       | ft                  | 0                                                    |
| Speed Limit, mi/h       |                 | 55                 | А      | ccess Point Den                        | sity, pts/mi        | 13.3                                                 |
| Demand and Capa         | acity           |                    |        |                                        |                     |                                                      |
| Directional Demand Fl   | ow Rate, veh/h  | 195                | С      | Opposing Demar                         | nd Flow Rate, veh/h | 234                                                  |
| Peak Hour Factor        |                 | 1.00               | To     | Total Trucks, %                        |                     | 7.07                                                 |
| Segment Capacity, vel   | n/h             | 1700               | D      | emand/Capacity                         | y (D/C)             | 0.11                                                 |
| Intermediate Resu       | ılts            |                    |        |                                        |                     |                                                      |
| Segment Vertical Class  | 5               | 1                  | F      | ree-Flow Speed,                        | mi/h                | 54.3                                                 |
| Speed Slope Coefficie   | nt (m)          | 3.30510            | S      | peed Power Coe                         | efficient (p)       | 0.53023                                              |
| PF Slope Coefficient (r | n)              | -1.24906           | Р      | F Power Coeffici                       | ent (p)             | 0.76370                                              |
| In Passing Lane Effecti | ve Length?      | No                 | F      | ollower Density,                       | followers/mi/ln     | 1.1                                                  |
| %Improvement to Per     | cent Followers  | 0.0                | %      | 6lmprovement to                        | o Speed             | 0.0                                                  |
| Subsegment Data         |                 |                    |        |                                        |                     |                                                      |
| # Segment Type          |                 | Length, ft         | Radius | s, ft                                  | Superelevation, %   | Average Speed, mi/h                                  |
| 1 Tangent               |                 | 23760              | -      |                                        | -                   | 53.4                                                 |
| Vehicle Results         |                 |                    |        |                                        |                     | ·                                                    |
| Average Speed, mi/h     |                 | 53.4               | Р      | ercent Followers                       | 5, %                | 30.1                                                 |
| Segment Travel Time,    | minutes         | 5.06               | А      | Adj. Follower Density, followers/mi/ln |                     | 1.1                                                  |
| Vehicle LOS             |                 | А                  |        |                                        |                     |                                                      |
| Facility Results        |                 |                    |        |                                        |                     |                                                      |
| T                       | VMT<br>eh-mi/AP | VHD<br>veh-h/p     |        | Follower Density, followers/<br>mi/In  |                     | LOS                                                  |
| 1                       | 219             | 0.07               |        |                                        | 1.1                 | А                                                    |

HCS<sup>™</sup> Highways Version 2024 1 - F+P AM (EB).xuf

Generated: 01/13/2025 14:46:53

|               |                          | HCS Two-La         | ne H   | ighway Re                              | port                        |                                                      |
|---------------|--------------------------|--------------------|--------|----------------------------------------|-----------------------------|------------------------------------------------------|
| Project Inf   | ormation                 |                    |        |                                        |                             |                                                      |
| Analyst       |                          | Alyssa Labrador    | D      | ate                                    |                             | 12/23/2024                                           |
| Agency        |                          | W-Trans            | А      | nalysis Year                           |                             | 2024                                                 |
| Jurisdiction  |                          | San Joaquin County | Т      | ime Analyzed                           |                             | 1 - E Harney Ln btwn<br>SR-99 & SR-88 - F+P AM<br>WB |
| Project Descr | iption                   | SJX015             | U      | Inits                                  |                             | U.S. Customary                                       |
|               |                          | S                  | egme   | ent 1                                  |                             |                                                      |
| Vehicle Inp   | outs                     |                    |        |                                        |                             |                                                      |
| Segment Typ   | e                        | Passing Zone       | L      | ength, ft                              |                             | 23760                                                |
| Lane Width, f | t                        | 11                 | S      | houlder Width, f                       | t                           | 0                                                    |
| Speed Limit,  | mi/h                     | 55                 | А      | ccess Point Den                        | sity, pts/mi                | 13.3                                                 |
| Demand a      | nd Capacity              |                    |        |                                        |                             |                                                      |
| Directional D | emand Flow Rate, veh/h   | 306                | С      | pposing Deman                          | d Flow Rate, veh/h          | 158                                                  |
| Peak Hour Fa  | ctor                     | 1.00               | To     | Total Trucks, %                        |                             | 10.63                                                |
| Segment Cap   | pacity, veh/h            | 1700               | D      | emand/Capacity                         | / (D/C)                     | 0.18                                                 |
| Intermedia    | nte Results              |                    |        |                                        |                             |                                                      |
| Segment Ver   | tical Class              | 1                  | F      | ree-Flow Speed,                        | mi/h                        | 54.2                                                 |
| Speed Slope   | Coefficient (m)          | 3.27040            | S      | Speed Power Coefficient (p)            |                             | 0.55204                                              |
| PF Slope Coe  | fficient (m)             | -1.22877           | Р      | F Power Coeffici                       | ent (p)                     | 0.76975                                              |
| In Passing La | ne Effective Length?     | No                 | F      | ollower Density,                       | followers/mi/ln             | 2.3                                                  |
| %Improveme    | ent to Percent Followers | 0.0                | %      | 6Improvement to                        | Speed                       | 0.0                                                  |
| Subsegme      | nt Data                  |                    |        |                                        |                             |                                                      |
| # Segme       | nt Type                  | Length, ft         | Radius | s, ft                                  | Superelevation, %           | Average Speed, mi/h                                  |
| 1 Tangen      | t                        | 23760              | -      |                                        | -                           | 52.9                                                 |
| Vehicle Res   | sults                    |                    |        |                                        |                             |                                                      |
| Average Spee  | ed, mi/h                 | 52.9               | P      | ercent Followers                       | , %                         | 39.0                                                 |
| Segment Trav  | vel Time, minutes        | 5.11               | А      | Adj. Follower Density, followers/mi/ln |                             | 2.3                                                  |
| Vehicle LOS   |                          | В                  |        |                                        |                             |                                                      |
| Facility Res  | sults                    |                    |        |                                        |                             |                                                      |
| Т             | VMT<br>veh-mi/AP         | VHD<br>veh-h/p     |        | Follower D                             | ensity, followers/<br>mi/ln | LOS                                                  |
| 1             | 344                      | 0.16               |        |                                        | 2.3                         | В                                                    |

HCS<sup>™</sup> Highways Version 2024 1 - F+P AM (WB).xuf

Generated: 01/13/2025 14:48:41

|                 |                         | HCS Two-La         | ne H            | lighway R                              | leport                       |                                                            |
|-----------------|-------------------------|--------------------|-----------------|----------------------------------------|------------------------------|------------------------------------------------------------|
| Project Info    | ormation                |                    |                 |                                        |                              |                                                            |
| Analyst         |                         | Alyssa Labrador    | [               | Date                                   |                              | 12/23/2024                                                 |
| Agency          |                         | W-Trans            | A               | Analysis Year                          |                              | 2024                                                       |
| Jurisdiction    |                         | San Joaquin County | ٦               | Time Analyzed                          |                              | 2 - E Harney Ln btwn Jack<br>Tone Rd & Site - F+P AM<br>EB |
| Project Descrip | ption                   | SJX015             | ι               | Units                                  |                              | U.S. Customary                                             |
|                 |                         | S                  | egme            | ent 1                                  |                              |                                                            |
| Vehicle Inp     | uts                     |                    |                 |                                        |                              |                                                            |
| Segment Type    | ):                      | Passing Zone       | L               | Length, ft                             |                              | 14784                                                      |
| Lane Width, ft  |                         | 11                 | 9               | Shoulder Width                         | , ft                         | 5                                                          |
| Speed Limit, m  | ni/h                    | 55                 | A               | Access Point De                        | nsity, pts/mi                | 6.8                                                        |
| Demand an       | d Capacity              |                    |                 |                                        |                              |                                                            |
| Directional De  | mand Flow Rate, veh/h   | 93                 | (               | Opposing Dema                          | and Flow Rate, veh/h         | 96                                                         |
| Peak Hour Fac   | tor                     | 1.00               | Total Trucks, % |                                        | 29.87                        |                                                            |
| Segment Capa    | acity, veh/h            | 1700               | 1               | Demand/Capac                           | ity (D/C)                    | 0.05                                                       |
| Intermedia      | te Results              |                    |                 |                                        |                              |                                                            |
| Segment Verti   | cal Class               | 1                  | F               | Free-Flow Speed                        | d, mi/h                      | 58.7                                                       |
| Speed Slope C   | Coefficient (m)         | 3.48472            | 9               | Speed Power Co                         | pefficient (p)               | 0.57605                                                    |
| PF Slope Coef   | ficient (m)             | -1.18922           | F               | PF Power Coeffi                        | cient (p)                    | 0.79234                                                    |
| In Passing Lan  | e Effective Length?     | No                 | F               | Follower Density                       | y, followers/mi/ln           | 0.3                                                        |
| %Improvemer     | nt to Percent Followers | 0.0                | Ç               | %Improvement                           | to Speed                     | 0.0                                                        |
| Subsegmen       | it Data                 |                    |                 |                                        |                              |                                                            |
| # Segmen        | t Type                  | Length, ft         | Radiu           | ıs, ft                                 | Superelevation, %            | Average Speed, mi/h                                        |
| 1 Tangent       |                         | 14784              | -               |                                        | -                            | 58.7                                                       |
| Vehicle Res     | ults                    |                    |                 |                                        |                              |                                                            |
| Average Speed   | d, mi/h                 | 58.7               | F               | Percent Followe                        | rs, %                        | 16.6                                                       |
| Segment Trave   | el Time, minutes        | 2.86               | A               | Adj. Follower Density, followers/mi/ln |                              | 0.3                                                        |
| Vehicle LOS     |                         | А                  |                 |                                        |                              |                                                            |
| Facility Res    | ults                    |                    |                 |                                        |                              |                                                            |
| Т               | VMT<br>veh-mi/AP        | VHD<br>veh-h/p     |                 | Follower                               | Density, followers/<br>mi/ln | LOS                                                        |
| 1               | 65                      | 0.00               |                 |                                        | 0.3                          | А                                                          |

HCS<sup>™</sup> Highways Version 2024 2 - F+P AM (EB).xuf

Generated: 01/13/2025 14:50:46

|               |                          | HCS Two-La         | ne Hi  | ighway Re                  | eport                       |                                                            |
|---------------|--------------------------|--------------------|--------|----------------------------|-----------------------------|------------------------------------------------------------|
| Project Inf   | ormation                 |                    |        |                            |                             |                                                            |
| Analyst       |                          | Alyssa Labrador    | D      | ate                        |                             | 12/23/2024                                                 |
| Agency        |                          | W-Trans            | А      | nalysis Year               |                             | 2024                                                       |
| Jurisdiction  |                          | San Joaquin County | Ti     | ime Analyzed               |                             | 2 - E Harney Ln btwn Jack<br>Tone Rd & Site - F+P AM<br>WB |
| Project Descr | iption                   | SJX015             | U      | Inits                      |                             | U.S. Customary                                             |
|               |                          | S                  | egme   | ent 1                      |                             |                                                            |
| Vehicle Inp   | outs                     |                    |        |                            |                             |                                                            |
| Segment Typ   | e                        | Passing Zone       | Le     | ength, ft                  |                             | 14784                                                      |
| Lane Width, f | t                        | 11                 | S      | houlder Width,             | ft                          | 5                                                          |
| Speed Limit,  | mi/h                     | 55                 | А      | ccess Point Den            | sity, pts/mi                | 6.8                                                        |
| Demand a      | nd Capacity              |                    |        |                            |                             |                                                            |
| Directional D | emand Flow Rate, veh/h   | 96                 | 0      | pposing Demar              | nd Flow Rate, veh/h         | 93                                                         |
| Peak Hour Fa  | ctor                     | 1.00               | To     | Total Trucks, %            |                             | 21.16                                                      |
| Segment Cap   | pacity, veh/h            | 1700               | D      | emand/Capacit              | y (D/C)                     | 0.06                                                       |
| Intermedia    | ate Results              |                    |        |                            |                             |                                                            |
| Segment Ver   | tical Class              | 1                  | Fi     | ree-Flow Speed             | mi/h                        | 59.0                                                       |
| Speed Slope   | Coefficient (m)          | 3.49884            | S      | peed Power Coefficient (p) |                             | 0.57744                                                    |
| PF Slope Coe  | fficient (m)             | -1.18776           | Р      | F Power Coeffic            | ent (p)                     | 0.79224                                                    |
| In Passing La | ne Effective Length?     | No                 | F      | ollower Density,           | followers/mi/ln             | 0.3                                                        |
| %Improveme    | ent to Percent Followers | 0.0                | %      | álmprovement t             | o Speed                     | 0.0                                                        |
| Subsegme      | nt Data                  |                    |        |                            |                             |                                                            |
| # Segme       | nt Type                  | Length, ft         | Radius | s, ft                      | Superelevation, %           | Average Speed, mi/h                                        |
| 1 Tangen      | t                        | 14784              | -      |                            | -                           | 59.0                                                       |
| Vehicle Res   | sults                    |                    |        |                            |                             | ·                                                          |
| Average Spee  | ed, mi/h                 | 59.0               | P      | ercent Followers           | 5, %                        | 16.9                                                       |
| Segment Trav  | vel Time, minutes        | 2.85               | А      | dj. Follower Der           | nsity, followers/mi/ln      | 0.3                                                        |
| Vehicle LOS   |                          | А                  |        |                            |                             |                                                            |
| Facility Res  | sults                    |                    |        |                            |                             |                                                            |
| Т             | VMT<br>veh-mi/AP         | VHD<br>veh-h/p     |        | Follower D                 | ensity, followers/<br>mi/ln | LOS                                                        |
| 1             | 67                       | 0.00               |        |                            | 0.3                         | А                                                          |

HCS<sup>™</sup> Highways Version 2024 2 - F+P AM (WB).xuf

Generated: 01/13/2025 14:52:41

|                              | Н              | CS Two-Lai     | ne Hig    | jhway Re                               | port                        |                                                          |
|------------------------------|----------------|----------------|-----------|----------------------------------------|-----------------------------|----------------------------------------------------------|
| Project Information          |                |                |           |                                        |                             |                                                          |
| Analyst                      | Alyss          | a Labrador     | Dat       | e                                      |                             | 12/23/2024                                               |
| Agency                       | W-Tra          | ans            | Ana       | alysis Year                            |                             | 2024                                                     |
| Jurisdiction                 | San J          | oaquin County  | Tim       | ie Analyzed                            |                             | 3 - SR-88 btwn E Harney<br>Ln & 8 Mile Rd - F+P AM<br>NB |
| Project Description          | SJX0.          | 15             | Uni       | ts                                     |                             | U.S. Customary                                           |
|                              |                | Se             | egmen     | t 1                                    |                             |                                                          |
| Vehicle Inputs               |                |                |           |                                        |                             |                                                          |
| Segment Type                 | Passi          | ng Zone        | Len       | gth, ft                                |                             | 16368                                                    |
| Lane Width, ft               | 12             |                | Sho       | oulder Width, ft                       | t                           | 6                                                        |
| Speed Limit, mi/h            | 55             |                | Acc       | ess Point Dens                         | ity, pts/mi                 | 10.0                                                     |
| <b>Demand and Capacity</b>   |                |                |           |                                        |                             | ·                                                        |
| Directional Demand Flow R    | ate, veh/h 564 |                | Орј       | posing Deman                           | d Flow Rate, veh/h          | 321                                                      |
| Peak Hour Factor             | 1.00           |                | Tota      | Total Trucks, %                        |                             | 8.94                                                     |
| Segment Capacity, veh/h      | 1700           |                | Der       | mand/Capacity                          | (D/C)                       | 0.33                                                     |
| Intermediate Results         |                |                |           |                                        |                             | ·                                                        |
| Segment Vertical Class       | 1              |                | Free      | e-Flow Speed,                          | mi/h                        | 59.9                                                     |
| Speed Slope Coefficient (m   | 3.633          | 375            | Spe       | ed Power Coef                          | fficient (p)                | 0.51097                                                  |
| PF Slope Coefficient (m)     | -1.24          | 263            | PF I      | Power Coefficie                        | ent (p)                     | 0.77452                                                  |
| In Passing Lane Effective Le | ngth? No       |                | Foll      | ower Density,                          | followers/mi/ln             | 5.4                                                      |
| %Improvement to Percent F    | followers 0.0  |                | %In       | nprovement to                          | Speed                       | 0.0                                                      |
| Subsegment Data              |                |                |           |                                        |                             |                                                          |
| # Segment Type               | Lengt          | th, ft         | Radius, f | t                                      | Superelevation, %           | Average Speed, mi/h                                      |
| 1 Tangent                    | 16368          | 8              | -         |                                        | -                           | 57.4                                                     |
| Vehicle Results              |                |                |           |                                        |                             |                                                          |
| Average Speed, mi/h          | 57.4           |                | Per       | cent Followers,                        | %                           | 55.0                                                     |
| Segment Travel Time, minu    | es 3.24        |                | Adj       | Adj. Follower Density, followers/mi/ln |                             | 5.4                                                      |
| Vehicle LOS                  | С              |                |           |                                        |                             |                                                          |
| Facility Results             |                |                |           |                                        |                             |                                                          |
| T VM                         |                | VHD<br>veh-h/p |           |                                        | ensity, followers/<br>mi/ln | LOS                                                      |
| 1 437                        | ,              | 0.31           |           |                                        | 5.4                         | С                                                        |

HCS<sup>™</sup> Highways Version 2024 3 - F+P AM (NB).xuf

Generated: 01/13/2025 14:55:00

|                             |                                                     | HCS Two-La         | ne H                  | ighway Re          | port                        |                                                          |  |
|-----------------------------|-----------------------------------------------------|--------------------|-----------------------|--------------------|-----------------------------|----------------------------------------------------------|--|
| Project Informa             | tion                                                |                    |                       |                    |                             |                                                          |  |
| Analyst                     |                                                     | Alyssa Labrador    | D                     | ate                |                             | 12/23/2024                                               |  |
| Agency                      |                                                     | W-Trans            | А                     | nalysis Year       |                             | 2024                                                     |  |
| Jurisdiction                |                                                     | San Joaquin County | Т                     | ime Analyzed       |                             | 3 - SR-88 btwn E Harney<br>Ln & 8 Mile Rd - F+P AM<br>SB |  |
| Project Description         |                                                     | SJX015             | U                     | Inits              |                             | U.S. Customary                                           |  |
|                             |                                                     | Se                 | egme                  | nt 1               |                             |                                                          |  |
| Vehicle Inputs              |                                                     |                    |                       |                    |                             |                                                          |  |
| Segment Type                |                                                     | Passing Zone       | L                     | ength, ft          |                             | 16368                                                    |  |
| Lane Width, ft              |                                                     | 12                 | S                     | houlder Width, f   | t                           | 6                                                        |  |
| Speed Limit, mi/h           |                                                     | 55                 | А                     | ccess Point Dens   | sity, pts/mi                | 10.0                                                     |  |
| Demand and Ca               | pacity                                              |                    |                       |                    |                             |                                                          |  |
| Directional Demand          | d Flow Rate, veh/h                                  | 359                | С                     | pposing Deman      | d Flow Rate, veh/h          | 469                                                      |  |
| Peak Hour Factor            |                                                     | 1.00               | To                    | otal Trucks, %     |                             | 11.05                                                    |  |
| Segment Capacity,           | veh/h                                               | 1700               | D                     | emand/Capacity     | / (D/C)                     | 0.21                                                     |  |
| Intermediate Re             | esults                                              |                    |                       |                    |                             |                                                          |  |
| Segment Vertical C          | lass                                                | 1                  | F                     | ree-Flow Speed,    | mi/h                        | 59.8                                                     |  |
| Speed Slope Coefficient (m) |                                                     | 3.66871            | S                     | peed Power Coe     | fficient (p)                | 0.48634                                                  |  |
| PF Slope Coefficient (m)    |                                                     | -1.26317           |                       | F Power Coefficion | ent (p)                     | 0.76695                                                  |  |
| In Passing Lane Effe        | ective Length? No Follower Density, followers/mi/ln |                    | 2.7                   |                    |                             |                                                          |  |
| %Improvement to I           | Percent Followers                                   | 0.0                | %Improvement to Speed |                    | 0.0                         |                                                          |  |
| Subsegment Data             |                                                     |                    |                       |                    |                             |                                                          |  |
| # Segment Typ               |                                                     |                    | Radius                | s, ft              | Superelevation, %           | Average Speed, mi/h                                      |  |
| 1 Tangent                   |                                                     |                    | -                     | -                  |                             | 57.9                                                     |  |
| Vehicle Results             |                                                     |                    |                       |                    |                             |                                                          |  |
| Average Speed, mi,          | /h                                                  | 57.9               | P                     | ercent Followers   | , %                         | 43.8                                                     |  |
| Segment Travel Tim          | ne, minutes                                         | 3.21               | А                     | dj. Follower Den   | sity, followers/mi/ln       | 2.7                                                      |  |
| Vehicle LOS                 |                                                     | В                  |                       |                    |                             |                                                          |  |
| Facility Results            |                                                     |                    |                       |                    |                             |                                                          |  |
| Т                           | VMT<br>veh-mi/AP                                    | VHD<br>veh-h/p     |                       |                    | ensity, followers/<br>mi/ln | LOS                                                      |  |
| 1                           | 278                                                 | 0.15               |                       |                    | 2.7                         | В                                                        |  |

HCS<sup>™</sup> Highways Version 2024 3 - F+P AM (SB).xuf

Generated: 01/13/2025 14:56:51

|                             |                                                           | HCS Two-La         | ne H                  | ighway Re                  | eport                       |                                                      |  |
|-----------------------------|-----------------------------------------------------------|--------------------|-----------------------|----------------------------|-----------------------------|------------------------------------------------------|--|
| Project Infor               | mation                                                    |                    |                       |                            |                             |                                                      |  |
| Analyst                     |                                                           | Alyssa Labrador    | D                     | ate                        |                             | 12/23/2024                                           |  |
| Agency                      |                                                           | W-Trans            | А                     | nalysis Year               |                             | 2024                                                 |  |
| Jurisdiction                |                                                           | San Joaquin County | Т                     | ime Analyzed               |                             | 1 - E Harney Ln btwn<br>SR-99 & SR-88 - F+P PM<br>EB |  |
| Project Descript            | tion                                                      | SJX015             | U                     | Inits                      |                             | U.S. Customary                                       |  |
|                             |                                                           | Sc                 | egme                  | nt 1                       |                             |                                                      |  |
| Vehicle Inpu                | ts                                                        |                    |                       |                            |                             |                                                      |  |
| Segment Type                |                                                           | Passing Zone       | L                     | ength, ft                  |                             | 23760                                                |  |
| Lane Width, ft              |                                                           | 11                 | S                     | houlder Width, f           | t                           | 0                                                    |  |
| Speed Limit, mi             | /h                                                        | 55                 | А                     | ccess Point Den            | sity, pts/mi                | 13.3                                                 |  |
| Demand and                  | l Capacity                                                | ·                  |                       |                            |                             |                                                      |  |
| Directional Den             | nand Flow Rate, veh/h                                     | 250                | С                     | pposing Deman              | d Flow Rate, veh/h          | 163                                                  |  |
| Peak Hour Facto             | or                                                        | 1.00               | To                    | otal Trucks, %             |                             | 6.39                                                 |  |
| Segment Capac               | city, veh/h                                               | 1700               | D                     | emand/Capacity             | / (D/C)                     | 0.15                                                 |  |
| Intermediate                | e Results                                                 |                    |                       |                            |                             |                                                      |  |
| Segment Vertical Class      |                                                           | 1                  | F                     | ree-Flow Speed,            | mi/h                        | 54.4                                                 |  |
| Speed Slope Coefficient (m) |                                                           | 3.28010            | S                     | peed Power Coe             | fficient (p)                | 0.55040                                              |  |
| PF Slope Coefficient (m)    |                                                           | -1.23034           |                       | F Power Coeffici           | ent (p)                     | 0.76911                                              |  |
| In Passing Lane             | ne Effective Length? No Follower Density, followers/mi/ln |                    | 1.6                   |                            |                             |                                                      |  |
| %Improvement                | to Percent Followers                                      | 0.0                | %Improvement to Speed |                            | 0.0                         |                                                      |  |
| Subsegment Data             |                                                           | <u>'</u>           |                       |                            |                             |                                                      |  |
| # Segment                   |                                                           |                    | Radius                | dius, ft Superelevation, % |                             | Average Speed, mi/h                                  |  |
| 1 Tangent                   |                                                           |                    | -                     |                            | -                           | 53.2                                                 |  |
| Vehicle Resu                | lts                                                       |                    |                       |                            |                             |                                                      |  |
| Average Speed,              | , mi/h                                                    | 53.2               | P                     | ercent Followers           | , %                         | 34.5                                                 |  |
| Segment Travel              | Time, minutes                                             | 5.07               | А                     | dj. Follower Den           | sity, followers/mi/ln       | 1.6                                                  |  |
| Vehicle LOS                 |                                                           | A                  |                       |                            |                             |                                                      |  |
| Facility Resu               | lts                                                       |                    |                       |                            |                             |                                                      |  |
| Т                           | VMT<br>veh-mi/AP                                          | VHD<br>veh-h/p     |                       | Follower D                 | ensity, followers/<br>mi/ln | LOS                                                  |  |
| 1                           | 281                                                       | 0.11               |                       |                            | 1.6                         | А                                                    |  |

HCS<sup>™</sup> Highways Version 2024 1 - F+P PM (EB).xuf

Generated: 01/13/2025 14:59:56

|                             |                                                      | HCS Two-La         | ne Hi  | ighway Re                  | port                        |                                                      |
|-----------------------------|------------------------------------------------------|--------------------|--------|----------------------------|-----------------------------|------------------------------------------------------|
| Project Informa             | ntion                                                |                    |        |                            |                             |                                                      |
| Analyst                     |                                                      | Alyssa Labrador    | D      | ate                        |                             | 12/23/2024                                           |
| Agency                      |                                                      | W-Trans            | А      | nalysis Year               |                             | 2024                                                 |
| Jurisdiction                |                                                      | San Joaquin County | Ti     | ime Analyzed               |                             | 1 - E Harney Ln btwn<br>SR-99 & SR-88 - F+P PM<br>WB |
| Project Description         |                                                      | SJX015             | U      | Inits                      |                             | U.S. Customary                                       |
|                             |                                                      | Sc                 | egme   | nt 1                       |                             |                                                      |
| Vehicle Inputs              |                                                      |                    |        |                            |                             |                                                      |
| Segment Type                |                                                      | Passing Zone       | Le     | ength, ft                  |                             | 23760                                                |
| Lane Width, ft              |                                                      | 11                 | S      | houlder Width, f           | t                           | 0                                                    |
| Speed Limit, mi/h           |                                                      | 55                 | А      | ccess Point Dens           | sity, pts/mi                | 13.3                                                 |
| Demand and Ca               | apacity                                              |                    |        |                            |                             |                                                      |
| Directional Demand          | d Flow Rate, veh/h                                   | 163                | 0      | pposing Deman              | d Flow Rate, veh/h          | 250                                                  |
| Peak Hour Factor            |                                                      | 1.00               | To     | otal Trucks, %             |                             | 4.91                                                 |
| Segment Capacity,           | veh/h                                                | 1700               | D      | emand/Capacity             | / (D/C)                     | 0.10                                                 |
| Intermediate R              | esults                                               |                    |        |                            |                             |                                                      |
| Segment Vertical C          | lass                                                 | 1                  | Fi     | ree-Flow Speed,            | mi/h                        | 54.4                                                 |
| Speed Slope Coefficient (m) |                                                      | 3.31433            | S      | peed Power Coe             | fficient (p)                | 0.52632                                              |
| PF Slope Coefficient (m)    |                                                      | -1.25271           |        | F Power Coeffici           | ent (p)                     | 0.76252                                              |
| In Passing Lane Effe        | fective Length? No Follower Density, followers/mi/ln |                    | 0.8    |                            |                             |                                                      |
| %Improvement to             | Percent Followers                                    | 0.0                | %      | %Improvement to Speed      |                             | 0.0                                                  |
| Subsegment Da               | nta                                                  |                    |        |                            |                             |                                                      |
| # Segment Typ               | е                                                    | Length, ft         | Radius | dius, ft Superelevation, % |                             | Average Speed, mi/h                                  |
| 1 Tangent                   |                                                      |                    | -      |                            | -                           | 53.6                                                 |
| Vehicle Results             |                                                      |                    |        |                            |                             |                                                      |
| Average Speed, mi,          | /h                                                   | 53.6               | P      | ercent Followers           | , %                         | 27.0                                                 |
| Segment Travel Tin          | ne, minutes                                          | 5.03               | А      | dj. Follower Den           | sity, followers/mi/ln       | 0.8                                                  |
| Vehicle LOS                 |                                                      | А                  |        |                            |                             |                                                      |
| Facility Results            |                                                      |                    |        |                            |                             |                                                      |
| Т                           | VMT<br>veh-mi/AP                                     | VHD<br>veh-h/p     |        |                            | ensity, followers/<br>mi/ln | LOS                                                  |
| 1                           | 183                                                  | 0.05               |        |                            | 0.8                         | А                                                    |

HCS<sup>™</sup> Highways Version 2024 1 - F+P PM (WB).xuf

Generated: 01/13/2025 15:01:19

|                             |                             | HCS Two-La         | ne Hi                             | ighway Re                  | port                        |                                                            |  |
|-----------------------------|-----------------------------|--------------------|-----------------------------------|----------------------------|-----------------------------|------------------------------------------------------------|--|
| Project                     | Information                 |                    |                                   |                            |                             |                                                            |  |
| Analyst                     |                             | Alyssa Labrador    | D                                 | ate                        |                             | 12/23/2024                                                 |  |
| Agency                      |                             | W-Trans            | А                                 | nalysis Year               |                             | 2024                                                       |  |
| Jurisdicti                  | on                          | San Joaquin County | Ti                                | ime Analyzed               |                             | 2 - E Harney Ln btwn Jack<br>Tone Rd & Site - F+P PM<br>EB |  |
| Project D                   | Description                 | SJX015             | U                                 | nits                       |                             | U.S. Customary                                             |  |
|                             |                             | Sc                 | egme                              | nt 1                       |                             |                                                            |  |
| Vehicle                     | Inputs                      |                    |                                   |                            |                             |                                                            |  |
| Segment                     | t Type                      | Passing Zone       | Le                                | ength, ft                  |                             | 14784                                                      |  |
| Lane Wic                    | dth, ft                     | 11                 | SI                                | houlder Width, f           | t                           | 5                                                          |  |
| Speed Li                    | mit, mi/h                   | 55                 | А                                 | ccess Point Dens           | sity, pts/mi                | 6.8                                                        |  |
| Deman                       | d and Capacity              | ·                  |                                   |                            |                             | ·                                                          |  |
| Direction                   | nal Demand Flow Rate, veh/h | 65                 | 0                                 | pposing Deman              | d Flow Rate, veh/h          | 50                                                         |  |
| Peak Hou                    | ur Factor                   | 1.00               | To                                | otal Trucks, %             |                             | 8.77                                                       |  |
| Segment                     | t Capacity, veh/h           | 1700               | D                                 | emand/Capacity             | (D/C)                       | 0.04                                                       |  |
| Interm                      | ediate Results              | ·                  |                                   |                            |                             |                                                            |  |
| Segment                     | t Vertical Class            | 1                  | Fı                                | ree-Flow Speed,            | mi/h                        | 59.4                                                       |  |
| Speed Slope Coefficient (m) |                             | 3.49453            | SI                                | peed Power Coe             | fficient (p)                | 0.60147                                                    |  |
| PF Slope Coefficient (m)    |                             | -1.16636           |                                   | F Power Coefficie          | ent (p)                     | 0.79792                                                    |  |
| In Passin                   | g Lane Effective Length?    | No                 | Follower Density, followers/mi/ln |                            |                             | 0.1                                                        |  |
| %Improv                     | vement to Percent Followers | 0.0                | %                                 | Improvement to             | Speed                       | 0.0                                                        |  |
| Subseg                      | ment Data                   |                    |                                   |                            |                             |                                                            |  |
| # Se                        | gment Type                  | Length, ft         | Radius                            | lius, ft Superelevation, % |                             | Average Speed, mi/h                                        |  |
| 1 Tar                       | Fangent Type Length, ft R   |                    | -                                 |                            | -                           | 59.4                                                       |  |
| Vehicle                     | Results                     |                    |                                   |                            |                             |                                                            |  |
| Average                     | Speed, mi/h                 | 59.4               | Pe                                | ercent Followers           | , %                         | 12.3                                                       |  |
| Segment                     | t Travel Time, minutes      | 2.83               | А                                 | dj. Follower Den           | sity, followers/mi/ln       | 0.1                                                        |  |
| Vehicle L                   | OS                          | А                  |                                   |                            |                             |                                                            |  |
| Facility                    | Results                     |                    |                                   |                            |                             |                                                            |  |
| Т                           | VMT<br>veh-mi/AP            | VHD<br>veh-h/p     |                                   |                            | ensity, followers/<br>mi/ln | LOS                                                        |  |
| 1                           | 46                          | 0.00               |                                   |                            | 0.1                         | А                                                          |  |

HCS<sup>™</sup> Highways Version 2024 2 - F+P PM (EB).xuf

Generated: 01/13/2025 15:02:44

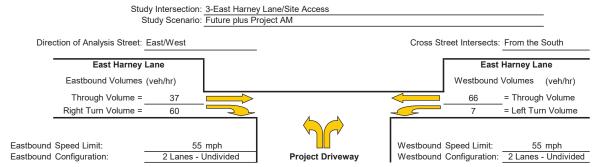
|                             |                             | HCS Two-La         | ne Hi                             | ighway Re         | port                        |                                                            |
|-----------------------------|-----------------------------|--------------------|-----------------------------------|-------------------|-----------------------------|------------------------------------------------------------|
| Project                     | Information                 |                    |                                   |                   |                             |                                                            |
| Analyst                     |                             | Alyssa Labrador    | D                                 | ate               |                             | 12/23/2024                                                 |
| Agency                      |                             | W-Trans            | А                                 | nalysis Year      |                             | 2024                                                       |
| Jurisdicti                  | ion                         | San Joaquin County | Ti                                | ime Analyzed      |                             | 2 - E Harney Ln btwn Jack<br>Tone Rd & Site - F+P PM<br>WB |
| Project D                   | Description                 | SJX015             | U                                 | nits              |                             | U.S. Customary                                             |
|                             |                             | Sc                 | egme                              | nt 1              |                             |                                                            |
| Vehicle                     | e Inputs                    |                    |                                   |                   |                             |                                                            |
| Segment                     | t Type                      | Passing Zone       | Le                                | ength, ft         |                             | 14784                                                      |
| Lane Wid                    | dth, ft                     | 11                 | S                                 | houlder Width, f  | t                           | 5                                                          |
| Speed Li                    | mit, mi/h                   | 55                 | А                                 | ccess Point Dens  | sity, pts/mi                | 6.8                                                        |
| Deman                       | nd and Capacity             |                    |                                   |                   |                             |                                                            |
| Direction                   | nal Demand Flow Rate, veh/h | 80                 | 0                                 | pposing Deman     | d Flow Rate, veh/h          | 63                                                         |
| Peak Ho                     | ur Factor                   | 1.00               | To                                | otal Trucks, %    |                             | 6.52                                                       |
| Segment                     | t Capacity, veh/h           | 1700               | D                                 | emand/Capacity    | ' (D/C)                     | 0.05                                                       |
| Interm                      | ediate Results              | ·                  |                                   |                   |                             |                                                            |
| Segment Vertical Class      |                             | 1                  | Fi                                | ree-Flow Speed,   | mi/h                        | 59.5                                                       |
| Speed Slope Coefficient (m) |                             | 3.50757            | S                                 | peed Power Coe    | fficient (p)                | 0.59320                                                    |
| PF Slope Coefficient (m)    |                             | -1.17353           | Р                                 | F Power Coefficie | ent (p)                     | 0.79561                                                    |
| In Passin                   | g Lane Effective Length?    | No                 | Follower Density, followers/mi/ln |                   |                             | 0.2                                                        |
| %lmprov                     | vement to Percent Followers | 0.0                | %                                 | Improvement to    | Speed                       | 0.0                                                        |
| Subseg                      | ıment Data                  |                    |                                   |                   |                             |                                                            |
| # Se                        | gment Type                  | Length, ft         | Radius                            | s, ft             | Superelevation, %           | Average Speed, mi/h                                        |
| 1 Tai                       | ngent                       |                    |                                   |                   | -                           | 59.5                                                       |
| Vehicle                     | Results                     |                    |                                   |                   |                             |                                                            |
| Average                     | Speed, mi/h                 | 59.5               | P                                 | ercent Followers  | , %                         | 14.6                                                       |
| Segment                     | t Travel Time, minutes      | 2.82               | А                                 | dj. Follower Den  | sity, followers/mi/ln       | 0.2                                                        |
| Vehicle L                   | .OS                         | А                  |                                   |                   |                             |                                                            |
| Facility                    | Results                     |                    |                                   |                   |                             |                                                            |
| Т                           | VMT<br>veh-mi/AP            | VHD<br>veh-h/p     |                                   |                   | ensity, followers/<br>mi/ln | LOS                                                        |
| 1                           | 56                          | 0.00               |                                   |                   | 0.2                         | А                                                          |

