Pecan Tozer Residential Project

Draft Initial Study / Mitigated Negative Declaration

March 2025

SCH No.

Prepared by:

Planning Department 205 W. 4th Street Madera, CA 93637

Table of Contents

Chapter 1	Introd	uction	1-1
1.1	Regulato	ory Information	1-1
1.2	Docume	nt Format	1-1
Chapter 2	Projec	t Description	2-1
2.1	Project B	Background	2-1
	2.1.1	Project Title	2-1
	2.1.2	Lead Agency Name and Address	2-1
	2.1.3	Contact Person and Phone Number	2-1
	2.1.4	Project Location	2-1
	2.1.5	Latitude and Longitude	2-1
	2.1.6	General Plan Designation	2-1
	2.1.7	Zoning	2-2
	2.1.8	Description of Project	2-2
	2.1.9	Site and Surrounding Land Uses and Setting	2-2
	2.1.10	Other Public Agencies Whose Approval May Be Required	2-3
	2.1.11	Consultation with California Native American Tribes	2-3
Chapter 3	Deterr	mination	3-7
3.1	Environn	nental Factors Potentially Affected	3-7
3.2	Determin	nation	3-8
Chapter 4	Impac	t Analysis	9
4.1	Aesthetic	CS	9
	4.1.1	Environmental Setting	9
	4.1.2	Impact Assessment	9
4.2	Agricultu	ure and Forestry Resources	12
	4.2.1	Environmental Setting	12
	4.2.2	Impact Assessment	12
4.3	Air Quali	ity	14
	4.3.1	Environmental Setting	14
	4.3.2	Impact Assessment	15
4.4	Biologica	al Resources	23
	4.4.1	Environmental Setting	23

	4.4.2	Impact Assessment	. 24
4.5	Cultural R	esources	. 28
	4.5.1	Environmental Setting	. 28
	4.5.2	Impact Assessment	. 29
4.6	Energy		.31
	4.6.1	Environmental Setting	.31
	4.6.2	Impact Assessment	.32
4.7	Geology a	nd Soils	. 36
	4.7.1	Environmental Setting	. 37
	4.7.2	Impact Assessment	. 37
4.8	Greenhou	se Gas Emissions	. 40
	4.8.1	Environmental Setting	. 40
	4.8.2	Impact Assessment	.41
4.9	Hazards a	nd Hazardous Materials	. 55
	4.9.1	Environmental Setting	. 56
	4.9.2	Impact Assessment	.56
4.10	Hydrology	and Water Quality	. 59
	4.10.1	Environmental Setting	. 60
	4.10.2	Impact Assessment	. 60
4.11	Land Use	and Planning	. 63
	4.11.1	Environmental Setting	. 63
	4.11.2	Impact Assessment	. 63
4.12	Mineral R	esources	. 64
	4.12.1	Environmental Setting	. 64
	4.12.2	Impact Assessment	. 64
4.13	Noise		. 65
	4.13.1	Environmental Setting	. 65
	4.13.2	Impact Assessment	. 66
4.14	Populatio	n and Housing	. 69
	4.14.1	Environmental Setting	. 69
	4.14.2	Impact Assessment	. 69
4.15	Public Ser	vices	.71
	4.15.1	Environmental Setting	.71

	4.15.2	Impact Assessment	71
4.16	Recreation	on	74
	4.16.1	Environmental Setting	74
	4.16.2	Impact Assessment	74
4.17	Transpor	tation	76
	4.17.1	Environmental Setting	76
	4.17.2	Impact Assessment	76
4.18	Tribal Cu	Itural Resources	80
	4.18.1	Environmental Setting	81
	4.18.2	Impact Assessment	82
4.19	Utilities a	and Service Systems	83
	4.19.1	Environmental Setting	83
	4.19.2	Impact Assessment	84
4.20	Wildfire.		86
	4.20.1	Environmental Setting	86
	4.20.2	Impact Assessment	86
4.21	CEQA Ma	andatory Findings of Significance	88
	4.21.1	Environmental Setting	88
	4.21.2	Impact Assessment	88
Chapter 5	Mitiga	tion Monitoring and Reporting Program	5-1
Appendix	Α		1
CalEI	EMod Air 0	Quality and Greenhouse Gas Emissions Report	Error! Bookmark not defined.
Appendix	В		1
Biolo	gical Due	Diligence Report	1
Appendix	C		1
Phas	e I Cultura	l Resource Survey	1
Appendix	D		Error! Bookmark not defined.
\/ahi	cle Miles T	ravelled Analysis	Errorl Bookmark not defined

Chapter 1 Introduction

Crawford & Bowen Planning, Inc. has prepared this Initial Study/Mitigated Negative Declaration (IS/MND) on behalf of the City of Madera to address the environmental effects of the Pecan Tozer Residential Project (Project). This document has been prepared in accordance with the California Environmental Quality Act (CEQA), Public Resources Code Section 21000 et.seq. The City of Madera is the CEQA lead agency for this proposed Project.

The site and the proposed Project are described in detail in the Project Description.

1.1 Regulatory Information

An Initial Study (IS) is a document prepared by a lead agency to determine whether a project may have a significant effect on the environment. In accordance with California Code of Regulations Title 14 (Chapter 3, Section 15000, et seq.)-- also known as the CEQA Guidelines-- Section 15064 (a)(1) states that an environmental impact report (EIR) must be prepared if there is substantial evidence in light of the whole record that the proposed Project under review may have a significant effect on the environment and should be further analyzed to determine mitigation measures or project alternatives that might avoid or reduce project impacts to less than significant levels. A negative declaration (ND) may be prepared instead if the lead agency finds that there is no substantial evidence in light of the whole record that the project may have a significant effect on the environment. An ND is a written statement describing the reasons why a proposed Project, not otherwise exempt from CEQA, would not have a significant effect on the environment and, therefore, why it would not require the preparation of an EIR (CEQA Guidelines Section 15371). According to CEQA Guidelines Section 15070, a ND or mitigated ND shall be prepared for a project subject to CEQA when either:

- a. The IS shows there is no substantial evidence, in light of the whole record before the agency, that the proposed Project may have a significant effect on the environment, or
- b. The IS identified potentially significant effects, but:
 - 1. Revisions in the project plans or proposals made by or agreed to by the applicant before the proposed MND and IS is released for public review would avoid the effects or mitigate the effects to a point where clearly no significant effects would occur is prepared, and
 - 2. There is no substantial evidence, in light of the whole record before the agency, that the proposed Project as revised may have a significant effect on the environment.

1.2 Document Format

This IS/MND contains five chapters plus appendices. Introduction, provides an overview of the proposed Project and the CEQA process. Project Description, provides a detailed description of proposed Project components. Chapter 3 Determination identifies the environmental factors potentially affected based on the analyses contained in this IS and includes with the Lead Agency's determination based upon those analyses. Determination

Environmental Factors Potentially Affected

As indicated by the discussions of existing and baseline conditions, and impact analyses that follow in this Chapter, environmental factors not checked below would have no impacts or less than significant impacts resulting from the project. Environmental factors that are checked below would have potentially significant

impacts resulting from the project. Mitigation measures are recommended for each of the potentially significant impacts that would reduce the impact to less than significant.

Aesthetics	Agriculture & Forestry Resources	Air Quality
Biological Resources	Cultural Resources	Energy
Geology/Soils	Greenhouse Gas Emissions	Hazards & Hazardous Materials
Hydrology/Water Quality	Land Use/Planning	Mineral Resources
Noise	Population/Housing	Public Services
Recreation	Transportation	Tribal Cultural Resources
Utilities/Service Systems	Wildfire	Mandatory Findings of Significance

The analyses of environmental impacts in **Chapter 4 Impact Analysis** result in an impact statement, which shall have the following meanings.

Potentially Significant Impact. This category is applicable if there is substantial evidence that an effect may be significant, and no feasible mitigation measures can be identified to reduce impacts to a less than significant level. If there are one or more "Potentially Significant Impact" entries when the determination is made, an EIR is required.

Less than Significant with Mitigation Incorporated. This category applies where the incorporation of mitigation measures would reduce an effect from a "Potentially Significant Impact" to a "Less Than Significant Impact." The lead agency must describe the mitigation measure(s), and briefly explain how they would reduce the effect to a less than significant level (mitigation measures from earlier analyses may be cross-referenced).

Less Than Significant Impact. This category is identified when the proposed Project would result in impacts below the threshold of significance, and no mitigation measures are required.

No Impact. This category applies when a project would not create an impact in the specific environmental issue area. "No Impact" answers do not require a detailed explanation if they are adequately supported by the information sources cited by the lead agency, which show that the impact does not apply to the specific project (e.g. the project falls outside a fault rupture zone). A "No Impact" answer should be explained where it is based on project-specific factors as well as general standards (e.g. the project will not expose sensitive receptors to pollutants, based on a project-specific screening analysis).

1.3 Determination

On the basis of this initial evaluation (to be completed by the Lead Agency):

I find that the proposed project COULD NOT have a significant effect on the environment, and a NEGATIVE DECLARATION will be prepared.

I find that although the proposed project could have a significant effect on the environment, there will not be a significant effect in this case because revisions in the project have been made by or agreed to by the project proponent. A MITIGATED NEGATIVE DECLARATION will be prepared.

I find that the proposed project MAY have a significant effect on the environment, and an ENVIRONMENTAL IMPACT REPORT is required.

I find that the proposed project MAY have a "potentially significant impact" or "potentially significant unless mitigated" impact on the environment, but at least one effect 1) has been adequately analyzed in an earlier document pursuant to applicable legal standards, and 2) has been addressed by mitigation measures based on the earlier analysis as described on attached sheets. An ENVIRONMENTAL IMPACT REPORT is required, but it must analyze only the effects that remain to be addressed.

I find that although the proposed project could have a significant effect on the environment, because all potentially significant effects (a) have been analyzed adequately in an earlier EIR or NEGATIVE DECLARATION pursuant to applicable standards, and (b) have been avoided or mitigated pursuant to that earlier EIR or NEGATIVE DECLARATION, including revisions or mitigation measures that are imposed upon the proposed project, nothing further is required.

3/14/2025
Date

Impact Analysis, presents the CEQA checklist and environmental analyses for all impact areas, mandatory findings of significance, and feasible mitigation measures, if applicable. If the proposed Project does not have the potential to significantly impact a given issue area, the relevant section provides a brief discussion of the reasons why the impact is anticipated to be less than significant or why no impacts are expected. If the proposed Project could have a potentially significant impact on a resource, the issue area discussion provides a description of potential impacts, and appropriate mitigation measures and/or permit requirements that would reduce those impacts to a less than significant level. Mitigation Monitoring and Reporting Program (MMRP), provides the proposed mitigation measures, implementation timelines, and the entity/agency responsible for ensuring implementation.

The Air Quality, Greenhouse Gas and Energy Technical Assessment is provided in Appendix A, The Biological Resource Evaluation report is provided in Appendix B, the Phase I Cultural Resource Survey Report is provided in Appendix C, and the Vehicle Miles Traveled Analysis is provided in Appendix D, at the end of this document.

Chapter 2 Project Description

2.1 Project Background

2.1.1 Project Title

Crown Construction: Pecan Tozer III Residential subdivision Project

2.1.2 Lead Agency Name and Address

City of Madera Planning Department 205 W. 4th Street Madera, CA 93637

2.1.3 Contact Person and Phone Number

Lead Agency Contact

Robert Smith Senior Planner City of Madera 559-661-5430

2.1.4 Project Location

The proposed Project site is located north and east of Road 28, and west of Robbins Lane in the southeastern portion of the City of Madera, less than 500 feet northeast of SR 99, and approximately 1.1 miles east of SR 145 (see

Figure 2-1). The proposed site is located within T11S R18E S29 and consists of one land parcel, APN 011-370-005, for a total of approximately 29 acres. The site currently consists of an irrigated and maintained almond orchard.

2.1.5 Latitude and Longitude

The central geographic position of the Project area is approximately 36.9404° north latitude, 120.0347° west longitude.

2.1.6 General Plan Designation

The Project site is within the City of Madera limits. The site is designated by the City of Madera's General Plan as MD (Medium Density Residential), such as the proposed Project. The residential units planned as part of the proposed Project are within the allowed density range.

2.1.7 Zoning

The Project site is currently zoned by the City of Madera as Planned Development (6000), which is defined as one unit for each 6,000 sq. ft.

2.1.8 Description of Project

Project Background and Purpose

The proposed Project intends to provide single-family residential housing for the residents of the City of Madera in a growing part of the City.

Project Description

The proposed Project consists of development of 168 single-family residential units on an approximately 29-acre site in the southeastern part of the City of Madera. The proposed Project also includes associated improvements such as internal access roads, street lighting, and landscaping, as well as a four-acre detention basin and park (see Figure 2-3). Site access will be along Road 28 at three points.

To accommodate the Project a Tentative Subdivision Map approval for the entire site will be needed. The Project site is currently zoned and designated in the General Plan for residential uses by the City of Madera. Project development is expected to begin in early 2025.

2.1.9 Site and Surrounding Land Uses and Setting

Project Setting

The proposed Project site is located north and east of Road 28, and west of Robbins Lane in the near the eastern edge of the City limits of Madera, on APN 011-370-005. The proposed Project site is located in the southeastern part of the City of Madera, in a mix of urban and rural area, surrounded by rural residential housing, vacant/disturbed land and agricultural land further south. Single-family residences exist to the east, north and further northwest of the site, with vacant land and roads located to the south.

Vacant/disturbed land also exists to the north, with roadways, vacant land, a park and a railroad to the west. The site can be characterized as agricultural land, active with almond orchards.

Table 2-1 Existing Uses, General Plan Designations, and Zone Districts of Surrounding Properties

Direction from Project Site	Existing Use	General Plan Designation	Zone District
North	Vacant/disturbed land, rural residences	MD Medium Density Residential	Residential (PZ-PD 4500 & PD 6000)
East	Rural Residences	MD Medium Density Residential	Residential (PZ-PD 4500)
South	Agricultural	LD Low Density Residential, C Commercial	Residential (PD 6000)
West	Road 28 Park, Vacant/disturbed land	C Commercial	C1 Light Commercial, CH Highway Commercial

See Figure 2-4 and Figure 2-5 for the zoning and general plan designations, respectively.

2.1.10 Other Public Agencies Whose Approval May Be Required

- San Joaquin Valley Air Pollution Control District (SJVAPCD)
- California Regional Water Quality Control Board
- Madera County LAFCO

2.1.11 Consultation with California Native American Tribes

Public Resources Code Section 21080.3.1, et seq. (codification of AB 52, 2013-14)) requires that a lead agency, within 14 days of determining that it will undertake a project, must notify in writing any California Native American Tribe traditionally and culturally affiliated with the geographic area of the project if that Tribe has previously requested notification about projects in that geographic area. The notice must briefly describe the project and inquire whether the Tribe wishes to initiate request formal consultation. Tribes have 90 days from receipt of notification to request formal consultation. The lead agency then has 30 days to initiate the consultation, which then continues until the parties come to an agreement regarding necessary mitigation or agree that no mitigation is needed, or one or both parties determine that negotiation occurred in good faith, but no agreement will be made.

Letters requesting consultation from tribes were sent out to tribes on February 14th, 2024. City of Madera has not received any written correspondence from a Tribe pursuant to Public Resources Code Section 21080.3.1 requesting notification of proposed Project.

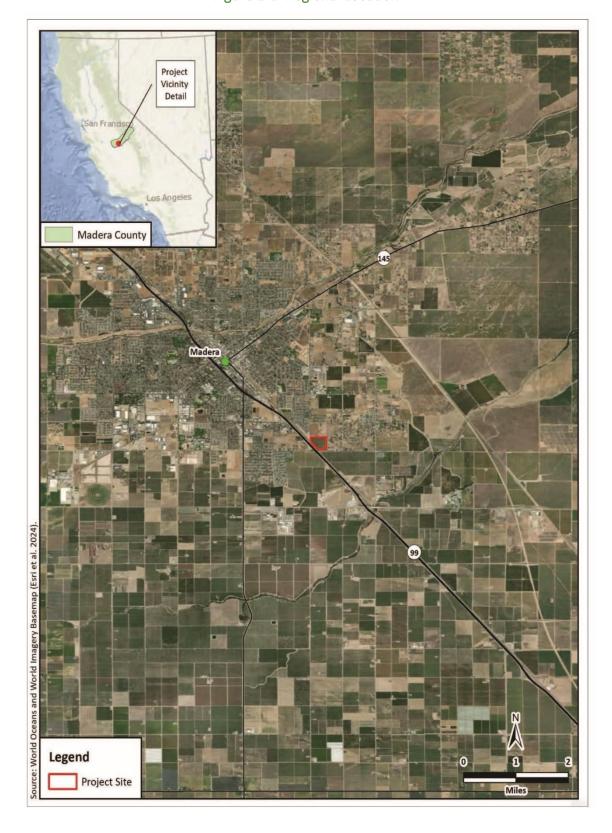


Figure 2-1 Regional Location

Figure 2-2 Vicinity Map

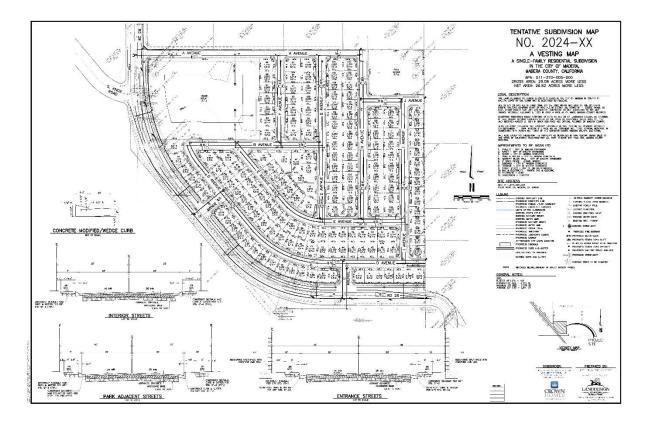


Figure 2-3 Site Map

Chapter 3 Determination

3.1 Environmental Factors Potentially Affected

As indicated by the discussions of existing and baseline conditions, and impact analyses that follow in this Chapter, environmental factors not checked below would have no impacts or less than significant impacts resulting from the project. Environmental factors that are, checked below would have potentially significant impacts resulting from the project. Mitigation measures are recommended for each of the potentially significant impacts that would reduce the impact to less than significant.

Aesthetics	Agriculture & Forestry Resources	Air Quality
⊠ Biological Resources	Cultural Resources	☐ Energy
☐ Geology/Soils	Greenhouse Gas Emissions	☐ Hazards & Hazardous Materials
Hydrology/Water Quality	☐ Land Use/Planning	☐ Mineral Resources
Noise	Population/Housing	Public Services
Recreation	☐ Transportation	☐ Tribal Cultural Resources
Utilities/Service Systems	Wildfire	Mandatory Findings of Significance

The analyses of environmental impacts in Chapter 4 Impact Analysis result in an impact statement, which shall have the following meanings.

Potentially Significant Impact. This category is applicable if there is substantial evidence that an effect may be significant, and no feasible mitigation measures can be identified to reduce impacts to a less than significant level. If there are one or more "Potentially Significant Impact" entries when the determination is made, an EIR is required.

Less than Significant with Mitigation Incorporated. This category applies where the incorporation of mitigation measures would reduce an effect from a "Potentially Significant Impact" to a "Less Than Significant Impact." The lead agency must describe the mitigation measure(s), and briefly explain how they would reduce the effect to a less than significant level (mitigation measures from earlier analyses may be cross-referenced).

Less Than Significant Impact. This category is identified when the proposed Project would result in impacts below the threshold of significance, and no mitigation measures are required.

No Impact. This category applies when a project would not create an impact in the specific environmental issue area. "No Impact" answers do not require a detailed explanation if they are adequately supported by the information sources cited by the lead agency, which show that the impact does not apply to the specific project (e.g. the project falls outside a fault rupture zone). A "No Impact" answer should be explained where it is based on project-specific factors as well as general standards (e.g. the project will not expose sensitive receptors to pollutants, based on a project-specific screening analysis).

3.2 Determination

On the basis of this initial evaluation (to be completed by the Lead Agency):

	I find that the proposed project COULD NOT have a significant effect on the environment, and NEGATIVE DECLARATION will be prepared.				
	I find that although the proposed project could have a sig will not be a significant effect in this case because revision agreed to by the project proponent. A MITIGATED NEGATION	ons in the project have been made by or			
	I find that the proposed project MAY have a signification ENVIRONMENTAL IMPACT REPORT is required.	ant effect on the environment, and an			
	I find that the proposed project MAY have a "potentially significant impact" or "potential significant unless mitigated" impact on the environment, but at least one effect 1) has be adequately analyzed in an earlier document pursuant to applicable legal standards, and 2) has be addressed by mitigation measures based on the earlier analysis as described on attached sheet An ENVIRONMENTAL IMPACT REPORT is required, but it must analyze only the effects that rem to be addressed.				
I find that although the proposed project could have a significant effect on the because all potentially significant effects (a) have been analyzed adequately in an NEGATIVE DECLARATION pursuant to applicable standards, and (b) have been avoided pursuant to that earlier EIR or NEGATIVE DECLARATION, including revisions or mitigate that are imposed upon the proposed project, nothing further is required.					
		3/14/2025			
Signatu	ture	Date			
Rol	obert Smith – Senior Planner				
	ed Name/Position				

Chapter 4 Impact Analysis

4.1 Aesthetics

Except as provided in Public Resources Code Section 21099, would the project:	Potentially Significant Impact	Less than Significant with Mitigation Incorporated	Less than Significant Impact	No Impact
 a) Have a substantial adverse effect on a scenic vista? 				
b) Substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic buildings with a state scenic highway?	_{iin}			
c) In non-urbanized areas, substantially degrade the existing visual character or quality of public views of the site and its surroundings? (Public views are those thare experienced from publicly accessible vantage point). If the project is in an urbanized area, would the project confliwith applicable zoning and other regulations governing scenic quality?	at 🗆		\boxtimes	
d) Create a new source of substantial light glare which would adversely affect day on ighttime views in the area?				

4.1.1 Environmental Setting

The City of Madera is located in central Madera County on the east side of the San Joaquin Valley floor. The City of Madera is characterized by flat terrain of approximately 250 to 275 feet above mean sea level. The City is approximately 15 miles from the Sierra Nevada foothills located to the east.

The proposed Project site is located north and east of Road 28, and west of Robbins Lane in the near the eastern edge of the City limits of Madera, and consists of an active almond orchard.

The aesthetic features in the proposed Project area are relatively uniform; consisting primarily of rural residences and vacant or disturbed land. There are no scenic resources or scenic vistas in the area. State Highway 99 is located less than 500 to the west.

4.1.2 Impact Assessment

a) Would the project have a substantial adverse effect on a scenic vista?

The proposed Project consists of development of 168 single-family residential units on an approximately 29-acre site in the southeastern part of the City of Madera. The proposed Project includes associated improvements such

as access roads, street lighting, and landscaping, as well as a detention basin and park. The proposed Project site is located north and east of Road 28, and west of Robbins Lane in the near the eastern edge of the City limits of Madera, on APN 011-370-005.

The proposed residential development is located in a growing part of the City of Madera and will be consistent with the surrounding visual character which consists of single family and rural residential developments, and vacant/disturbed land. The City of Madera General Plan does not identify or designate any scenic vistas in the Project area. A scenic vista is generally considered a view of an area that has remarkable scenery or a resource that is indigenous to the area. The Project is located in an area of minimal topographic relief, and views of the site are easily obscured by buildings, fences, other structures and trees. Neither the Project area nor any surrounding land use contains features typically associated with scenic vistas (e.g., ridgelines, peaks, overlooks).

The proposed structures will also conform to design standards set forth by the City's General Plan and Zoning Ordinance. Construction activities will be visible from the adjacent roadsides; however, the construction activities will be temporary in nature and will not affect a scenic vista. The impact will be *less than significant*.

Mitigation Measures: None are required.

b) Would the project substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic buildings within a state scenic highway?

Less than Significant Impact. According to the California Department of Transportation Scenic Highway Mapping System, there are no state designated or eligible scenic highways within the immediate proximity to the Project site. In addition, no scenic highways or roadways are listed within the Project area in the City of Madera's General Plan or Madera County's General Plan. Based on the National Register of Historic Places (NRHP) and the City's General Plan, no historic buildings exist on the Project site. The proposed Project would not damage any trees, rock outcroppings or historic buildings within a State scenic highway corridor. Any impacts would be considered *less than significant*.

Mitigation Measures: None are required.

c) In non-urbanized areas, would the project substantially degrade the existing visual character or quality of public views of the site and its surroundings? (Public views are those that are experienced from publicly accessible vantage point). If the project is in an urbanized area, would the project conflict with applicable zoning and other regulations governing scenic quality?

The proposed Project includes development of 168 single-family residences on an approximately 29-acre site, including associated roads, landscaping, and lighting, as well as a detention basin and park. The structures will conform to design standards set forth by the City's General Plan and Zoning Ordinance. The proposed Project site is located in an area that is substantially surrounded by urban and rural residential uses and will not result in a use that is visually incompatible with the surrounding area.

The site is visible from surrounding residences and from vehicles traveling along adjacent streets. However, the proposed Project site is planned for residential housing according to the City's General Plan and will be similar in visual character to the existing area, as similar urban uses are found in the area and throughout both rural and

March 2025

.

¹ California Department of Transportation. California Scenic Highway Mapping System. https://caltrans.maps.arcgis.com/apps/webappviewer/index.html?id=465dfd3d807c46cc8e8057116f1aacaa. Accessed October 2024.

urban parts of the Central Valley. As such, the proposed Project will not substantially degrade the existing visual character or quality of the area or its surroundings. The impact will be *less than significant*.

Mitigation Measures: None are required.

d) Would the project create a new source of substantial light or glare which would adversely affect day or nighttime views in the area?

Less Than Significant Impact. Nighttime lighting is necessary to provide and maintain safe, secure, and attractive environments; however, these lights have the potential to produce spillover light and glare and waste energy, and if designed incorrectly, could be considered unattractive. Light that falls beyond the intended area is referred to as "light trespass". Types of light trespass include spillover light and glare. Minimizing all these forms of obtrusive light is an important environmental consideration. A less obtrusive and well-designed energy efficient fixture would face downward, emit the correct intensity of light for the use, and incorporate energy timers.

Spillover light is light emitted by a lighting installation that falls outside the boundaries of the property on which the installation is sited. Spillover light can adversely affect light-sensitive uses, such as residential neighborhoods at nighttime. Because light dissipates as it travels from the source, the intensity of a light fixture is often increased at the source to compensate for the dissipated light. This can further increase the amount of light that illuminates adjacent uses. Spillover light can be minimized by using only the level of light necessary, and by using cutoff type fixtures or shielded light fixtures, or a combination of fixture types.

Glare results when a light source directly in the field of vision is brighter than the eye can comfortably accept. Squinting or turning away from a light source is an indication of glare. The presence of a bright light in an otherwise dark setting may be distracting or annoying, referred to as discomfort glare, or it may diminish the ability to see other objects in the darkened environment, referred to as disability glare. Glare can be reduced by design features that block direct line of sight to the light source and that direct light downward, with little or no light emitted at high (near horizontal) angles, since this light would travel long distances. Cutoff-type light fixtures minimize glare because they emit relatively low-intensity light at these angles.

Currently the sources of light in the Project area are from streetlights, the vehicles traveling along Road 28 and nearby residences to the east and north. The Project would include nighttime lighting for security. Such lighting would be subject to the requirements of the City of Madera General Plan Policy CON-44, which ensures that outdoor lighting does not produce obtrusive glare onto the public right-of-way or adjoining properties. Lighting fixtures for security would be designed with "cutoff" type fixtures or shielded light fixtures, or a combination of fixture types to cast light downward, thereby providing lighting at the ground level for safety while reducing glare to adjacent properties. Accordingly, the Project would not create substantial new sources of light or glare. Potential impacts are *less than significant*.

Mitigation Measures: None are required.

4.2 Agriculture and Forestry Resources

Would	the project:	Potentially Significant Impact	Less than Significant With Mitigation Incorporated	Less than Significant Impact	No Impact
a)	Convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to non- agricultural use?				
b)	Conflict with existing zoning for agricultural use, or a Williamson Act contract?				
c)	Conflict with existing zoning for, or cause rezoning of, forest land (as defined in Public Resources Code section 12220(g)), timberland (as defined by Public Resources Code section 4526), or timberland zoned Timberland Production (as defined by Government Code section 51104(g))?				\boxtimes
d)	Result in the loss of forest land or conversion of forest land to non-forest use?				\boxtimes
e)	Involve other changes in the existing environment which, due to their location or nature, could result in conversion of Farmland, to non-agricultural use or conversion of forest land to non-forest use?				

4.2.1 Environmental Setting

The proposed residential development is located in a growing part of the City, with the surrounding area consisting of rural residential developments and vacant/disturbed land.

4.2.2 Impact Assessment

a) Would the project convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to non-agricultural use?

No Impact. The proposed residential Project is located on approximately 29 acres of land that is currently being utilized as an almond orchard. The Project site is designated as primarily Prime Farmland, with two small strips designated as Farmland of Statewide Importance and one small strip designated as Unique Farmland by the State

Farmland Mapping and Monitoring Program.² The site is designated for residential development in the City's General Plan and impacts to farmland conversion were addressed in the City's General Plan EIR (State Clearinghouse Number 2007121153). No new impacts would occur from Project implementation. There is *no impact*.

Mitigation Measures: None are required.

b) Would the project conflict with existing zoning for agricultural use, or a Williamson Act contract?

No Impact. The proposed Project site is not under a Williamson Act Contract and is located in an area dominated by urban development to the east, north, and west with more vacant land to the north. Areas south of the site have a small portion of vacant land designated as Medium Density Residential, with more orchards past E. Pecan Avenue. There is *no impact*.

Mitigation Measures: None are required.

c) Would the project conflict with existing zoning for, or cause rezoning of, forest land (as defined in Public Resources Code section 12220(g)), timberland (as defined by Public Resources Code section 4526), or timberland zoned Timberland Production (as defined by Government Code section 51104(g))?

No Impact. This impact evaluates the potential for the proposed Project to conflict with existing Forest Land zoning or result in the loss of forest land or result in the conversion of forest land to non-forest use. There is no forest land zoning on the proposed Project site and there are no forest uses on the site. No loss of forest land would occur and no conflicts would occur. Therefore, *no impacts* would occur.

Mitigation Measures: None are required.

d) Would the project result in the loss of forest land or conversion of forest land to non-forest use?

No Impact. No conversion of forestland, as defined under Public Resource Code or General Code, as referenced above, would occur as a result of the Project. There is *no impact*.

Mitigation Measures: None are required.

e) Would the project involve other changes in the existing environment which, due to their location or nature, could result in conversion of Farmland, to non-agricultural use or conversion of forest land to non-forest use?

No Impact. The site is planned for residential uses according to the City of Madera's General Plan and is being developed as such. The proposed Project does not have the potential to result in the conversion of Farmland to non-agricultural uses or forestland uses to non-forestland. There is **no impact**.

Mitigation Measures: None are required.

² Department of Conservation, California Important Farmland Finder. https://maps.conservation.ca.gov/DLRP/CIFF/. Accessed October 2024.

4.3 Air Quality

establis manag may be	available, the significance criteria shed by the applicable air quality ement district or air pollution control district e relied upon to make the following ninations. Would the project:	Potentially Significant Impact	Less than Significant with Mitigation Incorporated	Less than Significant Impact	No Impact
a)	Conflict with or obstruct implementation of the applicable air quality plan?				
b)	Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard?				
c)	Expose sensitive receptors to substantial pollutant concentrations?		\boxtimes		
d)	Result in other emissions (such as those leading to odors) adversely affecting a substantial number of people?				

4.3.1 Environmental Setting

The climate of the San Joaquin Valley is characterized by long, hot summers and stagnant, foggy, winters. Precipitation is low and temperature inversions are common. These characteristics are conducive to the formation and retention of air pollutants and are in part influenced by the surrounding mountains which intercept precipitation and act as a barrier to the passage of cold air and air pollutants.

The proposed Project lies within the San Joaquin Valley Air Basin, which is managed by the San Joaquin Valley Air Pollution Control District (SJVAPCD or Air District). National Ambient Air Quality Standards (NAAQS) and California Ambient Air Quality Standards (CAAQS) have been established for the following criteria pollutants: carbon monoxide (CO), ozone (O3), sulfur dioxide (SO2), nitrogen dioxide (NO2), particulate matter (PM10 and PM2.5), and lead (Pb). The CAAQS also set standards for sulfates, hydrogen sulfide, and visibility.

Air quality plans or attainment plans are used to bring the applicable air basin into attainment with all state and federal ambient air quality standards designed to protect the health and safety of residents within that air basin. Areas are classified under the Federal Clean Air Act as either "attainment", "non-attainment", or "extreme non-attainment" areas for each criteria pollutant based on whether the NAAQS have been achieved or not. Attainment relative to the State standards is determined by the California Air Resources Board (CARB). The San Joaquin Valley is designated as a State and Federal extreme non-attainment area for O3, a State and Federal non-attainment area for PM2.5, a State non-attainment area for PM10, and Federal and State attainment area for CO, SO2, NO2, and Pb.³

³ San Joaquin Valley Air Pollution Control District. Ambient Air Quality Standards & Valley Attainment Status. https://ww2.valleyair.org/air-quality-information/ambient-air-quality-standards-valley-attainmnet-status/. Accessed November 2024.

4.3.2 Impact Assessment

Thresholds of Significance

To assist local jurisdictions in the evaluation of air quality impacts, the SJVAPCD has published the *Guide for Assessing and Mitigating Air Quality Impacts*. This guidance document includes recommended thresholds of significance to be used for the evaluation of short-term construction, long-term operational, odor, toxic air contaminant, and cumulative air quality impacts. Accordingly, the SJVAPCD-recommended thresholds of significance are used to determine whether implementation of the proposed Project would result in a significant air quality impact. Projects that exceed these recommended thresholds would be considered to have a potentially significant impact to human health and welfare. The thresholds of significance are summarized, as follows:

Short-Term Emissions of Particulate Matter (PM10): Construction impacts associated with the proposed Project would be considered significant if the feasible control measures for construction in compliance with Regulation VIII as listed in the SJVAPCD guidelines are not incorporated or implemented, or if project-generated emissions would exceed 15 tons per year (TPY).

Short-Term Emissions of Ozone Precursors (ROG and NOX): Construction impacts associated with the proposed Project would be considered significant if the project generates emissions of Reactive Organic Gases (ROG) or NO_X that exceeds 10 TPY.

Long-Term Emissions of Particulate Matter (PM10): Operational impacts associated with the proposed Project would be considered significant if the project generates emissions of PM₁₀ that exceed 15 TPY.

Long-Term Emissions of Ozone Precursors (ROG and NOX): Operational impacts associated with the proposed Project would be considered significant if the project generates emissions of ROG or NOX that exceeds 10 TPY.

Conflict with or Obstruct Implementation of Applicable Air Quality Plan: Due to the region's nonattainment status for ozone, $PM_{2.5}$, and PM_{10} , if the project-generated emissions of either of the ozone precursor pollutants (i.e., ROG and NO_x) or PM_{10} would exceed the SJVAPCD's significance thresholds, then the project would be considered to conflict with the attainment plans. In addition, if the project would result in a change in land use and corresponding increases in vehicle miles traveled, the project may result in an increase in vehicle miles traveled that is unaccounted for in regional emissions inventories contained in regional air quality control plans.

Local Mobile-Source CO Concentrations: Local mobile source impacts associated with the proposed Project would be considered significant if the project contributes to CO concentrations at receptor locations in excess of the CAAQS (i.e. 9.0 ppm for 8 hours or 20 ppm for 1 hour).

Exposure to toxic air contaminants (TAC) would be considered significant if the probability of contracting cancer for the Maximally Exposed Individual (i.e., maximum individual risk) would exceed 10 in 1 million or would result in a Hazard Index greater than 1.

Odor impacts associated with the proposed Project would be considered significant if the project has the potential to frequently expose members of the public to objectionable odors.

An Air Quality, Energy, and Greenhouse Gas Technical Memorandum (AQ Memo) was prepared for the proposed Project by LSA and is the basis for the impact analysis below. The AQ Memo is provided as Appendix A to this Initial Study.

a) Would the project conflict with or obstruct implementation of the applicable air quality plan?

Less than Significant Impact. The proposed Project includes development of 168 single-family residences on an approximately 29-acre site, including associated roads, landscaping, and lighting. The proposed residential development is located in a growing part of the City designated for residential development, with the surrounding area consisting of single family and rural residential developments, active agriculture and vacant/disturbed land.

An air quality plan describes air pollution control strategies to be implemented by a city, county, or region classified as a non-attainment area. The main purpose of the air quality plan is to bring the area into compliance with the requirements of the federal and State air quality standards. To bring the San Joaquin Valley into attainment, the San Joaquin Valley Air Pollution Control District (SJVAPCD) adopted the 2022 Plan for the 2015 8-Hour Ozone Standard in December 2022 to satisfy Clean Air Act (CAA) requirements and ensure attainment of the 70 parts per billion (ppb) 8-hour ozone standard.

To assure the San Joaquin Valley Air Basin's (SJVAB) continued attainment of the United States Environmental Protection Agency (USEPA) PM10 standard, the SJVAPCD adopted the 2007 PM10 Maintenance Plan and Request for Redesignation in September 2007.33 SJVAPCD Regulation VIII (Fugitive PM10 Prohibitions) is designed to reduce PM10 emissions generated by human activity. The SJVAPCD adopted the 2018 Plan for the 1997, 2006, and 2012 PM2.5 Standards to address the USEPA annual PM2.5 standard of 12 micrograms per cubic meter (μg/m3), established in 2012.34

CEQA requires that certain projects be analyzed for consistency with the applicable air quality plan. For a project to be consistent with SJVAPCD air quality plans, the pollutants emitted from a project should not exceed the SJVAPCD emission thresholds or cause a significant impact on air quality. In addition, emission reductions achieved through implementation of offset requirements are a major component of the SJVAPCD air quality plans. As discussed in Impact (b) below, construction of the proposed Project would not result in the generation of criteria air pollutants that would exceed SJVAPCD thresholds of significance. Implementation of SJVAPCD Regulation VIII would further reduce construction dust impacts. Operational emissions associated with the Project would not exceed SJVAPCD established significance thresholds for reactive organic gases (ROG), NOx, CO, sulfur oxides (SOx), PM10, or PM2.5 emissions. Therefore, the Project would not conflict with or obstruct implementation of SJVAPCD air quality plans. Impacts are *less than significant*.

Mitigation Measures: None are required.

b) Would the project result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard?

Less than Significant Impact with Mitigation. The SJVAB is designated as non-attainment for O3 and PM2.5 for federal standards and nonattainment for O3, PM10, and PM2.5 for State standards. The SJVAPCD's nonattainment status is attributed to the region's development history. Past, present, and future development projects contribute to the region's adverse air quality impacts on a cumulative basis. By its very nature, air pollution is largely a cumulative impact. No single project is sufficient in size to, by itself, result in nonattainment of ambient air quality standards. Instead, a project's individual emissions contribute to existing cumulatively significant adverse air quality

impacts. If a project's contribution to the cumulative impact is considerable, then the project's impact on air quality would be considered significant.

In developing thresholds of significance for air pollutants, the SJVAPCD considered the emission levels for which a project's individual emissions would be cumulatively considerable. If a project exceeds the identified significance thresholds, its emissions would be cumulatively considerable, resulting in significant adverse air quality impacts to the region's existing air quality conditions. The following analysis assesses the potential project-level constructionand operation-related air quality impacts.

Construction Emissions

During construction, short-term degradation of air quality may occur due to the release of particulate matter emissions (i.e., fugitive dust) generated by grading, building construction, paving, and other activities. Emissions from construction equipment are also anticipated and would include CO, NOX,ROG, directly emitted PM2.5 or PM10, and TACs (e.g., diesel exhaust particulate matter).

Project construction activities would include site preparation, grading, building construction, paving, and architectural coating activities. Construction-related effects on air quality from the proposed project would be greatest during the site preparation phase due to the disturbance of soils. If not properly controlled, these activities would temporarily generate particulate emissions. Sources of fugitive dust would include disturbed soils at the construction site. Unless properly controlled, vehicles leaving the site would deposit dirt and mud on local streets, which could be an additional source of airborne dust after it dries. PM10 emissions would vary from day to day, depending on the nature and magnitude of construction activity and local weather conditions. PM10 emissions would depend on soil moisture, silt content of soil, wind speed, and amount of operating equipment. Larger dust particles would settle near the source, whereas fine particles would be dispersed over greater distances from the construction site.

Fugitive dust emissions are generally associated with land clearing and exposure of soils to the air and wind, as well as cut-and-fill grading operations. Dust generated during construction varies substantially on a project-by-project basis, depending on the level of activity, the specific operations, and weather conditions at the time of construction. The project would be required to comply with District Regulation VIII (Fugitive PM10 Prohibition) to control fugitive dust. SJVAPCD Rule 8011, General Requirements, and Rule 8021, Construction, Demolition Excavation, Extraction, and Other Earthmoving Activities, would also be applicable.

In addition to dust-related PM10 emissions, heavy trucks and construction equipment powered by gasoline and diesel engines would generate CO, SO2, NOx, VOCs, and some soot particulates (PM2.5 and PM10) in exhaust emissions. If construction activities were to increase traffic congestion in the area, CO and other emissions from traffic would increase slightly while those vehicles idle in traffic. These emissions would be temporary in nature and limited to the immediate area surrounding the construction site.

Construction emissions were estimated for the project using CalEEMod. Construction-related emissions are presented in Table 4-1. CalEEMod output sheets are included in Appendix A.

Table 4-1 Short-Term Regional Construction Emissions

Construction Phase	Annual Pollutant Emissions (Tons per Year)					
	ROG	NO _X	СО	SO _X	Total PM ₁₀	Total PM _{2.5}
2025	0.1	2.7	2.1	<0.1	0.5	0.3
2026	0.1	2.6	2.1	<0.1	0.2	0.1
2027	<0.1	0.8	0.7	<0.1	<0.1	<0.1
Maximum Emissions	0.1	2.7	2.1	<0.1	0.5	0.3
SJVAPCD Thresholds	10	10	100	27	15	15
Significant Emissions?	No	No	No	No	No	No

Source: Compiled by LSA (October 2024).

CO = carbon monoxide lbs/day = pounds per day NOx = nitrogen oxides

PM_{2.5} = particulate matter less than 2.5 microns in size

 PM_{10} = particulate matter less than 10 microns in size SJVAPCD = San Joaquin Valley Air Pollution Control District SO_X = sulfur oxides VOCs = volatile organic compounds

As shown in Table 4-1, construction emissions associated with Project implementation would not exceed the SJVAPCD's thresholds for ROG, NOx, CO, SOx, PM2.5, or PM10 emissions. In addition to the construction period thresholds of significance, the SJVAPCD has implemented Regulation VIII measures for dust control during construction. Implementation of Mitigation Measure AIR-1, below, would ensure that the proposed Project complies with the SJVAPCD's Regulation VIII. Construction emissions associated with the proposed Project would be less than significant with implementation of AIR-1. Therefore, construction of the proposed Project would not result in a cumulatively considerable net increase of any criteria pollutant for which the project region is nonattainment under an applicable federal or State ambient air quality standard. Impacts resulting from construction emissions are *less than significant with mitigation implementation*.

Operations Emissions

Long-term air pollutant emissions associated with operation of the proposed Project include emissions from area, energy, and mobile sources. Area-source emissions include architectural coatings, consumer products, and landscaping. Energy-source emissions result from activities in buildings that use natural gas. Mobile-source emissions are from vehicle trips associated with Project operations.

Mobile source emissions include ROG and NOX emissions that contribute to the formation of ozone. Additionally, PM10 emissions result from running exhaust, tire and brake wear, and the entrainment of dust into the atmosphere from vehicles traveling on paved roadways.

Energy-source emissions result from activities in buildings that use natural gas. The quantity of emissions is the product of usage intensity (i.e., the amount of natural gas) and the emission factor of the fuel source. However, the proposed project would not utilize natural gas. Therefore, energy source emissions would be minimal.

Area-source emissions consist of direct sources of air emissions at the project site, including architectural coatings, consumer products, and use of landscape maintenance equipment.

Long-term operational emissions associated with the proposed project were calculated using CalEEMod. Table 4-2 provides the estimated existing emission estimates and the proposed Project's estimated operational emissions. CalEEMod output sheets are provided in Appendix A.

Table 4-2 Project Operational Emissions

Emission Type	Pollutant Emissions (Tons per Year)						
	ROG	NO _X	СО	SO _X	PM ₁₀	PM _{2.5}	
Mobile Sources	1.1	0.9	5.4	<0.1	1.1	0.3	
Area Sources	1.5	<0.1	2.4	<0.1	0.2	0.2	
Energy Sources	0.0	0.0	0.0	0.0	0.0	0.0	
Total Project Emissions	2.6	0.9	7.8	<0.1	1.3	0.5	
SJVAPCD Thresholds	10	10	100	27	15	15	
Significant?	No	No	No	No	No	No	

Source: Compiled by LSA (October 2024).

CO = carbon monoxide lbs/day = pounds per day NO_X = nitrogen oxides

 $PM_{2.5}$ = particulate matter less than 2.5 microns in size

 PM_{10} = particulate matter less than 10 microns in size SJVAPCD = San Joaquin Valley Air Pollution Control District SO_X = sulfur oxides VOCs = volatile organic compounds

The results shown in Table 4-2 indicate the Project would not exceed the significance criteria for annual ROG, NOX, CO, SOX, PM10, or PM2.5 emissions; therefore, the proposed Project would not have a significant effect on regional air quality. As shown in Table 4-2, SJVAPCD emissions of ROG, NOX, CO, SOX, PM10, and PM2.5 would be below the thresholds. Therefore, operation of the Project would not result in a cumulatively considerable net increase of any criteria pollutant for which the Project is nonattainment under applicable federal or State ambient air quality standards. Operational impacts are *less than significant*.

Long Term Microscale (CO Hot Spot) Analysis

Vehicular trips associated with the proposed Project would contribute to congestion at intersections and along roadway segments in the vicinity of the proposed Project site. Localized air quality impacts would occur when emissions from vehicular traffic increase as a result of the proposed project. The primary mobile-source pollutant of local concern is CO, a direct function of vehicle idling time and, thus, of traffic flow conditions. CO transport is extremely limited; under normal meteorological conditions, it disperses rapidly with distance from the source. However, under certain extreme meteorological conditions, CO concentrations near a congested roadway or intersection may reach unhealthful levels, thereby affecting local sensitive receptors (e.g., residents, schoolchildren, the elderly, and hospital patients).

Typically, high CO concentrations are associated with roadways or intersections operating at unacceptable levels of service or with extremely high traffic volumes. In areas with high ambient background CO concentrations, modeling is recommended to determine a project's effect on local CO levels.

An assessment of Project-related impacts on localized ambient air quality requires that future ambient air quality levels be projected. Existing CO concentrations in the immediate project vicinity are not available. Ambient CO levels monitored at the Fresno Garland station located at 3727 North First Street, Fresno, in Fresno County, California (the closest station to the project site monitoring CO) showed a highest recorded 1-hour concentration of 2.2 ppm (the State standard is 20 ppm) and a highest 8-hour concentration of 1.8 ppm (the State standard is 9

ppm) from 2021 to 2023. The highest CO concentrations would normally occur during peak traffic hours; hence, CO impacts calculated under peak traffic conditions represent a worst-case analysis. Reduced speeds and vehicular congestion at intersections result in increased CO emissions.

The proposed Project is expected to generate 1,585 average daily trips, with 118 trips occurring in the a.m. peak hour and 158 trips occurring in the p.m. peak hour. Therefore, given the extremely low level of CO concentrations in the project area and the lack of traffic impacts at any intersections, project-related vehicles are not expected to result in CO concentrations exceeding the State or federal CO standards. No CO hot spots would occur, and the Project would not result in any project related impacts on CO concentrations. *Less than significant impacts* would occur resulting from CO concentrations.

Mitigation Measures:

AIR-1

Consistent with San Joaquin Valley Air Pollution Control District (SJVAPCD) Regulation VIII (Fugitive PM10 Prohibitions), the following controls are required to be included as specifications for the proposed Project and implemented at the construction site:

- All disturbed areas, including storage piles, which are not being actively utilized for construction purposes, shall be effectively stabilized of dust emissions using water or chemical stabilizer/suppressant or covered with a tarp or other suitable cover or vegetative ground cover.
- All on-site unpaved roads and off-site unpaved access roads shall be effectively stabilized of dust emissions using water or chemical stabilizer/suppressant.
- All land clearing, grubbing, scraping, excavation, land leveling, grading, cut and fill, and demolition
 activities shall be effectively controlled of fugitive dust emissions utilizing application of water or by
 presoaking.
- When materials are transported off site, all material shall be covered, or effectively wetted to limit visible dust emissions, and at least 6 inches of freeboard space from the top of the container shall be maintained.
- All operations shall limit or expeditiously remove the accumulation of mud or dirt from adjacent public streets at the end of each workday. (The use of dry rotary brushes is expressly prohibited except where preceded or accompanied by sufficient wetting to limit the visible dust emissions. Use of blower devices is expressly forbidden.)
- Following the addition of materials to, or the removal of materials from, the surface of outdoor storage piles, said piles shall be effectively stabilized of fugitive dust emissions utilizing sufficient water or chemical stabilizer/ suppressant.

c) Would the project expose sensitive receptors to substantial pollutant concentrations?

Less than Significant Impact. Sensitive receptors are defined as residential uses, schools, daycare centers, nursing homes, and medical centers. Individuals particularly vulnerable to diesel particulate matter are children, whose lung tissue is still developing, and the elderly, who may have serious health problems that can be aggravated by exposure to diesel particulate matter. The proposed site is located in a rural area and is primarily surrounded with rural residences and agricultural land. The closest sensitive receptors to the Project site include single-family homes located 70 and 500 feet from the project boundaries to the east and north, respectively.

A construction HRA, which evaluates construction-period health risk to off-site receptors, was performed for the proposed project. Table G, below, identifies the results of the analysis assuming the use of Tier 2 construction equipment as proposed by the project. Model snapshots of the sources are shown in Attachment C of Appendix A.

Table 4-3 Health Risks from Project Construction to Off-Site Receptors

Location	Carcinogenic Inhalation Health Risk in One Million	Chronic Inhalation Hazard Index	Acute Inhalation Hazard Index	
Residential Receptor Risk	31.22	0.022	0.000	
Worker Receptor Risk	er Receptor Risk 0.64		0.000	
SJVAPCD Significance Threshold	20.0 in one million	1.0	1.0	
Significant?	Yes	No	No	

Source: LSA (October 2024).

SJVAPCD = San Joaquin Valley Air Pollution Control District

As shown in Table 4-3, the maximum cancer risk for the residential MEI would be 31.22 in one million, which would exceed the SJVAPCD cancer risk threshold of 20 in one million. The worker MEI risk would be lower at 0.64 in one million, which would not exceed the SJVAPCD cancer risk thresholds. The total chronic HI would be 0.022 for both, the residential MEI and for the worker MEI, which is below the threshold of 1.0. In addition, the total acute HI would be nominal (0.000), which would also not exceed the threshold of 1.0. Therefore, implementation of Mitigation Measure AIR-2 would be required to reduce construction cancer risk. As shown in Table 4-4, with the implementation of AIR-2 the maximum cancer risk for the residential receptor MEI would be 4.97 in 1 million, which would not exceed the SJVAPCD cancer risk threshold of 20 in 1 million. Therefore, with implementation of MM-1, construction of the proposed project would not exceed SJVAPCD thresholds and would not expose nearby sensitive receptors to a significant health risk.

Once construction is complete, the Project would consist of a 168-unit single-family residential development, that would not include any stationary source emissions of TACs. As identified in Table 4-2, Project operational emissions of criteria pollutants would be below SJVAPCD significance thresholds; thus, they are not likely to have a significant impact on sensitive receptors. In addition, the proposed Project would be required to implement District Rule 9510, Indirect Source Review (ISR). Implementation of Rule 9510 would reduce operational emissions of NOX and PM10 by 33.3 percent and 50 percent, respectively. Compliance with SJVAPCD rules would further limit doses and exposures, reducing potential health risk related to gasoline vapors to a level that is not significant. Once the proposed Project is constructed, it would not be a source of substantial emissions. Therefore, implementation of the proposed project would not result in new sources of TACs and would not expose sensitive receptors to substantial levels of TACs. Impacts are *less than significant with mitigation incorporation*.

Mitigation Measures:

AIR-2

All construction equipment over 50 horsepower (hp) used during construction of the project shall be equipped with at least Tier 2 engines with Level 3 Diesel Particulate Filters (DPF) or the most effective Verified Diesel Emission Control Strategies (VDECS) available for the engine type (Tier 4 engines automatically meet this requirement) as certified by the California Air Resources Board. The equipment shall be properly maintained and tuned in accordance with manufacturer specifications. Prior to issuance of building permits, the project Applicant shall submit construction plans to the City of Madera denoting the projected equipment Tier rating that will be used during the construction period.

d) Would the project result in other emissions (such as those leading to odors) adversely affecting a substantial number of people?

Less Than Significant Impact. Heavy-duty equipment in the Project area during construction would emit odors, primarily from the equipment exhaust. However, the construction activity would cease to occur after individual construction is completed. No other sources of objectionable odors have been identified for the Project, and no mitigation measures are required.

The SJVAPCD addresses odor criteria within the GAMAQI. The air district has not established a rule or standard regarding odor emissions; rather, the district has a nuisance rule, Rule 4102, which states: "Any project with the potential to frequently expose members of the public to objectionable odors should be deemed to have a significant impact." The proposed uses are not anticipated to emit any objectionable odors. The gas station could release localized odors; however, all the gasoline dispensers would be equipped with vapor recovery systems. In addition, such odors in general would be confined mainly to the Project site and would readily dissipate. Therefore, objectionable odors affecting a substantial number of people would not occur as a result of the Project and resulting impacts are considered *less than significant*.

Mitigation Measures: None are required.

4.4 Biological Resources

Would	the project:	Potentially Significant Impact	Less than Significant with Mitigation Incorporated	Less than Significant Impact	No Impact
a)	Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Game or U.S. Fish and Wildlife Service?				
b)	Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, regulations, or by the California Department of Fish and Game or U.S. Fish and Wildlife Service?			\boxtimes	
c)	Have a substantial adverse effect on state or federally protected wetlands (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means?				
d)	Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites?				
e)	Conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance?				
f)	Conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan?			\boxtimes	

4.4.1 Environmental Setting

The proposed Project site is located in a portion of the central San Joaquin Valley that has, for decades, experienced intensive agricultural and urban disturbances. Current agricultural endeavors in the region include dairies, groves, and row crops.

Like most of California, the Central San Joaquin Valley experiences a Mediterranean climate. Warm dry summers are followed by cool moist winters. Summer temperatures usually exceed 90 degrees Fahrenheit, and the relative humidity is generally very low. Winter temperatures rarely raise much above 70 degrees Fahrenheit, with daytime highs often below 60 degrees Fahrenheit. Annual precipitation within the proposed Project site is about 10 inches, almost 85% of which falls between the months of October and March. Nearly all precipitation falls in the form of rain and storm-water readily infiltrates the soils of the surrounding the sites.

Native plant and animal species once abundant in the region have become locally extirpated or have experienced large reductions in their populations due to conversion of upland, riparian, and aquatic habitats to agricultural and urban uses. Remaining native habitats are particularly valuable to native wildlife species including special status species that still persist in the region.

The site primarily consists of an irrigated and maintained almond orchard. The site was bordered by rural residential development and ruderal vegetation to the north and east, ruderal vegetation and an orchard to the south, and a railroad and State Route 99 to the west.

A Biological Resource Evaluation (BRE) report was prepared on behalf of the Project by Colibri Ecological Consulting, LLC. in February of 2024. The following impact analysis directly references this report. The BRE report can be found in its entirety in Appendix B.

4.4.2 Impact Assessment

Would the project have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Game or U.S. Fish and Wildlife Service?

Less Than Significant Impact with Mitigation. The proposed Project includes development of 168 single-family residences on an approximately 29-acre site, including associated roads, landscaping, and lighting, as well as a detention basin and park. The site is primarily planted with an established almond orchard.

As part of the BRE report, a USFWS species list was included for the Project which identified 10 species listed as threatened, endangered, or proposed for listing under the FESA. None of those species could occur on or near the Project site due to the lack of habitat or because the Project site is outside the known range of the species. As stated in the species list, the Project site occurs outside any proposed or designated USFWS critical habitat.

Additionally, a query of California Natural Diversity Database records of special-status species from the Madera 7.5-minute USGS topographic quadrangle and the eight surrounding quadrangles produced 219 records of 35 species. Of those 35 species, 7 were not considered further because they are not CEQA-recognized as special status species by state or federal regulatory agencies or public interest groups or are considered extirpated in California. Of the remaining 28 species, 10 are known from within 5 miles of the Project site. Of those species, only the state listed as threatened Swainson's hawk (*Buteo swainsoni*) could occur on or near the Project site. None of the other species identified in the nine-quad search could occur on or near the Project site.

Searching the CNPS inventory of rare and endangered plants of California yielded 17 species, 16 of which have a CRPR of 1 or 2 and four of which are also state or federally listed. Of those 16 plant species, none could occur on or near the Project site due to the lack of habitat.

A reconnaissance survey was performed for the project site; a total of 25 plant species (four native and 21 nonnative), 15 bird species, and two mammal species were observed during the survey. No direct evidence of special-status animal or plant species were observed and the site currently provides little or no value to sensitive plants. Conversion of habitat in the Project vicinity to almond orchards has altered or eliminated habitat for these

species in the Project vicinity. However, the Project could adversely affect, either directly or through habitat modifications, one special-status animal species that occurs or may occur on or near the Project site. Construction activities such as excavating, trenching, or using other heavy equipment that disturbs or harms a special-status species or substantially modifies its habitat could constitute a significant impact. Mitigation Measure BIO1 (below) will be included in the conditions of approval to reduce the potential impacts to *less than significant* levels.

Mitigation Measures:

BIO-1: Protect nesting Swainson's hawks

- 1. To the extent practicable, construction shall be scheduled to avoid the Swainson's hawk nesting season, which extends from March through August.
- 2. If it is not possible to schedule construction between September and February, a qualified biologist shall conduct surveys for Swainson's hawk in accordance with the Swainson's Hawk Technical Advisory Committee's Recommended Timing and Methodology for Swainson's Hawk Nesting Surveys in California's Central Valley (SWTAC 2000, Appendix D). These methods require six surveys, three in each of the two survey periods, prior to project initiation. Surveys shall be conducted within a minimum 0.5-mile radius around the Project site.
- 3. If an active Swainson's hawk nest is found within 0.5 miles of the Project site, and the qualified biologist determines that Project activities would disrupt the nesting birds, a construction-free buffer or limited operating period shall be implemented in consultation with the CDFW.
- b) Would the project have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, regulations, or by the California Department of Fish and Wildlife or U.S. Fish and Wildlife Service?

Less Than Significant Impact. The City's General Plan does not identify riparian or other sensitive natural community within the Project area. Additionally, the Project site has been previously disturbed and is currently active with an irrigated and maintained almond orchard. As such, any impacts would be *less than significant*.

Mitigation Measures: None are required.

c) Would the project have a substantial adverse effect on state or federally protected wetlands (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means?

Less Than Significant Impact There are no state or federally protected wetlands on the Project site. According to the BRE report, there are no vernal pools on the property to provide habitat for vernal pool associated species including vernal pool fairy shrimp or hairy Orcutt grass, or other naturally occurring aquatic habitats that could provide reproductive habitat for California tiger salamander or western spadefoot toad. Wetland species are considered absent from the site due to isolation from occupied habitat and the quality of habitat on the project site. As such, any impacts would be *less than significant*.

Mitigation Measures: None are required.

d) Would the project interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites?

Less than Significant Impact with Mitigation. There are no waterways on the proposed site and the area consists of an irrigated and maintained almond orchard. Wildlife species observed directly on the Project site consisted mostly of common bird species, as well as desert cottontail rabbit and California ground squirrel. No additional vertebrate wildlife species or signs of current or prior nesting by raptor species were found within one quarter mile of the Project site. The presence of adjacent suburban developments and the presence of trees further reduces the sites suitability for burrowing owls.

The Project has the potential to impede the use of nursery sites for native birds protected under the MBTA and CFGC. Bird species that may nest on or near the property include, but are not limited to, California scrub-jay (Aphelocoma californica) and house finch (Haemorhous mexicanus). Large trees within 0.5 miles of the Project site could provide nesting substrates for raptors, including Swainson's hawk. Construction disturbance during the breeding season could result in the incidental loss of fertile eggs or nestlings or otherwise lead to nest abandonment. Disturbance that causes nest abandonment or loss of reproductive effort can be considered a take under the MBTA and CFGC. Loss of fertile eggs or nesting birds, or any activities resulting in nest abandonment, could constitute a significant effect if the species is particularly rare in the region. Construction activities such as excavating, trenching, and grading that disturb a nesting bird in the Project site or immediately adjacent to the construction zone could constitute a significant effect. Mitigation measure BIO2 (below) will be included in the conditions of approval to reduce the potential effect to a *less than significant* level.

Mitigation Measure:

BIO-2: Protect nesting birds.

- 1. To the extent practicable, construction shall be scheduled to avoid the nesting season, which extends from February through August.
- 2. If it is not possible to schedule construction between September and January, pre-construction surveys for nesting birds shall be conducted by a qualified biologist to ensure that no active nests will be disturbed during the implementation of the Project. A pre-construction survey shall be conducted no more than 14 days prior to the initiation of construction activities. During this survey, the qualified biologist shall inspect all potential nest substrates in and immediately adjacent to the impact areas. If an active nest is found close enough to the construction area to be disturbed by these activities, the qualified biologist shall determine the extent of a construction-free buffer to be established around the nest. If work cannot proceed without disturbing the nesting birds, work may need to be halted or redirected to other areas until nesting and fledging are completed or the nest has otherwise failed for non-construction related reasons.
- e) Would the project conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance?

Less than Significant Impact. The City of Madera's General Plan includes various policies for the protection of biological resources. The proposed Project would not conflict with any of the adopted policies and any impacts would be considered *less than significant*.

Mitigation Measures: None are required.

f) Would the project conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan?

Less than Significant Impact. There are no local, regional, or state conservation plans that apply to the Project. As such, any impacts would be *less than significant*.

Mitigation Measures: None are required.

4.5 Cultural Resources

Would	the project:	Potentially Significant Impact	Less than Significant with Mitigation Incorporated	Less than Significant Impact	No Impact
a)	Cause a substantial adverse change in the significance of a historical resource pursuant to in §15064.5?				
b)	Cause a substantial adverse change in the significance of an archaeological resource pursuant to §15064.5?				
c)	Disturb any human remains, including those interred outside of formal cemeteries?				

4.5.1 Environmental Setting

Archaeological resources are places where human activity has measurably altered the earth or left deposits of physical remains. Archaeological resources may be either prehistoric (before the introduction of writing in a particular area) or historic (after the introduction of writing). The majority of such places in this region are associated with either Native American or Euroamerican occupation of the area. The most frequently encountered prehistoric and early historic Native American archaeological sites are village settlements with residential areas and sometimes cemeteries; temporary camps where food and raw materials were collected; smaller, briefly occupied sites where tools were manufactured or repaired; and special-use areas like caves, rock shelters, and sites of rock art. Historic archaeological sites may include foundations or features such as privies, corrals, and trash dumps.

The tribes which inhabited the Madera area generally lived a subsistence life-style that included hunting, fishing and collection of plant resources, particularly acorns. Some of these early inhabitants built a variety of structures including residential dwellings, ceremonial structures, and semi-subterranean sweat lodges. A common dwelling was a thatched house covered by brush, grass or tules.

A variety of flaked and ground stone tools (e.g., knives, arrow and spear points, and rough cobble and shaped pestles) were common among Native Americans in the area. Obsidian was a highly valued material for tool manufacture, and was generally imported. Some local tribes also engaged in trading relationships with surrounding groups for commodities such as salt, marine shells and basketry.

Euroamerican contact with Native American groups living in the Central Valley of California began during the last half of the 18th century. At this time, the attention of Spanish missionaries shifted away from the coast, and its dwindling Native American population, to the missionization of interior populations of Native Americans. The efforts of the Spanish to missionize the Native American population began a history of destructive Euroamerican interactions with Native Americans that eventually lead to the loss of traditional Native American culture.

The proposed Project site has been highly disturbed for many years with residential and/or agricultural uses in varying portions of the site. A Phase I Cultural Resource Study was performed on behalf of the Project by Hudlow Cultural Resource Associates in March 2024. The following impact analysis references this report, which can be found in it's entirety in Appendix C.

4.5.2 Impact Assessment

a) Would the project cause a substantial adverse change in the significance of a historical resource pursuant to in §15064.5?

Less than Significant Impact with Mitigation. A record search of the Project area and the environs within one half-mile was conducted at the Southern San Joaquin Valley Information Center. Scott M. Hudlow conducted the record search, RS# 24-069, on February 12, 2024. The record search revealed that eleven cultural resource surveys have been conducted within one half-mile of the Project area. No surveys have previously addressed the parcel in question. One cultural resource, the Madera Canal, is located within one half-mile of the current Project area (Appendix C). No cultural resources have previously identified within the current Project area.

Subsurface construction activities associated with the proposed Project could potentially damage or destroy previously undiscovered historic resources. This is considered a potentially significant impact; however, implementation of Mitigation Measure CUL-1 will ensure that significant impacts remain *less than significant with mitigation incorporation.*

Mitigation Measures:

CUL-1 The following measures shall be implemented:

- Before initiation of construction or ground-disturbing activities associated with the Project, the City shall require all construction personnel to be alerted to the possibility of buried cultural resources, including historic, archeological and paleontological resources;
- The general contractor and its supervisory staff shall be responsible for monitoring the construction Project for disturbance of cultural resources; and
- If a potentially significant historical, archaeological, or paleontological resource, such as structural features, unusual amounts of bone or shell, artifacts, human remains, or architectural remains or trash deposits are encountered during subsurface construction activities (i.e., trenching, grading), all construction activities within a 100-foot radius of the identified potential resource shall cease until a qualified archaeologist evaluates the item for its significance and records the item on the appropriate State Department of Parks and Recreation (DPR) forms. The archaeologist shall determine whether the item requires further study. If, after the qualified archaeologist conducts appropriate technical analyses, the item is determined to be significant under California Environmental Quality Act, the archaeologist shall recommend feasible mitigation measures, which may include avoidance, preservation in place or other appropriate measure, as outlined in Public Resources Code section 21083.2. City of Madera shall implement said measures.
- b) Would the project cause a substantial adverse change in the significance of an archaeological resource pursuant to §15064.5?

Less than Significant Impact with Mitigation. The possibility exists that subsurface construction activities may encounter undiscovered archaeological resources. This would be a potentially significant impact. Implementation of Mitigation Measure CUL-1 would require inadvertently discovery practices to be implemented should previously undiscovered archeological resources be located. As such, impacts to undiscovered archeological resources would be *less than significant with mitigation incorporation*.

c) Would the project disturb any human remains, including those interred outside of formal cemeteries?

Less than Significant Impact. Although unlikely given the highly disturbed nature of the site and the records search did not indicate the presence of such resources, subsurface construction activities associated with the proposed Project could potentially disturb previously undiscovered human burial sites. Accordingly, this is a potentially significant impact. The California Health and Safety Code Section 7050.5 states that if human remains are discovered on-site, no further disturbance shall occur until the County Coroner has made a determination of origin and disposition. If the Coroner determines that the remains are not subject to his or her authority and if the Coroner recognizes the human remains to be those of a Native American, or has reason to believe that they are those of a Native American, he or she shall contact, by telephone within 24 hours, the NAHC. The NAHC shall identify the person or persons it believes to be the "most likely descendant" (MLD) of the deceased Native American. The MLD may make recommendations to the landowner or the person responsible for the excavation work, for means of treating or disposing of, with appropriate dignity, the human remains and any associated grave goods as provided in Public Resource Code Section 5097.98.

Although considered unlikely subsurface construction activities could cause a potentially significant impact to previously undiscovered human burial sites, however compliance with regulations would reduce this impact to *less than significant*.

Mitigation Measures: None are required.

4.6 Energy

Would	the project:	Potentially Significant Impact	Less than Significant with Mitigation Incorporated	Less than Significant Impact	No Impact
a)	Result in potentially significant environmental impact due to wasteful, inefficient, or unnecessary consumption of energy resources, during project construction or operation?			\boxtimes	
b)	Conflict with or obstruct a state or local plan for renewable energy or energy efficiency?				

4.6.1 Environmental Setting

California's total energy consumption was the second-highest in the nation in 2020, but its per capita energy consumption was less than in all but three other states. In 2022, California was the fourth-largest electricity producer in the nation. The state was also the nation's third-largest electricity consumer. In 2022, renewable resources, including hydroelectric power and small-scale, customer-sited solar power, accounted for 49% of California's in-state electricity generation. Natural gas fueled another 42%. Nuclear power supplied almost all the rest.⁴

Energy usage is typically quantified using the British Thermal Unit (BTU). As a point of reference, the approximately amounts of energy contained in common energy sources are as follows⁵:

Energy Source/Fuel	BTUs
Motor Gasoline	120,214 per gallon
Natural Gas	1,036 per cubic foot
Electricity	3,412 per kilowatt-hour

California energy consumption in 2021 was approximately 6,784.8 trillion BTU, as provided in Table 4-2.6 This represents an approximately 2.4% decrease from energy consumption in 2020.

⁴ California Profile Overview, U.S. Energy Information Administration. https://www.eia.gov/state/?sid=CA. Accessed November 2024.

⁵ U.S. Energy Information Administration. Energy Units and Calculators Explained. https://www.eia.gov/energyexplained/units-and-calculators/british-thermal-units.php. Accessed November 2024.

⁶ California Profile Overview, U.S. Energy Information Administration. https://www.eia.gov/state/?sid=CA#tabs-2. Accessed November 2024.

Table 4-5
2021 California Energy Consumption

End User	BTU of energy consumed (in trillions)	Percentage of total consumption
Residential	1,228.5	18.2
Commercial	1,156.8	17.1
Industrial	1,597.5	23.6
Transportation	2,802	41.2
Total	6,784.8	

Total electrical consumption by Madera County in 2022 was 1808.23 GWh⁷, while total gas consumption was 48.54 million Therms.⁸

The California Department of Transportation (Caltrans) reports that approximately 35.66 million vehicles were registered in the state in 2022, while in 2021 a total estimated 310.9 billion annual vehicle miles were traveled (VMT).⁹

4.6.2 Impact Assessment

An Air Quality, Energy, and Greenhouse Gas Technical Memorandum (AQ Memo) was prepared for the proposed Project by LSA and is the basis for the impact analysis below. The AQ Memo is provided as Appendix A to this Initial Study.

a) Would the project result in potentially significant environmental impact due to wasteful, inefficient, or unnecessary consumption of energy resources, during project construction or operation?

Less Than Significant Impact. The following describes the potential impacts regarding energy resources that could result from implementation of the proposed project.

Construction Energy Use

Construction of the proposed Project is anticipated to begin in late 2025 and be completed in 27 months, ending in 2027. Construction-specific phases were assessed for their energy consumption under each construction subphase: grading, site preparation, building construction, paving, and architectural coating activities.

⁷ California Energy Commission. Electricity Consumption by County. http://ecdms.energy.ca.gov/elecbycounty.aspx. Accessed November 2024.

⁸ California Energy Commission. Gas Consumption by County. http://ecdms.energy.ca.gov/gasbycounty.aspx. Accessed November 2024.

⁹ Caltrans Fact Booklet. June 2023. California Department of Transportation. https://dot.ca.gov/-/media/dot-media/programs/research-innovation-system-information/documents/caltrans-fact-booklets/caltransfacts2023a11y.pdf. Accessed November 2024.

Construction would require energy for the manufacture and transportation of construction materials, preparation of the site for grading and building activities, and construction of the building. All or most of this energy would be derived from nonrenewable resources. Petroleum fuels (e.g., diesel and gasoline) would be the primary sources of energy for these activities. However, construction activities are not anticipated to result in an inefficient use of energy as gasoline and diesel fuel would be supplied by construction contractors who would conserve the use of their supplies to minimize their costs on the project. Energy (i.e., fuel) usage on the project site during construction would be temporary in nature and would be relatively small in comparison to the State's available energy sources.

Operational Energy Use

Operational energy use is typically associated with electricity consumption and fuel used for vehicle trips associated with a Project. The proposed Project would not utilize natural gas, and no natural gas demand is anticipated during operation of the proposed project. In addition, the proposed Project would include solar energy that would offset electricity consumption by approximately 80 percent.

Furthermore, proposed Project would also result in energy usage associated with gasoline and diesel fuel consumed by Project-related vehicle and truck trips. Fuel use associated with vehicle and truck trips generated by the proposed Project was calculated based on the project's Traffic Impact Analysis, which identifies that the proposed project would generate approximately 1,585 average daily trips. The amount of operational fuel use was estimated using CARB's EMFAC2021 model, which provided projections for typical daily fuel usage in Madera County.

Table 4-6 shows the estimated potential increased electricity, gasoline, and diesel demand associated with the proposed Project. The electricity rates are from the CalEEMod analysis, while the gasoline and diesel rates are based on the traffic analysis in conjunction with USDOT fuel efficiency data, the USEPA's fuel economy estimates for 2020, and the California diesel fuel economy estimates for 2021.

Table 4-6 Estimated Annual Energy Use of Proposed Project

	Electricity Use	Natural Gas Use (kBTU	Gasoline (gallons	Diesel (gallons
	(kWh per year)	per year)	per year)	per year)
Proposed Project	314,045 ¹	0.0	101,089	82,133

Source: Compiled by LSA (October 2024).

1 – electricity estimates account for the 80 percent offset by solar kBTU = thousand

British thermal units kWh = kilowatt hours

As shown in Table 4-6, the estimated potential increase in electricity demand associated with the operation of the proposed Project is 314,045 kWh per year. Total electricity consumption in Madera County in 2022 was 1,808,229,048 kWh. Therefore, operation of the proposed Project would increase the annual electricity consumption in Madera County by approximately 0.02 percent. Electrical demand associated with project operations would not be considered inefficient, wasteful, or unnecessary in comparison to other similar developments in the region. Furthermore, the proposed Project would not conflict with or obstruct a State or local plan for renewable energy or energy efficiency. The Project would be required to adhere to all federal, State, and local requirements for energy efficiency, including the Title 24 standards. Title 24 building energy efficiency standards establish minimum efficiency standards related to various building features, including appliances, water

and space heating and cooling equipment, building insulation and roofing, and lighting, which would reduce energy usage. The expected energy consumption during construction and operation of the proposed Project would be consistent with typical usage rates for residential uses; however, energy consumption is largely a function of personal choice and the physical structure and layout of buildings. Additionally, the proposed Project will include solar panels that would offset approximately 80 percent of the electricity consumption. The proposed Project would also include an EV charging station for each home. As such, the proposed Project would include energy conservation features.

As shown in Table 4-6, fuel use associated with the vehicle trips generated by the proposed Project is estimated at 300,082.0 gallons of gasoline and 607,954.6 gallons of diesel fuel per year. This analysis conservatively assumes that all vehicle trips generated as a result of project operation would be new to Madera County. Based on fuel consumption obtained from EMFAC2021, approximately 70.2 million gallons of gasoline and approximately 35.5 million gallons of diesel will be consumed from vehicle trips in Madera County in 2027. Therefore, vehicle and truck trips associated with the proposed project would increase the annual fuel use in Madera County by approximately 0.1 percent for gasoline fuel usage and approximately 0.2 percent for diesel fuel usage. The proposed project would result in fuel usage that is a small fraction of current annual fuel use in Madera County. Fuel consumption associated with vehicle trips generated by project operations would not be considered inefficient, wasteful, or unnecessary in comparison to other similar developments in the region. Therefore, fuel consumption would not be inefficient, wasteful, or unnecessary.

PG&E is the private utility that would supply the proposed project's electricity. In 2021, a total of 50 percent of PG&E's delivered electricity came from renewable sources, including solar, wind, geothermal, small hydroelectric, and various forms of bioenergy.37 PG&E reached California's 2020 renewable energy goal in 2017 and is positioned to meet the State's 60 percent by 2030 renewable energy mandate set forth in SB 100. In addition, PG&E plans to continue to provide reliable service to its customers and upgrade its distribution systems as necessary to meet future demand. As such, the proposed Project would not result in a potential significant impact due to wasteful, inefficient, or unnecessary consumption of energy resources during project construction or operation. Impacts are *less than significant*.

Mitigation Measures: None are required.

b) Would the project conflict with or obstruct a state or local plan for renewable energy or energy efficiency?

Less Than Significant Impact. The CEC recently adopted the 2023 Integrated Energy Policy Report.38 The 2023 Integrated Energy Policy Report provides the results of the CEC's assessments of a variety of energy issues facing California. Many of these issues will require action if the State is to meet its climate, energy, air quality, and other environmental goals while maintaining energy reliability and controlling costs. The 2023 Integrated Energy Policy Report covers a broad range of topics, including decarbonizing buildings, integrating renewables, energy efficiency, energy equity, integrating renewable energy, updates on Southern California electricity reliability, climate adaptation activities for the energy sector, natural gas assessment, transportation energy demand forecasts, and the California Energy Demand Forecast.

As indicated above, energy usage on the Project site during construction would be temporary in nature and would be relatively small in comparison to the overall use in the County. In addition, energy usage associated with operation of the proposed Project would be relatively small in comparison to the overall use in Madera County, and the State's available energy resources. Therefore, energy impacts at the regional level would be negligible. Because California's energy conservation planning actions are conducted at a regional level, and because the proposed

project's total impact on regional energy supplies would be minor, the proposed project would not conflict with or obstruct California's energy conservation plans as described in the CEC's Integrated Energy Policy Report. As demonstrated above, the proposed Project would not result in the inefficient, wasteful, and unnecessary consumption of energy.

Additionally, as mentioned in the preceding section, the proposed Project will include solar panels that would offset approximately 80 percent of the electricity consumption. The proposed Project would also include an EV charging station for each home. As such, the proposed Project would include sustainable features that are aligned with the state goals for decarbonizing buildings and integrating renewable energy. Therefore, the proposed Project would not conflict with or obstruct California's energy conservation plans as described in the CEC's 2023 Integrated Energy Policy Report. Therefore, the proposed Project would not lead to new or substantially more severe energy impacts. As such, potential impacts related to conflict with or obstruction of a State or local plan for renewable energy or energy efficiency would be *less than significant*.

Mitigation Measures: None are required.

4.7 Geology and Soils

Would ti	he project:	Potentially Significant Impact	Less than Significant with Mitigation Incorporated	Less than Significant Impact	No Impact
	Directly or indirectly cause potential substantial adverse effects, including the risk of loss, injury, or death involving: i) Rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known fault? Refer to Division of Mines and Geology Special Publication 42.			\boxtimes	
i	ii) Strong seismic ground shaking?			\boxtimes	
i	iii) Seismic-related ground failure, including liquefaction?			\boxtimes	
i	iv) Landslides?			\boxtimes	
,	Result in substantial soil erosion or the loss of topsoil?				
:	Be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the project, and potentially result in on- or off-site landslide, lateral spreading, subsidence, liquefaction or collapse?				
-	Be located on expansive soil, as defined in Table 18-1-B of the Uniform Building Code (1994) creating substantial direct or indirect risks to life or property?				
:	Have soils incapable of adequately supporting the use of septic tanks or alternative wastewater disposal systems where sewers are not available for the disposal of wastewater?				
,	Directly or indirectly destroy a unique paleontological resource or site or unique geological feature?		\boxtimes		

4.7.1 Environmental Setting

The subject site is located in the central part of the San Joaquin Valley, which comprises the southern half of the Great Valley geomorphic province. The valley is a westward-titling trough which forms a broad alluvial fan, approximately 200 miles long and 50 to 70 miles wide, where the eastern flank is broad and gently inclined, as opposed to the western flank which is relatively narrow (Bartow, 1991; Page, 1968). The Central Valley consists of the Great Valley Sequence, overlain by Cenozoic alluvium. Underlying the Great Valley Sequence are the Franciscan Assemblage to the west and the Sierra Nevada batholith to the east (Bailey, Irwin, and Jones, 1964).

4.7.2 Impact Assessment

- Would the project directly or indirectly cause potential substantial adverse effects, including the risk of loss, injury, or death involving:
 - a-i) Rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known fault? Refer to Division of Mines and Geology Special Publication 42.
 - a-ii) Strong seismic ground shaking?
 - a-iii) Seismic-related ground failure, including liquefaction?
 - a-iv) Landslides?

Less than Significant Impact. The proposed Project site is not located within the boundaries of an Earthquake Fault Zone for fault rupture hazard as defined by the Alquist-Priolo Earthquake Fault Zoning Act and no faults are known to pass through or near the property. The nearest active earthquake fault zones (evidence of displacement within the past 11,700 years) are the San Andreas, San Joaquin, Ortigalita, Owens Valley, and Melones faults. Of these, the San Andreas and the Owens Valley faults are expected to be the sources of future major earthquakes. Of these five major fault zones, all are located over 50 miles from the City of Madera.

Seismic design parameters relative to the requirements of the 2022 California Building Code will be applicable to the proposed development.

The Seismic Hazard Zone Map (SCAG) does not indicate the Project site as being in a liquification or landslide zone. 10

The proposed Project site is located on relatively flat topography and is not located adjacent to any steep slopes or areas that would otherwise be subject to landslides. There are no cut or fill slopes that currently exist or are planned at the proposed Project site. In addition, there are no natural or manmade slopes in the vicinity of the site; therefore, the potential for landslides is negligible. The impact is *less than significant*.

Mitigation Measures: None are required.

b) Would the project result in substantial soil erosion or the loss of topsoil?

March 2025 37

_

¹⁰ Seismic Hazard Zone Map, Southern California Association of Governments. https://hub.scag.ca.gov/datasets/a6a8e69a09534ec7be2328b42aa8fd3d 0/explore?location=35.485264%2C-120.242955%2C6.40. Accessed October 2024.

Less than Significant Impact. According to the Custom Soil Report for Madera Area, California, the Project site is composed of five different soil types; Borden loam (0 to 1 percent slopes), Greenfield fine sandy loam (0 to 3 percent slopes), Pachappa fine sandy loam (0 to 3 percent slopes), San Joaquin sandy loam (0 to 3 percent slopes, MLRA 17) and Tujunga loamy sand (0 to 3 percent slopes). The primary soil type, Greenfield fine sandy loam, is characterized by being well-drained, with a low ability for water storage.

The Project site has a generally flat topography, is in a growing urban area surrounded by agricultural land, rural residences, and vacant/disturbed land. Runoff from the Project site during the construction period will be covered by the General Construction permit issued by the State of California Water Resources Control Board; the Contractor will be required to install and maintain all necessary Best Management Practices (BMPs) for stormwater runoff management and erosion control. Therefore, the impact is *less than significant*.

Mitigation Measures: None are required.

c) Would the project be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the project, and potentially result in on- or off-site landslide, lateral spreading, subsidence, liquefaction or collapse?

Less Than Significant Impact. As mentioned above, the Seismic Hazard Zone Map (SCAG) does not indicate the Project site as being in a liquification or landslide zone. In addition, there are no liquefaction hazard zones near the site according to the Fresno County General Plan. Based on USDA Custom Soil Report for the Project site, the site does not indicate any unusual ground conditions that would entail special design considerations or construction procedures.

Lastly, the site is not identified in an area of large historic subsidence within the California Central Valley. The soil on site would not become unstable as a result of the Project or result in on or off-site landslide, lateral spreading, subsidence, liquefaction or collapse. See also responses a. and b. There is a *less than significant impact*.

Mitigation Measures: None are required.

d) Would the project be located on expansive soil, as defined in Table 18-1-B of the Uniform Building Code (1994), creating substantial direct or indirect risks to life or property?

Less than Significant Impact. According to the Custom Soil Report for Madera Area, California, the Project site is composed of five different soil types; Borden loam (0 to 1 percent slopes), Greenfield fine sandy loam (0 to 3 percent slopes), Pachappa fine sandy loam (0 to 3 percent slopes), San Joaquin sandy loam (0 to 3 percent slopes, MLRA 17) and Tujunga loamy sand (0 to 3 percent slopes). The primary soil type, Greenfield fine sandy loam, is characterized by being well-drained, with a low ability for water storage, which would indicate it is unlikely to expand. The impact is *less than significant*.

Mitigation Measures: None are required.

e) Would the project have soils incapable of adequately supporting the use of septic tanks or alternative wastewater disposal systems where sewers are not available for the disposal of wastewater?

March 2025 38

_

¹¹ USDA Natural Resources Conservation Service. Custom Soil Resource Report for Madera Area, California.

No Impact. A detention basin is proposed for development within site. No industrial wastewater exists on the site and there are no wastewater treatment facilities located on or near the site. No features associated with a septic system were observed on the site as well. The proposed Project development will tie into the City's existing wastewater system and will not require installation of a septic tank or alternate wastewater disposal system. There is *no impact*.

Mitigation Measures: None are required.

f) Directly or indirectly destroy a unique paleontological resource or site or unique geological feature?

Less than Significant Impact with Mitigation. There are no unique geological features or known fossil-bearing sediments in the vicinity of the proposed Project site. However, there remains the possibility for previously unknown, buried paleontological resources or unique geological sites to be uncovered during subsurface construction activities. Therefore, this would be a potentially significant impact. Mitigation is proposed requiring standard inadvertent discovery procedures to be implemented to reduce this impact to a level of *less than significant with mitigation incorporation*.

Mitigation Measures:

CUL-2

City of Madera will incorporate into the construction contract(s) a provision that in the event a fossil or fossil formations are discovered during any subsurface construction activities for the proposed Project (i.e., trenching, grading), all excavations within 100 feet of the find shall be temporarily halted until the find is examined by a qualified paleontologist, in accordance with Society of Vertebrate Paleontology standards. The paleontologist shall notify the appropriate representative at City of Madera, who shall coordinate with the paleontologist as to any necessary investigation of the find. If the find is determined to be significant under CEQA, the City shall implement those measures, which may include avoidance, preservation in place, or other appropriate measures, as outlined in Public Resources Code section 21083.2.

4.8 Greenhouse Gas Emissions

Would	the project:	Potentially Significant Impact	Less than Significant with Mitigation Incorporated	Less than Significant Impact	No Impact
a)	Generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment?			\boxtimes	
b)	Conflict with an applicable plan, policy or regulation adopted for the purpose of reducing the emissions of greenhouse gases?				

4.8.1 Environmental Setting

Various gases in the earth's atmosphere play an important role in moderating the earth's surface temperature. Solar radiation enters earth's atmosphere from space and a portion of the radiation is absorbed by the earth's surface. The earth emits this radiation back toward space, but the properties of the radiation change from high-frequency solar radiation to lower-frequency infrared radiation. GHGs are transparent to solar radiation, but are effective in absorbing infrared radiation. Consequently, radiation that would otherwise escape back into space is retained, resulting in a warming of the earth's atmosphere. This phenomenon is known as the greenhouse effect. Scientific research to date indicates that some of the observed climate change is a result of increased GHG emissions associated with human activity.

Among the GHGs contributing to the greenhouse effect are water vapor, carbon dioxide (CO2), methane (CH4), ozone, Nitrous Oxide (NOx), and chlorofluorocarbons. Human-caused emissions of these GHGs in excess of natural ambient concentrations are considered responsible for enhancing the greenhouse effect. GHG emissions contributing to global climate change are attributable, in large part, to human activities associated with the industrial/manufacturing, utility, transportation, residential, and agricultural sectors.

In California, the transportation sector is the largest emitter of GHGs, followed by electricity generation. Global climate change is, indeed, a global issue. GHGs are global pollutants, unlike criteria pollutants and TACs (which are pollutants of regional and/or local concern). Global climate change, if it occurs, could potentially affect water resources in California. Rising temperatures could be anticipated to result in sea-level rise (as polar ice caps melt) and possibly change the timing and amount of precipitation, which could alter water quality. According to some, climate change could result in more extreme weather patterns; both heavier precipitation that could lead to flooding, as well as more extended drought periods. There is uncertainty regarding the timing, magnitude, and nature of the potential changes to water resources as a result of climate change; however, several trends are evident.

Snowpack and snowmelt may also be affected by climate change. Much of California's precipitation falls as snow in the Sierra Nevada and southern Cascades, and snowpack represents approximately 35 percent of the state's useable annual water supply. The snowmelt typically occurs from April through July; it provides natural water flow to streams and reservoirs after the annual rainy season has ended. As air temperatures increase due to climate change, the water stored in California's snowpack could be affected by increasing temperatures resulting in: (1) decreased snowfall, and (2) earlier snowmelt.

City of Madera adopted a Climate Action Plan (CAP) in September 2015, which is a long-range plan to reduce greenhouse gas (GHG) emissions from City government (municipal) and community-wide activities within the City of Madera and prepare for the anticipated effects of climate change.¹²

4.8.2 Impact Assessment

An Air Quality, Energy, and Greenhouse Gas Technical Memorandum (AQ Memo) was prepared for the proposed Project by LSA and is the basis for the impact analysis below. The AQ Memo is provided as Appendix A to this Initial Study.

a) Would the project generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment?

Less Than Significant Impact. The following sections describe the proposed Project's construction- and operation-related GHG impacts and consistency with applicable GHG reduction plans.

Construction Greenhouse Gas Emissions

Construction activities associated with the proposed Project would produce combustion emissions from various sources. During construction, GHGs would be emitted through the operation of construction equipment and from worker and builder supply vendor vehicles, each of which typically use fossil-based fuels to operate. The combustion of fossilbased fuels creates GHGs such as CO2, CH4, and N2O. Furthermore, CH4 is emitted during the fueling of heavy equipment. Exhaust emissions from on-site construction activities would vary daily as construction activity levels change.

The SJVAPCD does not have an adopted threshold of significance for construction-related GHG emissions. However, lead agencies are encouraged to quantify and disclose GHG emissions that would occur during construction. Using CalEEMod, it is estimated that construction of the proposed Project would generate approximately 905.9 metric tons (MT) CO2e. Construction GHG emissions were amortized over the life of the project (assumed to be 30 years) and added to the operational emissions. When annualized over the life of the Project, amortized construction emissions would be approximately 30.2 MT CO2e per year.

Operational Greenhouse Gas Emissions

Long-term GHG emissions are typically generated from mobile sources (e.g., vehicle and truck trips), area sources (e.g., maintenance activities and landscaping), indirect emissions from sources associated with energy consumption, waste sources (land filling and waste disposal), and water sources (water supply and conveyance, treatment, and distribution). Mobile-source GHG emissions would include Project-generated vehicle trips to and from the Project. Area-source emissions would be associated with activities such as landscaping and maintenance on the Project site. Energy source emissions would be generated at off-site utility providers as a result of increased electricity demand generated by the Project. Waste source emissions generated by the proposed Project include energy generated by land filling and other methods of disposal related to transporting and managing Project

March 2025 41

-

¹² City of Madera Climate action Plan. September 2015. https://www.cityofmadera.ca.gov/wp-content/uploads/2017/08/Final-Madera-CAP September 2015.pdf. Accessed March 2024.

generated waste. In addition, water source emissions associated with the proposed Project are generated by water supply and conveyance, water treatment, water distribution, and wastewater treatment.

Following guidance from the SJVAPCD, GHG emissions for operation of the Project were calculated using CalEEMod. Based on the analysis results, summarized in Table 4-7, the proposed Project would result in emissions of approximately 1,352.0 MT CO2e per year. These estimated emissions are provided for informational purposes, and the significance of proposed Project is further analyzed below.

Table 4-7 Greenhouse Gas Emissions

	Operational Emissions (MT/yr)				
Emission Type	CO ₂	CH ₄	N ₂ O	CO₂e	Percentage of Total
Mobile Source	1,167.0	0.1	0.1	1,191.4	90
Area Source	36.0	0.2	<0.1	40.0	3
Energy Source	29.1	<0.1	<0.1	29.3	2
Water Source	4.3	0.2	<0.1	11.5	1
Waste Source	14.2	1.4	0.0	49.6	4
Total Operational Emissions				1,321.8	100.0
Amortized Construction Emissions			30.2	_	
Total Annual Emissions			1,352.0	_	

Source: Compiled by LSA (October 2024). CH₄ = methane

CO₂ = carbon dioxide

CO₂e = carbon dioxide equivalent GHG = greenhouse gas

 MT/CO_2e = metric tons of carbon dioxide equivalent MT/yr = metric tons per year N_2O = nitrous oxide

As discussed, the SJVAPCD has not established a numeric threshold for GHG emissions. The significance of GHG emissions may be evaluated based on locally adopted quantitative thresholds or consistency with a regional GHG reduction plan (e.g., a CAP). Therefore, consistent with the State CEQA Guidelines, Section 15183.5, if a project is consistent with an adopted qualified Greenhouse Gas Reduction Strategy, it can be presumed that the project would not have significant GHG emission impacts. However, the City's CAP does not address State goals related to achieving carbon neutrality by 2045 (as recently codified in AB 1279).

In the absence of any City or SJVAPCD specific guidelines or thresholds, this analysis evaluates the proposed Project for consistency with the BAAQMD Justification Report,39 which identifies project design elements as the applicable thresholds of significance. If a project is designed and built to incorporate design elements related to natural gas, energy, VMT, and EVs, then it would contribute its portion of what is necessary to achieve California's long-term climate goals—its "fair share"—and an agency reviewing the project under CEQA can conclude that the project would not make a cumulatively considerable contribution to global climate change.

Per the significance thresholds described above, a less than significant GHG impact would occur if the Project were consistent with the identified design standards. Natural Gas Usage. According to the Justification Report, a less than significant GHG impact would occur if the project does not include natural gas appliances or natural gas plumbing. The proposed Project would not include natural gas. Therefore, the proposed Project would be consistent with this design element.

Energy Usage

Under this design criterion, the project must not result in any wasteful, inefficient, or unnecessary energy usage as determined by the analysis required under CEQA Section 21100(b)(3) and Section 15126.2(b) of the State CEQA Guidelines. Energy use consumed by the proposed Project would be associated with electricity consumption associated with the project. Energy consumption was estimated for the Project using default energy intensities by land use type in the CalEEMod output, which is included in Attachment B of Appendix A.

As shown in Table 4-7 above, the estimated potential increase in electricity demand associated with the operation of the proposed Project is 314,045 kilowatt-hours (kWh) per year. Total electricity consumption in Madera County in 2022 was 1,808,229,048 kWh. Therefore, operation of the proposed Project would increase the annual electricity consumption in Madera County by approximately 0.02 percent.

In addition, the proposed Project would be constructed to current Title 24 standards, which would require energy-saving building features. As such, based on this analysis, as required under CEQA Section 21100(b)(3) and Section 15126.2(b) of the State CEQA Guidelines, the proposed Project would not result in the wasteful, inefficient, or unnecessary consumption of fuel or energy and would incorporate renewable energy and energy efficiency measures into the building design, equipment use, and transportation. As such, the proposed Project would be consistent with this design element.

Vehicle Miles Traveled

As discussed above, development that does not result in a net increase in existing VMT would be considered to have a less than significant GHG emissions impact from transportation sources or should meet a locally adopted SB 743 VMT target. A VMT analysis was not required for the proposed Project; therefore, it is not expected that the proposed project would have a significant VMT impact. Further, the proposed project would provide infill development in an underused area and would be located near established residential neighborhoods. In addition, the proposed Project would include complete streets and a 1.22-acre park that would encourage people to use non-motorized modes of transportation by providing appropriate amenities that are local serving while connecting to existing uses. Furthermore, the proposed Project is also located near transit stops (within a 1-mile radius), which would help reduce VMT and single vehicle use. The proposed project would be designed to support alternative modes of transportation by including an EV charging station for each home. As such, the proposed Project is not expected to significantly increase VMT in the Project area. Therefore, the proposed Project would be consistent with this Project design element.

Electric Vehicle Requirements

The final project design element that the proposed Project should include to ensure that it is achieving its "fair share" of GHG emission reductions is compliance with off-street EV requirements in the most recently adopted version of the CALGreen Code Tier 2 measures. The proposed Project would include an EV charging station for each home, consistent with CALGreen Tier 2 standards. Therefore, the proposed Project would be consistent with this design element.

The proposed Project would be consistent with the project design elements related to natural gas, energy, VMT, and EVs. Therefore, the proposed project would be consistent with the GHG emission thresholds identified for this project. As such, the proposed Project would not result in the generation of GHG emissions that would have a significant impact on the environment. Impacts are *less than significant*.

b) Would the project conflict with an applicable plan, policy or regulation adopted for the purpose of reducing the emissions of greenhouse gases?

Less Than Significant Impact. The following discussion evaluates the proposed project consistency with the goals of the City's CAP, the 2022 Scoping Plan, and Madera's MCTC RTP/SCS.

City of Madera Climate Action Plan (CAP). As described above, the City of Madera adopted its CAP in December of 2015.40 The CAP provides a strategy for reducing GHG emissions. It includes objectives and policies from the proposed General Plan that addressed long-term emissions reduction efforts. The timeframe for the CAP extends from the date of adoption through the year 2030. The CAP reduction targets are based on AB 32, Executive Order S-3-05, and Executive Order B- 30-15. The State has since adopted updated emission targets for 2030 and additional 2045 (codified by AB 1279); therefore, additional reductions would be required. However, in order to evaluate the proposed project consistency with the CAP, the City has developed the CAP Consistency Worksheet (Appendix E of the CAP). The worksheet is designed to help the City determine if a project is consistent with the CAP but does not define which measures would need to be implemented for the consistency determination, as requirements may vary by project type. The project consistency with the CAP measures is shown in Table 4-8 below.

Table 4-8 Project Consistency with the City of Madera Climate Action Plan

Measure Name	Project Actions	Project Compliance (Yes/No/NA)	Description/Details*
E-2 Energy Efficient New Construction	Is the project consistent with applicable policies of the Conservation Element of the General Plan?	Yes	Applicable policies of the conservation Element of the General Plan state that projects should aim to reduce dust during construction/demolition activities to the extent feasible (Policy CON-30) and should increase tree coverage to reduce the heat island effect (Policy CON-31). Additionally, all development should be designed to be energy-efficient (Policy CON-40) and development should include green building practices in all projects (Policy CON-44). In addition, development should be The proposed project is consistent with the applicable polices of the Conservation Element of the General Plan. The proposed Project would be required to comply with SJVAPCD Regulation VIII to reduce fugitive dust emission and would include a 1.22- acre park and a 4.3-acre retention basin, thus increasing tree coverage for the project site. In addition, the proposed Project would comply with the 2022

Measure Name	Project Actions	Project Compliance (Yes/No/NA)	Description/Details*
			CALGreen standards regarding energy conservation and green building standards. The proposed Project would also include solar panels and an EV charging station for each home. Therefore, the proposed Project would be consistent with the applicable general plan policies under the Conservation Element.
	Does the project exceed Title 24 Energy Efficiency Building Standards, meet the state's Green Building Standards voluntary tier levels, or is LEED Greenpoint, or ENERGY STAR rated?	Yes	The proposed project would comply with the 2022 CALGreen standards regarding energy conservation and green building standards. The proposed Project would also include solar panels and an EV charging station for each home. Therefore, the proposed Project would be consistent with this action.
E-3 On-Site Small- Scale Renewable Energy	Does the project include solar PV systems or solar hot water heaters?	Yes	The proposed Project would be designed to include solar panels that would offset approximately 80 percent of the electricity consumption. Therefore, the proposed Project would be consistent with the action.
T-1 Infill and Mixed-Use Development	Is the project consistent with the land use designation(s) shown on the General Plan Land Use Map and with the applicable polies of the Land Use Element of the General Plan policies?	Yes	Applicable policies of the Land Use Element of the General Plan state that new residential development should incorporate amenities which establish a sense of identity at the project or neighborhood level, create opportunities for community interaction, and enhance the visual appeal of the area (Policy LU-20) and single-family developments need to provide functional outdoor recreational space (Policy LU-22). The proposed project would include a 1.22 acre park that would provide recreational activities to residents, increasing community interaction and enhancing the neighborhood area. In

Measure Name	Project Actions	Project Compliance (Yes/No/NA)	Description/Details*
			addition, the General Plan Land Use Map designates the proposed project as Medium Density Residential (MD) area. As such, the proposed Project would be consistent with the general plan land use designation and relevant policies from the Land Use
	Is the project consistent with the Madera County Blueprint?	Yes	As described above, the proposed Project would include a 1.22 acre park that would provide recreational activities to residents, increasing community interaction and enhancing the neighborhood area. In addition, the General Plan Land Use Map designates the proposed Project as Medium Density Residential (MD) area. As such, the proposed Project would be consistent with the general plan land use designation and relevant policies from the Land Use Element.
	Does the project include mixed- use, higher density (22.5 to 50 units per acre), or infill development?	N/A	The proposed project would not include mixed-use development nor high-density housing. However, the proposed project would provide infill development in an underused area and would be located near established residential neighborhoods.
	Is the project located within 1/4 mile of transit stops or in existing community centers/downtown?	No	The proposed Project would not be located close to an existing community center or downtown. The proposed project would also not be located within a ¼ mile of a transit stop. However, existing transit stops are located within 1-mile radius. In addition, the proposed project would include recreational opportunities through the proposed 1.22-acre park which will minimize vehicle trips and promote multimodal transportation

Measure Name	Project Actions	Project Compliance (Yes/No/NA)	Description/Details*
			opportunities, including pedestrian pathways. The proposed Project would also include an EV charging stations per home, encouraging alternative modes of transportation.
T-2 Bicycle and Pedestrian Environment	Is the project consistent with applicable policies of the Community Design and Circulation Elements of the General Plan?	Yes	Applicable policies of the Community Design Element and the Circulation Element of the General Plan relate to designing new development to be walkable pedestrian- and bicycle-oriented development. The proposed Project would fulfill the policies of the Madera General Plan Circulation Element and the City's CAP by allowing residents to live within proximity to residential neighborhoods. The proposed Project would also include recreational opportunities through the proposed 1.22-acre park which will minimize vehicle trips and promote multimodal transportation opportunities, including pedestrian pathways. The proposed Project would also include an EV charging stations per home and would be located within 1-mile radius to bus transit stops, encouraging alternative modes of transportation.
	Is the project consistent with the Bicycle Master Plan?	Yes	The proposed Project would include off-site improvements that would provide complete streets and sidewalks that would facilitate the use of bicycles in the area. In addition, the proposed Project would provide recreational opportunities and would increase connectivity with the surrounding land uses and transit networks, including larger on-street bicycle networks.
	Does the project meet minimum design criteria	Yes	As mentioned above, the proposed Project would include offsite improvements that would provide complete streets and sidewalks that

Measure Name	Project Actions	Project Compliance (Yes/No/NA)	Description/Details*
	for bicycle and pedestrian circulation?		would facilitate the use of bicycles in the area. In addition, the proposed Project would provide recreational opportunities and would increase connectivity with the surrounding land uses and transit networks, including larger onstreet bicycle networks
	Does the project provide adequate and secure bicycle parking?	N/A	The proposed Project involves the development of 168 family units and associated site improvements. As such, the proposed Project would not provide public parking or bicycle parking.
T-3 Transit Travel	Is the project consistent with applicable policies of the Circulation and Community Development Elements of the General Plan?	Yes	Applicable policies of the Community Design Element and the Circulation Element of the General Plan relate to planning and accommodating for transit travel (Policy CI-28, Policy CI-30, Policy CI-31, Policy CI-41, Policy CI-50, Policy H-5.3, and Policy CD-59). As mentioned above, the proposed Project would also include recreational opportunities through the proposed 1.22- acre park which will minimize vehicle trips and promote multimodal transportation opportunities, including pedestrian pathways. The proposed Project would also include an EV charging stations per home and would be located within 1-mile radius to bus transit stops, encouraging alternative modes of transportation.
	Does the project provide safe routes to adjacent transit stops, where applicable?	Yes	The proposed Project would include off-site improvements that would include complete streets and sidewalks allowing for connectivity with the surrounding land uses. In addition, the proposed Project would be located within 1-mile radius from bus transit stops and would therefore

Measure Name	Project Actions	Project Compliance (Yes/No/NA)	Description/Details*
			connect to road networks that provide transit use.
	Does the project finance and/or construct bus turnouts and shelters where transit demand warrants such improvements?	N/A	The proposed Project involves the development of 168 single family units and associated site improvements. Thus, it would not include the construction of bus turnouts and shelters.
	Does the project provide public transit vouchers to its employees?	N/A	The proposed Project involves the development of 168 single family units and associated site improvements. As such, the proposed Project would not include land uses that would provide employment.
T-4 Commute Trip Reduction	Is the project consistent with applicable policies of the Community Development Element of the General Plan?	Yes	Applicable policies of the Community Design Element and the Circulation Element of the General Plan aim to provide parking for alternative modes of transportation (Policy CD-59) and encourage the use of ridesharing (Policy CI-37). The proposed Project would include an EV charging stations per home and would be located within 1-mile radius to bus transit stops, encouraging alternative modes of transportation. In addition, the proposed Project would be located in close proximity to existing residential neighborhoods which would increase the potential for ridesharing.
	Does the project include and/or promote TDM programs?	N/A	The proposed project would not be including a transportation demand program (TDM). A VMT analysis was not required for the proposed project; therefore, it is not expected that the proposed project would have a significant VMT impact. Further, the proposed project would provide infill development in an underused area and would be located near

Measure Name	Project Actions	Project Compliance (Yes/No/NA)	Description/Details*
			established residential neighborhoods. In addition, the proposed project would include complete streets and a 1.22-acre park that would encourage people to use non-motorized modes of transportation by providing appropriate amenities that are local serving while connecting to existing uses. Furthermore, the proposed Project is also located near transit stops (within a 1- mile radius), which would help reduce VMT and single vehicle use. The proposed Project would also be designed to support alternative modes of transportation by including an EV charging station for each home.
T-5 Traffic Flow and Vehicle Idling	Does the project include measures to improve traffic flow?	Yes	It is not yet known the type of calming measures that the proposed Project would implement. However, appropriate traffic calming measures, such as narrower traffic lanes, traffic signs, etc., should be provided to help reduce traffic speeds, promote attentive driving and increase yield to pedestrians.
T-6 Low Carbon Fuel Vehicles and	Is the project consistent with applicable policies of the Community Development Element of the General Plan?	Yes	Applicable policies of the Community Design Element of the General Plan aim to provide parking for alternative modes of transportation (Policy CD- 59). The proposed Project would not include public parking structures. However, the prosed Project would include an EV charging station per home.
Infrastructure	Is the project consistent with the San Joaquin Valley Plug-in Electric Vehicle (PEV) Readiness	Yes	The proposed project would include an EV charging station per home, consistent with CalGreen Tier 2 requirements for residential development.

Measure Name	Project Actions	Project Compliance (Yes/No/NA)	Description/Details*
	Plan?		
	Does the project include alternative fueling stations or EV charging stations?	Yes	As mentioned above, the proposed project would include an EV charging station per home, consistent with CalGreen Tier 2 requirements for residential development.
T-7 Construction and Off-Road Equipment	Would construction of the project use alternatively fueled construction vehicles/equipment (i.e., repowered engines, electric drive trains, CARB- approved low carbon fuel, electrically- powered)?	No	The proposed Project would utilize a minimum of Tier 2 or better construction equipment engines as recommended by CARB. As described in the Energy Impacts Section, construction contractors would be encouraged to conserve the use of their supplies to minimize their costs on the project. In addition, energy (i.e., fuel) usage on the Project site during construction would be temporary in nature and would be relatively small in comparison to the State's available energy sources.
	Would the project include low-maintenance native landscaping or xeriscaping?	Yes	The proposed Project would include a 1.22-acre park. The project would be required to comply with the California Model Water Efficient Landscape Ordinance which includes ordinances for low maintenance drought tolerant landscape and irrigation requirements.
W-1 Exceed SB X7-7 Water Conservation Target	Does the project incorporate water efficiency and water conservation measures?	Yes	The Project would be required to comply with the 2022 CALGreen standards, which include a variety of different measures, including reduction of wastewater and water use. In addition, the proposed Project would also be required to comply with the California Model Water Efficient Landscape Ordinance
W-2 Recycled	Is the project consistent with	Yes	Applicable policies of the Conservation Element of the General

Measure Name	Project Actions	Project Compliance (Yes/No/NA)	Description/Details*
Water	applicable policies of the Conservation Element of the General Plan?		Plan support the use of reclaimed water (Policy CI-54, Policy CON-5, and Policy CON-6), implement strategies to ensure longterm sustainability of water supply (Policy CON-2), and encourage the use of gray water systems and other water reuse methods (Policy CON-7). The proposed project is consistent with these policies and would strive for water efficiency in accordance with the 2022 CALGreen standard measures for water efficiency.
	Does the project incorporate recycled/reclaimed water?	N/A	As mentioned above, the proposed Project would be required to comply with the 2022 CALGreen standards, which include a variety of different measures, including reduction of wastewater and water use. The proposed project would also be required to comply with the California Model Water Efficient Landscape Ordinance. In addition, the proposed Project would include a retention basin for reclaimed water.
U-1 Trees and Vegetation	Is the project consistent with applicable policies of the Community Design Element of the General Plan?	Yes	Applicable policies of the Community Design Element of the General Plan support the planning of street trees (Policy CD-26, Policy CD-43), encourage landscaping to reduce the urban heat island effect (Policy CON-10, Policy Con-31, Policy CD-4), and establish landscape and façade maintenance programs (Policy CD-7). The proposed Project would include landscape area and a 1.22- acre park and would therefore be consistent with these policies
	Does the project include the planting of new trees or new acres of vegetated land?	Yes	As mentioned above, the proposed Project would include a 1.22-acre park and landscape area. Therefore, the proposed Project would be

Measure Name	Project Actions	Project Compliance (Yes/No/NA)	Description/Details*
			consistent with this measure.

As shown in Table 4-8, the proposed Project would generally be consistent with the applicable Project actions from the City's CAP Consistency Checklist. The proposed Project would also be supporting and implementing the General Plan objectives and policies. Therefore, the proposed Project is consistent with and would not conflict with or obstruct the implementation of the City's CAP.

2022 Scoping Plan

EO B-30-15 added the immediate target of reducing GHG emissions to 40 percent below 1990 levels by 2030. SB 32 affirms the importance of addressing climate change by codifying into statute the GHG emissions reduction target of at least 40 percent below 1990 levels by 2030 contained in EO B-30-15. CARB released the 2017 Scoping Plan to reflect the 2030 target set by EO B-30-15 and codified by SB 32.41 SB 32 builds on AB 32 and keeps us on the path toward achieving the State's 2050 objective of reducing emissions to 80 percent below 1990 levels. AB 197, the companion bill to SB 32, provides additional direction to CARB that is related to the adoption of strategies to reduce GHG emissions. Additional direction in AB 197 that is intended to provide easier public access to air emission data collected by CARB was posted in December 2016. AB 1279 codifies the State goals of achieving net carbon neutrality by 2045 and maintaining net negative GHG emissions thereafter.

In addition, the 2022 Scoping Plan42 assesses progress toward the statutory 2030 target while laying out a path to achieving carbon neutrality no later than 2045. The 2022 Scoping Plan focuses on outcomes needed to achieve carbon neutrality by assessing paths for clean technology, energy deployment, natural and working lands, and others, and is designed to meet the State's long-term climate objectives and support a range of economic, environmental, energy security, environmental justice, and public health priorities.

The 2022 Scoping Plan focuses on building clean energy production and distribution infrastructure for a carbon-neutral future, including transitioning existing energy production and transmission infrastructure to produce zero-carbon electricity and hydrogen, and utilizing biogas resulting from wildfire management or landfill and dairy operations, among other substitutes. The 2022 Scoping Plan states that in almost all sectors, electrification will play an important role. The 2022 Scoping Plan evaluates clean energy and technology options and the transition away from fossil fuels, including adding four times the solar and wind capacity by 2045 and about 1,700 times the amount of current hydrogen supply. As discussed in the 2022 Scoping Plan, EO N-79-20 requires that all new passenger vehicles sold in California be zero-emission by 2035 and that all other fleets transition to zero-emission as fully as possible by 2045, which will reduce the percentage of fossil fuel combustion vehicles.

Energy-efficient measures are intended to maximize energy-efficiency building and appliance standards, pursue additional efficiency efforts including new technologies and new policy and implementation mechanisms, and pursue comparable investment in energy efficiency from all retail providers of electricity in California. In addition, these measures are designed to expand the use of green building practices to reduce the carbon footprint of California's new and existing inventory of buildings. As mentioned above, the proposed Project would not be powered by natural gas, and no natural gas demand is anticipated during construction or operation of the proposed project. The elimination of natural gas in new development would help projects implement their "fair share" of achieving long-term 2045 carbon neutrality consistent with State goals. As such, if a project does not utilize natural gas, a lead agency can conclude that it would be consistent with achieving the 2045 neutrality goal and will not have a cumulative

considerable impact on climate change.43 In addition, the proposed Project would comply with the 2022 CALGreen standards regarding energy conservation and green building standards. The proposed Project would also include solar panels and an EV charging station for each home. As such, the proposed Project would include sustainable features that are aligned with the state goals for decarbonizing buildings and integrating renewable energy.

- Water conservation and efficiency measures are intended to continue efficiency programs and use cleaner energy sources to move and treat water. Increasing the efficiency of water transport and reducing water use would reduce GHG emissions. As noted above, the project would be required to comply with the 2022 CALGreen standards, which include a variety of different measures, including reduction of wastewater and water use. In addition, the proposed project would be required to comply with the California Model Water Efficient Landscape Ordinance. Therefore, the proposed Project would not conflict with any of the water conservation and efficiency measures.
- The goal of transportation and motor vehicle measures is to develop regional GHG emission reduction targets for passenger vehicles. Specific regional emission targets for transportation emissions would not directly apply to the proposed project. However, vehicles traveling to the project site would comply with the Pavley II (LEV III) Advanced Clean Cars Program. The second phase of Pavley standards will reduce GHG emissions from new cars by 34 percent from 2016 levels by 2025, resulting in a 3 percent decrease in average vehicle emissions for all vehicles by 2020. Therefore, the proposed Project would not conflict with the identified transportation and motor vehicle measures.

Madera MCTC's 2022 RTP/SCS

The MCTC 2022 RTP/SCS44 reflects transportation planning for Madera County through 2046. The vision, goals, and policies in the 2022 RTP are intended to serve as the foundation for both short and long-term planning and guide implementation activities. The core vision in the 2022 RTP is to create a region of diverse, safe, resilient, and accessible transportation options that improve the quality of life for all residents by fostering sustainability, equity, a vibrant economy, clean air, and healthy communities. The 2022 RTP contains transportation projects to help more efficiently distribute population, housing, and employment growth, as well as forecast development that is generally consistent with regional-level general plan data. The actions in the 2022 RTP address all transportation modes (e.g., highways, local streets and roads, mass transportation, rail, bicycle, and aviation facilities and services) and consists of short and long-term activities that address regional transportation needs. While the actions are organized by the five key policy areas, many of them support multiple goals and policies. Some actions are intended to support the SCS and reduce GHG emissions directly, while others are focused on the RTP's broader goals. The 2022 RTP does not require that local General Plans, Specific Plans, or zoning be consistent with the 2022 RTP, but provides incentives for consistency for governments and developers.

The proposed Project would not interfere with the MCTC ability to achieve the region's GHG reductions. Furthermore, the proposed project is not regionally significant per *State CEQA Guidelines* Section 15206, and it would not conflict with the 2022 RTP targets because those targets were established and are applicable on a regional level. The proposed Project would include 168 single family housing units and associated site improvements. Based on the City's General Plan, the average household size within the City is approximately 3.6 persons per household. Therefore, the proposed Project has the potential to increase population by approximately 662 persons. The RTP is based on a projected population in the Madera region in 2046 of 1.35 million people and associated employment. Therefore, the proposed Project is within the forecasted population growth for the region. As such, the proposed Project land uses would be consistent with the growth assumptions used in the 2022 RTP. Therefore, it is anticipated that implementation of the proposed Project would not interfere with MCTC's ability to implement the regional strategies outlined in the 2022 RTP.

The proposed Project would comply with existing State regulations adopted to achieve the overall GHG emissions reduction goals identified in the 2022 RTP and would be consistent with applicable State plans and programs

designed to reduce GHG emissions. Therefore, the proposed project would not conflict with an applicable plan, policy or regulation adopted for the purpose of reducing GHG emissions. Impacts are *less than significant*.

Mitigation Measures: None are required.

4.9 Hazards and Hazardous Materials

Would	the project:	Potentially Significant Impact	Less than Significant with Mitigation Incorporated	Less than Significant Impact	No Impact
a)	Create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials?				
b)	Create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment?				
c)	Emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school?				
d)	Be located on a site which is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5 and, as a result, would it create a significant hazard to the public or the environment?				
e)	For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project result in a safety hazard or excessive noise for people residing or working in the project area?				\boxtimes
f)	Impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan?				
g)	Expose people or structures, either directly or indirectly to a significant risk of loss, injury or death involving wildland fires?				\boxtimes

4.9.1 Environmental Setting

The proposed Project site is located in the southeastern part of the City of Madera, in a mix of urban and rural area, surrounded by residential housing, vacant/disturbed land and agricultural land further south. Single-family residences exist to the east, north and further northwest of the site, with vacant land and roads located to the south. Vacant/disturbed land also exists to the north, with roadways, vacant land, a railroad and a park to the west. The site can be characterized as agricultural land, active with almond orchards.

The site is approximately 0.5 miles northeast of Parkwood Elementary School, 0.9 miles northwest of Cesar Chavez School and 1.0 mile southeast of Sierra Vista Elementary. The Project site is approximately 4.9 miles southeast of the Madera Municipal Airport. Fresno-Yosemite International Airport is the closest regional airport to the proposed Project site, approximately 20 miles southeast.

4.9.2 Impact Assessment

- a) Would the project create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials?
- b) Would the project create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment?

Less than Significant Impact. This impact is associated with hazards caused by the routine transport, use, or disposal of hazardous materials or through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment. Proposed Project construction activities may involve the use and transport of hazardous materials. These materials may include fuels, oils, mechanical fluids, and other chemicals used during construction. Transportation, storage, use, and disposal of hazardous materials during construction activities would be required to comply with applicable federal, state, and local statutes and regulations. Compliance would ensure that human health and the environment are not exposed to hazardous materials. In addition, the Project would be required to comply with the National Pollutant Discharge Elimination System (NPDES) permit program through the submission and implementation of a Stormwater Pollution Prevention Plan during construction activities to prevent contaminated runoff from leaving the Project site. Therefore, no significant impacts would occur during construction activities.

It is anticipated that the proposed Project would not be a large-quantity user of hazardous materials. Residential land uses do not routinely transport, use, or dispose of hazardous materials, or present a reasonably foreseeable release of hazardous materials. Small quantities of hazardous materials would be used onsite, including cleaning solvents (e.g., degreasers, paint thinners, and aerosol propellants), paints (both latex- and oil-based), acids and bases (such as many cleaners), disinfectants, and fertilizers. The potential risks posed by the use and storage of these hazardous materials are primarily limited to the immediate vicinity of the materials. As such, these materials are not expected to expose human health or the environment to undue risks associated with their use.

Any accumulated hazardous construction or operational wastes will be collected and transported away from the site in compliance with all federal, state and local regulations. The proposed residences are not a typical source of hazardous materials, thus it wouldn't create a significant hazard to the public involving release of hazardous materials. Therefore, the proposed Project will not create a significant hazard to the public or the environment and any impacts would be *less than significant*.

Mitigation Measures: None are required.

c) Would the project emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school?

Less than Significant Impact. The site is approximately 0.5 miles northeast of Parkwood Elementary School, 0.9 miles northwest of Cesar Chavez School and 1.0 mile southeast of Sierra Vista Elementary. There are no schools located within one-quarter mile of the Project site. Additionally, as the proposed Project includes the development of single-family residences, it is not reasonably foreseeable that the proposed Project will cause a significant impact by emitting hazardous waste or bringing hazardous materials near a proposed or existing school. Residential land uses do not generate, store, or dispose of significant quantities of hazardous materials. Such uses also do not normally involve dangerous activities that could expose persons onsite or in the surrounding areas to large quantities of hazardous materials. See also Responses IX(a) and IX(b) regarding hazardous material handling. The impact is *less than significant*.

Mitigation Measures: None are required.

d) Would the project be located on a site which is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5 and, as a result, would it create a significant hazard to the public or the environment?

Less Than Significant Impact. The proposed project site is not located on a list of hazardous materials sites complied pursuant to Government Code Section 65962.5 (Geotracker¹³ and Envirostor¹⁴ databases – accessed in October 2024). There are no hazardous materials sites in the vicinity that impact the project. As such, any impacts would remain *less than significant*.

Mitigation Measures: None are required.

e) For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project result in a safety hazard or excessive noise for people residing or working in the project area?

No Impact. The Project site is approximately 4.9 miles southeast of the Madera Municipal Airport. Fresno-Yosemite International Airport is the closest regional airport to the proposed Project site, approximately 20 miles southeast. The proposed Project is outside any safety zone or noise contour. There are no private airstrips in the Project vicinity and as such, there is *no impact*.

Mitigation Measures: None are required.

f) Would the project impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan?

Less Than Significant Impact. The proposed Project involves construction of a residential subdivision. Construction activities will be temporary in nature and will not cause any road closures that could interfere with any adopted emergency response or evacuation plan. The construction contractor will be required to work with the City and

March 2025 57

¹³ California State Water Resources Control Board, GeoTracker Database. https://geotracker.waterboards.ca.gov/map/?CMD=runreport&myaddress=Madera. Accessed October 2024.

¹⁴ Department of Toxic Substances Control, EnviroStor Database. https://www.envirostor.dtsc.ca.gov/public/map/. Accessed October 2024.

County (public works, police/fire, etc.) if and when roadway diversions are required to ensure that adequate access is maintained for residents and emergency vehicles. As such, there will be *less than significant impacts*.

Mitigation Measures: None are required.

g) Would the project expose people or structures, either directly or indirectly, to a significant risk of loss, injury or death involving wildland fires?

No Impact. The proposed Project site is surrounded by rural residential development and active agriculture. There are no wildlands on or near the Project site. The site is substantially surrounded by urban development and vacant/disturbed land uses. There is *no impact*.

Mitigation Measures: None are required.

4.10 Hydrology and Water Quality

Would	the project:	Potentially Significant Impact	Less than Significant with Mitigation Incorporated	Less than Significant Impact	No Impact
a)	Violate any water quality standards or waste discharge requirements or otherwise substantially degrade surface or ground water quality?				
b)	Substantially decrease groundwater supplies or interfere substantially with groundwater recharge such that the project may impede sustainable groundwater management of the basin?				
c)	Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river or through the addition of impervious surfaces, in a manner which would: i) result in substantial erosion or siltation				
	on- or off-site; ii) substantially increase the rate or amount of surface runoff in a manner which would result in flooding on- or off-site;				
	iii) create or contribute runoff water which would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff; or			\boxtimes	
	iv) impede or redirect flood flows?			\boxtimes	
d)	In flood hazard, tsunami, or seiche zones, risk release of pollutants due to project inundation?			\boxtimes	
e)	Conflict with or obstruct implementation of a water quality control plan or sustainable groundwater management plan?				

4.10.1 Environmental Setting

The City of Madera provides domestic water to the Project site through a network of groundwater wells and pumps and water distribution system. The sole source of water supply for the City of Madera is the Madera sub-basin of the San Joaquin Valley Groundwater Basin. The quality of the water from the aquifer is considered to be of good quality and does not require additional treatment at this time.

4.10.2 Impact Assessment

a) Would the project violate any water quality standards or waste discharge requirements or otherwise substantially degrade surface or ground water quality?

Less than Significant Impact. The proposed Project includes development of 168 single-family residential units, including access streets, lighting, landscaping, and other site improvements, as well as a detention basin and park, on an approximately 29-acre site.

Construction

Although the proposed Project site is relatively small in scale, grading, excavation and loading activities associated with construction activities could temporarily increase runoff, erosion, and sedimentation. Construction activities also could result in soil compaction and wind erosion effects that could adversely affect soils and reduce the revegetation potential at construction sites and staging areas.

Three general sources of potential short-term construction-related stormwater pollution associated with the proposed Project are: 1) the handling, storage, and disposal of construction materials containing pollutants; 2) the maintenance and operation of construction equipment; and 3) earth moving activities which, when not controlled, may generate soil erosion and transportation, via storm runoff or mechanical equipment. Generally, routine safety precautions for handling and storing construction materials may effectively mitigate the potential pollution of stormwater by these materials. These same types of common sense, "good housekeeping" procedures can be extended to non-hazardous stormwater pollutants such as sawdust and other solid wastes.

Poorly maintained vehicles and heavy equipment leaking fuel, oil, antifreeze, or other fluids on the construction site are also common sources of stormwater pollution and soil contamination. In addition, grading activities can greatly increase erosion processes. Two general strategies are recommended to prevent construction silt from entering local storm drains. First, erosion control procedures should be implemented for those areas that must be exposed. Secondly, the area should be secured to control offsite migration of pollutants. These Best Management Practices (BMPs) would be required in the Stormwater Pollution Prevention Plan (SWPPP) to be prepared prior to commencement of Project construction. When properly designed and implemented, these "good-housekeeping" practices are expected to reduce short-term construction-related impacts to less than significant.

In accordance with the National Pollution Discharge Elimination System (NPDES) Stormwater Program, the Project will be required to comply with existing regulatory requirements to prepare a SWPPP designed to control erosion and the loss of topsoil to the extent practicable using BMPs that the Regional Water Quality Control Board (RWQCB) has deemed effective in controlling erosion, sedimentation, runoff during construction activities. The specific controls are subject to the review and approval by the RWQCB and are an existing regulatory requirement.

Operation

The proposed Project will result in wastewater from residential units that will be discharged into the City's existing wastewater treatment system. The wastewater will be typical of other urban/residential developments consisting

of bathrooms, kitchen drains, and other similar features. The Project will not discharge any unusual or atypical wastewater.

Additionally, there will be no discharge to any surface or groundwater source. As such, the proposed Project will not violate any water quality standards and will not impact waste discharge requirements or otherwise substantially degrade surface or ground water quality. The impact will be *less than significant*.

Mitigation Measures: None are required.

b) Would the project substantially decrease groundwater supplies or interfere substantially with groundwater recharge such that the project may impede sustainable groundwater management of the basin?

Less than Significant Impact. The City of Madera provides domestic water to the Project site through a network of groundwater wells and pumps and water distribution system. The site has been planned for residential development in the General Plan and as such, has been accounted for in the City infrastructure planning documents. The Project does not include new physical disturbance beyond the proposed residential uses. Additionally, Project demands for groundwater resources would not substantially deplete groundwater supplies and/or otherwise interfere with groundwater recharge efforts being implemented by the City of Madera. Future demand can be met with continued groundwater pumping, surface water purchases and conservation measures. Impacts on groundwater supplies and groundwater recharge would be less than significant and would not impede sustainable groundwater management of the basin. As such, there is a less than significant impact to this impact area.

Mitigation Measures: None are required.

- c) Would the project substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river or through the addition of impervious surfaces, in a manner which would:
 - i) result in substantial erosion or siltation on- or off-site;
 - ii) substantially increase the rate or amount of surface runoff in a manner which would result in flooding on- or off-site;
 - iii) create or contribute runoff water which would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff; or
 - iv) impede or redirect flood flows?

Less Than Significant Impact. The Project site is currently comprised of an irrigated and maintained almond orchard. The proposed Project will change drainage patterns of the site through the installation of impervious surfaces and structures (houses, driveways, streets, etc.) and will be required by the City to be graded to facilitate proper stormwater drainage into the City stormwater system. Storm runoff from this Project shall be directed to the detention basin included in the Project site design, in the upper northwest corner of the site. Runoff volume calculations will be provided and the developer shall be required to excavate the basin to an amount equivalent to this Project impact on the basin.

Any flood flows created by the increase of impervious surface will be directed into the stormwater basin and will not create significant impacts. Storm water during construction will be managed as part of the Storm Water Pollution Prevention Plan (SWPPP). A copy of the SWPPP will be retained on-site during construction.

According to FIRM map number is 06039C1160E, effective 9/26/2008, the entire proposed Project site is located within FEMA Flood Zone "AH" (EL 269). Zone "AH" represents a Special Flood Hazard Area (SFHA) with a Base Flood Elevation of 269 feet. SFHA are defined as the area that will be inundated by the flood event having a 1-percent chance of being equaled or exceeded in any given year. The residential units will be built in accordance with the current California Building Code and all City of Madera Standards. Accordingly, the chance of flooding (and therefore the release of pollutants due to flooding) at the site is remote and impacts are considered *less than significant*.

Mitigation Measures: None are required.

d) Would the project in flood hazard, tsunami, or seiche zones, risk release of pollutants due to project inundations?

Less than Significant Impact. As discussed in Impact X(c), The proposed Project site is located in an area of minimal flood hazard. The site will be designed for adequate storm drainage as per City of Madera building standards and California Building Code and will thus be required to prepare and submit a water quality control plan to be implemented during construction, as required by the National Pollutant Discharge Elimination System (NDPES). This plan must be reviewed and approved by the City Engineer prior to the start of construction.

There are no inland water bodies that could be potentially susceptible to a seiche in the Project vicinity. This precludes the possibility of a seiche inundating the Project site. The Project site is more than 100 miles from the Pacific Ocean, a condition that precludes the possibility of inundation by tsunami. There are no steep slopes that would be susceptible to a mudflow in the Project vicinity, nor are there any volcanically active features that could produce a mudflow in the City of Madera. This precludes the possibility of a mudflow inundating the Project site.

Mitigation Measures: None are required.

e) Would the project conflict with or obstruct implementation of a water quality control plan or sustainable groundwater management plan?

Less than Significant Impact. The proposed Project would not compromise water quality control. Project implementation would require Statewide NPDES permits for construction runoff. Stormwater will be sent to the City stormdrain which is sent to retention basins, which serves to recharge groundwater and the City. This process would allow multi-generational use by returning water back in the aquifer which would ultimately help with the implementation of the sustainable groundwater management plan.

Any impacts are *less than significant*.

Mitigation Measures: None are required.

March 2025 62

_

¹⁵ National Flood Hazard Layer Viewer, Federal Emergency Management Agency. https://msc.fema.gov/portal/search?AddressQuery=road%2028%2C%20madera%20ca. Accessed October 2024.

4.11 Land Use and Planning

Would the pro	oject:	Potentially Significant Impact	Less than Significant with Mitigation Incorporated	Less than Significant Impact	No Impact
	cally divide an established nunity?				\boxtimes
due to policy purpo	a significant environmental impact o a conflict with any land use plan, , or regulation adopted for the se of avoiding or mitigating an onmental effect?				

4.11.1 Environmental Setting

The proposed site is located in the northern part of the City of Madera. Surrounding land uses consist of:

Direction	Existing Use
North	Vacant/disturbed land, rural residences
East	Rural residences
South	Vacant/disturbed land, roadways
West	Park, vacant/disturbed land, railroad, roadways

4.11.2 Impact Assessment

- a) Would the project physically divide an established community?
- b) Would the project cause a significant environmental conflict with any land use plan, policy, or regulation adopted for the purpose of avoiding or mitigating an environmental effect?

No Impact. The proposed Project site is located north and east of Road 28, and west of Robbins Lane in the near the eastern edge of the City limits of Madera, on APN 011-370-005. To accommodate the Project a Tentative Subdivision Map approval for the entire site will be needed. A majority of the site is currently occupied with irrigated and maintained almond orchards. The Project site is currently zoned and designated in the General Plan for residential uses by the City of Madera, such as the proposed Project. Therefore, construction and operation of the Project would be in compliance with the land use plan, policy or regulation and it would not cause any land use changes in the surrounding vicinity nor would it divide an established community. There is **no impact**.

Mitigation Measures: None are required.

4.12 Mineral Resources

Would	the project:	Potentially Significant Impact	Less than Significant with Mitigation Incorporated	Less than Significant Impact	No Impact
a)	Result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state?				
b)	Result in the loss of availability of a locally important mineral resource recovery site delineated on a local general plan, specific plan, or other land use plan?				

4.12.1 Environmental Setting

The California Geological Survey (CGS) is responsible for the classification and designation of areas within California containing or potentially containing significant mineral resources. The CGS classifies lands into Aggregate and Mineral Resource Zones (MRZs) based on guidelines adopted by the California State Mining and Geologic Board, as mandated by the Surface Mining and Reclamation Act of 1975. These MRZs identify whether known or inferred significant mineral resources are presented in areas. Lead agencies are required to incorporate identified MRZs resource areas delineated by the State into their general plans resource. According to the findings of the City General Plan Update EIR and the Department of Conservation Division of Mine Reclamation, the City does not contain any State or locally designated mineral resources

4.12.2 Impact Assessment

- a) Would the project result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state?
- b) Would the project result in the loss of availability of a locally important mineral resource recovery site delineated on a local general plan, specific plan, or other land use plan?

No Impact. According to the City of Madera General Plan, the proposed Project area is not included in a State classified mineral resource zones. Additionally, it is not delineated on a local general plan, specific plan, or other land use plan. Soil disturbance for the proposed Project would be limited site groundwork such as grading, foundations, and installation of infrastructure. Therefore, there is **no impact**.

Mitigation Measures: None are required.

4.13 Noise

Would	the project result in:	Potentially Significant Impact	Less than Significant with Mitigation Incorporated	Less than Significant Impact	No Impact
a)	Generation of a substantial temporary or permanent increase in ambient noise levels in the vicinity of the project in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies?			\boxtimes	
b)	Generation of excessive ground borne vibration or ground borne noise levels?				
c)	For a project located within the vicinity of a private airstrip or an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels?				

4.13.1 Environmental Setting

The proposed Project site is located north and east of Road 28, and west of Robbins Lane in the near the eastern edge of the City limits of Madera. Road 28, as well as Avenue 13, which runs east-west just south of the Project site, are considered arterial roadways. SR 99, located less than 500 feet from the Project site on the southwestern boundary, is a state highway. The Project site is exposed to traffic noise associated with vehicles along SR 99, Road 28, Avenue 28, and to a lesser extent Robbins Lane and S. Knox Road. The City's Circulation Element states that the 2030 projected noise contour for the section of Avenue 13 between SR 99 and Road 29 is 63.51 dBA CNEL. The Circulation Element further states that levels of 60-70 dBA are tentatively compatible for residential uses. Noise exposure may be of concern, but common building practices will make the indoor living environment acceptable. Noise levels associated with traffic on the aforementioned roadways are not considered to be a significant source of Project site noise exposure.

Table 4-9 provides the City of Madera noise level standards for transportation noise sources.

Table 4-9
Exterior Noise Compatibility Guidelines For Noise From All Sources, Including Transportation Noise
(24-Hour Day-Night Average [Cnel/Ldn])

Land Use Designations	Completely Compatible	Tentatively Compatible	Normally Incompatible	Completely Incompatible
All Residential (Single- and Multi-Family)	Less than 60 dBA	60-70 dBA	70-75 dBA	Greater than 75 dBA
All Commercial	Less than 70 dBA	70-75 dBA	Greater than 75 dBA	(1)
Public Parks (Lands designated as Open Space on which public parks are located or planned)	Less than 65 dBA	65-70 dBA	70-75 dBA	Greater than 75 dBA

4.13.2 Impact Assessment

a) Would the project result in generation of a substantial temporary or permanent increase in ambient noise levels in the vicinity of the project in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies?

Less than Significant Impacts.

Short-term (Construction) Noise Impacts

Proposed Project construction related activities will involve temporary noise sources. Typical construction related equipment includes graders, trenchers, small tractors and excavators. During the proposed Project construction, noise from construction related activities will contribute to the noise environment in the immediate vicinity. Table 4-10 indicates the anticipated noise levels of the typical construction-related equipment (i.e., graders, trenchers, tractors) based on a distance of 50-feet between the equipment and the sensitive noise receptor. ¹⁶

Table 4-10 Typical Construction Noise Levels

Equipment	Typical Noise Level (dBA) 50 ft from Source
Air Compressor	80
Backhoe	80
Compactor	82
Concrete Mixer	85
Dozer	85
Generator	82

The Noise and Vibration Impact Assessment Manual, Federal Transit Administration, U.S. Department of Transportation. September 2018. https://www.transit.dot.gov/sites/fta.dot.gov/files/docs/research-innovation/118131/transit-noise-and-vibration-impact-assessment-manual-fta-report-no-0123_0.pdf. Table 7-1. Accessed October 2024.

March 2025 66

_

Equipment	Typical Noise Level (dBA) 50 ft from Source
Grader	85
Jack Hammer	88
Loader	85
Paver	85
Truck	84

The distinction between short-term construction noise impacts and long-term operational noise impacts is a typical one in both CEQA documents and local noise ordinances, which generally recognize the reality that short-term noise from construction is inevitable and cannot be mitigated beyond a certain level. Thus, local agencies frequently tolerate short-term noise at levels that they would not accept for permanent noise sources. A more severe approach would be impractical and might preclude the kind of construction activities that are to be expected from time to time in urban environments. Most residents of urban areas recognize this reality and expect to hear construction activities on occasion.

Long-term (Operational) Noise Impacts

The primary source of on-going noise from the Project will be from vehicles traveling on internal access roads and from traffic traveling along Road 28. The Project will result in an increase in traffic on some roadways in the Project area. However, the relatively low number of new trips associated with the Project is not likely to increase the ambient noise levels by a significant amount. Given the amount of existing vehicular activity in the Project area, the moderate increase in traffic associated with the new residential development (1,584 average daily trips, Appendix D), is not expected to increase ambient noise levels significantly. The area is active with vehicles, residential housing, and agricultural land uses, so the proposed Project will not introduce a new significant source of noise that isn't already occurring in the area. Impacts are *less than significant*.

Mitigation Measures: None are required.

b) Would the project result in generation of excessive ground borne vibration or ground borne noise levels?

Less than Significant Impact.

Vibration Levels

Typical outdoor sources of perceptible ground borne vibration are construction equipment, steel-wheeled trains, and traffic on rough roads. Construction vibrations can be transient, random, or continuous. Construction associated with the proposed Project includes development of 168 single-family residences across a 29-acre site, along with associated internal access roads, street lighting, site landscaping and additional related improvements, including a detention basin and a park.

The approximate threshold of vibration perception is 65 VdB, while 85 VdB is the vibration acceptable only if there are an infrequent number of events per day. Table 4-11 describes the typical construction equipment vibration levels.¹⁷

¹⁷ Ibid.

Table 4-11 Typical Construction Vibration Levels

Equipment	VdB at 25 ft
Small Bulldozer	58
Jackhammer	79

Vibration from construction activities will be temporary and not exceed the Federal Transit Administration (FTA) threshold for the nearest residences which are located to the west and south of the Project site. Operations will be typical of a residential development and will not involve equipment that would generate substantial groundborne vibration of ground borne noise levels.

Therefore, the impact is considered *less than significant*.

Mitigation Measures: None are required.

c) For a project located within the vicinity of a private airstrip or an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels?

No Impact. The Project site is approximately 4.9 miles southeast of the Madera Municipal Airport. The Project is not located within an airport land use plan. Therefore, there is **no impact**.

4.14 Population and Housing

Would the project:	Potentially Significant Impact	Less than Significant with Mitigation Incorporated	Less than Significant Impact	No Impact
a) Induce substantial unplanned population growth in an area, either directly (for example, by proposing new homes and businesses) or indirectly (for example, through extension of roads or other infrastructure)?				
b) Displace substantial numbers of existing people or housing, necessitating the construction of replacement housing elsewhere?				

4.14.1 Environmental Setting

According to the most recent Department of Finance data, the City of Madera's population as of 1/1/2024 was 66,560. There were approximately 18,765 total housing units in the City, with approximately 3.60 persons per household.¹⁸

4.14.2 Impact Assessment

a) Would the project induce substantial unplanned population growth in an area, either directly (for example, by proposing new homes and businesses) or indirectly (for example, through extension of roads or other infrastructure)?

Less Than Significant Impact. According to the City's EIR, both the City of Madera and the Planning Area have experienced substantial population growth from 1990-2008¹⁹. City of Madera's population during the adoption of the General Plan in 2008 was 56,710²⁰, and the current population is 66,560. This represents an approximate increase of 17.37%. Estimates for 2024 shows that the City has 18,765 housing units with an average of 3.60 people per household.²¹ There are 168 new single-family homes associated with the proposed Project. The site would provide additional housing for approximately 662 people. This is a relatively small population gain and is not expected to affect any regional population, housing or employment projections anticipated by City documents.

Additionally, the site is designated as Residential by the City's General Plan and as such, the increase in population has been planned for. The proposed Project will alleviate some overcrowding in the regional population by

March 2025 69

.

Population and Housing Estimates for Cities, Counties, and the State, 2020-2023. California Department of Finance, May 2023. https://dof.ca.gov/forecasting/demographics/estimates/e-5-population-and-housing-estimates-for-cities-counties-and-the-state-2020-2024/.
Accessed October 2024.

 $^{^{19}}$ City of Madera General Plan Environmental Impact Report, May 2009. Page 7.0-2.

²⁰ Ibid.

²¹ Ibid.

contributing reliable housing, and will additionally provide temporary construction jobs to the local workforce. In conclusion, the Project implementation will not displace substantial numbers of people and instead provide needed housing. Any impacts are considered *less than significant*.

Mitigation Measures: None are required.

b) Would the project displace substantial numbers of existing people or housing, necessitating the construction of replacement housing elsewhere?

Less Than Significant Impact. The proposed site is currently comprised of an irrigated and maintained almond orchard. As noted earlier, the Project consists of development of 168 single-family residences along with associated site improvements. The Project is not anticipated to displace existing people or housing. Any impacts are considered *less than significant*.

Mitigation Measures: None are required.

4.15 Public Services

Would the project:	Potentially Significant Impact	Less than Significant with Mitigation Incorporated	Less than Significant Impact	No Impact
a) Result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times or other performance objectives for any of the public services:				
Fire protection?			\boxtimes	
Police protection?			\boxtimes	
Schools?			\boxtimes	
Parks?			\boxtimes	
Other public facilities?			\boxtimes	

4.15.1 Environmental Setting

The proposed Project is the construction and operation of 168 single-family residences on an approximately 29-acre site in the southeastern part of the City of Madera. The proposed Project site is located in a mix of urban and rural area, surrounded by residential housing, vacant/disturbed land and agricultural land further south. Single-family residences exist to the east, north and further northwest of the site, with vacant land, a railroad and roads located to the south. Vacant/disturbed land also exists to the north, with roadways, vacant land and a park to the west. The site can be characterized as agricultural land, active with almond orchards.

4.15.2 Impact Assessment

a) Would the project result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times or other performance objectives for any of the public services:

Fire Protection:

Less than Significant Impact. The Madera City Fire Department is administered by the California Department of Forestry and Fire Protection (CDF) pursuant to a cooperative fire protection agreement. Services include fire prevention and suppression, emergency medical assistance, rescue, public assistance, fire menace standby, safety inspections, and review of building plans for compliance with applicable codes and ordinances. According to the City's GP, there are two City fire stations, located at 317 North Lake and 200 South Schnoor, are staffed 24 hours a day. The Fire Department staffs two fire engines and one mini-pumper. One of the engines features a 50' tele-squirt aerial ladder. In addition to these stations, two County of Madera stations serve portions of the Planning Area. ²²

Upon approval, the Project site will be serviced by the Fire Department. The Project would be required to comply with all applicable fire and building safety codes (California Building Code and Uniform Fire Code) to ensure fire safety elements are incorporated into final Project design, including the providing designated fire lanes marked as such. Proposed interior streets will be required to provide appropriate widths and turning radii to safely accommodate emergency response and the transport of emergency/public safety vehicles. The Project will also be designed to meet Fire Department requirements regarding water flow, water storage requirements, hydrant spacing, infrastructure sizing, and emergency access. As a result, appropriate fire safety considerations will be included as part of the final design of the Project. The proposed Project at full buildout will add to the number of "customers" served, however, the Fire Department has capacity for the additional service need. No additional fire equipment, personnel, or services are anticipated to be required by Project implementation. In addition, the Project applicant will be required to pay all associated impact fees related to public services, including fire. As such, any impacts are *less than significant*.

Police Protection

Less than Significant Impact. Police services are provided by the Madera Police Department. The Police Department has two divisions—Administrative Services and Operations—that provide a wide variety of law enforcement services, ranging from investigations to traffic patrols to school liaison. According to the 2019 Annual Report, the Department had 70 sworn personnel and 34 nonsworn personnel.²³ Implementation of the proposed Project would result in an increase in demand for police services; however, this increase would be minimal compared to the number of officers currently employed by the Madera Police Department and would not trigger the need for new or physically altered police facilities. No additional police personnel or equipment is anticipated. In addition, each home will be assessed a public safety impact fee by the City that is used to make capital improvements for the Police Department. The proposed site has been designated by the General Plan and zoned for residential purposes. The impact is less than significant.

Schools

Less than Significant Impact. The proposed Project site is located within the Madera Unified School District. The site is approximately 0.5 miles northeast of Parkwood Elementary School, 0.9 miles northwest of Cesar Chavez School and 1.0 mile southeast of Sierra Vista Elementary. Pursuant to California Education Code Section 17620(a)(1), the governing board of any school district is authorized to levy a fee, charge, dedication, or other requirement against any construction within the boundaries of the district for the purpose of funding the construction or reconstruction of school facilities. The Project applicant would be required to pay such fees to reduce any impacts of new residential development of school services. Payment of the developer fees will offset the addition of school-age children within the district.

²² Ch. 6 Health and Safety Element, City of Madera General Plan. October 2009. Pg 6-15.

²³ Annual Report 2019, City of Madera Police Department. https://www.madera.gov/wp-content/uploads/2020/10/PD-Annual-Report-Final.pdf. Accessed October 2024.

While development of the 168 residential units alone is not expected to require the alteration of existing or construction of new school facilities, the development will contribute to the cumulative need for increased school facilities. The timing of when new school facilities would be required or details about size and location cannot be known until such facilities are planned and proposed, and any attempt to analyze impacts to a potential future facility would be speculative. As the future new school facilities are further planned and developed, they would be subject to their own separate CEQA review in order to identify and mitigate any potential environmental impacts. As such, any impacts would be *less than significant*.

Parks

Less than Significant Impact. The City of Madera provides its residents several types of parks and recreational facilities. The Parks and Community Services Department team supervises and maintains area parks, the municipal golf course, and other local landscape. The City also coordinates a wide variety of recreation and leisure services for both youth and adults. According to the City's General Plan, there are more than 320 acres of parks and recreation areas within the City limits. Technically, the closest park to the proposed site is the Road 28 Park, located approximately 0.2 miles to the west, which is a walking park/greenway. However, the closest park with recreational areas such as playgrounds and basketball courts, would be Parkwood Park located approximately 1.1 miles southwest. The Tentative Subdivision Map for the proposed Project will contain an approximately 4-acre park for tenant use. Additionally, the Project will also be required to pay City Park facility impact fees to compensate for any service demand increase on existing parks within the Madera area. The Project applicant would be required to comply with the Municipal Code and Ordinances. As such, any impacts would remain *less than significant*.

Other public facilities

Less than Significant Impact. The proposed Project is within growth projections identified in the City's General Plan and other infrastructure studies. As such, the Project would not result in increased demand on other public facilities such as library services that has not already been planned for. Any impacts would be *less than significant*.

Mitigation Measures: None are required.

4.16 Recreation

Would the project:	Potentially Significant Impact	Less than Significant with Mitigation Incorporated	Less than Significant Impact	No Impact
a) Increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated?			\boxtimes	
b) Does the project include recreational facilities or require the construction or expansion of recreational facilities which might have an adverse physical effect on the environment?				

4.16.1 Environmental Setting

The City of Madera provides its residents several types of parks and recreational facilities. According to the City's General Plan, there are more than 320 acres of parks and recreation areas within the City limits. The City's neighborhood parks are predominately located in the eastern half of the City.²⁴

4.16.2 Impact Assessment

- a) Would the project increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated?
- b) Does the project include recreational facilities or require the construction or expansion of recreational facilities which might have an adverse physical effect on the environment?

Less Than Significant Impact. The City of Madera provides its residents several types of parks and recreational facilities. The Parks and Community Services Department team supervises and maintains area parks, the municipal golf course, and other local landscape. The Department also coordinates a wide variety of recreation and leisure services for both youth and adults. According to the City's General Plan, there are more than 320 acres of parks and recreation areas within the City limits. The closest park to the proposed site is the Pan-American Park, located approximately 0.2 miles to the southeast.

The proposed Project consists of development of 168 single-family residences and other associated improvements. However, the increase of approximately 662 persons resulting from the Project would have a relatively small impact on existing recreational facilities. The Tentative Subdivision Map for the proposed Project will contain a four-acre park for tenant use. However, in order to implement the goals and objectives of the City's General Plan, and to mitigate the impacts caused by future development in the City, park facilities must be constructed. The City Council

March 2025 74

-

²⁴ Ch. 11 Parks and Recreation Element, City of Madera General Plan. October 2009. Pg 11-2.

has determined that a Park Facilities Fee is needed in order to finance these public facilities and to pay for each development's fair share of the construction and acquisition costs. The Project Applicant will be required to pay development impact fees as determined by the City of Park Facilities Fees. The Project will still be required to pay City park facility impact fees, as required. Therefore, impacts are considered *less than significant*.

Mitigation Measures: None are required.

4.17 Transportation

Would the project:	Potentially Significant Impact	Less than Significant with Mitigation Incorporated	Less than Significant Impact	No Impact
a) Conflict with a program plan, ordinance or policy addressing the circulation system, including transit, roadway, bicycle, and pedestrian facilities?				
b) Conflict or be inconsistent with CEQA Guidelines section 15064.3, subdivision (b)??				
c) Substantially increase hazards due to a geometric design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)?			\boxtimes	
d) Result in inadequate emergency access?			\boxtimes	

4.17.1 Environmental Setting

The proposed Project site is located in the southern part of the City of Madera, in a mix of agricultural and rural area, surrounded by rural residential housing, vacant/disturbed land and active agriculture. The site is bound by Tozer Street (Road 28) which is an existing north-south two-lane undivided arterial adjacent to the proposed Project site. In this area, Tozer Street exists as a four-lane divided arterial between Yosemite Avenue and Clinton Street, a two-lane undivided arterial between Fig Street and Knox Street and a two-lane undivided arterial between Knox Street and Avenue 13. The City of Madera *General Plan* Circulation Element designates Tozer Street as an arterial between Yosemite Avenue and Road 29.

4.17.2 Impact Assessment

Under Senate Bill 743 (SB743), traffic impacts are related to Vehicle Miles Traveled (VMT). The VMT metric became mandatory on July 1, 2020. Senate Bill (SB) 743 requires that relevant CEQA analysis of transportation impacts be conducted using a metric known as vehicle miles traveled (VMT) instead of Level of Service (LOS). VMT measures how much actual automobile travel (additional miles driven) a proposed Project would create on California roads. If the Project adds excessive automobile travel onto roads, then the Project may cause a significant transportation impact. Therefore, LOS measures of impacts on traffic facilities are no longer a relevant CEQA criteria for transportation impacts. A Vehicle Miles Travelled (VMT) Analysis was prepared for the proposed Project by JLB Traffic Engineering, Inc., and is the basis for the impact analysis below. The VMT Analysis is provided as Appendix D to this Initial Study.

a) Would the project conflict with a plan, ordinance or policy addressing the circulation system, including transit, roadway, bicycle, and pedestrian facilities?

Less than Significant Impact. The proposed Project includes the construction of 168 single-family residential units. The trip generation rates for the proposed Project were obtained from the 11th Edition of the Trip Generation Manual published by the Institute of Transportation Engineers (ITE). Table III presents the trip generation for the proposed Project with trip generation rates for Single-Family Detached Housing (210). At buildout, the proposed Project is estimated to generate approximately 1,584 daily trips, 118 AM peak hour trips and 158 PM peak hour trips.

Bikeways

The MCTC Madera Active Transportation Plan (ATP) classifies bicycle facilities into the following types:

- Class I Bikeway (Bike Path) Provides a completely separated right-of-way for exclusive use of bicycles and pedestrians with crossflow minimized.
- Class II Bikeway (Bike Lane) Provides a striped lane for one-way bike travel on a street or highway.
- Class III Bikeway (Bike Route) Provides a shared use with pedestrians or motor vehicle traffic, typically on lower volume roadways.
- Class IV Bikeways (Separated Bikeways) Provides a protected lane for one-way bike travel (one-way cycle track) and protected lanes for two-way bike travel (two-way cycle track) on a street or highway.

Class II (Bike Lane) Bikeways exist in the vicinity of the Project site. In the vicinity of the Project site, Class II Bikeways exist along portions of Tozer Street and Avenue 12. The MCTC Madera ATP recommends that Class II Bikeways be implemented in the vicinity of the Project Site (MCTC, 2018). In the vicinity of the Project site, Class II Bikeways are planned on Tozer Street, Almond Avenue and Avenue 13.

Walkways

The MCTC ATP recommends that more sidewalks be constructed to improve pedestrian safety and promote alternative modes of transportation. It is stated that the needs of pedestrians shall be considered and accommodated in all roadway construction and renovation projects. The proposed Project will comply with the MCTC ATP, City standards, and the California Building Code and construct ADA compliant pedestrian sidewalks along internal streets connecting to all external sidewalks and along its frontage to Tozer Street.

Transit

Madera Metro is the transit operator in the City of Madera. At present, there are two Madera Metro transit routes that operate in the vicinity of the proposed Project site. Route 2 operates at 1-hour intervals on weekdays and weekends. It's nearest stop to the Project site is located on the east side of Tozer Street approximately 400 feet south of Sunrise Avenue. Route 3 operates at 1-hour intervals on weekdays and weekends. It's nearest stop to the Project site is located on the east side of Tozer Street approximately 400 feet south of Sunrise Avenue. The County of Madera also stated that the Project is located within the County's Dial-A-Ride service area as well as one of several preliminary proposed Microtransit Zones identified in the Microtransit Strategy Analysis which was currently under review at the time of the preparation of this report. Retention of the existing and expansion of future transit routes is dependent on transit ridership demand and available funding.

As discussed in the above analysis, the proposed Project would be consistent with the General Plan and ATP and thereby would not conflict with a program, plan, ordinance, or policy addressing bicycle, transit, roadway or pedestrian facilities. Impacts are considered **less than significant**.

Mitigation Measures: None are required.

b) Would the project conflict or be inconsistent with CEQA Guidelines section 15064.3 subdivision (b)?

Less than Significant Impact. To implement SB 743, the CEQA Guidelines were amended by adding Section 15064.3. According to Section 15064.3, VMT measures the automobile travel generated from a proposed Project (i.e., the additional miles driven). Here, automobiles refer to on-road passenger vehicles such as cars and light-duty trucks. If a proposed Project adds excessive automobile travel on California roads thereby exceeding an applicable threshold of significance, then the Project may cause a significant transportation impact. In the case that quantitative models or methods are not available to the lead agency to estimate the VMT for the Project being considered, provisions of CEQA Guidelines Section 15064.3(b)(3) permits the lead agency to conduct a qualitative analysis. The qualitative analysis may evaluate factors including but not limited to the availability of transit, proximity to other destinations, and construction traffic.

Lastly, Section 15064.3(b)(4) of the CEQA Guidelines states that "[a] lead agency has discretion to evaluate a Project's vehicle miles traveled, including whether to express the change in absolute terms, per capita, per household or in any other measure. A lead agency may use models to estimate a Project's vehicle miles traveled and may revise those estimates to reflect professional judgment based on substantial evidence. Any assumptions used to estimate vehicle miles traveled and any revision to model outputs should be documented and explained in the environmental document prepared for the Project. The standard of adequacy in Section 15151 shall apply to the analysis described in this section." Below is a discussion of the threshold and analysis used to analyze VMT impacts from the proposed Project.

According to page 19 of the Technical Advisory on Evaluating Transportation Impacts in CEQA published by the Governor's Office of Planning and Research (OPR), "of land use Projects, residential, office, and retail Projects tend to have the greatest influence on VMT. For that reason, OPR recommends the quantified thresholds described above for purposes of analysis and mitigation. Lead agencies, using more location specific information, may develop their own more specific thresholds, which may include other land use types." Neither the City of Madera nor the County's Regional Transportation Planning Agency (Madera County Transportation Commission (MCTC)), have established VMT thresholds or guidelines. Since the MCTC and the City of Madera do not have established thresholds or guidelines, the state guidelines, including the Technical Advisory document mentioned above, have been utilized as the default methodology used to analyze VMT impacts. In April 2018, the Governor's Office of Planning and Research (OPR) issued the Technical Advisory on Evaluating Transportation Impacts in CEQA (Technical Advisory) (revised December 2018) to provide technical recommendations regarding VMT, thresholds of significance, and mitigation measures for a variety of land use project types. According to OPR's Technical Advisory, lead agencies may use "screening thresholds" to identify when a project should be expected to create a less-thansignificant impact without conducting a detailed study. One of the screening methods to screen out VMT impacts for residential project is to use map-based screening. Residential projects that are in areas with low VMT, and that incorporate similar features (i.e., density, mix of uses, transit accessibility), will tend to exhibit similarly low VMT. Generally, a travel survey or travel demand model can illustrate areas that are currently below threshold VMT. Because new development in such locations would likely result in a similar level of VMT, such maps can be used to screen out residential projects from needing to prepare a detailed VMT analysis.

The proposed Project could generate up to 1,584 average daily vehicle trips (ADT), modeled using the 11th Edition of the Trip Generation Manual published by the Institute of Transportation Engineers (see Appendix D). MCTC

developed a VMT Screening Map which shows the proposed project is in the Traffic Analysis Zone (TAZ) 321, which is designated as having a VMT per capita by TAZ as 15% or more below average, as demonstrated in Figure 4-1. As such, the VMT generated by the proposed Project would be below significance thresholds. Impacts are *less than significant*.

Mitigation Measures: None are required.



Figure 4-1 Madera County – VMT Screening Map²⁵

²⁵ Vehicle Miles Traveled Analysis for the Tozer III Subdivision. Prepared December 14, 2024 by JLB Traffic Engineering, Inc. See Appendix D.

c) Would the project substantially increase hazards due to a geometric design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)?

Less Than Significant Impact. The proposed Project has been designed for ease of access, adequate circulation/movement, and is typical of residential developments in the City of Madera. The proposed residences will be accessed through three points on Road 28. On-site circulation patterns do not involve high speeds, sharp curves or dangerous intersections. Although there will be an increase in the volume of vehicles accessing the site and surrounding areas, the proposed Project will not present a substantial increase in hazards. Impacts would be *less than significant*.

d) Would the project result in inadequate emergency access?

Less Than Significant Impact. State and City Fire Codes establish standards by which emergency access may be determined. The proposed Project would have to provide adequate unobstructed space for fire trucks to turn around. The proposed Project site would have adequate internal circulation capacity including entrance and exit routes to provide adequate unobstructed space for fire trucks and other emergency vehicles to gain access and to turn around. The proposed Project does not involve a change to any emergency response plan and the site will remain accessible to emergency vehicles of all sizes. Any impacts are considered *less than significant*.

Mitigation Measures: None are required.

4.18 Tribal Cultural Resources

Would the project:	Potentially Significant Impact	Less than Significant with Mitigation Incorporated	Less than Significant Impact	No Impact
a) Cause a substantial adverse change in the significance of a tribal cultural resource, defined in Public Resources Code section 21074 as either a site, feature, place, cultural landscape that is geographically defined in terms of the size and scope of the landscape, sacred place, or object with cultural value to a California Native American tribe, and that is:				
i) Listed or eligible for listing in the California Register of Historical Resources, or in the local register of historical resources as defined in Public Resources Code section 5020.1(k), or				
ii) A resource determined by the lead agency, in its discretion and supported by substantial evidence, to be significant pursuant to criteria set forth in subdivision (c) of Public Resources Code Section 5024.1. In applying the criteria set forth in subdivision (c) of Public Resources Code Section 5024.1, the lead agency shall consider the significance of the resource to a California Native American tribe.				

4.18.1 Environmental Setting

The NAHC provides protection to Native American burials from vandalism and inadvertent destruction, provides a procedure for the notification of most likely descendants regarding the discovery of Native American human remains and associated grave goods, brings legal action to prevent severe and irreparable damage to sacred shrines, ceremonial sites, sanctified cemeteries and place of worship on public property, and maintains an inventory of sacred places.²⁶

The NAHC performs a Sacred Lands File search for sites located on or near the Project site upon request. The NAHC also provides local governments with a consultation list of tribal governments with traditional lands or cultural places located within the Project Area of Potential Effect. The City sent letters to the tribal governments listed by

²⁶ Native American Heritage Commission, About the Native American Heritage Commission. http://nahc.ca.gov/about/. Accessed October 2024.

the NAHC on February 14, 2024 as required by AB 52. The tribes had 30 days from the receipt of the letter to request consultation in writing.

4.18.2 Impact Assessment

- a) Would the project cause a substantial adverse change in the significance of a tribal cultural resource, defined in Public Resources Code section 21074 as either a site, feature, place, cultural landscape that is geographically defined in terms of the size and scope of the landscape, sacred place, or object with cultural value to a California Native American tribe, and that is:
 - i) Listed or eligible for listing in the California Register of Historical Resources, or in the local register of historical resources as defined in Public Resources Code section 5020.1(k), or
 - ii) A resource determined by the lead agency, in its discretion and supported by substantial evidence, to be significant pursuant to criteria set forth in subdivision (c) of Public Resources Code Section 5024.1. In applying the criteria set forth in subdivision (c) of Public Resources Code Section 5024.1, the lead agency shall consider the significance of the resource to a California Native American tribe.

Less than Significant Impact. A Tribal Cultural Resource (TCR) is defined under Public Resources Code section 21074 as a site, feature, place, cultural landscape that is geographically defined in terms of size and scope, sacred place, and object with cultural value to a California Native American tribe that are either included and that is listed or eligible for inclusion in the California Register of Historic Resources or in a local register of historical resources, or if the MUSD, acting as the Lead Agency, supported by substantial evidence, chooses at its discretion to treat the resource as a TCR. As discussed in the Phase I Cultural Resource Survey (Appendix C) and under Section V, Cultural Resources, criteria (b) and (d), no known archeological resources, ethnographic sites or Native American remains are located on the proposed Project site.

As discussed under criterion (b) implementation of standard protection measures outlined in the City's General Plan EIR would ensure that impacts to unknown archaeological deposits, including TCRs, remains at a less than significant level. As discussed under criterion (d), compliance with California Health and Safety Code Section 7050.5 would reduce the likelihood of disturbing or discovering human remains, including those of Native Americans. In addition, the City provided consultation letters to the Tribes on the NAHC list that was provided to the City. As of March 2025, no response has been received from any of the Tribes. Any impacts to TCR would be considered *less than significant*.

Mitigation Measures: No additional measures are required.

4.19 Utilities and Service Systems

Would the project:		Potentially Significant Impact	Less than Significant with Mitigation Incorporated	Less than Significant Impact	No Impact
a) Require or result in the construction of new or wastewater treatment drainage, electric power telecommunications far construction or relocated cause significant environments.	expanded water, or storm water er, natural gas, or cilities, the ion of which could			\boxtimes	
b) Have sufficient water s serve the project and r foreseeable future dev normal, dry, and multip	easonably elopment during				
c) Result in a determinati wastewater treatment serves or may serve the adequate capacity to see projected demand in a provider's existing com	provider which e project that it has erve the project's ddition to the				
d) Generate solid waste in local standards, or in exof local infrastructure, the attainment of solid goals?	ccess of the capacity or otherwise impair			\boxtimes	
e) Comply with federal, st management and redu regulations related to s	ction statutes and				

4.19.1 Environmental Setting

The City of Madera provides domestic water to the Project site through a network of groundwater wells and pumps and water distribution system. The sole source of water supply for the City of Madera is the Madera sub-basin of the San Joaquin Valley Groundwater Basin.

The Madera County Integrated Water Management Plan (Madera IRWM) encourages all of the groundwater users in Madera County to cooperate in reducing the overdraft. The City has developed specific plans to reduce their use of groundwater through implementation of water meters to encourage conservation by users and the percolation of treated wastewater for extraction by the Madera Irrigation District for farm irrigation uses. They have the potential to further reduce groundwater depletion through the implementation of a groundwater recharge program that uses surface water supplies from the San Joaquin River and the Fresno River.

The City of Madera provides wastewater collection, treatment and disposal for the wastewater generated by the Project site. Wastewater collection is provided through a series of existing sanitary sewer mains and trunk sewers

that convey wastewater from the Project and areas surrounding the Project to the existing wastewater treatment plant. Treatment and disposal are provided at the City's Wastewater Treatment Plant (WWTP) located at 13048 Road 21½, west of the City of Madera. This section discusses the capacity of the existing sanitary sewer collection system, the capacity of the WWTP, the expected demand from the Project, and the evaluation of the impacts and comparison of those impacts to thresholds of significance.

4.19.2 Impact Assessment

a) Would the project require or result in the relocation or construction of new or expanded water, wastewater treatment or storm water drainage, electric power, natural gas or telecommunications facilities, the construction or relocation of which could cause significant environmental effects?

Less than Significant Impact. The Project site is located within the service territory of the Wastewater Treatment Facility (WTF). Since the WTF is considered a publicly owned treatment works, operational discharge flows treated at the WTF would be required to comply with applicable water discharge requirements issued by the Central Valley Regional Water Quality Control Board (RWQCB). Compliance with conditions or permit requirements established by the City as well as water discharge requirements outlined by the Central Valley RWQCB would ensure that wastewater discharges coming from the proposed Project site and treated by the WTF system would not exceed applicable Central Valley RWQCB wastewater treatment requirements.

As discussed in Section X, Hydrology and Water Quality, with an increase in the area of impervious surfaces on the Project site, an increase in the amount of storm water runoff is anticipated. The site will be designed so that storm water is collected and deposited in the on-site basin. The storm water collection system design will be subject to review and approval by the City Public Works Department. Storm water during construction will be managed as part of the Storm Water Pollution Prevention Plan (SWPPP). A copy of the SWPPP is retained on-site during construction. Thus, the proposed Project would have a *less than significant impact*.

Mitigation Measures: None are required.

b) Would the project have sufficient water supplies available to serve the project and reasonably foreseeable future development during normal, dry, and multiple dry years?

Less than Significant Impact. See Section X — Hydrology for a full discussion pertaining to available water supply. The site land use designation and zoning is currently Residential and as such, residential development has been accounted for in the General Plan and other infrastructure planning documents. The City will have sufficient supply to serve the proposed Project and as such, the proposed Project will have a *less than significant impact*.

Mitigation Measures: None are required.

c) Would the project result in a determination by the wastewater treatment provider which serves or may serve the project that it has adequate capacity to serve the project's projected demand in addition to the provider's existing commitments?

Less Than Significant Impact. As discussed in Section XVIII(a), implementation of the proposed Project would result in the need for additional wastewater treatment service; however, the proposed development was accounted for in the General Plan and has been planned for in the City's adopted infrastructure planning documents. Additionally, the proposed Project applicant would be required to comply with any applicable City and WTF regulations and would be subject to applicable development impact fees and wastewater connection charges. Therefore, with

compliance to applicable standards and payment of required fees and connection charges, the Project would not result in a significant impact related to construction or expansions of existing wastewater treatment facilities.

Mitigation Measures: None are required.

d) Would the project generate solid waste in excess of State or local standards, or in excess of the capacity of local infrastructure, or otherwise impair the attainment of solid waste reduction goals?