HCS<sup>™</sup> Highways Version 2024 2 - F+P PM (WB).xuf

Generated: 01/13/2025 15:04:44

|                             |                                                             | HCS Two-Lai        | ne Hi           | ghway Re          | port                        |                                                          |  |
|-----------------------------|-------------------------------------------------------------|--------------------|-----------------|-------------------|-----------------------------|----------------------------------------------------------|--|
| Project Information         | 1                                                           |                    |                 |                   |                             |                                                          |  |
| Analyst                     |                                                             | Alyssa Labrador    | Di              | ate               |                             | 12/23/2024                                               |  |
| Agency                      |                                                             | W-Trans            | Aı              | nalysis Year      |                             | 2024                                                     |  |
| Jurisdiction                |                                                             | San Joaquin County | Ti              | me Analyzed       |                             | 3 - SR-88 btwn E Harney<br>Ln & 8 Mile Rd - F+P PM<br>NB |  |
| Project Description         |                                                             | SJX015             | Uı              | nits              |                             | U.S. Customary                                           |  |
|                             |                                                             | Se                 | egme            | nt 1              |                             |                                                          |  |
| Vehicle Inputs              |                                                             |                    |                 |                   |                             |                                                          |  |
| Segment Type                |                                                             | Passing Zone       | Le              | ength, ft         |                             | 16368                                                    |  |
| Lane Width, ft              |                                                             | 12                 | Sł              | noulder Width, f  | t                           | 6                                                        |  |
| Speed Limit, mi/h           |                                                             | 55                 | A               | ccess Point Dens  | sity, pts/mi                | 10.0                                                     |  |
| Demand and Capac            | ity                                                         |                    |                 |                   |                             |                                                          |  |
| Directional Demand Flo      | w Rate, veh/h                                               | 451                | 0               | pposing Deman     | d Flow Rate, veh/h          | 461                                                      |  |
| Peak Hour Factor            |                                                             | 1.00               | To              | otal Trucks, %    |                             | 3.45                                                     |  |
| Segment Capacity, veh/      | h                                                           | 1700               | D               | emand/Capacity    | (D/C)                       | 0.27                                                     |  |
| Intermediate Resul          | ts                                                          |                    |                 |                   |                             | ·                                                        |  |
| Segment Vertical Class      |                                                             | 1                  | Fr              | ee-Flow Speed,    | mi/h                        | 60.1                                                     |  |
| Speed Slope Coefficient (m) |                                                             | 3.68050            | Sp              | peed Power Coe    | fficient (p)                | 0.48748                                                  |  |
| PF Slope Coefficient (m)    |                                                             | -1.26170           |                 | F Power Coefficie | ent (p)                     | 0.76689                                                  |  |
| In Passing Lane Effective   | Lane Effective Length? No Follower Density, followers/mi/ln |                    |                 | 3.9               |                             |                                                          |  |
| %Improvement to Perce       | nt Followers                                                | 0.0                | %               | Improvement to    | Speed                       | 0.0                                                      |  |
| Subsegment Data             |                                                             |                    |                 |                   |                             |                                                          |  |
| # Segment Type              |                                                             |                    | Radius, ft Supe |                   | Superelevation, %           | Average Speed, mi/h                                      |  |
| 1 Tangent                   |                                                             |                    | -               | -                 |                             | 57.9                                                     |  |
| Vehicle Results             |                                                             |                    |                 |                   |                             |                                                          |  |
| Average Speed, mi/h         |                                                             | 57.9               | Pe              | ercent Followers, | , %                         | 49.6                                                     |  |
| Segment Travel Time, m      | inutes                                                      | 3.21               | Ad              | dj. Follower Den  | sity, followers/mi/ln       | 3.9                                                      |  |
| Vehicle LOS                 |                                                             | В                  |                 |                   |                             |                                                          |  |
| Facility Results            |                                                             |                    |                 |                   |                             |                                                          |  |
|                             | /MT<br>-mi/AP                                               | VHD<br>veh-h/p     |                 |                   | ensity, followers/<br>mi/ln | LOS                                                      |  |
| 1                           | 350                                                         | 0.22               |                 |                   | 3.9                         | В                                                        |  |

HCS<sup>™</sup> Highways Version 2024 3 - F+P PM (NB).xuf


Generated: 01/13/2025 15:06:21

|                             |                                                                  | HCS Two-La         | ne H                  | ighway Re          | port                        |                                                          |  |
|-----------------------------|------------------------------------------------------------------|--------------------|-----------------------|--------------------|-----------------------------|----------------------------------------------------------|--|
| Project Inf                 | ormation                                                         |                    |                       |                    |                             |                                                          |  |
| Analyst                     |                                                                  | Alyssa Labrador    | D                     | Pate               |                             | 12/23/2024                                               |  |
| Agency                      |                                                                  | W-Trans            | А                     | nalysis Year       |                             | 2024                                                     |  |
| Jurisdiction                |                                                                  | San Joaquin County | Т                     | ime Analyzed       |                             | 3 - SR-88 btwn E Harney<br>Ln & 8 Mile Rd - F+P PM<br>SB |  |
| Project Desc                | ription                                                          | SJX015             | U                     | Inits              |                             | U.S. Customary                                           |  |
|                             |                                                                  | Se                 | egme                  | ent 1              |                             |                                                          |  |
| Vehicle In                  | puts                                                             |                    |                       |                    |                             |                                                          |  |
| Segment Typ                 | pe                                                               | Passing Zone       | L                     | ength, ft          |                             | 16368                                                    |  |
| Lane Width,                 | ft                                                               | 12                 | S                     | houlder Width, f   | t                           | 6                                                        |  |
| Speed Limit,                | mi/h                                                             | 55                 | А                     | ccess Point Dens   | sity, pts/mi                | 10.0                                                     |  |
| Demand a                    | nd Capacity                                                      | ·                  |                       |                    |                             | ·                                                        |  |
| Directional D               | emand Flow Rate, veh/h                                           | 506                | С                     | Opposing Deman     | d Flow Rate, veh/h          | 443                                                      |  |
| Peak Hour Fa                | actor                                                            | 1.00               | To                    | otal Trucks, %     |                             | 2.61                                                     |  |
| Segment Cap                 | oacity, veh/h                                                    | 1700               | D                     | emand/Capacity     | / (D/C)                     | 0.30                                                     |  |
| Intermedia                  | ate Results                                                      | ·                  |                       |                    |                             |                                                          |  |
| Segment Vertical Class      |                                                                  | 1                  | F                     | ree-Flow Speed,    | mi/h                        | 60.1                                                     |  |
| Speed Slope Coefficient (m) |                                                                  | 3.67763            | S                     | peed Power Coe     | fficient (p)                | 0.49012                                                  |  |
| PF Slope Coefficient (m)    |                                                                  | -1.25951           |                       | F Power Coefficion | ent (p)                     | 0.76770                                                  |  |
| In Passing La               | sing Lane Effective Length? No Follower Density, followers/mi/ln |                    | 4.6                   |                    |                             |                                                          |  |
| %Improveme                  | ent to Percent Followers                                         | 0.0                | %Improvement to Speed |                    | 0.0                         |                                                          |  |
| Subsegment Data             |                                                                  |                    |                       |                    |                             |                                                          |  |
| # Segme                     | ent Type                                                         | Length, ft         | Radius                | s, ft              | Superelevation, %           | Average Speed, mi/h                                      |  |
| 1 Tanger                    | Segment Type Length, ft I Tangent 16368                          |                    | -                     | -                  |                             | 57.7                                                     |  |
| Vehicle Re                  | sults                                                            |                    |                       |                    |                             |                                                          |  |
| Average Spe                 | ed, mi/h                                                         | 57.7               | P                     | ercent Followers   | , %                         | 52.6                                                     |  |
| Segment Tra                 | vel Time, minutes                                                | 3.22               | А                     | ıdj. Follower Den  | sity, followers/mi/ln       | 4.6                                                      |  |
| Vehicle LOS                 |                                                                  | С                  |                       |                    |                             |                                                          |  |
| Facility Re                 | sults                                                            |                    |                       |                    |                             |                                                          |  |
| Т                           | VMT<br>veh-mi/AP                                                 | VHD<br>veh-h/p     |                       |                    | ensity, followers/<br>mi/ln | LOS                                                      |  |
| 1                           | 392                                                              | 0.27               |                       |                    | 4.6                         | С                                                        |  |

HCS<sup>™</sup> Highways Version 2024 3 - F+P PM (SB).xuf

Generated: 01/13/2025 15:08:12

### **Turn Lane Warrant Analysis - Tee Intersections**



### **Eastbound Right Turn Lane Warrants**

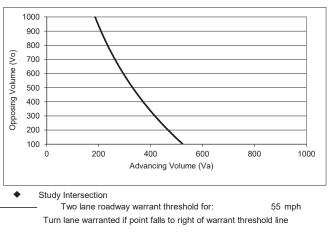
1. Check for right turn volume criteria

### Thresholds not met, continue to next step

2. Check advance volume threshold criteria for turn lane Advancing Volume Threshold 450 AV = Advancing Volume Va = 97 If AV<Va then warrant is met No

### **Eastbound Right Turn Taper Warrants** (evaluate if right turn lane is unwarranted)

1. Check taper volume criteria


### Thresholds not met, continue to next step

2. Check advance volume threshold criteria for taper Advancing Volume Threshold AV = 100 Advancing Volume 97 Va = If AV<Va then warrant is met No

Right Turn Taper Warranted: NO

### Westbound Left Turn Lane Warrants

Percentage Left Turns %It Advancing Volume Threshold AV 563 veh/hr If AV<Va then warrant is met



Left Turn Lane Warranted:

Methodology based on Washington State Transportation Center Research Report Method For Prioritizing Intersection Improvements, January 1997. The right turn lane and taper analysis is based on work conducted by Cottrell in 1981.

The left turn lane analysis is based on work conducted by M.D. Harmelink in 1967, and modified by Kikuchi and Chakroborty in 1991.

W-Trans 1/12/2025

Queuing and Blocking Report Existing AM

Intersection: 1: SR 88 & E Harney Ln

| Movement               | 8    | WB   | 9   | 2    | SS  | SS   |  |
|------------------------|------|------|-----|------|-----|------|--|
| Directions Served      | LTR  | LTR  | _   | TR   | _   | TR   |  |
| Maximum Queue (ft)     | 35   | 130  | 37  | 116  | 88  | 159  |  |
| Average Queue (ft)     | 40   | 63   | 1   | 4    | 13  | 29   |  |
| 95th Queue (ft)        | 28   | 113  | 30  | 68   | 20  | 131  |  |
| Link Distance (ft)     | 2539 | 7781 |     | 2683 |     | 3543 |  |
| Upstream Blk Time (%)  |      |      |     |      |     |      |  |
| Queuing Penalty (veh)  |      |      |     |      |     |      |  |
| Storage Bay Dist (ft)  |      |      | 125 |      | 140 |      |  |
| Storage Blk Time (%)   |      |      |     | 0    | 0   | 0    |  |
| Que uing Penalty (veh) |      |      |     | 0    | 0   | 0    |  |

Intersection: 2: Jack Tone Rd & E Harney Ln

| SB       | ъ.                | 40                 | 16                 | 38              |                    |                       |                       | 25                    | 2                    | 2                     |
|----------|-------------------|--------------------|--------------------|-----------------|--------------------|-----------------------|-----------------------|-----------------------|----------------------|-----------------------|
| SB       | П                 | 09                 | 27                 | 49              | 1650               |                       |                       |                       | 9                    | 2                     |
| NB       | œ                 | 99                 | 12                 | 4               |                    |                       |                       | 25                    | _                    | _                     |
| NB       | П                 | 09                 | 27                 | 47              | 2775               |                       |                       |                       | ∞                    | _                     |
| WB       | œ                 | 29                 | 19                 | 25              |                    |                       |                       | 25                    | 2                    | 2                     |
| WB       | П                 | 91                 | 38                 | 89              | 4982               |                       |                       |                       | 6                    | 2                     |
|          | œ                 |                    |                    |                 |                    |                       |                       | 25                    | _                    | _                     |
| B        | П                 | 73                 | 32                 | 09              | 7781               |                       |                       |                       | 2                    | _                     |
| Movement | Directions Served | Maximum Queue (ft) | Average Queue (ft) | 95th Queue (ft) | Link Distance (ft) | Upstream Blk Time (%) | Queuing Penalty (veh) | Storage Bay Dist (ft) | Storage Blk Time (%) | Queuing Penalty (veh) |

Intersection: 3: Site Driveway & E Harney Ln

| Movement              | WB   | NB   | NB |  |
|-----------------------|------|------|----|--|
| Directions Served     | П    | ٦    | ď  |  |
| Maximum Queue (ft)    | 2    | 73   | 54 |  |
| Average Queue (ft)    | 0    | 22   | က  |  |
| 95th Queue (ft)       | 2    | 26   | 15 |  |
| Link Distance (ft)    | 2909 | 1889 |    |  |
| Upstream Blk Time (%) |      |      |    |  |
| Queuing Penalty (veh) |      |      |    |  |
| Storage Bay Dist (ft) |      |      | 20 |  |
| Storage Blk Time (%)  |      | -    |    |  |
| Queuing Penalty (veh) |      | 0    |    |  |

Existing AM Foothill and North County Landfills Study W-Trans

SimTraffic Report Page 1

Queuing and Blocking Report Existing AM

01/12/2025

01/12/2025

Intersection: 4: Clements Rd & E Harney Ln

| Movement              | B    | WB   | 乮    |  |
|-----------------------|------|------|------|--|
| Directions Served     | LTR  | LTR  | LTR  |  |
| Maximum Queue (ft)    | 61   | 56   | 88   |  |
| Average Queue (ft)    | 22   | 2    | 4    |  |
| 95th Queue (ft)       | 49   | 21   | 21   |  |
| Link Distance (ft)    | 2909 | 2622 | 2606 |  |
| Upstream Blk Time (%) |      |      |      |  |
| Queuing Penalty (veh) |      |      |      |  |
| Storage Bay Dist (ft) |      |      |      |  |
| Storage Blk Time (%)  |      |      |      |  |
| Origina Donalty (yoh) |      |      |      |  |

Network Summary Network wide Queuing Penalty: 13

Existing AM Foothill and North County Landfills Study W-Trans

Queuing and Blocking Report Existing PM

Intersection: 1: SR 88 & E Harney Ln

| 3        | ~                 | 4                  | 2                  | 6               | 3                  |                       |                       |                       | 0                    | 0                     |
|----------|-------------------|--------------------|--------------------|-----------------|--------------------|-----------------------|-----------------------|-----------------------|----------------------|-----------------------|
|          |                   | 3 154              |                    |                 | 3543               |                       |                       | _                     |                      | _                     |
| SB       |                   |                    |                    |                 |                    |                       |                       | 140                   |                      |                       |
| NB       | TR                | 146                | 62                 | 118             | 2683               |                       |                       |                       | 0                    | 0                     |
| BB       | _                 | 41                 | 10                 | 30              |                    |                       |                       | 125                   |                      |                       |
| WB       | LTR               | 118                | 47                 | 92              | 7781               |                       |                       |                       |                      |                       |
| EB       | LTR               | 141                | 72                 | 125             | 2539               |                       |                       |                       |                      |                       |
| Movement | Directions Served | Maximum Queue (ft) | Average Queue (ft) | 95th Queue (ft) | Link Distance (ft) | Upstream Blk Time (%) | Queuing Penalty (veh) | Storage Bay Dist (ft) | Storage Blk Time (%) | Queuing Penalty (veh) |

Intersection: 2: Jack Tone Rd & E Harney Ln

| Movement              | æ    | EB | WB   | WB           | NB   | NB | SB           | SB           |  |
|-----------------------|------|----|------|--------------|------|----|--------------|--------------|--|
| Directions Served     | П    | ď  | Ц    | œ            | Ц    | œ  | 디            | œ            |  |
| Maximum Queue (ft)    | 62   | 20 | 61   | 23           | 92   | 62 | 69           | 37           |  |
| Average Queue (ft)    | 27   | 21 | 30   | 13           | 28   | 16 | 30           | 10           |  |
| 95th Queue (ft)       | 48   | 47 | 20   | 42           | 48   | 45 | 25           | 33           |  |
| Link Distance (ft)    | 7781 |    | 4982 |              | 2775 |    | 1650         |              |  |
| Upstream Blk Time (%) |      |    |      |              |      |    |              |              |  |
| Queuing Penalty (veh) |      |    |      |              |      |    |              |              |  |
| Storage Bay Dist (ft) |      | 52 |      | 52           |      | 25 |              | 25           |  |
| Storage Blk Time (%)  | 7    | က  | œ    | -            | œ    | 2  | 6            | <del>-</del> |  |
| Queuing Penalty (veh) | က    | က  | _    | <del>-</del> | 2    | 2  | <del>-</del> | _            |  |
|                       |      |    |      |              |      |    |              |              |  |

Intersection: 3: Site Driveway & E Harney Ln

| Movement               | NB   | NB |
|------------------------|------|----|
| Directions Served      | _    | ж. |
| Maximum Queue (ft)     | 34   | 23 |
| Average Queue (ft)     | 12   | 2  |
| 95th Queue (ft)        | 35   | 13 |
| Link Distance (ft)     | 1889 |    |
| Upstream Blk Time (%)  |      |    |
| Que uing Penalty (veh) |      |    |
| Storage Bay Dist (ft)  |      | 20 |
| Storage Blk Time (%)   | 0    |    |
| Queuing Penalty (veh)  | 0    |    |

Existing PM Foothill and North County Landfills Study W-Trans

SimTraffic Report Page 1

Queuing and Blocking Report Existing PM

01/12/2025

01/12/2025

Intersection: 4: Clements Rd & E Harney Ln

| Movement               | 8    | WB   | 乮    |  |
|------------------------|------|------|------|--|
| Directions Served      | LTR  | LTR  | LTR  |  |
| Maximum Queue (ft)     | 46   | 19   | 52   |  |
| Average Queue (ft)     | 21   | -    | 2    |  |
| 95th Queue (ft)        | 43   | 1    | 14   |  |
| Link Distance (ft)     | 2909 | 2622 | 2606 |  |
| Upstream Blk Time (%)  |      |      |      |  |
| Queuing Penalty (veh)  |      |      |      |  |
| Storage Bay Dist (ft)  |      |      |      |  |
| Storage Blk Time (%)   |      |      |      |  |
| One ling Penalty (veh) |      |      |      |  |

Network Summary
Network wide Queuing Penalty: 14

Existing PM Foothill and North County Landfills Study W-Trans

## Queuing and Blocking Report Future AM

Intersection: 1: SR 88 & E Harney Ln

| Movement               | EB   | WB   | R   | NB<br>NB | SB  | SB   |
|------------------------|------|------|-----|----------|-----|------|
| Directions Served      | LTR  | LTR  | _   | TR       | ٦   | TR   |
| Maximum Queue (ft)     | 186  | 207  | 21  | 143      | 06  | 283  |
| Average Queue (ft)     | 79   | 88   | 13  | 63       | #   | 136  |
| 95th Queue (ft)        | 147  | 169  | 37  | 121      | 48  | 237  |
| Link Distance (ft)     | 2539 | 7781 |     | 2683     |     | 3543 |
| Upstream Blk Time (%)  |      |      |     |          |     |      |
| Queuing Penalty (veh)  |      |      |     |          |     |      |
| Storage Bay Dist (ft)  |      |      | 125 |          | 140 |      |
| Storage Blk Time (%)   |      |      |     | -        | 0   | 5    |
| Que uing Penalty (veh) |      |      |     | 0        | 0   |      |

Intersection: 2: Jack Tone Rd & E Harney Ln

| EB WB WB NB SB | LT R LT R LT R    | 52 102 57 116 52 95 | 11 42 29 55 15 43  | 39 81 59 96 47 73 | 7781 4982 2775 1650 |                       |                       | 25 25 25 25           | 8 1 11 4 27 1 16 7   | 1 1 5 5 4 4 13 12     |
|----------------|-------------------|---------------------|--------------------|-------------------|---------------------|-----------------------|-----------------------|-----------------------|----------------------|-----------------------|
|                |                   |                     |                    |                   | 7781                |                       |                       | 25                    | 8                    | 1                     |
| Movement       | Directions Served | Maximum Queue (ft)  | Average Queue (ft) | 95th Queue (ft)   | Link Distance (ft)  | Upstream Blk Time (%) | Queuing Penalty (veh) | Storage Bay Dist (ft) | Storage Blk Time (%) | Queuing Penalty (veh) |

Intersection: 3: Site Driveway & E Harney Ln

| Movement              | NB<br>NB | NB |
|-----------------------|----------|----|
| Directions Served     | ٦        | Α. |
| Maximum Queue (ft)    | 99       | 24 |
| Average Queue (ft)    | 21       | 2  |
| 95th Queue (ft)       | 52       | 15 |
| Link Distance (ft)    | 1889     |    |
| Upstream Blk Time (%) |          |    |
| Queuing Penalty (veh) |          |    |
| Storage Bay Dist (ft) |          | 20 |
| Storage Blk Time (%)  | 0        |    |
| Queuing Penalty (veh) | 0        |    |

Future AM Foothill and North County Landfills Study W-Trans

SimTraffic Report Page 1

Queuing and Blocking Report Future AM

01/12/2025

01/12/2025

Intersection: 4: Clements Rd & E Harney Ln

| Movement              | 8    | WB   | 윋    | SB   |  |
|-----------------------|------|------|------|------|--|
| Directions Served     | LTR  | LTR  | LTR  | LTR  |  |
| Maximum Queue (ft)    | 64   | 56   | 45   | 2    |  |
| Average Queue (ft)    | 23   | 2    | œ    | 0    |  |
| 95th Queue (ft)       | 20   | 21   | 32   | 4    |  |
| Link Distance (ft)    | 2909 | 2622 | 2606 | 2647 |  |
| Upstream Blk Time (%) |      |      |      |      |  |
| Queuing Penalty (veh) |      |      |      |      |  |
| Storage Bay Dist (ft) |      |      |      |      |  |
| Storage Blk Time (%)  |      |      |      |      |  |
| Oughing Donally (sob) |      |      |      |      |  |

Network Summary
Network wide Queuing Penalty: 47

Future AM Foothill and North County Landfills Study W-Trans

## Queuing and Blocking Report Future PM

Intersection: 1: SR 88 & E Harney Ln

| NB NB SB SB NB NB NB SB NB | MB 118 23 102 102 77781 | Preclions Served LTR Assimum Queue (ft) 213 Assimum Queue (ft) 215 Seth Queue (ft) 95 Seth Queue (ft) 167 Ink Distance (ft) 167 Ink Distance (ft) 2539 Distance (ft) 2539 Distance (ft) (ft) 167 Assimum Penalty (veh) 160 Assimum |
|----------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|----------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

Intersection: 2: Jack Tone Rd & E Harney Ln

| SB       | œ                 | 41                 | 12                 | 37              |                    |                       |                       | 22                    | -                    | 2                     |
|----------|-------------------|--------------------|--------------------|-----------------|--------------------|-----------------------|-----------------------|-----------------------|----------------------|-----------------------|
| SB       | П                 | 8/                 | 32                 | 61              | 1650               |                       |                       |                       | 13                   | 2                     |
| NB       | œ                 | 62                 | 22                 | 54              |                    |                       |                       | 25                    | 2                    | 2                     |
| NB       | 디                 | 83                 | 38                 | 29              | 2775               |                       |                       |                       | 16                   | 2                     |
| WB       | œ                 | 23                 | 18                 | 47              |                    |                       |                       | 52                    | 2                    | 2                     |
| WB       | 니                 | 2                  | 31                 | 22              | 4982               |                       |                       |                       | 6                    | 2                     |
| B        | œ                 | 21                 | 23                 | 21              |                    |                       |                       | 52                    | က                    | က                     |
| 8        | П                 | 02                 | 30                 | 25              | 7781               |                       |                       |                       | 6                    | 4                     |
| Movement | Directions Served | Maximum Queue (ft) | Average Queue (ft) | 95th Queue (ft) | Link Distance (ft) | Upstream Blk Time (%) | Queuing Penalty (veh) | Storage Bay Dist (ft) | Storage Blk Time (%) | Queuing Penalty (veh) |

Intersection: 3: Site Driveway & E Harney Ln

| Movement              | NB   | NB |
|-----------------------|------|----|
| Directions Served     | ٦    | R  |
| Maximum Queue (ft)    | 32   | 24 |
| Average Queue (ft)    | 13   | 2  |
| 95th Queue (ft)       | 32   | 14 |
| Link Distance (ft)    | 1889 |    |
| Upstream Blk Time (%) |      |    |
| Queuing Penalty (veh) |      |    |
| Storage Bay Dist (ft) |      | 20 |
| Storage Blk Time (%)  | 0    |    |
| Queuing Penalty (veh) | 0    |    |
|                       |      |    |

Future PM Foothill and North County Landfills Study W-Trans

SimTraffic Report Page 1

Queuing and Blocking Report Future PM

01/12/2025

01/12/2025

Intersection: 4: Clements Rd & E Harney Ln

| Movement                | 留    | WB   | 乮    |  |
|-------------------------|------|------|------|--|
| Directions Served       | LTR  | LTR  | LTR  |  |
| Maximum Queue (ft)      | 92   | 19   | 35   |  |
| Average Queue (ft)      | 53   | -    | က    |  |
| 95th Queue (ft)         | 23   | 6    | 19   |  |
| Link Distance (ft)      | 2909 | 2622 | 2606 |  |
| Upstream Blk Time (%)   |      |      |      |  |
| Queuing Penalty (veh)   |      |      |      |  |
| Storage Bay Dist (ft)   |      |      |      |  |
| Storage Blk Time (%)    |      |      |      |  |
| Orienting Penalty (veh) |      |      |      |  |

Network Summary Network wide Queuing Penalty: 25

Future PM Foothill and North County Landfills Study W-Trans

Queuing and Blocking Report Existing plus Project AM

Intersection: 1: SR 88 & E Harney Ln

| Movement               | EB   | WB   | NB  | NB   | SB  | SB   |  |
|------------------------|------|------|-----|------|-----|------|--|
| Directions Served      | LTR  | LTR  | _   | TR   | _   | TR   |  |
| Maximum Queue (ft)     | 111  | 162  | 4   | 127  | 61  | 158  |  |
| Average Queue (ft)     | 45   | 72   | 1   | 4    | 13  | 29   |  |
| 95th Queue (ft)        | 88   | 129  | 32  | 86   | 4   | 131  |  |
| Link Distance (ft)     | 2539 | 7781 |     | 2683 |     | 3543 |  |
| Upstream Blk Time (%)  |      |      |     |      |     |      |  |
| Que uing Penalty (veh) |      |      |     |      |     |      |  |
| Storage Bay Dist (ft)  |      |      | 125 |      | 140 |      |  |
| Storage Blk Time (%)   |      |      |     | 0    |     | _    |  |
| Que uing Penalty (veh) |      |      |     | 0    |     | 0    |  |

Intersection: 2: Jack Tone Rd & E Harney Ln

| SB       | œ                 | 33                 | 17                 | 38              |                    |                       |                       | 22                    | 2                    | 2                     |
|----------|-------------------|--------------------|--------------------|-----------------|--------------------|-----------------------|-----------------------|-----------------------|----------------------|-----------------------|
| SB       | 5                 | 62                 | 78                 | 20              | 1650               |                       |                       |                       | 7                    | က                     |
| RB       | œ                 | 53                 | 13                 | 41              |                    |                       |                       | 25                    | ~                    | <b>—</b>              |
| NB       | 5                 | 09                 | 78                 | 47              | 2775               |                       |                       |                       | ∞                    | _                     |
| WB       | œ                 | 09                 | 21                 | 75              |                    |                       |                       | 22                    | 2                    | က                     |
| WB       | 5                 | 113                | 46                 | 84              | 4982               |                       |                       |                       | 10                   | က                     |
| 8        | œ                 | 49                 | 10                 | 36              |                    |                       |                       | 22                    | -                    | _                     |
| 8        | 5                 | \$                 | 89                 | 20              | 7781               |                       |                       |                       | 7                    | _                     |
| Movement | Directions Served | Maximum Queue (ft) | Average Queue (ft) | 95th Queue (ft) | Link Distance (ft) | Upstream Blk Time (%) | Queuing Penalty (veh) | Storage Bay Dist (ft) | Storage Blk Time (%) | Queuing Penalty (veh) |

Intersection: 3: Site Driveway & E Harney Ln

| Movement               | NB   | NB |
|------------------------|------|----|
| Directions Served      | _    | Я. |
| Maximum Queue (ft)     | 85   | 22 |
| Average Queue (ft)     | 31   | 4  |
| 95th Queue (ft)        | 89   | 20 |
| Link Distance (ft)     | 1889 |    |
| Upstream Blk Time (%)  |      |    |
| Queuing Penalty (veh)  |      |    |
| Storage Bay Dist (ft)  |      | 20 |
| Storage Blk Time (%)   | -    |    |
| Que uina Penalty (veh) | 0    |    |

Existing plus Project AM Foothill and North County Landfills Study W-Trans

SimTraffic Report Page 1

Queuing and Blocking Report Existing plus Project AM

01/12/2025

01/12/2025

Intersection: 4: Clements Rd & E Harney Ln

| Movement              | B    | WB   | æ    | SB   |  |
|-----------------------|------|------|------|------|--|
| Directions Served     | LTR  | LTR  | LTR  | LTR  |  |
| Maximum Queue (ft)    | 09   | 52   | 32   | က    |  |
| Average Queue (ft)    | 23   | 4    | က    | 0    |  |
| 95th Queue (ft)       | 20   | 18   | 18   | လ    |  |
| Link Distance (ft)    | 2909 | 2622 | 2606 | 2647 |  |
| Upstream Blk Time (%) |      |      |      |      |  |
| Queuing Penalty (veh) |      |      |      |      |  |
| Storage Bay Dist (ft) |      |      |      |      |  |
| Storage Blk Time (%)  |      |      |      |      |  |
| Queuing Penalty (veh) |      |      |      |      |  |

Network Summary Network wide Queuing Penalty: 14

Existing plus Project AM Foothill and North County Landfills Study W-Trans

Queuing and Blocking Report Existing plus Project PM

Intersection: 1: SR 88 & E Harney Ln

| SB       | TR L TR           | 63                 |                    | 49              | 2683 3543          |                       |                       | 140                   | 0 0                  | c                      |
|----------|-------------------|--------------------|--------------------|-----------------|--------------------|-----------------------|-----------------------|-----------------------|----------------------|------------------------|
| 乮        | ٦                 | 45                 | #                  | 33              |                    |                       |                       | 125                   |                      |                        |
| WB       | LTR               | 127                | 21                 | 86              | 7781               |                       |                       |                       |                      |                        |
| æ        | LTR               | 156                | 71                 | 129             | 2539               |                       |                       |                       |                      |                        |
| Movement | Directions Served | Maximum Queue (ft) | Average Queue (ft) | 95th Queue (ft) | Link Distance (ft) | Upstream Blk Time (%) | Queuing Penalty (veh) | Storage Bay Dist (ft) | Storage Blk Time (%) | Original Donothy (yoh) |

Intersection: 2: Jack Tone Rd & E Harney Ln

| 8        | œ                 | 60                 | 6                  | 22              |                    |                       |                       | 25                    | _                    | _                     |
|----------|-------------------|--------------------|--------------------|-----------------|--------------------|-----------------------|-----------------------|-----------------------|----------------------|-----------------------|
|          | ᄓ                 |                    |                    |                 | 1650               |                       |                       | . 4                   | 6                    | _                     |
|          | œ                 |                    |                    |                 | 16                 |                       |                       | 25                    | 2                    | 2                     |
| NB       | ᄓ                 | 64                 | 28                 | 48              | 27.75              |                       |                       |                       | 6                    | 2                     |
| WB       | œ                 | 26                 | 14                 | 4               |                    |                       |                       | 52                    | -                    | _                     |
| WB       | L                 | 69                 | 31                 | 23              | 4982               |                       |                       |                       | œ                    | 2                     |
| 8        | œ                 | 20                 | 21                 | 47              |                    |                       |                       | 52                    | က                    | 2                     |
| 8        | 느                 | 22                 | 56                 | 4               | 7781               |                       |                       |                       | 9                    | 2                     |
| Movement | Directions Served | Maximum Queue (ft) | Average Queue (ft) | 95th Queue (ft) | Link Distance (ft) | Upstream Blk Time (%) | Queuing Penalty (veh) | Storage Bay Dist (ft) | Storage Blk Time (%) | Queuing Penalty (veh) |

Intersection: 3: Site Driveway & E Harney Ln

| Movement              | SB<br>BB | NB |
|-----------------------|----------|----|
| Directions Served     | _        | Α. |
| Maximum Queue (ft)    | 36       | 29 |
| Average Queue (ft)    | 17       | 3  |
| 95th Queue (ft)       | 33       | 16 |
| Link Distance (ft)    | 1889     |    |
| Upstream Blk Time (%) |          |    |
| Queuing Penalty (veh) |          |    |
| Storage Bay Dist (ft) |          | 20 |
| Storage Blk Time (%)  | 0        |    |
| Queuing Penalty (veh) | 0        |    |

Existing plus Project PM Foothill and North County Landfills Study W-Trans

SimTraffic Report Page 1

Queuing and Blocking Report Existing plus Project PM

01/12/2025

01/12/2025

Intersection: 4: Clements Rd & E Harney Ln

| Movement              | 8    | WB   | 8    |  |
|-----------------------|------|------|------|--|
| Directions Served     | LTR  | LTR  | LTR  |  |
| Maximum Queue (ft)    | 21   | 17   | 27   |  |
| Average Queue (ft)    | 22   | 2    | 2    |  |
| 95th Queue (ft)       | 43   | 7    | 13   |  |
| Link Distance (ft)    | 2909 | 2622 | 2606 |  |
| Upstream Blk Time (%) |      |      |      |  |
| Queuing Penalty (veh) |      |      |      |  |
| Storage Bay Dist (ft) |      |      |      |  |
| Storage Blk Time (%)  |      |      |      |  |
| Queuing Penalty (veh) |      |      |      |  |

Network Summary Network wide Queuing Penalty: 14

Existing plus Project PM Foothill and North County Landfills Study W-Trans

# Queuing and Blocking Report Future plus Project AM Intersection: 1: SR 88 & E Harney Ln

| Movement              | 8    | WB   | B   | 윋    | SB  | SB       |  |
|-----------------------|------|------|-----|------|-----|----------|--|
| Directions Served     | LTR  | LTR  | _   | TR   | _   | TR       |  |
| Maximum Queue (ft)    | 201  | 272  | 89  | 197  | 74  | 288      |  |
| Average Queue (ft)    | 88   | 119  | 4   | 11   | 13  | 141      |  |
| 95th Queue (ft)       | 170  | 223  | 45  | 152  | 48  | 238      |  |
| Link Distance (ft)    | 2539 | 7781 |     | 2683 |     | 3543     |  |
| Upstream Blk Time (%) |      |      |     |      |     |          |  |
| Queuing Penalty (veh) |      |      |     |      |     |          |  |
| Storage Bay Dist (ft) |      |      | 125 |      | 140 |          |  |
| Storage Blk Time (%)  |      |      |     | 2    | 0   | 9        |  |
| Queuing Penalty (veh) |      |      |     | 0    | 0   | <b>—</b> |  |

Intersection: 2: Jack Tone Rd & E Harney Ln

| SB       | œ                 | 20                 | 33                 | 23              |                    |                       |                       | 22                    | 7                    | 13                     |
|----------|-------------------|--------------------|--------------------|-----------------|--------------------|-----------------------|-----------------------|-----------------------|----------------------|------------------------|
| SB       | 디                 | 101                | 4                  | 81              | 1650               |                       |                       |                       | 17                   | 14                     |
| NB       | œ                 | \$                 | 17                 | 49              |                    |                       |                       | 25                    | 2                    | 2                      |
| NB       | П                 | 133                | 29                 | 104             | 2775               |                       |                       |                       | 30                   | 2                      |
| WB       | œ                 | 63                 | 28                 | 09              |                    |                       |                       | 52                    | 4                    | 9                      |
| WB       | П                 | 112                | 47                 | 88              | 4982               |                       |                       |                       | 14                   | 9                      |
| B        | œ                 | 23                 | =                  | 33              |                    |                       |                       | 52                    | -                    | _                      |
| EB       | П                 | 96                 | 42                 | 9/              | 7781               |                       |                       |                       | 11                   | _                      |
| Movement | Directions Served | Maximum Queue (ft) | Average Queue (ft) | 95th Queue (ft) | Link Distance (ft) | Upstream Blk Time (%) | Queuing Penalty (veh) | Storage Bay Dist (ft) | Storage Blk Time (%) | Que uing Penalty (veh) |

Intersection: 3: Site Driveway & E Harney Ln

| Movement              | WB   | NB   | R  |  |
|-----------------------|------|------|----|--|
| Directions Served     | L    | _    | œ  |  |
| Maximum Queue (ft)    | 2    | 62   | 33 |  |
| Average Queue (ft)    | 0    | 30   | 4  |  |
| 95th Queue (ft)       | က    | 89   | 21 |  |
| Link Distance (ft)    | 2909 | 1889 |    |  |
| Upstream Blk Time (%) |      |      |    |  |
| Queuing Penalty (veh) |      |      |    |  |
| Storage Bay Dist (ft) |      |      | 20 |  |
| Storage Blk Time (%)  |      | -    | 0  |  |
| Queuing Penalty (veh) |      | 0    | 0  |  |

Future plus Project AM Foothill and North County Landfills Study W-Trans

SimTraffic Report Page 1

Queuing and Blocking Report Future plus Project AM Intersection: 4: Clements Rd & E Harney Ln

01/12/2025

01/12/2025

| Movement              | B    | WB   | 윋    | SB   |  |
|-----------------------|------|------|------|------|--|
| Directions Served     | LTR  | LTR  | LTR  | LTR  |  |
| Maximum Queue (ft)    | 81   | 52   | 47   | വ    |  |
| Average Queue (ft)    | 52   | 2    | œ    | 0    |  |
| 95th Queue (ft)       | 26   | 21   | 30   | മ    |  |
| Link Distance (ft)    | 2909 | 2622 | 2606 | 2647 |  |
| Upstream Blk Time (%) |      |      |      |      |  |
| Queuing Penalty (veh) |      |      |      |      |  |
| Storage Bay Dist (ft) |      |      |      |      |  |
| Storage Blk Time (%)  |      |      |      |      |  |
| Quering Penalty (veh) |      |      |      |      |  |

Network Summary Network wide Queuing Penalty: 51

Future plus Project AM Foothill and North County Landfills Study W-Trans

# Queuing and Blocking Report Future plus Project PM Intersection: 1: SR 88 & E Harney Ln

| Movement               | EB   | WB   | R   | NB   | SB  | SB   |  |
|------------------------|------|------|-----|------|-----|------|--|
| Directions Served      | LTR  | LTR  | _   | TR   | _   | TR   |  |
| Maximum Queue (ft)     | 181  | 131  | 99  | 211  | 8   | 163  |  |
| Average Queue (ft)     | 94   | 28   | 1   | 105  | 22  | 74   |  |
| 95th Queue (ft)        | 156  | 110  | 41  | 180  | 29  | 134  |  |
| Link Distance (ft)     | 2539 | 7781 |     | 2683 |     | 3543 |  |
| Upstream Blk Time (%)  |      |      |     |      |     |      |  |
| Que uing Penalty (veh) |      |      |     |      |     |      |  |
| Storage Bay Dist (ft)  |      |      | 125 |      | 140 |      |  |
| Storage Blk Time (%)   |      |      |     | က    | 0   | 0    |  |
| Que uing Penalty (veh) |      |      |     | 0    | 0   | 0    |  |

Intersection: 2: Jack Tone Rd & E Harney Ln

| Movement              | B    | EB | WB   | WB | NB   | NB | SB   | SB |  |
|-----------------------|------|----|------|----|------|----|------|----|--|
| Directions Served     | П    | œ  | Ц    | œ  | П    | œ  | П    | œ  |  |
| Maximum Queue (ft)    | 02   | 25 | 72   | 22 | 83   | 28 | 28   | 42 |  |
| Average Queue (ft)    | 30   | 22 | 32   | 19 | 88   | 21 | 32   | 13 |  |
| 95th Queue (ft)       | 22   | 46 | 26   | 49 | 99   | 23 | 09   | 33 |  |
| Link Distance (ft)    | 7781 |    | 4982 |    | 2775 |    | 1650 |    |  |
| Upstream Blk Time (%) |      |    |      |    |      |    |      |    |  |
| Queuing Penalty (veh) |      |    |      |    |      |    |      |    |  |
| Storage Bay Dist (ft) |      | 52 |      | 52 |      | 25 |      | 22 |  |
| Storage Blk Time (%)  | 6    | က  | 6    | 2  | 16   | 2  | 13   | -  |  |
| Queuing Penalty (veh) | 4    | က  | 2    | 2  | 2    | 2  | 2    | 2  |  |
|                       |      |    |      |    |      |    |      |    |  |

Intersection: 3: Site Driveway & E Harney Ln

| Movement               | SB<br>B | NB |
|------------------------|---------|----|
| Directions Served      | _       | Α. |
| Maximum Queue (ft)     | 41      | 22 |
| Average Queue (ft)     | 17      | 3  |
| 95th Queue (ft)        | 40      | 15 |
| Link Distance (ft)     | 1889    |    |
| Upstream Blk Time (%)  |         |    |
| Queuing Penalty (veh)  |         |    |
| Storage Bay Dist (ft)  |         | 90 |
| Storage Blk Time (%)   | 0       |    |
| Que uina Penalty (veh) | 0       |    |

Future plus Project PM Foothill and North County Landfills Study W-Trans

SimTraffic Report Page 1

Queuing and Blocking Report Future plus Project PM Intersection: 4: Clements Rd & E Harney Ln

01/12/2025

01/12/2025

| Movement              | B    | WB   | 뫋    |  |
|-----------------------|------|------|------|--|
| Directions Served     | LTR  | LTR  | LTR  |  |
| Maximum Queue (ft)    | 4    | 17   | 34   |  |
| Average Queue (ft)    | 30   | -    | က    |  |
| 95th Queue (ft)       | 72   | 6    | 18   |  |
| Link Distance (ft)    | 2909 | 2622 | 2606 |  |
| Upstream Blk Time (%) |      |      |      |  |
| Queuing Penalty (veh) |      |      |      |  |
| Storage Bay Dist (ft) |      |      |      |  |
| Storage Blk Time (%)  |      |      |      |  |
| Queuing Penalty (veh) |      |      |      |  |

Network Summary Network wide Queuing Penalty: 26

Future plus Project PM Foothill and North County Landfills Study W-Trans





### **MEMORANDUM**

**Date:** March 25, 2025 **Job No.:** 21202-23

**To:** Rob Carnachan, Senior Environmental Planner, WRA, Inc.

From: Yilin Tian, Project Environmental Engineer, Baseline Environmental Consulting

Subject: Greenhouse Gas Emissions Technical Study, North County Sanitary Landfill and

Recycling Center Solid Waste Facility Permit Amendment Project, Lodi, California

Baseline Environmental Consulting (Baseline) has prepared this technical study to evaluate the potential greenhouse gas (GHG) emissions impacts associated with the proposed North County Sanitary Landfill and Recycling Center (North County Landfill) Solid Waste Facility Permit Amendment Project (project) located in Lodi, California. This technical memorandum includes an overview of existing GHG emission conditions and regulations, and an analysis of the potential GHG emission impacts associated with the implementation of the project. This study will be used to support the environmental review for the project under the California Environmental Quality Act (CEQA).

### PROJECT DESCRIPTION

The project site is located at 17720 East Harney Lane and approximately 0.35 miles south of East Harney Lane via an access road (**Figure 1**). The project site has operated as a solid waste disposal and transfer/processing facility since 1991. The total permitted area for all facility operations is 320 acres and the landfilling area is 185 acres. The northern one-third of the property between the landfill and Harney Lane is a mitigation area established to preserve wetlands in the landfill's footprint. In addition to the waste disposal area, the four main buildings on site are a recycling center, office/maintenance building, water pump house building, and scale house. There is a permanent berm, set back 100 feet from the property line, surrounding the project site's perimeter.

The project consists of a proposed amendment to the Solid Waste Facility Permit to increase the maximum allowed daily refuse disposal and the number of daily incoming refuse vehicles from 1,200 tons per day and 850 vehicles per day to 4,000 tons and 1,200 vehicles per day. This increase would involve a change in refuse truck routing; approximately 50 transfer trucks that currently go to the Foothill Landfill would be re-routed to the North County Landfill. The refuse trucks would access the North County Landfill via East Harney Lane and the North County Landfill access road. The projected annual intake would increase from 250,000 tons in 2024 to 660,000 tons in 2026, then increase 3 percent annually thereafter. In addition, the North County Landfill currently operates from 7:00 am to 5:00 pm, seven days per week. The project



would add one more hour to the Noth County Landfill's daily operations between 6:00 am and 7:00 am to allow the acceptance of commercial waste during this time period. The project would not change the North County Landfill's capacity and would not involve new construction. At current operational levels, the projected closure year of the landfill is 2046. With the implementation of the project, the projected closure date would move up three years to 2043.

In 2006, the North County Landfill installed a landfill gas (LFG) collection system, including a flare, vertical wells, and connecting piping. Additional LFG collectors, primarily horizontal collection trenches, will continue to be installed in the refuse and connected to the LFG collection system as the landfill is constructed. Collected LFG is combusted in a temperature-controlled flare in accordance with the existing San Joaquin Valley Air Pollution Control District (Valley Air District) Title V Permit (N-119-1-12). A new 1,200 standard cubic feet per minute low nitrogen oxides (NOx) flare was installed in October 2024 and is currently used as the primary flare. The previous flare will be used as back-up.

### **ENVIRONMENTAL SETTING**

### **Climate Change and GHG Emissions**

Climate change refers to change in the Earth's weather patterns, including the rise in temperature because of an increase in heat-trapping GHGs in the atmosphere. Existing GHGs allow about two-thirds of the visible and ultraviolet light from the sun to pass through the atmosphere and be absorbed by the Earth's surface. To balance the absorbed incoming energy, the surface radiates thermal energy back to space at longer wavelengths, primarily in the infrared part of the spectrum. Much of the thermal radiation emitted from the surface is absorbed by the GHGs in the atmosphere and is re-radiated in all directions. Because part of the re-radiation is back toward the Earth's surface and the lower atmosphere, the global surface temperatures are elevated above what they would be in the absence of GHGs. This process of trapping heat in the lower atmosphere is known as the greenhouse effect.

An increase of GHGs in the atmosphere affects the energy balance of the Earth and results in a global warming trend. Increases in global average temperatures have been observed since the mid-20th century and have been linked to observed increases in GHG emissions from anthropogenic sources. The primary GHG emissions of concern are carbon dioxide ( $CO_2$ ), methane ( $CH_4$ ), and nitrous oxide ( $N_2O$ ). Each GHG has a different global warming potential. For instance, methane traps about 25 times more heat per molecule than  $CO_2$ . Therefore, emissions of GHGs are reported in metric tons of carbon dioxide equivalents ( $CO_2e$ ), wherein each GHG is weighted by its global warming potential relative to  $CO_2$ .

<sup>1</sup> California Air Resources Board (CARB), 2022. 2022 Scoping Plan for Achieving Carbon Neutrality. December



According to the Intergovernmental Panel on Climate Change (IPCC), over the past few hundred years the atmospheric concentrations of CO<sub>2</sub> have increased to unprecedented levels compared to previous fluctuations in CO<sub>2</sub> concentrations observed over the past 800,000 years due to anthropogenic sources. According to a 2022 report, eight of the top 10 warmest years on record since 1880 had occurred in the last decade based on measurements of the Earth's global average surface temperature.<sup>2</sup> The global increases in CO<sub>2</sub> concentrations primarily are related to fossil fuel combustion and land use change (e.g., deforestation). The dominant anthropogenic sources of methane are from ruminant livestock, fossil fuel extraction and use, rice paddy agriculture, and landfills, while the dominant anthropogenic sources of N<sub>2</sub>O are from ammonia for fertilizer and industrial activity. Fossil fuels combustion and industrial processes account for the largest share and growth in gross GHG emissions.<sup>3</sup>

### **Effects of GHG Emissions**

In March 2023, the IPCC published the final installment of the Six Assessment Report (AR6), summarizing the state of knowledge of climate change, its widespread impacts and risks, and climate change mitigation and adaptation. The IPCC report found that the consequences of global warming already are being seen because of a 1.1 degree Celsius (°C) increase in preindustrial levels, such as extreme weather, rising sea levels, and diminishing Arctic Sea ice. Climate impacts on ecosystems and humans are widespread across the globe and vulnerable communities who have historically contributed the least to current climate change are disproportionately affected.

Global warming will continue to increase in the near term (2021-2040) mainly due to increased cumulative  $CO_2$  emissions and is likely to reach 1.5°C above pre-industrial levels between 2021 and 2040. Risks and projected adverse impacts and related losses and damages from climate change will escalate with every increment of global warming. The IPCC states that deep, rapid, and sustained reductions in GHG emissions would lead to a discernible slowdown in global warming within around two decades, and also to discernible changes in atmospheric composition within a few years.

<sup>&</sup>lt;sup>2</sup> National Aeronautics and Space Administration (NASA), 2022. 2021 Tied for 6th Warmest Year in Continued Trend, NASA Analysis Shows. Available at: https://climate.nasa.gov/news/3140/2021-tied-for-6th-warmest-year-in-continued-trend-nasa-analysis-shows/, accessed October 7, 2023. Posted January 13.

<sup>&</sup>lt;sup>3</sup> Intergovernmental Panel on Climate Change (IPCC), 2023. Summary for Policymakers. In: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Available at: https://www.ipcc.ch/report/ar6/syr/downloads/report/IPCC\_AR6\_SYR\_SPM.pdf



### **Landfill Gas**

LFG is a natural byproduct of the decomposition of organic material in landfills. Methane and carbon dioxide are the primary constituents of LFG and are produced by the decomposition of organic material within the landfill under anaerobic conditions. By volume, LFG is typically comprised of about 50 percent methane and 50 percent carbon dioxide and water vapor. In addition to these main components, LFG contains small amounts of nitrogen, oxygen, and hydrogen, less than 1 percent non-methane organic compounds (NMOCs), and trace amounts of inorganic compounds.

Methane emitted from landfills is considered anthropogenic, because it is a direct result of human activities, specifically the disposal of organic waste in oxygen-limited environments where microorganisms break down this waste and produce methane as a byproduct. However, the carbon dioxide emitted from landfills it considered biogenic rather than anthropogenic because it's a natural byproduct of the decomposition of organic matter, which is part of the natural carbon cycle and not solely from human activities. Therefore, the analysis of climate change impacts related to anthropogenic emissions from landfills focuses on methane and not carbon dioxide.

The rate of methane generation is influenced by the amount of bioavailable carbon, the characteristics of the waste (e.g., composition and age), and the environmental conditions that support anaerobic bacterial activity. As waste is continuously deposited in the landfill, methane production gradually increases throughout the landfill's operational life, typically reaching its highest level within several years after the final year of waste disposal, often referred to as the landfill closure year. After closure and capping the landfill, the rate of methane generation typically declines due to reduced moisture infiltration.

According to the Title V Permit (N-119-1-12) for the North County Landfill, the flare for the LFG collection system must attain a methane destruction efficiency of at least 99 percent by weight. In other words, flare combustion must convert at least 99 percent of the methane in LFG to carbon dioxide (a less potent GHG) and other compounds.

### **REGULATORY SETTING**

### **Federal Regulations**

On April 2, 2007, the U.S. Supreme Court ruled that  $CO_2$  is an air pollutant as defined under the Clean Air Act, and that the Environmental Protection Agency (EPA) has the authority to regulate emissions of GHGs (U.S. Supreme Court, 2007). The EPA made two distinct findings regarding GHGs under Section 202(a) of the Clean Air Act, as follows:



- Endangerment Finding: The current and projected concentrations of the six key well-mixed GHGs (CO<sub>2</sub>, CH<sub>4</sub>, N<sub>2</sub>O, hydrofluorocarbons, perfluorocarbons, and sulfur Hexafluoride) in the atmosphere threaten the public health and welfare of current and future generations. The EPA also found that the combined emissions of these GHGs from new motor vehicles and new motor vehicle engines contribute to the GHG pollution that endangers public health and welfare under Clean Air Act Section 202(a).
- Cause or Contribute Finding: The combined emissions of these well-mixed GHGs from new motor vehicles and new motor vehicle engines contribute to the GHG pollution that threatens public health and welfare.

In 2016, the EPA established two regulations—the New Source Performance Standards (NSPS) for new landfills and the Emission Guidelines (EG) for existing landfills—aimed at reducing methane emissions from landfill gas. The EG require the installation of a LFG collection and control system at municipal solid waste (MSW) landfills that exceed a specified design capacity and NMOC emission threshold.

### **State Regulations**

The State of California has established the following long-term climate action goals:

- Assembly Bill (AB) 32: Reduce GHG emissions to 1990 levels by 2020.
- Senate Bill (SB) 32: Reduce GHG emissions to 40 percent below 1990 levels by 2030.
- **AB 1279:** Achieve carbon neutrality as soon as possible, but no later than 2045 and maintain net negative GHG emissions thereafter; and reduce GHG emissions to 85 percent below 1990 levels by 2045.

### **Landfill Methane Regulation**

In response to California Assembly Bill 32, the California Air Resources Board (CARB) adopted the Landfill Methane Regulation in 2010, which requires MSW landfills to reduce methane and other air pollutant emissions through emissions monitoring and capturing fugitive methane emissions. MSW landfills are regulated under local air district rules that implement the federal requirements of the NSPS and EG, 40 Code of Federal Regulations Part 60 Subparts WWW and Cc, for MSW landfills. CARB and 22 air districts, including the San Joaquin Valley Air Pollution Control District (Valley Air District), entered into memoranda of understanding to enable the districts to implement and enforce the Landfill Methane Regulation.



### The Short-Lived Climate Pollutant (SLCP) Reduction Strategy and SB 1383

Promulgated in 2016, California Senate Bill (SB) 1383 set a statewide target to reduce organic waste disposed of in landfills of 50 percent by 2020 and 75 percent by 2025. In addition, SB 1383 requires recovering at least 20 percent of disposed edible food for human consumption by 2025. As organic waste is a primary substance that generates LFG, diverting organic waste from landfills can reduce LFG emissions.

The Short-Lived Climate Pollutant (SLCP) Reduction Strategy, adopted by CARB in 2017, is California's plan for reducing emissions of high global-warming potential gases with short atmospheric lifetimes. SLCPs include methane, hydrofluorocarbons, and anthropogenic black carbon. In accordance with SB 1383, the SLCP Reduction Strategy has set the following targets for statewide reductions in SLCP emissions:

- 40 percent below 2013 levels by 2030 for methane and hydrofluorocarbons; and
- 50 percent below 2013 levels by 2030 for anthropogenic black carbon.

The SLCP Reduction Strategy also provides specific direction for reductions from dairy and livestock operations and from landfills by diverting organic materials.

### California On-Road Vehicle Emission Regulations

The State of California has established statewide emission and fuel economy regulations for vehicles that align with or supersede the national standards. The key state regulations related to vehicles emissions are as follows:

- The Pavley Regulations (AB 1493), as amended in 2009, required a 30 percent reduction in state GHG emissions from new passenger vehicles from 2009 through 2016.
- The Advanced Clean Cars Program extends the Pavley Regulations beyond 2016 and established a technology mandate for zero-emission vehicles (ZEVs).
- The Advanced Clean Cars II Program requires all new passenger cars, trucks, and sport utility vehicles sold in California to be ZEVs by 2035.
- Executive Order N-79-20 established a goal that 100 percent of in-state sales of new passenger cars and light-duty trucks will be zero-emission by 2035, which is supported by the Advanced Clean Cars II Regulations.



- The Advanced Clean Trucks regulation requires between 40 and 75 percent of new medium- and heavy-duty vehicles sold in California to be ZEVs or near-zero-emissions vehicles by 2035.
- The Low-Carbon Fuel Standard (Executive Order S-1-07), as amended in 2019, requires a 20 percent reduction in the carbon intensity of California's transportation fuels by 2030.
- SB 375 establishes regional GHG emissions reduction targets from passenger vehicles for 2020 and 2035 by requiring metropolitan planning organizations to develop and implement Sustainable Communities Strategies that align regional transportation planning efforts with regional housing allocation needs.
- The Truck and Bus Regulation, as amended in 2014, requires heavy-duty diesel vehicles
  that operate in California to reduce TAC emissions from their exhaust. As of January 1,
  2023, nearly all trucks and buses are required to have 2010 or newer model year
  engines, to reduce particulate matter and oxides of nitrogen emissions.
- The Tractor-Trailer GHG Regulation (13 CCR 1956), adopted by CARB in 2008, requires tractors and trailers to use aerodynamic technologies and low rolling resistance tires, to reduce fuel use and emissions.

### California's Climate Change Scoping Plan

In December 2008, CARB adopted the Climate Change Scoping Plan to identify how the state can achieve its 2020 climate action goal under AB 32. In 2017, CARB updated the Scoping Plan to identify how the state can achieve its 2030 climate action goal under SB 32 and substantially advance toward its 2050 climate action goal under Executive Order S-3-05. The 2017 Scoping Plan includes the regulatory programs identified above, such as the Advanced Clean Cars Program, Low-Carbon Fuel Standard, Renewable Portfolio Standard Program, energy efficiency standards, SLCP Reduction Strategy, and Cap-and-Trade Program (CARB, 2017b).

In December 2022, CARB adopted the 2022 Scoping Plan for Achieving Carbon Neutrality (2022 Scoping Plan), which outlines a roadmap to achieve targets for carbon neutrality and reduce anthropogenic GHG emissions by 85 percent below 1990 levels no later than 2045 (CARB, 2022). Building on the 2017 Scoping Plan, the 2022 Scoping Plan evaluates the progress made toward meeting the 2030 GHG emissions reduction target that was established in SB 32 and identifies a technologically feasible, cost-effective, and equity-focused path to achieve carbon neutrality by 2045 or earlier.

In December 2022, CARB adopted the 2022 Scoping Plan for Achieving Carbon Neutrality (2022 Scoping Plan), which outlines a roadmap to achieve targets for carbon neutrality and reduce



anthropogenic GHG emissions by 85 percent below 1990 levels no later than 2045. <sup>4</sup> Building on the 2017 Scoping Plan, the 2022 Scoping Plan evaluates the progress made toward meeting the 2030 GHG reduction target established in SB 32 and identifies a technologically feasible, cost-effective, and equity-focused path to achieve carbon neutrality by 2045. The 2022 Scoping Plan presents an approach for an aggressive reduction of fossil fuels and a rapid transition to renewable energy resources and zero-emission vehicles. The 2022 Scoping Plan identifies key sectors such as transportation sustainability, clean electricity grid, sustainable manufacturing and buildings, carbon dioxide removal and capture, short-lived climate pollutants, and natural and working lands. The 2022 Scoping Plan identifies actions and outcomes such as rapidly moving to zero-emission transportation; electrifying cars, buses, trains, and trucks; phasing out the use of fossil gas used for heating homes and buildings; clamping down on chemicals and refrigerants; providing communities with sustainable options for walking, biking, and public transit; building out clean, renewable energy resources (such as solar arrays and wind turbine capacity) to displace fossil-fuel fired electrical generation; and scaling up new options such as renewable hydrogen and biomethane.

The 2022 Scoping Plan outlines several strategies to reduce methane emissions from landfills, with a focus on organic waste diversion, composting and anerobic digestion capacity expansion, and existing landfill operational practice improvement.

### **Regional Regulations**

The project is located in the San Joaquin Valley Air Basin, which is under the jurisdiction of the Valley Air District. The mission of the Valley Air District is to improve the health and quality of life for all Valley residents through efficient, effective and entrepreneurial air quality management strategies. The Valley Air District has implemented these plans and adopted nearly 650 rules that have resulted in significant emissions reductions. Rule 4642 (Solid Waste Disposal Sites) limits volatile organic compound emissions from solid waste disposal sites.

Climate change is not caused by any individual emissions source but by a large number of sources around the world emitting GHGs that collectively create a significant cumulative impact. CEQA requires agencies in California to analyze such impacts by evaluating whether a proposed project would make a "cumulatively considerable" contribution to the significant cumulative impact on climate change.

In 2008, Valley Air District adopted the Climate Change Action Plan (CCAP). The CCAP directed the District Air Pollution Control Officer to develop guidance to assist Lead Agencies, project proponents, permit applicants, and interested parties in assessing and reducing the impacts of project specific GHG emissions on global climate change. In 2009, the Valley Air District adopted

<sup>4</sup> California Air Resources Board (CARB), 2022. Scoping Plan for Achieving Carbon Neutrality.



the Guidance for Valley Land-use Agencies in Addressing GHG Emission Impacts for New Projects under CEQA and a policy entitled Addressing GHG Emission Impacts for Stationary Source Projects Under CEQA When Serving as the Lead Agency (Policy). In 2015, the Valley Air District has adopted thresholds of significance to assist lead agencies in the evaluation and mitigation of air quality impacts under CEQA (CEQA Guidance). The Valley Air District has not established a numerical GHG emissions threshold in the absence of supporting scientific evidence. Instead, the Valley Air District recommends assessing project-specific GHG emission impacts on global climate change based on the tiered approach specified in the Policy:

- Projects complying with an approved GHG emission reduction plan or GHG mitigation program which avoids or substantially reduces GHG emissions within the geographic area in which the project is located would be determined to have a less than significant individual and cumulative impact for GHG emissions. Such plans or programs must be specified in law or approved by the Lead Agency with jurisdiction over the affected resource and supported by a CEQA compliant environmental review document adopted by the Lead Agency. Projects complying with an approved GHG emission reduction plan or GHG mitigation program would not be required to implement Best Performance Standards (BPS).
- Projects implementing BPS would not require quantification of project specific GHG
  emissions. Consistent with CEQA Guideline, such projects would be determined to have
  a less than significant individual and cumulative impact for GHG emissions.
- Projects not implementing BPS would require quantification of project specific GHG
  emissions and demonstration that project-specific GHG emissions would be reduced or
  mitigated by at least 29 percent compared to Business as Usual (BAU), including GHG
  emission reductions achieved since the 2002-2004 baseline period, consistent with GHG
  emission reduction targets established in CARB's 2008 Scoping Plan. Projects achieving
  at least a 29 percent GHG emission reduction compared to BAU would be determined to
  have a less than significant individual and cumulative impact for GHG emissions.

The Valley Air District has not approved BPS for landfills but has identified an illustrative BPS which is listed below.

**Illustrative BPS**: Landfills shall comply with CARB Regulation to Reduce Methane Emissions from Municipal Solid Waste Landfills.

<sup>&</sup>lt;sup>5</sup>San Joaquin Valley Air Pollution Control District, 2009. District Policy – Addressing GHG Emission Impacts for Stationary Source Projects Under CEQA When Serving as the Lead Agency. Available at: https://ww2.valleyair.org/media/disb2jna/2-ccap-final-district-policy-ceqa-ghg-dec-17-2009.pdf



### SIGNIFICANCE CRITERIA

According to the CEQA Guidelines Appendix G, implementation of the project would have a significant impact related to GHG emissions if it would:

- 1. Generate GHG emissions, either directly or indirectly, that may have a significant impact on the environment; or
- 2. Fundamentally conflict with an applicable plan, policy, or regulation adopted for the purposes of reducing the emissions of GHGs.

### **ANALYSIS AND FINDINGS**

### **GHG Emissions from Project Operation**

The project would not change the North County Landfill's design capacity of 41.2 million cubic yards of disposal and would not involve construction of new facilities. The amount of waste-in-place when the landfill reaches its design capacity would remain the same. The project would increase the maximum amount of allowed daily refuse disposal and the number of daily incoming refuse trucks from 1,200 tons per day and 850 trucks per day to 4,000 tons and 1,200 trucks per day. This increase would involve a change in refuse truck routing; approximately 51 transfer trucks that currently go to the Foothill Landfill would be re-routed to the North County Landfill. The average trip distance for the re-routed trucks is expected to decrease due to the location of the North County Landfill. Although the number of truck trips to North County Landfill would increase, partially due to routing changes, the total vehicle miles travelled by refuse trucks would decrease by approximately 5.7 percent from 1,678,144 miles to 1,582,797 miles in 2026. The increase in daily refuse disposal would increase the use of off-road equipment associated with landfill operations. Up to six new employees would be needed for the increase in waste disposal and truck trip-related activity.

Implementation of the project would result in net increases in off-road equipment usage on the project site, and project-generated vehicle trips along the haul route. Although the project would not change the North County Landfill design capacity, the rate of additional cell and module construction on the project site would increase to accommodate the amount of waste accepted with the proposed increase in maximum allowed daily refuse disposal. Compared to the current operation condition, the project could increase the rate of LFG generated and collected but is not expected to substantially change the total amount of LFG generated over the lifetime of the landfill since the total waste-in-place would remain the same once landfill capacity is reached.

For the baseline condition (2024) and project condition, GHG emissions from off-road equipment usage were calculated using the California Emissions Estimator Model (CalEEMod)



version 2022.1 methodologies. For mobile sources, GHG emissions from project-generated vehicle trips were estimated using year 2024 emission factors from CARB's EMFAC2021 database. Because statewide vehicle emission standards are required to improve over time in accordance with vehicle emission regulations, using the emission factors for the baseline year (2024) provides the maximum expected annual emissions. The input parameters and assumptions used to estimate GHG emissions from off-road heavy construction equipment and mobile sources are provided in Attachment A of the Air Quality Technical Study<sup>6</sup> for the proposed project (also includes in **Attachment A** of this report).

The long-term LFG emissions of methane for the North County Landfill were estimated using the EPA Landfill Gas Emission Model (LandGEM,) version 3.1 and AP-42 default inputs. Information about historical waste acceptance rates (1991 to 2023), closure year (project condition), and predicted annual increases in waste intake were provided by the applicant. For the baseline condition, it was assumed that 250,000 tons of waste was accepted in 2024, and a three percent increase in waste disposal rate per year thereafter. Under this scenario, the North County Landfill would reach the 20.6 million tons design capacity by 2059. For the project condition, it was assumed that the waste disposal rate would increase from 250,000 tons in 2024 to 660,000 tons in 2026, then a three percent increase in waste disposal rate per year thereafter. Under this scenario, the North County Landfill would reach the 20.6 million tons design capacity by 2043.

As described above, LFG-derived CO<sub>2</sub> emissions (including CO<sub>2</sub> from combustion of methane at the flare) are considered biogenic and a part of the natural carbon cycle, and are not considered an anthropogenic contributor to climate change; therefore, the biogenic CO<sub>2</sub> emissions from LFG are not included in the evaluation of the project's potential impacts on climate change from GHG emissions.

Methane content in the LFG was assumed to be 50 percent. Although the North County Landfill has a landfill gas collection system, those systems are not 100 percent efficient in collecting LFG and hence fugitive emissions of methane would still occur. With the absence of site-specific data, LFG collection system collection efficiencies, which are subject to landfill cover type, were obtained from 40 CFR Part 98 subpart HH. The North County Landfill is only partially built and as such all cover on the site is either daily or intermediate cover. Construction of final covers are planned to be done in conjunction with the excavation and construction of future modules.

<sup>6</sup> Baseline Environmental Consulting, 2025. Air Quality Technical Study, North County Sanitary Landfill and Recycling Center Solid Waste Facility Permit Amendment Project, Lodi, California. March.

<sup>&</sup>lt;sup>7</sup> Estimated based on the waste design capacity of 41.2 million cubic yards reported in the Solid Waste Facility Permit 39-AA-0022 and an average refuse density of 1,000 pounds per cubic yards.



According to the North County Landfill Joint Technical Document revised in 2024, 8 a final cover for a portion of the landfill is proposed by 2029. Therefore, it was assumed that most of the landfill areas are covered by intermediate cover between 2024 and 2029 (collection efficiency 65 percent), then 50 percent of the landfill areas will be cover by a final cover between 2030 and the closure year (weighted average collection efficiency 75 percent). After the closure year, it was assumed that all landfill areas will be covered by a final cover (collection efficiency 85 percent). In addition, it was assumed that 10 percent of the fugitive methane emissions are oxidized to CO<sub>2</sub> as the gas passes through the landfill soil cover. The collected LFG would be combusted in a temperature-controlled flare. During combustion, gaseous hydrocarbons react with atmospheric oxygen to form CO<sub>2</sub> and water. The destruction efficiency is defined as the percentage of a specific pollutant in the flare vent gas that is converted to a different compound (such as CO<sub>2</sub>). Methane destruction efficiency for the flare was assumed to be 99 percent based on the Title V Permit.

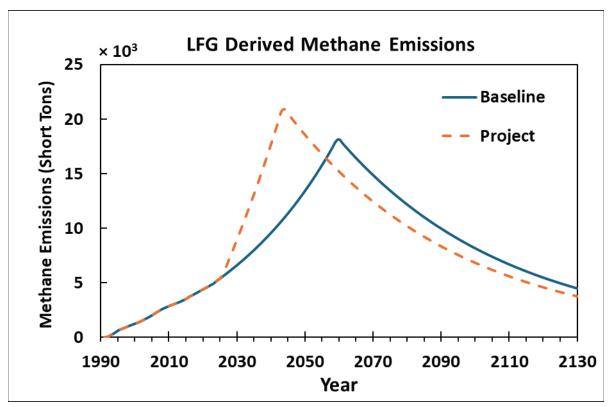
The input parameters, assumptions, LandGEM outputs, and associated calculations for estimating LFG derived methane emissions are provided in **Attachment A**. As shown in **Table 1**, the project's estimated net increase in average annual GHG emissions from operation would total approximately 2,537 metric tons CO<sub>2</sub>e in year 2026. GHG emissions from off-road equipment and landfill methane emissions would increase with the implementation of the project due to the increase waste intake and associated landfill operations. However, GHG emissions from on-road mobile sources would decrease by 230 metric tons CO<sub>2</sub>e per year, mainly attributable to the shorter truck trip distance of the re-routed trucks. It is to be noted that GHG emissions from off-road and on-road mobile sources in later years would be lower due to the increasingly stringent emissions standards and fleet turnover (including construction off-road equipment, trucks, and on-road passenger vehicles).

Table 1. Estimated Annual GHG Emissions (metric tons CO₂e per year)

| Emission Scenarios             | Off-Road<br>Equipment | On-Road<br>Mobile Sources | Landfill Methane<br>Emissions | Total  |
|--------------------------------|-----------------------|---------------------------|-------------------------------|--------|
| Baseline Condition             | 1,115                 | 4,354.4                   | 40,933                        | 46,463 |
| Project Condition (As of 2026) | 1,978                 | 4,124.7                   | 42,898                        | 49,000 |
| Net Difference                 | 863                   | -230                      | 1,904                         | 2,537  |

Source: Attachment A.

9


<sup>&</sup>lt;sup>8</sup> San Joaquin County Public Works, 2024. Joint Technical Document for North County Recycling Center and Sanitary Landfill. August 30.

<sup>&</sup>lt;sup>9</sup> U.S. EPA, 2020. Documentation For Greenhouse Gas Emission and Energy Factors Used in the Waste Reduction Model (WARM). Management Practices Chapters. November. https://www.epa.gov/sites/default/files/2020-12/documents/warm\_management\_practices\_v15\_10-29-2020.pdf.



The methane emissions from LFG for 2026 shown in **Table 1** above were estimated to represent the project year (2026) impact. As waste is continuously deposited in the landfill, methane production would gradually increase throughout the landfill's operational life. After closure and capping the landfill, the rate of methane generation typically declines due to reduced moisture infiltration. The overall methane generation rates for the baseline and project conditions were estimated using LandGEM and are illustrated in **Chart 1**. As shown in **Chart 1**, the project condition (orange dashed line) results in an earlier and higher peak methane emission rate compared to the baseline condition (blue line). After the closure year, methane emissions under both conditions decline, and the project condition shows a lower long-term emission rate compared to the baseline condition.





To represent the overall impact of the project, total LFG-derived methane emissions over 50 years past the project year (2026 to 2076) were estimated for the baseline condition and the project condition and then averaged to obtained representative average annual GHG emissions rates. The assumptions and associated calculations for estimating LFG-derived methane emissions are provided in **Attachment A.** Over 50 years, the LFG generated under baseline and project conditions would result in total CO<sub>2</sub>e emissions of 2,864,788 metric tons (57,296 metric



tons per year) and 2,941,459 metric tons (58,829 metric tons per year), respectively. On average, the project would increase annual  $CO_2e$  emissions by 1,533 metric tons per year.

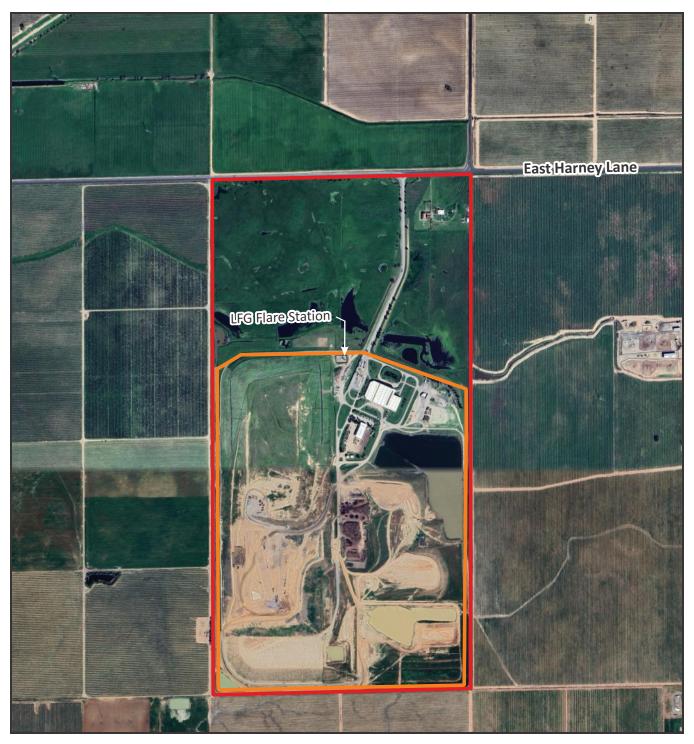
As discussed above, the Valley Air District has not established a numerical GHG emissions threshold and recommends evaluating project-level GHG emissions impacts based on compliance with an approved GHG emission reduction plan or GHG mitigation program or implementation of BPS. The North County Landfill is required to comply with the CARB Landfill Methane Regulation, which requires MSW landfills to reduce methane and other air pollutant emissions through emissions monitoring and capturing of methane emissions. Since the project will comply with a statewide plan for GHG reductions, the project would have a less than significant individual and cumulative impact for GHG emissions.

### **Consistency with GHG Plans**

The 2022 Scoping Plan outlines a roadmap for the state to achieve targets for carbon neutrality and reduce anthropogenic GHG emissions by 85 percent below 1990 levels no later than 2045. <sup>10</sup> The 2022 Scoping Plan identifies actions and outcomes such as rapidly moving to zero-emission transportation; electrifying cars, buses, trains, and trucks; phasing out the use of fossil gas used for heating homes and buildings; clamping down on chemicals and refrigerants; providing communities with sustainable options for walking, biking, and public transit; building out clean, renewable energy resources (such as solar arrays and wind turbine capacity) to displace fossil-fuel fired electrical generation; and scaling up new options such as renewable hydrogen and biomethane. In addition, the 2022 Scoping Plan outlines several strategies to reduce methane emissions from landfills, with a focus on organic waste diversion, composting and anerobic digestion capacity expansion, and existing landfill operational practice improvement.

As discussed above, the project would result in a net decrease in daily haul truck vehicle miles traveled. For medium and heavy-duty trucks, California has the following regulations, strategies, and plans to reduce GHG emissions: Advanced Clean Truck Regulation, Tractor-Trailer Greenhouse Gas Regulation, and Truck and Bus Regulation. The trucks visiting the project site would be subject to these regulations, strategies, and plans; therefore, the project would comply with the state GHG emissions reduction strategies for trucks. In addition, if the project is not implemented, it is reasonable to assume that the growing demand for waste disposal in the region may need to be addressed by landfills that are located further away (as demonstrated by the current condition), which would result in higher GHG emissions from haul truck travel. Therefore, the project is in alignment with the 2022 Scoping Plan.