Less than Significant Impact. According to the City's GP, the City of Madera Solid Waste Division provides all residential customers with solid waste and greenwaste services. There are several recycling companies in Madera that accept beverage containers and other recyclables. Disposal services in the City are provided by a contractor, Mid Valley Disposal. The Fairmead Landfill is approximately 12 miles northwest of the proposed Project site.

The Project would comply with federal, state and local statutes and regulations related to solid waste. The proposed Project would be required to comply with all standards related to solid waste diversion, reduction, and recycling during Project construction and operation. The proposed Project would result in *less than significant* impacts to solid waste and landfill facilities.

Mitigation Measures: None are required.

e) Would the project comply with federal, state, and local management and reduction statutes and regulations related to solid waste?

Less than Significant Impact. See Response d, above. The proposed Project will comply with all federal, state and local statutes and regulations related to solid waste. As such, any impacts would be *less than significant*.

Mitigation Measures: None are required.

4.20 Wildfire

lands c	ed in or near state responsibility areas or lassified as very high fire hazard severity would the project:	Potentially Significant Impact	Less than Significant with Mitigation Incorporated	Less than Significant Impact	No Impact
a)	Substantially impair an adopted emergency response plan or emergency evacuation plan?			\boxtimes	
b)	Due to slope, prevailing winds, and other factors, exacerbate wildfire risks, and thereby expose project occupants to pollutant concentrations from a wildfire or the uncontrollable spread of wildfire?				
c)	Require the installation or maintenance of associated infrastructure (such as roads, fuel breaks, emergency water sources, power lines or other utilities) that may exacerbate fire risk or that may result in temporary or ongoing impacts to the environment?			\boxtimes	
d)	Expose people or structures to significant risks, including downslope or downstream flooding or landslides, as a result of runoff, post-fire slope instability, or drainage changes?			\boxtimes	

4.20.1 Environmental Setting

4.20.2 Impact Assessment

If located in or near state responsibility areas or lands classified as very high fire hazard severity zones, would the project:

- a) Substantially impair an adopted emergency response plan or emergency evacuation plan?
- b) Due to slope, prevailing winds, and other factors exacerbate wildfire risks, and thereby expose project occupants to pollutant concentrations from a wildfire or the uncontrolled spread of a wildfire?
- c) Require the installation or maintenance of associated infrastructure (such as roads, fuel breaks, emergency water sources, power lines or other utilities) that may exacerbate fire risk or that may result in temporary or ongoing impacts to the environment?

d) Expose people or structures to significant risks, including downslope or downstream flooding or landslides, as a result of runoff, post-fire slope instability, or drainage changes?

Less Than Significant Impact. The proposed Project is located in an area developed with residential and agricultural uses, which precludes the risk of wildfire. The area is flat in nature which would limit the risk of downslope flooding and landslides, and limit any wildfire spread.

To receive building permits, the proposed Project would be required to be in compliance with the adopted emergency response plan and latest Building Codes. As such, any wildfire risk to the Project structures or people would be *less than significant*.

Mitigation Measures: None are required.

4.21 CEQA Mandatory Findings of Significance

Does the project:	Potentially Significant Impact	Less than Significant with Mitigation Incorporated	Less than Significant Impact	No Impact
a) Have the potential to substantially degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, substantially reduce the number or restrict the range of a rare or endangered plant or animal or eliminate important examples of the major periods of California history or prehistory?		\boxtimes		
b) Have impacts that are individually limited, but cumulatively considerable? ("Cumulatively considerable" means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects)?				
c) Have environmental effects which will cause substantial adverse effects on human beings, either directly or indirectly?				

4.21.1 Environmental Setting

4.21.2 Impact Assessment

a) Does the project have the potential to substantially degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, substantially reduce the number or restrict the range of a rare or endangered plant or animal or eliminate important examples of the major periods of California history or prehistory?

Less Than Significant Impact With Mitigation. The analyses of environmental issues contained in this Initial Study indicate that the proposed Project is not expected to have a substantial impact on the environment or on any resources identified in the Initial Study. Mitigation measures have been incorporated in the Project to reduce all potentially significant impacts to less than significant.

b) Does the project have impacts that are individually limited, but cumulatively considerable? ("Cumulatively considerable" means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects)?

Less Than Significant Impact. CEQA Guidelines Section 15064(i) states that a Lead Agency shall consider whether the cumulative impact of a project is significant and whether the effects of the project are cumulatively considerable. The assessment of the significance of the cumulative effects of a project must, therefore, be conducted in connection with the effects of past projects, other current projects, and probable future projects. Due to the nature of the Project and consistency with environmental policies, incremental contributions to impacts are considered less than cumulatively considerable. The proposed Project would not contribute substantially to adverse cumulative conditions, or create any substantial indirect impacts (i.e., increase in population could lead to an increase need for housing, increase in traffic, air pollutants, etc.). The impact is less than significant.

c) Does the project have environmental effects which will cause substantial adverse effects on human beings, either directly or indirectly?

Less Than Significant Impact With Mitigation. The analyses of environmental issues contained in this Initial Study indicate that the Project is not expected to have substantial impact on human beings, either directly or indirectly. Mitigation measures have been incorporated in the Project to reduce all potentially significant impacts to less than significant.

Chapter 5 Mitigation Monitoring and Reporting Program

This Mitigation Monitoring and Reporting Program (MMRP) has been formulated based upon the findings of the Initial Study/Mitigated Negative Declaration (IS/MND) for the Pecan Tozer Residential Project (Project) near the eastern City limit boundary. The MMRP lists mitigation measures recommended in the IS/MND for the Project and identifies monitoring and reporting requirements.

Table 5-1 presents the mitigation measures identified for the proposed Project. Each mitigation measure is numbered with a symbol indicating the topical section to which it pertains, a hyphen, and the impact number. For example, AIR-2 would be the second mitigation measure identified in the Air Quality analysis of the IS/MND.

The first column of **Table 5-1** identifies the mitigation measure. The second column, entitled "When Monitoring is to Occur," identifies the time the mitigation measure should be initiated. The third column, "Frequency of Monitoring," identifies the frequency of the monitoring of the mitigation measure. The fourth column, "Agency Responsible for Monitoring," names the party ultimately responsible for ensuring that the mitigation measure is implemented. The last columns will be used by City to ensure that individual mitigation measures have been complied with and monitored.

October 2024 5-1

Table 5-1 Mitigation Monitoring and Reporting Program

	N	litigation Monito	ring and Reporting I	rogram	
Mitigation Measure/Condition of Approval	When Monitoring is to Occur	Frequency of Monitoring	Agency Responsible for Monitoring	Method to Verify Compliance	Verification of Compliance
Air Quality					
Mitigation Measure AIR-1					
Consistent with San Joaquin Valley Air Pollution Control District (SJVAPCD) Regulation VIII (Fugitive PM10 Prohibitions), the following controls are required to be included as specifications for the proposed Project and implemented at the construction site: • All disturbed areas, including storage piles, which are not being actively utilized for construction purposes, shall be effectively stabilized of dust emissions using water or chemical stabilizer/suppressant or covered with a tarp or other suitable cover or vegetative ground cover. • All on-site unpaved roads and off-site unpaved access roads shall be effectively stabilized of dust emissions using water or	Prior to and during construction activities.	Continuous during construction activities	Applicant / Project Contractor	City Planning and Building Departments shall verify that specifications are being met.	

	Mitigation Monitoring and Reporting Program					
Mitigation Measure/Condition of Approval	When Monitoring is to Occur	Frequency of Monitoring	Agency Responsible for Monitoring	Method to Verify Compliance	Verification of Compliance	
chemical stabilizer/suppressant.						
 All land clearing, grubbing, scraping, excavation, land leveling, grading, cut and fill, and demolition activities shall be effectively controlled of fugitive dust emissions utilizing application of water or by presoaking. 						
When materials are transported off site, all material shall be covered, or effectively wetted to limit visible dust emissions, and at least 6 inches of freeboard space from the top of the container shall be maintained.						
All operations shall limit or expeditiously remove the accumulation of mud or dirt from adjacent public streets at the end of each workday. (The use of dry rotary brushes is expressly prohibited except where preceded or accompanied by sufficient wetting to limit the visible dust						

	N	litigation Monito	ing and Reporting F	Program	
Mitigation Measure/Condition of Approval	When Monitoring is to Occur	Frequency of Monitoring	Agency Responsible for Monitoring	Method to Verify Compliance	Verification of Compliance
emissions. Use of blower devices is expressly forbidden.)					
 Following the addition of materials to, or the removal of materials from, the surface of outdoor storage piles, said piles shall be effectively stabilized of fugitive dust emissions utilizing sufficient water or chemical stabilizer/ suppressant. 					
Mitigation Measure AIR-2					
All construction equipment over 50 horsepower (hp) used during construction of the project shall be equipped with at least Tier 2 engines with Level 3 Diesel Particulate Filters (DPF) or the most effective Verified Diesel Emission Control Strategies (VDECS) available for the engine type (Tier 4 engines automatically meet this requirement) as certified by the California Air Resources Board. The equipment shall be properly maintained and tuned in accordance with manufacturer specifications. Prior to issuance of building permits, the project Applicant shall submit	During construction permitting process.	Once	Applicant / Project Contractor	City Planning and Building Departments shall verify that specifications are on plans during plan check.	

Mitigation Monitoring and Reporting Program					
Mitigation Measure/Condition of Approval	When Monitoring is to Occur	Frequency of Monitoring	Agency Responsible for Monitoring	Method to Verify Compliance	Verification of Compliance
construction plans to the City of Madera denoting the projected equipment Tier rating that will be used during the construction period.					
Biological Resources					
Mitigation Measure BIO-1: To the extent practicable, construction shall be scheduled to avoid the Swainson's hawk nesting season, which extends from March through August. If it is not possible to schedule construction between September and February, a qualified biologist shall conduct surveys for Swainson's hawk in accordance with the Swainson's Hawk Technical Advisory Committee's Recommended Timing and Methodology for Swainson's Hawk Nesting Surveys in California's Central Valley (SWTAC 2000, Appendix D). These methods require six surveys, three in each of the two survey periods, prior to project initiation. Surveys shall be	Prior to construction activities.	Once	Applicant / Project Contractor	Applicant / project contractor shall submit preconstruction survey documentation of compliance to the City prior to issuance of grading or building permits if construction is scheduled during the nesting season. City Planning and Building Departments shall verify preconstruction survey documentation is complete prior to issuance of grading or building permit. City Planning Department to field verify prior to commencement of any	

	Mitigation Monitoring and Reporting Program						
Mitigation Measure/Condition of Approval	When Monitoring is to Occur	Frequency of Monitoring	Agency Responsible for Monitoring	Method to Verify Compliance	Verification of Compliance		
conducted within a minimum 0.5-mile radius around the Project site. If an active Swainson's hawk nest is found within 0.5 miles of the Project site, and the qualified biologist determines that Project activities would disrupt the nesting birds, a construction-free buffer or limited operating period shall be implemented in consultation with the CDFW.				project related grading or construction activities as applicable survey specifications are implemented.			
Mitigation Measure BIO-2: To the extent practicable, construction shall be scheduled to avoid the nesting season, which extends from February through August. If it is not possible to schedule construction between September and January, preconstruction surveys for nesting birds shall be conducted by a qualified biologist to ensure that no active nests will be disturbed during the implementation of the Project. A pre-construction survey shall	Prior to construction activities.	Once	Applicant / Project Contractor	Applicant / project contractor shall submit preconstruction survey documentation of compliance to the City prior to issuance of grading or building permits if construction is scheduled during the nesting season. City Planning and Building Departments shall verify preconstruction survey documentation is complete prior to issuance of grading or building permit.			

	Mitigation Monitoring and Reporting Program					
Mitigation Measure/Condition of Approval	When Monitoring is to Occur	Frequency of Monitoring	Agency Responsible for Monitoring	Method to Verify Compliance	Verification of Compliance	
be conducted no more than 14 days prior to the initiation of construction activities. During this survey, the qualified biologist shall inspect all potential nest substrates in and immediately adjacent to the impact areas. If an active nest is found close enough to the construction area to be disturbed by these activities, the qualified biologist shall determine the extent of a construction-free buffer to be established around the nest. If work cannot proceed without disturbing the nesting birds, work may need to be halted or redirected to other areas until nesting and fledging are completed or the nest has otherwise failed for nonconstruction related reasons.				City Planning Department to field verify prior to commencement of any project related grading or construction activities as applicable survey specifications are implemented.		
Cultural Resources/Geology and Soils						
Mitigation Measure CUL-1:	Prior to and during construction.	Ongoing.	Applicant / Project Contractor	Applicant / project contractor shall submit documentation of compliance to the City		

	Mitigation Monitoring and Reporting Program					
Mitigation Measure/Condition of Approval	When Monitoring is to Occur	Frequency of Monitoring	Agency Responsible for Monitoring	Method to Verify Compliance	Verification of Compliance	
The following shall be implemented:				prior to issuance of grading or building		
Before initiation of construction or ground-disturbing activities associated with the Project, the City shall require all construction personnel to be alerted to the possibility of buried cultural resources, including historic, archeological and paleontological resources;				city Planning and Building Departments shall verify preconstruction survey documentation is complete prior to issuance of grading or building permit.		
The general contractor and its supervisory staff shall be responsible for monitoring the construction Project for disturbance of cultural resources; and				City Planning Department to field verify prior to commencement of any project related grading or construction activities as applicable survey specifications are implemented.		
If a potentially significant historical, archaeological, or paleontological resource, such as structural features, unusual amounts of bone or shell, artifacts, human remains, or architectural remains or trash						

Mitigation Monitoring and Reporting Program					
Mitigation Measure/Condition of Approval	When Monitoring is to Occur	Frequency of Monitoring	Agency Responsible for Monitoring	Method to Verify Compliance	Verification of Compliance
deposits are encountered					
during subsurface construction					
activities (i.e., trenching,					
grading), all construction					
activities within a 100-foot					
radius of the identified					
potential resource shall cease					
until a qualified archaeologist					
evaluates the item for its					
significance and records the					
item on the appropriate State					
Department of Parks and					
Recreation (DPR) forms. The					
archaeologist shall determine					
whether the item requires					
further study. If, after the					
qualified archaeologist					
conducts appropriate technical					
analyses, the item is					
determined to be significant					
under California Environmental					
Quality Act, the archaeologist					
shall recommend feasible					
mitigation measures, which					
may include avoidance,					
preservation in place or other					
appropriate measure, as					
outlined in Public Resources					
Code section 21083.2. City of					

	Mitigation Monitoring and Reporting Program					
Mitigation Measure/Condition of Approval	When Monitoring is to Occur	Frequency of Monitoring	Agency Responsible for Monitoring	Method to Verify Compliance	Verification of Compliance	
Madera shall implement said measures.						
Mitigation Measure CUL-2:						
City of Madera will incorporate into the construction contract(s) a provision that in the event a fossil or fossil formations are discovered during any subsurface construction activities for the proposed Project (i.e., trenching, grading), all excavations within 100 feet of the find shall be temporarily halted until the find is examined by a qualified paleontologist, in accordance with Society of Vertebrate Paleontology standards. The paleontologist shall notify the appropriate representative at City of Madera, who shall coordinate with the paleontologist as to any necessary investigation of the find. If the find is determined to	Prior to and during construction.	Ongoing.	Applicant / Project Contractor	City will incorporate into construction contract.		

	Mitigation Monitoring and Reporting Program					
Mitigation Measure/Condition of Approval	When Monitoring is to Occur	Frequency of Monitoring	Agency Responsible for Monitoring	Method to Verify Compliance	Verification of Compliance	
be significant under CEQA, the City shall implement those measures, which may include avoidance, preservation in place, or other appropriate measures, as outlined in Public Resources Code section 21083.2.						

Appendix A

Air Quality, Greenhouse Gas and Energy Assessment

Appendix B

Biological Resource Evaluation Report

Appendix C Phase I Cultural Resource Survey

Appendix D

Vehicle Miles Travelled Assessment

CARLSBAD
CLOVIS
IRVINE
LOS ANGELES
PALM SPRINGS
POINT RICHMOND
RIVERSIDE
ROSEVILLE
SAN LUIS OBISPO

MEMORANDUM

DATE: October 28, 2024

To: Emily Bowen, Crawford and Bowen Planning

FROM: Jessica Coria, Associate/Director of Air Quality and Climate Change Services Bianca

Martinez, Air Quality Specialist

Subject: Air Quality, Energy, and Greenhouse Gas Technical Memorandum for the Proposed

Single-Family Residential Development Project in Madera, Madera County,

California

INTRODUCTION

LSA has prepared this Air Quality, Energy, and Greenhouse Gas Technical Memorandum to evaluate the impacts associated with construction and operation of the proposed Madera Residential Project (project) located in Madera, Madera County, California. This analysis was prepared using methods and assumptions recommended in the San Joaquin Valley Air Pollution Control District (SJVAPCD) *Guidance for Assessing and Mitigating Air Quality Impacts* (GAMAQI). This analysis includes an assessment of criteria pollutant emissions, an assessment of carbon monoxide (CO) hot-spot impacts, and an assessment of the project's greenhouse gas (GHG) emissions.

PROJECT LOCATION AND DESCRIPTION

The 29-acre project site is located on 13251 Road 28 in Madera, Madera County, California. The project site is currently an orchard field with no pre-existing buildings. The proposed project site is located in in a rural area and is primarily surrounded with rural residences and agricultural land. Local access to the project site is provided by Road 28. The project location is shown on Figure 1, and the project site plan is shown on Figure 2 (all figures are included in Attachment A).

The proposed project would include the development of a single-family residential (SFR) project consisting of 168 lots. The proposed project also includes associated improvements such as internal access roads, street lighting, and landscaping, as well as a 1.22-acre park and a 4.3-acre retention basin. The proposed project would be deigned to be all-electric and would exclude natural gas connections, appliances, and fireplaces. Additionally, the proposed project would include solar panels that would offset approximately 80 percent of the electricity consumption. The proposed project would also include an electric vehicle (EV) charging station for each home.

_

San Joaquin Valley Air Pollution Control District (SJVAPCD). 2015. *Guidance for Assessing and Mitigating Air Quality Impacts* (GAMAQI). March 19. Website: https://www.valleyair.org/transportation/GAMAQI.pdf (accessed October 2024).

Construction would begin in early 2025 and would include site preparation, grading, building construction, paving, and architectural coating activities. Site preparation, grading, and paving activities would involve the use of standard earthmoving equipment such as large excavators, cranes, and other related equipment. In addition, the proposed project would not require any soil import or export to/from the site.

SENSITIVE RECEPTORS IN THE PROJECT AREA

For this analysis, sensitive receptors are considered areas of the population that have an increased sensitivity to air pollution or environmental contaminants. Sensitive receptor locations include residences, schools, daycare centers, hospitals, parks, and similar uses that are sensitive to air quality. Impacts on sensitive receptors are of particular concern because those receptors are the population most vulnerable to the effects of air pollution. The proposed project site is bounded to the west by open space and Golden State Highway State Route (SR) 99; to the south by Golden State Highway SR 99, Road 28, Avenue 13, and agricultural uses; and to the east and north by rural residential and agricultural uses. The closest sensitive receptors to the project site include single-family homes located 70 and 500 feet from the project boundaries to the east and north, respectively. Table A shows a summary of the sensitive receptors near the project site.

Table A: Summary of Analysis Distances by Impact Category

			Distance
Activity	Nearest Sensitive Receptor	Points of Analysis	(feet)
Construction ¹	Single-family homes to the east	Perimeter of construction activities to	70 ft to the east and
	and north of the project site	centroid of nearest sensitive receptor	500 ft to the north
Operations	Single-family homes to the east	Emissions sources on site generalized at	500 ft to the east
	and north of the project site	the centroid of the project site to	and 980 ft to the
		centroid of nearest sensitive receptor	north

Compiled by LSA (October 2024)

ENVIRONMENTAL SETTING

Air Quality

Air Quality Background

The project site is located near the center of the non-desert portion of Madera County, California, which is part of the San Joaquin Valley Air Basin (SJVAB) and is under the jurisdiction of the SJVAPCD.

Air quality is a function of both local climate and local sources of air pollution. The amount of a given pollutant in the atmosphere is determined by the amount of the pollutant released and the atmosphere's ability to transport and dilute the pollutant. The major determinants of transport and dilution are wind, atmospheric stability, terrain, and for photochemical pollutants, sunshine.

A region's topographic features have a direct correlation with air pollution flow and therefore are used to determine the boundary of air basins. The SJVAB is comprised of approximately 25,000

Distance for construction air quality impact potential includes the assumption that heavy construction equipment would operate adjacent to the proposed project boundary, which is 70 feet from the nearest off-site structures where a person would live.
ft = foot/feet

square miles and covers eight counties including Fresno, Kings, Madera, Merced, San Joaquin, Stanislaus, Tulare, and the western portion of Kern. The SJVAB is defined by the Sierra Nevada mountains in the east (8,000 to 14,000 feet in elevation), the Coast Ranges in the west (averaging 3,000 feet in elevation), and the Tehachapi mountains in the south (6,000 to 8,000 feet in elevation). The valley is basically flat with a slight downward gradient to the northwest. The valley opens to the sea at the Carquinez Straits where the San Joaquin-Sacramento Delta empties into San Francisco Bay. An aerial view of the SJVAB would simulate a "bowl" opening only to the north. These topographic features restrict air movement through and out of the basin.

Although marine air generally flows into the basin from the San Joaquin River Delta, the Coast Range hinders wind access into the SJVAB from the west, the Tehachapi Mountains prevent southerly passage of air flow, and the high Sierra Nevada range is a significant barrier to the east. These topographic features result in weak air flow which becomes blocked vertically by high barometric pressure over the SJVAB. As a result, the SJVAB is highly susceptible to pollutant accumulation over time. Most of the surrounding mountains are above the normal height of summer inversion layers (1,500 to 3,000 feet).

Local climatological effects, including wind speed and direction, temperature, inversion layers, and precipitation and fog, can exacerbate the air quality in the SJVAB. Wind speed and direction play an important role in dispersion and transport of air pollutants. Wind at the surface and aloft can disperse pollution by mixing vertically and by transporting it to other locations. For example, in the summer, wind usually originates at the north end of the SJVAB and flows in a south-southeasterly direction through the SJVAB, through Tehachapi pass, and into the Southeast Desert Air Basin. In the winter, wind direction is reversed and flows in a north-northwesterly direction. In addition to the seasonal wind flow, a sea breeze flows into SJVAB during the day, and a land breeze flows out of the SJVAB at night. The diversified wind flow enhances the pollutant transport capability within the SJVAB.

The annual average temperature varies throughout the SJVAB, ranging from the low 40s to high 90s, measured in degrees Fahrenheit (°F). With a more pronounced valley influence, inland areas show more variability in annual minimum and maximum temperatures than coastal areas. The climatological station closest to the site is the Bakersfield (040442) Station. The monthly average maximum temperature recorded at this station from October 1937 to June 2016 ranged from 57.4°F in January to 98.6°F in July, with an annual average maximum of 77.8°F. The monthly average minimum temperature recorded at this station ranged from 38.5°F in January to 69.2°F in July, with an annual average minimum of 52.7°F. These levels are still representative of the project area. January is typically the coldest month, and July is typically the warmest month in this area of the SJVAB.

The majority of annual rainfall in the SJVAB occurs between November and March. Summer rainfall is minimal and is generally limited to scattered thundershowers in desert regions and slightly heavier showers near the lower portion of the air basin and along the Sierra Nevada mountains to the east. Average monthly rainfall during that period varied from 0.01 inch in July to 1.16 inches in

-

Western Regional Climate Center (WRCC). Website: https://wrcc.dri.edu/cgi-bin/cliMAIN.pl?ca0442 (accessed October 2024).

February, with an annual total of 6.17 inches.³ Patterns in monthly and yearly rainfall totals are predictable due to the recognizable differences in seasons within the San Joaquin Valley.

The vertical dispersion of air pollutants in the SJVAB is limited by the presence of persistent temperature inversions. Because of cooling of the atmosphere, air temperature usually decreases with altitude. A reversal of this atmospheric state, where the air temperature increases with height, is termed an inversion. Inversions can exist at the surface, or at any height above the ground. The height of the base of the inversion is known as the "mixing height." This is the level within which pollutants can mix vertically. Air above and below the inversion base does not mix because of the differences in air density. Semi-permanent systems of high barometric pressure fronts frequently establish themselves over the SJVAB, preventing low pressure systems that might otherwise bring rain and winds that clean the air.

Inversion layers are significant in determining ozone formation and CO and particulate matter less than 10 microns in size (PM_{10}) concentrations. Ozone and its precursors will mix and react to produce higher ozone concentrations under an inversion. The inversion will also simultaneously trap and hold directly emitted pollutants such as CO. PM_{10} is both directly emitted and created in the atmosphere as a chemical reaction. Concentration levels of pollutants are directly related to inversion layers due to the limitation of mixing space.

Surface or radiation inversions are formed when the ground surface becomes cooler than the air above it during the night. The earth's surface goes through a radiative process on clear nights, where heat energy is transferred from the ground to a cooler night sky. As the earth's surface cools during the evening hours, the air directly above it also cools, while air higher up remains relatively warm. The inversion is destroyed when heat from the sun warms the ground, which in turn heats the lower layers of air; this heating stimulates the ground level air to float up through the inversion layer.

The combination of stagnant wind conditions and low inversions produces the greatest pollutant concentrations. On days of no inversion or high wind speeds, ambient air pollutant concentrations are lowest. Periods of low inversions and low wind speeds are conditions favorable to high concentrations of CO and PM₁₀. In the winter, the greatest pollution problems are CO and nitrogen oxides (NO_x) because of extremely low inversions and air stagnation during the night and early morning hours. In the summer, the longer daylight hours and the brighter sunshine combine to cause a reaction between hydrocarbons and oxides of nitrogen to form photochemical smog.

Attainment Status

The California Air Resources Board (CARB) is required to designate areas of the State as attainment, nonattainment, or unclassified for all State standards. An *attainment* designation for an area signifies that pollutant concentrations did not violate the standard for that pollutant in that area. A *nonattainment* designation indicates that a pollutant concentration violated the standard at least once, excluding those occasions when a violation was caused by an exceptional event, as defined in the criteria. An *unclassified* designation signifies that data does not support either an attainment or

_

Western Regional Climate Center (WRCC). Website: https://wrcc.dri.edu/cgi-bin/cliMAIN.pl?ca0442 (accessed October 2024).

nonattainment status. The California Clean Air Act (CCAA) divides districts into moderate, serious, and severe air pollution categories, with increasingly stringent control requirements mandated for each category.

The United States Environmental Protection Agency (USEPA) also designates areas as attainment, nonattainment, or classified. The air quality data are also used to monitor progress in attaining air quality standards. Table B provides a summary of the attainment status for the SJVAB with respect to national and State ambient air quality standards.

Table B: Attainment Status of Criteria Pollutants in the San Joaquin Valley Air Basin

Pollutant	State	Federal
O ₃ 1-hour	Nonattainment/Severe	Revoked ¹
O₃ 8-hour	Nonattainment	Extreme Nonattainment ²
PM ₁₀	Nonattainment	Attainment ³
PM _{2.5}	Nonattainment	Nonattainment ⁴
CO	Attainment/Unclassified	Attainment/Unclassified
NO ₂	Attainment	Attainment/Unclassified
SO ₂	Attainment	Attainment/Unclassified
Lead	Attainment	No Designation/Classification
All others	Attainment/Unclassified	No Federal Standard

Source: SJVAPCD, Ambient Air Quality Standards and San Joaquin Valley Attainment Status. Website: https://ww2.valleyair.org/air-quality-information/ambient-air-quality-standards-valley-attainment-status/ (accessed October 2024).

- Effective June 15, 2005, the U.S. Environmental Protection Agency (USEPA) revoked the federal 1-hour ozone standard, including associated designations and classifications. The USEPA had previously classified the SJVAB as extreme nonattainment for this standard. The USEPA approved the 2004 Extreme Ozone Attainment Demonstration Plan on March 8, 2010 (effective April 7, 2010). Many applicable requirements for extreme 1-hour ozone nonattainment areas continue to apply to the SJVAB.
- Though the San Joaquin Valley was initially classified as serious nonattainment for the 1997 8-hour ozone standard, the USEPA approved San Joaquin Valley reclassification to extreme nonattainment in the Federal Register on May 5, 2010 (effective June 4, 2010).
- On September 25, 2008, the USEPA re-designated the San Joaquin Valley to attainment for the PM₁₀ National Ambient Air Quality Standard (NAAQS) and approved the PM₁₀ Maintenance Plan.
- The San Joaquin Valley is designated nonattainment for the 1997 PM_{2.5} NAAQS. The USEPA designated the San Joaquin Valley as nonattainment for the 2006 PM_{2.5} NAAQS on November 13, 2009 (effective December 14, 2009).

CO = carbon monoxide $PM_{2.5}$ = particulate matter less than 2.5 microns in size

N/A = not applicable $SO_2 = sulfur dioxide$

NO₂ = nitrogen dioxide SJVAB = San Joaquin Valley Air Basin

 O_3 = ozone SJVAPCD = San Joaquin Valley Air Pollution Control District PM_{10} = particulate matter less than 10 microns in size USEPA = United States Environmental Protection Agency

Air Quality Monitoring Results

Air quality monitoring stations are located throughout the nation and are maintained by the local air pollution control district and State air quality regulating agencies. The SJVAPCD, together with the CARB, maintains ambient air quality monitoring stations in the SJVAB. The air quality monitoring stations closest to the project area are the Madera station located at 28261 Avenue 14, Madera, and the Madera Pump Yard station located at Road 29 ½, north of Avenue 8, Madera, in Madera County, California, as well as the Fresno Garland station located at 3727 North First Street, Fresno, in Fresno County, California.

Pollutant monitoring results for years 2021 to 2023 at the nearby ambient air quality monitoring stations, shown in Table C, indicate that air quality in the area has generally been moderate. As

indicated in the monitoring results, the State PM₁₀ standard was exceeded 86.1 times in 2021, 64.0 times in 2022, and 78.9 times in 2023. In addition, the federal PM₁₀ standard was exceeded twice in

Table C: Ambient Air Quality Monitored in the Project Vicinity

Pollutant	S	itandard	2021	2022	2023
Carbon Monoxide (CO)					
Maximum 1-hr concentration (ppm)	1.9	2.1	2.2		
Number of days exceeded:	State:	> 20 ppm	ND	ND	ND
Number of days exceeded.	Federal:	> 35 ppm	0	0	0
Maximum 8-hr concentration (ppm)			1.7	1.8	1.7
Number of days exceeded:	State:	≥ 9.0 ppm	ND	ND	ND
Number of days exceeded.	Federal:	≥ 9.0 ppm	0	0	0
Ozone (O ₃) ¹					
Maximum 1-hr concentration (ppm)			0.118	0.101	0.100
Number of days exceeded:	State:	> 0.09 ppm	4	1	1
Maximum 8-hr concentration (ppm)			0.091	0.081	0.086
Number of days eveneded	State:	> 0.070 ppm	23	10	15
Number of days exceeded:	Federal:	> 0.070 ppm	21	9	13
Coarse Particulates (PM ₁₀) ¹					
Maximum 24-hr concentration (μg/m³)			342.2	140.5	136.9
Number of days eveneded	State:	> 50 μg/m ³	85	64	78
Number of days exceeded:	Federal:	> 150 μg/m ³	2.0	0.0	0.0
Annual arithmetic average concentration (µg/	41.7	35.4	34.0		
Exceeded for the year:	State:	> 20 μg/m ³	Yes	Yes	Yes
Fine Particulates (PM _{2.5}) ¹					
Maximum 24-hr concentration (μg/m³)			97.3	40.2	36.9
Number of days exceeded:	Federal:	$> 35 \mu g/m^3$	17	3	1
Annual arithmetic average concentration (µg/		12.3	10.4	9.8	
Exceeded for the year:	State:	> 12 μg/m ³	Yes	No	No
Exceeded for the year.	Federal:	$> 15 \mu g/m^3$	No	No	No
Nitrogen Dioxide (NO ₂) ¹					
Maximum 1-hr concentration (ppm)	0.0347	0.0346	0.0322		
Number of days exceeded:	State:	> 0.18 ppm	40	30	30
Annual arithmetic average concentration (ppm)			0.006	0.006	0.005
Exceeded for the year:	State:	> 0.030 ppm	No	No	No
Exceeded for the year.	Federal:	> 0.053 ppm	No	No	No
Sulfur Dioxide (SO ₂)					
Maximum 24-hr concentration (ppm)			0.0027	0.0012	0.0023
Number of days exceeded:	State:	> 0.04 ppm	ND	ND	ND
Number of days exceeded.	Federal:	> 0.14 ppm	0	0	0
Annual arithmetic average concentration (ppr	Annual arithmetic average concentration (ppm)			0.00034	0.00043
	111/		0.00043	0.00001	0.000.0

Sources: 2021–2023 Air Quality Data, Website: https://www.epa.gov/outdoor-air-quality-data/monitor-values-report (United States Environmental Protection Agency 2024) and iADAM: Air Quality Data Statistics, Website: https://www.arb.ca.gov/adam/index.html (California Air Resources Board 2024).

μg/m³ = micrograms per cubic meter

hr = hour

ND = no data available

PM₁₀ = particulate matter less than 10 microns in size

 $PM_{2.5}$ = particulate matter less than 2.5 microns in size

ppm = parts per million

SJVAPCD = San Joaquin Valley Air Pollution Control District

Data taken from 28261 Avenue 14, Madera monitoring station were used for O₃, PM_{2.5}, PM₁₀ for 2021-2023. Data taken from Madera Pump Yard, Madera monitoring station were used for NO2, and data from Fresno Garland, Fremont were used for CO and SO₂ for 2021-2023.

2021 but not exceeded in 2022 or 2023. The federal $PM_{2.5}$ standard had 17.3 exceedances in 2021, 3.1 exceedances in 2022, and one exceedance in 2023. The State 1-hour ozone standard was exceeded 4 times in 2021 and once in 2022 and 2023. The State 8-hour ozone standard was exceeded 23 times in 2021, 10 times in 2022, and 15 times in 2023. The federal 8-hour ozone standard was exceeded 21 times in 2021, 9 times in 2022, and 13 times in 2023. The federal CO maximum 1-hour and federal CO maximum 8-hour standards was not exceeded in the 3-year period. The federal sulfur dioxide (SO_2) standard was not exceeded between 2021 and 2023. The State SO_2 standard has an unknown number of exceedances for the 3-year period. The State nitrogen dioxide (SO_2) maximum 1-hour standard was exceeded 40 times in 2021 and 30 times in 2022 and 2023.

Energy

Electricity

Electricity is a manmade resource. The production of electricity requires the consumption or conversion of energy resources (including water, wind, oil, gas, coal, solar, geothermal, and nuclear resources) into energy. Electricity is used for a variety of purposes (e.g., lighting, heating, cooling, and refrigeration, and for operating appliances, computers, electronics, machinery, and public transportation systems).

According to the most recent data available, in 2022, California's electricity was generated primarily by natural gas (47.5 percent), renewable sources (52.2 percent), large hydroelectric (7.2 percent), nuclear (8.7 percent), coal (<1.0 percent), and other unspecified sources.⁴ Total electric generation in California in 2022 was 287,220 gigawatt-hours (GWh), up 3.4 percent from the 2021 total generation of 277,764 GWh.⁵

The project site receives its electricity from Pacific Gas and Electric (PG&E). According to the California Energy Commission (CEC), total electricity consumption in the PG&E service area in 2022 was 104,695.0 GWh (35,245.7 GWh for the residential sector and 69,449.3 GWh for the nonresidential sector). Total electricity consumption in Madera County in 2022 was 1,808 GWh (or 1,808,229,048 kilowatt-hours [kWh]).

Natural Gas

Natural gas is a non-renewable fossil fuel. Fossil fuels are formed when layers of decomposing plant and animal matter are exposed to intense heat and pressure under the surface of the Earth over

California Energy Commission (CEC). 2022. 2022 Total System Electric Generation. Website: https://www.energy.ca.gov/data-reports/energy-almanac/california-electricity-data/2022-total-system-electric-generation (accessed October 2024).

⁵ CEC. 2021a. 2021 Total System Electric Generation. Website: https://www.energy.ca.gov/data-reports/ energy-almanac/california-electricity-data/2020-total-system-electric-generation (accessed October 2024).

⁶ CEC. 2021b. Electricity Consumption by Entity. Website: http://www.ecdms.energy.ca.gov/elecbyutil.aspx (accessed June 2024).

⁷ CEC. 2020. Electricity Consumption by County. Website: http://www.ecdms.energy.ca.gov/elecbycounty. aspx (accessed January 2024).

millions of years. Natural gas is a combustible mixture of hydrocarbon compounds (primarily methane) that is used as a fuel source. Natural gas is found in naturally occurring reservoirs in deep underground rock formations. Natural gas is used for a variety of uses (e.g., heating buildings, generating electricity, and powering appliances such as stoves, washing machines and dryers, gas fireplaces, and gas grills).

Natural gas consumed in California is used for electricity generation (45 percent), residential uses (21 percent), industrial uses (25 percent), and commercial uses (9 percent). California continues to depend on out-of-state imports for nearly 90 percent of its natural gas supply.⁸

PG&E is the natural gas service provider for the project site. According to the CEC, total natural gas consumption in the PG&E service area in 2022 was 4,449.2 million therms (1,866.2 million therms for the residential sector and 2,583.0 million therms for the nonresidential sector). Total natural gas consumption in Madera County in 2022 was 48 million therms (48,541,390 therms). Total natural

Fuel

Petroleum is also a non-renewable fossil fuel. Petroleum is a thick, flammable, yellow-to-black mixture of gaseous, liquid, and solid hydrocarbons that occurs naturally beneath the earth's surface. Petroleum is primarily recovered by oil drilling. It is refined into a large number of consumer products, primarily fuel oil, gasoline, and diesel.

The average fuel economy for light-duty vehicles (autos, pickups, vans, and sport utility vehicles [SUVs]) in the United States has steadily increased from about 14.9 miles per gallon (mpg) in 1980 to 22.8 mpg in 2022. Federal fuel economy standards have changed substantially since the Energy Independence and Security Act was passed in 2007. This act, which originally mandated a national fuel economy standard of 35 mpg by year 2020, Papplies to cars and light trucks of Model Years 2011 through 2020. In March 2020, the USEPA and National Highway Traffic Safety Administration (NHTSA) finalized the Corporate Average Fuel Economy (CAFE) standards for Model Years 2024—2026 Passenger Cars and Light Trucks, further detailed below.

Gasoline is the most used transportation fuel in California, with 97 percent of all gasoline being consumed by light-duty cars, pickup trucks, and SUVs. According to the most recent data available, in 2022, total gasoline consumption in California was 316,425 thousand barrels (12.2 billion gallons)

8

⁸ CEC. 2021c. Supply and Demand of Natural Gas in California. Website: https://www.energy.ca.gov/data-reports/energy-almanac/californias-natural-gas-market/supply-and-demand-natural-gas-california (accessed October 2024).

⁹ CEC. 2021b. Gas Consumption by Entity. Website: http://www.ecdms.energy.ca.gov/gasbyutil.aspx (accessed June 2024).

¹⁰ CEC. 2020. Gas Consumption by County. Website: http://www.ecdms.energy.ca.gov/elecbycounty.aspx (accessed January 2024).

United States Department of Transportation (USDOT). n.d. "Table 4-23: Average Fuel Efficiency of U.S. Light Duty Vehicles." Website: https://www.bts.gov/content/average-fuel-efficiency-us-light-duty-vehicles (accessed January 2024).

United States Department of Energy. 2007. "Energy Independence & Security Act of 2007." Website: https://www.afdc.energy.gov/laws/eisa (accessed October 2024).

or 1,597.6 trillion British Thermal Units (BTU). ¹³ Of the total gasoline consumption, 299,304 thousand barrels (11.5 billion gallons) or 1,511.2 trillion BTU were consumed for transportation. ¹⁴ Based on fuel consumption obtained from CARB's California Emissions Factor Model, Version 2021 (EMFAC2021), approximately 75.4 million gallons of gasoline and approximately 37.3 million gallons of diesel will be consumed from vehicle trips in Madera County in 2024.

Greenhouse Gas Emissions

Greenhouse Gas Background

GHGs are present in the atmosphere naturally, are released by natural sources, or form from secondary reactions taking place in the atmosphere. Over the last 200 years, humans have caused substantial quantities of GHGs to be released into the atmosphere. These extra emissions are increasing GHG concentrations in the atmosphere and enhancing the natural greenhouse effect, which is believed to be causing global warming. Although manmade GHGs include naturally occurring GHGs such as carbon dioxide (CO_2), methane (CH_4), and nitrous oxide (N_2O), some gases like hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), nitrogen trifluoride (N_3), and sulfur hexafluoride (N_3) are completely new to the atmosphere.

Certain gases (e.g., water vapor) are short-lived in the atmosphere. Others remain in the atmosphere for significant periods of time, contributing to climate change in the long term. Water vapor is excluded from the list of GHGs above because it is short-lived in the atmosphere and its atmospheric concentrations are largely determined by natural processes, such as oceanic evaporation.

These gases vary considerably in terms of global warming potential (GWP), which is a concept developed to compare the ability of each GHG to trap heat in the atmosphere relative to another gas. The GWP is based on several factors, including the relative effectiveness of a gas in absorbing infrared radiation and the length of time that the gas remains in the atmosphere (atmospheric lifetime). The GWP of each gas is measured relative to CO_2 , the most abundant GHG; the definition of GWP for a particular GHG is the ratio of heat trapped by one unit mass of the GHG to the ratio of heat trapped by one unit mass of CO_2 over a specified time period. GHG emissions are typically measured in terms of pounds or tons of CO_2 equivalents (CO_2e).

REGULATORY SETTING

This section provides regulatory background information for air quality, GHG, and energy.

Air Quality

Applicable federal, State, regional, and local air quality regulations are discussed below.

-

United States Energy Information Administration (EIA). 2022. California State Profile and Energy Estimates, Data. Website: www.eia.gov/state/seds/data.php?incfile=/state/seds/sep_fuel/html/fuel_mg.html&sid=CA (accessed October 2024).

¹⁴ Ibid.

Federal Regulations

The 1970 federal Clean Air Act (CAA) authorized the establishment of national health-based air quality standards and set deadlines for their attainment. The CAA Amendments of 1990 changed deadlines for attaining national standards as well as the remedial actions required for areas of the nation that exceed the standards. Under the CAA, State and local agencies in areas that exceed the national standards are required to develop State Implementation Plans to demonstrate how they will achieve the national standards by specified dates.

State Regulations

In 1988, the CCAA required that all air districts in the State endeavor to achieve and maintain California Ambient Air Quality Standards (CAAQS) for CO, ozone (O₃), SO₂, and NO₂ by the earliest practical date. The CCAA provides districts with the authority to regulate indirect sources and mandates that air quality districts focus particular attention on reducing emissions from transportation and areawide emission sources. Each nonattainment district is required to adopt a plan to achieve a 5 percent annual reduction, averaged over consecutive 3-year periods, in districtwide emissions of each nonattainment pollutant or its precursors. A Clean Air Plan shows how a district would reduce emissions to achieve air quality standards. Generally, the State standards for these pollutants are more stringent than the national standards.

CARB is the State's clean air agency. CARB's goals are to attain and maintain healthy air quality, protect the public from exposure to toxic air contaminants, and oversee compliance with air pollution rules and regulations.

Regional Regulations

San Joaquin Valley Air Pollution Control District. The SJVAPCD has specific air quality-related planning documents, rules, and regulations. This section summarizes the local planning documents and regulations that may be applicable to the project as administered by the SJVAPCD with CARB oversight.

Rule 2280—Portable Equipment Registration. Portable equipment used at project sites for less than six consecutive months must be registered with the SJVAPCD. The SJVAPCD will issue the registrations 30 days after receipt of the application. ¹⁵

Rule 2303—Mobile Source Emission Reduction Credits. A project may qualify for SJVAPCD vehicle emission reduction credits if it meets the specific requirements of Rule 2303 for any of the following categories:¹⁶

- Low-Emission Transit Buses
- Zero-Emission Vehicles

SJVAPCD. 1996a. Portable Equipment Registration. Amended May 16. Website: https://www.valleyair.org/rules/currntrules/r2280.pdf (accessed October 2024).

SJVAPCD. 1994. Mobile Source Emission Reduction Credits. Adopted May 19. Website: http://www.valley air.org/rules/currntrules/r2303.pdf (accessed October 2024).

- Retrofit Passenger Cars, Light-Duty Trucks, and Medium-Duty Vehicles
- Retrofit Heavy-Duty Vehicles

Rule 4201 and Rule 4202—Particulate Matter Concentration and Emission Rates. Rule 4201 and Rule 4202 apply to operations that emit or may emit dust, fumes, or total suspended particulate matter. ¹⁷

Rule 8011—General Requirements: Fugitive Dust Emission Sources. Fugitive dust regulations are applicable to outdoor fugitive dust sources. Operations, including construction operations, must control fugitive dust emissions in accordance with SJVAPCD Regulation VIII. According to Rule 8011, the SJVAPCD requires the implementation of control measures for fugitive dust emission sources. For projects in which construction-related activities would disturb equal to or greater than 1 acre of surface area, the SJVAPCD recommends that demonstration of receipt of an SJVAPCD-approved Dust Control Plan or Construction Notification Form, before issuance of the first grading permit, be made a condition of approval. 18

Rule 8021 – Construction, Demolition, Excavation, Extraction, and Other Earthmoving Activities. The purpose of this rule is to limit fugitive dust emissions from construction, demolition, excavation, extraction, and other earthmoving activities. This rule applies to any construction, demolition, excavation, extraction, and other earthmoving activities, including, but not limited to, land clearing, grubbing, scraping, travel on site, and travel on access roads to and from the site. This rule also applies to the construction of new landfill disposal sites or modification to existing landfill disposal sites prior to commencement of landfilling activities. ¹⁹

Rule 9510—Indirect Source Review. In December 2005, the SJVAPCD adopted the Indirect Source Rule (Rule 9510) to meet its emission reduction commitments in the PM_{10} and O_3 Attainment Plans. Indirect Source Review regulation applies to any development project that includes at least 2,000 sq ft of commercial space. This rule requires project applicants to reduce operation emission of NO_x by 33.3 percent of the project's operational baseline and 50 percent of the project's operational PM_{10} emissions. PM_{10} emissions.

Guidance for Assessing and Mitigating Air Quality Impacts. The SJVAPCD prepared the GAMAQI to assist lead agencies and project applicants in evaluating the potential air quality impacts of projects in the SJVAB. The GAMAQI provides SJVAPCD-recommended procedures for evaluating potential air quality impacts during the CEQA environmental review process. The GAMAQI provides guidance on evaluating short-term (construction) and long-term (operational) air emissions. The most recent

SJVAPCD. 1996b. Rule 4202. Particulate Matter - Emission Rate. Amended December 17. Website: https://www.valleyair.org/rules/currntrules/r4202.pdf (accessed October 2024).

SJVAPCD. 2004a. Rule 8011. Indirect Source Review. Amended August 19. Website: https://www.valley air.org/rules/currntrules/r8011.pdf (accessed October 2024).

SJVAPCD. 2004b. Rule 8021. Construction, Demolition, Excavation, Extraction, and Other Earthmoving Activities. August 19. Website: https://ww2.valleyair.org/media/bhfgzedn/rule-8021.pdf (accessed October 2024).

SJVAPCD. 2015. Rule 9510. Indirect Source Review. Adopted December 21, 2017, Effective March 21. Website: https://www.valleyair.org/rules/currntrules/r9510.pdf (accessed October 2024).

version of the GAMAQI, adopted March 19, 2015, was used in this evaluation. It contains guidance on the following:

- Criteria and thresholds for determining whether a project may have a significant adverse air quality impact;
- Specific procedures and modeling protocols for quantifying and analyzing air quality impacts;
- Methods to mitigate air quality impacts; and
- Information for use in air quality assessments and environmental documents, including air quality, regulatory setting, climate, and topography data.

Regional Air Quality Management Plan. The SJVAPCD is responsible for formulating and implementing the Air Quality Management Plan (AQMP) for the air basin. The main purpose of an AQMP is to bring the area into compliance with federal and State air quality standards. The SJVAPCD does not have one single AQMP for criteria pollutants, rather the SJVAPCD addresses each criteria pollutant with its own plan. The SJVAPCD has the following AQMPs:

- 2022 Plan for the 2015 8-Hour Ozone Standard
- 2018 Plan for the 1997, 2006, and 2012 PM_{2.5} Standards
- 2016 Moderate Area Plan for the 2012 PM_{2.5} standard
- 2016 Plan for the 2008 8-Hour Ozone Standard
- 2013 Plan for the Revoked 1-Hour Ozone Standard
- 2007 PM₁₀ Maintenance Plan
- 2004 Revision to the California State Implementation Plan for Carbon Monoxide

The SJVAPCD's AQMPs incorporate the latest scientific and technological information and planning assumptions, including updated emission inventory methodologies for various source categories. The SJVAPCD's AQMPs include the integrated strategies and measures needed to meet the National Ambient Air Quality Standards (NAAQS), implementation of new technology measures, and demonstrations of attainment of the 1-hour and 8-hour ozone NAAQS as well as the latest 24-hour and annual $PM_{2.5}$ standards.

Madera County Transportation Commission. Madera County Transportation Commission (MCTC) is the Regional Transportation Planning Agency (RTPA), Metropolitan Planning Organization (MPO), and the Local Transportation Commission (LTC) for Madera County. The Commission is responsible for the development and adoption of the Regional Transportation Plan and Transportation Improvement Program.

Regional Transportation Plan/Sustainable Communities Strategy. Regional Transportation Plans (RTPs) are State-mandated plans that identify long-term transportation needs for a

region's transportation network. MCTC 2022 RTP²¹ charts the long-range vision of regional transportation in Madera County through 2046. The RTP identifies existing and future transportation-related needs, while considering all modes of travel, analyzing alternative solutions, and identifying priorities for the anticipated available funding for projects and multiple programs included within the RTP. SB 375, which went into effect in 2009, added statutes to the California Government Code to encourage planning practices that create sustainable communities. It calls for each metropolitan planning organization to prepare a Sustainable Communities Strategy (SCS) as an integrated element of the RTP that is to be updated every 4 years. The SCS is intended to show how integrated land use and transportation planning can lead to lower GHG emissions from automobiles and light trucks. MCTC has included the SCS in its 2022 RTP.

Local Regulations

City of Madera General Plan. The City of Madera (City) addresses air quality in the Conservation Element of its General Plan. ²² The Conservation Element includes goals and policies that work to improve air quality by meeting or exceeding all State and federal standards. The following policies from the Conservation Element are applicable to the proposed project:

- Policy CON-28. Residential development projects and projects categorized as sensitive receptors
 shall be located an adequate distance from existing and potential sources of toxic emissions
 such as freeways, major arterials, industrial sites, and hazardous material locations. "Adequate
 distance" will be based on site-specific conditions, on the types and amounts of potential toxic
 emissions, and other factors.
- **Policy CON-30.** The creation of dust during construction/demolition activities should be reduced to the extent feasible.
- Policy CON-31. The City seeks to reduce the urban heat island effect in the City, which causes
 increased temperatures and increases in ground level ozone formation through methods such
 as:
 - Increasing the amount of tree coverage in the City.
 - Green roofs and rooftop gardens
 - The use of reflective treatments on roofs (such as those which qualify for the EPA/DOE's Energy Start Rating.

Madera County Transportation Commission (MCTC). 2022. 2022 Regional Transportation Plan and Sustainable Communities Strategy. August 31. Website: https://www.maderactc.org/transportation/page/your-madera-2046-rtpscs (accessed October 2024)

13

City of Madera. 2009. *City of Madera General Plan – Conservation Element*. October. Website: https://www.madera.gov/wp-content/uploads/2020/12/City-of-Madera-GP-12-04-20.pdf (accessed October 2024).

• **Policy CON-34.** The City shall consider air quality when making changes to planned land uses and transportation systems.

Energy

Federal and State agencies regulate energy use and consumption through various means and programs. On the federal level, the United States Department of Transportation (USDOT), the United States Department of Energy, and the USEPA are three federal agencies with substantial influence over energy policies and programs. Generally, federal agencies influence and regulate transportation energy consumption through establishment and enforcement of fuel economy standards for automobiles and light trucks, through funding of energy-related research and development projects, and through funding for transportation infrastructure improvements. On the State level, the California Public Utilities Commission (CPUC) and the CEC are two agencies with authority over different aspects of energy.

The CPUC regulates privately owned electric, natural gas, telecommunications, water, railroad, rail transit, and passenger transportation companies and serves the public interest by protecting consumers and ensuring the provision of safe, reliable utility service and infrastructure at reasonable rates, with a commitment to environmental enhancement and a healthy California economy.

The CEC is the State's primary energy policy and planning agency. The CEC forecasts future energy needs, promotes energy efficiency, supports energy research, develops renewable energy resources, and plans for/directs State response to energy emergencies. The applicable federal, State, regional, and local regulatory framework is discussed below.

Federal Regulations

Energy Policy Act of 2005. The Energy Policy Act of 2005 seeks to reduce reliance on non-renewable energy resources and provide incentives to reduce current demand on these resources. For example, under this act, consumers and businesses can obtain federal tax credits for purchasing fuel-efficient appliances and products (including hybrid vehicles), building energy-efficient buildings, and improving the energy efficiency of commercial buildings. Additionally, tax credits are available for the installation of qualified fuel cells, stationary microturbine power plants, and solar power equipment.

Corporate Average Fuel Economy (CAFE) Standards. On March 31, 2022, the NHTSA finalized the CAFE standards for Model Years 2024–2026 Passenger Cars and Light Trucks. The amended CAFE standards would require an industry wide fleet average of approximately 49 mpg for passenger cars and light trucks in model year 2026, by increasing fuel efficiency by 8 percent annually for model years 2024 to 2025 and 10 percent annually for model year 2026. The final standards are estimated to save about 234 billion gallons of gas between model years 2030 to 2050.

State Regulations

Assembly Bill 1575, Warren-Alquist Act. In 1975, largely in response to the oil crisis of the 1970s, the State Legislature adopted Assembly Bill (AB) 1575 (also known as the Warren-Alquist Act), which created the CEC. The statutory mission of the CEC is to forecast future energy needs; license power

plants of 50 megawatts (MW) or larger; develop energy technologies and renewable energy resources; plan for and direct State responses to energy emergencies; and, perhaps most importantly, promote energy efficiency through the adoption and enforcement of appliance and building energy efficiency standards. AB 1575 also amended Public Resources Code (PRC) Section 21100(b)(3) and *State CEQA Guidelines* Section 15126.4 to require Environmental Impact Reports (EIRs) to include, where relevant, mitigation measures proposed to minimize the wasteful, inefficient, and unnecessary consumption of energy caused by a project. Thereafter, the State Resources Agency created Appendix F to the *State CEQA Guidelines*. Appendix F assists EIR preparers in determining whether a project will result in the inefficient, wasteful, and unnecessary consumption of energy. Appendix F of the *State CEQA Guidelines* also states that the goal of conserving energy implies the wise and efficient use of energy and the means of achieving this goal, including (1) decreasing overall per capita energy consumption; (2) decreasing reliance on fossil fuels such as coal, natural gas, and oil; and (3) increasing reliance on renewable energy sources.

Senate Bill 1389, Energy: Planning and Forecasting. In 2002, the State Legislature passed Senate Bill (SB) 1389, which required the CEC to develop an integrated energy plan every 2 years for electricity, natural gas, and transportation fuels for the California Energy Policy Report. The plan calls for the State to assist in the transformation of the transportation system to improve air quality, reduce congestion, and increase the efficient use of fuel supplies with the least environmental and energy costs. To further this policy, the plan identifies a number of strategies, including assistance to public agencies and fleet operators in implementing incentive programs for zero emission vehicles (ZEVs) and their infrastructure needs and encouragement of urban designs that reduce vehicle miles traveled (VMT) and accommodate pedestrian and bicycle access.

In compliance with the requirements of SB 1389, the CEC adopts an Integrated Energy Policy Report every 2 years and an update every other year. The most recently adopted report includes the 2023 Integrated Energy Policy Report. ²³ The Integrated Energy Policy Report covers a broad range of topics, including decarbonizing buildings, integrating renewables, energy efficiency, energy equity, integrating renewable energy, updates on Southern California electricity reliability, climate adaptation activities for the energy sector, natural gas assessment, transportation energy demand forecast, and the California Energy Demand Forecast. The Integrated Energy Policy Report provides the results of the CEC's assessments of a variety of energy issues facing California. Many of these issues will require action if the State is to meet its climate, energy, air quality, and other environmental goals while maintaining energy reliability and controlling costs.

Renewable Portfolio Standard. SB 1078 established the California Renewable Portfolio Standards program in 2002. SB 1078 initially required that 20 percent of electricity retail sales be served by renewable resources by 2017; however, this standard has become more stringent over time. In 2006, SB 107 accelerated the standard by requiring that the 20 percent mandate be met by 2010. In April 2011, SB 2 required that 33 percent of electricity retail sales be served by renewable resources by 2020. In 2015, SB 350 established tiered increases to the Renewable Portfolio Standards of 40 percent by 2024, 45 percent by 2027, and 50 percent by 2030. In 2018, SB 100 increased the

-

²³ CEC. 2023. 2023 Integrated Energy Policy Report. California Energy Commission. Docket Number: 23-IEPR-01.

requirement to 60 percent by 2030 and required that all the State's electricity come from carbonfree resources by 2045. SB 100 took effect on January 1, 2019.²⁴

Title 24, California Building Code. Energy consumption by new buildings in California is regulated by the Building Energy Efficiency Standards, embodied in Title 24 of the California Code of Regulations (CCR), known as the California Building Code (CBC). The CEC first adopted the Building Energy Efficiency Standards for Residential and Non-residential Buildings in 1978 in response to a legislative mandate to reduce energy consumption in the State. The CBC is updated every 3 years, with the most recent update consisting of the 2022 CBC that became effective January 1, 2023. The efficiency standards apply to both new construction and rehabilitation of both residential and non-residential buildings and regulate energy consumed for heating, cooling, ventilation, water heating, and lighting. The building efficiency standards are enforced through the local building permit process. Local government agencies may adopt and enforce energy standards for new buildings, provided these standards meet or exceed those provided in CCR Title 24.

California Green Building Standards Code. In 2010, the California Building Standards Commission (CBSC) adopted Part 11 of the Title 24 Building Energy Efficiency Standards, referred to as the California Green Building Standards Code (CALGreen Code). The CALGreen Code took effect on January 1, 2011. The CALGreen Code is updated on a regular basis, with the most recent update consisting of the 2022 CALGreen Code standards that became effective January 1, 2023. The CALGreen Code established mandatory measures for residential and non-residential building construction and encouraged sustainable construction practices in the following five categories: (1) planning and design, (2) energy efficiency, (3) water efficiency and conservation, (4) material conservation and resource efficiency, and (5) indoor environmental quality. Although the CALGreen Code was adopted as part of the State's efforts to reduce GHG emissions, the CALGreen Code standards have co-benefits of reducing energy consumption from residential and non-residential buildings subject to the standard.

California Energy Efficiency Strategic Plan. On September 18, 2008, the CPUC adopted California's first Long-Term Energy Efficiency Strategic Plan, presenting a roadmap for energy efficiency in California. The Plan articulates a long-term vision and goals for each economic sector and identifies specific near-term, mid-term, and long-term strategies to assist in achieving those goals. The Plan also reiterates the following four specific programmatic goals, known as the "Big Bold Energy Efficiency Strategies," that were established by the CPUC in Decisions D.07-10-032 and D.07-12-051:

- All new residential construction will be zero net energy (ZNE) by 2020.
- All new commercial construction will be ZNE by 2030.
- 50 percent of commercial buildings will be retrofitted to ZNE by 2030.
- 50 percent of new major renovations of State buildings will be ZNE by 2025.

Regional Regulations

There are no regional energy regulations that apply to the proposed project.

²⁴ California Public Utilities Commission (CPUC). 2019. Renewables Portfolio Standard Program. Website: cpuc.ca.gov/rps (accessed October 2024).

Local Regulations

City of Madera General Plan. The City of Madera addresses energy in the Conservation Element of the City's General Plan. ²⁵ The Conservation Element contains policies that work to conserve energy resources through the use of available technology and conservation practices. The following policies are applicable to the proposed project:

- **Policy CON-40.** All public and private development—including homes, commercial, and industrial—should be designed to be energy-efficient.
- **Policy CON-44.** The City supports the use of green building practices in the planning, design, construction, management, renovation, operations, and demolition of all private buildings and projects, including:
 - Land planning and design techniques that preserve the natural environment and minimize disturbance of the land.
 - Site development to reduce erosion, minimize paved surfaces and runoff and protect vegetation, especially trees.
 - Water conservation indoors and outdoors.
 - Energy efficiency in heating/cooling systems, appliances, lighting and the building envelope.
 - Selection of materials based on recyclability, durability and the amount of energy used to create the material.
 - Waste reduction, reuse and recycling during construction and throughout the life of the project.
 - Other new aspects of green design and construction included in LEED or other certification programs.
 - Control nighttime lighting to lower energy use, reduce glare, and prevent illumination of the night sky.
- Policy CON- 45. The City supports the use of green building practices in the planning, design, construction, management, renovation, operations, and demolition of facilities constructed, owned, managed, or financed by the City. All new building projects (projects intended for human occupancy) involving the use of local public funds should incorporate green building practices. Except as dictated by unique circumstances associated with a given project, the typical standard for green building will be the equivalent of the "LEED Silver Standard".

-

²⁵ City of Madera. 2009. *City of Madera General Plan – Conservation Element*. October. Website: https://www.madera.gov/wp-content/uploads/2020/12/City-of-Madera-GP-12-04-20.pdf (accessed October 2024).

Greenhouse Gas Emissions

This section describes regulations related to GHG emissions at the federal, State, and local levels.

Federal Regulations

The United States has historically had a voluntary approach to reducing GHG emissions. However, on April 2, 2007, the United States Supreme Court ruled that the USEPA has the authority to regulate CO₂ emissions under the CAA.

Although there currently are no adopted federal regulations for the control or reduction of GHG emissions, the USEPA commenced several actions in 2009 to implement a regulatory approach to global climate change, including the 2009 USEPA final rule for mandatory reporting of GHGs from large GHG emission sources in the United States. Additionally, the USEPA Administrator signed an endangerment finding action in 2009 under the CAA, finding that seven GHGs (CO_2 , CH_4 , N_2O , HFCs, NF_3 , PFCs, and SF_6) constitute a threat to public health and welfare and that the combined emissions from motor vehicles cause and contribute to global climate change, leading to national GHG emission standards.

State Regulations

CARB is the lead agency for implementing climate change regulations in the State. Since its formation, CARB has worked with the public, the business sector, and local governments to find solutions to California's air pollution problems. Key efforts by the State are described below.

Assembly Bill 32 (2006), California Global Warming Solutions Act. California's major initiative for reducing GHG emissions is AB 32, passed by the State legislature on August 31, 2006. This effort set a GHG emission reduction target to reduce GHG emissions to 1990 levels by 2020. CARB has established the level of GHG emissions in 1990 at 427 million metric tons (MMT) of CO₂e. The emissions target of 427 MMT requires the reduction of 169 MMT from the State's projected business-as-usual 2020 emissions of 596 MMT. AB 32 requires CARB to prepare a Scoping Plan that outlines the main State strategies for meeting the 2020 deadline and to reduce GHGs that contribute to global climate change. CARB approved the Scoping Plan on December 11, 2008. It contains the main strategies California will implement to achieve the reduction of approximately 169 MMT CO₂e, or approximately 30 percent, from the State's projected 2020 emissions level of 596 MMT CO₂e under a business-as-usual scenario (this is a reduction of 42 MMT CO₂e, or almost 10 percent, from the 2002–2004 average emissions). The Scoping Plan also includes CARB-recommended GHG reductions for each emissions sector of the State's GHG inventory. The Scoping Plan calls for the largest reductions in GHG emissions to be achieved by implementing the following measures and standards:

- Improved emissions standards for light-duty vehicles (estimated reduction of 31.7 MMT CO₂e)
- The Low-Carbon Fuel Standard (15.0 MMT CO₂e)
- Energy efficiency measures in buildings and appliances and the widespread development of combined heat and power systems (26.3 MMT CO₂e)

A renewable portfolio standard for electricity production (21.3 MMT CO₂e)

The CARB approved the First Update to the Climate Change Scoping Plan on May 22, 2014. The First Update identifies opportunities to leverage existing and new funds to further drive GHG emission reductions through strategic planning and targeted low carbon investments. The First Update defines CARB climate change priorities until 2020 and sets the groundwork to reach long-term goals set forth in Executive Orders (EOs) S-3-05 and B-16-2012. The First Update highlights California's progress toward meeting the "near-term" 2020 GHG emission reduction goals as defined in the initial Scoping Plan. It also evaluates how to align the State's "longer-term" GHG reduction strategies with other State policy priorities for water, waste, natural resources, clean energy, transportation, and land use. CARB released a second update to the Scoping Plan, the 2017 Scoping Plan, ²⁶ to reflect the 2030 target that was set by EO B-30-15 and codified by Senate Bill (SB) 32.

The 2022 Scoping Plan²⁷ was approved in December 2022 and assesses progress toward the statutory 2030 target while laying out a path to achieving carbon neutrality no later than 2045. The 2022 Scoping Plan Update focuses on outcomes needed to achieve carbon neutrality by assessing paths for clean technology, energy deployment, natural and working lands, and others, and is designed to meet the State's long-term climate objectives and support a range of economic, environmental, energy security, environmental justice, and public health priorities.

Senate Bill 375 (2008). Signed into law on October 1, 2008, SB 375 supplements GHG reductions from new vehicle technology and fuel standards with reductions from more efficient land use patterns and improved transportation. Under the law, CARB-approved GHG reduction targets in February 2011 for California's 18 federally designated regional planning bodies, known as Metropolitan Planning Organizations (MPOs). CARB may update the targets every 4 years and must update them every 8 years. MPOs, in turn, must demonstrate how their plans, policies, and transportation investments meet the targets set by CARB through Sustainable Community Strategies (SCSs). The SCSs are included with the Regional Transportation Plan (RTP), a report required by State law. However, if an MPO finds that its SCS will not meet the GHG reduction targets, it may prepare an Alternative Planning Strategy. The Alternative Planning Strategy identifies the impediments to achieving the targets.

Executive Order B-30-15 (2015). Governor Jerry Brown signed EO B-30-15 on April 29, 2015, which added the immediate target of:

GHG emissions should be reduced to 40 percent below 1990 levels by 2030.

All State agencies with jurisdiction over sources of GHG emissions were directed to implement measures to achieve reductions of GHG emissions to meet the 2030 and 2050 targets. CARB was directed to update the AB 32 Scoping Plan to reflect the 2030 target and, therefore, is moving forward with the update process. The mid-term target is critical to help frame the suite of policy

-

²⁶ CARB. 2017. *California's 2017 Climate Change Scoping Plan*. November.

²⁷ CARB. 2022. 2022 Scoping Plan Update. May 10. Website: https://ww2.arb.ca.gov/sites/default/files/2022-12/2022-sp.pdf (accessed October 2024).

measures, regulations, planning efforts, and investments in clean technologies and infrastructure needed to continue reducing emissions.

Senate Bill 350 (2015) Clean Energy and Pollution Reduction Act. SB 350, signed by Governor Jerry Brown on October 7, 2015, updates and enhances AB 32 by introducing the following set of objectives in clean energy, clean air, and pollution reduction for 2030:

- Raise California's renewable portfolio standard from 33 percent to 50 percent.
- Increase energy efficiency in buildings by 50 percent by the year 2030.

The 50 percent renewable energy standard will be implemented by the California Public Utilities Commission (CPUC) for the private utilities and by the California Energy Commission (CEC) for municipal utilities. Each utility must submit a procurement plan showing it will purchase clean energy to displace other nonrenewable resources. The 50 percent increase in energy efficiency in buildings must be achieved through the use of existing energy efficiency retrofit funding and regulatory tools already available to State energy agencies under existing law. The addition made by this legislation requires State energy agencies to plan for and implement those programs in a manner that achieves the energy efficiency target.

Senate Bill 32, California Global Warming Solutions Act of 2016, and Assembly Bill 197. In summer 2016, the Legislature passed, and the Governor signed, SB 32 and AB 197. SB 32 affirms the importance of addressing climate change by codifying into statute the GHG emissions reductions target of at least 40 percent below 1990 levels by 2030 contained in Governor Brown's April 2015 EO B-30-15. SB 32 builds on AB 32 and keeps us on the path toward achieving the State's 2050 objective of reducing emissions to 80 percent below 1990 levels, consistent with an Intergovernmental Panel on Climate Change analysis of the emission trajectory that would stabilize atmospheric GHG concentrations at 450 parts per million (ppm) CO₂e and reduce the likelihood of catastrophic impacts from climate change.

AB 197, the companion bill to SB 32, provides additional direction to CARB related to the adoption of strategies to reduce GHG emissions. Additional direction in AB 197 meant to provide easier public access to air emissions data that are collected by CARB was posted in December 2016.

Senate Bill 100. On September 10, 2018, Governor Brown signed SB 100, which raises California's renewable portfolio standard requirements to 60 percent by 2030, with interim targets, and 100 percent by 2045. The bill also establishes a State policy that eligible renewable energy resources and zero-carbon resources supply 100 percent of all retail sales of electricity to California end-use customers and 100 percent of electricity procured to serve all State agencies by December 31, 2045. Under the bill, the State cannot increase carbon emissions elsewhere in the Western grid or allow resource shuffling to achieve the 100 percent carbon-free electricity target.

Executive Order B-55-18. EO B-55-18, signed September 10, 2018, sets a goal "to achieve carbon neutrality as soon as possible, and no later than 2045, and achieve and maintain net negative emissions thereafter." EO B-55-18 directs CARB to work with relevant State agencies to ensure that future Scoping Plans identify and recommend measures to achieve the carbon neutrality goal. The goal of carbon neutrality by 2045 is in addition to other statewide goals, meaning that not only should emissions be reduced to 80 percent below 1990 levels by 2050, but that, by no later than

2045, the remaining emissions should be offset by equivalent net removals of CO₂e from the atmosphere, including through sequestration in forests, soils, and other natural landscapes.

Assembly Bill 1279. AB 1279 was signed in September 2022 and codifies the State goals of achieving net carbon neutrality by 2045 and maintaining net negative GHG emissions thereafter. This bill also requires California to reduce statewide GHG emissions by 85 percent compared to 1990 levels by 2045 and directs CARB to work with relevant State agencies to achieve these goals.

Title 24, Building Efficiencies Standards, and the California Green Building Standards Code. In November 2008, the California Building Standards Commission established the California Green Building Standards Code (CALGreen) (California Code of Regulations Title 24, Part 11), which sets performance standards for residential and nonresidential development to reduce environmental impacts and to encourage sustainable construction practices. CALGreen addresses energy efficiency, water conservation, material conservation, planning and design, and overall environmental quality. CALGreen is updated every 3 years and was most recently updated in 2022 to include new mandatory measures for residential as well as nonresidential uses; the new measures took effect on January 1, 2023.

Regional Regulations

San Joaquin Valley Air Pollution Control DistrictThe City of Madera is under the jurisdiction of the SJVAPCD. The SJVAPCD has regulatory authority over certain stationary and industrial GHG emission sources and provides voluntary technical guidance on addressing GHGs for other emission sources in a CEQA context. SJVAPCD initiatives related to GHGs are described below.

Climate Change Action Plan. The San Joaquin Valley Air Pollution Control District Climate Change Action Plan (CCAP) was adopted on August 21, 2008. The CCAP includes suggested best performance standards (BPS) for proposed development projects. However, the SJVAPCD's CCAP was adopted in 2009 and was prepared based on the State's 2020 GHG targets, which are now superseded by State policies (i.e., the 2019 California Green Building Code) the 2030 GHG targets, established in SB 32, and the 2045 carbon neutrality goals included in AB 1279.

Local Regulations

City of Madera General Plan. The City of Madera addresses GHGs in the Conservation Element of its General Plan. The Conservation Element includes goals and policies that work to reduce emissions of greenhouse gases that contribute to global climate change in accord with federal and State law. The following policies from the Conservation Element are related to GHGs and are applicable to the proposed project:

 Policy CON-35. The City shall implement and enforce State and Regional regulations pertaining to greenhouse gas emissions and climate change

_

City of Madera. 2009. *City of Madera General Plan – Conservation Element*. October. Website: https://www.madera.gov/wp-content/uploads/2020/12/City-of-Madera-GP-12-04-20.pdf (accessed October 2024).

- **Policy CON-36.** The City supports local, regional, and statewide efforts to reduce the emission of greenhouse gases linked to climate change.
- **Policy CON-37.** The City shall collaborate and coordinate with regional organizations and local jurisdictions within the City to reduce greenhouse gas emissions.
- **Policy CON-38.** The City shall partner with local agencies and organizations to coordinate outreach and education regarding the effects of greenhouse gas emissions and climate change.
- **Policy CON**-39. The City supports the goals of recently adopted Senate Bill 375 and will review this General Plan for consistency with the Sustainable Community Strategy (SCS) to be adopted by the Madera County Transportation Commission. The City will consider amendments to the General Plan as it deems appropriate to implement the SCS.

City of Madera Climate Action Plan (CAP). The City of Madera adopted its Climate Action Plan (CAP) in December of 2015. ²⁹ The City of Madera CAP is a long-range plan to reduce GHG emissions from City government (municipal) and community-wide activities within the city and to prepare for the anticipated effects of climate change. The CAP provides a strategy for reducing GHG emissions. It includes objectives and policies from the proposed General Plan that addressed long-term emissions reduction efforts. The timeframe for the CAP extends from the date of adoption through the year 2030. The following community reduction measures from the CAP are applicable to the proposed project:

- **LG-1: Municipal Energy Efficiency and Conservation**: Reduce non-renewable energy consumption in City buildings and facilities.
 - General Plan Policies and Actions:
 - **Policy CON-40**: All public and private development—including homes, commercial, and industrial—should be designed to be energy-efficient.
 - Policy CON-45: The City supports the use of green building practices in the planning, design, construction, management, renovation, operations, and demolition of facilities constructed, owned, managed, or financed by the City. All new building projects (projects intended for human occupancy) involving the use of local public funds should incorporate green building practices. Except as dictated by unique circumstances associated with a given project, the typical standard for
- LG-2: Municipal Renewable Energy: Increase the amount of municipal energy derived from renewable sources.
 - General Plan Policies and Actions:

_

²⁹ City of Madera. 2015. *City of Madera Climate Action Plan*. September. Website: https://www.madera. gov/wp-content/uploads/2017/08/Final-Madera-CAP_September-2015.pdf (accessed October 2024).

- Action Item CON-40.4: To the extent practical, integrate appropriate renewable energy and clean generation technologies into existing City facilities, such as solar, wind, biofuel, cogeneration, and fuel cells to power City facilities.
- Policy CON-42: The City will promote and encourage co-generation projects for commercial, industrial, and municipal facilities, provided they meet all applicable air quality standards and provide a net reduction in GHG emissions associated with energy production.
- **Policy CON-43:** The City will install renewable energy systems at its facilities where feasible, including solar collection systems at municipal properties and waste-to-energy (methane recovery) systems at the wastewater treatment plant.
- **LG-6: Tree Planting on City Property:** Increase the quantity of drought-tolerant, low-maintenance native trees and vegetation on City-owned or -operated property.
 - General Plan Policies and Actions:
 - **Policy CON-9**: The City will evaluate existing City-maintained landscaping and will, as feasible, install or replace vegetation with drought-tolerant, low-maintenance native species.
 - Policy CON-10: The City will evaluate existing landscaping and options to convert reflective and impervious surfaces to landscaping, and will, as feasible, install or replace vegetation with drought tolerant, low-maintenance native species that can also provide shade and reduce heat-island effects.
- **E-2: Energy Efficient New Construction:** Increase the efficient use of energy and conservation of available resources in the design and construction of new buildings.
 - General Plan Policies and Actions:
 - **Policy CON-40**: All public and private development—including homes, commercial, and industrial— should be designed to be energy-efficient.
 - Policy CON-44: The City supports the use of green building practices in the planning, design, construction, management, renovation, operations, and demolition of all private buildings and projects, including: water conservation indoors and outdoors; selection of materials based on recyclability, durability and the amount of energy used to create the material; waste reduction, reuse and recycling during construction and throughout the life of the project; other new aspects of green design and construction included in LEED or other certification programs; control nighttime lighting to lower energy use.
 - Policy CON-46: The City will identify and remove regulatory or procedural barriers to implementing green building practices within its jurisdiction, such as updating codes, guidelines, and zoning, and will ensure that all plan review and building inspection staff are trained in green building materials, practices, and techniques.

METHODOLOGY

Construction Emissions

Construction activities can generate a substantial amount of air pollution. Construction activities are considered temporary; however, short-term impacts can contribute to exceedances of air quality standards. Construction activities include site preparation, earthmoving, and general construction. The emissions generated from these common construction activities include fugitive dust from soil disturbance and fuel combustion from mobile heavy-duty equipment, diesel- and gasoline-powered equipment, portable auxiliary equipment, and worker commute trips.

The California Emissions Estimator Model version 2022.1 (CalEEMod) computer program was used to calculate emissions from on-site construction equipment and emissions from worker and vehicle trips to the site. As discussed previously in the Project Location and Description section, construction is anticipated to begin in early 2025. However, the construction schedule of the proposed project is not yet known. Therefore, this analysis utilizes a CalEEMod default construction schedule, which anticipates construction to begin in March 2025 and occur for approximately 27 months, ending in 2027. This represents a conservative analysis, because if the proposed construction activities should occur at a later timeframe, estimated emissions would be expected to decrease into the future due to technological advances and the implementation of forthcoming regulatory requirements. The proposed project would not require the import or export of soil. This analysis assumes that the proposed project would comply with SJVAPCD District Regulation VIII (Fugitive PM₁₀ Prohibition) to control fugitive dust. This analysis also assumes the use of Tier 2 construction equipment. All other construction details are not yet known; therefore, default assumptions (e.g., construction worker and truck trips and fleet activities) from CalEEMod were used.

Construction Health Risk Assessment

A construction Health Risk Assessment (HRA), which evaluates construction-period health risk to offsite receptors, was performed for the proposed project, and the analysis is presented below. To
estimate the potential cancer risk associated with construction of the proposed project from
equipment exhaust (including diesel particulate matter), a dispersion model was used to translate
an emission rate from the source location to a concentration at the receptor location of interest
(i.e., a nearby residence and worksites). Dispersion modeling varies from a simpler, more
conservative screening-level analysis to a more complex and refined detailed analysis. This refined
assessment was conducted using the CARB exposure methodology with the air dispersion modeling
performed using the USEPA's American Meteorological Society/Environmental Protection Agency
Regulatory Model (AERMOD). The model provides a detailed estimate of exhaust concentrations
based on site and source geometry, source emissions strength, distance from the source to the
receptor, and meteorological data.

Operational Emissions

This air quality analysis includes estimating emissions associated with long-term operation of the project. Indirect emissions of criteria pollutants with regional impacts would be emitted by project-generated vehicle trips. In addition, localized air quality impacts (i.e., higher CO concentrations or hot-spots) near intersections or roadway segments in the project vicinity would also potentially occur due to project-generated vehicle trips.

As discussed in the Project Location and Description section, the proposed project would include the construction of 168 single-family residential units and associated site improvements. The proposed project analysis was conducted using land use codes *Single Family Housing* and *City Park*. Trip generation rates used in CalEEMod for the project were based on the project's *Trip Generation*, which identifies that the proposed project would generate approximately 1,585 average daily trips. ³⁰ In addition, the proposed project would be all-electric and would include solar energy that would offset electricity consumption by approximately 80 percent, which was included in CalEEMod. Consistent with SJVAPCD Rule 4901, this analysis assumes that the proposed project would not include any wood burning (or natural gas) fireplaces. Where project-specific data were not available, default assumptions (e.g., water usage, and solid waste generation) from CalEEMod were used to estimate project emissions.

Energy

The analysis focuses on the sources of energy that are relevant to the proposed project: electricity, the equipment fuel necessary for project construction, and vehicle fuel necessary for project operations. The analysis of electricity usage is based on the CalEEMod modeling conducted by LSA, which quantifies energy use for project operations. Fuel consumption (diesel fuel and gasoline) from vehicle trips during operation was estimated for the opening year (2027) of the proposed project based on trip estimates from the CalEEMod model and fuel efficiencies from the CARB EMFAC2021 model. Estimates of fuel consumption (diesel fuel and gasoline) from construction trucks and construction worker vehicles were based on trip estimates from the CalEEMod model and fuel efficiencies from the CARB EMFAC2021 model. For the purposes of this analysis, the amount of electricity, construction fuel, and fuel use from operations are quantified and compared to that consumed in Madera County. The electricity use of the proposed project is analyzed as a whole on an annual basis. Electricity use was estimated for the project using default energy intensities by land use type in CalEEMod.

Greenhouse Gas Emissions

GHG emissions associated with the project would occur over the short term from construction activities, consisting primarily of emissions from equipment exhaust. There would also be long-term GHG emissions associated with project-related vehicular trips. Recognizing that the field of global climate change analysis is rapidly evolving, the approaches advocated most recently indicate that, for determining a project's contribution to GHG emissions, lead agencies should calculate or estimate emissions from vehicular traffic, energy consumption, water conveyance and treatment, waste generation, construction activities, and any other significant source of emissions within the project area. The CalEEMod results were used to quantify GHG emissions generated by the project.

THRESHOLDS OF SIGNIFICANCE

Air Quality

The State CEQA Guidelines indicate that a project would normally have a significant adverse air quality impact if project-generated pollutant emissions would do any of the following:

³⁰ Crawford & Bowen Planning, Inc. 2024. Proposed Project Land Use Trip Generation. September.

- Conflict with or obstruct implementation of the applicable air quality plan;
- Result in a cumulatively considerable net increase of any criteria pollutant for which the project is in nonattainment under applicable NAAQS or CAAQS;
- Expose sensitive receptors to substantial pollutant concentrations; or
- Result in other emissions (such as those leading to odors) affecting a substantial number of people.

Regional Emissions Thresholds

The SJVAPCD has established thresholds of significance for criteria pollutant emissions generated during construction and operation of projects as shown in Table D.

Table D: SJVAPCD Construction and Operation Thresholds of Significance (Tons per Year)

	СО	NO _x	ROG	SO _x	PM ₁₀	PM _{2.5}
Construction Thresholds	100	10	10	27	15	15
Operation Thresholds	100	10	10	27	15	15

Source: Guidance for Assessing and Mitigating Air Quality Impacts (SJVAPCD 2015).

CO = carbon monoxide PM_{10} = particulate matter less than 10 microns in size

lbs/day = pounds per day ROG = reactive organic gases

NO_x = nitrogen oxides SJVAPCD = San Joaquin Valley Air Pollution Control District

 $PM_{2.5}$ = particulate matter less than 2.5 microns in size SO_X = sulfur oxides

The emissions thresholds in the SJVAPCD GAMAQI were established based on the attainment status of the air basin in regard to air quality standards for specific criteria pollutants. Because the concentration standards were set at a level that protects public health with an adequate margin of safety, these emission thresholds are regarded as conservative and would overstate an individual project's contribution to health risks.

Local Microscale Concentration Standards

The significance of localized project impacts under CEQA depends on whether ambient CO levels in the project vicinity are above or below State and federal CO standards. Because ambient CO levels are below the standards throughout the SCAQMD, a project would be considered to have a significant CO impact if project emissions would result in an exceedance of one or more of the 1-hour or 8-hour standards. The following are applicable local emission concentration standards for CO:

- California State 1-hour CO standard of 20 ppm
- California State 8-hour CO standard of 9 ppm

Health Risk Thresholds

Both the State and federal governments have established health-based ambient air quality standards (AAQS) for seven air pollutants. For other air pollutants without defined significance standards, the definition of substantial pollutant concentrations varies. For toxic air contaminants

(TACs), "substantial" is taken to mean that the individual health risk exceeds a threshold considered to be a prudent risk management level.

The following limits for maximum individual cancer risk (MICR) and noncancer acute and chronic Hazard Index (HI) from project emissions of TACs are considered appropriate for use in determining the health risk for projects in the SJVAB:

- MICR: MICR is the estimated probability of a maximum exposed individual (MEI) contracting
 cancer as a result of exposure to TACs over a period of 30 years for adults and 9 years for
 children in residential locations, 350 days per year. The SJVAPCD's Update to the District's Risk
 Management Policy to Address the OEHHA Revised Risk Assessment Guidance Document states
 that emissions of TACs are considered significant if an HRA shows an increased risk of greater
 than 20 in 1 million.
- Chronic HI: Chronic HI is the ratio of the estimated long-term level of exposure to a TAC for a
 potential MEI to its chronic reference exposure level. The chronic HI calculations include multipathway consideration when applicable. The project would be considered significant if the
 cumulative increase in total chronic HI for any target organ system would exceed 1.0 at any
 receptor location.
- Acute HI: Acute HI is the ratio of the estimated maximum 1-hour concentration of a TAC for a potential MEI to its acute reference exposure level. The project would be considered significant if the cumulative increase in total acute HI for any target organ system would exceed 1.0 at any receptor location.

Energy

The State CEQA Guidelines indicate that a project would normally have a significant adverse impact related to energy if the project would:

- Result in potentially significant environmental impact due to wasteful, inefficient, or unnecessary consumption of energy resources during project construction or operation; or
- Conflict with or obstruct a State or local plan for renewable energy or energy efficiency.

Greenhouse Gas Thresholds

The State CEQA Guidelines indicate that a project would normally have a significant adverse greenhouse gas emission impact if the project would:

- Generate GHG emissions, either directly or indirectly, that may have a significant impact on the environment; or
- Conflict with an applicable plan, policy, or regulation adopted for the purpose of reducing the emissions of GHGs.

Section 15064.4 of the *State CEQA Guidelines* states that: "A lead agency should make a good-faith effort, based to the extent possible on scientific and factual data, to describe, calculate or estimate

the amount of greenhouse gas emissions resulting from a project." In performing that analysis, the lead agency has discretion to determine whether to use a model or methodology to quantify GHG emissions or to rely on a qualitative analysis or performance-based standards. In making a determination as to the significance of potential impacts, the lead agency then considers the extent to which the project may increase or reduce GHG emissions as compared to the existing environmental setting, whether the project emissions exceed a threshold of significance that the lead agency determines applies to the project, and the extent to which the project complies with regulations or requirements adopted to implement a statewide, regional, or local plan for the reduction or mitigation of GHG emissions.

At the time of preparation, the City's CAP met the requirements for a Qualified Greenhouse Gas Reduction Strategy and was designed to streamline environmental review of future development projects, consistent with *State CEQA Guidelines* Section 15183.5(b), by showing that the city would achieve emission reduction goals in-line with State goals and targets codified in Assembly Bill (AB) 32 and Senate Bill (SB) 32 for the years 2020 and 2030. SB 32 affirms the importance of addressing climate change by codifying into statute a GHG emissions reductions target of at least 40 percent below 1990 levels by 2030, along with setting an objective for California to reduce emissions to 80 percent below 1990 levels by 2050. However, the City's CAP does not address State goals related to achieving carbon neutrality by 2045 (as recently codified in AB 1279). Therefore, in the absence of any City or SJVAPCD specific guidelines or thresholds, this analysis evaluates the proposed project for consistency with the Bay Area Air Quality Managing District (BAAQMD) *Justification Report: CEQA Thresholds for Evaluating the Significance of Climate Impacts from Land Use Projects and Plans* (Justification Report). ³¹

In April 2022, the BAAQMD adopted the Justification Report³² document, which identifies applicable GHG significance thresholds. These thresholds establish whether a project would be consistent with California's efforts to meet long-term climate goals of achieving carbon neutrality by 2045. If a project is designed and built to incorporate design elements related to natural gas, energy, VMT, and EVs, then it would contribute its portion of what is necessary to achieve California's long-term climate goals—its "fair share"—and an agency reviewing the project under CEQA can conclude that the project would not make a cumulatively considerable contribution to global climate change.

The Justification Report provides substantial evidence supporting the use of their thresholds for projects throughout California because the thresholds are applicable to meeting the State's goal. In the absence of any City or SJVAPCD specific guidelines or thresholds, this analysis evaluates the proposed project for consistency with the identified project design elements as the applicable thresholds of significance to establish if the proposed project is achieving its "fair share" of emission reductions to support long term State goals for GHG emissions and carbon neutrality.

According to the Justification Report, a project would have a less than significant impact related to GHG emissions if it would include the following project design elements:

-

Bay Area Air Quality Management District (BAAQMD). 2022. *Justification Report: CEQA Thresholds for Evaluating the Significance of Climate Impacts From Land Use Projects and Plans*. April.

³² Ibid.

1. Buildings

- a. The project will not include natural gas appliances or natural gas plumbing (in both residential and nonresidential development).
- b. The project will not result in any wasteful, inefficient, or unnecessary electrical usage as determined by the analysis required under CEQA Section 21100(b)(3) and Section 15126.2(b) of the State CEQA Guidelines.

2. Transportation

- a. Achieve a reduction in project-generated vehicle miles traveled (VMT) below the regional average consistent with the current version of the California Climate Change Scoping Plan (currently 15 percent) or meet a locally adopted Senate Bill 743 VMT target, reflecting the recommendations provided in the Governor's Office of Planning and Research's Technical Advisory on Evaluating Transportation Impacts in CEQA:
 - 1. Residential projects: 15 percent below the existing VMT per capita
 - 2. Office projects: 15 percent below the existing VMT per employee
 - 3. Retail projects: no net increase in existing VMT
- b. Achieve compliance with off-street electric vehicle requirements in the most recently adopted version of CALGreen Tier 2.

These project design elements are utilized in the following analysis as the thresholds of significance to evaluate the project's potential GHG emissions impact, given the absence of City or SJVAPCD specified thresholds. The proposed project is also evaluated for consistency with the City's CAP, AB 1279, the CARB 2022 Scoping Plan, and the Madera MCTC RTP/SCS.

IMPACT ANALYSIS

This section identifies potential air quality and GHG impacts associated with implementation of the proposed project.

Air Quality Impacts

Air pollutant emissions associated with the project would occur over the short term from construction activities and over the long term from project-related vehicular trips and due to energy consumption by the proposed land uses.

Consistency with Applicable Air Quality Plans

An air quality plan describes air pollution control strategies to be implemented by a city, county, or region classified as a non-attainment area. The main purpose of the air quality plan is to bring the area into compliance with the requirements of the federal and State air quality standards. To bring the San Joaquin Valley into attainment, the SJVAPCD adopted the 2022 Plan for the 2015 8-Hour

Ozone Standard in December 2022 to satisfy CAA requirements and ensure attainment of the 70 parts per billion (ppb) 8-hour ozone standard.

To assure the SJVAB's continued attainment of the USEPA PM_{10} standard, the SJVAPCD adopted the 2007 PM_{10} Maintenance Plan and Request for Redesignation in September 2007. ³³ SJVAPCD Regulation VIII (Fugitive PM_{10} Prohibitions) is designed to reduce PM_{10} emissions generated by human activity. The SJVAPCD adopted the 2018 Plan for the 1997, 2006, and 2012 $PM_{2.5}$ Standards to address the USEPA annual $PM_{2.5}$ standard of 12 micrograms per cubic meter ($\mu g/m^3$), established in 2012. ³⁴

CEQA requires that certain projects be analyzed for consistency with the applicable air quality plan. For a project to be consistent with SJVAPCD air quality plans, the pollutants emitted from a project should not exceed the SJVAPCD emission thresholds or cause a significant impact on air quality. In addition, emission reductions achieved through implementation of offset requirements are a major component of the SJVAPCD air quality plans. As discussed below, construction of the project would not result in the generation of criteria air pollutants that would exceed SJVAPCD thresholds of significance. Implementation of SJVAPCD Regulation VIII would further reduce construction dust impacts. Operational emissions associated with the project would not exceed SJVAPCD established significance thresholds for reactive organic gases (ROG), NO_x, CO, sulfur oxides (SO_x), PM₁₀, or PM_{2.5} emissions. Therefore, the project would not conflict with or obstruct implementation of SJVAPCD air quality plans.

Criteria Pollutant Analysis

The SJVAB is designated as non-attainment for O_3 and $PM_{2.5}$ for federal standards and non-attainment for O_3 , PM_{10} , and $PM_{2.5}$ for State standards. The SJVAPCD's nonattainment status is attributed to the region's development history. Past, present, and future development projects contribute to the region's adverse air quality impacts on a cumulative basis. By its very nature, air pollution is largely a cumulative impact. No single project is sufficient in size to, by itself, result in nonattainment of ambient air quality standards. Instead, a project's individual emissions contribute to existing cumulatively significant adverse air quality impacts. If a project's contribution to the cumulative impact is considerable, then the project's impact on air quality would be considered significant.

In developing thresholds of significance for air pollutants, the SJVAPCD considered the emission levels for which a project's individual emissions would be cumulatively considerable. If a project exceeds the identified significance thresholds, its emissions would be cumulatively considerable, resulting in significant adverse air quality impacts to the region's existing air quality conditions. The following analysis assesses the potential project-level construction- and operation-related air quality impacts.

SJVAPCD. 2007. 2007 PM₁₀ Maintenance Plan and Request for Redesignation. Website: www.valleyair.org/Air_Quality_Plans/docs/Maintenance%20Plan10-25-07.pdf (accessed October 2024).

_

SJVAPCD. 2018. 2018 Plan for the 1997, 2006, and 2012 PM_{2.5} Standards. Website: www.valleyair.org/pmplans/documents/2018/pm-plan-adopted/2018-Plan-for-the-1997-2006-and-2012-PM2.5-Standards. pdf (accessed October 2024).

Construction Emissions. During construction, short-term degradation of air quality may occur due to the release of particulate matter emissions (i.e., fugitive dust) generated by grading, building construction, paving, and other activities. Emissions from construction equipment are also anticipated and would include CO, NO_X,ROG, directly emitted PM_{2.5} or PM₁₀, and TACs (e.g., diesel exhaust particulate matter).

Project construction activities would include site preparation, grading, building construction, paving, and architectural coating activities. Construction-related effects on air quality from the proposed project would be greatest during the site preparation phase due to the disturbance of soils. If not properly controlled, these activities would temporarily generate particulate emissions. Sources of fugitive dust would include disturbed soils at the construction site. Unless properly controlled, vehicles leaving the site would deposit dirt and mud on local streets, which could be an additional source of airborne dust after it dries. PM_{10} emissions would vary from day to day, depending on the nature and magnitude of construction activity and local weather conditions. PM_{10} emissions would depend on soil moisture, silt content of soil, wind speed, and amount of operating equipment. Larger dust particles would settle near the source, whereas fine particles would be dispersed over greater distances from the construction site.

Fugitive dust emissions are generally associated with land clearing and exposure of soils to the air and wind, as well as cut-and-fill grading operations. Dust generated during construction varies substantially on a project-by-project basis, depending on the level of activity, the specific operations, and weather conditions at the time of construction. The project would be required to comply with District Regulation VIII (Fugitive PM₁₀ Prohibition) to control fugitive dust. SJVAPCD Rule 8011, General Requirements, and Rule 8021, Construction, Demolition Excavation, Extraction, and Other Earthmoving Activities, would also be applicable.

In addition to dust-related PM_{10} emissions, heavy trucks and construction equipment powered by gasoline and diesel engines would generate CO, SO_2 , NO_x , VOCs, and some soot particulates ($PM_{2.5}$ and PM_{10}) in exhaust emissions. If construction activities were to increase traffic congestion in the area, CO and other emissions from traffic would increase slightly while those vehicles idle in traffic. These emissions would be temporary in nature and limited to the immediate area surrounding the construction site.

Construction emissions were estimated for the project using CalEEMod. Construction-related emissions are presented in Table E. CalEEMod output sheets are included in Attachment B.

As shown in Table E, construction emissions associated with the project would not exceed the SJVAPCD's thresholds for ROG, NO_x , CO, SO_x , $PM_{2.5}$, or PM_{10} emissions. In addition to the construction period thresholds of significance, the SJVAPCD has implemented Regulation VIII measures for dust control during construction. Implementation of Regulatory Compliance Measure (RCM) AIR-1, below, would ensure that the proposed project complies with the SJVAPCD's Regulation VIII.

Table E: Short-Term Regional Construction Emissions

Construction Phase	Annual Pollutant Emissions (Tons per Year)						
Construction Phase	ROG	NO _x	СО	SO _X	Total PM ₁₀	Total PM _{2.5}	
2025	0.1	2.7	2.1	<0.1	0.5	0.3	
2026	0.1	2.6	2.1	<0.1	0.2	0.1	
2027	<0.1	0.8	0.7	<0.1	<0.1	<0.1	
Maximum Emissions	0.1	2.7	2.1	<0.1	0.5	0.3	
SJVAPCD Thresholds	10	10	100	27	15	15	
Significant Emissions?	No	No	No	No	No	No	

Source: Compiled by LSA (October 2024).

CO = carbon monoxide lbs/day = pounds per day NO_x = nitrogen oxides

PM_{2.5} = particulate matter less than 2.5 microns in size

 PM_{10} = particulate matter less than 10 microns in size SJVAPCD = San Joaquin Valley Air Pollution Control District

 $SO_X = sulfur oxides$

VOCs = volatile organic compounds

RCM AIR-1

Consistent with San Joaquin Valley Air Pollution Control District (SJVAPCD) Regulation VIII (Fugitive PM_{10} Prohibitions), the following controls are required to be included as specifications for the proposed project and implemented at the construction site:

- All disturbed areas, including storage piles, which are not being actively utilized for construction purposes, shall be effectively stabilized of dust emissions using water or chemical stabilizer/suppressant or covered with a tarp or other suitable cover or vegetative ground cover.
- All on-site unpaved roads and off-site unpaved access roads shall be effectively stabilized of dust emissions using water or chemical stabilizer/suppressant.
- All land clearing, grubbing, scraping, excavation, land leveling, grading, cut and fill, and demolition activities shall be effectively controlled of fugitive dust emissions utilizing application of water or by presoaking.
- When materials are transported off site, all material shall be covered, or
 effectively wetted to limit visible dust emissions, and at least 6 inches of
 freeboard space from the top of the container shall be maintained.
- All operations shall limit or expeditiously remove the accumulation of mud or dirt from adjacent public streets at the end of each workday. (The use of dry rotary brushes is expressly prohibited except where preceded or accompanied by sufficient wetting to limit the visible dust emissions. Use of blower devices is expressly forbidden.)
- Following the addition of materials to, or the removal of materials from, the surface of outdoor storage piles, said piles shall be effectively stabilized of fugitive dust emissions utilizing sufficient water or chemical stabilizer/ suppressant.

Construction emissions associated with the proposed project would be less than significant with implementation of RCM AIR-1. Therefore, construction of the proposed project would not result in a cumulatively considerable net increase of any criteria pollutant for which the project region is nonattainment under an applicable federal or State ambient air quality standard.

Operational Air Quality Impacts. Long-term air pollutant emissions associated with operation of the proposed project include emissions from area, energy, and mobile sources. Area-source emissions include architectural coatings, consumer products, and landscaping. Energy-source emissions result from activities in buildings that use natural gas. Mobile-source emissions are from vehicle trips associated with operation of the project.

Mobile source emissions include ROG and NO_X emissions that contribute to the formation of ozone. Additionally, PM_{10} emissions result from running exhaust, tire and brake wear, and the entrainment of dust into the atmosphere from vehicles traveling on paved roadways.

Energy-source emissions result from activities in buildings that use natural gas. The quantity of emissions is the product of usage intensity (i.e., the amount of natural gas) and the emission factor of the fuel source. However, the proposed project would not utilize natural gas. Therefore, energy-source emissions would be minimal.

Area-source emissions consist of direct sources of air emissions at the project site, including architectural coatings, consumer products, and use of landscape maintenance equipment.

Long-term operational emissions associated with the proposed project were calculated using CalEEMod. Table F provides the estimated existing emission estimates and the proposed project's estimated operational emissions. CalEEMod output sheets are provided in Attachment B.

Table F: Project Operational Emissions

Emission Type	Pollutant Emissions (Tons per Year)						
Emission Type	ROG	NO _x	со	SO _x	PM ₁₀	PM _{2.5}	
Mobile Sources	1.1	0.9	5.4	<0.1	1.1	0.3	
Area Sources	1.5	<0.1	2.4	<0.1	0.2	0.2	
Energy Sources	0.0	0.0	0.0	0.0	0.0	0.0	
Total Project Emissions	2.6	0.9	7.8	<0.1	1.3	0.5	
SJVAPCD Thresholds	10	10	100	27	15	15	
Significant?	No	No	No	No	No	No	

Source: Compiled by LSA (October 2024).

CO = carbon monoxide lbs/day = pounds per day NO_x = nitrogen oxides

 $PM_{2.5}$ = particulate matter less than 2.5 microns in size

 PM_{10} = particulate matter less than 10 microns in size SJVAPCD = San Joaquin Valley Air Pollution Control District

 SO_X = sulfur oxides

VOCs = volatile organic compounds

The results shown in Table F indicate the project would not exceed the significance criteria for annual ROG, NO_X, CO, SO_X, PM₁₀, or PM_{2.5} emissions; therefore, the proposed project would not have a significant effect on regional air quality. As shown in Table F, SJVAPCD emissions of ROG, NO_X, CO, SO_X, PM₁₀, and PM_{2.5} would be below the thresholds. Therefore, operation of the project would not result in a cumulatively considerable net increase of any criteria pollutant for which the project is nonattainment under applicable federal or State ambient air quality standards.

Long-Term Microscale (CO Hot Spot) Analysis. Vehicular trips associated with the proposed project would contribute to congestion at intersections and along roadway segments in the vicinity of the proposed project site. Localized air quality impacts would occur when emissions from vehicular traffic increase as a result of the proposed project. The primary mobile-source pollutant of local concern is CO, a direct function of vehicle idling time and, thus, of traffic flow conditions. CO transport is extremely limited; under normal meteorological conditions, it disperses rapidly with distance from the source. However, under certain extreme meteorological conditions, CO concentrations near a congested roadway or intersection may reach unhealthful levels, thereby affecting local sensitive receptors (e.g., residents, schoolchildren, the elderly, and hospital patients).

Typically, high CO concentrations are associated with roadways or intersections operating at unacceptable levels of service or with extremely high traffic volumes. In areas with high ambient background CO concentrations, modeling is recommended to determine a project's effect on local CO levels.

An assessment of project-related impacts on localized ambient air quality requires that future ambient air quality levels be projected. Existing CO concentrations in the immediate project vicinity are not available. Ambient CO levels monitored at the Fresno Garland station located at 3727 North First Street, Fresno, in Fresno County, California (the closest station to the project site monitoring CO) showed a highest recorded 1-hour concentration of 2.2 ppm (the State standard is 20 ppm) and a highest 8-hour concentration of 1.8 ppm (the State standard is 9 ppm) from 2021 to 2023. The highest CO concentrations would normally occur during peak traffic hours; hence, CO impacts calculated under peak traffic conditions represent a worst-case analysis. Reduced speeds and vehicular congestion at intersections result in increased CO emissions.

The proposed project is expected to generate 1,585 average daily trips, with 118 trips occurring in the a.m. peak hour and 158 trips occurring in the p.m. peak hour. Therefore, given the extremely low level of CO concentrations in the project area and the lack of traffic impacts at any intersections, project-related vehicles are not expected to result in CO concentrations exceeding the State or federal CO standards. No CO hot spots would occur, and the project would not result in any project-related impacts on CO concentrations.

Health Risk on Nearby Sensitive Receptors

Sensitive receptors are defined as residential uses, schools, daycare centers, nursing homes, and medical centers. Individuals particularly vulnerable to diesel particulate matter are children, whose lung tissue is still developing, and the elderly, who may have serious health problems that can be aggravated by exposure to diesel particulate matter. The proposed site is located in a rural area and is primarily surrounded with rural residences and agricultural land. The closest sensitive receptors to the project site include single-family homes located 70 and 500 feet from the project boundaries to the east and north, respectively.

A construction HRA, which evaluates construction-period health risk to off-site receptors, was performed for the proposed project. Table G, below, identifies the results of the analysis assuming the use of Tier 2 construction equipment as proposed by the project. Model snapshots of the sources are shown in Attachment C.

Table G: Health Risks from Project Construction to Off-Site Receptors

Location	Carcinogenic Inhalation Health Risk in One Million	Chronic Inhalation Hazard Index	Acute Inhalation Hazard Index
Residential Receptor Risk	31.22	0.022	0.000
Worker Receptor Risk	0.64	0.022	0.000
SJVAPCD Significance Threshold	20.0 in one million	1.0	1.0
Significant?	Yes	No	No

Source: LSA (October 2024).

SJVAPCD = San Joaquin Valley Air Pollution Control District

As shown in Table G, the maximum cancer risk for the residential MEI would be 31.22 in one million, which would exceed the SJVAPCD cancer risk threshold of 20 in one million. The worker MEI risk would be lower at 0.64 in one million, which would not exceed the SJVAPCD cancer risk thresholds. The total chronic HI would be 0.022 for both, the residential MEI and for the worker MEI, which is below the threshold of 1.0. In addition, the total acute HI would be nominal (0.000), which would also not exceed the threshold of 1.0. Therefore, implementation of Mitigation Measure (MM) 1 (MM-1) would be required to reduce construction cancer risk.

MM-1

All construction equipment over 50 horsepower (hp) used during construction of the project shall be equipped with at least Tier 2 engines with Level 3 Diesel Particulate Filters (DPF) or the most effective Verified Diesel Emission Control Strategies (VDECS) available for the engine type (Tier 4 engines automatically meet this requirement) as certified by the California Air Resources Board. The equipment shall be properly maintained and tuned in accordance with manufacturer specifications. Prior to issuance of building permits, the project Applicant shall submit construction plans to the City of Madera denoting the projected equipment Tier rating that will be used during the construction period.

As shown in Table H, with the implementation of MM-1 the maximum cancer risk for the residential receptor MEI would be 4.97 in 1 million, which would not exceed the SJVAPCD cancer risk threshold of 20 in 1 million. Therefore, with implementation of MM-1, construction of the proposed project would not exceed SJVAPCD thresholds and would not expose nearby sensitive receptors to a significant health risk.

Table H: Health Risks from Project Construction to Off-Site Receptors

Location	Carcinogenic Inhalation Health Risk in One Million	Chronic Inhalation Hazard Index	Acute Inhalation Hazard Index
Residential Receptor Risk	4.97	0.004	0.000
Worker Receptor Risk	0.10	0.004	0.000
SJVAPCD Significance Threshold	20.0 in one million	1.0	1.0
Significant?	No	No	No

Source: LSA (October 2024).

SJVAPCD = San Joaquin Valley Air Pollution Control District

Once construction is complete, the project would consist of a 168-unit single-family residential development, that would not include any stationary source emissions of TACs. As identified in Table F, project operational emissions of criteria pollutants would be below SJVAPCD significance thresholds; thus, they are not likely to have a significant impact on sensitive receptors. In addition, the proposed project would be required to implement District Rule 9510, Indirect Source Review (ISR). Implementation of Rule 9510 would reduce operational emissions of NO_x and PM₁₀ by 33.3 percent and 50 percent, respectively. Compliance with SJVAPCD rules would further limit doses and exposures, reducing potential health risk related to gasoline vapors to a level that is not significant. Once the proposed project is constructed, it would not be a source of substantial emissions. Therefore, implementation of the proposed project would not result in new sources of TACs and would not expose sensitive receptors to substantial levels of TACs.

Odors

Heavy-duty equipment in the project area during construction would emit odors, primarily from the equipment exhaust. However, the construction activity would cease to occur after individual construction is completed. No other sources of objectionable odors have been identified for the project, and no mitigation measures are required.

The SJVAPCD addresses odor criteria within the GAMAQI. The air district has not established a rule or standard regarding odor emissions; rather, the district has a nuisance rule, Rule 4102, which states: "Any project with the potential to frequently expose members of the public to objectionable odors should be deemed to have a significant impact." The proposed uses are not anticipated to emit any objectionable odors. The gas station could release localized odors; however, all the gasoline dispensers would be equipped with vapor recovery systems. In addition, such odors in general would be confined mainly to the project site and would readily dissipate. Therefore, objectionable odors affecting a substantial number of people would not occur as a result of the project.

Naturally Occurring Asbestos

The project is located in Madera County, which is among the counties found to have serpentine and ultramafic rock in their soils.³⁵ However, according to the California Geological Survey, no such rock has been identified in the project vicinity. When demolition is proposed during construction, the demolition of existing buildings may expose asbestos used in building materials. The proposed project would not involve any demolition or renovation as no current development exists on the project site. Therefore, the potential risk for naturally occurring asbestos during project construction is small and would not be significant.

Valley Fever

The closest sensitive receptors to the project site include single-family homes to the east and north at approximately 70 and 500 feet, respectively, from the project limits. Except under high wind conditions, this distance is sufficient that particulate matter would settle prior to reaching the nearest sensitive receptor. In addition, crosswinds influenced by the adjacent traffic intersection

California Department of Conservation (DOC). n.d. California Geological Survey. Asbestos. Website: https://www.conservation.ca.gov/cgs/minerals/mineral-hazards (accessed October 2024).

would help dissipate any particulate matter associated with the construction phase of the project. Therefore, any Valley fever spores suspended with the dust would not reach the sensitive receptors. However, during project construction, it is possible that workers could be exposed to Valley fever through fugitive dust. Dust control measures, consistent with SJVAPCD Regulation VIII, would reduce the exposure to the workers and nearby residences. Dust from the construction of the project is not anticipated to significantly add to the existing exposure of people to Valley fever.

Energy Impacts

The following describes the potential impacts regarding energy resources that could result from implementation of the proposed project.

Construction Energy Use

Construction of the proposed project is anticipated to begin in early 2025 and be completed in 27 months, ending in 2027. Construction-specific phases were assessed for their energy consumption under each construction sub-phase: grading, site preparation, building construction, paving, and architectural coating activities.

Construction would require energy for the manufacture and transportation of construction materials, preparation of the site for grading and building activities, and construction of the building. All or most of this energy would be derived from nonrenewable resources. Petroleum fuels (e.g., diesel and gasoline) would be the primary sources of energy for these activities. However, construction activities are not anticipated to result in an inefficient use of energy as gasoline and diesel fuel would be supplied by construction contractors who would conserve the use of their supplies to minimize their costs on the project. Energy (i.e., fuel) usage on the project site during construction would be temporary in nature and would be relatively small in comparison to the State's available energy sources.

Operational Energy Use

Operational energy use is typically associated with electricity consumption and fuel used for vehicle trips associated with a project. The proposed project would not utilize natural gas, and no natural gas demand is anticipated during operation of the proposed project. In addition, the proposed project would include solar energy that would offset electricity consumption by approximately 80 percent.

Furthermore, proposed project would also result in energy usage associated with gasoline and diesel fuel consumed by project-related vehicle and truck trips. Fuel use associated with vehicle and truck trips generated by the proposed project was calculated based on the project's *Traffic Impact Analysis*, which identifies that the proposed project would generate approximately 1,585 average daily trips. ³⁶ The amount of operational fuel use was estimated using CARB's EMFAC2021 model, which provided projections for typical daily fuel usage in Madera County.

-

³⁶ Crawford & Bowen Planning, Inc. 2024. *Proposed Project Land Use Trip Generation*. September.

Table I shows the estimated potential increased electricity, gasoline, and diesel demand associated with the proposed project. The electricity rates are from the CalEEMod analysis, while the gasoline and diesel rates are based on the traffic analysis in conjunction with USDOT fuel efficiency data, the USEPA's fuel economy estimates for 2020, and the California diesel fuel economy estimates for 2021

Table I: Estimated Annual Energy Use of Proposed Project

	Electricity Use	Natural Gas Use	Gasoline	Diesel
	(kWh per year)	(kBTU per year)	(gallons per year)	(gallons per year)
Proposed Project	314,045 ¹	0.0	101,089	82,133

Source: Compiled by LSA (October 2024).

1 – electricity estimates account for the 80 percent offset by solar

kBTU = thousand British thermal units

kWh = kilowatt hours

As shown in Table I, the estimated potential increase in electricity demand associated with the operation of the proposed project is 314,045 kWh per year. Total electricity consumption in Madera County in 2022 was 1,808,229,048 kWh. Therefore, operation of the proposed project would increase the annual electricity consumption in Madera County by approximately 0.02 percent.

Electrical demand associated with project operations would not be considered inefficient, wasteful, or unnecessary in comparison to other similar developments in the region. Furthermore, the proposed project would not conflict with or obstruct a State or local plan for renewable energy or energy efficiency. The project would be required to adhere to all federal, State, and local requirements for energy efficiency, including the Title 24 standards. Title 24 building energy efficiency standards establish minimum efficiency standards related to various building features, including appliances, water and space heating and cooling equipment, building insulation and roofing, and lighting, which would reduce energy usage. The expected energy consumption during construction and operation of the proposed project would be consistent with typical usage rates for residential uses; however, energy consumption is largely a function of personal choice and the physical structure and layout of buildings. Additionally, the proposed project will include solar panels that would offset approximately 80 percent of the electricity consumption. The proposed project would also include an EV charging station for each home. As such, the proposed project would include energy conservation features.

As shown in Table I, fuel use associated with the vehicle trips generated by the proposed project is estimated at 300,082.0 gallons of gasoline and 607,954.6 gallons of diesel fuel per year. This analysis conservatively assumes that all vehicle trips generated as a result of project operation would be new to Madera County. Based on fuel consumption obtained from EMFAC2021, approximately 70.2 million gallons of gasoline and approximately 35.5 million gallons of diesel will be consumed from vehicle trips in Madera County in 2027. Therefore, vehicle and truck trips associated with the proposed project would increase the annual fuel use in Madera County by approximately 0.1 percent for gasoline fuel usage and approximately 0.2 percent for diesel fuel usage. The proposed project would result in fuel usage that is a small fraction of current annual fuel use in Madera County. Fuel consumption associated with vehicle trips generated by project operations would not be considered inefficient, wasteful, or unnecessary in comparison to other similar developments in the region. Therefore, fuel consumption would not be inefficient, wasteful, or unnecessary.

PG&E is the private utility that would supply the proposed project's electricity. In 2021, a total of 50 percent of PG&E's delivered electricity came from renewable sources, including solar, wind, geothermal, small hydroelectric, and various forms of bioenergy.³⁷ PG&E reached California's 2020 renewable energy goal in 2017 and is positioned to meet the State's 60 percent by 2030 renewable energy mandate set forth in SB 100. In addition, PG&E plans to continue to provide reliable service to its customers and upgrade its distribution systems as necessary to meet future demand. As such, the proposed project would not result in a potential significant impact due to wasteful, inefficient, or unnecessary consumption of energy resources during project construction or operation.

Conflict with Renewable Energy or Energy Efficiency Plans

The CEC recently adopted the 2023 Integrated Energy Policy Report. ³⁸ The 2023 Integrated Energy Policy Report provides the results of the CEC's assessments of a variety of energy issues facing California. Many of these issues will require action if the State is to meet its climate, energy, air quality, and other environmental goals while maintaining energy reliability and controlling costs. The 2023 Integrated Energy Policy Report covers a broad range of topics, including decarbonizing buildings, integrating renewables, energy efficiency, energy equity, integrating renewable energy, updates on Southern California electricity reliability, climate adaptation activities for the energy sector, natural gas assessment, transportation energy demand forecasts, and the California Energy Demand Forecast.

As indicated above, energy usage on the project site during construction would be temporary in nature and would be relatively small in comparison to the overall use in the County. In addition, energy usage associated with operation of the proposed project would be relatively small in comparison to the overall use in Madera County, and the State's available energy resources. Therefore, energy impacts at the regional level would be negligible. Because California's energy conservation planning actions are conducted at a regional level, and because the proposed project's total impact on regional energy supplies would be minor, the proposed project would not conflict with or obstruct California's energy conservation plans as described in the CEC's Integrated Energy Policy Report. As demonstrated above, the proposed project would not result in the inefficient, wasteful, and unnecessary consumption of energy.

Additionally, as mentioned in the preceding section, the proposed project will include solar panels that would offset approximately 80 percent of the electricity consumption. The proposed project would also include an EV charging station for each home. As such, the proposed project would include sustainable features that are aligned with the state goals for decarbonizing buildings and integrating renewable energy. Therefore, the proposed project would not conflict with or obstruct California's energy conservation plans as described in the CEC's 2023 Integrated Energy Policy Report. Therefore, the proposed project would not lead to new or substantially more severe energy impacts. As such, potential impacts related to conflict with or obstruction of a State or local plan for renewable energy or energy efficiency would be less than significant, and no mitigation is required.

_

PG&E. 2021. Exploring Clean Energy Solutions. Website: https://www.pge.com/en_US/about-pge/environment/what-we-are-doing/clean-energy-solutions/clean-energy-solutions.page?WT.mc_id=Vanity_cleanenergy (accessed June 2024).

³⁸ CEC. 2023. *2023 Integrated Energy Policy Report*. California Energy Commission. Docket Number: 23-IEPR-01.

Greenhouse Gas Emission Impacts

The following sections describe the proposed project's construction- and operation-related GHG impacts and consistency with applicable GHG reduction plans.

Construction Greenhouse Gas Emissions. Construction activities associated with the proposed project would produce combustion emissions from various sources. During construction, GHGs would be emitted through the operation of construction equipment and from worker and builder supply vendor vehicles, each of which typically use fossil-based fuels to operate. The combustion of fossil-based fuels creates GHGs such as CO₂, CH₄, and N₂O. Furthermore, CH₄ is emitted during the fueling of heavy equipment. Exhaust emissions from on-site construction activities would vary daily as construction activity levels change.

The SJVAPCD does not have an adopted threshold of significance for construction-related GHG emissions. However, lead agencies are encouraged to quantify and disclose GHG emissions that would occur during construction. Using CalEEMod, it is estimated that construction of the proposed project would generate approximately 905.9 metric tons (MT) CO_2e . Construction GHG emissions were amortized over the life of the project (assumed to be 30 years) and added to the operational emissions. When annualized over the life of the project, amortized construction emissions would be approximately 30.2 MT CO_2e per year.

Operational Greenhouse Gas Emissions

Long-term GHG emissions are typically generated from mobile sources (e.g., vehicle and truck trips), area sources (e.g., maintenance activities and landscaping), indirect emissions from sources associated with energy consumption, waste sources (land filling and waste disposal), and water sources (water supply and conveyance, treatment, and distribution). Mobile-source GHG emissions would include project-generated vehicle trips to and from the project. Area-source emissions would be associated with activities such as landscaping and maintenance on the project site. Energy source emissions would be generated at off-site utility providers as a result of increased electricity demand generated by the project. Waste source emissions generated by the proposed project include energy generated by land filling and other methods of disposal related to transporting and managing project generated waste. In addition, water source emissions associated with the proposed project are generated by water supply and conveyance, water treatment, water distribution, and wastewater treatment.

Following guidance from the SJVAPCD, GHG emissions for operation of the project were calculated using CalEEMod. Based on the analysis results, summarized in Table J, the proposed project would result in emissions of approximately 1,352.0 MT CO₂e per year. These estimated emissions are provided for informational purposes, and the significance of proposed project is further analyzed below.

Table J: Greenhouse Gas Emissions

	Operational Emissions (MT/yr)					
Emission Type	CO ₂	CH ₄	N ₂ O	CO₂e	Percentage of Total	
Mobile Source	1,167.0	0.1	0.1	1,191.4	90	
Area Source	36.0	0.2	<0.1	40.0	3	
Energy Source	29.1	<0.1	<0.1	29.3	2	
Water Source	4.3	0.2	<0.1	11.5	1	
Waste Source	14.2	1.4	0.0	49.6	4	
Total Operational Emissions				1,321.8	100.0	
Amortized Construction Emissions				30.2	_	
Total Annual Emission				1,352.0	_	

Source: Compiled by LSA (October 2024).

 CH_4 = methane MT/CO_2e = metric tons of carbon dioxide equivalent

 CO_2 = carbon dioxide MT/yr = metric tons per year

 CO_2e = carbon dioxide equivalent N_2O = nitrous oxide

GHG = greenhouse gas

As discussed, the SJVAPCD has not established a numeric threshold for GHG emissions. The significance of GHG emissions may be evaluated based on locally adopted quantitative thresholds or consistency with a regional GHG reduction plan (e.g., a CAP). Therefore, consistent with the *State CEQA Guidelines*, Section 15183.5, if a project is consistent with an adopted qualified Greenhouse Gas Reduction Strategy, it can be presumed that the project would not have significant GHG emission impacts. However, the City's CAP does not address State goals related to achieving carbon neutrality by 2045 (as recently codified in AB 1279).

In the absence of any City or SJVAPCD specific guidelines or thresholds, this analysis evaluates the proposed project for consistency with the BAAQMD Justification Report, ³⁹ which identifies project design elements as the applicable thresholds of significance. If a project is designed and built to incorporate design elements related to natural gas, energy, VMT, and EVs, then it would contribute its portion of what is necessary to achieve California's long-term climate goals—its "fair share"—and an agency reviewing the project under CEQA can conclude that the project would not make a cumulatively considerable contribution to global climate change.

Per the significance thresholds described above, a less than significant GHG impact would occur if the project were consistent with the identified design standards.

Natural Gas Usage. According to the Justification Report, a less than significant GHG impact would occur if the project does not include natural gas appliances or natural gas plumbing. The proposed project would not include natural gas. Therefore, the proposed project would be consistent with this design element.

Energy Usage. Under this design criterion, the project must not result in any wasteful, inefficient, or unnecessary energy usage as determined by the analysis required under CEQA Section 21100(b)(3) and Section 15126.2(b) of the *State CEQA Guidelines*. Energy use consumed by the proposed project would be associated with electricity consumption associated with the project. Energy consumption

_

³⁹ BAAQMD. 2022. *Justification Report: CEQA Thresholds for Evaluating the Significance of Climate Impacts From Land Use Projects and Plans*. April.

was estimated for the project using default energy intensities by land use type in the CalEEMod output, which is included in Attachment B.

As shown in Table I above, the estimated potential increase in electricity demand associated with the operation of the proposed project is 314,045 kilowatt-hours (kWh) per year. Total electricity consumption in Madera County in 2022 was 1,808,229,048 kWh. Therefore, operation of the proposed project would increase the annual electricity consumption in Madera County by approximately 0.02 percent.

In addition, the proposed project would be constructed to current Title 24 standards, which would require energy-saving building features. As such, based on this analysis, as required under CEQA Section 21100(b)(3) and Section 15126.2(b) of the *State CEQA Guidelines*, the proposed project would not result in the wasteful, inefficient, or unnecessary consumption of fuel or energy and would incorporate renewable energy and energy efficiency measures into the building design, equipment use, and transportation. As such, the proposed project would be consistent with this design element.

Vehicle Miles Traveled. As discussed above, development that does not result in a net increase in existing VMT would be considered to have a less than significant GHG emissions impact from transportation sources or should meet a locally adopted SB 743 VMT target. A VMT analysis was not required for the proposed project; therefore, it is not expected that the proposed project would have a significant VMT impact. Further, the proposed project would provide infill development in an underused area and would be located near established residential neighborhoods. In addition, the proposed project would include complete streets and a 1.22-acre park that would encourage people to use non-motorized modes of transportation by providing appropriate amenities that are local serving while connecting to existing uses. Furthermore, the proposed project is also located near transit stops (within a 1-mile radius), which would help reduce VMT and single vehicle use. The proposed project would be designed to support alternative modes of transportation by including an EV charging station for each home. As such, the proposed project is not expected to significantly increase VMT in the project area. Therefore, the proposed project would be consistent with this project design element.

Electric Vehicle Requirements. The final project design element that the proposed project should include to ensure that it is achieving its "fair share" of GHG emission reductions is compliance with off-street EV requirements in the most recently adopted version of the CALGreen Code Tier 2 measures. The proposed project would include an EV charging station for each home, consistent with CALGreen Tier 2 standards. Therefore, the proposed project would be consistent with this design element.

The proposed project would be consistent with the project design elements related to natural gas, energy, VMT, and EVs. Therefore, the proposed project would be consistent with the GHG emission thresholds identified for this project. As such, the proposed project would not result in the generation of GHG emissions that would have a significant impact on the environment.

Consistency with Greenhouse Gas Reduction Plans

The following discussion evaluates the proposed project consistency with the goals of the City's CAP, the 2022 Scoping Plan, and Madera's MCTC RTP/SCS.

City of Madera Climate Action Plan (CAP). As described above, the City of Madera adopted its CAP in December of 2015. ⁴⁰ The CAP provides a strategy for reducing GHG emissions. It includes objectives and policies from the proposed General Plan that addressed long-term emissions reduction efforts. The timeframe for the CAP extends from the date of adoption through the year 2030. The CAP reduction targets are based on AB 32, Executive Order S-3-05, and Executive Order B-30-15. The State has since adopted updated emission targets for 2030 and additional 2045 (codified by AB 1279); therefore, additional reductions would be required. However, in order to evaluate the proposed project consistency with the CAP, the City has developed the CAP Consistency Worksheet (Appendix E of the CAP). The worksheet is designed to help the City determine if a project is consistent with the CAP but does not define which measures would need to be implemented for the consistency determination, as requirements may vary by project type. The project consistency with the CAP measures is shown in Table K below.

Table K: Project Consistency with the City of Madera Climate Action Plan

Measure Name	Project Actions	Project Compliance (Yes/No/NA)	Description/Details
E-2 Energy Efficient New Construction	Is the project consistent with applicable policies of the Conservation Element of the General Plan?	Yes	Applicable policies of the Conservation Element of the General Plan state that projects should aim to reduce dust during construction/demolition activities to the extent feasible (Policy CON-30) and should increase tree coverage to reduce the heat island effect (Policy CON-31). Additionally, all development should be designed to be energy-efficient (Policy CON-40) and development should include green building practices in all projects (Policy CON-44). In addition, development should be The proposed project is consistent with the applicable polices of the Conservation Element of the General Plan. The proposed project would be required to comply with SJVAPCD Regulation VIII to reduce fugitive dust emission and would include a 1.22-acre park and a 4.3-acre retention basin, thus increasing tree coverage for the project site. In addition, the proposed project would comply with the 2022 CALGreen standards regarding energy conservation and green building standards. The proposed project would also include solar panels and an EV charging station for each home. Therefore, the proposed project would be consistent with the applicable general plan policies under the Conservation Element.

⁴⁰ City of Madera. 2015. *City of Madera Climate Action Plan.* September. Website: https://www.madera.gov/wp-content/uploads/2017/08/Final-Madera-CAP_September-2015.pdf (accessed October 2024).

Table K: Project Consistency with the City of Madera Climate Action Plan

Measure Name	Project Actions	Project Compliance (Yes/No/NA)	Description/Details
	Does the project exceed Title 24 Energy Efficiency Building Standards, meet the State's Green Building Standards voluntary tier levels, or is LEED Greenpoint, or ENERGY STAR rated?	Yes	The proposed project would comply with the 2022 CALGreen standards regarding energy conservation and green building standards. The proposed project would also include solar panels and an EV charging station for each home. Therefore, the proposed project would be consistent with this action.
E-3 On-Site Small-Scale Renewable Energy	Does the project include solar PV systems or solar hot water heaters?	Yes	The proposed project would be designed to include solar panels that would offset approximately 80 percent of the electricity consumption. Therefore, the proposed project would be consistent with the action.
T-1: Infill and Mixed-Use Development	Is the project consistent with the land use designation(s) shown on the General Plan Land Use Map and with the applicable polies of the Land Use Element of the General Plan policies?	Yes	Applicable policies of the Land Use Element of the General Plan state that new residential development should incorporate amenities which establish a sense of identity at the project or neighborhood level, create opportunities for community interaction, and enhance the visual appeal of the area (Policy LU-20) and single-family developments need to provide functional outdoor recreational space (Policy LU-22). The proposed project would include a 1.22 acre park that would provide recreational activities to residents, increasing community interaction and enhancing the neighborhood area. In addition, the General Plan Land Use Map designates the proposed project as Medium Density Residential (MD) area. As such, the proposed project would be consistent with the general plan land use designation and relevant policies from the Land Use Element.
	Is the project consistent with the Madera County Blueprint?	Yes	As described above, the proposed project would include a 1.22 acre park that would provide recreational activities to residents, increasing community interaction and enhancing the neighborhood area. In addition, the General Plan Land Use Map designates the proposed project as Medium Density Residential (MD) area. As such, the proposed project would be consistent with the general plan land use designation and relevant policies from the Land Use Element.
	Does the project include mixed-use, higher density (22.5 to 50 units per acre), or infill development?	N/A	The proposed project would not include mixed-use development nor high-density housing. However, the proposed project would provide infill development in an underused area and would be located near established residential neighborhoods.

Table K: Project Consistency with the City of Madera Climate Action Plan

Measure Name	Project Actions	Project Compliance (Yes/No/NA)	Description/Details
	Is the project located within ¼ mile of transit stops or in existing community centers/downtown?	No	The proposed project would not be located close to an existing community center or downtown. The proposed project would also not be located within a ¼ mile of a transit stop. However, existing transit stops are located within 1-mile radius. In addition, the proposed project would include recreational opportunities through the proposed 1.22-acre park which will minimize vehicle trips and promote multimodal transportation opportunities, including pedestrian pathways. The proposed project would also include an EV charging stations per home, encouraging alternative modes of transportation.
T-2 Bicycle and Pedestrian Environment	Is the project consistent with applicable policies of the Community Design and Circulation Elements of the General Plan?	Yes	Applicable policies of the Community Design Element and the Circulation Element of the General Plan relate to designing new development to be walkable pedestrian- and bicycle- oriented development. The proposed project would fulfill the policies of the Madera General Plan Circulation Element and the City's CAP by allowing residents to live within proximity to residential neighborhoods. The proposed project would also include recreational opportunities through the proposed 1.22-acre park which will minimize vehicle trips and promote multimodal transportation opportunities, including pedestrian pathways. The proposed project would also include an EV charging stations per home and would be located within 1-mile radius to bus transit stops, encouraging alternative modes of transportation.
	Is the project consistent with the Bicycle Master Plan?	Yes	The proposed project would include off-site improvements that would provide complete streets and sidewalks that would facilitate the use of bicycles in the area. In addition, the proposed project would provide recreational opportunities and would increase connectivity with the surrounding land uses and transit networks, including larger on-street bicycle networks.
	Does the project meet minimum design criteria for bicycle and pedestrian circulation?	Yes	As mentioned above, the proposed project would include off- site improvements that would provide complete streets and sidewalks that would facilitate the use of bicycles in the area. In addition, the proposed project would provide recreational opportunities and would increase connectivity with the surrounding land uses and transit networks, including larger on- street bicycle networks.
	Does the project provide adequate and secure bicycle parking?	N/A	The proposed project involves the development of 168 single family units and associated site improvements. As such, the proposed project would not provide public parking or bicycle parking.

Table K: Project Consistency with the City of Madera Climate Action Plan

Measure Name	Project Actions	Project Compliance (Yes/No/NA)	Description/Details
T-3 Transit Travel	Is the project consistent with applicable policies of the Circulation and Community Development Elements of the General Plan?	Yes	Applicable policies of the Community Design Element and the Circulation Element of the General Plan relate to planning and accommodating for transit travel (Policy CI-28, Policy CI-30, Policy CI-31, Policy CI-41, Policy CI-50, Policy H-5.3, and Policy CD-59). As mentioned above, the proposed project would also include recreational opportunities through the proposed 1.22-acre park which will minimize vehicle trips and promote multimodal transportation opportunities, including pedestrian pathways. The proposed project would also include an EV charging stations per home and would be located within 1-mile radius to bus transit stops, encouraging alternative modes of transportation.
	Does the project provide safe routes to adjacent transit stops, where applicable?	Yes	The proposed project would include off-site improvements that would include complete streets and sidewalks allowing for connectivity with the surrounding land uses. In addition, the proposed project would be located within 1-mile radius from bus transit stops and would therefore connect to road networks that provide transit use.
	Does the project finance and/or construct bus turnouts and shelters where transit demand warrants such improvements?	N/A	The proposed project involves the development of 168 single family units and associated site improvements. Thus, it would not include the construction of bus turnouts and shelters.
	Does the project provide public transit vouchers to its employees?	N/A	The proposed project involves the development of 168 single family units and associated site improvements. As such, the proposed project would not include land uses that would provide employment.
T-4 Commute Trip Reduction	Is the project consistent with applicable policies of the Community Development Element of the General Plan?	Yes	Applicable policies of the Community Design Element and the Circulation Element of the General Plan aim to provide parking for alternative modes of transportation (Policy CD-59) and encourage the use of ridesharing (Policy CI-37). The proposed project would include an EV charging stations per home and would be located within 1-mile radius to bus transit stops, encouraging alternative modes of transportation. In addition, the proposed project would be located in close proximity to existing residential neighborhoods which would increase the potential for ridesharing.

Table K: Project Consistency with the City of Madera Climate Action Plan

Measure Name	Project Actions	Project Compliance (Yes/No/NA)	Description/Details
	Does the project include and/or promote TDM programs?	N/A	The proposed project would not be including a transportation demand program (TDM). A VMT analysis was not required for the proposed project; therefore, it is not expected that the proposed project would have a significant VMT impact. Further, the proposed project would provide infill development in an underused area and would be located near established residential neighborhoods. In addition, the proposed project would include complete streets and a 1.22-acre park that would encourage people to use non-motorized modes of transportation by providing appropriate amenities that are local serving while connecting to existing uses. Furthermore, the proposed project is also located near transit stops (within a 1-mile radius), which would help reduce VMT and single vehicle use. The proposed project would also be designed to support alternative modes of transportation by including an EV charging station for each home.
T-5 Traffic Flow and Vehicle Idling	Does the project include measures to improve traffic flow?	Yes	It is not yet known the type of calming measures that the proposed project would implement. However, appropriate traffic calming measures, such as narrower traffic lanes, traffic signs, etc., should be provided to help reduce traffic speeds, promote attentive driving and increase yield to pedestrians.
T-6 Low Carbon Fuel Vehicles and Infrastructure	Is the project consistent with applicable policies of the Community Development Element of the General Plan? Is the project consistent with the San Joaquin	Yes	Applicable policies of the Community Design Element of the General Plan aim to provide parking for alternative modes of transportation (Policy CD-59). The proposed project would not include public parking structures. However, the prosed project would include an EV charging station per home. The proposed project would include an EV charging station per home, consistent with CalGreen Tier 2 requirements for
	Valley Plug-in Electric Vehicle (PEV) Readiness Plan?		residential development.
	Does the project include alternative fueling stations or EV charging stations?	Yes	As mentioned above, the proposed project would include an EV charging station per home, consistent with CalGreen Tier 2 requirements for residential development.
T-7 Construction and Off-Road Equipment	Would construction of the project use alternatively fueled construction vehicles/equipment (i.e., repowered engines, electric drive trains, CARB-approved low carbon fuel, electrically-powered)?	No	The proposed project would utilize a minimum of Tier 2 or better construction equipment engines as recommended by CARB. As described in the Energy Impacts Section, construction contractors would be encouraged to conserve the use of their supplies to minimize their costs on the project. In addition, energy (i.e., fuel) usage on the project site during construction would be temporary in nature and would be relatively small in comparison to the State's available energy sources.
	Would the project include low-maintenance native landscaping or xeriscaping?	Yes	The proposed project would include a 1.22-acre park. The project would be required to comply with the California Model Water Efficient Landscape Ordinance which includes ordinances for low maintenance drought tolerant landscape and irrigation requirements.

Table K: Project Consistency with the City of Madera Climate Action Plan

Measure Name	Project Actions	Project Compliance (Yes/No/NA)	Description/Details
W-1 Exceed SB X7-7 Water Conservation Target	Does the project incorporate water efficiency and water conservation measures?	Yes	The project would be required to comply with the 2022 CALGreen standards, which include a variety of different measures, including reduction of wastewater and water use. In addition, the proposed project would also be required to comply with the California Model Water Efficient Landscape Ordinance
W-2 Recycled Water	Is the project consistent with applicable policies of the Conservation Element of the General Plan?	Yes	Applicable policies of the Conservation Element of the General Plan support the use of reclaimed water (Policy CI-54, Policy CON-5, and Policy CON-6), implement strategies to ensure long-term sustainability of water supply (Policy CON-2), and encourage the use of gray water systems and other water reuse methods (Policy CON-7). The proposed project is consistent with these policies and would strive for water efficiency in accordance with the 2022 CALGreen standard measures for water efficiency.
	Does the project incorporate recycled/reclaimed water?	Yes	As mentioned above, the proposed project would be required to comply with the 2022 CALGreen standards, which include a variety of different measures, including reduction of wastewater and water use. The proposed project would also be required to comply with the California Model Water Efficient Landscape Ordinance. In addition, the proposed project would include a retention basin for reclaimed water.
U-1 Trees and Vegetation	Is the project consistent with applicable policies of the Community Design Element of the General Plan?	Yes	Applicable policies of the Community Design Element of the General Plan support the planning of street trees (Policy CD-26, Policy CD-43), encourage landscaping to reduce the urban heat island effect (Policy CON-10, Policy Con-31, Policy CD-4), and establish landscape and façade maintenance programs (Policy CD-7). The proposed would include landscape area and a 1.22-acre park and would therefore be consistent with these policies
	Does the project include the planting of new trees or new acres of vegetated land?	Yes	As mentioned above, the proposed project would include a 1.22-acre park and landscape area. Therefore, the proposed project would be consistent with this measure.

Source: City of Madera (2015) and LSA (October 2024).

As shown in Table K, the proposed project would generally be consistent with the applicable project actions from the City's CAP Consistency Checklist. The proposed project would also be supporting and implementing the General Plan objectives and policies. Therefore, the proposed project is consistent with and would not conflict with or obstruct the implementation of the City's CAP.

2022 Scoping Plan. EO B-30-15 added the immediate target of reducing GHG emissions to 40 percent below 1990 levels by 2030. SB 32 affirms the importance of addressing climate change by codifying into statute the GHG emissions reduction target of at least 40 percent below 1990 levels by 2030 contained in EO B-30-15. CARB released the 2017 Scoping Plan to reflect the 2030 target set

by EO B-30-15 and codified by SB 32. ⁴¹ SB 32 builds on AB 32 and keeps us on the path toward achieving the State's 2050 objective of reducing emissions to 80 percent below 1990 levels. AB 197, the companion bill to SB 32, provides additional direction to CARB that is related to the adoption of strategies to reduce GHG emissions. Additional direction in AB 197 that is intended to provide easier public access to air emission data collected by CARB was posted in December 2016. AB 1279 codifies the State goals of achieving net carbon neutrality by 2045 and maintaining net negative GHG emissions thereafter.

In addition, the 2022 Scoping Plan⁴² assesses progress toward the statutory 2030 target while laying out a path to achieving carbon neutrality no later than 2045. The 2022 Scoping Plan focuses on outcomes needed to achieve carbon neutrality by assessing paths for clean technology, energy deployment, natural and working lands, and others, and is designed to meet the State's long-term climate objectives and support a range of economic, environmental, energy security, environmental justice, and public health priorities.

The 2022 Scoping Plan focuses on building clean energy production and distribution infrastructure for a carbon-neutral future, including transitioning existing energy production and transmission infrastructure to produce zero-carbon electricity and hydrogen, and utilizing biogas resulting from wildfire management or landfill and dairy operations, among other substitutes. The 2022 Scoping Plan states that in almost all sectors, electrification will play an important role. The 2022 Scoping Plan evaluates clean energy and technology options and the transition away from fossil fuels, including adding four times the solar and wind capacity by 2045 and about 1,700 times the amount of current hydrogen supply. As discussed in the 2022 Scoping Plan, EO N-79-20 requires that all new passenger vehicles sold in California be zero-emission by 2035 and that all other fleets transition to zero-emission as fully as possible by 2045, which will reduce the percentage of fossil fuel combustion vehicles.

• Energy-efficient measures are intended to maximize energy-efficiency building and appliance standards, pursue additional efficiency efforts including new technologies and new policy and implementation mechanisms, and pursue comparable investment in energy efficiency from all retail providers of electricity in California. In addition, these measures are designed to expand the use of green building practices to reduce the carbon footprint of California's new and existing inventory of buildings. As mentioned above, the proposed project would not be powered by natural gas, and no natural gas demand is anticipated during construction or operation of the proposed project. The elimination of natural gas in new development would help projects implement their "fair share" of achieving long-term 2045 carbon neutrality consistent with State goals. As such, if a project does not utilize natural gas, a lead agency can conclude that it would be consistent with achieving the 2045 neutrality goal and will not have a cumulative considerable impact on climate change. In addition, the proposed project would comply with the 2022 CALGreen standards regarding energy conservation and green building

-

⁴¹ CARB. 2022. 2022 Scoping Plan for Achieving Carbon Neutrality. December. Website: https://ww2.arb.ca.gov/sites/default/files/2023-04/2022-sp.pdf (accessed October 2024).

⁴² Ibid

BAAQMD. 2022. Justification Report: CEQA Thresholds for Evaluating the Significance of Climate Impacts From Land Use Projects and Plans. April

standards. The proposed project would also include solar panels and an EV charging station for each home. As such, the proposed project would include sustainable features that are aligned with the state goals for decarbonizing buildings and integrating renewable energy.

- Water conservation and efficiency measures are intended to continue efficiency programs and use cleaner energy sources to move and treat water. Increasing the efficiency of water transport and reducing water use would reduce GHG emissions. As noted above, the project would be required to comply with the 2022 CALGreen standards, which include a variety of different measures, including reduction of wastewater and water use. In addition, the proposed project would be required to comply with the California Model Water Efficient Landscape Ordinance. Therefore, the proposed project would not conflict with any of the water conservation and efficiency measures.
- The goal of transportation and motor vehicle measures is to develop regional GHG emission reduction targets for passenger vehicles. Specific regional emission targets for transportation emissions would not directly apply to the proposed project. However, vehicles traveling to the project site would comply with the Pavley II (LEV III) Advanced Clean Cars Program. The second phase of Pavley standards will reduce GHG emissions from new cars by 34 percent from 2016 levels by 2025, resulting in a 3 percent decrease in average vehicle emissions for all vehicles by 2020. Therefore, the proposed project would not conflict with the identified transportation and motor vehicle measures.

Madera MCTC's 2022 RTP/SCS. The MCTC 2022 RTP/SCS⁴⁴ reflects transportation planning for Madera County through 2046. The vision, goals, and policies in the 2022 RTP are intended to serve as the foundation for both short and long-term planning and guide implementation activities. The core vision in the 2022 RTP is to create a region of diverse, safe, resilient, and accessible transportation options that improve the quality of life for all residents by fostering sustainability, equity, a vibrant economy, clean air, and healthy communities. The 2022 RTP contains transportation projects to help more efficiently distribute population, housing, and employment growth, as well as forecast development that is generally consistent with regional-level general plan data. The actions in the 2022 RTP address all transportation modes (e.g., highways, local streets and roads, mass transportation, rail, bicycle, and aviation facilities and services) and consists of short and long-term activities that address regional transportation needs. While the actions are organized by the five key policy areas, many of them support multiple goals and policies. Some actions are intended to support the SCS and reduce GHG emissions directly, while others are focused on the RTP's broader goals. The 2022 RTP does not require that local General Plans, Specific Plans, or zoning be consistent with the 2022 RTP, but provides incentives for consistency for governments and developers.

The proposed project would not interfere with the MCTC ability to achieve the region's GHG reductions. Furthermore, the proposed project is not regionally significant per *State CEQA Guidelines* Section 15206, and it would not conflict with the 2022 RTP targets because those targets

MCTC. 2022. 2022 Regional Transportation Plan and Sustainable Communities Strategy. August 31.
Website: https://www.maderactc.org/transportation/page/your-madera-2046-rtpscs (accessed October 2024)

were established and are applicable on a regional level. The proposed project would include 168 single family housing units and associated site improvements. Based on the City's Housing Element, the average household size within the City is approximately 3.55 persons per household. Therefore, the proposed project has the potential to increase population by approximately 588 persons. The RTP is based on a projected population in the Madera region in 2046 of 1.35 million people and associated employment. Therefore, the proposed project is within the forecasted population growth for the region. As such, the proposed project land uses would be consistent with the growth assumptions used in the 2022 RTP. Therefore, it is anticipated that implementation of the proposed project would not interfere with MCTC's ability to implement the regional strategies outlined in the 2022 RTP.

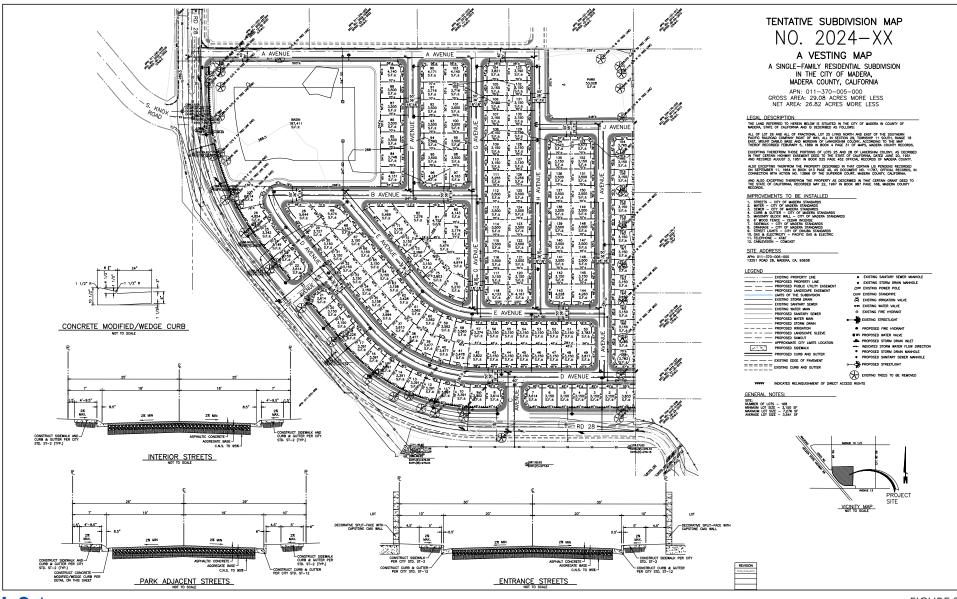
The proposed project would comply with existing State regulations adopted to achieve the overall GHG emissions reduction goals identified in the 2022 RTP and would be consistent with applicable State plans and programs designed to reduce GHG emissions. Therefore, the proposed project would not conflict with an applicable plan, policy or regulation adopted for the purpose of reducing GHG emissions.

CONCLUSION

Based on the analysis presented above, construction and operation of the proposed project would not result in the generation of criteria air pollutants that would exceed SJVAPCD thresholds of significance. Compliance with SJVAPCD Regulation VIII will further reduce dust impacts. In addition, compliance with Rule 9510 would reduce operational emissions of NO_X and PM₁₀ by 33.3 percent and 50 percent, respectively. With implementation of MM-1, the proposed project is also not expected to produce significant emissions that would affect nearby sensitive receptors. The project would also not result in other emissions (such as those leading to odors) affecting a substantial number of people. As mentioned above, neither the City nor the SJVAPCD has developed or adopted numeric GHG significance thresholds. Therefore, this analysis evaluated the project based on the project design features included in the Justification Report. As discussed above, the project would not result in the emissions of substantial GHG emissions. Additionally, the project would not conflict with the State's GHG emissions reductions objectives embodied in EO B-30-15, AB 1279, SB 32, or AB 197. Therefore, the proposed project's incremental contribution to cumulative GHG emissions would not be cumulatively considerable.