<sup>10</sup> California Air Resources Board, 2022. 2022 Scoping Plan for Achieving Carbon Neutrality. December.




As mentioned above, the North County Landfill is required to comply with the CARB Landfill Methane Regulation. The North County Landfill has implemented a LFG collection system, including a flare, vertical wells, and connecting piping. As landfill operations continue, additional LFG collectors, primarily horizontal collection trenches, will be installed and integrated into the existing system. Furthermore, the majority of incoming waste is either source-separated municipal waste or sorted on-site at the recycling center, ensuring that most green waste is removed from the waste stream. Most of the green waste is off-hauled to composting facilities as North County Landfill currently does not have composting on-site. In summary, the project would not conflict with the 2022 Scoping Plan and the Landfill Methane Regulation.

### 3 CONCLUSIONS

As discussed above, implementation of the project would not generate GHG emissions that may have a significant impact on the environment and the project would not conflict with the 2022 Scoping Plan and the Landfill Methane Regulation.





### Legend

Project Site Boundary

Planned Fill Area







### **ATTACHMENT A**

**Supporting GHG Calculations** 

# Attachment A-1: LandGEM Input Parameter, Assumptions, and Results

Information about historical waste acceptance rates (1991 to 2023), closure year, and project annual increase was provided by the applicant. GHG emissions from North County Landfill were estimated using the EPA's Landfill Generation Emissions Model (LandGEM, version 3.1) and default model inputs.

### LandGEM Input Parameters

| 200000000000000000000000000000000000000                      |            |                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Category                                                     | Value      | Notes                                                                                                                                                                                                                                                                        |
| Landfill open year                                           | 1991       |                                                                                                                                                                                                                                                                              |
| Waste design capacity (million yard <sup>3</sup> )           | 41.2       | 41.2 Solid Waste Facility Permit 39-AA-0022.                                                                                                                                                                                                                                 |
| Average refuse density (lb/yard³)                            | 1,000      | ,000 Solid Waste Facility Permit 39-AA-0022.                                                                                                                                                                                                                                 |
| Pounds per ton                                               | 2,000      |                                                                                                                                                                                                                                                                              |
| Waste design capacity (tons)                                 | 20,600,000 |                                                                                                                                                                                                                                                                              |
| Total refuse tonnage-in-place                                | 5,069,648  | ,648 Historical waste acceptance data (1991 to 2023) were provided by the applicant                                                                                                                                                                                          |
| Landfill closure year (project)                              | 2043       | Provided by applicant. Assumptions: increase waste acceptance rates from 250,000 tons in 2024 to 660,000 tons in 2026, then assume 3% increase annually thereafter. Under this scenario, the North County Landfill will reach the 20.6 million tons design capacity by 2043. |
| Landfill closure year (baseline)                             | 2059       | Predicted based on the baseline operation condition (250,000 tons in 2024) and assume 3% increase annually thereafter. Under this scenario, the North County Landfill will reach the 20.6 million tons design capacity by 2059.                                              |
| Methane generation rate (k) (year $^{	ext{-1}}$ )            | 0.02       | AP-42 default for areas with less than 25 inches of precipitation per year. The project site area receives an average of 17.6 inches of precipitation per year.                                                                                                              |
| Degradable organic carbon content (DOC, g Carbon/g Waste)    | 0.2        | 0.2 AP-42 default                                                                                                                                                                                                                                                            |
| Potential methane generation capacity $(L_0,  m^3/megagram)$ | 100        | 100 AP-42 default                                                                                                                                                                                                                                                            |
| NMOC Concentration (ppmv as hexane)                          | 009        | 600 AP-42 default                                                                                                                                                                                                                                                            |
| Methane Content                                              | 20%        | 50% AP-42 default                                                                                                                                                                                                                                                            |
|                                                              |            |                                                                                                                                                                                                                                                                              |



### Summary Report

Landfill Name or Identifier: North County Sanitary Landfill

Date: Sunday, March 9, 2025

### **Description/Comments:**

Waste design capacity was estimated based on the volume design capacity of 41.2 million cubic yards of disposal and average reduse desnsity of approximately 0.5 tons per cubic yard specified in the Permit. Historical Data: 1991 to 2023. Future tonnage predicted based on 250,000 tons of waste in 2024 and assume 3% increase annually thereafter. Under this scenario, the North County Landfill will reach the 20.6 million tons design capacity by 2059.

### **About LandGEM:**

First-Order Decomposition Rate Equation:

 $Q_{CH_4} = \sum_{i=1}^{n} \sum_{j=0,1}^{1} k L_o \left( \frac{M_i}{10} \right) e^{-kt_{ij}}$ 

Where,

 $Q_{CH4}$  = annual methane generation in the year of the calculation ( $m^3$ /year)

i = 1-year time increment

n = (year of the calculation) - (initial year of waste acceptance)

j = 0.1-year time increment

 $k = methane generation rate (year^{-1})$ 

 $L_0$  = potential methane generation capacity ( $m^3/Mg$ )

 $M_i$  = mass of waste accepted in the i<sup>th</sup> year (Mg)  $t_{ij}$  = age of the j<sup>th</sup> section of waste mass  $M_i$  accepted in the i<sup>th</sup> year ( $decimal\ years$ , e.g., 3.2 years)

LandGEM is based on a first-order decomposition rate equation for quantifying emissions from the decomposition of landfilled waste in municipal solid waste (MSW) landfills. The software provides a relatively simple approach to estimating landfill gas emissions. Model defaults are based on empirical data from U.S. landfills. Field test data can also be used in place of model defaults when available. Further guidance on EPA test methods, Clean Air Act (CAA) regulations, and other guidance regarding landfill gas emissions and control technology requirements can be found at http://www.epa.gov/ttnatw01/landfill/landfilpg.html.

LandGEM is considered a screening tool — the better the input data, the better the estimates. Often, there are limitations with the available data regarding waste quantity and composition, variation in design and operating practices over time, and changes occurring over time that impact the emissions potential. Changes to landfill operation, such as operating under wet conditions through leachate recirculation or other liquid additions, will result in generating more gas at a faster rate. Defaults for estimating emissions for this type of operation are being developed to include in LandGEM along with defaults for convential landfills (no leachate or liquid additions) for developing emission inventories and determining CAA applicability. Refer to the Web site identified above for future updates.

### **Input Review**

LANDFILL CHARACTERISTICS

Landfill Open Year1991Landfill Closure Year (with 80-year limit)2059Actual Closure Year (without limit)2059Have Model Calculate Closure Year?No

Waste Design Capacity 20,600,000 short tons

MODEL PARAMETERS

Methane Generation Rate, k 0.020  $year^{-1}$  Potential Methane Generation Capacity, L<sub>0</sub> 100  $m^3/Mg$ 

NMOC Concentration600ppmv as hexaneMethane Content50% by volume

GASES / POLLUTANTS SELECTED

Gas / Pollutant #1: Total landfill gas
Gas / Pollutant #2: Methane
Gas / Pollutant #3: Carbon dioxide
Gas / Pollutant #4: NMOC

### WASTE ACCEPTANCE RATES

| Year  | Waste Acc |                   | Waste-In-Place |              |  |
|-------|-----------|-------------------|----------------|--------------|--|
| i cai | (Mg/year) | (short tons/year) | (Mg)           | (short tons) |  |
| 1991  | 31,981    | 35,179            | 0              | 0            |  |
| 1992  | 112,964   | 124,260           | 31,981         | 35,179       |  |
| 1993  | 128,467   | 141,314           | 144,945        | 159,440      |  |
| 1994  | 152,987   | 168,286           | 273,412        | 300,753      |  |
| 1995  | 104,115   | 114,527           | 426,399        | 469,039      |  |
| 1996  | 96,087    | 105,696           | 530,514        | 583,565      |  |
| 1997  | 100,475   | 110,523           | 626,601        | 689,261      |  |
| 1998  | 102,551   | 112,806           | 727,076        | 799,784      |  |
| 1999  | 93,263    | 102,589           | 829,627        | 912,590      |  |
| 2000  | 93,186    | 102,504           | 922,890        | 1,015,179    |  |
| 2001  | 124,660   | 137,126           | 1,016,076      | 1,117,684    |  |
| 2002  | 132,137   | 145,350           | 1,140,736      | 1,254,809    |  |
| 2003  | 129,632   | 142,595           | 1,272,872      | 1,400,160    |  |
| 2004  | 151,301   | 166,431           | 1,402,504      | 1,542,755    |  |
| 2005  | 164,113   | 180,524           | 1,553,805      | 1,709,185    |  |
| 2006  | 164,831   | 181,314           | 1,717,917      | 1,889,709    |  |
| 2007  | 153,707   | 169,078           | 1,882,748      | 2,071,023    |  |
| 2008  | 130,163   | 143,179           | 2,036,455      | 2,240,100    |  |
| 2009  | 129,649   | 142,614           | 2,166,617      | 2,383,279    |  |
| 2010  | 122,730   | 135,003           | 2,296,266      | 2,525,893    |  |
| 2011  | 121,377   | 133,515           | 2,418,996      | 2,660,896    |  |
| 2012  | 125,754   | 138,329           | 2,540,374      | 2,794,411    |  |
| 2013  | 141,236   | 155,360           | 2,666,127      | 2,932,740    |  |
| 2014  | 152,055   | 167,261           | 2,807,364      | 3,088,100    |  |
| 2015  | 194,013   | 213,414           | 2,959,419      | 3,255,361    |  |
| 2016  | 152,964   | 168,260           | 3,153,432      | 3,468,775    |  |
| 2017  | 168,888   | 185,777           | 3,306,395      | 3,637,035    |  |
| 2018  | 176,143   | 193,757           | 3,475,283      | 3,822,811    |  |
| 2019  | 174,764   | 192,240           | 3,651,426      | 4,016,568    |  |
| 2020  | 167,371   | 184,108           | 3,826,189      | 4,208,808    |  |
| 2021  | 191,695   | 210,865           | 3,993,560      | 4,392,916    |  |
| 2022  | 180,648   | 198,713           | 4,185,256      | 4,603,781    |  |
| 2023  | 242,867   | 267,154           | 4,365,904      | 4,802,494    |  |
| 2024  | 227,273   | 250,000           | 4,608,771      | 5,069,648    |  |
| 2025  | 234,091   | 257,500           | 4,836,044      | 5,319,648    |  |
| 2026  | 241,114   | 265,225           | 5,070,135      | 5,577,148    |  |
| 2027  | 248,347   | 273,182           | 5,311,249      | 5,842,373    |  |
| 2028  | 255,797   | 281,377           | 5,559,596      | 6,115,555    |  |
| 2029  | 263,471   | 289,819           | 5,815,393      | 6,396,932    |  |
| 2030  | 271,376   | 298,513           | 6,078,864      | 6,686,751    |  |

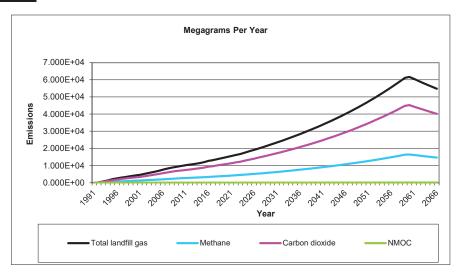
### WASTE ACCEPTANCE RATES (Continued)

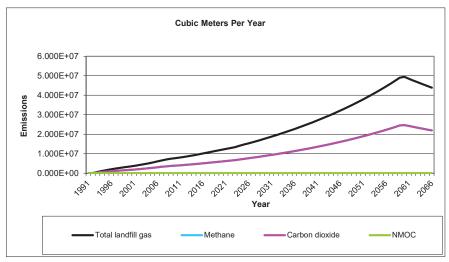
|      | Waste Acc | ,                 | Waste-     | In-Place     |
|------|-----------|-------------------|------------|--------------|
| Year | (Mg/year) | (short tons/year) | (Mg)       | (short tons) |
| 2031 | 279,517   | 307,468           | 6,350,240  | 6,985,264    |
| 2032 | 287,902   | 316,693           | 6,629,757  | 7,292,732    |
| 2033 | 296,539   | 326,193           | 6,917,659  | 7,609,425    |
| 2034 | 305,436   | 335,979           | 7,214,198  | 7,935,618    |
| 2035 | 314,599   | 346,058           | 7,519,634  | 8,271,597    |
| 2036 | 324,037   | 356,440           | 7,834,233  | 8,617,656    |
| 2037 | 333,758   | 367,133           | 8,158,269  | 8,974,096    |
| 2038 | 343,770   | 378,147           | 8,492,027  | 9,341,229    |
| 2039 | 354,084   | 389,492           | 8,835,797  | 9,719,377    |
| 2040 | 364,706   | 401,177           | 9,189,881  | 10,108,869   |
| 2041 | 375,647   | 413,212           | 9,554,587  | 10,510,045   |
| 2042 | 386,917   | 425,608           | 9,930,234  | 10,923,257   |
| 2043 | 398,524   | 438,377           | 10,317,150 | 11,348,866   |
| 2044 | 410,480   | 451,528           | 10,715,675 | 11,787,242   |
| 2045 | 422,794   | 465,074           | 11,126,154 | 12,238,770   |
| 2046 | 435,478   | 479,026           | 11,548,949 | 12,703,843   |
| 2047 | 448,542   | 493,397           | 11,984,427 | 13,182,869   |
| 2048 | 461,999   | 508,199           | 12,432,969 | 13,676,266   |
| 2049 | 475,859   | 523,444           | 12,894,968 | 14,184,465   |
| 2050 | 490,134   | 539,148           | 13,370,826 | 14,707,909   |
| 2051 | 504,838   | 555,322           | 13,860,961 | 15,247,057   |
| 2052 | 519,984   | 571,982           | 14,365,799 | 15,802,379   |
| 2053 | 535,583   | 589,141           | 14,885,783 | 16,374,361   |
| 2054 | 551,651   | 606,816           | 15,421,366 | 16,963,502   |
| 2055 | 568,200   | 625,020           | 15,973,016 | 17,570,318   |
| 2056 | 585,246   | 643,771           | 16,541,216 | 18,195,338   |
| 2057 | 602,803   | 663,084           | 17,126,462 | 18,839,109   |
| 2058 | 620,888   | 682,976           | 17,729,266 | 19,502,193   |
| 2059 | 377,119   | 414,831           | 18,350,154 | 20,185,169   |
| 2060 | 0         | 0                 | 18,727,273 | 20,600,000   |
| 2061 | 0         | 0                 | 18,727,273 | 20,600,000   |
| 2062 | 0         | 0                 | 18,727,273 | 20,600,000   |
| 2063 | 0         | 0                 | 18,727,273 | 20,600,000   |
| 2064 | 0         | 0                 | 18,727,273 | 20,600,000   |
| 2065 | 0         | 0                 | 18,727,273 | 20,600,000   |
| 2066 | 0         | 0                 | 18,727,273 | 20,600,000   |
| 2067 | 0         | 0                 | 18,727,273 | 20,600,000   |
| 2068 | 0         | 0                 | 18,727,273 | 20,600,000   |
| 2069 | 0         | 0                 | 18,727,273 | 20,600,000   |
| 2070 | 0         | 0                 | 18,727,273 | 20,600,000   |

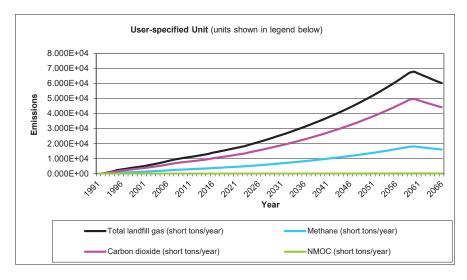
### **Pollutant Parameters**

Gas / Pollutant Default Parameters:

User-specified Pollutant Parameters:


|            | Concentration                          |                   |                        |               | ilutant Parameters: |
|------------|----------------------------------------|-------------------|------------------------|---------------|---------------------|
|            | Compound                               |                   | Malagular Waight       | Concentration | Malagular Waight    |
|            | Total landfill gas                     | (ppmv)            | Molecular Weight 30.03 | (ppmv)        | Molecular Weight    |
| တ္တ        | Methane                                |                   | 16.04                  |               |                     |
| Gases      | Carbon dioxide                         |                   | 44.01                  |               |                     |
| ပြိ        |                                        | 4.000             |                        |               |                     |
|            | NMOC                                   | 4,000             | 86.18                  |               |                     |
|            | 1,1,1-Trichloroethane                  |                   |                        |               |                     |
|            | (methyl chloroform) -                  | 0.48              | 133.41                 |               |                     |
|            | HAP                                    | 0.40              | 133.41                 |               |                     |
|            | 1,1,2,2-                               |                   |                        |               |                     |
|            | Tetrachloroethane -                    | 4.4               | 407.05                 |               |                     |
|            | HAP/VOC                                | 1.1               | 167.85                 |               |                     |
|            | 1,1-Dichloroethane                     |                   |                        |               |                     |
|            | (ethylidene dichloride) -<br>HAP/VOC   | 0.4               | 00.07                  |               |                     |
|            |                                        | 2.4               | 98.97                  |               |                     |
|            | 1,1-Dichloroethene                     |                   |                        |               |                     |
|            | (vinylidene chloride) -                | 0.00              | 00.04                  |               |                     |
|            | HAP/VOC                                | 0.20              | 96.94                  |               |                     |
|            | 1,2-Dichloroethane                     |                   |                        |               |                     |
|            | (ethylene dichloride) -                | 0.44              | 00.00                  |               |                     |
|            | HAP/VOC                                | 0.41              | 98.96                  |               |                     |
|            | 1,2-Dichloropropane                    |                   |                        |               |                     |
| 1          | (propylene dichloride) -               | 0.40              | 140.00                 |               |                     |
|            | HAP/VOC                                | 0.18              | 112.99                 |               |                     |
|            | 2-Propanol (isopropyl                  | 50                | 00.44                  |               |                     |
|            | alcohol) - VOC                         | 50                | 60.11                  |               |                     |
|            | Acetone                                | 7.0               | 58.08                  |               |                     |
|            | Acrylonitrile - HAP/VOC                | 6.3               | 53.06                  |               |                     |
|            | Benzene - No or                        |                   |                        |               |                     |
|            | Unknown Co-disposal -                  | 4.0               | 70.44                  |               |                     |
|            | HAP/VOC                                | 1.9               | 78.11                  |               |                     |
|            | Benzene - Co-disposal -                | 4.4               | 70.44                  |               |                     |
| ţ          | HAP/VOC                                | 11                | 78.11                  |               |                     |
| Pollutants | Bromodichloromethane -                 | 0.4               | 400.00                 |               |                     |
| ≦          | VOC                                    | 3.1               | 163.83                 |               |                     |
| 9          | Butane - VOC                           | 5.0               | 58.12                  |               |                     |
|            | Carbon disulfide -                     | 0.50              | 70.40                  |               |                     |
|            | HAP/VOC                                | 0.58<br>140       | 76.13<br>28.01         |               |                     |
|            | Carbon monoxide Carbon tetrachloride - | 140               | 20.01                  |               |                     |
|            | HAP/VOC                                | 4.0E-03           | 153.84                 |               |                     |
|            |                                        | 4.0⊑-03           | 133.04                 |               |                     |
|            | Carbonyl sulfide -<br>HAP/VOC          | 0.49              | 60.07                  |               |                     |
|            | Chlorobenzene -                        | U. <del>4</del> 3 | 00.07                  |               |                     |
|            | HAP/VOC                                | 0.25              | 112.56                 |               |                     |
|            | Chlorodifluoromethane                  | 1.3               | 86.47                  |               |                     |
|            | Chloroethane (ethyl                    | 1.0               | 00.47                  |               |                     |
|            | chloride) - HAP/VOC                    | 1.3               | 64.52                  |               |                     |
|            | Chloroform - HAP/VOC                   | 0.03              | 119.39                 |               |                     |
|            | Chloromethane - VOC                    | 1.2               | 50.49                  |               |                     |
|            |                                        | 1.2               | 55.45                  |               |                     |
|            | Dichlorobenzene - (HAP                 |                   |                        |               |                     |
|            | for para isomer/VOC)                   | 0.21              | 147                    |               |                     |
|            | Dichlorodifluoromethane                | 16                | 120.91                 |               |                     |
|            | Dichlorofluoromethane -                | 10                | 120.01                 |               |                     |
|            | VOC                                    | 2.6               | 102.92                 |               |                     |
|            | Dichloromethane                        | 0                 | 102.02                 |               |                     |
|            | (methylene chloride) -                 |                   |                        |               |                     |
|            | HAP                                    | 14                | 84.94                  |               |                     |
|            | Dimethyl sulfide (methyl               | * 1               | 5 7.0 1                |               |                     |
|            | sulfide) - VOC                         | 7.8               | 62.13                  |               |                     |
|            | Ethane                                 | 890               | 30.07                  |               |                     |
|            | Ethanol - VOC                          | 27                | 46.08                  |               |                     |
|            |                                        |                   | 10.00                  | <u></u>       |                     |


### **Pollutant Parameters (Continued)**


| Gas / Pollutant Default Parame | ters: | User-specified Pol | lutant Parameters: |
|--------------------------------|-------|--------------------|--------------------|
|                                |       |                    |                    |

| _          | Cus / I Ol                                  | iutant Default Param |                  | lutant Parameters:               |                  |
|------------|---------------------------------------------|----------------------|------------------|----------------------------------|------------------|
|            | Compound                                    | Concentration (ppmv) | Molecular Weight | Concentration<br>( <i>ppmv</i> ) | Molecular Weight |
|            | Ethyl mercaptan                             |                      |                  | V-1- /                           | Ŭ                |
|            | (ethanethiol) - VOC<br>Ethylbenzene -       | 2.3                  | 62.13            |                                  |                  |
|            | HAP/VOC                                     | 4.6                  | 106.16           |                                  |                  |
|            | Ethylene dibromide -                        | -                    |                  |                                  |                  |
|            | HAP/VOC                                     | 1.0E-03              | 187.88           |                                  |                  |
|            | Fluorotrichloromethane - VOC                | 0.76                 | 137.38           |                                  |                  |
|            | Hexane - HAP/VOC                            | 6.6                  | 86.18            |                                  |                  |
|            | Hydrogen sulfide                            | 36                   | 34.08<br>200.61  |                                  |                  |
|            | Mercury (total) - HAP Methyl ethyl ketone - | 2.9E-04              | 200.61           |                                  |                  |
|            | HAP/VOC                                     | 7.1                  | 72.11            |                                  |                  |
|            | Methyl isobutyl ketone -                    | 4.0                  | 100.10           |                                  |                  |
|            | HAP/VOC                                     | 1.9                  | 100.16           |                                  |                  |
|            | Methyl mercaptan - VOC                      | 2.5                  | 48.11            |                                  |                  |
|            | Pentane - VOC                               | 3.3                  | 72.15            |                                  |                  |
|            | Perchloroethylene (tetrachloroethylene) -   |                      |                  |                                  |                  |
|            | HAP                                         | 3.7                  | 165.83           |                                  |                  |
|            | Propane - VOC                               | 11                   | 44.09            |                                  |                  |
|            | t-1,2-Dichloroethene -<br>VOC               | 2.8                  | 96.94            |                                  |                  |
|            | Toluene - No or                             | 2.0                  | 30.34            |                                  |                  |
|            | Unknown Co-disposal -                       |                      |                  |                                  |                  |
|            | HAP/VOC<br>Toluene - Co-disposal -          | 39                   | 92.13            |                                  |                  |
|            | HAP/VOC                                     | 170                  | 92.13            |                                  |                  |
| ۱.,        | Trichloroethylene                           |                      |                  |                                  |                  |
| ants       | (trichloroethene) -<br>HAP/VOC              | 2.8                  | 131.40           |                                  |                  |
| Pollutants | Vinyl chloride -                            | 2.0                  | 131.40           |                                  |                  |
| Po         | HAP/VOC                                     | 7.3                  | 62.50            |                                  |                  |
|            | Xylenes - HAP/VOC                           | 12                   | 106.16           |                                  |                  |
|            |                                             |                      |                  |                                  |                  |
|            |                                             |                      |                  |                                  |                  |
|            |                                             |                      |                  |                                  |                  |
|            |                                             |                      |                  |                                  |                  |
|            |                                             |                      |                  |                                  |                  |
|            |                                             |                      |                  |                                  |                  |
|            |                                             |                      |                  |                                  |                  |
|            |                                             |                      |                  |                                  |                  |
|            |                                             |                      |                  |                                  |                  |
|            |                                             |                      |                  |                                  |                  |
|            |                                             |                      |                  |                                  |                  |
|            |                                             |                      |                  |                                  |                  |
|            |                                             |                      |                  |                                  |                  |
|            |                                             |                      |                  |                                  |                  |
|            |                                             |                      |                  |                                  |                  |
|            |                                             |                      |                  |                                  |                  |
|            |                                             |                      |                  |                                  |                  |
|            |                                             |                      |                  |                                  |                  |
|            |                                             |                      |                  |                                  |                  |
|            |                                             |                      |                  |                                  |                  |
|            |                                             |                      |                  |                                  |                  |
|            |                                             |                      |                  |                                  |                  |

### **Graphs**







### Results

| Vaar | Total landfill gas |           |                   | Methane   |           |                   |  |
|------|--------------------|-----------|-------------------|-----------|-----------|-------------------|--|
| Year | (Mg/year)          | (m³/year) | (short tons/year) | (Mg/year) | (m³/year) | (short tons/year) |  |
| 1991 | 0                  | 0         | 0                 | 0         | 0         | 0                 |  |
| 1992 | 1.583E+02          | 1.268E+05 | 1.742E+02         | 4.229E+01 | 6.339E+04 | 4.652E+01         |  |
| 1993 | 7.144E+02          | 5.721E+05 | 7.859E+02         | 1.908E+02 | 2.860E+05 | 2.099E+02         |  |
| 1994 | 1.336E+03          | 1.070E+06 | 1.470E+03         | 3.569E+02 | 5.350E+05 | 3.926E+02         |  |
| 1995 | 2.067E+03          | 1.655E+06 | 2.274E+03         | 5.522E+02 | 8.277E+05 | 6.074E+02         |  |
| 1996 | 2.542E+03          | 2.035E+06 | 2.796E+03         | 6.789E+02 | 1.018E+06 | 7.468E+02         |  |
| 1997 | 2.967E+03          | 2.376E+06 | 3.264E+03         | 7.925E+02 | 1.188E+06 | 8.718E+02         |  |
| 1998 | 3.406E+03          | 2.727E+06 | 3.746E+03         | 9.097E+02 | 1.364E+06 | 1.001E+03         |  |
| 1999 | 3.846E+03          | 3.080E+06 | 4.231E+03         | 1.027E+03 | 1.540E+06 | 1.130E+03         |  |
| 2000 | 4.232E+03          | 3.388E+06 | 4.655E+03         | 1.130E+03 | 1.694E+06 | 1.243E+03         |  |
| 2001 | 4.609E+03          | 3.691E+06 | 5.070E+03         | 1.231E+03 | 1.845E+06 | 1.354E+03         |  |
| 2002 | 5.135E+03          | 4.112E+06 | 5.648E+03         | 1.372E+03 | 2.056E+06 | 1.509E+03         |  |
| 2003 | 5.687E+03          | 4.554E+06 | 6.256E+03         | 1.519E+03 | 2.277E+06 | 1.671E+03         |  |
| 2004 | 6.217E+03          | 4.978E+06 | 6.838E+03         | 1.661E+03 | 2.489E+06 | 1.827E+03         |  |
| 2005 | 6.842E+03          | 5.479E+06 | 7.527E+03         | 1.828E+03 | 2.740E+06 | 2.010E+03         |  |
| 2006 | 7.519E+03          | 6.021E+06 | 8.271E+03         | 2.009E+03 | 3.011E+06 | 2.209E+03         |  |
| 2007 | 8.187E+03          | 6.555E+06 | 9.005E+03         | 2.187E+03 | 3.278E+06 | 2.405E+03         |  |
| 2008 | 8.785E+03          | 7.035E+06 | 9.664E+03         | 2.347E+03 | 3.517E+06 | 2.581E+03         |  |
| 2009 | 9.256E+03          | 7.412E+06 | 1.018E+04         | 2.472E+03 | 3.706E+06 | 2.720E+03         |  |
| 2010 | 9.714E+03          | 7.779E+06 | 1.069E+04         | 2.595E+03 | 3.889E+06 | 2.854E+03         |  |
| 2011 | 1.013E+04          | 8.111E+06 | 1.114E+04         | 2.706E+03 | 4.056E+06 | 2.976E+03         |  |
| 2012 | 1.053E+04          | 8.432E+06 | 1.158E+04         | 2.813E+03 | 4.216E+06 | 3.094E+03         |  |
| 2013 | 1.094E+04          | 8.763E+06 | 1.204E+04         | 2.923E+03 | 4.382E+06 | 3.216E+03         |  |
| 2014 | 1.143E+04          | 9.150E+06 | 1.257E+04         | 3.052E+03 | 4.575E+06 | 3.357E+03         |  |
| 2015 | 1.195E+04          | 9.571E+06 | 1.315E+04         | 3.193E+03 | 4.786E+06 | 3.512E+03         |  |
| 2016 | 1.268E+04          | 1.015E+07 | 1.394E+04         | 3.386E+03 | 5.076E+06 | 3.725E+03         |  |
| 2017 | 1.318E+04          | 1.056E+07 | 1.450E+04         | 3.521E+03 | 5.278E+06 | 3.873E+03         |  |
| 2018 | 1.376E+04          | 1.102E+07 | 1.513E+04         | 3.675E+03 | 5.508E+06 | 4.042E+03         |  |
| 2019 | 1.436E+04          | 1.150E+07 | 1.579E+04         | 3.835E+03 | 5.748E+06 | 4.219E+03         |  |
| 2020 | 1.494E+04          | 1.196E+07 | 1.643E+04         | 3.990E+03 | 5.981E+06 | 4.389E+03         |  |
| 2021 | 1.547E+04          | 1.239E+07 | 1.702E+04         | 4.133E+03 | 6.194E+06 | 4.546E+03         |  |
| 2022 | 1.611E+04          | 1.290E+07 | 1.773E+04         | 4.304E+03 | 6.452E+06 | 4.735E+03         |  |
| 2023 | 1.669E+04          | 1.336E+07 | 1.836E+04         | 4.458E+03 | 6.682E+06 | 4.904E+03         |  |
| 2024 | 1.756E+04          | 1.406E+07 | 1.932E+04         | 4.691E+03 | 7.031E+06 | 5.160E+03         |  |
| 2025 | 1.834E+04          | 1.468E+07 | 2.017E+04         | 4.898E+03 | 7.342E+06 | 5.388E+03         |  |
| 2026 | 1.913E+04          | 1.532E+07 | 2.105E+04         | 5.111E+03 | 7.661E+06 | 5.622E+03         |  |
| 2027 | 1.995E+04          | 1.597E+07 | 2.194E+04         | 5.329E+03 | 7.987E+06 | 5.861E+03         |  |
| 2028 | 2.078E+04          | 1.664E+07 | 2.286E+04         | 5.552E+03 | 8.321E+06 | 6.107E+03         |  |
| 2029 | 2.164E+04          | 1.733E+07 | 2.380E+04         | 5.780E+03 | 8.664E+06 | 6.358E+03         |  |
| 2030 | 2.251E+04          | 1.803E+07 | 2.477E+04         | 6.014E+03 | 9.014E+06 | 6.615E+03         |  |
| 2031 | 2.341E+04          | 1.875E+07 | 2.575E+04         | 6.254E+03 | 9.374E+06 | 6.879E+03         |  |
| 2032 | 2.433E+04          | 1.948E+07 | 2.677E+04         | 6.499E+03 | 9.742E+06 | 7.149E+03         |  |
| 2033 | 2.528E+04          | 2.024E+07 | 2.780E+04         | 6.751E+03 | 1.012E+07 | 7.427E+03         |  |
| 2034 | 2.624E+04          | 2.101E+07 | 2.887E+04         | 7.010E+03 | 1.051E+07 | 7.711E+03         |  |
| 2035 | 2.724E+04          | 2.181E+07 | 2.996E+04         | 7.275E+03 | 1.090E+07 | 8.002E+03         |  |
| 2036 | 2.825E+04          | 2.262E+07 | 3.108E+04         | 7.547E+03 | 1.131E+07 | 8.302E+03         |  |
| 2037 | 2.930E+04          | 2.346E+07 | 3.223E+04         | 7.826E+03 | 1.173E+07 | 8.609E+03         |  |
| 2038 | 3.037E+04          | 2.432E+07 | 3.341E+04         | 8.112E+03 | 1.216E+07 | 8.924E+03         |  |
| 2039 | 3.147E+04          | 2.520E+07 | 3.462E+04         | 8.406E+03 | 1.260E+07 | 9.247E+03         |  |
| 2040 | 3.260E+04          | 2.611E+07 | 3.586E+04         | 8.708E+03 | 1.305E+07 | 9.579E+03         |  |

| Veer |           | Total landfill gas |                        |           | Methane   |                   |  |  |
|------|-----------|--------------------|------------------------|-----------|-----------|-------------------|--|--|
| Year | (Mg/year) | (m³/year)          | (short tons/year)      | (Mg/year) | (m³/year) | (short tons/year) |  |  |
| 2041 | 3.376E+04 | 2.703E+07          | 3.714E+04              | 9.018E+03 | 1.352E+07 | 9.920E+03         |  |  |
| 2042 | 3.495E+04 | 2.799E+07          | 3.845E+04              | 9.336E+03 | 1.399E+07 | 1.027E+04         |  |  |
| 2043 | 3.618E+04 | 2.897E+07          | 3.979E+04              | 9.663E+03 | 1.448E+07 | 1.063E+04         |  |  |
| 2044 | 3.743E+04 | 2.997E+07          | 4.118E+04              | 9.999E+03 | 1.499E+07 | 1.100E+04         |  |  |
| 2045 | 3.872E+04 | 3.101E+07          | 4.260E+04              | 1.034E+04 | 1.550E+07 | 1.138E+04         |  |  |
| 2046 | 4.005E+04 | 3.207E+07          | 4.405E+04              | 1.070E+04 | 1.603E+07 | 1.177E+04         |  |  |
| 2047 | 4.141E+04 | 3.316E+07          | 4.555E+04              | 1.106E+04 | 1.658E+07 | 1.217E+04         |  |  |
| 2048 | 4.281E+04 | 3.428E+07          | 4.709E+04              | 1.144E+04 | 1.714E+07 | 1.258E+04         |  |  |
| 2049 | 4.425E+04 | 3.544E+07          | 4.868E+04              | 1.182E+04 | 1.772E+07 | 1.300E+04         |  |  |
| 2050 | 4.573E+04 | 3.662E+07          | 5.030E+04              | 1.222E+04 | 1.831E+07 | 1.344E+04         |  |  |
| 2051 | 4.725E+04 | 3.784E+07          | 5.198E+04              | 1.262E+04 | 1.892E+07 | 1.388E+04         |  |  |
| 2052 | 4.882E+04 | 3.909E+07          | 5.370E+04              | 1.304E+04 | 1.954E+07 | 1.434E+04         |  |  |
| 053  | 5.042E+04 | 4.038E+07          | 5.547E+04              | 1.347E+04 | 2.019E+07 | 1.482E+04         |  |  |
| 054  | 5.208E+04 | 4.170E+07          | 5.728E+04              | 1.391E+04 | 2.085E+07 | 1.530E+04         |  |  |
| 055  | 5.378E+04 | 4.306E+07          | 5.915E+04              | 1.436E+04 | 2.153E+07 | 1.580E+04         |  |  |
| 056  | 5.552E+04 | 4.446E+07          | 6.108E+04              | 1.483E+04 | 2.223E+07 | 1.631E+04         |  |  |
| 057  | 5.732E+04 | 4.590E+07          | 6.305E+04              | 1.531E+04 | 2.295E+07 | 1.684E+04         |  |  |
| 058  | 5.917E+04 | 4.738E+07          | 6.509E+04              | 1.581E+04 | 2.369E+07 | 1.739E+04         |  |  |
| 059  | 6.107E+04 | 4.891E+07          | 6.718E+04              | 1.631E+04 | 2.445E+07 | 1.794E+04         |  |  |
| 2060 | 6.173E+04 | 4.943E+07          | 6.790E+04              | 1.649E+04 | 2.472E+07 | 1.814E+04         |  |  |
| 061  | 6.051E+04 | 4.845E+07          | 6.656E+04              | 1.616E+04 | 2.423E+07 | 1.778E+04         |  |  |
| 062  | 5.931E+04 | 4.749E+07          | 6.524E+04              | 1.584E+04 | 2.375E+07 | 1.743E+04         |  |  |
| 063  | 5.814E+04 | 4.655E+07          | 6.395E+04              | 1.553E+04 | 2.328E+07 | 1.708E+04         |  |  |
| 064  | 5.699E+04 | 4.563E+07          | 6.268E+04              | 1.522E+04 | 2.282E+07 | 1.674E+04         |  |  |
| 2065 | 5.586E+04 | 4.473E+07          | 6.144E+04              | 1.492E+04 | 2.236E+07 | 1.641E+04         |  |  |
| 2066 | 5.475E+04 | 4.384E+07          | 6.023E+04              | 1.462E+04 | 2.192E+07 | 1.609E+04         |  |  |
| 2067 | 5.367E+04 | 4.297E+07          | 5.903E+04              | 1.433E+04 | 2.149E+07 | 1.577E+04         |  |  |
| 2068 | 5.260E+04 | 4.212E+07          | 5.786E+04              | 1.405E+04 | 2.106E+07 | 1.546E+04         |  |  |
| 069  | 5.156E+04 | 4.129E+07          | 5.672E+04              | 1.377E+04 | 2.064E+07 | 1.515E+04         |  |  |
| 2070 | 5.054E+04 | 4.047E+07          | 5.560E+04              | 1.350E+04 | 2.024E+07 | 1.485E+04         |  |  |
| 2071 | 4.954E+04 | 3.967E+07          | 5.449E+04              | 1.323E+04 | 1.983E+07 | 1.456E+04         |  |  |
| 072  | 4.856E+04 | 3.888E+07          | 5.342E+04              | 1.297E+04 | 1.944E+07 | 1.427E+04         |  |  |
| 2073 | 4.760E+04 | 3.811E+07          | 5.236E+04              | 1.271E+04 | 1.906E+07 | 1.399E+04         |  |  |
| 074  | 4.666E+04 | 3.736E+07          | 5.132E+04              | 1.246E+04 | 1.868E+07 | 1.371E+04         |  |  |
| 075  | 4.573E+04 | 3.662E+07          | 5.031E+04              | 1.222E+04 | 1.831E+07 | 1.344E+04         |  |  |
| 076  | 4.483E+04 | 3.589E+07          | 4.931E+04              | 1.197E+04 | 1.795E+07 | 1.317E+04         |  |  |
| 077  | 4.394E+04 | 3.518E+07          | 4.833E+04              | 1.174E+04 | 1.759E+07 | 1.291E+04         |  |  |
| 078  | 4.307E+04 | 3.449E+07          | 4.738E+04              | 1.150E+04 | 1.724E+07 | 1.265E+04         |  |  |
| 079  | 4.222E+04 | 3.380E+07          | 4.644E+04              | 1.128E+04 | 1.690E+07 | 1.240E+04         |  |  |
| 080  | 4.138E+04 | 3.314E+07          | 4.552E+04              | 1.105E+04 | 1.657E+07 | 1.216E+04         |  |  |
| 081  | 4.056E+04 | 3.248E+07          | 4.462E+04              | 1.083E+04 | 1.624E+07 | 1.192E+04         |  |  |
| 082  | 3.976E+04 | 3.184E+07          | 4.373E+04              | 1.062E+04 | 1.592E+07 | 1.168E+04         |  |  |
| 083  | 3.897E+04 | 3.121E+07          | 4.287E+04              | 1.041E+04 | 1.560E+07 | 1.145E+04         |  |  |
| 084  | 3.820E+04 | 3.059E+07          | 4.207E+04<br>4.202E+04 | 1.020E+04 | 1.529E+07 | 1.143E+04         |  |  |
| 2085 | 3.744E+04 | 2.998E+07          | 4.119E+04              | 1.000E+04 | 1.499E+07 | 1.100E+04         |  |  |
| 086  | 3.670E+04 | 2.939E+07          | 4.037E+04              | 9.803E+03 | 1.469E+07 | 1.078E+04         |  |  |
| 087  | 3.597E+04 | 2.881E+07          | 3.957E+04              | 9.609E+03 | 1.440E+07 | 1.070E+04         |  |  |
| 2088 | 3.526E+04 | 2.824E+07          | 3.879E+04              | 9.419E+03 | 1.412E+07 | 1.037E+04         |  |  |
| 089  | 3.456E+04 | 2.768E+07          | 3.802E+04              | 9.232E+03 | 1.384E+07 | 1.030E+04         |  |  |
| 2090 | 3.388E+04 | 2.713E+07          | 3.727E+04              | 9.049E+03 | 1.356E+07 | 9.954E+03         |  |  |
| 2090 | 3.321E+04 | 2.659E+07          | 3.653E+04              | 8.870E+03 | 1.330E+07 | 9.757E+03         |  |  |

| V    | Total landfill gas |           |                   | Methane   |           |                   |  |
|------|--------------------|-----------|-------------------|-----------|-----------|-------------------|--|
| Year | (Mg/year)          | (m³/year) | (short tons/year) | (Mg/year) | (m³/year) | (short tons/year) |  |
| 2092 | 3.255E+04          | 2.606E+07 | 3.581E+04         | 8.695E+03 | 1.303E+07 | 9.564E+03         |  |
| 2093 | 3.191E+04          | 2.555E+07 | 3.510E+04         | 8.522E+03 | 1.277E+07 | 9.375E+03         |  |
| 2094 | 3.127E+04          | 2.504E+07 | 3.440E+04         | 8.354E+03 | 1.252E+07 | 9.189E+03         |  |
| 2095 | 3.065E+04          | 2.455E+07 | 3.372E+04         | 8.188E+03 | 1.227E+07 | 9.007E+03         |  |
| 2096 | 3.005E+04          | 2.406E+07 | 3.305E+04         | 8.026E+03 | 1.203E+07 | 8.829E+03         |  |
| 2097 | 2.945E+04          | 2.358E+07 | 3.240E+04         | 7.867E+03 | 1.179E+07 | 8.654E+03         |  |
| 2098 | 2.887E+04          | 2.312E+07 | 3.176E+04         | 7.711E+03 | 1.156E+07 | 8.483E+03         |  |
| 2099 | 2.830E+04          | 2.266E+07 | 3.113E+04         | 7.559E+03 | 1.133E+07 | 8.315E+03         |  |
| 2100 | 2.774E+04          | 2.221E+07 | 3.051E+04         | 7.409E+03 | 1.111E+07 | 8.150E+03         |  |
| 2101 | 2.719E+04          | 2.177E+07 | 2.991E+04         | 7.262E+03 | 1.089E+07 | 7.989E+03         |  |
| 2102 | 2.665E+04          | 2.134E+07 | 2.932E+04         | 7.119E+03 | 1.067E+07 | 7.830E+03         |  |
| 2103 | 2.612E+04          | 2.092E+07 | 2.873E+04         | 6.978E+03 | 1.046E+07 | 7.675E+03         |  |
| 2104 | 2.561E+04          | 2.050E+07 | 2.817E+04         | 6.839E+03 | 1.025E+07 | 7.523E+03         |  |
| 2105 | 2.510E+04          | 2.010E+07 | 2.761E+04         | 6.704E+03 | 1.005E+07 | 7.374E+03         |  |
| 2106 | 2.460E+04          | 1.970E+07 | 2.706E+04         | 6.571E+03 | 9.850E+06 | 7.228E+03         |  |
| 2107 | 2.411E+04          | 1.931E+07 | 2.653E+04         | 6.441E+03 | 9.655E+06 | 7.085E+03         |  |
| 2108 | 2.364E+04          | 1.893E+07 | 2.600E+04         | 6.314E+03 | 9.464E+06 | 6.945E+03         |  |
| 2109 | 2.317E+04          | 1.855E+07 | 2.549E+04         | 6.189E+03 | 9.276E+06 | 6.807E+03         |  |
| 2110 | 2.271E+04          | 1.818E+07 | 2.498E+04         | 6.066E+03 | 9.092E+06 | 6.673E+03         |  |
| 2111 | 2.226E+04          | 1.782E+07 | 2.449E+04         | 5.946E+03 | 8.912E+06 | 6.540E+03         |  |
| 2112 | 2.182E+04          | 1.747E+07 | 2.400E+04         | 5.828E+03 | 8.736E+06 | 6.411E+03         |  |
| 2113 | 2.139E+04          | 1.713E+07 | 2.353E+04         | 5.713E+03 | 8.563E+06 | 6.284E+03         |  |
| 2114 | 2.096E+04          | 1.679E+07 | 2.306E+04         | 5.600E+03 | 8.393E+06 | 6.160E+03         |  |
| 2115 | 2.055E+04          | 1.645E+07 | 2.260E+04         | 5.489E+03 | 8.227E+06 | 6.038E+03         |  |
| 2116 | 2.014E+04          | 1.613E+07 | 2.216E+04         | 5.380E+03 | 8.064E+06 | 5.918E+03         |  |
| 2117 | 1.974E+04          | 1.581E+07 | 2.172E+04         | 5.274E+03 | 7.905E+06 | 5.801E+03         |  |
| 2118 | 1.935E+04          | 1.550E+07 | 2.129E+04         | 5.169E+03 | 7.748E+06 | 5.686E+03         |  |
| 2119 | 1.897E+04          | 1.519E+07 | 2.087E+04         | 5.067E+03 | 7.595E+06 | 5.573E+03         |  |
| 2120 | 1.859E+04          | 1.489E+07 | 2.045E+04         | 4.966E+03 | 7.444E+06 | 5.463E+03         |  |
| 2121 | 1.823E+04          | 1.459E+07 | 2.005E+04         | 4.868E+03 | 7.297E+06 | 5.355E+03         |  |
| 2122 | 1.786E+04          | 1.430E+07 | 1.965E+04         | 4.772E+03 | 7.152E+06 | 5.249E+03         |  |
| 2123 | 1.751E+04          | 1.402E+07 | 1.926E+04         | 4.677E+03 | 7.011E+06 | 5.145E+03         |  |
| 2124 | 1.716E+04          | 1.374E+07 | 1.888E+04         | 4.585E+03 | 6.872E+06 | 5.043E+03         |  |
| 2125 | 1.682E+04          | 1.347E+07 | 1.851E+04         | 4.494E+03 | 6.736E+06 | 4.943E+03         |  |
| 2126 | 1.649E+04          | 1.320E+07 | 1.814E+04         | 4.405E+03 | 6.602E+06 | 4.845E+03         |  |
| 2127 | 1.616E+04          | 1.294E+07 | 1.778E+04         | 4.318E+03 | 6.472E+06 | 4.749E+03         |  |
| 2128 | 1.584E+04          | 1.269E+07 | 1.743E+04         | 4.232E+03 | 6.344E+06 | 4.655E+03         |  |
| 2129 | 1.553E+04          | 1.244E+07 | 1.708E+04         | 4.148E+03 | 6.218E+06 | 4.563E+03         |  |
| 2130 | 1.522E+04          | 1.219E+07 | 1.675E+04         | 4.066E+03 | 6.095E+06 | 4.473E+03         |  |
| 2131 | 1.492E+04          | 1.195E+07 | 1.641E+04         | 3.986E+03 | 5.974E+06 | 4.384E+03         |  |

| Year | Carbon dioxide |           |                   | NMOC      |           |                   |
|------|----------------|-----------|-------------------|-----------|-----------|-------------------|
|      | (Mg/year)      | (m³/year) | (short tons/year) | (Mg/year) | (m³/year) | (short tons/year) |
| 1991 | 0              | 0         | 0                 | 0         | 0         | 0                 |
| 1992 | 1.160E+02      | 6.339E+04 | 1.276E+02         | 2.727E-01 | 7.607E+01 | 2.999E-01         |
| 1993 | 5.236E+02      | 2.860E+05 | 5.760E+02         | 1.230E+00 | 3.433E+02 | 1.353E+00         |
| 1994 | 9.793E+02      | 5.350E+05 | 1.077E+03         | 2.301E+00 | 6.420E+02 | 2.531E+00         |
| 1995 | 1.515E+03      | 8.277E+05 | 1.667E+03         | 3.560E+00 | 9.932E+02 | 3.916E+00         |
| 1996 | 1.863E+03      | 1.018E+06 | 2.049E+03         | 4.377E+00 | 1.221E+03 | 4.815E+00         |
| 1997 | 2.175E+03      | 1.188E+06 | 2.392E+03         | 5.110E+00 | 1.426E+03 | 5.621E+00         |
| 1998 | 2.496E+03      | 1.364E+06 | 2.746E+03         | 5.865E+00 | 1.636E+03 | 6.452E+00         |
| 1999 | 2.819E+03      | 1.540E+06 | 3.101E+03         | 6.623E+00 | 1.848E+03 | 7.286E+00         |
| 2000 | 3.101E+03      | 1.694E+06 | 3.411E+03         | 7.287E+00 | 2.033E+03 | 8.016E+00         |
| 2001 | 3.378E+03      | 1.845E+06 | 3.716E+03         | 7.938E+00 | 2.214E+03 | 8.731E+00         |
| 2002 | 3.763E+03      | 2.056E+06 | 4.140E+03         | 8.843E+00 | 2.467E+03 | 9.728E+00         |
| 2003 | 4.168E+03      | 2.277E+06 | 4.585E+03         | 9.795E+00 | 2.733E+03 | 1.077E+01         |
| 2004 | 4.556E+03      | 2.489E+06 | 5.012E+03         | 1.071E+01 | 2.987E+03 | 1.178E+01         |
| 2005 | 5.015E+03      | 2.740E+06 | 5.516E+03         | 1.178E+01 | 3.287E+03 | 1.296E+01         |
| 2006 | 5.511E+03      | 3.011E+06 | 6.062E+03         | 1.295E+01 | 3.613E+03 | 1.424E+01         |
| 2007 | 6.000E+03      | 3.278E+06 | 6.600E+03         | 1.410E+01 | 3.933E+03 | 1.551E+01         |
| 2008 | 6.439E+03      | 3.517E+06 | 7.083E+03         | 1.513E+01 | 4.221E+03 | 1.664E+01         |
| 2009 | 6.784E+03      | 3.706E+06 | 7.462E+03         | 1.594E+01 | 4.447E+03 | 1.753E+01         |
| 2010 | 7.120E+03      | 3.889E+06 | 7.832E+03         | 1.673E+01 | 4.667E+03 | 1.840E+01         |
| 2011 | 7.424E+03      | 4.056E+06 | 8.166E+03         | 1.744E+01 | 4.867E+03 | 1.919E+01         |
| 2012 | 7.717E+03      | 4.216E+06 | 8.489E+03         | 1.813E+01 | 5.059E+03 | 1.995E+01         |
| 2013 | 8.021E+03      | 4.382E+06 | 8.823E+03         | 1.885E+01 | 5.258E+03 | 2.073E+01         |
| 2014 | 8.374E+03      | 4.575E+06 | 9.212E+03         | 1.968E+01 | 5.490E+03 | 2.165E+01         |
| 2015 | 8.760E+03      | 4.786E+06 | 9.636E+03         | 2.059E+01 | 5.743E+03 | 2.264E+01         |
| 2016 | 9.291E+03      | 5.076E+06 | 1.022E+04         | 2.183E+01 | 6.091E+03 | 2.401E+01         |
| 2017 | 9.662E+03      | 5.278E+06 | 1.063E+04         | 2.270E+01 | 6.334E+03 | 2.497E+01         |
| 2018 | 1.008E+04      | 5.508E+06 | 1.109E+04         | 2.369E+01 | 6.610E+03 | 2.606E+01         |
| 2019 | 1.052E+04      | 5.748E+06 | 1.157E+04         | 2.473E+01 | 6.898E+03 | 2.720E+01         |
| 2020 | 1.095E+04      | 5.981E+06 | 1.204E+04         | 2.573E+01 | 7.177E+03 | 2.830E+01         |
| 2021 | 1.134E+04      | 6.194E+06 | 1.247E+04         | 2.664E+01 | 7.433E+03 | 2.931E+01         |
| 2022 | 1.181E+04      | 6.452E+06 | 1.299E+04         | 2.775E+01 | 7.742E+03 | 3.053E+01         |
| 2023 | 1.223E+04      | 6.682E+06 | 1.345E+04         | 2.874E+01 | 8.018E+03 | 3.162E+01         |
| 2024 | 1.287E+04      | 7.031E+06 | 1.416E+04         | 3.024E+01 | 8.437E+03 | 3.327E+01         |
| 2025 | 1.344E+04      | 7.342E+06 | 1.478E+04         | 3.158E+01 | 8.811E+03 | 3.474E+01         |
| 2026 | 1.402E+04      | 7.661E+06 | 1.543E+04         | 3.295E+01 | 9.193E+03 | 3.625E+01         |
| 2027 | 1.462E+04      | 7.987E+06 | 1.608E+04         | 3.436E+01 | 9.585E+03 | 3.779E+01         |
| 2028 | 1.523E+04      | 8.321E+06 | 1.676E+04         | 3.579E+01 | 9.986E+03 | 3.937E+01         |
| 2029 | 1.586E+04      | 8.664E+06 | 1.744E+04         | 3.726E+01 | 1.040E+04 | 4.099E+01         |
| 2030 | 1.650E+04      | 9.014E+06 | 1.815E+04         | 3.877E+01 | 1.082E+04 | 4.265E+01         |
| 2031 | 1.716E+04      | 9.374E+06 | 1.887E+04         | 4.032E+01 | 1.125E+04 | 4.435E+01         |
| 2032 | 1.783E+04      | 9.742E+06 | 1.962E+04         | 4.190E+01 | 1.169E+04 | 4.609E+01         |
| 2033 | 1.852E+04      | 1.012E+07 | 2.038E+04         | 4.353E+01 | 1.214E+04 | 4.788E+01         |
| 2034 | 1.923E+04      | 1.051E+07 | 2.116E+04         | 4.520E+01 | 1.261E+04 | 4.971E+01         |
| 2035 | 1.996E+04      | 1.090E+07 | 2.196E+04         | 4.690E+01 | 1.309E+04 | 5.159E+01         |
| 2036 | 2.071E+04      | 1.131E+07 | 2.278E+04         | 4.866E+01 | 1.357E+04 | 5.352E+01         |
| 2037 | 2.147E+04      | 1.173E+07 | 2.362E+04         | 5.046E+01 | 1.408E+04 | 5.550E+01         |
| 2038 | 2.226E+04      | 1.216E+07 | 2.448E+04         | 5.230E+01 | 1.459E+04 | 5.753E+01         |
| 2039 | 2.306E+04      | 1.260E+07 | 2.537E+04         | 5.420E+01 | 1.512E+04 | 5.962E+01         |
| 2040 | 2.389E+04      | 1.305E+07 | 2.628E+04         | 5.614E+01 | 1.566E+04 | 6.176E+01         |

| Voor       | Carbon dioxide         |                        |                        | NMOC                   |                        |                        |  |
|------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|--|
| Year       | (Mg/year)              | (m³/year)              | (short tons/year)      | (Mg/year)              | (m³/year)              | (short tons/year)      |  |
| 2041       | 2.474E+04              | 1.352E+07              | 2.722E+04              | 5.814E+01              | 1.622E+04              | 6.396E+01              |  |
| 2042       | 2.562E+04              | 1.399E+07              | 2.818E+04              | 6.019E+01              | 1.679E+04              | 6.621E+01              |  |
| 2043       | 2.651E+04              | 1.448E+07              | 2.916E+04              | 6.230E+01              | 1.738E+04              | 6.853E+01              |  |
| 2044       | 2.743E+04              | 1.499E+07              | 3.018E+04              | 6.446E+01              | 1.798E+04              | 7.091E+01              |  |
| 2045       | 2.838E+04              | 1.550E+07              | 3.122E+04              | 6.669E+01              | 1.860E+04              | 7.336E+01              |  |
| 2046       | 2.935E+04              | 1.603E+07              | 3.229E+04              | 6.897E+01              | 1.924E+04              | 7.587E+01              |  |
| 2047       | 3.035E+04              | 1.658E+07              | 3.339E+04              | 7.132E+01              | 1.990E+04              | 7.845E+01              |  |
| 048        | 3.138E+04              | 1.714E+07              | 3.451E+04              | 7.373E+01              | 2.057E+04              | 8.110E+01              |  |
| 049        | 3.243E+04              | 1.772E+07              | 3.568E+04              | 7.621E+01              | 2.126E+04              | 8.383E+01              |  |
| 2050       | 3.352E+04              | 1.831E+07              | 3.687E+04              | 7.876E+01              | 2.197E+04              | 8.663E+01              |  |
| 051        | 3.463E+04              | 1.892E+07              | 3.809E+04              | 8.138E+01              | 2.270E+04              | 8.951E+01              |  |
| 052        | 3.578E+04              | 1.954E+07              | 3.935E+04              | 8.407E+01              | 2.345E+04              | 9.248E+01              |  |
| 053        | 3.696E+04              | 2.019E+07              | 4.065E+04              | 8.684E+01              | 2.423E+04              | 9.552E+01              |  |
| 054        | 3.817E+04              | 2.085E+07              | 4.198E+04              | 8.968E+01              | 2.502E+04              | 9.865E+01              |  |
| 055        | 3.941E+04              | 2.153E+07              | 4.335E+04              | 9.261E+01              | 2.584E+04              | 1.019E+02              |  |
| 056        | 4.069E+04              | 2.223E+07              | 4.476E+04              | 9.562E+01              | 2.668E+04              | 1.052E+02              |  |
| 057        | 4.201E+04              | 2.295E+07              | 4.621E+04              | 9.872E+01              | 2.754E+04              | 1.086E+02              |  |
| 058        | 4.337E+04              | 2.369E+07              | 4.770E+04              | 1.019E+02              | 2.843E+04              | 1.121E+02              |  |
| 059        | 4.476E+04              | 2.445E+07              | 4.924E+04              | 1.052E+02              | 2.934E+04              | 1.157E+02              |  |
| 060        | 4.524E+04              | 2.472E+07              | 4.977E+04              | 1.063E+02              | 2.966E+04              | 1.169E+02              |  |
| 061        | 4.435E+04              | 2.423E+07              | 4.878E+04              | 1.042E+02              | 2.907E+04              | 1.146E+02              |  |
| 062        | 4.347E+04              | 2.375E+07              | 4.782E+04              | 1.021E+02              | 2.850E+04              | 1.124E+02              |  |
| 063        | 4.261E+04              | 2.328E+07              | 4.687E+04              | 1.001E+02              | 2.793E+04              | 1.101E+02              |  |
| 064        | 4.176E+04              | 2.282E+07              | 4.594E+04              | 9.814E+01              | 2.738E+04              | 1.080E+02              |  |
| 065        | 4.094E+04              | 2.236E+07              | 4.503E+04              | 9.619E+01              | 2.684E+04              | 1.058E+02              |  |
| 066        | 4.013E+04              | 2.192E+07              | 4.414E+04              | 9.429E+01              | 2.631E+04              | 1.037E+02              |  |
| 067        | 3.933E+04              | 2.149E+07              | 4.327E+04              | 9.242E+01              | 2.578E+04              | 1.017E+02              |  |
| 2068       | 3.855E+04              | 2.106E+07              | 4.241E+04              | 9.059E+01              | 2.527E+04              | 9.965E+01              |  |
| 069        | 3.779E+04              | 2.064E+07              | 4.157E+04              | 8.880E+01              | 2.477E+04              | 9.768E+01              |  |
| 070        | 3.704E+04              | 2.024E+07              | 4.075E+04              | 8.704E+01              | 2.428E+04              | 9.574E+01              |  |
| 071        | 3.631E+04              | 1.983E+07              | 3.994E+04              | 8.532E+01              | 2.380E+04              | 9.385E+01              |  |
| 072        | 3.559E+04              | 1.944E+07              | 3.915E+04              | 8.363E+01              | 2.333E+04              | 9.199E+01              |  |
| 073        | 3.488E+04              | 1.906E+07              | 3.837E+04              | 8.197E+01              | 2.287E+04              | 9.017E+01              |  |
| 074        | 3.419E+04              | 1.868E+07              | 3.761E+04              | 8.035E+01              | 2.242E+04              | 8.838E+01              |  |
| 075        | 3.352E+04              | 1.831E+07              | 3.687E+04              | 7.876E+01              | 2.197E+04              | 8.663E+01              |  |
| 076        | 3.285E+04              | 1.795E+07              | 3.614E+04              | 7.720E+01              | 2.157E+04<br>2.154E+04 | 8.492E+01              |  |
| 077        | 3.220E+04              | 1.759E+07              | 3.542E+04              | 7.567E+01              | 2.111E+04              | 8.324E+01              |  |
| 078        | 3.156E+04              | 1.739E+07              | 3.472E+04              | 7.417E+01              | 2.069E+04              | 8.159E+01              |  |
| 079        | 3.094E+04              | 1.690E+07              | 3.403E+04              | 7.417E+01<br>7.270E+01 | 2.009E+04<br>2.028E+04 | 7.997E+01              |  |
| 080        | 3.033E+04              | 1.657E+07              | 3.336E+04              | 7.126E+01              | 1.988E+04              | 7.839E+01              |  |
| 081        | 2.973E+04              | 1.624E+07              | 3.270E+04              | 6.985E+01              | 1.949E+04              | 7.684E+01              |  |
| 082        | 2.914E+04              | 1.592E+07              | 3.205E+04              | 6.847E+01              | 1.949E+04<br>1.910E+04 | 7.532E+01              |  |
|            |                        |                        | 3.205E+04<br>3.142E+04 | 6.711E+01              |                        |                        |  |
| 083<br>084 | 2.856E+04<br>2.800E+04 | 1.560E+07<br>1.529E+07 | 3.142E+04<br>3.079E+04 | 6.578E+01              | 1.872E+04<br>1.835E+04 | 7.382E+01<br>7.236E+01 |  |
| 085        | 2.744E+04              | 1.499E+07              | 3.079E+04<br>3.018E+04 | 6.448E+01              | 1.799E+04              | 7.236E+01<br>7.093E+01 |  |
|            | 2.744E+04<br>2.690E+04 | 1.499E+07<br>1.469E+07 | 3.018E+04<br>2.959E+04 | 6.320E+01              | 1.799E+04<br>1.763E+04 | 6.953E+01              |  |
| 086        |                        |                        |                        |                        |                        |                        |  |
| 087        | 2.636E+04              | 1.440E+07              | 2.900E+04              | 6.195E+01              | 1.728E+04              | 6.815E+01              |  |
| 880        | 2.584E+04              | 1.412E+07              | 2.843E+04              | 6.073E+01              | 1.694E+04              | 6.680E+01              |  |
| 089        | 2.533E+04              | 1.384E+07              | 2.786E+04              | 5.952E+01              | 1.661E+04              | 6.548E+01              |  |
| 2090       | 2.483E+04              | 1.356E+07              | 2.731E+04              | 5.835E+01              | 1.628E+04              | 6.418E+01              |  |
| 2091       | 2.434E+04              | 1.330E+07              | 2.677E+04              | 5.719E+01              | 1.595E+04              | 6.291E+01              |  |

| V    | Carbon dioxide |           |                   | NMOC      |           |                   |
|------|----------------|-----------|-------------------|-----------|-----------|-------------------|
| Year | (Mg/year)      | (m³/year) | (short tons/year) | (Mg/year) | (m³/year) | (short tons/year) |
| 2092 | 2.386E+04      | 1.303E+07 | 2.624E+04         | 5.606E+01 | 1.564E+04 | 6.166E+01         |
| 2093 | 2.338E+04      | 1.277E+07 | 2.572E+04         | 5.495E+01 | 1.533E+04 | 6.044E+01         |
| 2094 | 2.292E+04      | 1.252E+07 | 2.521E+04         | 5.386E+01 | 1.503E+04 | 5.925E+01         |
| 2095 | 2.247E+04      | 1.227E+07 | 2.471E+04         | 5.279E+01 | 1.473E+04 | 5.807E+01         |
| 2096 | 2.202E+04      | 1.203E+07 | 2.422E+04         | 5.175E+01 | 1.444E+04 | 5.692E+01         |
| 2097 | 2.159E+04      | 1.179E+07 | 2.374E+04         | 5.072E+01 | 1.415E+04 | 5.580E+01         |
| 2098 | 2.116E+04      | 1.156E+07 | 2.327E+04         | 4.972E+01 | 1.387E+04 | 5.469E+01         |
| 2099 | 2.074E+04      | 1.133E+07 | 2.281E+04         | 4.873E+01 | 1.360E+04 | 5.361E+01         |
| 2100 | 2.033E+04      | 1.111E+07 | 2.236E+04         | 4.777E+01 | 1.333E+04 | 5.255E+01         |
| 2101 | 1.993E+04      | 1.089E+07 | 2.192E+04         | 4.682E+01 | 1.306E+04 | 5.151E+01         |
| 2102 | 1.953E+04      | 1.067E+07 | 2.148E+04         | 4.590E+01 | 1.280E+04 | 5.049E+01         |
| 2103 | 1.914E+04      | 1.046E+07 | 2.106E+04         | 4.499E+01 | 1.255E+04 | 4.949E+01         |
| 2104 | 1.877E+04      | 1.025E+07 | 2.064E+04         | 4.410E+01 | 1.230E+04 | 4.851E+01         |
| 2105 | 1.839E+04      | 1.005E+07 | 2.023E+04         | 4.322E+01 | 1.206E+04 | 4.755E+01         |
| 2106 | 1.803E+04      | 9.850E+06 | 1.983E+04         | 4.237E+01 | 1.182E+04 | 4.660E+01         |
| 2107 | 1.767E+04      | 9.655E+06 | 1.944E+04         | 4.153E+01 | 1.159E+04 | 4.568E+01         |
| 2108 | 1.732E+04      | 9.464E+06 | 1.906E+04         | 4.071E+01 | 1.136E+04 | 4.478E+01         |
| 2109 | 1.698E+04      | 9.276E+06 | 1.868E+04         | 3.990E+01 | 1.113E+04 | 4.389E+01         |
| 2110 | 1.664E+04      | 9.092E+06 | 1.831E+04         | 3.911E+01 | 1.091E+04 | 4.302E+01         |
| 2111 | 1.631E+04      | 8.912E+06 | 1.795E+04         | 3.834E+01 | 1.069E+04 | 4.217E+01         |
| 2112 | 1.599E+04      | 8.736E+06 | 1.759E+04         | 3.758E+01 | 1.048E+04 | 4.133E+01         |
| 2113 | 1.567E+04      | 8.563E+06 | 1.724E+04         | 3.683E+01 | 1.028E+04 | 4.052E+01         |
| 2114 | 1.536E+04      | 8.393E+06 | 1.690E+04         | 3.610E+01 | 1.007E+04 | 3.971E+01         |
| 2115 | 1.506E+04      | 8.227E+06 | 1.657E+04         | 3.539E+01 | 9.873E+03 | 3.893E+01         |
| 2116 | 1.476E+04      | 8.064E+06 | 1.624E+04         | 3.469E+01 | 9.677E+03 | 3.816E+01         |
| 2117 | 1.447E+04      | 7.905E+06 | 1.592E+04         | 3.400E+01 | 9.486E+03 | 3.740E+01         |
| 2118 | 1.418E+04      | 7.748E+06 | 1.560E+04         | 3.333E+01 | 9.298E+03 | 3.666E+01         |
| 2119 | 1.390E+04      | 7.595E+06 | 1.529E+04         | 3.267E+01 | 9.114E+03 | 3.593E+01         |
| 2120 | 1.363E+04      | 7.444E+06 | 1.499E+04         | 3.202E+01 | 8.933E+03 | 3.522E+01         |
| 2121 | 1.336E+04      | 7.297E+06 | 1.469E+04         | 3.139E+01 | 8.756E+03 | 3.453E+01         |
| 2122 | 1.309E+04      | 7.152E+06 | 1.440E+04         | 3.076E+01 | 8.583E+03 | 3.384E+01         |
| 2123 | 1.283E+04      | 7.011E+06 | 1.412E+04         | 3.016E+01 | 8.413E+03 | 3.317E+01         |
| 2124 | 1.258E+04      | 6.872E+06 | 1.384E+04         | 2.956E+01 | 8.246E+03 | 3.251E+01         |
| 2125 | 1.233E+04      | 6.736E+06 | 1.356E+04         | 2.897E+01 | 8.083E+03 | 3.187E+01         |
| 2126 | 1.209E+04      | 6.602E+06 | 1.329E+04         | 2.840E+01 | 7.923E+03 | 3.124E+01         |
| 2127 | 1.185E+04      | 6.472E+06 | 1.303E+04         | 2.784E+01 | 7.766E+03 | 3.062E+01         |
| 2128 | 1.161E+04      | 6.344E+06 | 1.277E+04         | 2.729E+01 | 7.612E+03 | 3.001E+01         |
| 2129 | 1.138E+04      | 6.218E+06 | 1.252E+04         | 2.675E+01 | 7.462E+03 | 2.942E+01         |
| 2130 | 1.116E+04      | 6.095E+06 | 1.227E+04         | 2.622E+01 | 7.314E+03 | 2.884E+01         |
| 2131 | 1.094E+04      | 5.974E+06 | 1.203E+04         | 2.570E+01 | 7.169E+03 | 2.827E+01         |



### **Summary Report**

Landfill Name or Identifier: North County Sanitary Landfill

Date: Sunday, March 9, 2025

### **Description/Comments:**

Waste design capacity was estimated based on the volume design capacity of 41.2 million cubic yards of disposal and average reduse desnsity of approximately 0.5 tons per cubic yard specified in the Permit. Historical Data: 1991 to 2023. Project: increase waste acceptance rates from 250,000 in 2024 to 660,000 in 2026, then assume 3% increase annually thereafter. Closure year 2043.

### **About LandGEM:**

First-Order Decomposition Rate Equation:

 $Q_{CH_4} = \sum_{i=1}^{n} \sum_{j=0,1}^{1} k L_o \left( \frac{M_i}{10} \right) e^{-kt_{ij}}$ 

Where,

 $Q_{CH4}$  = annual methane generation in the year of the calculation ( $m^3$ /year)

i = 1-year time increment

n = (year of the calculation) - (initial year of waste acceptance)

j = 0.1-year time increment

 $k = methane generation rate (year^{-1})$ 

 $L_0$  = potential methane generation capacity ( $m^3/Mg$ )

 $M_i$  = mass of waste accepted in the i<sup>th</sup> year (Mg)  $t_{ij}$  = age of the j<sup>th</sup> section of waste mass  $M_i$  accepted in the i<sup>th</sup> year ( $decimal\ years$ , e.g., 3.2 years)

LandGEM is based on a first-order decomposition rate equation for quantifying emissions from the decomposition of landfilled waste in municipal solid waste (MSW) landfills. The software provides a relatively simple approach to estimating landfill gas emissions. Model defaults are based on empirical data from U.S. landfills. Field test data can also be used in place of model defaults when available. Further guidance on EPA test methods, Clean Air Act (CAA) regulations, and other guidance regarding landfill gas emissions and control technology requirements can be found at http://www.epa.gov/ttnatw01/landfill/landfilpq.html.

LandGEM is considered a screening tool — the better the input data, the better the estimates. Often, there are limitations with the available data regarding waste quantity and composition, variation in design and operating practices over time, and changes occurring over time that impact the emissions potential. Changes to landfill operation, such as operating under wet conditions through leachate recirculation or other liquid additions, will result in generating more gas at a faster rate. Defaults for estimating emissions for this type of operation are being developed to include in LandGEM along with defaults for convential landfills (no leachate or liquid additions) for developing emission inventories and determining CAA applicability. Refer to the Web site identified above for future updates.