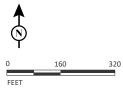
Attachments: A – Figures

B – CalEEMod Output Files C – Construction HRA Outputs


ATTACHMENT

FIGURES

Figure 1: Project Location


Figure 2: Site Plan

LSA

FIGURE 2

Madera SFR Development Project
Site Plan

ATTACHMENT B

CALEEMOD OUTPUT FILES

Madera SFR Development Custom Report

Table of Contents

- 1. Basic Project Information
 - 1.1. Basic Project Information
 - 1.2. Land Use Types
 - 1.3. User-Selected Emission Reduction Measures by Emissions Sector
- 2. Emissions Summary
 - 2.1. Construction Emissions Compared Against Thresholds
 - 2.2. Construction Emissions by Year, Unmitigated
 - 2.3. Construction Emissions by Year, Mitigated
 - 2.4. Operations Emissions Compared Against Thresholds
 - 2.5. Operations Emissions by Sector, Unmitigated
 - 2.6. Operations Emissions by Sector, Mitigated
- 3. Construction Emissions Details
 - 3.1. Site Preparation (2025) Unmitigated
 - 3.2. Site Preparation (2025) Mitigated
 - 3.3. Grading (2025) Unmitigated

- 3.4. Grading (2025) Mitigated
- 3.5. Building Construction (2025) Unmitigated
- 3.6. Building Construction (2025) Mitigated
- 3.7. Building Construction (2026) Unmitigated
- 3.8. Building Construction (2026) Mitigated
- 3.9. Building Construction (2027) Unmitigated
- 3.10. Building Construction (2027) Mitigated
- 3.11. Paving (2027) Unmitigated
- 3.12. Paving (2027) Mitigated
- 3.13. Architectural Coating (2027) Unmitigated
- 3.14. Architectural Coating (2027) Mitigated
- 4. Operations Emissions Details
 - 4.1. Mobile Emissions by Land Use
 - 4.1.1. Unmitigated
 - 4.1.2. Mitigated
 - 4.2. Energy
 - 4.2.1. Electricity Emissions By Land Use Unmitigated
 - 4.2.2. Electricity Emissions By Land Use Mitigated

- 4.2.3. Natural Gas Emissions By Land Use Unmitigated
- 4.2.4. Natural Gas Emissions By Land Use Mitigated
- 4.3. Area Emissions by Source
 - 4.3.1. Unmitigated
 - 4.3.2. Mitigated
- 4.4. Water Emissions by Land Use
 - 4.4.1. Unmitigated
 - 4.4.2. Mitigated
- 4.5. Waste Emissions by Land Use
 - 4.5.1. Unmitigated
 - 4.5.2. Mitigated
- 4.6. Refrigerant Emissions by Land Use
 - 4.6.1. Unmitigated
 - 4.6.2. Mitigated
- 4.7. Offroad Emissions By Equipment Type
 - 4.7.1. Unmitigated
 - 4.7.2. Mitigated
- 4.8. Stationary Emissions By Equipment Type

- 4.8.1. Unmitigated
- 4.8.2. Mitigated
- 4.9. User Defined Emissions By Equipment Type
 - 4.9.1. Unmitigated
 - 4.9.2. Mitigated
- 4.10. Soil Carbon Accumulation By Vegetation Type
 - 4.10.1. Soil Carbon Accumulation By Vegetation Type Unmitigated
 - 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type Unmitigated
 - 4.10.3. Avoided and Sequestered Emissions by Species Unmitigated
 - 4.10.4. Soil Carbon Accumulation By Vegetation Type Mitigated
 - 4.10.5. Above and Belowground Carbon Accumulation by Land Use Type Mitigated
 - 4.10.6. Avoided and Sequestered Emissions by Species Mitigated
- 5. Activity Data
 - 5.1. Construction Schedule
 - 5.2. Off-Road Equipment
 - 5.2.1. Unmitigated
 - 5.2.2. Mitigated
 - 5.3. Construction Vehicles

- 5.3.1. Unmitigated
- 5.3.2. Mitigated
- 5.4. Vehicles
 - 5.4.1. Construction Vehicle Control Strategies
- 5.5. Architectural Coatings
- 5.6. Dust Mitigation
 - 5.6.1. Construction Earthmoving Activities
 - 5.6.2. Construction Earthmoving Control Strategies
- 5.7. Construction Paving
- 5.8. Construction Electricity Consumption and Emissions Factors
- 5.9. Operational Mobile Sources
 - 5.9.1. Unmitigated
 - 5.9.2. Mitigated
- 5.10. Operational Area Sources
 - 5.10.1. Hearths
 - 5.10.1.1. Unmitigated
 - 5.10.1.2. Mitigated
 - 5.10.2. Architectural Coatings

- 5.10.3. Landscape Equipment
- 5.10.4. Landscape Equipment Mitigated
- 5.11. Operational Energy Consumption
 - 5.11.1. Unmitigated
 - 5.11.2. Mitigated
- 5.12. Operational Water and Wastewater Consumption
 - 5.12.1. Unmitigated
 - 5.12.2. Mitigated
- 5.13. Operational Waste Generation
 - 5.13.1. Unmitigated
 - 5.13.2. Mitigated
- 5.14. Operational Refrigeration and Air Conditioning Equipment
 - 5.14.1. Unmitigated
 - 5.14.2. Mitigated
- 5.15. Operational Off-Road Equipment
 - 5.15.1. Unmitigated
 - 5.15.2. Mitigated
- 5.16. Stationary Sources

- 5.16.1. Emergency Generators and Fire Pumps
- 5.16.2. Process Boilers
- 5.17. User Defined
- 5.18. Vegetation
 - 5.18.1. Land Use Change
 - 5.18.1.1. Unmitigated
 - 5.18.1.2. Mitigated
 - 5.18.1. Biomass Cover Type
 - 5.18.1.1. Unmitigated
 - 5.18.1.2. Mitigated
 - 5.18.2. Sequestration
 - 5.18.2.1. Unmitigated
 - 5.18.2.2. Mitigated
- 8. User Changes to Default Data

1. Basic Project Information

1.1. Basic Project Information

Data Field	Value
Project Name	Madera SFR Development
Construction Start Date	3/3/2025
Operational Year	2027
Lead Agency	_
Land Use Scale	Project/site
Analysis Level for Defaults	County
Windspeed (m/s)	2.90
Precipitation (days)	16.4
Location	36.94180566962763, -120.03338776878576
County	Madera
City	Unincorporated
Air District	San Joaquin Valley APCD
Air Basin	San Joaquin Valley
TAZ	2548
EDFZ	5
Electric Utility	Pacific Gas & Electric Company
Gas Utility	Pacific Gas & Electric
App Version	2022.1.1.28

1.2. Land Use Types

Land Use Subtype	Size	Unit	Lot Acreage	Building Area (sq ft)		Special Landscape Area (sq ft)	Population	Description
Single Family Housing	168	Dwelling Unit	23.5	327,600	0.00	_	549	_

City Park	5.52	Acre	5.52	0.00	0.00	0.00	_	_

1.3. User-Selected Emission Reduction Measures by Emissions Sector

Sector	#	Measure Title
Energy	E-10-B	Establish Onsite Renewable Energy Systems: Solar Power

2. Emissions Summary

2.1. Construction Emissions Compared Against Thresholds

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Un/Mit.	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	1.43	48.9	36.1	0.06	1.36	19.7	20.9	1.23	10.1	11.1	_	6,713	6,713	0.27	0.14	6,737
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	0.89	19.9	16.4	0.03	0.70	0.50	1.19	0.65	0.12	0.78	_	3,420	3,420	0.12	0.14	3,464
Average Daily (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	0.63	14.8	11.6	0.02	0.50	2.39	2.85	0.47	1.05	1.47	_	2,436	2,436	0.08	0.10	2,467
Annual (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	0.11	2.69	2.12	< 0.005	0.09	0.44	0.52	0.08	0.19	0.27	_	403	403	0.01	0.02	408

2.2. Construction Emissions by Year, Unmitigated

Year	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	CO2e
------	-----	-----	----	-----	-------	-------	-------	--------	--------	--------	------	-------	------	-----	-----	------

Daily - Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2025	1.43	48.9	36.1	0.06	1.36	19.7	20.9	1.23	10.1	11.1	_	6,713	6,713	0.27	0.14	6,737
2026	0.91	19.8	16.6	0.03	0.70	0.50	1.19	0.65	0.12	0.78	_	3,436	3,436	0.11	0.13	3,482
2027	0.57	13.3	11.1	0.01	0.58	0.08	0.65	0.54	0.02	0.56	_	1,593	1,593	0.06	0.02	1,600
Daily - Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2025	0.89	19.9	16.4	0.03	0.70	0.50	1.19	0.65	0.12	0.78	_	3,420	3,420	0.12	0.14	3,464
2026	0.88	19.9	16.3	0.03	0.70	0.50	1.19	0.65	0.12	0.78	_	3,401	3,401	0.12	0.13	3,443
2027	0.86	19.8	16.1	0.03	0.70	0.50	1.19	0.65	0.12	0.78	_	3,380	3,380	0.12	0.13	3,423
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2025	0.53	14.8	11.4	0.02	0.46	2.39	2.85	0.42	1.05	1.47	_	2,249	2,249	0.08	0.06	2,268
2026	0.63	14.2	11.6	0.02	0.50	0.35	0.85	0.47	0.09	0.55	_	2,436	2,436	0.08	0.10	2,467
2027	0.21	4.64	3.82	0.01	0.18	0.09	0.27	0.17	0.02	0.19	_	728	728	0.03	0.02	736
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2025	0.10	2.69	2.08	< 0.005	0.08	0.44	0.52	0.08	0.19	0.27	_	372	372	0.01	0.01	376
2026	0.11	2.59	2.12	< 0.005	0.09	0.06	0.16	0.08	0.02	0.10	_	403	403	0.01	0.02	408
2027	0.04	0.85	0.70	< 0.005	0.03	0.02	0.05	0.03	< 0.005	0.03	_	121	121	< 0.005	< 0.005	122

2.3. Construction Emissions by Year, Mitigated

Year	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	CO2e
Daily - Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2025	1.43	48.9	36.1	0.06	1.36	19.7	20.9	1.23	10.1	11.1	_	6,713	6,713	0.27	0.14	6,737
2026	0.91	19.8	16.6	0.03	0.70	0.50	1.19	0.65	0.12	0.78	_	3,436	3,436	0.11	0.13	3,482
2027	0.57	13.3	11.1	0.01	0.58	0.08	0.65	0.54	0.02	0.56	_	1,593	1,593	0.06	0.02	1,600

Daily - Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2025	0.89	19.9	16.4	0.03	0.70	0.50	1.19	0.65	0.12	0.78	_	3,420	3,420	0.12	0.14	3,464
2026	0.88	19.9	16.3	0.03	0.70	0.50	1.19	0.65	0.12	0.78	_	3,401	3,401	0.12	0.13	3,443
2027	0.86	19.8	16.1	0.03	0.70	0.50	1.19	0.65	0.12	0.78	_	3,380	3,380	0.12	0.13	3,423
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2025	0.53	14.8	11.4	0.02	0.46	2.39	2.85	0.42	1.05	1.47	_	2,249	2,249	0.08	0.06	2,268
2026	0.63	14.2	11.6	0.02	0.50	0.35	0.85	0.47	0.09	0.55	_	2,436	2,436	0.08	0.10	2,467
2027	0.21	4.64	3.82	0.01	0.18	0.09	0.27	0.17	0.02	0.19	_	728	728	0.03	0.02	736
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2025	0.10	2.69	2.08	< 0.005	0.08	0.44	0.52	0.08	0.19	0.27	_	372	372	0.01	0.01	376
2026	0.11	2.59	2.12	< 0.005	0.09	0.06	0.16	0.08	0.02	0.10	_	403	403	0.01	0.02	408
2027	0.04	0.85	0.70	< 0.005	0.03	0.02	0.05	0.03	< 0.005	0.03	_	121	121	< 0.005	< 0.005	122

2.4. Operations Emissions Compared Against Thresholds

Un/Mit.	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	18.5	5.36	79.9	0.20	5.49	5.76	11.2	5.28	1.46	6.74	1,012	8,366	9,378	14.7	0.46	9,910
Mit.	18.5	5.36	79.9	0.20	5.49	5.76	11.2	5.28	1.46	6.74	1,012	7,664	8,676	14.6	0.45	9,201
% Reduced	_	_	_	_	_	_	_	_	_	_	_	8%	7%	1%	3%	7%
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	16.9	5.91	69.0	0.19	5.48	5.76	11.2	5.28	1.46	6.74	1,012	7,791	8,802	14.8	0.49	9,322
Mit.	16.9	5.91	69.0	0.19	5.48	5.76	11.2	5.28	1.46	6.74	1,012	7,089	8,100	14.7	0.48	8,613

% Reduced	_	_	_	_	_	_	_	_	_	_	_	9%	8%	1%	3%	8%
Average Daily (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	14.2	5.17	43.0	0.10	1.29	5.70	6.98	1.24	1.44	2.68	304	7,951	8,255	11.4	0.48	8,696
Mit.	14.2	5.17	43.0	0.10	1.29	5.70	6.98	1.24	1.44	2.68	304	7,249	7,553	11.3	0.46	7,987
% Reduced	_	_	_	_	_	_	_	_	_	_	_	9%	9%	1%	3%	8%
Annual (Max)	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_
Unmit.	2.59	0.94	7.85	0.02	0.23	1.04	1.27	0.23	0.26	0.49	50.3	1,316	1,367	1.89	0.08	1,440
Mit.	2.59	0.94	7.85	0.02	0.23	1.04	1.27	0.23	0.26	0.49	50.3	1,200	1,251	1.87	0.08	1,322
% Reduced	_	_	-	_	-	-	_	-	_	-	-	9%	9%	1%	3%	8%

2.5. Operations Emissions by Sector, Unmitigated

Sector	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Mobile	6.49	4.65	32.4	0.07	0.07	5.76	5.83	0.06	1.46	1.52	_	7,451	7,451	0.36	0.41	7,607
Area	12.0	0.71	47.5	0.12	5.42	_	5.42	5.21	_	5.21	913	25.5	938	4.27	< 0.005	1,045
Energy	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	878	878	0.14	0.02	886
Water	_	_	_	_	_	_	_	_	_	_	13.3	12.6	25.9	1.36	0.03	69.6
Waste	_	_	_	_	_	_	_	_	_	_	85.7	0.00	85.7	8.56	0.00	300
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	2.35
Total	18.5	5.36	79.9	0.20	5.49	5.76	11.2	5.28	1.46	6.74	1,012	8,366	9,378	14.7	0.46	9,910
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Mobile	5.70	5.29	31.1	0.07	0.07	5.76	5.83	0.06	1.46	1.52	_	6,900	6,900	0.43	0.44	7,044
Area	11.2	0.62	37.9	0.12	5.41	_	5.41	5.21	_	5.21	913	0.00	913	4.27	0.00	1,020
Energy	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	878	878	0.14	0.02	886
Water	_	_	_	_	_	_	_	_	_	_	13.3	12.6	25.9	1.36	0.03	69.6
Waste	_	_	_	_	_	_	_	_	_	_	85.7	0.00	85.7	8.56	0.00	300
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	2.35
Total	16.9	5.91	69.0	0.19	5.48	5.76	11.2	5.28	1.46	6.74	1,012	7,791	8,802	14.8	0.49	9,322
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
Mobile	5.81	4.99	29.8	0.07	0.07	5.70	5.77	0.06	1.44	1.51	_	7,049	7,049	0.39	0.43	7,196
Area	8.36	0.18	13.2	0.03	1.22	_	1.22	1.17	_	1.17	205	12.6	218	0.96	< 0.005	242
Energy	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	878	878	0.14	0.02	886
Water	_	_	_	_	_	_	_	_	_	_	13.3	12.6	25.9	1.36	0.03	69.6
Waste	_	_	_	_	_	_	_	_	_	_	85.7	0.00	85.7	8.56	0.00	300
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	2.35
Total	14.2	5.17	43.0	0.10	1.29	5.70	6.98	1.24	1.44	2.68	304	7,951	8,255	11.4	0.48	8,696
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Mobile	1.06	0.91	5.43	0.01	0.01	1.04	1.05	0.01	0.26	0.28	_	1,167	1,167	0.06	0.07	1,191
Area	1.53	0.03	2.41	0.01	0.22	_	0.22	0.21	_	0.21	34.0	2.08	36.0	0.16	< 0.005	40.0
Energy	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	145	145	0.02	< 0.005	147
Water	_	_	_	_	_	_	_	_	_	_	2.19	2.09	4.28	0.23	0.01	11.5
Waste	_	_	_	_	_	_	_	_	_	_	14.2	0.00	14.2	1.42	0.00	49.6
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0.39
Total	2.59	0.94	7.85	0.02	0.23	1.04	1.27	0.23	0.26	0.49	50.3	1,316	1,367	1.89	0.08	1,440

2.6. Operations Emissions by Sector, Mitigated

Sector	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	CO2e

Daily, Summer (Max)	_	_	_	_	_			_	_	_	_	_	_	_	_	_
Mobile	6.49	4.65	32.4	0.07	0.07	5.76	5.83	0.06	1.46	1.52	_	7,451	7,451	0.36	0.41	7,607
Area	12.0	0.71	47.5	0.12	5.42	_	5.42	5.21	_	5.21	913	25.5	938	4.27	< 0.005	1,045
Energy	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	176	176	0.03	< 0.005	177
Water	_	_	_	_	_	_	_	_	_	_	13.3	12.6	25.9	1.36	0.03	69.6
Waste	_	_	_	_	_	_	_	_	_	_	85.7	0.00	85.7	8.56	0.00	300
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	2.35
Total	18.5	5.36	79.9	0.20	5.49	5.76	11.2	5.28	1.46	6.74	1,012	7,664	8,676	14.6	0.45	9,201
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Mobile	5.70	5.29	31.1	0.07	0.07	5.76	5.83	0.06	1.46	1.52	_	6,900	6,900	0.43	0.44	7,044
Area	11.2	0.62	37.9	0.12	5.41	_	5.41	5.21	_	5.21	913	0.00	913	4.27	0.00	1,020
Energy	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	176	176	0.03	< 0.005	177
Water	_	_	_	_	_	_	_	_	_	_	13.3	12.6	25.9	1.36	0.03	69.6
Waste	_	_	_	_	_	_	_	_	_	_	85.7	0.00	85.7	8.56	0.00	300
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	2.35
Total	16.9	5.91	69.0	0.19	5.48	5.76	11.2	5.28	1.46	6.74	1,012	7,089	8,100	14.7	0.48	8,613
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Mobile	5.81	4.99	29.8	0.07	0.07	5.70	5.77	0.06	1.44	1.51	_	7,049	7,049	0.39	0.43	7,196
Area	8.36	0.18	13.2	0.03	1.22	_	1.22	1.17	_	1.17	205	12.6	218	0.96	< 0.005	242
Energy	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	176	176	0.03	< 0.005	177
Water	_	_	_	_	_	_	_	_	_	_	13.3	12.6	25.9	1.36	0.03	69.6
Waste	_	_	_	_	_	_	_	_	_	_	85.7	0.00	85.7	8.56	0.00	300
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	2.35
Total	14.2	5.17	43.0	0.10	1.29	5.70	6.98	1.24	1.44	2.68	304	7,249	7,553	11.3	0.46	7,987
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Mobile	1.06	0.91	5.43	0.01	0.01	1.04	1.05	0.01	0.26	0.28	_	1,167	1,167	0.06	0.07	1,191
Area	1.53	0.03	2.41	0.01	0.22	_	0.22	0.21	_	0.21	34.0	2.08	36.0	0.16	< 0.005	40.0
Energy	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	29.1	29.1	< 0.005	< 0.005	29.3
Water	_	_	_	_	_	_	_	_	_	_	2.19	2.09	4.28	0.23	0.01	11.5
Waste	_	_	_	_	_	_	_	_	_	_	14.2	0.00	14.2	1.42	0.00	49.6
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0.39
Total	2.59	0.94	7.85	0.02	0.23	1.04	1.27	0.23	0.26	0.49	50.3	1,200	1,251	1.87	0.08	1,322

3. Construction Emissions Details

3.1. Site Preparation (2025) - Unmitigated

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment		39.9	28.3	0.05	1.12	_	1.12	1.02	_	1.02	_	5,295	5,295	0.21	0.04	5,314
Dust From Material Movement	_	_	_	_	_	19.7	19.7	_	10.1	10.1	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment	0.06	2.18	1.55	< 0.005	0.06		0.06	0.06	_	0.06		290	290	0.01	< 0.005	291

Dust From Material	_	_	_	_	_	1.08	1.08	_	0.55	0.55	_	_	_	_	_	-
Movement																
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_		<u> </u>	_	_
Off-Road Equipment	0.01	0.40	0.28	< 0.005	0.01	_	0.01	0.01	_	0.01	-	48.0	48.0	< 0.005	< 0.005	48.2
Dust From Material Movement	_	_	_	_	_	0.20	0.20	_	0.10	0.10	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.08	0.04	0.63	0.00	0.00	0.09	0.09	0.00	0.02	0.02	_	99.7	99.7	0.01	< 0.005	101
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	0.03	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	5.04	5.04	< 0.005	< 0.005	5.12
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	0.83	0.83	< 0.005	< 0.005	0.85
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00

3.2. Site Preparation (2025) - Mitigated

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_
Off-Road Equipment	1.07	39.9	28.3	0.05	1.12	_	1.12	1.02	_	1.02	_	5,295	5,295	0.21	0.04	5,314
Dust From Material Movement	_	_	_	_	_	19.7	19.7	_	10.1	10.1	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Average Daily	_	-	_	_	_	_	-	_	_	_	_	_	_	-	_	-
Off-Road Equipment	0.06	2.18	1.55	< 0.005	0.06	_	0.06	0.06	_	0.06	_	290	290	0.01	< 0.005	291
Dust From Material Movement	_	_	_	_	_	1.08	1.08	_	0.55	0.55	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment		0.40	0.28	< 0.005	0.01	_	0.01	0.01	_	0.01	_	48.0	48.0	< 0.005	< 0.005	48.2
Dust From Material Movement	_	_	_	_	_	0.20	0.20	_	0.10	0.10	_	_	_	_	_	_

Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
Worker	0.08	0.04	0.63	0.00	0.00	0.09	0.09	0.00	0.02	0.02	_	99.7	99.7	0.01	< 0.005	101
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	0.03	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	5.04	5.04	< 0.005	< 0.005	5.12
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	0.83	0.83	< 0.005	< 0.005	0.85
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00

3.3. Grading (2025) - Unmitigated

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment		48.8	35.3	0.06	1.36	_	1.36	1.23	_	1.23	_	6,599	6,599	0.27	0.05	6,622

Dust	_	_				9.20	9.20	_	3.65	3.65						
From Material Movement						0.20	0.20		0.00	0.00						
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment		6.02	4.36	0.01	0.17	_	0.17	0.15	_	0.15	_	814	814	0.03	0.01	816
Dust From Material Movement	_	_	_	-	_	1.13	1.13	_	0.45	0.45	_	_	_	_	-	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment	0.03	1.10	0.80	< 0.005	0.03	_	0.03	0.03	_	0.03	_	135	135	0.01	< 0.005	135
Dust From Material Movement	_	_	_	-	_	0.21	0.21	_	0.08	0.08	_	-	_	_	-	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.10	0.05	0.72	0.00	0.00	0.10	0.10	0.00	0.02	0.02	_	114	114	0.01	< 0.005	116
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00

Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Average Daily	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_
Worker	0.01	0.01	0.08	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	_	13.0	13.0	< 0.005	< 0.005	13.2
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	2.14	2.14	< 0.005	< 0.005	2.18
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00

3.4. Grading (2025) - Mitigated

	O II GILGI IL	- (ioi daily,	10.1, j. 10			. 00 (1.07 0.0	.,	,,,		,					
Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen	1.33	48.8	35.3	0.06	1.36	_	1.36	1.23	_	1.23	_	6,599	6,599	0.27	0.05	6,622
Dust From Material Movement	_	_	_	_	_	9.20	9.20	_	3.65	3.65	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Off-Road Equipment		6.02	4.36	0.01	0.17	_	0.17	0.15	_	0.15	_	814	814	0.03	0.01	816
Dust From Material Movement	_	_	_	-	_	1.13	1.13	_	0.45	0.45	_	_	-	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment	0.03	1.10	0.80	< 0.005	0.03	_	0.03	0.03	-	0.03	_	135	135	0.01	< 0.005	135
Dust From Material Movement	_	_	_	-	_	0.21	0.21	_	0.08	0.08	_	_	-	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_
Worker	0.10	0.05	0.72	0.00	0.00	0.10	0.10	0.00	0.02	0.02	_	114	114	0.01	< 0.005	116
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.01	0.01	0.08	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	_	13.0	13.0	< 0.005	< 0.005	13.2
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	2.14	2.14	< 0.005	< 0.005	2.18

Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00

3.5. Building Construction (2025) - Unmitigated

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_		_	_	_	_	_	
Off-Road Equipment	0.62	18.9	14.3	0.02	0.69	_	0.69	0.64	_	0.64	_	2,398	2,398	0.10	0.02	2,406
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	-	_	_	_	_	_	_	_	_	_	-	-	_	-	_
Off-Road Equipment	0.62	18.9	14.3	0.02	0.69	_	0.69	0.64	_	0.64	_	2,398	2,398	0.10	0.02	2,406
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment	0.20	6.20	4.70	0.01	0.23	_	0.23	0.21	_	0.21	_	788	788	0.03	0.01	791
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment	0.04	1.13	0.86	< 0.005	0.04	_	0.04	0.04	_	0.04	_	131	131	0.01	< 0.005	131
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.29	0.14	2.18	0.00	0.00	0.30	0.30	0.00	0.07	0.07	_	345	345	0.02	0.01	351
Vendor	0.02	0.82	0.27	0.01	0.01	0.19	0.20	0.01	0.05	0.06	_	714	714	0.01	0.10	747
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.25	0.18	1.87	0.00	0.00	0.30	0.30	0.00	0.07	0.07	_	308	308	0.02	0.01	313
Vendor	0.02	0.87	0.28	0.01	0.01	0.19	0.20	0.01	0.05	0.06	_	714	714	0.01	0.10	746
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.08	0.05	0.61	0.00	0.00	0.10	0.10	0.00	0.02	0.02	_	104	104	< 0.005	< 0.005	106
Vendor	0.01	0.28	0.09	< 0.005	< 0.005	0.06	0.07	< 0.005	0.02	0.02	_	235	235	< 0.005	0.03	245
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.02	0.01	0.11	0.00	0.00	0.02	0.02	0.00	< 0.005	< 0.005	_	17.3	17.3	< 0.005	< 0.005	17.6
Vendor	< 0.005	0.05	0.02	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	38.9	38.9	< 0.005	0.01	40.6
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00

3.6. Building Construction (2025) - Mitigated

Location	ROG	NOx	со		PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment		18.9	14.3	0.02	0.69	_	0.69	0.64	_	0.64	_	2,398	2,398	0.10	0.02	2,406

Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment	0.62	18.9	14.3	0.02	0.69	-	0.69	0.64	-	0.64	_	2,398	2,398	0.10	0.02	2,406
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	-	_	_	-	_	-	_	_	_	_
Off-Road Equipment	0.20	6.20	4.70	0.01	0.23	_	0.23	0.21	_	0.21	_	788	788	0.03	0.01	791
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_			_	_	_	_	<u> </u>	_
Off-Road Equipment	0.04	1.13	0.86	< 0.005	0.04	_	0.04	0.04	_	0.04	_	131	131	0.01	< 0.005	131
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_
Worker	0.29	0.14	2.18	0.00	0.00	0.30	0.30	0.00	0.07	0.07	_	345	345	0.02	0.01	351
Vendor	0.02	0.82	0.27	0.01	0.01	0.19	0.20	0.01	0.05	0.06	_	714	714	0.01	0.10	747
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.25	0.18	1.87	0.00	0.00	0.30	0.30	0.00	0.07	0.07	_	308	308	0.02	0.01	313
Vendor	0.02	0.87	0.28	0.01	0.01	0.19	0.20	0.01	0.05	0.06	_	714	714	0.01	0.10	746
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00

Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.08	0.05	0.61	0.00	0.00	0.10	0.10	0.00	0.02	0.02	_	104	104	< 0.005	< 0.005	106
Vendor	0.01	0.28	0.09	< 0.005	< 0.005	0.06	0.07	< 0.005	0.02	0.02	_	235	235	< 0.005	0.03	245
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.02	0.01	0.11	0.00	0.00	0.02	0.02	0.00	< 0.005	< 0.005	_	17.3	17.3	< 0.005	< 0.005	17.6
Vendor	< 0.005	0.05	0.02	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	38.9	38.9	< 0.005	0.01	40.6
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00

3.7. Building Construction (2026) - Unmitigated

ontona i	• II • I • I • I		, ,	10.1, j	i dililadi	, G.1.1 G. G.1		o.,	,		,					
Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment	0.62	18.9	14.3	0.02	0.69	_	0.69	0.64	_	0.64	_	2,397	2,397	0.10	0.02	2,405
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment	0.62	18.9	14.3	0.02	0.69	_	0.69	0.64	_	0.64	_	2,397	2,397	0.10	0.02	2,405
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment		13.5	10.2	0.02	0.49	_	0.49	0.46	_	0.46	_	1,712	1,712	0.07	0.01	1,718

Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment	0.08	2.46	1.86	< 0.005	0.09	_	0.09	0.08	_	0.08	_	283	283	0.01	< 0.005	284
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
Worker	0.27	0.13	2.00	0.00	0.00	0.30	0.30	0.00	0.07	0.07	_	337	337	0.01	0.01	343
Vendor	0.02	0.78	0.25	0.01	0.01	0.19	0.20	0.01	0.05	0.06	_	701	701	0.01	0.10	733
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	-	_	_	-	_	_	_	_	_	_	_	_	_	-
Worker	0.24	0.16	1.72	0.00	0.00	0.30	0.30	0.00	0.07	0.07	_	302	302	0.02	0.01	306
Vendor	0.02	0.84	0.25	0.01	0.01	0.19	0.20	0.01	0.05	0.06	_	702	702	0.01	0.10	732
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	-	_	_	_	_	_	_	-	_	-	_	_
Worker	0.17	0.10	1.22	0.00	0.00	0.21	0.21	0.00	0.05	0.05	_	222	222	0.01	0.01	226
Vendor	0.01	0.58	0.18	< 0.005	0.01	0.14	0.14	0.01	0.04	0.04	_	501	501	0.01	0.07	523
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.03	0.02	0.22	0.00	0.00	0.04	0.04	0.00	0.01	0.01	_	36.8	36.8	< 0.005	< 0.005	37.4
Vendor	< 0.005	0.11	0.03	< 0.005	< 0.005	0.02	0.03	< 0.005	0.01	0.01	_	83.0	83.0	< 0.005	0.01	86.6
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00

3.8. Building Construction (2026) - Mitigated

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment	0.62 1	18.9	14.3	0.02	0.69	_	0.69	0.64	_	0.64	_	2,397	2,397	0.10	0.02	2,405
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment	0.62 1	18.9	14.3	0.02	0.69	_	0.69	0.64	_	0.64	_	2,397	2,397	0.10	0.02	2,405
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment	0.44 1	13.5	10.2	0.02	0.49	_	0.49	0.46	_	0.46	_	1,712	1,712	0.07	0.01	1,718
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Annual	_	<u> </u>	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment	0.08	2.46	1.86	< 0.005	0.09	_	0.09	0.08	_	0.08	_	283	283	0.01	< 0.005	284
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.27	0.13	2.00	0.00	0.00	0.30	0.30	0.00	0.07	0.07	_	337	337	0.01	0.01	343
Vendor	0.02	0.78	0.25	0.01	0.01	0.19	0.20	0.01	0.05	0.06	_	701	701	0.01	0.10	733

Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	-	_	_	_	-	_	_	_	_	_	_	_	_	_	-
Worker	0.24	0.16	1.72	0.00	0.00	0.30	0.30	0.00	0.07	0.07	_	302	302	0.02	0.01	306
Vendor	0.02	0.84	0.25	0.01	0.01	0.19	0.20	0.01	0.05	0.06	_	702	702	0.01	0.10	732
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.17	0.10	1.22	0.00	0.00	0.21	0.21	0.00	0.05	0.05	_	222	222	0.01	0.01	226
Vendor	0.01	0.58	0.18	< 0.005	0.01	0.14	0.14	0.01	0.04	0.04	_	501	501	0.01	0.07	523
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.03	0.02	0.22	0.00	0.00	0.04	0.04	0.00	0.01	0.01	_	36.8	36.8	< 0.005	< 0.005	37.4
Vendor	< 0.005	0.11	0.03	< 0.005	< 0.005	0.02	0.03	< 0.005	0.01	0.01	_	83.0	83.0	< 0.005	0.01	86.6
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00

3.9. Building Construction (2027) - Unmitigated

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment		18.9	14.3	0.02	0.69	_	0.69	0.64	_	0.64	_	2,397	2,397	0.10	0.02	2,405
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00

Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment	0.10	3.10	2.35	< 0.005	0.11	_	0.11	0.11	_	0.11	_	394	394	0.02	< 0.005	395
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment	0.02	0.57	0.43	< 0.005	0.02	-	0.02	0.02	_	0.02	-	65.2	65.2	< 0.005	< 0.005	65.5
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	-	_	_	_	-	_	_	_	_	_	_	_	-
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
Worker	0.23	0.15	1.59	0.00	0.00	0.30	0.30	0.00	0.07	0.07	_	296	296	0.01	0.01	300
Vendor	0.02	0.80	0.24	0.01	0.01	0.19	0.20	0.01	0.05	0.06	_	687	687	0.01	0.10	717
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.04	0.02	0.26	0.00	0.00	0.05	0.05	0.00	0.01	0.01	_	50.2	50.2	< 0.005	< 0.005	51.0
Vendor	< 0.005	0.13	0.04	< 0.005	< 0.005	0.03	0.03	< 0.005	0.01	0.01	_	113	113	< 0.005	0.02	118
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.01	< 0.005	0.05	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	_	8.30	8.30	< 0.005	< 0.005	8.44
Vendor	< 0.005	0.02	0.01	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	18.7	18.7	< 0.005	< 0.005	19.5
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00

3.10. Building Construction (2027) - Mitigated

Location	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment	0.62	18.9	14.3	0.02	0.69	_	0.69	0.64	_	0.64	_	2,397	2,397	0.10	0.02	2,405
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment	0.10	3.10	2.35	< 0.005	0.11	_	0.11	0.11	_	0.11	_	394	394	0.02	< 0.005	395
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
Off-Road Equipment	0.02	0.57	0.43	< 0.005	0.02	_	0.02	0.02	_	0.02	_	65.2	65.2	< 0.005	< 0.005	65.5
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_		_		_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.23	0.15	1.59	0.00	0.00	0.30	0.30	0.00	0.07	0.07	_	296	296	0.01	0.01	300
Vendor	0.02	0.80	0.24	0.01	0.01	0.19	0.20	0.01	0.05	0.06	_	687	687	0.01	0.10	717
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00

Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.04	0.02	0.26	0.00	0.00	0.05	0.05	0.00	0.01	0.01	_	50.2	50.2	< 0.005	< 0.005	51.0
Vendor	< 0.005	0.13	0.04	< 0.005	< 0.005	0.03	0.03	< 0.005	0.01	0.01	_	113	113	< 0.005	0.02	118
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.01	< 0.005	0.05	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	_	8.30	8.30	< 0.005	< 0.005	8.44
Vendor	< 0.005	0.02	0.01	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	18.7	18.7	< 0.005	< 0.005	19.5
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00

3.11. Paving (2027) - Unmitigated

	0 0 101 1	C (1.0, C.C.)	, ,	· · · · · ·		,	(1.0, 0.	o.,	,,,							
Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment		13.3	10.6	0.01	0.58	_	0.58	0.54	_	0.54	_	1,511	1,511	0.06	0.01	1,516
Paving	0.00	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment		13.3	10.6	0.01	0.58	_	0.58	0.54	_	0.54	_	1,511	1,511	0.06	0.01	1,516
Paving	0.00	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Off-Road Equipment	0.05	1.28	1.02	< 0.005	0.06	_	0.06	0.05	_	0.05	_	145	145	0.01	< 0.005	145
Paving	0.00	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment	0.01	0.23	0.19	< 0.005	0.01	_	0.01	0.01	_	0.01	-	24.0	24.0	< 0.005	< 0.005	24.1
Paving	0.00	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.06	0.03	0.46	0.00	0.00	0.08	0.08	0.00	0.02	0.02	_	82.0	82.0	< 0.005	< 0.005	83.4
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.06	0.04	0.40	0.00	0.00	0.08	0.08	0.00	0.02	0.02	_	73.3	73.3	< 0.005	< 0.005	74.5
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	-	_	_	-	_	_	_	_	-
Worker	0.01	< 0.005	0.04	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	_	7.26	7.26	< 0.005	< 0.005	7.38
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	1.20	1.20	< 0.005	< 0.005	1.22
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00

Hauling 0.0	00 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	 0.00	0.00	0.00	0.00	0.00
		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.12. Paving (2027) - Mitigated

Jillena F	ollulanis	s (Ib/day	ior daily,	ton/yr ic	r annuai) and Gr	igs (ib/a	ay for da	ily, ivi i/y	r ior anni	uai)					
Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment	0.50	13.3	10.6	0.01	0.58	_	0.58	0.54	_	0.54	_	1,511	1,511	0.06	0.01	1,516
Paving	0.00	_	_	_	_	_	_	_	_	_	_	_	_	-	-	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment	0.50	13.3	10.6	0.01	0.58	_	0.58	0.54	_	0.54	_	1,511	1,511	0.06	0.01	1,516
Paving	0.00	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment	0.05	1.28	1.02	< 0.005	0.06	_	0.06	0.05	_	0.05	-	145	145	0.01	< 0.005	145
Paving	0.00	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_
Off-Road Equipment	0.01	0.23	0.19	< 0.005	0.01	_	0.01	0.01	_	0.01	_	24.0	24.0	< 0.005	< 0.005	24.1

Paving	0.00	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.06	0.03	0.46	0.00	0.00	0.08	0.08	0.00	0.02	0.02	_	82.0	82.0	< 0.005	< 0.005	83.4
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.06	0.04	0.40	0.00	0.00	0.08	0.08	0.00	0.02	0.02	_	73.3	73.3	< 0.005	< 0.005	74.5
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.01	< 0.005	0.04	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	_	7.26	7.26	< 0.005	< 0.005	7.38
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	1.20	1.20	< 0.005	< 0.005	1.22
/endor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00

3.13. Architectural Coating (2027) - Unmitigated

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment	0.05	1.09	0.96	< 0.005	0.07	_	0.07	0.06	_	0.06	_	134	134	0.01	< 0.005	134
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment	< 0.005	0.10	0.09	< 0.005	0.01	_	0.01	0.01	-	0.01	_	12.8	12.8	< 0.005	< 0.005	12.8
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment	< 0.005	0.02	0.02	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	2.12	2.12	< 0.005	< 0.005	2.13
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.05	0.02	0.37	0.00	0.00	0.06	0.06	0.00	0.01	0.01	_	66.1	66.1	< 0.005	< 0.005	67.3
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_		_	_	_	_	_	_	_	-	_	_	_
Average Daily	_	_	-	_	_	_	_	_	_	_	-	_	_	_	-	-
Worker	< 0.005	< 0.005	0.03	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	_	5.85	5.85	< 0.005	< 0.005	5.95

Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	0.97	0.97	< 0.005	< 0.005	0.99
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00

3.14. Architectural Coating (2027) - Mitigated

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment	0.05	1.09	0.96	< 0.005	0.07	_	0.07	0.06	_	0.06	_	134	134	0.01	< 0.005	134
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment	< 0.005	0.10	0.09	< 0.005	0.01	_	0.01	0.01	_	0.01	_	12.8	12.8	< 0.005	< 0.005	12.8
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment	< 0.005	0.02	0.02	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	2.12	2.12	< 0.005	< 0.005	2.13
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00

Offsite	_	_	_	_	_	_	_	_	_		_	_		_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.05	0.02	0.37	0.00	0.00	0.06	0.06	0.00	0.01	0.01	_	66.1	66.1	< 0.005	< 0.005	67.3
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	0.03	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	_	5.85	5.85	< 0.005	< 0.005	5.95
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	0.97	0.97	< 0.005	< 0.005	0.99
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00

4. Operations Emissions Details

4.1. Mobile Emissions by Land Use

4.1.1. Unmitigated

Land Use	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	CO2e
Daily,	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Summer																
(Max)																

Single Family Housing	6.49	4.65	32.4	0.07	0.07	5.76	5.83	0.06	1.46	1.52		7,451	7,451	0.36	0.41	7,607
City Park	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Total	6.49	4.65	32.4	0.07	0.07	5.76	5.83	0.06	1.46	1.52	_	7,451	7,451	0.36	0.41	7,607
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Single Family Housing	5.70	5.29	31.1	0.07	0.07	5.76	5.83	0.06	1.46	1.52	_	6,900	6,900	0.43	0.44	7,044
City Park	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Total	5.70	5.29	31.1	0.07	0.07	5.76	5.83	0.06	1.46	1.52	_	6,900	6,900	0.43	0.44	7,044
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Single Family Housing	1.06	0.91	5.43	0.01	0.01	1.04	1.05	0.01	0.26	0.28	_	1,167	1,167	0.06	0.07	1,191
City Park	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Total	1.06	0.91	5.43	0.01	0.01	1.04	1.05	0.01	0.26	0.28	_	1,167	1,167	0.06	0.07	1,191

4.1.2. Mitigated

Land Use	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Single Family Housing	6.49	4.65	32.4	0.07	0.07	5.76	5.83	0.06	1.46	1.52	_	7,451	7,451	0.36	0.41	7,607
City Park	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Total	6.49	4.65	32.4	0.07	0.07	5.76	5.83	0.06	1.46	1.52	_	7,451	7,451	0.36	0.41	7,607

Daily, Winter (Max)	_	-	-	-	-	-	-	_	_	_	_	_	_	_	-	-
Single Family Housing	5.70	5.29	31.1	0.07	0.07	5.76	5.83	0.06	1.46	1.52	_	6,900	6,900	0.43	0.44	7,044
City Park	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Total	5.70	5.29	31.1	0.07	0.07	5.76	5.83	0.06	1.46	1.52	_	6,900	6,900	0.43	0.44	7,044
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Single Family Housing	1.06	0.91	5.43	0.01	0.01	1.04	1.05	0.01	0.26	0.28	_	1,167	1,167	0.06	0.07	1,191
City Park	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Total	1.06	0.91	5.43	0.01	0.01	1.04	1.05	0.01	0.26	0.28	_	1,167	1,167	0.06	0.07	1,191

4.2. Energy

4.2.1. Electricity Emissions By Land Use - Unmitigated

Land Use	ROG	NOx	СО	SO2		PM10D	PM10T		PM2.5D		BCO2	NBCO2	СО2Т	CH4	N2O	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Single Family Housing	_	_	_	_	_	_	_	_	_	_	_	878	878	0.14	0.02	886
City Park	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	878	878	0.14	0.02	886
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Single Family Housing	_	_	_	_	_	_	_	_	_	_	_	878	878	0.14	0.02	886

City Park	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	878	878	0.14	0.02	886
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Single Family Housing	_	_	_	_	_	_	_	_	_	_	_	145	145	0.02	< 0.005	147
City Park	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	145	145	0.02	< 0.005	147

4.2.2. Electricity Emissions By Land Use - Mitigated

Land Use		NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	CO2e
	INOU	NOX	00	002	TWITCE	TIVITOD	I WITOT	I WIZ.UL	I IVIZ.JD	1 1012.01	DOOZ	NDOOZ	0021	Olla	11/20	0020
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_
Single Family Housing	_	_	_	_	_	_	_	_	_	_	_	176	176	0.03	< 0.005	177
City Park	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	176	176	0.03	< 0.005	177
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Single Family Housing	_	_	_	_	_	_	_	_	_	_	_	176	176	0.03	< 0.005	177
City Park	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	176	176	0.03	< 0.005	177
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_
Single Family Housing	_	_	_	_	_	_	_	_	_	_	_	29.1	29.1	< 0.005	< 0.005	29.3
City Park	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00

Total	_	_	_	_	_	_	_	_	_	_	_	29.1	29.1	< 0.005	< 0.005	29.3

4.2.3. Natural Gas Emissions By Land Use - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

O O C O	110 (1.07 0.0.	, .c. aa,	,	0. 444	., aa O.	.00 (,	ady ioi de	,,,		٠					
ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	CO2e
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00		0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	0.00
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	0.00
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	0.00
	ROG 0.00 0.00 0.00 0.00 0.00 0.00 0.00	ROG NOx 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	ROG NOX CO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	ROG NOX CO SO2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	ROG NOx CO SO2 PM10E 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	ROG NOx CO SO2 PM10E PM10D — — — — — 0.00 0.00 0.00 0.00 — 0.00 0.00 0.00 0.00 — 0.00 0.00 0.00 0.00 — 0.00 0.00 0.00 0.00 — 0.00 0.00 0.00 0.00 — 0.00 0.00 0.00 0.00 — 0.00 0.00 0.00 0.00 — 0.00 0.00 0.00 0.00 —	ROG NOX CO SO2 PM10E PM10D PM10T	ROG NOX CO SO2 PM10E PM10D PM10T PM2.5E — — — — — — — — 0.00 0.00 0.00 0.00 — 0.00 0.00 0.00 0.00 0.00 0.00 — 0.00 0.00 0.00 0.00 0.00 0.00 — 0.00 0.00 0.00 0.00 0.00 0.00 — 0.00 0.00 0.00 0.00 0.00 0.00 — 0.00 0.00 0.00 0.00 0.00 0.00 — 0.00 0.00 0.00 0.00 0.00 0.00 — 0.00 0.00 0.00 0.00 0.00 0.00 — 0.00 0.00 0.00 0.00 0.00 0.00 — 0.00 0.00 0.00 0.00 0.00 0.00 — 0.00 <t< td=""><td>ROG NOX CO SO2 PM10E PM10D PM10T PM2.5E PM2.5D </td><td>ROG NOX CO SO2 PM10E PM10D PM10T PM2.5E PM2.5D PM2.5T - 0.00 - 0.00 0.00 - 0.00 <t< td=""><td></td><td>ROG NOX CO SO2 PM10E PM10D PM10T PM2.5E PM2.5D PM2.5T BCO2 NBCO2 </td><td>ROG NOX CO SO2 PM10E PM10D PM10T PM2.5E PM2.5D PM2.5T BCO2 NBCO2 CO2T </td><td>ROG NOX CO SO2 PM10E PM10D PM10T PM2.5E PM2.5D PM2.5T BCO2 NBCO2 CCAT CHA </td><td>ROG NOX CO SO2 PM10E PM10D PM2.5E PM2.5E PM2.5D PM2.5T BCO2 NBCO2 CO2T CH4 N2O </td></t<></td></t<>	ROG NOX CO SO2 PM10E PM10D PM10T PM2.5E PM2.5D	ROG NOX CO SO2 PM10E PM10D PM10T PM2.5E PM2.5D PM2.5T - 0.00 - 0.00 0.00 - 0.00 <t< td=""><td></td><td>ROG NOX CO SO2 PM10E PM10D PM10T PM2.5E PM2.5D PM2.5T BCO2 NBCO2 </td><td>ROG NOX CO SO2 PM10E PM10D PM10T PM2.5E PM2.5D PM2.5T BCO2 NBCO2 CO2T </td><td>ROG NOX CO SO2 PM10E PM10D PM10T PM2.5E PM2.5D PM2.5T BCO2 NBCO2 CCAT CHA </td><td>ROG NOX CO SO2 PM10E PM10D PM2.5E PM2.5E PM2.5D PM2.5T BCO2 NBCO2 CO2T CH4 N2O </td></t<>		ROG NOX CO SO2 PM10E PM10D PM10T PM2.5E PM2.5D PM2.5T BCO2 NBCO2	ROG NOX CO SO2 PM10E PM10D PM10T PM2.5E PM2.5D PM2.5T BCO2 NBCO2 CO2T	ROG NOX CO SO2 PM10E PM10D PM10T PM2.5E PM2.5D PM2.5T BCO2 NBCO2 CCAT CHA	ROG NOX CO SO2 PM10E PM10D PM2.5E PM2.5E PM2.5D PM2.5T BCO2 NBCO2 CO2T CH4 N2O

4.2.4. Natural Gas Emissions By Land Use - Mitigated

Land Use	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	CO2e
----------	-----	-----	----	-----	-------	-------	-------	--------	--------	--------	------	-------	------	-----	-----	------

Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Single Family Housing	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	-	0.00	0.00	0.00	0.00	0.00
City Park	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	0.00
Total	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_
Single Family Housing	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	0.00
City Park	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	0.00
Total	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Single Family Housing	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	-	0.00	0.00	0.00	0.00	0.00
City Park	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	0.00
Total	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00		0.00	0.00	0.00	0.00	0.00

4.3. Area Emissions by Source

4.3.1. Unmitigated

Source	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Hearths	4.18	0.62	37.9	0.12	5.41	_	5.41	5.21	_	5.21	913	0.00	913	4.27	0.00	1,020

Consume r	7.01	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_
Landscap e Equipme nt	0.84	0.09	9.54	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	25.5	25.5	< 0.005	< 0.005	25.6
Total	12.0	0.71	47.5	0.12	5.42	_	5.42	5.21	_	5.21	913	25.5	938	4.27	< 0.005	1,045
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	-
Hearths	4.18	0.62	37.9	0.12	5.41	_	5.41	5.21	_	5.21	913	0.00	913	4.27	0.00	1,020
Consume r Products	7.01	_	_	_	_	_	_	_	_	_	-	_	_	_	_	-
Total	11.2	0.62	37.9	0.12	5.41	_	5.41	5.21	_	5.21	913	0.00	913	4.27	0.00	1,020
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Hearths	0.17	0.03	1.55	0.01	0.22	_	0.22	0.21	_	0.21	34.0	0.00	34.0	0.16	0.00	37.9
Consume r Products	1.28	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
Landscap e Equipme nt	0.08	0.01	0.86	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	2.08	2.08	< 0.005	< 0.005	2.09
Total	1.53	0.03	2.41	0.01	0.22	_	0.22	0.21	_	0.21	34.0	2.08	36.0	0.16	< 0.005	40.0

4.3.2. Mitigated

Source	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Hearths	4.18	0.62	37.9	0.12	5.41	_	5.41	5.21	_	5.21	913	0.00	913	4.27	0.00	1,020

Consume r	7.01	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_
Landscap e Equipme nt	0.84	0.09	9.54	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	25.5	25.5	< 0.005	< 0.005	25.6
Total	12.0	0.71	47.5	0.12	5.42	_	5.42	5.21	_	5.21	913	25.5	938	4.27	< 0.005	1,045
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	-
Hearths	4.18	0.62	37.9	0.12	5.41	_	5.41	5.21	_	5.21	913	0.00	913	4.27	0.00	1,020
Consume r Products	7.01	_	_	_	_	_	_	_	_	_	-	_	_	_	_	-
Total	11.2	0.62	37.9	0.12	5.41	_	5.41	5.21	_	5.21	913	0.00	913	4.27	0.00	1,020
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Hearths	0.17	0.03	1.55	0.01	0.22	_	0.22	0.21	_	0.21	34.0	0.00	34.0	0.16	0.00	37.9
Consume r Products	1.28	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
Landscap e Equipme nt	0.08	0.01	0.86	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	2.08	2.08	< 0.005	< 0.005	2.09
Total	1.53	0.03	2.41	0.01	0.22	_	0.22	0.21	_	0.21	34.0	2.08	36.0	0.16	< 0.005	40.0

4.4. Water Emissions by Land Use

4.4.1. Unmitigated

		- (, ,	· · · · ,		,	(,	<i>J</i> , . <i>J</i>		<i>,</i>					
Land Use	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	CO2e
Daily,	_	<u> </u>	<u> </u>	<u> </u>	_	<u> </u>	_	_	_	_	_	_	_	_	_	_
Summer																
(Max)																

Single Family Housing	_	_	_	_	_	_	_	_	_	_	13.3	12.6	25.9	1.36	0.03	69.6
City Park	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	0.00
Total	_	_	_	_	_	_	_	_	_	_	13.3	12.6	25.9	1.36	0.03	69.6
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Single Family Housing	_	_	_	_	_	_	_	_	_	_	13.3	12.6	25.9	1.36	0.03	69.6
City Park	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	0.00
Total	_	_	_	_	_	_	_	_	_	_	13.3	12.6	25.9	1.36	0.03	69.6
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Single Family Housing	_	_	_	_	_	_	_	_	_	_	2.19	2.09	4.28	0.23	0.01	11.5
City Park	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	0.00
Total	_	_	_	_	_	_	_	_	_	_	2.19	2.09	4.28	0.23	0.01	11.5

4.4.2. Mitigated

Land Use	ROG	NOx	со		PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Single Family Housing	_	_	_	_	_	_	_	_	_	_	13.3	12.6	25.9	1.36	0.03	69.6
City Park	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	0.00
Total	_	_	_	_	_	_	_	_	_	_	13.3	12.6	25.9	1.36	0.03	69.6

Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Single Family Housing	_	_	_	_	_	_	_	_	_	_	13.3	12.6	25.9	1.36	0.03	69.6
City Park	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	0.00
Total	_	_	_	_	_	_	_	_	_	_	13.3	12.6	25.9	1.36	0.03	69.6
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Single Family Housing	_	_	_	_	_	_	_		_	_	2.19	2.09	4.28	0.23	0.01	11.5
City Park	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	0.00
Total	_	_	_	_	_	_	_	_	_	_	2.19	2.09	4.28	0.23	0.01	11.5

4.5. Waste Emissions by Land Use

4.5.1. Unmitigated

Land Use	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Single Family Housing	_	_	_	_	_	_	_	_	_	_	85.4	0.00	85.4	8.54	0.00	299
City Park	_	_	_	_	_	_	_	_	_	_	0.26	0.00	0.26	0.03	0.00	0.90
Total	_	_	_	_	_	_	_	_	_	_	85.7	0.00	85.7	8.56	0.00	300
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Single Family Housing	_	_	_	_	_	_	_		_	_	85.4	0.00	85.4	8.54	0.00	299

City Park	_	_	_	_	_	_	_	_	_	_	0.26	0.00	0.26	0.03	0.00	0.90
Total	_	_	_	_	_	_	_	_	_	_	85.7	0.00	85.7	8.56	0.00	300
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Single Family Housing	_	_	_	_	_	_	_	_	_	_	14.1	0.00	14.1	1.41	0.00	49.5
City Park	_	_	_	_	_	_	_	_	_	_	0.04	0.00	0.04	< 0.005	0.00	0.15
Total	_	_	_	_	_	_	_	_	_	_	14.2	0.00	14.2	1.42	0.00	49.6

4.5.2. Mitigated

Land Use	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_
Single Family Housing	_	_	_	_	_	_	_	_	_	_	85.4	0.00	85.4	8.54	0.00	299
City Park	_	_	_	_	_	_	_	_	_	_	0.26	0.00	0.26	0.03	0.00	0.90
Total	_	_	_	_	_	_	_	_	_	_	85.7	0.00	85.7	8.56	0.00	300
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Single Family Housing	_	_	_	_	_	_	_	_	_	_	85.4	0.00	85.4	8.54	0.00	299
City Park	_	_	_	_	_	_	_	_	_	_	0.26	0.00	0.26	0.03	0.00	0.90
Total	_	_	_	<u> </u>	_	_	_	_	_	_	85.7	0.00	85.7	8.56	0.00	300
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Single Family Housing	_	_	_	_	_	_	_	_	_	_	14.1	0.00	14.1	1.41	0.00	49.5
City Park	_	_	_	_	_	_	_	_	_	_	0.04	0.00	0.04	< 0.005	0.00	0.15

- I												440	0.00	440	4 40	0.00	40.6
lota	al	_	_	_	_	_	_	_	_	_	_	14.2	0.00	14.2	1.42	0.00	49.6

4.6. Refrigerant Emissions by Land Use

4.6.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

• · · · · · · · · · · ·		C (, c.c.)	, ,	, ,		,	(,	o.,	,,,		,					
Land Use	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Single Family Housing	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	2.35
City Park	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	2.35
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Single Family Housing	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	2.35
City Park	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	2.35
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Single Family Housing	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0.39
City Park	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0.39

4.6.2. Mitigated

Land Use	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
Single Family Housing	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	2.35
City Park	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	2.35
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Single Family Housing	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	2.35
City Park	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	2.35
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Single Family Housing	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	0.39
City Park	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0.39

4.7. Offroad Emissions By Equipment Type

4.7.1. Unmitigated

Equipme nt Type	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Total	_	<u> </u>	_	_	_	_	<u> </u>	<u> </u>	_	_	<u> </u>	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.7.2. Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

		(1.0) 0.0.5	, ,	10.1, j		, G.I G	(, 6	.,	,,,	TOT WITH	,					
Equipme nt Type	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.8. Stationary Emissions By Equipment Type

4.8.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Equipme	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	CO2e
nt																
Туре																

Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.8.2. Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Equipme nt Type		NOx	со		PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.9. User Defined Emissions By Equipment Type

4.9.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Equipme nt	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.9.2. Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

		_ `							<u> </u>							
Equipme nt Type	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.10. Soil Carbon Accumulation By Vegetation Type

4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Vegetatio n	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Species	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	CO2e
	1															

Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Avoided	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sequeste red	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Removed	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Avoided	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sequeste red	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Removed	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	<u> </u>	_	<u> </u>	_	_	_	_	<u> </u>	_	_	_	_	_	_	_
Avoided	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sequeste red		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Removed	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.10.4. Soil Carbon Accumulation By Vegetation Type - Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

		(,)	, ,			,	(,	,,, .		,					
Vegetatio n	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.10.5. Above and Belowground Carbon Accumulation by Land Use Type - Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.10.6. Avoided and Sequestered Emissions by Species - Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Species	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	CO2e
									T IVIZ.JD							
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Avoided	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sequeste red	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Removed	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Avoided	_	_	_	_	_	_	_	_	_	_	_	_	_	_	<u> </u>	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sequeste red	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Removed	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Avoided	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sequeste red	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Removed	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

	_	_	_	_	_	_	_			_	_	_	_

5. Activity Data

5.1. Construction Schedule

Phase Name	Phase Type	Start Date	End Date	Days Per Week	Work Days per Phase	Phase Description
Site Preparation	Site Preparation	4/15/2025	5/13/2025	5.00	20.0	_
Grading	Grading	5/14/2025	7/16/2025	5.00	45.0	_
Building Construction	Building Construction	7/17/2025	3/25/2027	5.00	440	_
Paving	Paving	3/26/2027	5/14/2027	5.00	35.0	_
Architectural Coating	Architectural Coating	5/15/2027	7/3/2027	5.00	35.0	_

5.2. Off-Road Equipment

5.2.1. Unmitigated

Phase Name	Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor
Site Preparation	Rubber Tired Dozers	Diesel	Tier 2	3.00	8.00	367	0.40
Site Preparation	Tractors/Loaders/Back hoes	Diesel	Tier 2	4.00	8.00	84.0	0.37
Grading	Excavators	Diesel	Tier 2	2.00	8.00	36.0	0.38
Grading	Graders	Diesel	Tier 2	1.00	8.00	148	0.41
Grading	Rubber Tired Dozers	Diesel	Tier 2	1.00	8.00	367	0.40
Grading	Scrapers	Diesel	Tier 2	2.00	8.00	423	0.48
Grading	Tractors/Loaders/Back hoes	Diesel	Tier 2	2.00	8.00	84.0	0.37
Building Construction	Cranes	Diesel	Tier 2	1.00	7.00	367	0.29
Building Construction	Forklifts	Diesel	Tier 2	3.00	8.00	82.0	0.20
Building Construction	Generator Sets	Diesel	Tier 2	1.00	8.00	14.0	0.74

Building Construction	Tractors/Loaders/Back	Diesel	Tier 2	3.00	7.00	84.0	0.37
Building Construction	Welders	Diesel	Tier 2	1.00	8.00	46.0	0.45
Paving	Pavers	Diesel	Tier 2	2.00	8.00	81.0	0.42
Paving	Paving Equipment	Diesel	Tier 2	2.00	8.00	89.0	0.36
Paving	Rollers	Diesel	Tier 2	2.00	8.00	36.0	0.38
Architectural Coating	Air Compressors	Diesel	Tier 2	1.00	6.00	37.0	0.48

5.2.2. Mitigated

Phase Name	Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor
Site Preparation	Rubber Tired Dozers	Diesel	Tier 2	3.00	8.00	367	0.40
Site Preparation	Tractors/Loaders/Back hoes	Diesel	Tier 2	4.00	8.00	84.0	0.37
Grading	Excavators	Diesel	Tier 2	2.00	8.00	36.0	0.38
Grading	Graders	Diesel	Tier 2	1.00	8.00	148	0.41
Grading	Rubber Tired Dozers	Diesel	Tier 2	1.00	8.00	367	0.40
Grading	Scrapers	Diesel	Tier 2	2.00	8.00	423	0.48
Grading	Tractors/Loaders/Back hoes	Diesel	Tier 2	2.00	8.00	84.0	0.37
Building Construction	Cranes	Diesel	Tier 2	1.00	7.00	367	0.29
Building Construction	Forklifts	Diesel	Tier 2	3.00	8.00	82.0	0.20
Building Construction	Generator Sets	Diesel	Tier 2	1.00	8.00	14.0	0.74
Building Construction	Tractors/Loaders/Back hoes	Diesel	Tier 2	3.00	7.00	84.0	0.37
Building Construction	Welders	Diesel	Tier 2	1.00	8.00	46.0	0.45
Paving	Pavers	Diesel	Tier 2	2.00	8.00	81.0	0.42
Paving	Paving Equipment	Diesel	Tier 2	2.00	8.00	89.0	0.36
Paving	Rollers	Diesel	Tier 2	2.00	8.00	36.0	0.38
Architectural Coating	Air Compressors	Diesel	Tier 2	1.00	6.00	37.0	0.48

5.3. Construction Vehicles

5.3.1. Unmitigated

Phase Name	Trip Type	One-Way Trips per Day	Miles per Trip	Vehicle Mix
Site Preparation	_	_	_	_
Site Preparation	Worker	17.5	7.10	LDA,LDT1,LDT2
Site Preparation	Vendor	_	12.8	HHDT,MHDT
Site Preparation	Hauling	0.00	20.0	HHDT
Site Preparation	Onsite truck	_	_	HHDT
Grading	_	_	_	_
Grading	Worker	20.0	7.10	LDA,LDT1,LDT2
Grading	Vendor	_	12.8	HHDT,MHDT
Grading	Hauling	0.00	20.0	HHDT
Grading	Onsite truck	_	_	HHDT
Building Construction	_	_	_	_
Building Construction	Worker	60.5	7.10	LDA,LDT1,LDT2
Building Construction	Vendor	18.0	12.8	HHDT,MHDT
Building Construction	Hauling	0.00	20.0	HHDT
Building Construction	Onsite truck	_	_	HHDT
Paving	_	_	_	_
Paving	Worker	15.0	7.10	LDA,LDT1,LDT2
Paving	Vendor	_	12.8	HHDT,MHDT
Paving	Hauling	0.00	20.0	HHDT
Paving	Onsite truck	_	_	HHDT
Architectural Coating	_	_	_	_
Architectural Coating	Worker	12.1	7.10	LDA,LDT1,LDT2
Architectural Coating	Vendor	_	12.8	HHDT,MHDT
Architectural Coating	Hauling	0.00	20.0	HHDT

Architectural Coating Onsite truck	_	_	HHDT
------------------------------------	---	---	------

5.3.2. Mitigated

Phase Name	Trip Type	One-Way Trips per Day	Miles per Trip	Vehicle Mix
Site Preparation	_	_	_	_
Site Preparation	Worker	17.5	7.10	LDA,LDT1,LDT2
Site Preparation	Vendor	_	12.8	HHDT,MHDT
Site Preparation	Hauling	0.00	20.0	HHDT
Site Preparation	Onsite truck	_	_	HHDT
Grading	_	_	_	_
Grading	Worker	20.0	7.10	LDA,LDT1,LDT2
Grading	Vendor	_	12.8	HHDT,MHDT
Grading	Hauling	0.00	20.0	HHDT
Grading	Onsite truck	_	_	HHDT
Building Construction	_	_	_	_
Building Construction	Worker	60.5	7.10	LDA,LDT1,LDT2
Building Construction	Vendor	18.0	12.8	HHDT,MHDT
Building Construction	Hauling	0.00	20.0	HHDT
Building Construction	Onsite truck	_	_	HHDT
Paving	_	_	_	_
Paving	Worker	15.0	7.10	LDA,LDT1,LDT2
Paving	Vendor	_	12.8	HHDT,MHDT
Paving	Hauling	0.00	20.0	HHDT
Paving	Onsite truck	_	_	HHDT
Architectural Coating	_	_	_	_
Architectural Coating	Worker	12.1	7.10	LDA,LDT1,LDT2
Architectural Coating	Vendor	_	12.8	HHDT,MHDT
Architectural Coating	Hauling	0.00	20.0	HHDT

Architectural Coating Onsite truck	_	_	HHDT
------------------------------------	---	---	------

5.4. Vehicles

5.4.1. Construction Vehicle Control Strategies

Control Strategies Applied	PM10 Reduction	PM2.5 Reduction
Water unpaved roads twice daily	55%	55%
Limit vehicle speeds on unpaved roads to 25 mph	44%	44%

5.5. Architectural Coatings

Phase Name	Residential Interior Area	Residential Exterior Area	Non-Residential Interior Area	Non-Residential Exterior Area	Parking Area Coated (sq ft)
	Coated (sq ft)	Coated (sq ft)	Coated (sq ft)	Coated (sq ft)	

5.6. Dust Mitigation

5.6.1. Construction Earthmoving Activities

Phase Name	Material Imported (cy)	Material Exported (cy)	Acres Graded (acres)	Material Demolished (sq. ft.)	Acres Paved (acres)
Site Preparation	_	_	30.0	0.00	_
Grading	_	_	135	0.00	_
Paving	0.00	0.00	0.00	0.00	1.85

5.6.2. Construction Earthmoving Control Strategies

Non-applicable. No control strategies activated by user.

5.7. Construction Paving

Land Use	Area Paved (acres)	% Asphalt
Single Family Housing	1.85	0%
City Park	0.00	0%

5.8. Construction Electricity Consumption and Emissions Factors

kWh per Year and Emission Factor (lb/MWh)

Year	kWh per Year	CO2	CH4	N2O
2025	0.00	204	0.03	< 0.005
2026	0.00	204	0.03	< 0.005
2027	0.00	204	0.03	< 0.005

5.9. Operational Mobile Sources

5.9.1. Unmitigated

Land Use Type	Trips/Weekday	Trips/Saturday	Trips/Sunday	Trips/Year	VMT/Weekday	VMT/Saturday	VMT/Sunday	VMT/Year
Single Family Housing	1,583	1,583	1,583	577,901	8,144	8,144	8,144	2,972,426
City Park	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

5.9.2. Mitigated

Land Use Type	Trips/Weekday	Trips/Saturday	Trips/Sunday	Trips/Year	VMT/Weekday	VMT/Saturday	VMT/Sunday	VMT/Year
Single Family Housing	1,583	1,583	1,583	577,901	8,144	8,144	8,144	2,972,426
City Park	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

5.10. Operational Area Sources

5.10.1. Hearths

5.10.1.1. Unmitigated

Hearth Type	Unmitigated (number)
Single Family Housing	_

Wood Fireplaces	0
Gas Fireplaces	0
Propane Fireplaces	0
Electric Fireplaces	0
No Fireplaces	84
Conventional Wood Stoves	0
Catalytic Wood Stoves	8
Non-Catalytic Wood Stoves	8
Pellet Wood Stoves	0

5.10.1.2. Mitigated

Hearth Type	Unmitigated (number)
Single Family Housing	_
Wood Fireplaces	0
Gas Fireplaces	0
Propane Fireplaces	0
Electric Fireplaces	0
No Fireplaces	84
Conventional Wood Stoves	0
Catalytic Wood Stoves	8
Non-Catalytic Wood Stoves	8
Pellet Wood Stoves	0

5.10.2. Architectural Coatings

Residential Interior Area Coated (sq ft)	Residential Exterior Area Coated (sq ft)		Non-Residential Exterior Area Coated (sq ft)	Parking Area Coated (sq ft)
_	_	_	_	_

5.10.3. Landscape Equipment

Season	Unit	Value
Snow Days	day/yr	0.00
Summer Days	day/yr	180

5.10.4. Landscape Equipment - Mitigated

Season	Unit	Value
Snow Days	day/yr	0.00
Summer Days	day/yr	180

5.11. Operational Energy Consumption

5.11.1. Unmitigated

Electricity (kWh/yr) and CO2 and CH4 and N2O and Natural Gas (kBTU/yr)

Land Use	Electricity (kWh/yr)	CO2	CH4	N2O	Natural Gas (kBTU/yr)
Single Family Housing	1,570,226	204	0.0330	0.0040	0.00
City Park	0.00	204	0.0330	0.0040	0.00

5.11.2. Mitigated

Electricity (kWh/yr) and CO2 and CH4 and N2O and Natural Gas (kBTU/yr)

Land Use	Electricity (kWh/yr)	CO2	CH4	N2O	Natural Gas (kBTU/yr)
Single Family Housing	314,045	204	0.0330	0.0040	0.00
City Park	0.00	204	0.0330	0.0040	0.00

5.12. Operational Water and Wastewater Consumption

5.12.1. Unmitigated

Land Use	Indoor Water (gal/year)	Outdoor Water (gal/year)	
Single Family Housing	6,917,816	0.00	
City Park	0.00	0.00	

5.12.2. Mitigated

Land Use	Indoor Water (gal/year)	Outdoor Water (gal/year)	
Single Family Housing	6,917,816	0.00	
City Park	0.00	0.00	

5.13. Operational Waste Generation

5.13.1. Unmitigated

Land Use	Waste (ton/year)	Cogeneration (kWh/year)	
Single Family Housing	158	_	
City Park	0.47	_	

5.13.2. Mitigated

Land Use	Waste (ton/year)	Cogeneration (kWh/year)	
Single Family Housing	158	_	
City Park	0.47	_	

5.14. Operational Refrigeration and Air Conditioning Equipment

5.14.1. Unmitigated

Land Use Type	Equipment Type	Refrigerant	GWP	Quantity (kg)	Operations Leak Rate	Service Leak Rate	Times Serviced
Single Family Housing	Average room A/C & Other residential A/C and heat pumps	R-410A	2,088	< 0.005	2.50	2.50	10.0

Single Family Housing	Household refrigerators and/or freezers	R-134a	1,430	0.12	0.60	0.00	1.00
City Park	Other commercial A/C and heat pumps	R-410A	2,088	< 0.005	4.00	4.00	18.0
City Park	Stand-alone retail refrigerators and freezers	R-134a	1,430	0.04	1.00	0.00	1.00

5.14.2. Mitigated

Land Use Type	Equipment Type	Refrigerant	GWP	Quantity (kg)	Operations Leak Rate	Service Leak Rate	Times Serviced
Single Family Housing	Average room A/C & Other residential A/C and heat pumps	R-410A	2,088	< 0.005	2.50	2.50	10.0
Single Family Housing	Household refrigerators and/or freezers	R-134a	1,430	0.12	0.60	0.00	1.00
City Park	Other commercial A/C and heat pumps	R-410A	2,088	< 0.005	4.00	4.00	18.0
City Park	Stand-alone retail refrigerators and freezers	R-134a	1,430	0.04	1.00	0.00	1.00

5.15. Operational Off-Road Equipment

5.15.1. Unmitigated

Equipment Type Fuel Type Engine Tier Number per Day Hours Per Day Horsepower Load Factor	Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor
--	----------------	-----------	-------------	----------------	---------------	------------	-------------

5.15.2. Mitigated

Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor
1.1	71	J		,		

5.16. Stationary Sources

5.16.1. Emergency Generators and Fire Pumps

Equipment Type	Fuel Type	Number per Day	Hours per Day	Hours per Year	Horsepower	Load Factor
_qa.p						

5.16.2. Process Boilers

Equipment Type	Fuel Type	Number	Boiler Rating (MMBtu/hr)	Daily Heat Input (MMBtu/day)	Annual Heat Input (MMBtu/yr)
1.1	71		J		1 7 /

5.17. User Defined

Equipment Type Fuel Type

5.18. Vegetation

5.18.1. Land Use Change

5.18.1.1. Unmitigated

Vegetation Land Use Type	Vegetation Soil Type	Initial Acres	Final Acres

5.18.1.2. Mitigated

Vegetation Land Use Type	Vegetation Soil Type	Initial Acres	Final Acres

5.18.1. Biomass Cover Type

5.18.1.1. Unmitigated

Biomass Cover Type Initial Acres Final Acres

5.18.1.2. Mitigated

	l	
Biomass Cover Type	Initial Acres	Final Acres

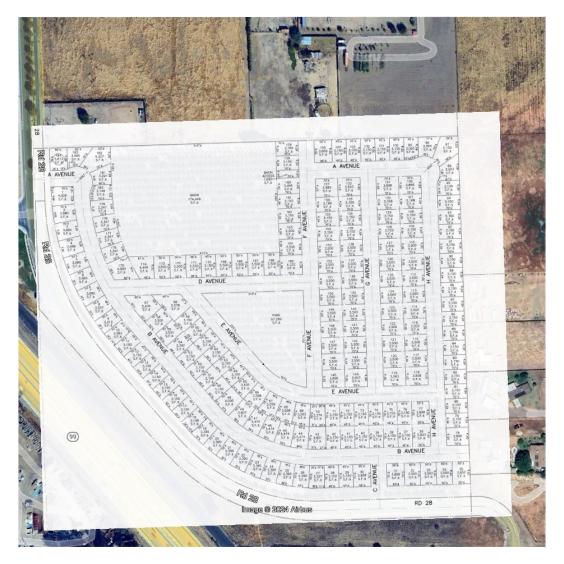
5.18.2. Sequestration

5.18.2.1. Unmitigated

Tree Type	Number	Electricity Saved (kWh/year)	Natural Gas Saved (btu/year)
2.5 31.5		11.19	,

5.18.2.2. Mitigated

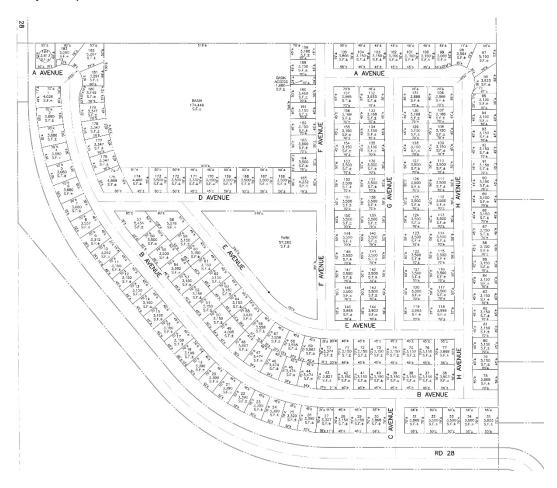
ı/year)
/year)
/y


8. User Changes to Default Data

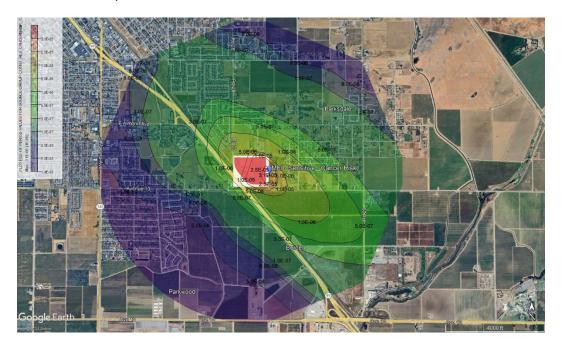
Screen	Justification
Land Use	Project site is approximately 29 acres and would include 168- SFR units and a 1.22-acre park with a 4.3-acre retention basin along with road improvements.
Construction: Construction Phases	No demolition. Default construction schedule.
Construction: Off-Road Equipment	Assume tier 2 engines and default construction equipment
Operations: Vehicle Data	Based on the project trip generation, the proposed project is estimated to generate 1,585 average daily trips
	Trip rate = 1,585 / 168 = 9.43
Operations: Hearths	Project would be all eclectic and would not include wood burning hearths
Operations: Energy Use	Homes will be all-electric

ATTACHMENT C

CONSTRUCTION HRA OUTPUTS


Project Location

Receptor Grid



Project Layout

Unmitigated

Residential Receptor Risk: Cancer Risk

Residential Receptor Risk: Chronic Hazard Index

Worker Receptor Risk: Cancer Risk

Worker Receptor Risk: Chronic Hazard Index

Mitigated

Residential Receptor Risk: Cancer Risk

Residential Receptor Risk: Chronic Hazard Index

Worker Receptor Risk: Cancer Risk

Worker Receptor Risk: Chronic Hazard Index

Construction					
	MEI (Sensitive) - Cancer Risk (in a Million)				
	HARP Rec #: 4				
		Y: 4092304.72			
T2	T2L3	T4	0		
31.22	4.97	2.48	0.00		
	MEI (Sensitive) - Ch	ronic Hazard Index			
	HARP I	Rec #: 4			
	X: 764256.6	Y: 4092304.72			
T2	T2L3	T4	0		
2.17E-02	3.51E-03	1.66E-03	0.00E+00		
	MEI (Sensitive) - A	cute Hazard Index			
	HARP R	ec#: NA			
	X: NA	Y: NA			
T2	T2L3	T4	0		
0.00E+00	0.00E+00	0.00E+00	0.00E+00		
	MEI (Sensiti	ve) - PM 2.5			
	HARP Rec #: 1				
	X: 0 Y: 0				
T2	T2L3	T4	0		
0.000	0.000	0.000	0.000		

	Construction				
	MEI (Worker) - Cancer Risk (in a Million)				
	HARP F	Rec #: 4			
	X: 764256.6	Y: 4092304.72			
T2	T2L3	T4	0		
0.64	0.10	0.05	0.00		
	MEI (Worker) - Ch	ronic Hazard Index			
	HARP F	Rec #: 4			
	X: 764256.6	Y: 4092304.72			
T2	T2L3	T4	0		
2.17E-02	3.51E-03	1.66E-03	0.00E+00		
	MEI (Worker) - Ad	cute Hazard Index			
	HARP R	ec#: NA			
	X: NA	Y: NA			
T2	T2L3	T4	0		
0.00E+00	0.00E+00	0.00E+00	0.00E+00		
	MEI (Work	er) - PM 2.5			
	HARP Rec #: 1				
	X: 0 Y: 0				
T2	T2L3	T4	0		
0.000	0.000	0.000	0.000		

Description	Receptor Type	Model Type	UTM X	UTM Y	Latitude	Longitude
Construction	Sensitive	Cancer Risk	764256.60	4092304.72	36.93976463	-120.0327369
Construction	Sensitive	Chronic HI	764256.60	4092304.72	36.93976463	-120.0327369
Construction	Sensitive	Acute HI	0	0		
Construction	Sensitive	PM 2.5	0.00	0.00		
Construction	School	Cancer Risk	0.00	0.00		
Construction	School	Chronic HI	0.00	0.00		
Construction	School	Acute HI	0	0		
Construction	School	PM 2.5	0.00	0.00		
Construction	Worker	Cancer Risk	764256.60	4092304.72	36.93976463	-120.0327369
Construction	Worker	Chronic HI	764256.60	4092304.72	36.93976463	-120.0327369

Gene	ral AERMOD Input Paramete	rs
Project Boundary	·	
Based on site plan		
Project Elevation Data		
Source	Lakes Envir	
Link	http://www.webgis.co	
Evel Data Descr.	7.5 mir	n DEM
Project Receptor Grid		
Telescoping Grid	Spacing (m)	Distance (m)
Grid 1	25	100
Grid 2	50	200
Grid 3	100	400
Grid 4	200	800
Comments Rec	eptors on roads or parking lot are	eas have been removed.
Meteorological Dataset		
Location	Mad	lera
Provided By	SJVAPCD	
Years		
Elevation (m)	7!	5
Link		
Cons	truction Modeling Specific Inputs	5
AERMOD Input Options		
Regulatory Options	Defa	ault
Pollutant Type	Oth	ier
Averaging Period	Period &	Hourly
Dispersion Coefficient	Urb	an
County	Mad	era
Urban Grouping / Pop	Υ	68,598
# of Worker Receptors	2.4	04
# of Sensitive Receptors	2,4	U 4
# of School Receptors		
Construction Area Parameters		
Source Type	Polygo	n Area
Project Area (m²)	107,22	28.10
Ht. of Source (m)	3.0	

General HARP Input Parameters				
Construction				
	Sensitive Receptors			
Sensitive Scenario Parameters				
Starting Age	3rd Trimester			
Age Range	3rd Trimester - 2 Years Old			
Receptor Type	Individual Resident			
Assessment Type	Cancer / Chronic / Acute			
Exposure Duration	1			
Intake Rate	Derived Merthod			
	Each year of construction is modeled seperately and the impact to each			
6	recepetor is summed to estimate the total esposure from construction			
Comments	emissions. Additionally, the starting age is increased for each year of			
	construction.			
Sensitive Pathway Parameters				
Pathways	SJVAPCD Manadatory minimum Pathways			
Deposition Rate	0.02			
TAH < 16 yrs	Υ			
TAH ≥ 16 yrs	Υ			
·	Worker Receptors			
Worker Scenario Parameters				
Starting Age	16			
Age Range	16 - 18			
Receptor Type	Worker			
Assessment Type	Cancer / Chronic / Acute			
Exposure Duration	1			
Intake Rate	OEHHA Derived Merthod			
	Each year of construction is modeled seperately and the impact to each			
	recepetor is summed to estimate the total esposure from construction			
Comments	emissions. Additionally, the starting age is increased for each year of			
	construction.			
Worker Pathway Parameters				
Pathways	OEHHA minimum Pathways			
Deposition Rate	0.02			
TAH < 16 yrs	N			
TAH ≥ 16 yrs				

2.48E-06

T2 8 T2L3 T4 3.12E-05 4.97E-06

					4 4	1092304.72								
	UTM X	UTM Y	Yr 1	Yr 2	Yr 3	Total	Yr 1	Yr 2	Yr 3	Total	Yr 1	Yr 2	Yr 3	Total
1	764254.04	4092377.13	1.42E-05	1.43E-05	1.01E-06	2.95E-05	2.22E-06	2.32E-06	1.60E-07	4.70E-06	1.19E-06	1.09E-06	6.71E-08	2.34E-06
2	764254.89	4092352.99	1.46E-05	1.47E-05	1.04E-06	3.04E-05	2.28E-06	2.39E-06	1.65E-07	4.84E-06	1.22E-06	1.12E-06	6.91E-08	2.41E-06
3	764255.75	4092328.86	1.49E-05	1.50E-05	1.06E-06	3.09E-05	2.33E-06	2.43E-06	1.68E-07	4.93E-06	1.24E-06	1.14E-06	7.04E-08	2.46E-06
4	764256.6	4092304.72	1.50E-05	1.51E-05	1.07E-06	3.12E-05	2.35E-06	2.45E-06	1.70E-07	4.97E-06	1.26E-06	1.15E-06	7.10E-08	2.48E-06
5	764257.45	4092280.59	1.50E-05	1.51E-05	1.07E-06	3.12E-05	2.35E-06	2.45E-06	1.70E-07	4.97E-06	1.25E-06	1.15E-06	7.10E-08	2.48E-06
6	764258.3	4092256.45	1.49E-05	1.49E-05	1.06E-06	3.08E-05	2.32E-06	2.42E-06	1.68E-07	4.91E-06	1.24E-06	1.14E-06	7.02E-08	2.45E-06
7	764259.15	4092232.32	1.44E-05	1.45E-05	1.03E-06	3.00E-05	2.25E-06	2.36E-06	1.63E-07	4.77E-06	1.21E-06	1.11E-06	6.82E-08	2.38E-06
8	764260	4092208.19	1.36E-05	1.36E-05	9.67E-07	2.81E-05	2.12E-06	2.21E-06	1.53E-07	4.48E-06	1.13E-06	1.04E-06	6.40E-08	2.23E-06
9	764279.03	4092378.01	9.73E-06	9.78E-06	6.95E-07	2.02E-05	1.52E-06	1.59E-06	1.10E-07	3.22E-06	8.12E-07	7.46E-07	4.60E-08	1.60E-06
10	764279.88	4092353.87	1.02E-05	1.02E-05	7.26E-07	2.11E-05	1.59E-06	1.66E-06	1.15E-07	3.36E-06	8.49E-07	7.79E-07	4.80E-08	1.68E-06
11	764280.73	4092329.74	1.05E-05	1.05E-05	7.47E-07	2.17E-05	1.63E-06	1.71E-06	1.18E-07	3.46E-06	8.73E-07	8.02E-07	4.94E-08	1.72E-06
12	764281.58	4092305.6	1.06E-05	1.07E-05	7.59E-07	2.21E-05	1.66E-06	1.73E-06	1.20E-07	3.52E-06	8.88E-07	8.15E-07	5.02E-08	1.75E-06
13	764282.43	4092281.47	1.07E-05	1.07E-05	7.63E-07	2.22E-05	1.67E-06	1.74E-06	1.21E-07	3.53E-06	8.92E-07	8.19E-07	5.05E-08	1.76E-06
14	764283.28	4092257.34	1.06E-05	1.07E-05	7.57E-07	2.20E-05	1.66E-06	1.73E-06	1.20E-07	3.51E-06	8.86E-07	8.13E-07	5.01E-08	1.75E-06
15	764284.14	4092233.2	1.04E-05	1.04E-05	7.40E-07	2.15E-05	1.62E-06	1.69E-06	1.17E-07	3.43E-06	8.65E-07	7.94E-07	4.89E-08	1.71E-06
16	764284.99	4092209.07	9.86E-06	9.91E-06	7.04E-07	2.05E-05	1.54E-06	1.61E-06	1.11E-07	3.26E-06	8.23E-07	7.56E-07	4.66E-08	1.63E-06
17	764304.01	4092378.89	7.11E-06	7.15E-06	5.08E-07	1.48E-05	1.11E-06	1.16E-06	8.02E-08	2.35E-06	5.94E-07	5.45E-07	3.36E-08	1.17E-06
18	764304.86	4092354.75	7.54E-06	7.58E-06	5.38E-07	1.57E-05	1.18E-06	1.23E-06	8.51E-08	2.49E-06	6.30E-07	5.78E-07	3.56E-08	1.24E-06
19	764305.71	4092330.62	7.85E-06	7.89E-06	5.60E-07	1.63E-05	1.23E-06	1.28E-06	8.85E-08	2.60E-06	6.55E-07	6.02E-07	3.71E-08	1.29E-06
20	764306.57	4092306.49	8.05E-06	8.09E-06	5.75E-07	1.67E-05	1.26E-06	1.31E-06	9.08E-08	2.66E-06	6.72E-07	6.17E-07	3.80E-08	1.33E-06
21	764307.42	4092282.35	8.15E-06	8.19E-06	5.82E-07	1.69E-05	1.27E-06	1.33E-06	9.19E-08	2.69E-06	6.81E-07	6.25E-07	3.85E-08	1.34E-06
22	764308.27	4092258.22	8.14E-06	8.18E-06	5.81E-07	1.69E-05	1.27E-06	1.33E-06	9.18E-08	2.69E-06	6.80E-07	6.24E-07	3.85E-08	1.34E-06
23	764309.12	4092234.08	8.01E-06	8.05E-06	5.72E-07	1.66E-05	1.25E-06	1.31E-06	9.03E-08	2.65E-06	6.69E-07	6.14E-07	3.78E-08	1.32E-06
24	764309.97	4092209.95	7.71E-06	7.75E-06	5.50E-07	1.60E-05	1.20E-06	1.26E-06	8.70E-08	2.55E-06	6.44E-07	5.91E-07	3.64E-08	1.27E-06
25	764329	4092379.77	5.41E-06	5.44E-06	3.86E-07	1.12E-05	8.45E-07	8.83E-07	6.10E-08	1.79E-06	4.52E-07	4.15E-07	2.56E-08	8.92E-07
26	764329.85	4092355.64	5.82E-06	5.85E-06	4.16E-07	1.21E-05	9.09E-07	9.50E-07	6.57E-08	1.92E-06	4.86E-07	4.46E-07	2.75E-08	9.60E-07
27	764330.7	4092331.5	6.13E-06	6.16E-06	4.38E-07	1.27E-05	9.58E-07	1.00E-06	6.92E-08	2.03E-06	5.12E-07	4.70E-07	2.90E-08	1.01E-06
28	764331.55	4092307.37	6.35E-06	6.38E-06	4.53E-07	1.32E-05	9.92E-07	1.04E-06	7.16E-08	2.10E-06	5.30E-07	4.87E-07	3.00E-08	1.05E-06
29	764332.4	4092283.23	6.48E-06	6.51E-06	4.63E-07	1.35E-05	1.01E-06	1.06E-06	7.31E-08	2.14E-06	5.41E-07	4.97E-07	3.06E-08	1.07E-06
30	764333.25	4092259.1	6.52E-06	6.55E-06	4.65E-07	1.35E-05	1.02E-06	1.06E-06	7.35E-08	2.16E-06	5.44E-07	5.00E-07	3.08E-08	1.08E-06
31	764334.1	4092234.96	6.46E-06	6.50E-06	4.62E-07	1.34E-05	1.01E-06	1.05E-06	7.29E-08	2.14E-06	5.40E-07	4.96E-07	3.05E-08	1.07E-06
32	764334.96	4092210.83	6.29E-06	6.32E-06	4.49E-07	1.31E-05	9.82E-07	1.03E-06	7.10E-08	2.08E-06	5.25E-07	4.82E-07	2.97E-08	1.04E-06
33	764377.26	4092429.8	2.55E-06	2.56E-06	1.82E-07	5.30E-06	3.98E-07	4.16E-07	2.88E-08	8.43E-07	2.13E-07	1.96E-07	1.20E-08	4.21E-07
34	764378.11	4092405.67	2.97E-06	2.99E-06	2.12E-07	6.17E-06	4.64E-07	4.85E-07	3.35E-08	9.83E-07	2.48E-07	2.28E-07	1.40E-08	4.90E-07
35	764378.97	4092381.53	3.37E-06	3.38E-06	2.40E-07	6.99E-06	5.26E-07	5.49E-07	3.80E-08	1.11E-06	2.81E-07	2.58E-07	1.59E-08	5.55E-07
36	764379.82	4092357.4	3.71E-06	3.73E-06	2.65E-07	7.71E-06	5.80E-07	6.05E-07	4.19E-08	1.23E-06	3.10E-07	2.84E-07	1.75E-08	6.12E-07
37	764380.67	4092333.26	4.00E-06	4.02E-06	2.85E-07	8.30E-06	6.24E-07	6.52E-07	4.51E-08	1.32E-06	3.34E-07	3.06E-07	1.89E-08	6.59E-07
38		4092309.13	4.22E-06	4.24E-06	3.01E-07	8.76E-06	6.59E-07	6.89E-07	4.76E-08	1.40E-06	3.52E-07	3.24E-07	1.99E-08	6.96E-07
39	764382.37	4092285	4.38E-06	4.41E-06	3.13E-07	9.10E-06	6.85E-07	7.15E-07	4.94E-08	1.45E-06	3.66E-07			
40		4092260.86			3.20E-07	9.31E-06		7.31E-07					2.12E-08	
41	764384.07	4092236.73	4.52E-06	4.54E-06	3.23E-07	9.38E-06	7.06E-07	7.37E-07	5.10E-08	1.49E-06	3.77E-07	3.46E-07	2.13E-08	7.45E-07

42	764384.93	4092212.59	4.48E-06	4.50E-06	3.20E-07	9.30E-06		7.31E-07		1.48E-06	3.74E-07	3.43E-07		
43	764385.78	4092188.46	4.36E-06	4.38E-06	3.11E-07	9.05E-06	6.80E-07	7.11E-07		1.44E-06	3.64E-07	3.34E-07		7.18E-07
44	764424.68	4092503.97	1.04E-06	1.04E-06	7.40E-08	2.15E-06	1.62E-07	1.69E-07	1.17E-08		8.66E-08	7.95E-08		1.71E-07
45	764425.53	4092479.83	1.22E-06	1.23E-06	8.73E-08	2.54E-06	1.91E-07	2.00E-07	1.38E-08		1.02E-07	9.38E-08		2.02E-07
46	764426.38	4092455.7	1.45E-06	1.45E-06	1.03E-07	3.00E-06	2.26E-07	2.36E-07	1.63E-08		1.21E-07	1.11E-07	6.83E-09	
47	764427.23	4092431.56	1.70E-06	1.71E-06	1.21E-07	3.53E-06	2.65E-07	2.77E-07	1.92E-08	5.62E-07	1.42E-07	1.30E-07	8.03E-09	2.80E-07
48	764428.08	4092407.43	1.97E-06	1.98E-06	1.41E-07	4.10E-06	3.08E-07	3.22E-07	2.23E-08	6.52E-07	1.65E-07	1.51E-07	9.32E-09	3.25E-07
49	764428.93	4092383.3	2.25E-06	2.26E-06	1.61E-07	4.67E-06	3.51E-07	3.67E-07	2.54E-08	7.43E-07	1.88E-07	1.72E-07	1.06E-08	3.71E-07
50	764429.79	4092359.16	2.51E-06	2.52E-06	1.79E-07	5.21E-06	3.92E-07	4.10E-07	2.83E-08	8.30E-07	2.10E-07	1.92E-07	1.19E-08	4.14E-07
51	764430.64	4092335.03	2.75E-06	2.76E-06	1.96E-07	5.71E-06	4.29E-07	4.48E-07	3.10E-08	9.08E-07	2.29E-07	2.11E-07	1.30E-08	4.53E-07
52	764431.49	4092310.89	2.95E-06	2.97E-06	2.11E-07	6.13E-06	4.61E-07	4.81E-07	3.33E-08	9.76E-07	2.46E-07	2.26E-07	1.39E-08	4.87E-07
53	764432.34	4092286.76	3.11E-06	3.13E-06	2.22E-07	6.47E-06	4.86E-07	5.08E-07	3.51E-08	1.03E-06	2.60E-07	2.39E-07	1.47E-08	5.14E-07
54	764433.19	4092262.62	3.24E-06	3.25E-06	2.31E-07	6.72E-06	5.06E-07	5.28E-07	3.65E-08	1.07E-06	2.70E-07	2.48E-07	1.53E-08	5.34E-07
55	764434.04	4092238.49	3.31E-06	3.33E-06	2.37E-07	6.88E-06	5.17E-07	5.41E-07	3.74E-08	1.10E-06	2.77E-07	2.54E-07	1.56E-08	5.46E-07
56	764434.89	4092214.36	3.34E-06	3.36E-06	2.38E-07	6.94E-06	5.22E-07	5.45E-07	3.77E-08	1.10E-06	2.79E-07	2.56E-07	1.58E-08	5.51E-07
57	764435.75	4092190.22	3.31E-06	3.33E-06	2.37E-07	6.88E-06	5.17E-07	5.41E-07	3.74E-08	1.10E-06	2.77E-07	2.54E-07	1.56E-08	5.46E-07
58	764463.95	4092551.55	6.48E-07	6.52E-07	4.63E-08	1.35E-06	1.01E-07	1.06E-07	7.31E-09	2.14E-07	5.41E-08	4.97E-08	3.06E-09	1.07E-07
59	764454.11	4092573.23	6.02E-07	6.05E-07	4.29E-08	1.25E-06	9.40E-08	9.82E-08	6.79E-09	1.99E-07	5.02E-08	4.61E-08	2.84E-09	9.92E-08
60	764444.27	4092594.91	5.60E-07	5.63E-07	4.00E-08	1.16E-06	8.74E-08	9.13E-08	6.31E-09	1.85E-07	4.67E-08	4.29E-08	2.64E-09	9.23E-08
61	764434.42	4092616.59	5.22E-07	5.25E-07	3.73E-08	1.08E-06	8.15E-08	8.51E-08	5.89E-09	1.73E-07	4.36E-08	4.00E-08	2.46E-09	8.60E-08
62	764424.58	4092638.28	4.87E-07	4.89E-07	3.48E-08	1.01E-06	7.61E-08	7.95E-08	5.49E-09	1.61E-07	4.07E-08	3.73E-08	2.30E-09	8.03E-08
63	764473.79	4092529.86	7.00E-07	7.04E-07	5.00E-08	1.45E-06	1.09E-07	1.14E-07	7.90E-09	2.32E-07	5.85E-08	5.37E-08	3.31E-09	1.15E-07
64	764474.65	4092505.73	8.00E-07	8.04E-07	5.71E-08	1.66E-06	1.25E-07	1.30E-07	9.02E-09	2.64E-07	6.68E-08	6.13E-08	3.78E-09	1.32E-07
65	764475.5	4092481.6	9.19E-07	9.24E-07	6.56E-08	1.91E-06	1.43E-07	1.50E-07	1.04E-08	3.04E-07	7.67E-08	7.04E-08	4.34E-09	1.52E-07
66	764476.35	4092457.46	1.06E-06	1.07E-06	7.56E-08	2.20E-06	1.65E-07	1.73E-07	1.20E-08	3.50E-07	8.85E-08	8.12E-08	5.00E-09	1.75E-07
67	764477.2	4092433.33	1.22E-06	1.23E-06	8.72E-08	2.54E-06	1.91E-07	1.99E-07	1.38E-08	4.04E-07	1.02E-07	9.36E-08	5.77E-09	2.01E-07
68	764478.05	4092409.19	1.40E-06	1.41E-06	1.00E-07	2.91E-06	2.19E-07	2.28E-07	1.58E-08	4.63E-07	1.17E-07	1.07E-07	6.61E-09	2.31E-07
69	764478.9	4092385.06	1.59E-06	1.60E-06	1.13E-07	3.30E-06	2.48E-07	2.59E-07	1.79E-08	5.26E-07	1.33E-07	1.22E-07	7.51E-09	2.62E-07
70	764479.75	4092360.92	1.78E-06	1.79E-06	1.27E-07	3.70E-06	2.78E-07	2.91E-07	2.01E-08	5.89E-07	1.49E-07	1.37E-07	8.41E-09	2.94E-07
71	764480.61	4092336.79	1.97E-06	1.98E-06	1.40E-07	4.08E-06	3.07E-07	3.21E-07	2.22E-08	6.50E-07	1.64E-07	1.51E-07	9.28E-09	3.24E-07
72	764481.46	4092312.66	2.14E-06	2.15E-06	1.52E-07	4.43E-06	3.33E-07	3.48E-07	2.41E-08	7.06E-07	1.78E-07	1.64E-07	1.01E-08	3.52E-07
73	764482.31	4092288.52	2.28E-06	2.30E-06	1.63E-07	4.74E-06	3.57E-07	3.73E-07	2.58E-08	7.55E-07	1.91E-07	1.75E-07	1.08E-08	3.77E-07
74	764483.16	4092264.39	2.40E-06	2.42E-06	1.72E-07	4.99E-06	3.75E-07	3.92E-07	2.71E-08	7.95E-07	2.01E-07	1.84E-07	1.14E-08	3.96E-07
75	764484.01	4092240.25	2.50E-06	2.51E-06	1.78E-07	5.18E-06	3.90E-07	4.07E-07	2.81E-08	8.25E-07	2.08E-07	1.91E-07	1.18E-08	4.11E-07
76	764484.86	4092216.12	2.55E-06	2.57E-06	1.82E-07	5.30E-06	3.99E-07	4.16E-07	2.88E-08	8.44E-07	2.13E-07	1.96E-07	1.21E-08	4.21E-07
77	764485.71	4092191.98	2.57E-06	2.59E-06	1.84E-07	5.34E-06	4.02E-07	4.20E-07	2.90E-08	8.51E-07	2.15E-07	1.97E-07	1.22E-08	4.24E-07
78	764514.31	4092552.44	5.33E-07	5.36E-07	3.81E-08	1.11E-06	8.33E-08	8.70E-08	6.02E-09	1.76E-07	4.45E-08	4.09E-08	2.52E-09	8.79E-08
79	764504.87	4092573.26	5.02E-07	5.04E-07	3.58E-08	1.04E-06	7.84E-08	8.19E-08	5.66E-09	1.66E-07	4.19E-08	3.85E-08	2.37E-09	8.27E-08
80	764495.42	4092594.07	4.72E-07	4.74E-07	3.37E-08	9.80E-07	7.37E-08	7.70E-08	5.32E-09	1.56E-07	3.94E-08	3.62E-08	2.23E-09	7.78E-08
81	764485.97	4092614.89	4.45E-07	4.47E-07	3.18E-08	9.24E-07	6.95E-08	7.26E-08	5.02E-09	1.47E-07	3.72E-08	3.41E-08	2.10E-09	7.34E-08
82	764476.52	4092635.7	4.20E-07	4.22E-07	3.00E-08	8.72E-07	6.56E-08	6.85E-08	4.74E-09	1.39E-07	3.51E-08	3.22E-08	1.98E-09	6.93E-08
83	764467.07	4092656.52	3.97E-07	3.99E-07	2.83E-08	8.24E-07	6.20E-08	6.47E-08	4.48E-09	1.31E-07	3.31E-08	3.04E-08	1.87E-09	6.54E-08
84	764457.62	4092677.33	3.75E-07	3.77E-07	2.67E-08	7.78E-07	5.85E-08	6.11E-08	4.23E-09	1.24E-07	3.13E-08	2.87E-08	1.77E-09	6.18E-08
85	764448.17	4092698.15	3.53E-07	3.55E-07	2.52E-08	7.34E-07	5.52E-08	5.77E-08	3.99E-09	1.17E-07	2.95E-08	2.71E-08	1.67E-09	5.83E-08
86	764438.72	4092718.97	3.33E-07	3.35E-07	2.38E-08	6.92E-07	5.20E-08	5.43E-08	3.76E-09	1.10E-07	2.78E-08	2.55E-08	1.57E-09	5.49E-08

87	764258.31	4092804.7	3.25E-07	3.27E-07	2.32E-08	6.75E-07	5.08E-08	5.30E-08	3.67E-09	1.07E-07	2.71E-08	2.49E-08	1.54E-09	5.36E-08
88	764236.93	4092812.82	3.25E-07	3.27E-07	2.32E-08	6.76E-07	5.08E-08	5.31E-08	3.67E-09	1.08E-07	2.72E-08	2.50E-08	1.54E-09	5.37E-08
89	764523.76	4092531.63	5.68E-07	5.71E-07	4.06E-08	1.18E-06	8.87E-08	9.27E-08	6.41E-09	1.88E-07	4.74E-08	4.36E-08	2.68E-09	9.37E-08
90	764524.61	4092507.49	6.39E-07	6.42E-07	4.56E-08	1.33E-06	9.98E-08	1.04E-07	7.21E-09	2.11E-07	5.33E-08	4.90E-08	3.02E-09	1.05E-07
91	764525.47	4092483.36	7.21E-07	7.25E-07	5.15E-08	1.50E-06	1.13E-07	1.18E-07	8.14E-09	2.39E-07	6.02E-08	5.53E-08	3.41E-09	1.19E-07
92	764526.32	4092459.22	8.16E-07	8.20E-07	5.83E-08	1.69E-06	1.27E-07	1.33E-07	9.20E-09	2.70E-07	6.81E-08	6.26E-08	3.85E-09	1.35E-07
93	764527.17	4092435.09	9.24E-07	9.29E-07	6.60E-08	1.92E-06	1.44E-07	1.51E-07	1.04E-08	3.06E-07	7.72E-08	7.09E-08	4.37E-09	1.52E-07
94	764528.02	4092410.96	1.05E-06	1.05E-06	7.46E-08	2.17E-06	1.63E-07	1.71E-07	1.18E-08	3.46E-07	8.73E-08	8.02E-08	4.94E-09	1.72E-07
95	764528.87	4092386.82	1.18E-06	1.18E-06	8.41E-08	2.44E-06	1.84E-07	1.92E-07	1.33E-08	3.89E-07	9.83E-08	9.03E-08	5.56E-09	1.94E-07
96	764529.72	4092362.69	1.32E-06	1.32E-06	9.39E-08	2.73E-06	2.05E-07	2.15E-07	1.48E-08	4.35E-07	1.10E-07	1.01E-07	6.21E-09	2.17E-07
97	764530.57	4092338.55	1.45E-06	1.46E-06	1.04E-07	3.02E-06	2.27E-07	2.37E-07	1.64E-08	4.81E-07	1.21E-07	1.12E-07	6.87E-09	2.40E-07
98	764531.43	4092314.42	1.59E-06	1.60E-06	1.14E-07	3.30E-06	2.48E-07	2.59E-07	1.79E-08	5.26E-07	1.33E-07	1.22E-07	7.51E-09	2.62E-07
99	764532.28	4092290.28	1.71E-06	1.72E-06	1.22E-07	3.56E-06	2.68E-07	2.80E-07	1.93E-08	5.67E-07	1.43E-07	1.31E-07	8.10E-09	2.83E-07
100	764533.13	4092266.15	1.82E-06	1.83E-06	1.30E-07	3.79E-06	2.85E-07	2.98E-07	2.06E-08	6.03E-07	1.52E-07	1.40E-07	8.61E-09	3.01E-07
101	764533.98	4092242.02	1.91E-06	1.92E-06	1.37E-07	3.98E-06	2.99E-07	3.12E-07	2.16E-08	6.33E-07	1.60E-07	1.47E-07	9.04E-09	3.16E-07
102	764534.83	4092217.88	1.98E-06	1.99E-06	1.42E-07	4.12E-06	3.10E-07	3.24E-07	2.24E-08	6.56E-07	1.66E-07	1.52E-07	9.36E-09	3.27E-07
103	764535.68	4092193.75	2.03E-06	2.04E-06	1.45E-07	4.21E-06	3.16E-07	3.31E-07	2.29E-08	6.70E-07	1.69E-07	1.55E-07	9.57E-09	3.34E-07
104	764614.01	4092556.5	3.79E-07	3.81E-07	2.71E-08	7.87E-07	5.92E-08	6.18E-08	4.27E-09	1.25E-07	3.16E-08	2.91E-08	1.79E-09	6.25E-08
105	764604.32	4092577.85	3.60E-07	3.62E-07	2.57E-08	7.47E-07	5.62E-08	5.87E-08	4.06E-09	1.19E-07	3.00E-08	2.76E-08	1.70E-09	5.93E-08
106	764594.63	4092599.2	3.42E-07	3.44E-07	2.44E-08	7.10E-07	5.34E-08	5.58E-08	3.86E-09	1.13E-07	2.86E-08	2.62E-08	1.62E-09	5.64E-08
107	764584.94	4092620.55	3.26E-07	3.27E-07	2.33E-08	6.76E-07	5.09E-08	5.31E-08	3.67E-09	1.08E-07	2.72E-08	2.50E-08	1.54E-09	5.37E-08
108	764575.24	4092641.9	3.11E-07	3.12E-07	2.22E-08	6.45E-07	4.85E-08	5.07E-08	3.50E-09	1.03E-07	2.59E-08	2.38E-08	1.47E-09	5.12E-08
109	764565.55	4092663.25	2.97E-07	2.98E-07	2.12E-08	6.16E-07	4.63E-08	4.84E-08	3.35E-09	9.81E-08	2.48E-08	2.27E-08	1.40E-09	4.89E-08
110	764555.86	4092684.6	2.83E-07	2.85E-07	2.02E-08	5.88E-07	4.43E-08	4.62E-08	3.20E-09	9.37E-08	2.37E-08	2.17E-08	1.34E-09	4.67E-08
111	764546.17	4092705.95	2.71E-07	2.72E-07	1.93E-08	5.62E-07	4.23E-08	4.42E-08	3.05E-09	8.95E-08	2.26E-08	2.08E-08	1.28E-09	4.47E-08
112	764536.48	4092727.29	2.59E-07	2.60E-07	1.85E-08	5.37E-07	4.04E-08	4.22E-08	2.92E-09	8.56E-08	2.16E-08	1.98E-08	1.22E-09	4.27E-08
113	764526.79	4092748.64	2.47E-07	2.48E-07	1.76E-08	5.13E-07	3.86E-08	4.03E-08	2.79E-09	8.17E-08	2.06E-08	1.90E-08	1.17E-09	4.08E-08
114	764517.09	4092769.99	2.36E-07	2.37E-07	1.68E-08	4.90E-07	3.68E-08	3.85E-08	2.66E-09	7.79E-08	1.97E-08	1.81E-08	1.11E-09	3.89E-08
115	764431.96	4092837.66	2.20E-07	2.21E-07	1.57E-08	4.56E-07	3.43E-08	3.58E-08	2.48E-09	7.26E-08	1.83E-08	1.68E-08	1.04E-09	3.62E-08
116	764410.04	4092845.98	2.20E-07	2.22E-07	1.57E-08	4.58E-07	3.44E-08	3.60E-08	2.49E-09	7.29E-08	1.84E-08	1.69E-08	1.04E-09	3.64E-08
117	764388.12	4092854.31	2.21E-07	2.22E-07	1.58E-08	4.58E-07	3.45E-08	3.60E-08	2.49E-09	7.30E-08	1.84E-08	1.69E-08	1.04E-09	3.64E-08
118	764366.2	4092862.63	2.21E-07	2.22E-07	1.57E-08	4.58E-07	3.44E-08	3.60E-08	2.49E-09	7.29E-08	1.84E-08	1.69E-08	1.04E-09	3.64E-08
119	764344.28	4092870.95	2.20E-07	2.21E-07	1.57E-08	4.57E-07	3.44E-08	3.59E-08	2.48E-09	7.27E-08	1.84E-08	1.69E-08	1.04E-09	3.63E-08
120	764322.36	4092879.28	2.20E-07	2.21E-07	1.57E-08	4.56E-07	3.43E-08	3.58E-08	2.48E-09	7.26E-08	1.83E-08	1.68E-08	1.04E-09	3.62E-08
121	764300.44	4092887.6	2.19E-07	2.21E-07	1.57E-08	4.56E-07	3.43E-08	3.58E-08	2.48E-09	7.26E-08	1.83E-08	1.68E-08	1.04E-09	3.62E-08
122	764278.52	4092895.92	2.19E-07	2.20E-07	1.56E-08	4.55E-07	3.42E-08	3.58E-08	2.47E-09	7.24E-08	1.83E-08	1.68E-08	1.04E-09	3.61E-08
123	764256.61	4092904.25	2.19E-07	2.20E-07	1.56E-08	4.55E-07	3.42E-08	3.58E-08	2.47E-09	7.25E-08	1.83E-08	1.68E-08	1.04E-09	3.61E-08
124	764234.69	4092912.57	2.19E-07	2.21E-07	1.57E-08	4.56E-07	3.43E-08	3.58E-08	2.47E-09	7.25E-08	1.83E-08	1.68E-08	1.04E-09	3.62E-08
125	764623.7	4092535.15	4.00E-07	4.02E-07	2.85E-08	8.30E-07	6.24E-08	6.52E-08	4.51E-09	1.32E-07	3.34E-08	3.06E-08	1.89E-09	6.59E-08
126	764624.55	4092511.02	4.39E-07	4.41E-07	3.13E-08	9.12E-07	6.86E-08	7.16E-08	4.95E-09	1.45E-07	3.67E-08	3.37E-08	2.07E-09	7.24E-08
127	764625.4	4092486.88	4.84E-07	4.87E-07	3.46E-08	1.01E-06	7.56E-08	7.90E-08	5.46E-09	1.60E-07	4.04E-08	3.71E-08	2.29E-09	7.98E-08
128	764626.26	4092462.75	5.34E-07	5.37E-07	3.81E-08	1.11E-06	8.34E-08	8.71E-08	6.02E-09	1.77E-07	4.46E-08	4.09E-08	2.52E-09	8.81E-08
		4092438.62	5.90E-07	5.93E-07	4.21E-08	1.22E-06	9.21E-08	9.62E-08	6.65E-09		4.92E-08	4.52E-08	2.79E-09	9.72E-08
			6.52E-07		4.65E-08	1.35E-06	1.02E-07	1.06E-07	7.35E-09	2.15E-07	5.44E-08	5.00E-08		
		4092390.35			5.14E-08	1.50E-06	1.12E-07	1.17E-07	8.12E-09	2.38E-07	6.01E-08	5.52E-08		

132	764629.66	4092366.21	7.94E-07	7.98E-07	5.67E-08	1.65E-06	1.24E-07	1.30E-07	8.96E-09	2.62E-07	6.63E-08	6.09E-08	3.75E-09	1.31E-07
133	764630.51	4092342.08	8.72E-07	8.76E-07	6.22E-08	1.81E-06	1.36E-07	1.42E-07	9.83E-09	2.88E-07	7.28E-08	6.69E-08	4.12E-09	1.44E-07
134	764631.36	4092317.94	9.52E-07	9.57E-07	6.80E-08	1.98E-06	1.49E-07	1.55E-07	1.07E-08	3.15E-07	7.95E-08	7.30E-08	4.50E-09	1.57E-07
135	764632.22	4092293.81	1.03E-06	1.04E-06	7.37E-08	2.14E-06	1.61E-07	1.68E-07	1.16E-08	3.41E-07	8.62E-08	7.91E-08	4.88E-09	1.70E-07
136	764633.07	4092269.68	1.11E-06	1.11E-06	7.92E-08	2.30E-06	1.73E-07	1.81E-07	1.25E-08	3.67E-07	9.26E-08	8.50E-08	5.24E-09	1.83E-07
137	764633.92	4092245.54	1.18E-06	1.19E-06	8.43E-08	2.45E-06	1.84E-07	1.93E-07	1.33E-08	3.90E-07	9.86E-08	9.05E-08	5.58E-09	1.95E-07
138	764634.77	4092221.41	1.24E-06	1.25E-06	8.88E-08	2.58E-06	1.94E-07	2.03E-07	1.40E-08	4.11E-07	1.04E-07	9.53E-08	5.87E-09	2.05E-07
139	764635.62	4092197.27	1.30E-06	1.30E-06	9.25E-08	2.69E-06	2.02E-07	2.12E-07	1.46E-08	4.29E-07	1.08E-07	9.94E-08	6.12E-09	2.14E-07
140	764713.8	4092560.36	2.87E-07	2.88E-07	2.05E-08	5.96E-07	4.48E-08	4.68E-08	3.24E-09	9.49E-08	2.40E-08	2.20E-08	1.36E-09	4.73E-08
141	764703.95	4092582.04	2.74E-07	2.76E-07	1.96E-08	5.70E-07	4.28E-08	4.48E-08	3.09E-09	9.07E-08	2.29E-08	2.10E-08	1.30E-09	4.52E-08
142	764694.11	4092603.73	2.63E-07	2.64E-07	1.87E-08	5.45E-07	4.10E-08	4.28E-08	2.96E-09	8.68E-08	2.19E-08	2.01E-08	1.24E-09	4.33E-08
143	764684.27	4092625.41	2.52E-07	2.53E-07	1.80E-08	5.23E-07	3.93E-08	4.11E-08	2.84E-09	8.33E-08	2.10E-08	1.93E-08	1.19E-09	4.15E-08
144	764674.42	4092647.09	2.42E-07	2.43E-07	1.73E-08	5.02E-07	3.78E-08	3.95E-08	2.73E-09	8.00E-08	2.02E-08	1.85E-08	1.14E-09	3.99E-08
145	764664.58	4092668.77	2.33E-07	2.34E-07	1.66E-08	4.83E-07	3.63E-08	3.79E-08	2.62E-09	7.69E-08	1.94E-08	1.78E-08	1.10E-09	3.83E-08
146	764654.74	4092690.46	2.24E-07	2.25E-07	1.60E-08	4.65E-07	3.50E-08	3.65E-08	2.52E-09	7.40E-08	1.87E-08	1.72E-08	1.06E-09	3.69E-08
147	764644.9	4092712.14	2.16E-07	2.17E-07	1.54E-08	4.48E-07	3.37E-08	3.52E-08	2.43E-09	7.13E-08	1.80E-08	1.65E-08	1.02E-09	3.55E-08
148	764635.05	4092733.82	2.08E-07	2.09E-07	1.48E-08	4.31E-07	3.24E-08	3.39E-08	2.34E-09	6.87E-08	1.73E-08	1.59E-08	9.81E-10	3.42E-08
149	764625.21	4092755.51	2.00E-07	2.01E-07	1.43E-08	4.16E-07	3.13E-08	3.27E-08	2.26E-09	6.62E-08	1.67E-08	1.54E-08	9.46E-10	3.30E-08
150	764615.37	4092777.19	1.93E-07	1.94E-07	1.38E-08	4.00E-07	3.01E-08	3.15E-08	2.17E-09	6.37E-08	1.61E-08	1.48E-08	9.11E-10	3.18E-08
151	764605.52	4092798.87	1.85E-07	1.86E-07	1.32E-08	3.85E-07	2.89E-08	3.02E-08	2.09E-09	6.13E-08	1.55E-08	1.42E-08	8.75E-10	3.06E-08
152	764595.68	4092820.55	1.78E-07	1.79E-07	1.27E-08	3.70E-07	2.78E-08	2.90E-08	2.01E-09	5.88E-08	1.49E-08	1.36E-08	8.41E-10	2.93E-08
153	764585.84	4092842.24	1.71E-07	1.72E-07	1.22E-08	3.55E-07	2.67E-08	2.79E-08	1.93E-09	5.65E-08	1.43E-08	1.31E-08	8.07E-10	2.82E-08
154	764576	4092863.92	1.64E-07	1.65E-07	1.17E-08	3.40E-07	2.56E-08	2.67E-08	1.85E-09	5.41E-08	1.37E-08	1.26E-08	7.74E-10	2.70E-08
155	764543.89	4092894.05	1.58E-07	1.59E-07	1.13E-08	3.29E-07	2.48E-08	2.59E-08	1.79E-09	5.24E-08	1.32E-08	1.22E-08	7.49E-10	2.61E-08
156	764521.63	4092902.51	1.60E-07	1.61E-07	1.14E-08	3.32E-07	2.49E-08	2.61E-08	1.80E-09	5.28E-08	1.33E-08	1.22E-08	7.55E-10	2.63E-08
157	764499.37	4092910.96	1.61E-07	1.62E-07	1.15E-08	3.34E-07	2.51E-08	2.62E-08	1.81E-09	5.31E-08	1.34E-08	1.23E-08	7.59E-10	2.65E-08
158	764477.11	4092919.41	1.61E-07	1.62E-07	1.15E-08	3.35E-07	2.52E-08	2.63E-08	1.82E-09	5.33E-08	1.35E-08	1.24E-08	7.62E-10	2.66E-08
159	764454.85	4092927.87	1.62E-07	1.63E-07	1.15E-08	3.36E-07	2.53E-08	2.64E-08	1.82E-09	5.35E-08	1.35E-08	1.24E-08	7.64E-10	2.67E-08
160	764432.59	4092936.32	1.62E-07	1.63E-07	1.15E-08	3.36E-07	2.53E-08	2.64E-08	1.82E-09	5.35E-08	1.35E-08	1.24E-08	7.64E-10	2.67E-08
161	764410.32	4092944.77	1.61E-07	1.62E-07	1.15E-08	3.35E-07	2.52E-08	2.63E-08	1.82E-09	5.34E-08	1.35E-08	1.24E-08	7.63E-10	2.66E-08
162	764388.06	4092953.23	1.61E-07	1.62E-07	1.15E-08	3.34E-07	2.52E-08	2.63E-08	1.82E-09	5.33E-08	1.34E-08	1.23E-08	7.61E-10	2.66E-08
163	764365.8	4092961.68	1.61E-07	1.61E-07	1.15E-08	3.33E-07	2.51E-08	2.62E-08	1.81E-09	5.31E-08	1.34E-08	1.23E-08	7.59E-10	2.65E-08
164	764343.54	4092970.13	1.60E-07	1.61E-07	1.14E-08	3.32E-07	2.50E-08	2.61E-08	1.81E-09	5.29E-08	1.34E-08	1.23E-08	7.56E-10	2.64E-08
165	764321.28	4092978.59	1.60E-07	1.60E-07	1.14E-08	3.31E-07	2.49E-08	2.60E-08	1.80E-09	5.28E-08	1.33E-08	1.22E-08	7.54E-10	2.63E-08
166	764299.02	4092987.04	1.59E-07	1.60E-07	1.14E-08	3.31E-07	2.49E-08	2.60E-08	1.80E-09	5.26E-08	1.33E-08	1.22E-08	7.52E-10	2.62E-08
167	764276.76	4092995.49	1.59E-07	1.60E-07	1.13E-08	3.30E-07	2.48E-08	2.59E-08	1.79E-09	5.26E-08	1.33E-08	1.22E-08	7.51E-10	2.62E-08
168	764254.5	4093003.95	1.59E-07	1.60E-07	1.13E-08	3.30E-07	2.48E-08	2.59E-08	1.79E-09	5.25E-08	1.33E-08	1.22E-08	7.50E-10	2.62E-08
169	764232.23	4093012.4	1.59E-07	1.60E-07	1.13E-08	3.30E-07	2.48E-08	2.59E-08	1.79E-09	5.26E-08	1.33E-08	1.22E-08	7.51E-10	2.62E-08
170	764723.64	4092538.68	3.00E-07	3.02E-07	2.14E-08	6.24E-07	4.69E-08	4.90E-08	3.39E-09	9.93E-08	2.51E-08	2.30E-08	1.42E-09	4.95E-08
171	764724.49	4092514.54	3.25E-07	3.26E-07	2.32E-08	6.74E-07	5.07E-08	5.30E-08	3.66E-09	1.07E-07	2.71E-08	2.49E-08	1.53E-09	5.35E-08
172	764725.34	4092490.41	3.51E-07	3.53E-07	2.51E-08	7.29E-07	5.49E-08	5.73E-08	3.96E-09	1.16E-07	2.93E-08	2.69E-08	1.66E-09	5.79E-08
173	764726.19	4092466.28	3.81E-07	3.83E-07	2.72E-08	7.91E-07	5.95E-08	6.21E-08	4.29E-09	1.26E-07	3.18E-08	2.92E-08		
174	764727.04		4.14E-07	4.16E-07	2.96E-08	8.60E-07	6.46E-08	6.75E-08	4.67E-09	1.37E-07	3.46E-08	3.17E-08		
175	764727.9	4092418.01	4.50E-07	4.52E-07	3.21E-08	9.34E-07	7.02E-08	7.34E-08	5.07E-09	1.49E-07	3.75E-08	3.45E-08	2.12E-09	7.41E-08
176	764728.75	4092393.87	4.89E-07	4.91E-07	3.49E-08	1.01E-06	7.63E-08	7.98E-08	5.51E-09	1.62E-07	4.08E-08	3.75E-08	2.31E-09	8.06E-08

177	764729.6	4092369.74	5.31E-07	5.34E-07	3.79E-08	1.10E-06	8.29E-08	8.67E-08	5.99E-09	1.76E-07	4.43E-08	4.07E-08	2.51E-09	8.76E-08
178	764730.45	4092345.6	5.76E-07	5.79E-07	4.12E-08	1.20E-06	9.00E-08	9.41E-08		1.91E-07	4.81E-08	4.42E-08	2.72E-09	
179	764731.3	4092321.47	6.24E-07	6.27E-07	4.46E-08	1.30E-06	9.75E-08	1.02E-07	7.04E-09	2.06E-07	5.21E-08	4.79E-08	2.95E-09	1.03E-07
180	764732.15	4092297.34	6.73E-07	6.77E-07	4.81E-08	1.40E-06	1.05E-07	1.10E-07	7.60E-09	2.23E-07	5.62E-08	5.16E-08	3.18E-09	1.11E-07
181	764733	4092273.2	7.23E-07	7.27E-07	5.16E-08	1.50E-06	1.13E-07	1.18E-07	8.16E-09	2.39E-07	6.04E-08	5.55E-08	3.42E-09	1.19E-07
182	764733.86	4092249.07	7.73E-07	7.77E-07	5.52E-08	1.60E-06	1.21E-07	1.26E-07	8.71E-09	2.55E-07	6.45E-08	5.92E-08	3.65E-09	1.27E-07
183	764734.71	4092224.93	8.20E-07	8.24E-07	5.85E-08	1.70E-06	1.28E-07	1.34E-07	9.25E-09	2.71E-07	6.84E-08	6.28E-08	3.87E-09	1.35E-07
184	764735.56	4092200.8	8.62E-07	8.67E-07	6.16E-08	1.79E-06	1.35E-07	1.41E-07	9.73E-09	2.85E-07	7.20E-08	6.61E-08	4.07E-09	1.42E-07
185	764813.63	4092564.12	2.26E-07	2.27E-07	1.61E-08	4.69E-07	3.53E-08	3.68E-08	2.55E-09	7.47E-08	1.89E-08	1.73E-08	1.07E-09	3.72E-08
186	764803.68	4092586.03	2.17E-07	2.18E-07	1.55E-08	4.51E-07	3.39E-08	3.54E-08	2.45E-09	7.18E-08	1.81E-08	1.67E-08	1.03E-09	3.58E-08
187	764793.74	4092607.94	2.09E-07	2.10E-07	1.49E-08	4.34E-07	3.27E-08	3.41E-08	2.36E-09	6.92E-08	1.75E-08	1.60E-08	9.88E-10	3.45E-08
188	764783.79	4092629.85	2.02E-07	2.03E-07	1.44E-08	4.19E-07	3.15E-08	3.29E-08	2.27E-09	6.66E-08	1.68E-08	1.55E-08	9.52E-10	3.32E-08
189	764773.84	4092651.76	1.94E-07	1.95E-07	1.39E-08	4.04E-07	3.04E-08	3.17E-08	2.19E-09	6.43E-08	1.62E-08	1.49E-08	9.18E-10	3.21E-08
190	764763.9	4092673.67	1.88E-07	1.89E-07	1.34E-08	3.90E-07	2.94E-08	3.07E-08	2.12E-09	6.21E-08	1.57E-08	1.44E-08	8.88E-10	3.10E-08
191	764753.95	4092695.58	1.82E-07	1.83E-07	1.30E-08	3.78E-07	2.84E-08	2.97E-08	2.05E-09	6.01E-08	1.52E-08	1.39E-08	8.59E-10	3.00E-08
192	764744	4092717.49	1.76E-07	1.77E-07	1.26E-08	3.66E-07	2.75E-08	2.87E-08	1.99E-09	5.83E-08	1.47E-08	1.35E-08	8.32E-10	2.91E-08
193	764734.06	4092739.4	1.71E-07	1.72E-07	1.22E-08	3.55E-07	2.67E-08	2.79E-08	1.93E-09	5.65E-08	1.43E-08	1.31E-08	8.06E-10	2.82E-08
194	764724.11	4092761.31	1.65E-07	1.66E-07	1.18E-08	3.44E-07	2.58E-08	2.70E-08	1.87E-09	5.47E-08	1.38E-08	1.27E-08	7.82E-10	2.73E-08
195	764714.17	4092783.22	1.60E-07	1.61E-07	1.14E-08	3.33E-07	2.50E-08	2.62E-08	1.81E-09		1.34E-08	1.23E-08	7.57E-10	
196	764704.22	4092805.13	1.55E-07	1.56E-07	1.11E-08	3.22E-07	2.42E-08	2.53E-08	1.75E-09		1.30E-08	1.19E-08	7.33E-10	
197	764694.27	4092827.05	1.50E-07	1.51E-07	1.07E-08	3.12E-07	2.35E-08	2.45E-08	1.69E-09		1.25E-08	1.15E-08	7.09E-10	
198	764684.33	4092848.96	1.45E-07	1.46E-07	1.04E-08	3.01E-07	2.27E-08	2.37E-08	1.64E-09		1.21E-08	1.11E-08	6.85E-10	
199	764674.38	4092870.87	1.40E-07	1.41E-07	1.00E-08	2.91E-07	2.19E-08	2.29E-08	1.58E-09		1.17E-08	1.07E-08		2.31E-08
200	764664.43	4092892.78	1.35E-07	1.36E-07	9.65E-09	2.81E-07	2.11E-08	2.21E-08	1.52E-09		1.13E-08	1.04E-08	6.39E-10	
201	764654.49	4092914.69	1.30E-07	1.31E-07	9.31E-09	2.71E-07	2.04E-08	2.13E-08		4.31E-08	1.09E-08	1.00E-08		2.15E-08
202	764644.54	4092936.6	1.26E-07	1.26E-07	8.98E-09	2.61E-07	1.96E-08	2.05E-08		4.16E-08	1.05E-08	9.65E-09		2.07E-08
203	764612.1	4092967.05	1.22E-07	1.23E-07	8.73E-09	2.54E-07	1.91E-08	2.00E-08		4.04E-08	1.02E-08	9.38E-09		2.02E-08
204	764589.6	4092975.6	1.23E-07	1.24E-07	8.79E-09	2.56E-07	1.92E-08	2.01E-08	1.39E-09		1.03E-08	9.45E-09	5.82E-10	
205	764567.11	4092984.14	1.24E-07	1.25E-07	8.84E-09	2.57E-07	1.93E-08	2.02E-08	1.40E-09		1.03E-08	9.50E-09	5.85E-10	
206	764544.61	4092992.68	1.24E-07	1.25E-07	8.88E-09	2.58E-07	1.94E-08	2.03E-08	1.40E-09		1.04E-08	9.54E-09	5.88E-10	
207	764522.12	4093001.22	1.25E-07	1.25E-07	8.91E-09	2.59E-07	1.95E-08	2.04E-08	1.41E-09		1.04E-08	9.57E-09	5.90E-10	
208	764499.62	4093009.77	1.25E-07	1.26E-07	8.92E-09	2.59E-07	1.95E-08	2.04E-08	1.41E-09		1.04E-08	9.58E-09	5.90E-10	
209	764477.12	4093018.31		1.26E-07	8.92E-09	2.59E-07	1.95E-08	2.04E-08	1.41E-09		1.04E-08	9.58E-09		2.06E-08
210	764454.63	4093026.85	1.25E-07	1.25E-07	8.90E-09	2.59E-07	1.95E-08	2.03E-08	1.41E-09		1.04E-08	9.56E-09	5.89E-10	
211		4093035.39			8.87E-09	2.58E-07		2.03E-08			1.04E-08		5.87E-10	
	764409.64				8.84E-09	2.57E-07		2.02E-08				9.50E-09		
		4093052.48		1.24E-07	8.80E-09	2.56E-07	1.93E-08	2.01E-08				9.45E-09		
		4093061.02		1.23E-07	8.76E-09	2.55E-07		2.00E-08				9.41E-09		
215	764342.15	4093069.56		1.23E-07	8.73E-09	2.54E-07	1.91E-08	2.00E-08			1.02E-08	9.38E-09	5.78E-10	
	764319.66	4093009.30		1.23E-07 1.23E-07	8.71E-09	2.54E-07 2.53E-07		1.99E-08			1.02E-08	9.35E-09	5.76E-10	
	764297.16	4093076.1		1.23E-07 1.22E-07	8.69E-09		1.90E-08	1.99E-08			1.02E-08	9.33E-09 9.33E-09	5.75E-10	
	764297.16	4093086.63		1.22E-07 1.22E-07	8.68E-09	2.53E-07 2.52E-07	1.90E-08	1.98E-08			1.02E-08		5.74E-10	
								1.98E-08				9.32E-09		
	764252.17			1.22E-07	8.68E-09 8.70E-09	2.53E-07	1.90E-08				1.02E-08	9.33E-09	5.75E-10 5.76E-10	
	764229.67	4093112.27		1.23E-07	8.70E-09	2.53E-07	1.90E-08	1.99E-08 3.83E-08			1.02E-08	9.35E-09 1.80E-08		
221	/04023.38	4092542.2	2.33E-U/	2.306-07	1.68E-08	4.88E-07	3.U/E-U8	J.03E-U6	2.03E-09	/.//E-UO	1.30E-08	1.00E-08	1.116-09	J.0/E-U0

222	764824.43	4092518.07	2.51E-07	2.52E-07	1.79E-08	5.21E-07	3.92E-08	4.10E-08	2.83E-09	8.30E-08	2.10E-08	1.92E-08	1.19E-09	4.14E-08
223	764825.28	4092493.94	2.69E-07	2.70E-07	1.92E-08	5.58E-07	4.20E-08	4.38E-08	3.03E-09	8.88E-08	2.24E-08	2.06E-08	1.27E-09	4.43E-08
224	764826.13	4092469.8	2.88E-07	2.90E-07	2.06E-08	5.98E-07	4.50E-08	4.70E-08	3.25E-09	9.53E-08	2.41E-08	2.21E-08	1.36E-09	4.75E-08
225	764826.98	4092445.67	3.09E-07	3.11E-07	2.21E-08	6.42E-07	4.83E-08	5.04E-08	3.49E-09	1.02E-07	2.58E-08	2.37E-08	1.46E-09	5.09E-08
226	764827.83	4092421.53	3.32E-07	3.33E-07	2.37E-08	6.89E-07	5.18E-08	5.41E-08	3.74E-09	1.10E-07	2.77E-08	2.54E-08	1.57E-09	5.47E-08
227	764828.69	4092397.4	3.56E-07	3.58E-07	2.54E-08	7.39E-07	5.56E-08	5.81E-08	4.02E-09	1.18E-07	2.97E-08	2.73E-08	1.68E-09	5.87E-08
228	764829.54	4092373.26	3.82E-07	3.84E-07	2.73E-08	7.93E-07	5.97E-08	6.23E-08	4.31E-09	1.26E-07	3.19E-08	2.93E-08	1.80E-09	6.30E-08
229	764830.39	4092349.13	4.10E-07	4.12E-07	2.93E-08	8.51E-07	6.40E-08	6.69E-08	4.62E-09	1.35E-07	3.42E-08	3.14E-08	1.94E-09	6.76E-08
230	764831.24	4092325	4.39E-07	4.42E-07	3.14E-08	9.12E-07	6.86E-08	7.17E-08	4.95E-09	1.45E-07	3.67E-08	3.37E-08	2.07E-09	7.24E-08
231	764832.09	4092300.86	4.70E-07	4.73E-07	3.36E-08	9.76E-07	7.34E-08	7.67E-08	5.30E-09	1.55E-07	3.93E-08	3.60E-08	2.22E-09	7.75E-08
232	764832.94	4092276.73	5.02E-07	5.05E-07	3.58E-08	1.04E-06	7.84E-08	8.19E-08	5.66E-09	1.66E-07	4.19E-08	3.85E-08	2.37E-09	8.28E-08
233	764833.79	4092252.59	5.35E-07	5.38E-07	3.82E-08	1.11E-06	8.35E-08	8.73E-08	6.03E-09	1.77E-07	4.47E-08	4.10E-08	2.53E-09	8.82E-08
234	764834.65	4092228.46	5.68E-07	5.70E-07	4.05E-08	1.18E-06	8.86E-08	9.26E-08	6.40E-09	1.88E-07	4.74E-08	4.35E-08	2.68E-09	9.36E-08
235	764835.5	4092204.32	6.00E-07	6.03E-07	4.28E-08	1.25E-06	9.37E-08	9.78E-08	6.76E-09	1.98E-07	5.01E-08	4.60E-08	2.83E-09	9.89E-08
236	764913.93	4092566.85	1.84E-07	1.85E-07	1.31E-08	3.81E-07	2.87E-08	3.00E-08	2.07E-09	6.07E-08	1.53E-08	1.41E-08	8.67E-10	3.03E-08
237	764904.34	4092587.96	1.77E-07	1.78E-07	1.27E-08	3.69E-07	2.77E-08	2.90E-08	2.00E-09	5.87E-08	1.48E-08	1.36E-08	8.38E-10	2.93E-08
238	764894.76	4092609.08	1.72E-07	1.73E-07	1.23E-08	3.57E-07	2.68E-08	2.80E-08	1.94E-09	5.68E-08	1.43E-08	1.32E-08	8.11E-10	2.83E-08
239	764885.17	4092630.2	1.66E-07	1.67E-07	1.19E-08	3.45E-07	2.60E-08	2.71E-08	1.88E-09	5.50E-08	1.39E-08	1.28E-08	7.86E-10	2.74E-08
240	764875.58	4092651.31	1.61E-07	1.62E-07	1.15E-08	3.35E-07	2.52E-08	2.63E-08	1.82E-09	5.33E-08	1.35E-08	1.24E-08	7.62E-10	2.66E-08
241	764866	4092672.43	1.57E-07	1.58E-07	1.12E-08	3.25E-07	2.45E-08	2.56E-08	1.77E-09	5.18E-08	1.31E-08	1.20E-08	7.40E-10	2.58E-08
242	764856.41	4092693.55	1.52E-07	1.53E-07	1.09E-08	3.16E-07	2.38E-08	2.49E-08	1.72E-09	5.04E-08	1.27E-08	1.17E-08	7.20E-10	2.51E-08
243	764846.83	4092714.67	1.48E-07	1.49E-07	1.06E-08	3.08E-07	2.32E-08	2.42E-08	1.67E-09	4.91E-08	1.24E-08	1.14E-08	7.01E-10	2.45E-08
244	764837.24	4092735.78	1.45E-07	1.45E-07	1.03E-08	3.00E-07	2.26E-08	2.36E-08	1.63E-09	4.78E-08	1.21E-08	1.11E-08	6.83E-10	2.38E-08
245	764827.65	4092756.9	1.41E-07	1.42E-07	1.01E-08	2.93E-07	2.20E-08	2.30E-08	1.59E-09	4.66E-08	1.18E-08	1.08E-08	6.66E-10	2.32E-08
246	764818.07	4092778.02	1.37E-07	1.38E-07	9.81E-09	2.85E-07	2.15E-08	2.24E-08	1.55E-09	4.54E-08	1.15E-08	1.05E-08	6.49E-10	2.27E-08
247	764808.48	4092799.13	1.34E-07	1.35E-07	9.57E-09	2.78E-07	2.09E-08	2.19E-08	1.51E-09	4.43E-08	1.12E-08	1.03E-08	6.33E-10	2.21E-08
248	764798.89	4092820.25	1.31E-07	1.31E-07	9.33E-09	2.71E-07	2.04E-08	2.13E-08	1.47E-09	4.32E-08	1.09E-08	1.00E-08	6.17E-10	2.15E-08
249	764789.31	4092841.37	1.27E-07	1.28E-07	9.08E-09	2.64E-07	1.99E-08	2.08E-08	1.43E-09	4.21E-08	1.06E-08	9.75E-09	6.01E-10	2.10E-08
250	764779.72	4092862.49	1.24E-07	1.24E-07	8.84E-09	2.57E-07	1.93E-08	2.02E-08	1.40E-09	4.09E-08	1.03E-08	9.49E-09	5.85E-10	2.04E-08
251	764770.14	4092883.6	1.20E-07	1.21E-07	8.59E-09	2.50E-07	1.88E-08	1.96E-08	1.36E-09	3.98E-08	1.00E-08	9.23E-09	5.68E-10	1.98E-08
252	764760.55	4092904.72	1.17E-07	1.17E-07	8.34E-09	2.43E-07	1.83E-08	1.91E-08	1.32E-09	3.86E-08	9.76E-09	8.96E-09	5.52E-10	1.93E-08
253	764750.96	4092925.84	1.13E-07	1.14E-07	8.10E-09	2.36E-07	1.77E-08	1.85E-08	1.28E-09	3.75E-08	9.47E-09	8.70E-09	5.36E-10	1.87E-08
254	764741.38	4092946.95	1.10E-07	1.11E-07	7.85E-09	2.28E-07	1.72E-08	1.80E-08	1.24E-09	3.64E-08	9.19E-09	8.43E-09	5.20E-10	1.81E-08
255	764731.79	4092968.07	1.07E-07	1.07E-07	7.61E-09	2.21E-07	1.66E-08	1.74E-08	1.20E-09	3.52E-08	8.90E-09	8.17E-09	5.03E-10	1.76E-08
256	764722.21	4092989.19	1.03E-07	1.04E-07	7.38E-09	2.15E-07	1.61E-08	1.69E-08	1.17E-09	3.42E-08	8.63E-09	7.93E-09	4.88E-10	1.70E-08
257	764712.62	4093010.3	1.00E-07	1.01E-07	7.16E-09	2.08E-07	1.57E-08	1.64E-08	1.13E-09	3.32E-08	8.38E-09	7.69E-09	4.74E-10	1.65E-08
258	764681.35	4093039.65	9.80E-08	9.86E-08	7.00E-09	2.04E-07	1.53E-08	1.60E-08	1.11E-09	3.24E-08	8.19E-09	7.52E-09	4.63E-10	1.62E-08
259	764659.67	4093047.89	9.87E-08	9.92E-08	7.04E-09	2.05E-07	1.54E-08	1.61E-08	1.11E-09	3.26E-08	8.24E-09	7.56E-09	4.66E-10	1.63E-08
260	764637.99	4093056.12	9.92E-08	9.97E-08	7.08E-09	2.06E-07	1.55E-08	1.62E-08	1.12E-09	3.28E-08	8.28E-09	7.61E-09	4.69E-10	1.64E-08
261		4093064.35	9.97E-08	1.00E-07	7.12E-09	2.07E-07	1.56E-08	1.63E-08	1.12E-09	3.30E-08	8.32E-09	7.64E-09	4.71E-10	1.64E-08
262	764594.63	4093072.59	1.00E-07	1.01E-07	7.15E-09	2.08E-07	1.56E-08	1.63E-08	1.13E-09	3.31E-08	8.36E-09	7.68E-09	4.73E-10	1.65E-08
263	764572.95	4093080.82	1.00E-07	1.01E-07	7.17E-09	2.09E-07	1.57E-08	1.64E-08	1.13E-09	3.32E-08	8.39E-09	7.70E-09	4.74E-10	1.66E-08
264	764551.27	4093089.05	1.01E-07	1.01E-07	7.18E-09	2.09E-07		1.64E-08			8.40E-09	7.71E-09	4.75E-10	1.66E-08
265	764529.59	4093097.28	1.01E-07	1.01E-07	7.17E-09	2.09E-07	1.57E-08	1.64E-08	1.13E-09	3.32E-08	8.39E-09	7.71E-09	4.75E-10	1.66E-08
266	764507.91	4093105.52	1.00E-07	1.01E-07	7.16E-09	2.08E-07	1.57E-08	1.64E-08	1.13E-09	3.32E-08	8.38E-09	7.69E-09	4.74E-10	1.65E-08

267	764486.23	4093113.75	1.00E-07	1.01E-07	7.14E-09	2.08E-07	1.56E-08	1.63E-08	1.13E-09	3.31E-08	8.35E-09	7.67E-09	4.72E-10	1.65E-08
268	764464.55	4093121.98	9.96E-08	1.00E-07	7.11E-09	2.07E-07	1.56E-08	1.63E-08	1.12E-09	3.29E-08	8.32E-09	7.64E-09	4.70E-10	1.64E-08
269	764442.87	4093130.22	9.91E-08	9.96E-08	7.08E-09	2.06E-07	1.55E-08	1.62E-08	1.12E-09	3.28E-08	8.28E-09	7.60E-09	4.68E-10	1.63E-08
270	764421.19	4093138.45	9.86E-08	9.91E-08	7.04E-09	2.05E-07	1.54E-08	1.61E-08	1.11E-09	3.26E-08	8.23E-09	7.56E-09	4.66E-10	1.63E-08
271	764399.51	4093146.68	9.81E-08	9.86E-08	7.00E-09	2.04E-07	1.53E-08	1.60E-08	1.11E-09	3.24E-08	8.19E-09	7.52E-09	4.63E-10	1.62E-08
272	764377.83	4093154.91	9.77E-08	9.82E-08	6.97E-09	2.03E-07	1.53E-08	1.59E-08	1.10E-09	3.23E-08	8.15E-09	7.49E-09	4.61E-10	1.61E-08
273	764356.15	4093163.15	9.73E-08	9.78E-08	6.94E-09	2.02E-07	1.52E-08	1.59E-08	1.10E-09	3.22E-08	8.12E-09	7.46E-09	4.59E-10	1.60E-08
274	764334.47	4093171.38	9.70E-08	9.75E-08	6.92E-09	2.01E-07	1.51E-08	1.58E-08	1.09E-09	3.21E-08	8.10E-09	7.43E-09	4.58E-10	1.60E-08
275	764312.78	4093179.61	9.68E-08	9.73E-08	6.91E-09	2.01E-07	1.51E-08	1.58E-08	1.09E-09	3.20E-08	8.08E-09	7.42E-09	4.57E-10	1.60E-08
276	764291.1	4093187.85	9.67E-08	9.72E-08	6.90E-09	2.01E-07	1.51E-08	1.58E-08	1.09E-09	3.20E-08	8.08E-09	7.42E-09	4.57E-10	1.59E-08
277	764269.42	4093196.08	9.68E-08	9.73E-08	6.91E-09	2.01E-07	1.51E-08	1.58E-08	1.09E-09	3.20E-08	8.08E-09	7.42E-09	4.57E-10	1.60E-08
278	764247.74	4093204.31	9.71E-08	9.76E-08	6.93E-09	2.02E-07	1.52E-08	1.58E-08	1.09E-09	3.21E-08	8.10E-09	7.44E-09	4.58E-10	1.60E-08
279	764226.06	4093212.54	9.75E-08	9.80E-08	6.96E-09	2.02E-07	1.52E-08	1.59E-08	1.10E-09	3.22E-08	8.14E-09	7.47E-09	4.60E-10	1.61E-08
280	764923.51	4092545.73	1.90E-07	1.91E-07	1.36E-08	3.95E-07	2.97E-08	3.10E-08	2.14E-09	6.28E-08	1.59E-08	1.46E-08	8.97E-10	3.13E-08
281	764924.37	4092521.6	2.01E-07	2.03E-07	1.44E-08	4.18E-07	3.15E-08	3.29E-08	2.27E-09	6.66E-08	1.68E-08	1.54E-08	9.52E-10	3.32E-08
282	764925.22	4092497.46	2.14E-07	2.15E-07	1.53E-08	4.44E-07	3.34E-08	3.49E-08	2.41E-09	7.08E-08	1.79E-08	1.64E-08	1.01E-09	3.53E-08
283	764926.07	4092473.33	2.27E-07	2.28E-07	1.62E-08	4.72E-07	3.55E-08	3.71E-08	2.56E-09	7.51E-08	1.90E-08	1.74E-08	1.07E-09	3.75E-08
284	764926.92	4092449.19	2.42E-07	2.43E-07	1.72E-08	5.02E-07	3.77E-08	3.94E-08	2.73E-09	7.99E-08	2.02E-08	1.85E-08	1.14E-09	3.98E-08
285	764927.77	4092425.06	2.57E-07	2.58E-07	1.83E-08	5.33E-07	4.01E-08	4.19E-08	2.90E-09	8.49E-08	2.15E-08	1.97E-08	1.21E-09	4.24E-08
286	764928.62	4092400.92	2.73E-07	2.74E-07	1.95E-08	5.67E-07	4.26E-08	4.45E-08	3.08E-09	9.03E-08	2.28E-08	2.09E-08	1.29E-09	4.50E-08
287	764929.47	4092376.79	2.90E-07	2.92E-07	2.07E-08	6.02E-07	4.53E-08	4.73E-08	3.27E-09	9.59E-08	2.42E-08	2.22E-08	1.37E-09	4.78E-08
288	764930.33	4092352.66	3.08E-07	3.10E-07	2.20E-08	6.40E-07	4.81E-08	5.03E-08	3.47E-09	1.02E-07	2.57E-08	2.36E-08	1.45E-09	5.08E-08
289	764931.18	4092328.52	3.27E-07	3.29E-07	2.34E-08	6.79E-07	5.11E-08	5.34E-08	3.69E-09	1.08E-07	2.73E-08	2.51E-08	1.55E-09	5.39E-08
290	764932.03	4092304.39	3.47E-07	3.49E-07	2.48E-08	7.21E-07	5.42E-08	5.66E-08	3.92E-09	1.15E-07	2.90E-08	2.66E-08	1.64E-09	5.72E-08
291	764932.88	4092280.25	3.68E-07	3.70E-07	2.63E-08	7.64E-07	5.75E-08	6.01E-08	4.15E-09	1.22E-07	3.07E-08	2.82E-08	1.74E-09	6.07E-08
292	764933.73	4092256.12	3.90E-07	3.92E-07	2.78E-08	8.10E-07	6.09E-08	6.36E-08	4.40E-09	1.29E-07	3.26E-08	2.99E-08	1.84E-09	6.43E-08
293	764934.58	4092231.98	4.12E-07	4.14E-07	2.94E-08	8.56E-07	6.44E-08	6.73E-08	4.65E-09	1.36E-07	3.44E-08	3.16E-08	1.95E-09	6.80E-08
294	764935.43	4092207.85	4.35E-07	4.37E-07	3.10E-08	9.03E-07	6.79E-08	7.10E-08	4.91E-09	1.44E-07	3.63E-08	3.33E-08	2.05E-09	7.17E-08
295	765113.62	4092574.31	1.31E-07	1.31E-07	9.32E-09	2.71E-07	2.04E-08	2.13E-08	1.47E-09	4.32E-08	1.09E-08	1.00E-08	6.16E-10	2.15E-08
296	765103.84	4092595.85	1.27E-07	1.27E-07	9.05E-09	2.63E-07	1.98E-08	2.07E-08	1.43E-09	4.19E-08	1.06E-08	9.72E-09	5.99E-10	2.09E-08
297	765094.07	4092617.38	1.23E-07	1.24E-07	8.79E-09	2.56E-07	1.92E-08	2.01E-08	1.39E-09	4.07E-08	1.03E-08	9.44E-09	5.82E-10	2.03E-08
298	765084.29	4092638.91	1.20E-07	1.20E-07	8.55E-09	2.49E-07	1.87E-08	1.95E-08	1.35E-09	3.96E-08	1.00E-08	9.18E-09	5.65E-10	1.97E-08
299	765074.52	4092660.45	1.16E-07	1.17E-07	8.31E-09	2.42E-07	1.82E-08	1.90E-08	1.31E-09	3.85E-08	9.72E-09	8.93E-09	5.50E-10	1.92E-08
300	765064.74	4092681.98	1.13E-07	1.14E-07	8.09E-09	2.35E-07	1.77E-08	1.85E-08	1.28E-09	3.75E-08	9.47E-09	8.69E-09	5.36E-10	1.87E-08
301	765054.97	4092703.51	1.11E-07	1.11E-07	7.90E-09	2.30E-07	1.73E-08	1.81E-08	1.25E-09	3.66E-08	9.24E-09	8.49E-09	5.23E-10	1.82E-08
302	765045.19	4092725.05	1.08E-07	1.09E-07	7.72E-09	2.24E-07	1.69E-08	1.76E-08	1.22E-09	3.57E-08	9.03E-09	8.29E-09	5.11E-10	1.78E-08
303	765035.42	4092746.58	1.06E-07	1.06E-07	7.55E-09	2.20E-07	1.65E-08	1.73E-08	1.19E-09	3.50E-08	8.83E-09	8.11E-09	5.00E-10	1.74E-08
304	765025.64	4092768.11	1.04E-07	1.04E-07	7.40E-09	2.15E-07	1.62E-08	1.69E-08	1.17E-09	3.43E-08	8.66E-09	7.95E-09	4.90E-10	1.71E-08
305	765015.87	4092789.65	1.02E-07	1.02E-07	7.26E-09	2.11E-07	1.59E-08	1.66E-08	1.15E-09	3.36E-08	8.49E-09	7.79E-09	4.80E-10	1.68E-08
306	765006.09	4092811.18	9.98E-08	1.00E-07	7.13E-09	2.07E-07	1.56E-08	1.63E-08	1.13E-09	3.30E-08	8.33E-09	7.65E-09	4.71E-10	1.65E-08
307	764996.32	4092832.71	9.80E-08	9.86E-08	7.00E-09	2.04E-07	1.53E-08	1.60E-08	1.11E-09	3.24E-08	8.19E-09	7.52E-09	4.63E-10	1.62E-08
308	764986.54	4092854.24	9.63E-08	9.68E-08	6.88E-09	2.00E-07	1.50E-08	1.57E-08	1.09E-09	3.18E-08	8.04E-09	7.38E-09	4.55E-10	1.59E-08
309	764976.76	4092875.78	9.45E-08	9.50E-08	6.75E-09	1.96E-07	1.48E-08	1.54E-08	1.07E-09	3.12E-08	7.89E-09	7.25E-09	4.46E-10	1.56E-08
310	764966.99	4092897.31	9.27E-08	9.32E-08	6.62E-09	1.92E-07	1.45E-08	1.51E-08	1.05E-09	3.06E-08	7.74E-09	7.11E-09	4.38E-10	1.53E-08
311	764957.21	4092918.84	9.08E-08	9.13E-08	6.48E-09	1.89E-07	1.42E-08	1.48E-08	1.02E-09	3.00E-08	7.58E-09	6.96E-09	4.29E-10	1.50E-08

312	764947.44	4092940.38	8.89E-08	8.94E-08	6.35E-09	1.85E-07	1.39E-08	1.45E-08	1.00E-09	2.94E-08	7.42E-09	6.82E-09	4.20E-10	1.47E-08
313	764937.66	4092961.91	8.69E-08	8.74E-08	6.21E-09	1.81E-07	1.36E-08	1.42E-08	9.81E-10	2.87E-08	7.26E-09	6.67E-09	4.11E-10	1.43E-08
314	764927.89	4092983.44	8.49E-08	8.54E-08	6.06E-09	1.76E-07	1.33E-08	1.39E-08	9.58E-10	2.81E-08	7.09E-09	6.51E-09	4.01E-10	1.40E-08
315	764918.11	4093004.98	8.29E-08	8.33E-08	5.92E-09	1.72E-07	1.29E-08	1.35E-08	9.35E-10	2.74E-08	6.92E-09	6.36E-09	3.92E-10	1.37E-08
316	764908.34	4093026.51	8.09E-08	8.13E-08	5.77E-09	1.68E-07	1.26E-08	1.32E-08	9.12E-10	2.67E-08	6.75E-09	6.20E-09	3.82E-10	1.33E-08
317	764898.56	4093048.04	7.88E-08	7.92E-08	5.63E-09	1.64E-07	1.23E-08	1.29E-08	8.89E-10	2.61E-08	6.58E-09	6.04E-09	3.72E-10	1.30E-08
318	764888.79	4093069.58	7.68E-08	7.72E-08	5.49E-09	1.60E-07	1.20E-08	1.25E-08	8.67E-10	2.54E-08	6.42E-09	5.89E-09	3.63E-10	1.27E-08
319	764879.01	4093091.11	7.49E-08	7.53E-08	5.35E-09	1.56E-07	1.17E-08	1.22E-08	8.45E-10	2.48E-08	6.25E-09	5.74E-09	3.54E-10	1.23E-08
320	764869.24	4093112.64	7.30E-08	7.34E-08	5.21E-09	1.52E-07	1.14E-08	1.19E-08	8.24E-10	2.42E-08	6.10E-09	5.60E-09	3.45E-10	1.20E-08
321	764859.46	4093134.18	7.13E-08	7.16E-08	5.09E-09	1.48E-07	1.11E-08	1.16E-08	8.04E-10	2.36E-08	5.95E-09	5.46E-09	3.37E-10	1.18E-08
322	764849.69	4093155.71	6.96E-08	7.00E-08	4.97E-09	1.45E-07	1.09E-08	1.14E-08	7.85E-10	2.30E-08	5.81E-09	5.34E-09	3.29E-10	1.15E-08
323	764817.81	4093185.64	6.85E-08	6.88E-08	4.89E-09	1.42E-07	1.07E-08	1.12E-08	7.72E-10	2.26E-08	5.72E-09	5.25E-09	3.23E-10	1.13E-08
324	764795.7	4093194.03	6.89E-08	6.92E-08	4.92E-09	1.43E-07	1.08E-08	1.12E-08	7.77E-10	2.28E-08	5.75E-09	5.28E-09	3.25E-10	1.14E-08
325	764773.59	4093202.43	6.93E-08	6.96E-08	4.95E-09	1.44E-07	1.08E-08	1.13E-08	7.81E-10	2.29E-08	5.78E-09	5.31E-09	3.27E-10	1.14E-08
326	764751.48	4093210.82	6.96E-08	7.00E-08	4.97E-09	1.45E-07	1.09E-08	1.14E-08	7.86E-10	2.30E-08	5.81E-09	5.34E-09	3.29E-10	1.15E-08
327	764729.38	4093219.22	7.00E-08	7.03E-08	4.99E-09	1.45E-07	1.09E-08	1.14E-08	7.89E-10	2.31E-08	5.84E-09	5.36E-09	3.30E-10	1.15E-08
328	764707.27	4093227.61	7.02E-08	7.06E-08	5.01E-09	1.46E-07	1.10E-08	1.15E-08	7.92E-10	2.32E-08	5.86E-09	5.39E-09	3.32E-10	1.16E-08
329	764685.16	4093236.01	7.04E-08	7.08E-08	5.03E-09	1.46E-07	1.10E-08	1.15E-08	7.94E-10	2.33E-08	5.88E-09	5.40E-09	3.33E-10	1.16E-08
330	764663.05	4093244.4	7.05E-08	7.09E-08	5.04E-09	1.46E-07	1.10E-08	1.15E-08	7.96E-10	2.33E-08	5.89E-09	5.41E-09	3.33E-10	1.16E-08
331	764640.95	4093252.8	7.05E-08	7.09E-08	5.04E-09	1.46E-07	1.10E-08	1.15E-08	7.96E-10	2.33E-08	5.89E-09	5.41E-09	3.33E-10	1.16E-08
332	764618.84	4093261.19	7.04E-08	7.08E-08	5.03E-09	1.46E-07	1.10E-08	1.15E-08	7.94E-10	2.33E-08	5.88E-09	5.40E-09	3.33E-10	1.16E-08
333	764596.73	4093269.59	7.02E-08	7.06E-08	5.01E-09	1.46E-07	1.10E-08	1.15E-08	7.92E-10	2.32E-08	5.86E-09	5.38E-09	3.32E-10	1.16E-08
334	764574.62	4093277.98	6.99E-08	7.03E-08	4.99E-09	1.45E-07	1.09E-08	1.14E-08	7.89E-10	2.31E-08	5.84E-09	5.36E-09	3.30E-10	1.15E-08
335	764552.51	4093286.38	6.96E-08	6.99E-08	4.97E-09	1.44E-07	1.09E-08	1.14E-08	7.85E-10	2.30E-08	5.81E-09	5.33E-09	3.29E-10	1.15E-08
336	764530.41	4093294.77	6.92E-08	6.95E-08	4.94E-09	1.44E-07	1.08E-08	1.13E-08	7.80E-10	2.29E-08	5.78E-09	5.30E-09	3.27E-10	1.14E-08
337	764508.3	4093303.17	6.87E-08	6.91E-08	4.91E-09	1.43E-07	1.07E-08	1.12E-08	7.75E-10	2.27E-08	5.74E-09	5.27E-09	3.25E-10	1.13E-08
338	764486.19	4093311.56	6.84E-08	6.87E-08	4.88E-09	1.42E-07	1.07E-08	1.12E-08	7.71E-10	2.26E-08	5.71E-09	5.24E-09	3.23E-10	1.13E-08
339	764464.08	4093319.96	6.80E-08	6.83E-08	4.85E-09	1.41E-07	1.06E-08	1.11E-08	7.67E-10	2.25E-08	5.68E-09	5.21E-09	3.21E-10	1.12E-08
340	764441.98	4093328.35	6.76E-08	6.80E-08	4.83E-09	1.40E-07	1.06E-08	1.10E-08	7.63E-10	2.24E-08	5.65E-09	5.19E-09	3.19E-10	1.12E-08
341	764419.87	4093336.75	6.74E-08	6.77E-08	4.81E-09	1.40E-07	1.05E-08	1.10E-08	7.60E-10	2.23E-08	5.62E-09	5.16E-09	3.18E-10	1.11E-08
342	764397.76	4093345.14	6.71E-08	6.75E-08	4.79E-09	1.39E-07	1.05E-08	1.10E-08	7.57E-10	2.22E-08	5.61E-09	5.15E-09	3.17E-10	1.11E-08
343	764375.65	4093353.54	6.70E-08	6.74E-08	4.78E-09	1.39E-07	1.05E-08	1.09E-08	7.56E-10	2.22E-08	5.60E-09	5.14E-09	3.17E-10	1.10E-08
344	764353.55	4093361.93	6.69E-08	6.73E-08	4.78E-09	1.39E-07	1.05E-08	1.09E-08	7.55E-10	2.21E-08	5.59E-09	5.13E-09	3.16E-10	1.10E-08
345	764331.44	4093370.33	6.70E-08	6.73E-08	4.78E-09	1.39E-07	1.05E-08	1.09E-08	7.56E-10	2.21E-08	5.59E-09	5.14E-09	3.16E-10	1.10E-08
346	764309.33	4093378.72	6.71E-08	6.75E-08	4.79E-09	1.39E-07	1.05E-08	1.09E-08	7.57E-10	2.22E-08	5.60E-09	5.15E-09	3.17E-10	1.11E-08
347	764287.22	4093387.12	6.73E-08	6.77E-08	4.81E-09	1.40E-07	1.05E-08	1.10E-08	7.59E-10	2.23E-08	5.62E-09	5.16E-09	3.18E-10	1.11E-08
348	764265.11	4093395.51	6.77E-08	6.80E-08	4.83E-09	1.41E-07	1.06E-08	1.10E-08	7.63E-10	2.24E-08	5.65E-09	5.19E-09	3.20E-10	1.12E-08
349	764243.01	4093403.91	6.81E-08	6.84E-08	4.86E-09	1.41E-07	1.06E-08	1.11E-08	7.68E-10	2.25E-08	5.68E-09	5.22E-09	3.22E-10	1.12E-08
350	764220.9	4093412.3	6.86E-08	6.89E-08	4.90E-09	1.42E-07	1.07E-08	1.12E-08	7.73E-10	2.27E-08	5.73E-09	5.26E-09	3.24E-10	1.13E-08
351	765123.39	4092552.78	1.34E-07	1.35E-07	9.60E-09	2.79E-07	2.10E-08	2.19E-08	1.52E-09	4.44E-08	1.12E-08	1.03E-08	6.35E-10	2.22E-08
352	765124.24	4092528.65	1.41E-07	1.42E-07	1.01E-08	2.93E-07	2.20E-08	2.30E-08	1.59E-09	4.66E-08	1.18E-08	1.08E-08	6.66E-10	2.32E-08
353	765125.09	4092504.51	1.48E-07	1.49E-07	1.06E-08	3.07E-07	2.31E-08	2.41E-08	1.67E-09	4.89E-08	1.23E-08	1.13E-08	6.99E-10	2.44E-08
354	765125.94	4092480.38	1.55E-07	1.56E-07	1.11E-08	3.22E-07	2.42E-08	2.53E-08	1.75E-09	5.13E-08	1.30E-08	1.19E-08	7.33E-10	2.56E-08
355	765126.8	4092456.24	1.63E-07	1.64E-07	1.16E-08	3.38E-07	2.54E-08	2.66E-08	1.84E-09	5.38E-08	1.36E-08	1.25E-08	7.69E-10	2.68E-08
356	765127.65	4092432.11	1.71E-07	1.72E-07	1.22E-08	3.54E-07	2.66E-08	2.78E-08	1.92E-09	5.64E-08	1.42E-08	1.31E-08	8.06E-10	2.81E-08

357	765128.5	4092407.98	1.79E-07	1.80E-07	1.28E-08	3.71E-07	2.79E-08	2.92E-08	2.02E-09	5.91E-08	1.49E-08	1.37E-08	8.45E-10	2.95E-08
358	765129.35	4092383.84	1.87E-07	1.88E-07	1.34E-08	3.89E-07	2.93E-08	3.06E-08	2.11E-09	6.19E-08	1.56E-08	1.44E-08	8.85E-10	3.09E-08
359	765130.2	4092359.71	1.96E-07	1.97E-07	1.40E-08	4.07E-07	3.06E-08	3.20E-08	2.21E-09	6.49E-08	1.64E-08	1.50E-08	9.27E-10	3.23E-08
360	765131.05	4092335.57	2.05E-07	2.06E-07	1.47E-08	4.26E-07	3.21E-08	3.35E-08	2.32E-09	6.79E-08	1.71E-08	1.57E-08	9.70E-10	3.39E-08
361	765131.9	4092311.44	2.15E-07	2.16E-07	1.53E-08	4.46E-07	3.36E-08	3.51E-08	2.42E-09	7.10E-08	1.79E-08	1.65E-08	1.01E-09	3.54E-08
362	765132.76	4092287.3	2.25E-07	2.26E-07	1.61E-08	4.67E-07	3.51E-08	3.67E-08	2.54E-09	7.43E-08	1.88E-08	1.72E-08	1.06E-09	3.71E-08
363	765133.61	4092263.17	2.35E-07	2.37E-07	1.68E-08	4.89E-07	3.67E-08	3.84E-08	2.65E-09	7.78E-08	1.96E-08	1.80E-08	1.11E-09	3.88E-08
364	765134.46	4092239.04	2.46E-07	2.47E-07	1.76E-08	5.11E-07	3.84E-08	4.02E-08	2.78E-09	8.14E-08	2.06E-08	1.89E-08	1.16E-09	4.06E-08
365	765135.31	4092214.9	2.57E-07	2.59E-07	1.84E-08	5.35E-07	4.02E-08	4.20E-08	2.90E-09	8.51E-08	2.15E-08	1.97E-08	1.22E-09	4.25E-08
366	765313.37	4092581.64	9.92E-08	9.98E-08	7.09E-09	2.06E-07	1.55E-08	1.62E-08	1.12E-09	3.28E-08	8.29E-09	7.61E-09	4.69E-10	1.64E-08
367	765303.47	4092603.45	9.68E-08	9.73E-08	6.91E-09	2.01E-07	1.51E-08	1.58E-08	1.09E-09	3.20E-08	8.08E-09	7.42E-09	4.57E-10	1.60E-08
368	765293.57	4092625.25	9.43E-08	9.48E-08	6.74E-09	1.96E-07	1.47E-08	1.54E-08	1.06E-09	3.12E-08	7.88E-09	7.23E-09	4.46E-10	1.56E-08
369	765283.67	4092647.06	9.18E-08	9.23E-08	6.55E-09	1.91E-07	1.43E-08	1.50E-08	1.04E-09	3.03E-08	7.66E-09	7.04E-09	4.34E-10	1.51E-08
370	765273.77	4092668.87	8.94E-08	8.99E-08	6.39E-09	1.86E-07	1.40E-08	1.46E-08	1.01E-09	2.96E-08	7.47E-09	6.86E-09	4.22E-10	1.47E-08
371	765263.87	4092690.67	8.73E-08	8.77E-08	6.23E-09	1.81E-07	1.36E-08	1.42E-08	9.84E-10	2.88E-08	7.29E-09	6.69E-09	4.12E-10	1.44E-08
372	765253.97	4092712.48	8.53E-08	8.57E-08	6.09E-09	1.77E-07	1.33E-08	1.39E-08	9.62E-10	2.82E-08	7.12E-09	6.54E-09	4.03E-10	1.41E-08
373	765244.07	4092734.29	8.35E-08	8.39E-08	5.96E-09	1.73E-07	1.30E-08	1.36E-08	9.42E-10	2.76E-08	6.97E-09	6.40E-09	3.94E-10	1.38E-08
374	765234.17	4092756.09	8.18E-08	8.22E-08	5.84E-09	1.70E-07	1.28E-08	1.34E-08	9.23E-10	2.71E-08	6.83E-09	6.27E-09	3.86E-10	1.35E-08
375	765224.27	4092777.9	8.03E-08	8.07E-08	5.73E-09	1.67E-07	1.25E-08	1.31E-08	9.06E-10	2.66E-08	6.71E-09	6.16E-09	3.79E-10	1.32E-08
376	765214.38	4092799.7	7.90E-08	7.94E-08	5.64E-09	1.64E-07	1.23E-08	1.29E-08	8.91E-10	2.61E-08	6.59E-09	6.05E-09	3.73E-10	1.30E-08
377	765204.48	4092821.51	7.77E-08	7.81E-08	5.54E-09	1.61E-07	1.21E-08	1.27E-08	8.76E-10	2.57E-08	6.48E-09	5.95E-09	3.67E-10	1.28E-08
378	765194.58	4092843.32	7.64E-08	7.68E-08	5.46E-09	1.59E-07	1.19E-08	1.25E-08	8.62E-10	2.53E-08	6.38E-09	5.86E-09	3.61E-10	1.26E-08
379	765184.68	4092865.12	7.53E-08	7.57E-08	5.38E-09	1.56E-07	1.18E-08	1.23E-08	8.49E-10	2.49E-08	6.29E-09	5.77E-09	3.56E-10	1.24E-08
380	765174.78	4092886.93	7.42E-08	7.46E-08	5.30E-09	1.54E-07	1.16E-08	1.21E-08	8.37E-10	2.45E-08	6.20E-09	5.69E-09	3.51E-10	1.22E-08
381	765164.88	4092908.74	7.32E-08	7.36E-08	5.22E-09	1.52E-07	1.14E-08	1.19E-08	8.25E-10	2.42E-08	6.11E-09	5.61E-09	3.46E-10	1.21E-08
382	765154.98	4092930.54	7.22E-08	7.26E-08	5.16E-09	1.50E-07	1.13E-08	1.18E-08	8.15E-10	2.39E-08	6.03E-09	5.54E-09	3.41E-10	1.19E-08
383	765145.08	4092952.35	7.13E-08	7.16E-08	5.09E-09	1.48E-07	1.11E-08	1.16E-08	8.04E-10	2.36E-08	5.95E-09	5.46E-09	3.37E-10	1.18E-08
384	765135.18	4092974.16	7.03E-08	7.07E-08	5.02E-09	1.46E-07	1.10E-08	1.15E-08	7.93E-10	2.32E-08	5.87E-09	5.39E-09	3.32E-10	1.16E-08
385	765125.28	4092995.96	6.93E-08	6.96E-08	4.95E-09	1.44E-07	1.08E-08	1.13E-08	7.82E-10	2.29E-08	5.79E-09	5.31E-09	3.27E-10	1.14E-08
386	765115.38	4093017.77	6.82E-08	6.86E-08	4.87E-09	1.42E-07	1.07E-08	1.11E-08	7.69E-10	2.26E-08	5.69E-09	5.23E-09	3.22E-10	1.12E-08
387	765105.48	4093039.58	6.71E-08	6.74E-08	4.79E-09	1.39E-07	1.05E-08	1.09E-08	7.56E-10		5.60E-09	5.14E-09	3.17E-10	1.11E-08
388	765095.59	4093061.38	6.58E-08	6.62E-08	4.70E-09	1.37E-07	1.03E-08	1.07E-08	7.43E-10	2.18E-08	5.50E-09	5.05E-09	3.11E-10	1.09E-08
389	765085.69	4093083.19	6.45E-08	6.49E-08	4.61E-09	1.34E-07	1.01E-08	1.05E-08	7.28E-10	2.13E-08	5.39E-09	4.95E-09	3.05E-10	1.06E-08
390	765075.79	4093105	6.32E-08	6.36E-08	4.51E-09	1.31E-07	9.88E-09	1.03E-08	7.13E-10	2.09E-08	5.28E-09	4.85E-09	2.99E-10	1.04E-08
391	765065.89	4093126.8	6.19E-08	6.22E-08	4.42E-09	1.29E-07	9.67E-09	1.01E-08	6.98E-10	2.05E-08	5.17E-09	4.75E-09	2.93E-10	1.02E-08
392	765055.99	4093148.61	6.06E-08	6.09E-08	4.33E-09	1.26E-07	9.46E-09	9.89E-09	6.83E-10	2.00E-08	5.06E-09	4.65E-09	2.86E-10	9.99E-09
393	765046.09	4093170.42	5.92E-08	5.95E-08	4.23E-09	1.23E-07	9.25E-09	9.67E-09	6.68E-10	1.96E-08	4.95E-09	4.54E-09	2.80E-10	9.77E-09
394	765036.19	4093192.22	5.79E-08	5.82E-08	4.14E-09	1.20E-07	9.05E-09	9.45E-09	6.53E-10	1.92E-08	4.84E-09	4.44E-09	2.74E-10	9.55E-09
395	765026.29		5.67E-08	5.69E-08	4.04E-09	1.18E-07	8.85E-09	9.24E-09	6.39E-10	1.87E-08	4.73E-09	4.34E-09	2.68E-10	
396	765016.39	4093235.84	5.55E-08	5.57E-08	3.96E-09	1.15E-07	8.66E-09	9.05E-09	6.26E-10		4.63E-09	4.25E-09	2.62E-10	
397	765006.49	4093257.64	5.43E-08	5.46E-08	3.88E-09	1.13E-07	8.49E-09	8.87E-09	6.13E-10	1.80E-08	4.54E-09	4.17E-09	2.57E-10	8.96E-09
398	764996.59	4093279.45	5.33E-08	5.36E-08	3.80E-09	1.11E-07	8.32E-09	8.70E-09	6.01E-10	1.76E-08	4.45E-09	4.09E-09	2.52E-10	8.79E-09
	764986.69	4093301.26		5.26E-08	3.74E-09	1.09E-07	8.17E-09	8.54E-09		1.73E-08	4.37E-09	4.01E-09	2.47E-10	
	764954.41			5.20E-08	3.69E-09	1.07E-07	8.08E-09	8.44E-09		1.71E-08	4.32E-09	3.97E-09	2.44E-10	
401	764932.02	4093340.07	5.20E-08	5.23E-08	3.72E-09	1.08E-07	8.13E-09	8.49E-09	5.87E-10	1.72E-08	4.35E-09	3.99E-09	2.46E-10	8.58E-09

402	764909.63	4093348.57	5.23E-08	5.26E-08	3.74E-09	1.09E-07	8.17E-09	8.54E-09	5.90E-10	1.73E-08	4.37E-09	4.01E-09	2.47E-10	8.63E-09
403	764887.24	4093357.07	5.26E-08	5.29E-08	3.76E-09	1.09E-07	8.22E-09	8.58E-09	5.93E-10	1.74E-08	4.39E-09	4.03E-09	2.48E-10	8.67E-09
404	764864.85	4093365.57	5.29E-08	5.31E-08	3.77E-09	1.10E-07	8.26E-09	8.63E-09	5.96E-10	1.75E-08	4.41E-09	4.05E-09	2.50E-10	8.72E-09
405	764842.46	4093374.07	5.31E-08	5.34E-08	3.79E-09	1.10E-07	8.29E-09	8.66E-09	5.99E-10	1.75E-08	4.43E-09	4.07E-09	2.51E-10	8.75E-09
406	764820.08	4093382.57	5.32E-08	5.35E-08	3.80E-09	1.11E-07	8.32E-09	8.69E-09	6.01E-10	1.76E-08	4.45E-09	4.08E-09	2.52E-10	8.78E-09
407	764797.69	4093391.08	5.34E-08	5.37E-08	3.81E-09	1.11E-07	8.34E-09	8.71E-09	6.02E-10	1.77E-08	4.46E-09	4.09E-09	2.52E-10	8.80E-09
408	764775.3	4093399.58	5.34E-08	5.37E-08	3.82E-09	1.11E-07	8.35E-09	8.72E-09	6.03E-10	1.77E-08	4.46E-09	4.10E-09	2.52E-10	8.81E-09
409	764752.91	4093408.08	5.34E-08	5.37E-08	3.81E-09	1.11E-07	8.34E-09	8.72E-09	6.03E-10	1.77E-08	4.46E-09	4.10E-09	2.52E-10	8.81E-09
410	764730.52	4093416.58	5.34E-08	5.36E-08	3.81E-09	1.11E-07	8.34E-09	8.71E-09	6.02E-10	1.76E-08	4.46E-09	4.09E-09	2.52E-10	8.80E-09
411	764708.13	4093425.08	5.32E-08	5.35E-08	3.80E-09	1.11E-07	8.31E-09	8.69E-09	6.00E-10	1.76E-08	4.44E-09	4.08E-09	2.51E-10	8.78E-09
412	764685.75	4093433.58	5.30E-08	5.33E-08	3.78E-09	1.10E-07	8.28E-09	8.65E-09	5.98E-10	1.75E-08	4.43E-09	4.06E-09	2.50E-10	8.74E-09
413	764663.36	4093442.09	5.28E-08	5.30E-08	3.77E-09	1.10E-07	8.24E-09	8.61E-09	5.95E-10	1.74E-08	4.41E-09	4.05E-09	2.49E-10	8.70E-09
414	764640.97	4093450.59	5.24E-08	5.27E-08	3.74E-09	1.09E-07	8.19E-09	8.56E-09	5.91E-10	1.73E-08	4.38E-09	4.02E-09	2.48E-10	8.65E-09
415	764618.58	4093459.09	5.21E-08	5.24E-08	3.72E-09	1.08E-07	8.14E-09	8.50E-09	5.88E-10	1.72E-08	4.35E-09	4.00E-09	2.46E-10	8.59E-09
416	764596.19	4093467.59	5.18E-08	5.21E-08	3.70E-09	1.08E-07	8.09E-09	8.45E-09	5.84E-10	1.71E-08	4.32E-09	3.97E-09	2.45E-10	8.54E-09
417	764573.8	4093476.09	5.15E-08	5.18E-08	3.68E-09	1.07E-07	8.04E-09	8.40E-09	5.81E-10	1.70E-08	4.30E-09	3.95E-09	2.43E-10	8.49E-09
418	764551.42	4093484.59	5.12E-08	5.15E-08	3.66E-09	1.06E-07	8.00E-09	8.35E-09	5.78E-10	1.69E-08	4.28E-09	3.93E-09	2.42E-10	8.44E-09
419	764529.03	4093493.1	5.09E-08	5.12E-08	3.64E-09	1.06E-07	7.95E-09	8.31E-09	5.74E-10	1.68E-08	4.25E-09	3.90E-09	2.41E-10	8.40E-09
420	764506.64	4093501.6	5.07E-08	5.10E-08	3.62E-09	1.05E-07	7.92E-09	8.27E-09	5.72E-10	1.68E-08	4.23E-09	3.89E-09	2.40E-10	8.36E-09
421	764484.25	4093510.1	5.05E-08	5.08E-08	3.61E-09	1.05E-07	7.89E-09	8.25E-09	5.70E-10	1.67E-08	4.22E-09	3.88E-09	2.39E-10	8.33E-09
422	764461.86	4093518.6	5.04E-08	5.07E-08	3.60E-09	1.05E-07	7.87E-09	8.22E-09	5.69E-10	1.67E-08	4.21E-09	3.86E-09	2.38E-10	8.31E-09
423	764439.47	4093527.1	5.03E-08	5.06E-08	3.59E-09	1.05E-07	7.86E-09	8.21E-09	5.68E-10	1.66E-08	4.20E-09	3.86E-09	2.38E-10	8.30E-09
424	764417.08	4093535.6	5.03E-08	5.06E-08	3.59E-09	1.04E-07	7.86E-09	8.21E-09	5.68E-10	1.66E-08	4.20E-09	3.86E-09	2.38E-10	8.30E-09
425	764394.7	4093544.11	5.03E-08	5.06E-08	3.59E-09	1.05E-07	7.86E-09	8.21E-09	5.68E-10	1.66E-08	4.20E-09	3.86E-09	2.38E-10	8.30E-09
426	764372.31	4093552.61	5.04E-08	5.07E-08	3.60E-09	1.05E-07	7.87E-09	8.22E-09	5.69E-10	1.67E-08	4.21E-09	3.86E-09	2.38E-10	8.31E-09
427	764349.92	4093561.11	5.05E-08	5.08E-08	3.61E-09	1.05E-07	7.89E-09	8.25E-09	5.70E-10	1.67E-08	4.22E-09	3.88E-09	2.39E-10	8.33E-09
428	764327.53	4093569.61	5.07E-08	5.10E-08	3.62E-09	1.05E-07	7.92E-09	8.28E-09	5.72E-10	1.68E-08	4.24E-09	3.89E-09	2.40E-10	8.37E-09
429	764305.14	4093578.11	5.10E-08	5.12E-08	3.64E-09	1.06E-07	7.96E-09	8.32E-09	5.75E-10	1.69E-08	4.26E-09	3.91E-09	2.41E-10	8.41E-09
430	764282.75	4093586.61	5.13E-08	5.16E-08	3.66E-09	1.07E-07	8.01E-09	8.37E-09	5.79E-10	1.70E-08	4.28E-09	3.93E-09	2.42E-10	8.46E-09
431	764260.37	4093595.12	5.17E-08	5.19E-08	3.69E-09	1.07E-07	8.07E-09	8.43E-09	5.83E-10	1.71E-08	4.31E-09	3.96E-09	2.44E-10	8.52E-09
432	764237.98	4093603.62	5.21E-08	5.23E-08	3.72E-09	1.08E-07	8.13E-09	8.49E-09	5.87E-10	1.72E-08	4.35E-09	3.99E-09	2.46E-10	8.58E-09
433	764215.59	4093612.12	5.25E-08	5.28E-08	3.75E-09	1.09E-07	8.20E-09	8.56E-09	5.92E-10	1.74E-08	4.38E-09	4.02E-09	2.48E-10	8.65E-09
434	765323.27	4092559.83	1.02E-07	1.02E-07	7.27E-09	2.11E-07	1.59E-08	1.66E-08	1.15E-09	3.36E-08	8.50E-09	7.80E-09	4.81E-10	1.68E-08
435	765324.12	4092535.7	1.06E-07	1.06E-07	7.56E-09	2.20E-07	1.65E-08	1.73E-08	1.19E-09	3.50E-08	8.84E-09	8.12E-09	5.00E-10	1.75E-08
436	765324.97	4092511.56	1.10E-07	1.11E-07	7.87E-09	2.29E-07	1.72E-08	1.80E-08	1.24E-09	3.64E-08	9.20E-09	8.45E-09	5.20E-10	
437	765325.82	4092487.43	1.15E-07	1.15E-07	8.18E-09	2.38E-07	1.79E-08	1.87E-08	1.29E-09	3.79E-08	9.57E-09	8.79E-09	5.41E-10	1.89E-08
438	765326.67	4092463.3	1.19E-07	1.20E-07	8.51E-09	2.47E-07	1.86E-08	1.94E-08	1.34E-09	3.94E-08	9.95E-09	9.14E-09	5.63E-10	1.97E-08
439	765327.52	4092439.16	1.24E-07	1.25E-07	8.85E-09	2.57E-07	1.94E-08	2.02E-08	1.40E-09	4.10E-08	1.03E-08	9.50E-09	5.85E-10	2.04E-08
440	765328.37	4092415.03	1.29E-07	1.29E-07	9.19E-09	2.67E-07	2.01E-08	2.10E-08	1.45E-09	4.26E-08	1.07E-08	9.87E-09	6.08E-10	2.12E-08
441	765329.23	4092390.89	1.34E-07	1.34E-07	9.54E-09	2.77E-07	2.09E-08	2.18E-08			1.12E-08	1.02E-08		
442		4092366.76		1.39E-07	9.90E-09	2.88E-07	2.17E-08	2.26E-08			1.16E-08	1.06E-08	6.55E-10	2.29E-08
443	765330.93	4092342.62	1.44E-07	1.44E-07	1.03E-08	2.98E-07	2.24E-08	2.35E-08	1.62E-09	4.75E-08	1.20E-08	1.10E-08	6.79E-10	2.37E-08
444		4092318.49		1.50E-07	1.06E-08	3.09E-07	2.33E-08	2.43E-08					7.04E-10	
445	765332.63	4092294.36	1.54E-07	1.55E-07	1.10E-08	3.21E-07	2.41E-08	2.52E-08	1.74E-09	5.11E-08	1.29E-08	1.18E-08	7.29E-10	2.55E-08
446	765333.48	4092270.22	1.60E-07	1.61E-07	1.14E-08	3.32E-07	2.50E-08	2.61E-08	1.80E-09	5.29E-08	1.34E-08	1.23E-08	7.56E-10	2.64E-08

447	765334.33	4092246.09	1.66E-07	1.67E-07	1.18E-08	3.44E-07	2.59E-08	2.71E-08	1.87E-09	5.48E-08	1.38E-08	1.27E-08	7.83E-10	2.73E-08
448	765335.19	4092221.95	1.72E-07	1.73E-07	1.23E-08	3.57E-07	2.68E-08	2.80E-08	1.94E-09	5.68E-08	1.44E-08	1.32E-08	8.12E-10	2.83E-08
449	765513.39	4092588.36	7.92E-08	7.96E-08	5.65E-09	1.64E-07	1.24E-08	1.29E-08	8.93E-10	2.62E-08	6.61E-09	6.07E-09	3.74E-10	1.31E-08
450	765503.64	4092609.84	7.74E-08	7.78E-08	5.53E-09	1.61E-07	1.21E-08	1.26E-08	8.74E-10	2.56E-08	6.47E-09	5.94E-09	3.66E-10	1.28E-08
451	765493.89	4092631.31	7.58E-08	7.62E-08	5.41E-09	1.57E-07	1.18E-08	1.24E-08	8.55E-10	2.51E-08	6.33E-09	5.81E-09	3.58E-10	1.25E-08
452	765484.15	4092652.79	7.41E-08	7.45E-08	5.29E-09	1.54E-07	1.16E-08	1.21E-08	8.35E-10	2.45E-08	6.18E-09	5.68E-09	3.50E-10	1.22E-08
453	765474.4	4092674.26	7.24E-08	7.28E-08	5.17E-09	1.50E-07	1.13E-08	1.18E-08	8.17E-10	2.39E-08	6.05E-09	5.55E-09	3.42E-10	1.19E-08
454	765464.65	4092695.74	7.08E-08	7.12E-08	5.06E-09	1.47E-07	1.11E-08	1.16E-08	7.99E-10	2.34E-08	5.92E-09	5.43E-09	3.35E-10	1.17E-08
455	765454.9	4092717.22	6.93E-08	6.97E-08	4.95E-09	1.44E-07	1.08E-08	1.13E-08	7.82E-10	2.29E-08	5.79E-09	5.32E-09	3.28E-10	1.14E-08
456	765445.15	4092738.69	6.79E-08	6.83E-08	4.85E-09	1.41E-07	1.06E-08	1.11E-08	7.66E-10	2.24E-08	5.67E-09	5.21E-09	3.21E-10	1.12E-08
457	765435.4	4092760.17	6.66E-08	6.69E-08	4.75E-09	1.38E-07	1.04E-08	1.09E-08	7.51E-10	2.20E-08	5.56E-09	5.10E-09	3.14E-10	1.10E-08
458	765425.65	4092781.65	6.53E-08	6.56E-08	4.66E-09	1.36E-07	1.02E-08	1.07E-08	7.36E-10	2.16E-08	5.45E-09	5.01E-09	3.08E-10	1.08E-08
459	765415.9	4092803.12	6.41E-08	6.45E-08	4.58E-09	1.33E-07	1.00E-08	1.05E-08	7.23E-10	2.12E-08	5.36E-09	4.92E-09	3.03E-10	1.06E-08
460	765406.15	4092824.6	6.31E-08	6.34E-08	4.50E-09	1.31E-07	9.85E-09	1.03E-08	7.11E-10	2.09E-08	5.27E-09	4.84E-09	2.98E-10	1.04E-08
461	765396.4	4092846.07	6.21E-08	6.24E-08	4.43E-09	1.29E-07	9.70E-09	1.01E-08	7.01E-10	2.05E-08	5.19E-09	4.76E-09	2.93E-10	1.02E-08
462	765386.65	4092867.55	6.12E-08	6.16E-08	4.37E-09	1.27E-07	9.56E-09	9.99E-09	6.91E-10	2.02E-08	5.11E-09	4.70E-09	2.89E-10	1.01E-08
463	765376.9	4092889.03	6.05E-08	6.08E-08	4.32E-09	1.26E-07	9.44E-09	9.86E-09	6.82E-10	2.00E-08	5.05E-09	4.64E-09	2.86E-10	9.97E-09
464	765367.15	4092910.5	5.98E-08	6.01E-08	4.27E-09	1.24E-07	9.33E-09	9.75E-09	6.74E-10	1.98E-08	4.99E-09	4.58E-09	2.82E-10	9.85E-09
465	765357.41	4092931.98	5.91E-08	5.94E-08	4.22E-09	1.23E-07	9.23E-09	9.65E-09	6.67E-10	1.95E-08	4.94E-09	4.53E-09	2.79E-10	9.75E-09
466	765347.66	4092953.45	5.85E-08	5.88E-08	4.18E-09	1.22E-07	9.14E-09	9.55E-09	6.60E-10	1.93E-08	4.89E-09	4.49E-09	2.76E-10	9.65E-09
467	765337.91	4092974.93	5.79E-08	5.83E-08	4.14E-09	1.20E-07	9.05E-09	9.46E-09	6.54E-10	1.92E-08	4.84E-09	4.44E-09	2.74E-10	9.56E-09
468	765328.16	4092996.41	5.74E-08	5.77E-08	4.10E-09	1.19E-07	8.97E-09	9.37E-09	6.48E-10	1.90E-08	4.79E-09	4.40E-09	2.71E-10	9.47E-09
469	765318.41	4093017.88	5.69E-08	5.72E-08	4.06E-09	1.18E-07	8.88E-09	9.28E-09	6.42E-10	1.88E-08	4.75E-09	4.36E-09	2.69E-10	9.38E-09
470	765308.66	4093039.36	5.63E-08	5.66E-08	4.02E-09	1.17E-07	8.80E-09	9.19E-09	6.36E-10	1.86E-08	4.70E-09	4.32E-09	2.66E-10	9.29E-09
471	765298.91	4093060.84	5.58E-08	5.61E-08	3.98E-09	1.16E-07	8.71E-09	9.10E-09	6.29E-10	1.84E-08	4.66E-09	4.28E-09	2.63E-10	9.20E-09
472	765289.16	4093082.31	5.52E-08	5.54E-08	3.94E-09	1.15E-07	8.61E-09	9.00E-09	6.22E-10	1.82E-08	4.61E-09	4.23E-09	2.61E-10	9.09E-09
473	765279.41	4093103.79	5.45E-08	5.48E-08	3.89E-09	1.13E-07	8.51E-09	8.89E-09	6.15E-10	1.80E-08	4.55E-09	4.18E-09	2.57E-10	8.99E-09
474	765269.66	4093125.26	5.38E-08	5.41E-08	3.84E-09	1.12E-07	8.40E-09	8.78E-09	6.07E-10	1.78E-08	4.49E-09	4.12E-09	2.54E-10	8.87E-09
475	765259.91	4093146.74	5.30E-08	5.33E-08	3.78E-09	1.10E-07	8.28E-09	8.65E-09	5.98E-10	1.75E-08	4.43E-09	4.06E-09	2.50E-10	8.74E-09
476	765250.16	4093168.22	5.22E-08	5.25E-08	3.73E-09	1.08E-07	8.15E-09	8.52E-09	5.89E-10	1.73E-08	4.36E-09	4.00E-09	2.47E-10	8.61E-09
477	765240.42	4093189.69	5.13E-08	5.16E-08	3.66E-09	1.07E-07	8.02E-09	8.38E-09	5.79E-10	1.70E-08	4.29E-09	3.94E-09	2.42E-10	8.47E-09
478	765230.67	4093211.17	5.04E-08	5.07E-08	3.60E-09	1.05E-07	7.87E-09	8.23E-09	5.69E-10	1.67E-08	4.21E-09	3.87E-09	2.38E-10	8.31E-09
479	765220.92	4093232.64	4.95E-08	4.98E-08	3.53E-09	1.03E-07	7.73E-09	8.08E-09	5.58E-10	1.64E-08	4.13E-09	3.80E-09	2.34E-10	8.16E-09
480	765211.17	4093254.12	4.86E-08	4.88E-08	3.47E-09	1.01E-07	7.59E-09	7.93E-09	5.48E-10	1.61E-08	4.06E-09	3.72E-09	2.29E-10	8.01E-09
481	765201.42	4093275.6	4.76E-08	4.79E-08	3.40E-09	9.89E-08	7.44E-09	7.77E-09	5.37E-10	1.58E-08	3.98E-09	3.65E-09	2.25E-10	7.86E-09
482	765191.67	4093297.07	4.67E-08	4.70E-08	3.34E-09	9.71E-08	7.30E-09	7.63E-09	5.27E-10	1.55E-08	3.90E-09	3.58E-09	2.21E-10	7.71E-09
483	765181.92	4093318.55	4.59E-08	4.61E-08	3.27E-09	9.52E-08	7.16E-09	7.48E-09	5.17E-10	1.52E-08	3.83E-09	3.52E-09	2.17E-10	7.56E-09
484	765172.17	4093340.03	4.50E-08	4.53E-08	3.21E-09	9.35E-08	7.03E-09	7.35E-09	5.08E-10	1.49E-08	3.76E-09	3.45E-09	2.13E-10	7.42E-09
485	765162.42	4093361.5	4.42E-08	4.45E-08	3.16E-09	9.19E-08	6.91E-09	7.22E-09	4.99E-10	1.46E-08	3.69E-09	3.39E-09	2.09E-10	7.30E-09
486	765152.67	4093382.98	4.35E-08	4.38E-08	3.11E-09	9.04E-08	6.80E-09	7.10E-09	4.91E-10	1.44E-08	3.63E-09	3.34E-09	2.06E-10	7.18E-09
487	765142.92	4093404.45	4.29E-08	4.31E-08	3.06E-09	8.90E-08	6.69E-09	6.99E-09	4.83E-10	1.42E-08	3.58E-09	3.29E-09	2.02E-10	7.07E-09
488	765133.17	4093425.93	4.22E-08	4.24E-08	3.01E-09	8.77E-08	6.59E-09	6.89E-09	4.76E-10	1.40E-08	3.52E-09	3.24E-09	1.99E-10	6.96E-09
489	765123.43	4093447.41	4.16E-08	4.19E-08	2.97E-09	8.65E-08	6.50E-09	6.79E-09	4.70E-10		3.48E-09	3.19E-09	1.97E-10	
490	765091.63	4093477.26	4.13E-08	4.15E-08	2.95E-09	8.58E-08	6.45E-09	6.74E-09	4.66E-10	1.37E-08	3.45E-09	3.17E-09	1.95E-10	6.81E-09
491	765069.58	4093485.63	4.16E-08	4.18E-08	2.97E-09	8.63E-08	6.49E-09	6.78E-09	4.69E-10	1.37E-08	3.47E-09	3.19E-09	1.96E-10	6.85E-09

492	765047.53	4093494	4.18E-08	4.20E-08	2.98E-09	8.68E-08	6.53E-09	6.82E-09	4.71E-10	1.38E-08	3.49E-09	3.20E-09	1.97E-10	6.89E-09
493	765025.48	4093502.37	4.20E-08	4.22E-08	3.00E-09	8.72E-08	6.56E-09	6.85E-09	4.74E-10	1.39E-08	3.51E-09	3.22E-09	1.98E-10	6.93E-09
494	765003.43	4093510.75	4.22E-08	4.24E-08	3.01E-09	8.76E-08	6.59E-09	6.89E-09	4.76E-10	1.40E-08	3.52E-09	3.24E-09	1.99E-10	6.96E-09
495	764981.38	4093519.12	4.24E-08	4.26E-08	3.02E-09	8.80E-08	6.62E-09	6.91E-09	4.78E-10	1.40E-08	3.54E-09	3.25E-09	2.00E-10	6.99E-09
496	764959.33	4093527.49	4.25E-08	4.27E-08	3.03E-09	8.83E-08	6.64E-09	6.94E-09	4.79E-10	1.41E-08	3.55E-09	3.26E-09	2.01E-10	7.01E-09
497	764937.28	4093535.87	4.26E-08	4.28E-08	3.04E-09	8.85E-08	6.66E-09	6.95E-09	4.81E-10	1.41E-08	3.56E-09	3.27E-09	2.01E-10	7.03E-09
498	764915.23	4093544.24	4.27E-08	4.29E-08	3.05E-09	8.86E-08	6.67E-09	6.97E-09	4.82E-10	1.41E-08	3.56E-09	3.27E-09	2.02E-10	7.04E-09
499	764893.18	4093552.61	4.27E-08	4.29E-08	3.05E-09	8.87E-08	6.67E-09	6.97E-09	4.82E-10	1.41E-08	3.57E-09	3.27E-09	2.02E-10	7.04E-09
500	764871.14	4093560.98	4.27E-08	4.29E-08	3.05E-09	8.86E-08	6.66E-09	6.96E-09	4.81E-10	1.41E-08	3.56E-09	3.27E-09	2.02E-10	7.04E-09
501	764849.09	4093569.36	4.26E-08	4.28E-08	3.04E-09	8.85E-08	6.66E-09	6.95E-09	4.81E-10	1.41E-08	3.56E-09	3.27E-09	2.01E-10	7.03E-09
502	764827.04	4093577.73	4.25E-08	4.27E-08	3.03E-09	8.83E-08	6.64E-09	6.94E-09	4.79E-10	1.41E-08	3.55E-09	3.26E-09	2.01E-10	7.01E-09
503	764804.99	4093586.1	4.24E-08	4.26E-08	3.02E-09	8.80E-08	6.62E-09	6.91E-09	4.78E-10	1.40E-08	3.54E-09	3.25E-09	2.00E-10	6.99E-09
504	764782.94	4093594.48	4.22E-08	4.24E-08	3.01E-09	8.76E-08	6.59E-09	6.89E-09	4.76E-10	1.40E-08	3.52E-09	3.24E-09	1.99E-10	6.96E-09
505	764760.89	4093602.85	4.20E-08	4.22E-08	3.00E-09	8.72E-08	6.56E-09	6.85E-09	4.74E-10	1.39E-08	3.51E-09	3.22E-09	1.98E-10	6.93E-09
506	764738.84	4093611.22	4.18E-08	4.20E-08	2.98E-09	8.67E-08	6.52E-09	6.82E-09	4.71E-10	1.38E-08	3.49E-09	3.20E-09	1.97E-10	6.89E-09
507	764716.79	4093619.59	4.15E-08	4.17E-08	2.96E-09	8.62E-08	6.49E-09	6.78E-09	4.68E-10	1.37E-08	3.47E-09	3.18E-09	1.96E-10	6.85E-09
508	764694.74	4093627.97	4.13E-08	4.15E-08	2.95E-09	8.57E-08	6.45E-09	6.73E-09	4.65E-10	1.36E-08	3.45E-09	3.16E-09	1.95E-10	6.80E-09
509	764672.69	4093636.34	4.10E-08	4.12E-08	2.93E-09	8.52E-08	6.41E-09	6.69E-09	4.63E-10	1.36E-08	3.43E-09	3.15E-09	1.94E-10	6.76E-09
510	764650.64	4093644.71	4.08E-08	4.10E-08	2.91E-09	8.47E-08	6.37E-09	6.65E-09	4.60E-10	1.35E-08	3.40E-09	3.13E-09	1.93E-10	6.72E-09
511	764628.59	4093653.09	4.06E-08	4.08E-08	2.90E-09	8.42E-08	6.34E-09	6.62E-09	4.58E-10	1.34E-08	3.39E-09	3.11E-09	1.92E-10	6.69E-09
512	764606.54	4093661.46	4.04E-08	4.06E-08	2.88E-09	8.39E-08	6.31E-09	6.59E-09	4.55E-10	1.34E-08	3.37E-09	3.10E-09	1.91E-10	6.66E-09
513	764584.5	4093669.83	4.02E-08	4.04E-08	2.87E-09	8.35E-08	6.28E-09	6.56E-09	4.54E-10	1.33E-08	3.36E-09	3.08E-09	1.90E-10	6.63E-09
514	764562.45	4093678.2	4.01E-08	4.03E-08	2.86E-09	8.33E-08	6.26E-09	6.54E-09	4.52E-10	1.33E-08	3.35E-09	3.07E-09	1.89E-10	6.61E-09
515	764540.4	4093686.58	4.00E-08	4.02E-08	2.86E-09	8.31E-08	6.25E-09	6.53E-09	4.51E-10	1.32E-08	3.34E-09	3.07E-09	1.89E-10	6.60E-09
516	764518.35	4093694.95	4.00E-08	4.02E-08	2.85E-09	8.30E-08	6.24E-09	6.52E-09	4.51E-10	1.32E-08	3.34E-09	3.06E-09	1.89E-10	6.59E-09
517	764496.3	4093703.32	4.00E-08	4.02E-08	2.85E-09	8.30E-08	6.24E-09	6.52E-09	4.51E-10	1.32E-08	3.34E-09	3.06E-09	1.89E-10	6.59E-09
518	764474.25	4093711.7	4.00E-08	4.02E-08	2.85E-09	8.30E-08	6.24E-09	6.52E-09	4.51E-10	1.32E-08	3.34E-09	3.06E-09	1.89E-10	6.59E-09
519	764452.2	4093720.07	4.00E-08	4.02E-08	2.86E-09	8.31E-08	6.25E-09	6.53E-09	4.51E-10	1.32E-08	3.34E-09	3.07E-09	1.89E-10	6.60E-09
520	764430.15	4093728.44	4.01E-08	4.03E-08	2.86E-09	8.32E-08	6.26E-09	6.54E-09	4.52E-10	1.33E-08	3.35E-09	3.07E-09	1.89E-10	6.61E-09
521	764408.1	4093736.81	4.02E-08	4.04E-08	2.87E-09	8.34E-08	6.28E-09	6.56E-09	4.53E-10	1.33E-08	3.36E-09	3.08E-09	1.90E-10	6.63E-09
522	764386.05	4093745.19	4.03E-08	4.05E-08	2.88E-09	8.37E-08	6.29E-09	6.58E-09	4.55E-10	1.33E-08	3.37E-09	3.09E-09	1.90E-10	6.65E-09
523	764364	4093753.56	4.05E-08	4.07E-08	2.89E-09	8.40E-08	6.32E-09	6.60E-09	4.57E-10		3.38E-09	3.10E-09	1.91E-10	6.67E-09
524	764341.95	4093761.93	4.07E-08	4.09E-08	2.90E-09	8.44E-08	6.35E-09	6.63E-09	4.59E-10	1.34E-08	3.39E-09	3.12E-09	1.92E-10	6.70E-09
525	764319.91	4093770.3	4.09E-08	4.11E-08	2.92E-09	8.49E-08	6.39E-09	6.67E-09	4.61E-10	1.35E-08	3.41E-09	3.13E-09	1.93E-10	6.74E-09
526	764297.86	4093778.68	4.11E-08	4.14E-08	2.94E-09	8.54E-08	6.43E-09	6.71E-09	4.64E-10	1.36E-08	3.44E-09	3.15E-09	1.94E-10	6.78E-09
527	764275.81	4093787.05	4.14E-08	4.17E-08	2.96E-09	8.61E-08	6.47E-09	6.76E-09	4.68E-10	1.37E-08	3.46E-09	3.18E-09	1.96E-10	6.84E-09
528	764253.76	4093795.42	4.17E-08	4.20E-08	2.98E-09	8.67E-08	6.52E-09	6.81E-09	4.71E-10	1.38E-08	3.49E-09	3.20E-09	1.97E-10	6.88E-09
529	764231.71	4093803.8	4.21E-08	4.23E-08	3.00E-09	8.73E-08	6.57E-09	6.86E-09	4.74E-10	1.39E-08	3.51E-09	3.22E-09	1.99E-10	6.94E-09
530	764209.66	4093812.17	4.24E-08	4.26E-08	3.03E-09	8.81E-08	6.62E-09	6.92E-09	4.78E-10	1.40E-08	3.54E-09	3.25E-09	2.00E-10	6.99E-09
531	765523.14	4092566.88	8.09E-08	8.13E-08	5.77E-09	1.68E-07	1.26E-08	1.32E-08	9.12E-10	2.67E-08	6.75E-09	6.20E-09	3.82E-10	1.33E-08
532	765523.99	4092542.75	8.37E-08	8.41E-08	5.97E-09	1.74E-07	1.31E-08	1.37E-08	9.44E-10	2.77E-08	6.99E-09	6.41E-09	3.95E-10	1.38E-08
533	765524.84	4092518.62	8.65E-08	8.70E-08	6.18E-09	1.80E-07	1.35E-08	1.41E-08	9.76E-10	2.86E-08	7.23E-09	6.64E-09	4.09E-10	1.43E-08
534	765525.7	4092494.48	8.95E-08	9.00E-08	6.39E-09	1.86E-07	1.40E-08	1.46E-08	1.01E-09	2.96E-08	7.47E-09	6.86E-09	4.23E-10	1.48E-08
535	765526.55	4092470.35	9.25E-08	9.29E-08	6.60E-09	1.92E-07	1.44E-08	1.51E-08	1.04E-09	3.06E-08	7.72E-09	7.09E-09	4.37E-10	1.52E-08
536	765527.4	4092446.21	9.55E-08	9.60E-08	6.82E-09	1.98E-07	1.49E-08	1.56E-08	1.08E-09	3.16E-08	7.97E-09	7.32E-09	4.51E-10	1.57E-08

537	765528.25	4092422.08	9.86E-08	9.91E-08	7.04E-09	2.05E-07	1.54E-08	1.61E-08	1.11E-09	3.26E-08	8.23E-09	7.56E-09	4.66E-10	1.63E-08
538	765529.1	4092397.94	1.02E-07	1.02E-07	7.26E-09	2.11E-07	1.59E-08	1.66E-08	1.15E-09	3.36E-08	8.49E-09	7.79E-09	4.80E-10	1.68E-08
539	765529.95	4092373.81	1.05E-07	1.05E-07	7.48E-09	2.18E-07	1.64E-08	1.71E-08	1.18E-09	3.47E-08	8.75E-09	8.04E-09	4.95E-10	1.73E-08
540	765530.8	4092349.68	1.08E-07	1.09E-07	7.71E-09	2.24E-07	1.69E-08	1.76E-08	1.22E-09	3.57E-08	9.02E-09	8.28E-09	5.10E-10	1.78E-08
541	765531.66	4092325.54	1.11E-07	1.12E-07	7.94E-09	2.31E-07	1.74E-08	1.82E-08	1.25E-09	3.68E-08	9.29E-09	8.53E-09	5.25E-10	1.83E-08
542	765532.51	4092301.41	1.15E-07	1.15E-07	8.18E-09	2.38E-07	1.79E-08	1.87E-08	1.29E-09	3.79E-08	9.56E-09	8.78E-09	5.41E-10	1.89E-08
543	765533.36	4092277.27	1.18E-07	1.19E-07	8.42E-09	2.45E-07	1.84E-08	1.92E-08	1.33E-09	3.90E-08	9.84E-09	9.04E-09	5.57E-10	1.94E-08
544	765534.21	4092253.14	1.21E-07	1.22E-07	8.66E-09	2.52E-07	1.90E-08	1.98E-08	1.37E-09	4.01E-08	1.01E-08	9.31E-09	5.73E-10	2.00E-08
545	765535.06	4092229	1.25E-07	1.26E-07	8.92E-09	2.59E-07	1.95E-08	2.04E-08	1.41E-09	4.13E-08	1.04E-08	9.58E-09	5.90E-10	2.06E-08
546	765713.17	4092595.62	6.54E-08	6.57E-08	4.67E-09	1.36E-07	1.02E-08	1.07E-08	7.38E-10	2.16E-08	5.46E-09	5.01E-09	3.09E-10	1.08E-08
547	765703.33	4092617.3	6.41E-08	6.45E-08	4.58E-09	1.33E-07	1.00E-08	1.05E-08	7.23E-10	2.12E-08	5.36E-09	4.92E-09	3.03E-10	1.06E-08
548	765693.49	4092638.98	6.29E-08	6.32E-08	4.49E-09	1.31E-07	9.82E-09	1.03E-08	7.09E-10	2.08E-08	5.25E-09	4.82E-09	2.97E-10	1.04E-08
549	765683.65	4092660.67	6.16E-08	6.20E-08	4.40E-09	1.28E-07	9.63E-09	1.01E-08	6.95E-10	2.04E-08	5.15E-09	4.73E-09	2.91E-10	1.02E-08
550	765673.8	4092682.35	6.04E-08	6.07E-08	4.31E-09	1.25E-07	9.44E-09	9.86E-09	6.81E-10	2.00E-08	5.04E-09	4.63E-09	2.85E-10	9.96E-09
551	765663.96	4092704.03	5.92E-08	5.95E-08	4.23E-09	1.23E-07	9.25E-09	9.66E-09	6.68E-10	1.96E-08	4.94E-09	4.54E-09	2.80E-10	9.77E-09
552	765654.12	4092725.71	5.80E-08	5.83E-08	4.14E-09	1.21E-07	9.07E-09	9.47E-09	6.55E-10	1.92E-08	4.85E-09	4.45E-09	2.74E-10	9.57E-09
553	765644.27	4092747.4	5.69E-08	5.72E-08	4.06E-09	1.18E-07	8.89E-09	9.28E-09	6.42E-10	1.88E-08	4.75E-09	4.36E-09	2.69E-10	9.38E-09
554	765634.43	4092769.08	5.58E-08	5.61E-08	3.98E-09	1.16E-07	8.72E-09	9.11E-09	6.30E-10	1.85E-08	4.66E-09	4.28E-09	2.64E-10	9.20E-09
555	765624.59	4092790.76	5.48E-08	5.51E-08	3.91E-09	1.14E-07	8.55E-09	8.94E-09	6.18E-10	1.81E-08	4.57E-09	4.20E-09	2.59E-10	9.03E-09
556	765614.75	4092812.44	5.38E-08	5.41E-08	3.84E-09	1.12E-07	8.41E-09	8.78E-09	6.07E-10	1.78E-08	4.49E-09	4.13E-09	2.54E-10	8.88E-09
557	765604.9	4092834.13	5.29E-08	5.32E-08	3.78E-09	1.10E-07	8.27E-09	8.64E-09	5.97E-10	1.75E-08	4.42E-09	4.06E-09	2.50E-10	8.73E-09
558	765595.06	4092855.81	5.21E-08	5.24E-08	3.72E-09	1.08E-07	8.14E-09	8.50E-09	5.88E-10	1.72E-08	4.35E-09	4.00E-09	2.46E-10	8.59E-09
559	765585.22	4092877.49	5.13E-08	5.16E-08	3.66E-09	1.07E-07	8.02E-09	8.38E-09	5.79E-10	1.70E-08	4.29E-09	3.94E-09	2.42E-10	8.47E-09
560	765575.37	4092899.18	5.06E-08	5.09E-08	3.62E-09	1.05E-07	7.91E-09	8.26E-09	5.71E-10	1.67E-08	4.23E-09	3.88E-09	2.39E-10	8.35E-09
561	765565.53	4092920.86	5.00E-08	5.03E-08	3.57E-09	1.04E-07	7.81E-09	8.16E-09	5.64E-10	1.65E-08	4.18E-09	3.84E-09	2.36E-10	8.25E-09
562	765555.69	4092942.54	4.95E-08	4.97E-08	3.53E-09	1.03E-07	7.73E-09	8.07E-09	5.58E-10	1.64E-08	4.13E-09	3.79E-09	2.34E-10	8.16E-09
563	765545.84	4092964.22	4.90E-08	4.93E-08	3.50E-09	1.02E-07	7.65E-09	8.00E-09	5.53E-10	1.62E-08	4.09E-09	3.76E-09	2.31E-10	8.08E-09
564	765536	4092985.91	4.86E-08	4.88E-08	3.47E-09	1.01E-07	7.58E-09	7.92E-09	5.48E-10	1.61E-08	4.05E-09	3.72E-09	2.29E-10	8.01E-09
565	765526.16	4093007.59	4.82E-08	4.84E-08	3.44E-09	1.00E-07	7.52E-09	7.86E-09	5.43E-10	1.59E-08	4.02E-09	3.69E-09	2.28E-10	7.94E-09
566	765516.32	4093029.27	4.78E-08	4.81E-08	3.41E-09	9.93E-08	7.47E-09	7.80E-09	5.39E-10	1.58E-08	3.99E-09	3.67E-09	2.26E-10	7.89E-09
567	765506.47	4093050.95	4.75E-08	4.77E-08	3.39E-09	9.86E-08	7.41E-09	7.75E-09	5.35E-10	1.57E-08	3.96E-09	3.64E-09	2.24E-10	7.83E-09
568	765496.63	4093072.64	4.71E-08	4.74E-08	3.37E-09	9.79E-08	7.36E-09	7.69E-09	5.32E-10	1.56E-08	3.94E-09	3.62E-09	2.23E-10	7.77E-09
569	765486.79	4093094.32	4.68E-08	4.70E-08	3.34E-09	9.72E-08	7.31E-09	7.64E-09	5.28E-10	1.55E-08	3.91E-09	3.59E-09	2.21E-10	7.72E-09
570	765476.94	4093116	4.65E-08	4.67E-08	3.32E-09	9.65E-08	7.26E-09	7.58E-09	5.24E-10	1.54E-08	3.88E-09	3.56E-09	2.19E-10	7.66E-09
571	765467.1	4093137.68	4.61E-08	4.63E-08	3.29E-09	9.57E-08	7.20E-09	7.52E-09	5.20E-10	1.52E-08	3.85E-09	3.53E-09	2.18E-10	7.60E-09
572	765457.26	4093159.37	4.57E-08	4.59E-08	3.26E-09	9.49E-08	7.14E-09	7.46E-09	5.15E-10	1.51E-08	3.82E-09	3.50E-09	2.16E-10	7.54E-09
573	765447.42	4093181.05	4.53E-08	4.55E-08	3.23E-09	9.40E-08	7.07E-09	7.39E-09	5.11E-10	1.50E-08	3.78E-09	3.47E-09	2.14E-10	7.47E-09
574	765437.57	4093202.73	4.48E-08	4.51E-08	3.20E-09	9.31E-08	7.00E-09	7.31E-09	5.06E-10	1.48E-08	3.74E-09	3.44E-09	2.12E-10	7.39E-09
575	765427.73	4093224.42	4.43E-08	4.46E-08	3.17E-09	9.21E-08	6.92E-09	7.23E-09	5.00E-10	1.47E-08	3.70E-09	3.40E-09	2.09E-10	7.31E-09
576	765417.89	4093246.1	4.38E-08	4.40E-08	3.13E-09	9.09E-08	6.84E-09	7.15E-09	4.94E-10	1.45E-08	3.66E-09	3.36E-09	2.07E-10	7.22E-09
577	765408.04	4093267.78	4.32E-08	4.34E-08	3.08E-09	8.97E-08	6.75E-09	7.05E-09	4.87E-10	1.43E-08	3.61E-09	3.31E-09	2.04E-10	7.12E-09
578	765398.2	4093289.46	4.26E-08	4.28E-08	3.04E-09	8.85E-08	6.65E-09	6.95E-09	4.80E-10	1.41E-08	3.56E-09	3.27E-09	2.01E-10	7.02E-09
579	765388.36	4093311.15	4.19E-08	4.22E-08	2.99E-09	8.71E-08	6.55E-09	6.84E-09	4.73E-10	1.39E-08	3.50E-09	3.22E-09	1.98E-10	6.92E-09
580	765378.52		4.13E-08	4.15E-08	2.95E-09	8.57E-08	6.45E-09	6.74E-09	4.66E-10	1.36E-08	3.45E-09	3.17E-09	1.95E-10	6.81E-09
581	765368.67	4093354.51	4.06E-08	4.08E-08	2.90E-09	8.43E-08	6.34E-09	6.62E-09	4.58E-10	1.34E-08	3.39E-09	3.11E-09	1.92E-10	6.69E-09

582	765358.83	4093376.19	3.99E-08	4.01E-08	2.85E-09	8.28E-08	6.23E-09	6.51E-09		1.32E-08	3.33E-09	3.06E-09	1.88E-10 (
583	765348.99	4093397.88	3.92E-08	3.94E-08	2.80E-09	8.14E-08	6.12E-09	6.40E-09		1.30E-08	3.27E-09	3.01E-09	1.85E-10 (
584	765339.14	4093419.56	3.85E-08	3.87E-08	2.75E-09	8.00E-08	6.02E-09	6.29E-09		1.27E-08	3.22E-09	2.95E-09	1.82E-10 (
585	765329.3	4093441.24	3.79E-08	3.81E-08	2.70E-09	7.86E-08	5.92E-09	6.18E-09		1.25E-08	3.16E-09	2.90E-09	1.79E-10 (
586	765319.46	4093462.92	3.73E-08	3.75E-08	2.66E-09	7.74E-08	5.82E-09	6.08E-09		1.23E-08	3.11E-09	2.86E-09	1.76E-10 6	-
587	765309.61	4093484.61	3.67E-08	3.69E-08	2.62E-09	7.62E-08	5.73E-09	5.99E-09	4.14E-10		3.06E-09	2.81E-09	1.73E-10 (
588	765299.77	4093506.29	3.62E-08	3.64E-08	2.58E-09	7.51E-08	5.65E-09	5.90E-09	4.08E-10		3.02E-09	2.77E-09	1.71E-10 5	
589	765289.93	4093527.97	3.57E-08	3.59E-08	2.55E-09	7.41E-08	5.58E-09	5.83E-09	4.03E-10		2.98E-09	2.74E-09	1.69E-10 5	
590	765280.09	4093549.66	3.52E-08	3.54E-08	2.52E-09	7.32E-08	5.50E-09	5.75E-09	3.98E-10		2.94E-09	2.70E-09	1.66E-10 5	
591	765270.24	4093571.34	3.49E-08	3.50E-08	2.49E-09	7.24E-08	5.45E-09	5.69E-09		1.15E-08	2.91E-09	2.67E-09	1.65E-10 5	
592	765260.4	4093593.02	3.45E-08	3.47E-08	2.46E-09	7.16E-08	5.39E-09	5.63E-09		1.14E-08	2.88E-09	2.64E-09	1.63E-10 5	
593	765228.3	4093623.16	3.43E-08	3.45E-08	2.45E-09	7.13E-08	5.36E-09	5.60E-09	3.87E-10	1.14E-08	2.87E-09	2.63E-09	1.62E-10 5	5.66E-09
594	765206.04	4093631.61	3.45E-08	3.47E-08	2.46E-09	7.17E-08	5.39E-09	5.63E-09	3.89E-10	1.14E-08	2.88E-09	2.65E-09	1.63E-10 5	5.69E-09
595	765183.77	4093640.06	3.47E-08	3.49E-08	2.48E-09	7.21E-08	5.42E-09	5.66E-09		1.15E-08	2.90E-09	2.66E-09	1.64E-10 5	
596	765161.51	4093648.52	3.49E-08	3.50E-08	2.49E-09	7.24E-08	5.45E-09	5.69E-09		1.15E-08	2.91E-09	2.67E-09	1.65E-10 5	
597	765139.25	4093656.97	3.50E-08	3.52E-08	2.50E-09	7.27E-08	5.47E-09	5.71E-09		1.16E-08	2.92E-09	2.68E-09	1.65E-10 5	5.77E-09
598	765116.99	4093665.42	3.51E-08	3.53E-08	2.51E-09	7.30E-08	5.49E-09	5.73E-09	3.96E-10	1.16E-08	2.93E-09	2.69E-09	1.66E-10	5.79E-09
599	765094.73	4093673.88	3.53E-08	3.54E-08	2.52E-09	7.32E-08	5.51E-09	5.75E-09	3.98E-10	1.17E-08	2.94E-09	2.70E-09	1.67E-10 5	5.81E-09
600	765072.47	4093682.33	3.53E-08	3.55E-08	2.52E-09	7.34E-08	5.52E-09	5.77E-09	3.99E-10	1.17E-08	2.95E-09	2.71E-09	1.67E-10	5.83E-09
601	765050.21	4093690.78	3.54E-08	3.56E-08	2.53E-09	7.35E-08	5.53E-09	5.77E-09	3.99E-10	1.17E-08	2.95E-09	2.71E-09	1.67E-10	5.83E-09
602	765027.95	4093699.24	3.54E-08	3.56E-08	2.53E-09	7.35E-08	5.53E-09	5.78E-09	3.99E-10	1.17E-08	2.96E-09	2.71E-09	1.67E-10 5	5.84E-09
603	765005.68	4093707.69	3.54E-08	3.56E-08	2.53E-09	7.35E-08	5.53E-09	5.77E-09	3.99E-10	1.17E-08	2.95E-09	2.71E-09	1.67E-10 5	5.83E-09
604	764983.42	4093716.14	3.54E-08	3.55E-08	2.52E-09	7.34E-08	5.52E-09	5.77E-09	3.99E-10	1.17E-08	2.95E-09	2.71E-09	1.67E-10 5	5.83E-09
605	764961.16	4093724.6	3.53E-08	3.55E-08	2.52E-09	7.33E-08	5.51E-09	5.76E-09	3.98E-10	1.17E-08	2.95E-09	2.70E-09	1.67E-10 5	5.82E-09
606	764938.9	4093733.05	3.52E-08	3.54E-08	2.51E-09	7.31E-08	5.50E-09	5.74E-09	3.97E-10	1.16E-08	2.94E-09	2.70E-09	1.66E-10 5	5.80E-09
607	764916.64	4093741.5	3.51E-08	3.53E-08	2.50E-09	7.28E-08	5.48E-09	5.72E-09	3.96E-10	1.16E-08	2.93E-09	2.69E-09	1.66E-10 5	5.78E-09
608	764894.38	4093749.96	3.49E-08	3.51E-08	2.49E-09	7.26E-08	5.46E-09	5.70E-09	3.94E-10	1.16E-08	2.92E-09	2.68E-09	1.65E-10 5	5.76E-09
609	764872.12	4093758.41	3.48E-08	3.50E-08	2.48E-09	7.22E-08	5.43E-09	5.68E-09	3.92E-10	1.15E-08	2.90E-09	2.67E-09	1.64E-10	5.74E-09
610	764849.86	4093766.86	3.46E-08	3.48E-08	2.47E-09	7.19E-08	5.40E-09	5.65E-09	3.90E-10	1.14E-08	2.89E-09	2.65E-09	1.63E-10 5	5.71E-09
611	764827.59	4093775.32	3.44E-08	3.46E-08	2.46E-09	7.15E-08	5.38E-09	5.62E-09	3.88E-10	1.14E-08	2.87E-09	2.64E-09	1.63E-10 5	5.68E-09
612	764805.33	4093783.77	3.42E-08	3.44E-08	2.44E-09	7.11E-08	5.35E-09	5.59E-09	3.86E-10	1.13E-08	2.86E-09	2.63E-09	1.62E-10 5	5.65E-09
613	764783.07	4093792.22	3.40E-08	3.42E-08	2.43E-09	7.07E-08	5.32E-09	5.55E-09	3.84E-10	1.13E-08	2.84E-09	2.61E-09	1.61E-10 5	5.61E-09
614	764760.81	4093800.68	3.38E-08	3.40E-08	2.42E-09	7.03E-08	5.29E-09	5.52E-09	3.82E-10	1.12E-08	2.83E-09	2.59E-09	1.60E-10 5	5.58E-09
615	764738.55	4093809.13	3.37E-08	3.38E-08	2.40E-09	6.99E-08	5.26E-09	5.49E-09	3.80E-10	1.11E-08	2.81E-09	2.58E-09	1.59E-10 5	5.55E-09
616	764716.29	4093817.58	3.35E-08	3.36E-08	2.39E-09	6.95E-08	5.23E-09	5.46E-09	3.78E-10	1.11E-08	2.80E-09	2.57E-09	1.58E-10 5	5.52E-09
617	764694.03	4093826.04	3.33E-08	3.35E-08	2.38E-09	6.92E-08	5.20E-09	5.44E-09	3.76E-10	1.10E-08	2.78E-09	2.55E-09	1.57E-10 5	5.49E-09
618	764671.77	4093834.49	3.32E-08	3.34E-08	2.37E-09	6.89E-08	5.18E-09	5.41E-09	3.74E-10	1.10E-08	2.77E-09	2.54E-09	1.57E-10 5	5.47E-09
619	764649.5	4093842.94	3.31E-08	3.33E-08	2.36E-09	6.87E-08	5.17E-09	5.40E-09	3.73E-10	1.09E-08	2.76E-09	2.54E-09	1.56E-10 5	5.46E-09
620	764627.24	4093851.4	3.30E-08	3.32E-08	2.36E-09	6.86E-08	5.16E-09	5.39E-09	3.72E-10	1.09E-08	2.76E-09	2.53E-09	1.56E-10 5	5.44E-09
621	764604.98	4093859.85	3.30E-08	3.31E-08	2.35E-09	6.85E-08	5.15E-09	5.38E-09	3.72E-10	1.09E-08	2.75E-09	2.53E-09	1.56E-10 5	5.44E-09
622	764582.72	4093868.3	3.30E-08	3.31E-08	2.35E-09	6.84E-08	5.15E-09	5.38E-09	3.72E-10	1.09E-08	2.75E-09	2.53E-09	1.56E-10 5	5.43E-09
623	764560.46	4093876.76	3.30E-08	3.31E-08	2.35E-09	6.84E-08	5.15E-09	5.38E-09	3.72E-10	1.09E-08	2.75E-09	2.53E-09	1.56E-10 5	5.43E-09
624	764538.2	4093885.21	3.30E-08	3.32E-08	2.35E-09	6.85E-08	5.15E-09	5.38E-09	3.72E-10	1.09E-08	2.75E-09	2.53E-09	1.56E-10 5	5.44E-09
625	764515.94	4093893.66	3.30E-08	3.32E-08	2.36E-09	6.86E-08	5.16E-09	5.39E-09	3.73E-10	1.09E-08	2.76E-09	2.53E-09	1.56E-10 5	5.45E-09
626	764493.68	4093902.12	3.31E-08	3.33E-08	2.36E-09	6.88E-08	5.17E-09	5.40E-09	3.74E-10	1.10E-08	2.77E-09	2.54E-09	1.56E-10 5	5.46E-09

627	764471.41	4093910.57	3.32E-08	3.34E-08	2.37E-09	6.89E-08	5.19E-09	5.42E-09	3.74E-10	1.10E-08	2.77E-09	2.55E-09	1.57E-10	5.47E-09
628	764449.15	4093919.02	3.33E-08	3.35E-08	2.38E-09	6.92E-08	5.20E-09	5.43E-09	3.76E-10	1.10E-08	2.78E-09	2.55E-09	1.57E-10	5.49E-09
629	764426.89	4093927.48	3.34E-08	3.36E-08	2.39E-09	6.94E-08	5.22E-09	5.45E-09	3.77E-10	1.11E-08	2.79E-09	2.56E-09	1.58E-10	5.51E-09
630	764404.63	4093935.93	3.36E-08	3.37E-08	2.40E-09	6.97E-08	5.24E-09	5.48E-09	3.79E-10	1.11E-08	2.80E-09	2.57E-09	1.59E-10	5.54E-09
631	764382.37	4093944.38	3.37E-08	3.39E-08	2.41E-09	7.00E-08	5.27E-09	5.50E-09	3.80E-10	1.11E-08	2.82E-09	2.59E-09	1.59E-10	5.56E-09
632	764360.11	4093952.84	3.39E-08	3.41E-08	2.42E-09	7.04E-08	5.29E-09	5.53E-09	3.82E-10	1.12E-08	2.83E-09	2.60E-09	1.60E-10	5.59E-09
633	764337.85	4093961.29	3.41E-08	3.42E-08	2.43E-09	7.07E-08	5.32E-09	5.56E-09	3.84E-10	1.13E-08	2.84E-09	2.61E-09	1.61E-10	5.62E-09
634	764315.59	4093969.74	3.43E-08	3.44E-08	2.45E-09	7.11E-08	5.35E-09	5.59E-09	3.86E-10	1.13E-08	2.86E-09	2.63E-09	1.62E-10	5.65E-09
635	764293.33	4093978.2	3.45E-08	3.47E-08	2.46E-09	7.16E-08	5.39E-09	5.63E-09	3.89E-10	1.14E-08	2.88E-09	2.64E-09	1.63E-10	5.69E-09
636	764271.06	4093986.65	3.47E-08	3.49E-08	2.48E-09	7.21E-08	5.42E-09	5.66E-09	3.92E-10	1.15E-08	2.90E-09	2.66E-09	1.64E-10	5.72E-09
637	764248.8	4093995.1	3.50E-08	3.51E-08	2.50E-09	7.26E-08	5.46E-09	5.70E-09	3.94E-10	1.16E-08	2.92E-09	2.68E-09	1.65E-10	5.76E-09
638	764226.54	4094003.56	3.52E-08	3.54E-08	2.51E-09	7.31E-08	5.50E-09	5.75E-09	3.97E-10	1.16E-08	2.94E-09	2.70E-09	1.66E-10	5.81E-09
639	764204.28	4094012.01	3.55E-08	3.57E-08	2.53E-09	7.37E-08	5.54E-09	5.79E-09	4.00E-10	1.17E-08	2.96E-09	2.72E-09	1.68E-10	5.85E-09
640	765723.02	4092573.94	6.66E-08	6.70E-08	4.76E-09	1.38E-07	1.04E-08	1.09E-08	7.52E-10	2.20E-08	5.56E-09	5.11E-09	3.15E-10	1.10E-08
641	765723.87	4092549.8	6.86E-08	6.90E-08	4.90E-09	1.42E-07	1.07E-08	1.12E-08	7.74E-10	2.27E-08	5.73E-09	5.26E-09	3.24E-10	1.13E-08
642	765724.72	4092525.67	7.06E-08	7.10E-08	5.04E-09	1.47E-07	1.10E-08	1.15E-08	7.97E-10	2.33E-08	5.90E-09	5.41E-09	3.34E-10	1.16E-08
643	765725.57	4092501.53	7.26E-08	7.30E-08	5.19E-09	1.51E-07	1.13E-08	1.19E-08	8.19E-10	2.40E-08	6.07E-09	5.57E-09	3.43E-10	1.20E-08
644	765726.42	4092477.4	7.47E-08	7.51E-08	5.33E-09	1.55E-07	1.17E-08	1.22E-08	8.43E-10	2.47E-08	6.24E-09	5.73E-09	3.53E-10	1.23E-08
645	765727.27	4092453.26	7.68E-08	7.72E-08	5.48E-09	1.59E-07	1.20E-08	1.25E-08	8.66E-10	2.54E-08	6.41E-09	5.89E-09	3.63E-10	1.27E-08
646	765728.13	4092429.13	7.89E-08	7.93E-08	5.63E-09	1.64E-07	1.23E-08	1.29E-08	8.90E-10	2.61E-08	6.59E-09	6.05E-09	3.73E-10	1.30E-08
647	765728.98	4092405	8.10E-08	8.15E-08	5.79E-09	1.68E-07	1.27E-08	1.32E-08	9.14E-10	2.68E-08	6.77E-09	6.21E-09	3.83E-10	1.34E-08
648	765729.83	4092380.86	8.32E-08	8.36E-08	5.94E-09	1.73E-07	1.30E-08	1.36E-08	9.38E-10	2.75E-08	6.95E-09	6.38E-09	3.93E-10	1.37E-08
649	765730.68	4092356.73	8.53E-08	8.58E-08	6.09E-09	1.77E-07	1.33E-08	1.39E-08	9.63E-10	2.82E-08	7.13E-09	6.54E-09	4.03E-10	1.41E-08
650	765731.53	4092332.59	8.75E-08	8.80E-08	6.25E-09	1.82E-07	1.37E-08	1.43E-08	9.87E-10	2.89E-08	7.31E-09	6.71E-09	4.13E-10	1.44E-08
651	765732.38	4092308.46	8.97E-08	9.02E-08	6.40E-09	1.86E-07	1.40E-08	1.46E-08	1.01E-09	2.97E-08	7.49E-09	6.88E-09	4.24E-10	1.48E-08
652	765733.23	4092284.32	9.19E-08	9.24E-08	6.56E-09	1.91E-07	1.44E-08	1.50E-08	1.04E-09	3.04E-08	7.67E-09	7.05E-09	4.34E-10	1.52E-08
653	765734.09	4092260.19	9.41E-08	9.46E-08	6.72E-09	1.95E-07	1.47E-08	1.54E-08	1.06E-09	3.11E-08	7.86E-09	7.22E-09	4.45E-10	1.55E-08
654	765734.94	4092236.06	9.64E-08	9.69E-08	6.88E-09	2.00E-07	1.51E-08	1.57E-08	1.09E-09	3.19E-08	8.05E-09	7.39E-09	4.56E-10	1.59E-08
655	765912.98	4092602.83	5.55E-08	5.57E-08	3.96E-09	1.15E-07	8.66E-09	9.05E-09	6.26E-10	1.83E-08	4.63E-09	4.25E-09	2.62E-10	9.15E-09
656	765903.06	4092624.67	5.46E-08	5.48E-08	3.90E-09	1.13E-07	8.52E-09	8.90E-09	6.15E-10	1.80E-08	4.56E-09	4.18E-09	2.58E-10	9.00E-09
657	765893.15	4092646.52	5.36E-08	5.39E-08	3.83E-09	1.11E-07	8.38E-09	8.75E-09	6.05E-10	1.77E-08	4.48E-09	4.11E-09	2.53E-10	8.84E-09
658	765883.23	4092668.36	5.26E-08	5.29E-08	3.76E-09	1.09E-07	8.22E-09	8.59E-09	5.94E-10	1.74E-08	4.40E-09	4.04E-09	2.49E-10	8.68E-09
659	765873.31	4092690.2	5.17E-08	5.20E-08	3.69E-09	1.07E-07	8.07E-09	8.43E-09	5.83E-10	1.71E-08	4.32E-09	3.96E-09	2.44E-10	8.52E-09
660	765863.4	4092712.05	5.07E-08	5.10E-08	3.62E-09	1.05E-07	7.92E-09	8.28E-09	5.72E-10	1.68E-08	4.24E-09	3.89E-09	2.40E-10	8.37E-09
661	765853.48	4092733.89	4.98E-08	5.01E-08	3.56E-09	1.03E-07	7.78E-09	8.13E-09	5.62E-10	1.65E-08	4.16E-09	3.82E-09	2.35E-10	8.21E-09
662	765843.57	4092755.73	4.89E-08	4.91E-08	3.49E-09	1.02E-07	7.64E-09	7.98E-09	5.51E-10	1.62E-08	4.08E-09	3.75E-09	2.31E-10	8.06E-09
663	765833.65	4092777.58	4.80E-08	4.82E-08	3.43E-09	9.97E-08	7.50E-09	7.83E-09	5.41E-10	1.59E-08	4.01E-09	3.68E-09	2.27E-10	7.91E-09
664	765823.73	4092799.42	4.71E-08	4.74E-08	3.36E-09	9.79E-08	7.36E-09	7.69E-09	5.32E-10	1.56E-08	3.94E-09	3.61E-09	2.23E-10	7.77E-09
665	765813.82	4092821.26	4.63E-08	4.66E-08	3.31E-09	9.62E-08	7.24E-09	7.56E-09	5.23E-10	1.53E-08	3.87E-09	3.55E-09	2.19E-10	7.64E-09
666	765803.9	4092843.11	4.55E-08	4.58E-08	3.25E-09	9.46E-08	7.11E-09	7.43E-09	5.14E-10	1.51E-08	3.80E-09	3.49E-09	2.15E-10	7.51E-09
667	765793.99	4092864.95	4.48E-08	4.51E-08	3.20E-09	9.31E-08	7.00E-09	7.31E-09	5.06E-10	1.48E-08	3.74E-09	3.44E-09	2.12E-10	7.39E-09
668	765784.07	4092886.79	4.42E-08	4.44E-08	3.15E-09	9.17E-08	6.90E-09	7.21E-09	4.98E-10	1.46E-08	3.69E-09	3.39E-09	2.09E-10	7.28E-09
669	765774.16	4092908.64	4.36E-08	4.38E-08	3.11E-09	9.05E-08	6.80E-09	7.11E-09	4.91E-10	1.44E-08	3.64E-09	3.34E-09	2.06E-10	7.18E-09
670	765764.24	4092930.48	4.30E-08	4.32E-08	3.07E-09	8.93E-08	6.72E-09	7.02E-09	4.85E-10	1.42E-08	3.59E-09	3.30E-09	2.03E-10	7.09E-09
671	765754.32	4092952.32	4.25E-08	4.27E-08	3.03E-09	8.83E-08	6.64E-09	6.94E-09	4.79E-10	1.41E-08	3.55E-09	3.26E-09	2.01E-10	7.01E-09

672	765744.41	4092974.17	4.21E-08	4.23E-08	3.00E-09	8.73E-08	6.57E-09	6.86E-09	4.74E-10	1.39E-08	3.51E-09	3.22E-09	1.99E-10	
673	765734.49	4092996.01	4.16E-08	4.19E-08	2.97E-09	8.65E-08	6.50E-09	6.80E-09		1.38E-08	3.48E-09	3.19E-09	1.97E-10	
674	765724.58	4093017.85	4.13E-08	4.15E-08	2.95E-09	8.58E-08	6.45E-09	6.74E-09	4.66E-10	1.37E-08	3.45E-09	3.17E-09	1.95E-10	6.81E-09
675	765714.66	4093039.7	4.10E-08	4.12E-08	2.93E-09	8.51E-08	6.40E-09	6.69E-09	4.62E-10	1.35E-08	3.42E-09	3.14E-09	1.94E-10	6.76E-09
676	765704.74	4093061.54	4.07E-08	4.09E-08	2.90E-09	8.45E-08	6.35E-09	6.64E-09	4.59E-10	1.35E-08	3.40E-09	3.12E-09	1.92E-10	6.71E-09
677	765694.83	4093083.38	4.04E-08	4.06E-08	2.89E-09	8.39E-08	6.31E-09	6.60E-09	4.56E-10	1.34E-08	3.38E-09	3.10E-09	1.91E-10	6.67E-09
678	765684.91	4093105.23	4.02E-08	4.04E-08	2.87E-09	8.34E-08	6.28E-09	6.56E-09	4.53E-10	1.33E-08	3.36E-09	3.08E-09	1.90E-10	6.63E-09
679	765675	4093127.07	4.00E-08	4.02E-08	2.85E-09	8.30E-08	6.24E-09	6.52E-09	4.51E-10	1.32E-08	3.34E-09	3.06E-09	1.89E-10	6.59E-09
680	765665.08	4093148.91	3.97E-08	3.99E-08	2.84E-09	8.25E-08	6.21E-09	6.48E-09	4.48E-10	1.31E-08	3.32E-09	3.05E-09	1.88E-10	6.55E-09
681	765655.17	4093170.76	3.95E-08	3.97E-08	2.82E-09	8.21E-08	6.17E-09	6.45E-09	4.46E-10	1.31E-08	3.30E-09	3.03E-09	1.87E-10	6.52E-09
682	765645.25	4093192.6	3.93E-08	3.95E-08	2.81E-09	8.16E-08	6.14E-09	6.41E-09	4.43E-10	1.30E-08	3.28E-09	3.01E-09	1.86E-10	6.48E-09
683	765635.33	4093214.44	3.91E-08	3.93E-08	2.79E-09	8.11E-08	6.10E-09	6.37E-09	4.40E-10	1.29E-08	3.26E-09	2.99E-09	1.84E-10	6.44E-09
684	765625.42	4093236.28	3.88E-08	3.90E-08	2.77E-09	8.06E-08	6.06E-09	6.33E-09	4.38E-10	1.28E-08	3.24E-09	2.97E-09	1.83E-10	6.40E-09
685	765615.5	4093258.13	3.85E-08	3.87E-08	2.75E-09	8.00E-08	6.02E-09	6.29E-09	4.35E-10	1.27E-08	3.22E-09	2.95E-09	1.82E-10	6.35E-09
686	765605.59	4093279.97	3.82E-08	3.84E-08	2.73E-09	7.94E-08	5.97E-09	6.24E-09	4.31E-10	1.26E-08	3.19E-09	2.93E-09	1.81E-10	6.31E-09
687	765595.67	4093301.81	3.79E-08	3.81E-08	2.71E-09	7.87E-08	5.92E-09	6.19E-09	4.28E-10	1.25E-08	3.17E-09	2.91E-09	1.79E-10	6.25E-09
688	765585.75	4093323.66	3.76E-08	3.78E-08	2.68E-09	7.80E-08	5.87E-09	6.13E-09	4.24E-10	1.24E-08	3.14E-09	2.88E-09	1.77E-10	6.20E-09
689	765575.84	4093345.5	3.72E-08	3.74E-08	2.65E-09	7.72E-08	5.81E-09	6.07E-09	4.19E-10	1.23E-08	3.11E-09	2.85E-09	1.76E-10	6.13E-09
690	765565.92	4093367.34	3.68E-08	3.70E-08	2.63E-09	7.64E-08	5.74E-09	6.00E-09	4.15E-10	1.22E-08	3.07E-09	2.82E-09	1.74E-10	6.06E-09
691	765556.01	4093389.19	3.63E-08	3.65E-08	2.59E-09	7.54E-08	5.67E-09	5.93E-09	4.10E-10	1.20E-08	3.03E-09	2.78E-09	1.72E-10	5.99E-09
692	765546.09	4093411.03	3.58E-08	3.60E-08	2.56E-09	7.44E-08	5.59E-09	5.84E-09	4.04E-10	1.18E-08	2.99E-09	2.75E-09	1.69E-10	5.91E-09
693	765536.18	4093432.87	3.53E-08	3.55E-08	2.52E-09	7.33E-08	5.51E-09	5.76E-09	3.98E-10	1.17E-08	2.95E-09	2.71E-09	1.67E-10	5.82E-09
694	765526.26	4093454.72	3.48E-08	3.50E-08	2.48E-09	7.22E-08	5.43E-09	5.67E-09	3.92E-10	1.15E-08	2.90E-09	2.67E-09	1.64E-10	5.73E-09
695	765516.34	4093476.56	3.42E-08	3.44E-08	2.44E-09	7.11E-08	5.35E-09	5.58E-09	3.86E-10	1.13E-08	2.86E-09	2.62E-09	1.62E-10	5.64E-09
696	765506.43	4093498.4	3.37E-08	3.39E-08	2.41E-09	7.00E-08	5.26E-09	5.50E-09	3.80E-10	1.11E-08	2.81E-09	2.58E-09	1.59E-10	5.56E-09
697	765496.51	4093520.25	3.32E-08	3.33E-08	2.37E-09	6.88E-08	5.18E-09	5.41E-09	3.74E-10	1.10E-08	2.77E-09	2.54E-09	1.57E-10	5.47E-09
698	765486.6	4093542.09	3.26E-08	3.28E-08	2.33E-09	6.77E-08	5.09E-09	5.32E-09	3.68E-10	1.08E-08	2.72E-09	2.50E-09	1.54E-10	5.38E-09
699	765476.68	4093563.93	3.21E-08	3.23E-08	2.29E-09	6.67E-08	5.02E-09	5.24E-09	3.62E-10	1.06E-08	2.68E-09	2.46E-09	1.52E-10	5.30E-09
700	765466.77	4093585.78	3.17E-08	3.18E-08	2.26E-09	6.58E-08	4.95E-09	5.17E-09	3.57E-10	1.05E-08	2.64E-09	2.43E-09	1.50E-10	5.22E-09
701	765456.85	4093607.62	3.12E-08	3.14E-08	2.23E-09	6.49E-08	4.88E-09	5.10E-09	3.52E-10	1.03E-08	2.61E-09	2.40E-09	1.48E-10	5.15E-09
702	765446.93	4093629.46	3.09E-08	3.10E-08	2.20E-09	6.41E-08	4.82E-09	5.04E-09	3.48E-10	1.02E-08	2.58E-09	2.37E-09	1.46E-10	5.09E-09
703	765437.02	4093651.31	3.05E-08	3.07E-08	2.18E-09	6.34E-08	4.77E-09	4.98E-09	3.44E-10	1.01E-08	2.55E-09	2.34E-09	1.44E-10	5.03E-09
704	765427.1	4093673.15	3.02E-08	3.04E-08	2.16E-09	6.27E-08	4.72E-09	4.93E-09	3.41E-10	9.99E-09	2.52E-09	2.32E-09	1.43E-10	4.98E-09
705	765417.19	4093694.99	2.99E-08	3.01E-08	2.13E-09	6.21E-08	4.67E-09	4.88E-09	3.37E-10	9.89E-09	2.50E-09	2.29E-09	1.41E-10	4.93E-09
706	765407.27	4093716.84	2.96E-08	2.98E-08	2.12E-09	6.15E-08	4.63E-09	4.84E-09	3.34E-10	9.80E-09	2.47E-09	2.27E-09	1.40E-10	4.89E-09
707	765397.35	4093738.68	2.94E-08	2.95E-08	2.10E-09	6.10E-08	4.59E-09	4.80E-09	3.32E-10	9.72E-09	2.45E-09	2.25E-09	1.39E-10	4.85E-09
708	765365.01	4093769.04	2.93E-08	2.95E-08	2.09E-09	6.09E-08	4.58E-09	4.79E-09	3.31E-10	9.70E-09	2.45E-09	2.25E-09	1.39E-10	4.84E-09
709	765342.59	4093777.56	2.95E-08	2.96E-08	2.11E-09	6.12E-08	4.61E-09	4.81E-09	3.33E-10	9.75E-09	2.46E-09	2.26E-09	1.39E-10	4.86E-09
710	765320.16	4093786.07	2.96E-08	2.98E-08	2.12E-09	6.15E-08	4.63E-09	4.84E-09	3.34E-10	9.80E-09	2.47E-09	2.27E-09	1.40E-10	4.89E-09
	765297.73			2.99E-08	2.13E-09	6.18E-08	4.65E-09	4.86E-09	3.36E-10			2.28E-09		
	765275.31	4093803.1		3.01E-08	2.13E-09	6.21E-08	4.67E-09	4.88E-09	3.37E-10		2.50E-09		1.41E-10	
	765252.88			3.02E-08	2.14E-09	6.23E-08	4.69E-09	4.90E-09	3.38E-10		2.51E-09		1.42E-10	
	765230.46			3.02E-08	2.15E-09	6.25E-08	4.70E-09	4.91E-09	3.39E-10			2.31E-09		
	765208.03			3.03E-08	2.15E-09	6.26E-08	4.71E-09			9.96E-09		2.31E-09		
		4093837.17			2.15E-09	6.26E-08		4.92E-09				2.31E-09		

717	765163.18	4093845.68	3.02E-08	3.03E-08	2.15E-09	6.27E-08	4.71E-09	4.92E-09		9.98E-09	2.52E-09	2.31E-09	1.43E-10	
718	765140.75	4093854.2	3.02E-08	3.03E-08	2.15E-09	6.26E-08	4.71E-09	4.92E-09		9.97E-09	2.52E-09	2.31E-09	1.42E-10	
719	765118.33	4093862.72	3.01E-08	3.03E-08	2.15E-09	6.26E-08	4.71E-09	4.92E-09		9.96E-09	2.52E-09	2.31E-09	1.42E-10	
720	765095.9	4093871.23	3.01E-08	3.02E-08	2.15E-09	6.24E-08	4.70E-09	4.91E-09		9.94E-09	2.51E-09	2.31E-09	1.42E-10	
721	765073.47	4093879.75	3.00E-08	3.02E-08	2.14E-09	6.23E-08	4.69E-09	4.90E-09		9.92E-09	2.51E-09	2.30E-09	1.42E-10	
722	765051.05	4093888.26	2.99E-08	3.01E-08	2.14E-09	6.22E-08	4.67E-09	4.88E-09		9.90E-09	2.50E-09	2.29E-09	1.41E-10	
723	765028.62	4093896.78	2.98E-08	3.00E-08	2.13E-09	6.19E-08	4.66E-09	4.87E-09		9.86E-09	2.49E-09	2.29E-09	1.41E-10	
724	765006.19	4093905.29	2.97E-08	2.99E-08	2.12E-09	6.17E-08	4.64E-09	4.85E-09		9.83E-09	2.48E-09	2.28E-09	1.40E-10	
725	764983.77	4093913.81	2.96E-08	2.97E-08	2.11E-09	6.15E-08	4.62E-09	4.83E-09		9.78E-09	2.47E-09	2.27E-09	1.40E-10	
726	764961.34	4093922.33	2.95E-08	2.96E-08	2.10E-09	6.12E-08	4.60E-09	4.81E-09		9.74E-09	2.46E-09	2.26E-09	1.39E-10	
727	764938.92	4093930.84	2.93E-08	2.95E-08	2.09E-09	6.09E-08	4.58E-09	4.79E-09	3.31E-10	9.70E-09	2.45E-09	2.25E-09	1.39E-10	4.84E-09
728	764916.49	4093939.36	2.92E-08	2.93E-08	2.08E-09	6.06E-08	4.56E-09	4.76E-09		9.65E-09	2.44E-09	2.24E-09	1.38E-10	
729	764894.06	4093947.87	2.90E-08	2.92E-08	2.07E-09	6.03E-08	4.53E-09	4.74E-09	3.27E-10	9.60E-09	2.42E-09	2.23E-09	1.37E-10	4.79E-09
730	764871.64	4093956.39	2.89E-08	2.90E-08	2.06E-09	6.00E-08	4.51E-09	4.71E-09	3.26E-10	9.55E-09	2.41E-09	2.21E-09	1.36E-10	
731	764849.21	4093964.91	2.87E-08	2.89E-08	2.05E-09	5.96E-08	4.49E-09	4.69E-09		9.50E-09	2.40E-09	2.20E-09	1.36E-10	
732	764826.79	4093973.42	2.86E-08	2.87E-08	2.04E-09	5.93E-08	4.46E-09	4.66E-09		9.45E-09	2.39E-09	2.19E-09	1.35E-10	4.71E-09
733	764804.36	4093981.94	2.84E-08	2.86E-08	2.03E-09	5.90E-08	4.44E-09	4.64E-09	3.21E-10	9.40E-09	2.37E-09	2.18E-09	1.34E-10	4.69E-09
734	764781.93	4093990.45	2.83E-08	2.85E-08	2.02E-09	5.88E-08	4.42E-09	4.62E-09	3.19E-10	9.36E-09	2.36E-09	2.17E-09	1.34E-10	4.67E-09
735	764759.51	4093998.97	2.82E-08	2.83E-08	2.01E-09	5.85E-08	4.40E-09	4.60E-09	3.18E-10	9.32E-09	2.35E-09	2.16E-09	1.33E-10	4.65E-09
736	764737.08	4094007.49	2.81E-08	2.82E-08	2.01E-09	5.83E-08	4.39E-09	4.58E-09	3.17E-10	9.29E-09	2.35E-09	2.15E-09	1.33E-10	4.63E-09
737	764714.65	4094016	2.80E-08	2.82E-08	2.00E-09	5.82E-08	4.38E-09	4.57E-09	3.16E-10	9.26E-09	2.34E-09	2.15E-09	1.32E-10	4.62E-09
738	764692.23	4094024.52	2.80E-08	2.81E-08	2.00E-09	5.81E-08	4.37E-09	4.57E-09	3.16E-10	9.25E-09	2.34E-09	2.15E-09	1.32E-10	4.62E-09
739	764669.8	4094033.03	2.80E-08	2.81E-08	2.00E-09	5.81E-08	4.37E-09	4.56E-09	3.15E-10	9.24E-09	2.33E-09	2.14E-09	1.32E-10	4.61E-09
740	764647.38	4094041.55	2.80E-08	2.81E-08	2.00E-09	5.81E-08	4.37E-09	4.56E-09	3.15E-10	9.24E-09	2.33E-09	2.14E-09	1.32E-10	4.61E-09
741	764624.95	4094050.07	2.80E-08	2.81E-08	2.00E-09	5.81E-08	4.37E-09	4.57E-09	3.16E-10	9.25E-09	2.34E-09	2.15E-09	1.32E-10	4.62E-09
742	764602.52	4094058.58	2.80E-08	2.82E-08	2.00E-09	5.82E-08	4.38E-09	4.57E-09	3.16E-10	9.27E-09	2.34E-09	2.15E-09	1.32E-10	4.62E-09
743	764580.1	4094067.1	2.81E-08	2.82E-08	2.01E-09	5.83E-08	4.39E-09	4.58E-09	3.17E-10	9.29E-09	2.35E-09	2.15E-09	1.33E-10	4.63E-09
744	764557.67	4094075.61	2.82E-08	2.83E-08	2.01E-09	5.85E-08	4.40E-09	4.60E-09	3.18E-10	9.32E-09	2.35E-09	2.16E-09	1.33E-10	4.65E-09
745	764535.25	4094084.13	2.82E-08	2.84E-08	2.02E-09	5.87E-08	4.41E-09	4.61E-09	3.19E-10	9.34E-09	2.36E-09	2.17E-09	1.33E-10	4.66E-09
746	764512.82	4094092.65	2.83E-08	2.85E-08	2.02E-09	5.89E-08	4.43E-09	4.62E-09	3.20E-10	9.37E-09	2.37E-09	2.17E-09	1.34E-10	4.67E-09
747	764490.39	4094101.16	2.84E-08	2.86E-08	2.03E-09	5.90E-08	4.44E-09	4.64E-09	3.21E-10	9.40E-09	2.37E-09	2.18E-09	1.34E-10	4.69E-09
748	764467.97	4094109.68	2.85E-08	2.87E-08	2.04E-09	5.93E-08	4.46E-09	4.66E-09	3.22E-10	9.44E-09	2.38E-09	2.19E-09	1.35E-10	4.71E-09
749	764445.54	4094118.19	2.86E-08	2.88E-08	2.05E-09	5.95E-08	4.47E-09	4.67E-09	3.23E-10	9.47E-09	2.39E-09	2.20E-09	1.35E-10	4.72E-09
750	764423.12	4094126.71	2.88E-08	2.89E-08	2.05E-09	5.97E-08	4.49E-09	4.69E-09	3.24E-10	9.51E-09	2.40E-09	2.20E-09	1.36E-10	4.74E-09
751	764400.69	4094135.23	2.89E-08	2.90E-08	2.06E-09	6.00E-08	4.51E-09	4.71E-09	3.26E-10	9.55E-09	2.41E-09	2.21E-09	1.36E-10	4.76E-09
752	764378.26	4094143.74	2.90E-08	2.91E-08	2.07E-09	6.02E-08	4.53E-09	4.73E-09	3.27E-10	9.59E-09	2.42E-09	2.22E-09	1.37E-10	4.78E-09
753	764355.84	4094152.26	2.91E-08	2.93E-08	2.08E-09	6.05E-08	4.55E-09	4.75E-09	3.29E-10	9.63E-09	2.43E-09	2.23E-09	1.38E-10	4.80E-09
754	764333.41	4094160.77	2.93E-08	2.94E-08	2.09E-09	6.08E-08	4.57E-09	4.78E-09	3.30E-10	9.68E-09	2.45E-09	2.25E-09	1.38E-10	4.83E-09
755	764310.98	4094169.29	2.95E-08	2.96E-08	2.10E-09	6.12E-08	4.60E-09	4.81E-09	3.32E-10	9.74E-09	2.46E-09	2.26E-09	1.39E-10	4.86E-09
756	764288.56	4094177.81	2.96E-08	2.98E-08	2.12E-09	6.15E-08	4.63E-09	4.84E-09	3.34E-10	9.80E-09	2.47E-09	2.27E-09	1.40E-10	4.89E-09
757	764266.13	4094186.32	2.98E-08	3.00E-08	2.13E-09	6.19E-08	4.66E-09	4.87E-09	3.36E-10	9.86E-09	2.49E-09	2.29E-09	1.41E-10	4.92E-09
758	764243.71	4094194.84	3.00E-08	3.02E-08	2.14E-09	6.24E-08	4.69E-09	4.90E-09	3.39E-10	9.93E-09	2.51E-09	2.30E-09	1.42E-10	4.95E-09
759	764221.28	4094203.35	3.03E-08	3.04E-08	2.16E-09	6.28E-08	4.72E-09	4.94E-09	3.41E-10	1.00E-08	2.53E-09	2.32E-09	1.43E-10	4.99E-09
760	764198.85	4094211.87	3.05E-08	3.06E-08	2.17E-09	6.33E-08	4.76E-09	4.97E-09	3.44E-10	1.01E-08	2.54E-09	2.34E-09	1.44E-10	5.02E-09
761	765922.89	4092580.99	5.64E-08	5.67E-08	4.02E-09	1.17E-07	8.80E-09	9.20E-09	6.36E-10	1.86E-08	4.71E-09	4.32E-09	2.66E-10	9.29E-09

762	765923.74	4092556.85	5.78E-08	5.81E-08	4.13E-09	1.20E-07	9.03E-09	9.43E-09	6.52E-10	1.91E-08	4.83E-09	4.43E-09	2.73E-10	9.53E-09
763	765924.6	4092532.72	5.93E-08	5.96E-08	4.23E-09	1.23E-07	9.26E-09	9.67E-09	6.69E-10	1.96E-08	4.95E-09	4.55E-09	2.80E-10	9.78E-09
764	765925.45	4092508.58	6.08E-08	6.11E-08	4.34E-09	1.26E-07	9.49E-09	9.91E-09	6.85E-10	2.01E-08	5.07E-09	4.66E-09	2.87E-10	1.00E-08
765	765926.3	4092484.45	6.23E-08	6.26E-08	4.44E-09	1.29E-07	9.72E-09	1.02E-08	7.02E-10	2.06E-08	5.20E-09	4.77E-09	2.94E-10	1.03E-08
766	765927.15	4092460.32	6.38E-08	6.41E-08	4.55E-09	1.32E-07	9.96E-09	1.04E-08	7.19E-10	2.11E-08	5.32E-09	4.89E-09	3.01E-10	1.05E-08
767	765928	4092436.18	6.53E-08	6.56E-08	4.66E-09	1.36E-07	1.02E-08	1.07E-08	7.37E-10	2.16E-08	5.45E-09	5.01E-09	3.08E-10	1.08E-08
768	765928.85	4092412.05	6.68E-08	6.72E-08	4.77E-09	1.39E-07	1.04E-08	1.09E-08	7.54E-10	2.21E-08	5.58E-09	5.13E-09	3.16E-10	1.10E-08
769	765929.7	4092387.91	6.84E-08	6.87E-08	4.88E-09	1.42E-07	1.07E-08	1.12E-08	7.71E-10	2.26E-08	5.71E-09	5.24E-09	3.23E-10	1.13E-08
770	765930.56	4092363.78	6.99E-08	7.03E-08	4.99E-09	1.45E-07	1.09E-08	1.14E-08	7.89E-10	2.31E-08	5.84E-09	5.36E-09	3.30E-10	1.15E-08
771	765931.41	4092339.64	7.15E-08	7.18E-08	5.10E-09	1.48E-07	1.12E-08	1.17E-08	8.06E-10	2.36E-08	5.97E-09	5.48E-09	3.38E-10	1.18E-08
772	765932.26	4092315.51	7.30E-08	7.34E-08	5.21E-09	1.52E-07	1.14E-08	1.19E-08	8.24E-10	2.41E-08	6.10E-09	5.60E-09	3.45E-10	1.20E-08
773	765933.11	4092291.38	7.46E-08	7.50E-08	5.32E-09	1.55E-07	1.16E-08	1.22E-08	8.41E-10	2.47E-08	6.23E-09	5.72E-09	3.52E-10	1.23E-08
774	765933.96	4092267.24	7.61E-08	7.65E-08	5.44E-09	1.58E-07	1.19E-08	1.24E-08	8.59E-10	2.52E-08	6.36E-09	5.84E-09	3.60E-10	1.26E-08
775	765934.81	4092243.11	7.77E-08	7.81E-08	5.55E-09	1.61E-07	1.21E-08	1.27E-08	8.77E-10	2.57E-08	6.49E-09	5.96E-09	3.67E-10	1.28E-08
776	764256.39	4092091.12	3.22E-06	3.24E-06	2.30E-07	6.69E-06	5.03E-07	5.26E-07	3.64E-08	1.07E-06	2.69E-07	2.47E-07	1.52E-08	5.31E-07
777	764291.37	4092106.92	4.00E-06	4.02E-06	2.85E-07	8.30E-06	6.24E-07	6.52E-07	4.51E-08	1.32E-06	3.34E-07	3.06E-07	1.89E-08	6.59E-07
778	764217.36	4092082.56	2.59E-06	2.60E-06	1.85E-07	5.38E-06	4.05E-07	4.23E-07	2.92E-08	8.57E-07	2.16E-07	1.99E-07	1.22E-08	4.27E-07
779	764174.26	4092081.25	2.08E-06	2.09E-06	1.49E-07	4.33E-06	3.25E-07	3.40E-07	2.35E-08	6.89E-07	1.74E-07	1.60E-07	9.84E-09	3.44E-07
780	764131.17	4092079.94	1.53E-06	1.54E-06	1.09E-07	3.17E-06	2.39E-07	2.49E-07	1.72E-08	5.05E-07	1.28E-07	1.17E-07	7.22E-09	2.52E-07
781	764088.08	4092078.64	1.04E-06	1.04E-06	7.42E-08	2.16E-06	1.62E-07	1.70E-07	1.17E-08	3.44E-07	8.68E-08	7.97E-08	4.91E-09	1.71E-07
782	764257.91	4092041.14	1.82E-06	1.83E-06	1.30E-07	3.78E-06	2.84E-07	2.97E-07	2.05E-08	6.02E-07	1.52E-07	1.40E-07	8.59E-09	3.00E-07
783	764292.89	4092056.94	2.36E-06	2.37E-06	1.68E-07	4.90E-06	3.69E-07	3.85E-07	2.66E-08	7.80E-07	1.97E-07	1.81E-07	1.11E-08	3.89E-07
784	764327.87	4092072.74	2.84E-06	2.86E-06	2.03E-07	5.90E-06	4.44E-07	4.64E-07	3.21E-08	9.40E-07	2.37E-07	2.18E-07	1.34E-08	4.69E-07
785	764352.09	4092098.61	3.43E-06	3.45E-06	2.45E-07	7.12E-06	5.36E-07	5.60E-07	3.87E-08	1.13E-06	2.86E-07	2.63E-07	1.62E-08	5.66E-07
786	764218.88	4092032.58	1.41E-06	1.42E-06	1.01E-07	2.93E-06	2.21E-07	2.30E-07	1.59E-08	4.67E-07	1.18E-07	1.08E-07	6.67E-09	2.33E-07
787	764175.78	4092031.28	1.10E-06	1.11E-06	7.88E-08	2.29E-06	1.72E-07	1.80E-07	1.25E-08	3.65E-07	9.22E-08	8.47E-08	5.22E-09	1.82E-07
788	764132.69	4092029.97	8.21E-07	8.25E-07	5.86E-08	1.71E-06	1.28E-07	1.34E-07	9.26E-09	2.71E-07	6.86E-08	6.30E-08	3.88E-09	1.35E-07
789	764259.43	4091991.16	1.09E-06	1.10E-06	7.80E-08	2.27E-06	1.71E-07	1.78E-07	1.23E-08	3.61E-07	9.12E-08	8.38E-08	5.16E-09	1.80E-07
790	764294.41	4092006.96	1.44E-06	1.45E-06	1.03E-07	2.99E-06	2.25E-07	2.35E-07	1.63E-08	4.77E-07	1.20E-07	1.11E-07	6.81E-09	2.38E-07
791	764329.39	4092022.76	1.81E-06	1.82E-06	1.29E-07	3.76E-06	2.83E-07	2.96E-07	2.04E-08	5.99E-07	1.51E-07	1.39E-07	8.56E-09	2.99E-07
792	764364.37	4092038.56	2.14E-06	2.15E-06	1.53E-07	4.44E-06	3.34E-07	3.49E-07	2.41E-08	7.07E-07	1.79E-07	1.64E-07	1.01E-08	3.53E-07
793	764388.59	4092064.43	2.55E-06	2.56E-06	1.82E-07	5.29E-06	3.98E-07	4.15E-07	2.87E-08	8.42E-07	2.13E-07	1.95E-07	1.20E-08	4.20E-07
794	764402.06	4092100.37	3.05E-06	3.06E-06	2.18E-07	6.33E-06	4.76E-07	4.97E-07	3.44E-08	1.01E-06	2.54E-07	2.34E-07	1.44E-08	5.03E-07
795	764220.39	4091982.61	8.42E-07	8.47E-07	6.01E-08	1.75E-06	1.32E-07	1.37E-07	9.50E-09	2.79E-07	7.03E-08	6.46E-08	3.98E-09	1.39E-07
796	764177.3	4091981.3	6.61E-07	6.65E-07	4.72E-08	1.37E-06	1.03E-07	1.08E-07	7.46E-09	2.19E-07	5.52E-08	5.07E-08	3.12E-09	1.09E-07
797	764262.89	4091942.06	7.10E-07	7.14E-07	5.07E-08	1.47E-06	1.11E-07	1.16E-07	8.01E-09	2.35E-07	5.93E-08	5.44E-08	3.35E-09	1.17E-07
798	764301.76	4091959.62	9.60E-07	9.65E-07	6.85E-08	1.99E-06	1.50E-07	1.57E-07	1.08E-08	3.17E-07	8.01E-08	7.36E-08	4.53E-09	1.58E-07
799	764340.62	4091977.18	1.25E-06	1.25E-06	8.91E-08	2.59E-06	1.95E-07	2.04E-07	1.41E-08	4.13E-07	1.04E-07	9.57E-08	5.90E-09	2.06E-07
800	764379.49	4091994.73	1.53E-06	1.54E-06	1.10E-07	3.19E-06	2.40E-07	2.50E-07	1.73E-08	5.07E-07	1.28E-07	1.18E-07	7.25E-09	2.53E-07
801	764425.84	4092032.25	1.99E-06	2.00E-06	1.42E-07	4.13E-06	3.11E-07	3.25E-07	2.25E-08	6.58E-07	1.66E-07	1.53E-07	9.41E-09	3.28E-07
802	764440.81	4092072.19	2.40E-06	2.42E-06	1.72E-07	4.99E-06	3.75E-07	3.92E-07	2.71E-08	7.95E-07	2.01E-07	1.84E-07	1.14E-08	3.96E-07
803	764455.78	4092112.12	2.66E-06	2.68E-06	1.90E-07	5.53E-06	4.16E-07	4.35E-07	3.00E-08	8.80E-07	2.22E-07	2.04E-07		
804	764470.74		2.71E-06	2.72E-06	1.93E-07	5.63E-06	4.23E-07	4.42E-07		8.96E-07	2.26E-07		1.28E-08	
805	764221.91		5.44E-07	5.47E-07	3.88E-08	1.13E-06	8.50E-08	8.88E-08		1.80E-07	4.54E-08	4.17E-08	2.57E-09	8.97E-08
806		4091928.71			1.97E-08	5.73E-07		4.50E-08				2.12E-08		

807	764264.05	4091891.93	4.79E-07	4.82E-07	3.42E-08	9.96E-07	7.49E-08	7.82E-08	5.41E-09	1.59E-07	4.00E-08	3.68E-08	2.26E-09	7.91E-08
808	764302.21	4091909.16	6.37E-07	6.40E-07	4.54E-08	1.32E-06	9.94E-08	1.04E-07	7.18E-09	2.10E-07	5.32E-08	4.88E-08	3.01E-09	1.05E-07
809	764340.37	4091926.4	8.28E-07	8.32E-07	5.91E-08	1.72E-06	1.29E-07	1.35E-07	9.34E-09	2.74E-07	6.91E-08	6.35E-08	3.91E-09	1.36E-07
810	764378.53	4091943.64	1.04E-06	1.04E-06	7.42E-08	2.16E-06	1.62E-07	1.70E-07	1.17E-08	3.44E-07	8.68E-08	7.97E-08	4.91E-09	1.71E-07
811	764416.69	4091960.87	1.25E-06	1.25E-06	8.89E-08	2.59E-06	1.94E-07	2.03E-07	1.40E-08	4.12E-07	1.04E-07	9.55E-08	5.88E-09	2.05E-07
812	764462.2	4091997.71	1.58E-06	1.59E-06	1.13E-07	3.29E-06	2.47E-07	2.58E-07	1.78E-08	5.23E-07	1.32E-07	1.21E-07	7.47E-09	2.61E-07
813	764476.89	4092036.92	1.90E-06	1.91E-06	1.36E-07	3.94E-06	2.97E-07	3.10E-07	2.14E-08	6.28E-07	1.59E-07	1.46E-07	8.97E-09	3.13E-07
814	764491.59	4092076.13	2.13E-06	2.14E-06	1.52E-07	4.43E-06	3.33E-07	3.48E-07	2.40E-08	7.05E-07	1.78E-07	1.63E-07	1.01E-08	3.51E-07
815	764506.29	4092115.33	2.23E-06	2.24E-06	1.59E-07	4.63E-06	3.48E-07	3.64E-07	2.51E-08	7.37E-07	1.86E-07	1.71E-07	1.05E-08	3.67E-07
816	764520.99	4092154.54	2.18E-06	2.19E-06	1.56E-07	4.53E-06	3.41E-07	3.56E-07	2.46E-08	7.22E-07	1.82E-07	1.67E-07	1.03E-08	3.60E-07
817	764094.15	4091878.73	2.07E-07	2.08E-07	1.48E-08	4.29E-07	3.23E-08	3.37E-08	2.33E-09	6.83E-08	1.73E-08	1.58E-08	9.76E-10	3.41E-08
818	764341.29	4091825.49	4.08E-07	4.10E-07	2.91E-08	8.47E-07	6.37E-08	6.65E-08	4.60E-09	1.35E-07	3.40E-08	3.13E-08	1.93E-09	6.72E-08
819	764378.6	4091842.34	5.11E-07	5.14E-07	3.65E-08	1.06E-06	7.98E-08	8.34E-08	5.76E-09	1.69E-07	4.27E-08	3.92E-08	2.41E-09	8.42E-08
820	764415.91	4091859.2	6.27E-07	6.31E-07	4.48E-08	1.30E-06	9.80E-08	1.02E-07	7.08E-09	2.07E-07	5.24E-08	4.81E-08	2.96E-09	1.03E-07
821	764453.22	4091876.05	7.50E-07	7.53E-07	5.35E-08	1.56E-06	1.17E-07	1.22E-07	8.45E-09	2.48E-07	6.26E-08	5.75E-08	3.54E-09	1.24E-07
822	764490.53	4091892.9	8.67E-07	8.72E-07	6.19E-08	1.80E-06	1.35E-07	1.42E-07	9.78E-09	2.87E-07	7.24E-08	6.65E-08	4.10E-09	1.43E-07
823	764535.02	4091928.93	1.07E-06	1.07E-06	7.62E-08	2.22E-06	1.67E-07	1.74E-07	1.20E-08	3.53E-07	8.91E-08	8.19E-08	5.04E-09	1.76E-07
824	764549.4	4091967.26	1.26E-06	1.27E-06	9.02E-08	2.62E-06	1.97E-07	2.06E-07	1.43E-08	4.18E-07	1.05E-07	9.69E-08	5.97E-09	2.08E-07
825	764563.77	4092005.6	1.43E-06	1.44E-06	1.02E-07	2.97E-06	2.24E-07	2.34E-07	1.62E-08	4.74E-07	1.20E-07	1.10E-07	6.77E-09	2.36E-07
826	764578.14	4092043.93	1.54E-06	1.55E-06	1.10E-07	3.21E-06	2.41E-07	2.52E-07	1.74E-08	5.11E-07	1.29E-07	1.18E-07	7.30E-09	2.55E-07
827	764592.51	4092082.27	1.58E-06	1.59E-06	1.13E-07	3.29E-06	2.47E-07	2.58E-07	1.78E-08	5.23E-07	1.32E-07	1.21E-07	7.47E-09	2.61E-07
828	764606.88	4092120.6	1.54E-06	1.55E-06	1.10E-07	3.20E-06	2.41E-07	2.52E-07	1.74E-08	5.10E-07	1.29E-07	1.18E-07	7.29E-09	2.54E-07
829	764621.25	4092158.94	1.44E-06	1.45E-06	1.03E-07	2.99E-06	2.25E-07	2.35E-07	1.63E-08	4.77E-07	1.20E-07	1.11E-07	6.81E-09	2.38E-07
830	764183.37	4091781.39	1.74E-07	1.75E-07	1.24E-08	3.61E-07	2.71E-08	2.84E-08	1.96E-09	5.75E-08	1.45E-08	1.33E-08	8.21E-10	2.87E-08
831	764140.27	4091780.08	1.49E-07	1.50E-07	1.06E-08	3.09E-07	2.32E-08	2.43E-08	1.68E-09	4.92E-08	1.24E-08	1.14E-08	7.03E-10	2.45E-08
832	764097.18	4091778.77	1.30E-07	1.30E-07	9.26E-09	2.69E-07	2.03E-08	2.12E-08	1.46E-09	4.29E-08	1.08E-08	9.95E-09	6.13E-10	2.14E-08
833	764270.48	4091692.18	1.54E-07	1.55E-07	1.10E-08	3.20E-07	2.41E-08	2.52E-08	1.74E-09	5.10E-08	1.29E-08	1.18E-08	7.29E-10	2.54E-08
834	764387.07	4091744.85	2.95E-07	2.96E-07	2.10E-08	6.12E-07	4.60E-08	4.81E-08	3.32E-09	9.74E-08	2.46E-08	2.26E-08	1.39E-09	4.86E-08
835	764425.94	4091762.4	3.62E-07	3.63E-07	2.58E-08	7.51E-07	5.65E-08	5.90E-08	4.08E-09	1.20E-07	3.02E-08	2.77E-08	1.71E-09	5.96E-08
836	764464.8	4091779.96	4.37E-07	4.39E-07	3.12E-08	9.06E-07	6.82E-08	7.12E-08	4.92E-09	1.44E-07	3.64E-08	3.35E-08	2.06E-09	7.20E-08
837	764503.67	4091797.51	5.16E-07	5.19E-07	3.69E-08	1.07E-06	8.06E-08	8.42E-08	5.82E-09	1.71E-07	4.31E-08	3.96E-08	2.44E-09	8.51E-08
838	764542.53	4091815.07	5.96E-07	5.99E-07	4.26E-08	1.24E-06	9.31E-08	9.73E-08	6.73E-09	1.97E-07	4.98E-08	4.57E-08	2.82E-09	9.83E-08
839	764581.4	4091832.63	6.71E-07	6.74E-07	4.79E-08	1.39E-06	1.05E-07	1.09E-07	7.57E-09	2.22E-07	5.60E-08	5.14E-08	3.17E-09	1.11E-07
840	764608.32	4091861.37	7.71E-07	7.75E-07	5.50E-08	1.60E-06	1.20E-07	1.26E-07	8.70E-09	2.55E-07	6.44E-08	5.91E-08	3.64E-09	1.27E-07
841	764623.29	4091901.3	9.06E-07	9.11E-07	6.47E-08	1.88E-06	1.42E-07	1.48E-07	1.02E-08	3.00E-07	7.57E-08	6.95E-08	4.28E-09	1.49E-07
842	764638.26	4091941.24	1.03E-06	1.04E-06	7.35E-08	2.14E-06	1.61E-07	1.68E-07	1.16E-08	3.40E-07	8.60E-08	7.90E-08	4.86E-09	1.70E-07
843	764653.23	4091981.17	1.12E-06	1.13E-06	8.03E-08	2.34E-06	1.76E-07	1.83E-07	1.27E-08	3.72E-07	9.39E-08	8.62E-08	5.31E-09	1.85E-07
844	764668.2	4092021.1	1.17E-06	1.18E-06	8.38E-08	2.44E-06	1.83E-07	1.92E-07	1.32E-08	3.88E-07	9.81E-08	9.00E-08	5.55E-09	1.94E-07
845	764683.16	4092061.03	1.17E-06	1.18E-06	8.37E-08	2.43E-06	1.83E-07	1.91E-07	1.32E-08	3.88E-07	9.79E-08	8.99E-08	5.54E-09	1.93E-07
846	764698.13	4092100.97	1.12E-06	1.13E-06	8.01E-08	2.33E-06	1.75E-07	1.83E-07	1.27E-08	3.71E-07	9.37E-08	8.60E-08	5.30E-09	1.85E-07
847	764713.1	4092140.9	1.03E-06	1.04E-06	7.38E-08	2.15E-06	1.62E-07	1.69E-07	1.17E-08	3.42E-07	8.64E-08	7.93E-08	4.89E-09	1.71E-07
848	764229.5	4091682.75	1.29E-07	1.30E-07	9.24E-09	2.69E-07	2.02E-08	2.11E-08	1.46E-09	4.28E-08	1.08E-08	9.92E-09	6.11E-10	2.13E-08
849	764186.4	4091681.44	1.13E-07	1.14E-07	8.07E-09	2.35E-07	1.76E-08	1.84E-08	1.27E-09	3.74E-08	9.43E-09	8.66E-09	5.34E-10	1.86E-08
850	764143.31	4091680.13	1.00E-07	1.01E-07	7.15E-09	2.08E-07		1.63E-08			8.36E-09	7.68E-09	4.73E-10	1.65E-08
851	764100.22	4091678.82	9.02E-08	9.06E-08	6.44E-09	1.87E-07	1.41E-08	1.47E-08	1.02E-09	2.98E-08	7.53E-09	6.91E-09	4.26E-10	1.49E-08

852	764273.16	4091592.06	1.03E-07	1.04E-07	7.38E-09	2.15E-07	1.61E-08	1.69E-08	1.17E-09	3.42E-08	8.63E-09	7.92E-09	4.88E-10	1.70E-08
853	764311.32	4091609.3	1.23E-07	1.24E-07	8.82E-09	2.56E-07	1.93E-08	2.02E-08	1.39E-09	4.08E-08	1.03E-08	9.47E-09	5.83E-10	2.04E-08
854	764349.48	4091626.54	1.49E-07	1.50E-07	1.06E-08	3.09E-07	2.33E-08	2.43E-08	1.68E-09	4.92E-08	1.24E-08	1.14E-08	7.03E-10	2.46E-08
855	764463.95	4091678.25	2.59E-07	2.60E-07	1.85E-08	5.38E-07	4.05E-08	4.23E-08	2.92E-09	8.57E-08	2.16E-08	1.99E-08	1.22E-09	4.27E-08
856	764502.11	4091695.49	3.06E-07	3.08E-07	2.19E-08	6.36E-07	4.78E-08	5.00E-08	3.46E-09	1.01E-07	2.56E-08	2.35E-08	1.45E-09	5.05E-08
857	764540.27	4091712.72	3.57E-07	3.59E-07	2.55E-08	7.42E-07	5.58E-08	5.83E-08	4.03E-09	1.18E-07	2.98E-08	2.74E-08	1.69E-09	5.89E-08
858	764578.43	4091729.96	4.10E-07	4.12E-07	2.93E-08	8.51E-07	6.40E-08	6.69E-08	4.62E-09	1.36E-07	3.42E-08	3.14E-08	1.94E-09	6.76E-08
859	764616.59	4091747.2	4.62E-07	4.65E-07	3.30E-08	9.60E-07	7.22E-08	7.54E-08	5.21E-09	1.53E-07	3.86E-08	3.54E-08	2.18E-09	7.62E-08
860	764654.74	4091764.43	5.12E-07	5.14E-07	3.65E-08	1.06E-06	7.99E-08	8.35E-08	5.77E-09	1.69E-07	4.27E-08	3.92E-08	2.42E-09	8.43E-08
861	764681.17	4091792.66	5.79E-07	5.82E-07	4.13E-08	1.20E-06	9.04E-08	9.45E-08	6.53E-09	1.91E-07	4.83E-08	4.44E-08	2.73E-09	9.55E-08
862	764695.87	4091831.86	6.71E-07	6.75E-07	4.79E-08	1.39E-06	1.05E-07	1.10E-07	7.57E-09	2.22E-07	5.61E-08	5.15E-08	3.17E-09	1.11E-07
863	764710.57	4091871.07	7.61E-07	7.65E-07	5.43E-08	1.58E-06	1.19E-07	1.24E-07	8.58E-09	2.52E-07	6.36E-08	5.84E-08	3.59E-09	1.26E-07
864	764725.26	4091910.27	8.38E-07	8.42E-07	5.98E-08	1.74E-06	1.31E-07	1.37E-07	9.45E-09	2.77E-07	6.99E-08	6.42E-08	3.96E-09	1.38E-07
865	764739.96	4091949.48	8.91E-07	8.96E-07	6.36E-08	1.85E-06	1.39E-07	1.45E-07	1.01E-08	2.95E-07	7.44E-08	6.83E-08	4.21E-09	1.47E-07
866	764754.66	4091988.69	9.15E-07	9.20E-07	6.53E-08	1.90E-06	1.43E-07	1.49E-07	1.03E-08	3.02E-07	7.64E-08	7.01E-08	4.32E-09	1.51E-07
867	764769.36	4092027.89	9.06E-07	9.10E-07	6.47E-08	1.88E-06	1.41E-07	1.48E-07	1.02E-08	2.99E-07	7.56E-08	6.94E-08	4.28E-09	1.49E-07
868	764784.06	4092067.1	8.66E-07	8.71E-07	6.19E-08	1.80E-06	1.35E-07	1.41E-07	9.77E-09	2.86E-07	7.23E-08	6.64E-08	4.09E-09	1.43E-07
869	764798.75	4092106.31	8.04E-07	8.08E-07	5.74E-08	1.67E-06	1.26E-07	1.31E-07	9.06E-09	2.66E-07	6.71E-08	6.16E-08	3.80E-09	1.33E-07
870	764813.45	4092145.51	7.26E-07	7.30E-07	5.18E-08	1.51E-06	1.13E-07	1.18E-07	8.19E-09	2.40E-07	6.06E-08	5.57E-08	3.43E-09	1.20E-07
871	764232.53	4091582.79	8.95E-08	9.00E-08	6.39E-09	1.86E-07	1.40E-08	1.46E-08	1.01E-09	2.96E-08	7.48E-09	6.86E-09	4.23E-10	1.48E-08
872	764189.44	4091581.48	8.02E-08	8.06E-08	5.73E-09	1.67E-07	1.25E-08	1.31E-08	9.05E-10	2.65E-08	6.70E-09	6.15E-09	3.79E-10	1.32E-08
873	764146.35	4091580.17	7.29E-08	7.33E-08	5.20E-09	1.51E-07	1.14E-08	1.19E-08	8.22E-10	2.41E-08	6.09E-09	5.59E-09	3.44E-10	1.20E-08
874	764103.25	4091578.87	6.70E-08	6.74E-08	4.79E-09	1.39E-07	1.05E-08	1.09E-08	7.56E-10	2.22E-08	5.60E-09	5.14E-09	3.17E-10	1.11E-08
875	764276.7	4091492.34	7.48E-08	7.52E-08	5.34E-09	1.55E-07	1.17E-08	1.22E-08	8.44E-10	2.47E-08	6.25E-09	5.74E-09	3.53E-10	1.23E-08
876	764315.88	4091510.04	8.73E-08	8.77E-08	6.23E-09	1.81E-07	1.36E-08	1.42E-08	9.84E-10	2.88E-08	7.29E-09	6.69E-09	4.12E-10	1.44E-08
877	764355.06	4091527.73	1.03E-07	1.04E-07	7.35E-09	2.14E-07	1.61E-08	1.68E-08	1.16E-09	3.41E-08	8.60E-09	7.90E-09	4.87E-10	1.70E-08
878	764394.23	4091545.43	1.22E-07	1.23E-07	8.74E-09	2.54E-07	1.91E-08	2.00E-08	1.38E-09	4.05E-08	1.02E-08	9.39E-09	5.78E-10	2.02E-08
879	764511.76	4091598.52	2.03E-07	2.04E-07	1.45E-08	4.22E-07	3.17E-08	3.31E-08	2.29E-09	6.72E-08	1.70E-08	1.56E-08	9.60E-10	3.35E-08
880	764550.94	4091616.22	2.37E-07	2.38E-07	1.69E-08	4.91E-07	3.70E-08	3.86E-08	2.67E-09	7.82E-08	1.98E-08	1.81E-08	1.12E-09	3.90E-08
881	764590.11	4091633.91	2.73E-07	2.74E-07	1.95E-08	5.66E-07	4.26E-08	4.45E-08	3.07E-09	9.01E-08	2.28E-08	2.09E-08	1.29E-09	4.49E-08
882	764629.29	4091651.61	3.10E-07	3.11E-07	2.21E-08	6.43E-07	4.84E-08	5.05E-08	3.49E-09	1.02E-07	2.59E-08	2.37E-08	1.46E-09	5.11E-08
883	764668.46	4091669.31	3.47E-07	3.49E-07	2.48E-08	7.22E-07	5.43E-08	5.67E-08	3.92E-09	1.15E-07	2.90E-08	2.66E-08	1.64E-09	5.73E-08
884	764707.64	4091687	3.85E-07	3.87E-07	2.75E-08	7.99E-07	6.01E-08	6.28E-08	4.34E-09	1.27E-07	3.21E-08	2.95E-08	1.82E-09	6.34E-08
885	764754.36	4091724.82	4.52E-07	4.55E-07	3.23E-08	9.40E-07	7.07E-08	7.38E-08	5.10E-09	1.50E-07	3.78E-08	3.47E-08	2.14E-09	7.46E-08
886	764769.45	4091765.08	5.21E-07	5.24E-07	3.72E-08	1.08E-06	8.14E-08	8.50E-08	5.88E-09	1.72E-07	4.35E-08	3.99E-08	2.46E-09	8.59E-08
887	764784.54	4091805.33	5.89E-07	5.92E-07	4.21E-08	1.22E-06	9.20E-08	9.61E-08	6.65E-09	1.95E-07	4.92E-08	4.52E-08	2.78E-09	9.72E-08
888	764799.63	4091845.58	6.50E-07	6.54E-07	4.64E-08	1.35E-06	1.02E-07	1.06E-07	7.33E-09	2.15E-07	5.43E-08	4.98E-08	3.07E-09	1.07E-07
889	764814.72	4091885.83	6.97E-07	7.01E-07	4.98E-08	1.45E-06	1.09E-07	1.14E-07	7.86E-09	2.31E-07	5.82E-08	5.35E-08	3.29E-09	1.15E-07
890	764829.81	4091926.09	7.25E-07	7.29E-07	5.18E-08	1.51E-06	1.13E-07	1.18E-07	8.18E-09	2.40E-07	6.06E-08	5.56E-08	3.43E-09	1.20E-07
891	764844.9	4091966.34	7.30E-07	7.34E-07	5.21E-08	1.52E-06	1.14E-07	1.19E-07	8.24E-09	2.42E-07	6.10E-08	5.60E-08	3.45E-09	1.20E-07
892	764859.99	4092006.59	7.13E-07	7.17E-07	5.09E-08	1.48E-06	1.11E-07	1.16E-07	8.04E-09	2.36E-07	5.95E-08	5.47E-08	3.37E-09	1.18E-07
893	764875.08		6.74E-07	6.78E-07	4.82E-08	1.40E-06		1.10E-07	7.61E-09	2.23E-07	5.63E-08	5.17E-08	3.19E-09	1.11E-07
894	764890.17		6.22E-07	6.25E-07	4.44E-08	1.29E-06	9.71E-08	1.01E-07	7.01E-09	2.06E-07	5.19E-08	4.77E-08	2.94E-09	
895	764905.26	4092127.35			3.99E-08	1.16E-06		9.13E-08		1.85E-07	4.67E-08	4.29E-08	2.64E-09	
896	764920.35	4092167.6	4.96E-07	4.98E-07	3.54E-08	1.03E-06		8.09E-08	5.59E-09	1.64E-07	4.14E-08	3.80E-08	2.34E-09	8.18E-08

897	764235.57	4091482.84	6.63E-08	6.67E-08	4.73E-09	1.38E-07	1.04E-08	1.08E-08	7.48E-10	2.19E-08	5.54E-09	5.09E-09	3.13E-10	1.09E-08
898	764192.47	4091481.53	6.06E-08	6.09E-08	4.33E-09	1.26E-07	9.47E-09	9.89E-09	6.84E-10	2.00E-08	5.06E-09	4.65E-09	2.86E-10	1.00E-08
899	764149.38	4091480.22	5.60E-08	5.63E-08	4.00E-09	1.16E-07	8.75E-09	9.14E-09	6.32E-10	1.85E-08	4.68E-09	4.30E-09	2.65E-10	9.24E-09
900	764106.29	4091478.91	5.23E-08	5.26E-08	3.74E-09	1.09E-07	8.17E-09	8.54E-09	5.90E-10	1.73E-08	4.37E-09	4.01E-09	2.47E-10	8.63E-09
901	764282.27	4091292.2	4.54E-08	4.57E-08	3.24E-09	9.44E-08	7.10E-09	7.41E-09	5.13E-10	1.50E-08	3.79E-09	3.48E-09	2.15E-10	7.49E-09
902	764320.42	4091309.44	5.05E-08	5.08E-08	3.61E-09	1.05E-07	7.89E-09	8.24E-09	5.70E-10	1.67E-08	4.22E-09	3.87E-09	2.39E-10	8.33E-09
903	764358.58	4091326.68	5.68E-08	5.71E-08	4.06E-09	1.18E-07	8.87E-09	9.27E-09	6.41E-10	1.88E-08	4.74E-09	4.36E-09	2.68E-10	9.37E-09
904	764396.74	4091343.91	6.45E-08	6.48E-08	4.60E-09	1.34E-07	1.01E-08	1.05E-08	7.27E-10	2.13E-08	5.38E-09	4.94E-09	3.05E-10	1.06E-08
905	764434.9	4091361.15	7.38E-08	7.42E-08	5.27E-09	1.53E-07	1.15E-08	1.20E-08	8.33E-10	2.44E-08	6.16E-09	5.66E-09	3.49E-10	1.22E-08
906	764473.06	4091378.39	8.49E-08	8.53E-08	6.06E-09	1.76E-07	1.33E-08	1.38E-08	9.57E-10	2.81E-08	7.09E-09	6.51E-09	4.01E-10	1.40E-08
907	764511.22	4091395.62	9.76E-08	9.81E-08	6.97E-09	2.03E-07	1.52E-08	1.59E-08	1.10E-09	3.23E-08	8.15E-09	7.48E-09	4.61E-10	1.61E-08
908	764549.37	4091412.86	1.12E-07	1.12E-07	7.98E-09	2.32E-07	1.74E-08	1.82E-08	1.26E-09	3.69E-08	9.33E-09	8.57E-09	5.28E-10	1.84E-08
909	764587.53	4091430.1	1.27E-07	1.28E-07	9.09E-09	2.64E-07	1.99E-08	2.08E-08	1.44E-09	4.21E-08	1.06E-08	9.76E-09	6.01E-10	2.10E-08
910	764625.69	4091447.33	1.44E-07	1.45E-07	1.03E-08	2.99E-07	2.25E-08	2.35E-08	1.62E-09	4.76E-08	1.20E-08	1.10E-08	6.80E-10	2.38E-08
911	764663.85	4091464.57	1.62E-07	1.63E-07	1.16E-08	3.36E-07	2.53E-08	2.64E-08	1.83E-09	5.35E-08	1.35E-08	1.24E-08	7.64E-10	2.67E-08
912	764702.01	4091481.81	1.80E-07	1.81E-07	1.29E-08	3.75E-07	2.82E-08	2.94E-08	2.04E-09	5.97E-08	1.51E-08	1.38E-08	8.52E-10	2.98E-08
913	764740.17	4091499.05	2.00E-07	2.01E-07	1.43E-08	4.15E-07	3.12E-08	3.26E-08	2.25E-09	6.61E-08	1.67E-08	1.53E-08	9.44E-10	3.29E-08
914	764778.32	4091516.28	2.20E-07	2.21E-07	1.57E-08	4.56E-07	3.43E-08	3.58E-08	2.48E-09	7.26E-08	1.83E-08	1.68E-08	1.04E-09	3.62E-08
915	764816.48	4091533.52	2.40E-07	2.41E-07	1.71E-08	4.98E-07	3.74E-08	3.91E-08	2.70E-09	7.92E-08	2.00E-08	1.84E-08	1.13E-09	3.95E-08
916	764854.64	4091550.76	2.60E-07	2.61E-07	1.85E-08	5.39E-07	4.05E-08	4.24E-08	2.93E-09	8.58E-08	2.17E-08	1.99E-08	1.23E-09	4.28E-08
917	764900.15	4091587.6	2.97E-07	2.98E-07	2.12E-08	6.16E-07	4.64E-08	4.84E-08	3.35E-09	9.82E-08	2.48E-08	2.28E-08	1.40E-09	4.90E-08
918	764914.85	4091626.8	3.35E-07	3.36E-07	2.39E-08	6.95E-07	5.23E-08	5.46E-08	3.77E-09	1.11E-07	2.79E-08	2.57E-08	1.58E-09	5.52E-08
919	764929.54	4091666.01	3.74E-07	3.76E-07	2.67E-08	7.76E-07	5.84E-08	6.10E-08	4.21E-09	1.24E-07	3.12E-08	2.86E-08	1.76E-09	6.16E-08
920	764944.24	4091705.22	4.12E-07	4.14E-07	2.94E-08	8.55E-07	6.43E-08	6.72E-08	4.64E-09	1.36E-07	3.44E-08	3.16E-08	1.94E-09	6.79E-08
921	764958.94	4091744.42	4.46E-07	4.49E-07	3.19E-08	9.27E-07	6.97E-08	7.28E-08	5.03E-09	1.48E-07	3.73E-08	3.42E-08	2.11E-09	7.36E-08
922	764973.64	4091783.63	4.74E-07	4.77E-07	3.38E-08	9.84E-07	7.40E-08	7.74E-08	5.35E-09	1.57E-07	3.96E-08	3.64E-08	2.24E-09	7.82E-08
923	764988.33	4091822.84	4.93E-07	4.95E-07	3.52E-08	1.02E-06	7.70E-08	8.04E-08	5.56E-09	1.63E-07	4.12E-08	3.78E-08	2.33E-09	8.13E-08
924	765003.03	4091862.04	5.01E-07	5.03E-07	3.57E-08	1.04E-06	7.82E-08	8.17E-08	5.65E-09	1.66E-07	4.18E-08	3.84E-08	2.36E-09	8.25E-08
925	765017.73	4091901.25	4.97E-07	4.99E-07	3.55E-08	1.03E-06	7.76E-08	8.11E-08	5.60E-09	1.64E-07	4.15E-08	3.81E-08	2.35E-09	8.19E-08
926	765032.43	4091940.46	4.82E-07	4.84E-07	3.44E-08	1.00E-06	7.53E-08	7.86E-08	5.43E-09	1.59E-07	4.02E-08	3.69E-08	2.28E-09	7.95E-08
927	765047.12	4091979.66	4.58E-07	4.60E-07	3.27E-08	9.50E-07	7.15E-08	7.47E-08	5.16E-09	1.51E-07	3.82E-08	3.51E-08	2.16E-09	7.55E-08
928	765061.82	4092018.87	4.26E-07	4.29E-07	3.04E-08	8.86E-07	6.66E-08	6.96E-08	4.81E-09	1.41E-07	3.56E-08	3.27E-08	2.01E-09	7.03E-08
929	765076.52	4092058.07	3.91E-07	3.93E-07	2.79E-08	8.13E-07	6.11E-08	6.38E-08	4.41E-09	1.29E-07	3.27E-08	3.00E-08	1.85E-09	6.45E-08
930	765091.22	4092097.28	3.55E-07	3.57E-07	2.53E-08	7.37E-07	5.54E-08	5.79E-08	4.00E-09	1.17E-07	2.96E-08	2.72E-08	1.68E-09	5.85E-08
931	765105.92	4092136.49	3.20E-07	3.21E-07	2.28E-08	6.64E-07	4.99E-08	5.22E-08	3.61E-09	1.06E-07	2.67E-08	2.45E-08	1.51E-09	5.27E-08
932	765120.61	4092175.69	2.87E-07	2.89E-07	2.05E-08	5.96E-07	4.48E-08	4.68E-08	3.24E-09	9.49E-08	2.40E-08	2.20E-08	1.36E-09	4.73E-08
933	764241.64	4091282.93	4.18E-08	4.20E-08	2.98E-09	8.68E-08	6.53E-09	6.82E-09	4.72E-10	1.38E-08	3.49E-09	3.21E-09	1.97E-10	6.89E-09
934	764198.54	4091281.62	3.92E-08	3.94E-08	2.80E-09	8.15E-08	6.13E-09	6.40E-09	4.43E-10	1.30E-08	3.28E-09	3.01E-09	1.85E-10	6.47E-09
935	764155.45	4091280.31	3.71E-08	3.73E-08	2.65E-09	7.70E-08	5.79E-09	6.05E-09	4.18E-10	1.23E-08	3.10E-09	2.84E-09	1.75E-10	6.11E-09
936	764112.36	4091279	3.53E-08	3.54E-08	2.52E-09	7.32E-08	5.51E-09	5.75E-09	3.98E-10	1.17E-08	2.94E-09	2.70E-09	1.67E-10	5.81E-09
937	764288.49	4091092.37	3.16E-08	3.18E-08	2.26E-09	6.56E-08	4.94E-09	5.16E-09	3.57E-10	1.05E-08	2.64E-09	2.42E-09	1.49E-10	5.21E-09
938	764326.97	4091109.75	3.42E-08	3.44E-08	2.44E-09	7.11E-08	5.35E-09	5.58E-09	3.86E-10	1.13E-08	2.86E-09	2.62E-09	1.62E-10	5.64E-09
939	764365.45	4091127.13	3.73E-08	3.75E-08	2.67E-09	7.75E-08	5.83E-09	6.09E-09	4.21E-10	1.23E-08	3.12E-09	2.86E-09	1.76E-10	6.16E-09
940	764403.92			4.13E-08	2.93E-09	8.53E-08	6.41E-09	6.70E-09	4.63E-10	1.36E-08	3.43E-09	3.15E-09	1.94E-10	6.77E-09
941	764442.4	4091161.89	4.55E-08	4.58E-08	3.25E-09	9.46E-08	7.11E-09	7.43E-09	5.14E-10	1.51E-08	3.80E-09	3.49E-09	2.15E-10	7.51E-09

942	764480.88	4091179.27	5.09E-08	5.12E-08	3.63E-09	1.06E-07	7.95E-09	8.31E-09	5.74E-10	1.68E-08	4.25E-09	3.90E-09	2.40E-10	8.39E-09
943	764519.35	4091196.65	5.72E-08	5.75E-08	4.08E-09	1.19E-07	8.93E-09	9.33E-09	6.45E-10	1.89E-08	4.78E-09	4.38E-09	2.70E-10	9.43E-09
944	764557.83	4091214.03	6.44E-08	6.47E-08	4.60E-09	1.34E-07	1.01E-08	1.05E-08	7.26E-10	2.13E-08	5.38E-09	4.94E-09	3.04E-10	1.06E-08
945	764596.31	4091231.41	7.25E-08	7.29E-08	5.17E-09	1.51E-07	1.13E-08	1.18E-08	8.18E-10	2.40E-08	6.05E-09	5.56E-09	3.42E-10	1.20E-08
946	764634.78	4091248.79	8.13E-08	8.18E-08	5.81E-09	1.69E-07	1.27E-08	1.33E-08	9.18E-10	2.69E-08	6.79E-09	6.24E-09	3.84E-10	1.34E-08
947	764673.26	4091266.17	9.08E-08	9.12E-08	6.48E-09	1.88E-07	1.42E-08	1.48E-08	1.02E-09	3.00E-08	7.58E-09	6.96E-09	4.29E-10	1.50E-08
948	764711.74	4091283.55	1.01E-07	1.01E-07	7.19E-09	2.09E-07	1.57E-08	1.64E-08	1.14E-09	3.33E-08	8.41E-09	7.72E-09	4.76E-10	1.66E-08
949	764750.21	4091300.93	1.11E-07	1.12E-07	7.93E-09	2.31E-07	1.74E-08	1.81E-08	1.25E-09	3.67E-08	9.28E-09	8.52E-09	5.25E-10	1.83E-08
950	764788.69	4091318.31	1.22E-07	1.23E-07	8.70E-09	2.53E-07	1.90E-08	1.99E-08	1.37E-09	4.03E-08	1.02E-08	9.34E-09	5.76E-10	2.01E-08
951	764827.16	4091335.69	1.33E-07	1.34E-07	9.50E-09	2.76E-07	2.08E-08	2.17E-08	1.50E-09	4.40E-08	1.11E-08	1.02E-08	6.28E-10	2.19E-08
952	764865.64	4091353.07	1.45E-07	1.45E-07	1.03E-08	3.00E-07	2.26E-08	2.36E-08	1.63E-09	4.78E-08	1.21E-08	1.11E-08	6.83E-10	2.39E-08
953	764904.12	4091370.46	1.57E-07	1.58E-07	1.12E-08	3.26E-07	2.45E-08	2.56E-08	1.77E-09	5.18E-08	1.31E-08	1.20E-08	7.41E-10	2.59E-08
954	764942.59	4091387.84	1.69E-07	1.70E-07	1.21E-08	3.51E-07	2.64E-08	2.76E-08	1.91E-09	5.59E-08	1.41E-08	1.30E-08	7.98E-10	2.79E-08
955	764981.07	4091405.22	1.81E-07	1.82E-07	1.30E-08	3.77E-07	2.83E-08	2.96E-08	2.05E-09	6.00E-08	1.52E-08	1.39E-08	8.57E-10	2.99E-08
956	765019.55	4091422.6	1.94E-07	1.95E-07	1.38E-08	4.02E-07	3.03E-08	3.16E-08	2.19E-09	6.41E-08	1.62E-08	1.49E-08	9.16E-10	3.20E-08
957	765046.19	4091451.05	2.11E-07	2.12E-07	1.51E-08	4.38E-07	3.30E-08	3.44E-08	2.38E-09	6.98E-08	1.76E-08	1.62E-08	9.97E-10	3.48E-08
958	765061.01	4091490.59	2.35E-07	2.36E-07	1.67E-08	4.87E-07	3.66E-08	3.83E-08	2.65E-09	7.76E-08	1.96E-08	1.80E-08	1.11E-09	3.87E-08
959	765075.83	4091530.12	2.59E-07	2.61E-07	1.85E-08	5.38E-07	4.05E-08	4.23E-08	2.92E-09	8.57E-08	2.17E-08	1.99E-08	1.22E-09	4.28E-08
960	765090.65	4091569.65	2.84E-07	2.86E-07	2.03E-08	5.90E-07	4.44E-08	4.64E-08	3.21E-09	9.40E-08	2.37E-08	2.18E-08	1.34E-09	4.69E-08
961	765105.47	4091609.19	3.08E-07	3.10E-07	2.20E-08	6.41E-07	4.82E-08	5.03E-08	3.48E-09	1.02E-07	2.58E-08	2.37E-08	1.46E-09	5.09E-08
962	765120.29	4091648.72	3.30E-07	3.32E-07	2.36E-08	6.86E-07	5.16E-08	5.39E-08	3.72E-09	1.09E-07	2.76E-08	2.53E-08	1.56E-09	5.44E-08
963	765135.12	4091688.25	3.48E-07	3.50E-07	2.48E-08	7.22E-07	5.43E-08	5.68E-08	3.92E-09	1.15E-07	2.90E-08	2.67E-08	1.64E-09	5.74E-08
964	765149.94	4091727.79	3.60E-07	3.62E-07	2.57E-08	7.48E-07	5.62E-08	5.88E-08	4.06E-09	1.19E-07	3.01E-08	2.76E-08	1.70E-09	5.94E-08
965	765164.76	4091767.32	3.66E-07	3.68E-07	2.61E-08	7.60E-07	5.72E-08	5.97E-08	4.13E-09	1.21E-07	3.06E-08	2.81E-08	1.73E-09	6.04E-08
966	765179.58	4091806.85	3.65E-07	3.67E-07	2.61E-08	7.59E-07	5.71E-08	5.96E-08	4.12E-09	1.21E-07	3.05E-08	2.80E-08	1.73E-09	6.02E-08
967	765194.4	4091846.39	3.58E-07	3.60E-07	2.56E-08	7.43E-07	5.59E-08	5.84E-08	4.04E-09	1.18E-07	2.99E-08	2.74E-08	1.69E-09	5.90E-08
968	765209.22	4091885.92	3.45E-07	3.46E-07	2.46E-08	7.16E-07	5.38E-08	5.62E-08	3.89E-09	1.14E-07	2.88E-08	2.64E-08	1.63E-09	5.68E-08
969	765224.04	4091925.45	3.27E-07	3.28E-07	2.33E-08	6.78E-07	5.10E-08	5.33E-08	3.68E-09	1.08E-07	2.73E-08	2.50E-08	1.54E-09	5.39E-08
970	765238.86	4091964.99	3.05E-07	3.07E-07	2.18E-08	6.34E-07	4.77E-08	4.98E-08	3.44E-09	1.01E-07	2.55E-08	2.34E-08	1.44E-09	5.04E-08
971	765253.68	4092004.52	2.82E-07	2.84E-07	2.01E-08	5.86E-07	4.41E-08	4.61E-08	3.18E-09	9.33E-08	2.36E-08	2.16E-08	1.33E-09	4.65E-08
972	765268.5	4092044.05	2.59E-07	2.60E-07	1.85E-08	5.38E-07	4.04E-08	4.22E-08	2.92E-09	8.56E-08	2.16E-08	1.98E-08	1.22E-09	4.27E-08
973	765283.32	4092083.59	2.36E-07	2.38E-07	1.69E-08	4.91E-07	3.69E-08	3.86E-08	2.67E-09	7.82E-08	1.97E-08	1.81E-08	1.12E-09	3.90E-08
974	765298.14	4092123.12	2.16E-07	2.17E-07	1.54E-08	4.48E-07	3.37E-08	3.52E-08	2.43E-09	7.13E-08	1.80E-08	1.65E-08	1.02E-09	3.55E-08
975	765312.96	4092162.65	1.97E-07	1.98E-07	1.40E-08	4.08E-07	3.07E-08	3.21E-08	2.22E-09	6.50E-08	1.64E-08	1.51E-08	9.28E-10	3.24E-08
976	764247.71	4091083.02	2.97E-08	2.98E-08	2.12E-09	6.16E-08	4.64E-09	4.84E-09	3.35E-10	9.82E-09	2.48E-09	2.28E-09	1.40E-10	4.90E-09
977	764204.62	4091081.71	2.83E-08	2.84E-08	2.02E-09	5.88E-08	4.42E-09	4.62E-09	3.19E-10	9.36E-09	2.36E-09	2.17E-09	1.34E-10	4.67E-09
978	764161.52	4091080.41	2.71E-08	2.72E-08	1.93E-09	5.63E-08	4.23E-09	4.42E-09	3.06E-10	8.96E-09	2.26E-09	2.08E-09	1.28E-10	4.47E-09
979	764118.43	4091079.1	2.60E-08	2.62E-08	1.86E-09	5.41E-08	4.07E-09	4.25E-09	2.94E-10	8.61E-09	2.17E-09	2.00E-09	1.23E-10	4.29E-09
980	764294.68	4090892.51	2.39E-08	2.40E-08	1.70E-09	4.96E-08	3.73E-09	3.90E-09	2.69E-10	7.90E-09	1.99E-09	1.83E-09	1.13E-10	3.94E-09
981	764333.38	4090909.99	2.54E-08	2.55E-08	1.81E-09	5.28E-08	3.97E-09	4.15E-09	2.87E-10	8.40E-09	2.12E-09	1.95E-09	1.20E-10	4.19E-09
982	764372.08	4090927.47	2.72E-08	2.73E-08	1.94E-09	5.64E-08	4.24E-09	4.44E-09	3.07E-10	8.99E-09	2.27E-09	2.08E-09	1.28E-10	4.48E-09
983	764410.78	4090944.95	2.92E-08	2.94E-08	2.09E-09	6.07E-08	4.57E-09	4.77E-09	3.30E-10	9.67E-09	2.44E-09	2.24E-09	1.38E-10	4.82E-09
984	764449.48	4090962.44	3.17E-08	3.18E-08	2.26E-09	6.58E-08	4.95E-09	5.17E-09	3.57E-10	1.05E-08	2.64E-09	2.43E-09	1.50E-10	5.22E-09
985	764488.17	4090979.92	3.45E-08	3.47E-08	2.46E-09	7.17E-08	5.39E-09	5.63E-09	3.89E-10	1.14E-08	2.88E-09	2.65E-09	1.63E-10	5.69E-09
986	764526.87	4090997.4	3.79E-08	3.81E-08	2.70E-09	7.86E-08	5.91E-09	6.18E-09	4.27E-10	1.25E-08	3.16E-09	2.90E-09	1.79E-10	6.24E-09

987	764565.57	4091014.88	4.18E-08	4.20E-08	2.98E-09	8.67E-08	6.52E-09	6.82E-09		1.38E-08	3.49E-09	3.20E-09	1.97E-10	6.89E-09
988	764604.27	4091032.36	4.62E-08	4.65E-08	3.30E-09	9.60E-08	7.22E-09	7.55E-09	5.22E-10	1.53E-08	3.86E-09	3.55E-09	2.18E-10	7.63E-09
989	764642.97	4091049.84	5.13E-08	5.16E-08	3.66E-09	1.07E-07	8.01E-09	8.37E-09	5.79E-10	1.70E-08	4.28E-09	3.93E-09	2.42E-10	
990	764681.67	4091067.32	5.69E-08	5.72E-08	4.06E-09	1.18E-07	8.88E-09	9.28E-09		1.88E-08	4.75E-09	4.36E-09	2.69E-10	
991	764720.37	4091084.8	6.28E-08	6.31E-08	4.48E-09	1.30E-07	9.81E-09	1.02E-08		2.08E-08	5.24E-09	4.82E-09	2.97E-10	1.04E-08
992	764759.07	4091102.29	6.91E-08	6.94E-08	4.93E-09	1.43E-07	1.08E-08	1.13E-08	7.79E-10		5.77E-09	5.29E-09	3.26E-10	1.14E-08
993	764797.77	4091119.77	7.55E-08	7.59E-08	5.39E-09	1.57E-07	1.18E-08	1.23E-08		2.50E-08	6.31E-09	5.79E-09	3.57E-10	
994	764836.47	4091137.25	8.21E-08	8.26E-08	5.86E-09	1.71E-07	1.28E-08	1.34E-08		2.72E-08	6.86E-09	6.30E-09	3.88E-10	
995	764875.17	4091154.73	8.89E-08	8.94E-08	6.35E-09	1.85E-07	1.39E-08	1.45E-08	1.00E-09		7.42E-09	6.82E-09	4.20E-10	
996	764913.87	4091172.21	9.58E-08	9.63E-08	6.84E-09	1.99E-07	1.50E-08	1.56E-08	1.08E-09		8.00E-09	7.35E-09	4.53E-10	1.58E-08
997	764952.57	4091189.69	1.03E-07	1.04E-07	7.35E-09	2.14E-07	1.61E-08	1.68E-08	1.16E-09	3.41E-08	8.60E-09	7.90E-09	4.87E-10	1.70E-08
998	764991.27	4091207.17	1.11E-07	1.11E-07	7.89E-09	2.30E-07	1.73E-08	1.80E-08	1.25E-09	3.65E-08	9.23E-09	8.47E-09	5.22E-10	1.82E-08
999	765029.97	4091224.66	1.18E-07	1.19E-07	8.45E-09	2.46E-07	1.85E-08	1.93E-08	1.34E-09	3.91E-08	9.88E-09	9.08E-09	5.59E-10	1.95E-08
1000	765068.67	4091242.14	1.26E-07	1.27E-07	9.03E-09	2.63E-07	1.98E-08	2.06E-08	1.43E-09	4.18E-08	1.06E-08	9.70E-09	5.97E-10	2.09E-08
1001	765107.37	4091259.62	1.35E-07	1.35E-07	9.62E-09	2.80E-07	2.10E-08	2.20E-08	1.52E-09	4.46E-08	1.13E-08	1.03E-08	6.36E-10	2.22E-08
1002	765146.07	4091277.1	1.43E-07	1.44E-07	1.02E-08	2.97E-07	2.23E-08	2.33E-08	1.61E-09	4.73E-08	1.19E-08	1.10E-08	6.75E-10	2.36E-08
1003	765192.22	4091314.46	1.59E-07	1.59E-07	1.13E-08	3.29E-07	2.48E-08	2.59E-08	1.79E-09	5.24E-08	1.32E-08	1.22E-08	7.49E-10	2.62E-08
1004	765207.13	4091354.22	1.74E-07	1.75E-07	1.24E-08	3.62E-07	2.72E-08	2.84E-08	1.97E-09	5.76E-08	1.45E-08	1.34E-08	8.23E-10	2.87E-08
1005	765222.03	4091393.99	1.91E-07	1.92E-07	1.36E-08	3.96E-07	2.98E-08	3.11E-08	2.15E-09	6.31E-08	1.59E-08	1.46E-08	9.01E-10	3.15E-08
1006	765236.94	4091433.75	2.08E-07	2.09E-07	1.48E-08	4.32E-07	3.25E-08	3.39E-08	2.35E-09	6.88E-08	1.74E-08	1.59E-08	9.82E-10	3.43E-08
1007	765251.85	4091473.51	2.25E-07	2.26E-07	1.61E-08	4.67E-07	3.52E-08	3.67E-08	2.54E-09	7.44E-08	1.88E-08	1.73E-08	1.06E-09	3.71E-08
1008	765266.75	4091513.28	2.41E-07	2.43E-07	1.72E-08	5.01E-07	3.77E-08	3.94E-08	2.72E-09	7.98E-08	2.02E-08	1.85E-08	1.14E-09	3.98E-08
1009	765281.66	4091553.04	2.56E-07	2.57E-07	1.83E-08	5.32E-07	4.00E-08	4.18E-08	2.89E-09	8.47E-08	2.14E-08	1.96E-08	1.21E-09	4.22E-08
1010	765296.56	4091592.8	2.68E-07	2.69E-07	1.91E-08	5.57E-07	4.19E-08	4.37E-08	3.02E-09	8.86E-08	2.24E-08	2.06E-08	1.27E-09	4.42E-08
1011	765311.47	4091632.56	2.77E-07	2.78E-07	1.98E-08	5.75E-07	4.32E-08	4.52E-08	3.12E-09	9.15E-08	2.31E-08	2.12E-08	1.31E-09	4.56E-08
1012	765326.38	4091672.33	2.81E-07	2.83E-07	2.01E-08	5.84E-07	4.39E-08	4.59E-08	3.17E-09	9.30E-08	2.35E-08	2.16E-08	1.33E-09	4.64E-08
1013	765341.28	4091712.09	2.82E-07	2.83E-07	2.01E-08	5.85E-07	4.40E-08	4.60E-08	3.18E-09	9.32E-08	2.35E-08	2.16E-08	1.33E-09	4.65E-08
1014	765356.19	4091751.85	2.78E-07	2.79E-07	1.98E-08	5.77E-07	4.34E-08	4.54E-08	3.14E-09	9.19E-08	2.32E-08	2.13E-08	1.31E-09	4.58E-08
1015	765371.09	4091791.61	2.70E-07	2.72E-07	1.93E-08	5.61E-07	4.22E-08	4.41E-08	3.05E-09	8.94E-08	2.26E-08	2.07E-08	1.28E-09	4.46E-08
1016	765386	4091831.38	2.59E-07	2.61E-07	1.85E-08	5.39E-07	4.05E-08	4.23E-08	2.93E-09	8.58E-08	2.17E-08	1.99E-08	1.23E-09	4.28E-08
1017	765400.91	4091871.14	2.46E-07	2.47E-07	1.76E-08	5.10E-07	3.84E-08	4.01E-08	2.77E-09	8.13E-08	2.05E-08	1.88E-08	1.16E-09	4.05E-08
1018	765415.81	4091910.9	2.31E-07	2.32E-07	1.65E-08	4.79E-07	3.60E-08	3.76E-08	2.60E-09	7.63E-08	1.93E-08	1.77E-08	1.09E-09	3.80E-08
1019	765430.72	4091950.67	2.15E-07	2.16E-07	1.53E-08	4.46E-07	3.35E-08	3.50E-08	2.42E-09	7.10E-08	1.79E-08	1.65E-08	1.01E-09	3.54E-08
1020	765445.63	4091990.43	1.99E-07	2.00E-07	1.42E-08	4.13E-07	3.11E-08	3.25E-08	2.24E-09	6.58E-08	1.66E-08	1.52E-08	9.39E-10	3.28E-08
1021	765460.53	4092030.19	1.84E-07	1.85E-07	1.31E-08	3.81E-07	2.87E-08	3.00E-08	2.07E-09	6.07E-08	1.53E-08	1.41E-08	8.67E-10	3.03E-08
1022	765475.44	4092069.95	1.69E-07	1.70E-07	1.21E-08	3.52E-07	2.64E-08	2.76E-08	1.91E-09	5.60E-08	1.41E-08	1.30E-08	8.00E-10	2.79E-08
1023	765490.34	4092109.72	1.56E-07	1.57E-07	1.12E-08	3.25E-07	2.44E-08	2.55E-08	1.76E-09	5.17E-08	1.31E-08	1.20E-08	7.39E-10	2.58E-08
1024	765505.25	4092149.48	1.45E-07	1.45E-07	1.03E-08	3.00E-07	2.26E-08	2.36E-08	1.63E-09	4.78E-08	1.21E-08	1.11E-08	6.83E-10	2.39E-08
1025	765520.16	4092189.24	1.34E-07	1.35E-07	9.58E-09	2.79E-07	2.10E-08	2.19E-08	1.51E-09	4.44E-08	1.12E-08	1.03E-08	6.34E-10	2.21E-08
1026	764253.78	4090883.11	2.27E-08	2.28E-08	1.62E-09	4.72E-08	3.55E-09	3.71E-09	2.56E-10	7.51E-09	1.90E-09	1.74E-09	1.07E-10	3.75E-09
1027	764210.69	4090881.81	2.19E-08	2.20E-08	1.56E-09	4.54E-08	3.41E-09	3.57E-09	2.47E-10	7.23E-09	1.83E-09	1.68E-09	1.03E-10	3.61E-09
1028	764167.59	4090880.5	2.11E-08	2.12E-08	1.51E-09	4.38E-08	3.30E-09	3.44E-09	2.38E-10	6.98E-09	1.76E-09	1.62E-09	9.97E-11	3.48E-09
1029	764124.5	4090879.19	2.04E-08	2.05E-08	1.46E-09	4.24E-08	3.19E-09	3.33E-09	2.30E-10	6.75E-09	1.70E-09	1.57E-09	9.64E-11	3.37E-09
1030	764300.83	4090692.64	1.91E-08	1.92E-08	1.36E-09	3.96E-08	2.98E-09	3.11E-09	2.15E-10	6.30E-09	1.59E-09	1.46E-09	9.00E-11	3.14E-09
1031	764339.69	4090710.2	2.00E-08	2.02E-08	1.43E-09	4.16E-08	3.13E-09	3.27E-09	2.26E-10	6.63E-09	1.67E-09	1.54E-09	9.47E-11	3.31E-09

1032	764378.56	4090727.75	2.12E-08	2.13E-08	1.51E-09	4.39E-08	3.30E-09	3.45E-09	2.39E-10	7.00E-09	1.77E-09	1.62E-09	1.00E-10	3.49E-09
1033	764417.42	4090745.31	2.24E-08	2.26E-08	1.60E-09	4.66E-08	3.51E-09	3.66E-09	2.53E-10	7.42E-09	1.87E-09	1.72E-09	1.06E-10	3.70E-09
1034	764456.29	4090762.86	2.39E-08	2.40E-08	1.71E-09	4.96E-08	3.73E-09	3.90E-09	2.70E-10	7.90E-09	2.00E-09	1.83E-09	1.13E-10	3.94E-09
1035	764495.15	4090780.42	2.56E-08	2.57E-08	1.83E-09	5.31E-08	3.99E-09	4.17E-09	2.88E-10	8.46E-09	2.14E-09	1.96E-09	1.21E-10	4.22E-09
1036	764534.02	4090797.98	2.75E-08	2.77E-08	1.96E-09	5.71E-08	4.30E-09	4.49E-09	3.10E-10	9.10E-09	2.30E-09	2.11E-09	1.30E-10	4.54E-09
1037	764572.88	4090815.53	2.97E-08	2.99E-08	2.12E-09	6.18E-08	4.65E-09	4.85E-09	3.36E-10	9.84E-09	2.48E-09	2.28E-09	1.41E-10	4.91E-09
1038	764611.75	4090833.09	3.23E-08	3.25E-08	2.31E-09	6.71E-08	5.05E-09	5.27E-09	3.64E-10	1.07E-08	2.70E-09	2.48E-09	1.53E-10	5.33E-09
1039	764650.61	4090850.64	3.53E-08	3.54E-08	2.52E-09	7.32E-08	5.51E-09	5.75E-09	3.98E-10	1.17E-08	2.94E-09	2.70E-09	1.67E-10	5.81E-09
1040	764689.48	4090868.2	3.86E-08	3.88E-08	2.76E-09	8.01E-08	6.03E-09	6.30E-09	4.35E-10	1.28E-08	3.22E-09	2.96E-09	1.82E-10	6.36E-09
1041	764728.35	4090885.76	4.22E-08	4.25E-08	3.02E-09	8.77E-08	6.60E-09	6.89E-09	4.77E-10	1.40E-08	3.53E-09	3.24E-09	2.00E-10	6.97E-09
1042	764767.21	4090903.31	4.63E-08	4.65E-08	3.30E-09	9.61E-08	7.23E-09	7.55E-09	5.22E-10	1.53E-08	3.86E-09	3.55E-09	2.19E-10	7.63E-09
1043	764806.08	4090920.87	5.05E-08	5.08E-08	3.61E-09	1.05E-07	7.89E-09	8.24E-09	5.70E-10	1.67E-08	4.22E-09	3.87E-09	2.39E-10	8.33E-09
1044	764844.94	4090938.42	5.49E-08	5.52E-08	3.92E-09	1.14E-07	8.58E-09	8.96E-09	6.20E-10	1.82E-08	4.59E-09	4.21E-09	2.60E-10	9.06E-09
1045	764883.81	4090955.98	5.94E-08	5.97E-08	4.24E-09	1.23E-07	9.28E-09	9.70E-09	6.70E-10	1.97E-08	4.96E-09	4.56E-09	2.81E-10	9.80E-09
1046	764922.67	4090973.54	6.39E-08	6.43E-08	4.56E-09	1.33E-07	9.98E-09	1.04E-08	7.21E-10	2.11E-08	5.34E-09	4.90E-09	3.02E-10	1.05E-08
1047	764961.54	4090991.09	6.84E-08	6.88E-08	4.89E-09	1.42E-07	1.07E-08	1.12E-08	7.72E-10	2.26E-08	5.72E-09	5.25E-09	3.23E-10	1.13E-08
1048	765000.4	4091008.65	7.30E-08	7.34E-08	5.21E-09	1.52E-07	1.14E-08	1.19E-08	8.24E-10	2.41E-08	6.10E-09	5.60E-09	3.45E-10	1.20E-08
1049	765039.27	4091026.2	7.77E-08	7.81E-08	5.55E-09	1.61E-07	1.21E-08	1.27E-08	8.77E-10	2.57E-08	6.49E-09	5.96E-09	3.67E-10	1.28E-08
1050	765078.13	4091043.76	8.26E-08	8.30E-08	5.90E-09	1.72E-07	1.29E-08	1.35E-08	9.32E-10	2.73E-08	6.90E-09	6.33E-09	3.90E-10	1.36E-08
1051	765117	4091061.32	8.77E-08	8.82E-08	6.26E-09	1.82E-07	1.37E-08	1.43E-08	9.89E-10	2.90E-08	7.32E-09	6.73E-09	4.14E-10	1.45E-08
1052	765155.86	4091078.87	9.31E-08	9.35E-08	6.64E-09	1.93E-07	1.45E-08	1.52E-08	1.05E-09	3.08E-08	7.77E-09	7.14E-09	4.40E-10	1.53E-08
1053	765194.73	4091096.43	9.87E-08	9.92E-08	7.05E-09	2.05E-07	1.54E-08	1.61E-08	1.11E-09	3.26E-08	8.24E-09	7.57E-09	4.66E-10	1.63E-08
1054	765233.59	4091113.98	1.05E-07	1.05E-07	7.46E-09	2.17E-07	1.63E-08	1.71E-08	1.18E-09	3.46E-08	8.73E-09	8.02E-09	4.94E-10	1.72E-08
1055	765272.46	4091131.54	1.10E-07	1.11E-07	7.88E-09	2.29E-07	1.72E-08	1.80E-08	1.25E-09	3.65E-08	9.22E-09	8.47E-09	5.22E-10	1.82E-08
1056	765311.32	4091149.1	1.16E-07	1.17E-07	8.31E-09	2.42E-07	1.82E-08	1.90E-08	1.31E-09	3.85E-08	9.71E-09	8.92E-09	5.50E-10	1.92E-08
1057	765338.24	4091177.84	1.24E-07	1.25E-07	8.89E-09	2.58E-07	1.94E-08	2.03E-08	1.40E-09	4.12E-08	1.04E-08	9.54E-09	5.88E-10	2.05E-08
1058	765353.21	4091217.77	1.35E-07	1.36E-07	9.66E-09	2.81E-07	2.11E-08	2.21E-08	1.53E-09	4.48E-08	1.13E-08	1.04E-08	6.39E-10	2.23E-08
1059	765368.18	4091257.71	1.47E-07	1.48E-07	1.05E-08	3.05E-07	2.30E-08	2.40E-08	1.66E-09	4.86E-08	1.23E-08	1.13E-08	6.94E-10	2.42E-08
1060	765383.15	4091297.64	1.59E-07	1.60E-07	1.14E-08	3.31E-07	2.49E-08	2.60E-08	1.80E-09	5.26E-08	1.33E-08	1.22E-08	7.52E-10	2.62E-08
1061	765398.12	4091337.57	1.72E-07	1.73E-07	1.23E-08	3.56E-07	2.68E-08	2.80E-08	1.94E-09	5.67E-08	1.43E-08	1.32E-08	8.11E-10	2.83E-08
1062	765413.09	4091377.5	1.84E-07	1.85E-07	1.31E-08	3.82E-07	2.87E-08	3.00E-08	2.07E-09	6.08E-08	1.53E-08	1.41E-08	8.68E-10	3.03E-08
1063	765428.06	4091417.44	1.95E-07	1.96E-07	1.40E-08	4.06E-07	3.05E-08	3.19E-08	2.20E-09	6.46E-08	1.63E-08	1.50E-08	9.23E-10	3.22E-08
1064	765443.03	4091457.37	2.06E-07	2.07E-07	1.47E-08	4.28E-07	3.22E-08	3.36E-08	2.32E-09	6.81E-08	1.72E-08	1.58E-08	9.72E-10	3.39E-08
1065	765458	4091497.3	2.14E-07	2.16E-07	1.53E-08	4.45E-07	3.35E-08	3.50E-08	2.42E-09	7.09E-08	1.79E-08	1.64E-08	1.01E-09	3.54E-08
1066	765472.97	4091537.23	2.21E-07	2.22E-07	1.58E-08	4.59E-07	3.45E-08	3.60E-08	2.49E-09	7.30E-08	1.84E-08	1.69E-08	1.04E-09	3.64E-08
1067	765487.94	4091577.17	2.24E-07	2.26E-07	1.60E-08	4.66E-07	3.51E-08	3.66E-08	2.53E-09	7.42E-08	1.87E-08	1.72E-08	1.06E-09	3.70E-08
1068	765502.91	4091617.1	2.25E-07	2.27E-07	1.61E-08	4.68E-07	3.52E-08	3.68E-08	2.54E-09	7.45E-08	1.88E-08	1.73E-08	1.06E-09	3.72E-08
1069	765517.88	4091657.03	2.23E-07	2.25E-07	1.60E-08	4.64E-07	3.49E-08	3.65E-08	2.52E-09	7.39E-08	1.87E-08	1.71E-08	1.06E-09	3.69E-08
1070	765532.85	4091696.97	2.19E-07	2.20E-07	1.56E-08	4.55E-07	3.42E-08	3.57E-08	2.47E-09	7.24E-08	1.83E-08	1.68E-08	1.03E-09	3.61E-08
1071	765547.82	4091736.9	2.12E-07	2.13E-07	1.51E-08	4.40E-07	3.31E-08	3.46E-08	2.39E-09	7.01E-08	1.77E-08	1.63E-08	1.00E-09	3.50E-08
1072	765562.78	4091776.83	2.03E-07	2.04E-07	1.45E-08	4.22E-07	3.17E-08	3.32E-08	2.29E-09	6.72E-08	1.70E-08	1.56E-08	9.60E-10	3.35E-08
1073	765577.75	4091816.76	1.93E-07	1.94E-07	1.38E-08	4.01E-07	3.01E-08	3.15E-08	2.18E-09	6.38E-08	1.61E-08	1.48E-08	9.11E-10	3.18E-08
1074	765592.72	4091856.7	1.82E-07	1.83E-07	1.30E-08	3.78E-07	2.84E-08	2.97E-08	2.05E-09	6.01E-08	1.52E-08	1.39E-08	8.59E-10	3.00E-08
1075	765607.69	4091896.63	1.70E-07	1.71E-07	1.22E-08	3.54E-07	2.66E-08	2.78E-08	1.92E-09	5.63E-08	1.42E-08	1.31E-08	8.05E-10	2.81E-08
1076	765622.66	4091936.56	1.59E-07	1.60E-07	1.13E-08	3.30E-07	2.48E-08	2.59E-08	1.79E-09	5.25E-08	1.33E-08	1.22E-08	7.50E-10	2.62E-08

							2 2 4 5 2 2	2 44 = 22	4 6== 00					
1077	765637.63	4091976.49	1.48E-07		1.06E-08	3.07E-07	2.31E-08		1.67E-09		1.23E-08	1.13E-08	6.99E-10	
1078	765652.6	4092016.43	1.38E-07	1.38E-07	9.83E-09	2.86E-07	2.15E-08	2.25E-08	1.55E-09		1.15E-08	1.06E-08		2.27E-08
1079	765667.57	4092056.36	1.28E-07	1.29E-07	9.16E-09	2.66E-07	2.00E-08	2.09E-08	1.45E-09		1.07E-08	9.84E-09		2.12E-08
1080	765682.54	4092096.29	1.20E-07	1.20E-07	8.55E-09	2.49E-07	1.87E-08	1.96E-08	1.35E-09		1.00E-08	9.19E-09		1.98E-08
1081	765697.51	4092136.22	1.12E-07	1.13E-07	8.01E-09	2.33E-07	1.75E-08	1.83E-08	1.27E-09		9.37E-09	8.61E-09	5.30E-10	
1082	765712.48	4092176.16	1.05E-07	1.06E-07	7.53E-09	2.19E-07	1.65E-08	1.72E-08	1.19E-09		8.81E-09	8.09E-09	4.98E-10	
1083	764259.85	4090683.21	1.83E-08	1.84E-08	1.31E-09	3.80E-08	2.86E-09	2.98E-09	2.06E-10		1.53E-09	1.40E-09		3.02E-09
1084	764216.76	4090681.9	1.77E-08	1.78E-08	1.26E-09	3.68E-08	2.77E-09	2.89E-09	2.00E-10		1.48E-09	1.36E-09		2.92E-09
1085	764173.66	4090680.59	1.72E-08	1.73E-08	1.23E-09	3.57E-08	2.68E-09	2.80E-09	1.94E-10		1.43E-09	1.32E-09		2.83E-09
1086	764130.57	4090679.28	1.67E-08	1.68E-08	1.19E-09	3.47E-08	2.61E-09	2.72E-09	1.88E-10		1.39E-09	1.28E-09		2.75E-09
1087	764306.96	4090492.76	1.58E-08	1.59E-08	1.13E-09	3.28E-08	2.47E-09	2.58E-09	1.78E-10		1.32E-09	1.21E-09	-	2.60E-09
1088	764345.96	4090510.37	1.65E-08	1.66E-08	1.18E-09	3.42E-08	2.57E-09	2.69E-09	1.86E-10		1.38E-09	1.26E-09		2.72E-09
1089	764384.95	4090527.99	1.72E-08	1.73E-08	1.23E-09	3.58E-08	2.69E-09	2.81E-09	1.95E-10		1.44E-09	1.32E-09	8.15E-11	
1090	764423.94	4090545.6	1.81E-08	1.82E-08	1.29E-09	3.76E-08	2.83E-09	2.95E-09	2.04E-10		1.51E-09	1.39E-09	8.55E-11	
1091	764462.93	4090563.21	1.91E-08	1.92E-08	1.36E-09	3.96E-08	2.98E-09	3.11E-09	2.15E-10		1.59E-09	1.46E-09		3.14E-09
1092	764501.93	4090580.83	2.01E-08	2.02E-08	1.44E-09	4.18E-08	3.14E-09	3.29E-09	2.27E-10		1.68E-09	1.54E-09	9.51E-11	
1093	764540.92	4090598.44	2.14E-08	2.15E-08	1.52E-09	4.44E-08	3.34E-09	3.49E-09	2.41E-10		1.78E-09	1.64E-09	1.01E-10	
1094	764579.91	4090616.06	2.27E-08	2.29E-08	1.62E-09	4.72E-08	3.55E-09	3.71E-09	2.56E-10		1.90E-09	1.74E-09	1.07E-10	
1095	764618.9	4090633.67	2.43E-08	2.44E-08	1.74E-09	5.05E-08	3.80E-09	3.97E-09	2.74E-10		2.03E-09	1.86E-09		4.01E-09
1096	764657.9	4090651.28	2.61E-08	2.62E-08	1.86E-09	5.42E-08	4.08E-09	4.26E-09	2.95E-10		2.18E-09	2.00E-09		4.31E-09
1097	764696.89	4090668.9	2.81E-08	2.83E-08	2.01E-09	5.84E-08	4.39E-09	4.59E-09	3.17E-10		2.35E-09	2.16E-09	1.33E-10	
1098	764735.88	4090686.51	3.04E-08	3.06E-08	2.17E-09	6.32E-08	4.75E-09	4.96E-09	3.43E-10		2.54E-09	2.33E-09	1.44E-10	
1099	764774.87	4090704.12	3.30E-08	3.31E-08	2.35E-09	6.84E-08	5.15E-09	5.38E-09	3.72E-10		2.75E-09	2.53E-09	1.56E-10	
1100	764813.87	4090721.74	3.57E-08	3.59E-08	2.55E-09	7.42E-08	5.58E-09	5.83E-09	4.03E-10		2.98E-09	2.74E-09	1.69E-10	
1101	764852.86	4090739.35	3.87E-08	3.89E-08	2.77E-09	8.05E-08	6.05E-09	6.32E-09	4.37E-10		3.24E-09	2.97E-09	1.83E-10	
1102	764891.85	4090756.96	4.19E-08	4.21E-08	2.99E-09	8.71E-08	6.55E-09	6.84E-09		1.39E-08	3.50E-09	3.21E-09	1.98E-10	
1103	764930.84	4090774.58	4.51E-08	4.54E-08	3.22E-09	9.38E-08	7.05E-09	7.37E-09	5.09E-10	1.49E-08	3.77E-09	3.46E-09	2.13E-10	7.44E-09
1104	764969.84	4090792.19	4.84E-08	4.87E-08	3.46E-09	1.01E-07	7.56E-09	7.90E-09	5.46E-10		4.04E-09	3.71E-09		7.99E-09
1105	765008.83	4090809.81	5.17E-08	5.20E-08	3.69E-09	1.07E-07	8.07E-09	8.43E-09	5.83E-10		4.32E-09	3.96E-09	2.44E-10	
1106	765047.82	4090827.42	5.49E-08	5.52E-08	3.92E-09	1.14E-07	8.57E-09	8.96E-09	6.19E-10		4.58E-09	4.21E-09	2.59E-10	9.05E-09
1107	765086.81	4090845.03	5.81E-08	5.84E-08	4.15E-09	1.21E-07	9.07E-09	9.48E-09	6.55E-10	1.92E-08	4.85E-09	4.45E-09		9.58E-09
1108	765125.81	4090862.65	6.13E-08	6.16E-08	4.38E-09	1.27E-07	9.57E-09	1.00E-08	6.91E-10	2.03E-08	5.12E-09	4.70E-09	2.89E-10	1.01E-08
1109	765164.8	4090880.26	6.46E-08	6.49E-08	4.61E-09	1.34E-07	1.01E-08	1.05E-08	7.29E-10	2.14E-08	5.39E-09	4.95E-09	3.05E-10	1.07E-08
1110	765203.79	4090897.87	6.81E-08	6.84E-08	4.86E-09	1.41E-07	1.06E-08	1.11E-08	7.68E-10	2.25E-08	5.68E-09	5.22E-09	3.22E-10	1.12E-08
1111	765242.78	4090915.49	7.18E-08	7.21E-08	5.12E-09	1.49E-07		1.17E-08			5.99E-09	5.50E-09	3.39E-10	1.18E-08
1112	765281.78	4090933.1	7.56E-08	7.60E-08	5.40E-09	1.57E-07	1.18E-08	1.23E-08	8.53E-10	2.50E-08	6.31E-09	5.80E-09	3.57E-10	1.25E-08
1113	765320.77	4090950.71	7.97E-08	8.02E-08	5.69E-09	1.66E-07	1.25E-08	1.30E-08	8.99E-10	2.64E-08	6.66E-09	6.11E-09	3.77E-10	1.31E-08
1114	765359.76	4090968.33	8.40E-08	8.45E-08	6.00E-09	1.74E-07	1.31E-08	1.37E-08	9.48E-10	2.78E-08	7.02E-09	6.44E-09	3.97E-10	1.39E-08
1115	765398.75	4090985.94	8.84E-08	8.88E-08	6.31E-09	1.84E-07	1.38E-08	1.44E-08	9.97E-10	2.92E-08	7.38E-09	6.78E-09	4.17E-10	1.46E-08
1116	765437.75	4091003.56	9.28E-08	9.32E-08	6.62E-09	1.93E-07	1.45E-08	1.51E-08	1.05E-09	3.07E-08	7.75E-09	7.11E-09	4.38E-10	1.53E-08
1117	765484.25	4091041.2	1.01E-07	1.01E-07	7.20E-09	2.09E-07	1.58E-08	1.65E-08	1.14E-09	3.34E-08	8.42E-09	7.74E-09	4.77E-10	1.66E-08
1118	765499.27	4091081.26	1.09E-07	1.09E-07	7.77E-09	2.26E-07	1.70E-08	1.78E-08	1.23E-09	3.60E-08	9.09E-09	8.34E-09	5.14E-10	1.79E-08
1119	765514.29	4091121.33	1.17E-07	1.18E-07	8.37E-09	2.44E-07	1.83E-08	1.91E-08	1.32E-09	3.88E-08	9.79E-09	8.99E-09	5.54E-10	1.93E-08
1120	765529.3	4091161.39	1.26E-07	1.27E-07	9.01E-09	2.62E-07	1.97E-08	2.06E-08	1.42E-09	4.17E-08	1.05E-08	9.68E-09	5.96E-10	2.08E-08
1121	765544.32	4091201.45	1.35E-07	1.36E-07	9.67E-09	2.81E-07	2.12E-08	2.21E-08	1.53E-09	4.48E-08	1.13E-08	1.04E-08	6.40E-10	2.23E-08

112	765559.34	4091241.52	1.45E-07	1.46E-07	1.03E-08	3.01E-07	2.26E-08	2.36E-08	1.63E-09	4.79E-08	1.21E-08	1.11E-08	6.84E-10	2.39E-08
112	765574.36	4091281.58	1.54E-07	1.55E-07	1.10E-08	3.20E-07	2.41E-08	2.51E-08	1.74E-09	5.09E-08	1.29E-08	1.18E-08	7.27E-10	2.54E-08
112	765589.38	4091321.65	1.63E-07	1.64E-07	1.16E-08	3.38E-07	2.54E-08	2.65E-08	1.84E-09	5.38E-08	1.36E-08	1.25E-08	7.68E-10	2.68E-08
112	765604.4	4091361.71	1.70E-07	1.71E-07	1.22E-08	3.54E-07	2.66E-08	2.78E-08	1.92E-09	5.64E-08	1.42E-08	1.31E-08	8.05E-10	2.81E-08
112	765619.42	4091401.77	1.77E-07	1.78E-07	1.26E-08	3.67E-07	2.76E-08	2.89E-08	1.99E-09	5.85E-08	1.48E-08	1.36E-08	8.35E-10	2.92E-08
112	765634.44	4091441.84	1.82E-07	1.83E-07	1.30E-08	3.77E-07	2.84E-08	2.96E-08	2.05E-09	6.01E-08	1.52E-08	1.39E-08	8.58E-10	3.00E-08
112	765649.45	4091481.9	1.85E-07	1.86E-07	1.32E-08	3.83E-07	2.88E-08	3.01E-08	2.08E-09	6.11E-08	1.54E-08	1.42E-08	8.72E-10	3.04E-08
112	765664.47	4091521.96	1.86E-07	1.87E-07	1.33E-08	3.86E-07	2.90E-08	3.03E-08	2.09E-09	6.14E-08	1.55E-08	1.42E-08	8.77E-10	3.06E-08
113	765679.49	4091562.03	1.85E-07	1.86E-07	1.32E-08	3.84E-07	2.88E-08	3.01E-08	2.08E-09	6.11E-08	1.54E-08	1.42E-08	8.72E-10	3.05E-08
113	765694.51	4091602.09	1.82E-07	1.83E-07	1.30E-08	3.78E-07	2.84E-08	2.97E-08	2.05E-09	6.02E-08	1.52E-08	1.40E-08	8.59E-10	3.00E-08
113	765709.53	4091642.15	1.78E-07	1.78E-07	1.27E-08	3.69E-07	2.77E-08	2.90E-08	2.00E-09	5.87E-08	1.48E-08	1.36E-08	8.39E-10	2.93E-08
113	765724.55	4091682.22	1.72E-07	1.72E-07	1.22E-08	3.56E-07	2.68E-08	2.80E-08	1.93E-09	5.67E-08	1.43E-08	1.32E-08	8.10E-10	2.83E-08
113	765739.57	4091722.28	1.65E-07	1.65E-07	1.17E-08	3.42E-07	2.57E-08	2.68E-08	1.86E-09	5.44E-08	1.37E-08	1.26E-08	7.77E-10	2.71E-08
113	765754.59	4091762.34	1.57E-07	1.57E-07	1.12E-08	3.25E-07	2.45E-08	2.56E-08	1.77E-09	5.18E-08	1.31E-08	1.20E-08	7.40E-10	2.58E-08
113	765769.61	4091802.41	1.48E-07	1.49E-07	1.06E-08	3.08E-07	2.31E-08	2.42E-08	1.67E-09	4.90E-08	1.24E-08	1.14E-08	7.00E-10	2.44E-08
113	765784.62	4091842.47	1.39E-07	1.40E-07	9.96E-09	2.90E-07	2.18E-08	2.28E-08	1.57E-09	4.61E-08	1.16E-08	1.07E-08	6.59E-10	2.30E-08
113	765799.64	4091882.53	1.31E-07	1.32E-07	9.35E-09	2.72E-07	2.05E-08	2.14E-08	1.48E-09	4.33E-08	1.09E-08	1.00E-08	6.19E-10	2.16E-08
113	765814.66	4091922.6	1.23E-07	1.23E-07	8.77E-09	2.55E-07	1.92E-08	2.00E-08	1.39E-09	4.06E-08	1.03E-08	9.41E-09	5.80E-10	2.02E-08
114	765829.68	4091962.66	1.15E-07	1.16E-07	8.22E-09	2.39E-07	1.80E-08	1.88E-08	1.30E-09	3.81E-08	9.61E-09	8.83E-09	5.44E-10	1.90E-08
114	765844.7	4092002.73	1.08E-07	1.09E-07	7.71E-09	2.24E-07	1.69E-08	1.76E-08	1.22E-09	3.57E-08	9.02E-09	8.28E-09	5.10E-10	1.78E-08
114	765859.72	4092042.79	1.02E-07	1.02E-07	7.26E-09	2.11E-07	1.59E-08	1.66E-08	1.15E-09	3.36E-08	8.49E-09	7.79E-09	4.80E-10	1.68E-08
114	765874.74	4092082.85	9.59E-08	9.64E-08	6.85E-09	1.99E-07	1.50E-08	1.56E-08	1.08E-09	3.17E-08	8.01E-09	7.35E-09	4.53E-10	1.58E-08
114	765889.76	4092122.92	9.07E-08	9.12E-08	6.48E-09	1.88E-07	1.42E-08	1.48E-08	1.02E-09	3.00E-08	7.57E-09	6.95E-09	4.28E-10	1.50E-08
114	765904.78	4092162.98	8.60E-08	8.65E-08	6.14E-09	1.79E-07	1.34E-08	1.40E-08	9.70E-10	2.84E-08	7.18E-09	6.60E-09	4.06E-10	1.42E-08
114	765919.79	4092203.04	8.17E-08	8.21E-08	5.83E-09	1.70E-07	1.28E-08	1.33E-08	9.22E-10	2.70E-08	6.82E-09	6.27E-09	3.86E-10	1.35E-08
114	764265.92	4090483.3	1.52E-08	1.53E-08	1.09E-09	3.17E-08	2.38E-09	2.49E-09	1.72E-10	5.04E-09	1.27E-09	1.17E-09	7.20E-11	2.51E-09
114	764222.83	4090481.99	1.48E-08	1.49E-08	1.06E-09	3.08E-08	2.32E-09	2.42E-09	1.67E-10	4.91E-09	1.24E-09	1.14E-09	7.01E-11	2.45E-09
114	764179.73	4090480.68	1.44E-08	1.45E-08	1.03E-09	3.00E-08	2.26E-09	2.36E-09	1.63E-10	4.77E-09	1.21E-09	1.11E-09	6.82E-11	2.38E-09
115	764136.64	4090479.37	1.41E-08	1.42E-08	1.01E-09	2.93E-08	2.20E-09	2.30E-09	1.59E-10	4.66E-09	1.18E-09	1.08E-09	6.65E-11	2.32E-09
115	764067.7	4091929.19	2.47E-07	2.48E-07	1.76E-08	5.12E-07	3.85E-08	4.02E-08	2.78E-09	8.15E-08	2.06E-08	1.89E-08	1.17E-09	4.07E-08
115	764064.24	4091879.31	1.85E-07	1.86E-07	1.32E-08	3.84E-07	2.89E-08	3.02E-08	2.09E-09	6.11E-08	1.54E-08	1.42E-08	8.73E-10	3.05E-08
115	764070.6	4091779.29	1.21E-07	1.21E-07	8.63E-09	2.51E-07	1.89E-08	1.97E-08	1.36E-09	3.99E-08	1.01E-08	9.26E-09	5.71E-10	1.99E-08
115	764037.59	4091780.92	1.12E-07	1.12E-07	7.97E-09	2.32E-07	1.74E-08	1.82E-08	1.26E-09	3.69E-08	9.32E-09	8.56E-09	5.27E-10	1.84E-08
115	764066.99	4091679.47	8.43E-08	8.48E-08	6.02E-09	1.75E-07	1.32E-08	1.38E-08	9.51E-10	2.79E-08	7.04E-09	6.47E-09	3.98E-10	1.39E-08
115	764030.66	4091681.16	7.90E-08	7.94E-08	5.64E-09	1.64E-07	1.23E-08	1.29E-08	8.91E-10	2.61E-08	6.60E-09	6.06E-09	3.73E-10	1.30E-08
115	764058.39	4091579.74	6.25E-08	6.28E-08	4.46E-09	1.30E-07	9.76E-09	1.02E-08	7.05E-10	2.07E-08	5.22E-09	4.79E-09	2.95E-10	1.03E-08
115	764023.73	4091581.4	5.96E-08	5.99E-08	4.25E-09	1.24E-07	9.30E-09	9.72E-09	6.72E-10	1.97E-08	4.97E-09	4.57E-09	2.81E-10	9.82E-09
115	764053.95	4091479.93	4.89E-08	4.92E-08	3.49E-09	1.02E-07	7.64E-09	7.99E-09	5.52E-10	1.62E-08	4.09E-09	3.75E-09	2.31E-10	8.07E-09
116	764016.79	4091481.64	4.69E-08	4.72E-08	3.35E-09	9.75E-08	7.33E-09	7.66E-09	5.30E-10	1.55E-08	3.92E-09	3.60E-09	2.22E-10	7.74E-09
116	764040.58	4091280.41	3.30E-08	3.32E-08	2.36E-09	6.86E-08	5.16E-09	5.39E-09	3.72E-10	1.09E-08	2.76E-09	2.53E-09	1.56E-10	5.44E-09
116	764076.47	4091279.71	3.41E-08	3.42E-08	2.43E-09	7.08E-08	5.32E-09	5.56E-09	3.84E-10	1.13E-08	2.84E-09	2.61E-09	1.61E-10	5.62E-09
116	764002.92	4091282.13	3.20E-08	3.22E-08	2.29E-09	6.65E-08	5.00E-09	5.23E-09	3.61E-10	1.06E-08	2.68E-09	2.46E-09	1.51E-10	5.28E-09
116	764027.04	4091080.88	2.44E-08	2.45E-08	1.74E-09	5.06E-08	3.81E-09	3.98E-09	2.75E-10	8.06E-09	2.03E-09	1.87E-09	1.15E-10	4.02E-09
116	764063.6	4091080.17	2.50E-08	2.51E-08	1.78E-09	5.19E-08	3.90E-09	4.08E-09	2.82E-10	8.26E-09	2.09E-09	1.92E-09	1.18E-10	4.12E-09
116	763989.06	4091082.61	2.38E-08	2.39E-08	1.70E-09	4.95E-08	3.72E-09	3.89E-09	2.69E-10	7.88E-09	1.99E-09	1.83E-09	1.13E-10	3.93E-09

11	67 764013	3.41	4090881.36	1.91E-08	1.92E-08	1.36E-09	3.97E-08	2.98E-09	3.12E-09	2.15E-10	6.31E-09	1.59E-09	1.46E-09	9.02E-11	3.15E-09
11	68 764050).44	4090880.63	1.95E-08	1.96E-08	1.39E-09	4.05E-08	3.04E-09	3.18E-09	2.20E-10	6.45E-09	1.63E-09	1.49E-09	9.21E-11	3.21E-09
11	69 764087	7.47	4090879.91	1.99E-08	2.00E-08	1.42E-09	4.14E-08	3.11E-09	3.25E-09	2.25E-10	6.59E-09	1.66E-09	1.53E-09	9.41E-11	3.29E-09
11	70 763975	5.19	4090883.09	1.88E-08	1.89E-08	1.34E-09	3.90E-08	2.93E-09	3.06E-09	2.12E-10	6.20E-09	1.57E-09	1.44E-09	8.86E-11	3.09E-09
11	71 763999	9.72	4090681.84	1.56E-08	1.57E-08	1.11E-09	3.24E-08	2.44E-09	2.55E-09	1.76E-10	5.16E-09	1.30E-09	1.20E-09	7.38E-11	2.57E-09
11	72 764037	7.11	4090681.11	1.59E-08	1.60E-08	1.13E-09	3.30E-08	2.48E-09	2.59E-09	1.79E-10	5.25E-09	1.33E-09	1.22E-09	7.51E-11	2.62E-09
11	73 764074	1.49	4090680.38	1.62E-08	1.63E-08	1.16E-09	3.36E-08	2.53E-09	2.64E-09	1.83E-10	5.35E-09	1.35E-09	1.24E-09	7.64E-11	2.67E-09
11	74 763963	L.32	4090683.57	1.54E-08	1.55E-08	1.10E-09	3.19E-08	2.40E-09	2.51E-09	1.73E-10	5.08E-09	1.28E-09	1.18E-09	7.26E-11	2.53E-09
11	75 763985	5.99	4090482.31	1.32E-08	1.32E-08	9.39E-10	2.73E-08	2.05E-09	2.15E-09	1.48E-10	4.35E-09	1.10E-09	1.01E-09	6.21E-11	2.17E-09
11	76 764023	3.65	4090481.58	1.34E-08	1.34E-08	9.53E-10	2.77E-08	2.09E-09	2.18E-09	1.51E-10	4.42E-09	1.12E-09	1.02E-09	6.31E-11	2.20E-09
11	77 764062	l.31	4090480.84	1.36E-08	1.37E-08	9.70E-10	2.82E-08	2.12E-09	2.22E-09	1.53E-10	4.49E-09	1.13E-09	1.04E-09	6.42E-11	2.24E-09
11	78 764098	3.98	4090480.11	1.38E-08	1.39E-08	9.86E-10	2.87E-08	2.16E-09	2.25E-09	1.56E-10	4.57E-09	1.15E-09	1.06E-09	6.52E-11	2.28E-09
11	79 763947	7.45	4090484.05	1.30E-08	1.31E-08	9.27E-10	2.70E-08	2.03E-09	2.12E-09	1.46E-10	4.29E-09	1.08E-09	9.96E-10	6.13E-11	2.14E-09
11	80 764025	5.05	4091983.57	2.81E-07	2.83E-07	2.01E-08	5.84E-07	4.39E-08	4.59E-08	3.17E-09	9.30E-08	2.35E-08	2.16E-08	1.33E-09	4.64E-08
11	81 764040	0.08	4091931.37	2.21E-07	2.23E-07	1.58E-08	4.60E-07	3.46E-08	3.61E-08	2.50E-09	7.32E-08	1.85E-08	1.70E-08	1.05E-09	3.65E-08
11	82 764035	5.03	4091881.65	1.68E-07	1.69E-07	1.20E-08	3.50E-07	2.63E-08	2.75E-08	1.90E-09	5.57E-08	1.41E-08	1.29E-08	7.96E-10	2.78E-08
11	83 764013	L.79	4091884.45	1.58E-07	1.58E-07	1.12E-08	3.27E-07	2.46E-08	2.57E-08	1.78E-09	5.21E-08	1.32E-08	1.21E-08	7.44E-10	2.60E-08
11	84 764012	2.28	4091783.49	1.06E-07	1.06E-07	7.55E-09	2.20E-07	1.65E-08	1.73E-08	1.19E-09	3.50E-08	8.83E-09	8.11E-09	5.00E-10	1.74E-08
11	85 763999	9.01	4091684.38	7.51E-08	7.55E-08	5.36E-09	1.56E-07	1.17E-08	1.23E-08	8.48E-10	2.48E-08	6.27E-09	5.76E-09	3.55E-10	1.24E-08
11	86 763998	3.41	4091583.98	5.77E-08	5.80E-08	4.12E-09	1.20E-07	9.02E-09	9.42E-09	6.51E-10	1.91E-08	4.82E-09	4.43E-09	2.73E-10	9.52E-09
11	87 763	972	4091587.1	5.59E-08	5.62E-08	3.99E-09	1.16E-07	8.73E-09	9.12E-09	6.31E-10	1.85E-08	4.67E-09	4.29E-09	2.64E-10	9.22E-09
11	88 763983	3.56	4091485.02	4.54E-08	4.57E-08	3.24E-09	9.44E-08	7.10E-09	7.41E-09	5.13E-10	1.50E-08	3.79E-09	3.48E-09	2.15E-10	7.49E-09
11	89 763958	3.73	4091487.98	4.44E-08	4.46E-08	3.17E-09	9.21E-08	6.93E-09	7.24E-09	5.00E-10	1.47E-08	3.70E-09	3.40E-09	2.10E-10	7.31E-09
11	90 763957	7.35	4091286.75	3.11E-08	3.12E-08	2.22E-09	6.45E-08	4.85E-09	5.07E-09	3.50E-10	1.03E-08	2.59E-09	2.38E-09	1.47E-10	5.12E-09
11	91 763980).14	4091284.44	3.15E-08	3.17E-08	2.25E-09	6.55E-08	4.93E-09	5.15E-09	3.56E-10	1.04E-08	2.63E-09	2.42E-09	1.49E-10	5.20E-09
11	92 763932	2.21	4091289.75	3.05E-08	3.07E-08	2.18E-09	6.34E-08	4.77E-09	4.98E-09	3.45E-10	1.01E-08	2.55E-09	2.34E-09	1.44E-10	5.04E-09
11	93 763932	L.03	4091088.5	2.31E-08	2.33E-08	1.65E-09	4.80E-08	3.61E-09	3.77E-09	2.61E-10	7.65E-09	1.93E-09	1.77E-09	1.09E-10	3.81E-09
11	94 763954	1.24	4091086.14	2.34E-08	2.35E-08	1.67E-09	4.86E-08	3.66E-09	3.82E-09	2.64E-10	7.74E-09	1.95E-09	1.79E-09	1.11E-10	3.86E-09
11	95 763905	5.68	4091091.52	2.28E-08	2.30E-08	1.63E-09	4.74E-08	3.57E-09	3.73E-09	2.58E-10	7.55E-09	1.91E-09	1.75E-09	1.08E-10	3.77E-09
11	96 763906	5.62	4090890.05	1.82E-08	1.83E-08	1.30E-09	3.79E-08	2.85E-09	2.98E-09	2.06E-10	6.03E-09	1.52E-09	1.40E-09	8.62E-11	3.01E-09
11	97 763934	1.05	4090887.27	1.84E-08	1.85E-08	1.32E-09	3.83E-08	2.88E-09	3.01E-09	2.08E-10	6.10E-09	1.54E-09	1.41E-09	8.71E-11	3.04E-09
11	98 763879	9.15	4090893.29	1.80E-08	1.81E-08	1.29E-09	3.75E-08	2.82E-09	2.94E-09	2.04E-10	5.97E-09	1.51E-09	1.38E-09	8.52E-11	2.98E-09
11	99 763879	9.94	4090691.84	1.50E-08	1.51E-08	1.07E-09	3.11E-08	2.34E-09	2.44E-09	1.69E-10	4.95E-09	1.25E-09	1.15E-09	7.07E-11	2.47E-09
12	00 763907	7.07	4090689.08	1.51E-08	1.52E-08	1.08E-09	3.13E-08	2.36E-09	2.46E-09	1.70E-10	4.99E-09	1.26E-09	1.16E-09	7.13E-11	2.49E-09
12	01 763934	1.19	4090686.33	1.52E-08	1.53E-08	1.09E-09	3.16E-08	2.38E-09	2.49E-09	1.72E-10	5.04E-09	1.27E-09	1.17E-09	7.20E-11	2.51E-09
12	02 763852	2.63	4090695.05	1.48E-08	1.49E-08	1.06E-09	3.08E-08	2.32E-09	2.42E-09			1.24E-09	1.14E-09		
12			4090493.61		1.27E-08	9.03E-10	2.63E-08	1.98E-09		1.43E-10		1.06E-09	9.70E-10	5.98E-11	
12			4090490.88	1.27E-08	1.28E-08	9.10E-10	2.65E-08	1.99E-09	2.08E-09	1.44E-10	4.21E-09	1.06E-09	9.77E-10		
12			4090488.15		1.29E-08	9.16E-10	2.67E-08	2.00E-09	2.09E-09				9.84E-10	6.06E-11	
12			4090496.82		1.26E-08	8.96E-10	2.60E-08	1.96E-09	2.05E-09			1.05E-09	9.62E-10		
12			4091989.62		2.58E-07	1.83E-08	5.33E-07	4.01E-08	4.19E-08	2.90E-09		2.14E-08	1.97E-08	1.21E-09	
12			4091997.69	2.36E-07		1.68E-08	4.89E-07	3.68E-08	3.84E-08		7.79E-08	1.97E-08	1.81E-08	1.11E-09	
12			4091942.53		1.86E-07	1.32E-08	3.85E-07	2.89E-08	3.02E-08		6.13E-08	1.55E-08	1.42E-08	8.75E-10	
12			4091936.85			1.42E-08	4.12E-07	3.10E-08	3.24E-08		6.56E-08		1.52E-08	9.37E-10	
12	11 763955	5.68	4091950.4	1.73E-07	1.74E-07	1.24E-08	3.59E-07	2.70E-08	2.82E-08	1.95E-09	5.72E-08	1.44E-08	1.33E-08	8.17E-10	2.85E-08