### **Input Review**

LANDFILL CHARACTERISTICS

Landfill Open Year1991Landfill Closure Year (with 80-year limit)2043Actual Closure Year (without limit)2043Have Model Calculate Closure Year?No

Waste Design Capacity 20,600,000 short tons

MODEL PARAMETERS

Methane Generation Rate, k 0.020  $year^{-1}$  Potential Methane Generation Capacity, L<sub>0</sub> 100  $m^3/Mg$ 

NMOC Concentration600ppmv as hexaneMethane Content50% by volume

GASES / POLLUTANTS SELECTED

Gas / Pollutant #1: Total landfill gas
Gas / Pollutant #2: Methane
Gas / Pollutant #3: Carbon dioxide
Gas / Pollutant #4: NMOC

### WASTE ACCEPTANCE RATES

| Year  | Waste Acc | cepted            | Waste-In-Place |              |  |
|-------|-----------|-------------------|----------------|--------------|--|
| i cai | (Mg/year) | (short tons/year) | (Mg)           | (short tons) |  |
| 1991  | 31,981    | 35,179            | 0              | 0            |  |
| 1992  | 112,964   | 124,260           | 31,981         | 35,179       |  |
| 1993  | 128,467   | 141,314           | 144,945        | 159,440      |  |
| 1994  | 152,987   | 168,286           | 273,412        | 300,753      |  |
| 1995  | 104,115   | 114,527           | 426,399        | 469,039      |  |
| 1996  | 96,087    | 105,696           | 530,514        | 583,565      |  |
| 1997  | 100,475   | 110,523           | 626,601        | 689,261      |  |
| 1998  | 102,551   | 112,806           | 727,076        | 799,784      |  |
| 1999  | 93,263    | 102,589           | 829,627        | 912,590      |  |
| 2000  | 93,186    | 102,504           | 922,890        | 1,015,179    |  |
| 2001  | 124,660   | 137,126           | 1,016,076      | 1,117,684    |  |
| 2002  | 132,137   | 145,350           | 1,140,736      | 1,254,809    |  |
| 2003  | 129,632   | 142,595           | 1,272,872      | 1,400,160    |  |
| 2004  | 151,301   | 166,431           | 1,402,504      | 1,542,755    |  |
| 2005  | 164,113   | 180,524           | 1,553,805      | 1,709,185    |  |
| 2006  | 164,831   | 181,314           | 1,717,917      | 1,889,709    |  |
| 2007  | 153,707   | 169,078           | 1,882,748      | 2,071,023    |  |
| 2008  | 130,163   | 143,179           | 2,036,455      | 2,240,100    |  |
| 2009  | 129,649   | 142,614           | 2,166,617      | 2,383,279    |  |
| 2010  | 122,730   | 135,003           | 2,296,266      | 2,525,893    |  |
| 2011  | 121,377   | 133,515           | 2,418,996      | 2,660,896    |  |
| 2012  | 125,754   | 138,329           | 2,540,374      | 2,794,411    |  |
| 2013  | 141,236   | 155,360           | 2,666,127      | 2,932,740    |  |
| 2014  | 152,055   | 167,261           | 2,807,364      | 3,088,100    |  |
| 2015  | 194,013   | 213,414           | 2,959,419      | 3,255,361    |  |
| 2016  | 152,964   | 168,260           | 3,153,432      | 3,468,775    |  |
| 2017  | 168,888   | 185,777           | 3,306,395      | 3,637,035    |  |
| 2018  | 176,143   | 193,757           | 3,475,283      | 3,822,811    |  |
| 2019  | 174,764   | 192,240           | 3,651,426      | 4,016,568    |  |
| 2020  | 167,371   | 184,108           | 3,826,189      | 4,208,808    |  |
| 2021  | 191,695   | 210,865           | 3,993,560      | 4,392,916    |  |
| 2022  | 180,648   | 198,713           | 4,185,256      | 4,603,781    |  |
| 2023  | 242,867   | 267,154           | 4,365,904      | 4,802,494    |  |
| 2024  | 227,273   | 250,000           | 4,608,771      | 5,069,648    |  |
| 2025  | 413,636   | 455,000           | 4,836,044      | 5,319,648    |  |
| 2026  | 600,000   | 660,000           | 5,249,680      | 5,774,648    |  |
| 2027  | 618,000   | 679,800           | 5,849,680      | 6,434,648    |  |
| 2028  | 636,540   | 700,194           | 6,467,680      | 7,114,448    |  |
| 2029  | 655,636   | 721,200           | 7,104,220      | 7,814,642    |  |
| 2030  | 675,305   | 742,836           | 7,759,857      | 8,535,842    |  |

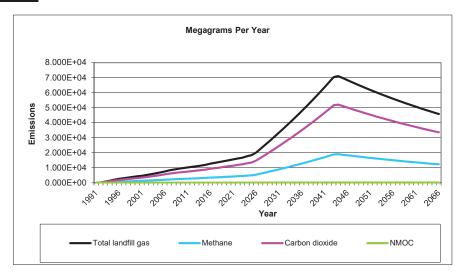
### WASTE ACCEPTANCE RATES (Continued)

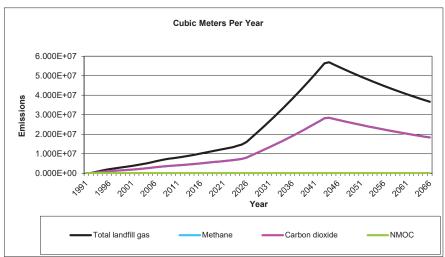
|      | Waste Acc | , ,               | Waste-I    | n-Place      |
|------|-----------|-------------------|------------|--------------|
| Year | (Mg/year) | (short tons/year) | (Mg)       | (short tons) |
| 2031 | 695,564   | 765,121           | 8,435,162  | 9,278,678    |
| 2032 | 716,431   | 788,075           | 9,130,726  | 10,043,799   |
| 2033 | 737,924   | 811,717           | 9,847,158  | 10,831,873   |
| 2034 | 760,062   | 836,068           | 10,585,082 | 11,643,590   |
| 2035 | 782,864   | 861,150           | 11,345,144 | 12,479,658   |
| 2036 | 806,350   | 886,985           | 12,128,008 | 13,340,809   |
| 2037 | 830,540   | 913,594           | 12,934,358 | 14,227,794   |
| 2038 | 855,457   | 941,002           | 13,764,898 | 15,141,388   |
| 2039 | 881,120   | 969,232           | 14,620,355 | 16,082,390   |
| 2040 | 907,554   | 998,309           | 15,501,475 | 17,051,622   |
| 2041 | 934,780   | 1,028,258         | 16,409,029 | 18,049,932   |
| 2042 | 962,824   | 1,059,106         | 17,343,809 | 19,078,190   |
| 2043 | 420,640   | 462,704           | 18,306,633 | 20,137,296   |
| 2044 | 0         | 0                 | 18,727,273 | 20,600,000   |
| 2045 | 0         | 0                 | 18,727,273 | 20,600,000   |
| 2046 | 0         | 0                 | 18,727,273 | 20,600,000   |
| 2047 | 0         | 0                 | 18,727,273 | 20,600,000   |
| 2048 | 0         | 0                 | 18,727,273 | 20,600,000   |
| 2049 | 0         | 0                 | 18,727,273 | 20,600,000   |
| 2050 | 0         | 0                 | 18,727,273 | 20,600,000   |
| 2051 | 0         | 0                 | 18,727,273 | 20,600,000   |
| 2052 | 0         | 0                 | 18,727,273 | 20,600,000   |
| 2053 | 0         | 0                 | 18,727,273 | 20,600,000   |
| 2054 | 0         | 0                 | 18,727,273 | 20,600,000   |
| 2055 | 0         | 0                 | 18,727,273 | 20,600,000   |
| 2056 | 0         | 0                 | 18,727,273 | 20,600,000   |
| 2057 | 0         | 0                 | 18,727,273 | 20,600,000   |
| 2058 | 0         | 0                 | 18,727,273 | 20,600,000   |
| 2059 | 0         | 0                 | 18,727,273 | 20,600,000   |
| 2060 | 0         | 0                 | 18,727,273 | 20,600,000   |
| 2061 | 0         | 0                 | 18,727,273 | 20,600,000   |
| 2062 | 0         | 0                 | 18,727,273 | 20,600,000   |
| 2063 | 0         | 0                 | 18,727,273 | 20,600,000   |
| 2064 | 0         | 0                 | 18,727,273 | 20,600,000   |
| 2065 | 0         | 0                 | 18,727,273 | 20,600,000   |
| 2066 | 0         | 0                 | 18,727,273 | 20,600,000   |
| 2067 | 0         | 0                 | 18,727,273 | 20,600,000   |
| 2068 | 0         | 0                 | 18,727,273 | 20,600,000   |
| 2069 | 0         | 0                 | 18,727,273 | 20,600,000   |
| 2070 | 0         | 0                 | 18,727,273 | 20,600,000   |

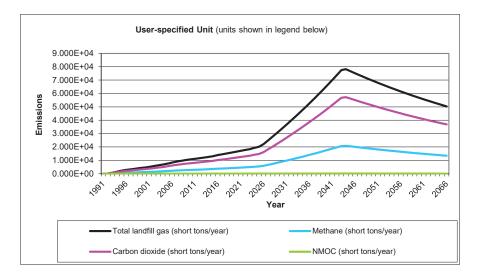
### **Pollutant Parameters**

Gas / Pollutant Default Parameters:

User-specified Pollutant Parameters:


|            |                                    | Concentration | 1                | Concentration |                  |
|------------|------------------------------------|---------------|------------------|---------------|------------------|
|            | Compound                           | (ppmv)        | Molecular Weight | (ppmv)        | Molecular Weight |
|            | Total landfill gas                 | (рртту)       | 30.03            | (ρριτίν )     | Wolecular Weight |
| တ္ဆ        | Methane                            |               | 16.04            |               |                  |
| Gases      | Carbon dioxide                     |               | 44.01            |               |                  |
| Ö          | NMOC                               | 4.000         |                  |               |                  |
| -          |                                    | 4,000         | 86.18            |               |                  |
|            | 1,1,1-Trichloroethane              |               |                  |               |                  |
|            | (methyl chloroform) -              | 0.40          | 400.44           |               |                  |
|            | HAP                                | 0.48          | 133.41           |               |                  |
|            | 1,1,2,2-                           |               |                  |               |                  |
|            | Tetrachloroethane -                |               |                  |               |                  |
|            | HAP/VOC                            | 1.1           | 167.85           |               |                  |
|            | 1,1-Dichloroethane                 |               |                  |               |                  |
|            | (ethylidene dichloride) -          |               |                  |               |                  |
|            | HAP/VOC                            | 2.4           | 98.97            |               |                  |
|            | 1,1-Dichloroethene                 |               |                  |               |                  |
|            | (vinylidene chloride) -            |               |                  |               |                  |
|            | HAP/VOC                            | 0.20          | 96.94            |               |                  |
|            | 1,2-Dichloroethane                 |               |                  |               |                  |
|            | (ethylene dichloride) -            |               |                  |               |                  |
|            | HAP/VOC                            | 0.41          | 98.96            |               |                  |
|            | 1,2-Dichloropropane                |               |                  |               |                  |
|            | (propylene dichloride) -           |               |                  |               |                  |
|            | HAP/VOC                            | 0.18          | 112.99           |               |                  |
|            | 2-Propanol (isopropyl              | 0.10          | 2.00             |               |                  |
|            | alcohol) - VOC                     | 50            | 60.11            |               |                  |
|            | Acetone                            | 7.0           | 58.08            |               |                  |
|            | Acrylonitrile - HAP/VOC            | 6.3           | 53.06            |               |                  |
|            | Benzene - No or                    | 0.5           | 33.00            |               |                  |
|            |                                    |               |                  |               |                  |
|            | Unknown Co-disposal -              | 1.9           | 78.11            |               |                  |
|            | HAP/VOC<br>Benzene - Co-disposal - | 1.9           | 70.11            |               |                  |
|            |                                    | 4.4           | 70.44            |               |                  |
| ts         | HAP/VOC                            | 11            | 78.11            |               |                  |
| au         | Bromodichloromethane -             | 2.4           | 400.00           |               |                  |
| <u> </u>   | VOC                                | 3.1           | 163.83           |               |                  |
| Pollutants | Butane - VOC                       | 5.0           | 58.12            |               |                  |
| -          | Carbon disulfide -                 | 0.50          | <b>-</b> 0.40    |               |                  |
|            | HAP/VOC                            | 0.58          | 76.13            |               |                  |
|            | Carbon monoxide                    | 140           | 28.01            |               |                  |
|            | Carbon tetrachloride -             |               |                  |               |                  |
|            | HAP/VOC                            | 4.0E-03       | 153.84           |               |                  |
|            | Carbonyl sulfide -                 |               |                  |               |                  |
| 1          | HAP/VOC                            | 0.49          | 60.07            |               |                  |
|            | Chlorobenzene -                    |               |                  |               |                  |
|            | HAP/VOC                            | 0.25          | 112.56           |               |                  |
|            | Chlorodifluoromethane              | 1.3           | 86.47            |               |                  |
| 1          | Chloroethane (ethyl                |               |                  |               |                  |
|            | chloride) - HAP/VOC                | 1.3           | 64.52            |               |                  |
| 1          | Chloroform - HAP/VOC               | 0.03          | 119.39           |               |                  |
| 1          | Chloromethane - VOC                | 1.2           | 50.49            |               |                  |
|            | Dichlorobenzene - (HAP             |               |                  |               |                  |
|            | for para isomer/VOC)               |               |                  |               |                  |
| 1          |                                    | 0.21          | 147              |               |                  |
| 1          | Dichlorodifluoromethane            | 16            | 120.91           |               |                  |
| 1          | Dichlorofluoromethane -            |               |                  |               |                  |
|            | VOC                                | 2.6           | 102.92           |               |                  |
|            | Dichloromethane                    |               |                  |               |                  |
| 1          | (methylene chloride) -             |               |                  |               |                  |
| 1          | HAP                                | 14            | 84.94            |               |                  |
| 1          | Dimethyl sulfide (methyl           | •             |                  |               |                  |
| 1          | sulfide) - VOC                     | 7.8           | 62.13            |               |                  |
| 1          | Ethane                             | 890           | 30.07            |               |                  |
|            | Ethanol - VOC                      | 27            | 46.08            |               |                  |
|            |                                    | <u>-</u> r    | 10.00            | ·             | 1                |


### **Pollutant Parameters (Continued)**


| Gas / Pollutant Default Parameters: | User-specified Pollutant Parameters: |
|-------------------------------------|--------------------------------------|
|                                     |                                      |

| _          | Cus / I Ol                                  | iutant Default Param | Ctcro.           |                                  | lutant Parameters: |
|------------|---------------------------------------------|----------------------|------------------|----------------------------------|--------------------|
|            | Compound                                    | Concentration (ppmv) | Molecular Weight | Concentration<br>( <i>ppmv</i> ) | Molecular Weight   |
|            | Ethyl mercaptan                             |                      |                  | V-1- /                           | Ŭ                  |
|            | (ethanethiol) - VOC<br>Ethylbenzene -       | 2.3                  | 62.13            |                                  |                    |
|            | HAP/VOC                                     | 4.6                  | 106.16           |                                  |                    |
|            | Ethylene dibromide -                        | -                    |                  |                                  |                    |
|            | HAP/VOC                                     | 1.0E-03              | 187.88           |                                  |                    |
|            | Fluorotrichloromethane - VOC                | 0.76                 | 137.38           |                                  |                    |
|            | Hexane - HAP/VOC                            | 6.6                  | 86.18            |                                  |                    |
|            | Hydrogen sulfide                            | 36                   | 34.08<br>200.61  |                                  |                    |
|            | Mercury (total) - HAP Methyl ethyl ketone - | 2.9E-04              | 200.61           |                                  |                    |
|            | HAP/VOC                                     | 7.1                  | 72.11            |                                  |                    |
|            | Methyl isobutyl ketone -                    | 4.0                  | 100.10           |                                  |                    |
|            | HAP/VOC                                     | 1.9                  | 100.16           |                                  |                    |
|            | Methyl mercaptan - VOC                      | 2.5                  | 48.11            |                                  |                    |
|            | Pentane - VOC                               | 3.3                  | 72.15            |                                  |                    |
|            | Perchloroethylene (tetrachloroethylene) -   |                      |                  |                                  |                    |
|            | HAP                                         | 3.7                  | 165.83           |                                  |                    |
|            | Propane - VOC                               | 11                   | 44.09            |                                  |                    |
|            | t-1,2-Dichloroethene -<br>VOC               | 2.8                  | 96.94            |                                  |                    |
|            | Toluene - No or                             | 2.0                  | 30.34            |                                  |                    |
|            | Unknown Co-disposal -                       |                      |                  |                                  |                    |
|            | HAP/VOC<br>Toluene - Co-disposal -          | 39                   | 92.13            |                                  |                    |
|            | HAP/VOC                                     | 170                  | 92.13            |                                  |                    |
| ۱.,        | Trichloroethylene                           |                      |                  |                                  |                    |
| ants       | (trichloroethene) -<br>HAP/VOC              | 2.8                  | 131.40           |                                  |                    |
| Pollutants | Vinyl chloride -                            | 2.0                  | 131.40           |                                  |                    |
| Po         | HAP/VOC                                     | 7.3                  | 62.50            |                                  |                    |
|            | Xylenes - HAP/VOC                           | 12                   | 106.16           |                                  |                    |
|            |                                             |                      |                  |                                  |                    |
|            |                                             |                      |                  |                                  |                    |
|            |                                             |                      |                  |                                  |                    |
|            |                                             |                      |                  |                                  |                    |
|            |                                             |                      |                  |                                  |                    |
|            |                                             |                      |                  |                                  |                    |
|            |                                             |                      |                  |                                  |                    |
|            |                                             |                      |                  |                                  |                    |
|            |                                             |                      |                  |                                  |                    |
|            |                                             |                      |                  |                                  |                    |
|            |                                             |                      |                  |                                  |                    |
|            |                                             |                      |                  |                                  |                    |
|            |                                             |                      |                  |                                  |                    |
|            |                                             |                      |                  |                                  |                    |
|            |                                             |                      |                  |                                  |                    |
|            |                                             |                      |                  |                                  |                    |
|            |                                             |                      |                  |                                  |                    |
|            |                                             |                      |                  |                                  |                    |
|            |                                             |                      |                  |                                  |                    |
|            |                                             |                      |                  |                                  |                    |
|            |                                             |                      |                  |                                  |                    |
|            |                                             |                      |                  |                                  |                    |

### **Graphs**







### Results

| Vaar |           | Total landfill gas |                   |           | Methane   |                   |
|------|-----------|--------------------|-------------------|-----------|-----------|-------------------|
| Year | (Mg/year) | (m³/year)          | (short tons/year) | (Mg/year) | (m³/year) | (short tons/year) |
| 1991 | 0         | 0                  | 0                 | 0         | 0         | 0                 |
| 1992 | 1.583E+02 | 1.268E+05          | 1.742E+02         | 4.229E+01 | 6.339E+04 | 4.652E+01         |
| 1993 | 7.144E+02 | 5.721E+05          | 7.859E+02         | 1.908E+02 | 2.860E+05 | 2.099E+02         |
| 1994 | 1.336E+03 | 1.070E+06          | 1.470E+03         | 3.569E+02 | 5.350E+05 | 3.926E+02         |
| 1995 | 2.067E+03 | 1.655E+06          | 2.274E+03         | 5.522E+02 | 8.277E+05 | 6.074E+02         |
| 1996 | 2.542E+03 | 2.035E+06          | 2.796E+03         | 6.789E+02 | 1.018E+06 | 7.468E+02         |
| 1997 | 2.967E+03 | 2.376E+06          | 3.264E+03         | 7.925E+02 | 1.188E+06 | 8.718E+02         |
| 1998 | 3.406E+03 | 2.727E+06          | 3.746E+03         | 9.097E+02 | 1.364E+06 | 1.001E+03         |
| 1999 | 3.846E+03 | 3.080E+06          | 4.231E+03         | 1.027E+03 | 1.540E+06 | 1.130E+03         |
| 2000 | 4.232E+03 | 3.388E+06          | 4.655E+03         | 1.130E+03 | 1.694E+06 | 1.243E+03         |
| 2001 | 4.609E+03 | 3.691E+06          | 5.070E+03         | 1.231E+03 | 1.845E+06 | 1.354E+03         |
| 2002 | 5.135E+03 | 4.112E+06          | 5.648E+03         | 1.372E+03 | 2.056E+06 | 1.509E+03         |
| 2003 | 5.687E+03 | 4.554E+06          | 6.256E+03         | 1.519E+03 | 2.277E+06 | 1.671E+03         |
| 2004 | 6.217E+03 | 4.978E+06          | 6.838E+03         | 1.661E+03 | 2.489E+06 | 1.827E+03         |
| 2005 | 6.842E+03 | 5.479E+06          | 7.527E+03         | 1.828E+03 | 2.740E+06 | 2.010E+03         |
| 2006 | 7.519E+03 | 6.021E+06          | 8.271E+03         | 2.009E+03 | 3.011E+06 | 2.209E+03         |
| 2007 | 8.187E+03 | 6.555E+06          | 9.005E+03         | 2.187E+03 | 3.278E+06 | 2.405E+03         |
| 2008 | 8.785E+03 | 7.035E+06          | 9.664E+03         | 2.347E+03 | 3.517E+06 | 2.581E+03         |
| 2009 | 9.256E+03 | 7.412E+06          | 1.018E+04         | 2.472E+03 | 3.706E+06 | 2.720E+03         |
| 2010 | 9.714E+03 | 7.779E+06          | 1.069E+04         | 2.595E+03 | 3.889E+06 | 2.854E+03         |
| 2011 | 1.013E+04 | 8.111E+06          | 1.114E+04         | 2.706E+03 | 4.056E+06 | 2.976E+03         |
| 2012 | 1.053E+04 | 8.432E+06          | 1.158E+04         | 2.813E+03 | 4.216E+06 | 3.094E+03         |
| 2013 | 1.094E+04 | 8.763E+06          | 1.204E+04         | 2.923E+03 | 4.382E+06 | 3.216E+03         |
| 2014 | 1.143E+04 | 9.150E+06          | 1.257E+04         | 3.052E+03 | 4.575E+06 | 3.357E+03         |
| 2015 | 1.195E+04 | 9.571E+06          | 1.315E+04         | 3.193E+03 | 4.786E+06 | 3.512E+03         |
| 2016 | 1.268E+04 | 1.015E+07          | 1.394E+04         | 3.386E+03 | 5.076E+06 | 3.725E+03         |
| 2017 | 1.318E+04 | 1.056E+07          | 1.450E+04         | 3.521E+03 | 5.278E+06 | 3.873E+03         |
| 2018 | 1.376E+04 | 1.102E+07          | 1.513E+04         | 3.675E+03 | 5.508E+06 | 4.042E+03         |
| 2019 | 1.436E+04 | 1.150E+07          | 1.579E+04         | 3.835E+03 | 5.748E+06 | 4.219E+03         |
| 2020 | 1.494E+04 | 1.196E+07          | 1.643E+04         | 3.990E+03 | 5.981E+06 | 4.389E+03         |
| 2021 | 1.547E+04 | 1.239E+07          | 1.702E+04         | 4.133E+03 | 6.194E+06 | 4.546E+03         |
| 2022 | 1.611E+04 | 1.290E+07          | 1.773E+04         | 4.304E+03 | 6.452E+06 | 4.735E+03         |
| 2023 | 1.669E+04 | 1.336E+07          | 1.836E+04         | 4.458E+03 | 6.682E+06 | 4.904E+03         |
| 2024 | 1.756E+04 | 1.406E+07          | 1.932E+04         | 4.691E+03 | 7.031E+06 | 5.160E+03         |
| 2025 | 1.834E+04 | 1.468E+07          | 2.017E+04         | 4.898E+03 | 7.342E+06 | 5.388E+03         |
| 2026 | 2.002E+04 | 1.603E+07          | 2.203E+04         | 5.348E+03 | 8.017E+06 | 5.883E+03         |
| 2027 | 2.260E+04 | 1.809E+07          | 2.486E+04         | 6.036E+03 | 9.047E+06 | 6.640E+03         |
| 2028 | 2.521E+04 | 2.019E+07          | 2.773E+04         | 6.734E+03 | 1.009E+07 | 7.407E+03         |
| 2029 | 2.786E+04 | 2.231E+07          | 3.065E+04         | 7.442E+03 | 1.115E+07 | 8.186E+03         |
| 2030 | 3.056E+04 | 2.447E+07          | 3.361E+04         | 8.162E+03 | 1.223E+07 | 8.978E+03         |
| 2031 | 3.329E+04 | 2.666E+07          | 3.662E+04         | 8.893E+03 | 1.333E+07 | 9.782E+03         |
| 2032 | 3.608E+04 | 2.889E+07          | 3.969E+04         | 9.637E+03 | 1.444E+07 | 1.060E+04         |
| 2033 | 3.891E+04 | 3.116E+07          | 4.280E+04         | 1.039E+04 | 1.558E+07 | 1.143E+04         |
| 2034 | 4.179E+04 | 3.347E+07          | 4.597E+04         | 1.116E+04 | 1.673E+07 | 1.228E+04         |
| 2035 | 4.473E+04 | 3.582E+07          | 4.920E+04         | 1.195E+04 | 1.791E+07 | 1.314E+04         |
| 2036 | 4.772E+04 | 3.821E+07          | 5.249E+04         | 1.275E+04 | 1.911E+07 | 1.402E+04         |
| 2037 | 5.077E+04 | 4.065E+07          | 5.584E+04         | 1.356E+04 | 2.033E+07 | 1.492E+04         |
| 2038 | 5.387E+04 | 4.314E+07          | 5.926E+04         | 1.439E+04 | 2.157E+07 | 1.583E+04         |
| 2039 | 5.704E+04 | 4.567E+07          | 6.274E+04         | 1.524E+04 | 2.284E+07 | 1.676E+04         |
| 2040 | 6.027E+04 | 4.826E+07          | 6.630E+04         | 1.610E+04 | 2.413E+07 | 1.771E+04         |

| Vaar |           | Total landfill gas |                   |           | Methane   |                   |
|------|-----------|--------------------|-------------------|-----------|-----------|-------------------|
| Year | (Mg/year) | (m³/year)          | (short tons/year) | (Mg/year) | (m³/year) | (short tons/year) |
| 2041 | 6.357E+04 | 5.091E+07          | 6.993E+04         | 1.698E+04 | 2.545E+07 | 1.868E+04         |
| 2042 | 6.694E+04 | 5.360E+07          | 7.363E+04         | 1.788E+04 | 2.680E+07 | 1.967E+04         |
| 2043 | 7.038E+04 | 5.636E+07          | 7.742E+04         | 1.880E+04 | 2.818E+07 | 2.068E+04         |
| 2044 | 7.107E+04 | 5.691E+07          | 7.818E+04         | 1.898E+04 | 2.846E+07 | 2.088E+04         |
| 2045 | 6.966E+04 | 5.578E+07          | 7.663E+04         | 1.861E+04 | 2.789E+07 | 2.047E+04         |
| 2046 | 6.828E+04 | 5.468E+07          | 7.511E+04         | 1.824E+04 | 2.734E+07 | 2.006E+04         |
| 2047 | 6.693E+04 | 5.360E+07          | 7.363E+04         | 1.788E+04 | 2.680E+07 | 1.967E+04         |
| 2048 | 6.561E+04 | 5.253E+07          | 7.217E+04         | 1.752E+04 | 2.627E+07 | 1.928E+04         |
| 2049 | 6.431E+04 | 5.149E+07          | 7.074E+04         | 1.718E+04 | 2.575E+07 | 1.889E+04         |
| 2050 | 6.303E+04 | 5.047E+07          | 6.934E+04         | 1.684E+04 | 2.524E+07 | 1.852E+04         |
| 2051 | 6.179E+04 | 4.948E+07          | 6.796E+04         | 1.650E+04 | 2.474E+07 | 1.815E+04         |
| 2052 | 6.056E+04 | 4.850E+07          | 6.662E+04         | 1.618E+04 | 2.425E+07 | 1.779E+04         |
| 2053 | 5.936E+04 | 4.754E+07          | 6.530E+04         | 1.586E+04 | 2.377E+07 | 1.744E+04         |
| 2054 | 5.819E+04 | 4.659E+07          | 6.401E+04         | 1.554E+04 | 2.330E+07 | 1.710E+04         |
| 2055 | 5.704E+04 | 4.567E+07          | 6.274E+04         | 1.523E+04 | 2.284E+07 | 1.676E+04         |
| 2056 | 5.591E+04 | 4.477E+07          | 6.150E+04         | 1.493E+04 | 2.238E+07 | 1.643E+04         |
| 2057 | 5.480E+04 | 4.388E+07          | 6.028E+04         | 1.464E+04 | 2.194E+07 | 1.610E+04         |
| 2058 | 5.371E+04 | 4.301E+07          | 5.909E+04         | 1.435E+04 | 2.151E+07 | 1.578E+04         |
| 2059 | 5.265E+04 | 4.216E+07          | 5.792E+04         | 1.406E+04 | 2.108E+07 | 1.547E+04         |
| 2060 | 5.161E+04 | 4.133E+07          | 5.677E+04         | 1.379E+04 | 2.066E+07 | 1.516E+04         |
| 2061 | 5.059E+04 | 4.051E+07          | 5.564E+04         | 1.351E+04 | 2.025E+07 | 1.486E+04         |
| 2062 | 4.958E+04 | 3.970E+07          | 5.454E+04         | 1.324E+04 | 1.985E+07 | 1.457E+04         |
| 2063 | 4.860E+04 | 3.892E+07          | 5.346E+04         | 1.298E+04 | 1.946E+07 | 1.428E+04         |
| 2064 | 4.764E+04 | 3.815E+07          | 5.240E+04         | 1.273E+04 | 1.907E+07 | 1.400E+04         |
| 2065 | 4.670E+04 | 3.739E+07          | 5.137E+04         | 1.247E+04 | 1.870E+07 | 1.372E+04         |
| 2066 | 4.577E+04 | 3.665E+07          | 5.035E+04         | 1.223E+04 | 1.833E+07 | 1.345E+04         |
| 2067 | 4.487E+04 | 3.593E+07          | 4.935E+04         | 1.198E+04 | 1.796E+07 | 1.318E+04         |
| 2068 | 4.398E+04 | 3.522E+07          | 4.838E+04         | 1.175E+04 | 1.761E+07 | 1.292E+04         |
| 2069 | 4.311E+04 | 3.452E+07          | 4.742E+04         | 1.151E+04 | 1.726E+07 | 1.267E+04         |
| 2070 | 4.225E+04 | 3.383E+07          | 4.648E+04         | 1.129E+04 | 1.692E+07 | 1.241E+04         |
| 2071 | 4.142E+04 | 3.316E+07          | 4.556E+04         | 1.106E+04 | 1.658E+07 | 1.217E+04         |
| 2072 | 4.060E+04 | 3.251E+07          | 4.466E+04         | 1.084E+04 | 1.625E+07 | 1.193E+04         |
| 2073 | 3.979E+04 | 3.186E+07          | 4.377E+04         | 1.063E+04 | 1.593E+07 | 1.169E+04         |
| 2074 | 3.900E+04 | 3.123E+07          | 4.290E+04         | 1.042E+04 | 1.562E+07 | 1.146E+04         |
| 2075 | 3.823E+04 | 3.061E+07          | 4.206E+04         | 1.021E+04 | 1.531E+07 | 1.123E+04         |
| 2076 | 3.748E+04 | 3.001E+07          | 4.122E+04         | 1.001E+04 | 1.500E+07 | 1.101E+04         |
| 2077 | 3.673E+04 | 2.941E+07          | 4.041E+04         | 9.812E+03 | 1.471E+07 | 1.079E+04         |
| 2078 | 3.601E+04 | 2.883E+07          | 3.961E+04         | 9.617E+03 | 1.442E+07 | 1.058E+04         |
| 2079 | 3.529E+04 | 2.826E+07          | 3.882E+04         | 9.427E+03 | 1.413E+07 | 1.037E+04         |
| 2080 | 3.459E+04 | 2.770E+07          | 3.805E+04         | 9.240E+03 | 1.385E+07 | 1.016E+04         |
| 2081 | 3.391E+04 | 2.715E+07          | 3.730E+04         | 9.057E+03 | 1.358E+07 | 9.963E+03         |
| 2082 | 3.324E+04 | 2.661E+07          | 3.656E+04         | 8.878E+03 | 1.331E+07 | 9.766E+03         |
| 2083 | 3.258E+04 | 2.609E+07          | 3.584E+04         | 8.702E+03 | 1.304E+07 | 9.572E+03         |
| 2084 | 3.193E+04 | 2.557E+07          | 3.513E+04         | 8.530E+03 | 1.279E+07 | 9.383E+03         |
| 2085 | 3.130E+04 | 2.507E+07          | 3.443E+04         | 8.361E+03 | 1.253E+07 | 9.197E+03         |
| 2086 | 3.068E+04 | 2.457E+07          | 3.375E+04         | 8.195E+03 | 1.228E+07 | 9.015E+03         |
| 2087 | 3.007E+04 | 2.408E+07          | 3.308E+04         | 8.033E+03 | 1.204E+07 | 8.837E+03         |
| 2088 | 2.948E+04 | 2.361E+07          | 3.243E+04         | 7.874E+03 | 1.180E+07 | 8.662E+03         |
| 2089 | 2.890E+04 | 2.314E+07          | 3.178E+04         | 7.718E+03 | 1.157E+07 | 8.490E+03         |
| 2090 | 2.832E+04 | 2.268E+07          | 3.116E+04         | 7.565E+03 | 1.134E+07 | 8.322E+03         |
| 2091 | 2.776E+04 | 2.223E+07          | 3.054E+04         | 7.416E+03 | 1.112E+07 | 8.157E+03         |

| V    |           | Total landfill gas |                   |           | Methane   |                   |
|------|-----------|--------------------|-------------------|-----------|-----------|-------------------|
| Year | (Mg/year) | (m³/year)          | (short tons/year) | (Mg/year) | (m³/year) | (short tons/year) |
| 2092 | 2.721E+04 | 2.179E+07          | 2.993E+04         | 7.269E+03 | 1.090E+07 | 7.996E+03         |
| 2093 | 2.667E+04 | 2.136E+07          | 2.934E+04         | 7.125E+03 | 1.068E+07 | 7.837E+03         |
| 2094 | 2.615E+04 | 2.094E+07          | 2.876E+04         | 6.984E+03 | 1.047E+07 | 7.682E+03         |
| 2095 | 2.563E+04 | 2.052E+07          | 2.819E+04         | 6.845E+03 | 1.026E+07 | 7.530E+03         |
| 2096 | 2.512E+04 | 2.012E+07          | 2.763E+04         | 6.710E+03 | 1.006E+07 | 7.381E+03         |
| 2097 | 2.462E+04 | 1.972E+07          | 2.709E+04         | 6.577E+03 | 9.858E+06 | 7.235E+03         |
| 2098 | 2.414E+04 | 1.933E+07          | 2.655E+04         | 6.447E+03 | 9.663E+06 | 7.091E+03         |
| 2099 | 2.366E+04 | 1.894E+07          | 2.602E+04         | 6.319E+03 | 9.472E+06 | 6.951E+03         |
| 2100 | 2.319E+04 | 1.857E+07          | 2.551E+04         | 6.194E+03 | 9.284E+06 | 6.813E+03         |
| 2101 | 2.273E+04 | 1.820E+07          | 2.500E+04         | 6.071E+03 | 9.100E+06 | 6.679E+03         |
| 2102 | 2.228E+04 | 1.784E+07          | 2.451E+04         | 5.951E+03 | 8.920E+06 | 6.546E+03         |
| 2103 | 2.184E+04 | 1.749E+07          | 2.402E+04         | 5.833E+03 | 8.744E+06 | 6.417E+03         |
| 2104 | 2.141E+04 | 1.714E+07          | 2.355E+04         | 5.718E+03 | 8.571E+06 | 6.290E+03         |
| 2105 | 2.098E+04 | 1.680E+07          | 2.308E+04         | 5.605E+03 | 8.401E+06 | 6.165E+03         |
| 2106 | 2.057E+04 | 1.647E+07          | 2.262E+04         | 5.494E+03 | 8.234E+06 | 6.043E+03         |
| 2107 | 2.016E+04 | 1.614E+07          | 2.218E+04         | 5.385E+03 | 8.071E+06 | 5.923E+03         |
| 2108 | 1.976E+04 | 1.582E+07          | 2.174E+04         | 5.278E+03 | 7.912E+06 | 5.806E+03         |
| 2109 | 1.937E+04 | 1.551E+07          | 2.131E+04         | 5.174E+03 | 7.755E+06 | 5.691E+03         |
| 2110 | 1.899E+04 | 1.520E+07          | 2.088E+04         | 5.071E+03 | 7.601E+06 | 5.578E+03         |
| 2111 | 1.861E+04 | 1.490E+07          | 2.047E+04         | 4.971E+03 | 7.451E+06 | 5.468E+03         |
| 2112 | 1.824E+04 | 1.461E+07          | 2.007E+04         | 4.872E+03 | 7.303E+06 | 5.360E+03         |
| 2113 | 1.788E+04 | 1.432E+07          | 1.967E+04         | 4.776E+03 | 7.159E+06 | 5.253E+03         |
| 2114 | 1.753E+04 | 1.403E+07          | 1.928E+04         | 4.681E+03 | 7.017E+06 | 5.149E+03         |
| 2115 | 1.718E+04 | 1.376E+07          | 1.890E+04         | 4.589E+03 | 6.878E+06 | 5.048E+03         |
| 2116 | 1.684E+04 | 1.348E+07          | 1.852E+04         | 4.498E+03 | 6.742E+06 | 4.948E+03         |
| 2117 | 1.651E+04 | 1.322E+07          | 1.816E+04         | 4.409E+03 | 6.608E+06 | 4.850E+03         |
| 2118 | 1.618E+04 | 1.295E+07          | 1.780E+04         | 4.321E+03 | 6.477E+06 | 4.754E+03         |
| 2119 | 1.586E+04 | 1.270E+07          | 1.744E+04         | 4.236E+03 | 6.349E+06 | 4.659E+03         |
| 2120 | 1.554E+04 | 1.245E+07          | 1.710E+04         | 4.152E+03 | 6.223E+06 | 4.567E+03         |
| 2121 | 1.524E+04 | 1.220E+07          | 1.676E+04         | 4.070E+03 | 6.100E+06 | 4.477E+03         |
| 2122 | 1.493E+04 | 1.196E+07          | 1.643E+04         | 3.989E+03 | 5.979E+06 | 4.388E+03         |
| 2123 | 1.464E+04 | 1.172E+07          | 1.610E+04         | 3.910E+03 | 5.861E+06 | 4.301E+03         |
| 2124 | 1.435E+04 | 1.149E+07          | 1.578E+04         | 3.833E+03 | 5.745E+06 | 4.216E+03         |
| 2125 | 1.406E+04 | 1.126E+07          | 1.547E+04         | 3.757E+03 | 5.631E+06 | 4.133E+03         |
| 2126 | 1.379E+04 | 1.104E+07          | 1.516E+04         | 3.682E+03 | 5.520E+06 | 4.051E+03         |
| 2127 | 1.351E+04 | 1.082E+07          | 1.486E+04         | 3.610E+03 | 5.410E+06 | 3.971E+03         |
| 2128 | 1.325E+04 | 1.061E+07          | 1.457E+04         | 3.538E+03 | 5.303E+06 | 3.892E+03         |
| 2129 | 1.298E+04 | 1.040E+07          | 1.428E+04         | 3.468E+03 | 5.198E+06 | 3.815E+03         |
| 2130 | 1.273E+04 | 1.019E+07          | 1.400E+04         | 3.399E+03 | 5.095E+06 | 3.739E+03         |
| 2131 | 1.247E+04 | 9.989E+06          | 1.372E+04         | 3.332E+03 | 4.994E+06 | 3.665E+03         |

| Year |           | Carbon dioxide |                   |           | NMOC      |                   |
|------|-----------|----------------|-------------------|-----------|-----------|-------------------|
|      | (Mg/year) | (m³/year)      | (short tons/year) | (Mg/year) | (m³/year) | (short tons/year) |
| 1991 | 0         | 0              | 0                 | 0         | 0         | 0                 |
| 1992 | 1.160E+02 | 6.339E+04      | 1.276E+02         | 2.727E-01 | 7.607E+01 | 2.999E-01         |
| 1993 | 5.236E+02 | 2.860E+05      | 5.760E+02         | 1.230E+00 | 3.433E+02 | 1.353E+00         |
| 1994 | 9.793E+02 | 5.350E+05      | 1.077E+03         | 2.301E+00 | 6.420E+02 | 2.531E+00         |
| 1995 | 1.515E+03 | 8.277E+05      | 1.667E+03         | 3.560E+00 | 9.932E+02 | 3.916E+00         |
| 1996 | 1.863E+03 | 1.018E+06      | 2.049E+03         | 4.377E+00 | 1.221E+03 | 4.815E+00         |
| 1997 | 2.175E+03 | 1.188E+06      | 2.392E+03         | 5.110E+00 | 1.426E+03 | 5.621E+00         |
| 1998 | 2.496E+03 | 1.364E+06      | 2.746E+03         | 5.865E+00 | 1.636E+03 | 6.452E+00         |
| 1999 | 2.819E+03 | 1.540E+06      | 3.101E+03         | 6.623E+00 | 1.848E+03 | 7.286E+00         |
| 2000 | 3.101E+03 | 1.694E+06      | 3.411E+03         | 7.287E+00 | 2.033E+03 | 8.016E+00         |
| 2001 | 3.378E+03 | 1.845E+06      | 3.716E+03         | 7.938E+00 | 2.214E+03 | 8.731E+00         |
| 2002 | 3.763E+03 | 2.056E+06      | 4.140E+03         | 8.843E+00 | 2.467E+03 | 9.728E+00         |
| 2003 | 4.168E+03 | 2.277E+06      | 4.585E+03         | 9.795E+00 | 2.733E+03 | 1.077E+01         |
| 2004 | 4.556E+03 | 2.489E+06      | 5.012E+03         | 1.071E+01 | 2.987E+03 | 1.178E+01         |
| 2005 | 5.015E+03 | 2.740E+06      | 5.516E+03         | 1.178E+01 | 3.287E+03 | 1.296E+01         |
| 2006 | 5.511E+03 | 3.011E+06      | 6.062E+03         | 1.295E+01 | 3.613E+03 | 1.424E+01         |
| 2007 | 6.000E+03 | 3.278E+06      | 6.600E+03         | 1.410E+01 | 3.933E+03 | 1.551E+01         |
| 2008 | 6.439E+03 | 3.517E+06      | 7.083E+03         | 1.513E+01 | 4.221E+03 | 1.664E+01         |
| 2009 | 6.784E+03 | 3.706E+06      | 7.462E+03         | 1.594E+01 | 4.447E+03 | 1.753E+01         |
| 2010 | 7.120E+03 | 3.889E+06      | 7.832E+03         | 1.673E+01 | 4.667E+03 | 1.840E+01         |
| 2011 | 7.424E+03 | 4.056E+06      | 8.166E+03         | 1.744E+01 | 4.867E+03 | 1.919E+01         |
| 2012 | 7.717E+03 | 4.216E+06      | 8.489E+03         | 1.813E+01 | 5.059E+03 | 1.995E+01         |
| 2013 | 8.021E+03 | 4.382E+06      | 8.823E+03         | 1.885E+01 | 5.258E+03 | 2.073E+01         |
| 2014 | 8.374E+03 | 4.575E+06      | 9.212E+03         | 1.968E+01 | 5.490E+03 | 2.165E+01         |
| 2015 | 8.760E+03 | 4.786E+06      | 9.636E+03         | 2.059E+01 | 5.743E+03 | 2.264E+01         |
| 2016 | 9.291E+03 | 5.076E+06      | 1.022E+04         | 2.183E+01 | 6.091E+03 | 2.401E+01         |
| 2017 | 9.662E+03 | 5.278E+06      | 1.063E+04         | 2.270E+01 | 6.334E+03 | 2.497E+01         |
| 2018 | 1.008E+04 | 5.508E+06      | 1.109E+04         | 2.369E+01 | 6.610E+03 | 2.606E+01         |
| 2019 | 1.052E+04 | 5.748E+06      | 1.157E+04         | 2.473E+01 | 6.898E+03 | 2.720E+01         |
| 2020 | 1.095E+04 | 5.981E+06      | 1.204E+04         | 2.573E+01 | 7.177E+03 | 2.830E+01         |
| 2021 | 1.134E+04 | 6.194E+06      | 1.247E+04         | 2.664E+01 | 7.433E+03 | 2.931E+01         |
| 2022 | 1.181E+04 | 6.452E+06      | 1.299E+04         | 2.775E+01 | 7.742E+03 | 3.053E+01         |
| 2023 | 1.223E+04 | 6.682E+06      | 1.345E+04         | 2.874E+01 | 8.018E+03 | 3.162E+01         |
| 2024 | 1.287E+04 | 7.031E+06      | 1.416E+04         | 3.024E+01 | 8.437E+03 | 3.327E+01         |
| 2025 | 1.344E+04 | 7.342E+06      | 1.478E+04         | 3.158E+01 | 8.811E+03 | 3.474E+01         |
| 2026 | 1.467E+04 | 8.017E+06      | 1.614E+04         | 3.448E+01 | 9.620E+03 | 3.793E+01         |
| 2027 | 1.656E+04 | 9.047E+06      | 1.822E+04         | 3.892E+01 | 1.086E+04 | 4.281E+01         |
| 2028 | 1.848E+04 | 1.009E+07      | 2.032E+04         | 4.341E+01 | 1.211E+04 | 4.776E+01         |
| 2029 | 2.042E+04 | 1.115E+07      | 2.246E+04         | 4.798E+01 | 1.339E+04 | 5.278E+01         |
| 2030 | 2.239E+04 | 1.223E+07      | 2.463E+04         | 5.262E+01 | 1.468E+04 | 5.788E+01         |
| 2031 | 2.440E+04 | 1.333E+07      | 2.684E+04         | 5.734E+01 | 1.600E+04 | 6.307E+01         |
| 2032 | 2.644E+04 | 1.444E+07      | 2.909E+04         | 6.213E+01 | 1.733E+04 | 6.834E+01         |
| 2033 | 2.852E+04 | 1.558E+07      | 3.137E+04         | 6.701E+01 | 1.869E+04 | 7.371E+01         |
| 2034 | 3.063E+04 | 1.673E+07      | 3.369E+04         | 7.197E+01 | 2.008E+04 | 7.917E+01         |
| 2035 | 3.278E+04 | 1.791E+07      | 3.606E+04         | 7.703E+01 | 2.149E+04 | 8.473E+01         |
| 2036 | 3.497E+04 | 1.911E+07      | 3.847E+04         | 8.218E+01 | 2.293E+04 | 9.040E+01         |
| 2037 | 3.721E+04 | 2.033E+07      | 4.093E+04         | 8.743E+01 | 2.439E+04 | 9.617E+01         |
| 2038 | 3.948E+04 | 2.157E+07      | 4.343E+04         | 9.278E+01 | 2.588E+04 | 1.021E+02         |
| 2039 | 4.180E+04 | 2.284E+07      | 4.598E+04         | 9.823E+01 | 2.740E+04 | 1.081E+02         |
| 2040 | 4.417E+04 | 2.413E+07      | 4.859E+04         | 1.038E+02 | 2.896E+04 | 1.142E+02         |

| V    |           | Carbon dioxide |                   |           | NMOC      |                   |
|------|-----------|----------------|-------------------|-----------|-----------|-------------------|
| Year | (Mg/year) | (m³/year)      | (short tons/year) | (Mg/year) | (m³/year) | (short tons/year) |
| 2041 | 4.659E+04 | 2.545E+07      | 5.125E+04         | 1.095E+02 | 3.054E+04 | 1.204E+02         |
| 2042 | 4.906E+04 | 2.680E+07      | 5.397E+04         | 1.153E+02 | 3.216E+04 | 1.268E+02         |
| 2043 | 5.158E+04 | 2.818E+07      | 5.674E+04         | 1.212E+02 | 3.382E+04 | 1.333E+02         |
| 2044 | 5.209E+04 | 2.846E+07      | 5.730E+04         | 1.224E+02 | 3.415E+04 | 1.346E+02         |
| 2045 | 5.106E+04 | 2.789E+07      | 5.616E+04         | 1.200E+02 | 3.347E+04 | 1.320E+02         |
| 2046 | 5.004E+04 | 2.734E+07      | 5.505E+04         | 1.176E+02 | 3.281E+04 | 1.294E+02         |
| 2047 | 4.905E+04 | 2.680E+07      | 5.396E+04         | 1.153E+02 | 3.216E+04 | 1.268E+02         |
| 2048 | 4.808E+04 | 2.627E+07      | 5.289E+04         | 1.130E+02 | 3.152E+04 | 1.243E+02         |
| 2049 | 4.713E+04 | 2.575E+07      | 5.184E+04         | 1.107E+02 | 3.090E+04 | 1.218E+02         |
| 2050 | 4.620E+04 | 2.524E+07      | 5.082E+04         | 1.086E+02 | 3.028E+04 | 1.194E+02         |
| 2051 | 4.528E+04 | 2.474E+07      | 4.981E+04         | 1.064E+02 | 2.969E+04 | 1.170E+02         |
| 2052 | 4.439E+04 | 2.425E+07      | 4.882E+04         | 1.043E+02 | 2.910E+04 | 1.147E+02         |
| 2053 | 4.351E+04 | 2.377E+07      | 4.786E+04         | 1.022E+02 | 2.852E+04 | 1.125E+02         |
| 2054 | 4.265E+04 | 2.330E+07      | 4.691E+04         | 1.002E+02 | 2.796E+04 | 1.102E+02         |
| 2055 | 4.180E+04 | 2.284E+07      | 4.598E+04         | 9.822E+01 | 2.740E+04 | 1.080E+02         |
| 2056 | 4.097E+04 | 2.238E+07      | 4.507E+04         | 9.628E+01 | 2.686E+04 | 1.059E+02         |
| 2057 | 4.016E+04 | 2.194E+07      | 4.418E+04         | 9.437E+01 | 2.633E+04 | 1.038E+02         |
| 2058 | 3.937E+04 | 2.151E+07      | 4.330E+04         | 9.250E+01 | 2.581E+04 | 1.018E+02         |
| 2059 | 3.859E+04 | 2.108E+07      | 4.245E+04         | 9.067E+01 | 2.530E+04 | 9.974E+01         |
| 2060 | 3.782E+04 | 2.066E+07      | 4.161E+04         | 8.888E+01 | 2.480E+04 | 9.777E+01         |
| 2061 | 3.707E+04 | 2.025E+07      | 4.078E+04         | 8.712E+01 | 2.430E+04 | 9.583E+01         |
| 2062 | 3.634E+04 | 1.985E+07      | 3.997E+04         | 8.539E+01 | 2.382E+04 | 9.393E+01         |
| 2063 | 3.562E+04 | 1.946E+07      | 3.918E+04         | 8.370E+01 | 2.335E+04 | 9.207E+01         |
| 2064 | 3.491E+04 | 1.907E+07      | 3.841E+04         | 8.204E+01 | 2.289E+04 | 9.025E+01         |
| 2065 | 3.422E+04 | 1.870E+07      | 3.765E+04         | 8.042E+01 | 2.244E+04 | 8.846E+01         |
| 2066 | 3.355E+04 | 1.833E+07      | 3.690E+04         | 7.883E+01 | 2.199E+04 | 8.671E+01         |
| 2067 | 3.288E+04 | 1.796E+07      | 3.617E+04         | 7.727E+01 | 2.156E+04 | 8.499E+01         |
| 2068 | 3.223E+04 | 1.761E+07      | 3.545E+04         | 7.574E+01 | 2.113E+04 | 8.331E+01         |
| 2069 | 3.159E+04 | 1.726E+07      | 3.475E+04         | 7.424E+01 | 2.071E+04 | 8.166E+01         |
| 2070 | 3.097E+04 | 1.692E+07      | 3.406E+04         | 7.277E+01 | 2.030E+04 | 8.004E+01         |
| 2071 | 3.035E+04 | 1.658E+07      | 3.339E+04         | 7.133E+01 | 1.990E+04 | 7.846E+01         |
| 2072 | 2.975E+04 | 1.625E+07      | 3.273E+04         | 6.991E+01 | 1.950E+04 | 7.690E+01         |
| 2073 | 2.916E+04 | 1.593E+07      | 3.208E+04         | 6.853E+01 | 1.912E+04 | 7.538E+01         |
| 2074 | 2.859E+04 | 1.562E+07      | 3.144E+04         | 6.717E+01 | 1.874E+04 | 7.389E+01         |
| 2075 | 2.802E+04 | 1.531E+07      | 3.082E+04         | 6.584E+01 | 1.837E+04 | 7.243E+01         |
| 2076 | 2.747E+04 | 1.500E+07      | 3.021E+04         | 6.454E+01 | 1.800E+04 | 7.099E+01         |
| 2077 | 2.692E+04 | 1.471E+07      | 2.961E+04         | 6.326E+01 | 1.765E+04 | 6.959E+01         |
| 2078 | 2.639E+04 | 1.442E+07      | 2.903E+04         | 6.201E+01 | 1.730E+04 | 6.821E+01         |
| 2079 | 2.587E+04 | 1.413E+07      | 2.845E+04         | 6.078E+01 | 1.696E+04 | 6.686E+01         |
| 2080 | 2.535E+04 | 1.385E+07      | 2.789E+04         | 5.958E+01 | 1.662E+04 | 6.553E+01         |
| 2081 | 2.485E+04 | 1.358E+07      | 2.734E+04         | 5.840E+01 | 1.629E+04 | 6.424E+01         |
| 2082 | 2.436E+04 | 1.331E+07      | 2.680E+04         | 5.724E+01 | 1.597E+04 | 6.296E+01         |
| 2083 | 2.388E+04 | 1.304E+07      | 2.626E+04         | 5.611E+01 | 1.565E+04 | 6.172E+01         |
| 2084 | 2.340E+04 | 1.279E+07      | 2.574E+04         | 5.500E+01 | 1.534E+04 | 6.050E+01         |
| 2085 | 2.294E+04 | 1.253E+07      | 2.523E+04         | 5.391E+01 | 1.504E+04 | 5.930E+01         |
| 2086 | 2.249E+04 | 1.228E+07      | 2.474E+04         | 5.284E+01 | 1.474E+04 | 5.812E+01         |
| 2087 | 2.204E+04 | 1.204E+07      | 2.425E+04         | 5.179E+01 | 1.445E+04 | 5.697E+01         |
| 2088 | 2.160E+04 | 1.180E+07      | 2.377E+04         | 5.077E+01 | 1.416E+04 | 5.584E+01         |
| 2089 | 2.118E+04 | 1.157E+07      | 2.329E+04         | 4.976E+01 | 1.388E+04 | 5.474E+01         |
| 2090 | 2.076E+04 | 1.134E+07      | 2.283E+04         | 4.878E+01 | 1.361E+04 | 5.365E+01         |
| 2091 | 2.035E+04 | 1.112E+07      | 2.238E+04         | 4.781E+01 | 1.334E+04 | 5.259E+01         |

| V    |           | Carbon dioxide |                   |           | NMOC      |                   |
|------|-----------|----------------|-------------------|-----------|-----------|-------------------|
| Year | (Mg/year) | (m³/year)      | (short tons/year) | (Mg/year) | (m³/year) | (short tons/year) |
| 2092 | 1.994E+04 | 1.090E+07      | 2.194E+04         | 4.686E+01 | 1.307E+04 | 5.155E+01         |
| 2093 | 1.955E+04 | 1.068E+07      | 2.150E+04         | 4.594E+01 | 1.282E+04 | 5.053E+01         |
| 2094 | 1.916E+04 | 1.047E+07      | 2.108E+04         | 4.503E+01 | 1.256E+04 | 4.953E+01         |
| 2095 | 1.878E+04 | 1.026E+07      | 2.066E+04         | 4.414E+01 | 1.231E+04 | 4.855E+01         |
| 2096 | 1.841E+04 | 1.006E+07      | 2.025E+04         | 4.326E+01 | 1.207E+04 | 4.759E+01         |
| 2097 | 1.805E+04 | 9.858E+06      | 1.985E+04         | 4.240E+01 | 1.183E+04 | 4.665E+01         |
| 2098 | 1.769E+04 | 9.663E+06      | 1.946E+04         | 4.156E+01 | 1.160E+04 | 4.572E+01         |
| 2099 | 1.734E+04 | 9.472E+06      | 1.907E+04         | 4.074E+01 | 1.137E+04 | 4.482E+01         |
| 2100 | 1.699E+04 | 9.284E+06      | 1.869E+04         | 3.994E+01 | 1.114E+04 | 4.393E+01         |
| 2101 | 1.666E+04 | 9.100E+06      | 1.832E+04         | 3.914E+01 | 1.092E+04 | 4.306E+01         |
| 2102 | 1.633E+04 | 8.920E+06      | 1.796E+04         | 3.837E+01 | 1.070E+04 | 4.221E+01         |
| 2103 | 1.601E+04 | 8.744E+06      | 1.761E+04         | 3.761E+01 | 1.049E+04 | 4.137E+01         |
| 2104 | 1.569E+04 | 8.571E+06      | 1.726E+04         | 3.686E+01 | 1.028E+04 | 4.055E+01         |
| 2105 | 1.538E+04 | 8.401E+06      | 1.692E+04         | 3.613E+01 | 1.008E+04 | 3.975E+01         |
| 2106 | 1.507E+04 | 8.234E+06      | 1.658E+04         | 3.542E+01 | 9.881E+03 | 3.896E+01         |
| 2107 | 1.477E+04 | 8.071E+06      | 1.625E+04         | 3.472E+01 | 9.686E+03 | 3.819E+01         |
| 2108 | 1.448E+04 | 7.912E+06      | 1.593E+04         | 3.403E+01 | 9.494E+03 | 3.743E+01         |
| 2109 | 1.420E+04 | 7.755E+06      | 1.561E+04         | 3.336E+01 | 9.306E+03 | 3.669E+01         |
| 2110 | 1.391E+04 | 7.601E+06      | 1.531E+04         | 3.270E+01 | 9.122E+03 | 3.597E+01         |
| 2111 | 1.364E+04 | 7.451E+06      | 1.500E+04         | 3.205E+01 | 8.941E+03 | 3.525E+01         |
| 2112 | 1.337E+04 | 7.303E+06      | 1.471E+04         | 3.141E+01 | 8.764E+03 | 3.456E+01         |
| 2113 | 1.310E+04 | 7.159E+06      | 1.441E+04         | 3.079E+01 | 8.590E+03 | 3.387E+01         |
| 2114 | 1.284E+04 | 7.017E+06      | 1.413E+04         | 3.018E+01 | 8.420E+03 | 3.320E+01         |
| 2115 | 1.259E+04 | 6.878E+06      | 1.385E+04         | 2.958E+01 | 8.254E+03 | 3.254E+01         |
| 2116 | 1.234E+04 | 6.742E+06      | 1.357E+04         | 2.900E+01 | 8.090E+03 | 3.190E+01         |
| 2117 | 1.210E+04 | 6.608E+06      | 1.331E+04         | 2.842E+01 | 7.930E+03 | 3.127E+01         |
| 2118 | 1.186E+04 | 6.477E+06      | 1.304E+04         | 2.786E+01 | 7.773E+03 | 3.065E+01         |
| 2119 | 1.162E+04 | 6.349E+06      | 1.278E+04         | 2.731E+01 | 7.619E+03 | 3.004E+01         |
| 2120 | 1.139E+04 | 6.223E+06      | 1.253E+04         | 2.677E+01 | 7.468E+03 | 2.945E+01         |
| 2121 | 1.117E+04 | 6.100E+06      | 1.228E+04         | 2.624E+01 | 7.320E+03 | 2.886E+01         |
| 2122 | 1.095E+04 | 5.979E+06      | 1.204E+04         | 2.572E+01 | 7.175E+03 | 2.829E+01         |
| 2123 | 1.073E+04 | 5.861E+06      | 1.180E+04         | 2.521E+01 | 7.033E+03 | 2.773E+01         |
| 2124 | 1.052E+04 | 5.745E+06      | 1.157E+04         | 2.471E+01 | 6.894E+03 | 2.718E+01         |
| 2125 | 1.031E+04 | 5.631E+06      | 1.134E+04         | 2.422E+01 | 6.757E+03 | 2.664E+01         |
| 2126 | 1.010E+04 | 5.520E+06      | 1.111E+04         | 2.374E+01 | 6.624E+03 | 2.612E+01         |
| 2127 | 9.904E+03 | 5.410E+06      | 1.089E+04         | 2.327E+01 | 6.492E+03 | 2.560E+01         |
| 2128 | 9.708E+03 | 5.303E+06      | 1.068E+04         | 2.281E+01 | 6.364E+03 | 2.509E+01         |
| 2129 | 9.515E+03 | 5.198E+06      | 1.047E+04         | 2.236E+01 | 6.238E+03 | 2.460E+01         |
| 2130 | 9.327E+03 | 5.095E+06      | 1.026E+04         | 2.192E+01 | 6.114E+03 | 2.411E+01         |
| 2131 | 9.142E+03 | 4.994E+06      | 1.006E+04         | 2.148E+01 | 5.993E+03 | 2.363E+01         |

# Attachment A-2: Methane Emissions Input Parameters and Emissions Calculations

Total LFG emissions were calculated using LandGem. Fugitive emissions were estimated using parameters from the U.S. Environmental Protection Agency's Compilation of Air Pollutant Emissions Factors (AP-42), Section 2.4 Municipal Solid Waste Landfills.

# Total LFG Derived Methane Emissions over 50 years post project (2026 - 2076)

|                   | Total Uncontrolled   | 100                                | 1-) (3-00 300                   | 1       | Total CO <sub>2e</sub> |                           |                |                            |
|-------------------|----------------------|------------------------------------|---------------------------------|---------|------------------------|---------------------------|----------------|----------------------------|
|                   | CH. Fmissions (2026- | lotal CH <sub>4</sub> (2)          | lotal CH4 (2026-2076) (short to | ons)    | Emissions              | Annual Average            | Annual Average | Net Difference             |
|                   | 2076)                |                                    |                                 |         | (2026-2076)            | CH <sub>4</sub> Emissions |                | CO <sub>2e</sub> Emissions |
| :mission Scenario | (short tons)         | Fugitive Emissions Flare Emissions | Flare Emissions                 | Total   | (metric tons)          | (short tons)              | (metric tons)  | (metric tons)              |
| saseline          | 635,191              | 121,311                            | 5,004                           | 126,315 | 2,864,788              | 2,526                     | 57,296         | 1 500                      |
| roject            | 742,112              | 123,649                            | 6,047                           | 129,696 | 2,941,459              | 2,594                     | 58,829         | 1,333                      |

### Notes Baseline Condition

Project Condition

Predicted based on the baseline operation condition (250,000 tons in 2024) and assume 3% increase annually thereafter.
Provided by applicant. Assumptions: increase waste acceptance rates from 250,000 tons in 2024 to 660,000 tons in 2026, then assume 3% increase annually thereafter.

### Assumptions

| Project year                              | 2026                                                                                                                                                                |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Landfill closure year (current)           | 2059                                                                                                                                                                |
| Landfill closure year (project )          | 2043                                                                                                                                                                |
| Landfill gas collection system collection | CFR Part 98 Table HH-3. According to the North County Landfill Status Impact Report dated Feb 14, 2023, final cover placement phase 1 would occur on 2029 under the |

baseline condition. Assumed final cover placement phase 1 would occur on the same year for project condition. 0.75 Assume 50% final cover and 50% intermediate cover on average. 0.65 Assume most of the filled area covered by intermediate cover. E\_col (2026 to 2029) E\_col (2030 to closure year) efficiently E\_col

0.85 Assume all modules will have final cover by the closure year. 2076 50-year period used to represent the overall impacts. E\_col (after closure year) Inventory end year

10% EPA default. Methane oxidation in landfill soil cover

99% Title V Permit minimum requirement. Flare methane destruction efficiency

E oxi

25 CARB 2022. GHG Global Warming Potentials. Available at https://ww2.arb.ca.gov/ghg-gwps. Accessed on September 9, 2024.

### Abbreviations

Global Warming Potential Metric tons per short ton

 $CH_4$  =methane;  $CO_{2e}$  = carbon dioxide equivalents; LFG = landfill gas

### Equations:

Emissions [short ton/yr] = total uncontrolled emissions [short tons/year] × (1-Ecol [%]) × (1 - E\_oxi [%]) + total uncontrolled emissions [short tons/year] × (1-Efla [%])

|      |              | 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 2                 | tal C114 E11113 | ocal city citiesions (sticit colls) | /     | 2000   |              | 7             | 97      |                            |
|------|--------------|-----------------------------------------|-------------------|-----------------|-------------------------------------|-------|--------|--------------|---------------|---------|----------------------------|
|      | (short tons) | ons)                                    | Baseline          | е               | Project                             | ect   | (short | (short tons) | (metric tons) | tons)   | Net Difference             |
| ,    | Racelina     | Droject                                 | I anofill Surface | 2               | Landfill                            | Clare | o cilo | projord      | orii osca     | project | CO <sub>2e</sub> Emissions |
| 2026 | 5 622        | 5 883                                   | 1 771             | 37              | 1 853                               | 38    | 1 807  | 1 891        | 40 993        | 42 898  | 1 904                      |
| 2027 | 5.861        | 6.640                                   | 1.846             | 388             | 2.091                               | 43    | 1.884  | 2,135        | 42,739        | 48.412  | 5.673                      |
| 2028 | 6 107        | 7 407                                   | 1 924             | 40              | 2 333                               | 48    | 1 963  | 2 381        | 44 527        | 54 008  | 9 481                      |
| 2029 | 6.358        | 8.186                                   | 2.003             | 41              | 2.579                               | 53    | 2.044  | 2.632        | 46.358        | 59.690  | 13.332                     |
| 2030 | 6,615        | 8,978                                   | 1,488             | 20              | 2,020                               | 67    | 1,538  | 2,087        | 34,882        | 47,340  | 12,458                     |
| 2031 | 6,879        | 9,782                                   | 1,548             | 52              | 2,201                               | 73    | 1,599  | 2,274        | 36,273        | 51,582  | 15,310                     |
| 2032 | 7,149        | 10,600                                  | 1,609             | 54              | 2,385                               | 80    | 1,662  | 2,465        | 37,698        | 55,896  | 18,198                     |
| 2033 | 7,427        | 11,433                                  | 1,671             | 99              | 2,572                               | 98    | 1,727  | 2,658        | 39,160        | 60,284  | 21,124                     |
| 2034 | 7,711        | 12,280                                  | 1,735             | 28              | 2,763                               | 92    | 1,793  | 2,855        | 40,659        | 64,751  | 24,091                     |
| 2035 | 8,002        | 13,142                                  | 1,801             | 09              | 2,957                               | 66    | 1,861  | 3,056        | 42,197        | 69,298  | 27,101                     |
| 2036 | 8,302        | 14,021                                  | 1,868             | 62              | 3,155                               | 105   | 1,930  | 3,260        | 43,774        | 73,931  | 30,156                     |
| 2037 | 8,609        | 14,916                                  | 1,937             | 65              | 3,356                               | 112   | 2,001  | 3,468        | 45,393        | 78,652  | 33,259                     |
| 2038 | 8,924        | 15,829                                  | 2,008             | 29              | 3,561                               | 119   | 2,075  | 3,680        | 47,054        | 83,465  | 36,411                     |
| 2039 | 9,247        | 16,760                                  | 2,081             | 69              | 3,771                               | 126   | 2,150  | 3,897        | 48,759        | 88,373  | 39,614                     |
| 2040 | 9,579        | 17,709                                  | 2,155             | 72              | 3,985                               | 133   | 2,227  | 4,117        | 50,509        | 93,382  | 42,872                     |
| 2041 | 9,920        | 18,679                                  | 2,232             | 74              | 4,203                               | 140   | 2,306  | 4,343        | 52,307        | 98,494  | 46,187                     |
| 2042 | 10,270       | 19,669                                  | 2,311             | 77              | 4,425                               | 148   | 2,388  | 4,573        | 54,152        | 103,713 | 49,561                     |
| 2043 | 10,629       | 20,680                                  | 2,392             | 80              | 4,653                               | 155   | 2,471  | 4,808        | 56,048        | 109,045 | 52,997                     |
| 2044 | 10,998       | 20,882                                  | 2,475             | 82              | 2,819                               | 177   | 2,557  | 2,997        | 57,994        | 67,961  | 296'6                      |
| 2045 | 11,378       | 20,469                                  | 2,560             | 85              | 2,763                               | 174   | 2,645  | 2,937        | 56,65         | 66,616  | 6,621                      |
| 2046 | 11,767       | 50,05                                   | 2,648             | 88              | 2,709                               | 171   | 2,736  | 2,879        | 62,049        | 65,297  | 3,247                      |
| 2047 | 12,168       | 19,666                                  | 2,738             | 91              | 2,655                               | 167   | 2,829  | 2,822        | 64,161        | 64,004  | -157                       |
| 2048 | 12,579       | 19,277                                  | 2,830             | 94              | 2,602                               | 164   | 2,925  | 2,766        | 66,331        | 62,736  | -3,595                     |
| 2049 | 13,002       | 18,895                                  | 2,926             | 86              | 2,551                               | 161   | 3,023  | 2,711        | 68,561        | 61,494  | -7,067                     |
| 2050 | 13,437       | 18,521                                  | 3,023             | 101             | 2,500                               | 157   | 3,124  | 2,658        | 70,853        | 60,276  | -10,577                    |
| 2051 | 13,884       | 18,154                                  | 3,124             | 104             | 2,451                               | 154   | 3,228  | 2,605        | 73,210        | 59,083  | -14,127                    |
| 2052 | 14,343       | 17,795                                  | 3,227             | 108             | 2,402                               | 151   | 3,335  | 2,554        | 75,632        | 57,913  | -17,719                    |
| 2053 | 14,816       | 17,442                                  | 3,334             | 111             | 2,355                               | 148   | 3,445  | 2,503        | 78,123        | 56,766  | -21,357                    |
| 2054 | 15,301       | 17,097                                  | 3,443             | 115             | 2,308                               | 145   | 3,558  | 2,453        | 80,684        | 55,642  | -25,042                    |
| 2055 | 15,801       | 16,758                                  | 3,555             | 119             | 2,262                               | 142   | 3,674  | 2,405        | 83,318        | 54,540  | -28,777                    |
| 2056 | 16,314       | 16,426                                  | 3,671             | 122             | 2,218                               | 140   | 3,793  | 2,357        | 86,026        | 53,460  | -32,566                    |
| 2057 | 16,843       | 16,101                                  | 3,790             | 126             | 2,174                               | 137   | 3,916  | 2,311        | 88,811        | 52,402  | -36,410                    |
| 2058 | 17,386       | 15,782                                  | 3,912             | 130             | 2,131                               | 134   | 4,042  | 2,265        | 91,676        | 51,364  | -40,312                    |
| 2059 | 17,945       | 15,470                                  | 4,038             | 135             | 2,088                               | 131   | 4,172  | 2,220        | 94,623        | 50,347  | -44,276                    |
| 2060 | 18,138       | 15,164                                  | 2,449             | 154             | 2,047                               | 129   | 2,603  | 2,176        | 59,031        | 49,350  | -9,681                     |
| 2061 | 17,779       | 14,863                                  | 2,400             | 151             | 2,007                               | 126   | 2,551  | 2,133        | 57,862        | 48,373  | -9,489                     |
| 2062 | 17,427       | 14,569                                  | 2,353             | 148             | 1,967                               | 124   | 2,501  | 2,091        | 56,716        | 47,415  | -9,301                     |
| 2063 | 17,082       | 14,280                                  | 2,306             | 145             | 1,928                               | 121   | 2,451  | 2,049        | 55,593        | 46,476  | -9,117                     |
| 2064 | 16,744       | 13,998                                  | 2,260             | 142             | 1,890                               | 119   | 2,403  | 2,009        | 54,492        | 45,556  | -8,936                     |
| 2065 | 16,412       | 13,721                                  | 2,216             | 140             | 1,852                               | 117   | 2,355  | 1,969        | 53,413        | 44,654  | -8,759                     |
| 2066 | 16,087       | 13,449                                  | 2,172             | 137             | 1,816                               | 114   | 2,308  | 1,930        | 52,356        | 43,770  | -8,586                     |
| 7907 | 15,768       | 13,183                                  | 2,129             | 134             | 1,780                               | 112   | 2,263  | 1,892        | 51,319        | 42,903  | -8,416                     |
| 2068 | 15,456       | 12,922                                  | 2,087             | 131             | 1,/44                               | 110   | 2,218  | 1,854        | 50,303        | 42,053  | -8,249                     |
| 2069 | 15,150       | 12,666                                  | 2,045             | 129             | 1,/10                               | 108   | 2,1/4  | 1,818        | 49,307        | 41,221  | -8,086                     |
| 2070 | 14,850       | 12,415                                  | 2,005             | 126             | 1,6/6                               | 106   | 2,131  | 1,782        | 48,330        | 40,404  | 976'/-                     |
| 2071 | 14,556       | 12,169                                  | 1,965             | 124             | 1,643                               | 103   | 2,089  | 1,746        | 47,373        | 39,604  | -1,769                     |
| 2072 | 14,268       | 11,928                                  | 1,926             | 121             | 1,610                               | 101   | 2,047  | 1,/12        | 46,435        | 38,820  | 7.464                      |
| 2073 | 13,303       | 11,092                                  | 1 851             | 117             | 1 5/7                               | 99    | 1 967  | 1,070        | 45,510        | 37 298  | 7 3 1 7                    |
| 3075 | 22,752       | 2001                                    | 100/1             | , , ,           | ,                                   |       | 1001   | CLO'T        | 570'11        | 0,770   | (TC( )                     |
|      | 10707        | 000                                     | 7,01              | 777             | 1 517                               | ū     | 1000   | 1 610        | 107 07        | 022.20  | 7 1 7 2                    |

# Attachment A-3: Off-Road Equipment Model Input Parameters and Emissions Calculations

### Overview

Information about existing and project off-road diesel equipment usage was provided by the project applicant. Exhaust emissions of greenhouse gases from off-road equipment use were estimated using the methodology from the California Emissions Estimator Model (CalEEMod) version 2022.1.1.