1212	763968.53	4091894.67	1.42E-07	1.43E-07	1.02E-08	2.96E-07	2.22E-08	2.32E-08	1.61E-09		1.19E-08	1.09E-08	6.73E-10	
1213	763939.43	4091903.12	1.34E-07	1.34E-07	9.54E-09	2.78E-07	2.09E-08	2.18E-08	1.51E-09		1.12E-08	1.03E-08	6.31E-10	
1214	763934.43	4091800.47	9.23E-08	9.28E-08	6.59E-09	1.92E-07	1.44E-08	1.51E-08	1.04E-09		7.71E-09	7.08E-09	4.36E-10	
1215	763960.07	4091794.42	9.65E-08	9.70E-08	6.89E-09	2.00E-07	1.51E-08	1.58E-08	1.09E-09		8.06E-09	7.40E-09	4.56E-10	
1216	763985.71	4091788.36	1.01E-07	1.01E-07	7.20E-09	2.09E-07	1.57E-08	1.64E-08	1.14E-09		8.42E-09	7.73E-09	4.76E-10	
1217	763906.94	4091808.54	8.82E-08	8.86E-08	6.29E-09	1.83E-07	1.38E-08	1.44E-08	9.95E-10		7.36E-09	6.76E-09	4.16E-10	
1218	763902.86	4091705.68	6.60E-08	6.63E-08	4.71E-09	1.37E-07	1.03E-08	1.08E-08	7.44E-10		5.51E-09	5.06E-09	3.12E-10	
1219	763930.32	4091699.2	6.86E-08	6.89E-08	4.90E-09	1.42E-07	1.07E-08	1.12E-08	7.74E-10		5.73E-09	5.26E-09	3.24E-10	
1220	763957.79	4091692.71	7.11E-08	7.15E-08	5.08E-09	1.48E-07	1.11E-08	1.16E-08	8.02E-10	2.35E-08	5.94E-09	5.45E-09	3.36E-10	1.17E-08
1221	763874.45	4091713.97	6.35E-08	6.38E-08	4.53E-09	1.32E-07	9.91E-09	1.04E-08		2.10E-08	5.30E-09	4.87E-09	3.00E-10	1.05E-08
1222	763871.05	4091610.95	5.01E-08	5.04E-08	3.58E-09	1.04E-07	7.83E-09	8.18E-09	5.65E-10	1.66E-08	4.18E-09	3.84E-09	2.37E-10	8.26E-09
1223	763899.89	4091604.13	5.19E-08	5.21E-08	3.70E-09	1.08E-07	8.10E-09	8.46E-09		1.71E-08	4.33E-09	3.98E-09	2.45E-10	8.55E-09
1224	763928.74	4091597.32	5.35E-08	5.38E-08	3.82E-09	1.11E-07	8.36E-09	8.74E-09	6.04E-10	1.77E-08	4.47E-09	4.10E-09	2.53E-10	8.83E-09
1225	763841.96	4091619.39	4.84E-08	4.87E-08	3.46E-09	1.01E-07	7.56E-09	7.90E-09	5.46E-10	1.60E-08	4.04E-09	3.71E-09	2.29E-10	
1226	763839.09	4091516.25	3.98E-08	4.00E-08	2.84E-09	8.26E-08	6.21E-09	6.49E-09	4.48E-10	1.31E-08	3.32E-09	3.05E-09	1.88E-10	
1227	763869	4091509.18	4.10E-08	4.12E-08	2.93E-09	8.52E-08	6.40E-09	6.69E-09	4.63E-10	1.36E-08	3.42E-09	3.14E-09	1.94E-10	6.76E-09
1228	763898.91	4091502.12	4.22E-08	4.24E-08	3.01E-09	8.76E-08	6.59E-09	6.89E-09	4.76E-10	1.40E-08	3.52E-09	3.24E-09	1.99E-10	6.96E-09
1229	763928.82	4091495.05	4.33E-08	4.35E-08	3.09E-09	8.99E-08	6.76E-09	7.07E-09	4.89E-10	1.43E-08	3.62E-09	3.32E-09	2.05E-10	7.14E-09
1230	763809.47	4091524.82	3.86E-08	3.88E-08	2.75E-09	8.01E-08	6.02E-09	6.29E-09	4.35E-10	1.28E-08	3.22E-09	2.96E-09	1.82E-10	6.36E-09
1231	763773.58	4091327.23	2.74E-08	2.75E-08	1.95E-09	5.68E-08	4.27E-09	4.47E-09	3.09E-10	9.05E-09	2.28E-09	2.10E-09	1.29E-10	4.51E-09
1232	763802.42	4091320.41	2.81E-08	2.82E-08	2.00E-09	5.82E-08	4.38E-09	4.58E-09	3.16E-10	9.27E-09	2.34E-09	2.15E-09	1.33E-10	4.63E-09
1233	763831.26	4091313.6	2.87E-08	2.88E-08	2.05E-09	5.96E-08	4.48E-09	4.68E-09	3.24E-10	9.49E-09	2.40E-09	2.20E-09	1.36E-10	4.73E-09
1234	763860.1	4091306.79	2.93E-08	2.94E-08	2.09E-09	6.08E-08	4.57E-09	4.78E-09	3.30E-10	9.68E-09	2.45E-09	2.25E-09	1.38E-10	4.83E-09
1235	763888.94	4091299.97	2.98E-08	3.00E-08	2.13E-09	6.19E-08	4.66E-09	4.87E-09	3.36E-10	9.86E-09	2.49E-09	2.29E-09	1.41E-10	4.92E-09
1236	763744.48	4091335.67	2.67E-08	2.68E-08	1.91E-09	5.54E-08	4.17E-09	4.36E-09	3.01E-10	8.83E-09	2.23E-09	2.05E-09	1.26E-10	4.40E-09
1237	763708.27	4091138.15	2.04E-08	2.05E-08	1.46E-09	4.24E-08	3.19E-09	3.33E-09	2.30E-10	6.75E-09	1.71E-09	1.57E-09	9.65E-11	3.37E-09
1238	763736.47	4091131.49	2.09E-08	2.10E-08	1.49E-09	4.33E-08	3.26E-09	3.41E-09	2.35E-10	6.90E-09	1.74E-09	1.60E-09	9.86E-11	3.44E-09
1239	763764.67	4091124.83	2.13E-08	2.14E-08	1.52E-09	4.42E-08	3.32E-09	3.47E-09	2.40E-10	7.04E-09	1.78E-09	1.63E-09	1.01E-10	3.51E-09
1240	763792.88	4091118.17	2.17E-08	2.18E-08	1.55E-09	4.50E-08	3.38E-09	3.54E-09	2.44E-10	7.16E-09	1.81E-09	1.66E-09	1.02E-10	3.57E-09
1241	763821.08	4091111.5	2.20E-08	2.21E-08	1.57E-09	4.57E-08	3.44E-09	3.59E-09	2.48E-10	7.27E-09	1.84E-09	1.69E-09	1.04E-10	3.63E-09
1242	763849.28	4091104.84	2.23E-08	2.24E-08	1.59E-09	4.63E-08	3.48E-09	3.64E-09	2.52E-10	7.38E-09	1.86E-09	1.71E-09	1.05E-10	3.68E-09
1243	763877.48	4091098.18	2.26E-08	2.27E-08	1.61E-09	4.69E-08	3.53E-09	3.68E-09	2.55E-10	7.47E-09	1.89E-09	1.73E-09	1.07E-10	3.72E-09
1244	763679.5	4091146.52	2.00E-08	2.01E-08	1.43E-09	4.15E-08	3.12E-09	3.26E-09	2.26E-10	6.61E-09	1.67E-09	1.53E-09	9.45E-11	3.30E-09
1245	763643.89	4090948.86	1.61E-08	1.62E-08	1.15E-09	3.34E-08	2.52E-09	2.63E-09	1.82E-10	5.32E-09	1.34E-09	1.23E-09	7.61E-11	2.66E-09
1246	763673.3	4090941.91	1.64E-08	1.65E-08	1.17E-09	3.41E-08	2.57E-09	2.68E-09	1.85E-10	5.43E-09	1.37E-09	1.26E-09	7.76E-11	2.71E-09
1247	763702.71	4090934.97	1.67E-08	1.68E-08	1.19E-09	3.47E-08	2.61E-09	2.73E-09	1.89E-10	5.53E-09	1.40E-09	1.28E-09	7.90E-11	2.76E-09
1248	763732.11	4090928.02	1.70E-08	1.71E-08	1.22E-09	3.53E-08	2.66E-09	2.78E-09	1.92E-10	5.63E-09	1.42E-09	1.31E-09	8.04E-11	2.81E-09
1249	763761.52	4090921.07	1.73E-08	1.74E-08	1.23E-09	3.59E-08	2.70E-09	2.82E-09	1.95E-10	5.71E-09	1.44E-09	1.32E-09	8.16E-11	2.85E-09
1250	763790.93	4090914.13	1.75E-08	1.76E-08	1.25E-09	3.64E-08	2.73E-09	2.86E-09	1.98E-10	5.79E-09	1.46E-09	1.34E-09	8.27E-11	2.89E-09
1251	763820.34	4090907.18	1.77E-08	1.78E-08	1.26E-09	3.68E-08	2.77E-09	2.89E-09	2.00E-10	5.85E-09	1.48E-09	1.36E-09	8.36E-11	2.92E-09
1252	763849.75	4090900.23	1.79E-08	1.80E-08	1.28E-09	3.72E-08	2.79E-09	2.92E-09	2.02E-10	5.92E-09	1.49E-09	1.37E-09	8.45E-11	2.95E-09
1253	763614.52	4090957.37	1.58E-08	1.59E-08	1.13E-09	3.28E-08	2.46E-09	2.58E-09	1.78E-10	5.22E-09	1.32E-09	1.21E-09	7.45E-11	2.60E-09
1254	763578.62	4090759.78	1.32E-08	1.32E-08	9.39E-10	2.73E-08	2.05E-09	2.15E-09	1.48E-10	4.35E-09	1.10E-09	1.01E-09	6.21E-11	2.17E-09
1255	763607.47	4090752.97	1.34E-08	1.35E-08	9.57E-10	2.78E-08	2.09E-09	2.19E-09	1.51E-10	4.43E-09	1.12E-09	1.03E-09	6.33E-11	2.21E-09
1256	763636.31	4090746.15	1.36E-08	1.37E-08	9.73E-10	2.83E-08	2.13E-09	2.22E-09	1.54E-10	4.51E-09	1.14E-09	1.04E-09	6.44E-11	2.25E-09

1257	763665.15	4090739.34	1.38E-08	1.39E-08	9.88E-10	2.87E-08	2.16E-09	2.26E-09	1.56E-10	4.58E-09	1.16E-09	1.06E-09	6.54E-11	2.28E-09
1258	763693.99	4090732.53	1.40E-08	1.41E-08	1.00E-09	2.92E-08	2.19E-09	2.29E-09	1.58E-10	4.64E-09	1.17E-09	1.08E-09	6.63E-11	2.32E-09
1259	763722.84	4090725.71	1.42E-08	1.43E-08	1.02E-09	2.95E-08	2.22E-09	2.32E-09	1.60E-10	4.70E-09	1.19E-09	1.09E-09	6.72E-11	2.35E-09
1260	763751.68	4090718.9	1.44E-08	1.45E-08	1.03E-09	2.99E-08	2.25E-09	2.35E-09	1.62E-10	4.76E-09	1.20E-09	1.10E-09	6.80E-11	2.37E-09
1261	763780.52	4090712.09	1.45E-08	1.46E-08	1.04E-09	3.02E-08	2.27E-09	2.37E-09	1.64E-10	4.80E-09	1.21E-09	1.11E-09	6.86E-11	2.40E-09
1262	763809.36	4090705.27	1.47E-08	1.47E-08	1.05E-09	3.05E-08	2.29E-09	2.39E-09	1.65E-10	4.85E-09	1.22E-09	1.12E-09	6.93E-11	2.42E-09
1263	763549.53	4090768.23	1.29E-08	1.30E-08	9.23E-10	2.68E-08	2.02E-09	2.11E-09	1.46E-10	4.27E-09	1.08E-09	9.91E-10	6.11E-11	2.13E-09
1264	763514.08	4090570.53	1.11E-08	1.11E-08	7.90E-10	2.30E-08	1.73E-09	1.80E-09	1.25E-10	3.66E-09	9.24E-10	8.48E-10	5.23E-11	1.82E-09
1265	763543.79	4090563.51	1.12E-08	1.13E-08	8.03E-10	2.34E-08	1.76E-09	1.83E-09	1.27E-10	3.72E-09	9.39E-10	8.62E-10	5.31E-11	1.85E-09
1266	763573.51	4090556.49	1.14E-08	1.15E-08	8.17E-10	2.38E-08	1.79E-09	1.87E-09	1.29E-10	3.78E-09	9.56E-10	8.77E-10	5.41E-11	1.89E-09
1267	763603.23	4090549.47	1.16E-08	1.17E-08	8.29E-10	2.41E-08	1.81E-09	1.89E-09	1.31E-10	3.84E-09	9.70E-10	8.90E-10	5.48E-11	1.91E-09
1268	763632.94	4090542.45	1.18E-08	1.18E-08	8.41E-10	2.45E-08	1.84E-09	1.92E-09	1.33E-10	3.89E-09	9.84E-10	9.03E-10	5.56E-11	1.94E-09
1269	763662.66	4090535.43	1.19E-08	1.20E-08	8.52E-10	2.48E-08	1.86E-09	1.95E-09	1.35E-10	3.95E-09	9.96E-10	9.15E-10	5.64E-11	1.97E-09
1270	763692.38	4090528.41	1.21E-08	1.21E-08	8.63E-10	2.51E-08	1.89E-09	1.97E-09	1.36E-10	4.00E-09	1.01E-09	9.27E-10	5.71E-11	1.99E-09
1271	763722.09	4090521.39	1.22E-08	1.23E-08	8.72E-10	2.53E-08	1.91E-09	1.99E-09	1.38E-10	4.04E-09	1.02E-09	9.36E-10	5.77E-11	2.01E-09
1272	763751.81	4090514.37	1.23E-08	1.24E-08	8.80E-10	2.56E-08	1.93E-09	2.01E-09	1.39E-10	4.08E-09	1.03E-09	9.45E-10	5.82E-11	2.03E-09
1273	763781.52	4090507.35	1.24E-08	1.25E-08	8.87E-10	2.58E-08	1.94E-09	2.03E-09	1.40E-10	4.11E-09	1.04E-09	9.52E-10	5.87E-11	2.05E-09
1274	763484.55	4090579.08	1.09E-08	1.09E-08	7.77E-10	2.26E-08	1.70E-09	1.78E-09	1.23E-10	3.60E-09	9.08E-10	8.34E-10	5.14E-11	1.79E-09
1275	763917.65	4091910.91	1.28E-07	1.29E-07	9.13E-09	2.66E-07	2.00E-08	2.09E-08	1.44E-09	4.23E-08	1.07E-08	9.81E-09	6.04E-10	2.11E-08
1276	763883.86	4091816.79	8.50E-08	8.54E-08	6.07E-09	1.76E-07	1.33E-08	1.39E-08	9.59E-10	2.81E-08	7.10E-09	6.52E-09	4.01E-10	1.40E-08
1277	763850.06	4091722.68	6.14E-08	6.18E-08	4.39E-09	1.28E-07	9.60E-09	1.00E-08	6.93E-10	2.03E-08	5.13E-09	4.71E-09	2.90E-10	1.01E-08
1278	763816.27	4091628.56	4.70E-08	4.73E-08	3.36E-09	9.77E-08	7.35E-09	7.68E-09	5.31E-10	1.56E-08	3.93E-09	3.61E-09	2.22E-10	7.76E-09
1279	763782.47	4091534.44	3.75E-08	3.77E-08	2.68E-09	7.79E-08	5.86E-09	6.12E-09	4.23E-10	1.24E-08	3.13E-09	2.88E-09	1.77E-10	6.19E-09
1280	763714.89	4091346.21	2.60E-08	2.62E-08	1.86E-09	5.41E-08	4.07E-09	4.25E-09	2.94E-10	8.61E-09	2.17E-09	2.00E-09	1.23E-10	4.29E-09
1281	763647.3	4091157.97	1.95E-08	1.96E-08	1.39E-09	4.05E-08	3.05E-09	3.19E-09	2.20E-10	6.46E-09	1.63E-09	1.50E-09	9.22E-11	3.22E-09
1282	763579.71	4090969.74	1.54E-08	1.55E-08	1.10E-09	3.20E-08	2.41E-09	2.52E-09	1.74E-10	5.10E-09	1.29E-09	1.18E-09	7.29E-11	2.54E-09
1283	763512.13	4090781.51	1.27E-08	1.27E-08	9.03E-10	2.63E-08	1.98E-09	2.06E-09	1.43E-10	4.18E-09	1.06E-09	9.70E-10	5.98E-11	2.09E-09
1284	763462.42	4090586.85	1.08E-08	1.08E-08	7.68E-10	2.23E-08	1.68E-09	1.76E-09	1.21E-10	3.56E-09	8.98E-10	8.25E-10	5.08E-11	1.77E-09
1285	763942.83	4092008.58	2.18E-07	2.19E-07	1.55E-08	4.52E-07	3.40E-08	3.55E-08	2.46E-09	7.20E-08	1.82E-08	1.67E-08	1.03E-09	3.59E-08
1286	763919.54	4092019.01	2.06E-07	2.07E-07	1.47E-08	4.28E-07	3.22E-08	3.36E-08	2.32E-09	6.81E-08	1.72E-08	1.58E-08	9.73E-10	3.40E-08
1287	763923.78	4091962.41	1.61E-07	1.62E-07	1.15E-08	3.34E-07	2.51E-08	2.63E-08	1.81E-09		1.34E-08	1.23E-08	7.60E-10	2.65E-08
1288	763898.33	4091973.73	1.53E-07	1.53E-07	1.09E-08	3.17E-07	2.38E-08	2.49E-08	1.72E-09		1.27E-08	1.17E-08	7.21E-10	2.52E-08
1289	763891.8	4091921.58	1.22E-07	1.22E-07	8.69E-09	2.53E-07	1.90E-08	1.99E-08	1.37E-09		1.02E-08	9.33E-09	5.75E-10	
1290	763860.88	4091826.27	8.20E-08	8.24E-08	5.85E-09	1.70E-07	1.28E-08	1.34E-08	9.25E-10		6.84E-09	6.28E-09	3.87E-10	
1291		4091837.88			5.61E-09	1.63E-07		1.28E-08			6.56E-09		3.71E-10	
		4091734.53			4.22E-09	1.23E-07		9.65E-09				4.54E-09		
	763792.31			5.71E-08	4.05E-09	1.18E-07				1.88E-08	4.74E-09	4.35E-09	2.68E-10	
		4091644.56		4.52E-08	3.21E-09	9.34E-08		7.34E-09	5.07E-10		3.76E-09	3.45E-09	2.12E-10	
1295	763749.9	4091656.76		4.37E-08	3.10E-09	9.02E-08		7.09E-09	4.90E-10		3.63E-09	3.33E-09	2.05E-10	
	763734.22	4091554.35		3.59E-08	2.55E-09	7.41E-08	5.58E-09	5.83E-09	4.03E-10		2.98E-09	2.74E-09	1.69E-10	
		4091544.4	3.66E-08	3.68E-08	2.62E-09	7.61E-08	5.72E-09	5.98E-09	4.13E-10		3.06E-09	2.81E-09	1.73E-10	
	763707.49	4091566.2		3.48E-08	2.47E-09	7.20E-08	5.41E-09	5.65E-09	3.91E-10		2.89E-09	2.66E-09	1.64E-10	
1299	763650.26	4091372.87	2.46E-08	2.48E-08	1.76E-09	5.12E-08	3.85E-09	4.02E-09	2.78E-10		2.06E-09	1.89E-09	1.16E-10	
	763676.11	4091362.21		2.53E-08	1.80E-09	5.23E-08	3.94E-09	4.11E-09	2.84E-10		2.11E-09	1.93E-09	1.19E-10	
1301	763622.67	4091385.08	2.40E-08	2.42E-08	1.72E-09	4.99E-08	3.75E-09	3.92E-09	2.71E-10	7.95E-09	2.01E-09	1.84E-09	1.14E-10	3.96E-09

13	302	763566.06	4091191.5	1.84E-08	1.85E-08	1.31E-09	3.82E-08	2.88E-09	3.00E-09	2.08E-10	6.09E-09	1.54E-09	1.41E-09	8.70E-11	3.04E-09
13	303	763593.14	4091180.32	1.88E-08	1.89E-08	1.34E-09	3.90E-08	2.93E-09	3.06E-09	2.12E-10	6.21E-09	1.57E-09	1.44E-09	8.87E-11	3.10E-09
13	304	763620.22	4091169.15	1.92E-08	1.93E-08	1.37E-09	3.98E-08	2.99E-09	3.13E-09	2.16E-10	6.33E-09	1.60E-09	1.47E-09	9.05E-11	3.16E-09
13	305	763537.85	4091203.95	1.80E-08	1.81E-08	1.29E-09	3.75E-08	2.82E-09	2.94E-09	2.04E-10	5.97E-09	1.51E-09	1.38E-09	8.52E-11	2.98E-09
13	306	763481.7	4091010.18	1.45E-08	1.46E-08	1.04E-09	3.01E-08	2.27E-09	2.37E-09	1.64E-10	4.80E-09	1.21E-09	1.11E-09	6.86E-11	2.39E-09
13	307	763509.7	4090998.63	1.48E-08	1.48E-08	1.05E-09	3.06E-08	2.31E-09	2.41E-09	1.66E-10	4.88E-09	1.23E-09	1.13E-09	6.97E-11	2.43E-09
13	308	763537.71	4090987.07	1.50E-08	1.51E-08	1.07E-09	3.12E-08	2.35E-09	2.45E-09	1.69E-10	4.97E-09	1.25E-09	1.15E-09	7.09E-11	2.48E-09
13	309	763453.03	4091022.83	1.43E-08	1.44E-08	1.02E-09	2.97E-08	2.23E-09	2.33E-09	1.61E-10	4.72E-09	1.19E-09	1.10E-09	6.75E-11	2.36E-09
13	310	763397.24	4090828.91	1.19E-08	1.19E-08	8.49E-10	2.47E-08	1.86E-09	1.94E-09	1.34E-10	3.93E-09	9.93E-10	9.11E-10	5.61E-11	1.96E-09
13	311	763425.96	4090817.06	1.21E-08	1.21E-08	8.61E-10	2.50E-08	1.88E-09	1.97E-09	1.36E-10	3.99E-09	1.01E-09	9.24E-10	5.69E-11	1.99E-09
13	312	763454.68	4090805.21	1.23E-08	1.23E-08	8.75E-10	2.54E-08	1.91E-09	2.00E-09	1.38E-10	4.05E-09	1.02E-09	9.40E-10	5.79E-11	2.02E-09
13	313	763483.4	4090793.36	1.24E-08	1.25E-08	8.88E-10	2.58E-08	1.94E-09	2.03E-09	1.40E-10	4.11E-09	1.04E-09	9.54E-10	5.87E-11	2.05E-09
13	314	763368.21	4090841.71	1.17E-08	1.18E-08	8.38E-10	2.44E-08	1.83E-09	1.91E-09	1.32E-10	3.88E-09	9.80E-10	9.00E-10	5.54E-11	1.93E-09
13	315	763312.71	4090647.67	1.00E-08	1.01E-08	7.16E-10	2.08E-08	1.57E-09	1.64E-09	1.13E-10	3.31E-09	8.37E-10	7.68E-10	4.73E-11	1.65E-09
13	316	763342	4090635.58	1.01E-08	1.02E-08	7.24E-10	2.11E-08	1.58E-09	1.66E-09	1.14E-10	3.35E-09	8.47E-10	7.78E-10	4.79E-11	1.67E-09
13	317	763371.3	4090623.49	1.03E-08	1.03E-08	7.34E-10	2.14E-08	1.61E-09	1.68E-09	1.16E-10	3.40E-09	8.59E-10	7.88E-10	4.86E-11	1.70E-09
13	318	763400.59	4090611.41	1.04E-08	1.05E-08	7.44E-10	2.16E-08	1.63E-09	1.70E-09	1.18E-10	3.45E-09	8.70E-10	7.99E-10	4.92E-11	1.72E-09
13	319	763429.89	4090599.32	1.06E-08	1.06E-08	7.55E-10	2.20E-08	1.65E-09	1.73E-09	1.19E-10	3.50E-09	8.83E-10	8.11E-10	4.99E-11	1.74E-09
13	320	763283.39	4090660.59	9.92E-09	9.97E-09	7.08E-10	2.06E-08	1.55E-09	1.62E-09	1.12E-10	3.28E-09	8.28E-10	7.60E-10	4.68E-11	1.64E-09
13	321	763893.45	4092033.7	1.97E-07	1.98E-07	1.40E-08	4.08E-07	3.07E-08	3.21E-08	2.22E-09	6.50E-08	1.64E-08	1.51E-08	9.29E-10	3.24E-08
13	322	763876.59	4091985.97	1.47E-07	1.48E-07	1.05E-08	3.06E-07	2.30E-08	2.40E-08	1.66E-09	4.87E-08	1.23E-08	1.13E-08	6.95E-10	2.43E-08
13	323	763851.96	4092001.26	1.42E-07	1.43E-07	1.01E-08	2.95E-07	2.22E-08	2.32E-08	1.60E-09	4.69E-08	1.19E-08	1.09E-08	6.71E-10	2.34E-08
13	324	763851.04	4091943.14	1.14E-07	1.14E-07	8.12E-09	2.36E-07	1.78E-08	1.86E-08	1.28E-09	3.76E-08	9.50E-09	8.72E-09	5.37E-10	1.88E-08
13	325	763824.23	4091959.66	1.09E-07	1.10E-07	7.81E-09	2.27E-07	1.71E-08	1.78E-08	1.23E-09	3.62E-08	9.13E-09	8.39E-09	5.17E-10	1.80E-08
13	326	763795.58	4091859.93	7.42E-08	7.46E-08	5.30E-09	1.54E-07	1.16E-08	1.21E-08	8.37E-10	2.45E-08	6.20E-09	5.69E-09	3.50E-10	1.22E-08
13	327	763768.78	4091876.44	7.14E-08	7.17E-08	5.09E-09	1.48E-07	1.11E-08	1.16E-08	8.05E-10	2.36E-08	5.96E-09	5.47E-09	3.37E-10	1.18E-08
13	328	763740.13	4091776.71	5.28E-08	5.31E-08	3.77E-09	1.10E-07	8.25E-09	8.62E-09	5.96E-10	1.75E-08	4.41E-09	4.05E-09	2.50E-10	8.71E-09
13	329	763766.22	4091762.02	5.49E-08	5.52E-08	3.92E-09	1.14E-07	8.57E-09	8.95E-09	6.19E-10	1.81E-08	4.58E-09	4.21E-09	2.59E-10	9.05E-09
13	330	763713.32	4091793.23	5.08E-08	5.11E-08	3.63E-09	1.06E-07	7.94E-09	8.30E-09	5.74E-10	1.68E-08	4.25E-09	3.90E-09	2.40E-10	8.38E-09
13	331	763684.67	4091693.5	4.00E-08	4.02E-08	2.85E-09	8.30E-08	6.24E-09	6.52E-09	4.51E-10	1.32E-08	3.34E-09	3.06E-09	1.89E-10	6.59E-09
13	332	763710.76	4091678.8	4.14E-08	4.16E-08	2.96E-09	8.60E-08	6.47E-09	6.76E-09	4.67E-10	1.37E-08	3.46E-09	3.18E-09	1.96E-10	6.83E-09
13	333	763657.86	4091710.01	3.85E-08	3.87E-08	2.75E-09	8.00E-08	6.02E-09	6.28E-09	4.34E-10	1.27E-08	3.22E-09	2.95E-09	1.82E-10	6.35E-09
13	334	763629.21	4091610.28	3.16E-08	3.18E-08	2.26E-09	6.57E-08	4.94E-09	5.16E-09	3.57E-10	1.05E-08	2.64E-09	2.42E-09	1.49E-10	5.22E-09
13	335	763655.31	4091595.59	3.27E-08	3.29E-08	2.33E-09	6.79E-08	5.11E-09	5.34E-09		1.08E-08	2.73E-09	2.51E-09	1.54E-10	
13	336	763681.4	4091580.89	3.37E-08	3.39E-08	2.41E-09	7.00E-08	5.27E-09	5.50E-09	3.80E-10	1.11E-08	2.82E-09		1.59E-10	
13	337	763602.41	4091626.8	3.05E-08	3.07E-08	2.18E-09	6.34E-08	4.77E-09	4.98E-09	3.45E-10	1.01E-08		2.34E-09	1.44E-10	5.04E-09
13	338	763518.3	4091443.85	2.18E-08	2.19E-08	1.56E-09	4.53E-08	3.41E-09	3.56E-09	2.46E-10	7.21E-09	1.82E-09	1.67E-09	1.03E-10	3.60E-09
13	339	763544.39	4091429.16	2.24E-08	2.25E-08	1.60E-09	4.65E-08		3.66E-09		7.41E-09	1.87E-09	1.72E-09	1.06E-10	3.70E-09
13	340	763570.48	4091414.47	2.30E-08	2.31E-08	1.64E-09	4.77E-08	3.59E-09	3.75E-09	2.59E-10	7.60E-09	1.92E-09	1.76E-09	1.09E-10	3.79E-09
13	341	763596.58	4091399.77	2.35E-08	2.37E-08	1.68E-09	4.89E-08	3.67E-09	3.84E-09	2.65E-10		1.96E-09	1.80E-09	1.11E-10	3.88E-09
13	342	763491.5	4091460.37	2.12E-08	2.13E-08	1.51E-09	4.39E-08	3.30E-09	3.45E-09	2.39E-10	7.00E-09	1.77E-09	1.62E-09	1.00E-10	3.49E-09
13	343	763408.69	4091276.69	1.64E-08		1.17E-09	3.41E-08	2.57E-09	2.68E-09	1.85E-10			1.26E-09	7.76E-11	
	344	763437.39	4091260.53			1.20E-09	3.50E-08		2.75E-09		5.57E-09		1.29E-09	7.95E-11	
13	345	763466.1	4091244.36			1.23E-09	3.58E-08		2.81E-09		5.69E-09		1.32E-09	8.13E-11	
13	346	763494.8	4091228.2	1.76E-08	1.76E-08	1.25E-09	3.65E-08	2.74E-09	2.86E-09	1.98E-10	5.80E-09	1.47E-09	1.35E-09	8.29E-11	2.89E-09

	1347	763380.58	4091293.94	1.60E-08		1.14E-09	3.32E-08	2.50E-09	2.61E-09	1.80E-10		1.34E-09	1.23E-09	7.56E-11	
	1348	763297.56	4091110.38	1.31E-08	1.32E-08	9.35E-10	2.72E-08	2.04E-09	2.14E-09		4.33E-09	1.09E-09	1.00E-09	6.18E-11	
	1349	763325.83	4091094.47	1.34E-08	1.34E-08	9.53E-10	2.77E-08	2.09E-09	2.18E-09		4.42E-09	1.12E-09	1.02E-09	6.31E-11	
	1350	763354.1	4091078.55	1.36E-08	1.37E-08	9.71E-10	2.82E-08	2.12E-09	2.22E-09	1.53E-10		1.14E-09	1.04E-09	6.42E-11	
	1351	763382.36	4091062.63	1.38E-08	1.39E-08	9.85E-10	2.86E-08	2.15E-09	2.25E-09		4.56E-09	1.15E-09	1.06E-09	6.52E-11	
	1352	763410.63	4091046.71	1.40E-08	1.41E-08	9.99E-10	2.91E-08	2.19E-09	2.28E-09	1.58E-10		1.17E-09	1.07E-09	6.61E-11	
	1353	763269.67	4091127.51	1.28E-08	1.29E-08	9.13E-10	2.66E-08	2.00E-09	2.09E-09	1.44E-10		1.07E-09	9.81E-10	6.04E-11	
	1354	763186.5	4090944.04	1.08E-08	1.09E-08	7.74E-10	2.25E-08	1.69E-09	1.77E-09	1.22E-10		9.06E-10	8.32E-10	5.12E-11	
	1355	763214.45	4090928.3	1.10E-08	1.11E-08	7.89E-10	2.29E-08	1.73E-09	1.80E-09		3.65E-09	9.22E-10	8.47E-10	5.22E-11	
	1356	763242.41	4090912.56	1.12E-08	1.13E-08	8.00E-10	2.33E-08	1.75E-09	1.83E-09		3.70E-09	9.35E-10	8.59E-10	5.29E-11	
	1357	763270.36	4090896.81	1.13E-08	1.14E-08	8.09E-10	2.35E-08	1.77E-09	1.85E-09		3.75E-09	9.47E-10	8.69E-10	5.35E-11	
	1358	763298.32	4090881.07	1.15E-08	1.15E-08	8.18E-10	2.38E-08	1.79E-09	1.87E-09		3.79E-09	9.57E-10	8.79E-10	5.41E-11	
	1359	763326.27	4090865.32	1.16E-08	1.16E-08	8.26E-10	2.40E-08	1.81E-09	1.89E-09		3.82E-09	9.66E-10	8.87E-10	5.46E-11	
	1360	763158.76	4090961.09	1.06E-08	1.07E-08	7.59E-10	2.21E-08	1.66E-09	1.74E-09		3.52E-09	8.88E-10	8.15E-10	5.02E-11	
1	1361	763075.47	4090777.68	9.26E-09	9.31E-09	6.61E-10	1.92E-08	1.45E-09	1.51E-09		3.06E-09	7.73E-10	7.10E-10	4.37E-11	1.53E-09
1	1362	763103.19	4090762.07	9.40E-09	9.45E-09	6.71E-10	1.95E-08	1.47E-09	1.53E-09	1.06E-10	3.11E-09	7.85E-10	7.20E-10	4.44E-11	1.55E-09
1	1363	763130.91	4090746.45	9.52E-09	9.57E-09	6.80E-10	1.98E-08	1.49E-09	1.55E-09		3.15E-09	7.95E-10	7.30E-10	4.50E-11	1.57E-09
1	1364	763158.64	4090730.84	9.61E-09	9.66E-09	6.86E-10	2.00E-08	1.50E-09	1.57E-09		3.18E-09	8.02E-10	7.37E-10	4.54E-11	1.58E-09
1	1365	763186.36	4090715.23	9.67E-09	9.72E-09	6.90E-10	2.01E-08	1.51E-09	1.58E-09	1.09E-10	3.20E-09	8.08E-10	7.42E-10	4.57E-11	
	1366	763214.08	4090699.62	9.75E-09	9.80E-09	6.96E-10	2.02E-08	1.52E-09	1.59E-09		3.22E-09	8.14E-10	7.47E-10	4.60E-11	
1	1367	763241.8	4090684	9.81E-09	9.86E-09	7.00E-10	2.04E-08	1.53E-09	1.60E-09	_	3.24E-09	8.19E-10	7.52E-10	4.63E-11	1.62E-09
1	1368	763047.85	4090794.66	9.09E-09	9.14E-09	6.49E-10	1.89E-08	1.42E-09	1.48E-09		3.01E-09	7.59E-10	6.97E-10	4.29E-11	1.50E-09
1	1369	763872.14	4092048.15	1.92E-07	1.93E-07	1.37E-08	3.98E-07	2.99E-08	3.13E-08	2.16E-09		1.60E-08	1.47E-08	9.05E-10	
1	1370	763746.82	4091892.06	6.95E-08	6.98E-08	4.96E-09	1.44E-07	1.09E-08	1.13E-08	7.84E-10		5.80E-09	5.33E-09	3.28E-10	
1	1371	763694.46	4091806.43	4.96E-08	4.99E-08	3.54E-09	1.03E-07	7.75E-09	8.10E-09	5.60E-10	1.64E-08	4.14E-09	3.80E-09	2.34E-10	8.18E-09
	1372	763635.23	4091725.86	3.74E-08	3.76E-08	2.67E-09	7.77E-08	5.84E-09	6.11E-09		1.24E-08	3.12E-09	2.87E-09	1.77E-10	
1	1373	763582.61	4091640.66	2.98E-08	2.99E-08	2.13E-09	6.19E-08	4.65E-09	4.86E-09	3.36E-10	9.85E-09	2.49E-09	2.28E-09	1.41E-10	4.91E-09
1	1374	763464.34	4091479.39	2.05E-08	2.06E-08	1.46E-09	4.26E-08	3.20E-09	3.35E-09	2.31E-10	6.78E-09	1.71E-09	1.57E-09	9.69E-11	3.38E-09
1	1375	763346.01	4091318.15	1.54E-08	1.55E-08	1.10E-09	3.20E-08	2.41E-09	2.52E-09	1.74E-10	5.10E-09	1.29E-09	1.18E-09	7.29E-11	2.54E-09
1	1376	763226.77	4091157.56	1.23E-08	1.23E-08	8.76E-10	2.55E-08	1.92E-09	2.00E-09		4.06E-09	1.02E-09	9.41E-10	5.80E-11	
	1377	763251.28	4091140.39	1.26E-08	1.26E-08	8.98E-10	2.61E-08	1.96E-09	2.05E-09	1.42E-10		1.05E-09	9.64E-10	5.94E-11	
	1378	763108.47	4090996.3	1.02E-08	1.02E-08	7.25E-10	2.11E-08	1.59E-09	1.66E-09		3.36E-09	8.48E-10	7.79E-10	4.80E-11	
	1379	763127.33	4090983.09	1.04E-08	1.04E-08	7.40E-10	2.15E-08	1.62E-09	1.69E-09	_	3.42E-09	8.65E-10	7.94E-10	4.89E-11	
	1380	762990.14	4090835.06	8.66E-09	8.71E-09	6.18E-10	1.80E-08	1.35E-09	1.41E-09		2.86E-09	7.23E-10	6.64E-10	4.09E-11	
		763009.37	4090821.59	8.82E-09	8.86E-09	6.29E-10	1.83E-08	1.38E-09	1.44E-09	9.94E-11		7.36E-10		4.16E-11	
			4090808.13			6.40E-10	1.86E-08		1.46E-09				6.88E-10		
		763902.56	4092151.89	4.52E-07	4.54E-07	3.22E-08	9.38E-07	7.05E-08	7.37E-08	5.09E-09		3.77E-08	3.46E-08	2.13E-09	
		763823.23	4092022.67			9.87E-09	2.87E-07		2.26E-08				1.06E-08	6.53E-10	
		763791.13	4091984.34		1.06E-07	7.55E-09	2.20E-07	1.65E-08	1.73E-08			8.83E-09	8.11E-09	5.00E-10	
		763726.93	4091907.67		6.85E-08	4.86E-09	1.42E-07	1.06E-08		7.69E-10		5.69E-09		3.22E-10	
		763675.16	4091821.24	4.86E-08	4.88E-08	3.47E-09	1.01E-07	7.58E-09	7.92E-09	5.48E-10		4.05E-09	3.72E-09	2.29E-10	
		763645.76	4091845.21	4.73E-08	4.75E-08	3.38E-09	9.82E-08	7.39E-09	7.72E-09	5.34E-10		3.95E-09		2.23E-10	
		763613.45	4091742.62	3.65E-08	3.67E-08	2.60E-09	7.58E-08	5.70E-09	5.95E-09		1.21E-08	3.05E-09	2.80E-09	1.72E-10	
		763581.56	4091768.54	3.54E-08	3.56E-08	2.53E-09	7.36E-08	5.53E-09	5.78E-09		1.17E-08	2.96E-09	2.72E-09		
1	1391	763551.73	4091664	2.87E-08	2.89E-08	2.05E-09	5.97E-08	4.49E-09	4.69E-09	3.24E-10	9.50E-09	2.40E-09	2.20E-09	1.36E-10	4.74E-09

1392	763517.36	4091691.87	2.78E-08	2.80E-08	1.99E-09	5.77E-08	4.34E-09	4.54E-09		9.19E-09	2.32E-09	2.13E-09	1.31E-10	
1393	763420.84	4091512.61	1.95E-08	1.96E-08	1.39E-09	4.05E-08	3.05E-09	3.19E-09		6.46E-09	1.63E-09	1.50E-09	9.22E-11	
1394	763388.96	4091538.53	1.89E-08	1.90E-08	1.35E-09	3.92E-08	2.95E-09	3.08E-09		6.24E-09	1.58E-09	1.45E-09	8.92E-11	
1395	763291.2	4091360.25	1.45E-08	1.46E-08	1.03E-09	3.01E-08	2.26E-09	2.36E-09	1.63E-10		1.21E-09	1.11E-09	6.84E-11	
1396	763318.55	4091338.78	1.50E-08	1.50E-08	1.07E-09	3.11E-08	2.34E-09	2.44E-09	1.69E-10		1.25E-09	1.15E-09	7.07E-11	
1397	763260.55	4091385.19	1.40E-08	1.41E-08	9.99E-10	2.91E-08	2.19E-09	2.28E-09	1.58E-10		1.17E-09	1.07E-09	6.61E-11	
1398	763165.29	4091204.95	1.14E-08	1.15E-08	8.16E-10	2.37E-08	1.78E-09	1.86E-09	1.29E-10		9.54E-10	8.76E-10	5.40E-11	
1399	763197.61	4091179.58	1.19E-08	1.19E-08	8.49E-10	2.47E-08	1.86E-09	1.94E-09	1.34E-10		9.93E-10	9.11E-10	5.61E-11	
1400	763132.15	4091231.85	1.10E-08	1.10E-08	7.83E-10	2.28E-08	1.71E-09	1.79E-09	1.24E-10		9.16E-10	8.41E-10	5.18E-11	
1401	763035.64	4091052.59	9.32E-09	9.37E-09	6.65E-10	1.94E-08	1.46E-09	1.52E-09		3.08E-09	7.78E-10	7.15E-10	4.40E-11	
1402	763065.48	4091029.17	9.69E-09	9.74E-09	6.92E-10	2.01E-08	1.51E-09	1.58E-09	1.09E-10		8.09E-10	7.43E-10	4.58E-11	
1403	763003.75	4091078.51	8.94E-09	8.98E-09	6.38E-10	1.86E-08	1.40E-09	1.46E-09		2.96E-09	7.46E-10	6.85E-10	4.22E-11	
1404	762909.23	4090897.69	7.85E-09	7.89E-09	5.61E-10	1.63E-08	1.23E-09	1.28E-09	8.86E-11		6.56E-10	6.02E-10	3.71E-11	
1405	762943.04	4090871.15	8.20E-09	8.25E-09	5.86E-10	1.70E-08	1.28E-09	1.34E-09	9.25E-11	2.71E-09	6.85E-10	6.29E-10	3.88E-11	
1406	762875.35	4090925.17	7.50E-09	7.54E-09	5.36E-10	1.56E-08	1.17E-09	1.22E-09		2.48E-09	6.26E-10	5.75E-10	3.54E-11	
1407	763881.21	4092174.71	4.71E-07	4.74E-07	3.36E-08	9.78E-07	7.36E-08	7.69E-08		1.56E-07	3.93E-08	3.61E-08	2.23E-09	
1408	763861.66	4092122.25	2.79E-07	2.80E-07	1.99E-08	5.79E-07	4.35E-08	4.55E-08	3.14E-09	9.21E-08	2.33E-08	2.14E-08	1.32E-09	4.59E-08
1409	763843.24	4092142.18	2.87E-07	2.88E-07	2.05E-08	5.96E-07	4.48E-08	4.68E-08	3.24E-09	9.49E-08	2.40E-08	2.20E-08	1.36E-09	
1410	763795.65	4092120.87	1.98E-07	1.99E-07	1.41E-08	4.10E-07	3.09E-08	3.22E-08		6.53E-08	1.65E-08	1.51E-08	9.33E-10	3.26E-08
1411	763747.77	4092024.64	1.05E-07	1.06E-07	7.50E-09	2.18E-07	1.64E-08	1.72E-08	1.19E-09		8.78E-09	8.06E-09	4.97E-10	
1412	763765.36	4092007.25	1.05E-07	1.05E-07	7.48E-09	2.18E-07	1.64E-08	1.71E-08	1.18E-09		8.75E-09	8.03E-09	4.95E-10	
1413	763729.35	4092044.56	1.07E-07	1.07E-07	7.61E-09	2.21E-07	1.67E-08	1.74E-08	1.20E-09		8.90E-09	8.18E-09	5.04E-10	
1414	763672.43	4091958.98	6.72E-08	6.75E-08	4.80E-09	1.40E-07	1.05E-08	1.10E-08	7.58E-10		5.61E-09	5.15E-09	3.17E-10	
1415	763691.19	4091940.43	6.71E-08	6.74E-08	4.79E-09	1.39E-07	1.05E-08	1.09E-08	7.57E-10	2.22E-08	5.60E-09	5.14E-09	3.17E-10	1.11E-08
1416	763653.42	4091979.48	6.80E-08	6.83E-08	4.85E-09	1.41E-07	1.06E-08	1.11E-08	7.67E-10	2.25E-08	5.68E-09	5.21E-09	3.21E-10	1.12E-08
1417	763596.89	4091893.52	4.71E-08	4.73E-08	3.36E-09	9.77E-08	7.35E-09	7.68E-09	5.31E-10	1.56E-08	3.93E-09	3.61E-09	2.22E-10	7.76E-09
1418	763616.44	4091874.19	4.70E-08	4.72E-08	3.36E-09	9.76E-08	7.34E-09	7.67E-09	5.30E-10	1.55E-08	3.92E-09	3.60E-09	2.22E-10	7.75E-09
1419	763577.49	4091914.41	4.76E-08	4.79E-08	3.40E-09	9.89E-08	7.44E-09	7.77E-09	5.37E-10	1.57E-08	3.98E-09	3.65E-09	2.25E-10	7.85E-09
1420	763521.24	4091828.16	3.51E-08	3.53E-08	2.51E-09	7.29E-08	5.49E-09	5.73E-09	3.96E-10	1.16E-08	2.93E-09	2.69E-09	1.66E-10	5.79E-09
1421	763541.35	4091808.29	3.50E-08	3.52E-08	2.50E-09	7.28E-08	5.47E-09	5.72E-09	3.95E-10	1.16E-08	2.93E-09	2.69E-09	1.66E-10	5.78E-09
1422	763561.45	4091788.41	3.51E-08	3.53E-08	2.51E-09	7.30E-08	5.49E-09	5.73E-09	3.96E-10	1.16E-08	2.93E-09	2.69E-09	1.66E-10	5.79E-09
1423	763501.57	4091849.33	3.55E-08	3.57E-08	2.54E-09	7.38E-08	5.55E-09	5.80E-09	4.01E-10	1.17E-08	2.97E-09	2.72E-09	1.68E-10	5.86E-09
1424	763445.53	4091762.88	2.74E-08	2.76E-08	1.96E-09	5.69E-08	4.28E-09	4.47E-09		9.07E-09	2.29E-09	2.10E-09	1.30E-10	
1425	763466.05	4091742.59	2.73E-08	2.75E-08	1.95E-09	5.68E-08	4.27E-09	4.46E-09		9.04E-09	2.28E-09	2.10E-09	1.29E-10	
1426	763486.57	4091722.3			1.96E-09	5.69E-08	4.28E-09	4.47E-09	3.09E-10	9.06E-09	2.29E-09		1.29E-10	
1427	763425.64	4091784.26	2.77E-08	2.79E-08	1.98E-09	5.76E-08	4.33E-09	4.53E-09	3.13E-10	9.17E-09	2.32E-09	2.13E-09		
1428	763293	4091633.39	1.84E-08	1.85E-08	1.31E-09	3.81E-08	2.87E-09	3.00E-09	2.07E-10			1.41E-09	8.67E-11	
1429	763312.19	4091614.42	1.83E-08	1.84E-08	1.31E-09	3.80E-08	2.86E-09	2.98E-09	2.06E-10	6.05E-09	1.53E-09	1.40E-09	8.64E-11	3.02E-09
	763331.38	4091595.44	1.83E-08	1.84E-08	1.31E-09	3.80E-08	2.86E-09	2.99E-09	2.06E-10	6.05E-09	1.53E-09	1.40E-09	8.65E-11	3.02E-09
	763350.57	4091576.47		1.85E-08	1.31E-09	3.82E-08	2.88E-09		2.08E-10		1.54E-09	1.41E-09	8.70E-11	
	763369.77		1.86E-08	1.87E-08	1.33E-09	3.86E-08	2.91E-09	3.04E-09	2.10E-10		1.55E-09	1.43E-09	8.79E-11	
	763273.78	4091654.1		1.87E-08	1.33E-09	3.87E-08	2.91E-09	3.04E-09	2.10E-10		1.56E-09	1.43E-09	8.80E-11	
	763141.47	4091502.91		1.35E-08	9.57E-10	2.78E-08	2.09E-09		1.51E-10		1.12E-09	1.03E-09	6.33E-11	
	763161.32			1.34E-08	9.49E-10	2.76E-08		2.17E-09				1.02E-09	6.28E-11	
1436	763181.17	4091463.67	1.33E-08	1.34E-08	9.49E-10	2.76E-08	2.08E-09	2.17E-09	1.50E-10	4.39E-09	1.11E-09	1.02E-09	6.28E-11	2.19E-09

1	.437	763201.01	4091444.05	1.34E-08	1.34E-08	9.54E-10	2.78E-08	2.09E-09	2.18E-09	1.51E-10	4.42E-09	1.12E-09	1.03E-09	6.31E-11	2.20E-09
1	.438	763220.86	4091424.43	1.35E-08	1.36E-08	9.64E-10	2.80E-08	2.11E-09	2.20E-09	1.52E-10	4.47E-09	1.13E-09	1.04E-09	6.38E-11	2.23E-09
1	.439	763240.71	4091404.81	1.37E-08	1.38E-08	9.79E-10	2.85E-08	2.14E-09	2.24E-09	1.55E-10	4.54E-09	1.15E-09	1.05E-09	6.48E-11	2.26E-09
1	.440	763121.93	4091523.95	1.36E-08	1.37E-08	9.72E-10	2.83E-08	2.13E-09	2.22E-09	1.54E-10	4.50E-09	1.14E-09	1.04E-09	6.43E-11	2.24E-09
1	441	762989.86	4091372.52	1.04E-08	1.04E-08	7.40E-10	2.15E-08	1.62E-09	1.69E-09	1.17E-10	3.42E-09	8.65E-10	7.94E-10	4.89E-11	1.71E-09
1	.442	763010.19	4091352.42	1.03E-08	1.03E-08	7.32E-10	2.13E-08	1.60E-09	1.67E-09	1.16E-10	3.39E-09	8.56E-10	7.86E-10	4.84E-11	1.69E-09
1	.443	763030.51	4091332.33	1.02E-08	1.03E-08	7.30E-10	2.12E-08	1.60E-09	1.67E-09	1.15E-10	3.38E-09	8.53E-10	7.84E-10	4.83E-11	1.69E-09
1	444	763050.84	4091312.23	1.03E-08	1.03E-08	7.32E-10	2.13E-08	1.60E-09	1.67E-09	1.16E-10	3.39E-09	8.56E-10	7.86E-10	4.84E-11	1.69E-09
1	.445	763071.17	4091292.14	1.04E-08	1.04E-08	7.40E-10	2.15E-08	1.62E-09	1.69E-09	1.17E-10	3.42E-09	8.65E-10	7.94E-10	4.89E-11	1.71E-09
1	446	763091.5	4091272.04	1.05E-08	1.06E-08	7.50E-10	2.18E-08	1.64E-09	1.72E-09	1.19E-10	3.48E-09	8.78E-10	8.06E-10	4.97E-11	1.73E-09
1	.447	763111.83	4091251.94	1.07E-08	1.08E-08	7.66E-10	2.23E-08	1.68E-09	1.75E-09	1.21E-10	3.55E-09	8.96E-10	8.22E-10	5.07E-11	1.77E-09
1	448	762970.07	4091393.8	1.05E-08	1.06E-08	7.53E-10	2.19E-08	1.65E-09	1.72E-09	1.19E-10	3.49E-09	8.80E-10	8.08E-10	4.98E-11	1.74E-09
1	.449	762838.19	4091242.18	8.36E-09	8.40E-09	5.97E-10	1.74E-08	1.31E-09	1.36E-09	9.43E-11	2.76E-09	6.98E-10	6.41E-10	3.95E-11	1.38E-09
1	.450	762858.88	4091221.73	8.25E-09	8.29E-09	5.89E-10	1.71E-08	1.29E-09	1.35E-09	9.31E-11	2.73E-09	6.89E-10	6.33E-10	3.90E-11	1.36E-09
1	451	762879.58	4091201.27	8.20E-09	8.25E-09	5.86E-10	1.70E-08	1.28E-09	1.34E-09	9.25E-11	2.71E-09	6.85E-10	6.29E-10	3.88E-11	1.35E-09
1	452	762900.27	4091180.81	8.20E-09	8.25E-09	5.86E-10	1.70E-08	1.28E-09	1.34E-09	9.25E-11	2.71E-09	6.85E-10	6.29E-10	3.88E-11	1.35E-09
1	453	762920.97	4091160.35	8.27E-09	8.31E-09	5.90E-10	1.72E-08	1.29E-09	1.35E-09	9.32E-11	2.73E-09	6.90E-10	6.34E-10	3.90E-11	1.36E-09
1	454	762941.67	4091139.89	8.37E-09	8.42E-09	5.98E-10	1.74E-08	1.31E-09	1.37E-09	9.44E-11	2.77E-09	6.99E-10	6.42E-10	3.95E-11	1.38E-09
1	.455	762962.36	4091119.43	8.53E-09	8.57E-09	6.09E-10	1.77E-08	1.33E-09	1.39E-09	9.62E-11	2.82E-09	7.12E-10	6.54E-10	4.03E-11	1.41E-09
1	456	762983.06	4091098.97	8.72E-09	8.77E-09	6.23E-10	1.81E-08	1.36E-09	1.42E-09	9.84E-11	2.88E-09	7.28E-10	6.69E-10	4.12E-11	1.44E-09
1	457	762818.21	4091263.64	8.53E-09	8.57E-09	6.09E-10	1.77E-08	1.33E-09	1.39E-09	9.62E-11	2.82E-09	7.12E-10	6.54E-10	4.03E-11	1.41E-09
1	458	762686.48	4091111.89	6.97E-09	7.00E-09	4.97E-10	1.45E-08	1.09E-09	1.14E-09	7.86E-11	2.30E-09	5.82E-10	5.34E-10	3.29E-11	1.15E-09
1	459	762707.46	4091091.14	6.86E-09	6.90E-09	4.90E-10	1.42E-08	1.07E-09	1.12E-09	7.74E-11	2.27E-09	5.73E-10	5.26E-10	3.24E-11	1.13E-09
1	460	762728.45	4091070.4	6.80E-09	6.83E-09	4.85E-10	1.41E-08	1.06E-09	1.11E-09	7.67E-11	2.25E-09	5.68E-10	5.21E-10	3.21E-11	1.12E-09
1	461	762749.43	4091049.65	6.78E-09	6.82E-09	4.84E-10	1.41E-08	1.06E-09	1.11E-09	7.65E-11	2.24E-09	5.66E-10	5.20E-10	3.20E-11	1.12E-09
1	.462	762770.42	4091028.9	6.80E-09	6.83E-09	4.85E-10	1.41E-08	1.06E-09	1.11E-09	7.67E-11	2.25E-09	5.68E-10	5.21E-10	3.21E-11	1.12E-09
1	.463	762791.41	4091008.16	6.88E-09	6.91E-09	4.91E-10	1.43E-08	1.07E-09	1.12E-09	7.76E-11	2.27E-09	5.74E-10	5.27E-10	3.25E-11	1.13E-09
1	.464	762812.39	4090987.41	6.98E-09	7.02E-09	4.98E-10	1.45E-08	1.09E-09	1.14E-09	7.88E-11	2.31E-09	5.83E-10	5.35E-10	3.30E-11	1.15E-09
1	.465	762833.38	4090966.66	7.13E-09	7.17E-09	5.09E-10	1.48E-08	1.11E-09	1.16E-09	8.05E-11	2.36E-09	5.96E-10	5.47E-10	3.37E-11	1.18E-09
1	.466	762854.37	4090945.92	7.30E-09	7.34E-09	5.21E-10	1.52E-08	1.14E-09	1.19E-09	8.24E-11	2.41E-09	6.10E-10	5.60E-10	3.45E-11	1.20E-09
1	.467	762666.36	4091133.49	7.12E-09	7.16E-09	5.08E-10	1.48E-08	1.11E-09	1.16E-09	8.03E-11		5.94E-10	5.46E-10	3.36E-11	1.17E-09
1	.468	763858.91	4092199.71	4.95E-07	4.97E-07	3.53E-08	1.03E-06	7.73E-08	8.08E-08	5.58E-09		4.13E-08	3.79E-08	2.34E-09	
1	.469	763829.26	4092232.11	5.15E-07	5.18E-07	3.68E-08	1.07E-06	8.05E-08	8.41E-08	5.81E-09		4.30E-08	3.95E-08	2.43E-09	
	.470	763822.02	4092165.96	2.98E-07	3.00E-07	2.13E-08	6.20E-07	4.66E-08	4.87E-08	3.37E-09		2.49E-08	2.29E-08	1.41E-09	
			4092198.36			2.23E-08	6.48E-07		5.09E-08			2.60E-08	2.39E-08		
			4092148.41			1.46E-08	4.25E-07		3.34E-08				1.57E-08		
1	.473	763748.25	4092098.45			1.03E-08	2.99E-07		2.35E-08			1.20E-08	1.11E-08	6.81E-10	
	.474	763718.6	4092130.85			1.07E-08	3.13E-07		2.46E-08			1.26E-08		7.11E-10	
		763711.36	4092064.7			7.78E-09	2.26E-07		1.78E-08			9.10E-09		5.15E-10	
		763681.71	4092097.1		1.14E-07	8.12E-09	2.36E-07		1.86E-08			9.50E-09	8.72E-09	5.37E-10	
		763637.58	4091997.19	6.91E-08	6.95E-08	4.93E-09	1.43E-07		1.13E-08	7.79E-10		5.77E-09	5.30E-09	3.26E-10	
		763607.94	4092029.59	7.19E-08	7.23E-08	5.13E-09	1.49E-07		1.17E-08	8.11E-10		6.00E-09	5.51E-09	3.40E-10	
		763548.98	4091945.89	4.90E-08	4.93E-08	3.50E-09	1.02E-07	7.65E-09	8.00E-09	5.53E-10		4.09E-09	3.76E-09	2.31E-10	
		763475.21	4091878.38	3.64E-08	3.66E-08	2.60E-09	7.57E-08	5.69E-09	5.95E-09	4.11E-10		3.04E-09	2.79E-09	1.72E-10	
1	.481	763401.43	4091810.87	2.84E-08	2.86E-08	2.03E-09	5.90E-08	4.44E-09	4.63E-09	3.20E-10	9.39E-09	2.37E-09	2.18E-09	1.34E-10	4.68E-09

			4 00= 00								4 = 0 = 0 0			
1482	763253.88	4091675.86	1.90E-08	1.91E-08	1.36E-09	3.94E-08	2.97E-09	3.10E-09	2.14E-10		1.59E-09	1.46E-09	8.97E-11	
1483	763106.33	4091540.85	1.38E-08	1.39E-08	9.88E-10	2.87E-08	2.16E-09	2.26E-09	1.56E-10		1.16E-09	1.06E-09		2.28E-09
1484	762943.95	4091422.04	1.09E-08	1.10E-08	7.79E-10	2.27E-08	1.70E-09	1.78E-09	1.23E-10		9.11E-10	8.36E-10	5.15E-11	
1485	762796.4	4091287.02	8.77E-09	8.82E-09	6.26E-10	1.82E-08	1.37E-09	1.43E-09	9.89E-11		7.32E-10	6.72E-10		1.45E-09
1486	762648.85	4091152.01	7.29E-09	7.33E-09	5.20E-10	1.51E-08	1.14E-09	1.19E-09	8.22E-11		6.09E-10	5.59E-10		1.20E-09
1487	763814.68	4092249.88	5.28E-07	5.31E-07	3.77E-08	1.10E-06	8.25E-08	8.62E-08	5.96E-09		4.41E-08	4.05E-08	2.50E-09	
1488	763775.77	4092218.47	3.22E-07	3.24E-07	2.30E-08	6.69E-07	5.03E-08	5.26E-08	3.64E-09		2.69E-08	2.47E-08	1.52E-09	
1489	763747.41	4092174.01	2.12E-07	2.14E-07	1.52E-08	4.41E-07	3.32E-08	3.47E-08	2.40E-09		1.77E-08	1.63E-08	1.00E-09	
1490	763726.32	4092200.14	2.23E-07	2.24E-07	1.59E-08	4.63E-07	3.48E-08	3.63E-08	2.51E-09		1.86E-08	1.71E-08	1.05E-09	
1491	763697.96	4092155.67	1.57E-07	1.58E-07	1.12E-08	3.27E-07	2.46E-08	2.57E-08	1.77E-09		1.31E-08	1.21E-08		2.59E-08
1492	763659.05	4092124.26	1.19E-07	1.20E-07	8.52E-09	2.48E-07	1.86E-08	1.95E-08	1.35E-09		9.97E-09	9.15E-09		1.97E-08
1493	763591.78	4092048.39	7.41E-08	7.45E-08	5.29E-09	1.54E-07	1.16E-08	1.21E-08	8.36E-10		6.19E-09	5.68E-09		1.22E-08
1494	763570.69	4092074.52	7.79E-08	7.83E-08	5.56E-09	1.62E-07	1.22E-08	1.27E-08	8.79E-10		6.51E-09	5.98E-09		1.29E-08
1495	763524.06	4091973.84	5.08E-08	5.11E-08	3.63E-09	1.06E-07	7.94E-09	8.29E-09	5.73E-10		4.24E-09	3.90E-09		8.38E-09
1496	763503.42	4091998.65	5.30E-08	5.33E-08	3.78E-09	1.10E-07	8.28E-09	8.65E-09	5.98E-10		4.43E-09	4.06E-09	2.50E-10	
1497	763444.22	4091913.38	3.81E-08	3.83E-08	2.72E-09	7.91E-08	5.95E-09	6.21E-09	4.29E-10		3.18E-09	2.92E-09		6.28E-09
1498	763425.6	4091935.84	3.95E-08	3.97E-08	2.82E-09	8.20E-08	6.17E-09	6.44E-09		1.31E-08	3.30E-09	3.03E-09	1.87E-10	
1499	763367.76	4091849.01	2.98E-08	2.99E-08	2.12E-09	6.18E-08	4.65E-09	4.86E-09	3.36E-10		2.49E-09	2.28E-09	1.41E-10	
1500	763347.78	4091873.04	3.09E-08	3.11E-08	2.21E-09	6.42E-08	4.82E-09	5.04E-09		1.02E-08	2.58E-09	2.37E-09	-	5.09E-09
1501	763211.79	4091723.79	2.02E-08	2.03E-08	1.44E-09	4.20E-08	3.16E-09	3.30E-09	2.28E-10		1.69E-09	1.55E-09		3.33E-09
1502	763229.97	4091702.64	1.96E-08	1.97E-08	1.40E-09	4.07E-08	3.06E-09	3.20E-09	2.21E-10		1.64E-09	1.50E-09		3.23E-09
1503	763192.15	4091747.42	2.09E-08	2.11E-08	1.50E-09	4.35E-08	3.27E-09	3.42E-09	2.36E-10		1.75E-09	1.61E-09		3.45E-09
1504	763055.95	4091598.41	1.50E-08	1.51E-08	1.07E-09	3.11E-08	2.34E-09	2.44E-09	1.69E-10		1.25E-09	1.15E-09	7.07E-11	2.47E-09
1505	763073.73	4091577.73	1.45E-08	1.46E-08	1.04E-09	3.01E-08	2.27E-09	2.37E-09	1.64E-10	4.80E-09	1.21E-09	1.11E-09	6.86E-11	2.39E-09
1506	763036.52	4091621.81	1.55E-08	1.56E-08	1.11E-09	3.22E-08	2.42E-09	2.53E-09	1.75E-10	5.13E-09	1.30E-09	1.19E-09	7.33E-11	2.56E-09
1507	762901.94	4091470.91	1.17E-08	1.18E-08	8.36E-10	2.43E-08	1.83E-09	1.91E-09	1.32E-10	3.87E-09	9.77E-10	8.97E-10	5.53E-11	1.93E-09
1508	762922.95	4091446.48	1.13E-08	1.13E-08	8.05E-10	2.34E-08	1.76E-09	1.84E-09	1.27E-10	3.73E-09	9.41E-10	8.65E-10	5.33E-11	1.86E-09
1509	762880.89	4091496.2	1.22E-08	1.22E-08	8.69E-10	2.53E-08	1.90E-09	1.99E-09	1.37E-10	4.03E-09	1.02E-09	9.34E-10	5.75E-11	2.01E-09
1510	762745.9	4091345.77	9.56E-09	9.61E-09	6.83E-10	1.99E-08	1.49E-09	1.56E-09	1.08E-10	3.16E-09	7.99E-10	7.33E-10	4.52E-11	1.58E-09
1511	762766.1	4091322.27	9.23E-09	9.28E-09	6.59E-10	1.92E-08	1.44E-09	1.51E-09	1.04E-10	3.05E-09	7.71E-10	7.08E-10	4.36E-11	1.52E-09
1512	762725.26	4091370.58	9.95E-09	1.00E-08	7.10E-10	2.07E-08	1.55E-09	1.62E-09	1.12E-10	3.29E-09	8.31E-10	7.63E-10	4.70E-11	1.64E-09
1513	762589.98	4091220.49	8.05E-09	8.09E-09	5.75E-10	1.67E-08	1.26E-09	1.31E-09	9.08E-11	2.66E-09	6.72E-10	6.17E-10	3.80E-11	1.33E-09
1514	762609.6	4091197.67	7.78E-09	7.82E-09	5.55E-10	1.61E-08	1.21E-09	1.27E-09	8.77E-11	2.57E-09	6.49E-10	5.96E-10	3.67E-11	1.28E-09
1515	762629.23	4091174.84	7.52E-09	7.56E-09	5.37E-10	1.56E-08	1.17E-09	1.23E-09	8.48E-11	2.49E-09	6.28E-10	5.76E-10	3.55E-11	1.24E-09
1516	762569.62	4091244.97	8.36E-09	8.40E-09	5.97E-10	1.74E-08	1.31E-09	1.36E-09	9.43E-11	2.76E-09	6.98E-10	6.41E-10	3.95E-11	1.38E-09
1517	763799.37	4092269.35	5.42E-07	5.45E-07	3.87E-08	1.13E-06	8.47E-08	8.84E-08	6.11E-09	1.79E-07	4.53E-08	4.16E-08	2.56E-09	8.94E-08
1518	763786.53	4092288.15	5.61E-07	5.64E-07	4.00E-08	1.16E-06	8.76E-08	9.15E-08	6.32E-09	1.85E-07	4.68E-08	4.30E-08	2.65E-09	9.25E-08
1519	763758.08	4092241.15	3.35E-07	3.37E-07	2.39E-08	6.96E-07	5.23E-08	5.47E-08	3.78E-09	1.11E-07	2.80E-08	2.57E-08	1.58E-09	5.53E-08
1520	763745.24	4092259.95	3.48E-07	3.50E-07	2.49E-08	7.24E-07	5.44E-08	5.69E-08	3.93E-09	1.15E-07	2.91E-08	2.67E-08	1.65E-09	5.75E-08
1521	763703.95	4092231.75	2.38E-07	2.40E-07	1.70E-08	4.95E-07	3.72E-08	3.89E-08	2.69E-09	7.88E-08	1.99E-08	1.83E-08	1.13E-09	3.93E-08
1522	763675.5	4092184.75	1.67E-07	1.67E-07	1.19E-08	3.46E-07	2.60E-08	2.72E-08	1.88E-09	5.51E-08	1.39E-08	1.28E-08	7.87E-10	2.75E-08
1523	763662.66	4092203.55	1.74E-07	1.75E-07	1.24E-08	3.61E-07	2.71E-08	2.84E-08	1.96E-09	5.75E-08	1.45E-08	1.33E-08	8.21E-10	2.87E-08
1524	763641.36	4092146.94	1.25E-07	1.26E-07	8.91E-09	2.59E-07	1.95E-08	2.04E-08	1.41E-09	4.13E-08	1.04E-08	9.57E-09	5.90E-10	2.06E-08
1525	763621.38	4092175.35	1.33E-07	1.34E-07	9.49E-09	2.76E-07	2.08E-08	2.17E-08	1.50E-09	4.39E-08	1.11E-08	1.02E-08	6.28E-10	2.19E-08
1526	763538.8	4092118.95	8.58E-08	8.63E-08	6.13E-09	1.78E-07	1.34E-08	1.40E-08	9.68E-10	2.84E-08	7.16E-09	6.58E-09	4.05E-10	1.41E-08

1527	763480.96	4092027.74	5.62E-08	5.65E-08	4.01E-09	1.17E-07	8.78E-09	9.17E-09	6.34E-10	1.86E-08	4.69E-09	4.31E-09	2.65E-10	9.27E-09
1528	763456.22	4092062.55	6.06E-08	6.09E-08	4.33E-09	1.26E-07	9.47E-09	9.89E-09	6.84E-10	2.00E-08	5.06E-09	4.65E-09	2.86E-10	9.99E-09
1529	763396.01	4091974.54	4.25E-08	4.28E-08	3.04E-09	8.84E-08	6.65E-09	6.94E-09	4.80E-10	1.41E-08	3.55E-09	3.26E-09	2.01E-10	7.02E-09
1530	763373.64	4092006.16	4.55E-08	4.57E-08	3.25E-09	9.44E-08	7.10E-09	7.42E-09	5.13E-10	1.50E-08	3.80E-09	3.49E-09	2.15E-10	7.50E-09
1531	763315.01	4091916.01	3.34E-08	3.36E-08	2.38E-09	6.94E-08	5.22E-09	5.45E-09	3.77E-10	1.10E-08	2.79E-09	2.56E-09	1.58E-10	5.51E-09
1532	763291.06	4091949.76	3.57E-08	3.59E-08	2.55E-09	7.41E-08	5.58E-09	5.83E-09	4.03E-10	1.18E-08	2.98E-09	2.74E-09	1.69E-10	5.89E-09
1533	763149.46	4091803.74	2.30E-08	2.31E-08	1.64E-09	4.77E-08	3.59E-09	3.75E-09	2.59E-10	7.60E-09	1.92E-09	1.76E-09	1.09E-10	3.79E-09
1534	763170.89	4091774.91	2.19E-08	2.20E-08	1.56E-09	4.55E-08	3.42E-09	3.57E-09	2.47E-10	7.24E-09	1.83E-09	1.68E-09	1.03E-10	3.61E-09
1535	763125.91	4091836.96	2.43E-08	2.44E-08	1.73E-09	5.04E-08	3.79E-09	3.96E-09	2.74E-10	8.03E-09	2.03E-09	1.86E-09	1.15E-10	4.01E-09
1536	762986.69	4091687.74	1.72E-08	1.73E-08	1.23E-09	3.57E-08	2.68E-09	2.80E-09	1.94E-10	5.68E-09	1.43E-09	1.32E-09	8.11E-11	2.83E-09
1537	763012.88	4091652.5	1.63E-08	1.64E-08	1.16E-09	3.38E-08	2.54E-09	2.66E-09	1.84E-10	5.39E-09	1.36E-09	1.25E-09	7.69E-11	2.69E-09
1538	762960.75	4091724.16	1.81E-08	1.82E-08	1.29E-09	3.76E-08	2.83E-09	2.95E-09	2.04E-10	5.99E-09	1.51E-09	1.39E-09	8.55E-11	2.99E-09
1539	762820.82	4091575.9	1.37E-08	1.38E-08	9.77E-10	2.84E-08	2.14E-09	2.23E-09	1.54E-10	4.53E-09	1.14E-09	1.05E-09	6.47E-11	2.26E-09
1540	762845.58	4091542.58	1.31E-08	1.31E-08	9.34E-10	2.72E-08	2.04E-09	2.13E-09	1.48E-10	4.32E-09	1.09E-09	1.00E-09	6.18E-11	2.16E-09
1541	762795.59	4091611.36	1.43E-08	1.44E-08	1.02E-09	2.98E-08	2.24E-09	2.34E-09	1.62E-10	4.74E-09	1.20E-09	1.10E-09	6.77E-11	2.36E-09
1542	762655.18	4091463.74	1.13E-08	1.14E-08	8.09E-10	2.35E-08	1.77E-09	1.85E-09	1.28E-10	3.75E-09	9.47E-10	8.69E-10	5.35E-11	1.87E-09
1543	762678.99	4091431.71	1.09E-08	1.09E-08	7.77E-10	2.26E-08	1.70E-09	1.78E-09	1.23E-10	3.60E-09	9.08E-10	8.34E-10	5.14E-11	1.79E-09
1544	762702.81	4091399.67	1.04E-08	1.04E-08	7.42E-10	2.16E-08	1.62E-09	1.70E-09	1.17E-10	3.44E-09	8.68E-10	7.97E-10	4.91E-11	1.71E-09
1545	762630.44	4091498.56	1.18E-08	1.19E-08	8.43E-10	2.45E-08	1.84E-09	1.93E-09	1.33E-10	3.90E-09	9.86E-10	9.06E-10	5.58E-11	1.95E-09
1546	762491.62	4091348.81	9.64E-09	9.69E-09	6.88E-10	2.00E-08	1.51E-09	1.57E-09	1.09E-10	3.19E-09	8.05E-10	7.39E-10	4.55E-11	1.59E-09
1547	762505.11	4091330.66	9.43E-09	9.48E-09	6.73E-10	1.96E-08	1.47E-09	1.54E-09	1.06E-10	3.12E-09	7.87E-10	7.23E-10	4.45E-11	1.55E-09
1548	762518.6	4091312.5	9.21E-09	9.26E-09	6.58E-10	1.91E-08	1.44E-09	1.50E-09	1.04E-10	3.05E-09	7.69E-10	7.06E-10	4.35E-11	1.52E-09
1549	762532.09	4091294.35	8.98E-09	9.03E-09	6.41E-10	1.87E-08	1.40E-09	1.47E-09	1.01E-10	2.97E-09	7.50E-10	6.89E-10	4.24E-11	1.48E-09
1550	762545.59	4091276.19	8.75E-09	8.80E-09	6.25E-10	1.82E-08	1.37E-09	1.43E-09	9.87E-11	2.89E-09	7.31E-10	6.71E-10	4.14E-11	1.44E-09
1551	762478.12	4091366.97	9.84E-09	9.89E-09	7.02E-10	2.04E-08	1.54E-09	1.61E-09	1.11E-10	3.25E-09	8.22E-10	7.54E-10	4.65E-11	1.62E-09
1552	762465.28	4091385.77	1.00E-08	1.01E-08	7.16E-10	2.08E-08	1.57E-09	1.64E-09	1.13E-10	3.31E-09	8.37E-10	7.68E-10	4.73E-11	1.65E-09
1553	763730.23	4092284.32	3.68E-07	3.70E-07	2.63E-08	7.64E-07	5.74E-08	6.00E-08	4.15E-09	1.22E-07	3.07E-08	2.82E-08	1.74E-09	6.07E-08
1554	763687.45	4092258.44	2.54E-07	2.55E-07	1.81E-08	5.27E-07	3.96E-08	4.14E-08	2.86E-09	8.39E-08	2.12E-08	1.94E-08	1.20E-09	4.18E-08
1555	763644.67	4092232.55	1.86E-07	1.87E-07	1.33E-08	3.86E-07	2.91E-08	3.04E-08	2.10E-09	6.15E-08	1.55E-08	1.43E-08	8.79E-10	3.07E-08
1556	763601.9	4092206.67	1.43E-07	1.44E-07	1.02E-08	2.97E-07	2.23E-08	2.33E-08	1.61E-09	4.72E-08	1.19E-08	1.10E-08	6.75E-10	2.36E-08
1557	763516.34	4092154.9	9.30E-08	9.35E-08	6.64E-09	1.93E-07	1.45E-08	1.52E-08	1.05E-09	3.07E-08	7.77E-09	7.13E-09	4.39E-10	1.53E-08
1558	763441.32	4092085.71	6.38E-08	6.41E-08	4.55E-09	1.32E-07	9.96E-09	1.04E-08	7.20E-10	2.11E-08	5.33E-09	4.89E-09	3.01E-10	1.05E-08
1559	763355.76	4092033.95	4.83E-08	4.85E-08	3.45E-09	1.00E-07	7.54E-09	7.88E-09	5.45E-10	1.60E-08	4.03E-09	3.70E-09	2.28E-10	7.96E-09
1560	763270.2	4091982.18	3.81E-08	3.83E-08	2.72E-09	7.92E-08	5.96E-09	6.22E-09	4.30E-10	1.26E-08	3.18E-09	2.92E-09	1.80E-10	6.29E-09
1561	763108.03	4091864.75	2.55E-08	2.56E-08	1.82E-09	5.29E-08	3.98E-09	4.16E-09	2.87E-10	8.42E-09	2.13E-09	1.95E-09	1.20E-10	4.20E-09
1562	763088.55	4091896.07	2.69E-08	2.70E-08	1.92E-09	5.58E-08	4.20E-09	4.39E-09	3.03E-10	8.89E-09	2.24E-09	2.06E-09	1.27E-10	4.43E-09
1563	762938.9	4091758.13	1.90E-08	1.91E-08	1.36E-09	3.94E-08	2.97E-09	3.10E-09	2.14E-10	6.28E-09	1.59E-09	1.46E-09	8.97E-11	3.13E-09
1564	762917.43	4091792.53	1.99E-08	2.00E-08	1.42E-09	4.14E-08	3.11E-09	3.25E-09	2.25E-10	6.59E-09	1.66E-09	1.53E-09	9.41E-11	3.29E-09
1565	762766.54	4091656.52	1.51E-08	1.52E-08	1.08E-09	3.14E-08	2.36E-09	2.47E-09	1.70E-10	5.00E-09	1.26E-09	1.16E-09	7.14E-11	2.49E-09
1566	762746.32	4091689	1.57E-08	1.58E-08	1.12E-09	3.26E-08	2.45E-09	2.56E-09	1.77E-10	5.18E-09	1.31E-09	1.20E-09	7.40E-11	2.58E-09
1567	762594.68	4091554.15		1.26E-08	8.92E-10	2.60E-08	1.95E-09	2.04E-09	1.41E-10	4.13E-09	1.04E-09	9.58E-10	5.90E-11	2.06E-09
1568	762612.56		1.22E-08	1.22E-08	8.68E-10	2.53E-08	1.90E-09	1.98E-09	1.37E-10	4.02E-09	1.02E-09	9.32E-10	5.74E-11	2.01E-09
1569	762575.2			1.29E-08	9.18E-10	2.67E-08		2.10E-09	1.45E-10		1.07E-09	9.86E-10	6.08E-11	
1570	762424.76	4091448.76			7.58E-10	2.21E-08		1.73E-09	1.20E-10		8.87E-10	8.14E-10	5.02E-11	
1571		4091417.26			7.37E-10	2.14E-08		1.69E-09				7.92E-10		

1572	762404.08	4091481.93	1.09E-08	1.10E-08	7.78E-10	2.26E-08	1.70E-09	1.78E-09	1.23E-10	3.60E-09	9.10E-10	8.35E-10	5.15E-11	1.80E-09
1573	763716.64	4092310.4	3.92E-07	3.94E-07	2.80E-08	8.14E-07	6.12E-08	6.40E-08	4.42E-09	1.30E-07	3.27E-08	3.01E-08	1.85E-09	6.46E-08
1574	763671.93	4092288.02	2.73E-07	2.74E-07	1.95E-08	5.67E-07	4.26E-08	4.45E-08	3.08E-09	9.02E-08	2.28E-08	2.09E-08	1.29E-09	4.50E-08
1575	763627.22	4092265.63	2.02E-07	2.03E-07	1.44E-08	4.19E-07	3.15E-08	3.29E-08	2.28E-09	6.67E-08	1.68E-08	1.55E-08	9.53E-10	3.33E-08
1576	763590.31	4092227.67	1.50E-07	1.51E-07	1.07E-08	3.12E-07	2.35E-08	2.45E-08	1.69E-09	4.97E-08	1.25E-08	1.15E-08	7.10E-10	2.48E-08
1577	763500.89	4092182.9	9.90E-08	9.95E-08	7.07E-09	2.06E-07	1.55E-08	1.62E-08	1.12E-09	3.27E-08	8.27E-09	7.59E-09	4.68E-10	1.63E-08
1578	763417.91	4092126.47	6.96E-08	7.00E-08	4.97E-09	1.45E-07	1.09E-08	1.14E-08	7.86E-10	2.30E-08	5.81E-09	5.34E-09	3.29E-10	1.15E-08
1579	763403.67	4092153.71	7.36E-08	7.40E-08	5.26E-09	1.53E-07	1.15E-08	1.20E-08	8.30E-10	2.43E-08	6.15E-09	5.64E-09	3.48E-10	1.21E-08
1580	763329.77	4092079.37	5.30E-08	5.33E-08	3.79E-09	1.10E-07	8.28E-09	8.66E-09	5.98E-10	1.75E-08	4.43E-09	4.07E-09	2.51E-10	8.75E-09
1581	763314.25	4092108.95	5.62E-08	5.65E-08	4.01E-09	1.17E-07	8.77E-09	9.16E-09	6.34E-10	1.86E-08	4.69E-09	4.31E-09	2.65E-10	9.26E-09
1582	763239.39	4092036.35	4.24E-08	4.27E-08	3.03E-09	8.81E-08	6.63E-09	6.93E-09	4.79E-10	1.40E-08	3.54E-09	3.25E-09	2.00E-10	7.00E-09
1583	763252.91	4092011.85	4.05E-08	4.07E-08	2.89E-09	8.41E-08	6.32E-09	6.61E-09	4.57E-10	1.34E-08	3.38E-09	3.10E-09	1.91E-10	6.68E-09
1584	763224.83	4092064.18	4.47E-08	4.49E-08	3.19E-09	9.28E-08	6.98E-09	7.29E-09	5.04E-10	1.48E-08	3.73E-09	3.43E-09	2.11E-10	7.37E-09
1585	763060.74	4091946.47	2.93E-08	2.95E-08	2.09E-09	6.09E-08	4.58E-09	4.79E-09	3.31E-10	9.70E-09	2.45E-09	2.25E-09	1.39E-10	4.84E-09
1586	763074.65	4091921.27	2.81E-08	2.82E-08	2.00E-09	5.83E-08	4.39E-09	4.58E-09	3.17E-10	9.28E-09	2.34E-09	2.15E-09	1.33E-10	4.63E-09
1587	763045.99	4091974.64	3.08E-08	3.09E-08	2.20E-09	6.39E-08	4.81E-09	5.02E-09	3.47E-10	1.02E-08	2.57E-09	2.36E-09	1.45E-10	5.07E-09
1588	762882.03	4091856.7	2.19E-08	2.20E-08	1.56E-09	4.55E-08	3.42E-09	3.57E-09	2.47E-10	7.24E-09	1.83E-09	1.68E-09	1.03E-10	3.61E-09
1589	762896.19	4091831.03	2.11E-08	2.12E-08	1.50E-09	4.38E-08	3.29E-09	3.44E-09	2.38E-10	6.97E-09	1.76E-09	1.62E-09	9.95E-11	3.47E-09
1590	762867.15	4091885.11	2.29E-08	2.30E-08	1.63E-09	4.75E-08	3.57E-09	3.73E-09	2.58E-10	7.56E-09	1.91E-09	1.75E-09	1.08E-10	3.77E-09
1591	762704.48	4091764.83	1.72E-08	1.73E-08	1.23E-09	3.57E-08	2.68E-09	2.80E-09	1.94E-10	5.68E-09	1.44E-09	1.32E-09	8.12E-11	2.83E-09
1592	762721.21	4091734.5	1.65E-08	1.66E-08	1.18E-09	3.44E-08	2.58E-09	2.70E-09	1.87E-10	5.47E-09	1.38E-09	1.27E-09	7.82E-11	2.73E-09
1593	762688.31	4091795.58	1.79E-08	1.80E-08	1.28E-09	3.72E-08	2.80E-09	2.92E-09	2.02E-10	5.92E-09	1.50E-09	1.37E-09	8.46E-11	2.95E-09
1594	762525.55	4091675.46	1.41E-08	1.41E-08	1.00E-09	2.92E-08	2.20E-09	2.30E-09	1.59E-10	4.65E-09	1.17E-09	1.08E-09	6.65E-11	2.32E-09
1595	762542.1	4091645.46	1.36E-08	1.37E-08	9.74E-10	2.83E-08	2.13E-09	2.23E-09	1.54E-10	4.51E-09	1.14E-09	1.05E-09	6.44E-11	2.25E-09
1596	762558.65	4091615.46	1.32E-08	1.33E-08	9.46E-10	2.75E-08	2.07E-09	2.16E-09	1.49E-10	4.38E-09	1.11E-09	1.02E-09	6.26E-11	2.18E-09
1597	762509.47	4091706.04	1.46E-08	1.47E-08	1.04E-09	3.03E-08	2.28E-09	2.38E-09	1.64E-10	4.82E-09	1.22E-09	1.12E-09	6.89E-11	2.40E-09
1598	762346.64	4091586.05	1.19E-08	1.19E-08	8.48E-10	2.47E-08	1.85E-09	1.94E-09	1.34E-10	3.93E-09	9.91E-10	9.10E-10	5.61E-11	1.96E-09
1599	762363.05	4091556.3	1.16E-08	1.16E-08	8.26E-10	2.40E-08	1.81E-09	1.89E-09	1.30E-10	3.82E-09	9.66E-10	8.87E-10	5.46E-11	1.91E-09
1600	762379.47	4091526.55	1.13E-08	1.13E-08	8.06E-10	2.34E-08	1.76E-09	1.84E-09	1.27E-10	3.73E-09	9.43E-10	8.66E-10	5.33E-11	1.86E-09
1601	762330.63	4091616.51	1.22E-08	1.23E-08	8.73E-10	2.54E-08	1.91E-09	1.99E-09	1.38E-10	4.04E-09	1.02E-09	9.37E-10	5.77E-11	2.02E-09
1602	763701.43	4092350.8	4.39E-07	4.41E-07	3.14E-08	9.12E-07	6.86E-08	7.17E-08		1.45E-07	3.67E-08	3.37E-08	2.07E-09	
1603	763661.42	4092313.15	2.91E-07	2.93E-07	2.08E-08	6.05E-07	4.55E-08	4.75E-08	3.29E-09	9.63E-08	2.43E-08	2.23E-08	1.38E-09	4.80E-08
1604	763654.09	4092334.7	3.09E-07	3.10E-07	2.20E-08	6.41E-07	4.82E-08	5.04E-08		1.02E-07	2.58E-08	2.37E-08	1.46E-09	
1605	763614.09	4092297.04	2.18E-07	2.20E-07	1.56E-08	4.54E-07	3.41E-08	3.56E-08		7.22E-08	1.82E-08	1.67E-08	1.03E-09	
1606	763606.76	4092318.59			1.65E-08	4.79E-07	3.60E-08		2.60E-09			1.77E-08		
1607	763574.63	4092262.1		1.64E-07	1.17E-08	3.40E-07	2.55E-08	2.67E-08			1.37E-08	1.25E-08		
1608		4092302.49	1.80E-07	1.81E-07	1.28E-08	3.73E-07	2.81E-08	2.93E-08				1.38E-08	8.49E-10	
1609	763479.08	4092231.99	1.10E-07	1.11E-07	7.89E-09	2.29E-07		1.80E-08			9.22E-09	8.47E-09	5.22E-10	1.82E-08
	763464.75	4092270.29		1.20E-07	8.55E-09	2.49E-07		1.95E-08			1.00E-08	9.18E-09	5.65E-10	
	763386.16	4092195.6	8.01E-08	8.06E-08	5.72E-09	1.66E-07		1.31E-08			6.69E-09	6.15E-09	3.79E-10	
1612			7.69E-08	7.73E-08	5.49E-09	1.60E-07	1.20E-08	1.25E-08	8.67E-10		6.42E-09	5.90E-09	3.63E-10	
1613	763377.4	4092216.54		8.38E-08	5.95E-09	1.73E-07	1.30E-08	1.36E-08		2.76E-08	6.96E-09	6.39E-09	3.94E-10	
1614		4092238.09	8.68E-08	8.73E-08	6.20E-09	1.80E-07	1.36E-08	1.42E-08		2.87E-08	7.25E-09	6.66E-09	4.10E-10	
1615		4092165.49	6.24E-08	6.28E-08	4.46E-09	1.30E-07		1.02E-08	7.04E-10		5.21E-09	4.79E-09	2.95E-10	
1616	763275.4	4092205.89	6.69E-08	6.72E-08	4.77E-09	1.39E-07	1.04E-08	1.09E-08	7.54E-10	2.21E-08	5.58E-09	5.13E-09	3.16E-10	1.10E-08

1617	763195.41	4092134.54	5.06E-08	5.08E-08	3.61E-09	1.05E-07	7.90E-09	8.25E-09	5.70E-10	1.67E-08	4.22E-09	3.88E-09	2.39E-10	8.34E-09
1618	763210.12	4092099.36	4.77E-08	4.79E-08	3.40E-09	9.90E-08	7.44E-09	7.78E-09	5.38E-10	1.58E-08	3.98E-09	3.65E-09	2.25E-10	7.86E-09
1619	763180.73	4092173.69	5.38E-08	5.41E-08	3.84E-09	1.12E-07	8.40E-09	8.78E-09	6.07E-10	1.78E-08	4.49E-09	4.12E-09	2.54E-10	8.87E-09
1620	763006.59	4092068.88	3.59E-08	3.61E-08	2.56E-09	7.46E-08	5.61E-09	5.86E-09	4.05E-10	1.19E-08	3.00E-09	2.75E-09	1.70E-10	5.92E-09
1621	763022.35	4092031.19	3.39E-08	3.40E-08	2.42E-09	7.03E-08	5.29E-09	5.53E-09	3.82E-10	1.12E-08	2.83E-09	2.60E-09	1.60E-10	5.59E-09
1622	762991.38	4092109.28	3.80E-08	3.82E-08	2.71E-09	7.90E-08	5.94E-09	6.21E-09	4.29E-10	1.26E-08	3.18E-09	2.92E-09	1.80E-10	6.27E-09
1623	762817.62	4092003.58	2.75E-08	2.76E-08	1.96E-09	5.70E-08	4.29E-09	4.48E-09	3.10E-10	9.08E-09	2.29E-09	2.11E-09	1.30E-10	4.53E-09
1624	762834.13	4091964.09	2.59E-08	2.60E-08	1.85E-09	5.38E-08	4.05E-09	4.23E-09	2.92E-10	8.57E-09	2.16E-09	1.99E-09	1.22E-10	4.27E-09
1625	762850.64	4091924.6	2.44E-08	2.45E-08	1.74E-09	5.06E-08	3.80E-09	3.97E-09	2.75E-10	8.05E-09	2.03E-09	1.87E-09	1.15E-10	4.02E-09
1626	762802.03	4092044.88	2.90E-08	2.92E-08	2.07E-09	6.03E-08	4.54E-09	4.74E-09	3.28E-10	9.60E-09	2.43E-09	2.23E-09	1.37E-10	4.79E-09
1627	762628.55	4091938.5	2.20E-08	2.22E-08	1.57E-09	4.58E-08	3.44E-09	3.60E-09	2.49E-10	7.29E-09	1.84E-09	1.69E-09	1.04E-10	3.64E-09
1628	762645.63	4091897.67	2.08E-08	2.09E-08	1.49E-09	4.32E-08	3.25E-09	3.40E-09	2.35E-10	6.88E-09	1.74E-09	1.60E-09	9.83E-11	3.43E-09
1629	762662.7	4091856.83	1.96E-08	1.97E-08	1.40E-09	4.07E-08	3.06E-09	3.20E-09	2.21E-10	6.48E-09	1.64E-09	1.50E-09	9.25E-11	3.23E-09
1630	762612.69	4091980.47	2.33E-08	2.34E-08	1.66E-09	4.84E-08	3.64E-09	3.80E-09	2.63E-10	7.70E-09	1.95E-09	1.79E-09	1.10E-10	3.84E-09
1631	762439.43	4091873.58	1.83E-08	1.84E-08	1.31E-09	3.80E-08	2.86E-09	2.99E-09	2.07E-10	6.06E-09	1.53E-09	1.40E-09	8.65E-11	3.02E-09
1632	762448.18	4091852.63	1.78E-08	1.79E-08	1.27E-09	3.70E-08	2.78E-09	2.90E-09	2.01E-10	5.89E-09	1.49E-09	1.36E-09	8.41E-11	2.94E-09
1633	762456.94	4091831.69	1.73E-08	1.74E-08	1.23E-09	3.59E-08	2.70E-09	2.82E-09	1.95E-10	5.72E-09	1.44E-09	1.33E-09	8.17E-11	2.85E-09
1634	762465.69	4091810.75	1.68E-08	1.69E-08	1.20E-09	3.49E-08	2.62E-09	2.74E-09	1.89E-10	5.55E-09	1.40E-09	1.29E-09	7.93E-11	2.77E-09
1635	762474.45	4091789.81	1.63E-08	1.64E-08	1.16E-09	3.39E-08	2.55E-09	2.66E-09	1.84E-10	5.39E-09	1.36E-09	1.25E-09	7.70E-11	2.69E-09
1636	762483.21	4091768.87	1.58E-08	1.59E-08	1.13E-09	3.29E-08	2.47E-09	2.58E-09	1.79E-10	5.23E-09	1.32E-09	1.21E-09	7.48E-11	2.61E-09
1637	762491.96	4091747.92	1.54E-08	1.55E-08	1.10E-09	3.19E-08	2.40E-09	2.51E-09	1.74E-10	5.09E-09	1.28E-09	1.18E-09	7.27E-11	2.54E-09
1638	762500.72	4091726.98	1.50E-08	1.51E-08	1.07E-09	3.11E-08	2.34E-09	2.44E-09	1.69E-10	4.95E-09	1.25E-09	1.15E-09	7.07E-11	2.47E-09
1639	762430.67	4091894.52	1.88E-08	1.89E-08	1.34E-09	3.91E-08	2.94E-09	3.07E-09	2.12E-10	6.22E-09	1.57E-09	1.44E-09	8.89E-11	3.10E-09
1640	762423.34	4091916.07	1.93E-08	1.94E-08	1.38E-09	4.01E-08	3.02E-09	3.15E-09	2.18E-10	6.39E-09	1.61E-09	1.48E-09	9.13E-11	3.19E-09
1641	762249.44	4091810.7	1.56E-08	1.57E-08	1.12E-09	3.25E-08	2.44E-09	2.55E-09	1.76E-10	5.17E-09	1.31E-09	1.20E-09	7.38E-11	2.58E-09
1642	762265.68	4091771.86	1.49E-08	1.49E-08	1.06E-09	3.08E-08	2.32E-09	2.42E-09	1.68E-10	4.91E-09	1.24E-09	1.14E-09	7.01E-11	2.45E-09
1643	762281.92	4091733.02	1.41E-08	1.42E-08	1.01E-09	2.93E-08	2.20E-09	2.30E-09	1.59E-10	4.66E-09	1.18E-09	1.08E-09	6.66E-11	2.33E-09
1644	762298.16	4091694.18	1.34E-08	1.35E-08	9.57E-10	2.78E-08	2.09E-09	2.19E-09	1.51E-10	4.43E-09	1.12E-09	1.03E-09	6.33E-11	2.21E-09
1645	762314.4	4091655.34	1.28E-08	1.28E-08	9.12E-10	2.65E-08	1.99E-09	2.08E-09	1.44E-10	4.22E-09	1.07E-09	9.79E-10	6.03E-11	2.11E-09
1646	762233.99	4091851.66	1.64E-08	1.65E-08	1.17E-09	3.41E-08	2.57E-09	2.68E-09	1.85E-10	5.44E-09	1.37E-09	1.26E-09	7.77E-11	2.71E-09
1647	763645.37	4092366.34	3.35E-07	3.37E-07	2.39E-08	6.95E-07	5.23E-08	5.46E-08	3.78E-09	1.11E-07	2.80E-08	2.57E-08	1.58E-09	5.52E-08
1648	763596.94	4092353.9	2.51E-07	2.52E-07	1.79E-08	5.21E-07	3.92E-08	4.09E-08	2.83E-09	8.29E-08	2.09E-08	1.92E-08	1.18E-09	4.13E-08
1649	763552.86	4092324.51	1.89E-07	1.90E-07	1.35E-08	3.92E-07	2.95E-08	3.08E-08	2.13E-09	6.25E-08	1.58E-08	1.45E-08	8.92E-10	3.11E-08
1650	763544.15	4092358.44	2.03E-07	2.04E-07	1.45E-08	4.21E-07	3.16E-08	3.31E-08	2.28E-09	6.70E-08	1.69E-08	1.55E-08	9.57E-10	3.34E-08
1651	763456	4092299.64	1.27E-07	1.28E-07	9.06E-09	2.64E-07	1.98E-08	2.07E-08	1.43E-09	4.20E-08	1.06E-08	9.73E-09	6.00E-10	2.09E-08
1652	763447.29	4092333.57	1.35E-07	1.36E-07	9.64E-09	2.80E-07	2.11E-08	2.20E-08	1.52E-09	4.46E-08	1.13E-08	1.04E-08	6.38E-10	2.23E-08
1653	763362.79	4092262.55	9.08E-08	9.13E-08	6.48E-09	1.89E-07	1.42E-08	1.48E-08	1.02E-09	3.00E-08	7.58E-09	6.96E-09	4.29E-10	1.50E-08
1654	763354.79	4092291.74	9.54E-08	9.59E-08	6.81E-09	1.98E-07	1.49E-08	1.56E-08	1.08E-09	3.16E-08	7.97E-09	7.32E-09	4.51E-10	1.57E-08
1655	763266.66	4092235.24	7.02E-08	7.06E-08	5.01E-09	1.46E-07	1.10E-08	1.15E-08	7.92E-10	2.32E-08	5.86E-09	5.38E-09	3.32E-10	1.16E-08
1656	763257.93	4092266.88	7.36E-08	7.40E-08	5.26E-09	1.53E-07	1.15E-08	1.20E-08	8.31E-10	2.43E-08	6.15E-09	5.65E-09	3.48E-10	1.21E-08
1657	763169.25	4092212.21	5.69E-08	5.72E-08	4.07E-09	1.18E-07	8.89E-09	9.29E-09	6.42E-10	1.88E-08	4.75E-09	4.37E-09	2.69E-10	9.39E-09
1658	763161.07	4092242.01	5.93E-08	5.96E-08	4.23E-09	1.23E-07	9.26E-09	9.67E-09	6.69E-10	1.96E-08	4.95E-09	4.54E-09	2.80E-10	9.77E-09
1659	762976.62	4092158.81	4.05E-08	4.07E-08	2.89E-09	8.41E-08	6.33E-09	6.61E-09	4.57E-10	1.34E-08	3.38E-09	3.11E-09	1.91E-10	6.68E-09
1660	762967.35	4092192.29	4.20E-08	4.22E-08	3.00E-09	8.72E-08	6.56E-09	6.85E-09	4.74E-10	1.39E-08	3.51E-09	3.22E-09	1.98E-10	6.93E-09
1661	762782.8	4092109.45		3.14E-08	2.23E-09	6.49E-08	4.88E-09	5.10E-09	3.53E-10	1.03E-08	2.61E-09	2.40E-09		

1662	762792.41	4092077.16	3.02E-08	3.04E-08	2.16E-09	6.28E-08	4.72E-09	4.93E-09	3.41E-10	9.99E-09	2.52E-09	2.32E-09	1.43E-10	4.98E-09
1663	762773.63	4092142.56	3.22E-08	3.24E-08	2.30E-09	6.69E-08	5.03E-09	5.26E-09	3.64E-10	1.07E-08	2.69E-09	2.47E-09	1.52E-10	5.32E-09
1664	762589	4092059.97	2.54E-08	2.55E-08	1.81E-09	5.27E-08	3.96E-09	4.14E-09	2.86E-10	8.39E-09	2.12E-09	1.94E-09	1.20E-10	4.18E-09
1665	762598.48	4092028.17	2.46E-08	2.47E-08	1.76E-09	5.11E-08	3.84E-09	4.01E-09	2.77E-10	8.13E-09	2.05E-09	1.89E-09	1.16E-10	4.06E-09
1666	762579.91	4092092.83	2.60E-08	2.62E-08	1.86E-09	5.41E-08	4.07E-09	4.25E-09	2.94E-10	8.61E-09	2.17E-09	2.00E-09	1.23E-10	4.29E-09
1667	762395.23	4092010.41	2.13E-08	2.14E-08	1.52E-09	4.42E-08	3.32E-09	3.47E-09	2.40E-10	7.04E-09	1.78E-09	1.63E-09	1.01E-10	3.51E-09
1668	762404.6	4091978.96	2.07E-08	2.08E-08	1.48E-09	4.30E-08	3.24E-09	3.38E-09	2.34E-10	6.85E-09	1.73E-09	1.59E-09	9.79E-11	3.42E-09
1669	762413.97	4091947.52	2.01E-08	2.02E-08	1.43E-09	4.17E-08	3.13E-09	3.27E-09	2.26E-10	6.63E-09	1.68E-09	1.54E-09	9.48E-11	3.31E-09
1670	762386.19	4092043.1	2.18E-08	2.19E-08	1.56E-09	4.53E-08	3.41E-09	3.56E-09	2.46E-10	7.21E-09	1.82E-09	1.67E-09	1.03E-10	3.60E-09
1671	762201.47	4091960.81	1.83E-08	1.84E-08	1.31E-09	3.80E-08	2.86E-09	2.99E-09	2.06E-10	6.05E-09	1.53E-09	1.40E-09	8.65E-11	3.02E-09
1672	762210.77	4091929.63	1.78E-08	1.79E-08	1.27E-09	3.71E-08	2.79E-09	2.91E-09	2.01E-10	5.90E-09	1.49E-09	1.37E-09	8.43E-11	2.94E-09
1673	762220.06	4091898.44	1.73E-08	1.74E-08	1.24E-09	3.60E-08	2.71E-09	2.83E-09	1.95E-10	5.73E-09	1.45E-09	1.33E-09	8.18E-11	2.86E-09
1674	762192.47	4091993.37	1.87E-08	1.88E-08	1.34E-09	3.89E-08	2.93E-09	3.06E-09	2.11E-10	6.19E-09	1.56E-09	1.44E-09	8.85E-11	3.09E-09
1675	763637.28	4092405.39	3.67E-07	3.69E-07	2.62E-08	7.63E-07	5.74E-08	5.99E-08	4.14E-09	1.21E-07	3.07E-08	2.82E-08	1.74E-09	6.06E-08
1676	763634.27	4092430.18	3.89E-07	3.91E-07	2.78E-08	8.08E-07	6.08E-08	6.35E-08	4.39E-09	1.29E-07	3.25E-08	2.98E-08	1.84E-09	6.41E-08
1677	763587.34	4092401.93	2.78E-07	2.79E-07	1.98E-08	5.77E-07	4.34E-08	4.53E-08	3.13E-09	9.18E-08	2.32E-08	2.13E-08	1.31E-09	4.58E-08
1678	763584.45	4092426.03	2.92E-07	2.93E-07	2.08E-08	6.05E-07	4.55E-08	4.76E-08	3.29E-09	9.64E-08	2.43E-08	2.24E-08	1.38E-09	4.81E-08
1679	763537.86	4092395.71	2.18E-07	2.19E-07	1.56E-08	4.53E-07	3.40E-08	3.56E-08	2.46E-09	7.21E-08	1.82E-08	1.67E-08	1.03E-09	3.59E-08
1680	763534.62	4092421.88	2.28E-07	2.30E-07	1.63E-08	4.74E-07	3.57E-08	3.73E-08	2.58E-09	7.55E-08	1.91E-08	1.75E-08	1.08E-09	3.76E-08
1681	763438.35	4092386.58	1.48E-07	1.48E-07	1.05E-08	3.06E-07	2.30E-08	2.41E-08	1.66E-09	4.88E-08	1.23E-08	1.13E-08	6.97E-10	2.43E-08
1682	763442.82	4092360.08	1.42E-07	1.42E-07	1.01E-08	2.94E-07	2.21E-08	2.31E-08	1.60E-09	4.68E-08	1.18E-08	1.09E-08	6.69E-10	2.34E-08
1683	763434.96	4092413.59	1.53E-07	1.54E-07	1.10E-08	3.19E-07	2.40E-08	2.50E-08	1.73E-09	5.07E-08	1.28E-08	1.18E-08	7.25E-10	2.53E-08
1684	763338.45	4092379.7	1.09E-07	1.09E-07	7.75E-09	2.25E-07	1.70E-08	1.77E-08	1.22E-09	3.59E-08	9.06E-09	8.32E-09	5.13E-10	1.79E-08
1685	763342.45	4092356.04	1.05E-07	1.06E-07	7.52E-09	2.19E-07	1.64E-08	1.72E-08	1.19E-09	3.48E-08	8.79E-09	8.07E-09	4.97E-10	1.74E-08
1686	763346.44	4092332.37	1.02E-07	1.02E-07	7.27E-09	2.11E-07	1.59E-08	1.66E-08	1.15E-09	3.37E-08	8.50E-09	7.80E-09	4.81E-10	1.68E-08
1687	763335.31	4092405.29	1.12E-07	1.13E-07	8.00E-09	2.33E-07	1.75E-08	1.83E-08	1.26E-09	3.71E-08	9.36E-09	8.60E-09	5.30E-10	1.85E-08
1688	763238.9	4092370.81	8.42E-08	8.46E-08	6.01E-09	1.75E-07	1.32E-08	1.37E-08	9.50E-10	2.78E-08	7.03E-09	6.46E-09	3.98E-10	1.39E-08
1689	763243.09	4092345.97	8.19E-08	8.23E-08	5.85E-09	1.70E-07	1.28E-08	1.34E-08	9.24E-10	2.71E-08	6.84E-09	6.28E-09	3.87E-10	1.35E-08
1690	763247.28	4092321.12	7.94E-08	7.98E-08	5.67E-09	1.65E-07	1.24E-08	1.30E-08	8.96E-10	2.63E-08	6.63E-09	6.09E-09	3.75E-10	1.31E-08
1691	763251.48	4092296.27	7.68E-08	7.72E-08	5.48E-09	1.59E-07	1.20E-08	1.25E-08	8.66E-10	2.54E-08	6.41E-09	5.89E-09	3.63E-10	1.27E-08
1692	763235.65	4092396.99	8.67E-08	8.72E-08	6.19E-09	1.80E-07	1.35E-08	1.41E-08	9.78E-10	2.87E-08	7.24E-09	6.65E-09	4.10E-10	1.43E-08
1693	763139.32	4092362.06	6.80E-08	6.84E-08	4.85E-09	1.41E-07	1.06E-08	1.11E-08	7.67E-10	2.25E-08	5.68E-09	5.21E-09	3.21E-10	1.12E-08
1694	763143.67	4092336.29	6.63E-08	6.66E-08	4.73E-09	1.38E-07	1.04E-08	1.08E-08	7.48E-10	2.19E-08	5.54E-09	5.08E-09	3.13E-10	1.09E-08
1695	763148.02	4092310.52	6.45E-08	6.48E-08	4.60E-09	1.34E-07	1.01E-08	1.05E-08	7.27E-10	2.13E-08	5.38E-09	4.94E-09	3.05E-10	1.06E-08
1696	763152.36	4092284.75	6.26E-08	6.29E-08	4.47E-09	1.30E-07	9.77E-09	1.02E-08	7.06E-10	2.07E-08	5.22E-09	4.80E-09	2.96E-10	1.03E-08
1697	763136	4092388.69	6.99E-08	7.02E-08	4.99E-09	1.45E-07	1.09E-08	1.14E-08	7.88E-10	2.31E-08	5.83E-09	5.36E-09	3.30E-10	1.15E-08
1698	762940.12	4092344.79	4.82E-08	4.85E-08	3.44E-09	1.00E-07	7.53E-09	7.87E-09	5.44E-10	1.59E-08	4.03E-09	3.70E-09	2.28E-10	7.95E-09
1699	762944.7	4092317.68	4.72E-08	4.74E-08	3.37E-09	9.80E-08	7.37E-09	7.70E-09	5.32E-10	1.56E-08	3.94E-09	3.62E-09	2.23E-10	7.78E-09
1700	762949.27	4092290.57	4.61E-08	4.64E-08	3.29E-09	9.58E-08	7.20E-09	7.53E-09	5.20E-10	1.53E-08	3.85E-09	3.54E-09	2.18E-10	7.61E-09
1701	762953.85	4092263.47	4.50E-08	4.53E-08	3.22E-09	9.35E-08	7.03E-09	7.35E-09	5.08E-10	1.49E-08	3.76E-09	3.45E-09	2.13E-10	7.43E-09
1702	762958.42	4092236.36	4.39E-08	4.41E-08	3.13E-09	9.12E-08	6.86E-09	7.17E-09	4.95E-10	1.45E-08	3.67E-09	3.37E-09	2.07E-10	7.24E-09
1703	762936.69	4092372.09	4.94E-08	4.96E-08	3.52E-09	1.03E-07	7.71E-09	8.05E-09	5.57E-10	1.63E-08	4.12E-09	3.78E-09	2.33E-10	8.14E-09
1704	762740.72	4092328.73	3.69E-08	3.71E-08	2.63E-09	7.66E-08	5.76E-09	6.02E-09	4.16E-10	1.22E-08	3.08E-09	2.83E-09	1.74E-10	6.08E-09
1705	762745.11	4092302.7	3.62E-08	3.64E-08	2.59E-09	7.53E-08	5.66E-09	5.91E-09	4.09E-10	1.20E-08	3.03E-09	2.78E-09	1.71E-10	5.98E-09
1706	762749.51	4092276.67	3.56E-08	3.58E-08	2.54E-09	7.40E-08	5.56E-09	5.81E-09	4.02E-10	1.18E-08	2.97E-09	2.73E-09	1.68E-10	5.87E-09

1707	762753.9	4092250.63	3.50E-08	3.52E-08	2.50E-09	7.27E-08	5.46E-09	5.71E-09	3.95E-10	1.16E-08	2.92E-09	2.68E-09	1.65E-10	5.77E-09
1708	762758.29	4092224.6	3.44E-08	3.45E-08	2.45E-09	7.14E-08	5.37E-09	5.61E-09	3.88E-10	1.14E-08	2.87E-09	2.63E-09	1.62E-10	5.67E-09
1709	762762.69	4092198.57	3.37E-08	3.39E-08	2.41E-09	7.00E-08	5.27E-09	5.50E-09	3.80E-10	1.11E-08	2.82E-09	2.59E-09	1.59E-10	5.56E-09
1710	762767.08	4092172.54	3.30E-08	3.32E-08	2.36E-09	6.86E-08	5.16E-09	5.39E-09	3.73E-10	1.09E-08	2.76E-09	2.53E-09	1.56E-10	5.45E-09
1711	762737.38	4092355.5	3.76E-08	3.78E-08	2.69E-09	7.81E-08	5.88E-09	6.14E-09	4.24E-10	1.24E-08	3.14E-09	2.89E-09	1.78E-10	6.21E-09
1712	762541.49	4092311.69	2.96E-08	2.98E-08	2.12E-09	6.15E-08	4.63E-09	4.84E-09	3.34E-10	9.80E-09	2.47E-09	2.27E-09	1.40E-10	4.89E-09
1713	762546.03	4092284.77	2.92E-08	2.93E-08	2.08E-09	6.06E-08	4.56E-09	4.76E-09	3.29E-10	9.65E-09	2.44E-09	2.24E-09	1.38E-10	4.81E-09
1714	762550.57	4092257.85	2.87E-08	2.89E-08	2.05E-09	5.97E-08	4.49E-09	4.69E-09	3.24E-10	9.50E-09	2.40E-09	2.20E-09	1.36E-10	4.74E-09
1715	762555.11	4092230.93	2.83E-08	2.85E-08	2.02E-09	5.88E-08	4.42E-09	4.62E-09	3.20E-10	9.37E-09	2.37E-09	2.17E-09	1.34E-10	4.67E-09
1716	762559.66	4092204.01	2.79E-08	2.81E-08	1.99E-09	5.80E-08	4.36E-09	4.56E-09	3.15E-10	9.23E-09	2.33E-09	2.14E-09	1.32E-10	4.61E-09
1717	762564.2	4092177.09	2.75E-08	2.77E-08	1.96E-09	5.71E-08	4.30E-09	4.49E-09	3.10E-10	9.10E-09	2.30E-09	2.11E-09	1.30E-10	4.54E-09
1718	762568.74	4092150.17	2.71E-08	2.72E-08	1.93E-09	5.63E-08	4.23E-09	4.42E-09	3.06E-10	8.96E-09	2.26E-09	2.08E-09	1.28E-10	4.47E-09
1719	762573.28	4092123.25	2.66E-08	2.68E-08	1.90E-09	5.53E-08	4.16E-09	4.34E-09	3.00E-10	8.80E-09	2.22E-09	2.04E-09	1.26E-10	4.39E-09
1720	762538.07	4092338.9	3.02E-08	3.03E-08	2.15E-09	6.26E-08	4.71E-09	4.92E-09	3.40E-10	9.97E-09	2.52E-09	2.31E-09	1.42E-10	4.97E-09
1721	762342.11	4092295.47	2.47E-08	2.48E-08	1.76E-09	5.12E-08	3.85E-09	4.02E-09	2.78E-10	8.15E-09	2.06E-09	1.89E-09	1.16E-10	4.07E-09
1722	762346.52	4092269.32	2.44E-08	2.45E-08	1.74E-09	5.06E-08	3.80E-09	3.97E-09	2.75E-10	8.05E-09	2.03E-09	1.87E-09	1.15E-10	4.02E-09
1723	762350.94	4092243.16	2.41E-08	2.42E-08	1.72E-09	5.00E-08	3.76E-09	3.93E-09	2.71E-10	7.96E-09	2.01E-09	1.85E-09	1.14E-10	3.97E-09
1724	762355.35	4092217	2.38E-08	2.39E-08	1.70E-09	4.94E-08	3.72E-09	3.88E-09	2.68E-10	7.87E-09	1.99E-09	1.82E-09	1.12E-10	3.92E-09
1725	762359.77	4092190.85	2.35E-08	2.36E-08	1.68E-09	4.88E-08	3.67E-09	3.84E-09	2.65E-10	7.77E-09	1.96E-09	1.80E-09	1.11E-10	3.88E-09
1726	762364.18	4092164.69	2.33E-08	2.34E-08	1.66E-09	4.83E-08	3.63E-09	3.80E-09	2.62E-10	7.69E-09	1.94E-09	1.78E-09	1.10E-10	3.84E-09
1727	762368.6	4092138.53	2.30E-08	2.31E-08	1.64E-09	4.77E-08	3.59E-09	3.75E-09	2.59E-10	7.60E-09	1.92E-09	1.76E-09	1.09E-10	3.79E-09
1728	762373.01	4092112.38	2.27E-08	2.28E-08	1.62E-09	4.72E-08	3.55E-09	3.71E-09	2.56E-10	7.51E-09	1.90E-09	1.74E-09	1.07E-10	3.75E-09
1729	762377.42	4092086.22	2.24E-08	2.25E-08	1.60E-09	4.65E-08	3.50E-09	3.65E-09	2.53E-10	7.41E-09	1.87E-09	1.72E-09	1.06E-10	3.69E-09
1730	762338.76	4092322.3	2.50E-08	2.52E-08	1.79E-09	5.20E-08	3.91E-09	4.09E-09	2.82E-10	8.28E-09	2.09E-09	1.92E-09	1.18E-10	
1731	762142.86	4092278.54	2.11E-08	2.12E-08	1.50E-09	4.38E-08	3.29E-09	3.44E-09	2.38E-10	6.97E-09	1.76E-09	1.62E-09	9.95E-11	3.47E-09
1732	762147.38	4092251.72	2.08E-08	2.09E-08	1.49E-09	4.32E-08	3.25E-09	3.40E-09	2.35E-10	6.89E-09	1.74E-09	1.60E-09	9.84E-11	3.43E-09
1733	762151.91	4092224.9	2.06E-08	2.07E-08	1.47E-09	4.28E-08	3.22E-09	3.36E-09	2.32E-10	6.81E-09	1.72E-09	1.58E-09	9.74E-11	3.40E-09
1734	762156.44	4092198.08	2.04E-08	2.05E-08	1.46E-09	4.24E-08	3.19E-09	3.33E-09	2.30E-10	6.75E-09	1.70E-09	1.57E-09	9.64E-11	3.37E-09
1735	762160.96	4092171.26	2.02E-08	2.03E-08	1.44E-09	4.20E-08	3.16E-09	3.30E-09	2.28E-10	6.69E-09	1.69E-09	1.55E-09	9.55E-11	3.34E-09
1736	762165.49	4092144.44	2.01E-08	2.02E-08	1.43E-09	4.17E-08	3.13E-09	3.27E-09	2.26E-10	6.63E-09	1.68E-09	1.54E-09	9.48E-11	3.31E-09
1737	762170.01	4092117.62	1.99E-08	2.00E-08	1.42E-09	4.13E-08	3.10E-09	3.24E-09	_	6.57E-09	1.66E-09	1.52E-09	9.39E-11	3.28E-09
1738	762174.54	4092090.8	1.97E-08	1.98E-08	1.40E-09	4.09E-08	3.07E-09	3.21E-09	_	6.51E-09	1.64E-09	1.51E-09	9.30E-11	
1739	762179.07	4092063.98	1.94E-08	1.96E-08	1.39E-09	4.04E-08	3.04E-09	3.17E-09		6.43E-09	1.62E-09	1.49E-09	9.19E-11	
1740	762183.59	4092037.16	1.92E-08	1.93E-08	1.37E-09	3.99E-08	3.00E-09	3.13E-09		6.35E-09	1.60E-09	1.47E-09	9.07E-11	
	762139.45	4092305.7			1.52E-09	4.43E-08	3.33E-09		2.41E-10				1.01E-10	
		4092451.25			2.19E-08	6.36E-07		5.00E-08				2.35E-08		
	763581.69	4092476.01		3.22E-07	2.29E-08	6.65E-07	5.00E-08	5.22E-08		1.06E-07		2.46E-08		
		4092449.39			1.71E-08	4.97E-07		3.91E-08				1.84E-08		
	763531.73	4092474.15		2.51E-07	1.78E-08	5.18E-07		4.07E-08				1.91E-08		
1746		4092498.91		2.60E-07	1.84E-08	5.36E-07		4.21E-08				1.98E-08		
1747	763432.72	4092445.68		1.62E-07	1.15E-08	3.34E-07	2.51E-08	2.62E-08				1.23E-08		
1748	763431.8	4092470.44			1.19E-08	3.45E-07	2.60E-08	2.71E-08				1.28E-08	7.86E-10	
1749	763430.88	4092495.2			1.22E-08	3.56E-07	2.68E-08					1.31E-08	8.09E-10	
	763332.78	4092441.96			8.39E-09	2.44E-07		1.92E-08				9.01E-09	5.55E-10	
1751	763331.86	4092466.72	1.21E-07	1.22E-07	8.64E-09	2.51E-07	1.89E-08	1.97E-08	1.36E-09	4.00E-08	1.01E-08	9.28E-09	5.72E-10	2.00E-08

1752	763330.94	4092491.48	1.24E-07	1.25E-07	8.87E-09	2.58E-07	1.94E-08	2.03E-08	1.40E-09	4.11E-08	1.04E-08	9.53E-09	5.87E-10	2.05E-08
1753	763233.68	4092424.5	8.95E-08	9.00E-08	6.39E-09	1.86E-07	1.40E-08	1.46E-08	1.01E-09	2.96E-08	7.47E-09	6.86E-09	4.23E-10	1.48E-08
1754	763231.93	4092463.01	9.34E-08	9.39E-08	6.67E-09	1.94E-07	1.46E-08	1.52E-08	1.05E-09	3.09E-08	7.80E-09	7.16E-09	4.41E-10	1.54E-08
1755	763231.01	4092487.77	9.57E-08	9.62E-08	6.83E-09	1.99E-07	1.49E-08	1.56E-08	1.08E-09	3.16E-08	7.99E-09	7.34E-09	4.52E-10	1.58E-08
1756	763133.89	4092418.49	7.21E-08	7.25E-08	5.15E-09	1.50E-07	1.13E-08	1.18E-08	8.13E-10	2.38E-08	6.02E-09	5.53E-09	3.41E-10	1.19E-08
1757	763132	4092459.3	7.51E-08	7.55E-08	5.36E-09	1.56E-07	1.17E-08	1.23E-08	8.48E-10	2.48E-08	6.27E-09	5.76E-09	3.55E-10	1.24E-08
1758	763131.08	4092484.06	7.69E-08	7.73E-08	5.49E-09	1.60E-07	1.20E-08	1.25E-08	8.67E-10	2.54E-08	6.42E-09	5.89E-09	3.63E-10	1.27E-08
1759	762934.3	4092406.48	5.09E-08	5.12E-08	3.64E-09	1.06E-07	7.96E-09	8.31E-09	5.75E-10	1.68E-08	4.25E-09	3.91E-09	2.41E-10	8.40E-09
1760	762932.14	4092451.87	5.30E-08	5.33E-08	3.78E-09	1.10E-07	8.28E-09	8.65E-09	5.98E-10	1.75E-08	4.43E-09	4.06E-09	2.50E-10	8.74E-09
1761	762931.22	4092476.63	5.41E-08	5.44E-08	3.86E-09	1.12E-07	8.45E-09	8.83E-09	6.10E-10	1.79E-08	4.52E-09	4.15E-09	2.56E-10	8.92E-09
1762	762734.21	4092402.87	3.91E-08	3.93E-08	2.79E-09	8.12E-08	6.11E-09	6.38E-09	4.41E-10	1.29E-08	3.26E-09	3.00E-09	1.85E-10	6.45E-09
1763	762732.28	4092444.45	4.04E-08	4.06E-08	2.88E-09	8.39E-08	6.31E-09	6.59E-09	4.56E-10	1.34E-08	3.37E-09	3.10E-09	1.91E-10	6.66E-09
1764	762731.36	4092469.21	4.12E-08	4.14E-08	2.94E-09	8.55E-08	6.43E-09	6.72E-09	4.64E-10	1.36E-08	3.44E-09	3.16E-09	1.94E-10	6.79E-09
1765	762534.53	4092392.39	3.13E-08	3.15E-08	2.24E-09	6.51E-08	4.89E-09	5.11E-09	3.53E-10	1.04E-08	2.62E-09	2.40E-09	1.48E-10	5.17E-09
1766	762532.42	4092437.02	3.24E-08	3.25E-08	2.31E-09	6.72E-08	5.05E-09	5.28E-09	3.65E-10	1.07E-08	2.70E-09	2.48E-09	1.53E-10	5.34E-09
1767	762531.5	4092461.78	3.29E-08	3.31E-08	2.35E-09	6.84E-08	5.14E-09	5.37E-09	3.71E-10	1.09E-08	2.75E-09	2.52E-09	1.56E-10	5.43E-09
1768	762334.85	4092381.91	2.60E-08	2.62E-08	1.86E-09	5.40E-08	4.06E-09	4.25E-09	2.93E-10	8.60E-09	2.17E-09	1.99E-09	1.23E-10	4.29E-09
1769	762336.23	4092358.98	2.56E-08	2.58E-08	1.83E-09	5.32E-08	4.00E-09	4.18E-09	2.89E-10	8.48E-09	2.14E-09	1.97E-09	1.21E-10	4.23E-09
1770	762333.47	4092404.83	2.64E-08	2.66E-08	1.89E-09	5.49E-08	4.13E-09	4.31E-09	2.98E-10	8.73E-09	2.21E-09	2.03E-09	1.25E-10	4.36E-09
1771	762332.55	4092429.59	2.69E-08	2.70E-08	1.92E-09	5.58E-08	4.20E-09	4.38E-09	3.03E-10	8.88E-09	2.24E-09	2.06E-09	1.27E-10	4.43E-09
1772	762331.63	4092454.35	2.73E-08	2.74E-08	1.95E-09	5.67E-08	4.26E-09	4.46E-09	3.08E-10	9.03E-09	2.28E-09	2.09E-09	1.29E-10	4.50E-09
1773	762134.79	4092377.92	2.23E-08	2.24E-08	1.59E-09	4.62E-08	3.48E-09	3.63E-09	2.51E-10	7.36E-09	1.86E-09	1.71E-09	1.05E-10	3.67E-09
1774	762137.13	4092338.94	2.17E-08	2.19E-08	1.55E-09	4.51E-08	3.40E-09	3.55E-09	2.45E-10	7.19E-09	1.82E-09	1.67E-09	1.03E-10	3.59E-09
1775	762132.69	4092422.17	2.29E-08	2.30E-08	1.63E-09	4.75E-08	3.57E-09	3.73E-09	2.58E-10	7.56E-09	1.91E-09	1.75E-09	1.08E-10	3.77E-09
1776	762131.77	4092446.93	2.32E-08	2.33E-08	1.66E-09	4.82E-08	3.63E-09	3.79E-09	2.62E-10	7.68E-09	1.94E-09	1.78E-09	1.10E-10	3.83E-09
1777	764025.18	4092590.52	2.58E-06	2.59E-06	1.84E-07	5.36E-06	4.03E-07	4.21E-07	2.91E-08	8.54E-07	2.16E-07	1.98E-07	1.22E-08	4.26E-07
1778	764049.76	4092591.21	2.55E-06	2.56E-06	1.82E-07	5.30E-06	3.98E-07	4.16E-07	2.88E-08	8.43E-07	2.13E-07	1.96E-07	1.20E-08	4.21E-07
1779	764074.35	4092591.9	2.49E-06	2.50E-06	1.78E-07	5.17E-06	3.89E-07	4.06E-07	2.81E-08	8.23E-07	2.08E-07	1.91E-07	1.18E-08	4.10E-07
1780	764098.93	4092592.58	2.39E-06	2.41E-06	1.71E-07	4.97E-06	3.74E-07	3.91E-07	2.70E-08	7.92E-07	2.00E-07	1.84E-07	1.13E-08	3.95E-07
1781	764123.52	4092593.27	2.26E-06	2.27E-06	1.61E-07	4.69E-06	3.53E-07	3.69E-07	2.55E-08	7.48E-07	1.89E-07	1.73E-07	1.07E-08	3.73E-07
1782	764148.1	4092593.96	2.09E-06	2.10E-06	1.49E-07	4.33E-06	3.26E-07	3.41E-07	2.35E-08	6.90E-07	1.74E-07	1.60E-07	9.86E-09	3.44E-07
1783	764172.68	4092594.65	1.88E-06	1.89E-06	1.34E-07	3.90E-06	2.93E-07	3.07E-07	2.12E-08	6.21E-07	1.57E-07	1.44E-07	8.87E-09	3.10E-07
1784	764197.27	4092595.33	1.66E-06	1.67E-06	1.18E-07	3.44E-06	2.59E-07	2.70E-07	1.87E-08	5.48E-07	1.38E-07	1.27E-07	7.83E-09	2.73E-07
1785	764024.48	4092615.51	1.95E-06	1.96E-06	1.39E-07	4.05E-06	3.05E-07	3.19E-07	2.20E-08	6.46E-07	1.63E-07	1.50E-07	9.22E-09	3.22E-07
1786	764049.06	4092616.2	1.92E-06	1.93E-06	1.37E-07	3.98E-06	3.00E-07	3.13E-07	2.16E-08	6.34E-07	1.60E-07	1.47E-07	9.06E-09	3.16E-07
1787	764073.65	4092616.89	1.86E-06	1.87E-06	1.33E-07	3.86E-06	2.90E-07	3.03E-07	2.10E-08	6.15E-07	1.55E-07	1.43E-07	8.78E-09	3.07E-07
1788	764098.23	4092617.57	1.78E-06	1.79E-06	1.27E-07	3.69E-06	2.78E-07	2.90E-07	2.00E-08	5.88E-07	1.48E-07	1.36E-07	8.40E-09	2.93E-07
1789	764122.82	4092618.26	1.67E-06	1.68E-06	1.19E-07	3.47E-06	2.61E-07	2.73E-07	1.88E-08	5.52E-07	1.39E-07	1.28E-07	7.89E-09	2.75E-07
1790	764147.4	4092618.95	1.54E-06	1.55E-06	1.10E-07	3.20E-06	2.41E-07	2.51E-07	1.74E-08	5.10E-07	1.29E-07	1.18E-07	7.28E-09	2.54E-07
1791	764171.99	4092619.64	1.40E-06	1.41E-06	9.99E-08	2.91E-06	2.19E-07	2.28E-07	1.58E-08	4.63E-07	1.17E-07	1.07E-07	6.61E-09	2.31E-07
1792	764196.57	4092620.32	1.26E-06	1.27E-06	8.99E-08	2.61E-06	1.97E-07	2.05E-07	1.42E-08	4.16E-07	1.05E-07	9.65E-08	5.95E-09	2.08E-07
1793	764023.08	4092665.49	1.23E-06	1.24E-06	8.80E-08	2.56E-06	1.92E-07	2.01E-07	1.39E-08	4.07E-07	1.03E-07	9.45E-08	5.82E-09	2.03E-07
1794	764047.67	4092666.18	1.20E-06	1.20E-06	8.55E-08	2.49E-06	1.87E-07	1.95E-07	1.35E-08	3.96E-07	1.00E-07	9.19E-08	5.66E-09	1.98E-07
1795	764072.25	4092666.87	1.15E-06	1.16E-06	8.22E-08	2.39E-06	1.80E-07	1.88E-07	1.30E-08	3.81E-07	9.61E-08	8.83E-08	5.44E-09	1.90E-07
1796	764096.84	4092667.55	1.09E-06	1.10E-06	7.81E-08	2.27E-06	1.71E-07	1.78E-07	1.23E-08	3.62E-07	9.13E-08	8.39E-08	5.17E-09	1.80E-07

1797	764121.42	4092668.24	1.03E-06	1.03E-06	7.33E-08	2.13E-06	1.60E-07	1.68E-07	1.16E-08	3.40E-07	8.58E-08	7.88E-08	4.85E-09	1.69E-07
1798	764146	4092668.93	9.57E-07	9.62E-07	6.83E-08	1.99E-06	1.49E-07	1.56E-07	1.08E-08	3.16E-07	7.99E-08	7.33E-08	4.52E-09	1.58E-07
1799	764170.59	4092669.62	8.86E-07	8.90E-07	6.32E-08	1.84E-06	1.38E-07	1.45E-07	9.99E-09	2.93E-07	7.40E-08	6.79E-08	4.18E-09	1.46E-07
1800	764195.17	4092670.3	8.18E-07	8.22E-07	5.84E-08	1.70E-06	1.28E-07	1.33E-07	9.23E-09	2.70E-07	6.83E-08	6.27E-08	3.86E-09	1.35E-07
1801	763804.96	4092700.95	8.13E-07	8.17E-07	5.80E-08	1.69E-06	1.27E-07	1.33E-07	9.17E-09	2.69E-07	6.79E-08	6.23E-08	3.84E-09	1.34E-07
1802	763764.86	4092682.9	7.89E-07	7.93E-07	5.63E-08	1.64E-06	1.23E-07	1.29E-07	8.90E-09	2.61E-07	6.59E-08	6.05E-08	3.73E-09	1.30E-07
1803	763724.75	4092664.84	7.15E-07	7.19E-07	5.11E-08	1.49E-06	1.12E-07	1.17E-07	8.07E-09	2.36E-07	5.97E-08	5.48E-08	3.38E-09	1.18E-07
1804	763676.95	4092626.2	6.01E-07	6.05E-07	4.29E-08	1.25E-06	9.39E-08	9.81E-08	6.78E-09	1.99E-07	5.02E-08	4.61E-08	2.84E-09	9.92E-08
1805	764021.68	4092715.47	8.44E-07	8.48E-07	6.03E-08	1.75E-06	1.32E-07	1.38E-07	9.52E-09	2.79E-07	7.05E-08	6.47E-08	3.99E-09	1.39E-07
1806	764046.27	4092716.16	8.15E-07	8.19E-07	5.82E-08	1.69E-06	1.27E-07	1.33E-07	9.19E-09	2.70E-07	6.81E-08	6.25E-08	3.85E-09	1.34E-07
1807	764070.85	4092716.85	7.80E-07	7.85E-07	5.57E-08	1.62E-06	1.22E-07	1.27E-07	8.80E-09	2.58E-07	6.52E-08	5.98E-08	3.69E-09	1.29E-07
1808	764095.44	4092717.53	7.42E-07	7.45E-07	5.29E-08	1.54E-06	1.16E-07	1.21E-07	8.36E-09	2.45E-07	6.19E-08	5.69E-08	3.50E-09	1.22E-07
1809	764120.02	4092718.22	7.01E-07	7.04E-07	5.00E-08	1.45E-06	1.09E-07	1.14E-07	7.90E-09	2.32E-07	5.85E-08	5.37E-08	3.31E-09	1.16E-07
1810	764144.61	4092718.91	6.60E-07	6.63E-07	4.71E-08	1.37E-06	1.03E-07	1.08E-07	7.44E-09	2.18E-07	5.51E-08	5.06E-08	3.12E-09	1.09E-07
1811	764169.19	4092719.6	6.20E-07	6.23E-07	4.42E-08	1.29E-06	9.68E-08	1.01E-07	6.99E-09	2.05E-07	5.18E-08	4.75E-08	2.93E-09	1.02E-07
1812	764193.77	4092720.28	5.81E-07	5.84E-07	4.15E-08	1.21E-06	9.08E-08	9.49E-08	6.56E-09	1.92E-07	4.86E-08	4.46E-08	2.75E-09	9.59E-08
1813	763801.68	4092750.08	6.41E-07	6.44E-07	4.57E-08	1.33E-06	1.00E-07	1.05E-07	7.23E-09	2.12E-07	5.35E-08	4.91E-08	3.03E-09	1.06E-07
1814	763779.75	4092740.21	6.42E-07	6.45E-07	4.58E-08	1.33E-06	1.00E-07	1.05E-07	7.24E-09	2.12E-07	5.36E-08	4.92E-08	3.03E-09	1.06E-07
1815	763757.82	4092730.34	6.35E-07	6.38E-07	4.53E-08	1.32E-06	9.92E-08	1.04E-07	7.16E-09	2.10E-07	5.30E-08	4.87E-08	3.00E-09	1.05E-07
1816	763735.89	4092720.47	6.19E-07	6.22E-07	4.42E-08	1.28E-06	9.66E-08	1.01E-07		2.05E-07	5.17E-08	4.74E-08	2.92E-09	1.02E-07
1817	763713.96	4092710.59	5.92E-07	5.96E-07	4.23E-08	1.23E-06	9.25E-08	9.67E-08	6.68E-09	1.96E-07	4.95E-08	4.54E-08	2.80E-09	9.77E-08
1818	763692.03	4092700.72	5.58E-07	5.61E-07	3.98E-08	1.16E-06	8.71E-08	9.10E-08	6.29E-09	1.84E-07	4.66E-08	4.28E-08	2.63E-09	9.19E-08
1819	763670.1	4092690.85	5.17E-07	5.20E-07	3.69E-08	1.07E-06	8.08E-08	8.44E-08	5.83E-09	1.71E-07	4.32E-08	3.96E-08	2.44E-09	8.53E-08
1820	763639.74	4092658.45	4.70E-07	4.72E-07	3.35E-08	9.75E-07	7.33E-08	7.66E-08	5.30E-09		3.92E-08	3.60E-08	2.22E-09	
1821	763631.32	4092635.93	4.60E-07	4.63E-07	3.29E-08	9.56E-07	7.19E-08	7.51E-08	5.19E-09	1.52E-07	3.84E-08	3.53E-08	2.17E-09	7.59E-08
1822	764020.29	4092765.45	6.11E-07	6.14E-07	4.36E-08	1.27E-06	9.54E-08	9.97E-08	6.89E-09	2.02E-07	5.10E-08	4.68E-08	2.89E-09	1.01E-07
1823	764044.87	4092766.14	5.88E-07	5.91E-07	4.20E-08	1.22E-06	9.19E-08	9.60E-08	6.64E-09	1.95E-07	4.91E-08	4.51E-08	2.78E-09	9.70E-08
1824	764069.46	4092766.83	5.63E-07	5.66E-07	4.02E-08	1.17E-06	8.80E-08	9.19E-08		1.86E-07	4.70E-08	4.32E-08	2.66E-09	9.29E-08
1825	764094.04	4092767.51	5.38E-07	5.40E-07	3.84E-08	1.12E-06	8.40E-08	8.77E-08	6.06E-09		4.49E-08	4.12E-08	2.54E-09	8.86E-08
1826	763801.16	4092800.46	5.16E-07	5.19E-07	3.68E-08	1.07E-06	8.06E-08	8.42E-08	5.82E-09		4.31E-08	3.96E-08	2.44E-09	
1827	763780.11	4092790.98	5.22E-07	5.24E-07	3.72E-08	1.08E-06	8.15E-08	8.51E-08		1.73E-07	4.36E-08	4.00E-08	2.46E-09	
1828	763759.05	4092781.5	5.23E-07	5.25E-07	3.73E-08	1.09E-06	8.16E-08	8.53E-08	5.90E-09		4.36E-08	4.01E-08	2.47E-09	
1829	763738	4092772.03	5.18E-07	5.21E-07	3.70E-08	1.08E-06	8.09E-08	8.46E-08		1.71E-07	4.33E-08	3.97E-08	2.45E-09	
1830	763716.95	4092762.55	5.08E-07	5.10E-07	3.63E-08	1.05E-06	7.93E-08	8.29E-08		1.68E-07	4.24E-08	3.89E-08	2.40E-09	
1831	763695.89	4092753.07			3.51E-08	1.02E-06	7.67E-08	8.01E-08			4.10E-08		2.32E-09	
	763674.84	4092743.6			3.34E-08	9.73E-07		7.65E-08				3.59E-08		
1833	763653.78	4092734.12			3.15E-08	9.17E-07		7.21E-08	4.98E-09		3.69E-08	3.39E-08	2.09E-09	
	763632.73	4092724.64			2.94E-08	8.57E-07		6.73E-08			3.44E-08		1.95E-09	
1835		4092693.54		3.81E-07	2.71E-08	7.88E-07		6.19E-08	4.28E-09		3.17E-08		1.79E-09	
1836	763595.5	4092671.92		3.76E-07	2.67E-08	7.76E-07	5.84E-08		4.22E-09		3.12E-08		1.77E-09	
1837	763538.89		2.76E-07	2.77E-07	1.97E-08	5.73E-07	4.31E-08	4.50E-08	3.11E-09		2.31E-08		1.30E-09	
1838	764018.89	4092815.43	4.62E-07	4.64E-07	3.30E-08	9.59E-07		7.53E-08	5.21E-09		3.85E-08	3.54E-08	2.18E-09	
1839	764043.47	4092816.12			3.17E-08	9.23E-07		7.25E-08		1.47E-07	3.71E-08	3.41E-08	2.10E-09	
1840	764068.06	4092816.81			3.05E-08	8.86E-07	6.67E-08	6.96E-08	4.81E-09		3.56E-08	3.27E-08		
1841	764092.64	4092817.5	4.09E-07	4.11E-07	2.92E-08	8.50E-07	6.39E-08	6.68E-08	4.62E-09	1.35E-07	3.42E-08	3.14E-08	1.93E-09	6./5E-08

1842	764215.56	4092820.93	3.26E-07	3.28E-07	2.33E-08	6.77E-07	5.09E-08	5.32E-08	3.68E-09	1.08E-07	2.72E-08	2.50E-08	1.54E-09	5.37E-08
1843	763797.82	4092900.17	3.52E-07	3.54E-07	2.51E-08	7.31E-07	5.50E-08	5.75E-08	3.97E-09	1.16E-07	2.94E-08	2.70E-08	1.66E-09	5.81E-08
1844	763776.23	4092890.45	3.60E-07	3.62E-07	2.57E-08	7.49E-07	5.63E-08	5.88E-08	4.07E-09	1.19E-07	3.01E-08	2.76E-08	1.70E-09	5.94E-08
1845	763754.64	4092880.73	3.66E-07	3.68E-07	2.62E-08	7.61E-07	5.72E-08	5.98E-08	4.13E-09	1.21E-07	3.06E-08	2.81E-08	1.73E-09	6.04E-08
1846	763733.04	4092871.02	3.70E-07	3.71E-07	2.64E-08	7.67E-07	5.77E-08	6.03E-08	4.17E-09	1.22E-07	3.09E-08	2.83E-08	1.75E-09	6.09E-08
1847	763711.45	4092861.3	3.70E-07	3.72E-07	2.64E-08	7.68E-07	5.77E-08	6.03E-08	4.17E-09	1.22E-07	3.09E-08	2.83E-08	1.75E-09	6.10E-08
1848	763689.86	4092851.58	3.66E-07	3.68E-07	2.62E-08	7.61E-07	5.72E-08	5.98E-08	4.13E-09	1.21E-07	3.06E-08	2.81E-08	1.73E-09	6.04E-08
1849	763668.26	4092841.86	3.60E-07	3.61E-07	2.57E-08	7.47E-07	5.62E-08	5.87E-08	4.06E-09	1.19E-07	3.00E-08	2.76E-08	1.70E-09	5.93E-08
1850	763646.67	4092832.14	3.49E-07	3.51E-07	2.49E-08	7.25E-07	5.45E-08	5.70E-08	3.94E-09	1.15E-07	2.92E-08	2.68E-08	1.65E-09	5.76E-08
1851	763625.08	4092822.42	3.36E-07	3.37E-07	2.40E-08	6.97E-07	5.24E-08	5.48E-08	3.79E-09	1.11E-07	2.80E-08	2.57E-08	1.59E-09	5.53E-08
1852	763603.48	4092812.7	3.20E-07	3.21E-07	2.28E-08	6.64E-07	4.99E-08	5.22E-08	3.61E-09	1.06E-07	2.67E-08	2.45E-08	1.51E-09	5.27E-08
1853	763581.89	4092802.98	3.02E-07	3.04E-07	2.16E-08	6.28E-07	4.72E-08	4.93E-08	3.41E-09	1.00E-07	2.52E-08	2.32E-08	1.43E-09	4.98E-08
1854	763560.3	4092793.26	2.84E-07	2.86E-07	2.03E-08	5.91E-07	4.44E-08	4.64E-08	3.21E-09	9.40E-08	2.38E-08	2.18E-08	1.34E-09	4.69E-08
1855	763530.41	4092761.36	2.65E-07	2.67E-07	1.89E-08	5.51E-07	4.14E-08	4.33E-08	2.99E-09	8.77E-08	2.21E-08	2.03E-08	1.25E-09	4.37E-08
1856	763522.11	4092739.18	2.62E-07	2.64E-07	1.87E-08	5.45E-07	4.10E-08	4.28E-08	2.96E-09	8.68E-08	2.19E-08	2.01E-08	1.24E-09	4.33E-08
1857	763472.35	4092606.1	2.22E-07	2.23E-07	1.58E-08	4.61E-07	3.46E-08	3.62E-08	2.50E-09	7.33E-08	1.85E-08	1.70E-08	1.05E-09	3.66E-08
1858	763464.05	4092583.92	2.12E-07	2.13E-07	1.51E-08	4.40E-07	3.31E-08	3.46E-08	2.39E-09	7.00E-08	1.77E-08	1.62E-08	1.00E-09	3.49E-08
1859	763455.76	4092561.74	2.02E-07	2.03E-07	1.44E-08	4.19E-07	3.15E-08	3.29E-08	2.27E-09	6.67E-08	1.68E-08	1.55E-08	9.52E-10	3.32E-08
1860	763447.46	4092539.56	1.91E-07	1.92E-07	1.37E-08	3.97E-07	2.99E-08	3.12E-08	2.16E-09	6.33E-08	1.60E-08	1.47E-08	9.04E-10	3.16E-08
1861	763439.17	4092517.38	1.81E-07	1.82E-07	1.29E-08	3.76E-07	2.83E-08	2.96E-08	2.04E-09	5.99E-08	1.51E-08	1.39E-08	8.56E-10	2.99E-08
1862	764016.09	4092915.39	2.91E-07	2.92E-07	2.08E-08	6.04E-07	4.54E-08	4.74E-08	3.28E-09	9.61E-08	2.43E-08	2.23E-08	1.37E-09	4.79E-08
1863	764040.68	4092916.08	2.81E-07	2.82E-07	2.01E-08	5.84E-07	4.39E-08	4.59E-08	3.17E-09	9.29E-08	2.35E-08	2.15E-08	1.33E-09	4.63E-08
1864	764065.26	4092916.77	2.72E-07	2.73E-07	1.94E-08	5.64E-07	4.24E-08	4.43E-08	3.06E-09	8.98E-08	2.27E-08	2.08E-08	1.28E-09	4.48E-08
1865	764089.85	4092917.46	2.62E-07	2.64E-07	1.87E-08	5.45E-07	4.10E-08	4.28E-08	2.96E-09	8.68E-08	2.19E-08	2.01E-08	1.24E-09	4.33E-08
1866	764212.77	4092920.89	2.20E-07	2.21E-07	1.57E-08	4.56E-07	3.43E-08	3.58E-08	2.48E-09	7.26E-08	1.83E-08	1.68E-08	1.04E-09	3.62E-08
1867	763794.69	4092999.98	2.51E-07	2.53E-07	1.80E-08	5.22E-07	3.93E-08	4.10E-08	2.84E-09	8.32E-08	2.10E-08	1.93E-08	1.19E-09	4.15E-08
1868	763772.76	4092990.11	2.60E-07	2.61E-07	1.86E-08	5.40E-07	4.06E-08	4.24E-08	2.93E-09	8.60E-08	2.17E-08	1.99E-08	1.23E-09	4.29E-08
1869	763750.83	4092980.24	2.67E-07	2.69E-07	1.91E-08	5.55E-07	4.17E-08	4.36E-08	3.01E-09	8.83E-08	2.23E-08	2.05E-08	1.26E-09	4.40E-08
1870	763728.9	4092970.37	2.73E-07	2.74E-07	1.95E-08	5.66E-07	4.26E-08	4.45E-08	3.08E-09	9.02E-08	2.28E-08	2.09E-08	1.29E-09	4.50E-08
1871	763706.97	4092960.5	2.77E-07	2.78E-07	1.98E-08	5.75E-07	4.32E-08	4.52E-08	3.12E-09	9.15E-08	2.31E-08	2.12E-08	1.31E-09	4.56E-08
1872	763685.04	4092950.63	2.79E-07	2.80E-07	1.99E-08	5.79E-07	4.35E-08	4.55E-08	3.14E-09	9.22E-08	2.33E-08	2.14E-08	1.32E-09	4.60E-08
1873	763663.11	4092940.75	2.79E-07	2.80E-07	1.99E-08	5.78E-07	4.35E-08	4.54E-08	3.14E-09	9.21E-08	2.33E-08	2.14E-08	1.32E-09	4.59E-08
1874	763641.18	4092930.88	2.76E-07	2.77E-07	1.97E-08	5.73E-07	4.31E-08	4.50E-08	3.11E-09	9.13E-08	2.30E-08	2.12E-08	1.30E-09	4.55E-08
1875	763619.24	4092921.01	2.71E-07	2.72E-07	1.94E-08	5.63E-07	4.23E-08	4.42E-08	3.06E-09	8.96E-08	2.26E-08	2.08E-08	1.28E-09	4.47E-08
1876	763597.31	4092911.14	2.64E-07	2.65E-07	1.88E-08	5.48E-07	4.12E-08	4.31E-08	2.98E-09	8.73E-08	2.20E-08	2.02E-08	1.25E-09	4.35E-08
1877	763575.38	4092901.27	2.55E-07	2.56E-07	1.82E-08	5.29E-07	3.98E-08	4.16E-08	2.88E-09	8.43E-08	2.13E-08	1.95E-08	1.20E-09	4.20E-08
1878	763553.45	4092891.4	2.44E-07	2.46E-07	1.75E-08	5.08E-07	3.82E-08	3.99E-08	2.76E-09	8.08E-08	2.04E-08	1.87E-08	1.15E-09	4.03E-08
1879	763531.52	4092881.53	2.33E-07	2.34E-07	1.66E-08	4.84E-07	3.64E-08	3.80E-08	2.63E-09	7.71E-08	1.95E-08	1.79E-08	1.10E-09	3.84E-08
1880	763509.59	4092871.65	2.21E-07	2.23E-07	1.58E-08	4.60E-07	3.46E-08	3.61E-08	2.50E-09	7.32E-08	1.85E-08	1.70E-08	1.05E-09	3.65E-08
1881	763487.66	4092861.78	2.10E-07	2.11E-07	1.50E-08	4.36E-07	3.28E-08	3.42E-08	2.37E-09	6.94E-08	1.75E-08	1.61E-08	9.91E-10	3.46E-08
1882	763457.3	4092829.38	1.98E-07	1.99E-07	1.41E-08	4.11E-07	3.09E-08	3.23E-08	2.23E-09	6.54E-08	1.65E-08	1.52E-08	9.34E-10	3.26E-08
1883	763448.88	4092806.86	1.96E-07	1.97E-07	1.40E-08	4.08E-07	3.07E-08	3.21E-08	2.22E-09	6.49E-08	1.64E-08	1.51E-08	9.28E-10	3.24E-08
1884	763406.76	4092694.22	1.80E-07	1.81E-07	1.28E-08	3.74E-07	2.81E-08	2.94E-08	2.03E-09	5.95E-08	1.50E-08	1.38E-08	8.50E-10	2.97E-08
1885	763398.34	4092671.7	1.74E-07	1.75E-07	1.24E-08	3.62E-07	2.72E-08	2.84E-08	1.97E-09	5.76E-08	1.46E-08	1.34E-08	8.23E-10	2.87E-08
1886	763389.91	4092649.17	1.68E-07	1.69E-07	1.20E-08	3.49E-07	2.63E-08	2.74E-08	1.90E-09	5.56E-08	1.40E-08	1.29E-08	7.95E-10	2.77E-08

1887	763381.49	4092626.64	1.62E-07	1.63E-07	1.16E-08	3.36E-07	2.53E-08	2.64E-08	1.83E-09	5.35E-08	1.35E-08	1.24E-08	7.65E-10	2.67E-08
1888	763373.06	4092604.12	1.55E-07	1.56E-07	1.11E-08	3.23E-07	2.43E-08	2.54E-08	1.75E-09	5.14E-08	1.30E-08	1.19E-08	7.34E-10	2.56E-08
1889	763364.64	4092581.59	1.49E-07	1.50E-07	1.06E-08	3.09E-07	2.33E-08	2.43E-08	1.68E-09	4.93E-08	1.24E-08	1.14E-08	7.04E-10	2.46E-08
1890	763356.22	4092559.06	1.43E-07	1.43E-07	1.02E-08	2.96E-07	2.23E-08	2.33E-08	1.61E-09	4.72E-08	1.19E-08	1.09E-08	6.74E-10	2.35E-08
1891	763347.79	4092536.54	1.37E-07	1.37E-07	9.75E-09	2.83E-07	2.13E-08	2.23E-08	1.54E-09	4.51E-08	1.14E-08	1.05E-08	6.45E-10	2.25E-08
1892	763339.37	4092514.01	1.30E-07	1.31E-07	9.31E-09	2.71E-07	2.04E-08	2.13E-08	1.47E-09	4.31E-08	1.09E-08	1.00E-08	6.16E-10	2.15E-08
1893	763816.62	4093009.85	2.42E-07	2.44E-07	1.73E-08	5.03E-07	3.78E-08	3.95E-08	2.73E-09	8.01E-08	2.02E-08	1.86E-08	1.14E-09	3.99E-08
1894	763841.21	4093010.54	2.39E-07	2.41E-07	1.71E-08	4.97E-07	3.74E-08	3.90E-08	2.70E-09	7.91E-08	2.00E-08	1.83E-08	1.13E-09	3.95E-08
1895	763865.79	4093011.23	2.35E-07	2.37E-07	1.68E-08	4.89E-07	3.68E-08	3.84E-08	2.66E-09	7.78E-08	1.97E-08	1.80E-08	1.11E-09	3.88E-08
1896	763890.38	4093011.92	2.31E-07	2.32E-07	1.65E-08	4.79E-07	3.60E-08	3.77E-08	2.60E-09	7.63E-08	1.93E-08	1.77E-08	1.09E-09	3.81E-08
1897	763914.96	4093012.6	2.26E-07	2.27E-07	1.61E-08	4.69E-07	3.52E-08	3.68E-08	2.55E-09	7.46E-08	1.88E-08	1.73E-08	1.07E-09	3.72E-08
1898	763939.54	4093013.29	2.20E-07	2.21E-07	1.57E-08	4.57E-07	3.44E-08	3.59E-08	2.48E-09	7.27E-08	1.84E-08	1.69E-08	1.04E-09	3.63E-08
1899	763964.13	4093013.98	2.14E-07	2.15E-07	1.53E-08	4.45E-07	3.35E-08	3.50E-08	2.42E-09	7.08E-08	1.79E-08	1.64E-08	1.01E-09	3.53E-08
1900	763988.71	4093014.67	2.08E-07	2.09E-07	1.49E-08	4.33E-07	3.25E-08	3.40E-08	2.35E-09	6.89E-08	1.74E-08	1.60E-08	9.84E-10	3.44E-08
1901	764013.3	4093015.35	2.03E-07	2.04E-07	1.45E-08	4.21E-07	3.16E-08	3.30E-08	2.28E-09	6.70E-08	1.69E-08	1.55E-08	9.57E-10	3.34E-08
1902	764037.88	4093016.04	1.97E-07	1.98E-07	1.41E-08	4.09E-07	3.07E-08	3.21E-08	2.22E-09	6.51E-08	1.64E-08	1.51E-08	9.30E-10	3.25E-08
1903	764062.47	4093016.73	1.91E-07	1.92E-07	1.37E-08	3.97E-07	2.99E-08	3.12E-08	2.16E-09	6.33E-08	1.60E-08	1.47E-08	9.04E-10	3.16E-08
1904	764087.05	4093017.42	1.86E-07	1.87E-07	1.33E-08	3.86E-07	2.90E-08	3.03E-08	2.10E-09	6.15E-08	1.55E-08	1.43E-08	8.78E-10	3.07E-08
1905	764111.64	4093018.1	1.81E-07	1.81E-07	1.29E-08	3.75E-07	2.82E-08	2.95E-08	2.04E-09	5.97E-08	1.51E-08	1.38E-08	8.53E-10	2.98E-08
1906	764136.22	4093018.79	1.75E-07	1.76E-07	1.25E-08	3.64E-07	2.74E-08	2.86E-08	1.98E-09	5.79E-08	1.46E-08	1.34E-08	8.27E-10	2.89E-08
1907	764160.8	4093019.48	1.70E-07	1.71E-07	1.21E-08	3.52E-07	2.65E-08	2.77E-08	1.91E-09	5.61E-08	1.42E-08	1.30E-08	8.01E-10	2.80E-08
1908	764185.39	4093020.17	1.64E-07	1.65E-07	1.17E-08	3.41E-07	2.57E-08	2.68E-08	1.85E-09	5.43E-08	1.37E-08	1.26E-08	7.76E-10	2.71E-08
1909	764209.97	4093020.85	1.59E-07	1.60E-07	1.14E-08	3.31E-07	2.49E-08	2.60E-08	1.80E-09	5.26E-08	1.33E-08	1.22E-08	7.52E-10	2.62E-08
1910	763791.67	4093099.84	1.86E-07	1.87E-07	1.33E-08	3.87E-07	2.91E-08	3.04E-08	2.10E-09	6.16E-08	1.56E-08	1.43E-08	8.81E-10	3.07E-08
1911	763769.5	4093089.86	1.94E-07	1.95E-07	1.38E-08	4.02E-07	3.02E-08	3.16E-08	2.18E-09	6.40E-08	1.62E-08	1.48E-08	9.14E-10	3.19E-08
1912	763747.34	4093079.89	2.00E-07	2.01E-07	1.43E-08	4.16E-07	3.13E-08	3.27E-08	2.26E-09	6.62E-08	1.67E-08	1.53E-08	9.45E-10	3.30E-08
1913	763725.18	4093069.91	2.06E-07	2.07E-07	1.47E-08	4.28E-07	3.22E-08	3.36E-08	2.33E-09	6.82E-08	1.72E-08	1.58E-08	9.74E-10	3.40E-08
1914	763703.02	4093059.94	2.11E-07	2.13E-07	1.51E-08	4.39E-07	3.30E-08	3.45E-08	2.39E-09	6.99E-08	1.77E-08	1.62E-08	9.99E-10	3.49E-08
1915	763680.86	4093049.96	2.16E-07	2.17E-07	1.54E-08	4.48E-07	3.37E-08	3.52E-08	2.43E-09	7.14E-08	1.80E-08	1.65E-08	1.02E-09	3.56E-08
1916	763658.7	4093039.99	2.19E-07	2.20E-07	1.56E-08	4.54E-07	3.41E-08	3.57E-08	2.47E-09	7.23E-08	1.83E-08	1.68E-08	1.03E-09	3.60E-08
1917	763636.53	4093030.01	2.20E-07	2.21E-07	1.57E-08	4.57E-07	3.43E-08	3.59E-08	2.48E-09	7.27E-08	1.84E-08	1.69E-08	1.04E-09	3.63E-08
1918	763614.37	4093020.04	2.20E-07	2.21E-07	1.57E-08	4.56E-07	3.43E-08	3.58E-08	2.48E-09	7.26E-08	1.83E-08	1.68E-08	1.04E-09	3.62E-08
1919	763592.21	4093010.06	2.18E-07	2.19E-07	1.55E-08	4.52E-07	3.40E-08	3.55E-08	2.45E-09	7.19E-08	1.82E-08	1.67E-08	1.03E-09	3.59E-08
1920	763570.05	4093000.09	2.14E-07	2.15E-07	1.53E-08	4.44E-07	3.34E-08	3.49E-08	2.41E-09	7.07E-08	1.79E-08	1.64E-08	1.01E-09	3.53E-08
1921	763547.89	4092990.11	2.09E-07	2.10E-07	1.49E-08	4.33E-07	3.26E-08	3.40E-08	2.35E-09	6.90E-08	1.74E-08	1.60E-08	9.86E-10	3.44E-08
1922	763525.72	4092980.14	2.02E-07	2.03E-07	1.44E-08	4.20E-07	3.16E-08	3.30E-08	2.28E-09	6.69E-08	1.69E-08	1.55E-08	9.55E-10	3.33E-08
1923	763503.56	4092970.16	1.95E-07	1.96E-07	1.39E-08	4.05E-07	3.04E-08	3.18E-08	2.20E-09	6.44E-08	1.63E-08	1.49E-08	9.20E-10	3.21E-08
1924	763481.4	4092960.18	1.87E-07	1.88E-07	1.33E-08	3.88E-07	2.92E-08	3.05E-08	2.11E-09	6.18E-08	1.56E-08	1.43E-08	8.82E-10	3.08E-08
1925	763459.24	4092950.21	1.79E-07	1.79E-07	1.27E-08	3.71E-07	2.79E-08	2.91E-08	2.01E-09	5.90E-08	1.49E-08	1.37E-08	8.43E-10	2.94E-08
1926	763437.08	4092940.23	1.70E-07	1.71E-07	1.22E-08	3.54E-07	2.66E-08	2.78E-08	1.92E-09	5.63E-08	1.42E-08	1.31E-08	8.04E-10	2.81E-08
1927	763414.92	4092930.26	1.62E-07	1.63E-07	1.16E-08	3.37E-07	2.54E-08	2.65E-08	1.83E-09	5.37E-08	1.36E-08	1.24E-08	7.67E-10	2.68E-08
1928	763384.24	4092897.52	1.54E-07	1.55E-07	1.10E-08	3.21E-07	2.41E-08	2.52E-08	1.74E-09	5.10E-08	1.29E-08	1.18E-08	7.29E-10	2.55E-08
1929	763333.17	4092760.94	1.45E-07	1.46E-07	1.04E-08	3.01E-07	2.26E-08	2.37E-08	1.64E-09	4.79E-08	1.21E-08	1.11E-08	6.85E-10	2.39E-08
1930	763324.65	4092738.17	1.42E-07	1.42E-07	1.01E-08	2.94E-07	2.21E-08	2.31E-08	1.60E-09	4.68E-08	1.18E-08	1.09E-08	6.69E-10	2.33E-08
1931	763316.14	4092715.41	1.38E-07	1.38E-07	9.82E-09	2.86E-07	2.15E-08	2.25E-08	1.55E-09	4.55E-08	1.15E-08	1.06E-08	6.50E-10	2.27E-08