## Summary of Off-Road Equipment Usage

| Project equipment                   | Caregivou equipment Category       |        |           |       | 011    | 2     | Transfer Tion  | Look Looks  | Cuitting | 400,000 | Paris Alien | Duniant |
|-------------------------------------|------------------------------------|--------|-----------|-------|--------|-------|----------------|-------------|----------|---------|-------------|---------|
| 070 070 Commontor                   |                                    | Number | ruei iype | bowel | LOW HP | HIGNH | Engine Her     | Load Factor | EXISTING | Project | EXISTING    | Project |
| 34-0/3 623C COMPACION               | Rubber Tired Dozers                | 1      | Diesel    | 315   | 300    | 599   | Tier 1         | 0.40        | 3        | 3.3     | 156         | 172     |
| 95-025 Storm Water Pump             | Pumps                              | 1      | Diesel    | 30    | 25     | 49    | Average        | 0.74        | :        |         | 20          | 20      |
| 96-002 Genie                        | Aerial Lifts                       | 1      | Diesel    | 25    | 25     | 49    | Tier 1         | 0.31        | 1        | П       | 52          | 52      |
| 96-003 Forklift-Clark               | Forklifts                          | 7      | Diesel    | 40    | 25     | 49    | Average        | 0.20        | 3        | 3       | 156         | 156     |
| 96-041 Cat 950F Loader              | Rubber Tired Loaders               | 1      | Diesel    | 100   | 75     | 199   | Tier 1         | 0.36        | 10       | 12      | 220         | 624     |
| 02-035 623 Scraper                  | Scrapers                           | 1      | Diesel    | 365   | 300    | 299   | Tier 1         | 0.48        | 12       | 14      | 624         | 728     |
| 02-910 Sweeper                      | Sweepers/Scrubbers                 | 7      | Diesel    | 25    | 25     | 49    | Tier 1         | 0.46        | 1        | 1.5     | 52          | 77      |
| 23-112 Pressure Washer              | Pressure Washers                   | 1      | Gas       | 10    | 0      | 24    | Gas            | 0:30        | 2        | 2       | 104         | 104     |
| 03-909 AL-JON 81K - Compactor       | Rubber Tired Dozers                | 1      | Diesel    | 360   | 300    | 299   | Tier 1         | 0.40        | 1        | 2.5     | 25          | 129     |
| 04-042 836G COMPACTOR               | Rubber Tired Dozers                | 7      | Diesel    | 525   | 300    | 299   | Tier 2         | 0.40        | 31       | 33      | 1,612       | 1,716   |
| 04-075 JD 850C Dozer                | Rubber Tired Dozers                | 1      | Diesel    | 265   | 175    | 299   | Tier 2         | 0.40        | 14       | 15      | 728         | 780     |
| 04-971 JD Grader                    | Graders                            | 1      | Diesel    | 217   | 175    | 299   | Tier 1         | 0.41        | 2        | 3       | 104         | 156     |
| 06-041 CAT 950H                     | Rubber Tired Loaders               | 1      | Diesel    | 150   | 120    | 174   | Tier 2         | 0.36        | 32       | 34      | 1,664       | 1,768   |
| 06-18571 Portable Light Tower       | Other General Industrial Equipment | 7      | Diesel    | 15    | 25     | 49    | Tier 2         | 0.34        | 9        | 6.3     | 312         | 330     |
| 10-020 CAT D8 Dozer                 | Rubber Tired Dozers                | 1      | Diesel    | 310   | 300    | 599   | Tier 2         | 0.40        | 42       | 44      | 2,184       | 2,288   |
| 15-071 CAT 420 F2 Backhoe           | Tractors/Loaders/Backhoes          | 1      | Diesel    | 110   | 75     | 199   | Tier 4 Interim | 0.37        | 6        | 10      | 468         | 520     |
| 18-042 CAT 836K Compactor           | Rubber Tired Dozers                | 7      | Diesel    | 540   | 300    | 299   | Tier 4 Interim | 0.40        | 31       | 33      | 1,612       | 1,716   |
| 18-075 JD 850K Dozer                | Rubber Tired Dozers                | 1      | Diesel    | 270   | 175    | 299   | Tier 4 Interim | 0.40        | 22       | 24      | 1,144       | 1,248   |
| 19-041 JD 644K Hybrid Loader        | Rubber Tired Loaders               | 1      | Diesel    | 150   | 75     | 199   | Tier 4 Interim | 0.36        | 36       | 38      | 1,872       | 1,976   |
| 19-073 JD Track Loader              | Rubber Tired Loaders               | 1      | Diesel    | 165   | 75     | 199   | Tier 4 Interim | 0.36        | 2        | 3       | 104         | 156     |
| 20-009 JD SKID STEER 333G           | Skid Steer Loaders                 | 1      | Diesel    | 80    | 75     | 199   | Tier 4 Interim | 0.37        | 8        | 6       | 416         | 468     |
| 20-020 JD 1050K LARGE DOZER         | Rubber Tired Dozers                | 1      | Diesel    | 325   | 300    | 599   | Tier 4 Interim | 0.40        | 40       | 42      | 2,080       | 2,184   |
| 20-071 JD 310SL/HL BACKHOE          | Tractors/Loaders/Backhoes          | 1      | Diesel    | 110   | 75     | 199   | Tier 4 Interim | 0.37        | 19       | 20      | 886         | 1,040   |
| 20-714 KUBOTA                       | Tractors/Loaders/Backhoes          | 7      | Diesel    | 40    | 25     | 49    | Tier 4 Interim | 0.37        | 13       | 13.3    | 929         | 693     |
| 22-073 JD 755K Track Loader         | Tractors/Loaders/Backhoes          | 1      | Diesel    | 165   | 75     | 199   | Tier 4 Interim | 0.37        | 9        | 9       | 312         | 312     |
| TARPOMATIC Landfill Covers - 04-001 | Rubber Tired Dozers                | 1      | Diesel    | 20    | 25     | 49    | Tier 1         | 0.40        | 1        | 2       | 52          | 104     |
| TARPOMATIC Landfill Covers - 18-002 | Rubber Tired Dozers                | 7      | Diesel    | 20    | 25     | 49    | Tier 4 Interim | 0.40        | 2        | 3       | 104         | 156     |
| Fire Pump                           | Pumps                              | 1      | Diesel    | 25    | 25     | 49    | Tier 1         | 0.74        | :        |         | 20          | 20      |
| KARCHER PRESSURE WASHER             | Pressure Washers                   | 1      | Gas       | 10    | 0      | 24    | Gas            | 0:30        | 1        | 2       | 52          | 104     |
| 03-908 Sterling Water Truck (tan)   | Off-Highway Trucks                 | 1      | Diesel    | 200   | 175    | 299   | Average        | 0.38        | 2        | 3       | 104         | 143     |
| 20-908 International Water Truck    | Off-Highway Trucks                 | 7      | Diesel    | 225   | 175    | 299   | Tier 4 Interim | 0.38        | 2        | 7       | 260         | 347     |
| 2025 CAT LPG D-6 Finish Dozer       | Rubber Tired Dozers                | 1      | Diesel    | 265   | 175    | 299   | Tier 4 Final   | 0.40        |          | 48      | 0.0         | 2,500   |
| 2025-26 CAT 836 Compactor           | Plate Compactors                   | 1      | Diesel    | 540   | 300    | 299   | Tier 4 Final   | 0.43        | -        | 45      | 0:0         | 2,350   |
| 2025-26 CAT 623 Scraper             | Scrapers                           | 1      | Diesel    | 370   | 300    | 299   | Tier 4 Final   | 0.48        | :        | 19      | 0.0         | 1,000   |
| 2025-26 Large Dozer                 | Rubber Tired Dozers                | 1      | Diesel    | 400   | 300    | 299   | Tier 4 Final   | 0.40        | :        | 43      | 0.0         | 2,250   |
| 2025 Loader mid size                | Rubber Tired Loaders               | 1      | Diesel    | 165   | 120    | 174   | Tier 4 Final   | 0.36        | :        | 37      | 0.0         | 1,900   |
|                                     |                                    |        |           |       |        |       |                |             |          |         |             |         |

| Emissions    |
|--------------|
| S            |
| Equipment    |
| Construction |
| Off-Road     |

| +                                                                                                                                |                                                                                   |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 21,790.86                                                                                                                        | 21,790.86<br>127,258.63<br>696.10<br>295.08<br>8,716.34<br>39,405.13<br>89,826.77 | 21,790.86<br>127,258.63<br>696.10<br>296.10<br>295.08<br>8,716.34<br>39,4051.39<br>39,826.77<br>10,700.74<br>104,596.13<br>104,596.13<br>20,656.29<br>22,172.20<br>22,172.20<br>22,172.20<br>405,310.01 | 21,790.86 127,258.63 696.10 295.08 8,716.34 394,051.39 89,826.77 10,700.74 10,4596.13 104,596.13 104,596.13 11,670.65 7190.98 14,333.54 44,333.54 14,333.54 14,646.00 11,646.00                                                                                                                                                                                                                | 21,790.86 127,258.63 696.10 296.10 295.08 8,716.34 394,051.39 89,826.77 10,700.74 10,4596.13 10,4596.13 10,4596.13 10,4596.13 11,670.05 7190.98 11,546.00 22,172.20 484.24 98,848                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21,790.86 127,258.63 127,258.63 1295.08 8,716.34 394,051.39 89,826.77 10,770.74 10,750.44 10,456.13 18,52.22 520,656.29 22,172.20 22,172.20 22,172.20 22,172.20 24,33.54 314,756.87 46,807.98 11,646.00 22,172.20 484,24 968.48 10,76.74 11,767.68 11,646.00 22,172.20 484,24 968.48 11,767.78 11,767.78 11,767.74 11,767.74 11,767.74 11,767.74 11,767.74 11,767.74 11,767.74 11,767.74 11,767.74 11,767.74 11,767.74 11,767.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21,790.86 127,258.63 127,258.63 296.10 295.08 8,716.34 394,051.39 394,051.39 394,051.39 39,826.77 10,770.74 10,70.74 104,596.13 104,596.13 11,670.65 7,190.98 14,335.54 314,756.87 46,807.98 14,335.54 314,756.87 46,807.98 14,335.54 314,756.87 46,807.98 14,335.54 314,756.87 314,756.87 314,756.87 314,756.87 314,756.87 314,756.87 314,756.87 314,756.87 314,756.87 314,756.87 316,73 316,73 316,73 316,73 316,73 316,73 316,73 316,73 316,73 316,73 316,73 316,73 316,73 316,73 316,73 316,73 316,73 316,73 316,73 316,73 316,73 316,73 316,73 316,73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                  |                                                                                   |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                  |                                                                                   |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                  |                                                                                   |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                  |                                                                                   |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                  | +++                                                                               |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +++++++++++++++++++++++++++++++++++++++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 365 30<br>25 2                                                                                                                   |                                                                                   |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                  | Diesel 3 Diesel 5 Diesel 2 Diesel 2                                               |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1 1 1 1                                                                                                                          |                                                                                   | 1                                                                                                                                                                                                       | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                  | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Scrapers Sweepers/Scrubbers Pressure Washers Rubber Tired Dozers                                                                 | Rubber Tired Dozers Rubber Tired Dozers Graders                                   | ired Doze<br>ired Loac<br>ired Loac<br>ired Doze<br>/Loaders/<br>ired Doze                                                                                                                              | Rubber Tired Dozers Graders Graders Graders Rubber Tired Loaders Chaber Tired Loaders Other General Industrial Equipment Other General Industrial Equipment Tractors/Loaders/Backhoes Rubber Tired Dozers Rubber Tired Loaders Rubber Tired Loaders Rubber Tired Loaders Skid Steer Loaders Rubber Tired Loaders Tractors/Loaders/Backhoes Tractors/Loaders/Backhoes Tractors/Loaders/Backhoes | Rubber Tired Dozers Graders Graders Graders Rubber Tired Loaders Chabber Tired Loaders Other General Industrial Equipment Other General Industrial Equipment Tractors/Loaders/Backhoes Rubber Tired Dozers Rubber Tired Loaders Rubber Tired Loaders Rubber Tired Loaders Skid Steer Loaders Skid Steer Loaders Tractors/Loaders/Backhoes Tractors/Loaders/Backhoes Tractors/Loaders/Backhoes Tractors/Loaders/Backhoes Tractors/Loaders/Backhoes Rubber Tired Dozers Tractors/Loaders/Backhoes Tractors/Loaders/Backhoes Propulation Cozers Tractors/Loaders/Backhoes Propulation Cozers Tractors/Loaders/Backhoes Propulation Cozers Fractors/Loaders/Backhoes F | Rubber Tired Dozers Rubber Tired Dozers Graders Rubber Tired Loaders Rubber Tired Loaders Other General Industrial Equipment Rubber Tired Dozers Tractors/Loaders/Backhoes Rubber Tired Dozers Rubber Tired Loaders Rubber Tired Loaders Rubber Tired Loaders Skid Steer Loaders Skid Steer Loaders Tractors/Loaders/Backhoes Tractors/Loaders/Backhoes Tractors/Loaders/Backhoes Rubber Tired Dozers Rubber Tired Dozers Rubber Tired Dozers Graders/Backhoes G | Rubber Tired Dozers Rubber Tired Dozers Rubber Tired Dozers Rubber Tired Loaders Graders Rubber Tired Loaders Other General Industrial Equipment Rubber Tired Dozers Rubber Tired Dozers Rubber Tired Dozers Rubber Tired Dozers Rubber Tired Loaders Rubber Tired Dozers Fractors/Loaders/Backhoes Tractors/Loaders/Backhoes Tractors/Loaders/Backhoes Fractors/Loaders/Backhoes Fractors/Loaders/Backhoes Grither Tired Dozers Fractors/Loaders/Backhoes Fractors/Loaders |
|                                                                                                                                  | Rubber Tire<br>Graders                                                            |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                | 8<br>8<br>8<br>18-001<br>18-002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | er<br>EER<br>EE<br>18-001<br>-18-002<br>3 ((tan)<br>7 ruck<br>er                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 02-035 623 Scraper 22-310 Sweeper 23-112 Pressure Washer 03-90 AL-JON 81K - Compactor 04-042 836G COMPACTOR 04-075 JD 850C Dozer | JD Grader                                                                         | JD Grader CAT 950H 71 Portable Light Tower CAT D8 Dozer CAT 420 F2 Backhoe CAT 836K Compactor JD 850K Dozer                                                                                             | L CAT 950H  1. CAT 950H  1.71 Portable Light Towel  1. CAT 420 F2 Backhoe  1. CAT 420 F2 Backhoe  1. CAT 386K Compactor  5. DS 850K Dozer  1. D 644K Hybrid Loader  1. D 640K Hybrid Loader  1. D 540K LARGE DOZE  1. D 1050K LARGE DOZE  1. D 310SL/HI BACKHOE  1. D 310SL/HI BACKHOE  1. D 310SL/HI BACKHOE                                                                                  | 1 ID Grader 1 CAT 950H 274 Portable Light Towel 274 Portable Light Towel 274 Portable Light Towel 274 850 Each to CAT 836K Compactor 5 ID 850K Dozer 5 ID 640K Hybrid Loader 1 ID 640K Hybrid Loader 1 ID 640K Hybrid Loader 1 ID 540K Lyde Boxer 1 ID 310S/LHL BACKHOE 1 ID 310S/LHL BACKHOE 1 ID 310S/LHL BACKHOE 1 ID 310S/LHL BACKHOE 1 IN 8410BOTA 1 IN 1410BOTA 1 IN 141 | 1 ID Grader 1 CAT 20 SOH 1 CAT 20 SOH 1 CAT 30 BOZET 1 CAT 420 F2 Backhoe 2 CAT 386K Compactor 2 CAT 386K Compactor 3 ID Track Loader 3 ID Track Loader 9 ID SMO STER 333G 9 ID SMO STER 33G 1 ID 3105K LARGE DOZE 1 ID 325K TRACK LOADER 1 IN 310K TRACK LOADER 1 IN 31 | 06-971 JD Grader 06-04 LCAT 550H 06-04 LCAT 550H 10-020 CAT 08 Dozer 110-020 CAT 08 Dozer 110-020 CAT 08 Dozer 118-042 CAT 836K Compactor 119-073 LD 644K Hybrid Loader 119-073 LD 644K Hybrid Loader 119-073 LD 1950K Dozer 120-020 LD 1050K LANGE DOZER 20-020 LD 1050K LANGE DOZER 20-073 LD 755K Track Loader 20-074 LD 3105K Track Loader 20-075 LD 310 D 55K Track Loader 20-074 LD 3105K Track Loader 20-075 LD 310 D 55K Track Loader 20-075 LD 310 D 55K Track Loader 20-074 LD 310 D 55K Track Loader 20-075 CAT 1836 Compactor 2025 CAT 1836 Compactor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

Notes: Emission factors were obtained from CalEEMod.

Equations: Emissions [lbs] = emission factor [g/hp-gr] × number of pieces of equipment × horsepower × load factor × hours of annual operation/453.592 grams per pound

## Off-Road Construction Equipment CH<sub>4</sub> Emissions

Assumptions
Grams per pound
Pounds per metric ton
Global Warming Potential

453.592
2.205
25 CARB 2022. GHG Global Warming Potentials. Available at via https://ww2.arb.ca.gov/ghg.gwps. Accessed on September 9, 2024.

 $\frac{\Delta bbreviations}{CH_u=methane,\ EF=emission\ factor;\ g/hp-hr=gram\ per\ horsepower-hour;\ lbs=pounds$ 

Notes: Emission factors were obtained from CalEEMod.

Equations:
Emissions [lbs] = emission factor [g/hp-gr] × number of pieces of equipment × horsepower × load factor × hours of annual operation/453.592 grams per pound

## Off-Road Construction Equipment N2O Emissions

|                                     |                                    |        |           | Horse- |        |         |                        |                               | 43                                                      | N <sub>2</sub> O Emissions (Ibs per year) | (lbs per year) |
|-------------------------------------|------------------------------------|--------|-----------|--------|--------|---------|------------------------|-------------------------------|---------------------------------------------------------|-------------------------------------------|----------------|
| Project Equipment                   | CalEEMod Equipment Category        | Number | Fuel Type | power  | Low HP | High HP | Engine Tier            | Load Factor                   | (g/hp-hr)                                               | Existing                                  | Project        |
| 94-073 825C Compactor               | Rubber Tired Dozers                | 1      | Diesel    | 315    | 300    | 299     | Tier 1                 | 5.0                           | 0.004                                                   | 0.173                                     | 0.191          |
| 95-025 Storm Water Pump             | Pumps                              | 1      | Diesel    | 30     | 25     | 49      | Average                | 0.74                          | 0.005                                                   | 0.012                                     | 0.012          |
| 96-002 Genie                        | Aerial Lifts                       | 1      | Diesel    | 25     | 25     | 49      | Tier 1                 | 0.31                          | 0.004                                                   | 0.004                                     | 0.004          |
| 96-003 Forklift-Clark               | Forklifts                          | 1      | Diesel    | 40     | 25     | 49      | Average                | 0.2                           | 0.005                                                   | 0.014                                     | 0.014          |
| 96-041 Cat 950F Loader              | Rubber Tired Loaders               | 1      | Diesel    | 100    | 75     | 199     | Tier 1                 | 98'0                          | 0.004                                                   | 0.165                                     | 0.198          |
| 02-035 623 Scraper                  | Scrapers                           | 1      | Diesel    | 365    | 300    | 299     | Tier 1                 | 0.48                          | 0.004                                                   | 0.964                                     | 1.125          |
| 02-910 Sweeper                      | Sweepers/Scrubbers                 | 1      | Diesel    | 25     | 25     | 49      | Tier 1                 | 0.46                          | 0.004                                                   | 0.005                                     | 0.008          |
| 23-112 Pressure Washer              | Pressure Washers                   | 1      | Gas       | 10     | 0      | 24      | Gas                    | 6.0                           | 0.004                                                   | 0.003                                     | 0.003          |
| 03-909 AL-JON 81K - Compactor       | Rubber Tired Dozers                | 1      | Diesel    | 360    | 300    | 299     | Tier 1                 | 0.4                           | 0.004                                                   | 0.066                                     | 0.164          |
| 04-042 836G COMPACTOR               | Rubber Tired Dozers                | 1      | Diesel    | 525    | 300    | 299     | Tier 2                 | 0.4                           | 0.004                                                   | 2.985                                     | 3.178          |
| 04-075 JD 850C Dozer                | Rubber Tired Dozers                | 1      | Diesel    | 265    | 175    | 299     | Tier 2                 | 5.0                           | 0.004                                                   | 0.681                                     | 0.729          |
| 04-971 JD Grader                    | Graders                            | 1      | Diesel    | 217    | 175    | 299     | Tier 1                 | 0.41                          | 0.004                                                   | 0.082                                     | 0.122          |
| 06-041 САТ 950Н                     | Rubber Tired Loaders               | 1      | Diesel    | 150    | 120    | 174     | Tier 2                 | 98'0                          | 0.004                                                   | 0.792                                     | 0.842          |
| 06-18571 Portable Light Tower       | Other General Industrial Equipment | 1      | Diesel    | 15     | 52     | 49      | Tier 2                 | 0.34                          | 0.004                                                   | 0.014                                     | 0.015          |
| 10-020 CAT D8 Dozer                 | Rubber Tired Dozers                | 1      | Diesel    | 512    | 300    | 299     | Tier 2                 | 6.4                           | 0.004                                                   | 3.944                                     | 4.132          |
| 15-071 CAT 420 F2 Backhoe           | Tractors/Loaders/Backhoes          | 1      | Diesel    | 110    | 75     | 199     | Tier 4 Interim         | 0.37                          | 0.004                                                   | 0.168                                     | 0.187          |
| 18-042 CAT 836K Compactor           | Rubber Tired Dozers                | 1      | Diesel    | 540    | 300    | 299     | Tier 4 Interim         | 0.4                           | 0.004                                                   | 3.071                                     | 3.269          |
| 18-075 JD 850K Dozer                | Rubber Tired Dozers                | 1      | Diesel    | 270    | 175    | 299     | Tier 4 Interim         | 5.0                           | 0.004                                                   | 1.090                                     | 1.189          |
| 19-041 JD 644K Hybrid Loader        | Rubber Tired Loaders               | 1      | Diesel    | 150    | 75     | 199     | Tier 4 Interim         | 98'0                          | 0.004                                                   | 0.891                                     | 0.941          |
| 19-073 JD Track Loader              | Rubber Tired Loaders               | 1      | Diesel    | 165    | 75     | 199     | Tier 4 Interim         | 98'0                          | 0.004                                                   | 0.054                                     | 0.082          |
| 20-009 JD SKID STEER 333G           | Skid Steer Loaders                 | 1      | Diesel    | 80     | 75     | 199     | Tier 4 Interim         | 0.37                          | 0.004                                                   | 0.109                                     | 0.122          |
| 20-020 JD 1050K LARGE DOZER         | Rubber Tired Dozers                | 1      | Diesel    | 325    | 300    | 599     | Tier 4 Interim         | 0.4                           | 0.004                                                   | 2.385                                     | 2.504          |
| 20-071 JD 310SL/HL BACKHOE          | Tractors/Loaders/Backhoes          | 1      | Diesel    | 110    | 75     | 199     | Tier 4 Interim         | 0.37                          | 0.004                                                   | 0.355                                     | 0.373          |
| 20-714 KUBOTA                       | Tractors/Loaders/Backhoes          | 1      | Diesel    | 40     | 25     | 49      | Tier 4 Interim         | 0.37                          | 0.004                                                   | 0.088                                     | 060'0          |
| 22-073 JD 755K Track Loader         | Tractors/Loaders/Backhoes          | 1      | Diesel    | 165    | 75     | 199     | Tier 4 Interim         | 0.37                          | 0.004                                                   | 0.168                                     | 0.168          |
| FARPOMATIC Landfill Covers - 04-001 | Rubber Tired Dozers                | 1      | Diesel    | 20     | 25     | 49      | Tier 1                 | 0.4                           | 0.004                                                   | 0.004                                     | 0.007          |
| TIC Landfill Covers - 18-002        | Rubber Tired Dozers                | 1      | Diesel    | 20     | 25     | 49      | Tier 4 Interim         | 0.4                           | 0.004                                                   | 0.007                                     | 0.011          |
|                                     | Pumps                              | 1      | Diesel    | 25     | 25     | 49      | Tier 1                 | 0.74                          | 0.004                                                   | 0.008                                     | 0.008          |
| KARCHER PRESSURE WASHER             | Pressure Washers                   | 1      | Gas       | 10     | 0      | 24      | Gas                    | 6.0                           | 0.004                                                   | 0.001                                     | 0.003          |
| (                                   | Off-Highway Trucks                 | 1      | Diesel    | 200    | 175    | 299     | Average                | 98:0                          | 0.004                                                   | 0.070                                     | 960'0          |
| rck                                 | Off-Highway Trucks                 | 1      | Diesel    | 225    | 175    | 299     | Tier 4 Interim         | 88:0                          | 0.004                                                   | 0.196                                     | 0.261          |
| 2025 CAT LPG D-6 Finish Dozer       | Rubber Tired Dozers                | 1      | Diesel    | 265    | 175    | 299     | Tier 4 Final           | 6.4                           | 0.004                                                   | 0.000                                     | 2.337          |
| 2025-26 CAT 836 Compactor           | Plate Compactors                   | 1      | Diesel    | 540    | 300    | 299     | Tier 4 Final           | 0.43                          | 0.004                                                   | 0.000                                     | 4.812          |
| 2025-26 CAT 623 Scraper             | Scrapers                           | 1      | Diesel    | 370    | 300    | 299     | Tier 4 Final           | 0.48                          | 0.004                                                   | 0.000                                     | 1.566          |
| 2025-26 Large Dozer                 | Rubber Tired Dozers                | 1      | Diesel    | 400    | 300    | 299     | Tier 4 Final           | 0.4                           | 0.004                                                   | 0.000                                     | 3.175          |
| 2025 Loader mid size                | Rubber Tired Loaders               | 1      | Diesel    | 165    | 120    | 174     | Tier 4 Final           | 0.36                          | 0.004                                                   | 0.000                                     | 0.995          |
|                                     |                                    |        |           |        |        |         | T                      | otal N <sub>2</sub> O emissio | Fotal N <sub>2</sub> O emissions per Year (lbs)         | 19                                        | 33             |
|                                     |                                    |        |           |        |        |         | Total N <sub>2</sub> O | emissions per Y               | Total N <sub>2</sub> O emissions per Year (metric tons) | 800'0                                     | 0.015          |
|                                     |                                    |        |           |        |        |         | Total CO <sub>2e</sub> | emissions per Y               | Total CO <sub>2e</sub> emissions per Year (metric tons) | 2.51                                      | 4.45           |
|                                     |                                    |        |           |        |        |         |                        |                               |                                                         |                                           |                |

Assumptions
Grams per pound
Pounds per metric ton
Global Warming Potential

453.592 2,205 298 CARB 2022. GHG Global Warming Potentials. Available at via https://ww2.arb.ca.gov/ghg-gwps. Accessed on September 9, 2024.

Abbreviations

 $N_2O$  =nitrous oxide; EF = emission factor; g/hp-hr = gram per horsepower-hour; lbs = pounds

Notes: Emission factors were obtained from CalEEMod.

Equations: Emission factor [g/hp-gr]  $\times$  number of pieces of equipment  $\times$  horsepower  $\times$  load factor  $\times$  hours of annual operation/453.592 grams per pound

# Attachment A-4: On-Road Vehicle Model Input Parameters and Emissions Calculations

Overview
Information about on-road vehicles used for on-site activities and off-site travel was provided by the project applicant. Emissions of greenhouse gases from on-road vehicles were estimated using emissions factors from the California Air Resources Board's EMFAC2021 database for the San Joaquin Valley Air District. Baseline year 2024 emission factors were used in this analysis to be conservative.

## Summary of On-Road Vehicle Miles Travelled (VMT)

| Activity Descript       | ription           |                                         | Vehicle        | Model     | Fuel        | Annual Trips (One-Way) | One-Way) |            | Annual VMT | VMT     |
|-------------------------|-------------------|-----------------------------------------|----------------|-----------|-------------|------------------------|----------|------------|------------|---------|
| Origin                  | Destination       | Vehicle Type                            | Classification | Year      | Туре        | Existing               | Project  | Miles/Trip | Existing   | Project |
| Tracy                   | Foothill Landfill | 48' Transfer                            | HHDT           | Aggregate | Diesel      | 13,728                 | 0        | 48.0       | 658,944    | 0       |
| Lovelace TS             | Foothill Landfill | 48' Transfer                            | HHDT           | Aggregate | Diesel      | 15,600                 | 0        | 31.1       | 485,160    | 0       |
| Lovelace TS             | Forward Landfill  | 48' Transfer                            | HHDT           | Aggregate | Diesel      | 2,496                  | 0        | 8.0        | 19,968     | 0       |
| Tracy                   |                   | 48' Transfer                            | HHDT           | Aggregate | Diesel      | 0                      | 13,728   | 43.0       | 0          | 590,304 |
| Lovelace TS             |                   | 48' Transfer                            | HHDT           | Aggregate | Diesel      | 8,736                  | 26,832   | 26.4       | 230,630    | 708,365 |
| Lodi TS - WM            | North County      | 48' Transfer                            | HHDT           | Aggregate | Diesel      | 7488                   | 7488     | 11.7       | 87,610     | 87,610  |
| Stockton Scavenger      | Landfill          | Garbage Truck                           | MHDT (NG)      | Aggregate | Natural Gas | 4160                   | 4160     | 17.0       | 70,720     | 70,720  |
| Cal Waste - Area F/Galt |                   | Garbage Truck                           | MHDT           | Aggregate | Diesel      | 8112                   | 8112     | 15.0       | 121,680    | 121,680 |
| Regional                |                   | Misc Comm                               | LHDT1          | Aggregate | Diesel      | 8,112                  | 8,112    | 15.0       | 121,680    | 121,680 |
| Worker Commute          |                   | Worker cars                             | LDA            | Aggregate | Gas         | 35,040                 | 39,420   | 11.9       | 416,626    | 468,704 |
| On-Site Transfer        |                   | 48' Transfer                            | HHDT           | Aggregate | Diesel      | 6864                   | 8236.8   | 0.5        | 3,432      | 4,118   |
| On-Site Service Trucks  |                   | Service Truck, Roll-off<br>Truck, Gator | LHDT1          | Aggregate | Diesel      | 9,776                  | 10,680   | 0.5        | 4,888      | 5,340   |

### On-Road Vehicle CO<sub>2</sub> Emissions

| Activity Description    | iption            |                                         | Vehicle        | Model     | Fuel        | RUNEX                                       | IDLEX                                  | STREX          | CO <sub>2</sub> Emissions (lbs per year) | (lbs per year) |
|-------------------------|-------------------|-----------------------------------------|----------------|-----------|-------------|---------------------------------------------|----------------------------------------|----------------|------------------------------------------|----------------|
| Origin                  | Destination       | Vehicle Type                            | Classification | Year      | Type        | (g/VMT)                                     | (g/trip)                               | (g/trip)       | Existing                                 | Project        |
| Tracy                   | Foothill Landfill | 48' Transfer                            | HHDT           | Aggregate | Diesel      | 1569.98                                     | 925.22                                 | 00.0           | 3,624,834                                | 0              |
| Lovelace TS             | Foothill Landfill | 48' Transfer                            | HHDT           | Aggregate | Diesel      | 1569.98                                     | 925.22                                 | 00:0           | 2,668,853                                | 0              |
| Lovelace TS             | Forward Landfill  | 48' Transfer                            | HHDT           | Aggregate | Diesel      | 1569.98                                     | 925.22                                 | 00.0           | 109,843                                  | 0              |
| Tracy                   |                   | 48' Transfer                            | HHDT           | Aggregate | Diesel      | 1569.98                                     | 925.22                                 | 00:0           | 0                                        | 3247247        |
| Lovelace TS             |                   | 48' Transfer                            | HHDT           | Aggregate | Diesel      | 1569.98                                     | 925.22                                 | 00.00          | 1,268,692                                | 3896697        |
| Lodi TS - WM            | North County      | 48' Transfer                            | HHDT           | Aggregate | Diesel      | 1569.98                                     | 925.22                                 | 00:0           | 481,938                                  | 481938         |
| Stockton Scavenger      | Landfill          | Garbage Truck                           | MHDT (NG)      | Aggregate | Natural Gas | 998.84                                      | 112.15                                 | 00:0           | 173,215                                  | 173215         |
| Cal Waste - Area F/Galt |                   | Garbage Truck                           | MHDT           | Aggregate | Diesel      | 1122.62                                     | 46.19                                  | 00:0           | 313,545                                  | 313545         |
| Regional                |                   | Misc Comm                               | LHDT1          | Aggregate | Diesel      | 638.99                                      | 10.79                                  | 00.0           | 174,309                                  | 174309         |
| Worker Commute          |                   | Worker cars                             | LDA            | Aggregate | Gas         | 282.34                                      | 00:0                                   | 70.30          | 323,893                                  | 364380         |
| On-Site Transfer        |                   | 48' Transfer                            | HHDT           | Aggregate | Diesel      | 1569.98                                     | 925.22                                 | 00:0           | 18,879                                   | 22655          |
| On-Site Service Trucks  |                   | Service Truck, Roll-off<br>Truck, Gator | LHDT1          | Aggregate | Diesel      | 638.99                                      | 10.79                                  | 00:00          | 7,002                                    | 7650           |
|                         |                   |                                         |                |           |             | ĭ                                           | Total emissions per Year (lbs)         | per Year (lbs) | 9,165,006                                | 8,681,637      |
|                         |                   |                                         |                |           |             | Total emis                                  | Total emissions per Year (Metric tons) | (Metric tons)  | 4,156                                    | 3,937          |
|                         |                   |                                         |                |           | Ĭ           | Total CO2e emissions per Year (metric tons) | sions per Year                         | (metric tons)  | 4,156                                    | 3,937          |

Assumptions
Grams per pound
2,205
CO<sub>2</sub> GWP
2,205
CO<sub>3</sub> GWP
2,205
CO<sub>4</sub> GWP
2,205
CO<sub>5</sub> GWP
2,205
CO<sub>5</sub> GWP
3,205
CO<sub>5</sub> GWP
458.592 grams; VMT = vehicle mile travelled; RUNEX = running exhaust emission factor; IDLEX = idle exhaust emission factor factor

### On-Road Vehicle CH<sub>4</sub> Emissions

| Activity Description     | ription           |                         | Vehide         | Model     | Fuel        | RUNEX                                       | IDLEX                                  | STREX          | CH <sub>4</sub> Emissions (lbs per year) | (Ibs per year) |
|--------------------------|-------------------|-------------------------|----------------|-----------|-------------|---------------------------------------------|----------------------------------------|----------------|------------------------------------------|----------------|
| Origin                   | Destination       | Vehicle Type            | Classification | Year      | Туре        | (g/VMT)                                     | (g/trip)                               | (g/trip)       | Existing                                 | Project        |
| Tracy                    | Foothill Landfill | 48' Transfer            | HHDT           | Aggregate | Diesel      | 0.0056                                      | 0.0185                                 | 0.0000         | 35.0                                     | 0.0            |
| Lovelace TS              | Foothill Landfill | 48' Transfer            | HHDT           | Aggregate | Diesel      | 0.0056                                      | 0.0185                                 | 0.0000         | 25.8                                     | 0.0            |
| Lovelace TS              | Forward Landfill  | 48' Transfer            | HHDT           | Aggregate | Diesel      | 0.0056                                      | 0.0185                                 | 0.0000         | 1.1                                      | 0.0            |
| Tracy                    |                   | 48' Transfer            | HHDT           | Aggregate | Diesel      | 0.0056                                      | 0.0185                                 | 0.0000         | 0.0                                      | 31.4           |
| Lovelace TS              |                   | 48' Transfer            | HHDT           | Aggregate | Diesel      | 0.0056                                      | 0.0185                                 | 0.0000         | 12.3                                     | 37.6           |
| Lodi TS - WM             | North County      | 48' Transfer            | HHDT           | Aggregate | Diesel      | 0.0056                                      | 0.0185                                 | 0.0000         | 4.7                                      | 4.7            |
| Stockton Scavenger       | Landfill          | Garbage Truck           | MHDT (NG)      | Aggregate | Natural Gas | 0.7931                                      | 0.3233                                 | 0.0000         | 174.1                                    | 174.1          |
| Cal Waste - Area F/Galt  |                   | Garbage Truck           | MHDT           | Aggregate | Diesel      | 0.0012                                      | 0.0002                                 | 0.0000         | 0.4                                      | 0.4            |
| Regional                 |                   | Misc Comm               | LHDT1          | Aggregate | Diesel      | 0.0288                                      | 0.0004                                 | 0.0000         | 7.8                                      | 7.8            |
| Worker Commute           |                   | Worker cars             | LDA            | Aggregate | Gas         | 0.0198                                      | 0.0000                                 | 0.0715         | 83.9                                     | 94.4           |
| On-Site Transfer         |                   | 48' Transfer            | HHDT           | Aggregate | Diesel      | 0.0056                                      | 0.0185                                 | 0.0000         | 0.2                                      | 0.2            |
| On-Site Service Trucks   |                   | Service Truck, Roll-off | LUDIT1         | 0         | امتونات     | 0000                                        | 7000                                   | 0000           | 6.0                                      | 0.3            |
| OII-Site Selvice II dens |                   | Truck, Gator            | בוחחו          | Aggregare | חפאם        | 0.0200                                      | 0.000                                  | 0.000.0        | c.5                                      |                |
|                          |                   |                         |                |           |             | Τ                                           | Total emissions per Year (lbs)         | per Year (lbs) | 345.5                                    | 350.9          |
|                          |                   |                         |                |           |             | Total emis                                  | Total emissions per Year (Metric tons) | (Metric tons)  | 0.157                                    | 0.159          |
|                          |                   |                         |                |           | F           | Total CO2e emissions ner Year (metric tons) | rions nor Voor                         | (motric tone)  | 202                                      | 00 6           |

453.6 2,205 25 CARB 2022. GHG Global Warming Potentials. Available at via https://ww2.arb.ca.gov/ghg-gwps. Accessed on September, 9, 2024.

 Assumptions
 453.6

 Grams per pound
 2.205

 Pounds per metric ton
 2.205

 Global Warming Potential
 25 CARB 2022. GHG Global Warming Potentials. Available at via https://ww2.arb.ca.gov/ghg.gwps. Accessed on September, 9, 20

 Abbreviations
 CH4 = methine; g = grams; VMT = vehicle mile travelled; RUNEX = running exhaust emission factor; IDLEX = idle exhaust emission factor

 Equations:
 Equations:

 Enclusions = [Annual VMT \* RUNEX + Annual trips \* (IDLEX+STREX)]/ 453.592 grams per pound

### On-Road Vehicle N<sub>2</sub>O Emissions

| Activity Description      | ription           |                         | Vehicle        | Model      | Fuel        | RUNEX                                       | IDLEX                                  | STREX           | N,O Emissions (Ibs per year) | (lbs per year) |
|---------------------------|-------------------|-------------------------|----------------|------------|-------------|---------------------------------------------|----------------------------------------|-----------------|------------------------------|----------------|
| Origin                    | Destination       | Vehicle Type            | Classification | Year       | Туре        | (g/VMT)                                     | (g/trip)                               | (g/trip)        | Existing                     | Project        |
| Tracy                     | Foothill Landfill | 48' Transfer            | HHDT           | Aggregate  | Diesel      | 0.2474                                      | 0.1458                                 | 0.0000          | 571.1                        | 0.0            |
| Lovelace TS               | Foothill Landfill | 48' Transfer            | HHDT           | Aggregate  | Diesel      | 0.2474                                      | 0.1458                                 | 0.0000          | 420.5                        | 0.0            |
| Lovelace TS               | Forward Landfill  | 48' Transfer            | HHDT           | Aggregate  | Diesel      | 0.2474                                      | 0.1458                                 | 0.0000          | 17.3                         | 0.0            |
| Tracy                     |                   | 48' Transfer            | HHDT           | Aggregate  | Diesel      | 0.2474                                      | 0.1458                                 | 0.0000          | 0.0                          | 511.6          |
| Lovelace TS               |                   | 48' Transfer            | HHDT           | Aggregate  | Diesel      | 0.2474                                      | 0.1458                                 | 0.0000          | 199.9                        | 613.9          |
| Lodi TS - WM              | North County      | 48' Transfer            | HHDT           | Aggregate  | Diesel      | 0.2474                                      | 0.1458                                 | 0.0000          | 75.9                         | 75.9           |
| Stockton Scavenger        | Landfill          | Garbage Truck           | MHDT (NG)      | Aggregate  | Natural Gas | 0.2036                                      | 0.0229                                 | 0.0000          | 35.3                         | 35.3           |
| Cal Waste - Area F/Galt   |                   | Garbage Truck           | MHDT           | Aggregate  | Diesel      | 0.1769                                      | 0.0073                                 | 0.0000          | 49.4                         | 49.4           |
| Regional                  |                   | Misc Comm               | LHDT1          | Aggregate  | Diesel      | 0.1007                                      | 0.0017                                 | 0.0000          | 27.5                         | 27.5           |
| Worker Commute            |                   | Worker cars             | LDA            | Aggregate  | Gas         | 0.0047                                      | 0.0000                                 | 0.0334          | 35.0                         | 39.4           |
| On-Site Transfer          |                   | 48' Transfer            | HHDT           | Aggregate  | Diesel      | 0.2474                                      | 0.1458                                 | 0.0000          | 3.0                          | 3.6            |
| On-Cita Capuica Trucks    |                   | Service Truck, Roll-off | LUDIT1         | 0          | امتونا      | 0 1007                                      | 7 100 0                                | 0000            | ,                            | ,              |
| OII-31te 3el vice II acus |                   | Truck, Gator            | 11000          | Aggi egale | חפאפו       | 0.1001                                      | 0.001/                                 | 0.000           | 1.1                          | 7:7            |
|                           |                   |                         |                |            |             | Ĭ                                           | Total emissions per Year (lbs)         | per Year (lbs)  | 1,435.9                      | 1,357.8        |
|                           |                   |                         |                |            |             | Total emis                                  | Total emissions per Year (Metric tons) | · (Metric tons) | 0.651                        | 0.616          |
|                           |                   |                         |                |            | F           | Total CO2e emissions per Vear (metric tons) | cione ner Vear                         | (motric tone)   | 194 06                       | 192 50         |

453.6 2,205 298 CARB 2022, GHG Global Warming Potentials. Available at via https://ww2.arb.ca.gov/ghg.gwps. Accessed on September, 9, 2024.

 Assumptions
 453.6

 Grams per pound
 2.205

 Pounds per metric ton
 2.205

 Abbedwaltons
 2.98 CARB 2022. GHG Global Warming Potentials. Available at via https://ww2.arb.ca.gov/ghg-gwps. Accessed on September, 9, 2024. Abbreviations

 Ny = Introverse wide; g = grams; VMT = vehicle mile travelled; RUNEX = running exhaust emission factor; IDLEX = idle exhaust emission factor; STREX = start exhaust emission factor equations;

 Equations:

 Enclusions = [Annual VMT \* RUNEX + Annual trips \* (IDLEX+STREX)]/ 453.592 grams per pound