19	932	763307.63	4092692.65	1.33E-07	1.34E-07	9.52E-09	2.77E-07	2.08E-08	2.18E-08	1.50E-09	4.41E-08	1.11E-08	1.02E-08	6.30E-10	2.20E-08
19	933	763299.11	4092669.88	1.29E-07	1.30E-07	9.21E-09	2.68E-07	2.01E-08	2.11E-08	1.46E-09	4.27E-08	1.08E-08	9.89E-09	6.09E-10	2.13E-08
19	934	763290.6	4092647.12	1.25E-07	1.25E-07	8.90E-09	2.59E-07	1.95E-08	2.03E-08	1.41E-09	4.12E-08	1.04E-08	9.56E-09	5.89E-10	2.05E-08
19	935	763282.09	4092624.35	1.20E-07	1.21E-07	8.59E-09	2.50E-07	1.88E-08	1.96E-08	1.36E-09	3.98E-08	1.00E-08	9.23E-09	5.68E-10	1.98E-08
19	936	763273.58	4092601.59	1.16E-07	1.17E-07	8.29E-09	2.41E-07	1.81E-08	1.90E-08	1.31E-09	3.84E-08	9.70E-09	8.90E-09	5.49E-10	1.92E-08
19	937	763265.06	4092578.83	1.12E-07	1.13E-07	8.00E-09	2.33E-07	1.75E-08	1.83E-08	1.26E-09	3.70E-08	9.35E-09	8.59E-09	5.29E-10	1.85E-08
19	938	763256.55	4092556.06	1.08E-07	1.09E-07	7.71E-09	2.24E-07	1.69E-08	1.76E-08	1.22E-09	3.57E-08	9.01E-09	8.28E-09	5.10E-10	1.78E-08
19	939	763248.04	4092533.3	1.04E-07	1.04E-07	7.42E-09	2.16E-07	1.62E-08	1.70E-08	1.17E-09	3.44E-08	8.68E-09	7.97E-09	4.91E-10	1.71E-08
19	940	763239.53	4092510.54	9.98E-08	1.00E-07	7.13E-09	2.07E-07	1.56E-08	1.63E-08	1.13E-09	3.30E-08	8.33E-09	7.65E-09	4.71E-10	1.65E-08
19	941	763813.83	4093109.82	1.79E-07	1.80E-07	1.28E-08	3.72E-07	2.80E-08	2.92E-08	2.02E-09	5.92E-08	1.50E-08	1.37E-08	8.46E-10	2.95E-08
19	942	763838.41	4093110.5	1.76E-07	1.77E-07	1.26E-08	3.66E-07	2.75E-08	2.87E-08	1.99E-09	5.82E-08	1.47E-08	1.35E-08	8.32E-10	2.91E-08
19	943	763863	4093111.19	1.73E-07	1.74E-07	1.23E-08	3.59E-07	2.70E-08	2.82E-08	1.95E-09	5.72E-08	1.44E-08	1.33E-08	8.17E-10	2.85E-08
19	944	763887.58	4093111.88	1.69E-07	1.70E-07	1.21E-08	3.52E-07	2.65E-08	2.76E-08	1.91E-09	5.60E-08	1.41E-08	1.30E-08	8.00E-10	2.79E-08
19	945	763912.17	4093112.57	1.66E-07	1.67E-07	1.18E-08	3.44E-07	2.59E-08	2.71E-08	1.87E-09	5.48E-08	1.38E-08	1.27E-08	7.83E-10	2.73E-08
19	946	763936.75	4093113.25	1.62E-07	1.63E-07	1.16E-08	3.37E-07	2.53E-08	2.65E-08	1.83E-09	5.36E-08	1.35E-08	1.24E-08	7.66E-10	2.67E-08
19	947	763961.33	4093113.94	1.58E-07	1.59E-07	1.13E-08	3.29E-07	2.47E-08	2.59E-08	1.79E-09	5.24E-08	1.32E-08	1.22E-08	7.49E-10	2.61E-08
19	948	763985.92	4093114.63	1.55E-07	1.56E-07	1.11E-08	3.21E-07	2.42E-08	2.53E-08	1.75E-09	5.12E-08	1.29E-08	1.19E-08	7.31E-10	2.55E-08
19	949	764010.5	4093115.32	1.51E-07	1.52E-07	1.08E-08	3.14E-07	2.36E-08	2.47E-08	1.70E-09	5.00E-08	1.26E-08	1.16E-08	7.14E-10	2.49E-08
19	950	764035.09	4093116	1.48E-07	1.48E-07	1.05E-08	3.06E-07	2.30E-08	2.41E-08	1.66E-09	4.88E-08	1.23E-08	1.13E-08	6.97E-10	2.43E-08
19	951	764059.67	4093116.69	1.44E-07	1.45E-07	1.03E-08	2.99E-07	2.25E-08	2.35E-08	1.62E-09	4.76E-08	1.20E-08	1.10E-08	6.80E-10	2.37E-08
19	952	764084.26	4093117.38	1.40E-07	1.41E-07	1.00E-08	2.92E-07	2.19E-08	2.29E-08	1.58E-09	4.64E-08	1.17E-08	1.08E-08	6.63E-10	2.32E-08
19	953	764108.84	4093118.07	1.37E-07	1.38E-07	9.77E-09	2.84E-07	2.14E-08	2.23E-08	1.54E-09	4.52E-08	1.14E-08	1.05E-08	6.46E-10	2.26E-08
19	954	764133.42	4093118.75	1.33E-07	1.34E-07	9.51E-09	2.77E-07	2.08E-08	2.17E-08	1.50E-09	4.40E-08	1.11E-08	1.02E-08	6.29E-10	2.20E-08
19	955	764158.01	4093119.44	1.29E-07	1.30E-07	9.24E-09	2.69E-07	2.02E-08	2.11E-08	1.46E-09	4.28E-08	1.08E-08	9.93E-09	6.12E-10	2.14E-08
19	956	764182.59	4093120.13	1.26E-07	1.26E-07	8.98E-09	2.61E-07	1.97E-08	2.05E-08	1.42E-09	4.16E-08	1.05E-08	9.65E-09	5.94E-10	2.07E-08
19	957	764207.18	4093120.82	1.22E-07	1.23E-07	8.73E-09	2.54E-07	1.91E-08	2.00E-08	1.38E-09	4.04E-08	1.02E-08	9.38E-09	5.78E-10	2.02E-08
19	958	763788.7	4093199.73	1.43E-07	1.44E-07	1.02E-08	2.97E-07	2.24E-08	2.34E-08	1.61E-09	4.73E-08	1.20E-08	1.10E-08	6.76E-10	2.36E-08
19	959	763766.37	4093189.67	1.49E-07	1.49E-07	1.06E-08	3.09E-07	2.32E-08	2.43E-08	1.68E-09	4.92E-08	1.24E-08	1.14E-08	7.02E-10	2.45E-08
19	960	763744.04	4093179.62	1.54E-07	1.55E-07	1.10E-08	3.20E-07	2.41E-08	2.52E-08	1.74E-09	5.10E-08	1.29E-08	1.18E-08	7.28E-10	2.54E-08
19	961	763721.71	4093169.57	1.60E-07	1.60E-07	1.14E-08	3.31E-07	2.49E-08	2.60E-08	1.80E-09	5.28E-08	1.33E-08	1.22E-08	7.54E-10	2.63E-08
19	962	763699.38	4093159.52	1.65E-07	1.66E-07	1.18E-08	3.42E-07	2.57E-08	2.69E-08	1.86E-09	5.45E-08	1.38E-08	1.26E-08	7.78E-10	2.72E-08
19	963	763677.05	4093149.47	1.69E-07	1.70E-07	1.21E-08	3.52E-07	2.64E-08	2.76E-08	1.91E-09	5.60E-08	1.41E-08	1.30E-08	8.00E-10	2.79E-08
19	964	763654.72	4093139.42	1.73E-07	1.74E-07	1.24E-08	3.60E-07	2.71E-08	2.83E-08	1.95E-09	5.73E-08	1.45E-08	1.33E-08	8.19E-10	2.86E-08
19	965	763632.39	4093129.37	1.76E-07	1.77E-07	1.26E-08	3.66E-07	2.76E-08	2.88E-08	1.99E-09	5.84E-08	1.47E-08	1.35E-08	8.34E-10	2.91E-08
19	966	763610.07	4093119.32	1.79E-07	1.80E-07	1.28E-08	3.71E-07	2.79E-08	2.91E-08	2.01E-09	5.91E-08		1.37E-08		
19	967	763587.74	4093109.27			1.28E-08	3.73E-07	2.80E-08	2.93E-08				1.38E-08		
		763565.41	4093099.22			1.28E-08	3.72E-07	2.80E-08	2.92E-08	2.02E-09	5.92E-08		1.37E-08	8.46E-10	
19	969	763543.08	4093089.16			1.27E-08	3.68E-07	2.77E-08	2.90E-08	2.00E-09	5.87E-08	1.48E-08	1.36E-08	8.38E-10	2.93E-08
		763520.75	4093079.11			1.25E-08	3.63E-07		2.85E-08				1.34E-08	8.25E-10	
		763498.42	4093069.06			1.22E-08	3.54E-07		2.78E-08				1.31E-08	8.06E-10	
19		763476.09	4093059.01		1.67E-07	1.18E-08	3.44E-07	2.59E-08	2.71E-08			1.38E-08	1.27E-08	7.83E-10	
19		763453.76	4093048.96		1.61E-07	1.14E-08	3.33E-07	2.50E-08	2.62E-08			1.34E-08	1.23E-08	7.57E-10	
		763431.43	4093038.91		1.55E-07	1.10E-08	3.20E-07		2.52E-08			1.29E-08	1.18E-08	7.29E-10	
	975	763409.1	4093028.86			1.06E-08	3.08E-07		2.42E-08				1.14E-08	7.00E-10	
19	976	763386.77	4093018.81	1.42E-07	1.43E-07	1.01E-08	2.95E-07	2.22E-08	2.32E-08	1.60E-09	4.69E-08	1.18E-08	1.09E-08	6.70E-10	2.34E-08

1	977	763364.44	4093008.76	1.36E-07	1.37E-07	9.70E-09	2.82E-07	2.12E-08	2.22E-08	1.53E-09	4.49E-08	1.13E-08	1.04E-08	6.42E-10	2.24E-08
1	978	763342.11	4092998.71	1.30E-07	1.31E-07	9.30E-09	2.70E-07	2.03E-08	2.13E-08	1.47E-09	4.31E-08	1.09E-08	9.99E-09	6.15E-10	2.15E-08
1	979	763311.2	4092965.72	1.25E-07	1.25E-07	8.90E-09	2.59E-07	1.95E-08	2.04E-08	1.41E-09	4.12E-08	1.04E-08	9.56E-09	5.89E-10	2.06E-08
1	980	763259.74	4092828.1	1.20E-07	1.21E-07	8.57E-09	2.49E-07	1.87E-08	1.96E-08	1.35E-09	3.97E-08	1.00E-08	9.20E-09	5.67E-10	1.98E-08
1	981	763251.16	4092805.17	1.18E-07	1.18E-07	8.41E-09	2.45E-07	1.84E-08	1.92E-08	1.33E-09	3.90E-08	9.84E-09	9.04E-09	5.57E-10	1.94E-08
1	982	763242.59	4092782.23	1.15E-07	1.16E-07	8.23E-09	2.39E-07	1.80E-08	1.88E-08	1.30E-09	3.81E-08	9.63E-09	8.84E-09	5.45E-10	1.90E-08
1	983	763234.01	4092759.29	1.12E-07	1.13E-07	8.03E-09	2.33E-07	1.76E-08	1.83E-08	1.27E-09	3.72E-08	9.39E-09	8.62E-09	5.31E-10	1.85E-08
1	984	763225.43	4092736.36	1.09E-07	1.10E-07	7.81E-09	2.27E-07	1.71E-08	1.78E-08	1.23E-09	3.61E-08	9.13E-09	8.38E-09	5.16E-10	1.80E-08
1	985	763216.85	4092713.42	1.06E-07	1.07E-07	7.58E-09	2.21E-07	1.66E-08	1.73E-08	1.20E-09	3.51E-08	8.87E-09	8.14E-09	5.02E-10	1.75E-08
1	986	763208.28	4092690.48	1.03E-07	1.04E-07	7.36E-09	2.14E-07	1.61E-08	1.68E-08	1.16E-09	3.41E-08	8.60E-09	7.90E-09	4.87E-10	1.70E-08
1	987	763199.7	4092667.55	1.00E-07	1.00E-07	7.14E-09	2.08E-07	1.56E-08	1.63E-08	1.13E-09	3.31E-08	8.35E-09	7.67E-09	4.72E-10	1.65E-08
1	988	763191.12	4092644.61	9.70E-08	9.75E-08	6.93E-09	2.01E-07	1.52E-08	1.58E-08	1.09E-09	3.21E-08	8.10E-09	7.44E-09	4.58E-10	1.60E-08
1	989	763182.55	4092621.68	9.41E-08	9.46E-08	6.72E-09	1.95E-07	1.47E-08	1.54E-08	1.06E-09	3.11E-08	7.86E-09	7.22E-09	4.45E-10	1.55E-08
1	990	763173.97	4092598.74	9.13E-08	9.18E-08	6.52E-09	1.90E-07	1.43E-08	1.49E-08	1.03E-09	3.02E-08	7.62E-09	7.00E-09	4.31E-10	1.51E-08
1	991	763165.39	4092575.8	8.85E-08	8.90E-08	6.32E-09	1.84E-07	1.38E-08	1.44E-08	9.98E-10	2.93E-08	7.39E-09	6.79E-09	4.18E-10	1.46E-08
1	992	763156.81	4092552.87	8.57E-08	8.61E-08	6.12E-09	1.78E-07	1.34E-08	1.40E-08	9.66E-10	2.83E-08	7.15E-09	6.57E-09	4.05E-10	1.41E-08
1	993	763148.24	4092529.93	8.28E-08	8.32E-08	5.91E-09	1.72E-07	1.29E-08	1.35E-08	9.34E-10	2.74E-08	6.91E-09	6.35E-09	3.91E-10	1.36E-08
1	994	763139.66	4092506.99	7.98E-08	8.03E-08	5.70E-09	1.66E-07	1.25E-08	1.30E-08	9.01E-10	2.64E-08	6.67E-09	6.12E-09	3.77E-10	1.32E-08
1	995	763811.03	4093209.78	1.38E-07	1.38E-07	9.83E-09	2.86E-07	2.15E-08	2.25E-08	1.55E-09	4.55E-08	1.15E-08	1.06E-08	6.50E-10	2.27E-08
1	996	763835.62	4093210.46	1.35E-07	1.36E-07	9.66E-09	2.81E-07	2.11E-08	2.21E-08	1.53E-09	4.47E-08	1.13E-08	1.04E-08	6.39E-10	2.23E-08
1	997	763860.2	4093211.15	1.33E-07	1.33E-07	9.47E-09	2.76E-07	2.07E-08	2.17E-08	1.50E-09	4.39E-08	1.11E-08	1.02E-08	6.27E-10	2.19E-08
1	998	763884.79	4093211.84	1.30E-07	1.31E-07	9.30E-09	2.71E-07	2.03E-08	2.13E-08	1.47E-09	4.31E-08	1.09E-08	9.99E-09	6.15E-10	2.15E-08
1	999	763909.37	4093212.53	1.28E-07	1.29E-07	9.13E-09	2.66E-07	2.00E-08	2.09E-08	1.44E-09	4.23E-08	1.07E-08	9.81E-09	6.04E-10	2.11E-08
2	000	763933.95	4093213.21	1.26E-07	1.26E-07	8.96E-09	2.61E-07	1.96E-08	2.05E-08	1.42E-09	4.15E-08	1.05E-08	9.63E-09	5.93E-10	2.07E-08
2	001	763958.54	4093213.9	1.23E-07	1.24E-07	8.80E-09	2.56E-07	1.92E-08	2.01E-08	1.39E-09	4.07E-08	1.03E-08	9.45E-09	5.82E-10	2.03E-08
2	002	763983.12	4093214.59	1.21E-07	1.22E-07	8.63E-09	2.51E-07	1.89E-08	1.97E-08	1.36E-09	4.00E-08	1.01E-08	9.27E-09	5.71E-10	1.99E-08
2	003	764007.71	4093215.28	1.19E-07	1.19E-07	8.47E-09	2.46E-07	1.85E-08	1.94E-08	1.34E-09	3.92E-08	9.91E-09	9.10E-09	5.61E-10	1.96E-08
2	004	764032.29	4093215.96	1.16E-07	1.17E-07	8.31E-09	2.42E-07	1.82E-08	1.90E-08	1.31E-09	3.85E-08	9.72E-09	8.92E-09	5.50E-10	1.92E-08
2	005	764056.88	4093216.65	1.14E-07	1.15E-07	8.13E-09	2.37E-07	1.78E-08	1.86E-08	1.29E-09	3.77E-08	9.51E-09	8.74E-09	5.38E-10	1.88E-08
2	006	764081.46	4093217.34	1.11E-07	1.12E-07	7.96E-09	2.31E-07	1.74E-08	1.82E-08	1.26E-09	3.69E-08	9.31E-09	8.55E-09	5.27E-10	1.84E-08
2	007	764106.04	4093218.03	1.09E-07	1.09E-07	7.77E-09	2.26E-07	1.70E-08	1.78E-08	1.23E-09	3.60E-08	9.09E-09	8.34E-09	5.14E-10	1.79E-08
2	800	764130.63	4093218.71	1.06E-07	1.07E-07	7.57E-09	2.20E-07	1.66E-08	1.73E-08	1.20E-09	3.51E-08	8.85E-09	8.13E-09	5.01E-10	1.75E-08
2	009	764155.21	4093219.4	1.03E-07	1.04E-07	7.38E-09	2.15E-07	1.61E-08	1.69E-08	1.17E-09	3.42E-08	8.63E-09	7.92E-09	4.88E-10	1.70E-08
2	010	764179.8	4093220.09	1.01E-07	1.01E-07	7.18E-09	2.09E-07	1.57E-08	1.64E-08	1.13E-09	3.33E-08	8.40E-09	7.71E-09	4.75E-10	1.66E-08
2	011	764204.38	4093220.78	9.79E-08	9.84E-08	6.99E-09	2.03E-07	1.53E-08	1.60E-08	1.10E-09	3.24E-08	8.18E-09	7.51E-09	4.63E-10	1.61E-08
2	012	763783.66	4093399.89	9.24E-08	9.29E-08	6.60E-09	1.92E-07	1.44E-08	1.51E-08	1.04E-09	3.06E-08	7.72E-09	7.09E-09	4.37E-10	1.52E-08
2	013	763761.88	4093390.09	9.54E-08	9.59E-08	6.81E-09	1.98E-07	1.49E-08	1.56E-08	1.08E-09	3.15E-08	7.96E-09	7.31E-09	4.51E-10	1.57E-08
2	014	763740.1	4093380.29	9.85E-08	9.91E-08	7.04E-09	2.05E-07	1.54E-08	1.61E-08	1.11E-09	3.26E-08	8.23E-09	7.56E-09	4.65E-10	1.62E-08
2	015	763718.32	4093370.48	1.02E-07	1.02E-07	7.27E-09	2.12E-07	1.59E-08	1.66E-08	1.15E-09	3.37E-08	8.51E-09	7.81E-09	4.81E-10	1.68E-08
2	016	763696.54	4093360.68	1.05E-07	1.06E-07	7.52E-09	2.19E-07	1.64E-08	1.72E-08	1.19E-09	3.48E-08	8.79E-09	8.07E-09	4.97E-10	1.74E-08
2	017	763674.76	4093350.88	1.09E-07	1.09E-07	7.77E-09	2.26E-07	1.70E-08	1.78E-08	1.23E-09	3.60E-08	9.09E-09	8.35E-09	5.14E-10	1.79E-08
2	018	763652.98	4093341.07	1.12E-07	1.13E-07	8.02E-09	2.33E-07	1.76E-08	1.83E-08	1.27E-09	3.72E-08	9.39E-09	8.62E-09	5.31E-10	1.85E-08
2	019	763631.2	4093331.27		1.16E-07	8.27E-09	2.40E-07	1.81E-08	1.89E-08			9.67E-09	8.88E-09	5.47E-10	
2	020	763609.42	4093321.47	1.19E-07	1.20E-07	8.49E-09	2.47E-07		1.94E-08			9.93E-09	9.12E-09	5.62E-10	1.96E-08
2	021	763587.64	4093311.66	1.22E-07	1.22E-07	8.70E-09	2.53E-07	1.90E-08	1.99E-08	1.37E-09	4.03E-08	1.02E-08	9.34E-09	5.76E-10	2.01E-08

2022	763565.86	4093301.86	1.24E-07	1.25E-07	8.87E-09	2.58E-07	1.94E-08	2.03E-08	1.40E-09	4.11E-08	1.04E-08	9.53E-09	5.87E-10	2.05E-08
2023	763544.09	4093292.06	1.26E-07	1.27E-07	9.01E-09	2.62E-07	1.97E-08	2.06E-08	1.42E-09	4.17E-08	1.05E-08	9.68E-09	5.96E-10	2.08E-08
2024	763522.31	4093282.25	1.28E-07	1.28E-07	9.11E-09	2.65E-07	1.99E-08	2.08E-08	1.44E-09	4.22E-08	1.07E-08	9.79E-09	6.03E-10	2.10E-08
2025	763500.53	4093272.45	1.28E-07	1.29E-07	9.16E-09	2.67E-07	2.00E-08	2.09E-08	1.45E-09	4.24E-08	1.07E-08	9.84E-09	6.06E-10	2.12E-08
2026	763478.75	4093262.65	1.28E-07	1.29E-07	9.16E-09	2.67E-07	2.00E-08	2.09E-08	1.45E-09	4.24E-08	1.07E-08	9.84E-09	6.06E-10	2.12E-08
2027	763456.97	4093252.84	1.28E-07	1.28E-07	9.12E-09	2.65E-07	1.99E-08	2.08E-08	1.44E-09	4.22E-08	1.07E-08	9.79E-09	6.03E-10	2.11E-08
2028	763435.19	4093243.04	1.26E-07	1.27E-07	9.03E-09	2.63E-07	1.98E-08	2.06E-08	1.43E-09	4.18E-08	1.06E-08	9.70E-09	5.97E-10	2.09E-08
2029	763413.41	4093233.24	1.24E-07	1.25E-07	8.89E-09	2.58E-07	1.94E-08	2.03E-08	1.40E-09	4.12E-08	1.04E-08	9.54E-09	5.88E-10	2.05E-08
2030	763391.63	4093223.43	1.22E-07	1.23E-07	8.71E-09	2.53E-07	1.90E-08	1.99E-08	1.38E-09	4.03E-08	1.02E-08	9.35E-09	5.76E-10	2.01E-08
2031	763369.85	4093213.63	1.19E-07	1.20E-07	8.49E-09	2.47E-07	1.86E-08	1.94E-08	1.34E-09	3.93E-08	9.93E-09	9.12E-09	5.62E-10	1.96E-08
2032	763348.07	4093203.83	1.16E-07	1.16E-07	8.25E-09	2.40E-07	1.81E-08	1.89E-08	1.30E-09	3.82E-08	9.65E-09	8.86E-09	5.46E-10	1.91E-08
2033	763326.29	4093194.02	1.12E-07	1.13E-07	7.99E-09	2.32E-07	1.75E-08	1.83E-08	1.26E-09	3.70E-08	9.35E-09	8.58E-09	5.29E-10	1.85E-08
2034	763304.51	4093184.22	1.08E-07	1.09E-07	7.72E-09	2.25E-07	1.69E-08	1.76E-08	1.22E-09	3.58E-08	9.03E-09	8.29E-09	5.11E-10	1.78E-08
2035	763282.73	4093174.42	1.04E-07	1.05E-07	7.45E-09	2.17E-07	1.63E-08	1.70E-08	1.18E-09	3.45E-08	8.71E-09	8.00E-09	4.93E-10	1.72E-08
2036	763260.95	4093164.61	1.01E-07	1.01E-07	7.18E-09	2.09E-07	1.57E-08	1.64E-08	1.13E-09	3.33E-08	8.40E-09	7.71E-09	4.75E-10	1.66E-08
2037	763239.17	4093154.81	9.70E-08	9.75E-08	6.93E-09	2.01E-07	1.52E-08	1.58E-08	1.09E-09	3.21E-08	8.10E-09	7.44E-09	4.58E-10	1.60E-08
2038	763217.39	4093145.01	9.37E-08	9.42E-08	6.69E-09	1.95E-07	1.46E-08	1.53E-08	1.06E-09	3.10E-08	7.82E-09	7.18E-09	4.42E-10	1.54E-08
2039	763195.61	4093135.2	9.06E-08	9.11E-08	6.47E-09	1.88E-07	1.42E-08	1.48E-08	1.02E-09	3.00E-08	7.57E-09	6.95E-09	4.28E-10	1.49E-08
2040	763165.46	4093103.03	8.77E-08	8.82E-08	6.26E-09	1.82E-07	1.37E-08	1.43E-08	9.90E-10	2.90E-08	7.33E-09	6.73E-09	4.14E-10	1.45E-08
2041	763081.81	4092879.31	8.31E-08	8.35E-08	5.93E-09	1.73E-07	1.30E-08	1.36E-08	9.37E-10	2.75E-08	6.94E-09	6.37E-09	3.93E-10	1.37E-08
2042	763073.44	4092856.94	8.15E-08	8.19E-08	5.82E-09	1.69E-07	1.27E-08	1.33E-08	9.19E-10	2.69E-08	6.80E-09	6.25E-09	3.85E-10	1.34E-08
2043	763065.07	4092834.57	7.98E-08	8.02E-08	5.69E-09	1.66E-07	1.25E-08	1.30E-08	9.00E-10	2.64E-08	6.66E-09	6.11E-09	3.77E-10	1.32E-08
2044	763056.71	4092812.2	7.80E-08	7.84E-08	5.57E-09	1.62E-07	1.22E-08	1.27E-08	8.80E-10	2.58E-08	6.51E-09	5.98E-09	3.68E-10	1.29E-08
2045	763048.34	4092789.83	7.62E-08	7.66E-08	5.44E-09	1.58E-07	1.19E-08	1.24E-08	8.60E-10	2.52E-08	6.36E-09	5.84E-09	3.60E-10	1.26E-08
2046	763039.98	4092767.46	7.45E-08	7.49E-08	5.32E-09	1.55E-07	1.16E-08	1.22E-08	8.40E-10	2.46E-08	6.22E-09	5.71E-09	3.52E-10	1.23E-08
2047	763031.61	4092745.09	7.28E-08	7.32E-08	5.20E-09	1.51E-07	1.14E-08	1.19E-08	8.22E-10	2.41E-08	6.08E-09	5.58E-09	3.44E-10	1.20E-08
2048	763023.25	4092722.72	7.12E-08	7.16E-08	5.09E-09	1.48E-07	1.11E-08	1.16E-08	8.04E-10	2.36E-08	5.95E-09	5.46E-09	3.37E-10	1.17E-08
2049	763014.88	4092700.34	6.97E-08	7.01E-08	4.98E-09	1.45E-07	1.09E-08	1.14E-08	7.86E-10	2.30E-08	5.82E-09	5.34E-09	3.29E-10	1.15E-08
2050	763006.51	4092677.97	6.82E-08	6.86E-08	4.87E-09	1.42E-07	1.07E-08	1.11E-08	7.69E-10	2.26E-08	5.69E-09	5.23E-09	3.22E-10	1.12E-08
2051	762998.15	4092655.6	6.67E-08	6.71E-08	4.76E-09	1.39E-07	1.04E-08	1.09E-08	7.53E-10	2.21E-08	5.57E-09	5.12E-09	3.15E-10	1.10E-08
2052	762989.78	4092633.23	6.53E-08	6.56E-08	4.66E-09	1.36E-07	1.02E-08	1.07E-08	7.36E-10	2.16E-08	5.45E-09	5.01E-09	3.08E-10	1.08E-08
2053	762981.42	4092610.86	6.38E-08	6.41E-08	4.55E-09	1.32E-07	9.96E-09	1.04E-08	7.20E-10	2.11E-08	5.33E-09	4.89E-09	3.01E-10	1.05E-08
2054	762973.05	4092588.49	6.23E-08	6.26E-08	4.45E-09	1.29E-07	9.73E-09	1.02E-08	7.03E-10	2.06E-08	5.20E-09	4.78E-09	2.94E-10	
2055	762964.68	4092566.12	6.07E-08	6.10E-08	4.34E-09	1.26E-07	9.49E-09	9.91E-09	6.85E-10	2.01E-08	5.07E-09	4.66E-09	2.87E-10	
2056	762956.32	4092543.75	5.91E-08	5.95E-08	4.22E-09	1.23E-07	9.24E-09	9.65E-09	6.67E-10	1.96E-08	4.94E-09	4.53E-09	2.79E-10	
		4092521.37			4.10E-09	1.19E-07	8.98E-09	9.38E-09			4.80E-09	4.41E-09		
	762939.59	4092499	5.58E-08	5.61E-08	3.98E-09	1.16E-07	8.72E-09	9.11E-09	6.30E-10		4.66E-09	4.28E-09	2.64E-10	9.20E-09
	763805.44			9.01E-08	6.40E-09	1.86E-07			1.01E-09		7.49E-09	6.87E-09	4.23E-10	1.48E-08
	763830.03	4093410.39	8.84E-08	8.89E-08	6.31E-09	1.84E-07		1.44E-08			7.38E-09	6.78E-09	4.18E-10	
	763854.61			8.77E-08	6.23E-09	1.81E-07	1.36E-08	1.42E-08	9.84E-10		7.28E-09	6.69E-09	4.12E-10	
	763879.19	4093411.76	8.62E-08	8.66E-08	6.15E-09	1.79E-07	1.35E-08	1.41E-08	9.72E-10		7.20E-09	6.61E-09	4.07E-10	
	763903.78	4093412.45	8.52E-08	8.56E-08	6.08E-09	1.77E-07	1.33E-08	1.39E-08	9.61E-10		7.11E-09	6.53E-09	4.02E-10	
	763928.36	4093413.14		8.47E-08	6.01E-09	1.75E-07		1.37E-08	9.50E-10		7.03E-09	6.46E-09	3.98E-10	
	763952.95	4093413.82		8.37E-08	5.94E-09	1.73E-07		1.36E-08			6.95E-09	6.38E-09	3.93E-10	
2066	763977.53	4093414.51	8.22E-08	8.26E-08	5.87E-09	1.71E-07	1.28E-08	1.34E-08	9.27E-10	2.72E-08	6.86E-09	6.30E-09	3.88E-10	1.36E-08

2067	764002.12	4093415.2	8.11E-08	8.15E-08	5.79E-09	1.68E-07	1.27E-08	1.32E-08	9.15E-10	2.68E-08	6.77E-09	6.22E-09	3.83E-10	1.34E-08
2068	764026.7	4093415.89	7.99E-08	8.03E-08	5.70E-09	1.66E-07	1.25E-08	1.30E-08	9.01E-10	2.64E-08	6.67E-09	6.13E-09	3.77E-10	1.32E-08
2069	764051.29	4093416.57	7.86E-08	7.90E-08	5.61E-09	1.63E-07	1.23E-08	1.28E-08	8.87E-10	2.60E-08	6.56E-09	6.03E-09	3.71E-10	1.30E-08
2070	764075.87	4093417.26	7.72E-08	7.76E-08	5.51E-09	1.60E-07	1.21E-08	1.26E-08	8.71E-10	2.55E-08	6.45E-09	5.92E-09	3.65E-10	1.27E-08
2071	764100.45	4093417.95	7.57E-08	7.61E-08	5.41E-09	1.57E-07	1.18E-08	1.24E-08	8.54E-10	2.50E-08	6.32E-09	5.81E-09	3.58E-10	1.25E-08
2072	764125.04	4093418.64	7.41E-08	7.45E-08	5.29E-09	1.54E-07	1.16E-08	1.21E-08	8.36E-10	2.45E-08	6.19E-09	5.68E-09	3.50E-10	1.22E-08
2073	764149.62	4093419.32	7.24E-08	7.28E-08	5.17E-09	1.50E-07	1.13E-08	1.18E-08	8.17E-10	2.39E-08	6.05E-09	5.55E-09	3.42E-10	1.19E-08
2074	764174.21	4093420.01	7.08E-08	7.11E-08	5.05E-09	1.47E-07	1.11E-08	1.15E-08	7.98E-10	2.34E-08	5.91E-09	5.42E-09	3.34E-10	1.17E-08
2075	764198.79	4093420.7	6.91E-08	6.94E-08	4.93E-09	1.43E-07	1.08E-08	1.13E-08	7.79E-10	2.28E-08	5.77E-09	5.30E-09	3.26E-10	1.14E-08
2076	763777.79	4093599.69	6.61E-08	6.64E-08	4.72E-09	1.37E-07	1.03E-08	1.08E-08	7.46E-10	2.19E-08	5.52E-09	5.07E-09	3.12E-10	1.09E-08
2077	763755.74	4093589.76	6.77E-08	6.80E-08	4.83E-09	1.41E-07	1.06E-08	1.10E-08	7.63E-10	2.24E-08	5.65E-09	5.19E-09	3.20E-10	1.12E-08
2078	763733.68	4093579.84	6.95E-08	6.98E-08	4.96E-09	1.44E-07	1.08E-08	1.13E-08	7.83E-10	2.30E-08	5.80E-09	5.33E-09	3.28E-10	1.15E-08
2079	763711.63	4093569.91	7.14E-08	7.18E-08	5.10E-09	1.48E-07	1.12E-08	1.16E-08	8.05E-10	2.36E-08	5.96E-09	5.47E-09	3.37E-10	1.18E-08
2080	763689.57	4093559.98	7.35E-08	7.39E-08	5.25E-09	1.53E-07	1.15E-08	1.20E-08	8.29E-10	2.43E-08	6.14E-09	5.64E-09	3.47E-10	1.21E-08
2081	763667.51	4093550.05	7.58E-08	7.62E-08	5.41E-09	1.57E-07	1.18E-08	1.24E-08	8.55E-10	2.51E-08	6.33E-09	5.81E-09	3.58E-10	1.25E-08
2082	763645.46	4093540.12	7.82E-08	7.86E-08	5.58E-09	1.62E-07	1.22E-08	1.28E-08	8.82E-10	2.58E-08	6.53E-09	5.99E-09	3.69E-10	1.29E-08
2083	763623.4	4093530.2	8.06E-08	8.11E-08	5.76E-09	1.67E-07	1.26E-08	1.32E-08	9.10E-10	2.67E-08	6.73E-09	6.18E-09	3.81E-10	1.33E-08
2084	763601.34	4093520.27	8.31E-08	8.36E-08	5.94E-09	1.73E-07	1.30E-08	1.36E-08	9.38E-10	2.75E-08	6.94E-09	6.38E-09	3.93E-10	1.37E-08
2085	763579.29	4093510.34	8.56E-08	8.61E-08	6.11E-09	1.78E-07	1.34E-08	1.40E-08	9.66E-10	2.83E-08	7.15E-09	6.57E-09	4.05E-10	1.41E-08
2086	763557.23	4093500.41	8.81E-08	8.85E-08	6.29E-09	1.83E-07	1.38E-08	1.44E-08	9.94E-10	2.91E-08	7.35E-09	6.75E-09	4.16E-10	1.45E-08
2087	763535.18	4093490.49	9.04E-08	9.09E-08	6.46E-09	1.88E-07	1.41E-08	1.48E-08	1.02E-09	2.99E-08	7.55E-09	6.93E-09	4.27E-10	1.49E-08
2088	763513.12	4093480.56	9.26E-08	9.31E-08	6.61E-09	1.92E-07	1.45E-08	1.51E-08	1.04E-09	3.06E-08	7.73E-09	7.10E-09	4.37E-10	1.53E-08
2089	763491.06	4093470.63	9.45E-08	9.50E-08	6.74E-09	1.96E-07	1.48E-08	1.54E-08	1.07E-09	3.12E-08	7.89E-09	7.24E-09	4.46E-10	1.56E-08
2090	763469.01	4093460.7	9.60E-08	9.65E-08	6.86E-09	1.99E-07	1.50E-08	1.57E-08	1.08E-09	3.17E-08	8.02E-09	7.36E-09	4.54E-10	1.58E-08
2091	763446.95	4093450.77	9.72E-08	9.78E-08	6.94E-09	2.02E-07	1.52E-08	1.59E-08	1.10E-09	3.22E-08	8.12E-09	7.46E-09	4.59E-10	1.60E-08
2092	763424.89	4093440.85	9.81E-08	9.86E-08	7.00E-09	2.04E-07	1.53E-08	1.60E-08	1.11E-09	3.24E-08	8.19E-09	7.52E-09	4.63E-10	1.62E-08
2093	763402.84	4093430.92	9.85E-08	9.90E-08	7.03E-09	2.04E-07	1.54E-08	1.61E-08	1.11E-09	3.26E-08	8.22E-09	7.55E-09	4.65E-10	1.62E-08
2094	763380.78	4093420.99	9.84E-08	9.89E-08	7.03E-09	2.04E-07	1.54E-08	1.61E-08	1.11E-09	3.25E-08	8.22E-09	7.55E-09	4.65E-10	1.62E-08
2095	763358.73	4093411.06	9.79E-08	9.85E-08	6.99E-09	2.03E-07	1.53E-08	1.60E-08	1.10E-09	3.24E-08	8.18E-09	7.51E-09	4.63E-10	1.62E-08
2096	763336.67	4093401.13	9.71E-08	9.76E-08	6.93E-09	2.02E-07	1.52E-08	1.58E-08	1.09E-09	3.21E-08	8.10E-09	7.44E-09	4.58E-10	1.60E-08
2097	763314.61	4093391.21	9.58E-08	9.63E-08	6.84E-09	1.99E-07	1.50E-08	1.56E-08	1.08E-09	3.17E-08	8.00E-09	7.34E-09	4.52E-10	1.58E-08
2098	763292.56	4093381.28	9.41E-08	9.46E-08	6.72E-09	1.95E-07	1.47E-08	1.54E-08	1.06E-09	3.11E-08	7.86E-09	7.22E-09	4.45E-10	1.55E-08
2099	763270.5	4093371.35	9.22E-08	9.27E-08	6.58E-09	1.91E-07	1.44E-08	1.50E-08	1.04E-09	3.05E-08	7.70E-09	7.07E-09	4.35E-10	1.52E-08
2100	763248.44	4093361.42	9.00E-08	9.05E-08	6.42E-09	1.87E-07	1.41E-08	1.47E-08	1.02E-09	2.98E-08	7.51E-09	6.90E-09	4.25E-10	1.48E-08
2101	763226.39	4093351.49	8.76E-08	8.80E-08	6.25E-09	1.82E-07	1.37E-08	1.43E-08	9.88E-10	2.90E-08	7.31E-09	6.71E-09	4.14E-10	1.44E-08
2102	763204.33	4093341.57	8.50E-08	8.54E-08	6.07E-09	1.76E-07	1.33E-08	1.39E-08	9.59E-10	2.81E-08	7.10E-09	6.52E-09	4.01E-10	1.40E-08
2103	763182.28	4093331.64	8.23E-08	8.28E-08	5.88E-09	1.71E-07	1.29E-08	1.34E-08	9.29E-10	2.72E-08	6.88E-09	6.31E-09	3.89E-10	1.36E-08
2104	763160.22	4093321.71	7.96E-08	8.01E-08	5.69E-09	1.65E-07	1.24E-08	1.30E-08	8.98E-10	2.63E-08	6.65E-09	6.11E-09	3.76E-10	1.31E-08
2105	763138.16	4093311.78	7.70E-08	7.74E-08	5.50E-09	1.60E-07	1.20E-08	1.26E-08	8.69E-10	2.55E-08	6.43E-09	5.91E-09	3.64E-10	1.27E-08
2106	762960.11	4093080.9	6.70E-08	6.73E-08	4.78E-09	1.39E-07	1.05E-08	1.09E-08	7.56E-10	2.22E-08	5.59E-09	5.14E-09	3.16E-10	1.10E-08
2107	762951.63	4093058.24	6.67E-08	6.71E-08	4.76E-09	1.39E-07	1.04E-08	1.09E-08	7.52E-10	2.21E-08	5.57E-09	5.11E-09	3.15E-10	1.10E-08
2108	762943.16	4093035.59	6.62E-08	6.66E-08	4.73E-09	1.38E-07	1.03E-08	1.08E-08	7.47E-10	2.19E-08	5.53E-09	5.08E-09	3.13E-10	1.09E-08
2109	762934.69	4093012.93	6.55E-08	6.59E-08	4.68E-09	1.36E-07	1.02E-08	1.07E-08	7.39E-10		5.47E-09	5.03E-09	3.10E-10	
2110	762926.22	4092990.28	6.47E-08	6.50E-08	4.62E-09	1.34E-07	1.01E-08	1.06E-08	7.30E-10	2.14E-08	5.40E-09	4.96E-09	3.06E-10	1.07E-08
2111	762917.74	4092967.62	6.37E-08	6.40E-08	4.55E-09	1.32E-07	9.95E-09	1.04E-08	7.18E-10	2.11E-08	5.32E-09	4.88E-09	3.01E-10	1.05E-08

2112	762883.86	4092877	5.91E-08	5.94E-08	4.22E-09	1.23E-07	9.23E-09	9.65E-09	6.67E-10	1.95E-08	4.94E-09	4.53E-09	2.79E-10	9.75E-09
2113	762875.38	4092854.35	5.80E-08	5.83E-08	4.14E-09	1.20E-07	9.06E-09	9.47E-09	6.54E-10	1.92E-08	4.84E-09	4.45E-09	2.74E-10	9.57E-09
2114	762866.91	4092831.69	5.70E-08	5.73E-08	4.07E-09	1.18E-07	8.90E-09	9.29E-09	6.42E-10	1.88E-08	4.76E-09	4.37E-09	2.69E-10	9.39E-09
2115	762858.44	4092809.04	5.60E-08	5.63E-08	4.00E-09	1.16E-07	8.74E-09	9.13E-09	6.31E-10	1.85E-08	4.67E-09	4.29E-09	2.64E-10	9.23E-09
2116	762849.97	4092786.38	5.50E-08	5.53E-08	3.93E-09	1.14E-07	8.59E-09	8.97E-09	6.20E-10	1.82E-08	4.59E-09	4.22E-09	2.60E-10	9.07E-09
2117	762841.5	4092763.73	5.41E-08	5.44E-08	3.86E-09	1.12E-07	8.44E-09	8.82E-09	6.10E-10	1.79E-08	4.51E-09	4.15E-09	2.55E-10	8.92E-09
2118	762833.02	4092741.07	5.32E-08	5.34E-08	3.79E-09	1.10E-07	8.30E-09	8.67E-09	6.00E-10	1.76E-08	4.44E-09	4.08E-09	2.51E-10	8.76E-09
2119	762824.55	4092718.41	5.23E-08	5.25E-08	3.73E-09	1.09E-07	8.16E-09	8.53E-09	5.89E-10	1.73E-08	4.36E-09	4.01E-09	2.47E-10	8.62E-09
2120	762816.08	4092695.76	5.13E-08	5.16E-08	3.67E-09	1.07E-07	8.02E-09	8.38E-09	5.79E-10	1.70E-08	4.29E-09	3.94E-09	2.43E-10	8.47E-09
2121	762807.61	4092673.1	5.04E-08	5.07E-08	3.60E-09	1.05E-07	7.88E-09	8.23E-09	5.69E-10	1.67E-08	4.21E-09	3.87E-09	2.38E-10	8.32E-09
2122	762799.14	4092650.45	4.95E-08	4.98E-08	3.54E-09	1.03E-07	7.73E-09	8.08E-09	5.59E-10	1.64E-08	4.13E-09	3.80E-09	2.34E-10	8.17E-09
2123	762790.66	4092627.79	4.86E-08	4.88E-08	3.47E-09	1.01E-07	7.59E-09	7.93E-09	5.48E-10	1.61E-08	4.06E-09	3.72E-09	2.29E-10	8.01E-09
2124	762782.19	4092605.14	4.76E-08	4.78E-08	3.40E-09	9.88E-08	7.43E-09	7.77E-09	5.37E-10	1.57E-08	3.97E-09	3.65E-09	2.25E-10	7.85E-09
2125	762773.72	4092582.48	4.66E-08	4.68E-08	3.33E-09	9.67E-08	7.28E-09	7.60E-09	5.25E-10	1.54E-08	3.89E-09	3.57E-09	2.20E-10	7.68E-09
2126	762765.25	4092559.83	4.56E-08	4.58E-08	3.25E-09	9.46E-08	7.12E-09	7.43E-09	5.14E-10	1.51E-08	3.80E-09	3.49E-09	2.15E-10	7.51E-09
2127	762756.77	4092537.17	4.45E-08	4.47E-08	3.18E-09	9.24E-08	6.95E-09	7.26E-09	5.02E-10	1.47E-08	3.71E-09	3.41E-09	2.10E-10	7.34E-09
2128	762748.3	4092514.52	4.34E-08	4.36E-08	3.10E-09	9.01E-08	6.78E-09	7.08E-09	4.89E-10	1.43E-08	3.62E-09	3.33E-09	2.05E-10	7.15E-09
2129	762739.83	4092491.86	4.23E-08	4.25E-08	3.02E-09	8.78E-08	6.60E-09	6.90E-09	4.77E-10	1.40E-08	3.53E-09	3.24E-09	2.00E-10	6.97E-09
2130	763799.85	4093609.62	6.46E-08	6.50E-08	4.61E-09	1.34E-07	1.01E-08	1.05E-08	7.29E-10	2.14E-08	5.40E-09	4.96E-09	3.05E-10	1.07E-08
2131	763824.43	4093610.31	6.41E-08	6.45E-08	4.58E-09	1.33E-07	1.00E-08	1.05E-08	7.23E-10	2.12E-08	5.35E-09	4.92E-09	3.03E-10	1.06E-08
2132	763849.02	4093611	6.37E-08	6.40E-08	4.55E-09	1.32E-07	9.94E-09	1.04E-08	7.18E-10	2.10E-08	5.32E-09	4.88E-09	3.01E-10	1.05E-08
2133	763873.6	4093611.68	6.32E-08	6.36E-08	4.51E-09	1.31E-07	9.88E-09	1.03E-08	7.13E-10	2.09E-08	5.28E-09	4.85E-09	2.99E-10	1.04E-08
2134	763898.19	4093612.37	6.28E-08	6.31E-08	4.48E-09	1.30E-07	9.81E-09	1.02E-08	7.08E-10	2.08E-08	5.24E-09	4.82E-09	2.97E-10	1.04E-08
2135	763922.77	4093613.06	6.24E-08	6.27E-08	4.45E-09	1.30E-07	9.74E-09	1.02E-08	7.03E-10	2.06E-08	5.21E-09	4.78E-09	2.95E-10	1.03E-08
2136	763947.36	4093613.75	6.19E-08	6.22E-08	4.42E-09	1.28E-07	9.66E-09	1.01E-08	6.98E-10	2.05E-08	5.17E-09	4.74E-09	2.92E-10	1.02E-08
2137	763971.94	4093614.43	6.13E-08	6.16E-08	4.37E-09	1.27E-07	9.57E-09	1.00E-08	6.91E-10	2.03E-08	5.12E-09	4.70E-09	2.89E-10	1.01E-08
2138	763996.53	4093615.12	6.06E-08	6.10E-08	4.33E-09	1.26E-07	9.47E-09	9.89E-09	6.84E-10	2.00E-08	5.06E-09	4.65E-09	2.86E-10	1.00E-08
2139	764021.11	4093615.81	5.99E-08	6.02E-08	4.28E-09	1.24E-07	9.36E-09	9.78E-09	6.76E-10	1.98E-08	5.00E-09	4.59E-09	2.83E-10	9.88E-09
2140	764045.69	4093616.5	5.91E-08	5.94E-08	4.22E-09	1.23E-07	9.23E-09	9.65E-09	6.67E-10	1.95E-08	4.94E-09	4.53E-09	2.79E-10	9.75E-09
2141	764070.28	4093617.18	5.83E-08	5.86E-08	4.16E-09	1.21E-07	9.10E-09	9.51E-09	6.57E-10	1.93E-08	4.86E-09	4.47E-09	2.75E-10	9.61E-09
2142	764094.86	4093617.87	5.73E-08	5.76E-08	4.09E-09	1.19E-07	8.95E-09	9.35E-09	6.46E-10	1.89E-08	4.78E-09	4.39E-09	2.71E-10	9.45E-09
2143	764119.45	4093618.56	5.63E-08	5.66E-08	4.02E-09	1.17E-07	8.79E-09	9.18E-09	6.35E-10	1.86E-08	4.70E-09	4.31E-09	2.66E-10	9.28E-09
2144	764144.03	4093619.25	5.52E-08	5.55E-08	3.94E-09	1.15E-07	8.62E-09	9.00E-09	6.22E-10	1.82E-08	4.61E-09	4.23E-09	2.61E-10	9.10E-09
2145	764168.62	4093619.93	5.41E-08	5.44E-08	3.86E-09	1.12E-07	8.44E-09	8.82E-09	6.10E-10		4.51E-09	4.15E-09	2.55E-10	
2146	764193.2	4093620.62	5.29E-08	5.32E-08	3.78E-09	1.10E-07	8.27E-09	8.64E-09	5.97E-10		4.42E-09		2.50E-10	
2147		4093799.53		5.11E-08	3.63E-09	1.06E-07	7.95E-09	8.30E-09			4.25E-09	3.90E-09		
2148		4093789.51		5.20E-08	3.69E-09	1.07E-07	8.08E-09	8.44E-09	5.84E-10		4.32E-09	3.97E-09	2.44E-10	
2149	763727.5	4093779.49	5.27E-08	5.30E-08	3.76E-09	1.09E-07	8.23E-09	8.60E-09	5.95E-10	1.74E-08	4.40E-09	4.04E-09	2.49E-10	8.69E-09
2150	763705.25	4093769.48		5.41E-08	3.84E-09	1.12E-07	8.40E-09	8.78E-09	6.07E-10		4.49E-09	4.13E-09	2.54E-10	
2151	763683	4093759.46		5.53E-08	3.93E-09	1.14E-07	8.60E-09	8.98E-09	6.21E-10		4.60E-09	4.22E-09	2.60E-10	
	763660.75	4093749.45	5.64E-08	5.67E-08	4.03E-09	1.17E-07	8.81E-09	9.20E-09	6.36E-10		4.71E-09	4.32E-09	2.66E-10	
2153	763638.5	4093739.43	5.79E-08	5.82E-08	4.13E-09	1.20E-07	9.04E-09	9.45E-09	6.53E-10		4.83E-09	4.44E-09	2.73E-10	
2154		4093729.41		5.98E-08	4.25E-09	1.24E-07		9.71E-09	6.71E-10		4.97E-09	4.56E-09	2.81E-10	
	763593.99	4093719.4		6.16E-08	4.37E-09	1.27E-07		9.99E-09	6.91E-10		5.11E-09	4.70E-09	2.89E-10	
2156	763571.74	4093709.38	6.31E-08	6.34E-08	4.50E-09	1.31E-07	9.85E-09	1.03E-08	7.12E-10	2.09E-08	5.27E-09	4.84E-09	2.98E-10	1.04E-08

2157	763549.49	4093699.37	6.50E-08	6.53E-08	4.64E-09	1.35E-07	1.01E-08	1.06E-08	7.33E-10	2.15E-08	5.43E-09	4.98E-09	3.07E-10	1.07E-08
2158	763527.24	4093689.35	6.69E-08	6.72E-08	4.77E-09	1.39E-07	1.04E-08	1.09E-08	7.54E-10	2.21E-08	5.58E-09	5.13E-09	3.16E-10	1.10E-08
2159	763504.99	4093679.33	6.88E-08	6.91E-08	4.91E-09	1.43E-07	1.07E-08	1.12E-08	7.76E-10	2.27E-08	5.74E-09	5.27E-09	3.25E-10	1.13E-08
2160	763482.73	4093669.32	7.06E-08	7.09E-08	5.04E-09	1.47E-07	1.10E-08	1.15E-08	7.96E-10	2.33E-08	5.89E-09	5.41E-09	3.33E-10	1.16E-08
2161	763460.48	4093659.3	7.23E-08	7.27E-08	5.16E-09	1.50E-07	1.13E-08	1.18E-08	8.16E-10	2.39E-08	6.04E-09	5.54E-09	3.42E-10	1.19E-08
2162	763438.23	4093649.29	7.39E-08	7.43E-08	5.28E-09	1.53E-07	1.15E-08	1.21E-08	8.34E-10	2.44E-08	6.17E-09	5.67E-09	3.49E-10	1.22E-08
2163	763415.98	4093639.27	7.53E-08	7.57E-08	5.38E-09	1.56E-07	1.18E-08	1.23E-08	8.50E-10	2.49E-08	6.29E-09	5.78E-09	3.56E-10	1.24E-08
2164	763393.73	4093629.25	7.66E-08	7.70E-08	5.47E-09	1.59E-07	1.20E-08	1.25E-08	8.64E-10	2.53E-08	6.39E-09	5.87E-09	3.62E-10	1.26E-08
2165	763371.47	4093619.24	7.76E-08	7.80E-08	5.54E-09	1.61E-07	1.21E-08	1.27E-08	8.75E-10	2.57E-08	6.48E-09	5.95E-09	3.67E-10	1.28E-08
2166	763349.22	4093609.22	7.83E-08	7.88E-08	5.59E-09	1.63E-07	1.22E-08	1.28E-08	8.84E-10	2.59E-08	6.54E-09	6.01E-09	3.70E-10	1.29E-08
2167	763326.97	4093599.21	7.89E-08	7.93E-08	5.63E-09	1.64E-07	1.23E-08	1.29E-08	8.90E-10	2.61E-08	6.59E-09	6.05E-09	3.73E-10	1.30E-08
2168	763304.72	4093589.19	7.91E-08	7.96E-08	5.65E-09	1.64E-07	1.24E-08	1.29E-08	8.93E-10	2.62E-08	6.61E-09	6.07E-09	3.74E-10	1.31E-08
2169	763282.47	4093579.17	7.91E-08	7.95E-08	5.65E-09	1.64E-07	1.24E-08	1.29E-08	8.92E-10	2.61E-08	6.60E-09	6.06E-09	3.74E-10	1.30E-08
2170	763260.22	4093569.16	7.87E-08	7.92E-08	5.62E-09	1.64E-07	1.23E-08	1.28E-08	8.88E-10	2.60E-08	6.58E-09	6.04E-09	3.72E-10	1.30E-08
2171	763237.96	4093559.14	7.81E-08	7.85E-08	5.58E-09	1.62E-07	1.22E-08	1.27E-08	8.81E-10	2.58E-08	6.52E-09	5.99E-09	3.69E-10	1.29E-08
2172	763215.71	4093549.13	7.73E-08	7.77E-08	5.52E-09	1.60E-07	1.21E-08	1.26E-08	8.72E-10	2.56E-08	6.45E-09	5.93E-09	3.65E-10	1.27E-08
2173	763193.46	4093539.11	7.62E-08	7.66E-08	5.44E-09	1.58E-07	1.19E-08	1.24E-08	8.59E-10	2.52E-08	6.36E-09	5.84E-09	3.60E-10	1.26E-08
2174	763171.21	4093529.09	7.48E-08	7.52E-08	5.34E-09	1.55E-07	1.17E-08	1.22E-08	8.44E-10	2.47E-08	6.25E-09	5.74E-09	3.53E-10	1.23E-08
2175	763148.96	4093519.08	7.33E-08	7.37E-08	5.23E-09	1.52E-07	1.15E-08	1.20E-08	8.27E-10	2.42E-08	6.12E-09	5.62E-09	3.46E-10	1.21E-08
2176	763126.7	4093509.06	7.16E-08	7.20E-08	5.11E-09	1.49E-07	1.12E-08	1.17E-08	8.08E-10	2.37E-08	5.98E-09	5.49E-09	3.38E-10	1.18E-08
2177	763104.45	4093499.05	6.98E-08	7.02E-08	4.98E-09	1.45E-07	1.09E-08	1.14E-08	7.87E-10	2.31E-08	5.83E-09	5.35E-09	3.30E-10	1.15E-08
2178	763082.2	4093489.03	6.79E-08	6.82E-08	4.85E-09	1.41E-07	1.06E-08	1.11E-08	7.66E-10	2.24E-08	5.67E-09	5.20E-09	3.21E-10	1.12E-08
2179	763059.95	4093479.02	6.59E-08	6.63E-08	4.71E-09	1.37E-07	1.03E-08	1.08E-08	7.43E-10	2.18E-08	5.50E-09	5.05E-09	3.11E-10	1.09E-08
2180	763037.7	4093469	6.39E-08	6.43E-08	4.56E-09	1.33E-07	9.99E-09	1.04E-08	7.21E-10	2.11E-08	5.34E-09	4.90E-09	3.02E-10	1.05E-08
2181	763015.44	4093458.98	6.20E-08	6.23E-08	4.43E-09	1.29E-07	9.68E-09	1.01E-08	6.99E-10	2.05E-08	5.18E-09	4.75E-09	2.93E-10	1.02E-08
2182	762993.19	4093448.97	6.01E-08	6.04E-08	4.29E-09	1.25E-07	9.38E-09	9.81E-09	6.78E-10	1.99E-08	5.02E-09	4.61E-09	2.84E-10	9.91E-09
2183	762685.35	4092873.19	4.51E-08	4.54E-08	3.22E-09	9.37E-08	7.05E-09	7.36E-09	5.09E-10	1.49E-08	3.77E-09	3.46E-09	2.13E-10	7.44E-09
2184	762676.8	4092850.34	4.45E-08	4.47E-08	3.18E-09	9.24E-08	6.95E-09	7.26E-09	5.02E-10	1.47E-08	3.71E-09	3.41E-09	2.10E-10	7.34E-09
2185	762668.25	4092827.48	4.39E-08	4.41E-08	3.13E-09	9.12E-08	6.86E-09	7.16E-09	4.95E-10	1.45E-08	3.67E-09	3.37E-09	2.07E-10	7.24E-09
2186	762659.71	4092804.62	4.33E-08	4.35E-08	3.09E-09	8.99E-08	6.76E-09	7.06E-09	4.88E-10	1.43E-08	3.61E-09	3.32E-09	2.04E-10	7.14E-09
2187	762651.16	4092781.77	4.27E-08	4.29E-08	3.05E-09	8.86E-08	6.67E-09	6.97E-09	4.82E-10	1.41E-08	3.56E-09	3.27E-09	2.02E-10	7.04E-09
2188	762642.61	4092758.91	4.21E-08	4.23E-08	3.00E-09	8.74E-08	6.57E-09	6.87E-09	4.75E-10	1.39E-08	3.51E-09	3.23E-09	1.99E-10	6.94E-09
2189	762634.06	4092736.06	4.15E-08	4.17E-08	2.96E-09	8.61E-08	6.48E-09	6.77E-09	4.68E-10	1.37E-08	3.46E-09	3.18E-09	1.96E-10	6.84E-09
2190	762625.52	4092713.2	4.08E-08	4.11E-08	2.92E-09	8.48E-08	6.38E-09	6.66E-09	4.61E-10	1.35E-08	3.41E-09	3.13E-09	1.93E-10	6.73E-09
2191	762616.97	4092690.34	4.02E-08	4.04E-08	2.87E-09	8.35E-08	6.28E-09	6.56E-09	4.54E-10	1.33E-08	3.36E-09	3.08E-09	1.90E-10	6.63E-09
2192	762608.42	4092667.49	3.96E-08	3.98E-08	2.83E-09	8.22E-08	6.18E-09	6.46E-09	4.46E-10	1.31E-08	3.30E-09	3.03E-09	1.87E-10	6.53E-09
2193	762599.87	4092644.63	3.89E-08	3.91E-08	2.78E-09	8.08E-08	6.08E-09	6.35E-09	4.39E-10	1.29E-08	3.25E-09	2.98E-09	1.84E-10	6.42E-09
2194	762591.33	4092621.77	3.82E-08	3.84E-08	2.73E-09	7.94E-08	5.97E-09	6.24E-09	4.31E-10	1.26E-08	3.19E-09	2.93E-09	1.81E-10	6.31E-09
2195	762582.78	4092598.92	3.75E-08	3.77E-08	2.68E-09	7.80E-08	5.86E-09	6.13E-09	4.23E-10	1.24E-08	3.13E-09	2.88E-09	1.77E-10	6.19E-09
2196	762574.23	4092576.06	3.68E-08	3.70E-08	2.63E-09	7.65E-08	5.75E-09	6.01E-09	4.16E-10	1.22E-08	3.08E-09	2.82E-09	1.74E-10	6.07E-09
2197	762565.69	4092553.2	3.61E-08	3.63E-08	2.58E-09	7.49E-08	5.64E-09	5.89E-09	4.07E-10	1.19E-08	3.01E-09	2.77E-09	1.70E-10	
	762557.14	4092530.35		3.55E-08	2.52E-09	7.34E-08	5.52E-09	5.76E-09	3.98E-10	1.17E-08	2.95E-09	2.71E-09	1.67E-10	
2199	762548.59	4092507.49	3.45E-08	3.47E-08	2.47E-09	7.17E-08	5.40E-09	5.64E-09		1.14E-08	2.88E-09	2.65E-09	1.63E-10	5.70E-09
2200	762540.04	4092484.64	3.37E-08	3.39E-08	2.41E-09	7.01E-08	5.27E-09	5.50E-09	3.81E-10	1.12E-08	2.82E-09	2.59E-09	1.59E-10	5.56E-09
2201	763794.26	4093809.54		5.04E-08	3.58E-09	1.04E-07	7.82E-09	8.17E-09			4.18E-09		2.37E-10	

2202	763818.84	4093810.23	4.99E-08	5.02E-08	3.56E-09	1.04E-07	7.79E-09	8.14E-09	5.63E-10	1.65E-08	4.17E-09	3.83E-09	2.36E-10	8.23E-09
2203	763843.43	4093810.92	4.97E-08	5.00E-08	3.55E-09	1.03E-07	7.76E-09	8.11E-09	5.61E-10	1.64E-08	4.15E-09	3.81E-09	2.35E-10	8.20E-09
2204	763868.01	4093811.6	4.95E-08	4.98E-08	3.54E-09	1.03E-07	7.74E-09	8.08E-09	5.59E-10	1.64E-08	4.14E-09	3.80E-09	2.34E-10	8.17E-09
2205	763892.6	4093812.29	4.93E-08	4.96E-08	3.52E-09	1.02E-07	7.70E-09	8.05E-09	5.56E-10	1.63E-08	4.12E-09	3.78E-09	2.33E-10	8.13E-09
2206	763917.18	4093812.98	4.91E-08	4.94E-08	3.51E-09	1.02E-07	7.67E-09	8.01E-09	5.54E-10	1.62E-08	4.10E-09	3.77E-09	2.32E-10	8.10E-09
2207	763941.77	4093813.67	4.88E-08	4.91E-08	3.49E-09	1.01E-07	7.63E-09	7.97E-09	5.51E-10	1.61E-08	4.08E-09	3.74E-09	2.31E-10	8.05E-09
2208	763966.35	4093814.35	4.85E-08	4.87E-08	3.46E-09	1.01E-07	7.57E-09	7.91E-09	5.47E-10	1.60E-08	4.05E-09	3.72E-09	2.29E-10	8.00E-09
2209	763990.93	4093815.04	4.81E-08	4.83E-08	3.43E-09	9.99E-08	7.51E-09	7.85E-09	5.43E-10	1.59E-08	4.02E-09	3.69E-09	2.27E-10	7.93E-09
2210	764015.52	4093815.73	4.76E-08	4.79E-08	3.40E-09	9.89E-08	7.44E-09	7.77E-09	5.37E-10	1.57E-08	3.98E-09	3.65E-09	2.25E-10	7.85E-09
2211	764040.1	4093816.42	4.70E-08	4.73E-08	3.36E-09	9.77E-08	7.35E-09	7.68E-09	5.31E-10	1.56E-08	3.93E-09	3.61E-09	2.22E-10	7.76E-09
2212	764064.69	4093817.1	4.64E-08	4.67E-08	3.32E-09	9.64E-08	7.25E-09	7.58E-09	5.24E-10	1.54E-08	3.88E-09	3.56E-09	2.19E-10	7.66E-09
2213	764089.27	4093817.79	4.58E-08	4.60E-08	3.27E-09	9.51E-08	7.15E-09	7.47E-09	5.16E-10	1.51E-08	3.82E-09	3.51E-09	2.16E-10	7.55E-09
2214	764113.86	4093818.48	4.51E-08	4.53E-08	3.22E-09	9.36E-08	7.04E-09	7.35E-09	5.08E-10	1.49E-08	3.76E-09	3.45E-09	2.13E-10	7.43E-09
2215	764138.44	4093819.17	4.43E-08	4.45E-08	3.16E-09	9.20E-08	6.92E-09	7.23E-09	5.00E-10	1.46E-08	3.70E-09	3.40E-09	2.09E-10	7.31E-09
2216	764163.03	4093819.85	4.35E-08	4.38E-08	3.11E-09	9.04E-08	6.80E-09	7.10E-09	4.91E-10	1.44E-08	3.63E-09	3.34E-09	2.06E-10	7.18E-09
2217	764187.61	4093820.54	4.27E-08	4.30E-08	3.05E-09	8.87E-08	6.67E-09	6.97E-09	4.82E-10	1.41E-08	3.57E-09	3.28E-09	2.02E-10	7.05E-09
2218	763766.27	4093999.38	4.12E-08	4.14E-08	2.94E-09	8.55E-08	6.43E-09	6.72E-09	4.65E-10	1.36E-08	3.44E-09	3.16E-09	1.95E-10	6.79E-09
2219	763743.87	4093989.3	4.17E-08	4.19E-08	2.98E-09	8.65E-08	6.51E-09	6.80E-09	4.70E-10	1.38E-08	3.48E-09	3.20E-09	1.97E-10	6.87E-09
2220	763721.48	4093979.22	4.22E-08	4.24E-08	3.01E-09	8.77E-08	6.60E-09	6.89E-09	4.76E-10	1.40E-08	3.53E-09	3.24E-09	1.99E-10	6.96E-09
2221	763699.08	4093969.14	4.29E-08	4.31E-08	3.06E-09	8.90E-08	6.69E-09	6.99E-09	4.83E-10	1.42E-08	3.58E-09	3.29E-09	2.02E-10	7.07E-09
2222	763676.68	4093959.06	4.36E-08	4.38E-08	3.11E-09	9.05E-08	6.80E-09	7.11E-09	4.91E-10	1.44E-08	3.64E-09	3.34E-09	2.06E-10	7.18E-09
2223	763654.28	4093948.97	4.44E-08	4.46E-08	3.17E-09	9.21E-08	6.93E-09	7.24E-09	5.00E-10	1.47E-08	3.70E-09	3.40E-09	2.10E-10	7.32E-09
2224	763631.89	4093938.89	4.53E-08	4.55E-08	3.23E-09	9.40E-08	7.07E-09	7.39E-09	5.11E-10	1.50E-08	3.78E-09	3.47E-09	2.14E-10	7.46E-09
2225	763609.49	4093928.81	4.63E-08	4.65E-08	3.30E-09	9.61E-08	7.23E-09	7.55E-09	5.22E-10	1.53E-08	3.87E-09	3.55E-09	2.19E-10	7.63E-09
2226	763587.09	4093918.73	4.74E-08	4.77E-08	3.38E-09	9.84E-08	7.40E-09	7.74E-09	5.35E-10	1.57E-08	3.96E-09	3.64E-09	2.24E-10	7.82E-09
2227	763564.69	4093908.65	4.86E-08	4.89E-08	3.47E-09	1.01E-07	7.60E-09	7.94E-09	5.49E-10	1.61E-08	4.06E-09	3.73E-09	2.30E-10	8.02E-09
2228	763542.3	4093898.57	4.99E-08	5.02E-08	3.56E-09	1.04E-07	7.80E-09	8.15E-09	5.63E-10	1.65E-08	4.17E-09	3.83E-09	2.36E-10	8.23E-09
2229	763519.9	4093888.49	5.13E-08	5.16E-08	3.66E-09	1.07E-07	8.02E-09	8.37E-09	5.79E-10	1.70E-08	4.29E-09	3.93E-09	2.42E-10	8.46E-09
2230	763497.5	4093878.4	5.28E-08	5.30E-08	3.77E-09	1.10E-07	8.24E-09	8.61E-09	5.95E-10	1.74E-08	4.41E-09	4.05E-09	2.49E-10	8.70E-09
2231	763475.1	4093868.32	5.42E-08	5.45E-08	3.87E-09	1.13E-07	8.47E-09	8.85E-09	6.12E-10	1.79E-08	4.53E-09	4.16E-09	2.56E-10	8.94E-09
2232	763452.71	4093858.24	5.57E-08	5.60E-08	3.98E-09	1.16E-07	8.70E-09	9.09E-09	6.28E-10	1.84E-08	4.65E-09	4.27E-09	2.63E-10	9.19E-09
2233	763430.31	4093848.16	5.72E-08	5.75E-08	4.08E-09	1.19E-07	8.93E-09	9.33E-09	6.45E-10	1.89E-08	4.77E-09	4.38E-09	2.70E-10	9.43E-09
2234	763407.91	4093838.08	5.86E-08	5.89E-08	4.18E-09	1.22E-07	9.15E-09	9.56E-09	6.61E-10	1.94E-08	4.89E-09	4.49E-09	2.77E-10	9.66E-09
2235	763385.51	4093828	5.99E-08	6.02E-08	4.28E-09	1.24E-07	9.36E-09	9.78E-09	6.76E-10	1.98E-08	5.00E-09	4.59E-09	2.83E-10	9.88E-09
2236	763363.12	4093817.91	6.12E-08	6.15E-08	4.37E-09	1.27E-07	9.55E-09	9.98E-09	6.90E-10	2.02E-08	5.11E-09	4.69E-09	2.89E-10	1.01E-08
2237	763340.72	4093807.83	6.23E-08	6.26E-08	4.45E-09	1.29E-07	9.73E-09	1.02E-08	7.03E-10	2.06E-08	5.20E-09	4.78E-09	2.94E-10	1.03E-08
2238	763318.32	4093797.75	6.33E-08	6.36E-08	4.52E-09	1.31E-07	9.88E-09	1.03E-08	7.14E-10	2.09E-08	5.28E-09	4.85E-09	2.99E-10	1.04E-08
2239	763295.92	4093787.67	6.41E-08	6.45E-08	4.58E-09	1.33E-07	1.00E-08	1.05E-08	7.23E-10	2.12E-08	5.35E-09	4.92E-09	3.03E-10	1.06E-08
2240	763273.53	4093777.59	6.48E-08	6.51E-08	4.62E-09	1.35E-07	1.01E-08	1.06E-08	7.31E-10	2.14E-08	5.41E-09	4.97E-09	3.06E-10	1.07E-08
2241	763251.13	4093767.51	6.53E-08	6.56E-08	4.66E-09	1.36E-07	1.02E-08	1.07E-08	7.36E-10	2.16E-08	5.45E-09	5.00E-09	3.08E-10	1.08E-08
2242	763228.73	4093757.43	6.56E-08	6.59E-08	4.68E-09	1.36E-07	1.02E-08	1.07E-08	7.40E-10	2.17E-08	5.48E-09	5.03E-09	3.10E-10	1.08E-08
2243	763206.33	4093747.34	6.57E-08	6.60E-08	4.69E-09	1.36E-07	1.03E-08	1.07E-08	7.41E-10	2.17E-08	5.49E-09	5.04E-09	3.10E-10	1.08E-08
2244	763183.94	4093737.26	6.56E-08	6.60E-08	4.68E-09	1.36E-07	1.02E-08	1.07E-08	7.40E-10	2.17E-08	5.48E-09	5.03E-09	3.10E-10	1.08E-08
2245	763161.54	4093727.18	6.54E-08	6.57E-08	4.67E-09	1.36E-07	1.02E-08	1.07E-08	7.37E-10	2.16E-08	5.46E-09	5.01E-09	3.09E-10	1.08E-08
2246	763139.14	4093717.1	6.50E-08	6.53E-08	4.64E-09	1.35E-07	1.01E-08	1.06E-08	7.33E-10	2.15E-08	5.43E-09	4.98E-09	3.07E-10	1.07E-08

2247	763116.74	4093707.02	6.44E-08	6.47E-08	4.60E-09	1.34E-07	1.01E-08	1.05E-08	7.26E-10	2.13E-08	5.38E-09	4.94E-09	3.04E-10	1.06E-08
2248	763094.35	4093696.94	6.36E-08	6.40E-08	4.54E-09	1.32E-07	9.94E-09	1.04E-08	7.18E-10	2.10E-08	5.31E-09	4.88E-09	3.01E-10	1.05E-08
2249	763071.95	4093686.85	6.27E-08	6.30E-08	4.48E-09	1.30E-07	9.79E-09	1.02E-08	7.07E-10	2.07E-08	5.24E-09	4.81E-09	2.96E-10	1.03E-08
2250	763049.55	4093676.77	6.16E-08	6.20E-08	4.40E-09	1.28E-07	9.63E-09	1.01E-08	6.95E-10	2.04E-08	5.15E-09	4.73E-09	2.91E-10	1.02E-08
2251	763027.15	4093666.69	6.04E-08	6.07E-08	4.31E-09	1.25E-07	9.44E-09	9.86E-09	6.82E-10	2.00E-08	5.05E-09	4.63E-09	2.85E-10	9.96E-09
2252	763004.76	4093656.61	5.91E-08	5.94E-08	4.22E-09	1.23E-07	9.23E-09	9.65E-09	6.67E-10	1.95E-08	4.94E-09	4.53E-09	2.79E-10	9.75E-09
2253	762982.36	4093646.53	5.78E-08	5.81E-08	4.12E-09	1.20E-07	9.02E-09	9.42E-09	6.51E-10	1.91E-08	4.82E-09	4.43E-09	2.73E-10	9.52E-09
2254	762959.96	4093636.45	5.63E-08	5.66E-08	4.02E-09	1.17E-07	8.79E-09	9.18E-09	6.35E-10	1.86E-08	4.70E-09	4.32E-09	2.66E-10	9.28E-09
2255	762937.56	4093626.37	5.48E-08	5.50E-08	3.91E-09	1.14E-07	8.55E-09	8.94E-09	6.18E-10	1.81E-08	4.57E-09	4.20E-09	2.59E-10	9.03E-09
2256	762915.16	4093616.28	5.32E-08	5.35E-08	3.80E-09	1.11E-07	8.31E-09	8.69E-09	6.00E-10	1.76E-08	4.44E-09	4.08E-09	2.51E-10	8.78E-09
2257	762892.77	4093606.2	5.17E-08	5.20E-08	3.69E-09	1.07E-07	8.07E-09	8.44E-09	5.83E-10	1.71E-08	4.32E-09	3.96E-09	2.44E-10	8.53E-09
2258	762870.37	4093596.12	5.02E-08	5.05E-08	3.59E-09	1.04E-07	7.85E-09	8.20E-09	5.67E-10	1.66E-08	4.19E-09	3.85E-09	2.37E-10	8.28E-09
2259	762847.97	4093586.04	4.88E-08	4.91E-08	3.48E-09	1.01E-07	7.62E-09	7.97E-09	5.51E-10	1.61E-08	4.08E-09	3.74E-09	2.31E-10	8.05E-09
2260	762825.57	4093575.96	4.75E-08	4.77E-08	3.39E-09	9.86E-08	7.42E-09	7.75E-09	5.36E-10	1.57E-08	3.97E-09	3.64E-09	2.24E-10	7.83E-09
2261	762803.18	4093565.88	4.63E-08	4.65E-08	3.30E-09	9.61E-08	7.23E-09	7.55E-09	5.22E-10	1.53E-08	3.86E-09	3.55E-09	2.19E-10	7.63E-09
2262	762710.18	4093466.61	4.33E-08	4.36E-08	3.09E-09	9.00E-08	6.77E-09	7.07E-09	4.89E-10	1.43E-08	3.62E-09	3.32E-09	2.05E-10	7.15E-09
2263	762701.57	4093443.61	4.35E-08	4.38E-08	3.11E-09	9.04E-08	6.80E-09	7.11E-09	4.91E-10	1.44E-08	3.64E-09	3.34E-09	2.06E-10	7.18E-09
2264	762692.97	4093420.6	4.38E-08	4.40E-08	3.13E-09	9.09E-08	6.84E-09	7.14E-09	4.94E-10	1.45E-08	3.65E-09	3.36E-09	2.07E-10	7.22E-09
2265	762546.71	4093029.5	3.96E-08	3.98E-08	2.83E-09	8.22E-08	6.18E-09	6.46E-09	4.46E-10	1.31E-08	3.30E-09	3.03E-09	1.87E-10	6.53E-09
2266	762538.11	4093006.5	3.91E-08	3.93E-08	2.79E-09	8.11E-08	6.10E-09	6.37E-09	4.40E-10	1.29E-08	3.26E-09	2.99E-09	1.84E-10	6.44E-09
2267	762529.51	4092983.49	3.86E-08	3.88E-08	2.75E-09	8.01E-08	6.02E-09	6.29E-09	4.35E-10	1.28E-08	3.22E-09	2.96E-09	1.82E-10	6.36E-09
2268	762520.9	4092960.48	3.81E-08	3.83E-08	2.72E-09	7.91E-08	5.95E-09	6.22E-09	4.30E-10	1.26E-08	3.18E-09	2.92E-09	1.80E-10	6.28E-09
2269	762512.3	4092937.48	3.77E-08	3.79E-08	2.69E-09	7.82E-08	5.88E-09	6.15E-09	4.25E-10	1.25E-08	3.14E-09	2.89E-09	1.78E-10	6.21E-09
2270	762503.7	4092914.47	3.72E-08	3.74E-08	2.66E-09	7.73E-08	5.81E-09	6.07E-09	4.20E-10	1.23E-08	3.11E-09	2.85E-09	1.76E-10	6.14E-09
2271	762495.1	4092891.47	3.68E-08	3.70E-08	2.63E-09	7.64E-08	5.75E-09	6.01E-09	4.15E-10	1.22E-08	3.07E-09	2.82E-09	1.74E-10	6.07E-09
2272	762486.49	4092868.46	3.64E-08	3.66E-08	2.60E-09	7.56E-08	5.68E-09	5.94E-09	4.11E-10	1.20E-08	3.04E-09	2.79E-09	1.72E-10	6.00E-09
2273	762477.89	4092845.45	3.60E-08	3.62E-08	2.57E-09	7.47E-08	5.62E-09	5.87E-09	4.06E-10	1.19E-08	3.00E-09	2.76E-09	1.70E-10	5.93E-09
2274	762469.29	4092822.45	3.55E-08	3.57E-08	2.54E-09	7.38E-08	5.55E-09	5.80E-09	4.01E-10	1.17E-08	2.97E-09	2.72E-09	1.68E-10	5.86E-09
2275	762460.68	4092799.44	3.51E-08	3.53E-08	2.51E-09	7.29E-08	5.48E-09	5.73E-09	3.96E-10	1.16E-08	2.93E-09	2.69E-09	1.66E-10	5.79E-09
2276	762452.08	4092776.44	3.47E-08	3.48E-08	2.47E-09	7.20E-08	5.41E-09	5.65E-09	3.91E-10	1.15E-08	2.89E-09	2.66E-09	1.64E-10	5.71E-09
2277	762443.48	4092753.43	3.42E-08	3.44E-08	2.44E-09	7.10E-08	5.34E-09	5.58E-09	3.86E-10	1.13E-08	2.86E-09	2.62E-09	1.62E-10	5.64E-09
2278	762434.87	4092730.42	3.37E-08	3.39E-08	2.41E-09	7.01E-08	5.27E-09	5.50E-09	3.81E-10	1.12E-08	2.82E-09	2.59E-09	1.59E-10	5.56E-09
2279	762426.27	4092707.42	3.33E-08	3.34E-08	2.37E-09	6.91E-08	5.19E-09	5.43E-09	3.75E-10	1.10E-08	2.78E-09	2.55E-09	1.57E-10	5.48E-09
2280	762417.67	4092684.41	3.28E-08	3.30E-08	2.34E-09	6.81E-08	5.12E-09	5.35E-09	3.70E-10	1.08E-08	2.74E-09	2.52E-09	1.55E-10	5.41E-09
2281	762409.06	4092661.41	3.23E-08	3.25E-08	2.31E-09	6.71E-08	5.05E-09	5.27E-09	3.64E-10	1.07E-08	2.70E-09	2.48E-09	1.53E-10	5.33E-09
2282	762400.46	4092638.4	3.18E-08	3.20E-08	2.27E-09	6.61E-08	4.97E-09	5.20E-09	3.59E-10	1.05E-08	2.66E-09	2.44E-09	1.50E-10	5.25E-09
2283	762391.86	4092615.39	3.13E-08	3.15E-08	2.24E-09	6.51E-08	4.89E-09	5.11E-09	3.53E-10	1.04E-08	2.62E-09	2.40E-09	1.48E-10	5.17E-09
2284	762383.25	4092592.39	3.08E-08	3.10E-08	2.20E-09	6.40E-08	4.81E-09	5.03E-09	3.47E-10	1.02E-08	2.57E-09	2.36E-09	1.45E-10	5.08E-09
2285	762374.65	4092569.38	3.03E-08	3.04E-08	2.16E-09	6.29E-08	4.73E-09	4.94E-09	3.41E-10	1.00E-08	2.53E-09	2.32E-09	1.43E-10	4.99E-09
2286	762366.05	4092546.38	2.97E-08	2.99E-08	2.12E-09	6.17E-08	4.64E-09	4.85E-09	3.35E-10	9.82E-09	2.48E-09	2.28E-09	1.40E-10	4.90E-09
2287	762357.44	4092523.37	2.91E-08	2.93E-08	2.08E-09	6.05E-08	4.55E-09	4.75E-09	3.28E-10	9.63E-09	2.43E-09	2.23E-09	1.38E-10	4.80E-09
2288	762348.84	4092500.37	2.85E-08	2.87E-08	2.04E-09	5.92E-08	4.46E-09	4.65E-09	3.22E-10	9.43E-09	2.38E-09		1.35E-10	
2289	762340.24	4092477.36	2.79E-08	2.81E-08	1.99E-09	5.80E-08	4.36E-09	4.55E-09	3.15E-10		2.33E-09		1.32E-10	
2290	763788.67	4094009.46	4.08E-08	4.10E-08	2.91E-09	8.46E-08	6.37E-09	6.65E-09	4.60E-10	1.35E-08	3.40E-09		1.93E-10	
		4094010.15		4.09E-08	2.90E-09	8.45E-08		6.64E-09				3.12E-09		

2292	763837.84	4094010.84	4.06E-08	4.08E-08	2.90E-09	8.44E-08	6.34E-09	6.63E-09	4.58E-10	1.34E-08	3.39E-09	3.11E-09	1.92E-10	6.70E-09
2293	763862.42	4094011.53	4.06E-08	4.08E-08	2.90E-09	8.42E-08	6.34E-09	6.62E-09	4.58E-10	1.34E-08	3.39E-09	3.11E-09	1.92E-10	6.69E-09
2294	763887.01	4094012.21	4.05E-08	4.07E-08	2.89E-09	8.40E-08	6.32E-09	6.60E-09	4.57E-10	1.34E-08	3.38E-09	3.10E-09	1.91E-10	6.67E-09
2295	763911.59	4094012.9	4.03E-08	4.05E-08	2.88E-09	8.38E-08	6.30E-09	6.58E-09	4.55E-10	1.33E-08	3.37E-09	3.09E-09	1.91E-10	6.65E-09
2296	763936.18	4094013.59	4.02E-08	4.04E-08	2.87E-09	8.34E-08	6.27E-09	6.55E-09	4.53E-10	1.33E-08	3.35E-09	3.08E-09	1.90E-10	6.62E-09
2297	763960.76	4094014.28	3.99E-08	4.01E-08	2.85E-09	8.29E-08	6.24E-09	6.52E-09	4.50E-10	1.32E-08	3.33E-09	3.06E-09	1.89E-10	6.59E-09
2298	763985.34	4094014.96	3.97E-08	3.99E-08	2.83E-09	8.24E-08	6.19E-09	6.47E-09	4.47E-10	1.31E-08	3.31E-09	3.04E-09	1.87E-10	6.54E-09
2299	764009.93	4094015.65	3.93E-08	3.95E-08	2.81E-09	8.17E-08	6.14E-09	6.42E-09	4.44E-10	1.30E-08	3.29E-09	3.02E-09	1.86E-10	6.49E-09
2300	764034.51	4094016.34	3.89E-08	3.91E-08	2.78E-09	8.09E-08	6.08E-09	6.35E-09	4.39E-10	1.29E-08	3.25E-09	2.99E-09	1.84E-10	6.42E-09
2301	764059.1	4094017.03	3.85E-08	3.87E-08	2.75E-09	7.99E-08	6.01E-09	6.28E-09	4.34E-10	1.27E-08	3.21E-09	2.95E-09	1.82E-10	6.35E-09
2302	764083.68	4094017.71	3.80E-08	3.82E-08	2.71E-09	7.89E-08	5.93E-09	6.20E-09	4.29E-10	1.26E-08	3.17E-09	2.91E-09	1.79E-10	6.27E-09
2303	764108.27	4094018.4	3.75E-08	3.77E-08	2.67E-09	7.78E-08	5.85E-09	6.11E-09	4.23E-10	1.24E-08	3.13E-09	2.87E-09	1.77E-10	6.18E-09
2304	764132.85	4094019.09	3.69E-08	3.71E-08	2.64E-09	7.67E-08	5.77E-09	6.02E-09	4.16E-10	1.22E-08	3.08E-09	2.83E-09	1.74E-10	6.09E-09
2305	764157.43	4094019.78	3.63E-08	3.65E-08	2.59E-09	7.54E-08	5.67E-09	5.93E-09	4.10E-10	1.20E-08	3.03E-09	2.79E-09	1.72E-10	5.99E-09
2306	764182.02	4094020.46	3.57E-08	3.59E-08	2.55E-09	7.42E-08	5.58E-09	5.83E-09	4.03E-10	1.18E-08	2.98E-09	2.74E-09	1.69E-10	5.89E-09
2307	763760.98	4094199.44	3.45E-08	3.47E-08	2.47E-09	7.17E-08	5.39E-09	5.63E-09	3.89E-10	1.14E-08	2.88E-09	2.65E-09	1.63E-10	5.69E-09
2308	763738.89	4094189.5	3.48E-08	3.50E-08	2.48E-09	7.23E-08	5.44E-09	5.68E-09	3.93E-10	1.15E-08	2.91E-09	2.67E-09	1.64E-10	5.74E-09
2309	763716.8	4094179.55	3.51E-08	3.53E-08	2.51E-09	7.29E-08	5.48E-09	5.73E-09	3.96E-10	1.16E-08	2.93E-09	2.69E-09	1.66E-10	5.79E-09
2310	763694.7	4094169.61	3.55E-08	3.57E-08	2.53E-09	7.37E-08	5.54E-09	5.79E-09	4.00E-10	1.17E-08	2.96E-09	2.72E-09	1.68E-10	5.85E-09
2311	763672.61	4094159.66	3.59E-08	3.61E-08	2.56E-09	7.45E-08	5.61E-09	5.86E-09	4.05E-10	1.19E-08	3.00E-09	2.75E-09	1.70E-10	5.92E-09
2312	763650.52	4094149.72	3.63E-08	3.65E-08	2.59E-09	7.55E-08	5.68E-09	5.93E-09	4.10E-10	1.20E-08	3.03E-09	2.79E-09	1.72E-10	5.99E-09
2313	763628.42	4094139.77	3.69E-08	3.71E-08	2.63E-09	7.66E-08	5.76E-09	6.02E-09	4.16E-10	1.22E-08	3.08E-09	2.83E-09	1.74E-10	6.08E-09
2314	763606.33	4094129.83	3.75E-08	3.77E-08	2.68E-09	7.79E-08	5.86E-09	6.12E-09	4.23E-10	1.24E-08	3.13E-09	2.87E-09	1.77E-10	6.18E-09
2315	763584.24	4094119.88	3.82E-08	3.84E-08	2.72E-09	7.93E-08	5.96E-09	6.23E-09	4.31E-10	1.26E-08	3.19E-09	2.93E-09	1.80E-10	6.29E-09
2316	763562.14	4094109.94	3.89E-08	3.91E-08	2.78E-09	8.08E-08	6.08E-09	6.35E-09	4.39E-10	1.29E-08	3.25E-09	2.98E-09	1.84E-10	6.42E-09
2317	763540.05	4094099.99	3.98E-08	4.00E-08	2.84E-09	8.26E-08	6.21E-09	6.49E-09	4.48E-10	1.31E-08	3.32E-09	3.05E-09	1.88E-10	6.56E-09
2318	763517.96	4094090.05	4.07E-08	4.09E-08	2.90E-09	8.44E-08	6.35E-09	6.63E-09	4.59E-10	1.34E-08	3.39E-09	3.12E-09	1.92E-10	6.70E-09
2319	763495.86	4094080.11	4.16E-08	4.19E-08	2.97E-09	8.65E-08	6.50E-09	6.80E-09	4.70E-10	1.38E-08	3.48E-09	3.19E-09	1.97E-10	6.87E-09
2320	763473.77	4094070.16	4.27E-08	4.29E-08	3.05E-09	8.86E-08	6.67E-09	6.97E-09	4.82E-10	1.41E-08	3.56E-09	3.27E-09	2.02E-10	7.04E-09
2321	763451.68	4094060.22	4.38E-08	4.40E-08	3.13E-09	9.09E-08	6.84E-09	7.15E-09	4.94E-10	1.45E-08	3.66E-09	3.36E-09	2.07E-10	7.22E-09
2322	763429.58	4094050.27	4.49E-08	4.52E-08	3.21E-09	9.33E-08	7.02E-09	7.33E-09	5.07E-10	1.49E-08	3.75E-09	3.45E-09	2.12E-10	7.41E-09
2323	763407.49	4094040.33	4.61E-08	4.63E-08	3.29E-09	9.57E-08	7.20E-09	7.52E-09	5.20E-10	1.52E-08	3.85E-09	3.53E-09	2.18E-10	7.60E-09
2324	763385.4	4094030.38	4.73E-08	4.75E-08	3.37E-09	9.81E-08	7.38E-09	7.71E-09	5.33E-10	1.56E-08	3.95E-09	3.62E-09	2.23E-10	7.79E-09
2325	763363.3	4094020.44	4.84E-08	4.87E-08	3.46E-09	1.01E-07	7.56E-09	7.90E-09	5.46E-10	1.60E-08	4.04E-09	3.71E-09	2.29E-10	7.98E-09
2326	763341.21	4094010.49	4.95E-08	4.98E-08	3.54E-09	1.03E-07	7.74E-09	8.08E-09	5.59E-10	1.64E-08	4.14E-09	3.80E-09	2.34E-10	8.17E-09
2327	763319.12	4094000.55	5.06E-08	5.09E-08	3.61E-09	1.05E-07	7.91E-09	8.26E-09	5.71E-10	1.67E-08	4.23E-09	3.88E-09	2.39E-10	8.35E-09
2328	763297.02	4093990.6	5.16E-08	5.19E-08	3.69E-09	1.07E-07	8.06E-09	8.42E-09	5.82E-10	1.71E-08	4.31E-09	3.96E-09	2.44E-10	8.51E-09
2329	763274.93	4093980.66	5.26E-08	5.28E-08	3.75E-09	1.09E-07	8.21E-09	8.58E-09	5.93E-10	1.74E-08	4.39E-09	4.03E-09	2.48E-10	8.67E-09
2330	763252.84	4093970.71	5.34E-08	5.37E-08	3.81E-09	1.11E-07	8.34E-09	8.71E-09	6.02E-10	1.77E-08	4.46E-09	4.09E-09	2.52E-10	8.81E-09
2331	763230.74	4093960.77	5.41E-08	5.44E-08	3.87E-09	1.12E-07	8.46E-09	8.84E-09	6.11E-10	1.79E-08	4.52E-09	4.15E-09	2.56E-10	8.93E-09
2332	763208.65	4093950.83	5.48E-08	5.51E-08	3.91E-09	1.14E-07	8.55E-09	8.94E-09	6.18E-10	1.81E-08	4.57E-09	4.20E-09	2.59E-10	9.03E-09
2333	763186.56	4093940.88	5.53E-08	5.55E-08	3.95E-09	1.15E-07	8.63E-09	9.02E-09	6.23E-10	1.83E-08	4.61E-09	4.24E-09	2.61E-10	9.11E-09
2334	763164.46	4093930.94	5.56E-08	5.59E-08	3.97E-09	1.16E-07	8.69E-09	9.08E-09	6.27E-10	1.84E-08	4.65E-09	4.27E-09	2.63E-10	9.17E-09
2335	763142.37	4093920.99	5.59E-08	5.62E-08	3.99E-09	1.16E-07	8.73E-09	9.12E-09	6.30E-10	1.85E-08	4.67E-09	4.28E-09	2.64E-10	9.21E-09
2336	763120.28	4093911.05	5.60E-08	5.63E-08	4.00E-09	1.16E-07	8.75E-09	9.14E-09	6.32E-10	1.85E-08	4.68E-09	4.29E-09	2.65E-10	9.23E-09

2227	762000 40	4000004 4	F 60F 00	F 62F 00	4 005 00	4.465.07	0.755.00	0.445.00	6 225 40	4 055 00	4 605 00	4 205 00	2.655.40	0.005.00
2337	763098.18	4093901.1	5.60E-08	5.63E-08	4.00E-09	1.16E-07	8.75E-09	9.14E-09		1.85E-08	4.68E-09	4.29E-09	2.65E-10	
2338	763076.09	4093891.16	5.59E-08	5.62E-08	3.99E-09	1.16E-07	8.73E-09	9.12E-09		1.85E-08	4.67E-09	4.29E-09	2.64E-10	
2339	763054	4093881.21	5.57E-08	5.60E-08	3.97E-09	1.16E-07	8.70E-09	9.08E-09		1.84E-08	4.65E-09	4.27E-09	2.63E-10	
2340	763031.9	4093871.27	5.53E-08	5.56E-08	3.95E-09	1.15E-07	8.64E-09	9.03E-09	6.24E-10		4.62E-09	4.24E-09	2.61E-10	
2341	763009.81	4093861.32	5.48E-08	5.51E-08	3.92E-09	1.14E-07	8.57E-09	8.95E-09	6.19E-10		4.58E-09	4.21E-09	2.59E-10	
2342	762987.72	4093851.38	5.43E-08	5.46E-08	3.88E-09	1.13E-07	8.48E-09	8.86E-09	6.12E-10		4.53E-09	4.16E-09	2.56E-10	
2343	762965.62	4093841.43	5.36E-08	5.39E-08	3.83E-09	1.11E-07	8.37E-09	8.75E-09	6.05E-10		4.48E-09	4.11E-09	2.53E-10	
2344	762943.53	4093831.49	5.28E-08	5.31E-08	3.77E-09	1.10E-07	8.25E-09	8.62E-09	5.96E-10		4.41E-09	4.05E-09	2.49E-10	
2345	762921.44	4093821.55	5.19E-08	5.22E-08	3.71E-09	1.08E-07	8.11E-09	8.48E-09		1.72E-08	4.34E-09	3.98E-09	2.45E-10	
2346	762899.34	4093811.6	5.10E-08	5.12E-08	3.64E-09	1.06E-07	7.96E-09	8.32E-09	5.75E-10		4.26E-09	3.91E-09	2.41E-10	
2347	762877.25	4093801.66	4.99E-08	5.02E-08	3.56E-09	1.04E-07	7.80E-09	8.15E-09	5.63E-10		4.17E-09	3.83E-09	2.36E-10	
2348	762855.16	4093791.71	4.88E-08	4.91E-08	3.49E-09	1.01E-07	7.63E-09	7.97E-09	5.51E-10		4.08E-09	3.74E-09	2.31E-10	
2349	762833.06	4093781.77	4.77E-08	4.79E-08	3.40E-09	9.90E-08	7.45E-09	7.78E-09	5.38E-10		3.98E-09	3.66E-09	2.25E-10	
2350	762810.97	4093771.82	4.65E-08	4.68E-08	3.32E-09	9.66E-08	7.27E-09	7.59E-09	5.25E-10		3.88E-09	3.57E-09	2.20E-10	
2351	762788.88	4093761.88	4.53E-08	4.56E-08	3.24E-09	9.41E-08	7.08E-09	7.40E-09	5.11E-10		3.79E-09	3.48E-09	2.14E-10	
2352	762634.22	4093692.26	3.81E-08	3.83E-08	2.72E-09	7.90E-08	5.94E-09	6.21E-09	4.29E-10		3.18E-09	2.92E-09	1.80E-10	
2353	762612.13	4093682.32	3.73E-08	3.75E-08	2.66E-09	7.75E-08	5.83E-09	6.09E-09	4.21E-10		3.12E-09	2.86E-09	1.76E-10	
2354	762573.06	4093626.99	3.66E-08	3.68E-08	2.61E-09	7.60E-08	5.71E-09	5.97E-09		1.21E-08	3.05E-09	2.80E-09	1.73E-10	
2355	762564.58	4093604.3	3.66E-08	3.68E-08	2.62E-09	7.61E-08	5.72E-09	5.98E-09		1.21E-08	3.06E-09	2.81E-09	1.73E-10	
2356	762556.09	4093581.6	3.68E-08	3.70E-08	2.62E-09	7.63E-08	5.74E-09	6.00E-09		1.22E-08	3.07E-09	2.82E-09	1.74E-10	
2357	762547.6	4093558.91	3.69E-08	3.71E-08	2.64E-09	7.67E-08	5.77E-09	6.03E-09		1.22E-08	3.08E-09	2.83E-09	1.75E-10	
2358	762539.12	4093536.21	3.72E-08	3.74E-08	2.65E-09	7.72E-08	5.80E-09	6.06E-09	4.19E-10		3.10E-09	2.85E-09	1.76E-10	
2359	762530.63	4093513.52	3.74E-08	3.76E-08	2.67E-09	7.76E-08	5.84E-09	6.10E-09	4.22E-10		3.12E-09	2.87E-09	1.77E-10	
2360	762369.39	4093082.34	3.34E-08	3.36E-08	2.38E-09	6.93E-08	5.21E-09	5.45E-09	3.77E-10		2.79E-09	2.56E-09	1.58E-10	
2361	762360.9	4093059.65	3.30E-08	3.32E-08	2.36E-09	6.86E-08	5.16E-09	5.39E-09	3.73E-10		2.76E-09	2.53E-09	1.56E-10	
2362	762352.42	4093036.96	3.27E-08	3.29E-08	2.33E-09	6.79E-08	5.11E-09	5.34E-09	3.69E-10		2.73E-09	2.51E-09	1.54E-10	
2363	762343.93	4093014.26	3.24E-08	3.26E-08	2.31E-09	6.73E-08	5.06E-09	5.29E-09	3.65E-10	1.07E-08	2.70E-09	2.48E-09	1.53E-10	5.34E-09
2364	762335.45	4092991.57	3.21E-08	3.23E-08	2.29E-09	6.67E-08	5.01E-09	5.24E-09		1.06E-08	2.68E-09	2.46E-09	1.52E-10	
2365	762326.96	4092968.88	3.18E-08	3.20E-08	2.27E-09	6.60E-08	4.97E-09	5.19E-09	3.59E-10		2.65E-09	2.44E-09	1.50E-10	
2366	762318.47	4092946.18	3.15E-08	3.17E-08	2.25E-09	6.54E-08	4.92E-09	5.14E-09	3.55E-10		2.63E-09	2.42E-09	1.49E-10	
2367	762309.99	4092923.49	3.12E-08	3.14E-08	2.23E-09	6.48E-08	4.87E-09	5.09E-09	3.52E-10		2.61E-09	2.39E-09	1.47E-10	-
2368	762301.5	4092900.8	3.09E-08	3.11E-08	2.21E-09	6.42E-08	4.82E-09	5.04E-09	3.48E-10	1.02E-08	2.58E-09	2.37E-09	1.46E-10	5.09E-09
2369	762293.01	4092878.1	3.06E-08	3.07E-08	2.18E-09	6.35E-08	4.77E-09	4.99E-09	3.45E-10	1.01E-08	2.55E-09	2.34E-09	1.44E-10	5.04E-09
2370	762284.53	4092855.41	3.03E-08	3.04E-08	2.16E-09	6.28E-08	4.72E-09	4.94E-09	3.41E-10	1.00E-08	2.53E-09	2.32E-09	1.43E-10	4.99E-09
2371	762276.04	4092832.72	2.99E-08	3.01E-08	2.14E-09	6.21E-08	4.67E-09	4.88E-09	3.37E-10	9.89E-09	2.50E-09	2.29E-09	1.41E-10	4.93E-09
2372	762267.55	4092810.02	2.96E-08	2.97E-08	2.11E-09	6.14E-08	4.62E-09	4.83E-09	3.34E-10	9.78E-09	2.47E-09	2.27E-09	1.40E-10	4.88E-09
2373	762259.07	4092787.33	2.92E-08	2.94E-08	2.09E-09	6.07E-08	4.57E-09	4.77E-09	3.30E-10	9.67E-09	2.44E-09	2.24E-09	1.38E-10	4.82E-09
2374	762250.58	4092764.64	2.89E-08	2.90E-08	2.06E-09	6.00E-08	4.51E-09	4.71E-09	3.26E-10	9.55E-09	2.41E-09	2.22E-09	1.36E-10	4.76E-09
2375	762242.1	4092741.94	2.86E-08	2.87E-08	2.04E-09	5.93E-08	4.46E-09	4.66E-09	3.22E-10	9.44E-09	2.38E-09	2.19E-09	1.35E-10	4.71E-09
2376	762233.61	4092719.25	2.82E-08	2.84E-08	2.01E-09	5.86E-08	4.40E-09	4.60E-09	3.18E-10	9.33E-09	2.36E-09	2.16E-09	1.33E-10	4.65E-09
2377	762225.12	4092696.56	2.79E-08	2.80E-08	1.99E-09	5.78E-08	4.35E-09	4.54E-09	3.14E-10	9.21E-09	2.33E-09	2.14E-09	1.32E-10	4.59E-09
2378	762216.64	4092673.86	2.75E-08	2.76E-08	1.96E-09	5.71E-08	4.30E-09	4.49E-09	3.10E-10	9.09E-09	2.30E-09	2.11E-09	1.30E-10	4.53E-09
2379	762208.15	4092651.17	2.71E-08	2.73E-08	1.94E-09	5.63E-08	4.24E-09	4.43E-09	3.06E-10	8.97E-09	2.27E-09	2.08E-09	1.28E-10	4.47E-09
2380	762199.66	4092628.48	2.68E-08	2.69E-08	1.91E-09	5.56E-08	4.18E-09	4.37E-09	3.02E-10	8.85E-09	2.24E-09	2.05E-09	1.26E-10	4.41E-09
2381	762191.18	4092605.78	2.64E-08	2.65E-08	1.88E-09	5.48E-08	4.12E-09	4.30E-09	2.97E-10	8.72E-09	2.20E-09	2.02E-09	1.25E-10	4.35E-09

238	762182.69	4092583.09	2.60E-08	2.61E-08	1.85E-09	5.39E-08	4.06E-09	4.24E-09	2.93E-10	8.59E-09	2.17E-09	1.99E-09	1.23E-10	4.28E-09
238	762174.2	4092560.39	2.55E-08	2.57E-08	1.82E-09	5.30E-08	3.99E-09	4.17E-09	2.88E-10	8.44E-09	2.13E-09	1.96E-09	1.21E-10	4.21E-09
238	762165.72	4092537.7	2.51E-08	2.52E-08	1.79E-09	5.21E-08	3.92E-09	4.09E-09	2.83E-10	8.29E-09	2.09E-09	1.92E-09	1.19E-10	4.14E-09
238	762157.23	4092515.01	2.46E-08	2.48E-08	1.76E-09	5.12E-08	3.85E-09	4.02E-09	2.78E-10	8.15E-09	2.06E-09	1.89E-09	1.16E-10	4.06E-09
238	762148.75	4092492.31	2.42E-08	2.43E-08	1.73E-09	5.02E-08	3.78E-09	3.94E-09	2.73E-10	7.99E-09	2.02E-09	1.85E-09	1.14E-10	3.99E-09
238	762140.26	4092469.62	2.37E-08	2.38E-08	1.69E-09	4.92E-08	3.70E-09	3.87E-09	2.67E-10	7.83E-09	1.98E-09	1.82E-09	1.12E-10	3.91E-09
238	763783.08	4094209.39	3.43E-08	3.44E-08	2.45E-09	7.12E-08	5.35E-09	5.59E-09	3.87E-10	1.13E-08	2.86E-09	2.63E-09	1.62E-10	5.65E-09
238	763807.66	4094210.07	3.43E-08	3.44E-08	2.45E-09	7.12E-08	5.35E-09	5.59E-09	3.87E-10	1.13E-08	2.86E-09	2.63E-09	1.62E-10	5.65E-09
239	763832.25	4094210.76	3.43E-08	3.44E-08	2.45E-09	7.12E-08	5.35E-09	5.59E-09	3.87E-10	1.13E-08	2.86E-09	2.63E-09	1.62E-10	5.65E-09
239	763856.83	4094211.45	3.43E-08	3.44E-08	2.45E-09	7.11E-08	5.35E-09	5.59E-09	3.86E-10	1.13E-08	2.86E-09	2.63E-09	1.62E-10	5.65E-09
239	763881.42	4094212.14	3.42E-08	3.44E-08	2.44E-09	7.10E-08	5.34E-09	5.58E-09	3.86E-10	1.13E-08	2.86E-09	2.62E-09	1.62E-10	5.64E-09
239	763906	4094212.82	3.41E-08	3.43E-08	2.44E-09	7.09E-08	5.33E-09	5.57E-09	3.85E-10	1.13E-08	2.85E-09	2.62E-09	1.61E-10	5.63E-09
239	763930.58	4094213.51	3.40E-08	3.42E-08	2.43E-09	7.07E-08	5.31E-09	5.55E-09	3.84E-10	1.12E-08	2.84E-09	2.61E-09	1.61E-10	5.61E-09
239	763955.17	4094214.2	3.39E-08	3.40E-08	2.42E-09	7.03E-08	5.29E-09	5.53E-09	3.82E-10	1.12E-08	2.83E-09	2.60E-09	1.60E-10	5.59E-09
239	763979.75	4094214.89	3.37E-08	3.38E-08	2.40E-09	6.99E-08	5.26E-09	5.49E-09	3.80E-10	1.11E-08	2.81E-09	2.58E-09	1.59E-10	5.55E-09
239	764004.34	4094215.57	3.34E-08	3.36E-08	2.39E-09	6.94E-08	5.22E-09	5.45E-09	3.77E-10	1.10E-08	2.79E-09	2.56E-09	1.58E-10	5.51E-09
239	764028.92	4094216.26	3.31E-08	3.33E-08	2.36E-09	6.88E-08	5.17E-09	5.40E-09	3.74E-10	1.10E-08	2.77E-09	2.54E-09	1.56E-10	5.46E-09
239	764053.51	4094216.95	3.28E-08	3.30E-08	2.34E-09	6.81E-08	5.12E-09	5.35E-09	3.70E-10	1.08E-08	2.74E-09	2.51E-09	1.55E-10	5.41E-09
240	764078.09	4094217.64	3.24E-08	3.26E-08	2.31E-09	6.73E-08	5.06E-09	5.29E-09	3.66E-10	1.07E-08	2.71E-09	2.49E-09	1.53E-10	5.35E-09
240	764102.68	4094218.32	3.20E-08	3.22E-08	2.29E-09	6.65E-08	5.00E-09	5.22E-09	3.61E-10	1.06E-08	2.67E-09	2.45E-09	1.51E-10	5.28E-09
240	764127.26	4094219.01	3.16E-08	3.17E-08	2.25E-09	6.56E-08	4.93E-09	5.15E-09	3.56E-10	1.04E-08	2.64E-09	2.42E-09	1.49E-10	5.21E-09
240	764151.84	4094219.7	3.11E-08	3.13E-08	2.22E-09	6.47E-08	4.86E-09	5.08E-09	3.51E-10	1.03E-08	2.60E-09	2.39E-09	1.47E-10	5.13E-09
240	764176.43	4094220.39	3.07E-08	3.08E-08	2.19E-09	6.37E-08	4.79E-09	5.01E-09	3.46E-10	1.01E-08	2.56E-09	2.35E-09	1.45E-10	5.06E-09

4 764256.60 4092304.72 1.99E-02 2.17E-02 7.66E-03 3.11E-03 3.51E-03 1.21E-03 1.66E-03 1.65E-03 5.07E-04 UTM X UTM Y Yr 1 Yr 2 Yr 3 Yr 2 Yr 3 Yr 1 Yr 2 Yr 3 Yr 1 764254.04 4092377.13 2.05E-02 2.94E-03 3.32E-03 1.14E-03 1.57E-03 1.56E-03 4.79E-04 1.88E-02 7.24E-03 1 764254.89 4092352.99 1.94E-02 2.11E-02 7.45E-03 3.02E-03 3.42E-03 1.18E-03 1.62E-03 1.61E-03 4.93E-04 2 3 764255.75 4092328.86 1.97E-02 2.15E-02 7.59E-03 3.08E-03 3.48E-03 1.20E-03 1.65E-03 1.64E-03 5.02E-04 4 764256.6 4092304.72 1.99E-02 2.17E-02 7.66E-03 3.11E-03 3.51E-03 1.21E-03 1.66E-03 1.65E-03 5.07E-04 5 4092280.59 1.99E-02 2.16E-02 7.66E-03 3.11E-03 3.51E-03 1.21E-03 1.66E-03 1.65E-03 5.07E-04 764257.45 6 764258.3 4092256.45 1.97E-02 2.14E-02 7.57E-03 3.07E-03 3.47E-03 1.20E-03 1.64E-03 1.63E-03 5.01E-04 7 764259.15 4092232.32 1.91E-02 2.08E-02 7.36E-03 2.98E-03 3.37E-03 1.16E-03 1.59E-03 1.59E-03 4.87E-04 8 764260 4092208.19 1.79E-02 1.95E-02 6.90E-03 2.80E-03 3.17E-03 1.09E-03 1.50E-03 1.49E-03 4.57E-04 9 764279.03 4092378.01 1.29E-02 1.40E-02 4.96E-03 2.01E-03 2.27E-03 7.83E-04 1.07E-03 1.07E-03 3.28E-04 10 764279.88 4092353.87 1.34E-02 1.46E-02 5.18E-03 2.10E-03 2.38E-03 8.18E-04 1.12E-03 1.12E-03 3.43E-04 764280.73 4092329.74 1.38E-02 1.51E-02 5.33E-03 2.16E-03 2.44E-03 8.42E-04 1.16E-03 1.15E-03 3.53E-04 11 764281.58 4092305.6 1.41E-02 5.42E-03 2.20E-03 2.49E-03 1.17E-03 3.58E-04 12 1.53E-02 8.56E-04 1.17E-03 13 764282.43 4092281.47 1.41E-02 1.54E-02 5.44E-03 2.21E-03 2.50E-03 8.60E-04 1.18E-03 1.17E-03 3.60E-04 14 764283.28 4092257.34 1.40E-02 1.53E-02 5.40E-03 2.19E-03 2.48E-03 8.54E-04 1.17E-03 1.17E-03 3.58E-04 15 764284.14 4092233.2 1.37E-02 1.49E-02 5.28E-03 2.14E-03 2.42E-03 8.34E-04 1.14E-03 1.14E-03 3.49E-04 764284.99 4092209.07 1.30E-02 2.04E-03 2.30E-03 1.09E-03 1.08E-03 16 1.42E-02 5.02E-03 7.94E-04 3.32E-04 764304.01 4092378.89 9.41E-03 1.02E-02 3.62E-03 1.47E-03 1.66E-03 5.73E-04 7.86E-04 7.81E-04 2.40E-04 17 18 764304.86 4092354.75 9.98E-03 1.09E-02 3.84E-03 1.56E-03 1.76E-03 6.07E-04 8.33E-04 8.28E-04 2.54E-04 764305.71 4092330.62 1.04E-02 1.13E-02 4.00E-03 8.67E-04 8.62E-04 19 1.62E-03 1.83E-03 6.32E-04 2.65E-04 20 764306.57 4092306.49 1.06E-02 1.16E-02 4.10E-03 1.66E-03 1.88E-03 6.48E-04 8.89E-04 8.84E-04 2.71E-04 764307.42 4092282.35 1.08E-02 1.17E-02 4.15E-03 1.68E-03 1.91E-03 6.56E-04 9.00E-04 8.95E-04 2.75E-04 21 764308.27 4092258.22 1.08E-02 1.17E-02 4.15E-03 1.68E-03 1.90E-03 6.55E-04 8.99E-04 8.94E-04 2.74E-04 22 23 764309.12 4092234.08 1.06E-02 1.15E-02 4.08E-03 1.65E-03 1.87E-03 6.45E-04 8.85E-04 8.80E-04 2.70E-04 764309.97 4092209.95 1.02E-02 1.80E-03 8.47E-04 2.60E-04 24 1.11E-02 3.93E-03 1.59E-03 6.21E-04 8.52E-04 25 764329 4092379.77 7.16E-03 7.79E-03 2.76E-03 1.12E-03 1.26E-03 4.35E-04 5.98E-04 5.94E-04 1.82E-04 26 764329.85 4092355.64 7.70E-03 8.38E-03 2.97E-03 1.20E-03 1.36E-03 4.69E-04 6.43E-04 6.39E-04 1.96E-04 764330.7 4092331.5 8.83E-03 3.12E-03 1.27E-03 1.43E-03 6.77E-04 6.73E-04 2.07E-04 27 8.11E-03 4.94E-04 28 764331.55 4092307.37 8.40E-03 9.14E-03 3.24E-03 1.31E-03 1.48E-03 5.11E-04 7.01E-04 6.97E-04 2.14E-04 29 764332.4 4092283.23 8.57E-03 9.33E-03 3.30E-03 1.34E-03 1.51E-03 5.22E-04 7.16E-04 7.12E-04 2.18E-04 764333.25 4092259.1 8.63E-03 1.35E-03 5.25E-04 7.20E-04 7.16E-04 2.20E-04 30 9.39E-03 3.32E-03 1.52E-03 31 764334.1 4092234.96 8.55E-03 9.31E-03 3.29E-03 1.34E-03 1.51E-03 5.20E-04 7.14E-04 7.10E-04 2.18E-04 32 764334.96 4092210.83 8.32E-03 9.06E-03 3.20E-03 1.30E-03 1.47E-03 5.06E-04 6.95E-04 6.91E-04 2.12E-04 33 764377.26 4092429.8 3.37E-03 3.67E-03 1.30E-03 5.27E-04 5.96E-04 2.05E-04 2.82E-04 2.80E-04 8.60E-05 764378.11 4092405.67 3.93E-03 4.28E-03 6.95E-04 3.27E-04 1.00E-04 1.52E-03 6.14E-04 2.39E-04 3.28E-04 34 4092381.53 4.45E-03 7.87E-04 3.70E-04 35 764378.97 4.85E-03 1.72E-03 6.96E-04 2.71E-04 3.72E-04 1.13E-04 36 764379.82 4092357.4 4.91E-03 5.34E-03 1.89E-03 7.67E-04 8.67E-04 2.99E-04 4.10E-04 4.08E-04 1.25E-04 37 764380.67 4092333.26 5.29E-03 5.75E-03 2.04E-03 8.26E-04 9.34E-04 3.22E-04 4.41E-04 4.39E-04 1.35E-04 38 764381.52 4092309.13 5.58E-03 6.08E-03 2.15E-03 8.72E-04 9.87E-04 3.40E-04 4.66E-04 4.64E-04 1.42E-04 39 764382.37 4092285 5.80E-03 6.31E-03 2.23E-03 9.06E-04 1.02E-03 3.53E-04 4.84E-04 4.81E-04 1.48E-04 40 764383.22 4092260.86 5.93E-03 6.46E-03 2.28E-03 9.26E-04 1.05E-03 3.61E-04 4.95E-04 4.92E-04 1.51E-04 4092236.73 5.98E-03 6.51E-03 9.33E-04 1.06E-03 4.96E-04 1.52E-04 41 764384.07 2.30E-03 3.64E-04 4.99E-04 42 764384.93 4092212.59 5.93E-03 6.45E-03 2.28E-03 9.25E-04 1.05E-03 3.61E-04 4.95E-04 4.92E-04 1.51E-04 43 764385.78 4092188.46 5.76E-03 6.27E-03 2.22E-03 9.00E-04 1.02E-03 3.51E-04 4.81E-04 4.78E-04 1.47E-04 764424.68 4092503.97 1.37E-03 1.49E-03 5.28E-04 2.14E-04 2.42E-04 8.35E-05 1.15E-04 1.14E-04 3.50E-05 44 764425.53 4092479.83 1.62E-03 2.86E-04 45 1.76E-03 6.23E-04 2.53E-04 9.85E-05 1.35E-04 1.34E-04 4.12E-05 764426.38 4092455.7 1.91E-03 2.99E-04 1.59E-04 46 2.08E-03 7.37E-04 3.38E-04 1.16E-04 1.60E-04 4.87E-05 47 764427.23 4092431.56 2.25E-03 2.45E-03 8.66E-04 3.51E-04 3.97E-04 1.37E-04 1.88E-04 1.87E-04 5.73E-05 48 764428.08 4092407.43 2.61E-03 2.84E-03 1.01E-03 4.08E-04 4.61E-04 1.59E-04 2.18E-04 2.17E-04 6.65E-05 4092383.3 2.97E-03 4.65E-04 5.26E-04 2.48E-04 2.47E-04 7.58E-05 49 764428.93 3.24E-03 1.15E-03 1.81E-04 50 764429.79 4092359.16 3.32E-03 3.62E-03 1.28E-03 5.19E-04 5.87E-04 2.02E-04 2.77E-04 2.76E-04 8.46E-05 51 764430.64 4092335.03 3.63E-03 3.96E-03 1.40E-03 5.68E-04 6.42E-04 2.21E-04 3.04E-04 3.02E-04 9.26E-05 764431.49 4092310.89 3.90E-03 1.50E-03 6.10E-04 6.90E-04 3.24E-04 9.95E-05 52 4.25E-03 2.38E-04 3.26E-04 53 764432.34 4092286.76 4.12E-03 4.49E-03 1.59E-03 6.44E-04 7.28E-04 2.51E-04 3.44E-04 3.42E-04 1.05E-04 54 764433.19 4092262.62 4.28E-03 4.66E-03 1.65E-03 6.69E-04 7.57E-04 2.61E-04 3.58E-04 3.56E-04 1.09E-04 764434.04 4092238.49 4.38E-03 4.77E-03 1.69E-03 6.85E-04 7.74E-04 2.67E-04 3.66E-04 3.64E-04 55 1.12E-04 4092214.36 4.42E-03 764434.89 4.81E-03 1.70E-03 6.90E-04 7.81E-04 2.69E-04 3.69E-04 3.67E-04 1.13E-04 56 6.85E-04 57 764435.75 4092190.22 4.38E-03 4.77E-03 1.69E-03 7.74E-04 2.67E-04 3.66E-04 3.64E-04 1.12E-04 58 764463.95 4092551.55 8.58E-04 9.34E-04 3.30E-04 1.34E-04 1.52E-04 5.22E-05 7.16E-05 7.12E-05 2.19E-05

59	764454.11	4092573.23	7.96E-04	8.66E-04	3.07E-04	1.24E-04	1.41E-04	4.84E-05	6.65E-05	6.61E-05	2.03E-05
60	764444.27	4092594.91	7.40E-04	8.06E-04	2.85E-04	1.16E-04	1.31E-04	4.51E-05	6.18E-05	6.15E-05	1.89E-05
61	764434.42	4092616.59	6.90E-04	7.51E-04	2.66E-04	1.08E-04	1.22E-04	4.20E-05	5.76E-05	5.73E-05	1.76E-05
62	764424.58	4092638.28	6.44E-04	7.01E-04	2.48E-04	1.01E-04	1.14E-04	3.92E-05	5.38E-05	5.35E-05	1.64E-05
63	764473.79	4092529.86	9.27E-04	1.01E-03	3.57E-04	1.45E-04	1.64E-04	5.64E-05	7.74E-05	7.69E-05	2.36E-05
64	764474.65	4092505.73	1.06E-03	1.15E-03	4.07E-04	1.65E-04	1.87E-04	6.44E-05	8.83E-05	8.78E-05	2.70E-05
65	764475.5	4092481.6	1.22E-03	1.32E-03	4.68E-04	1.90E-04	2.15E-04	7.40E-05	1.02E-04	1.01E-04	3.10E-05
66	764476.35	4092457.46	1.40E-03	1.53E-03	5.40E-04	2.19E-04	2.48E-04	8.53E-05	1.17E-04	1.16E-04	3.57E-05
67	764477.2	4092433.33	1.62E-03	1.76E-03	6.22E-04	2.52E-04	2.85E-04	9.83E-05	1.35E-04	1.34E-04	4.12E-05
68	764478.05	4092409.19	1.85E-03	2.02E-03	7.13E-04	2.89E-04	3.27E-04	1.13E-04	1.55E-04	1.54E-04	4.72E-05
69	764478.9	4092385.06	2.10E-03	2.29E-03	8.10E-04	3.28E-04	3.72E-04	1.28E-04	1.76E-04	1.75E-04	5.36E-05
70	764479.75	4092360.92	2.36E-03	2.56E-03	9.08E-04	3.68E-04	4.16E-04	1.43E-04	1.97E-04	1.96E-04	6.00E-05
71	764480.61	4092336.79	2.60E-03	2.83E-03	1.00E-03	4.06E-04	4.59E-04	1.58E-04	2.17E-04	2.16E-04	6.63E-05
72	764481.46	4092312.66	2.82E-03	3.07E-03	1.09E-03	4.41E-04	4.99E-04	1.72E-04	2.36E-04	2.35E-04	7.20E-05
73	764482.31	4092288.52	3.02E-03	3.29E-03	1.16E-03	4.72E-04	5.34E-04	1.84E-04	2.52E-04	2.51E-04	7.70E-05
74	764483.16	4092264.39	3.18E-03	3.46E-03	1.22E-03	4.97E-04	5.62E-04	1.94E-04	2.66E-04	2.64E-04	8.10E-05
75	764484.01	4092240.25	3.30E-03	3.59E-03	1.27E-03	5.16E-04	5.83E-04	2.01E-04	2.76E-04	2.74E-04	8.41E-05
76	764484.86	4092216.12	3.38E-03	3.68E-03	1.30E-03	5.27E-04	5.97E-04	2.05E-04	2.82E-04	2.80E-04	8.60E-05
77	764485.71	4092191.98	3.40E-03	3.71E-03	1.31E-03	5.32E-04	6.01E-04	2.07E-04	2.84E-04	2.83E-04	8.67E-05
78	764514.31	4092552.44	7.06E-04	7.68E-04	2.72E-04	1.10E-04	1.25E-04	4.29E-05	5.89E-05	5.86E-05	1.80E-05
79	764504.87	4092573.26	6.64E-04	7.23E-04	2.56E-04	1.04E-04	1.17E-04	4.04E-05	5.54E-05	5.51E-05	1.69E-05
80	764495.42	4092594.07	6.24E-04	6.80E-04	2.40E-04	9.75E-05	1.10E-04	3.80E-05	5.21E-05	5.18E-05	1.59E-05
81	764485.97	4092614.89	5.89E-04	6.41E-04	2.27E-04	9.19E-05	1.04E-04	3.58E-05	4.92E-05	4.89E-05	1.50E-05
82	764476.52	4092635.7	5.56E-04	6.05E-04	2.14E-04	8.68E-05	9.82E-05	3.38E-05	4.64E-05	4.61E-05	1.42E-05
83	764467.07	4092656.52	5.25E-04	5.71E-04	2.02E-04	8.20E-05	9.27E-05	3.19E-05	4.38E-05	4.36E-05	1.34E-05
84	764457.62	4092677.33	4.96E-04	5.39E-04	1.91E-04	7.74E-05	8.76E-05	3.02E-05	4.14E-05	4.11E-05	1.26E-05
85	764448.17	4092698.15	4.68E-04	5.09E-04	1.80E-04	7.30E-05	8.26E-05	2.84E-05	3.90E-05	3.88E-05	1.19E-05
86	764438.72	4092718.97	4.41E-04	4.80E-04	1.70E-04	6.88E-05	7.78E-05	2.68E-05	3.68E-05	3.66E-05	1.12E-05
87	764258.31	4092804.7	4.30E-04	4.68E-04	1.66E-04	6.72E-05	7.60E-05	2.62E-05	3.59E-05	3.57E-05	1.10E-05
88	764236.93	4092812.82	4.31E-04	4.69E-04	1.66E-04	6.72E-05	7.61E-05	2.62E-05	3.59E-05	3.57E-05	1.10E-05
89	764523.76	4092531.63	7.52E-04	8.18E-04	2.89E-04	1.17E-04	1.33E-04	4.57E-05	6.28E-05	6.24E-05	1.92E-05
90	764524.61	4092507.49	8.45E-04	9.20E-04	3.25E-04	1.32E-04	1.49E-04	5.14E-05	7.06E-05	7.02E-05	2.15E-05
91	764525.47	4092483.36	9.54E-04	1.04E-03	3.68E-04	1.49E-04	1.69E-04	5.81E-05	7.97E-05	7.92E-05	2.43E-05
92	764526.32	4092459.22	1.08E-03	1.18E-03	4.16E-04	1.69E-04	1.91E-04	6.57E-05	9.01E-05	8.96E-05	2.75E-05
93	764527.17	4092435.09	1.22E-03	1.33E-03	4.71E-04	1.91E-04	2.16E-04	7.44E-05	1.02E-04	1.02E-04	3.12E-05
94	764528.02	4092410.96	1.38E-03	1.51E-03	5.33E-04	2.16E-04	2.44E-04	8.42E-05	1.16E-04	1.15E-04	3.52E-05
95		4092386.82		1.70E-03	6.00E-04		2.75E-04		1.30E-04		3.97E-05
96		4092362.69	1.74E-03	1.89E-03	6.70E-04	2.72E-04	3.08E-04	1.06E-04	1.45E-04	1.44E-04	4.43E-05
97		4092338.55	1.92E-03	2.10E-03	7.41E-04	3.01E-04	3.40E-04	1.17E-04	1.61E-04	1.60E-04	4.90E-05
98		4092314.42	2.10E-03	2.29E-03	8.10E-04	3.29E-04		1.28E-04	1.76E-04	1.75E-04	5.36E-05
99		4092290.28	2.27E-03	2.47E-03	8.74E-04	3.54E-04		1.38E-04	1.89E-04	1.88E-04	5.78E-05
100		4092266.15	2.41E-03	2.63E-03	9.29E-04	3.77E-04		1.47E-04	2.01E-04	2.00E-04	6.15E-05
101		4092242.02	2.53E-03	2.76E-03	9.75E-04	3.96E-04		1.54E-04	2.11E-04	2.10E-04	6.45E-05
102		4092217.88	2.62E-03	2.86E-03	1.01E-03	4.10E-04		1.60E-04	2.19E-04	2.18E-04	6.68E-05
103		4092193.75	2.68E-03	2.92E-03	1.03E-03	4.19E-04		1.63E-04	2.24E-04	2.23E-04	6.83E-05
104	764614.01	4092556.5	5.01E-04	5.46E-04	1.93E-04	7.83E-05		3.05E-05	4.19E-05	4.16E-05	1.28E-05
105		4092577.85	4.76E-04	5.18E-04	1.83E-04	7.43E-05		2.90E-05	3.97E-05	3.95E-05	1.21E-05
106	764594.63	4092599.2	4.53E-04	4.93E-04	1.74E-04	7.07E-05		2.75E-05	3.78E-05	3.76E-05	1.15E-05
107		4092620.55	4.31E-04	4.69E-04	1.66E-04		7.61E-05	2.62E-05	3.60E-05	3.58E-05	1.10E-05
108	764575.24	4092641.9	4.11E-04	4.47E-04	1.58E-04		7.26E-05	2.50E-05	3.43E-05	3.41E-05	1.05E-05
109		4092663.25	3.92E-04	4.27E-04	1.51E-04	6.13E-05		2.39E-05	3.28E-05	3.26E-05	1.00E-05
110	764555.86	4092684.6	3.75E-04	4.08E-04	1.44E-04	5.86E-05		2.28E-05	3.13E-05	3.11E-05	9.55E-06
111		4092705.95	3.58E-04	3.90E-04	1.38E-04	5.60E-05		2.18E-05	2.99E-05	2.97E-05	9.13E-06
112		4092727.29	3.42E-04	3.73E-04	1.32E-04	5.35E-05		2.08E-05	2.86E-05	2.84E-05	8.72E-06
113		4092748.64	3.27E-04	3.56E-04	1.26E-04	5.11E-05		1.99E-05	2.73E-05	2.72E-05	8.33E-06
114		4092769.99	3.12E-04	3.39E-04	1.20E-04	4.87E-05		1.90E-05	2.60E-05	2.59E-05	7.95E-06
115		4092837.66	2.91E-04	3.16E-04	1.12E-04	4.54E-05		1.77E-05	2.43E-05	2.41E-05	7.40E-06
116		4092845.98	2.92E-04	3.17E-04	1.12E-04	4.56E-05		1.77E-05	2.44E-05	2.42E-05	7.43E-06
117		4092854.31	2.92E-04	3.18E-04	1.12E-04	4.56E-05		1.78E-05	2.44E-05	2.42E-05	7.44E-06
118		4092862.63	2.92E-04	3.18E-04	1.12E-04	4.56E-05		1.78E-05	2.44E-05	2.42E-05	7.43E-06
119		4092870.95	2.91E-04	3.17E-04	1.12E-04	4.55E-05		1.77E-05	2.43E-05	2.42E-05	7.42E-06
120	/64322.36	4092879.28	2.91E-04	3.16E-04	1.12E-04	4.54E-05	5.13E-05	1./7E-05	2.43E-05	2.41E-05	7.41E-06

121	764300.44	4092887.6	2.90E-04	3.16E-04	1.12E-04	4.54E-05	5.13E-05	1.77E-05	2.42E-05	2.41E-05	7.40E-06
122	764278.52	4092895.92	2.90E-04	3.16E-04	1.12E-04	4.53E-05	5.12E-05	1.76E-05	2.42E-05	2.41E-05	7.39E-06
123	764256.61	4092904.25	2.90E-04	3.16E-04	1.12E-04	4.53E-05	5.12E-05	1.76E-05	2.42E-05	2.41E-05	7.39E-06
124	764234.69	4092912.57	2.90E-04	3.16E-04	1.12E-04	4.53E-05	5.13E-05	1.77E-05	2.42E-05	2.41E-05	7.40E-06
125	764623.7	4092535.15	5.29E-04	5.76E-04	2.04E-04	8.26E-05	9.34E-05	3.22E-05	4.42E-05	4.39E-05	1.35E-05
126	764624.55	4092511.02	5.81E-04	6.32E-04	2.24E-04	9.07E-05	1.03E-04	3.53E-05	4.85E-05	4.82E-05	1.48E-05
127	764625.4	4092486.88	6.40E-04	6.97E-04	2.47E-04	1.00E-04	1.13E-04	3.90E-05	5.35E-05	5.32E-05	1.63E-05
128	764626.26	4092462.75	7.07E-04	7.69E-04	2.72E-04	1.10E-04	1.25E-04	4.30E-05	5.90E-05	5.87E-05	1.80E-05
129	764627.11	4092438.62	7.80E-04	8.49E-04	3.00E-04	1.22E-04	1.38E-04	4.75E-05	6.51E-05	6.48E-05	1.99E-05
130	764627.96	4092414.48	8.62E-04	9.38E-04	3.32E-04	1.35E-04	1.52E-04	5.25E-05	7.20E-05	7.16E-05	2.20E-05
131	764628.81	4092390.35	9.53E-04	1.04E-03	3.67E-04	1.49E-04	1.68E-04	5.80E-05	7.95E-05	7.91E-05	2.43E-05
132	764629.66	4092366.21	1.05E-03	1.14E-03	4.05E-04	1.64E-04	1.86E-04	6.39E-05	8.77E-05	8.72E-05	2.68E-05
133	764630.51 764631.36	4092342.08 4092317.94	1.15E-03 1.26E-03	1.26E-03 1.37E-03	4.44E-04	1.80E-04 1.97E-04	2.04E-04 2.23E-04	7.02E-05	9.63E-05	9.58E-05 1.05E-04	2.94E-05 3.21E-05
134 135	764632.22	4092317.94	1.37E-03	1.49E-03	4.85E-04 5.26E-04	2.13E-04	2.23E-04 2.41E-04	7.67E-05 8.31E-05	1.05E-04 1.14E-04	1.03E-04 1.13E-04	3.48E-05
136	764633.07	4092269.68	1.47E-03	1.49L-03 1.60E-03	5.65E-04	2.13L-04 2.29E-04	2.41L-04 2.59E-04	8.93E-05	1.14L-04 1.23E-04	1.13L-04 1.22E-04	3.74E-05
137	764633.92	4092245.54	1.56E-03	1.70E-03	6.01E-04	2.44E-04	2.76E-04	9.50E-05	1.30E-04	1.30E-04	3.98E-05
138	764634.77	4092221.41	1.65E-03	1.79E-03	6.34E-04	2.57E-04	2.91E-04	1.00E-04	1.37E-04	1.37E-04	4.19E-05
139	764635.62	4092197.27	1.71E-03	1.87E-03	6.60E-04	2.68E-04	3.03E-04	1.04E-04	1.43E-04	1.42E-04	4.37E-05
140	764713.8	4092560.36	3.80E-04	4.13E-04	1.46E-04	5.93E-05	6.71E-05	2.31E-05	3.17E-05	3.15E-05	9.67E-06
141	764703.95	4092582.04	3.63E-04	3.95E-04	1.40E-04	5.67E-05	6.41E-05	2.21E-05	3.03E-05	3.01E-05	9.25E-06
142	764694.11	4092603.73	3.47E-04	3.78E-04	1.34E-04	5.43E-05	6.14E-05	2.11E-05	2.90E-05	2.88E-05	8.85E-06
143	764684.27	4092625.41	3.33E-04	3.63E-04	1.28E-04	5.20E-05	5.89E-05	2.03E-05	2.78E-05	2.77E-05	8.49E-06
144	764674.42	4092647.09	3.20E-04	3.48E-04	1.23E-04	5.00E-05	5.65E-05	1.95E-05	2.67E-05	2.66E-05	8.15E-06
145	764664.58	4092668.77	3.08E-04	3.35E-04	1.18E-04	4.81E-05	5.44E-05	1.87E-05	2.57E-05	2.55E-05	7.84E-06
146	764654.74	4092690.46	2.96E-04	3.22E-04	1.14E-04	4.62E-05	5.23E-05	1.80E-05	2.47E-05	2.46E-05	7.55E-06
147	764644.9	4092712.14	2.85E-04	3.10E-04	1.10E-04	4.45E-05	5.04E-05	1.74E-05	2.38E-05	2.37E-05	7.27E-06
148	764635.05	4092733.82	2.75E-04	2.99E-04	1.06E-04	4.29E-05	4.85E-05	1.67E-05	2.29E-05	2.28E-05	7.00E-06
149	764625.21	4092755.51	2.65E-04	2.88E-04	1.02E-04	4.14E-05	4.68E-05	1.61E-05	2.21E-05	2.20E-05	6.75E-06
150	764615.37	4092777.19	2.55E-04	2.78E-04	9.82E-05	3.98E-05	4.51E-05	1.55E-05	2.13E-05	2.12E-05	6.50E-06
151	764605.52	4092798.87	2.45E-04	2.67E-04	9.44E-05	3.83E-05	4.33E-05	1.49E-05	2.05E-05	2.04E-05	6.25E-06
152	764595.68	4092820.55	2.35E-04	2.56E-04	9.07E-05	3.68E-05	4.16E-05	1.43E-05	1.97E-05	1.95E-05	6.00E-06
153	764585.84	4092842.24	2.26E-04	2.46E-04	8.70E-05	3.53E-05	3.99E-05	1.37E-05	1.89E-05	1.88E-05	5.76E-06
154	764576	4092863.92	2.17E-04	2.36E-04	8.34E-05	3.38E-05	3.83E-05	1.32E-05	1.81E-05	1.80E-05	5.52E-06
155	764543.89	4092894.05	2.10E-04	2.28E-04	8.08E-05	3.28E-05	3.70E-05	1.28E-05	1.75E-05	1.74E-05	5.34E-06
156	764521.63	4092902.51	2.11E-04	2.30E-04	8.14E-05	3.30E-05	3.73E-05	1.29E-05	1.76E-05	1.75E-05	5.38E-06
157 158	764499.37	4092910.96 4092919.41		2.31E-04 2.32E-04	8.19E-05 8.22E-05	3.32E-05 3.33E-05	3.76E-05	1.29E-05 1.30E-05		1.77E-05 1.77E-05	
159	764454.85		2.13E-04 2.14E-04	2.32E-04 2.33E-04	8.24E-05	3.34E-05	3.77E-05 3.78E-05	1.30E-05	1.78E-05 1.79E-05	1.77E-05 1.78E-05	5.45E-06
160	764432.59	4092936.32	2.14E-04 2.14E-04	2.33E-04 2.33E-04	8.24E-05	3.34E-05	3.78E-05	1.30E-05	1.79E-05	1.78E-05	5.45E-06
161	764410.32		2.14E-04	2.33E-04	8.23E-05	3.34E-05	3.77E-05	1.30E-05	1.78E-05	1.77E-05	5.44E-06
162	764388.06	4092953.23	2.13E-04	2.32E-04	8.21E-05	3.33E-05	3.77E-05	1.30E-05	1.78E-05	1.77E-05	5.43E-06
163	764365.8	4092961.68	2.12E-04	2.31E-04	8.18E-05	3.32E-05	3.75E-05	1.29E-05	1.77E-05	1.76E-05	5.41E-06
164	764343.54	4092970.13	2.12E-04	2.30E-04	8.15E-05	3.31E-05	3.74E-05	1.29E-05	1.77E-05	1.76E-05	5.40E-06
165	764321.28	4092978.59	2.11E-04	2.30E-04	8.13E-05	3.30E-05	3.73E-05	1.28E-05	1.76E-05	1.75E-05	5.38E-06
166	764299.02	4092987.04	2.11E-04	2.29E-04	8.11E-05	3.29E-05	3.72E-05	1.28E-05	1.76E-05	1.75E-05	5.37E-06
167	764276.76	4092995.49	2.10E-04	2.29E-04	8.10E-05	3.28E-05	3.72E-05	1.28E-05	1.76E-05	1.75E-05	5.36E-06
168	764254.5	4093003.95	2.10E-04	2.29E-04	8.09E-05	3.28E-05	3.71E-05	1.28E-05	1.76E-05	1.74E-05	5.36E-06
169	764232.23	4093012.4	2.10E-04	2.29E-04	8.10E-05	3.28E-05	3.72E-05	1.28E-05	1.76E-05	1.75E-05	5.36E-06
170	764723.64	4092538.68	3.97E-04	4.32E-04	1.53E-04	6.21E-05	7.02E-05	2.42E-05	3.32E-05	3.30E-05	1.01E-05
171	764724.49	4092514.54	4.29E-04	4.67E-04	1.65E-04	6.71E-05	7.59E-05	2.61E-05	3.59E-05	3.57E-05	1.09E-05
172	764725.34	4092490.41	4.65E-04	5.06E-04	1.79E-04	7.26E-05	8.21E-05	2.83E-05	3.88E-05	3.86E-05	1.18E-05
173	764726.19	4092466.28	5.04E-04	5.48E-04	1.94E-04	7.87E-05	8.90E-05	3.06E-05	4.21E-05	4.18E-05	1.28E-05
174	764727.04	4092442.14	5.48E-04	5.96E-04	2.11E-04	8.55E-05	9.68E-05	3.33E-05	4.57E-05	4.55E-05	1.40E-05
175	764727.9	4092418.01	5.95E-04	6.48E-04	2.29E-04	9.29E-05	1.05E-04	3.62E-05	4.97E-05	4.94E-05	1.52E-05
176	764728.75	4092393.87	6.47E-04	7.04E-04	2.49E-04	1.01E-04	1.14E-04	3.93E-05	5.40E-05	5.37E-05	1.65E-05
177	764729.6	4092369.74	7.03E-04	7.65E-04	2.71E-04	1.10E-04	1.24E-04	4.28E-05	5.87E-05	5.83E-05	1.79E-05
178 179	764730.45 764731.3	4092345.6 4092321.47	7.63E-04 8.26E-04	8.30E-04 8.99E-04	2.94E-04 3.18E-04	1.19E-04 1.29E-04	1.35E-04 1.46E-04	4.64E-05 5.02E-05	6.37E-05 6.90E-05	6.33E-05 6.86E-05	1.94E-05 2.10E-05
180	764731.3	4092321.47	8.26E-04 8.91E-04	8.99E-04 9.70E-04	3.18E-04 3.43E-04	1.29E-04 1.39E-04		5.02E-05 5.42E-05	6.90E-05 7.44E-05	7.40E-05	2.10E-05 2.27E-05
181	764733	4092297.34	9.57E-04	1.04E-03	3.69E-04	1.49E-04		5.42E-05 5.82E-05	7.44E-05 7.99E-05	7.40E-05 7.95E-05	2.27E-05 2.44E-05
		4092249.07		1.04L-03 1.11E-03	3.94E-04		1.81E-04		8.53E-05		2.44L-05 2.60E-05
102	, 5 , 7 55.00	1002240.07	1.022 00	1.111 00	3.542 04	2.002 04	1.011 07	J.222 0J	0.552 05	JJL 0J	2.302 03

183	764734.71	4092224.93	1.08E-03	1.18E-03	4.18E-04	1.69E-04	1.92E-04	6.60E-05	9.06E-05	9.00E-05	2.76E-05
184	764735.56	4092200.8	1.14E-03	1.24E-03	4.39E-04	1.78E-04	2.02E-04	6.94E-05	9.53E-05	9.47E-05	2.91E-05
185	764813.63	4092564.12	2.99E-04	3.25E-04	1.15E-04	4.67E-05	5.28E-05	1.82E-05	2.49E-05	2.48E-05	7.61E-06
186	764803.68	4092586.03	2.87E-04	3.13E-04	1.11E-04	4.49E-05	5.08E-05	1.75E-05	2.40E-05	2.39E-05	7.32E-06
187	764793.74	4092607.94	2.77E-04	3.01E-04	1.07E-04	4.32E-05	4.89E-05	1.68E-05	2.31E-05	2.30E-05	7.05E-06
188	764783.79	4092629.85	2.67E-04	2.90E-04	1.03E-04	4.16E-05	4.71E-05	1.62E-05	2.23E-05	2.21E-05	6.79E-06
189	764773.84	4092651.76	2.57E-04	2.80E-04	9.91E-05	4.02E-05	4.55E-05	1.57E-05	2.15E-05	2.14E-05	6.55E-06
190	764763.9	4092673.67	2.49E-04	2.71E-04	9.58E-05	3.88E-05	4.39E-05	1.51E-05	2.08E-05	2.06E-05	6.34E-06
191	764753.95	4092695.58	2.41E-04	2.62E-04	9.27E-05	3.76E-05	4.25E-05	1.46E-05	2.01E-05	2.00E-05	6.13E-06
192	764744	4092717.49	2.33E-04	2.54E-04	8.98E-05	3.64E-05	4.12E-05	1.42E-05	1.95E-05	1.94E-05	5.94E-06
193	764734.06	4092739.4	2.26E-04	2.46E-04	8.70E-05	3.53E-05	3.99E-05	1.37E-05	1.89E-05	1.88E-05	5.76E-06
194	764724.11	4092761.31	2.19E-04	2.38E-04	8.43E-05	3.42E-05	3.87E-05	1.33E-05	1.83E-05	1.82E-05	5.58E-06
195	764714.17	4092783.22	2.12E-04	2.31E-04	8.17E-05	3.31E-05	3.75E-05	1.29E-05	1.77E-05	1.76E-05	5.40E-06
196	764704.22	4092805.13	2.05E-04	2.24E-04	7.91E-05	3.21E-05	3.63E-05	1.25E-05	1.71E-05	1.70E-05	5.23E-06
197	764694.27	4092827.05	1.99E-04	2.16E-04	7.65E-05	3.10E-05	3.51E-05	1.21E-05	1.66E-05	1.65E-05	5.06E-06
198	764684.33	4092848.96 4092870.87	1.92E-04	2.09E-04	7.39E-05	3.00E-05	3.39E-05	1.17E-05	1.60E-05	1.59E-05	4.89E-06
199 200	764674.38 764664.43	4092870.87	1.85E-04 1.79E-04	2.02E-04 1.95E-04	7.14E-05	2.89E-05	3.27E-05 3.16E-05	1.13E-05 1.09E-05	1.55E-05 1.49E-05	1.54E-05 1.48E-05	4.72E-06 4.56E-06
	764654.49	4092892.78	1.79E-04 1.73E-04	1.93E-04 1.88E-04	6.89E-05	2.79E-05	3.05E-05		1.49E-05 1.44E-05	1.43E-05	4.40E-06
201 202	764644.54	4092914.69	1.75E-04 1.66E-04	1.81E-04	6.64E-05	2.69E-05		1.05E-05	1.44E-05 1.39E-05	1.43E-05	4.40E-06 4.24E-06
202	764612.1	4092930.0	1.60E-04 1.62E-04	1.76E-04	6.41E-05 6.23E-05	2.60E-05 2.53E-05	2.94E-05 2.86E-05	1.01E-05 9.85E-06	1.35E-05	1.34E-05	4.24E-06 4.12E-06
203	764589.6	4092907.03	1.63E-04	1.77E-04	6.28E-05	2.55E-05	2.88E-05	9.92E-06	1.36E-05	1.35E-05	4.12E-06
204	764567.11	4092973.0	1.64E-04	1.77E-04 1.78E-04	6.31E-05	2.55E-05 2.56E-05	2.90E-05	9.97E-06	1.37E-05	1.36E-05	4.13E-06
206	764544.61	4092992.68	1.65E-04	1.79E-04	6.34E-05	2.57E-05	2.91E-05	1.00E-05	1.37E-05	1.37E-05	4.20E-06
207	764522.12	4093001.22	1.65E-04	1.80E-04	6.36E-05	2.58E-05	2.92E-05	1.00E-05	1.38E-05	1.37E-05	4.21E-06
208	764499.62	4093009.77	1.65E-04	1.80E-04	6.37E-05	2.58E-05	2.92E-05	1.00E 05	1.38E-05	1.37E-05	4.21E-06
209	764477.12	4093018.31	1.65E-04	1.80E-04	6.37E-05	2.58E-05	2.92E-05	1.01E-05	1.38E-05	1.37E-05	4.21E-06
210	764454.63	4093026.85	1.65E-04	1.80E-04	6.35E-05	2.58E-05	2.91E-05	1.00E-05	1.38E-05	1.37E-05	4.20E-06
211	764432.13	4093035.39	1.64E-04	1.79E-04	6.33E-05	2.57E-05	2.90E-05	1.00E-05	1.37E-05	1.36E-05	4.19E-06
212	764409.64	4093043.93	1.64E-04	1.78E-04	6.31E-05	2.56E-05	2.89E-05	9.97E-06	1.37E-05	1.36E-05	4.18E-06
213	764387.14	4093052.48	1.63E-04	1.78E-04	6.28E-05	2.55E-05	2.88E-05	9.93E-06	1.36E-05	1.35E-05	4.16E-06
214	764364.65	4093061.02	1.62E-04	1.77E-04	6.25E-05	2.54E-05	2.87E-05	9.88E-06	1.36E-05	1.35E-05	4.14E-06
215	764342.15	4093069.56	1.62E-04	1.76E-04	6.23E-05	2.53E-05	2.86E-05	9.85E-06	1.35E-05	1.34E-05	4.12E-06
216	764319.66	4093078.1	1.61E-04	1.76E-04	6.21E-05	2.52E-05	2.85E-05	9.82E-06	1.35E-05	1.34E-05	4.11E-06
217	764297.16	4093086.65	1.61E-04	1.75E-04	6.20E-05	2.51E-05	2.84E-05	9.80E-06	1.34E-05	1.34E-05	4.10E-06
218	764274.66	4093095.19	1.61E-04	1.75E-04	6.19E-05	2.51E-05	2.84E-05	9.79E-06	1.34E-05	1.34E-05	4.10E-06
219	764252.17	4093103.73	1.61E-04	1.75E-04	6.20E-05	2.51E-05	2.84E-05	9.79E-06	1.34E-05	1.34E-05	4.10E-06
220	764229.67	4093112.27	1.61E-04	1.76E-04	6.21E-05	2.52E-05	2.85E-05	9.81E-06	1.35E-05	1.34E-05	4.11E-06
221	764823.58	4092542.2	3.11E-04	3.38E-04	1.20E-04	4.85E-05	5.49E-05	1.89E-05	2.59E-05	2.58E-05	7.92E-06
222	764824.43	4092518.07	3.32E-04	3.61E-04	1.28E-04	5.19E-05	5.87E-05	2.02E-05	2.77E-05	2.76E-05	8.46E-06
223	764825.28	4092493.94	3.55E-04	3.87E-04	1.37E-04	5.55E-05	6.28E-05	2.16E-05	2.97E-05	2.95E-05	9.06E-06
224	764826.13	4092469.8	3.81E-04	4.15E-04	1.47E-04	5.95E-05	6.74E-05	2.32E-05	3.18E-05	3.16E-05	9.71E-06
225	764826.98	4092445.67	4.09E-04	4.45E-04	1.57E-04	6.38E-05	7.22E-05	2.49E-05	3.41E-05	3.39E-05	1.04E-05
226	764827.83	4092421.53	4.39E-04	4.77E-04	1.69E-04	6.85E-05	7.75E-05	2.67E-05	3.66E-05	3.64E-05	1.12E-05
227	764828.69	4092397.4	4.71E-04	5.13E-04	1.81E-04	7.36E-05	8.32E-05	2.87E-05	3.93E-05	3.91E-05	1.20E-05
228	764829.54	4092373.26	5.05E-04	5.50E-04	1.95E-04	7.89E-05	8.93E-05	3.08E-05	4.22E-05	4.20E-05	1.29E-05
229	764830.39	4092349.13	5.42E-04	5.90E-04	2.09E-04	8.47E-05	9.58E-05	3.30E-05	4.53E-05	4.50E-05	1.38E-05
230	764831.24	4092325	5.81E-04	6.32E-04	2.24E-04	9.08E-05	1.03E-04	3.54E-05	4.85E-05	4.82E-05	1.48E-05
231	764832.09		6.22E-04	6.77E-04	2.40E-04	9.71E-05	1.10E-04	3.78E-05	5.19E-05	5.16E-05	1.58E-05
232	764832.94	4092276.73	6.64E-04	7.23E-04	2.56E-04	1.04E-04	1.17E-04	4.04E-05	5.55E-05	5.52E-05	1.69E-05
233	764833.79	4092252.59	7.08E-04	7.70E-04	2.72E-04	1.11E-04	1.25E-04	4.31E-05	5.91E-05	5.87E-05	1.80E-05
234	764834.65	4092228.46	7.51E-04	8.17E-04	2.89E-04	1.17E-04	1.33E-04	4.57E-05	6.27E-05	6.23E-05	1.91E-05
235	764835.5	4092204.32	7.93E-04	8.63E-04	3.06E-04	1.24E-04	1.40E-04	4.83E-05	6.62E-05	6.59E-05	2.02E-05
236	764913.93	4092566.85	2.43E-04	2.64E-04	9.35E-05	3.79E-05	4.29E-05	1.48E-05	2.03E-05	2.02E-05	6.19E-06
237	764904.34	4092587.96	2.35E-04	2.56E-04	9.04E-05	3.67E-05	4.15E-05	1.43E-05	1.96E-05	1.95E-05	5.98E-06
238	764894.76	4092609.08	2.27E-04	2.47E-04	8.75E-05	3.55E-05	4.01E-05	1.38E-05	1.90E-05	1.89E-05	5.79E-06
239	764885.17	4092630.2	2.20E-04	2.40E-04	8.48E-05	3.44E-05	3.89E-05	1.34E-05	1.84E-05	1.83E-05	5.61E-06
240	764875.58	4092651.31	2.13E-04	2.32E-04	8.22E-05	3.33E-05	3.77E-05	1.30E-05	1.78E-05	1.77E-05	5.44E-06
241 242	764866 764856.41	4092672.43 4092693.55	2.07E-04 2.02E-04	2.26E-04 2.19E-04	7.98E-05 7.76E-05	3.24E-05 3.15E-05	3.66E-05 3.56E-05	1.26E-05 1.23E-05	1.73E-05 1.68E-05	1.72E-05 1.67E-05	5.28E-06 5.14E-06
242	764846.83		1.96E-04	2.19E-04 2.14E-04	7.76E-05 7.56E-05	3.15E-05 3.07E-05	3.56E-05 3.47E-05	1.23E-05 1.19E-05	1.68E-05 1.64E-05	1.67E-05 1.63E-05	5.14E-06 5.00E-06
243		4092714.67	1.96E-04 1.91E-04	2.14E-04 2.08E-04	7.30E-03 7.37E-05	2.99E-05		1.19E-05 1.16E-05		1.59E-05	4.87E-06
Z+4	, 07037.24	-1032/33.70	1.J1L-U4	4.00L-04	1.31L-UJ	2.99L-U3	J.JOL-UJ	1.101-03	1.001-03	1.556-03	7.07L-00

245	764827.65	4092756.9	1.86E-04	2.03E-04	7.18E-05	2.91E-05	3.29E-05	1.13E-05	1.56E-05	1.55E-05	4.75E-06
246	764818.07	4092778.02	1.82E-04	1.98E-04	7.00E-05	2.84E-05	3.21E-05	1.11E-05	1.52E-05	1.51E-05	4.63E-06
247	764808.48	4092799.13	1.77E-04	1.93E-04	6.83E-05	2.77E-05	3.13E-05	1.08E-05	1.48E-05	1.47E-05	4.52E-06
248	764798.89	4092820.25	1.73E-04	1.88E-04	6.66E-05	2.70E-05	3.05E-05	1.05E-05	1.44E-05	1.43E-05	4.40E-06
249	764789.31	4092841.37	1.68E-04	1.83E-04	6.48E-05	2.63E-05	2.97E-05	1.02E-05	1.41E-05	1.40E-05	4.29E-06
250	764779.72	4092862.49	1.64E-04	1.78E-04	6.31E-05	2.56E-05	2.89E-05	9.96E-06	1.37E-05	1.36E-05	4.17E-06
251	764770.14	4092883.6	1.59E-04	1.73E-04	6.13E-05	2.49E-05	2.81E-05	9.69E-06	1.33E-05	1.32E-05	4.06E-06
252	764760.55	4092904.72	1.55E-04	1.68E-04	5.95E-05	2.41E-05	2.73E-05	9.41E-06	1.29E-05	1.28E-05	3.94E-06
253	764750.96	4092925.84	1.50E-04	1.63E-04	5.78E-05	2.34E-05	2.65E-05	9.13E-06	1.25E-05	1.25E-05	3.82E-06
254	764741.38	4092946.95	1.46E-04	1.58E-04	5.60E-05	2.27E-05	2.57E-05	8.86E-06	1.22E-05	1.21E-05	3.71E-06
255	764731.79	4092968.07	1.41E-04	1.53E-04	5.43E-05	2.20E-05	2.49E-05	8.58E-06	1.18E-05	1.17E-05	3.59E-06
256	764722.21	4092989.19	1.37E-04	1.49E-04	5.27E-05	2.14E-05	2.42E-05	8.32E-06	1.14E-05	1.14E-05	3.48E-06
257	764712.62	4093010.3	1.33E-04	1.44E-04	5.11E-05	2.07E-05	2.34E-05	8.08E-06	1.11E-05	1.10E-05	3.38E-06
258	764681.35	4093039.65	1.30E-04	1.41E-04	5.00E-05	2.03E-05	2.29E-05	7.89E-06	1.08E-05 1.09E-05	1.08E-05	3.31E-06
259 260	764659.67 764637.99	4093047.89 4093056.12	1.31E-04 1.31E-04	1.42E-04 1.43E-04	5.03E-05	2.04E-05	2.31E-05 2.32E-05	7.94E-06	1.09E-05 1.10E-05	1.08E-05 1.09E-05	3.33E-06 3.34E-06
261	764616.31	4093056.12	1.31E-04 1.32E-04	1.43E-04 1.44E-04	5.06E-05 5.08E-05	2.05E-05 2.06E-05	2.33E-05	7.99E-06 8.03E-06	1.10E-05 1.10E-05	1.10E-05	3.36E-06
262	764594.63	4093072.59	1.32E-04 1.32E-04	1.44E-04	5.10E-05	2.00E-05 2.07E-05	2.34E-05	8.06E-06	1.11E-05	1.10E-05	3.38E-06
263	764572.95	4093080.82	1.33E-04	1.45E-04	5.10E 05 5.12E-05	2.07E 05	2.35E-05	8.09E-06	1.11E-05	1.10E-05	3.39E-06
264	764551.27	4093089.05	1.33E-04	1.45E-04	5.12E-05	2.08E-05	2.35E-05	8.09E-06	1.11E-05	1.10E-05	3.39E-06
265	764529.59	4093097.28	1.33E-04	1.45E-04	5.12E-05	2.08E-05	2.35E-05	8.09E-06	1.11E-05	1.10E-05	3.39E-06
266	764507.91	4093105.52	1.33E-04	1.44E-04	5.11E-05	2.07E-05	2.34E-05	8.08E-06	1.11E-05	1.10E-05	3.38E-06
267	764486.23	4093113.75	1.32E-04	1.44E-04	5.10E-05	2.07E-05	2.34E-05	8.05E-06	1.10E-05	1.10E-05	3.37E-06
268	764464.55	4093121.98	1.32E-04	1.43E-04	5.07E-05	2.06E-05	2.33E-05	8.02E-06	1.10E-05	1.09E-05	3.36E-06
269	764442.87	4093130.22	1.31E-04	1.43E-04	5.05E-05	2.05E-05	2.32E-05	7.98E-06	1.10E-05	1.09E-05	3.34E-06
270	764421.19	4093138.45	1.30E-04	1.42E-04	5.02E-05	2.04E-05	2.31E-05	7.94E-06	1.09E-05	1.08E-05	3.32E-06
271	764399.51	4093146.68	1.30E-04	1.41E-04	5.00E-05	2.03E-05	2.29E-05	7.90E-06	1.08E-05	1.08E-05	3.31E-06
272	764377.83	4093154.91	1.29E-04	1.41E-04	4.98E-05	2.02E-05	2.28E-05	7.86E-06	1.08E-05	1.07E-05	3.29E-06
273	764356.15	4093163.15	1.29E-04	1.40E-04	4.96E-05	2.01E-05	2.27E-05	7.83E-06	1.07E-05	1.07E-05	3.28E-06
274	764334.47	4093171.38	1.28E-04	1.40E-04	4.94E-05	2.00E-05	2.27E-05	7.81E-06	1.07E-05	1.06E-05	3.27E-06
275	764312.78	4093179.61	1.28E-04	1.39E-04	4.93E-05	2.00E-05	2.26E-05	7.79E-06	1.07E-05	1.06E-05	3.26E-06
276	764291.1	4093187.85	1.28E-04	1.39E-04	4.93E-05	2.00E-05	2.26E-05	7.79E-06	1.07E-05	1.06E-05	3.26E-06
277	764269.42	4093196.08	1.28E-04	1.39E-04	4.93E-05	2.00E-05	2.26E-05	7.79E-06	1.07E-05	1.06E-05	3.26E-06
278	764247.74	4093204.31	1.28E-04	1.40E-04	4.95E-05	2.01E-05	2.27E-05	7.81E-06	1.07E-05	1.07E-05	3.27E-06
279	764226.06	4093212.54	1.29E-04	1.40E-04	4.97E-05	2.01E-05	2.28E-05	7.85E-06	1.08E-05	1.07E-05	3.29E-06
280	764923.51	4092545.73	2.51E-04	2.74E-04	9.68E-05	3.93E-05	4.44E-05	1.53E-05	2.10E-05	2.09E-05	6.40E-06
281	764924.37			2.90E-04	1.03E-04	4.16E-05				2.21E-05	
282		4092497.46		3.08E-04	1.09E-04	4.42E-05	5.00E-05			2.35E-05	
283	764926.07		3.01E-04	3.27E-04	1.16E-04	4.70E-05	5.31E-05	1.83E-05	2.51E-05	2.50E-05	7.66E-06
284	764926.92 764927.77		3.20E-04	3.48E-04	1.23E-04	4.99E-05 5.31E-05	5.65E-05	1.94E-05	2.67E-05 2.84E-05	2.65E-05	8.14E-06
285 286	764927.77		3.40E-04 3.61E-04	3.70E-04 3.93E-04	1.31E-04 1.39E-04	5.64E-05	6.01E-05 6.38E-05	2.07E-05 2.20E-05	3.02E-05	2.82E-05 3.00E-05	8.66E-06 9.20E-06
287	764929.47		3.84E-04	4.18E-04	1.39L-04 1.48E-04	5.99E-05	6.78E-05	2.20L-03 2.33E-05	3.20E-05	3.19E-05	9.78E-06
288	764930.33	4092352.66	4.08E-04	4.44E-04	1.57E-04	6.36E-05	7.20E-05	2.48E-05	3.40E-05	3.38E-05	1.04E-05
289	764931.18		4.33E-04	4.71E-04	1.67E-04	6.76E-05	7.65E-05	2.63E-05	3.61E-05	3.59E-05	1.10E-05
290	764932.03	4092304.39	4.59E-04	5.00E-04	1.77E-04	7.17E-05	8.11E-05	2.79E-05	3.83E-05	3.81E-05	1.17E-05
291	764932.88	4092280.25	4.87E-04	5.30E-04	1.88E-04	7.61E-05	8.61E-05	2.96E-05	4.07E-05	4.04E-05	1.24E-05
292	764933.73	4092256.12	5.16E-04	5.61E-04	1.99E-04	8.06E-05	9.11E-05	3.14E-05	4.31E-05	4.28E-05	1.31E-05
293	764934.58	4092231.98	5.45E-04	5.94E-04	2.10E-04	8.52E-05	9.64E-05	3.32E-05	4.55E-05	4.53E-05	1.39E-05
294	764935.43	4092207.85	5.75E-04	6.26E-04	2.22E-04	8.99E-05	1.02E-04	3.50E-05	4.80E-05	4.78E-05	1.47E-05
295	765113.62	4092574.31	1.73E-04	1.88E-04	6.65E-05	2.70E-05	3.05E-05	1.05E-05	1.44E-05	1.43E-05	4.40E-06
296	765103.84	4092595.85	1.68E-04	1.83E-04	6.46E-05	2.62E-05	2.96E-05	1.02E-05	1.40E-05	1.39E-05	4.27E-06
297	765094.07	4092617.38	1.63E-04	1.77E-04	6.27E-05	2.54E-05	2.88E-05	9.91E-06	1.36E-05	1.35E-05	4.15E-06
298	765084.29	4092638.91	1.58E-04	1.72E-04	6.10E-05	2.47E-05	2.80E-05	9.64E-06	1.32E-05	1.31E-05	4.04E-06
299	765074.52	4092660.45	1.54E-04	1.68E-04	5.93E-05	2.41E-05	2.72E-05	9.37E-06	1.29E-05	1.28E-05	3.93E-06
300	765064.74	4092681.98	1.50E-04	1.63E-04	5.78E-05	2.34E-05	2.65E-05	9.13E-06	1.25E-05	1.25E-05	3.82E-06
301	765054.97	4092703.51	1.46E-04	1.59E-04	5.64E-05	2.29E-05	2.59E-05	8.91E-06	1.22E-05	1.22E-05	3.73E-06
302	765045.19	4092725.05	1.43E-04	1.56E-04	5.51E-05	2.23E-05	2.53E-05	8.70E-06	1.19E-05	1.19E-05	3.64E-06
303	765035.42		1.40E-04	1.52E-04	5.39E-05	2.19E-05	2.47E-05	8.52E-06	1.17E-05	1.16E-05	3.57E-06
304	765025.64	4092768.11	1.37E-04	1.49E-04	5.28E-05	2.14E-05	2.42E-05	8.34E-06	1.15E-05	1.14E-05	3.49E-06
305	765015.87		1.35E-04	1.46E-04	5.18E-05	2.10E-05	2.38E-05	8.18E-06	1.12E-05	1.12E-05	3.43E-06
306	705006.09	4092811.18	1.32E-04	1.44E-04	5.09E-05	2.U6E-U5	2.33E-05	8.U4E-U6	1.10E-05	1.10E-05	3.36E-06

307	764996.32	4092832.71	1.30E-04	1.41E-04	5.00E-05	2.03E-05	2.29E-05	7.89E-06	1.08E-05	1.08E-05	3.31E-06
308	764986.54	4092854.24	1.27E-04	1.39E-04	4.91E-05	1.99E-05	2.25E-05	7.75E-06	1.06E-05	1.06E-05	3.25E-06
309	764976.76	4092875.78	1.25E-04	1.36E-04	4.82E-05	1.95E-05	2.21E-05	7.61E-06	1.04E-05	1.04E-05	3.19E-06
310	764966.99	4092897.31	1.23E-04	1.33E-04	4.72E-05	1.92E-05	2.17E-05	7.46E-06	1.02E-05	1.02E-05	3.12E-06
311	764957.21	4092918.84	1.20E-04	1.31E-04	4.63E-05	1.88E-05	2.12E-05	7.31E-06	1.00E-05	9.97E-06	3.06E-06
312	764947.44	4092940.38	1.18E-04	1.28E-04	4.53E-05	1.84E-05	2.08E-05	7.16E-06	9.82E-06	9.76E-06	3.00E-06
313	764937.66	4092961.91	1.15E-04	1.25E-04	4.43E-05	1.80E-05	2.03E-05	7.00E-06	9.61E-06	9.55E-06	2.93E-06
314	764927.89	4092983.44	1.12E-04	1.22E-04	4.33E-05	1.76E-05	1.99E-05	6.84E-06	9.38E-06	9.33E-06	2.86E-06
315	764918.11	4093004.98	1.10E-04	1.19E-04	4.22E-05	1.71E-05	1.94E-05	6.67E-06	9.16E-06	9.11E-06	2.80E-06
316	764908.34	4093026.51	1.07E-04	1.16E-04	4.12E-05	1.67E-05	1.89E-05	6.51E-06	8.93E-06	8.88E-06	2.73E-06
317	764898.56	4093048.04	1.04E-04	1.14E-04	4.02E-05	1.63E-05	1.84E-05	6.35E-06	8.71E-06	8.66E-06	2.66E-06
318	764888.79	4093069.58	1.02E-04	1.11E-04	3.91E-05	1.59E-05	1.80E-05	6.19E-06	8.49E-06	8.44E-06	2.59E-06
319	764879.01	4093091.11	9.91E-05	1.08E-04	3.82E-05	1.55E-05	1.75E-05	6.03E-06	8.27E-06	8.23E-06	2.52E-06
320	764869.24	4093112.64	9.66E-05	1.05E-04	3.72E-05	1.51E-05	1.71E-05	5.88E-06	8.07E-06	8.02E-06	2.46E-06
321	764859.46	4093134.18	9.43E-05	1.03E-04	3.63E-05	1.47E-05	1.67E-05	5.74E-06	7.87E-06	7.83E-06	2.40E-06
322	764849.69	4093155.71	9.21E-05	1.00E-04	3.55E-05	1.44E-05	1.63E-05	5.60E-06	7.69E-06	7.65E-06	2.35E-06
323	764817.81	4093185.64	9.06E-05	9.86E-05	3.49E-05	1.41E-05	1.60E-05	5.51E-06	7.56E-06	7.52E-06	2.31E-06
324	764795.7	4093194.03	9.11E-05	9.92E-05	3.51E-05	1.42E-05	1.61E-05	5.54E-06	7.61E-06	7.56E-06	2.32E-06
325	764773.59	4093202.43	9.16E-05	9.98E-05	3.53E-05	1.43E-05	1.62E-05	5.58E-06	7.65E-06	7.61E-06	2.34E-06
326	764751.48	4093210.82	9.21E-05	1.00E-04	3.55E-05	1.44E-05	1.63E-05	5.61E-06	7.69E-06	7.65E-06	2.35E-06
327	764729.38	4093219.22	9.26E-05	1.01E-04	3.56E-05	1.45E-05	1.64E-05	5.63E-06	7.73E-06	7.68E-06	2.36E-06
328	764707.27	4093227.61	9.29E-05	1.01E-04	3.58E-05	1.45E-05	1.64E-05	5.65E-06	7.76E-06	7.71E-06	2.37E-06
329	764685.16	4093236.01	9.32E-05	1.01E-04	3.59E-05	1.46E-05	1.65E-05	5.67E-06	7.78E-06	7.74E-06	2.37E-06
330	764663.05	4093244.4	9.33E-05	1.02E-04	3.59E-05	1.46E-05	1.65E-05	5.68E-06	7.79E-06	7.75E-06	2.38E-06
331	764640.95	4093252.8	9.33E-05	1.02E-04	3.59E-05	1.46E-05	1.65E-05	5.68E-06	7.79E-06	7.75E-06	2.38E-06
332	764618.84	4093261.19	9.32E-05	1.01E-04	3.59E-05	1.46E-05	1.65E-05	5.67E-06	7.78E-06	7.73E-06	2.37E-06
333	764596.73	4093269.59	9.29E-05	1.01E-04	3.58E-05	1.45E-05	1.64E-05	5.65E-06	7.76E-06	7.71E-06	2.37E-06
334	764574.62	4093277.98	9.25E-05	1.01E-04	3.56E-05	1.44E-05	1.63E-05	5.63E-06	7.72E-06	7.68E-06	2.36E-06
335	764552.51	4093286.38	9.21E-05	1.00E-04	3.55E-05	1.44E-05	1.63E-05	5.60E-06	7.69E-06	7.64E-06	2.35E-06
336	764530.41	4093294.77	9.15E-05	9.96E-05	3.52E-05	1.43E-05	1.62E-05	5.57E-06	7.64E-06	7.60E-06	2.33E-06
337	764508.3	4093303.17	9.09E-05	9.90E-05	3.50E-05	1.42E-05	1.61E-05	5.53E-06	7.59E-06	7.55E-06	2.32E-06
338	764486.19	4093311.56	9.04E-05	9.84E-05	3.48E-05	1.41E-05	1.60E-05	5.50E-06	7.55E-06	7.51E-06	2.30E-06
339	764464.08	4093319.96	8.99E-05	9.79E-05	3.46E-05	1.40E-05	1.59E-05	5.47E-06	7.51E-06	7.47E-06	2.29E-06
340	764441.98	4093328.35	8.95E-05	9.74E-05	3.45E-05	1.40E-05	1.58E-05	5.44E-06	7.47E-06	7.43E-06	2.28E-06
341	764419.87	4093336.75	8.91E-05	9.70E-05	3.43E-05	1.39E-05	1.57E-05	5.42E-06	7.44E-06	7.40E-06	2.27E-06
342	764397.76	4093345.14	8.88E-05	9.67E-05	3.42E-05	1.39E-05	1.57E-05	5.41E-06	7.42E-06	7.38E-06	2.26E-06
343		4093353.54	8.87E-05	9.65E-05	3.41E-05		1.57E-05			7.36E-06	
344		4093361.93		9.64E-05	3.41E-05	1.38E-05	1.56E-05			7.35E-06	
345	764331.44		8.86E-05	9.65E-05	3.41E-05	1.38E-05	1.57E-05	5.39E-06	7.40E-06	7.36E-06	2.26E-06
346	764309.33		8.88E-05	9.66E-05	3.42E-05	1.39E-05	1.57E-05	5.40E-06	7.41E-06	7.37E-06	2.26E-06
347	764287.22		8.91E-05	9.70E-05	3.43E-05	1.39E-05	1.57E-05	5.42E-06	7.44E-06	7.40E-06	2.27E-06
348	764265.11		8.95E-05	9.74E-05	3.45E-05	1.40E-05	1.58E-05	5.45E-06	7.48E-06	7.43E-06	2.28E-06
349	764243.01		9.01E-05	9.80E-05	3.47E-05	1.41E-05	1.59E-05	5.48E-06	7.52E-06	7.48E-06	2.30E-06
350	764220.9	4093412.3	9.07E-05	9.87E-05	3.49E-05	1.42E-05	1.60E-05	5.52E-06	7.58E-06	7.53E-06	2.31E-06
351	765123.39		1.78E-04	1.94E-04	6.85E-05	2.78E-05	3.14E-05	1.08E-05	1.48E-05	1.48E-05	4.53E-06
352	765124.24	4092528.65	1.87E-04	2.03E-04	7.18E-05	2.91E-05	3.30E-05	1.13E-05	1.56E-05	1.55E-05	4.75E-06
353	765125.09	4092504.51	1.96E-04	2.13E-04	7.54E-05	3.06E-05	3.46E-05	1.19E-05	1.63E-05	1.62E-05	4.99E-06
354	765125.94	4092480.38	2.05E-04	2.23E-04	7.91E-05	3.21E-05	3.63E-05	1.25E-05	1.71E-05	1.70E-05	5.23E-06
355	765126.8		2.15E-04	2.34E-04	8.29E-05	3.36E-05	3.80E-05	1.31E-05	1.80E-05	1.79E-05	5.49E-06
356	765127.65		2.26E-04	2.46E-04	8.69E-05	3.53E-05	3.99E-05	1.37E-05	1.88E-05	1.87E-05	5.75E-06
357	765128.5		2.37E-04	2.58E-04	9.11E-05	3.69E-05	4.18E-05	1.44E-05	1.98E-05	1.96E-05	6.03E-06
358	765129.35		2.48E-04	2.70E-04	9.54E-05	3.87E-05	4.38E-05	1.51E-05	2.07E-05	2.06E-05	6.32E-06
359	765130.2		2.60E-04	2.82E-04	9.99E-05	4.05E-05	4.58E-05	1.58E-05	2.17E-05	2.15E-05	6.61E-06
360	765131.05	4092335.57	2.72E-04	2.96E-04	1.05E-04	4.24E-05	4.80E-05	1.65E-05	2.27E-05	2.26E-05	6.92E-06
361	765131.9		2.84E-04	3.09E-04	1.09E-04	4.44E-05	5.02E-05	1.73E-05	2.37E-05	2.36E-05	7.24E-06
362	765132.76	4092287.3	2.97E-04	3.24E-04	1.15E-04	4.65E-05	5.26E-05	1.81E-05	2.48E-05	2.47E-05	7.58E-06
363	765133.61		3.11E-04	3.39E-04	1.20E-04	4.86E-05	5.50E-05	1.89E-05	2.60E-05	2.58E-05	7.93E-06
364	765134.46	4092239.04	3.26E-04	3.54E-04	1.25E-04	5.09E-05	5.75E-05	1.98E-05	2.72E-05	2.70E-05	8.30E-06
365	765135.31	4092214.9	3.41E-04	3.71E-04	1.31E-04	5.32E-05	6.02E-05	2.07E-05	2.84E-05	2.83E-05	8.68E-06
366	765313.37		1.31E-04	1.43E-04	5.06E-05	2.05E-05	2.32E-05	7.99E-06	1.10E-05	1.09E-05	3.35E-06
367	765303.47		1.28E-04	1.39E-04	4.93E-05	2.00E-05		7.79E-06	1.07E-05	1.06E-05	3.26E-06
368	/05293.5/	4092625.25	1.25E-04	1.36E-04	4.81E-05	1.95E-05	2.21E-05	/.59E-Ub	1.04E-05	1.04E-05	3.18E-06

369	765283.67	4092647.06	1.21E-04	1.32E-04	4.68E-05	1.90E-05	2.15E-05	7.39E-06	1.01E-05	1.01E-05	3.09E-06
370	765273.77	4092668.87	1.18E-04	1.29E-04	4.56E-05	1.85E-05	2.09E-05	7.20E-06	9.88E-06	9.82E-06	3.02E-06
371	765263.87	4092690.67	1.15E-04	1.26E-04	4.45E-05	1.80E-05	2.04E-05	7.02E-06	9.64E-06	9.58E-06	2.94E-06
372	765253.97	4092712.48	1.13E-04	1.23E-04	4.35E-05	1.76E-05	1.99E-05	6.87E-06	9.42E-06	9.37E-06	2.87E-06
373	765244.07	4092734.29	1.10E-04	1.20E-04	4.25E-05	1.73E-05	1.95E-05	6.72E-06	9.22E-06	9.17E-06	2.81E-06
374	765234.17	4092756.09	1.08E-04	1.18E-04	4.17E-05	1.69E-05	1.91E-05	6.59E-06	9.04E-06	8.99E-06	2.76E-06
375	765224.27	4092777.9	1.06E-04	1.16E-04	4.09E-05	1.66E-05	1.88E-05	6.47E-06	8.87E-06	8.82E-06	2.71E-06
376	765214.38	4092799.7	1.04E-04	1.14E-04	4.02E-05	1.63E-05	1.85E-05	6.36E-06	8.72E-06	8.67E-06	2.66E-06
377	765204.48	4092821.51	1.03E-04	1.12E-04	3.96E-05	1.60E-05	1.82E-05	6.25E-06	8.58E-06	8.53E-06	2.62E-06
378	765194.58	4092843.32	1.01E-04	1.10E-04	3.89E-05	1.58E-05	1.79E-05	6.15E-06	8.44E-06	8.39E-06	2.58E-06
379	765184.68	4092865.12	9.96E-05	1.08E-04	3.84E-05	1.56E-05	1.76E-05	6.06E-06	8.32E-06	8.27E-06	2.54E-06
380	765174.78	4092886.93	9.82E-05	1.07E-04	3.78E-05	1.53E-05	1.73E-05	5.97E-06	8.20E-06	8.15E-06	2.50E-06
381	765164.88	4092908.74	9.68E-05	1.05E-04	3.73E-05	1.51E-05	1.71E-05	5.89E-06	8.08E-06	8.04E-06	2.47E-06
382	765154.98	4092930.54	9.55E-05	1.04E-04	3.68E-05	1.49E-05	1.69E-05	5.81E-06	7.98E-06	7.93E-06	2.43E-06
383	765145.08	4092952.35	9.43E-05	1.03E-04	3.63E-05	1.47E-05	1.67E-05	5.74E-06	7.87E-06	7.83E-06	2.40E-06
384	765135.18	4092974.16	9.30E-05	1.01E-04	3.58E-05	1.45E-05	1.64E-05	5.66E-06	7.77E-06	7.72E-06	2.37E-06
385	765125.28	4092995.96	9.17E-05	9.98E-05	3.53E-05	1.43E-05	1.62E-05	5.58E-06	7.65E-06	7.61E-06	2.34E-06
386	765115.38	4093017.77	9.02E-05	9.82E-05	3.48E-05	1.41E-05	1.59E-05	5.49E-06	7.53E-06	7.49E-06	2.30E-06
387	765105.48	4093039.58	8.87E-05	9.66E-05	3.42E-05	1.39E-05	1.57E-05	5.40E-06	7.41E-06	7.37E-06	2.26E-06
388	765095.59	4093061.38	8.71E-05	9.48E-05	3.35E-05	1.36E-05	1.54E-05	5.30E-06	7.27E-06	7.23E-06	2.22E-06
389	765085.69	4093083.19	8.54E-05	9.30E-05	3.29E-05	1.33E-05	1.51E-05	5.20E-06	7.13E-06	7.09E-06	2.18E-06
390	765075.79	4093105	8.37E-05	9.11E-05	3.22E-05	1.31E-05	1.48E-05	5.09E-06	6.99E-06	6.95E-06	2.13E-06
391	765065.89	4093126.8	8.19E-05	8.92E-05	3.16E-05	1.28E-05	1.45E-05	4.98E-06	6.84E-06	6.80E-06	2.09E-06
392	765055.99	4093148.61	8.02E-05	8.73E-05	3.09E-05	1.25E-05	1.42E-05	4.88E-06	6.69E-06	6.66E-06	2.04E-06
393	765046.09	4093170.42	7.84E-05	8.53E-05	3.02E-05	1.22E-05	1.38E-05	4.77E-06	6.54E-06	6.51E-06	2.00E-06
394	765036.19	4093192.22	7.66E-05	8.34E-05	2.95E-05	1.20E-05	1.35E-05	4.66E-06	6.40E-06	6.36E-06	1.95E-06
395	765026.29	4093214.03	7.50E-05	8.16E-05	2.89E-05	1.17E-05	1.32E-05	4.56E-06	6.26E-06	6.22E-06	1.91E-06
396	765016.39	4093235.84	7.34E-05	7.99E-05	2.83E-05	1.15E-05	1.30E-05	4.46E-06	6.13E-06	6.09E-06	1.87E-06
397	765006.49	4093257.64	7.19E-05	7.83E-05	2.77E-05	1.12E-05	1.27E-05	4.37E-06	6.00E-06	5.97E-06	1.83E-06
398	764996.59	4093279.45	7.05E-05	7.67E-05	2.72E-05	1.10E-05	1.25E-05	4.29E-06	5.89E-06	5.85E-06	1.80E-06
399	764986.69	4093301.26	6.92E-05	7.54E-05	2.67E-05	1.08E-05	1.22E-05	4.21E-06	5.78E-06	5.75E-06	1.76E-06
400	764954.41	4093331.56	6.84E-05	7.45E-05	2.64E-05	1.07E-05	1.21E-05	4.16E-06	5.71E-06	5.68E-06	1.74E-06
401	764932.02	4093340.07	6.88E-05	7.49E-05	2.65E-05	1.08E-05	1.22E-05	4.19E-06	5.75E-06	5.72E-06	1.75E-06
402	764909.63	4093348.57	6.92E-05	7.54E-05	2.67E-05	1.08E-05	1.22E-05	4.21E-06	5.78E-06	5.75E-06	1.76E-06
403	764887.24	4093357.07	6.96E-05	7.58E-05	2.68E-05	1.09E-05	1.23E-05	4.23E-06	5.81E-06	5.78E-06	1.77E-06
404	764864.85	4093365.57	6.99E-05	7.61E-05	2.69E-05	1.09E-05	1.24E-05	4.26E-06	5.84E-06	5.81E-06	1.78E-06
405		4093374.07		7.64E-05	2.70E-05		1.24E-05		5.86E-06		
406		4093382.57	7.04E-05	7.67E-05	2.71E-05			4.29E-06			1.79E-06
407	764797.69 764775.3		7.06E-05	7.69E-05	2.72E-05	1.10E-05	1.25E-05	4.30E-06 4.30E-06	5.90E-06	5.86E-06	1.80E-06
408 409	764775.3		7.07E-05 7.07E-05	7.70E-05 7.69E-05	2.72E-05 2.72E-05	1.10E-05 1.10E-05	1.25E-05 1.25E-05	4.30E-06 4.30E-06	5.90E-06 5.90E-06	5.87E-06 5.87E-06	1.80E-06 1.80E-06
410	764732.91		7.07E-05 7.06E-05	7.69E-05 7.69E-05	2.72E-05 2.72E-05	1.10E-05 1.10E-05	1.25E-05	4.30E-06	5.90E-06	5.86E-06	1.80E-06
410	764730.32	4093416.38	7.06E-05 7.04E-05	7.67E-05	2.72E-05 2.71E-05	1.10E-05 1.10E-05	1.24E-05	4.30E-06 4.29E-06	5.88E-06	5.85E-06	1.79E-06
412	764685.75	4093423.08	7.04E-05 7.01E-05	7.63E-05	2.71E-03 2.70E-05	1.10E-05	1.24E-05	4.27E-06	5.86E-06	5.82E-06	1.79E-06
413	764663.36	4093442.09	6.98E-05	7.60E-05	2.69E-05	1.10E-05 1.09E-05	1.23E-05	4.27E-06	5.83E-06	5.79E-06	1.78E-06
414	764640.97	4093450.59	6.94E-05	7.55E-05	2.67E-05	1.09E-05	1.23E-05	4.22E-06	5.79E-06	5.76E-06	1.77E-06
415	764618.58	4093459.09	6.89E-05	7.50E-05	2.66E-05	1.08E-05	1.22E-05	4.20E-06	5.76E-06	5.70E 00 5.72E-06	1.77E 00
416	764596.19	4093467.59	6.85E-05	7.46E-05	2.64E-05	1.07E-05	1.21E-05	4.17E-06	5.72E-06	5.69E-06	1.75E-06
417	764573.8	4093476.09	6.81E-05	7.41E-05	2.62E-05	1.06E-05	1.20E-05	4.14E-06	5.69E-06	5.66E-06	1.74E-06
418	764551.42	4093484.59	6.77E-05	7.37E-05	2.61E-05	1.06E-05	1.20E-05	4.12E-06	5.66E-06	5.62E-06	1.73E-06
419	764529.03	4093493.1	6.74E-05	7.33E-05	2.59E-05	1.05E-05	1.19E-05	4.10E-06	5.63E-06	5.59E-06	1.72E-06
420	764506.64	4093501.6	6.71E-05	7.30E-05	2.58E-05	1.05E-05	1.19E-05	4.08E-06	5.60E-06	5.57E-06	1.71E-06
421	764484.25	4093510.1	6.69E-05	7.28E-05	2.58E-05	1.04E-05	1.18E-05	4.07E-06	5.58E-06	5.55E-06	1.70E-06
422	764461.86	4093518.6	6.67E-05	7.26E-05	2.57E-05	1.04E-05	1.18E-05	4.06E-06	5.57E-06	5.54E-06	1.70E-06
423	764439.47	4093527.1	6.66E-05	7.25E-05	2.57E-05	1.04E-05	1.18E-05	4.05E-06	5.56E-06	5.53E-06	1.70E-06
424	764417.08	4093535.6	6.66E-05	7.25E-05	2.56E-05	1.04E-05	1.18E-05	4.05E-06	5.56E-06	5.53E-06	1.70E-06
425	764394.7	4093544.11	6.66E-05	7.25E-05	2.56E-05	1.04E-05	1.18E-05	4.05E-06	5.56E-06	5.53E-06	1.70E-06
426	764372.31	4093552.61	6.67E-05	7.26E-05	2.57E-05	1.04E-05	1.18E-05	4.06E-06	5.57E-06	5.54E-06	1.70E-06
427	764349.92		6.69E-05	7.28E-05	2.58E-05	1.04E-05	1.18E-05	4.07E-06	5.58E-06	5.55E-06	1.70E-06
428	764327.53		6.71E-05	7.31E-05	2.59E-05	1.05E-05	1.19E-05	4.08E-06	5.61E-06	5.57E-06	1.71E-06
429		4093578.11	6.75E-05	7.34E-05	2.60E-05	1.05E-05	1.19E-05	4.10E-06	5.63E-06	5.60E-06	1.72E-06
430		4093586.61	6.79E-05	7.39E-05	2.61E-05	1.06E-05		4.13E-06		5.63E-06	1.73E-06

431	764260.37	4093595.12	6.83E-05	7.44E-05	2.63E-05	1.07E-05	1.21E-05	4.16E-06	5.71E-06	5.67E-06	1.74E-06
432	764237.98	4093603.62	6.89E-05	7.50E-05	2.65E-05	1.08E-05	1.22E-05	4.19E-06	5.75E-06	5.72E-06	1.75E-06
433	764215.59	4093612.12	6.94E-05	7.56E-05	2.67E-05	1.08E-05	1.23E-05	4.22E-06	5.80E-06	5.76E-06	1.77E-06
434	765323.27	4092559.83	1.35E-04	1.47E-04	5.19E-05	2.10E-05	2.38E-05	8.19E-06	1.12E-05	1.12E-05	3.43E-06
435	765324.12	4092535.7	1.40E-04	1.53E-04	5.40E-05	2.19E-05	2.48E-05	8.53E-06	1.17E-05	1.16E-05	3.57E-06
436	765324.97	4092511.56	1.46E-04	1.59E-04	5.61E-05	2.28E-05	2.58E-05	8.87E-06	1.22E-05	1.21E-05	3.71E-06
437	765325.82	4092487.43	1.52E-04	1.65E-04	5.84E-05	2.37E-05	2.68E-05	9.23E-06	1.27E-05	1.26E-05	3.86E-06
438	765326.67	4092463.3	1.58E-04	1.72E-04	6.07E-05	2.46E-05	2.79E-05	9.59E-06	1.32E-05	1.31E-05	4.02E-06
439	765327.52	4092439.16	1.64E-04	1.78E-04	6.31E-05	2.56E-05	2.90E-05	9.98E-06	1.37E-05	1.36E-05	4.18E-06
440	765328.37	4092415.03	1.70E-04	1.85E-04	6.56E-05	2.66E-05	3.01E-05	1.04E-05	1.42E-05	1.41E-05	4.34E-06
441	765329.23	4092390.89	1.77E-04	1.92E-04	6.81E-05	2.76E-05	3.12E-05	1.08E-05	1.48E-05	1.47E-05	4.50E-06
442	765330.08	4092366.76	1.83E-04	2.00E-04	7.06E-05	2.86E-05	3.24E-05	1.12E-05	1.53E-05	1.52E-05	4.67E-06
443	765330.93	4092342.62	1.90E-04	2.07E-04	7.32E-05	2.97E-05	3.36E-05	1.16E-05	1.59E-05	1.58E-05	4.85E-06
444	765331.78	4092318.49	1.97E-04	2.15E-04	7.59E-05	3.08E-05	3.48E-05	1.20E-05	1.65E-05	1.64E-05	5.02E-06
445	765332.63	4092294.36	2.04E-04	2.22E-04	7.87E-05	3.19E-05	3.61E-05	1.24E-05	1.71E-05	1.70E-05	5.21E-06
446	765333.48	4092270.22	2.12E-04	2.30E-04	8.15E-05	3.31E-05	3.74E-05	1.29E-05	1.77E-05	1.76E-05	5.39E-06
447	765334.33	4092246.09	2.19E-04	2.39E-04	8.45E-05	3.43E-05	3.88E-05	1.33E-05	1.83E-05	1.82E-05	5.59E-06
448	765335.19	4092221.95	2.27E-04	2.48E-04	8.76E-05	3.55E-05	4.02E-05	1.38E-05	1.90E-05	1.89E-05	5.79E-06
449	765513.39	4092588.36	1.05E-04	1.14E-04	4.03E-05	1.64E-05	1.85E-05	6.37E-06	8.74E-06	8.69E-06	2.67E-06
450	765503.64	4092609.84	1.02E-04	1.12E-04	3.95E-05	1.60E-05	1.81E-05	6.23E-06	8.56E-06	8.51E-06	2.61E-06
451	765493.89	4092631.31	1.00E-04	1.09E-04	3.86E-05	1.57E-05	1.77E-05	6.10E-06	8.37E-06	8.32E-06	2.55E-06
452	765484.15	4092652.79	9.80E-05	1.07E-04	3.77E-05	1.53E-05	1.73E-05	5.96E-06	8.18E-06	8.14E-06	2.50E-06
453	765474.4	4092674.26	9.58E-05	1.04E-04	3.69E-05	1.50E-05	1.69E-05	5.83E-06	8.00E-06	7.95E-06	2.44E-06
454	765464.65	4092695.74	9.37E-05	1.02E-04	3.61E-05	1.46E-05	1.66E-05	5.70E-06	7.83E-06	7.78E-06	2.39E-06
455	765454.9	4092717.22	9.17E-05	9.98E-05	3.53E-05	1.43E-05	1.62E-05	5.58E-06	7.66E-06	7.62E-06	2.34E-06
456	765445.15	4092738.69	8.98E-05	9.78E-05	3.46E-05	1.40E-05	1.59E-05	5.47E-06	7.50E-06	7.46E-06	2.29E-06
457	765435.4	4092760.17	8.80E-05	9.58E-05	3.39E-05	1.38E-05	1.56E-05	5.36E-06	7.35E-06	7.31E-06	2.24E-06
458	765425.65	4092781.65	8.64E-05	9.40E-05	3.33E-05	1.35E-05	1.53E-05	5.26E-06	7.21E-06	7.17E-06	2.20E-06
459	765415.9	4092803.12	8.49E-05	9.24E-05	3.27E-05	1.33E-05	1.50E-05	5.16E-06	7.09E-06	7.04E-06	2.16E-06
460	765406.15	4092824.6	8.34E-05	9.08E-05	3.21E-05	1.30E-05	1.47E-05	5.08E-06	6.97E-06	6.93E-06	2.13E-06
461	765396.4	4092846.07	8.22E-05	8.94E-05	3.16E-05	1.28E-05	1.45E-05	5.00E-06	6.86E-06	6.82E-06	2.09E-06
462	765386.65	4092867.55	8.10E-05	8.82E-05	3.12E-05	1.27E-05	1.43E-05	4.93E-06	6.76E-06	6.73E-06	2.06E-06
463	765376.9	4092889.03	8.00E-05	8.71E-05	3.08E-05	1.25E-05	1.41E-05	4.87E-06	6.68E-06	6.64E-06	2.04E-06
464	765367.15	4092910.5	7.91E-05	8.60E-05	3.04E-05	1.23E-05	1.40E-05	4.81E-06	6.60E-06	6.56E-06	2.01E-06
465	765357.41	4092931.98	7.82E-05	8.51E-05	3.01E-05	1.22E-05	1.38E-05	4.76E-06	6.53E-06	6.49E-06	1.99E-06
466	765347.66	4092953.45	7.74E-05	8.43E-05	2.98E-05	1.21E-05	1.37E-05	4.71E-06	6.46E-06	6.43E-06	1.97E-06
467	765337.91	4092974.93		8.35E-05	2.95E-05		1.35E-05			6.37E-06	
468		4092996.41		8.27E-05	2.93E-05	1.19E-05		4.62E-06	6.34E-06		1.94E-06
469	765318.41		7.53E-05	8.19E-05	2.90E-05	1.18E-05	1.33E-05	4.58E-06	6.28E-06	6.25E-06	1.92E-06
470 471	765308.66 765298.91		7.45E-05 7.38E-05	8.11E-05 8.03E-05	2.87E-05 2.84E-05	1.16E-05 1.15E-05	1.32E-05 1.30E-05	4.54E-06 4.49E-06	6.22E-06 6.16E-06	6.19E-06 6.13E-06	1.90E-06 1.88E-06
471	765289.16		7.30E-05	7.94E-05	2.84E-05 2.81E-05	1.13E-05 1.14E-05	1.29E-05	4.44E-06	6.09E-06	6.06E-06	1.86E-06
472	765279.41		7.30E-03 7.21E-05	7.94E-05 7.85E-05	2.78E-05	1.14E-05 1.13E-05	1.27E-05	4.44E-06 4.39E-06	6.02E-06	5.99E-06	1.84E-06
474	765269.66		7.21L-05 7.12E-05	7.83L-03 7.74E-05	2.78L-05 2.74E-05	1.13E-05 1.11E-05	1.26E-05	4.33E-06	5.94E-06	5.91E-06	1.84L-06
475	765259.91		7.12L-05 7.01E-05	7.74E-05 7.63E-05	2.74E-05 2.70E-05	1.11E-05 1.10E-05	1.24E-05	4.27E-06	5.86E-06	5.82E-06	1.79E-06
476	765250.16		6.90E-05	7.52E-05	2.76E-05 2.66E-05	1.10E-05 1.08E-05	1.24E-05	4.20E-06	5.77E-06	5.73E-06	1.76E-06
477	765240.42		6.79E-05	7.39E-05	2.62E-05	1.06E-05	1.20E-05	4.13E-06	5.67E-06	5.64E-06	1.73E-06
478	765230.67	4093211.17	6.67E-05	7.26E-05	2.57E-05	1.04E-05	1.18E-05	4.06E-06	5.57E-06	5.54E-06	1.70E-06
479	765220.92		6.55E-05	7.13E-05	2.52E-05	1.02E-05	1.16E-05	3.98E-06	5.47E-06	5.44E-06	1.67E-06
480	765211.17		6.43E-05	6.99E-05	2.47E-05	1.00E-05	1.14E-05	3.91E-06	5.37E-06	5.33E-06	1.64E-06
481	765201.42	4093275.6	6.30E-05	6.86E-05	2.43E-05	9.84E-06	1.11E-05	3.83E-06	5.26E-06	5.23E-06	1.61E-06
482	765191.67		6.18E-05	6.73E-05	2.38E-05	9.66E-06	1.09E-05	3.76E-06	5.16E-06	5.13E-06	1.58E-06
483	765181.92		6.07E-05	6.60E-05	2.34E-05	9.48E-06	1.07E-05	3.69E-06	5.07E-06	5.04E-06	1.55E-06
484	765172.17		5.96E-05	6.48E-05	2.29E-05	9.30E-06	1.05E-05	3.62E-06	4.97E-06	4.95E-06	1.52E-06
485	765162.42	4093361.5	5.85E-05	6.37E-05	2.25E-05	9.14E-06	1.03E-05	3.56E-06	4.89E-06	4.86E-06	1.49E-06
486	765152.67	4093382.98	5.76E-05	6.27E-05	2.22E-05	8.99E-06	1.02E-05	3.50E-06	4.81E-06	4.78E-06	1.47E-06
487	765142.92	4093404.45	5.67E-05	6.17E-05	2.18E-05	8.86E-06	1.00E-05	3.45E-06	4.73E-06	4.71E-06	1.44E-06
488	765133.17	4093425.93	5.58E-05	6.08E-05	2.15E-05	8.72E-06	9.87E-06	3.40E-06	4.66E-06	4.64E-06	1.42E-06
489	765123.43	4093447.41	5.51E-05	6.00E-05	2.12E-05	8.60E-06	9.73E-06	3.35E-06	4.60E-06	4.57E-06	1.40E-06
490	765091.63	4093477.26	5.47E-05	5.95E-05	2.11E-05	8.54E-06	9.66E-06	3.33E-06	4.57E-06	4.54E-06	1.39E-06
491		4093485.63	5.50E-05	5.98E-05	2.12E-05	8.59E-06		3.35E-06	4.59E-06	4.56E-06	1.40E-06
492	765047.53	4093494	5.53E-05	6.02E-05	2.13E-05		9.77E-06		4.62E-06		1.41E-06

493	765025.48	4093502.37	5.56E-05	6.05E-05	2.14E-05	8.68E-06	9.82E-06	3.38E-06	4.64E-06	4.61E-06	1.42E-06
494	765003.43	4093510.75	5.58E-05	6.08E-05	2.15E-05	8.72E-06	9.86E-06	3.40E-06	4.66E-06	4.64E-06	1.42E-06
495	764981.38	4093519.12	5.61E-05	6.10E-05	2.16E-05	8.75E-06	9.90E-06	3.41E-06	4.68E-06	4.65E-06	1.43E-06
496	764959.33	4093527.49	5.62E-05	6.12E-05	2.17E-05	8.78E-06	9.94E-06	3.42E-06	4.70E-06	4.67E-06	1.43E-06
497	764937.28	4093535.87	5.64E-05	6.14E-05	2.17E-05	8.80E-06	9.96E-06	3.43E-06	4.71E-06	4.68E-06	1.44E-06
498	764915.23	4093544.24	5.65E-05	6.15E-05	2.18E-05	8.82E-06	9.98E-06	3.44E-06	4.72E-06	4.69E-06	1.44E-06
499	764893.18	4093552.61	5.65E-05	6.15E-05	2.18E-05	8.82E-06	9.98E-06	3.44E-06	4.72E-06	4.69E-06	1.44E-06
500	764871.14	4093560.98	5.65E-05	6.14E-05	2.17E-05	8.82E-06	9.97E-06	3.44E-06	4.71E-06	4.69E-06	1.44E-06
501	764849.09	4093569.36	5.64E-05	6.14E-05	2.17E-05	8.80E-06	9.96E-06	3.43E-06	4.71E-06	4.68E-06	1.44E-06
502	764827.04	4093577.73	5.62E-05	6.12E-05	2.17E-05	8.78E-06	9.94E-06	3.42E-06	4.70E-06	4.67E-06	1.43E-06
503	764804.99	4093586.1	5.61E-05	6.10E-05	2.16E-05	8.75E-06	9.90E-06	3.41E-06	4.68E-06	4.65E-06	1.43E-06
504	764782.94	4093594.48	5.58E-05	6.08E-05	2.15E-05	8.72E-06	9.86E-06	3.40E-06	4.66E-06	4.64E-06	1.42E-06
505	764760.89	4093602.85	5.56E-05	6.05E-05	2.14E-05	8.68E-06	9.82E-06	3.38E-06	4.64E-06	4.61E-06	1.42E-06
506	764738.84	4093611.22	5.53E-05	6.02E-05	2.13E-05	8.63E-06	9.76E-06	3.36E-06	4.61E-06	4.59E-06	1.41E-06
507	764716.79	4093619.59	5.49E-05	5.98E-05	2.12E-05	8.58E-06	9.71E-06	3.34E-06	4.59E-06	4.56E-06	1.40E-06
508 509	764694.74 764672.69	4093627.97 4093636.34	5.46E-05	5.94E-05 5.91E-05	2.10E-05	8.53E-06	9.65E-06 9.59E-06	3.32E-06	4.56E-06	4.53E-06 4.51E-06	1.39E-06 1.38E-06
510	764650.64	4093636.34	5.43E-05 5.39E-05	5.87E-05	2.09E-05 2.08E-05	8.48E-06 8.43E-06	9.53E-06	3.30E-06 3.28E-06	4.53E-06 4.50E-06	4.48E-06	1.37E-06
510	764628.59	4093653.09	5.37E-05	5.84E-05	2.08E-03 2.07E-05	8.38E-06	9.48E-06	3.27E-06	4.30E-06 4.48E-06	4.46E-06	1.37E-06
512	764606.54	4093661.46	5.34E-05	5.81E-05	2.06E-05	8.34E-06	9.44E-06	3.27E-00 3.25E-06	4.46E-06	4.44E-06	1.36E-06
513	764584.5	4093669.83	5.32E-05	5.79E-05	2.05E-05	8.31E-06	9.40E-06	3.24E-06	4.44E-06	4.44E-06	1.36E-06
514	764562.45	4093678.2	5.30E-05	5.77E-05	2.04E-05	8.28E-06	9.37E-06	3.23E-06	4.43E-06	4.40E-06	1.35E-06
515	764540.4	4093686.58	5.29E-05	5.76E-05	2.04E-05	8.27E-06	9.35E-06	3.22E-06	4.42E-06	4.40E-06	1.35E-06
516	764518.35	4093694.95	5.29E-05	5.76E-05	2.04E-05	8.26E-06	9.34E-06	3.22E-06	4.42E-06	4.39E-06	1.35E-06
517	764496.3	4093703.32	5.29E-05	5.75E-05	2.04E-05	8.26E-06	9.34E-06	3.22E-06	4.41E-06	4.39E-06	1.35E-06
518	764474.25	4093711.7	5.29E-05	5.75E-05	2.04E-05	8.26E-06	9.34E-06	3.22E-06	4.41E-06	4.39E-06	1.35E-06
519	764452.2	4093720.07	5.29E-05	5.76E-05	2.04E-05	8.27E-06	9.35E-06	3.22E-06	4.42E-06	4.39E-06	1.35E-06
520	764430.15	4093728.44	5.30E-05	5.77E-05	2.04E-05	8.28E-06	9.37E-06	3.23E-06	4.43E-06	4.40E-06	1.35E-06
521	764408.1	4093736.81	5.32E-05	5.79E-05	2.05E-05	8.30E-06	9.39E-06	3.23E-06	4.44E-06	4.41E-06	1.35E-06
522	764386.05	4093745.19	5.33E-05	5.80E-05	2.05E-05	8.33E-06	9.42E-06	3.24E-06	4.45E-06	4.43E-06	1.36E-06
523	764364	4093753.56	5.35E-05	5.83E-05	2.06E-05	8.36E-06	9.46E-06	3.26E-06	4.47E-06	4.45E-06	1.36E-06
524	764341.95	4093761.93	5.38E-05	5.85E-05	2.07E-05	8.40E-06	9.50E-06	3.27E-06	4.49E-06	4.47E-06	1.37E-06
525	764319.91	4093770.3	5.41E-05	5.89E-05	2.08E-05	8.45E-06	9.56E-06	3.29E-06	4.52E-06	4.49E-06	1.38E-06
526	764297.86	4093778.68	5.44E-05	5.92E-05	2.10E-05	8.50E-06	9.62E-06	3.31E-06	4.55E-06	4.52E-06	1.39E-06
527	764275.81	4093787.05	5.48E-05	5.97E-05	2.11E-05	8.56E-06	9.69E-06	3.34E-06	4.58E-06	4.55E-06	1.40E-06
528	764253.76	4093795.42	5.52E-05	6.01E-05	2.13E-05	8.62E-06	9.76E-06	3.36E-06	4.61E-06	4.58E-06	1.41E-06
529	764231.71	4093803.8	5.56E-05	6.06E-05	2.14E-05	8.69E-06	9.83E-06	3.39E-06	4.65E-06	4.62E-06	1.42E-06
530	764209.66	4093812.17	5.61E-05	6.11E-05	2.16E-05	8.76E-06	9.91E-06	3.41E-06	4.69E-06	4.66E-06	1.43E-06
531	765523.14		1.07E-04	1.16E-04	4.12E-05	1.67E-05	1.89E-05	6.51E-06	8.94E-06	8.88E-06	2.73E-06
532	765523.99	4092542.75	1.11E-04	1.20E-04	4.26E-05	1.73E-05	1.96E-05	6.74E-06	9.24E-06	9.19E-06	2.82E-06
533	765524.84	4092518.62	1.14E-04	1.25E-04	4.41E-05	1.79E-05	2.02E-05	6.97E-06	9.56E-06	9.50E-06	2.92E-06
534	765525.7	4092494.48	1.18E-04	1.29E-04	4.56E-05	1.85E-05	2.09E-05	7.20E-06	9.89E-06	9.83E-06	3.02E-06
535	765526.55	4092470.35	1.22E-04	1.33E-04	4.71E-05	1.91E-05	2.16E-05	7.44E-06	1.02E-05	1.02E-05	3.12E-06
536	765527.4	4092446.21	1.26E-04	1.38E-04	4.87E-05	1.97E-05	2.23E-05	7.69E-06	1.05E-05	1.05E-05	3.22E-06
537	765528.25		1.30E-04	1.42E-04	5.02E-05	2.04E-05	2.30E-05	7.93E-06	1.09E-05	1.08E-05	3.32E-06
538	765529.1		1.35E-04	1.46E-04	5.18E-05	2.10E-05	2.38E-05	8.18E-06	1.12E-05	1.12E-05	3.43E-06
539	765529.95	4092373.81	1.39E-04	1.51E-04	5.34E-05	2.17E-05	2.45E-05	8.44E-06	1.16E-05	1.15E-05	3.53E-06
540	765530.8		1.43E-04	1.56E-04	5.50E-05	2.23E-05	2.52E-05	8.69E-06	1.19E-05	1.19E-05	3.64E-06
541	765531.66		1.47E-04	1.60E-04	5.67E-05	2.30E-05	2.60E-05	8.96E-06	1.23E-05	1.22E-05	3.75E-06
542	765532.51		1.52E-04	1.65E-04	5.84E-05	2.37E-05	2.68E-05	9.22E-06	1.27E-05	1.26E-05	3.86E-06
543	765533.36		1.56E-04	1.70E-04	6.01E-05	2.44E-05	2.76E-05	9.49E-06	1.30E-05	1.30E-05	3.97E-06
544 545	765534.21		1.61E-04	1.75E-04	6.18E-05	2.51E-05	2.84E-05	9.77E-06	1.34E-05	1.33E-05	4.09E-06
545 546	765535.06 765713.17	4092229 4092595.62	1.65E-04 8.65E-05	1.80E-04 9.42E-05	6.36E-05 3.33E-05	2.58E-05 1.35E-05	2.92E-05 1.53E-05	1.01E-05 5.26E-06	1.38E-05 7.22E-06	1.37E-05 7.18E-06	4.21E-06 2.20E-06
546 547	765713.17	4092595.62	8.49E-05	9.42E-05 9.24E-05	3.33E-05 3.27E-05	1.33E-05	1.50E-05	5.26E-06 5.16E-06	7.22E-06 7.09E-06	7.18E-06 7.04E-06	2.20E-06 2.16E-06
548	765693.49	4092638.98	8.49E-05 8.32E-05	9.24E-05 9.06E-05	3.27E-05 3.20E-05	1.33E-05 1.30E-05	1.47E-05	5.16E-06 5.06E-06	6.95E-06	6.91E-06	2.10E-06 2.12E-06
549	765683.65	4092660.67	8.16E-05	9.06E-05 8.88E-05	3.14E-05	1.30E-03 1.27E-05	1.47E-05	4.96E-06	6.81E-06	6.77E-06	2.12E-06 2.08E-06
550	765673.8	4092682.35	7.99E-05	8.70E-05	3.14E-05 3.08E-05	1.27E-05	1.44E-05	4.86E-06	6.67E-06	6.64E-06	2.04E-06
551	765663.96	4092704.03	7.83E-05	8.53E-05	3.08E-05	1.23E-05	1.41L-05 1.38E-05	4.77E-06	6.54E-06	6.50E-06	2.04L-06 2.00E-06
552	765654.12		7.68E-05	8.36E-05	2.96E-05	1.22E-05 1.20E-05	1.36E-05	4.67E-06	6.41E-06	6.38E-06	1.96E-06
553	765644.27	4092747.4	7.53E-05	8.19E-05	2.90E-05	1.18E-05	1.33E-05	4.58E-06	6.29E-06	6.25E-06	1.92E-06
554		4092769.08	7.38E-05	8.04E-05	2.84E-05		1.30E-05		6.17E-06		1.88E-06

555	765624.59	4092790.76	7.25E-05	7.89E-05	2.79E-05	1.13E-05	1.28E-05	4.41E-06	6.05E-06	6.02E-06	1.85E-06
556	765614.75	4092812.44	7.12E-05	7.75E-05	2.74E-05	1.11E-05	1.26E-05	4.33E-06	5.95E-06	5.91E-06	1.81E-06
557	765604.9	4092834.13	7.00E-05	7.62E-05	2.70E-05	1.09E-05	1.24E-05	4.26E-06	5.85E-06	5.81E-06	1.78E-06
558	765595.06	4092855.81	6.89E-05	7.50E-05	2.66E-05	1.08E-05	1.22E-05	4.20E-06	5.76E-06	5.72E-06	1.76E-06
559	765585.22	4092877.49	6.79E-05	7.39E-05	2.62E-05	1.06E-05	1.20E-05	4.13E-06	5.67E-06	5.64E-06	1.73E-06
560	765575.37	4092899.18	6.70E-05	7.29E-05	2.58E-05	1.05E-05	1.18E-05	4.08E-06	5.60E-06	5.56E-06	1.71E-06
561	765565.53	4092920.86	6.62E-05	7.21E-05	2.55E-05	1.03E-05	1.17E-05	4.03E-06	5.53E-06	5.50E-06	1.69E-06
562	765555.69	4092942.54	6.55E-05	7.13E-05	2.52E-05	1.02E-05	1.16E-05	3.98E-06	5.47E-06	5.44E-06	1.67E-06
563	765545.84	4092964.22	6.48E-05	7.06E-05	2.50E-05	1.01E-05	1.15E-05	3.94E-06	5.41E-06	5.38E-06	1.65E-06
564	765536	4092985.91	6.42E-05	6.99E-05	2.47E-05	1.00E-05	1.14E-05	3.91E-06	5.36E-06	5.33E-06	1.64E-06
565	765526.16	4093007.59	6.37E-05	6.94E-05	2.45E-05	9.95E-06	1.13E-05	3.88E-06	5.32E-06	5.29E-06	1.62E-06
566	765516.32	4093029.27	6.33E-05	6.89E-05	2.44E-05	9.88E-06	1.12E-05	3.85E-06	5.28E-06	5.25E-06	1.61E-06
567	765506.47	4093050.95	6.28E-05	6.84E-05	2.42E-05	9.81E-06	1.11E-05	3.82E-06	5.24E-06	5.21E-06	1.60E-06
568	765496.63	4093072.64	6.24E-05	6.79E-05	2.40E-05	9.74E-06	1.10E-05	3.80E-06	5.21E-06	5.18E-06	1.59E-06
569	765486.79	4093094.32	6.19E-05	6.74E-05	2.38E-05	9.67E-06	1.09E-05	3.77E-06	5.17E-06	5.14E-06	1.58E-06
570	765476.94	4093116	6.15E-05	6.69E-05	2.37E-05	9.60E-06	1.09E-05	3.74E-06	5.13E-06	5.10E-06	1.57E-06
571	765467.1	4093137.68	6.10E-05	6.64E-05	2.35E-05	9.52E-06	1.08E-05	3.71E-06	5.09E-06	5.06E-06	1.55E-06
572	765457.26	4093159.37	6.05E-05	6.58E-05	2.33E-05	9.44E-06	1.07E-05	3.68E-06	5.05E-06	5.02E-06	1.54E-06
573	765447.42	4093181.05	5.99E-05	6.52E-05	2.31E-05	9.36E-06	1.06E-05	3.65E-06	5.00E-06	4.97E-06	1.53E-06
574	765437.57	4093202.73	5.93E-05	6.46E-05	2.28E-05	9.26E-06	1.05E-05	3.61E-06	4.95E-06	4.92E-06	1.51E-06
575	765427.73	4093224.42	5.87E-05	6.38E-05	2.26E-05	9.16E-06	1.04E-05	3.57E-06	4.90E-06	4.87E-06	1.49E-06
576	765417.89	4093246.1	5.79E-05	6.31E-05	2.23E-05	9.05E-06	1.02E-05	3.53E-06	4.84E-06	4.81E-06	1.48E-06
577	765408.04	4093267.78	5.72E-05	6.22E-05	2.20E-05	8.93E-06	1.01E-05	3.48E-06	4.77E-06	4.75E-06	1.46E-06
578	765398.2	4093289.46	5.64E-05	6.13E-05	2.17E-05	8.80E-06	9.96E-06	3.43E-06	4.71E-06	4.68E-06	1.44E-06
579	765388.36	4093311.15	5.55E-05	6.04E-05	2.14E-05	8.67E-06	9.80E-06	3.38E-06	4.63E-06	4.61E-06	1.41E-06
580	765378.52	4093332.83	5.46E-05	5.94E-05	2.10E-05	8.53E-06	9.65E-06	3.32E-06	4.56E-06	4.53E-06	1.39E-06
581	765368.67	4093354.51	5.37E-05	5.85E-05	2.07E-05	8.39E-06	9.49E-06	3.27E-06	4.48E-06	4.46E-06	1.37E-06
582	765358.83	4093376.19	5.28E-05	5.74E-05	2.03E-05	8.24E-06	9.32E-06	3.21E-06	4.41E-06	4.38E-06	1.34E-06
583	765348.99	4093397.88	5.19E-05	5.65E-05	2.00E-05	8.10E-06	9.16E-06	3.16E-06	4.33E-06	4.31E-06	1.32E-06
584	765339.14	4093419.56	5.10E-05	5.55E-05	1.96E-05	7.96E-06	9.01E-06	3.10E-06	4.26E-06	4.23E-06	1.30E-06
585	765329.3	4093441.24	5.01E-05	5.45E-05	1.93E-05	7.83E-06	8.85E-06	3.05E-06	4.18E-06	4.16E-06	1.28E-06
586	765319.46	4093462.92	4.93E-05	5.37E-05	1.90E-05	7.70E-06	8.71E-06	3.00E-06	4.12E-06	4.09E-06	1.26E-06
587	765309.61	4093484.61	4.86E-05	5.28E-05	1.87E-05	7.58E-06	8.58E-06	2.95E-06	4.05E-06	4.03E-06	1.24E-06
588	765299.77	4093506.29	4.79E-05	5.21E-05	1.84E-05	7.48E-06	8.46E-06	2.91E-06	4.00E-06	3.97E-06	1.22E-06
589 590	765289.93 765280.09	4093527.97 4093549.66	4.72E-05 4.66E-05	5.14E-05 5.08E-05	1.82E-05 1.80E-05	7.38E-06 7.28E-06	8.35E-06 8.24E-06	2.87E-06 2.84E-06	3.94E-06 3.89E-06	3.92E-06 3.87E-06	1.20E-06 1.19E-06
591		4093549.86	4.60E-05	5.02E-05	1.78E-05		8.15E-06			3.83E-06	
592		4093571.34		4.97E-05	1.76E-05	7.20L-00 7.13E-06	8.06E-06		3.83E-06	3.79E-06	1.16E-06
593	765228.3		4.54E-05	4.94E-05	1.75E-05	7.13L-06 7.09E-06	8.03E-06	2.76E-06	3.79E-06	3.77E-06	1.16E-06
594	765206.04		4.57E-05	4.97E-05	1.76E-05	7.13E-06	8.07E-06	2.78E-06	3.81E-06	3.77E-00 3.79E-06	1.16E-06
595	765183.77		4.59E-05	5.00E-05	1.77E-05	7.17E-06	8.11E-06	2.79E-06	3.83E-06	3.81E-06	1.17E-06
596	765161.51		4.61E-05	5.02E-05	1.77E 05	7.20E-06	8.15E-06	2.81E-06	3.85E-06	3.83E-06	1.18E-06
597	765139.25	4093656.97	4.63E-05	5.04E-05	1.78E-05	7.24E-06	8.19E-06	2.82E-06	3.87E-06	3.85E-06	1.18E-06
598	765116.99	4093665.42	4.65E-05	5.06E-05	1.79E-05	7.26E-06	8.21E-06	2.83E-06	3.88E-06	3.86E-06	1.18E-06
599	765094.73	4093673.88	4.67E-05	5.08E-05	1.80E-05	7.29E-06	8.24E-06	2.84E-06	3.90E-06	3.87E-06	1.19E-06
600	765072.47		4.68E-05	5.09E-05	1.80E-05	7.30E-06	8.26E-06	2.84E-06	3.90E-06	3.88E-06	1.19E-06
601	765050.21	4093690.78	4.68E-05	5.10E-05	1.80E-05	7.31E-06	8.27E-06	2.85E-06	3.91E-06	3.89E-06	1.19E-06
602	765027.95	4093699.24	4.68E-05	5.10E-05	1.80E-05	7.31E-06	8.28E-06	2.85E-06	3.91E-06	3.89E-06	1.19E-06
603	765005.68	4093707.69	4.68E-05	5.10E-05	1.80E-05	7.31E-06	8.27E-06	2.85E-06	3.91E-06	3.89E-06	1.19E-06
604	764983.42		4.68E-05	5.09E-05	1.80E-05	7.31E-06	8.26E-06	2.85E-06	3.91E-06	3.88E-06	1.19E-06
605	764961.16	4093724.6	4.67E-05	5.08E-05	1.80E-05	7.29E-06	8.25E-06	2.84E-06	3.90E-06	3.87E-06	1.19E-06
606	764938.9		4.66E-05	5.07E-05	1.79E-05	7.27E-06	8.23E-06	2.83E-06	3.89E-06	3.86E-06	1.19E-06
607	764916.64	4093741.5	4.64E-05	5.05E-05	1.79E-05	7.25E-06	8.20E-06	2.82E-06	3.88E-06	3.85E-06	1.18E-06
608	764894.38		4.62E-05	5.03E-05	1.78E-05	7.22E-06	8.17E-06	2.81E-06	3.86E-06	3.84E-06	1.18E-06
609	764872.12		4.60E-05	5.01E-05	1.77E-05	7.19E-06	8.13E-06	2.80E-06	3.84E-06	3.82E-06	1.17E-06
610	764849.86	4093766.86	4.58E-05	4.98E-05	1.76E-05	7.15E-06	8.09E-06	2.79E-06	3.82E-06	3.80E-06	1.17E-06
611	764827.59	4093775.32	4.55E-05	4.96E-05	1.75E-05	7.11E-06	8.05E-06	2.77E-06	3.80E-06	3.78E-06	1.16E-06
612	764805.33	4093783.77	4.53E-05	4.93E-05	1.74E-05	7.07E-06	8.00E-06	2.76E-06	3.78E-06	3.76E-06	1.15E-06
613	764783.07	4093792.22	4.50E-05	4.90E-05	1.73E-05	7.03E-06	7.96E-06	2.74E-06	3.76E-06	3.74E-06	1.15E-06
614	764760.81	4093800.68	4.48E-05	4.87E-05	1.72E-05	6.99E-06	7.91E-06	2.72E-06	3.74E-06	3.72E-06	1.14E-06
615	764738.55	4093809.13	4.45E-05	4.85E-05	1.71E-05	6.95E-06	7.87E-06	2.71E-06	3.72E-06	3.70E-06	1.13E-06
616	764716.29	4093817.58	4.43E-05	4.82E-05	1.71E-05	6.92E-06	7.83E-06	2.69E-06	3.70E-06	3.68E-06	1.13E-06

617	764694.03	4093826.04	4.41E-05	4.80E-05	1.70E-05	6.89E-06	7.79E-06	2.68E-06	3.68E-06	3.66E-06	1.12E-06
618	764671.77	4093834.49	4.39E-05	4.78E-05	1.69E-05	6.86E-06	7.76E-06	2.67E-06	3.67E-06	3.65E-06	1.12E-06
619	764649.5	4093842.94	4.38E-05	4.77E-05	1.69E-05	6.84E-06	7.74E-06	2.66E-06	3.66E-06	3.63E-06	1.12E-06
620	764627.24	4093851.4	4.37E-05	4.75E-05	1.68E-05	6.82E-06	7.72E-06	2.66E-06	3.65E-06	3.63E-06	1.11E-06
621	764604.98	4093859.85	4.36E-05	4.75E-05	1.68E-05	6.81E-06	7.71E-06	2.65E-06	3.64E-06	3.62E-06	1.11E-06
622	764582.72	4093868.3	4.36E-05	4.75E-05	1.68E-05	6.81E-06	7.70E-06	2.65E-06	3.64E-06	3.62E-06	1.11E-06
623	764560.46	4093876.76	4.36E-05	4.75E-05	1.68E-05	6.81E-06	7.70E-06	2.65E-06	3.64E-06	3.62E-06	1.11E-06
624	764538.2	4093885.21	4.36E-05	4.75E-05	1.68E-05	6.82E-06	7.71E-06	2.66E-06	3.64E-06	3.62E-06	1.11E-06
625	764515.94	4093893.66	4.37E-05	4.76E-05	1.68E-05	6.83E-06	7.73E-06	2.66E-06	3.65E-06	3.63E-06	1.11E-06
626	764493.68	4093902.12	4.38E-05	4.77E-05	1.69E-05	6.84E-06	7.74E-06	2.67E-06	3.66E-06	3.64E-06	1.12E-06
627	764471.41	4093910.57	4.39E-05	4.78E-05	1.69E-05	6.86E-06	7.76E-06	2.67E-06	3.67E-06	3.65E-06	1.12E-06
628	764449.15	4093919.02	4.41E-05	4.80E-05	1.70E-05	6.88E-06	7.79E-06	2.68E-06	3.68E-06	3.66E-06	1.12E-06
629	764426.89	4093927.48	4.42E-05	4.81E-05	1.70E-05	6.91E-06	7.81E-06	2.69E-06	3.69E-06	3.67E-06	1.13E-06
630	764404.63	4093935.93	4.44E-05	4.83E-05	1.71E-05	6.94E-06	7.85E-06	2.70E-06	3.71E-06	3.69E-06	1.13E-06
631	764382.37	4093944.38	4.46E-05	4.86E-05	1.72E-05	6.97E-06	7.88E-06	2.71E-06	3.73E-06	3.70E-06	1.14E-06
632	764360.11	4093952.84	4.48E-05	4.88E-05	1.73E-05	7.00E-06	7.92E-06	2.73E-06	3.74E-06	3.72E-06	1.14E-06
633	764337.85	4093961.29	4.51E-05	4.90E-05	1.74E-05	7.04E-06	7.96E-06	2.74E-06	3.76E-06	3.74E-06	1.15E-06
634	764315.59	4093969.74	4.53E-05	4.93E-05	1.75E-05	7.08E-06	8.01E-06	2.76E-06	3.78E-06	3.76E-06	1.15E-06
635	764293.33	4093978.2	4.56E-05	4.97E-05	1.76E-05	7.13E-06	8.06E-06	2.78E-06	3.81E-06	3.79E-06	1.16E-06
636	764271.06	4093986.65	4.59E-05	5.00E-05	1.77E-05	7.17E-06	8.11E-06	2.79E-06	3.83E-06	3.81E-06	1.17E-06
637	764248.8	4093995.1	4.62E-05	5.03E-05	1.78E-05	7.22E-06	8.17E-06	2.81E-06	3.86E-06	3.84E-06	1.18E-06
638	764226.54	4094003.56	4.66E-05	5.07E-05	1.79E-05	7.28E-06	8.23E-06	2.84E-06	3.89E-06	3.87E-06	1.19E-06
639	764204.28	4094012.01	4.69E-05	5.11E-05	1.81E-05	7.33E-06	8.29E-06	2.86E-06	3.92E-06	3.90E-06	1.20E-06
640	765723.02	4092573.94	8.82E-05	9.60E-05	3.40E-05	1.38E-05	1.56E-05	5.36E-06	7.36E-06	7.32E-06	2.25E-06
641	765723.87	4092549.8	9.08E-05	9.88E-05	3.50E-05	1.42E-05	1.60E-05	5.52E-06	7.58E-06	7.54E-06	2.31E-06
642	765724.72	4092525.67	9.34E-05	1.02E-04	3.60E-05	1.46E-05	1.65E-05	5.68E-06	7.80E-06	7.76E-06	2.38E-06
643	765725.57	4092501.53	9.61E-05	1.05E-04	3.70E-05	1.50E-05	1.70E-05	5.85E-06	8.03E-06	7.98E-06	2.45E-06
644	765726.42	4092477.4	9.88E-05	1.08E-04	3.81E-05	1.54E-05	1.75E-05	6.01E-06	8.25E-06	8.21E-06	2.52E-06
645	765727.27	4092453.26	1.02E-04	1.11E-04	3.91E-05	1.59E-05	1.80E-05	6.18E-06	8.48E-06	8.44E-06	2.59E-06
646	765728.13	4092429.13	1.04E-04	1.14E-04	4.02E-05	1.63E-05	1.84E-05	6.35E-06	8.72E-06	8.67E-06	2.66E-06
647	765728.98	4092405	1.07E-04	1.17E-04	4.13E-05	1.67E-05	1.89E-05	6.52E-06	8.95E-06	8.90E-06	2.73E-06
648	765729.83	4092380.86	1.10E-04	1.20E-04	4.24E-05	1.72E-05	1.94E-05	6.70E-06	9.19E-06	9.14E-06	2.80E-06
649	765730.68	4092356.73	1.13E-04	1.23E-04	4.35E-05	1.76E-05	1.99E-05	6.87E-06	9.43E-06	9.37E-06	2.88E-06
650	765731.53	4092332.59	1.16E-04	1.26E-04	4.46E-05	1.81E-05	2.05E-05	7.04E-06	9.67E-06	9.61E-06	2.95E-06
651	765732.38	4092308.46	1.19E-04	1.29E-04	4.57E-05	1.85E-05	2.10E-05	7.22E-06	9.91E-06	9.85E-06	3.02E-06
652	765733.23	4092284.32	1.22E-04	1.32E-04	4.68E-05	1.90E-05	2.15E-05	7.40E-06	1.02E-05	1.01E-05	3.10E-06
653	765734.09	4092260.19	1.25E-04	1.36E-04	4.80E-05	1.95E-05	2.20E-05	7.58E-06	1.04E-05	1.03E-05	3.17E-06
654	765734.94	4092236.06	1.28E-04	1.39E-04	4.91E-05		2.25E-05	7.76E-06	1.07E-05	1.06E-05	3.25E-06
655	765912.98	4092602.83	7.34E-05	7.99E-05	2.83E-05	1.15E-05	1.30E-05	4.46E-06	6.13E-06	6.09E-06	1.87E-06
656	765903.06	4092624.67	7.22E-05	7.86E-05	2.78E-05	1.13E-05	1.28E-05	4.39E-06	6.03E-06	5.99E-06	1.84E-06
657	765893.15	4092646.52	7.09E-05	7.72E-05	2.73E-05	1.11E-05	1.25E-05	4.32E-06	5.92E-06	5.89E-06	1.81E-06
658	765883.23	4092668.36	6.97E-05	7.58E-05	2.68E-05	1.09E-05	1.23E-05	4.24E-06	5.82E-06	5.78E-06	1.77E-06
659	765873.31	4092690.2	6.84E-05	7.44E-05	2.63E-05	1.07E-05	1.21E-05	4.16E-06	5.71E-06	5.68E-06	1.74E-06
660	765863.4	4092712.05	6.71E-05	7.31E-05	2.59E-05	1.05E-05	1.19E-05	4.08E-06	5.61E-06	5.57E-06	1.71E-06
661	765853.48	4092733.89	6.59E-05	7.17E-05	2.54E-05	1.03E-05	1.16E-05	4.01E-06	5.50E-06	5.47E-06	1.68E-06
662	765843.57	4092755.73	6.47E-05	7.04E-05	2.49E-05	1.01E-05	1.14E-05	3.94E-06	5.40E-06	5.37E-06	1.65E-06
663	765833.65	4092777.58	6.35E-05	6.91E-05	2.45E-05	9.92E-06	1.12E-05	3.86E-06	5.30E-06	5.27E-06	1.62E-06
664	765823.73	4092799.42	6.24E-05	6.79E-05	2.40E-05	9.74E-06	1.10E-05	3.79E-06	5.21E-06	5.18E-06	1.59E-06
665	765813.82	4092821.26	6.13E-05	6.67E-05	2.36E-05	9.57E-06	1.08E-05	3.73E-06	5.12E-06	5.09E-06	1.56E-06
666	765803.9	4092843.11	6.03E-05	6.56E-05	2.32E-05	9.41E-06	1.06E-05	3.67E-06	5.03E-06	5.00E-06	1.54E-06
667	765793.99	4092864.95	5.93E-05	6.46E-05	2.28E-05	9.26E-06	1.05E-05	3.61E-06	4.95E-06	4.92E-06	1.51E-06
668	765784.07	4092886.79	5.84E-05	6.36E-05	2.25E-05	9.13E-06	1.03E-05	3.56E-06	4.88E-06	4.85E-06	1.49E-06
669		4092908.64	5.76E-05	6.27E-05	2.22E-05	9.00E-06	1.02E-05	3.51E-06	4.81E-06	4.78E-06	1.47E-06
670		4092930.48	5.69E-05	6.19E-05	2.19E-05	8.89E-06	1.01E-05	3.46E-06	4.75E-06	4.72E-06	1.45E-06
671		4092952.32	5.62E-05	6.12E-05	2.17E-05	8.78E-06	9.94E-06	3.42E-06	4.70E-06	4.67E-06	1.43E-06
672		4092974.17	5.56E-05	6.06E-05	2.14E-05	8.69E-06	9.83E-06	3.39E-06	4.65E-06	4.62E-06	1.42E-06
673	765734.49		5.51E-05	6.00E-05	2.12E-05	8.61E-06		3.35E-06	4.60E-06	4.57E-06	1.40E-06
674	765724.58		5.46E-05	5.95E-05	2.10E-05	8.53E-06	9.65E-06	3.32E-06	4.56E-06	4.54E-06	1.39E-06
675	765714.66	4093039.7	5.42E-05	5.90E-05	2.09E-05	8.47E-06		3.30E-06	4.53E-06	4.50E-06	1.38E-06
676		4093061.54	5.38E-05	5.86E-05	2.07E-05	8.41E-06		3.28E-06	4.49E-06	4.47E-06	1.37E-06
677		4093083.38	5.35E-05	5.82E-05	2.06E-05	8.35E-06		3.25E-06	4.47E-06	4.44E-06	1.36E-06
678		4093105.23	5.32E-05	5.79E-05	2.05E-05		9.39E-06		4.44E-06	4.41E-06	1.35E-06
						, .				~~	00

679	765675	4093127.07	5.29E-05	5.76E-05	2.04E-05	8.26E-06	9.34E-06	3.22E-06	4.42E-06	4.39E-06	1.35E-06
680	765665.08	4093148.91	5.26E-05	5.72E-05	2.02E-05	8.21E-06	9.29E-06	3.20E-06	4.39E-06	4.36E-06	1.34E-06
681	765655.17	4093170.76	5.23E-05	5.69E-05	2.01E-05	8.17E-06	9.24E-06	3.18E-06	4.37E-06	4.34E-06	1.33E-06
682	765645.25	4093192.6	5.20E-05	5.66E-05	2.00E-05	8.12E-06	9.19E-06	3.16E-06	4.34E-06	4.32E-06	1.32E-06
683	765635.33	4093214.44	5.17E-05	5.62E-05	1.99E-05	8.07E-06	9.13E-06	3.14E-06	4.31E-06	4.29E-06	1.32E-06
684	765625.42	4093236.28	5.13E-05	5.59E-05	1.98E-05	8.02E-06	9.07E-06	3.12E-06	4.29E-06	4.26E-06	1.31E-06
685	765615.5	4093258.13	5.10E-05	5.55E-05	1.96E-05	7.96E-06	9.01E-06	3.10E-06	4.26E-06	4.23E-06	1.30E-06
686	765605.59	4093279.97	5.06E-05	5.51E-05	1.95E-05	7.90E-06	8.94E-06	3.08E-06	4.22E-06	4.20E-06	1.29E-06
687	765595.67	4093301.81	5.00E 05 5.02E-05	5.46E-05	1.93E-05	7.84E-06	8.86E-06	3.05E-06	4.19E-06	4.17E-06	1.28E-06
688	765585.75	4093323.66	4.97E-05	5.41E-05		7.76E-06	8.78E-06				1.27E-06
					1.91E-05			3.02E-06	4.15E-06	4.13E-06	
689	765575.84	4093345.5	4.92E-05	5.36E-05	1.89E-05	7.68E-06	8.69E-06	2.99E-06	4.11E-06	4.08E-06	1.25E-06
690	765565.92	4093367.34	4.87E-05	5.30E-05	1.87E-05	7.60E-06	8.60E-06	2.96E-06	4.06E-06	4.04E-06	1.24E-06
691	765556.01	4093389.19	4.80E-05	5.23E-05	1.85E-05	7.50E-06	8.49E-06	2.92E-06	4.01E-06	3.99E-06	1.22E-06
692	765546.09	4093411.03	4.74E-05	5.16E-05	1.82E-05	7.40E-06	8.37E-06	2.88E-06	3.96E-06	3.93E-06	1.21E-06
693	765536.18	4093432.87	4.67E-05	5.08E-05	1.80E-05	7.30E-06	8.25E-06	2.84E-06	3.90E-06	3.88E-06	1.19E-06
694	765526.26	4093454.72	4.60E-05	5.01E-05	1.77E-05	7.19E-06	8.13E-06	2.80E-06	3.84E-06	3.82E-06	1.17E-06
695	765516.34	4093476.56	4.53E-05	4.93E-05	1.74E-05	7.07E-06	8.00E-06	2.76E-06	3.78E-06	3.76E-06	1.15E-06
696	765506.43	4093498.4	4.46E-05	4.85E-05	1.72E-05	6.96E-06	7.88E-06	2.71E-06	3.72E-06	3.70E-06	1.14E-06
697	765496.51	4093520.25	4.39E-05	4.77E-05	1.69E-05	6.85E-06	7.75E-06	2.67E-06	3.66E-06	3.64E-06	1.12E-06
698	765486.6	4093542.09	4.32E-05	4.70E-05	1.66E-05	6.74E-06	7.63E-06	2.63E-06	3.60E-06	3.58E-06	1.10E-06
699	765476.68	4093563.93	4.25E-05	4.63E-05	1.64E-05	6.64E-06	7.51E-06	2.59E-06	3.55E-06	3.53E-06	1.08E-06
700	765466.77	4093585.78	4.19E-05	4.56E-05	1.61E-05	6.54E-06	7.40E-06	2.55E-06	3.50E-06	3.48E-06	1.07E-06
701	765456.85	4093607.62	4.13E-05	4.50E-05	1.59E-05	6.46E-06	7.30E-06	2.52E-06	3.45E-06	3.43E-06	1.05E-06
702	765446.93	4093629.46	4.09E-05	4.45E-05	1.57E-05	6.38E-06	7.22E-06	2.49E-06	3.41E-06	3.39E-06	1.04E-06
703	765437.02	4093651.31	4.04E-05	4.40E-05	1.56E-05	6.31E-06	7.14E-06	2.46E-06	3.37E-06	3.35E-06	1.03E-06
704	765427.1	4093673.15	4.00E-05	4.35E-05	1.54E-05	6.24E-06	7.06E-06	2.43E-06	3.34E-06	3.32E-06	1.02E-06
705	765417.19	4093694.99	3.96E-05	4.31E-05	1.52E-05	6.18E-06	6.99E-06	2.41E-06	3.30E-06	3.28E-06	1.01E-06
706	765407.27	4093716.84	3.92E-05	4.27E-05	1.51E-05	6.12E-06	6.93E-06	2.39E-06	3.27E-06	3.26E-06	9.99E-07
707	765397.35	4093738.68	3.89E-05	4.23E-05	1.50E-05	6.07E-06	6.87E-06	2.37E-06	3.25E-06	3.23E-06	9.91E-07
708	765365.01	4093769.04	3.88E-05	4.22E-05	1.49E-05	6.06E-06	6.86E-06	2.36E-06	3.24E-06	3.22E-06	9.89E-07
709	765342.59	4093777.56	3.90E-05	4.25E-05	1.50E-05	6.09E-06	6.89E-06	2.37E-06	3.26E-06	3.24E-06	9.94E-07
710	765320.16	4093786.07	3.92E-05	4.27E-05	1.51E-05	6.12E-06	6.93E-06	2.39E-06	3.27E-06	3.26E-06	9.99E-07
711	765297.73	4093794.59	3.94E-05	4.29E-05	1.52E-05	6.15E-06	6.96E-06	2.40E-06	3.29E-06	3.27E-06	1.00E-06
712	765275.31	4093803.1	3.96E-05	4.31E-05	1.52E-05	6.18E-06	6.99E-06	2.41E-06	3.30E-06	3.28E-06	1.01E-06
713	765252.88	4093811.62	3.97E-05	4.32E-05	1.53E-05	6.20E-06	7.01E-06	2.42E-06	3.31E-06	3.30E-06	1.01E-06
714	765230.46	4093820.14	3.98E-05	4.33E-05	1.53E-05	6.22E-06	7.03E-06	2.42E-06	3.32E-06	3.30E-06	1.01E-06
715	765208.03	4093828.65	3.99E-05	4.34E-05	1.54E-05	6.23E-06	7.04E-06	2.43E-06	3.33E-06	3.31E-06	1.02E-06
716	765185.6	4093837.17	3.99E-05	4.34E-05	1.54E-05	6.23E-06	7.05E-06	2.43E-06	3.33E-06	3.31E-06	1.02E-06
717	765163.18	4093845.68	3.99E-05	4.35E-05	1.54E-05	6.24E-06	7.05E-06	2.43E-06	3.33E-06	3.31E-06	1.02E-06
718	765140.75	4093854.2	3.99E-05	4.34E-05	1.54E-05	6.23E-06	7.05E-06	2.43E-06	3.33E-06	3.31E-06	1.02E-06
719	765118.33	4093862.72	3.99E-05	4.34E-05	1.54E-05	6.23E-06	7.04E-06	2.43E-06	3.33E-06	3.31E-06	1.02E-06
720	765095.9	4093871.23	3.98E-05	4.33E-05	1.53E-05	6.21E-06	7.03E-06	2.42E-06	3.32E-06	3.30E-06	1.01E-06
721	765073.47	4093879.75	3.97E-05	4.32E-05	1.53E-05	6.20E-06	7.01E-06	2.42E-06	3.31E-06	3.30E-06	1.01E-06
722	765051.05	4093888.26	3.96E-05	4.31E-05	1.53E-05	6.18E-06	7.00E-06	2.41E-06	3.31E-06	3.29E-06	1.01E-06
723	765028.62	4093896.78	3.95E-05	4.29E-05	1.52E-05	6.16E-06	6.97E-06	2.40E-06	3.29E-06	3.28E-06	1.01E-06
724	765006.19	4093905.29	3.93E-05	4.28E-05	1.51E-05	6.14E-06	6.95E-06	2.39E-06	3.28E-06	3.26E-06	1.00E-06
725	764983.77	4093913.81	3.92E-05	4.26E-05	1.51E-05	6.12E-06	6.92E-06	2.38E-06	3.27E-06	3.25E-06	9.98E-07
726	764961.34	4093922.33	3.90E-05	4.24E-05	1.50E-05	6.09E-06	6.89E-06	2.37E-06	3.26E-06	3.24E-06	9.94E-07
727	764938.92	4093930.84	3.88E-05	4.22E-05	1.49E-05	6.06E-06	6.86E-06	2.36E-06	3.24E-06	3.22E-06	9.89E-07
728	764916.49	4093939.36	3.86E-05	4.20E-05	1.49E-05	6.03E-06	6.82E-06	2.35E-06	3.22E-06	3.21E-06	9.84E-07
729	764894.06	4093947.87	3.84E-05	4.18E-05	1.48E-05	6.00E-06	6.79E-06	2.34E-06	3.21E-06	3.19E-06	9.79E-07
730	764871.64	4093956.39	3.82E-05	4.16E-05	1.47E-05	5.97E-06	6.75E-06	2.32E-06	3.19E-06	3.17E-06	9.73E-07
731	764849.21	4093964.91	3.80E-05	4.14E-05	1.46E-05	5.94E-06	6.71E-06	2.31E-06	3.17E-06	3.15E-06	9.68E-07
732	764826.79	4093973.42	3.78E-05	4.11E-05	1.46E-05	5.90E-06	6.68E-06	2.30E-06	3.16E-06	3.14E-06	9.63E-07
733	764804.36	4093981.94	3.76E-05	4.09E-05	1.45E-05	5.88E-06	6.65E-06	2.29E-06	3.14E-06	3.12E-06	9.59E-07
734	764781.93	4093990.45	3.75E-05	4.08E-05	1.44E-05	5.85E-06	6.62E-06	2.28E-06	3.13E-06	3.11E-06	9.54E-07
735	764759.51	4093998.97	3.73E-05	4.06E-05	1.44E-05	5.82E-06	6.59E-06	2.27E-06	3.11E-06	3.10E-06	9.50E-07
736	764737.08	4094007.49	3.72E-05	4.05E-05	1.43E-05	5.81E-06	6.57E-06	2.26E-06	3.10E-06	3.09E-06	9.47E-07
737	764714.65	4094016	3.71E-05	4.04E-05	1.43E-05	5.79E-06	6.55E-06	2.26E-06	3.10E-06	3.08E-06	9.45E-07
738	764692.23	4094024.52	3.71E 05 3.70E-05	4.03E-05	1.43E-05	5.78E-06	6.54E-06	2.25E-06	3.09E-06	3.07E-06	9.44E-07
739	764669.8	4094033.03	3.70E 05 3.70E-05	4.03E-05	1.42E-05	5.78E-06	6.54E-06	2.25E-06	3.09E-06	3.07E-06	9.43E-07
740	764647.38	4094041.55	3.70E-05 3.70E-05	4.03E-05	1.42E-05	5.78E-06	6.54E-06	2.25E-06	3.09E-06	3.07E-06	9.43E-07
, 40	, 5 ,0-7,30	100 1011.00	5., 51 05		1. 722 03	3.702 00	5.54E 00	2.232 00	3.032 00	3.372 00	J. 7JL 07

741	764624.95	4094050.07	3.70E-05	4.03E-05	1.43E-05	5.78E-06	6.54E-06	2.25E-06	3.09E-06	3.07E-06	9.44E-07
742	764602.52	4094058.58	3.71E-05	4.04E-05	1.43E-05	5.79E-06	6.55E-06	2.26E-06	3.10E-06	3.08E-06	9.45E-07
743	764580.1	4094067.1	3.72E-05	4.05E-05	1.43E-05	5.81E-06	6.57E-06	2.26E-06	3.10E-06	3.09E-06	9.47E-07
744	764557.67	4094075.61	3.73E-05	4.06E-05	1.44E-05	5.82E-06	6.59E-06	2.27E-06	3.11E-06	3.09E-06	9.50E-07
745	764535.25	4094084.13	3.74E-05	4.07E-05	1.44E-05	5.84E-06	6.60E-06	2.27E-06	3.12E-06	3.10E-06	9.52E-07
746	764512.82	4094092.65	3.75E-05	4.08E-05	1.44E-05	5.86E-06	6.62E-06	2.28E-06	3.13E-06	3.11E-06	9.55E-07
747	764490.39	4094101.16	3.76E-05	4.09E-05	1.45E-05	5.88E-06	6.65E-06	2.29E-06	3.14E-06	3.12E-06	9.59E-07
748	764467.97	4094109.68	3.78E-05	4.11E-05	1.45E-05	5.90E-06	6.67E-06	2.30E-06	3.15E-06	3.13E-06	9.62E-07
749	764445.54	4094118.19	3.79E-05	4.13E-05	1.46E-05	5.92E-06	6.70E-06	2.31E-06	3.16E-06	3.15E-06	9.66E-07
750	764423.12	4094126.71	3.80E-05	4.14E-05	1.47E-05	5.94E-06	6.72E-06	2.31E-06	3.18E-06	3.16E-06	9.69E-07
751	764400.69	4094135.23	3.82E-05	4.16E-05	1.47E-05	5.97E-06	6.75E-06	2.32E-06	3.19E-06	3.17E-06	9.73E-07
752	764378.26	4094143.74	3.84E-05	4.18E-05	1.48E-05	5.99E-06	6.78E-06	2.33E-06	3.20E-06	3.19E-06	9.78E-07
753	764355.84	4094152.26	3.85E-05	4.20E-05	1.48E-05	6.02E-06	6.81E-06	2.35E-06	3.22E-06	3.20E-06	9.82E-07
754	764333.41	4094160.77	3.87E-05	4.22E-05	1.49E-05	6.05E-06	6.85E-06	2.36E-06	3.24E-06	3.22E-06	9.87E-07
755	764310.98	4094169.29	3.90E-05	4.24E-05	1.50E-05	6.09E-06	6.89E-06	2.37E-06	3.25E-06	3.24E-06	9.93E-07
756	764288.56	4094177.81	3.92E-05	4.27E-05	1.51E-05	6.12E-06	6.93E-06	2.39E-06	3.27E-06	3.26E-06	9.99E-07
757	764266.13	4094186.32	3.95E-05	4.29E-05	1.52E-05	6.16E-06	6.97E-06	2.40E-06	3.29E-06	3.28E-06	1.01E-06
758	764243.71	4094194.84	3.97E-05	4.33E-05	1.53E-05	6.21E-06	7.02E-06	2.42E-06	3.32E-06	3.30E-06	1.01E-06
759	764221.28	4094203.35	4.00E-05	4.36E-05	1.54E-05	6.25E-06	7.07E-06	2.44E-06	3.34E-06	3.32E-06	1.02E-06
760	764198.85	4094211.87	4.03E-05	4.39E-05	1.55E-05	6.30E-06	7.12E-06	2.45E-06	3.37E-06	3.35E-06	1.03E-06
761	765922.89	4092580.99	7.46E-05	8.12E-05	2.87E-05	1.16E-05	1.32E-05	4.54E-06	6.23E-06	6.19E-06	1.90E-06
762	765923.74	4092556.85	7.65E-05	8.33E-05	2.95E-05	1.19E-05	1.35E-05	4.65E-06	6.39E-06	6.35E-06	1.95E-06
763	765924.6	4092532.72	7.84E-05	8.54E-05	3.02E-05	1.22E-05	1.39E-05	4.77E-06	6.55E-06	6.51E-06	2.00E-06
764	765925.45	4092508.58	8.04E-05	8.75E-05	3.10E-05	1.26E-05	1.42E-05	4.89E-06	6.71E-06	6.67E-06	2.05E-06
765	765926.3	4092484.45	8.24E-05	8.97E-05	3.17E-05	1.29E-05	1.46E-05	5.01E-06	6.88E-06	6.84E-06	2.10E-06
766	765927.15	4092460.32	8.44E-05	9.18E-05	3.25E-05	1.32E-05	1.49E-05	5.13E-06	7.05E-06	7.00E-06	2.15E-06
767 769	765928	4092436.18	8.64E-05	9.40E-05	3.33E-05	1.35E-05	1.53E-05	5.26E-06	7.21E-06	7.17E-06	2.20E-06
768 760	765928.85 765929.7	4092412.05 4092387.91	8.84E-05 9.05E-05	9.63E-05 9.85E-05	3.41E-05	1.38E-05	1.56E-05 1.60E-05	5.38E-06	7.38E-06	7.34E-06 7.51E-06	2.25E-06 2.31E-06
769 770	765930.56	4092363.78	9.05E-05 9.25E-05	1.01E-04	3.48E-05 3.56E-05	1.41E-05 1.44E-05	1.63E-05	5.51E-06 5.63E-06	7.55E-06 7.73E-06	7.51E-06 7.68E-06	2.31E-06 2.36E-06
770	765931.41	4092339.64	9.45E-05	1.01L-04 1.03E-04	3.64E-05	1.44L-05 1.48E-05	1.67E-05	5.75E-06	7.73L-00 7.89E-06	7.85E-06	2.41E-06
772	765932.26	4092335.51	9.66E-05	1.05E-04	3.72E-05	1.51E-05	1.71E-05	5.73E-00 5.88E-06	8.07E-06	8.02E-06	2.41L-00 2.46E-06
773	765933.11	4092291.38	9.87E-05	1.07E-04	3.80E-05	1.54E-05	1.74E-05	6.00E-06	8.24E-06	8.19E-06	2.51E-06
774	765933.96	4092267.24	1.01E-04	1.10E-04	3.88E-05	1.57E-05	1.78E-05	6.13E-06	8.41E-06	8.36E-06	2.57E-06
775	765934.81	4092243.11	1.03E-04	1.12E-04	3.96E-05	1.61E-05	1.82E-05	6.26E-06	8.59E-06	8.54E-06	2.62E-06
776	764256.39	4092091.12	4.26E-03	4.64E-03	1.64E-03	6.66E-04	7.53E-04	2.59E-04	3.56E-04	3.54E-04	1.09E-04
777	764291.37		5.29E-03	5.75E-03	2.04E-03	8.26E-04		3.22E-04		4.39E-04	
778		4092082.56	3.43E-03	3.73E-03	1.32E-03	5.35E-04				2.85E-04	
779	764174.26		2.76E-03	3.00E-03	1.06E-03	4.31E-04	4.87E-04	1.68E-04	2.30E-04	2.29E-04	7.02E-05
780	764131.17	4092079.94	2.02E-03	2.20E-03	7.79E-04	3.16E-04	3.57E-04	1.23E-04	1.69E-04	1.68E-04	5.15E-05
781	764088.08	4092078.64	1.38E-03	1.50E-03	5.30E-04	2.15E-04	2.43E-04	8.37E-05	1.15E-04	1.14E-04	3.50E-05
782	764257.91	4092041.14	2.41E-03	2.62E-03	9.27E-04	3.76E-04	4.25E-04	1.46E-04	2.01E-04	2.00E-04	6.13E-05
783	764292.89	4092056.94	3.12E-03	3.40E-03	1.20E-03	4.88E-04	5.52E-04	1.90E-04	2.61E-04	2.59E-04	7.95E-05
784	764327.87	4092072.74	3.76E-03	4.09E-03	1.45E-03	5.87E-04	6.64E-04	2.29E-04	3.14E-04	3.12E-04	9.58E-05
785	764352.09	4092098.61	4.54E-03	4.94E-03	1.75E-03	7.09E-04	8.02E-04	2.76E-04	3.79E-04	3.77E-04	1.16E-04
786	764218.88	4092032.58	1.87E-03	2.03E-03	7.19E-04	2.92E-04	3.30E-04	1.14E-04	1.56E-04	1.55E-04	4.76E-05
787	764175.78	4092031.28	1.46E-03	1.59E-03	5.63E-04	2.28E-04	2.58E-04	8.89E-05	1.22E-04	1.21E-04	3.72E-05
788	764132.69	4092029.97	1.09E-03	1.18E-03	4.18E-04	1.70E-04	1.92E-04	6.61E-05	9.07E-05	9.02E-05	2.77E-05
789	764259.43	4091991.16	1.45E-03	1.57E-03	5.57E-04	2.26E-04	2.55E-04	8.80E-05	1.21E-04	1.20E-04	3.68E-05
790	764294.41	4092006.96	1.91E-03	2.08E-03	7.34E-04	2.98E-04	3.37E-04	1.16E-04	1.59E-04	1.58E-04	4.86E-05
791	764329.39	4092022.76	2.40E-03	2.61E-03	9.23E-04	3.74E-04	4.23E-04	1.46E-04	2.00E-04	1.99E-04	6.11E-05
792	764364.37	4092038.56	2.83E-03	3.08E-03	1.09E-03	4.42E-04	5.00E-04	1.72E-04	2.36E-04	2.35E-04	7.21E-05
793	764388.59	4092064.43	3.37E-03	3.67E-03	1.30E-03	5.26E-04		2.05E-04	2.81E-04	2.80E-04	8.58E-05
794	764402.06	4092100.37	4.03E-03	4.39E-03	1.55E-03	6.30E-04	7.12E-04	2.45E-04	3.37E-04	3.35E-04	1.03E-04
795	764220.39	4091982.61	1.11E-03	1.21E-03	4.29E-04	1.74E-04	1.97E-04	6.78E-05	9.31E-05	9.25E-05	2.84E-05
796	764177.3	4091981.3	8.75E-04	9.52E-04	3.37E-04	1.37E-04	1.55E-04	5.32E-05	7.30E-05	7.26E-05	2.23E-05
797	764262.89	4091942.06	9.39E-04	1.02E-03	3.62E-04	1.47E-04	1.66E-04	5.71E-05	7.84E-05	7.80E-05	2.39E-05
798	764301.76	4091959.62	1.27E-03	1.38E-03	4.89E-04	1.98E-04	2.24E-04	7.73E-05	1.06E-04	1.05E-04	3.24E-05
799	764340.62		1.65E-03	1.80E-03	6.36E-04	2.58E-04		1.00E-04	1.38E-04	1.37E-04	4.21E-05
800	764379.49	4091994.73	2.03E-03	2.21E-03	7.82E-04	3.17E-04		1.24E-04	1.70E-04	1.69E-04	5.17E-05
801	764425.84		2.63E-03	2.87E-03	1.01E-03	4.11E-04		1.60E-04	2.20E-04	2.19E-04	6.71E-05
802	704440.81	4092072.19	3.18E-03	3.46E-03	1.22E-03	4.9/E-04	5.62E-04	1.93E-04	2.66E-U4	2.64E-04	8.10E-05

803	764455.78	4092112.12	3.52E-03	3.83E-03	1.36E-03	5.50E-04	6.22E-04	2.14E-04	2.94E-04	2.92E-04	8.98E-05
804	764470.74	4092152.05	3.59E-03	3.90E-03	1.38E-03	5.60E-04	6.34E-04	2.18E-04	2.99E-04	2.98E-04	9.14E-05
805	764221.91	4091932.63	7.20E-04	7.83E-04	2.77E-04	1.12E-04	1.27E-04	4.38E-05	6.01E-05	5.98E-05	1.83E-05
806	764092.63	4091928.71	3.65E-04	3.97E-04	1.41E-04	5.70E-05	6.45E-05	2.22E-05	3.05E-05	3.03E-05	9.30E-06
807	764264.05	4091891.93	6.34E-04	6.90E-04	2.44E-04	9.91E-05	1.12E-04	3.86E-05	5.30E-05	5.27E-05	1.62E-05
808	764302.21	4091909.16	8.42E-04	9.17E-04	3.24E-04	1.32E-04	1.49E-04	5.12E-05	7.03E-05	6.99E-05	2.15E-05
809	764340.37	4091926.4	1.10E-03	1.19E-03	4.22E-04	1.71E-04	1.93E-04	6.66E-05	9.14E-05	9.09E-05	2.79E-05
810	764378.53	4091943.64	1.37E-03	1.50E-03	5.29E-04	2.15E-04	2.43E-04	8.36E-05	1.15E-04	1.14E-04	3.50E-05
811	764416.69	4091960.87	1.65E-03	1.79E-03	6.34E-04	2.57E-04	2.91E-04	1.00E-04	1.38E-04	1.37E-04	4.20E-05
812	764462.2	4091997.71	2.09E-03	2.28E-03	8.06E-04	3.27E-04	3.70E-04	1.27E-04	1.75E-04	1.74E-04	5.33E-05
813	764476.89	4092036.92	2.51E-03	2.73E-03	9.67E-04	3.92E-04	4.44E-04	1.53E-04	2.10E-04	2.09E-04	6.40E-05
814	764491.59	4092076.13	2.82E-03	3.07E-03	1.09E-03	4.40E-04	4.98E-04	1.72E-04	2.35E-04	2.34E-04	7.18E-05
815	764506.29	4092115.33	2.95E-03	3.21E-03	1.14E-03	4.60E-04	5.21E-04	1.79E-04	2.46E-04	2.45E-04	7.51E-05
816	764520.99	4092154.54	2.89E-03	3.14E-03	1.11E-03	4.51E-04	5.10E-04	1.76E-04	2.41E-04	2.40E-04	7.36E-05
817	764094.15	4091878.73	2.73E-04	2.98E-04	1.05E-04	4.27E-05	4.83E-05	1.66E-05	2.28E-05	2.27E-05	6.97E-06
818	764341.29	4091825.49	5.39E-04	5.87E-04	2.08E-04	8.42E-05	9.53E-05	3.28E-05	4.50E-05	4.48E-05	1.37E-05
819	764378.6	4091842.34	6.76E-04	7.36E-04	2.60E-04	1.06E-04	1.19E-04	4.11E-05	5.64E-05	5.61E-05	1.72E-05
820 821	764415.91 764453.22	4091859.2 4091876.05	8.30E-04 9.92E-04	9.03E-04 1.08E-03	3.20E-04	1.30E-04	1.47E-04 1.75E-04	5.05E-05	6.93E-05 8.28E-05	6.89E-05 8.23E-05	2.11E-05 2.53E-05
822	764490.53	4091876.03	1.15E-03	1.06E-03 1.25E-03	3.82E-04 4.42E-04	1.55E-04 1.79E-04	2.03E-04	6.03E-05 6.98E-05	9.58E-05	9.53E-05	2.92E-05
823	764535.02	4091892.9	1.41E-03	1.54E-03	5.44E-04	2.21E-04	2.50E-04	8.59E-05	1.18E-04	1.17E-04	3.60E-05
824	764549.4	4091928.93	1.41L-03 1.67E-03	1.82E-03	6.44E-04	2.61E-04	2.95E-04	1.02E-04	1.18E-04 1.40E-04	1.17L-04 1.39E-04	4.26E-05
825	764563.77	4092005.6	1.90E-03	2.06E-03	7.30E-04	2.96E-04	3.35E-04	1.15E-04	1.58E-04	1.57E-04	4.83E-05
826	764578.14	4092043.93	2.04E-03	2.22E-03	7.87E-04	3.19E-04	3.61E-04	1.24E-04	1.71E-04	1.70E-04	5.21E-05
827	764592.51	4092082.27	2.09E-03	2.28E-03	8.06E-04	3.27E-04	3.70E-04	1.27E-04	1.75E-04	1.74E-04	5.33E-05
828	764606.88	4092120.6	2.04E-03	2.22E-03	7.86E-04	3.19E-04	3.61E-04	1.24E-04	1.70E-04	1.70E-04	5.20E-05
829	764621.25	4092158.94	1.91E-03	2.08E-03	7.35E-04	2.98E-04	3.37E-04	1.16E-04	1.59E-04	1.58E-04	4.86E-05
830	764183.37	4091781.39	2.30E-04	2.50E-04	8.86E-05	3.59E-05	4.06E-05	1.40E-05	1.92E-05	1.91E-05	5.86E-06
831	764140.27	4091780.08	1.97E-04	2.14E-04	7.58E-05	3.08E-05	3.48E-05	1.20E-05	1.64E-05	1.64E-05	5.02E-06
832	764097.18	4091778.77	1.72E-04	1.87E-04	6.61E-05	2.68E-05	3.03E-05	1.04E-05	1.43E-05	1.43E-05	4.37E-06
833	764270.48	4091692.18	2.04E-04	2.22E-04	7.86E-05	3.19E-05	3.61E-05	1.24E-05	1.70E-05	1.69E-05	5.20E-06
834	764387.07	4091744.85	3.90E-04	4.24E-04	1.50E-04	6.09E-05	6.89E-05	2.37E-05	3.26E-05	3.24E-05	9.93E-06
835	764425.94	4091762.4	4.78E-04	5.21E-04	1.84E-04	7.47E-05	8.45E-05	2.91E-05	3.99E-05	3.97E-05	1.22E-05
836	764464.8	4091779.96	5.78E-04	6.29E-04	2.22E-04	9.02E-05	1.02E-04	3.51E-05	4.82E-05	4.79E-05	1.47E-05
837	764503.67	4091797.51	6.83E-04	7.43E-04	2.63E-04	1.07E-04	1.21E-04	4.16E-05	5.70E-05	5.67E-05	1.74E-05
838	764542.53	4091815.07	7.89E-04	8.59E-04	3.04E-04	1.23E-04	1.39E-04	4.80E-05	6.59E-05	6.55E-05	2.01E-05
839	764581.4	4091832.63	8.87E-04	9.66E-04	3.42E-04	1.39E-04	1.57E-04	5.40E-05	7.41E-05	7.37E-05	2.26E-05
840	764608.32	4091861.37		1.11E-03	3.93E-04	1.59E-04	1.80E-04		8.52E-05	8.47E-05	
841	764623.29	4091901.3	1.20E-03	1.30E-03	4.62E-04	1.87E-04	2.12E-04	7.29E-05	1.00E-04	9.95E-05	3.05E-05
842	764638.26		1.36E-03	1.48E-03	5.25E-04	2.13E-04		8.29E-05	1.14E-04	1.13E-04	3.47E-05
843	764653.23	4091981.17	1.49E-03	1.62E-03	5.73E-04	2.32E-04	2.63E-04	9.05E-05	1.24E-04	1.24E-04	3.79E-05
844	764668.2	4092021.1	1.55E-03	1.69E-03	5.98E-04	2.43E-04	2.74E-04	9.45E-05	1.30E-04	1.29E-04	3.96E-05
845	764683.16	4092061.03	1.55E-03	1.69E-03	5.97E-04	2.42E-04	2.74E-04	9.44E-05	1.30E-04	1.29E-04	3.95E-05
846	764698.13	4092100.97	1.48E-03	1.62E-03	5.72E-04	2.32E-04	2.62E-04	9.03E-05	1.24E-04	1.23E-04	3.78E-05
847 848	764713.1 764229.5	4092140.9 4091682.75	1.37E-03 1.71E-04	1.49E-03 1.86E-04	5.27E-04 6.59E-05	2.14E-04 2.67E-05	2.42E-04 3.03E-05	8.33E-05 1.04E-05	1.14E-04 1.43E-05	1.14E-04 1.42E-05	3.49E-05 4.36E-06
849	764186.4	4091682.73	1.71E-04 1.49E-04	1.63E-04	5.76E-05	2.33E-05	2.64E-05	9.10E-06	1.45E-05 1.25E-05	1.42E-05 1.24E-05	3.81E-06
850	764143.31		1.49L-04 1.32E-04	1.44E-04	5.10E-05	2.07E-05	2.34E-05	8.06E-06	1.23E-05 1.11E-05	1.10E-05	3.38E-06
851	764100.22		1.32L-04 1.19E-04	1.44L-04 1.30E-04	4.59E-05	1.86E-05	2.34L-05 2.11E-05	7.26E-06	9.96E-06	9.90E-06	3.04E-06
852	764273.16		1.37E-04	1.49E-04	5.26E-05	2.14E-05	2.42E-05	8.32E-06	1.14E-05	1.13E-05	3.48E-06
853	764311.32	4091609.3	1.63E-04	1.78E-04	6.29E-05	2.55E-05	2.89E-05	9.94E-06	1.36E-05	1.36E-05	4.16E-06
854	764349.48		1.97E-04	2.14E-04	7.59E-05	3.08E-05	3.48E-05	1.20E-05	1.64E-05	1.64E-05	5.02E-06
855	764463.95	4091678.25	3.43E-04	3.73E-04	1.32E-04	5.35E-05	6.06E-05	2.09E-05	2.86E-05	2.85E-05	8.74E-06
856	764502.11		4.05E-04	4.41E-04	1.56E-04	6.33E-05	7.16E-05	2.47E-05	3.38E-05	3.36E-05	1.03E-05
857	764540.27	4091712.72	4.73E-04	5.14E-04	1.82E-04	7.38E-05	8.35E-05	2.88E-05	3.95E-05	3.92E-05	1.20E-05
858	764578.43	4091729.96	5.42E-04	5.90E-04	2.09E-04	8.47E-05	9.58E-05	3.30E-05	4.53E-05	4.50E-05	1.38E-05
859	764616.59	4091747.2	6.12E-04	6.66E-04	2.36E-04	9.55E-05	1.08E-04	3.72E-05	5.11E-05	5.08E-05	1.56E-05
860	764654.74	4091764.43	6.77E-04	7.37E-04	2.61E-04	1.06E-04	1.20E-04	4.12E-05	5.65E-05	5.62E-05	1.72E-05
861	764681.17	4091792.66	7.66E-04	8.34E-04	2.95E-04	1.20E-04	1.35E-04	4.66E-05	6.40E-05	6.36E-05	1.95E-05
862	764695.87	4091831.86	8.88E-04	9.67E-04	3.42E-04	1.39E-04	1.57E-04	5.41E-05	7.42E-05	7.38E-05	2.26E-05
863	764710.57	4091871.07	1.01E-03	1.10E-03	3.88E-04	1.57E-04	1.78E-04	6.13E-05	8.41E-05	8.36E-05	2.57E-05
864	764725.26	4091910.27	1.11E-03	1.21E-03	4.27E-04	1.73E-04	1.96E-04	6.74E-05	9.25E-05	9.20E-05	2.82E-05

865	764739.96	4091949.48	1.18E-03	1.28E-03	4.54E-04	1.84E-04	2.08E-04	7.18E-05	9.85E-05	9.79E-05	3.00E-05
866	764754.66	4091988.69	1.21E-03	1.32E-03	4.66E-04	1.89E-04	2.14E-04	7.37E-05	1.01E-04	1.00E-04	3.08E-05
867	764769.36	4092027.89	1.20E-03	1.30E-03	4.61E-04	1.87E-04	2.12E-04	7.29E-05	1.00E-04	9.95E-05	3.05E-05
868	764784.06	4092067.1	1.15E-03	1.25E-03	4.41E-04	1.79E-04	2.03E-04	6.97E-05	9.57E-05	9.52E-05	2.92E-05
869	764798.75	4092106.31	1.06E-03	1.16E-03	4.09E-04	1.66E-04	1.88E-04	6.47E-05	8.88E-05	8.83E-05	2.71E-05
870	764813.45	4092145.51	9.60E-04	1.05E-03	3.70E-04	1.50E-04	1.70E-04	5.84E-05	8.02E-05	7.97E-05	2.45E-05
871	764232.53	4091582.79	1.18E-04	1.29E-04	4.56E-05	1.85E-05	2.09E-05	7.21E-06	9.89E-06	9.83E-06	3.02E-06
872	764189.44	4091581.48	1.06E-04	1.16E-04	4.09E-05	1.66E-05	1.88E-05	6.46E-06	8.86E-06	8.81E-06	2.70E-06
873	764146.35	4091580.17	9.64E-05	1.05E-04	3.71E-05	1.51E-05	1.70E-05	5.87E-06	8.05E-06	8.01E-06	2.46E-06
874	764103.25	4091578.87	8.87E-05	9.65E-05	3.42E-05	1.39E-05	1.57E-05	5.40E-06	7.41E-06	7.36E-06	2.26E-06
875	764276.7	4091492.34	9.90E-05	1.08E-04	3.81E-05	1.55E-05	1.75E-05	6.02E-06	8.26E-06	8.22E-06	2.52E-06
876	764315.88	4091510.04	1.15E-04	1.26E-04	4.45E-05	1.80E-05	2.04E-05	7.02E-06	9.64E-06	9.58E-06	2.94E-06
877	764355.06	4091527.73	1.36E-04	1.48E-04	5.25E-05	2.13E-05	2.41E-05	8.29E-06	1.14E-05	1.13E-05	3.47E-06
878	764394.23	4091545.43	1.62E-04	1.76E-04	6.24E-05	2.53E-05	2.86E-05	9.86E-06	1.35E-05	1.35E-05	4.13E-06
879	764511.76	4091598.52	2.69E-04	2.93E-04	1.04E-04	4.20E-05	4.75E-05	1.64E-05	2.24E-05	2.23E-05	6.85E-06
880	764550.94 764590.11	4091616.22	3.13E-04	3.41E-04	1.21E-04	4.89E-05	5.53E-05	1.91E-05	2.61E-05	2.60E-05	7.98E-06
881	764629.29	4091633.91	3.61E-04	3.92E-04	1.39E-04	5.63E-05	6.37E-05	2.19E-05	3.01E-05	2.99E-05	9.19E-06
882 883	764668.46	4091651.61 4091669.31	4.10E-04 4.60E-04	4.46E-04 5.00E-04	1.58E-04 1.77E-04	6.40E-05	7.24E-05 8.12E-05	2.49E-05 2.80E-05	3.42E-05 3.84E-05	3.40E-05 3.82E-05	1.04E-05 1.17E-05
884	764707.64	4091669.31	5.09E-04	5.54E-04	1.77E-04 1.96E-04	7.18E-05 7.95E-05	8.99E-05	3.10E-05	4.25E-05	4.22E-05	1.17E-05 1.30E-05
885	764754.36	4091087	5.99E-04	6.52E-04	2.31E-04	9.35E-05	1.06E-04	3.64E-05	5.00E-05	4.22L-03 4.97E-05	1.53E-05
886	764769.45	4091765.08	6.89E-04	7.50E-04	2.65E-04	1.08E-04	1.22E-04	4.19E-05	5.76E-05	5.72E-05	1.76E-05
887	764784.54	4091805.33	7.80E-04	8.49E-04	3.00E-04	1.22E-04	1.38E-04	4.74E-05	6.51E-05	6.47E-05	1.99E-05
888	764799.63	4091845.58	8.60E-04	9.36E-04	3.31E-04	1.34E-04	1.52E-04	5.23E-05	7.18E-05	7.14E-05	2.19E-05
889	764814.72	4091885.83	9.22E-04	1.00E-03	3.55E-04	1.44E-04	1.63E-04	5.61E-05	7.70E-05	7.66E-05	2.35E-05
890	764829.81	4091926.09	9.59E-04	1.04E-03	3.69E-04	1.50E-04	1.70E-04	5.84E-05	8.01E-05	7.96E-05	2.44E-05
891	764844.9	4091966.34	9.66E-04	1.05E-03	3.72E-04	1.51E-04	1.71E-04	5.88E-05	8.07E-05	8.02E-05	2.46E-05
892	764859.99	4092006.59	9.43E-04	1.03E-03	3.63E-04	1.47E-04	1.67E-04	5.74E-05	7.88E-05	7.83E-05	2.40E-05
893	764875.08	4092046.84	8.92E-04	9.71E-04	3.44E-04	1.39E-04	1.58E-04	5.43E-05	7.45E-05	7.41E-05	2.27E-05
894	764890.17	4092087.09	8.22E-04	8.95E-04	3.17E-04	1.28E-04	1.45E-04	5.00E-05	6.87E-05	6.83E-05	2.10E-05
895	764905.26	4092127.35	7.40E-04	8.06E-04	2.85E-04	1.16E-04	1.31E-04	4.50E-05	6.18E-05	6.15E-05	1.89E-05
896	764920.35	4092167.6	6.56E-04	7.14E-04	2.53E-04	1.02E-04	1.16E-04	3.99E-05	5.48E-05	5.45E-05	1.67E-05
897	764235.57	4091482.84	8.77E-05	9.55E-05	3.38E-05	1.37E-05	1.55E-05	5.34E-06	7.33E-06	7.28E-06	2.24E-06
898	764192.47	4091481.53	8.02E-05	8.73E-05	3.09E-05	1.25E-05	1.42E-05	4.88E-06	6.70E-06	6.66E-06	2.04E-06
899	764149.38	4091480.22	7.41E-05	8.07E-05	2.86E-05	1.16E-05	1.31E-05	4.51E-06	6.19E-06	6.16E-06	1.89E-06
900	764106.29	4091478.91	6.92E-05	7.54E-05	2.67E-05	1.08E-05	1.22E-05	4.21E-06	5.78E-06	5.75E-06	1.76E-06
901	764282.27	4091292.2	6.01E-05	6.54E-05	2.32E-05	9.39E-06	1.06E-05	3.66E-06	5.02E-06		
902	764320.42	4091309.44		7.28E-05	2.57E-05	1.04E-05		4.07E-06	5.58E-06	5.55E-06	
903	764358.58		7.52E-05	8.18E-05	2.89E-05	1.17E-05	1.33E-05	4.57E-06	6.28E-06	6.24E-06	1.91E-06
904	764396.74	4091343.91	8.53E-05	9.29E-05	3.29E-05	1.33E-05	1.51E-05	5.19E-06	7.12E-06	7.08E-06	2.17E-06
905	764434.9	4091361.15	9.77E-05	1.06E-04	3.76E-05	1.53E-05	1.73E-05	5.94E-06	8.16E-06	8.11E-06	2.49E-06
906	764473.06	4091378.39	1.12E-04	1.22E-04	4.32E-05	1.75E-05	1.98E-05	6.83E-06	9.37E-06	9.32E-06	2.86E-06
907	764511.22		1.29E-04	1.41E-04	4.97E-05	2.02E-05	2.28E-05	7.85E-06	1.08E-05	1.07E-05	3.29E-06
908	764549.37		1.48E-04	1.61E-04	5.69E-05	2.31E-05	2.61E-05	8.99E-06	1.23E-05	1.23E-05	3.77E-06
909	764587.53	4091430.1	1.68E-04	1.83E-04	6.49E-05	2.63E-05	2.98E-05	1.02E-05	1.41E-05	1.40E-05	4.29E-06 4.86E-06
910 911	764625.69 764663.85	4091447.33 4091464.57	1.91E-04 2.14E-04	2.07E-04 2.33E-04	7.34E-05 8.24E-05	2.98E-05 3.34E-05	3.37E-05 3.78E-05	1.16E-05 1.30E-05	1.59E-05 1.79E-05	1.58E-05 1.78E-05	5.45E-06
912	764702.01	4091481.81	2.14L-04 2.39E-04	2.60E-04	9.19E-05	3.73E-05	4.22E-05	1.45E-05	1.79E-05	1.78E-05	6.08E-06
913	764740.17	4091499.05	2.64E-04	2.88E-04	1.02E-04	4.13E-05	4.22E-05 4.67E-05	1.43E-05	2.21E-05	2.19E-05	6.74E-06
914	764778.32		2.91E-04	3.16E-04	1.12E-04	4.54E-05	5.13E-05	1.77E-05	2.43E-05	2.41E-05	7.40E-06
915	764816.48	4091533.52	3.17E-04	3.45E-04	1.22E-04	4.95E-05	5.60E-05	1.93E-05	2.65E-05	2.63E-05	8.08E-06
916	764854.64	4091550.76	3.43E-04	3.74E-04	1.32E-04	5.36E-05	6.07E-05	2.09E-05	2.87E-05	2.85E-05	8.75E-06
917	764900.15	4091587.6	3.93E-04	4.28E-04	1.51E-04	6.13E-05	6.94E-05	2.39E-05	3.28E-05	3.26E-05	1.00E-05
918	764914.85	4091626.8	4.43E-04	4.82E-04	1.71E-04	6.91E-05	7.82E-05	2.69E-05	3.70E-05	3.68E-05	1.13E-05
919	764929.54	4091666.01	4.94E-04	5.38E-04	1.90E-04	7.72E-05	8.73E-05	3.01E-05	4.13E-05	4.10E-05	1.26E-05
920	764944.24	4091705.22	5.45E-04	5.93E-04	2.10E-04	8.51E-05	9.62E-05	3.31E-05	4.55E-05	4.52E-05	1.39E-05
921	764958.94	4091744.42	5.90E-04	6.43E-04	2.27E-04	9.22E-05	1.04E-04	3.59E-05	4.93E-05	4.90E-05	1.50E-05
922	764973.64	4091783.63	6.27E-04	6.83E-04	2.42E-04	9.80E-05	1.11E-04	3.82E-05	5.24E-05	5.21E-05	1.60E-05
923	764988.33	4091822.84	6.52E-04	7.10E-04	2.51E-04	1.02E-04	1.15E-04	3.97E-05	5.44E-05	5.41E-05	1.66E-05
924	765003.03	4091862.04	6.62E-04	7.21E-04	2.55E-04	1.03E-04	1.17E-04	4.03E-05	5.53E-05	5.50E-05	1.69E-05
925	765017.73	4091901.25	6.57E-04	7.15E-04	2.53E-04	1.03E-04	1.16E-04	4.00E-05	5.49E-05	5.46E-05	1.67E-05
926	765032.43	4091940.46	6.37E-04	6.94E-04	2.45E-04	9.96E-05	1.13E-04	3.88E-05	5.32E-05	5.29E-05	1.62E-05

927	765047.12	4091979.66	6.05E-04	6.59E-04	2.33E-04	9.46E-05	1.07E-04	3.68E-05	5.06E-05	5.03E-05	1.54E-05
928	765061.82	4092018.87	5.64E-04	6.14E-04	2.17E-04	8.81E-05	9.97E-05	3.43E-05	4.71E-05	4.68E-05	1.44E-05
929	765076.52	4092058.07	5.18E-04	5.63E-04	1.99E-04	8.09E-05	9.15E-05	3.15E-05	4.32E-05	4.30E-05	1.32E-05
930	765091.22	4092097.28	4.70E-04	5.11E-04	1.81E-04	7.34E-05	8.30E-05	2.86E-05	3.92E-05	3.90E-05	1.20E-05
931	765105.92	4092136.49	4.23E-04	4.61E-04	1.63E-04	6.61E-05	7.48E-05	2.57E-05	3.53E-05	3.51E-05	1.08E-05
932	765120.61	4092175.69	3.80E-04	4.13E-04	1.46E-04	5.93E-05	6.71E-05	2.31E-05	3.17E-05	3.15E-05	9.68E-06
933	764241.64	4091282.93	5.53E-05	6.02E-05	2.13E-05	8.64E-06	9.77E-06	3.37E-06	4.62E-06	4.59E-06	1.41E-06
934	764198.54	4091281.62	5.19E-05	5.65E-05	2.00E-05	8.11E-06	9.17E-06	3.16E-06	4.33E-06	4.31E-06	1.32E-06
935	764155.45	4091280.31	4.91E-05	5.34E-05	1.89E-05	7.66E-06	8.67E-06	2.99E-06	4.10E-06	4.07E-06	1.25E-06
936	764112.36	4091279	4.67E-05	5.08E-05	1.80E-05	7.29E-06	8.24E-06	2.84E-06	3.90E-06	3.87E-06	1.19E-06
937	764288.49	4091092.37	4.18E-05	4.55E-05	1.61E-05	6.53E-06	7.39E-06	2.54E-06	3.49E-06	3.47E-06	1.07E-06
938	764326.97	4091109.75	4.53E-05	4.93E-05	1.74E-05	7.07E-06	8.00E-06	2.76E-06	3.78E-06	3.76E-06	1.15E-06
939	764365.45	4091127.13	4.94E-05	5.38E-05	1.90E-05	7.72E-06	8.73E-06	3.01E-06	4.13E-06	4.10E-06	1.26E-06
940	764403.92	4091144.51	5.43E-05	5.91E-05	2.09E-05	8.49E-06	9.60E-06	3.31E-06	4.54E-06	4.51E-06	1.38E-06
941	764442.4	4091161.89	6.03E-05	6.56E-05	2.32E-05	9.41E-06	1.06E-05	3.67E-06	5.03E-06	5.00E-06	1.54E-06
942	764480.88	4091179.27	6.74E-05	7.33E-05	2.59E-05	1.05E-05	1.19E-05	4.10E-06	5.62E-06	5.59E-06	1.72E-06
943	764519.35	4091196.65	7.57E-05	8.24E-05	2.91E-05	1.18E-05	1.34E-05	4.60E-06	6.32E-06	6.28E-06	1.93E-06
944	764557.83	4091214.03	8.52E-05	9.27E-05	3.28E-05	1.33E-05	1.50E-05	5.18E-06	7.11E-06	7.07E-06	2.17E-06
945	764596.31	4091231.41	9.59E-05	1.04E-04	3.69E-05	1.50E-05	1.69E-05	5.83E-06	8.01E-06	7.96E-06	2.44E-06
946	764634.78	4091248.79	1.08E-04	1.17E-04	4.14E-05	1.68E-05	1.90E-05	6.55E-06	8.99E-06	8.93E-06	2.74E-06
947	764673.26	4091266.17	1.20E-04	1.31E-04	4.62E-05	1.88E-05	2.12E-05	7.31E-06	1.00E-05	9.97E-06	3.06E-06
948	764711.74	4091283.55	1.33E-04	1.45E-04	5.13E-05	2.08E-05	2.35E-05	8.11E-06	1.11E-05	1.11E-05	3.40E-06
949	764750.21	4091300.93	1.47E-04	1.60E-04	5.66E-05	2.30E-05	2.60E-05	8.95E-06	1.23E-05	1.22E-05	3.75E-06
950	764788.69	4091318.31	1.61E-04	1.76E-04	6.21E-05	2.52E-05	2.85E-05	9.81E-06	1.35E-05	1.34E-05	4.11E-06
951	764827.16	4091335.69	1.76E-04	1.92E-04	6.78E-05	2.75E-05	3.11E-05	1.07E-05	1.47E-05	1.46E-05	4.49E-06
952	764865.64	4091353.07	1.91E-04	2.08E-04	7.37E-05	2.99E-05	3.38E-05	1.16E-05	1.60E-05	1.59E-05	4.88E-06
953	764904.12	4091370.46	2.07E-04	2.26E-04	7.99E-05	3.24E-05	3.66E-05	1.26E-05	1.73E-05	1.72E-05	5.28E-06
954	764942.59	4091387.84	2.24E-04	2.43E-04	8.61E-05	3.49E-05	3.95E-05	1.36E-05	1.87E-05	1.86E-05	5.70E-06
955	764981.07	4091405.22	2.40E-04	2.61E-04	9.24E-05	3.75E-05	4.24E-05	1.46E-05	2.00E-05	1.99E-05	6.12E-06
956	765019.55	4091422.6	2.56E-04	2.79E-04	9.88E-05	4.00E-05	4.53E-05	1.56E-05	2.14E-05	2.13E-05	6.53E-06
957	765046.19	4091451.05	2.79E-04	3.04E-04	1.08E-04	4.36E-05	4.93E-05	1.70E-05	2.33E-05	2.32E-05	7.11E-06
958	765061.01	4091490.59	3.10E-04	3.38E-04	1.20E-04	4.85E-05	5.48E-05	1.89E-05	2.59E-05	2.58E-05	7.91E-06
959	765075.83	4091530.12	3.43E-04	3.73E-04	1.32E-04	5.36E-05	6.06E-05	2.09E-05	2.86E-05	2.85E-05	8.74E-06
960	765090.65	4091569.65	3.76E-04	4.09E-04	1.45E-04	5.88E-05	6.65E-05	2.29E-05	3.14E-05	3.12E-05	9.59E-06
961	765105.47	4091609.19	4.08E-04	4.44E-04	1.57E-04	6.37E-05	7.21E-05	2.48E-05	3.41E-05	3.39E-05	1.04E-05
962	765120.29	4091648.72	4.37E-04	4.75E-04	1.68E-04	6.82E-05	7.72E-05	2.66E-05	3.65E-05	3.63E-05	1.11E-05
963	765135.12	4091688.25	4.60E-04	5.01E-04	1.77E-04	7.19E-05	8.13E-05	2.80E-05	3.84E-05	3.82E-05	1.17E-05
964	765149.94	4091727.79	4.76E-04	5.19E-04	1.83E-04	7.44E-05	8.42E-05	2.90E-05	3.98E-05	3.96E-05	1.21E-05
965	765164.76	4091767.32	4.84E-04	5.27E-04	1.87E-04	7.57E-05	8.56E-05	2.95E-05	4.04E-05	4.02E-05	1.23E-05
966	765179.58	4091806.85	4.83E-04	5.26E-04	1.86E-04	7.55E-05	8.54E-05	2.94E-05	4.04E-05	4.01E-05	1.23E-05
967	765194.4	4091846.39	4.74E-04	5.15E-04	1.82E-04	7.40E-05	8.37E-05	2.88E-05	3.95E-05	3.93E-05	1.21E-05
968	765209.22	4091885.92	4.56E-04	4.96E-04	1.76E-04	7.12E-05	8.06E-05	2.77E-05	3.81E-05	3.79E-05	1.16E-05
969	765224.04	4091925.45	4.32E-04	4.70E-04	1.66E-04	6.75E-05	7.63E-05	2.63E-05	3.61E-05	3.59E-05	1.10E-05
970	765238.86	4091964.99	4.04E-04	4.40E-04	1.56E-04	6.31E-05	7.14E-05	2.46E-05	3.37E-05	3.35E-05	1.03E-05
971	765253.68	4092004.52	3.73E-04	4.06E-04	1.44E-04	5.83E-05	6.60E-05	2.27E-05	3.12E-05	3.10E-05	9.51E-06
972	765268.5	4092044.05	3.42E-04	3.73E-04	1.32E-04	5.35E-05	6.05E-05	2.08E-05	2.86E-05	2.84E-05	8.73E-06
973	765283.32	4092083.59	3.13E-04	3.40E-04	1.20E-04	4.88E-05	5.53E-05	1.90E-05	2.61E-05	2.60E-05	7.97E-06
974	765298.14	4092123.12	2.85E-04	3.10E-04	1.10E-04	4.45E-05	5.04E-05	1.73E-05	2.38E-05	2.37E-05	7.26E-06
975	765312.96	4092162.65	2.60E-04	2.83E-04	1.00E-04	4.06E-05	4.59E-05	1.58E-05	2.17E-05	2.16E-05	6.63E-06
976	764247.71	4091083.02	3.93E-05	4.27E-05	1.51E-05	6.13E-06	6.94E-06	2.39E-06	3.28E-06	3.26E-06	1.00E-06
977	764204.62	4091081.71	3.74E-05	4.07E-05	1.44E-05	5.85E-06	6.61E-06	2.28E-06	3.13E-06	3.11E-06	9.54E-07
978	764161.52	4091080.41	3.58E-05	3.90E-05	1.38E-05	5.60E-06	6.33E-06	2.18E-06	2.99E-06	2.98E-06	9.13E-07
979	764118.43	4091079.1	3.44E-05	3.75E-05	1.33E-05	5.38E-06	6.09E-06	2.10E-06	2.88E-06	2.86E-06	8.78E-07
980	764294.68	4090892.51	3.16E-05	3.44E-05	1.22E-05	4.93E-06	5.58E-06	1.92E-06	2.64E-06	2.62E-06	8.05E-07
981	764333.38	4090909.99	3.36E-05	3.66E-05	1.29E-05	5.25E-06	5.94E-06	2.05E-06	2.81E-06	2.79E-06	8.57E-07
982	764372.08	4090927.47	3.60E-05	3.91E-05	1.38E-05	5.62E-06	6.35E-06	2.19E-06	3.00E-06	2.99E-06	9.16E-07
983	764410.78	4090944.95	3.87E-05	4.21E-05	1.49E-05	6.04E-06	6.84E-06	2.35E-06	3.23E-06	3.21E-06	9.86E-07
984	764449.48	4090962.44	4.19E-05	4.56E-05	1.61E-05	6.54E-06	7.40E-06	2.55E-06	3.50E-06	3.48E-06	1.07E-06
985	764488.17	4090979.92	4.57E-05	4.97E-05	1.76E-05	7.13E-06	8.07E-06	2.78E-06	3.81E-06	3.79E-06	1.16E-06
986	764526.87	4090997.4	5.01E-05	5.45E-05	1.93E-05	7.82E-06	8.85E-06	3.05E-06	4.18E-06	4.16E-06	1.28E-06
987	764565.57	4091014.88	5.53E-05	6.02E-05	2.13E-05	8.63E-06	9.76E-06	3.36E-06	4.61E-06	4.59E-06	1.41E-06
988	764604.27	4091032.36	6.12E-05	6.66E-05	2.36E-05	9.56E-06	1.08E-05	3.72E-06	5.11E-06	5.08E-06	1.56E-06

989	764642.97	4091049.84	6.79E-05	7.39E-05	2.61E-05	1.06E-05	1.20E-05	4.13E-06	5.67E-06	5.64E-06	1.73E-06
990	764681.67	4091067.32	7.52E-05	8.19E-05	2.90E-05	1.18E-05	1.33E-05	4.58E-06	6.28E-06	6.25E-06	1.92E-06
991	764720.37	4091084.8	8.31E-05	9.04E-05	3.20E-05	1.30E-05	1.47E-05	5.06E-06	6.94E-06	6.90E-06	2.12E-06
992	764759.07	4091102.29	9.14E-05	9.94E-05	3.52E-05	1.43E-05	1.61E-05	5.56E-06	7.63E-06	7.59E-06	2.33E-06
993	764797.77	4091119.77	9.99E-05	1.09E-04	3.85E-05	1.56E-05	1.77E-05	6.08E-06	8.34E-06	8.30E-06	2.55E-06
994	764836.47	4091137.25	1.09E-04	1.18E-04	4.19E-05	1.70E-05	1.92E-05	6.61E-06	9.08E-06	9.02E-06	2.77E-06
995	764875.17	4091154.73	1.18E-04	1.28E-04	4.53E-05	1.84E-05	2.08E-05	7.16E-06	9.82E-06	9.76E-06	3.00E-06
996	764913.87	4091172.21	1.27E-04	1.38E-04	4.88E-05	1.98E-05	2.24E-05	7.72E-06	1.06E-05	1.05E-05	3.23E-06
997	764952.57	4091189.69	1.36E-04	1.48E-04	5.25E-05	2.13E-05	2.41E-05	8.29E-06	1.14E-05	1.13E-05	3.47E-06
998	764991.27	4091207.17	1.46E-04	1.59E-04	5.63E-05	2.28E-05	2.58E-05	8.90E-06	1.22E-05	1.21E-05	3.73E-06
999	765029.97	4091224.66	1.57E-04	1.70E-04	6.03E-05	2.45E-05	2.77E-05	9.53E-06	1.31E-05	1.30E-05	3.99E-06
1000	765068.67	4091242.14	1.67E-04	1.82E-04	6.44E-05	2.61E-05	2.96E-05	1.02E-05	1.40E-05	1.39E-05	4.26E-06
1001	765107.37	4091259.62	1.78E-04	1.94E-04	6.87E-05	2.78E-05	3.15E-05	1.08E-05	1.49E-05	1.48E-05	4.54E-06
1002	765146.07	4091277.1	1.89E-04	2.06E-04	7.28E-05	2.95E-05	3.34E-05	1.15E-05	1.58E-05	1.57E-05	4.82E-06
1003	765192.22	4091314.46	2.10E-04	2.28E-04	8.08E-05	3.28E-05	3.71E-05	1.28E-05	1.75E-05	1.74E-05	5.35E-06
1004	765207.13	4091354.22	2.31E-04	2.51E-04	8.88E-05	3.60E-05	4.07E-05	1.40E-05	1.92E-05	1.91E-05	5.87E-06
1005	765222.03	4091393.99	2.52E-04	2.75E-04	9.72E-05	3.94E-05	4.46E-05	1.54E-05	2.11E-05	2.10E-05	6.43E-06
1006	765236.94	4091433.75	2.75E-04	2.99E-04	1.06E-04	4.30E-05	4.86E-05	1.67E-05	2.30E-05	2.28E-05	7.01E-06
1007	765251.85	4091473.51	2.98E-04	3.24E-04	1.15E-04	4.65E-05	5.26E-05	1.81E-05	2.49E-05	2.47E-05	7.59E-06
1008	765266.75	4091513.28	3.19E-04	3.48E-04	1.23E-04	4.99E-05	5.64E-05	1.94E-05	2.67E-05	2.65E-05	8.14E-06
1009	765281.66	4091553.04	3.39E-04	3.69E-04	1.30E-04	5.29E-05	5.99E-05	2.06E-05	2.83E-05	2.81E-05	8.63E-06
1010	765296.56	4091592.8	3.55E-04	3.86E-04	1.37E-04	5.54E-05	6.27E-05	2.16E-05	2.96E-05	2.94E-05	9.04E-06
1011	765311.47	4091632.56	3.66E-04	3.98E-04	1.41E-04	5.72E-05	6.47E-05	2.23E-05	3.06E-05	3.04E-05	9.33E-06
1012	765326.38	4091672.33	3.72E-04	4.05E-04	1.43E-04	5.81E-05	6.58E-05	2.27E-05	3.11E-05	3.09E-05	9.49E-06
1013	765341.28	4091712.09	3.73E-04	4.06E-04	1.44E-04	5.82E-05	6.59E-05	2.27E-05	3.11E-05	3.10E-05	9.50E-06
1014	765356.19	4091751.85	3.68E-04	4.00E-04	1.42E-04	5.74E-05	6.50E-05	2.24E-05	3.07E-05	3.05E-05	9.37E-06
1015	765371.09	4091791.61	3.58E-04	3.89E-04	1.38E-04	5.59E-05	6.32E-05	2.18E-05	2.99E-05	2.97E-05	9.11E-06
1016	765386	4091831.38	3.43E-04	3.74E-04	1.32E-04	5.36E-05	6.06E-05	2.09E-05	2.87E-05	2.85E-05	8.75E-06
1017	765400.91	4091871.14	3.25E-04	3.54E-04	1.25E-04	5.08E-05	5.75E-05	1.98E-05	2.72E-05	2.70E-05	8.29E-06
1018	765415.81 765430.72	4091910.9	3.05E-04	3.32E-04	1.18E-04	4.77E-05	5.39E-05	1.86E-05	2.55E-05	2.53E-05	7.78E-06
1019 1020	765445.63	4091950.67 4091990.43	2.84E-04 2.63E-04	3.09E-04 2.86E-04	1.09E-04	4.44E-05	5.02E-05 4.65E-05	1.73E-05 1.60E-05	2.37E-05 2.20E-05	2.36E-05 2.18E-05	7.24E-06 6.70E-06
1020		4091990.43			1.01E-04 9.35E-05	4.11E-05			2.20E-05 2.03E-05	2.18E-05 2.02E-05	6.70E-06 6.19E-06
1021	765460.53 765475.44	4092069.95	2.43E-04 2.24E-04	2.64E-04 2.44E-04	8.63E-05	3.79E-05 3.50E-05	4.29E-05 3.96E-05	1.48E-05 1.36E-05	1.87E-05	1.86E-05	5.71E-06
1022	765490.34	4092009.93	2.24L-04 2.07E-04	2.44L-04 2.25E-04	7.97E-05	3.23E-05	3.65E-05	1.26E-05	1.73E-05	1.72E-05	5.27E-06
1023	765505.25	4092149.48	1.91E-04	2.23E-04 2.08E-04	7.37E-05	2.99E-05	3.38E-05	1.16E-05	1.60E-05	1.72E-05 1.59E-05	4.88E-06
1024	765520.16			1.93E-04	6.84E-05		3.14E-05			1.47E-05	4.53E-06
1026		4090883.11	3.01E-05	3.27E-05	1.16E-05		5.31E-06		2.51E-06		7.66E-07
1027	764210.69	4090881.81	2.89E-05	3.15E-05	1.11E-05	4.52E-06	5.11E-06	1.76E-06	2.42E-06	2.40E-06	7.37E-07
1028	764167.59	4090880.5	2.79E-05	3.04E-05	1.08E-05	4.36E-06	4.93E-06	1.70E-06	2.33E-06	2.32E-06	7.11E-07
1029	764124.5	4090879.19	2.70E-05	2.94E-05	1.04E-05	4.22E-06	4.77E-06	1.64E-06	2.25E-06	2.24E-06	6.88E-07
1030	764300.83	4090692.64	2.52E-05	2.74E-05	9.71E-06	3.94E-06	4.45E-06	1.53E-06	2.10E-06	2.09E-06	6.42E-07
1031	764339.69	4090710.2	2.65E-05	2.89E-05	1.02E-05	4.14E-06	4.69E-06	1.61E-06	2.21E-06	2.20E-06	6.76E-07
1032	764378.56	4090727.75	2.80E-05	3.05E-05	1.08E-05	4.37E-06	4.95E-06	1.70E-06	2.34E-06	2.32E-06	7.13E-07
1033	764417.42	4090745.31	2.97E-05	3.23E-05	1.14E-05	4.64E-06	5.25E-06	1.81E-06	2.48E-06	2.47E-06	7.57E-07
1034	764456.29	4090762.86	3.16E-05	3.44E-05	1.22E-05	4.94E-06	5.59E-06	1.92E-06	2.64E-06	2.62E-06	8.06E-07
1035	764495.15	4090780.42	3.38E-05	3.68E-05	1.30E-05	5.28E-06	5.98E-06	2.06E-06	2.83E-06	2.81E-06	8.62E-07
1036	764534.02	4090797.98	3.64E-05	3.96E-05	1.40E-05	5.69E-06	6.43E-06	2.22E-06	3.04E-06	3.02E-06	9.28E-07
1037	764572.88	4090815.53	3.94E-05	4.28E-05	1.52E-05	6.15E-06	6.95E-06	2.39E-06	3.29E-06	3.27E-06	1.00E-06
1038	764611.75	4090833.09	4.28E-05	4.65E-05	1.65E-05	6.68E-06	7.55E-06	2.60E-06	3.57E-06	3.55E-06	1.09E-06
1039	764650.61	4090850.64	4.67E-05	5.08E-05	1.80E-05	7.29E-06	8.24E-06	2.84E-06	3.90E-06	3.87E-06	1.19E-06
1040	764689.48	4090868.2	5.11E-05	5.56E-05	1.97E-05	7.97E-06	9.02E-06	3.11E-06	4.26E-06	4.24E-06	1.30E-06
1041	764728.35	4090885.76	5.59E-05	6.08E-05	2.15E-05	8.73E-06	9.87E-06	3.40E-06	4.67E-06	4.64E-06	1.42E-06
1042	764767.21	4090903.31	6.12E-05	6.66E-05	2.36E-05	9.56E-06	1.08E-05	3.73E-06	5.11E-06	5.08E-06	1.56E-06
1043	764806.08	4090920.87	6.68E-05	7.28E-05	2.57E-05	1.04E-05	1.18E-05	4.07E-06	5.58E-06	5.55E-06	1.70E-06
1044	764844.94	4090938.42	7.27E-05	7.91E-05	2.80E-05	1.14E-05	1.28E-05	4.42E-06	6.07E-06	6.03E-06	1.85E-06
1045	764883.81	4090955.98	7.86E-05	8.56E-05	3.03E-05	1.23E-05	1.39E-05	4.78E-06	6.57E-06	6.53E-06	2.00E-06
1046	764922.67	4090973.54	8.46E-05	9.21E-05	3.26E-05	1.32E-05	1.49E-05	5.15E-06	7.06E-06	7.02E-06	2.15E-06
1047	764961.54	4090991.09	9.06E-05	9.86E-05	3.49E-05	1.41E-05	1.60E-05	5.51E-06	7.56E-06	7.52E-06	2.31E-06
1048	765000.4	4091008.65	9.66E-05	1.05E-04	3.72E-05	1.51E-05	1.71E-05	5.88E-06	8.07E-06	8.02E-06	2.46E-06
1049	765039.27	4091026.2	1.03E-04	1.12E-04	3.96E-05	1.61E-05	1.82E-05	6.26E-06	8.59E-06	8.54E-06	2.62E-06
1050		4091043.76	1.09E-04	1.19E-04	4.21E-05	1.71E-05	1.93E-05	6.65E-06	9.12E-06	9.07E-06	2.78E-06

1051	765117	4091061.32	1.16E-04	1.26E-04	4.47E-05	1.81E-05	2.05E-05	7.06E-06	9.69E-06	9.63E-06	2.96E-06
1052	765155.86	4091078.87	1.23E-04	1.34E-04	4.74E-05	1.92E-05	2.18E-05	7.49E-06	1.03E-05	1.02E-05	3.14E-06
1053	765194.73	4091096.43	1.31E-04	1.42E-04	5.03E-05	2.04E-05	2.31E-05	7.95E-06	1.09E-05	1.08E-05	3.33E-06
1054	765233.59	4091113.98	1.38E-04	1.51E-04	5.33E-05	2.16E-05	2.44E-05	8.42E-06	1.15E-05	1.15E-05	3.52E-06
1055	765272.46	4091131.54	1.46E-04	1.59E-04	5.63E-05	2.28E-05	2.58E-05	8.89E-06	1.22E-05	1.21E-05	3.72E-06
1056	765311.32	4091149.1	1.54E-04	1.68E-04	5.93E-05	2.40E-05	2.72E-05	9.37E-06	1.29E-05	1.28E-05	3.92E-06
1057	765338.24	4091177.84	1.65E-04	1.79E-04	6.34E-05	2.57E-05	2.91E-05	1.00E-05	1.37E-05	1.37E-05	4.20E-06
1058	765353.21	4091217.77	1.79E-04	1.95E-04	6.90E-05	2.80E-05	3.16E-05	1.09E-05	1.50E-05	1.49E-05	4.56E-06
1059	765368.18	4091257.71	1.94E-04	2.12E-04	7.49E-05	3.04E-05	3.44E-05	1.18E-05	1.62E-05	1.61E-05	4.96E-06
1060	765383.15	4091297.64	2.11E-04	2.29E-04	8.11E-05	3.29E-05	3.72E-05	1.28E-05	1.76E-05	1.75E-05	5.37E-06
1061	765398.12	4091337.57	2.27E-04	2.47E-04	8.74E-05	3.55E-05	4.01E-05	1.38E-05	1.90E-05	1.88E-05	5.79E-06
1062	765413.09	4091377.5	2.43E-04	2.65E-04	9.36E-05	3.80E-05	4.30E-05	1.48E-05	2.03E-05	2.02E-05	6.20E-06
1063	765428.06	4091417.44	2.59E-04	2.81E-04	9.96E-05	4.04E-05	4.57E-05	1.57E-05	2.16E-05	2.15E-05	6.59E-06
1064	765443.03	4091457.37	2.72E-04	2.96E-04	1.05E-04	4.25E-05	4.81E-05	1.66E-05	2.27E-05	2.26E-05	6.94E-06
1065	765458	4091497.3	2.84E-04	3.09E-04	1.09E-04	4.43E-05	5.01E-05	1.73E-05	2.37E-05	2.36E-05	7.23E-06
1066	765472.97	4091537.23	2.92E-04	3.18E-04	1.13E-04	4.56E-05	5.16E-05	1.78E-05	2.44E-05	2.43E-05	7.44E-06
1067	765487.94	4091577.17	2.97E-04	3.23E-04	1.14E-04	4.64E-05	5.25E-05	1.81E-05	2.48E-05	2.47E-05	7.57E-06
1068	765502.91	4091617.1	2.98E-04	3.25E-04	1.15E-04	4.66E-05	5.27E-05	1.81E-05	2.49E-05	2.48E-05	7.60E-06
1069	765517.88	4091657.03	2.96E-04	3.22E-04	1.14E-04	4.62E-05	5.22E-05	1.80E-05	2.47E-05	2.45E-05	7.53E-06
1070	765532.85	4091696.97	2.90E-04	3.15E-04	1.12E-04	4.52E-05	5.12E-05	1.76E-05	2.42E-05	2.41E-05	7.38E-06
1071	765547.82	4091736.9	2.81E-04	3.05E-04	1.08E-04	4.38E-05	4.96E-05	1.71E-05	2.34E-05	2.33E-05	7.15E-06
1072	765562.78	4091776.83	2.69E-04	2.93E-04	1.04E-04	4.20E-05	4.75E-05	1.64E-05	2.24E-05	2.23E-05	6.85E-06
1073	765577.75	4091816.76	2.55E-04	2.78E-04	9.83E-05	3.99E-05	4.51E-05	1.55E-05	2.13E-05	2.12E-05	6.51E-06
1074	765592.72	4091856.7	2.41E-04	2.62E-04	9.27E-05	3.76E-05	4.25E-05	1.46E-05	2.01E-05	2.00E-05	6.13E-06
1075	765607.69	4091896.63	2.25E-04	2.45E-04	8.68E-05	3.52E-05	3.98E-05	1.37E-05	1.88E-05	1.87E-05	5.74E-06
1076	765622.66	4091936.56	2.10E-04	2.29E-04	8.09E-05	3.28E-05	3.71E-05	1.28E-05	1.75E-05	1.74E-05	5.35E-06
1077	765637.63	4091976.49	1.96E-04	2.13E-04	7.53E-05	3.06E-05	3.46E-05	1.19E-05	1.63E-05	1.62E-05	4.99E-06
1078	765652.6	4092016.43	1.82E-04	1.98E-04	7.01E-05	2.84E-05	3.22E-05	1.11E-05	1.52E-05	1.51E-05	4.64E-06
1079	765667.57	4092056.36	1.70E-04	1.85E-04	6.54E-05	2.65E-05	3.00E-05	1.03E-05	1.42E-05	1.41E-05	4.32E-06
1080	765682.54	4092096.29	1.59E-04	1.73E-04	6.11E-05	2.48E-05	2.80E-05	9.65E-06	1.32E-05	1.32E-05	4.04E-06
1081	765697.51	4092136.22	1.49E-04	1.62E-04	5.72E-05	2.32E-05	2.62E-05	9.04E-06	1.24E-05	1.23E-05	3.78E-06
1082	765712.48	4092176.16	1.40E-04	1.52E-04	5.37E-05	2.18E-05	2.46E-05	8.49E-06	1.16E-05	1.16E-05	3.55E-06
1083	764259.85	4090683.21	2.42E-05	2.63E-05	9.32E-06	3.78E-06	4.27E-06	1.47E-06	2.02E-06	2.01E-06	6.17E-07
1084	764216.76	4090681.9	2.34E-05	2.55E-05	9.02E-06	3.66E-06	4.14E-06	1.43E-06	1.96E-06	1.94E-06	5.97E-07
1085 1086	764173.66 764130.57	4090680.59 4090679.28	2.27E-05 2.21E-05	2.47E-05 2.40E-05	8.75E-06 8.51E-06	3.55E-06 3.45E-06	4.01E-06 3.90E-06	1.38E-06 1.34E-06	1.90E-06 1.84E-06	1.89E-06 1.83E-06	5.79E-07 5.63E-07
1087	764306.96			2.40E-05 2.27E-05	8.05E-06	3.45E-06 3.26E-06				1.74E-06	
1087	764345.96	4090492.70	2.09L-05 2.18E-05	2.27E-05 2.37E-05	8.40E-06	3.41E-06	3.85E-06	1.27L-00 1.33E-06	1.73L-00 1.82E-06	1.74L-06 1.81E-06	5.56E-07
1089	764384.95	4090527.99	2.18L-05 2.28E-05	2.48E-05	8.79E-06	3.56E-06	4.03E-06	1.39E-06	1.82L-00 1.91E-06	1.89E-06	5.81E-07
1090	764423.94	4090545.6	2.40E-05	2.48E-05 2.61E-05	9.22E-06	3.74E-06	4.03E-06	1.46E-06	2.00E-06	1.99E-06	6.10E-07
1091	764462.93	4090563.21	2.52E-05	2.74E-05	9.71E-06	3.94E-06	4.45E-06	1.53E-06	2.10E-06	2.09E-06	6.42E-07
1092	764501.93	4090580.83	2.66E-05	2.90E-05	1.03E-05	4.16E-06	4.71E-06	1.62E-06	2.22E-06	2.21E-06	6.79E-07
1093	764540.92	4090598.44	2.83E-05	3.08E-05	1.09E-05	4.41E-06	4.99E-06	1.72E-06	2.36E-06	2.35E-06	7.20E-07
1094	764579.91	4090616.06	3.01E-05	3.27E-05	1.16E-05	4.70E-06	5.31E-06	1.83E-06	2.51E-06	2.50E-06	7.66E-07
1095	764618.9	4090633.67	3.22E-05	3.50E-05	1.24E-05	5.02E-06	5.68E-06	1.96E-06	2.69E-06	2.67E-06	8.19E-07
1096	764657.9	4090651.28	3.45E-05	3.76E-05	1.33E-05	5.40E-06	6.10E-06	2.10E-06	2.88E-06	2.87E-06	8.80E-07
1097	764696.89	4090668.9	3.72E-05	4.05E-05	1.43E-05	5.81E-06	6.57E-06	2.26E-06	3.11E-06	3.09E-06	9.48E-07
1098	764735.88	4090686.51	4.02E-05	4.38E-05	1.55E-05	6.29E-06	7.11E-06	2.45E-06	3.36E-06	3.34E-06	1.03E-06
1099	764774.87	4090704.12	4.36E-05	4.75E-05	1.68E-05	6.81E-06	7.70E-06	2.65E-06	3.64E-06	3.62E-06	1.11E-06
1100	764813.87	4090721.74	4.73E-05	5.15E-05	1.82E-05	7.38E-06	8.35E-06	2.88E-06	3.95E-06	3.93E-06	1.20E-06
1101	764852.86	4090739.35	5.13E-05	5.58E-05	1.97E-05	8.01E-06	9.06E-06	3.12E-06	4.28E-06	4.26E-06	1.31E-06
1102	764891.85	4090756.96	5.55E-05	6.04E-05	2.14E-05	8.66E-06	9.80E-06	3.37E-06	4.63E-06	4.60E-06	1.41E-06
1103	764930.84	4090774.58	5.97E-05	6.50E-05	2.30E-05	9.33E-06	1.06E-05	3.63E-06	4.99E-06	4.96E-06	1.52E-06
1104	764969.84	4090792.19	6.41E-05	6.97E-05	2.47E-05	1.00E-05	1.13E-05	3.90E-06	5.35E-06	5.32E-06	1.63E-06
1105	765008.83	4090809.81	6.84E-05	7.44E-05	2.63E-05	1.07E-05	1.21E-05	4.16E-06	5.71E-06	5.68E-06	1.74E-06
1106	765047.82	4090827.42	7.26E-05	7.90E-05	2.80E-05	1.13E-05	1.28E-05	4.42E-06	6.06E-06	6.03E-06	1.85E-06
1107	765086.81	4090845.03	7.68E-05	8.36E-05	2.96E-05	1.20E-05	1.36E-05	4.67E-06	6.42E-06	6.38E-06	1.96E-06
1108	765125.81	4090862.65	8.11E-05	8.82E-05	3.12E-05	1.27E-05	1.43E-05	4.93E-06	6.77E-06	6.73E-06	2.07E-06
1109	765164.8	4090880.26	8.55E-05	9.30E-05	3.29E-05	1.33E-05	1.51E-05	5.20E-06	7.14E-06	7.10E-06	2.18E-06
1110	765203.79	4090897.87	9.00E-05	9.80E-05	3.47E-05	1.41E-05	1.59E-05	5.48E-06	7.52E-06	7.48E-06	2.29E-06
1111	765242.78	4090915.49	9.49E-05	1.03E-04	3.66E-05	1.48E-05	1.68E-05	5.78E-06	7.93E-06	7.88E-06	2.42E-06
1112	765281.78	4090933.1	1.00E-04	1.09E-04	3.85E-05	1.56E-05	1.77E-05	6.09E-06	8.35E-06	8.31E-06	2.55E-06

1111 7633937 6000983 1150-4 1250-4 4286-05 1.655-05 1.885-05 6.765-06 2.881-05												
1115 7659387.5 0000905.9 1.176-04 1.276-04 4.276-05 1.286-05 2.076-05 7.476-05 7.476-05 3.126-05	1113	765320.77	4090950.71	1.05E-04	1.15E-04	4.06E-05	1.65E-05	1.86E-05	6.42E-06	8.81E-06	8.76E-06	2.69E-06
1117 765497.5 4991011.5 1.384-04 1.384-05 1	1114		4090968.33	1.11E-04	1.21E-04	4.28E-05	1.74E-05	1.96E-05	6.76E-06	9.28E-06	9.23E-06	
1111 755494 25 40910112 1.33E-04 1.45E-04 5.3E-05 2.25E-05 2.5E-05 8.7E-06 1.20E-05 1.20E-05 3.67E-05 8.7F-06 1.20E-05 3.20E-05 3.7E-05 1.20E-05 3.20E-05 3.7E-05 1.20E-05 3.20E-05 3.7E-05 1.20E-05 3.20E-05 3.20E-	1115	765398.75	4090985.94	1.17E-04	1.27E-04	4.50E-05	1.83E-05	2.07E-05	7.11E-06	9.76E-06	9.71E-06	2.98E-06
1119 765549.27 4091012.38 1.48E-04 1.57E-04 5.98E-05 2.5E-05 2.5E-05 2.5E-05 1.30E-05 1.30E-05 3.05E-05 3.			4091003.56			4.73E-05			7.47E-06			
1110 765534,29 40911213 1.55E0.6 1.69E0.6 1.95E0.6 2.61E0.5 2.76E0.5 2.76E0.5 1.39E0.6 1.39E0.6 2.45E0.6 2.45E0.6 1.29E0.6 1						5.14E-05	2.08E-05					
1310 7655293 409116139 1.67E-04 1.82E-04 6.90E-05 2.90E-05 1.17E-05 1.50E-05 1.50E-05 5.97E-06 5.97E-05 1.00E-05 5.97E-06 5.		765499.27				5.54E-05						
1112 7655544 249210145 179104 199104 598005 299105 317605 109605 139005 149605 159005 149605 159005 129005 139005 149005 159005 149005						5.98E-05	2.42E-05					
1121 7655594.3 4091241.5 2016-04 2016-04 2016-05 318						6.43E-05						
1121 765579.43												
1112 765589.38 40913121.65 2.15E-04 2.46E-04 8.68E-05 3.35E-05 3.36E-05 3.36E-05												
1152 765504 40910151.71 225E-04 245E-04 8.68E-05 3.52E-05 3.13E-05 4.13E-05 4.13E-05 4.13E-05 4.13E-05 4.0E-05 4.0E-05												
1157 755514 40914141 201620 2.5E-04 9.0E-05 3.5E-05 4.3E-05 4.3E-05 2.0E-05 2.0E-05 2.0E-05 6.1Z-05 1.12E 75566144 40914131 2.4E-04 2.66E-04 9.4E-05 3.8E-05 4.3E-05 4.3E-05 1.49E-05 2.0E-05 2.0E-05 6.1Z-06 1.12E 75566147 4091521.96 2.4E-04 2.6E-04 9.4E-05 3.8E-05 4.3E-05 4.49E-05 2.0E-05 2.0E-05 6.2E-06 1.13E 755694.51 409160.00 2.4E-04 2.0E-04 9.2E-05 3.8E-05 4.3E-05 4.49E-05 2.0E-05 2.0E-05 2.0E-05 6.1E-06 1.13E 755994.51 409160.20 2.4E-04 2.0E-04 9.2E-05 3.76E-05 4.15E-05 4.4E-05 2.0E-05 0.9E-05 0.9E-0												
1217 765584.44 4091521.96 2.46E-04 2.6E-04 9.26E-05 3.75E-05 4.37E-05 4.37E-05 4.20F-05 2.04E-05 2.08E-05												
1128 765564 54 40911512 2.44E-04 2.66E-04 9.41E-05 3.82E-05 4.34E-05 4.34E-05 2.04E-05 2												
1129 765664 A7 4091521.96 2.46E-04 2.67E-04 9.48E-05 3.38E-05 3.38E-05 3.48E-05 3.49E-05 2.00E-05 2.00E-05 6.23E-06 1132 765798.51 4091602.09 2.41E-04 2.62E-04 9.05E-05 3.67E-05 4.15E-05 1.48E-05 2.01E-05 2.00E-05 5.93E-06 1133 765794.55 4091602.09 2.41E-04 2.62E-04 9.05E-05 3.67E-05 4.15E-05 1.43E-05 1.19E-05 1.96E-05 5.98E-06 1133 765794.55 4091602.22 2.77E-04 2.47E-04 8.38E-05 3.40E-05 3.85E-05 1.32E-05 1.82E-05 1.												
1319 765694 4091562.03 2.44E-04 2.6EE-04 9.2TE-05 3.76E-05 4.2EE-05 1.46E-05 2.01E-05 2.01E-05 6.13E-05 1.13E-05 765794.55 409162.15 2.3EE-04 2.5EE-04 9.0SE-05 3.76E-05 4.15E-05 1.4SE-05 1.96E-05 1.96E-05 5.9EE-05 5.9EE-05 1.13E-05 765794.55 409162.12 2.3EE-04 2.7EE-04 2.7EE-05 3.5EE-05 3.5EE-05 3.2EE-05 3.2EE-05 1.8EE-05 1.8EE-05 5.5SE-05 3.5EE-05 3.2EE-05 3.2EE-05				_								
131 765694.51 4091602.09 2.41E-04 2.62E-04 9.05E-05 3.67E-05 4.3E-05 1.43E-05 1.96E-05 1.96E-05 5.98E-06 1.33E 765795.33 4091602.22 2.77E-04 2.47E-04 8.38E-05 3.43E-05 4.3E-05 1.3E-05 1.89E-05 1.89E-05 5.98E-06 1.32E-05 4.09E-05 4.0												
1312 765709.53 409162.15 2.3EF-04 2.5EF-04 2.4FE-05 3.6FE-05 3.6FE-05 3.8EF-05 1.3EF-05 1.8EF-05												
1313 765774.55 4091762.24 2.27E-04 2.47E-04 8.38E-05 3.34E-05 3.35E-05 1.32E-05 1.82E-05 1.81E-05 5.55E-06 1.1315 765764.59 4091762.24 2.07E-04 2.25E-04 7.98E-05 3.24E-05 3.66E-05 1.26E-05 1.73E-05 1.64E-05 1.64E-05												
1131 76579.57 409172.228 218E-04 2.37E-04 7.38E-05 3.46E-05 3.68E-05 1.32E-05 1.73E-05 5.28E-05 1.13E-05 5.75E-05 1.32E-05 1.73E-05 1												
1151 765754.59 9091762.34 2.07E-04 2.13E-04 7.98E-05 3.26E-05 3.46E-05 1.19E-05 1.64E-05 1.53E-05 4.99E-06 1.138 765798.62 4091802.41 1.98E-04 2.01E-04 7.11E-05 2.88E-05 3.26E-05 1.19E-05 1.54E-05 1.53E-05 4.70E-06 1.138 765799.64 4091882.53 1.73E-04 1.79E-04 6.67E-05 2.71E-05 3.06E-05 1.05E-05 1.45E-05 1.44E-05 4.42E-06 1.138 765799.64 4091882.53 1.73E-04 1.79E-04 6.67E-05 2.71E-05 3.06E-05 1.05E-05 1.45E-05 1.44E-05 4.42E-06 1.144 765824.66 4.091892.56 1.27E-04 1.77E-04 6.67E-05 2.74E-05 3.28E-05 3.27E-05 9.27E-06 1.36E-05 1.36E-05 3.88E-06 1.144 765824.7 4.092002.73 1.43E-04 1.66E-04 5.51E-05 2.23E-05 2.38E-05 8.77E-06 1.15E-05 1.19E-05 3.64E-06 1.144 765824.7 4.092002.85 1.77E-04 1.38E-04 4.89E-05 1.99E-05 2.24E-05 7.72E-06 1.06E-05 1.05E-05 3.23E-06 1.144 765824.7 4.09202.85 1.77E-04 1.31E-04 4.89E-05 1.99E-05 2.24E-05 7.72E-06 1.00E-05 3.05E-05 3.23E-06 1.144 765824.7 4.09202.85 1.14E-04 1.31E-04 4.38E-05 1.78E-05 2.01E-05 6.92E-06 9.09E-06 3.09E-06												
1136 76578-61 4091802.41 1.98-04 2.13E-04 7.55E-05 3.06E-05 3.06E-05 1.12E-05 1.54E-05 1.63E-05 4.70E-05 1.38F-05 4.091802.47 1.89E-04 6.67E-05 2.71E-05 3.06E-05 1.0E-05 1.48E-05 1.44E-05 4.42E-06 1.138 7657814.66 409192.26 1.62E-04 1.77E-04 6.67E-05 2.73E-05 2.87E-05 9.89E-06 1.36E-05 1.48E-05 1.44E-05 4.42E-06 1.142 765829.88 409192.26 1.62E-04 1.56E-04 5.51E-05 2.23E-05 2.58E-05 8.70E-06 1.27E-05 1.26E-05 3.88E-06 1.142 76589.77 4092002.73 1.43E-04 1.56E-04 5.51E-05 2.23E-05 2.53E-05 8.70E-06 1.27E-05 1.12E-05 3.43E-06 1.142 76589.77 4092002.73 1.43E-04 1.38E-04 4.89E-05 1.98E-05 2.33E-05 8.18E-06 1.12E-05 1.12E-05 3.43E-06 1.142 76589.77 4092002.73 1.43E-04 1.38E-04 4.89E-05 1.87E-05 2.12E-05 7.30E-06 1.00E-05 1.05E-05 3.25E-05 1.44E-05 1.44E-06 4.88E-05 1.78E-05 2.10E-05 6.92E-06 9.03E-06 8.45E-06 2.90E-06 1.47E-05 2.90E-06 1.47E-05 2.90E-06 1.47E-05 2.90E-06 1.47E-05 2.90E-06 1.47E-05 2.90E-06 1.47E-05 2.90E-06 2.9												
1337 765784.62 4091842.47 1.88E-04 2.01E-04 7.11E-05 2.88E-05 3.26E-05 1.12E-05 1.54E-05 4.43E-05 4.42E-05 1.39E-05 1.69E-05 1.05E-05 1.05E-05 1.36E-05 1.36E-05 3.46E-05 4.42E-05 1.39E-05 4.09E-05 1.39E-05 4.39E-05												
138 76579.64 4091882.53 1.73E-04 1.89E-04 6.67E-05 2.71E-05 3.06E-05 0.89E-06 1.35E-05 1.45E-05 1												
1.13												
140												
1414 765844,7 4092002.73 1.43E-04 1.56E-04 5.18E-05 2.23E-05 2.38E-05 8.70E-06 1.19E-05 1.19E-05 3.43E-06 1.14E-04 3.45E-05 1.14E-05 3.43E-06 1.14E-04 4.16E-05 1.14E-05 3.43E-06 1.14E-04 4.16E-05 1.14E-05 3.43E-06 1.14E-04 4.16E-05 1.16E-05 3.14E-06 3.15E-06 9.50E-06 9.50E-06 9.50E-06 9.50E-06 1.14E-05 1.14E-04 4.16E-05 1.14E-05 1.14E-06 1.14E-06 1.14E-06 1.14E-06 1.14E-06 1.14E-06 1.14E-07												
142 765859.72 4092042.79 1.35E-04 1.46E-04 5.18E-05 2.10E-05 2.38E-05 8.18E-06 1.12E-05 1.12E-05 3.43E-06 1.144 7658547.74 4092082.85 1.7FE-04 1.38E-04 4.6EE-05 1.89E-05 2.12E-05 7.73E-06 1.00E-05 9.0E-06 3.0EE-06 1.144 765898.76 409212.92 1.20E-04 1.31E-04 4.6EE-05 1.89E-05 2.12E-05 7.73E-06 1.00E-05 9.0E-06 3.0EE-06 1.145 765904.78 409212.92 1.0EE-04 1.31E-04 4.3EE-05 1.78E-05 2.12E-05 6.9EE-06 9.0SE-06 9.4SE-06 2.0BE-06 1.146 765919.79 4092203.04 1.0BE-04 1.18E-04 4.3EE-05 7.7FE-06 3.15E-06 3.5EE-06 6.5EE-06 9.0SE-06 8.9BE-06 5.4EE-07 1.148 764222.83 4090481.99 1.96E-05 2.14E-05 7.56E-06 3.0FE-06 3.4FE-06 3.4FE-06 3.4FE-06 3.4FE-07 1.148 764179.73 4090480.68 1.91E-05 2.0BE-05 7.7BE-06 2.9BE-06 3.2BE-06 3.4FE-06 1.15E-06 1.5BE-06 4.5BE-06 1.5BE-06 4.7BE-07 1.159E-06 4.0BE-07 1.5BE-04 4.0BE-07 1.2BE-04 4.0BE-07 4.												
1143 765874.74 4092082.85 1.27E-04 1.38E-04 4.89E-05 1.98E-05 2.24E-05 7.72E-06 1.06E-05 1.05E-05 3.23E-06 1144 765889.76 4092122.92 1.20E-04 1.31E-04 4.62E-05 1.87E-05 2.12E-05 7.30E-06 1.00E-05 9.96E-06 3.06E-06 1146 765919.79 4092203.04 1.08E-04 4.18E-04 4.16E-05 1.69E-05 1.91E-05 6.58E-06 9.03E-06 8.98E-06 2.76E-06 1147 764205.92 4090483.3 2.02E-05 2.20E-05 7.56E-06 3.07E-06 3.56E-06 1.23E-06 1.68E-06 1.67E-06 5.40E-07 1149 764179.73 4090481.99 1.96E-05 2.03E-05 7.56E-06 2.99E-06 3.37E-06 1.69E-06 1.59E-06 1.59E-06 5.00E-07 1150 76413.64 4090479.37 1.86E-05 2.03E-05 7.38E-06 2.91E-06 3.29E-06 1.13E-06 1.59E-06 4.78E-07 1151 764067.7 4091929.1												
1.144 765889.76 4092122.92 1.20E-04 1.31E-04 4.62E-05 1.87E-05 2.12E-05 3.00E-06 1.00E-05 9.96E-06 3.06E-06 1.145 765904.78 4092162.98 1.14E-04 1.24E-04 4.38E-05 1.78E-05 2.01E-05 6.92E-06 9.50E-06 9.50E-06 2.90E-06 1.14E-05 1.99E-05 1.99E-05												
1145 765904.78 4092162.98 1.14E-04 1.24E-04 4.38E-05 1.78E-05 2.01E-05 6.92E-06 9.50E-06 9.45E-06 2.90E-06 1146 765919.79 4092203.04 1.08E-06 2.18E-04 4.16E-05 1.69E-06 3.5E-06 6.28E-06 9.30E-06 8.98E-06 2.76E-06 1148 764222.83 4090481.99 1.96E-05 2.14E-05 7.56E-06 3.07E-06 3.37E-06 1.19E-06 1.64E-06 1.63E-06 5.00E-07 1150 764136.64 4090479.37 1.86E-05 2.03E-05 7.18E-06 2.91E-06 3.27E-06 1.13E-06 1.59E-06 1.59E-06 4.87E-07 1151 764067.7 4091929.19 3.26E-04 3.55E-04 1.26E-04 5.10E-05 5.7E-05 1.99E-05 2.7ZE-05 2.71E-05 8.31E-06 1152 764076.0 4091779.29 1.60E-04 1.74E-04 6.16E-05 2.50E-05 9.73E-06 1.33E-05 2.71E-05 2.31E-06 1155 764070.6 4091780.92 <												
1146 765919.79 4092203.04 1.08E-04 1.18E-04 4.16E-05 1.69E-05 1.91E-05 6.58E-06 9.03E-06 8.98E-06 2.76E-06 1.14E-07 1.14E 764265.92 4090483.3 2.02E-05 2.20E-05 7.77E-06 3.15E-06 3.56E-06 1.13E-06 1.68E-06 1.67E-06 5.00E-07 1.14E 764179.73 4090480.68 1.91E-05 2.08E-05 7.75E-06 2.99E-06 3.37E-06 1.16E-06 1.59E-06 1.59E-06 1.59E-06 4.75E-07 1.15E 764067.7 4091929.19 3.26E-04 3.55E-04 1.26E-04 5.10E-05 5.77E-05 1.99E-05 2.72E-05 2.71E-05 8.31E-06 1.15E 764067.7 4091929.19 3.26E-04 3.55E-04 1.26E-04 5.10E-05 5.77E-05 1.99E-05 2.72E-05 2.71E-05 8.31E-06 1.15E 764067.7 4091929.19 3.26E-04 3.55E-04 1.26E-04 5.10E-05 3.25E-05 3.23E-05 3.3E-06 1.33E-05 2.04E-05 2.03E-05 3.3E-05 4.32E-05 4.32E												
1147 764265.92 4090483.3 2.02E-05 2.0E-05 7.77E-06 3.15E-06 3.25E-06 1.23E-06 1.68E-06 1.67E-06 5.14E-07 1148 764222.83 4090481.99 1.96E-05 2.14E-05 7.56E-06 3.07E-06 3.37E-06 1.16E-06 1.59E-06 1.59E-06 4.87E-07 1150 764136.64 4090479.37 1.86E-05 2.03E-05 7.18E-06 2.91E-06 3.29E-06 1.13E-06 1.59E-06 1.59E-06 4.87E-07 1151 764067.7 4091929.19 3.26E-04 3.55E-04 1.26E-04 5.10E-05 5.77E-05 1.99E-05 2.72E-05 2.71E-05 8.31E-06 1152 764067.7 4091780.91 1.48E-04 1.66E-05 2.50E-05 2.82E-05 9.73E-06 1.33E-05 1.32E-05 2.32E-05 1.33E-06 1.33E-05 1.32E-05 3.76E-06 1153 764070.6 4091780.91 1.48E-04 1.61E-04 5.69E-05 2.31E-05 2.61E-05 8.99E-06 1.23E-05 1.23E-05 3.76E-06												
1148 764222.83 4090481.99 1.96E-05 2.14E-05 7.56E-06 3.07E-06 1.19E-06 1.64E-06 1.63E-06 4.09C-07 1149 764179.73 4090480.68 1.91E-05 2.08E-05 7.36E-06 2.98E-06 3.37E-06 1.16E-06 1.59E-06 1.59E-06 4.75E-07 1151 764067.7 4091929.19 3.26E-04 3.55E-04 1.26E-04 5.10E-05 5.77E-05 1.99E-05 2.72E-05 2.71E-05 8.31E-06 1152 764067.7 4091879.31 2.45E-04 2.66E-04 9.42E-05 3.82E-05 4.32E-05 1.49E-05 2.04E-05 2.03E-05 6.23E-06 1153 764076.6 4091779.29 1.60E-04 1.74E-04 6.16E-05 2.50E-05 2.82E-05 9.73E-06 1.33E-05 1.33E-05 1.33E-05 1.33E-05 1.32E-05 3.76E-06 1154 764037.59 4091679.47 1.12E-04 4.03E-05 1.27E-05 6.79E-06 9.32E-05 9.32E-06 2.84E-06 1155 764056.99 <												
1149 764179.73 4090480.68 1.91E-05 2.08E-05 7.36E-06 2.98E-06 3.37E-06 1.16E-06 1.59E-06 1.59E-06 4.87E-07 1150 764136.64 4090479.37 1.86E-05 2.03E-05 7.18E-06 2.91E-06 3.29E-06 1.13E-06 1.56E-06 1.55E-06 4.75E-07 1151 764064.24 4091879.31 2.45E-04 2.66E-04 9.42E-05 3.82E-05 5.77E-05 1.99E-05 2.72E-05 2.71E-05 8.31E-06 1152 764064.24 4091879.31 2.46E-04 2.66E-04 9.42E-05 2.50E-05 2.82E-05 9.73E-06 1.33E-05 1.33E-05 4.77E-05 1153 764070.6 4091780.92 1.48E-04 1.61E-04 5.69E-05 2.31E-05 2.61E-05 8.99E-06 1.23E-05 1.23E-05 3.76E-06 1154 764063.99 4091679.47 1.12E-04 4.30E-05 1.74E-05 1.97E-05 6.79E-06 9.32E-06 8.23E-05 3.65E-06 1157 764058.39 409159.34												
1150 764136.64 4090479.37 1.86E-05 2.03E-05 7.18E-06 2.91E-06 3.29E-06 1.13E-06 1.56E-06 1.55E-06 4.75E-07 1151 764067.7 409129.19 3.26E-04 3.55E-04 1.26E-04 5.10E-05 5.77E-05 1.99E-05 2.72E-05 2.71E-05 8.31E-06 1152 764064.24 4091879.31 2.45E-04 2.66E-04 9.42E-05 3.82E-05 4.32E-05 1.49E-05 2.08E-05 2.28E-05 9.73E-06 1.33E-05 2.03E-05 2.03E-05 4.07E-06 1154 764037.59 4091780.92 1.48E-04 1.61E-04 5.69E-05 2.31E-05 2.61E-05 8.99E-06 1.23E-05 1.33E-05 2.76E-06 1155 764066.99 4091681.61 1.05E-04 1.14E-04 4.03E-05 1.53E-05 6.79E-06 9.32E-06 9.26E-06 2.84E-06 1157 764036.66 4091681.61 1.05E-04 1.14E-04 4.03E-05 1.23E-05 1.97E-05 6.36E-06 6.58E-06 6.58E-06 6.68E-06 <td>1149</td> <td>764179.73</td> <td>4090480.68</td> <td>1.91E-05</td> <td>2.08E-05</td> <td></td> <td>2.98E-06</td> <td>3.37E-06</td> <td>1.16E-06</td> <td>1.59E-06</td> <td>1.59E-06</td> <td>4.87E-07</td>	1149	764179.73	4090480.68	1.91E-05	2.08E-05		2.98E-06	3.37E-06	1.16E-06	1.59E-06	1.59E-06	4.87E-07
1152 764064.24 4091879.31 2.45E-04 2.66E-04 9.42E-05 3.82E-05 4.32E-05 1.49E-05 2.04E-05 2.04E-05 2.03E-06 1.23E-05 6.23E-06 1153 764070.6 4091779.29 1.60E-04 1.74E-04 6.16E-05 2.50E-05 2.8E-05 9.73E-06 1.33E-05 1.33E-05 4.07E-06 1155 764066.99 4091679.47 1.12E-04 1.21E-04 4.30E-05 1.7FE-05 6.79E-06 9.3E-06 9.26E-06 2.84E-06 1156 764030.66 4091681.16 1.05E-04 1.14E-04 4.03E-05 1.63E-05 1.85E-05 6.36E-06 8.73E-06 9.26E-06 2.84E-06 1157 764058.39 4091579.74 8.27E-05 9.00E-05 3.18E-05 1.29E-05 1.46E-05 5.03E-06 6.90E-06 6.86E-06 2.11E-06 1158 764053.93 4091581.4 7.88E-05 8.58E-05 3.03E-05 1.23E-05 1.39E-05 6.96E-06 6.58E-06 6.54E-06 2.01E-06 1159 <td< td=""><td>1150</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	1150											
1153 764070.6 4091779.29 1.60E-04 1.74E-04 6.16E-05 2.50E-05 2.82E-05 9.73E-06 1.33E-05 1.33E-05 4.07E-06 1154 764037.59 4091780.92 1.48E-04 1.61E-04 5.69E-05 2.31E-05 2.61E-05 8.99E-06 1.23E-05 1.23E-05 3.76E-06 1155 764066.99 4091679.47 1.12E-04 1.21E-04 4.30E-05 1.74E-05 1.97E-05 6.79E-06 9.32E-06 9.26E-06 2.84E-06 1157 764058.39 4091579.74 8.27E-05 9.00E-05 3.18E-05 1.29E-05 1.46E-05 5.03E-06 6.90E-06 6.86E-06 2.11E-06 1158 764053.95 4091581.4 7.88E-05 3.03E-05 1.01E-05 1.14E-05 3.94E-06 6.58E-06 6.54E-06 2.01E-06 1160 764053.95 4091479.93 6.47E-05 7.05E-05 2.49E-05 1.01E-05 1.14E-05 3.94E-06 5.16E-06 5.16E-06 1.65E-06 1161 764076.47 4091281.31	1151	764067.7	4091929.19	3.26E-04	3.55E-04	1.26E-04	5.10E-05	5.77E-05	1.99E-05	2.72E-05	2.71E-05	8.31E-06
1154 764037.59 4091780.92 1.48E-04 1.61E-04 5.69E-05 2.31E-05 2.61E-05 8.99E-06 1.23E-05 1.23E-05 3.76E-06 1155 764066.99 4091679.47 1.12E-04 1.21E-04 4.30E-05 1.74E-05 1.97E-05 6.79E-06 9.32E-06 9.26E-06 2.84E-06 1156 764030.66 4091681.16 1.05E-04 1.14E-04 4.03E-05 1.63E-05 1.85E-05 6.36E-06 8.73E-06 8.68E-06 2.66E-06 1157 764058.39 4091579.74 8.27E-05 9.00E-05 3.18E-05 1.29E-05 1.46E-05 5.03E-06 6.90E-06 6.86E-06 2.11E-06 1158 764023.73 4091479.93 6.47E-05 7.05E-05 2.49E-05 1.01E-05 1.14E-05 5.49E-06 5.41E-06 5.38E-06 6.58E-06 1.58E-06 1160 764016.79 4091481.64 6.21E-05 6.76E-05 2.39E-05 9.70E-06 1.10E-05 3.78E-06 5.19E-06 5.16E-06 1.58E-06 1161	1152	764064.24	4091879.31	2.45E-04	2.66E-04	9.42E-05	3.82E-05	4.32E-05	1.49E-05	2.04E-05	2.03E-05	6.23E-06
1155 764066.99 4091679.47 1.12E-04 4.30E-05 1.74E-05 1.97E-05 6.79E-06 9.32E-06 9.26E-06 2.84E-06 1156 764030.66 4091681.16 1.05E-04 1.14E-04 4.03E-05 1.63E-05 1.85E-05 6.36E-06 8.73E-06 8.68E-06 2.66E-06 1157 764058.39 4091579.74 8.27E-05 9.00E-05 3.18E-05 1.29E-05 1.46E-05 5.03E-06 6.90E-06 6.86E-06 2.11E-06 1158 764023.73 4091581.4 7.88E-05 8.58E-05 3.03E-05 1.23E-05 1.39E-05 4.79E-06 6.58E-06 6.54E-06 2.01E-06 1160 764016.79 4091481.64 6.21E-05 6.76E-05 2.39E-05 9.70E-06 1.10E-05 3.78E-06 5.19E-06 5.16E-06 1.58E-06 1161 764076.47 4091279.71 4.51E-05 4.93E-05 1.68E-05 6.82E-06 7.72E-06 2.74E-06 3.65E-06 3.65E-06 1.15E-06 1163 764002.92 4091282.13	1153	764070.6	4091779.29	1.60E-04	1.74E-04	6.16E-05	2.50E-05	2.82E-05	9.73E-06	1.33E-05	1.33E-05	4.07E-06
1156 764030.66 4091681.16 1.05E-04 1.14E-04 4.03E-05 1.63E-05 1.85E-05 6.36E-06 8.73E-06 8.68E-06 2.66E-06 1157 764058.39 4091579.74 8.27E-05 9.00E-05 3.18E-05 1.29E-05 1.46E-05 5.03E-06 6.90E-06 6.86E-06 2.11E-06 1158 764023.73 4091581.4 7.88E-05 8.58E-05 3.03E-05 1.23E-05 1.39E-05 4.79E-06 6.58E-06 6.54E-06 2.01E-06 1160 764016.79 4091481.64 6.21E-05 6.76E-05 2.39E-05 9.70E-06 1.10E-05 3.78E-06 5.19E-06 5.16E-06 1.58E-06 1161 764040.58 4091280.41 4.37E-05 4.75E-05 1.68E-05 6.82E-06 7.72E-06 2.66E-06 3.65E-06 3.63E-06 1.11E-06 1162 764076.47 409127.71 4.51E-05 1.63E-05 6.62E-06 7.49E-06 2.78E-06 3.54E-06 3.74E-06 1.58E-06 1163 764007.04 4091080.88	1154	764037.59	4091780.92	1.48E-04	1.61E-04	5.69E-05	2.31E-05	2.61E-05	8.99E-06	1.23E-05	1.23E-05	3.76E-06
1157 764058.39 4091579.74 8.27E-05 9.00E-05 3.18E-05 1.29E-05 1.46E-05 5.03E-06 6.90E-06 6.86E-06 2.11E-06 1158 764023.73 4091581.4 7.88E-05 8.58E-05 3.03E-05 1.23E-05 1.39E-05 4.79E-06 6.58E-06 6.54E-06 2.01E-06 1159 764053.95 4091479.93 6.47E-05 7.05E-05 2.49E-05 1.01E-05 3.94E-06 5.41E-06 5.38E-06 1.65E-06 1160 764016.79 4091481.64 6.21E-05 6.76E-05 2.39E-05 9.70E-06 1.10E-05 3.78E-06 5.19E-06 5.16E-06 1.58E-06 1161 7640040.58 4091280.41 4.37E-05 4.75E-05 1.68E-05 6.82E-06 7.72E-06 2.66E-06 3.65E-06 3.63E-06 1.11E-06 1162 764076.47 4091279.71 4.51E-05 4.91E-05 1.74E-05 7.04E-06 7.9E-06 2.74E-06 3.76E-06 3.74E-06 3.54E-06 3.54E-06 1.58E-06 1163	1155	764066.99	4091679.47	1.12E-04	1.21E-04	4.30E-05	1.74E-05	1.97E-05	6.79E-06	9.32E-06	9.26E-06	2.84E-06
1158 764023.73 4091581.4 7.88E-05 8.58E-05 3.03E-05 1.23E-05 1.39E-05 4.79E-06 6.58E-06 6.54E-06 2.01E-06 1159 764053.95 4091479.93 6.47E-05 7.05E-05 2.49E-05 1.01E-05 1.14E-05 3.94E-06 5.41E-06 5.38E-06 1.65E-06 1160 764016.79 4091481.64 6.21E-05 6.76E-05 2.39E-05 9.70E-06 1.10E-05 3.78E-06 5.19E-06 5.16E-06 1.58E-06 1161 764040.58 4091280.41 4.37E-05 4.75E-05 1.68E-05 6.82E-06 7.72E-06 2.66E-06 3.65E-06 3.63E-06 1.11E-06 1162 764076.47 4091279.71 4.51E-05 4.91E-05 1.74E-05 7.04E-06 7.96E-06 2.74E-06 3.76E-06 3.74E-06 1.58E-06 1163 764002.92 4091282.13 4.24E-05 4.61E-05 1.63E-05 6.62E-06 7.49E-06 2.58E-06 3.54E-06 3.52E-06 1.08E-06 1164 764027.04 4091080.88 3.22E-05 3.51E-05 1.24E-05 5.04E-06 5.70E-06	1156	764030.66	4091681.16	1.05E-04	1.14E-04	4.03E-05	1.63E-05	1.85E-05	6.36E-06	8.73E-06	8.68E-06	2.66E-06
1159 764053.95 4091479.93 6.47E-05 7.05E-05 2.49E-05 1.01E-05 1.14E-05 3.94E-06 5.41E-06 5.38E-06 1.65E-06 1160 764016.79 4091481.64 6.21E-05 6.76E-05 2.39E-05 9.70E-06 1.10E-05 3.78E-06 5.19E-06 5.16E-06 1.58E-06 1161 764040.58 4091280.41 4.37E-05 4.75E-05 1.68E-05 6.82E-06 7.72E-06 2.66E-06 3.65E-06 3.65E-06 1.11E-06 1162 764076.47 4091279.71 4.51E-05 4.91E-05 1.74E-05 7.04E-06 7.96E-06 2.74E-06 3.56E-06 3.54E-06 3.54E-06 1.58E-06 1163 764002.92 4091282.13 4.24E-05 4.61E-05 1.63E-05 6.62E-06 7.49E-06 2.58E-06 3.54E-06 3.52E-06 1.08E-06 1164 764063.6 4091080.88 3.22E-05 3.51E-05 1.24E-05 5.16E-06 5.84E-06 2.01E-06 2.69E-06 2.69E-06 2.69E-06 2.69E-06 8.22E-07 <td>1157</td> <td>764058.39</td> <td>4091579.74</td> <td>8.27E-05</td> <td>9.00E-05</td> <td>3.18E-05</td> <td>1.29E-05</td> <td>1.46E-05</td> <td>5.03E-06</td> <td>6.90E-06</td> <td>6.86E-06</td> <td>2.11E-06</td>	1157	764058.39	4091579.74	8.27E-05	9.00E-05	3.18E-05	1.29E-05	1.46E-05	5.03E-06	6.90E-06	6.86E-06	2.11E-06
1160 764016.79 4091481.64 6.21E-05 6.76E-05 2.39E-05 9.70E-06 1.10E-05 3.78E-06 5.19E-06 5.16E-06 1.58E-06 1161 764040.58 4091280.41 4.37E-05 4.75E-05 1.68E-05 6.82E-06 7.72E-06 2.66E-06 3.65E-06 3.63E-06 1.11E-06 1162 764076.47 4091279.71 4.51E-05 4.91E-05 1.74E-05 7.04E-06 7.96E-06 2.74E-06 3.76E-06 3.74E-06 1.15E-06 1163 764002.92 4091282.13 4.24E-05 4.61E-05 1.63E-05 6.62E-06 7.49E-06 2.58E-06 3.54E-06 3.52E-06 1.08E-06 1164 764027.04 4091080.88 3.22E-05 3.51E-05 1.24E-05 5.04E-06 5.70E-06 1.96E-06 2.69E-06 2.68E-06 8.22E-07 1165 764063.6 4091080.17 3.30E-05 3.60E-05 1.27E-05 5.16E-06 5.84E-06 2.01E-06 2.63E-06 2.76E-06 8.22E-07 1167 764091.41	1158	764023.73	4091581.4	7.88E-05	8.58E-05	3.03E-05	1.23E-05	1.39E-05	4.79E-06	6.58E-06	6.54E-06	2.01E-06
1161 764040.58 4091280.41 4.37E-05 4.75E-05 1.68E-05 6.82E-06 7.72E-06 2.66E-06 3.65E-06 3.63E-06 1.11E-06 1162 764076.47 4091279.71 4.51E-05 4.91E-05 1.74E-05 7.04E-06 7.96E-06 2.74E-06 3.76E-06 3.74E-06 1.15E-06 1163 764002.92 4091282.13 4.24E-05 4.61E-05 1.63E-05 6.62E-06 7.49E-06 2.58E-06 3.54E-06 3.52E-06 1.08E-06 1164 764027.04 4091080.88 3.22E-05 3.51E-05 1.24E-05 5.04E-06 5.70E-06 1.96E-06 2.69E-06 2.68E-06 8.22E-07 1165 764063.6 4091080.17 3.30E-05 3.51E-05 1.27E-05 5.16E-06 5.84E-06 2.01E-06 2.63E-06 2.74E-06 8.42E-07 1166 763989.06 4091082.61 3.15E-05 3.43E-05 1.21E-05 4.92E-06 5.57E-06 1.92E-06 2.63E-06 2.62E-06 8.03E-07 1167 764013.41	1159	764053.95	4091479.93	6.47E-05	7.05E-05	2.49E-05	1.01E-05	1.14E-05	3.94E-06	5.41E-06	5.38E-06	1.65E-06
1162 764076.47 4091279.71 4.51E-05 4.91E-05 1.74E-05 7.04E-06 7.96E-06 2.74E-06 3.76E-06 3.74E-06 1.15E-06 1163 764002.92 4091282.13 4.24E-05 4.61E-05 1.63E-05 6.62E-06 7.49E-06 2.58E-06 3.54E-06 3.52E-06 1.08E-06 1164 764027.04 4091080.88 3.22E-05 3.51E-05 1.24E-05 5.04E-06 5.70E-06 1.96E-06 2.69E-06 2.68E-06 8.22E-07 1165 764063.6 4091080.17 3.30E-05 3.60E-05 1.27E-05 5.16E-06 5.84E-06 2.01E-06 2.76E-06 2.74E-06 8.42E-07 1166 763989.06 4091082.61 3.15E-05 3.43E-05 1.21E-05 4.92E-06 5.57E-06 1.92E-06 2.63E-06 2.62E-06 8.03E-07 1167 764013.41 4090881.36 2.53E-05 2.75E-05 9.73E-06 3.95E-06 4.56E-06 1.57E-06 2.15E-06 2.14E-06 6.57E-07 1169 764087.47	1160	764016.79	4091481.64	6.21E-05	6.76E-05	2.39E-05	9.70E-06	1.10E-05	3.78E-06	5.19E-06	5.16E-06	1.58E-06
1163 764002.92 4091282.13 4.24E-05 4.61E-05 1.63E-05 6.62E-06 7.49E-06 2.58E-06 3.54E-06 3.52E-06 1.08E-06 1164 764027.04 4091080.88 3.22E-05 3.51E-05 1.24E-05 5.04E-06 5.70E-06 1.96E-06 2.69E-06 2.68E-06 8.22E-07 1165 764063.6 4091080.17 3.30E-05 3.60E-05 1.27E-05 5.16E-06 5.84E-06 2.01E-06 2.63E-06 2.74E-06 8.42E-07 1166 763989.06 4091082.61 3.15E-05 3.43E-05 1.21E-05 4.92E-06 5.57E-06 1.92E-06 2.63E-06 2.62E-06 8.03E-07 1167 764013.41 4090881.36 2.53E-05 2.75E-05 9.73E-06 3.95E-06 4.46E-06 1.54E-06 2.11E-06 2.10E-06 6.44E-07 1168 764050.44 4090880.63 2.58E-05 2.81E-05 9.93E-06 4.03E-06 1.57E-06 2.15E-06 2.14E-06 6.57E-07 1169 764087.47 4090883.09 2.48E-05 2.87E-05 1.02E-05 4.12E-06 4.66E-06 1.50E-06	1161	764040.58	4091280.41	4.37E-05		1.68E-05	6.82E-06	7.72E-06	2.66E-06	3.65E-06	3.63E-06	1.11E-06
1164 764027.04 4091080.88 3.22E-05 3.51E-05 1.24E-05 5.04E-06 5.70E-06 1.96E-06 2.69E-06 2.68E-06 8.22E-07 1165 764063.6 4091080.17 3.30E-05 3.60E-05 1.27E-05 5.16E-06 5.84E-06 2.01E-06 2.76E-06 2.74E-06 8.42E-07 1166 763989.06 4091082.61 3.15E-05 3.43E-05 1.21E-05 4.92E-06 5.57E-06 1.92E-06 2.63E-06 2.62E-06 8.03E-07 1167 764013.41 4090881.36 2.53E-05 2.75E-05 9.73E-06 3.95E-06 4.46E-06 1.54E-06 2.11E-06 2.10E-06 6.44E-07 1168 764050.44 4090880.63 2.58E-05 2.81E-05 9.93E-06 4.03E-06 4.56E-06 1.57E-06 2.15E-06 2.14E-06 6.57E-07 1169 764087.47 4090879.91 2.64E-05 2.87E-05 1.02E-05 4.12E-06 4.66E-06 1.60E-06 2.20E-06 2.19E-06 6.72E-07 1171 763999.72 4090681.84 2.07E-05 2.25E-05 7.96E-06 3.23E-06 3.65E-06	1162	764076.47	4091279.71	4.51E-05	4.91E-05	1.74E-05	7.04E-06	7.96E-06	2.74E-06	3.76E-06	3.74E-06	1.15E-06
1165 764063.6 4091080.17 3.30E-05 3.60E-05 1.27E-05 5.16E-06 5.84E-06 2.01E-06 2.76E-06 2.74E-06 8.42E-07 1166 763989.06 4091082.61 3.15E-05 3.43E-05 1.21E-05 4.92E-06 5.57E-06 1.92E-06 2.63E-06 2.62E-06 8.03E-07 1167 764013.41 4090881.36 2.53E-05 2.75E-05 9.73E-06 3.95E-06 4.46E-06 1.54E-06 2.11E-06 2.10E-06 6.44E-07 1168 764050.44 4090880.63 2.58E-05 2.81E-05 9.93E-06 4.03E-06 4.56E-06 1.57E-06 2.15E-06 2.14E-06 6.57E-07 1169 764087.47 4090879.91 2.64E-05 2.87E-05 1.02E-05 4.12E-06 4.66E-06 1.60E-06 2.20E-06 2.19E-06 6.72E-07 1170 763975.19 4090883.09 2.48E-05 2.70E-05 9.56E-06 3.88E-06 4.39E-06 1.51E-06 2.07E-06 2.06E-06 6.32E-07 1171 763999.72 4090681.84 2.07E-05 2.25E-05 7.96E-06 3.28E-06 3.71E-06							6.62E-06					
1166 763989.06 4091082.61 3.15E-05 3.43E-05 1.21E-05 4.92E-06 5.57E-06 1.92E-06 2.63E-06 2.62E-06 8.03E-07 1167 764013.41 4090881.36 2.53E-05 2.75E-05 9.73E-06 3.95E-06 4.46E-06 1.54E-06 2.11E-06 2.10E-06 6.44E-07 1168 764050.44 4090880.63 2.58E-05 2.81E-05 9.93E-06 4.03E-06 4.56E-06 1.57E-06 2.15E-06 2.14E-06 6.57E-07 1169 764087.47 4090879.91 2.64E-05 2.87E-05 1.02E-05 4.12E-06 4.66E-06 1.60E-06 2.20E-06 2.19E-06 6.72E-07 1170 763975.19 4090883.09 2.48E-05 2.70E-05 9.56E-06 3.88E-06 4.39E-06 1.51E-06 2.07E-06 2.06E-06 6.32E-07 1171 763999.72 4090681.84 2.07E-05 2.25E-05 7.96E-06 3.28E-06 3.71E-06 1.26E-06 1.76E-06 1.75E-06 5.36E-07 1172 764037.11 4090681.31 2.10E-05 2.29E-05 8.10E-06 3.28E-06 3.71E-06 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>5.04E-06</td> <td></td> <td></td> <td></td> <td></td> <td></td>							5.04E-06					
1167 764013.41 4090881.36 2.53E-05 2.75E-05 9.73E-06 3.95E-06 4.46E-06 1.54E-06 2.11E-06 2.10E-06 6.44E-07 1168 764050.44 4090880.63 2.58E-05 2.81E-05 9.93E-06 4.03E-06 4.56E-06 1.57E-06 2.15E-06 2.14E-06 6.57E-07 1169 764087.47 4090889.91 2.64E-05 2.87E-05 1.02E-05 4.12E-06 4.66E-06 1.60E-06 2.20E-06 2.19E-06 6.72E-07 1170 763975.19 4090883.09 2.48E-05 2.70E-05 9.56E-06 3.88E-06 4.39E-06 1.51E-06 2.07E-06 2.06E-06 6.32E-07 1171 763999.72 4090681.84 2.07E-05 2.25E-05 7.96E-06 3.23E-06 3.65E-06 1.26E-06 1.72E-06 1.72E-06 5.26E-07 1172 764037.11 4090681.11 2.10E-05 2.29E-05 8.10E-06 3.28E-06 3.71E-06 1.28E-06 1.76E-06 1.75E-06 5.36E-07 1173 764074.49 4090680.38 2.14E-05 2.33E-05 8.24E-06 3.34E-06 3.78E-06 <td></td>												
1168 764050.44 4090880.63 2.58E-05 2.81E-05 9.93E-06 4.03E-06 4.56E-06 1.57E-06 2.15E-06 2.14E-06 6.57E-07 1169 764087.47 4090879.91 2.64E-05 2.87E-05 1.02E-05 4.12E-06 4.66E-06 1.60E-06 2.20E-06 2.19E-06 6.72E-07 1170 763975.19 4090883.09 2.48E-05 2.70E-05 9.56E-06 3.88E-06 4.39E-06 1.51E-06 2.07E-06 2.06E-06 6.32E-07 1171 763999.72 4090681.84 2.07E-05 2.25E-05 7.96E-06 3.23E-06 3.65E-06 1.26E-06 1.72E-06 1.72E-06 5.26E-07 1172 764037.11 4090681.11 2.10E-05 2.29E-05 8.10E-06 3.28E-06 3.71E-06 1.28E-06 1.76E-06 1.75E-06 5.36E-07 1173 764074.49 4090680.38 2.14E-05 2.33E-05 8.24E-06 3.34E-06 3.78E-06 1.30E-06 1.79E-06 1.78E-06 5.45E-07												
1169 764087.47 4090879.91 2.64E-05 2.87E-05 1.02E-05 4.12E-06 4.66E-06 1.60E-06 2.20E-06 2.19E-06 6.72E-07 1170 763975.19 4090883.09 2.48E-05 2.70E-05 9.56E-06 3.88E-06 4.39E-06 1.51E-06 2.07E-06 2.06E-06 6.32E-07 1171 763999.72 4090681.84 2.07E-05 2.25E-05 7.96E-06 3.23E-06 3.65E-06 1.26E-06 1.72E-06 1.72E-06 5.26E-07 1172 764037.11 4090681.11 2.10E-05 2.29E-05 8.10E-06 3.28E-06 3.71E-06 1.28E-06 1.76E-06 1.75E-06 5.36E-07 1173 764074.49 4090680.38 2.14E-05 2.33E-05 8.24E-06 3.34E-06 3.78E-06 1.30E-06 1.79E-06 1.78E-06 5.45E-07												
1170 763975.19 4090883.09 2.48E-05 2.70E-05 9.56E-06 3.88E-06 4.39E-06 1.51E-06 2.07E-06 2.06E-06 6.32E-07 1171 763999.72 4090681.84 2.07E-05 2.25E-05 7.96E-06 3.23E-06 3.65E-06 1.26E-06 1.72E-06 1.72E-06 5.26E-07 1172 764037.11 4090681.11 2.10E-05 2.29E-05 8.10E-06 3.28E-06 3.71E-06 1.28E-06 1.76E-06 1.75E-06 5.36E-07 1173 764074.49 4090680.38 2.14E-05 2.33E-05 8.24E-06 3.34E-06 3.78E-06 1.30E-06 1.79E-06 1.78E-06 5.45E-07												
1171 763999.72 4090681.84 2.07E-05 2.25E-05 7.96E-06 3.23E-06 3.65E-06 1.26E-06 1.72E-06 1.72E-06 5.26E-07 1172 764037.11 4090681.11 2.10E-05 2.29E-05 8.10E-06 3.28E-06 3.71E-06 1.28E-06 1.76E-06 1.75E-06 5.36E-07 1173 764074.49 4090680.38 2.14E-05 2.33E-05 8.24E-06 3.34E-06 3.78E-06 1.30E-06 1.79E-06 1.78E-06 5.45E-07												
1172 764037.11 4090681.11 2.10E-05 2.29E-05 8.10E-06 3.28E-06 3.71E-06 1.28E-06 1.76E-06 1.75E-06 5.36E-07 1173 764074.49 4090680.38 2.14E-05 2.33E-05 8.24E-06 3.34E-06 3.78E-06 1.30E-06 1.79E-06 1.78E-06 5.45E-07												
1173 764074.49 4090680.38 2.14E-05 2.33E-05 8.24E-06 3.34E-06 3.78E-06 1.30E-06 1.79E-06 1.78E-06 5.45E-07												
11/4 /03901.32 4030003.3/ 2.03L-03 2.21L-03 /.03E-00 3.10E-00 3.38E-00 1.24E-00 1.70E-00 1.09E-00 5.18E-0/												
	11/4	103301.32	+030003.3/	2.U3L-U3	Z.ZIL-U3	7.03L-00	2.105-00	J.JJL-00	1.24L-00	1./UE-U0	1.U3L-U0	J.10L-U/

1175	763985.99	4090482.31	1.74E-05	1.89E-05	6.70E-06	2.72E-06	3.07E-06	1.06E-06	1.45E-06	1.44E-06	4.43E-07
1176	764023.65	4090481.58	1.77E-05	1.92E-05	6.80E-06	2.76E-06	3.12E-06	1.07E-06	1.48E-06	1.47E-06	4.50E-07
1177	764061.31	4090480.84	1.80E-05	1.96E-05	6.92E-06	2.81E-06	3.17E-06	1.09E-06	1.50E-06	1.49E-06	4.58E-07
1178	764098.98	4090480.11	1.83E-05	1.99E-05	7.04E-06	2.85E-06	3.23E-06	1.11E-06	1.53E-06	1.52E-06	4.66E-07
1179	763947.45	4090484.05	1.72E-05	1.87E-05	6.62E-06	2.68E-06	3.04E-06	1.05E-06	1.43E-06	1.43E-06	4.38E-07
1180	764025.05	4091983.57	3.72E-04	4.05E-04	1.43E-04	5.81E-05	6.57E-05	2.26E-05	3.11E-05	3.09E-05	9.48E-06
1181	764040.08	4091931.37	2.93E-04	3.19E-04	1.13E-04	4.57E-05	5.18E-05	1.78E-05	2.45E-05	2.43E-05	7.46E-06
1182	764035.03	4091881.65	2.23E-04	2.43E-04	8.58E-05	3.48E-05	3.94E-05	1.36E-05	1.86E-05	1.85E-05	5.68E-06
1183	764011.79	4091884.45	2.08E-04	2.27E-04	8.03E-05	3.26E-05	3.68E-05	1.27E-05	1.74E-05	1.73E-05	5.31E-06
1184	764012.28	4091783.49	1.40E-04	1.52E-04	5.39E-05	2.19E-05	2.47E-05	8.52E-06	1.17E-05	1.16E-05	3.57E-06
1185	763999.01	4091684.38	9.94E-05	1.08E-04	3.83E-05	1.55E-05	1.76E-05	6.05E-06	8.30E-06	8.25E-06	2.53E-06
1186	763998.41	4091583.98	7.64E-05	8.31E-05	2.94E-05	1.19E-05	1.35E-05	4.65E-06	6.38E-06	6.34E-06	1.95E-06
1187	763972	4091587.1	7.40E-05	8.05E-05	2.85E-05	1.16E-05	1.31E-05	4.50E-06	6.18E-06	6.14E-06	1.89E-06
1188	763983.56	4091485.02	6.01E-05	6.54E-05	2.32E-05	9.39E-06	1.06E-05	3.66E-06	5.02E-06	4.99E-06	1.53E-06
1189	763958.73	4091487.98	5.87E-05	6.39E-05	2.26E-05	9.16E-06	1.04E-05	3.57E-06	4.90E-06	4.87E-06	1.50E-06
1190	763957.35	4091286.75	4.11E-05	4.47E-05	1.58E-05	6.42E-06	7.26E-06	2.50E-06	3.43E-06	3.41E-06	1.05E-06
1191	763980.14	4091284.44	4.17E-05	4.54E-05	1.61E-05	6.52E-06	7.37E-06	2.54E-06	3.49E-06	3.47E-06	1.06E-06
1192	763932.21	4091289.75	4.04E-05	4.40E-05	1.56E-05	6.31E-06	7.14E-06	2.46E-06	3.37E-06	3.35E-06	1.03E-06
1193	763931.03	4091088.5	3.06E-05	3.33E-05	1.18E-05	4.78E-06	5.41E-06	1.86E-06	2.56E-06	2.54E-06	7.80E-07
1194	763954.24	4091086.14	3.10E-05	3.37E-05	1.19E-05	4.84E-06	5.47E-06	1.88E-06	2.59E-06	2.57E-06	7.89E-07
1195	763905.68	4091091.52	3.02E-05	3.29E-05	1.16E-05	4.72E-06	5.34E-06	1.84E-06	2.52E-06	2.51E-06	7.70E-07
1196	763906.62	4090890.05	2.41E-05	2.63E-05	9.29E-06	3.77E-06	4.26E-06	1.47E-06	2.02E-06	2.00E-06	6.15E-07
1197	763934.05	4090887.27	2.44E-05	2.66E-05	9.40E-06	3.81E-06	4.31E-06	1.48E-06	2.04E-06	2.03E-06	6.22E-07
1198	763879.15	4090893.29	2.39E-05	2.60E-05	9.19E-06	3.73E-06	4.22E-06	1.45E-06	1.99E-06	1.98E-06	6.08E-07
1199	763879.94	4090691.84	1.98E-05	2.16E-05	7.63E-06	3.09E-06	3.50E-06	1.21E-06	1.65E-06	1.64E-06	5.05E-07
1200	763907.07	4090689.08	2.00E-05	2.17E-05	7.69E-06	3.12E-06	3.53E-06	1.22E-06	1.67E-06	1.66E-06	5.09E-07
1201	763934.19	4090686.33	2.02E-05	2.19E-05	7.76E-06	3.15E-06	3.56E-06	1.23E-06	1.68E-06	1.67E-06	5.14E-07
1202	763852.63	4090695.05	1.96E-05	2.14E-05	7.56E-06	3.07E-06	3.47E-06	1.19E-06	1.64E-06	1.63E-06	5.00E-07
1203	763853.3	4090493.61	1.67E-05	1.82E-05	6.45E-06	2.61E-06	2.96E-06	1.02E-06	1.40E-06	1.39E-06	4.26E-07
1204	763880.2	4090490.88	1.69E-05	1.83E-05	6.49E-06	2.63E-06	2.98E-06	1.03E-06	1.41E-06	1.40E-06	4.30E-07
1205	763907.1	4090488.15	1.70E-05	1.85E-05	6.54E-06	2.65E-06	3.00E-06	1.03E-06	1.42E-06	1.41E-06	4.33E-07
1206	763826.1	4090496.82	1.66E-05	1.81E-05	6.39E-06	2.59E-06	2.93E-06	1.01E-06	1.39E-06	1.38E-06	4.23E-07
1207	763999.42	4091989.62	3.40E-04	3.70E-04	1.31E-04	5.31E-05	6.00E-05	2.07E-05	2.84E-05	2.82E-05	8.66E-06
1208	763971.93	4091997.69	3.12E-04	3.39E-04	1.20E-04	4.87E-05	5.51E-05	1.90E-05	2.60E-05	2.59E-05	7.94E-06
1209	763982.37	4091942.53	2.45E-04	2.67E-04	9.44E-05	3.83E-05	4.33E-05	1.49E-05	2.05E-05	2.03E-05	6.25E-06
1210	764006.4	4091936.85	2.62E-04	2.86E-04	1.01E-04	4.10E-05	4.64E-05	1.60E-05	2.19E-05	2.18E-05	6.68E-06
1211	763955.68	4091950.4	2.29E-04	2.49E-04	8.82E-05	3.57E-05	4.04E-05	1.39E-05	1.91E-05	1.90E-05	5.83E-06
1212	763968.53	4091894.67	1.88E-04	2.05E-04	7.26E-05	2.94E-05	3.33E-05	1.15E-05	1.57E-05	1.56E-05	4.80E-06
1213	763939.43	4091903.12	1.77E-04	1.93E-04	6.81E-05	2.76E-05	3.12E-05	1.08E-05	1.48E-05	1.47E-05	4.51E-06
1214	763934.43	4091800.47	1.22E-04	1.33E-04	4.70E-05	1.91E-05	2.16E-05	7.43E-06	1.02E-05	1.01E-05	3.11E-06
1215	763960.07	4091794.42	1.28E-04	1.39E-04	4.92E-05	1.99E-05	2.26E-05	7.77E-06	1.07E-05	1.06E-05	3.25E-06
1216	763985.71	4091788.36	1.33E-04	1.45E-04	5.14E-05	2.08E-05	2.36E-05	8.11E-06	1.11E-05	1.11E-05	3.40E-06
1217	763906.94	4091808.54	1.17E-04	1.27E-04	4.49E-05	1.82E-05	2.06E-05	7.10E-06	9.74E-06	9.68E-06	2.97E-06
1218	763902.86	4091705.68	8.73E-05	9.50E-05	3.36E-05	1.36E-05	1.54E-05	5.31E-06	7.29E-06	7.25E-06	2.22E-06
1219	763930.32	4091699.2	9.07E-05	9.88E-05	3.49E-05	1.42E-05	1.60E-05	5.52E-06	7.58E-06	7.53E-06	2.31E-06
1220	763957.79	4091692.71	9.41E-05	1.02E-04	3.62E-05	1.47E-05	1.66E-05	5.73E-06	7.86E-06	7.81E-06	2.40E-06
1221	763874.45	4091713.97	8.40E-05	9.14E-05	3.23E-05	1.31E-05	1.48E-05	5.11E-06	7.01E-06	6.97E-06	2.14E-06
1222	763871.05	4091610.95	6.63E-05	7.22E-05	2.55E-05	1.04E-05	1.17E-05	4.03E-06	5.54E-06	5.50E-06	1.69E-06
1223	763899.89	4091604.13	6.86E-05	7.47E-05	2.64E-05	1.07E-05	1.21E-05	4.17E-06	5.73E-06	5.70E-06	1.75E-06
1224	763928.74	4091597.32	7.08E-05	7.71E-05	2.73E-05	1.11E-05	1.25E-05	4.31E-06	5.91E-06	5.88E-06	1.80E-06
1225	763841.96	4091619.39	6.41E-05	6.97E-05	2.47E-05	1.00E-05	1.13E-05	3.90E-06	5.35E-06	5.32E-06	1.63E-06
1226	763839.09	4091516.25	5.26E-05	5.72E-05	2.03E-05	8.21E-06	9.29E-06	3.20E-06	4.39E-06	4.37E-06	1.34E-06
1227	763869	4091509.18	5.43E-05	5.91E-05	2.09E-05	8.47E-06	9.59E-06	3.30E-06	4.53E-06	4.50E-06	1.38E-06
1228	763898.91	4091502.12	5.58E-05	6.08E-05	2.15E-05	8.72E-06	9.86E-06	3.40E-06	4.66E-06	4.64E-06	1.42E-06
1229	763928.82	4091495.05	5.73E-05	6.24E-05	2.21E-05	8.95E-06	1.01E-05	3.49E-06	4.79E-06	4.76E-06	1.46E-06
1230	763809.47	4091524.82	5.10E-05	5.55E-05	1.96E-05	7.97E-06	9.01E-06	3.10E-06	4.26E-06	4.24E-06	1.30E-06
1231	763773.58	4091327.23	3.62E-05	3.94E-05	1.39E-05	5.65E-06	6.40E-06	2.20E-06	3.02E-06	3.01E-06	9.22E-07
1232	763802.42	4091320.41	3.71E-05	4.04E-05	1.43E-05	5.80E-06	6.56E-06	2.26E-06	3.10E-06	3.08E-06	9.46E-07
1233	763831.26	4091313.6	3.80E-05	4.13E-05	1.46E-05	5.93E-06	6.71E-06	2.31E-06	3.17E-06	3.15E-06	9.67E-07
1234	763860.1	4091306.79	3.87E-05	4.22E-05	1.49E-05	6.05E-06	6.85E-06	2.36E-06	3.24E-06	3.22E-06	9.87E-07
1235		4091299.97	3.95E-05	4.29E-05	1.52E-05		6.97E-06	2.40E-06	3.29E-06	3.28E-06	1.01E-06
1236	763744.48	4091335.67	3.53E-05	3.84E-05	1.36E-05	5.52E-06	6.24E-06	2.15E-06	2.95E-06	2.93E-06	9.00E-07

1237	763708.27	4091138.15	2.70E-05	2.94E-05	1.04E-05	4.22E-06	4.78E-06	1.64E-06	2.26E-06	2.24E-06	6.89E-07
1238	763736.47	4091131.49	2.76E-05	3.01E-05	1.06E-05	4.31E-06	4.88E-06	1.68E-06	2.31E-06	2.29E-06	7.04E-07
1239	763764.67	4091124.83	2.82E-05	3.06E-05	1.08E-05	4.40E-06	4.98E-06	1.71E-06	2.35E-06	2.34E-06	7.17E-07
1240	763792.88	4091118.17	2.87E-05	3.12E-05	1.10E-05	4.48E-06	5.06E-06	1.74E-06	2.39E-06	2.38E-06	7.30E-07
1241	763821.08	4091111.5	2.91E-05	3.17E-05	1.12E-05	4.55E-06	5.14E-06	1.77E-06	2.43E-06	2.42E-06	7.42E-07
1242	763849.28	4091104.84	2.95E-05	3.21E-05	1.14E-05	4.61E-06	5.21E-06	1.80E-06	2.46E-06	2.45E-06	7.52E-07
1243	763877.48	4091098.18	2.99E-05	3.25E-05	1.15E-05	4.67E-06	5.28E-06	1.82E-06	2.49E-06	2.48E-06	7.61E-07
1244	763679.5	4091146.52	2.65E-05	2.88E-05	1.02E-05	4.13E-06	4.68E-06	1.61E-06	2.21E-06	2.20E-06	6.74E-07
1245	763643.89	4090948.86	2.13E-05	2.32E-05	8.20E-06	3.33E-06	3.76E-06	1.30E-06	1.78E-06	1.77E-06	5.43E-07
1246	763673.3	4090941.91	2.17E-05	2.37E-05	8.37E-06	3.39E-06	3.84E-06	1.32E-06	1.81E-06	1.80E-06	5.54E-07
1247	763702.71	4090934.97	2.21E-05	2.41E-05	8.52E-06	3.46E-06	3.91E-06	1.35E-06	1.85E-06	1.84E-06	5.64E-07
1248	763732.11	4090928.02	2.25E-05	2.45E-05	8.67E-06	3.52E-06	3.98E-06	1.37E-06	1.88E-06	1.87E-06	5.74E-07
1249	763761.52	4090921.07	2.29E-05	2.49E-05	8.80E-06	3.57E-06	4.04E-06	1.39E-06	1.91E-06	1.90E-06	5.83E-07
1250	763790.93	4090914.13	2.32E-05	2.52E-05	8.92E-06	3.62E-06	4.09E-06	1.41E-06	1.93E-06	1.92E-06	5.90E-07
1251	763820.34	4090907.18	2.34E-05	2.55E-05	9.02E-06	3.66E-06	4.14E-06	1.43E-06	1.96E-06	1.94E-06	5.97E-07
1252	763849.75	4090900.23	2.37E-05	2.58E-05	9.12E-06	3.70E-06	4.18E-06	1.44E-06	1.98E-06	1.97E-06	6.03E-07
1253	763614.52	4090957.37	2.09E-05	2.27E-05	8.04E-06	3.26E-06	3.69E-06	1.27E-06	1.74E-06	1.73E-06	5.32E-07
1254	763578.62	4090759.78	1.74E-05	1.89E-05	6.70E-06	2.72E-06	3.07E-06	1.06E-06	1.45E-06	1.44E-06	4.43E-07
1255	763607.47	4090752.97	1.77E-05	1.93E-05	6.83E-06	2.77E-06	3.13E-06	1.08E-06	1.48E-06	1.47E-06	4.52E-07
1256	763636.31	4090746.15	1.80E-05	1.96E-05	6.94E-06	2.82E-06	3.19E-06	1.10E-06	1.51E-06	1.50E-06	4.59E-07
1257	763665.15	4090739.34	1.83E-05	1.99E-05	7.05E-06	2.86E-06	3.24E-06	1.11E-06	1.53E-06	1.52E-06	4.67E-07
1258	763693.99	4090732.53	1.86E-05	2.02E-05	7.15E-06	2.90E-06	3.28E-06	1.13E-06	1.55E-06	1.54E-06	4.73E-07
1259	763722.84	4090725.71	1.88E-05	2.05E-05	7.25E-06	2.94E-06	3.32E-06	1.15E-06	1.57E-06	1.56E-06	4.80E-07
1260	763751.68	4090718.9	1.90E-05	2.07E-05	7.33E-06	2.97E-06	3.36E-06	1.16E-06	1.59E-06	1.58E-06	4.85E-07
1261	763780.52	4090712.09	1.92E-05	2.09E-05	7.40E-06	3.00E-06	3.40E-06	1.17E-06	1.61E-06	1.60E-06	4.90E-07
1262	763809.36	4090705.27	1.94E-05	2.11E-05	7.47E-06	3.03E-06	3.43E-06	1.18E-06	1.62E-06	1.61E-06	4.94E-07
1263	763549.53	4090768.23	1.71E-05	1.86E-05	6.59E-06	2.67E-06	3.02E-06	1.04E-06	1.43E-06	1.42E-06	4.36E-07
1264	763514.08	4090570.53	1.46E-05	1.59E-05	5.64E-06	2.29E-06	2.59E-06	8.90E-07	1.22E-06	1.22E-06	3.73E-07
1265	763543.79	4090563.51	1.49E-05	1.62E-05	5.73E-06	2.32E-06	2.63E-06	9.05E-07	1.24E-06	1.24E-06	3.79E-07
1266	763573.51	4090556.49	1.51E-05	1.65E-05	5.83E-06	2.36E-06	2.68E-06	9.21E-07	1.26E-06	1.26E-06	3.86E-07
1267	763603.23	4090549.47	1.54E-05	1.67E-05	5.92E-06	2.40E-06	2.71E-06	9.35E-07	1.28E-06	1.28E-06	3.91E-07
1268	763632.94	4090542.45	1.56E-05	1.70E-05	6.00E-06	2.43E-06	2.75E-06	9.48E-07	1.30E-06	1.29E-06	3.97E-07
1269	763662.66	4090535.43	1.58E-05	1.72E-05	6.08E-06	2.47E-06	2.79E-06	9.61E-07	1.32E-06	1.31E-06	4.02E-07
1270	763692.38	4090528.41	1.60E-05	1.74E-05	6.16E-06	2.50E-06	2.83E-06	9.73E-07	1.34E-06	1.33E-06	4.07E-07
1271	763722.09	4090521.39	1.62E-05	1.76E-05	6.22E-06	2.52E-06	2.85E-06	9.83E-07	1.35E-06	1.34E-06	4.12E-07
1272		4090514.37	1.63E-05	1.78E-05	6.28E-06	2.55E-06	2.88E-06	9.93E-07	1.36E-06	1.35E-06	4.16E-07
1273		4090507.35			6.33E-06	2.57E-06	2.90E-06		1.37E-06	1.36E-06	
1274	763484.55	4090579.08	1.44E-05	1.57E-05	5.54E-06	2.25E-06	2.54E-06	8.76E-07	1.20E-06	1.19E-06	3.67E-07
1275		4091910.91	1.69E-04	1.84E-04	6.52E-05	2.64E-05	2.99E-05	1.03E-05	1.41E-05	1.41E-05	4.31E-06
1276		4091816.79	1.12E-04	1.22E-04	4.33E-05	1.76E-05	1.99E-05	6.84E-06	9.39E-06	9.33E-06	2.86E-06
1277		4091722.68	8.13E-05	8.85E-05	3.13E-05	1.27E-05	1.44E-05	4.95E-06	6.79E-06	6.75E-06	2.07E-06
1278		4091628.56	6.22E-05	6.77E-05	2.40E-05	9.72E-06	1.10E-05	3.79E-06	5.20E-06	5.17E-06	1.59E-06
1279		4091534.44	4.96E-05	5.40E-05	1.91E-05	7.75E-06	8.77E-06	3.02E-06	4.15E-06	4.12E-06	1.26E-06
1280		4091346.21	3.44E-05	3.75E-05	1.33E-05	5.38E-06	6.09E-06	2.10E-06	2.88E-06	2.86E-06	8.78E-07
1281		4091157.97	2.58E-05	2.81E-05	9.95E-06	4.03E-06	4.56E-06	1.57E-06	2.16E-06	2.14E-06	6.58E-07
1282		4090969.74	2.04E-05	2.22E-05	7.86E-06	3.19E-06	3.61E-06	1.24E-06	1.70E-06	1.69E-06	5.20E-07
1283		4090781.51	1.67E-05	1.82E-05	6.45E-06	2.61E-06	2.96E-06	1.02E-06	1.40E-06	1.39E-06	4.26E-07
1284		4090586.85	1.42E-05	1.55E-05	5.48E-06	2.22E-06	2.51E-06	8.66E-07	1.19E-06	1.18E-06	3.63E-07
1285		4092008.58	2.88E-04	3.13E-04	1.11E-04	4.50E-05	5.09E-05	1.75E-05	2.40E-05	2.39E-05	7.34E-06
1286		4092019.01	2.73E-04	2.97E-04	1.05E-04	4.26E-05	4.82E-05	1.66E-05	2.28E-05	2.26E-05	6.95E-06
1287		4091962.41	2.13E-04	2.32E-04	8.20E-05	3.32E-05	3.76E-05	1.30E-05	1.78E-05	1.77E-05	5.42E-06
1288		4091973.73	2.02E-04	2.20E-04	7.78E-05	3.15E-05	3.57E-05	1.23E-05	1.69E-05	1.68E-05	5.14E-06
1289		4091921.58	1.61E-04	1.75E-04	6.20E-05	2.51E-05	2.84E-05	9.80E-06	1.34E-05	1.34E-05	4.10E-06
1290		4091826.27	1.08E-04	1.18E-04	4.18E-05	1.69E-05	1.92E-05	6.60E-06	9.06E-06	9.00E-06	2.76E-06
1291		4091837.88	1.04E-04	1.13E-04	4.00E-05	1.62E-05	1.84E-05	6.33E-06	8.68E-06	8.63E-06	2.65E-06
1292		4091734.53	7.83E-05	8.52E-05	3.01E-05	1.22E-05	1.38E-05	4.76E-06	6.54E-06	6.50E-06	1.99E-06
1293		4091747.32	7.51E-05	8.18E-05	2.89E-05	1.17E-05	1.33E-05	4.57E-06	6.27E-06	6.24E-06	1.91E-06
1294		4091644.56	5.95E-05	6.48E-05	2.29E-05	9.29E-06	1.05E-05	3.62E-06	4.97E-06	4.94E-06	1.52E-06
1295 1296		4091656.76 4091554.35	5.75E-05 4.72E-05	6.26E-05	2.21E-05	8.98E-06 7.38E-06	1.02E-05 8.35E-06	3.50E-06 2.87E-06	4.80E-06 3.94E-06	4.77E-06 3.92E-06	1.46E-06 1.20E-06
1296	763734.22	4091554.35	4.72E-05 4.85E-05	5.14E-05 5.28E-05	1.82E-05 1.87E-05	7.38E-06 7.57E-06	8.56E-06	2.87E-06 2.95E-06	3.94E-06 4.05E-06	4.02E-06	1.20E-06 1.24E-06
1297	763758.35	4091544.4	4.85E-05 4.58E-05	4.99E-05	1.87E-05 1.77E-05	7.57E-06 7.16E-06		2.79E-06	4.03E-06 3.83E-06	3.81E-06	1.24E-06 1.17E-06
1230	,03/0/.43	7091300.Z	4.JOL-0J	7.JJL-UJ	1.77L-UJ	7.1UL-UU	0.10L*00	2.73L*UU	J.03L-00	J.01L-00	1.1/L-00

1299	763650.26	4091372.87	3.26E-05	3.55E-05	1.26E-05	5.09E-06	5.76E-06	1.98E-06	2.72E-06	2.71E-06	8.31E-07
1300	763676.11	4091362.21	3.34E-05	3.63E-05	1.28E-05	5.21E-06	5.89E-06	2.03E-06	2.78E-06	2.77E-06	8.50E-07
1301	763622.67	4091385.08	3.18E-05	3.46E-05	1.22E-05	4.97E-06	5.62E-06	1.93E-06	2.65E-06	2.64E-06	8.10E-07
1302	763566.06	4091191.5	2.44E-05	2.65E-05	9.38E-06	3.80E-06	4.30E-06	1.48E-06	2.03E-06	2.02E-06	6.21E-07
1303	763593.14	4091180.32	2.48E-05	2.70E-05	9.57E-06	3.88E-06	4.39E-06	1.51E-06	2.07E-06	2.06E-06	6.33E-07
1304	763620.22	4091169.15	2.53E-05	2.76E-05	9.76E-06	3.96E-06	4.48E-06	1.54E-06	2.12E-06	2.10E-06	6.46E-07
1305	763537.85	4091203.95	2.39E-05	2.60E-05	9.19E-06	3.73E-06	4.22E-06	1.45E-06	1.99E-06	1.98E-06	6.08E-07
1306	763481.7	4091010.18	1.92E-05	2.09E-05	7.40E-06	3.00E-06	3.39E-06	1.17E-06	1.60E-06	1.59E-06	4.89E-07
1307	763509.7	4090998.63	1.95E-05	2.13E-05	7.52E-06	3.05E-06	3.45E-06	1.19E-06	1.63E-06	1.62E-06	4.98E-07
1308	763537.71	4090987.07	1.99E-05	2.16E-05	7.65E-06	3.10E-06	3.51E-06	1.21E-06	1.66E-06	1.65E-06	5.06E-07
1309	763453.03	4091022.83	1.89E-05	2.06E-05	7.28E-06	2.95E-06	3.34E-06	1.15E-06	1.58E-06	1.57E-06	4.82E-07
1310	763397.24	4090828.91	1.57E-05	1.71E-05	6.06E-06	2.46E-06	2.78E-06	9.57E-07	1.31E-06	1.31E-06	4.01E-07
1311	763425.96	4090817.06	1.59E-05	1.74E-05	6.14E-06	2.49E-06	2.82E-06	9.70E-07	1.33E-06	1.32E-06	4.06E-07
1312	763454.68	4090805.21	1.62E-05	1.76E-05	6.24E-06	2.53E-06	2.86E-06	9.86E-07	1.35E-06	1.35E-06	4.13E-07
1313	763483.4	4090793.36	1.65E-05	1.79E-05	6.34E-06	2.57E-06	2.91E-06	1.00E-06	1.37E-06	1.37E-06	4.19E-07
1314	763368.21	4090841.71	1.55E-05	1.69E-05	5.98E-06	2.42E-06	2.74E-06	9.45E-07	1.30E-06	1.29E-06	3.96E-07
1315	763312.71	4090647.67	1.33E-05	1.44E-05	5.11E-06	2.07E-06	2.34E-06	8.07E-07	1.11E-06	1.10E-06	3.38E-07
1316	763342	4090635.58	1.34E-05	1.46E-05	5.17E-06	2.10E-06	2.37E-06	8.17E-07	1.12E-06	1.11E-06	3.42E-07
1317	763371.3	4090623.49	1.36E-05	1.48E-05	5.24E-06	2.12E-06	2.40E-06	8.28E-07	1.14E-06	1.13E-06	3.47E-07
1318	763400.59	4090611.41	1.38E-05	1.50E-05	5.31E-06	2.15E-06	2.44E-06	8.39E-07	1.15E-06	1.14E-06	3.51E-07
1319	763429.89	4090599.32	1.40E-05	1.52E-05	5.39E-06	2.18E-06	2.47E-06	8.51E-07	1.17E-06	1.16E-06	3.56E-07
1320	763283.39	4090660.59	1.31E-05	1.43E-05	5.05E-06	2.05E-06	2.32E-06	7.98E-07	1.10E-06	1.09E-06	3.34E-07
1321	763893.45	4092033.7	2.60E-04	2.83E-04	1.00E-04	4.06E-05	4.60E-05	1.58E-05	2.17E-05	2.16E-05	6.63E-06
1322	763876.59	4091985.97	1.95E-04	2.12E-04	7.50E-05	3.04E-05	3.44E-05	1.18E-05	1.63E-05	1.62E-05	4.96E-06
1323	763851.96	4092001.26	1.88E-04	2.04E-04	7.23E-05	2.93E-05	3.32E-05	1.14E-05	1.57E-05	1.56E-05	4.79E-06
1324	763851.04	4091943.14	1.50E-04	1.64E-04	5.79E-05	2.35E-05	2.66E-05	9.15E-06	1.26E-05	1.25E-05	3.83E-06
1325	763824.23	4091959.66	1.45E-04	1.57E-04	5.57E-05	2.26E-05	2.56E-05	8.80E-06	1.21E-05	1.20E-05	3.69E-06
1326	763795.58	4091859.93	9.82E-05	1.07E-04	3.78E-05	1.53E-05	1.73E-05	5.97E-06	8.20E-06	8.15E-06	2.50E-06
1327	763768.78	4091876.44	9.44E-05	1.03E-04	3.64E-05	1.47E-05	1.67E-05	5.75E-06	7.88E-06	7.84E-06	2.41E-06
1328	763740.13	4091776.71	6.99E-05	7.61E-05	2.69E-05	1.09E-05	1.23E-05	4.25E-06	5.84E-06	5.80E-06	1.78E-06
1329	763766.22	4091762.02	7.26E-05	7.90E-05	2.80E-05	1.13E-05	1.28E-05	4.42E-06	6.06E-06	6.03E-06	1.85E-06
1330	763713.32	4091793.23	6.73E-05	7.32E-05	2.59E-05	1.05E-05	1.19E-05	4.09E-06	5.62E-06	5.58E-06	1.71E-06
1331	763684.67	4091693.5	5.29E-05	5.76E-05	2.04E-05	8.26E-06	9.34E-06	3.22E-06	4.42E-06	4.39E-06	1.35E-06
1332	763710.76	4091678.8	5.48E-05	5.96E-05	2.11E-05	8.56E-06	9.68E-06	3.33E-06	4.58E-06	4.55E-06	1.40E-06
1333	763657.86	4091710.01	5.10E-05	5.55E-05	1.96E-05	7.96E-06	9.00E-06	3.10E-06	4.26E-06	4.23E-06	1.30E-06
1334	763629.21	4091610.28	4.18E-05	4.55E-05	1.61E-05	6.53E-06	7.39E-06	2.55E-06	3.49E-06	3.47E-06	1.07E-06
1335	763655.31	4091595.59	4.33E-05	4.71E-05	1.67E-05	6.76E-06	7.64E-06	2.63E-06	3.61E-06	3.59E-06	1.10E-06
1336	763681.4	4091580.89	4.46E-05	4.86E-05	1.72E-05	6.97E-06	7.88E-06	2.71E-06	3.73E-06	3.70E-06	1.14E-06
1337	763602.41	4091626.8	4.04E-05	4.40E-05	1.56E-05	6.31E-06	7.14E-06	2.46E-06	3.37E-06	3.35E-06	1.03E-06
1338	763518.3	4091443.85	2.88E-05	3.14E-05	1.11E-05	4.51E-06	5.10E-06	1.76E-06	2.41E-06	2.39E-06	7.35E-07
1339	763544.39	4091429.16	2.97E-05	3.23E-05	1.14E-05	4.63E-06	5.24E-06	1.80E-06	2.48E-06	2.46E-06	7.56E-07
1340	763570.48	4091414.47	3.04E-05	3.31E-05	1.17E-05	4.75E-06	5.38E-06	1.85E-06	2.54E-06	2.53E-06	7.75E-07
1341	763596.58	4091399.77	3.11E-05	3.39E-05	1.20E-05	4.86E-06	5.50E-06	1.89E-06	2.60E-06	2.58E-06	7.93E-07
1342	763491.5	4091460.37	2.80E-05	3.05E-05	1.08E-05	4.37E-06	4.95E-06	1.70E-06	2.34E-06	2.32E-06	7.13E-07
1343	763408.69	4091276.69	2.17E-05	2.37E-05	8.37E-06	3.39E-06	3.84E-06	1.32E-06	1.81E-06	1.80E-06	5.54E-07
1344	763437.39	4091260.53	2.23E-05	2.42E-05	8.58E-06	3.48E-06	3.94E-06	1.36E-06	1.86E-06	1.85E-06	5.68E-07
1345	763466.1	4091244.36	2.28E-05	2.48E-05	8.77E-06	3.56E-06	4.02E-06	1.39E-06	1.90E-06	1.89E-06	5.80E-07
1346	763494.8	4091228.2	2.32E-05	2.53E-05	8.94E-06	3.63E-06	4.10E-06	1.41E-06	1.94E-06	1.93E-06	5.92E-07
1347	763380.58	4091293.94	2.12E-05	2.30E-05	8.15E-06	3.31E-06	3.74E-06	1.29E-06	1.77E-06	1.76E-06	5.39E-07
1348	763297.56	4091110.38	1.73E-05	1.89E-05	6.67E-06	2.71E-06	3.06E-06	1.05E-06	1.45E-06	1.44E-06	4.41E-07
1349	763325.83	4091094.47	1.77E-05	1.92E-05	6.80E-06	2.76E-06	3.12E-06	1.07E-06	1.48E-06	1.47E-06	4.50E-07
1350	763354.1	4091078.55	1.80E-05	1.96E-05	6.93E-06	2.81E-06	3.18E-06	1.09E-06	1.50E-06	1.49E-06	4.58E-07
1351	763382.36	4091062.63	1.83E-05	1.99E-05	7.03E-06	2.85E-06	3.22E-06	1.11E-06	1.52E-06	1.52E-06	4.65E-07
1352	763410.63	4091046.71	1.85E-05	2.02E-05	7.13E-06	2.89E-06	3.27E-06	1.13E-06	1.55E-06	1.54E-06	4.72E-07
1353	763269.67	4091127.51	1.69E-05	1.84E-05	6.52E-06	2.64E-06	2.99E-06	1.03E-06	1.41E-06	1.40E-06	4.31E-07
1354	763186.5	4090944.04	1.44E-05	1.56E-05	5.53E-06	2.24E-06	2.54E-06	8.73E-07	1.20E-06	1.19E-06	3.66E-07
1355	763214.45	4090928.3	1.46E-05	1.59E-05	5.63E-06	2.28E-06	2.58E-06	8.89E-07	1.22E-06	1.21E-06	3.72E-07
1356	763242.41	4090912.56	1.48E-05	1.61E-05	5.71E-06	2.31E-06	2.62E-06	9.02E-07	1.24E-06	1.23E-06	3.78E-07
1357	763270.36	4090896.81	1.50E-05	1.63E-05	5.78E-06	2.34E-06	2.65E-06	9.13E-07	1.25E-06	1.25E-06	3.82E-07
1358	763298.32	4090881.07	1.52E-05	1.65E-05	5.84E-06	2.37E-06	2.68E-06	9.22E-07	1.27E-06	1.26E-06	3.86E-07
1359	763326.27	4090865.32	1.53E-05	1.67E-05	5.89E-06	2.39E-06	2.70E-06	9.31E-07	1.28E-06	1.27E-06	3.90E-07
1360	763158.76	4090961.09	1.41E-05	1.53E-05	5.42E-06	2.20E-06	2.49E-06	8.56E-07	1.17E-06	1.17E-06	3.58E-07

1361	763075.47	4090777.68	1.22E-05	1.33E-05	4.72E-06	1.91E-06	2.16E-06	7.45E-07	1.02E-06	1.02E-06	3.12E-07
1362	763103.19	4090762.07	1.24E-05	1.35E-05	4.79E-06	1.94E-06	2.20E-06	7.56E-07	1.04E-06	1.03E-06	3.17E-07
1363	763130.91	4090746.45	1.26E-05	1.37E-05	4.85E-06	1.97E-06	2.23E-06	7.66E-07	1.05E-06	1.05E-06	3.21E-07
1364	763158.64	4090730.84	1.27E-05	1.38E-05	4.90E-06	1.99E-06	2.25E-06	7.74E-07	1.06E-06	1.06E-06	3.24E-07
1365	763186.36	4090715.23	1.28E-05	1.39E-05	4.93E-06	2.00E-06	2.26E-06	7.79E-07	1.07E-06	1.06E-06	3.26E-07
1366	763214.08	4090699.62	1.29E-05	1.40E-05	4.97E-06	2.01E-06	2.28E-06	7.85E-07	1.08E-06	1.07E-06	3.29E-07
1367	763241.8	4090684	1.30E-05	1.41E-05	5.00E-06	2.03E-06	2.29E-06	7.90E-07	1.08E-06	1.08E-06	3.31E-07
1368	763047.85	4090794.66	1.20E-05	1.31E-05	4.63E-06	1.88E-06	2.13E-06	7.32E-07	1.00E-06	9.99E-07	3.06E-07
1369	763872.14	4092048.15	2.53E-04	2.76E-04	9.76E-05	3.96E-05	4.48E-05	1.54E-05	2.12E-05	2.10E-05	6.46E-06
1370	763746.82	4091892.06	9.19E-05	1.00E-04	3.54E-05	1.44E-05	1.62E-05	5.59E-06	7.68E-06	7.63E-06	2.34E-06
1371	763694.46	4091806.43	6.57E-05	7.15E-05	2.53E-05	1.03E-05	1.16E-05	3.99E-06	5.48E-06	5.45E-06	1.67E-06
1372	763635.23	4091725.86	4.95E-05	5.39E-05	1.91E-05	7.73E-06	8.75E-06	3.01E-06	4.13E-06	4.11E-06	1.26E-06
1373	763582.61	4091640.66	3.94E-05	4.29E-05	1.52E-05	6.16E-06	6.96E-06	2.40E-06	3.29E-06	3.27E-06	1.00E-06
1374	763464.34	4091479.39	2.71E-05	2.95E-05	1.05E-05	4.24E-06	4.80E-06	1.65E-06	2.27E-06	2.25E-06	6.92E-07
1375	763346.01	4091318.15	2.04E-05	2.22E-05	7.86E-06	3.19E-06	3.61E-06	1.24E-06	1.70E-06	1.69E-06	5.20E-07
1376	763226.77	4091157.56	1.62E-05	1.77E-05	6.25E-06	2.54E-06	2.87E-06	9.88E-07	1.36E-06	1.35E-06	4.14E-07
1377	763251.28	4091140.39	1.66E-05	1.81E-05	6.41E-06	2.60E-06	2.94E-06	1.01E-06	1.39E-06	1.38E-06	4.24E-07
1378	763108.47	4090996.3	1.34E-05	1.46E-05	5.18E-06	2.10E-06	2.38E-06	8.18E-07	1.12E-06	1.12E-06	3.43E-07
1379	763127.33	4090983.09	1.37E-05	1.49E-05	5.28E-06	2.14E-06	2.42E-06	8.34E-07	1.14E-06	1.14E-06	3.49E-07
1380	762990.14	4090835.06	1.15E-05	1.25E-05	4.41E-06	1.79E-06	2.03E-06	6.97E-07	9.57E-07	9.52E-07	2.92E-07
1381	763009.37	4090821.59	1.17E-05	1.27E-05	4.49E-06	1.82E-06	2.06E-06	7.10E-07	9.74E-07	9.68E-07	2.97E-07
1382	763028.61	4090808.13	1.19E-05	1.29E-05	4.57E-06	1.85E-06	2.10E-06	7.22E-07	9.91E-07	9.85E-07	3.02E-07
1383	763902.56	4092151.89	5.97E-04	6.50E-04	2.30E-04	9.33E-05	1.06E-04	3.64E-05	4.99E-05	4.96E-05	1.52E-05
1384	763823.23	4092022.67	1.83E-04	1.99E-04	7.04E-05	2.86E-05	3.23E-05	1.11E-05	1.53E-05	1.52E-05	4.66E-06
1385	763791.13	4091984.34	1.40E-04	1.52E-04	5.39E-05	2.19E-05	2.47E-05	8.52E-06	1.17E-05	1.16E-05	3.57E-06
1386	763726.93	4091907.67	9.02E-05	9.81E-05	3.47E-05	1.41E-05	1.59E-05	5.49E-06	7.53E-06	7.48E-06	2.30E-06
1387	763675.16	4091821.24	6.42E-05	6.99E-05	2.47E-05	1.00E-05	1.14E-05	3.91E-06	5.36E-06	5.33E-06	1.64E-06
1388	763645.76	4091845.21	6.26E-05	6.81E-05	2.41E-05	9.77E-06	1.11E-05	3.81E-06	5.23E-06	5.20E-06	1.59E-06
1389	763613.45	4091742.62	4.83E-05	5.25E-05	1.86E-05	7.54E-06	8.53E-06	2.94E-06	4.03E-06	4.01E-06	1.23E-06
1390	763581.56	4091768.54	4.69E-05	5.10E-05	1.81E-05	7.32E-06	8.28E-06	2.85E-06	3.91E-06	3.89E-06	1.19E-06
1391	763551.73	4091664	3.80E-05	4.14E-05	1.46E-05	5.94E-06	6.72E-06	2.31E-06	3.17E-06	3.16E-06	9.69E-07
1392	763517.36	4091691.87	3.68E-05	4.00E-05	1.42E-05	5.75E-06	6.50E-06	2.24E-06	3.07E-06	3.05E-06	9.37E-07
1393	763420.84	4091512.61	2.58E-05	2.81E-05	9.95E-06	4.03E-06	4.56E-06	1.57E-06	2.16E-06	2.14E-06	6.58E-07
1394	763388.96	4091538.53	2.50E-05	2.72E-05	9.62E-06	3.90E-06	4.41E-06	1.52E-06	2.09E-06	2.07E-06	6.37E-07
1395	763291.2	4091360.25	1.92E-05	2.09E-05	7.38E-06	2.99E-06	3.39E-06	1.17E-06	1.60E-06	1.59E-06	4.88E-07
1396	763318.55	4091338.78	1.98E-05	2.15E-05	7.62E-06	3.09E-06	3.50E-06	1.20E-06	1.65E-06	1.64E-06	5.04E-07
1397	763260.55	4091385.19	1.85E-05	2.02E-05	7.13E-06	2.89E-06	3.27E-06	1.13E-06	1.55E-06	1.54E-06	4.72E-07
1398	763165.29	4091204.95	1.51E-05	1.65E-05	5.82E-06	2.36E-06	2.67E-06	9.20E-07	1.26E-06	1.26E-06	3.85E-07
1399	763197.61	4091179.58	1.57E-05	1.71E-05	6.06E-06	2.46E-06	2.78E-06	9.57E-07	1.31E-06	1.31E-06	4.01E-07
1400	763132.15	4091231.85	1.45E-05	1.58E-05	5.59E-06	2.27E-06	2.56E-06	8.83E-07	1.21E-06	1.20E-06	3.70E-07
1401	763035.64	4091052.59	1.23E-05	1.34E-05	4.75E-06	1.93E-06	2.18E-06	7.50E-07	1.03E-06	1.02E-06	3.14E-07
1402	763065.48	4091029.17	1.28E-05	1.39E-05	4.94E-06	2.00E-06	2.26E-06	7.80E-07	1.07E-06	1.06E-06	3.27E-07
1403	763003.75	4091078.51	1.18E-05	1.29E-05	4.55E-06	1.85E-06	2.09E-06	7.20E-07	9.87E-07	9.82E-07	3.01E-07
1404	762909.23	4090897.69	1.04E-05	1.13E-05	4.00E-06	1.62E-06	1.84E-06	6.32E-07	8.68E-07	8.63E-07	2.65E-07
1405	762943.04	4090871.15	1.09E-05	1.18E-05	4.18E-06	1.70E-06	1.92E-06	6.60E-07	9.06E-07	9.01E-07	2.77E-07
1406	762875.35	4090925.17	9.92E-06	1.08E-05	3.82E-06	1.55E-06	1.75E-06	6.04E-07	8.29E-07	8.24E-07	2.53E-07
1407	763881.21	4092174.71	6.23E-04	6.78E-04	2.40E-04	9.73E-05	1.10E-04	3.79E-05	5.20E-05	5.17E-05	1.59E-05
1408	763861.66	4092122.25	3.69E-04	4.01E-04	1.42E-04	5.76E-05	6.51E-05	2.24E-05	3.08E-05	3.06E-05	9.39E-06
1409	763843.24	4092142.18	3.80E-04	4.13E-04	1.46E-04	5.93E-05	6.71E-05	2.31E-05	3.17E-05	3.15E-05	9.67E-06
1410	763795.65	4092120.87	2.61E-04	2.84E-04	1.01E-04	4.08E-05	4.62E-05	1.59E-05	2.18E-05	2.17E-05	6.66E-06
1411	763747.77	4092024.64	1.39E-04	1.51E-04	5.36E-05	2.17E-05	2.46E-05	8.46E-06	1.16E-05	1.15E-05	3.54E-06
1412	763765.36	4092007.25	1.39E-04	1.51E-04	5.34E-05	2.17E-05	2.45E-05	8.43E-06	1.16E-05	1.15E-05	3.53E-06
1413	763729.35	4092044.56	1.41E-04	1.54E-04	5.43E-05	2.20E-05	2.49E-05	8.58E-06	1.18E-05	1.17E-05	3.59E-06
1414	763672.43	4091958.98	8.89E-05	9.67E-05	3.42E-05	1.39E-05	1.57E-05	5.41E-06	7.42E-06	7.38E-06	2.26E-06
1415	763691.19	4091940.43	8.88E-05	9.66E-05	3.42E-05	1.39E-05	1.57E-05	5.40E-06	7.41E-06	7.37E-06	2.26E-06
1416	763653.42	4091979.48	8.99E-05	9.79E-05	3.46E-05	1.40E-05	1.59E-05	5.47E-06	7.51E-06	7.47E-06	2.29E-06
1417	763596.89	4091893.52	6.23E-05	6.78E-05	2.40E-05	9.73E-06	1.10E-05	3.79E-06	5.20E-06	5.17E-06	1.59E-06
1418	763616.44	4091874.19	6.22E-05	6.77E-05	2.39E-05	9.71E-06	1.10E-05	3.78E-06	5.19E-06	5.16E-06	1.58E-06
1419	763577.49	4091914.41	6.30E-05	6.86E-05	2.43E-05	9.84E-06	1.11E-05	3.83E-06	5.26E-06	5.23E-06	1.60E-06
1420	763521.24	4091828.16	4.65E-05	5.06E-05	1.79E-05	7.26E-06	8.21E-06	2.83E-06	3.88E-06	3.86E-06	1.18E-06
1421	763541.35	4091808.29	4.64E-05	5.05E-05	1.79E-05	7.24E-06	8.19E-06	2.82E-06	3.87E-06	3.85E-06	1.18E-06
1422	763561.45	4091788.41	4.65E-05	5.06E-05	1.79E-05	7.26E-06	8.21E-06	2.83E-06	3.88E-06	3.86E-06	1.18E-06

1423	763501.57	4091849.33	4.70E-05	5.12E-05	1.81E-05	7.34E-06	8.30E-06	2.86E-06	3.92E-06	3.90E-06	1.20E-06
1424	763445.53	4091762.88	3.63E-05	3.95E-05	1.40E-05	5.67E-06	6.41E-06	2.21E-06	3.03E-06	3.01E-06	9.25E-07
1425	763466.05	4091742.59	3.62E-05	3.94E-05	1.39E-05	5.65E-06	6.39E-06	2.20E-06	3.02E-06	3.00E-06	9.22E-07
1426	763486.57	4091722.3	3.63E-05	3.95E-05	1.40E-05	5.66E-06	6.41E-06	2.21E-06	3.03E-06	3.01E-06	9.24E-07
1427	763425.64	4091784.26	3.67E-05	4.00E-05	1.41E-05	5.73E-06	6.49E-06	2.23E-06	3.07E-06	3.05E-06	9.35E-07
1428	763293	4091633.39	2.43E-05	2.64E-05	9.36E-06	3.79E-06	4.29E-06	1.48E-06	2.03E-06	2.02E-06	6.19E-07
1429	763312.19	4091614.42	2.42E-05	2.63E-05	9.32E-06	3.78E-06	4.27E-06	1.47E-06	2.02E-06	2.01E-06	6.17E-07
1430	763331.38	4091595.44	2.42E-05	2.64E-05	9.33E-06	3.78E-06	4.28E-06	1.47E-06	2.02E-06	2.01E-06	6.17E-07
1431	763350.57	4091576.47	2.44E-05	2.65E-05	9.38E-06	3.80E-06	4.30E-06	1.48E-06	2.03E-06	2.02E-06	6.21E-07
1432	763369.77	4091557.5	2.46E-05	2.68E-05	9.48E-06	3.85E-06	4.35E-06	1.50E-06	2.06E-06	2.04E-06	6.27E-07
1433	763273.78	4091654.1	2.46E-05	2.68E-05	9.49E-06	3.85E-06	4.35E-06	1.50E-06	2.06E-06	2.05E-06	6.28E-07
1434	763141.47	4091502.91	1.77E-05	1.93E-05	6.83E-06	2.77E-06	3.13E-06	1.08E-06	1.48E-06	1.47E-06	4.52E-07
1435	763161.32	4091483.29	1.76E-05	1.91E-05	6.77E-06	2.75E-06	3.11E-06	1.07E-06	1.47E-06	1.46E-06	4.48E-07
1436	763181.17	4091463.67	1.76E-05	1.91E-05	6.77E-06	2.75E-06	3.11E-06	1.07E-06	1.47E-06	1.46E-06	4.48E-07
1437	763201.01	4091444.05	1.77E-05	1.93E-05	6.81E-06	2.76E-06	3.12E-06	1.08E-06	1.48E-06	1.47E-06	4.51E-07
1438	763220.86	4091424.43	1.79E-05	1.94E-05	6.88E-06	2.79E-06	3.16E-06	1.09E-06	1.49E-06	1.48E-06	4.55E-07
1439	763240.71	4091404.81	1.82E-05	1.98E-05	6.99E-06	2.83E-06	3.21E-06	1.10E-06	1.52E-06	1.51E-06	4.63E-07
1440	763121.93	4091523.95	1.80E-05	1.96E-05	6.94E-06	2.81E-06	3.18E-06	1.10E-06	1.50E-06	1.50E-06	4.59E-07
1441	762989.86	4091372.52	1.37E-05	1.49E-05	5.28E-06	2.14E-06	2.42E-06	8.34E-07	1.14E-06	1.14E-06	3.49E-07
1442	763010.19	4091352.42	1.36E-05	1.48E-05	5.22E-06	2.12E-06	2.40E-06	8.25E-07	1.13E-06	1.13E-06	3.46E-07
1443	763030.51	4091332.33	1.35E-05	1.47E-05	5.21E-06	2.11E-06	2.39E-06	8.23E-07	1.13E-06	1.12E-06	3.45E-07
1444	763050.84	4091312.23	1.36E-05	1.48E-05	5.22E-06	2.12E-06	2.40E-06	8.25E-07	1.13E-06	1.13E-06	3.46E-07
1445	763071.17	4091292.14	1.37E-05	1.49E-05	5.28E-06	2.14E-06	2.42E-06	8.34E-07	1.14E-06	1.14E-06	3.49E-07
1446	763091.5	4091272.04	1.39E-05	1.51E-05	5.36E-06	2.17E-06	2.46E-06	8.46E-07	1.16E-06	1.15E-06	3.54E-07
1447	763111.83	4091251.94	1.42E-05	1.54E-05	5.46E-06	2.22E-06	2.51E-06	8.63E-07	1.18E-06	1.18E-06	3.62E-07
1448 1449	762970.07 762838.19	4091393.8 4091242.18	1.39E-05	1.52E-05 1.20E-05	5.37E-06	2.18E-06 1.73E-06	2.46E-06 1.95E-06	8.49E-07	1.16E-06 9.23E-07	1.16E-06 9.18E-07	3.55E-07 2.82E-07
1449	762858.88	4091242.18	1.11E-05 1.09E-05	1.20E-05 1.19E-05	4.26E-06 4.20E-06	1.73E-06 1.70E-06	1.93E-06	6.73E-07 6.64E-07	9.23E-07 9.11E-07	9.16E-07 9.06E-07	2.78E-07
1450	762879.58	4091221.73	1.09E-05	1.19E-05 1.18E-05	4.20E-06 4.18E-06	1.70E-06 1.70E-06	1.93E-06 1.92E-06	6.60E-07	9.11E-07 9.06E-07	9.00E-07 9.01E-07	2.77E-07
1452	762900.27	4091180.81	1.09E-05	1.18E-05	4.18E-06	1.70E-06	1.92E-06	6.60E-07	9.06E-07	9.01E-07	2.77E-07 2.77E-07
1453	762920.97	4091160.35	1.09E-05	1.19E-05	4.21E-06	1.71E-06	1.93E-06	6.65E-07	9.13E-07	9.08E-07	2.79E-07
1454	762941.67	4091139.89	1.11E-05	1.21E-05	4.27E-06	1.71E 00 1.73E-06	1.96E-06	6.74E-07	9.25E-07	9.20E-07	2.82E-07
1455	762962.36	4091119.43	1.11E 05	1.23E-05	4.34E-06	1.76E-06	1.99E-06	6.86E-07	9.42E-07	9.36E-07	2.87E-07
1456	762983.06	4091098.97	1.15E-05	1.26E-05	4.44E-06	1.80E-06	2.04E-06	7.02E-07	9.64E-07	9.58E-07	2.94E-07
1457	762818.21	4091263.64	1.13E-05	1.23E-05	4.34E-06	1.76E-06	1.99E-06	6.86E-07	9.42E-07	9.36E-07	2.87E-07
1458	762686.48	4091111.89	9.22E-06	1.00E-05	3.55E-06	1.44E-06	1.63E-06	5.61E-07	7.70E-07	7.65E-07	2.35E-07
1459	762707.46			9.88E-06	3.50E-06		1.60E-06	5.52E-07	7.58E-07	7.54E-07	
1460	762728.45	4091070.4	8.99E-06	9.79E-06	3.46E-06	1.40E-06		5.47E-07	7.51E-07	7.47E-07	
1461	762749.43		8.97E-06	9.77E-06	3.46E-06	1.40E-06	1.59E-06	5.46E-07	7.49E-07	7.45E-07	2.29E-07
1462	762770.42	4091028.9	8.99E-06	9.79E-06	3.46E-06	1.40E-06	1.59E-06	5.47E-07	7.51E-07	7.47E-07	2.29E-07
1463	762791.41	4091008.16	9.10E-06	9.90E-06	3.50E-06	1.42E-06	1.61E-06	5.53E-07	7.60E-07	7.55E-07	2.32E-07
1464	762812.39	4090987.41	9.24E-06	1.01E-05	3.56E-06	1.44E-06	1.63E-06	5.62E-07	7.71E-07	7.67E-07	2.35E-07
1465	762833.38	4090966.66	9.44E-06	1.03E-05	3.64E-06	1.47E-06	1.67E-06	5.74E-07	7.88E-07	7.84E-07	2.41E-07
1466	762854.37	4090945.92	9.66E-06	1.05E-05	3.72E-06	1.51E-06	1.71E-06	5.88E-07	8.07E-07	8.02E-07	2.46E-07
1467	762666.36	4091133.49	9.42E-06	1.03E-05	3.63E-06	1.47E-06	1.66E-06	5.73E-07	7.87E-07	7.82E-07	2.40E-07
1468	763858.91	4092199.71	6.55E-04	7.13E-04	2.52E-04	1.02E-04	1.16E-04	3.98E-05	5.47E-05	5.44E-05	1.67E-05
1469	763829.26	4092232.11	6.82E-04	7.42E-04	2.62E-04	1.06E-04	1.20E-04	4.15E-05	5.69E-05	5.66E-05	1.74E-05
1470	763822.02	4092165.96	3.95E-04	4.30E-04	1.52E-04	6.17E-05	6.98E-05	2.40E-05	3.30E-05	3.28E-05	1.01E-05
1471	763792.38	4092198.36	4.13E-04	4.49E-04	1.59E-04	6.44E-05	7.29E-05	2.51E-05	3.44E-05	3.42E-05	1.05E-05
1472	763770.31	4092148.41	2.71E-04	2.95E-04	1.04E-04	4.23E-05	4.79E-05	1.65E-05	2.26E-05	2.25E-05	6.90E-06
1473	763748.25	4092098.45	1.91E-04	2.08E-04	7.35E-05	2.98E-05	3.37E-05	1.16E-05	1.59E-05	1.58E-05	4.86E-06
1474	763718.6	4092130.85	1.99E-04	2.17E-04	7.67E-05	3.11E-05	3.52E-05	1.21E-05	1.66E-05	1.65E-05	5.08E-06
1475	763711.36	4092064.7	1.44E-04	1.57E-04	5.55E-05	2.25E-05	2.55E-05	8.77E-06	1.20E-05	1.20E-05	3.67E-06
1476	763681.71	4092097.1	1.51E-04	1.64E-04	5.80E-05	2.35E-05	2.66E-05	9.16E-06	1.26E-05	1.25E-05	3.84E-06
1477	763637.58	4091997.19	9.14E-05	9.95E-05	3.52E-05	1.43E-05	1.62E-05	5.56E-06	7.63E-06	7.59E-06	2.33E-06
1478	763607.94	4092029.59	9.51E-05	1.04E-04	3.66E-05	1.49E-05	1.68E-05	5.79E-06	7.94E-06	7.90E-06	2.42E-06
1479	763548.98	4091945.89	6.48E-05	7.06E-05	2.50E-05	1.01E-05	1.15E-05	3.94E-06	5.41E-06	5.38E-06	1.65E-06
1480	763475.21		4.82E-05	5.25E-05	1.86E-05	7.53E-06	8.52E-06	2.93E-06	4.03E-06	4.00E-06	1.23E-06
1481	763401.43	4091810.87	3.76E-05	4.09E-05	1.45E-05	5.87E-06	6.64E-06	2.29E-06	3.14E-06	3.12E-06	9.57E-07
1482	763253.88	4091675.86	2.51E-05	2.73E-05	9.68E-06	3.92E-06	4.44E-06	1.53E-06	2.10E-06	2.09E-06	6.40E-07
1483	763106.33		1.83E-05	1.99E-05	7.05E-06	2.86E-06	3.24E-06	1.11E-06	1.53E-06	1.52E-06	4.67E-07
1484	702943.95	4091422.04	1.44E-05	1.57E-05	5.56E-06	2.25E-06	2.55E-06	δ./δt-U/	1.21E-06	1.20E-06	3.68E-07

1485	762796.4	4091287.02	1.16E-05	1.26E-05	4.47E-06	1.81E-06	2.05E-06	7.06E-07	9.69E-07	9.63E-07	2.96E-07
1486	762648.85	4091152.01	9.64E-06	1.05E-05	3.71E-06	1.51E-06	1.70E-06	5.87E-07	8.05E-07	8.01E-07	2.46E-07
1487	763814.68	4092249.88	6.99E-04	7.61E-04	2.69E-04	1.09E-04	1.24E-04	4.25E-05	5.84E-05	5.80E-05	1.78E-05
1488	763775.77	4092218.47	4.26E-04	4.64E-04	1.64E-04	6.66E-05	7.54E-05	2.60E-05	3.56E-05	3.54E-05	1.09E-05
1489	763747.41	4092174.01	2.81E-04	3.06E-04	1.08E-04	4.39E-05	4.97E-05	1.71E-05	2.35E-05	2.33E-05	7.16E-06
1490	763726.32	4092200.14	2.95E-04	3.21E-04	1.13E-04	4.60E-05	5.21E-05	1.79E-05	2.46E-05	2.45E-05	7.51E-06
1491	763697.96	4092155.67	2.08E-04	2.26E-04	8.01E-05	3.25E-05	3.68E-05	1.27E-05	1.74E-05	1.73E-05	5.30E-06
1492	763659.05	4092124.26	1.58E-04	1.72E-04	6.08E-05	2.47E-05	2.79E-05	9.61E-06	1.32E-05	1.31E-05	4.02E-06
1493	763591.78	4092048.39	9.81E-05	1.07E-04	3.78E-05	1.53E-05	1.73E-05	5.97E-06	8.19E-06	8.14E-06	2.50E-06
1494	763570.69	4092074.52	1.03E-04	1.12E-04	3.97E-05	1.61E-05	1.82E-05	6.27E-06	8.61E-06	8.56E-06	2.63E-06
1495	763524.06	4091973.84	6.72E-05	7.32E-05	2.59E-05	1.05E-05	1.19E-05	4.09E-06	5.61E-06	5.58E-06	1.71E-06
1496	763503.42		7.01E-05	7.63E-05	2.70E-05	1.10E-05	1.24E-05	4.27E-06	5.86E-06	5.82E-06	1.79E-06
1497	763444.22	4091913.38	5.04E-05	5.48E-05	1.94E-05	7.87E-06	8.90E-06	3.07E-06	4.21E-06	4.18E-06	1.28E-06
1498	763425.6	4091935.84	5.23E-05	5.69E-05	2.01E-05	8.16E-06	9.23E-06	3.18E-06	4.36E-06	4.34E-06	1.33E-06
1499	763367.76	4091849.01	3.94E-05	4.29E-05	1.52E-05	6.15E-06	6.96E-06	2.40E-06	3.29E-06	3.27E-06	1.00E-06
1500 1501	763347.78 763211.79	4091873.04 4091723.79	4.09E-05 2.67E-05	4.45E-05 2.91E-05	1.57E-05	6.38E-06	7.22E-06 4.73E-06	2.49E-06 1.63E-06	3.41E-06 2.23E-06	3.39E-06 2.22E-06	1.04E-06 6.81E-07
1501	763211.79	4091723.79	2.60E-05	2.91E-05 2.83E-05	1.03E-05 1.00E-05	4.18E-06 4.05E-06	4.73E-06 4.59E-06	1.58E-06	2.23E-06 2.17E-06	2.22E-06 2.15E-06	6.61E-07
1503	763192.15	4091702.04	2.77E-05	3.02E-05	1.00E-05 1.07E-05	4.03E-06	4.90E-06	1.69E-06	2.17L-00 2.31E-06	2.30E-06	7.06E-07
1504	763055.95	4091598.41	1.98E-05	2.16E-05	7.63E-06	3.09E-06	3.50E-06	1.21E-06	1.65E-06	1.64E-06	5.05E-07
1505	763073.73	4091577.73	1.92E-05	2.10L-05 2.09E-05	7.40E-06	3.00E-06	3.39E-06	1.17E-06	1.60E-06	1.59E-06	4.89E-07
1506	763036.52	4091621.81	2.05E-05	2.24E-05	7.91E-06	3.21E-06	3.63E-06	1.25E-06	1.71E-06	1.71E-06	5.23E-07
1507	762901.94	4091470.91	1.55E-05	1.69E-05	5.96E-06	2.42E-06	2.74E-06	9.42E-07	1.29E-06	1.29E-06	3.95E-07
1508	762922.95	4091446.48	1.49E-05	1.62E-05	5.74E-06	2.33E-06	2.64E-06	9.08E-07	1.25E-06	1.24E-06	3.80E-07
1509	762880.89	4091496.2	1.61E-05	1.75E-05	6.20E-06	2.52E-06	2.85E-06	9.80E-07	1.35E-06	1.34E-06	4.10E-07
1510	762745.9	4091345.77	1.27E-05	1.38E-05	4.87E-06	1.98E-06	2.24E-06	7.70E-07	1.06E-06	1.05E-06	3.22E-07
1511	762766.1	4091322.27	1.22E-05	1.33E-05	4.70E-06	1.91E-06	2.16E-06	7.43E-07	1.02E-06	1.01E-06	3.11E-07
1512	762725.26	4091370.58	1.32E-05	1.43E-05	5.07E-06	2.06E-06	2.33E-06	8.01E-07	1.10E-06	1.09E-06	3.35E-07
1513	762589.98	4091220.49	1.07E-05	1.16E-05	4.10E-06	1.66E-06	1.88E-06	6.48E-07	8.89E-07	8.84E-07	2.71E-07
1514	762609.6	4091197.67	1.03E-05	1.12E-05	3.96E-06	1.61E-06	1.82E-06	6.26E-07	8.59E-07	8.54E-07	2.62E-07
1515	762629.23	4091174.84	9.94E-06	1.08E-05	3.83E-06	1.55E-06	1.76E-06	6.05E-07	8.30E-07	8.26E-07	2.53E-07
1516	762569.62	4091244.97	1.11E-05	1.20E-05	4.26E-06	1.73E-06	1.95E-06	6.73E-07	9.23E-07	9.18E-07	2.82E-07
1517	763799.37	4092269.35	7.17E-04	7.81E-04	2.76E-04	1.12E-04	1.27E-04	4.36E-05	5.99E-05	5.95E-05	1.83E-05
1518	763786.53	4092288.15	7.42E-04	8.07E-04	2.86E-04	1.16E-04	1.31E-04	4.51E-05	6.19E-05	6.16E-05	1.89E-05
1519	763758.08	4092241.15	4.43E-04	4.83E-04	1.71E-04	6.93E-05	7.83E-05	2.70E-05	3.70E-05	3.68E-05	1.13E-05
1520	763745.24	4092259.95	4.61E-04	5.02E-04	1.78E-04	7.20E-05	8.15E-05	2.81E-05	3.85E-05	3.83E-05	1.17E-05
1521	763703.95	4092231.75	3.15E-04	3.43E-04	1.21E-04	4.92E-05	5.57E-05	1.92E-05	2.63E-05	2.62E-05	8.03E-06
1522	763675.5		2.20E-04	2.40E-04	8.49E-05	3.44E-05	3.89E-05	1.34E-05	1.84E-05	1.83E-05	5.62E-06
1523		4092203.55	2.30E-04	2.50E-04	8.85E-05	3.59E-05	4.06E-05	1.40E-05	1.92E-05	1.91E-05	5.86E-06
1524		4092146.94	1.65E-04	1.80E-04	6.36E-05	2.58E-05	2.92E-05	1.01E-05	1.38E-05	1.37E-05	4.21E-06
1525		4092175.35	1.76E-04	1.91E-04	6.77E-05	2.75E-05	3.11E-05	1.07E-05	1.47E-05	1.46E-05	4.48E-06
1526		4092118.95	1.14E-04	1.24E-04	4.37E-05	1.77E-05	2.01E-05	6.91E-06	9.48E-06	9.42E-06	2.89E-06
1527		4092027.74	7.43E-05	8.09E-05	2.86E-05	1.16E-05	1.31E-05	4.52E-06	6.21E-06	6.17E-06	1.89E-06
1528		4092062.55	8.02E-05	8.73E-05	3.09E-05	1.25E-05	1.42E-05	4.88E-06	6.70E-06	6.66E-06	2.04E-06
1529		4091974.54 4092006.16	5.63E-05	6.13E-05	2.17E-05	8.79E-06	9.95E-06	3.43E-06	4.70E-06 5.02E-06	4.67E-06 5.00E-06	1.43E-06 1.53E-06
1530 1531		4092006.16	6.02E-05 4.42E-05	6.55E-05	2.32E-05 1.70E-05	9.40E-06 6.90E-06	1.06E-05 7.81E-06	3.66E-06	3.69E-06	3.67E-06	1.33E-06 1.13E-06
1531		4091916.01	4.42E-05 4.72E-05	4.81E-05 5.14E-05	1.70E-05 1.82E-05	7.38E-06	8.35E-06	2.69E-06 2.87E-06	3.94E-06	3.92E-06	1.13E-06 1.20E-06
1533		4091949.76	3.04E-05	3.14E-05 3.31E-05	1.02E-05 1.17E-05	4.75E-06	5.37E-06	1.85E-06	2.54E-06	2.52E-06	7.75E-07
1534		4091774.91	2.90E-05	3.16E-05	1.17E-05 1.12E-05	4.73E-06 4.53E-06	5.12E-06	1.76E-06	2.42E-06	2.41E-06	7.73E-07 7.39E-07
1535		4091836.96	3.21E-05	3.50E-05	1.24E-05	5.02E-06	5.68E-06	1.96E-06	2.42E 00 2.68E-06	2.67E-06	8.19E-07
1536		4091687.74	2.27E-05	2.47E-05	8.75E-06	3.55E-06	4.01E-06	1.38E-06	1.90E-06	1.89E-06	5.79E-07
1537	763012.88	4091652.5	2.15E-05	2.35E-05	8.30E-06	3.37E-06	3.81E-06	1.31E-06	1.80E-06	1.79E-06	5.49E-07
1538		4091724.16	2.40E-05	2.61E-05	9.22E-06	3.74E-06	4.23E-06	1.46E-06	2.00E-06	1.99E-06	6.10E-07
1539	762820.82	4091575.9	1.81E-05	1.97E-05	6.97E-06	2.83E-06	3.20E-06	1.10E-06	1.51E-06	1.50E-06	4.61E-07
1540		4091542.58	1.73E-05	1.88E-05	6.66E-06	2.70E-06	3.06E-06	1.05E-06	1.44E-06	1.44E-06	4.41E-07
1541		4091611.36	1.90E-05	2.06E-05	7.30E-06	2.96E-06	3.35E-06	1.15E-06	1.58E-06	1.57E-06	4.83E-07
1542	762655.18	4091463.74	1.50E-05	1.63E-05	5.78E-06	2.34E-06	2.65E-06	9.13E-07	1.25E-06	1.25E-06	3.82E-07
1543		4091431.71	1.44E-05	1.57E-05	5.54E-06	2.25E-06	2.54E-06	8.76E-07	1.20E-06	1.19E-06	3.67E-07
1544	762702.81	4091399.67	1.37E-05	1.50E-05	5.29E-06	2.15E-06	2.43E-06	8.36E-07	1.15E-06	1.14E-06	3.50E-07
1545	762630.44	4091498.56	1.56E-05	1.70E-05	6.02E-06	2.44E-06	2.76E-06	9.51E-07	1.30E-06	1.30E-06	3.98E-07
1546	762491.62	4091348.81	1.28E-05	1.39E-05	4.91E-06	1.99E-06	2.25E-06	7.76E-07	1.06E-06	1.06E-06	3.25E-07

1547	762505.11	4091330.66	1.25E-05	1.36E-05	4.80E-06	1.95E-06	2.20E-06	7.59E-07	1.04E-06	1.04E-06	3.18E-07
1548	762518.6	4091312.5	1.22E-05	1.33E-05	4.69E-06	1.90E-06	2.15E-06	7.42E-07	1.02E-06	1.01E-06	3.11E-07
1549	762532.09	4091294.35	1.19E-05	1.29E-05	4.58E-06	1.86E-06	2.10E-06	7.23E-07	9.92E-07	9.87E-07	3.03E-07
1550	762545.59	4091276.19	1.16E-05	1.26E-05	4.46E-06	1.81E-06	2.05E-06	7.05E-07	9.67E-07	9.62E-07	2.95E-07
1551	762478.12	4091366.97	1.30E-05	1.42E-05	5.01E-06	2.03E-06	2.30E-06	7.92E-07	1.09E-06	1.08E-06	3.32E-07
1552	762465.28	4091385.77	1.33E-05	1.44E-05	5.11E-06	2.07E-06	2.34E-06	8.07E-07	1.11E-06	1.10E-06	3.38E-07
1553	763730.23	4092284.32	4.87E-04	5.30E-04	1.87E-04	7.60E-05	8.60E-05	2.96E-05	4.06E-05	4.04E-05	1.24E-05
1554	763687.45	4092258.44	3.36E-04	3.65E-04	1.29E-04	5.24E-05	5.93E-05	2.04E-05	2.80E-05	2.79E-05	8.55E-06
1555	763644.67	4092232.55	2.46E-04	2.68E-04	9.48E-05	3.84E-05	4.35E-05	1.50E-05	2.06E-05	2.04E-05	6.27E-06
1556	763601.9	4092206.67	1.89E-04	2.06E-04	7.28E-05	2.95E-05	3.34E-05	1.15E-05	1.58E-05	1.57E-05	4.82E-06
1557	763516.34	4092154.9	1.23E-04	1.34E-04	4.74E-05	1.92E-05	2.17E-05	7.49E-06	1.03E-05	1.02E-05	3.14E-06
1558	763441.32	4092085.71	8.44E-05	9.19E-05	3.25E-05	1.32E-05	1.49E-05	5.14E-06	7.05E-06	7.01E-06	2.15E-06
1559	763355.76	4092033.95	6.39E-05	6.95E-05	2.46E-05	9.98E-06	1.13E-05	3.89E-06	5.33E-06	5.30E-06	1.63E-06
1560	763270.2	4091982.18	5.05E-05	5.49E-05	1.94E-05	7.88E-06	8.91E-06	3.07E-06	4.21E-06	4.19E-06	1.29E-06
1561	763108.03	4091864.75	3.37E-05	3.67E-05	1.30E-05	5.26E-06	5.95E-06	2.05E-06	2.81E-06	2.80E-06	8.59E-07
1562	763088.55	4091896.07	3.56E-05	3.87E-05	1.37E-05	5.55E-06	6.28E-06	2.16E-06	2.97E-06	2.95E-06	9.06E-07
1563	762938.9	4091758.13	2.51E-05	2.73E-05	9.68E-06	3.92E-06	4.44E-06	1.53E-06	2.10E-06	2.09E-06	6.40E-07
1564	762917.43	4091792.53	2.64E-05	2.87E-05	1.02E-05	4.12E-06	4.66E-06	1.60E-06	2.20E-06	2.19E-06	6.72E-07
1565	762766.54	4091656.52	2.00E-05	2.18E-05	7.70E-06	3.12E-06	3.53E-06	1.22E-06	1.67E-06	1.66E-06	5.09E-07
1566	762746.32	4091689	2.07E-05	2.26E-05	7.99E-06	3.24E-06	3.66E-06	1.26E-06	1.73E-06	1.72E-06	5.28E-07
1567	762594.68	4091554.15	1.65E-05	1.80E-05	6.37E-06	2.58E-06	2.92E-06	1.01E-06	1.38E-06	1.37E-06	4.21E-07
1568	762612.56	4091526.36	1.61E-05	1.75E-05	6.20E-06	2.51E-06	2.84E-06	9.79E-07	1.34E-06	1.34E-06	4.10E-07
1569 1570	762575.2	4091585.46 4091448.76	1.70E-05 1.40E-05	1.85E-05 1.53E-05	6.55E-06	2.66E-06	3.01E-06 2.48E-06	1.04E-06 8.55E-07	1.42E-06	1.41E-06 1.17E-06	4.34E-07 3.58E-07
1570	762424.76 762445.02	4091448.76	1.40E-05 1.37E-05	1.33E-05 1.49E-05	5.41E-06	2.19E-06 2.13E-06	2.48E-06 2.41E-06		1.17E-06	1.17E-06 1.13E-06	3.48E-07
1571	762443.02	4091417.28	1.44E-05	1.49E-05 1.57E-05	5.26E-06 5.55E-06	2.15E-06 2.25E-06	2.41E-06 2.55E-06	8.31E-07 8.77E-07	1.14E-06 1.20E-06	1.13E-06 1.20E-06	3.46E-07 3.67E-07
1573	763716.64	4092310.4	5.19E-04	5.64E-04	2.00E-04	8.10E-05	9.16E-05	3.16E-05	4.33E-05	4.31E-05	1.32E-05
1574	763671.93	4092288.02	3.61E-04	3.93E-04	1.39E-04	5.64E-05	6.38E-05	2.20E-05	3.01E-05	3.00E-05	9.20E-06
1575	763627.22	4092265.63	2.67E-04	2.91E-04	1.03E-04	4.17E-05	4.72E-05	1.62E-05	2.23E-05	2.22E-05	6.80E-06
1576	763590.31		1.99E-04	2.16E-04	7.65E-05	3.10E-05	3.51E-05	1.02E 05 1.21E-05	1.66E-05	1.65E-05	5.06E-06
1577	763500.89	4092182.9	1.31E-04	1.43E-04	5.04E-05	2.05E-05	2.31E-05	7.97E-06	1.09E-05	1.09E-05	3.34E-06
1578	763417.91	4092126.47	9.21E-05	1.00E-04	3.55E-05	1.44E-05	1.63E-05	5.61E-06	7.69E-06	7.65E-06	2.35E-06
1579	763403.67	4092153.71	9.74E-05	1.06E-04	3.75E-05	1.52E-05	1.72E-05	5.93E-06	8.13E-06	8.09E-06	2.48E-06
1580	763329.77	4092079.37	7.02E-05	7.64E-05	2.70E-05	1.10E-05	1.24E-05	4.27E-06	5.86E-06	5.83E-06	1.79E-06
1581	763314.25	4092108.95	7.43E-05	8.09E-05	2.86E-05	1.16E-05	1.31E-05	4.52E-06	6.20E-06	6.17E-06	1.89E-06
1582	763239.39	4092036.35	5.62E-05	6.11E-05	2.16E-05	8.77E-06	9.92E-06	3.42E-06	4.69E-06	4.66E-06	1.43E-06
1583	763252.91	4092011.85	5.36E-05	5.83E-05	2.06E-05	8.37E-06	9.46E-06	3.26E-06	4.47E-06	4.45E-06	1.36E-06
1584	763224.83		5.91E-05	6.44E-05	2.28E-05	9.23E-06	1.04E-05	3.60E-06	4.94E-06	4.91E-06	1.51E-06
1585	763060.74	4091946.47	3.88E-05	4.22E-05	1.49E-05	6.06E-06	6.86E-06	2.36E-06	3.24E-06	3.22E-06	9.89E-07
1586	763074.65	4091921.27	3.72E-05	4.04E-05	1.43E-05	5.80E-06	6.56E-06	2.26E-06	3.10E-06	3.08E-06	9.47E-07
1587	763045.99	4091974.64	4.07E-05	4.43E-05	1.57E-05	6.36E-06	7.19E-06	2.48E-06	3.40E-06	3.38E-06	1.04E-06
1588	762882.03	4091856.7	2.90E-05	3.15E-05	1.12E-05	4.52E-06	5.12E-06	1.76E-06	2.42E-06	2.40E-06	7.38E-07
1589	762896.19	4091831.03	2.79E-05	3.03E-05	1.07E-05	4.35E-06	4.93E-06	1.70E-06	2.33E-06	2.31E-06	7.10E-07
1590	762867.15	4091885.11	3.03E-05	3.29E-05	1.17E-05	4.73E-06	5.35E-06	1.84E-06	2.53E-06	2.51E-06	7.71E-07
1591	762704.48	4091764.83	2.27E-05	2.48E-05	8.76E-06	3.55E-06	4.02E-06	1.38E-06	1.90E-06	1.89E-06	5.79E-07
1592	762721.21	4091734.5	2.19E-05	2.38E-05	8.43E-06	3.42E-06	3.87E-06	1.33E-06	1.83E-06	1.82E-06	5.58E-07
1593	762688.31	4091795.58	2.37E-05	2.58E-05	9.12E-06	3.70E-06	4.19E-06	1.44E-06	1.98E-06	1.97E-06	6.04E-07
1594	762525.55	4091675.46	1.86E-05	2.03E-05	7.17E-06	2.91E-06	3.29E-06	1.13E-06	1.55E-06	1.55E-06	4.74E-07
1595	762542.1	4091645.46	1.81E-05	1.96E-05	6.95E-06	2.82E-06	3.19E-06	1.10E-06	1.51E-06	1.50E-06	4.60E-07
1596	762558.65	4091615.46	1.75E-05	1.91E-05	6.75E-06	2.74E-06	3.10E-06	1.07E-06	1.46E-06	1.45E-06	4.47E-07
1597	762509.47	4091706.04	1.93E-05	2.10E-05	7.43E-06	3.01E-06	3.41E-06	1.17E-06	1.61E-06	1.60E-06	4.91E-07
1598		4091586.05	1.57E-05	1.71E-05	6.05E-06	2.45E-06	2.78E-06	9.56E-07	1.31E-06	1.30E-06	4.00E-07
1599	762363.05	4091556.3	1.53E-05	1.67E-05	5.89E-06	2.39E-06	2.70E-06	9.31E-07	1.28E-06	1.27E-06	3.90E-07
1600		4091526.55	1.49E-05	1.63E-05	5.75E-06	2.33E-06	2.64E-06	9.09E-07	1.25E-06	1.24E-06	3.81E-07
1601		4091616.51	1.62E-05	1.76E-05	6.23E-06	2.53E-06	2.86E-06	9.84E-07	1.35E-06	1.34E-06	4.12E-07
1602	763701.43	4092350.8	5.81E-04	6.32E-04	2.24E-04	9.07E-05	1.03E-04	3.54E-05	4.85E-05	4.82E-05	1.48E-05
1603		4092313.15	3.86E-04	4.20E-04	1.48E-04	6.02E-05	6.81E-05	2.35E-05	3.22E-05	3.20E-05	9.82E-06
1604	763654.09	4092334.7	4.08E-04	4.44E-04	1.57E-04	6.38E-05	7.21E-05	2.48E-05	3.41E-05	3.39E-05	1.04E-05
1605	763614.09	4092297.04	2.89E-04	3.15E-04	1.11E-04	4.51E-05	5.11E-05	1.76E-05	2.41E-05	2.40E-05	7.36E-06
1606		4092318.59	3.05E-04	3.32E-04	1.17E-04	4.76E-05	5.39E-05	1.86E-05	2.55E-05	2.53E-05	7.77E-06
1607	763574.63	4092262.1	2.16E-04	2.36E-04	8.33E-05	3.38E-05	3.82E-05	1.32E-05	1.81E-05	1.80E-05	5.51E-06
1608	/63559.42	4092302.49	2.38E-04	2.59E-04	9.16E-05	3.71E-05	4.20E-05	1.45E-05	1.99E-05	1.97E-05	6.06E-06

1609	763479.08	4092231.99	1.46E-04	1.59E-04	5.63E-05	2.28E-05	2.58E-05	8.89E-06	1.22E-05	1.21E-05	3.72E-06
1610	763464.75	4092270.29	1.58E-04	1.72E-04	6.10E-05	2.47E-05	2.80E-05	9.64E-06	1.32E-05	1.31E-05	4.04E-06
1611	763386.16	4092195.6	1.06E-04	1.15E-04	4.08E-05	1.66E-05	1.87E-05	6.45E-06	8.85E-06	8.80E-06	2.70E-06
1612	763394.92	4092174.66	1.02E-04	1.11E-04	3.92E-05	1.59E-05	1.80E-05	6.19E-06	8.49E-06	8.45E-06	2.59E-06
1613	763377.4	4092216.54	1.10E-04	1.20E-04	4.25E-05	1.72E-05	1.95E-05	6.71E-06	9.21E-06	9.15E-06	2.81E-06
1614	763370.07	4092238.09	1.15E-04	1.25E-04	4.42E-05	1.79E-05	2.03E-05	6.99E-06	9.59E-06	9.54E-06	2.93E-06
1615	763290.61	4092165.49	8.26E-05	8.99E-05	3.18E-05	1.29E-05	1.46E-05	5.03E-06	6.90E-06	6.86E-06	2.10E-06
1616	763275.4	4092205.89	8.85E-05	9.63E-05	3.41E-05	1.38E-05	1.56E-05	5.38E-06	7.39E-06	7.35E-06	2.25E-06
1617	763195.41	4092134.54	6.69E-05	7.28E-05	2.58E-05	1.04E-05	1.18E-05	4.07E-06	5.59E-06	5.55E-06	1.70E-06
1618	763210.12	4092099.36	6.31E-05	6.86E-05	2.43E-05	9.85E-06	1.11E-05	3.84E-06	5.27E-06	5.24E-06	1.61E-06
1619	763180.73	4092173.69	7.12E-05	7.74E-05	2.74E-05	1.11E-05	1.26E-05	4.33E-06	5.94E-06	5.91E-06	1.81E-06
1620	763006.59	4092068.88	4.75E-05	5.17E-05	1.83E-05	7.42E-06	8.39E-06	2.89E-06	3.97E-06	3.94E-06	1.21E-06
1621	763022.35	4092031.19	4.48E-05	4.88E-05	1.73E-05	7.00E-06	7.92E-06	2.73E-06	3.74E-06	3.72E-06	1.14E-06
1622	762991.38	4092109.28	5.03E-05	5.48E-05	1.94E-05	7.86E-06	8.89E-06	3.06E-06	4.20E-06	4.18E-06	1.28E-06
1623	762817.62	4092003.58	3.63E-05	3.96E-05	1.40E-05	5.68E-06	6.42E-06	2.21E-06	3.03E-06	3.02E-06	9.26E-07
1624	762834.13	4091964.09	3.43E-05	3.73E-05	1.32E-05	5.35E-06	6.06E-06	2.09E-06	2.86E-06	2.85E-06	8.74E-07
1625	762850.64	4091924.6	3.22E-05	3.51E-05	1.24E-05	5.03E-06	5.69E-06	1.96E-06	2.69E-06	2.68E-06	8.21E-07
1626	762802.03	4092044.88	3.84E-05	4.18E-05	1.48E-05	6.00E-06	6.79E-06	2.34E-06	3.21E-06	3.19E-06	9.79E-07
1627	762628.55	4091938.5	2.92E-05	3.17E-05	1.12E-05	4.56E-06	5.15E-06	1.77E-06	2.44E-06	2.42E-06	7.43E-07
1628	762645.63	4091897.67	2.75E-05	3.00E-05	1.06E-05	4.30E-06	4.86E-06	1.68E-06	2.30E-06	2.29E-06	7.01E-07
1629	762662.7	4091856.83	2.59E-05	2.82E-05	9.98E-06	4.05E-06	4.58E-06	1.58E-06	2.16E-06	2.15E-06	6.60E-07
1630	762612.69	4091980.47	3.08E-05	3.36E-05	1.19E-05	4.81E-06	5.45E-06	1.88E-06	2.57E-06	2.56E-06	7.85E-07
1631	762439.43	4091873.58	2.42E-05	2.64E-05	9.33E-06	3.79E-06	4.28E-06	1.47E-06	2.02E-06	2.01E-06	6.18E-07
1632	762448.18	4091852.63	2.35E-05	2.56E-05	9.07E-06	3.68E-06	4.16E-06	1.43E-06	1.97E-06	1.96E-06	6.00E-07
1633	762456.94	4091831.69	2.29E-05	2.49E-05	8.81E-06	3.57E-06	4.04E-06	1.39E-06	1.91E-06	1.90E-06	5.83E-07
1634	762465.69	4091810.75	2.22E-05	2.42E-05	8.56E-06	3.47E-06	3.92E-06	1.35E-06	1.85E-06	1.84E-06	5.66E-07
1635	762474.45	4091789.81	2.16E-05	2.35E-05	8.31E-06	3.37E-06	3.81E-06	1.31E-06	1.80E-06	1.79E-06	5.50E-07
1636	762483.21	4091768.87	2.09E-05	2.28E-05	8.06E-06	3.27E-06	3.70E-06	1.27E-06	1.75E-06	1.74E-06	5.34E-07
1637	762491.96	4091747.92	2.04E-05	2.22E-05	7.84E-06	3.18E-06	3.60E-06	1.24E-06	1.70E-06	1.69E-06	5.19E-07
1638	762500.72	4091726.98	1.98E-05	2.16E-05	7.63E-06	3.09E-06	3.50E-06	1.21E-06	1.65E-06	1.64E-06	5.05E-07
1639	762430.67	4091894.52	2.49E-05	2.71E-05	9.59E-06	3.89E-06	4.40E-06	1.52E-06	2.08E-06	2.07E-06	6.35E-07
1640	762423.34	4091916.07	2.56E-05	2.78E-05	9.85E-06	3.99E-06	4.52E-06	1.56E-06	2.14E-06	2.12E-06	6.52E-07
1641	762249.44	4091810.7	2.07E-05	2.25E-05	7.96E-06	3.23E-06	3.65E-06	1.26E-06	1.73E-06	1.72E-06	5.27E-07
1642	762265.68	4091771.86	1.96E-05	2.14E-05	7.57E-06	3.07E-06	3.47E-06	1.20E-06	1.64E-06	1.63E-06	5.01E-07
1643	762281.92	4091733.02	1.87E-05	2.03E-05	7.19E-06	2.91E-06	3.30E-06	1.14E-06	1.56E-06	1.55E-06	4.75E-07
1644	762298.16	4091694.18	1.77E-05	1.93E-05	6.83E-06	2.77E-06	3.13E-06	1.08E-06	1.48E-06	1.47E-06	4.52E-07
1645		4091655.34		1.84E-05	6.51E-06		2.99E-06			1.40E-06	
1646	762233.99		2.17E-05	2.37E-05	8.38E-06	3.40E-06	3.84E-06	1.32E-06	1.82E-06	1.81E-06	5.54E-07
1647	763645.37		4.43E-04	4.82E-04	1.71E-04	6.92E-05	7.83E-05	2.70E-05	3.70E-05	3.68E-05	1.13E-05
1648	763596.94	4092353.9	3.32E-04	3.61E-04	1.28E-04	5.18E-05	5.86E-05	2.02E-05	2.77E-05	2.75E-05	8.45E-06
1649	763552.86	4092324.51	2.50E-04	2.72E-04	9.62E-05	3.90E-05	4.42E-05	1.52E-05	2.09E-05	2.07E-05	6.37E-06
1650	763544.15	4092358.44	2.68E-04	2.92E-04	1.03E-04	4.19E-05	4.73E-05	1.63E-05	2.24E-05	2.22E-05	6.83E-06
1651 1652	763456 763447.29	4092299.64 4092333.57	1.68E-04 1.79E-04	1.83E-04 1.94E-04	6.47E-05 6.88E-05	2.62E-05 2.79E-05	2.97E-05 3.16E-05	1.02E-05 1.09E-05	1.40E-05 1.49E-05	1.39E-05 1.48E-05	4.28E-06 4.55E-06
1653	763362.79	4092353.57	1.79E-04 1.20E-04	1.31E-04	4.63E-05	1.88E-05	2.12E-05	7.31E-06	1.49E-05 1.00E-05	9.98E-06	3.06E-06
1654	763354.79	4092291.74	1.26E-04	1.37E-04 1.37E-04	4.86E-05	1.97E-05	2.12E-05 2.23E-05	7.51E-06 7.68E-06	1.00E-05 1.05E-05	1.05E-05	3.22E-06
1655	763266.66	4092235.24	9.29E-05	1.01E-04	4.86E-05 3.58E-05	1.45E-05	1.64E-05	5.65E-06	7.75E-06	7.71E-06	2.37E-06
1656	763257.93	4092266.88	9.74E-05	1.01L-04 1.06E-04	3.75E-05	1.43L-05 1.52E-05	1.72E-05	5.93E-06	8.13E-06	8.09E-06	2.48E-06
1657	763169.25	4092212.21	7.53E-05	8.20E-05	2.90E-05	1.18E-05	1.72E-05 1.33E-05	4.58E-06	6.29E-06	6.25E-06	1.92E-06
1658	763163.23	4092212.21	7.84E-05	8.53E-05	3.02E-05	1.18L-05 1.22E-05	1.39E-05	4.77E-06	6.55E-06	6.51E-06	2.00E-06
1659	762976.62		5.36E-05	5.83E-05	2.06E-05	8.37E-06	9.47E-06	3.26E-06	4.47E-06	4.45E-06	1.37E-06
1660	762967.35	4092192.29	5.56E-05	6.05E-05	2.14E-05	8.68E-06	9.82E-06	3.38E-06	4.64E-06	4.61E-06	1.42E-06
1661	762782.8	4092192.29	4.14E-05	4.50E-05	1.59E-05	6.46E-06	7.31E-06	2.52E-06	3.46E-06	3.44E-06	1.42E-06 1.05E-06
1662	762792.41		4.14L-05 4.00E-05	4.35E-05	1.54E-05	6.24E-06	7.06E-06	2.43E-06	3.46L-06	3.32E-06	1.03E-06
1663	762773.63	4092077.10	4.00L-05 4.27E-05	4.64E-05	1.64E-05	6.66E-06	7.54E-06	2.43L-00 2.60E-06	3.56E-06	3.54E-06	1.02L-06
1664	762589	4092059.97	3.36E-05	3.65E-05	1.29E-05	5.24E-06	5.93E-06	2.00E-00 2.04E-06	2.80E-06	2.79E-06	8.55E-07
1665	762598.48	4092039.97	3.25E-05	3.54E-05	1.25E-05	5.08E-06	5.75E-06	1.98E-06	2.72E-06	2.79E-06	8.33E-07 8.29E-07
1666	762579.91		3.44E-05	3.75E-05	1.33E-05	5.38E-06	6.09E-06	2.10E-06	2.88E-06	2.86E-06	8.78E-07
1667	762395.23	4092010.41	2.82E-05	3.75E 05 3.06E-05	1.08E-05	4.40E-06	4.98E-06	1.71E-06	2.35E-06	2.34E-06	7.17E-07
1668	762404.6	4091978.96	2.74E-05	2.98E-05	1.06E-05	4.28E-06	4.84E-06	1.67E-06	2.29E-06	2.28E-06	6.98E-07
1669	762413.97		2.65E-05	2.89E-05	1.02E-05	4.15E-06	4.69E-06	1.61E-06	2.22E-06	2.20E-06	6.76E-07
1670	762386.19	4092043.1	2.88E-05	3.14E-05	1.11E-05	4.51E-06		1.76E-06		2.39E-06	7.35E-07
_0.0					_: 00			0_ 00	00		

1671	762201.47	4091960.81	2.42E-05	2.64E-05	9.33E-06	3.78E-06	4.28E-06	1.47E-06	2.02E-06	2.01E-06	6.17E-07
1672	762210.77	4091929.63	2.36E-05	2.57E-05	9.09E-06	3.69E-06	4.17E-06	1.44E-06	1.97E-06	1.96E-06	6.02E-07
1673	762220.06	4091898.44	2.29E-05	2.49E-05	8.83E-06	3.58E-06	4.05E-06	1.39E-06	1.91E-06	1.90E-06	5.84E-07
1674	762192.47	4091993.37	2.48E-05	2.70E-05	9.54E-06	3.87E-06	4.38E-06	1.51E-06	2.07E-06	2.06E-06	6.31E-07
1675	763637.28	4092405.39	4.86E-04	5.29E-04	1.87E-04	7.59E-05	8.59E-05	2.96E-05	4.06E-05	4.03E-05	1.24E-05
1676	763634.27	4092430.18	5.15E-04	5.60E-04	1.98E-04	8.04E-05	9.09E-05	3.13E-05	4.30E-05	4.27E-05	1.31E-05
1677	763587.34	4092401.93	3.67E-04	4.00E-04	1.42E-04	5.74E-05	6.49E-05	2.24E-05	3.07E-05	3.05E-05	9.36E-06
1678	763584.45	4092426.03	3.86E-04	4.20E-04	1.49E-04	6.02E-05	6.82E-05	2.35E-05	3.22E-05	3.20E-05	9.83E-06
1679	763537.86	4092395.71	2.88E-04	3.14E-04	1.11E-04	4.50E-05	5.09E-05	1.75E-05	2.41E-05	2.39E-05	7.35E-06
1680	763534.62	4092421.88	3.02E-04	3.29E-04	1.16E-04	4.72E-05	5.34E-05	1.84E-05	2.52E-05	2.51E-05	7.70E-06
1681	763438.35	4092386.58	1.95E-04	2.12E-04	7.52E-05	3.05E-05	3.45E-05	1.19E-05	1.63E-05	1.62E-05	4.97E-06
1682	763442.82	4092360.08	1.87E-04	2.04E-04	7.21E-05	2.93E-05	3.31E-05	1.14E-05	1.56E-05	1.56E-05	4.77E-06
1683	763434.96	4092413.59	2.03E-04	2.21E-04	7.82E-05	3.17E-05	3.59E-05	1.24E-05	1.70E-05	1.69E-05	5.17E-06
1684	763338.45	4092379.7	1.44E-04	1.56E-04	5.53E-05	2.24E-05	2.54E-05	8.74E-06	1.20E-05	1.19E-05	3.66E-06
1685	763342.45	4092356.04	1.39E-04	1.52E-04	5.37E-05	2.18E-05	2.46E-05	8.48E-06	1.16E-05	1.16E-05	3.55E-06
1686	763346.44	4092332.37	1.35E-04	1.47E-04	5.19E-05	2.10E-05	2.38E-05	8.19E-06	1.12E-05	1.12E-05	3.43E-06
1687	763335.31	4092405.29	1.48E-04	1.61E-04	5.71E-05	2.32E-05	2.62E-05	9.03E-06	1.24E-05	1.23E-05	3.78E-06
1688	763238.9	4092370.81	1.11E-04	1.21E-04	4.29E-05	1.74E-05	1.97E-05	6.78E-06	9.30E-06	9.25E-06	2.84E-06
1689	763243.09	4092345.97	1.08E-04	1.18E-04	4.17E-05	1.69E-05	1.91E-05	6.59E-06	9.05E-06	9.00E-06	2.76E-06
1690	763247.28	4092321.12	1.05E-04	1.14E-04	4.05E-05	1.64E-05	1.86E-05	6.39E-06	8.77E-06	8.72E-06	2.68E-06
1691	763251.48	4092296.27	1.02E-04	1.11E-04	3.91E-05	1.59E-05	1.79E-05	6.18E-06	8.48E-06	8.43E-06	2.59E-06
1692	763235.65	4092396.99	1.15E-04	1.25E-04	4.42E-05	1.79E-05	2.03E-05	6.98E-06	9.58E-06	9.52E-06	2.92E-06
1693	763139.32	4092362.06	9.00E-05	9.79E-05	3.46E-05	1.41E-05	1.59E-05	5.47E-06	7.51E-06	7.47E-06	2.29E-06
1694	763143.67	4092336.29	8.77E-05	9.55E-05	3.38E-05	1.37E-05	1.55E-05	5.34E-06	7.32E-06	7.28E-06	2.23E-06
1695	763148.02	4092310.52	8.53E-05	9.29E-05	3.29E-05	1.33E-05	1.51E-05	5.19E-06	7.12E-06	7.08E-06	2.17E-06
1696	763152.36	4092284.75	8.28E-05	9.01E-05	3.19E-05	1.29E-05	1.46E-05	5.04E-06	6.91E-06	6.87E-06	2.11E-06
1697	763136	4092388.69	9.24E-05	1.01E-04	3.56E-05	1.44E-05	1.63E-05	5.62E-06	7.72E-06	7.67E-06	2.36E-06
1698	762940.12	4092344.79	6.38E-05	6.95E-05	2.46E-05	9.97E-06	1.13E-05	3.88E-06	5.33E-06	5.30E-06	1.63E-06
1699 1700	762944.7 762949.27	4092317.68 4092290.57	6.24E-05 6.10E-05	6.79E-05	2.40E-05	9.75E-06 9.53E-06	1.10E-05 1.08E-05	3.80E-06	5.21E-06 5.10E-06	5.18E-06 5.07E-06	1.59E-06 1.55E-06
1700	762949.27	4092290.37	5.96E-05	6.64E-05 6.49E-05	2.35E-05 2.29E-05	9.31E-06	1.05E-05	3.71E-06 3.63E-06	4.98E-06	4.95E-06	1.52E-06
1701	762958.42	4092236.36	5.81E-05	6.32E-05	2.24E-05	9.07E-06	1.03E-05	3.53E-06	4.85E-06	4.82E-06	1.48E-06
1702	762936.69	4092372.09	6.53E-05	7.11E-05	2.52E-05	1.02E-05	1.05E-05	3.97E-06	5.45E-06	5.42E-06	1.46E-06
1703	762740.72	4092372.03	4.88E-05	5.31E-05	1.88E-05	7.62E-06	8.62E-06	2.97E-06	4.07E-06	4.05E-06	1.24E-06
1705	762745.11	4092302.7	4.79E-05	5.22E-05	1.85E-05	7.49E-06	8.47E-06	2.92E-06	4.00E-06	3.98E-06	1.22E-06
1706	762749.51	4092276.67	4.71E-05	5.13E-05	1.81E-05	7.36E-06	8.33E-06	2.87E-06	3.93E-06	3.91E-06	1.20E-06
1707		4092250.63	4.63E-05	5.04E-05	1.78E-05		8.18E-06			3.84E-06	
1708	762758.29	4092224.6	4.55E-05	4.95E-05	1.75E-05	7.10E-06			3.80E-06	3.77E-06	
1709	762762.69	4092198.57	4.46E-05	4.86E-05	1.72E-05	6.97E-06	7.88E-06	2.71E-06	3.73E-06	3.70E-06	1.14E-06
1710	762767.08	4092172.54	4.37E-05	4.76E-05	1.68E-05	6.83E-06	7.73E-06	2.66E-06	3.65E-06	3.63E-06	1.11E-06
1711	762737.38	4092355.5	4.98E-05	5.42E-05	1.92E-05	7.78E-06	8.80E-06	3.03E-06	4.16E-06	4.13E-06	1.27E-06
1712	762541.49	4092311.69	3.92E-05	4.27E-05	1.51E-05	6.12E-06	6.93E-06	2.39E-06	3.27E-06	3.26E-06	9.99E-07
1713	762546.03	4092284.77	3.86E-05	4.20E-05	1.49E-05	6.03E-06	6.82E-06	2.35E-06	3.22E-06	3.21E-06	9.84E-07
1714	762550.57	4092257.85	3.80E-05	4.14E-05	1.46E-05	5.94E-06	6.72E-06	2.31E-06	3.17E-06	3.16E-06	9.69E-07
1715	762555.11	4092230.93	3.75E-05	4.08E-05	1.44E-05	5.85E-06	6.62E-06	2.28E-06	3.13E-06	3.11E-06	9.55E-07
1716	762559.66	4092204.01	3.69E-05	4.02E-05	1.42E-05	5.77E-06	6.53E-06	2.25E-06	3.09E-06	3.07E-06	9.42E-07
1717	762564.2	4092177.09	3.64E-05	3.96E-05	1.40E-05	5.69E-06	6.43E-06	2.22E-06	3.04E-06	3.02E-06	9.28E-07
1718	762568.74	4092150.17	3.58E-05	3.90E-05	1.38E-05	5.60E-06	6.33E-06	2.18E-06	2.99E-06	2.98E-06	9.13E-07
1719	762573.28	4092123.25	3.52E-05	3.83E-05	1.36E-05	5.50E-06	6.22E-06	2.14E-06	2.94E-06	2.92E-06	8.97E-07
1720	762538.07	4092338.9	3.99E-05	4.34E-05	1.54E-05	6.23E-06	7.05E-06	2.43E-06	3.33E-06	3.31E-06	1.02E-06
1721	762342.11	4092295.47	3.26E-05	3.55E-05	1.26E-05	5.10E-06	5.76E-06	1.99E-06	2.72E-06	2.71E-06	8.31E-07
1722	762346.52	4092269.32	3.22E-05	3.51E-05	1.24E-05	5.03E-06	5.69E-06	1.96E-06	2.69E-06	2.68E-06	8.21E-07
1723		4092243.16	3.18E-05	3.47E-05	1.23E-05	4.97E-06	5.63E-06	1.94E-06	2.66E-06	2.64E-06	8.11E-07
1724	762355.35	4092217	3.15E-05	3.43E-05	1.21E-05	4.92E-06	5.56E-06	1.91E-06	2.63E-06	2.61E-06	8.02E-07
1725	762359.77		3.11E-05	3.39E-05	1.20E-05	4.86E-06	5.50E-06	1.89E-06	2.60E-06	2.58E-06	7.93E-07
1726	762364.18	4092164.69	3.08E-05	3.35E-05	1.19E-05	4.81E-06	5.44E-06	1.87E-06	2.57E-06	2.56E-06	7.84E-07
1727	762368.6	4092138.53	3.04E-05	3.31E-05	1.17E-05	4.75E-06	5.38E-06	1.85E-06	2.54E-06	2.53E-06	7.75E-07
1728	762373.01		3.01E-05	3.27E-05	1.16E-05	4.69E-06	5.31E-06	1.83E-06	2.51E-06	2.50E-06	7.66E-07
1729		4092086.22	2.96E-05	3.23E-05	1.14E-05	4.63E-06	5.24E-06	1.80E-06	2.47E-06	2.46E-06	7.55E-07
1730	762338.76	4092322.3	3.31E-05	3.61E-05	1.28E-05	5.17E-06	5.85E-06	2.02E-06	2.77E-06	2.75E-06	8.44E-07
1731	762142.86		2.79E-05	3.03E-05	1.07E-05	4.35E-06		1.70E-06	2.33E-06	2.31E-06	7.10E-07
1732	/0214/.38	4092251.72	2./bt-U5	3.00E-05	1.06E-05	4.3UE-U6	4.87E-06	1.68E-06	2.30E-06	2.29E-U6	7.02E-07

1733	762151.91	4092224.9	2.73E-05	2.97E-05	1.05E-05	4.26E-06	4.82E-06	1.66E-06	2.28E-06	2.26E-06	6.95E-07
1734	762156.44	4092198.08	2.70E-05	2.94E-05	1.04E-05	4.22E-06	4.77E-06	1.64E-06	2.25E-06	2.24E-06	6.88E-07
1735	762160.96	4092171.26	2.68E-05	2.91E-05	1.03E-05	4.18E-06	4.73E-06	1.63E-06	2.23E-06	2.22E-06	6.82E-07
1736	762165.49	4092144.44	2.65E-05	2.89E-05	1.02E-05	4.15E-06	4.69E-06	1.61E-06	2.22E-06	2.20E-06	6.76E-07
1737	762170.01	4092117.62	2.63E-05	2.86E-05	1.01E-05	4.11E-06	4.65E-06	1.60E-06	2.20E-06	2.18E-06	6.70E-07
1738	762174.54	4092090.8	2.60E-05	2.83E-05	1.00E-05	4.07E-06	4.60E-06	1.58E-06	2.17E-06	2.16E-06	6.63E-07
1739	762179.07	4092063.98	2.57E-05	2.80E-05	9.91E-06	4.02E-06	4.55E-06	1.57E-06	2.15E-06	2.14E-06	6.56E-07
1740	762183.59	4092037.16	2.54E-05	2.77E-05	9.79E-06	3.97E-06	4.49E-06	1.55E-06	2.12E-06	2.11E-06	6.47E-07
1741	762139.45	4092305.7	2.82E-05	3.07E-05	1.09E-05	4.41E-06	4.99E-06	1.72E-06	2.36E-06	2.34E-06	7.20E-07
1742	763582.61	4092451.25	4.05E-04	4.41E-04	1.56E-04	6.33E-05	7.16E-05	2.46E-05	3.38E-05	3.36E-05	1.03E-05
1743	763581.69	4092476.01	4.24E-04	4.61E-04	1.63E-04	6.62E-05	7.48E-05	2.58E-05	3.54E-05	3.52E-05	1.08E-05
1744	763532.65	4092449.39	3.17E-04	3.45E-04	1.22E-04	4.95E-05	5.60E-05	1.93E-05	2.65E-05	2.63E-05	8.07E-06
1745	763531.73	4092474.15	3.30E-04	3.59E-04	1.27E-04	5.15E-05	5.83E-05	2.01E-05	2.75E-05	2.74E-05	8.41E-06
1746	763530.81	4092498.91	3.42E-04	3.72E-04	1.32E-04	5.34E-05	6.04E-05	2.08E-05	2.85E-05	2.84E-05	8.70E-06
1747	763432.72		2.13E-04	2.31E-04	8.19E-05	3.32E-05	3.76E-05	1.29E-05	1.78E-05	1.77E-05	5.42E-06
1748	763431.8	4092470.44	2.20E-04	2.39E-04	8.47E-05	3.44E-05	3.89E-05	1.34E-05	1.84E-05	1.83E-05	5.61E-06
1749	763430.88	4092495.2	2.27E-04	2.47E-04	8.73E-05	3.54E-05	4.01E-05	1.38E-05	1.89E-05	1.88E-05	5.78E-06
1750	763332.78	4092441.96	1.55E-04	1.69E-04	5.98E-05	2.43E-05	2.75E-05	9.46E-06	1.30E-05	1.29E-05	3.96E-06
1751	763331.86	4092466.72	1.60E-04	1.74E-04	6.17E-05	2.50E-05	2.83E-05	9.74E-06	1.34E-05	1.33E-05	4.08E-06
1752	763330.94	4092491.48	1.64E-04	1.79E-04	6.33E-05	2.57E-05	2.91E-05	1.00E-05	1.37E-05	1.37E-05	4.19E-06
1753	763233.68	4092424.5	1.18E-04	1.29E-04	4.56E-05	1.85E-05	2.09E-05	7.21E-06	9.89E-06	9.83E-06	3.02E-06
1754	763231.93	4092463.01	1.24E-04	1.34E-04	4.76E-05	1.93E-05	2.18E-05	7.52E-06	1.03E-05	1.03E-05	3.15E-06
1755	763231.01	4092487.77	1.27E-04	1.38E-04	4.88E-05	1.98E-05	2.24E-05	7.70E-06	1.06E-05	1.05E-05	3.23E-06
1756	763133.89	4092418.49	9.54E-05	1.04E-04	3.67E-05	1.49E-05	1.69E-05	5.80E-06	7.96E-06	7.92E-06	2.43E-06
1757	763132	4092459.3	9.94E-05	1.08E-04	3.83E-05	1.55E-05	1.76E-05	6.05E-06	8.30E-06	8.25E-06	2.53E-06
1758	763131.08	4092484.06	1.02E-04	1.11E-04	3.92E-05	1.59E-05	1.80E-05	6.19E-06	8.49E-06	8.44E-06	2.59E-06
1759	762934.3	4092406.48	6.74E-05	7.34E-05	2.60E-05	1.05E-05	1.19E-05	4.10E-06	5.63E-06	5.60E-06	1.72E-06
1760	762932.14	4092451.87	7.01E-05	7.63E-05	2.70E-05	1.10E-05	1.24E-05	4.27E-06	5.86E-06	5.82E-06	1.79E-06
1761	762931.22	4092476.63	7.16E-05	7.79E-05	2.76E-05	1.12E-05	1.26E-05	4.36E-06	5.98E-06	5.94E-06	1.82E-06
1762	762734.21	4092402.87	5.17E-05	5.63E-05	1.99E-05	8.08E-06	9.14E-06	3.15E-06	4.32E-06	4.29E-06	1.32E-06
1763	762732.28	4092444.45	5.34E-05	5.82E-05	2.06E-05	8.35E-06	9.44E-06	3.25E-06	4.46E-06	4.44E-06	1.36E-06
1764 1765	762731.36	4092469.21 4092392.39	5.45E-05 4.15E-05	5.93E-05 4.51E-05	2.10E-05	8.50E-06 6.48E-06	9.62E-06 7.32E-06	3.31E-06 2.52E-06	4.55E-06	4.52E-06 3.44E-06	1.39E-06 1.06E-06
1766	762534.53 762532.42		4.13E-03 4.28E-05	4.66E-05	1.60E-05 1.65E-05	6.69E-06	7.56E-06	2.60E-06	3.46E-06 3.57E-06	3.55E-06	1.09E-06
1767	762531.5	4092461.78	4.26E-05	4.74E-05	1.68E-05	6.80E-06	7.70E-06	2.65E-06	3.64E-06	3.62E-06	1.03L-06
1768	762334.85	4092381.91	4.30L-03 3.44E-05	4.74L-05 3.75E-05	1.33E-05	5.38E-06	6.08E-06	2.09E-06	2.87E-06	2.86E-06	8.77E-07
1769		4092358.98					5.99E-06			2.82E-06	
1770		4092404.83	3.49E-05	3.80E-05	1.31E 05 1.35E-05	5.46E-06	6.17E-06	2.13E-06	2.92E-06	2.90E-06	8.91E-07
1771		4092429.59	3.55E-05	3.87E-05	1.37E-05	5.55E-06	6.28E-06	2.16E-06	2.97E-06	2.95E-06	9.05E-07
1772		4092454.35	3.61E-05	3.93E-05	1.39E-05	5.64E-06	6.38E-06	2.20E-06	3.02E-06	3.00E-06	9.20E-07
1773		4092377.92	2.95E-05	3.21E-05	1.13E-05	4.60E-06	5.20E-06	1.79E-06	2.46E-06	2.45E-06	7.50E-07
1774		4092338.94	2.88E-05	3.13E-05	1.11E-05	4.49E-06	5.08E-06	1.75E-06	2.40E-06	2.39E-06	7.33E-07
1775		4092422.17	3.03E-05	3.29E-05	1.17E-05	4.73E-06	5.35E-06	1.84E-06	2.53E-06	2.51E-06	7.71E-07
1776		4092446.93	3.07E-05	3.34E-05	1.18E-05	4.80E-06	5.43E-06	1.87E-06	2.57E-06	2.55E-06	7.83E-07
1777		4092590.52	3.42E-03	3.72E-03	1.32E-03	5.33E-04	6.03E-04	2.08E-04	2.85E-04	2.84E-04	8.70E-05
1778		4092591.21	3.37E-03	3.67E-03	1.30E-03	5.27E-04	5.96E-04	2.05E-04	2.82E-04	2.80E-04	8.60E-05
1779	764074.35	4092591.9	3.29E-03	3.58E-03	1.27E-03	5.14E-04	5.82E-04	2.00E-04	2.75E-04	2.73E-04	8.39E-05
1780	764098.93	4092592.58	3.17E-03	3.45E-03	1.22E-03	4.95E-04	5.60E-04	1.93E-04	2.64E-04	2.63E-04	8.07E-05
1781	764123.52	4092593.27	2.99E-03	3.26E-03	1.15E-03	4.67E-04	5.28E-04	1.82E-04	2.50E-04	2.48E-04	7.62E-05
1782	764148.1	4092593.96	2.76E-03	3.01E-03	1.06E-03	4.31E-04	4.88E-04	1.68E-04	2.31E-04	2.29E-04	7.04E-05
1783	764172.68	4092594.65	2.49E-03	2.70E-03	9.57E-04	3.88E-04	4.39E-04	1.51E-04	2.08E-04	2.06E-04	6.33E-05
1784	764197.27	4092595.33	2.19E-03	2.39E-03	8.44E-04	3.42E-04	3.87E-04	1.33E-04	1.83E-04	1.82E-04	5.58E-05
1785	764024.48	4092615.51	2.58E-03	2.81E-03	9.95E-04	4.03E-04	4.56E-04	1.57E-04	2.16E-04	2.14E-04	6.58E-05
1786	764049.06	4092616.2	2.54E-03	2.76E-03	9.77E-04	3.96E-04	4.48E-04	1.54E-04	2.12E-04	2.11E-04	6.46E-05
1787	764073.65	4092616.89	2.46E-03	2.68E-03	9.47E-04	3.84E-04	4.35E-04	1.50E-04	2.05E-04	2.04E-04	6.27E-05
1788	764098.23	4092617.57	2.35E-03	2.56E-03	9.06E-04	3.67E-04	4.15E-04	1.43E-04	1.96E-04	1.95E-04	5.99E-05
1789	764122.82	4092618.26	2.21E-03	2.41E-03	8.51E-04	3.45E-04	3.90E-04	1.34E-04	1.85E-04	1.83E-04	5.63E-05
1790	764147.4	4092618.95	2.04E-03	2.22E-03	7.85E-04	3.18E-04	3.60E-04	1.24E-04	1.70E-04	1.69E-04	5.20E-05
1791	764171.99	4092619.64	1.85E-03	2.02E-03	7.13E-04	2.89E-04	3.27E-04	1.13E-04	1.55E-04	1.54E-04	4.72E-05
1792	764196.57	4092620.32	1.67E-03	1.81E-03	6.41E-04	2.60E-04	2.94E-04	1.01E-04	1.39E-04	1.38E-04	4.24E-05
1793	764023.08	4092665.49	1.63E-03	1.77E-03	6.28E-04	2.55E-04	2.88E-04	9.92E-05	1.36E-04	1.35E-04	4.15E-05
1794	764047.67	4092666.18	1.58E-03	1.73E-03	6.10E-04	2.48E-04	2.80E-04	9.64E-05	1.32E-04	1.32E-04	4.04E-05

1795	764072.25	4092666.87	1.52E-03	1.66E-03	5.87E-04	2.38E-04	2.69E-04	9.27E-05	1.27E-04	1.26E-04	3.88E-05
1796	764096.84	4092667.55	1.45E-03	1.58E-03	5.57E-04	2.26E-04	2.56E-04	8.81E-05	1.21E-04	1.20E-04	3.69E-05
1797	764121.42	4092668.24	1.36E-03	1.48E-03	5.23E-04	2.12E-04	2.40E-04	8.27E-05	1.13E-04	1.13E-04	3.46E-05
1798	764146	4092668.93	1.27E-03	1.38E-03	4.87E-04	1.98E-04	2.24E-04	7.70E-05	1.06E-04	1.05E-04	3.22E-05
1799	764170.59	4092669.62	1.17E-03	1.28E-03	4.51E-04	1.83E-04	2.07E-04	7.13E-05	9.79E-05	9.73E-05	2.99E-05
1800	764195.17	4092670.3	1.08E-03	1.18E-03	4.17E-04	1.69E-04	1.91E-04	6.59E-05	9.04E-05	8.99E-05	2.76E-05
1801	763804.96	4092700.95	1.08E-03	1.17E-03	4.14E-04	1.68E-04	1.90E-04	6.54E-05	8.98E-05	8.93E-05	2.74E-05
1802	763764.86	4092682.9	1.04E-03	1.14E-03	4.02E-04	1.63E-04	1.84E-04	6.35E-05	8.71E-05	8.66E-05	2.66E-05
1803	763724.75	4092664.84	9.46E-04	1.03E-03	3.64E-04	1.48E-04	1.67E-04	5.76E-05	7.90E-05	7.86E-05	2.41E-05
1804	763676.95	4092626.2	7.96E-04	8.66E-04	3.06E-04	1.24E-04	1.41E-04	4.84E-05	6.64E-05	6.61E-05	2.03E-05
1805	764021.68	4092715.47	1.12E-03	1.22E-03	4.30E-04	1.74E-04	1.97E-04	6.79E-05	9.32E-05	9.27E-05	2.85E-05
1806	764046.27	4092716.16	1.08E-03	1.17E-03	4.15E-04	1.68E-04	1.91E-04	6.56E-05	9.00E-05	8.95E-05	2.75E-05
1807	764070.85	4092716.85	1.03E-03	1.12E-03	3.98E-04	1.61E-04	1.82E-04	6.28E-05	8.62E-05	8.57E-05	2.63E-05
1808	764095.44	4092717.53	9.81E-04	1.07E-03	3.78E-04	1.53E-04	1.73E-04	5.97E-05	8.19E-05	8.15E-05	2.50E-05
1809	764120.02	4092718.22	9.27E-04	1.01E-03	3.57E-04	1.45E-04	1.64E-04	5.64E-05	7.74E-05	7.70E-05	2.36E-05
1810	764144.61	4092718.91	8.73E-04	9.50E-04	3.36E-04	1.36E-04	1.54E-04	5.31E-05	7.29E-05	7.25E-05	2.22E-05
1811	764169.19	4092719.6	8.20E-04	8.92E-04	3.16E-04	1.28E-04	1.45E-04	4.99E-05	6.85E-05	6.81E-05	2.09E-05
1812	764193.77	4092720.28	7.69E-04	8.37E-04	2.96E-04	1.20E-04	1.36E-04	4.68E-05	6.42E-05	6.39E-05	1.96E-05
1813	763801.68	4092750.08	8.48E-04	9.23E-04	3.26E-04	1.32E-04	1.50E-04	5.16E-05	7.08E-05	7.04E-05	2.16E-05
1814	763779.75	4092740.21	8.49E-04	9.24E-04	3.27E-04	1.33E-04	1.50E-04	5.17E-05	7.09E-05	7.05E-05	2.16E-05
1815	763757.82	4092730.34	8.40E-04	9.14E-04	3.24E-04	1.31E-04	1.48E-04	5.11E-05	7.01E-05	6.97E-05	2.14E-05
1816	763735.89	4092720.47	8.18E-04	8.91E-04	3.15E-04	1.28E-04	1.45E-04	4.98E-05	6.83E-05	6.79E-05	2.09E-05
1817	763713.96	4092710.59	7.84E-04	8.53E-04	3.02E-04	1.22E-04	1.38E-04	4.77E-05	6.54E-05	6.51E-05	2.00E-05
1818	763692.03	4092700.72	7.38E-04	8.03E-04	2.84E-04	1.15E-04	1.30E-04	4.49E-05	6.16E-05	6.12E-05	1.88E-05
1819	763670.1	4092690.85	6.84E-04	7.45E-04	2.63E-04	1.07E-04	1.21E-04	4.16E-05	5.71E-05	5.68E-05	1.74E-05
1820	763639.74	4092658.45	6.21E-04	6.76E-04	2.39E-04	9.70E-05	1.10E-04	3.78E-05	5.19E-05	5.16E-05	1.58E-05
1821	763631.32	4092635.93	6.09E-04	6.63E-04	2.34E-04	9.51E-05	1.08E-04	3.70E-05	5.08E-05	5.06E-05	1.55E-05
1822	764020.29	4092765.45	8.08E-04	8.80E-04	3.11E-04	1.26E-04	1.43E-04	4.92E-05	6.75E-05	6.71E-05	2.06E-05
1823	764044.87	4092766.14	7.78E-04	8.47E-04	3.00E-04	1.22E-04	1.38E-04	4.74E-05	6.50E-05	6.46E-05	1.98E-05
1824	764069.46	4092766.83	7.45E-04	8.11E-04	2.87E-04	1.16E-04	1.32E-04	4.54E-05	6.22E-05	6.19E-05	1.90E-05
1825	764094.04	4092767.51	7.11E-04	7.74E-04	2.74E-04	1.11E-04	1.26E-04	4.33E-05	5.94E-05	5.91E-05	1.81E-05
1826 1827	763801.16	4092800.46 4092790.98	6.83E-04 6.90E-04	7.43E-04	2.63E-04 2.66E-04	1.07E-04 1.08E-04	1.21E-04 1.22E-04	4.15E-05	5.70E-05	5.67E-05 5.73E-05	1.74E-05 1.76E-05
1828	763780.11 763759.05	4092790.98	6.92E-04	7.51E-04 7.53E-04	2.66E-04	1.08E-04 1.08E-04	1.22E-04 1.22E-04	4.20E-05 4.21E-05	5.76E-05 5.77E-05	5.74E-05	1.76E-05
1829	763738	4092772.03	6.86E-04	7.33L-04 7.46E-04	2.64E-04	1.07E-04	1.22E-04 1.21E-04	4.21L-05 4.17E-05	5.77E-05 5.73E-05	5.69E-05	1.75E-05
1830	763716.95	4092772.03	6.72E-04	7.40L-04 7.31E-04	2.59E-04	1.07E-04 1.05E-04	1.21L-04 1.19E-04	4.17L-05 4.09E-05	5.61E-05	5.58E-05	1.71E-05
1831	763695.89		6.50E-04	7.07E-04	2.50E-04		1.15E-04		5.42E-05		
1832	763674.84	4092743.6	6.20E-04	6.75E-04	2.39E-04	9.68E-05	1.10E-04		5.18E-05	5.15E-05	1.58E-05
1833	763653.78	4092734.12	5.84E-04	6.36E-04	2.25E-04	9.13E-05	1.03E-04	3.56E-05	4.88E-05	4.85E-05	1.49E-05
1834	763632.73	4092724.64	5.46E-04	5.94E-04	2.10E-04	8.52E-05	9.64E-05	3.32E-05	4.56E-05	4.53E-05	1.39E-05
1835	763603.59	4092693.54	5.02E-04	5.46E-04	1.93E-04	7.84E-05	8.87E-05	3.06E-05	4.19E-05	4.17E-05	1.28E-05
1836	763595.5	4092671.92	4.95E-04	5.38E-04	1.90E-04	7.72E-05	8.74E-05	3.01E-05	4.13E-05	4.11E-05	1.26E-05
1837	763538.89	4092520.54	3.65E-04	3.98E-04	1.41E-04	5.70E-05	6.45E-05	2.22E-05	3.05E-05	3.03E-05	9.31E-06
1838	764018.89	4092815.43	6.11E-04	6.65E-04	2.35E-04	9.54E-05	1.08E-04	3.72E-05	5.10E-05	5.07E-05	1.56E-05
1839	764043.47	4092816.12	5.88E-04	6.40E-04	2.26E-04	9.18E-05	1.04E-04	3.58E-05	4.91E-05	4.88E-05	1.50E-05
1840	764068.06	4092816.81	5.65E-04	6.15E-04	2.17E-04	8.82E-05	9.98E-05	3.44E-05	4.71E-05	4.69E-05	1.44E-05
1841	764092.64	4092817.5	5.41E-04	5.89E-04	2.09E-04	8.46E-05	9.57E-05	3.29E-05	4.52E-05	4.49E-05	1.38E-05
1842	764215.56	4092820.93	4.31E-04	4.69E-04	1.66E-04	6.73E-05	7.62E-05	2.62E-05	3.60E-05	3.58E-05	1.10E-05
1843	763797.82	4092900.17	4.66E-04	5.07E-04	1.79E-04	7.28E-05	8.23E-05	2.84E-05	3.89E-05	3.87E-05	1.19E-05
1844	763776.23	4092890.45	4.77E-04	5.19E-04	1.84E-04	7.45E-05	8.43E-05	2.90E-05	3.98E-05	3.96E-05	1.22E-05
1845	763754.64	4092880.73	4.85E-04	5.28E-04	1.87E-04	7.57E-05	8.56E-05	2.95E-05	4.05E-05	4.02E-05	1.23E-05
1846	763733.04	4092871.02	4.89E-04	5.32E-04	1.88E-04	7.64E-05	8.64E-05	2.97E-05	4.08E-05	4.06E-05	1.25E-05
1847	763711.45	4092861.3	4.89E-04	5.32E-04	1.88E-04	7.64E-05	8.64E-05	2.98E-05	4.08E-05	4.06E-05	1.25E-05
1848	763689.86	4092851.58	4.85E-04	5.28E-04	1.87E-04	7.57E-05	8.57E-05	2.95E-05	4.05E-05	4.02E-05	1.24E-05
1849	763668.26	4092841.86	4.76E-04	5.18E-04	1.83E-04	7.43E-05	8.41E-05	2.89E-05	3.97E-05	3.95E-05	1.21E-05
1850	763646.67	4092832.14	4.62E-04	5.03E-04	1.78E-04	7.22E-05	8.16E-05	2.81E-05	3.86E-05	3.84E-05	1.18E-05
1851	763625.08	4092822.42	4.44E-04	4.83E-04	1.71E-04	6.94E-05	7.85E-05	2.70E-05	3.71E-05	3.69E-05	1.13E-05
1852	763603.48	4092812.7	4.23E-04	4.60E-04	1.63E-04	6.61E-05	7.47E-05	2.57E-05	3.53E-05	3.51E-05	1.08E-05
1853	763581.89	4092802.98	4.00E-04	4.35E-04	1.54E-04	6.25E-05	7.07E-05	2.43E-05	3.34E-05	3.32E-05	1.02E-05
1854	763560.3	4092793.26	3.76E-04	4.10E-04	1.45E-04	5.88E-05	6.65E-05	2.29E-05	3.14E-05	3.12E-05	9.59E-06
1855		4092761.36	3.51E-04	3.82E-04	1.35E-04	5.48E-05	6.20E-05	2.13E-05	2.93E-05	2.91E-05	8.94E-06
1856	763522.11	4092739.18	3.47E-04	3.78E-04	1.34E-04	5.42E-05	6.14E-05	2.11E-05	2.90E-05	2.88E-05	8.85E-06

1857	763472.35	4092606.1	2.93E-04	3.19E-04	1.13E-04	4.58E-05	5.18E-05	1.79E-05	2.45E-05	2.44E-05	7.48E-06
1858	763464.05	4092583.92	2.80E-04	3.05E-04	1.08E-04	4.38E-05	4.95E-05	1.70E-05	2.34E-05	2.33E-05	7.14E-06
1859	763455.76	4092561.74	2.67E-04	2.90E-04	1.03E-04	4.17E-05	4.71E-05	1.62E-05	2.23E-05	2.21E-05	6.80E-06
1860	763447.46	4092539.56	2.53E-04	2.76E-04	9.75E-05	3.95E-05	4.47E-05	1.54E-05	2.11E-05	2.10E-05	6.45E-06
1861	763439.17	4092517.38	2.40E-04	2.61E-04	9.24E-05	3.75E-05	4.24E-05	1.46E-05	2.00E-05	1.99E-05	6.11E-06
1862	764016.09	4092915.39	3.85E-04	4.19E-04	1.48E-04	6.01E-05	6.79E-05	2.34E-05	3.21E-05	3.19E-05	9.80E-06
1863	764040.68	4092916.08	3.72E-04	4.05E-04	1.43E-04	5.81E-05	6.57E-05	2.26E-05	3.10E-05	3.09E-05	9.47E-06
1864	764065.26	4092916.77	3.59E-04	3.91E-04	1.38E-04	5.61E-05	6.35E-05	2.19E-05	3.00E-05	2.98E-05	9.16E-06
1865	764089.85	4092917.46	3.47E-04	3.78E-04	1.34E-04	5.42E-05	6.14E-05	2.11E-05	2.90E-05	2.88E-05	8.85E-06
1866	764212.77	4092920.89	2.91E-04	3.16E-04	1.12E-04	4.54E-05	5.13E-05	1.77E-05	2.43E-05	2.41E-05	7.40E-06
1867	763794.69	4092999.98	3.33E-04	3.62E-04	1.28E-04	5.20E-05	5.88E-05	2.02E-05	2.78E-05	2.76E-05	8.48E-06
1868	763772.76	4092990.11	3.44E-04	3.74E-04	1.32E-04	5.37E-05	6.08E-05	2.09E-05	2.87E-05	2.86E-05	8.77E-06
1869	763750.83	4092980.24	3.53E-04	3.85E-04	1.36E-04	5.52E-05	6.24E-05	2.15E-05	2.95E-05	2.93E-05	9.00E-06
1870	763728.9	4092970.37	3.61E-04	3.93E-04	1.39E-04	5.64E-05	6.38E-05	2.20E-05	3.01E-05	3.00E-05	9.19E-06
1871	763706.97	4092960.5	3.66E-04	3.98E-04	1.41E-04	5.72E-05	6.47E-05	2.23E-05	3.06E-05	3.04E-05	9.33E-06
1872	763685.04	4092950.63	3.69E-04	4.01E-04	1.42E-04	5.76E-05	6.52E-05	2.24E-05	3.08E-05	3.06E-05	9.40E-06
1873	763663.11	4092940.75	3.68E-04	4.01E-04	1.42E-04	5.76E-05	6.51E-05	2.24E-05	3.08E-05	3.06E-05	9.39E-06
1874	763641.18	4092930.88	3.65E-04	3.97E-04	1.41E-04	5.70E-05	6.45E-05	2.22E-05	3.05E-05	3.03E-05	9.30E-06
1875	763619.24	4092921.01	3.59E-04	3.90E-04	1.38E-04	5.60E-05	6.34E-05	2.18E-05	2.99E-05	2.98E-05	9.14E-06
1876	763597.31	4092911.14	3.49E-04	3.80E-04	1.34E-04	5.45E-05	6.17E-05	2.12E-05	2.92E-05	2.90E-05	8.90E-06
1877	763575.38	4092901.27	3.37E-04	3.67E-04	1.30E-04	5.27E-05	5.96E-05	2.05E-05	2.82E-05	2.80E-05	8.60E-06
1878	763553.45	4092891.4	3.23E-04	3.52E-04	1.25E-04	5.05E-05	5.72E-05	1.97E-05	2.70E-05	2.69E-05	8.24E-06
1879	763531.52	4092881.53	3.08E-04	3.36E-04	1.19E-04	4.82E-05	5.45E-05	1.88E-05	2.58E-05	2.56E-05	7.86E-06
1880	763509.59	4092871.65	2.93E-04	3.19E-04	1.13E-04	4.57E-05	5.18E-05	1.78E-05	2.45E-05	2.43E-05	7.46E-06
1881	763487.66	4092861.78	2.78E-04	3.02E-04	1.07E-04	4.34E-05	4.90E-05	1.69E-05	2.32E-05	2.30E-05	7.07E-06
1882	763457.3	4092829.38	2.62E-04	2.85E-04	1.01E-04	4.09E-05	4.62E-05	1.59E-05	2.18E-05	2.17E-05	6.67E-06
1883	763448.88	4092806.86	2.60E-04	2.83E-04	1.00E-04	4.06E-05	4.59E-05	1.58E-05	2.17E-05	2.16E-05	6.62E-06
1884	763406.76	4092694.22	2.38E-04	2.59E-04	9.17E-05	3.72E-05	4.21E-05	1.45E-05	1.99E-05	1.98E-05	6.07E-06
1885	763398.34	4092671.7	2.31E-04	2.51E-04	8.88E-05	3.60E-05	4.07E-05	1.40E-05	1.93E-05	1.91E-05	5.88E-06
1886	763389.91	4092649.17	2.23E-04	2.42E-04	8.57E-05	3.48E-05	3.93E-05	1.35E-05	1.86E-05	1.85E-05	5.67E-06
1887	763381.49	4092626.64	2.14E-04	2.33E-04	8.25E-05	3.34E-05	3.78E-05	1.30E-05	1.79E-05	1.78E-05	5.46E-06
1888	763373.06	4092604.12	2.06E-04	2.24E-04	7.92E-05	3.21E-05	3.63E-05	1.25E-05	1.72E-05	1.71E-05	5.24E-06
1889	763364.64	4092581.59	1.97E-04	2.15E-04	7.59E-05	3.08E-05	3.48E-05	1.20E-05	1.65E-05	1.64E-05	5.02E-06
1890	763356.22	4092559.06	1.89E-04	2.06E-04	7.27E-05	2.95E-05	3.34E-05	1.15E-05	1.58E-05	1.57E-05	4.81E-06
1891 1892	763347.79	4092536.54	1.81E-04	1.97E-04 1.88E-04	6.96E-05 6.64E-05	2.82E-05 2.69E-05	3.19E-05	1.10E-05	1.51E-05	1.50E-05	4.60E-06
	763339.37 763816.62	4092514.01 4093009.85	1.72E-04			5.01E-05	3.05E-05 5.66E-05	1.05E-05	1.44E-05	1.43E-05 2.66E-05	4.39E-06
1893 1894			3.21E-04 3.17E-04	3.49E-04 3.45E-04	1.23E-04 1.22E-04	4.94E-05	5.59E-05	1.93E-05 1.93E-05	2.64E-05	2.63E-05	8.17E-06 8.07E-06
1895	763841.21 763865.79	4093010.34	3.11E-04 3.11E-04	3.43E-04 3.39E-04	1.22E-04 1.20E-04	4.94E-05 4.86E-05	5.50E-05	1.93E-05 1.90E-05	2.64E-05 2.60E-05	2.59E-05	7.94E-06
1896	763890.38	4093011.23	3.11L-04 3.05E-04	3.32E-04	1.20L-04 1.18E-04	4.80L-05 4.77E-05	5.40E-05	1.86E-05	2.55E-05	2.54E-05	7.78E-06
1897	763914.96	4093011.92	2.99E-04	3.25E-04	1.15E-04 1.15E-04	4.77E-05	5.40E-05 5.27E-05	1.80E-05	2.49E-05	2.48E-05	7.761E-06
1898	763939.54	4093013.29	2.91E-04	3.17E-04	1.13E 04 1.12E-04	4.55E-05	5.14E-05	1.77E-05	2.43E-05	2.42E-05	7.42E-06
1899	763964.13	4093013.23	2.83E-04	3.08E-04	1.09E-04	4.43E-05	5.01E-05	1.77E 05	2.37E-05	2.35E-05	7.42E 00 7.22E-06
1900	763988.71	4093014.67	2.76E-04	3.00E-04	1.06E-04	4.30E-05	4.87E-05	1.68E-05	2.30E-05	2.29E-05	7.02E-06
1901	764013.3	4093015.35	2.68E-04	2.92E-04	1.03E-04	4.18E-05	4.73E-05	1.63E-05	2.24E-05	2.22E-05	6.83E-06
1902	764037.88	4093016.04	2.60E-04	2.83E-04	1.00E-04	4.07E-05	4.60E-05	1.58E-05	2.17E-05	2.16E-05	6.64E-06
1903	764062.47	4093016.73	2.53E-04	2.76E-04	9.75E-05	3.95E-05	4.47E-05	1.54E-05	2.11E-05	2.10E-05	6.45E-06
1904	764087.05	4093017.42	2.46E-04	2.68E-04	9.47E-05	3.84E-05	4.35E-05	1.50E-05	2.05E-05	2.04E-05	6.27E-06
1905	764111.64	4093018.1	2.39E-04	2.60E-04	9.20E-05	3.73E-05	4.22E-05	1.45E-05	1.99E-05	1.98E-05	6.09E-06
1906	764136.22		2.32E-04	2.52E-04	8.92E-05	3.62E-05	4.09E-05	1.41E-05	1.93E-05	1.92E-05	5.90E-06
1907	764160.8	4093019.48	2.24E-04	2.44E-04	8.64E-05	3.51E-05	3.97E-05	1.37E-05	1.87E-05	1.86E-05	5.72E-06
1908	764185.39	4093020.17	2.17E-04	2.37E-04	8.37E-05	3.39E-05	3.84E-05	1.32E-05	1.81E-05	1.80E-05	5.54E-06
1909	764209.97	4093020.85	2.11E-04	2.29E-04	8.11E-05	3.29E-05	3.72E-05	1.28E-05	1.76E-05	1.75E-05	5.37E-06
1910	763791.67	4093099.84	2.47E-04	2.68E-04	9.50E-05	3.85E-05	4.36E-05	1.50E-05	2.06E-05	2.05E-05	6.29E-06
1911	763769.5	4093089.86	2.56E-04	2.79E-04	9.86E-05	4.00E-05	4.52E-05	1.56E-05	2.14E-05	2.13E-05	6.52E-06
1912	763747.34	4093079.89	2.65E-04	2.88E-04	1.02E-04	4.14E-05	4.68E-05	1.61E-05	2.21E-05	2.20E-05	6.75E-06
1913	763725.18	4093069.91	2.73E-04	2.97E-04	1.05E-04	4.26E-05	4.82E-05	1.66E-05	2.28E-05	2.27E-05	6.95E-06
1914	763703.02		2.80E-04	3.05E-04	1.08E-04	4.37E-05	4.94E-05	1.70E-05	2.34E-05	2.32E-05	7.13E-06
1915	763680.86	4093049.96	2.86E-04	3.11E-04	1.10E-04	4.46E-05	5.04E-05	1.74E-05	2.38E-05	2.37E-05	7.27E-06
1916	763658.7	4093039.99	2.89E-04	3.15E-04	1.11E-04	4.52E-05	5.11E-05	1.76E-05	2.42E-05	2.40E-05	7.37E-06
1917	763636.53	4093030.01	2.91E-04	3.17E-04	1.12E-04	4.54E-05	5.14E-05	1.77E-05	2.43E-05	2.42E-05	7.41E-06
1918	763614.37	4093020.04	2.90E-04	3.16E-04	1.12E-04	4.54E-05	5.13E-05	1.77E-05	2.43E-05	2.41E-05	7.40E-06

1919	763592.21	4093010.06	2.88E-04	3.13E-04	1.11E-04	4.49E-05	5.08E-05	1.75E-05	2.40E-05	2.39E-05	7.33E-06
1920	763570.05	4093000.09	2.83E-04	3.08E-04	1.09E-04	4.42E-05	5.00E-05	1.72E-05	2.36E-05	2.35E-05	7.21E-06
1921	763547.89	4092990.11	2.76E-04	3.00E-04	1.06E-04	4.31E-05	4.88E-05	1.68E-05	2.31E-05	2.29E-05	7.03E-06
1922	763525.72	4092980.14	2.68E-04	2.91E-04	1.03E-04	4.18E-05	4.73E-05	1.63E-05	2.23E-05	2.22E-05	6.82E-06
1923	763503.56	4092970.16	2.58E-04	2.81E-04	9.93E-05	4.03E-05	4.55E-05	1.57E-05	2.15E-05	2.14E-05	6.57E-06
1924	763481.4	4092960.18	2.47E-04	2.69E-04	9.52E-05	3.86E-05	4.37E-05	1.50E-05	2.06E-05	2.05E-05	6.30E-06
1925	763459.24	4092950.21	2.36E-04	2.57E-04	9.10E-05	3.69E-05	4.17E-05	1.44E-05	1.97E-05	1.96E-05	6.02E-06
1926	763437.08	4092940.23	2.25E-04	2.45E-04	8.68E-05	3.52E-05	3.98E-05	1.37E-05	1.88E-05	1.87E-05	5.74E-06
1927	763414.92	4092930.26	2.15E-04	2.34E-04	8.27E-05	3.35E-05	3.80E-05	1.31E-05	1.79E-05	1.78E-05	5.47E-06
1928	763384.24	4092897.52	2.04E-04	2.22E-04	7.87E-05	3.19E-05	3.61E-05	1.24E-05	1.71E-05	1.70E-05	5.20E-06
1929	763333.17	4092760.94	1.92E-04	2.09E-04	7.39E-05	3.00E-05	3.39E-05	1.17E-05	1.60E-05	1.59E-05	4.89E-06
1930	763324.65	4092738.17	1.87E-04	2.04E-04	7.21E-05	2.92E-05	3.31E-05	1.14E-05	1.56E-05	1.55E-05	4.77E-06
1931	763316.14	4092715.41	1.82E-04	1.98E-04	7.01E-05	2.84E-05	3.22E-05	1.11E-05	1.52E-05	1.51E-05	4.64E-06
1932	763307.63	4092692.65	1.76E-04	1.92E-04	6.80E-05	2.76E-05	3.12E-05	1.07E-05	1.47E-05	1.47E-05	4.50E-06
1933	763299.11	4092669.88	1.71E-04	1.86E-04	6.57E-05	2.67E-05	3.02E-05	1.04E-05	1.43E-05	1.42E-05	4.35E-06
1934	763290.6	4092647.12	1.65E-04	1.79E-04	6.35E-05	2.58E-05	2.91E-05	1.00E-05	1.38E-05	1.37E-05	4.20E-06
1935	763282.09	4092624.35	1.59E-04	1.73E-04	6.13E-05	2.49E-05	2.81E-05	9.69E-06	1.33E-05	1.32E-05	4.06E-06
1936	763273.58	4092601.59	1.54E-04	1.67E-04	5.92E-05	2.40E-05	2.71E-05	9.35E-06	1.28E-05	1.28E-05	3.91E-06
1937	763265.06	4092578.83	1.48E-04	1.61E-04	5.71E-05	2.31E-05	2.62E-05	9.02E-06	1.24E-05	1.23E-05	3.78E-06
1938	763256.55	4092556.06	1.43E-04	1.55E-04	5.50E-05	2.23E-05	2.52E-05	8.69E-06	1.19E-05	1.19E-05	3.64E-06
1939	763248.04	4092533.3	1.37E-04	1.50E-04	5.29E-05	2.15E-05	2.43E-05	8.36E-06	1.15E-05	1.14E-05	3.50E-06
1940	763239.53	4092510.54	1.32E-04	1.44E-04	5.09E-05	2.06E-05	2.33E-05	8.04E-06	1.10E-05	1.10E-05	3.36E-06
1941	763813.83	4093109.82	2.37E-04	2.58E-04	9.13E-05	3.70E-05	4.19E-05	1.44E-05	1.98E-05	1.97E-05	6.04E-06
1942	763838.41	4093110.5	2.33E-04	2.54E-04	8.98E-05	3.64E-05	4.12E-05	1.42E-05	1.95E-05	1.94E-05	5.94E-06
1943	763863	4093111.19	2.29E-04	2.49E-04	8.81E-05	3.57E-05	4.04E-05	1.39E-05	1.91E-05	1.90E-05	5.83E-06
1944	763887.58	4093111.88	2.24E-04	2.44E-04	8.63E-05	3.50E-05	3.96E-05	1.36E-05	1.87E-05	1.86E-05	5.71E-06
1945	763912.17	4093112.57	2.19E-04	2.39E-04	8.45E-05	3.43E-05	3.88E-05	1.33E-05	1.83E-05	1.82E-05	5.59E-06
1946	763936.75	4093113.25	2.14E-04	2.33E-04	8.26E-05	3.35E-05	3.79E-05	1.31E-05	1.79E-05	1.78E-05	5.47E-06
1947	763961.33	4093113.94	2.10E-04	2.28E-04	8.07E-05	3.27E-05	3.70E-05	1.28E-05	1.75E-05	1.74E-05	5.34E-06
1948	763985.92	4093114.63	2.05E-04	2.23E-04	7.89E-05	3.20E-05	3.62E-05	1.25E-05	1.71E-05	1.70E-05	5.22E-06
1949	764010.5	4093115.32	2.00E-04	2.18E-04	7.70E-05	3.12E-05	3.53E-05	1.22E-05	1.67E-05	1.66E-05	5.09E-06
1950	764035.09	4093116	1.95E-04	2.12E-04	7.52E-05	3.05E-05	3.45E-05	1.19E-05	1.63E-05	1.62E-05	4.97E-06
1951	764059.67	4093116.69	1.91E-04	2.07E-04	7.34E-05	2.98E-05	3.37E-05	1.16E-05	1.59E-05	1.58E-05	4.85E-06
1952	764084.26	4093117.38	1.86E-04	2.02E-04	7.16E-05	2.90E-05	3.28E-05	1.13E-05	1.55E-05	1.54E-05	4.73E-06
1953	764108.84	4093118.07	1.81E-04	1.97E-04	6.97E-05	2.83E-05	3.20E-05	1.10E-05	1.51E-05	1.50E-05	4.61E-06
1954	764133.42		1.76E-04	1.92E-04	6.79E-05	2.75E-05	3.11E-05	1.07E-05	1.47E-05	1.46E-05	4.49E-06
1955	764158.01			1.86E-04	6.60E-05		3.03E-05			1.42E-05	
1956	764182.59		1.66E-04	1.81E-04	6.41E-05	2.60E-05	2.94E-05	1.01E-05	1.39E-05	1.38E-05	4.24E-06
1957	764207.18		1.62E-04	1.76E-04	6.23E-05	2.53E-05	2.86E-05	9.84E-06	1.35E-05	1.34E-05	4.12E-06
1958	763788.7		1.89E-04	2.06E-04	7.29E-05	2.96E-05	3.35E-05	1.15E-05	1.58E-05	1.57E-05	4.83E-06
1959	763766.37		1.97E-04	2.14E-04	7.58E-05	3.07E-05	3.48E-05	1.20E-05	1.64E-05	1.63E-05	5.01E-06
1960	763744.04		2.04E-04	2.22E-04	7.86E-05	3.19E-05	3.60E-05	1.24E-05	1.70E-05	1.69E-05	5.20E-06
1961	763721.71		2.11E-04	2.30E-04	8.13E-05	3.30E-05	3.73E-05	1.28E-05	1.76E-05	1.75E-05	5.38E-06
1962	763699.38	4093159.52	2.18E-04	2.37E-04	8.39E-05	3.40E-05	3.85E-05	1.33E-05	1.82E-05	1.81E-05	5.55E-06
1963	763677.05	4093149.47	2.24E-04	2.44E-04	8.63E-05	3.50E-05	3.96E-05	1.36E-05	1.87E-05	1.86E-05	5.71E-06
1964		4093139.42	2.29E-04	2.50E-04	8.83E-05	3.58E-05	4.05E-05	1.40E-05	1.91E-05	1.90E-05	5.84E-06
1965	763632.39	4093129.37	2.33E-04	2.54E-04	8.99E-05	3.65E-05	4.13E-05	1.42E-05	1.95E-05	1.94E-05	5.95E-06
1966	763610.07		2.36E-04	2.57E-04	9.10E-05	3.69E-05	4.17E-05	1.44E-05	1.97E-05	1.96E-05	6.02E-06
1967	763587.74		2.37E-04	2.58E-04	9.14E-05	3.71E-05	4.20E-05	1.44E-05	1.98E-05	1.97E-05	6.05E-06
1968	763565.41		2.37E-04	2.58E-04	9.12E-05	3.70E-05	4.19E-05	1.44E-05	1.98E-05	1.97E-05	6.04E-06
1969	763543.08	4093089.16	2.35E-04	2.56E-04	9.04E-05	3.67E-05	4.15E-05	1.43E-05	1.96E-05	1.95E-05	5.98E-06
1970	763520.75	4093079.11	2.31E-04	2.51E-04	8.89E-05	3.61E-05	4.08E-05	1.41E-05	1.93E-05	1.92E-05	5.88E-06
1971	763498.42		2.26E-04	2.46E-04	8.69E-05	3.53E-05	3.99E-05	1.37E-05	1.89E-05	1.87E-05	5.75E-06
1972	763476.09	4093059.01	2.19E-04	2.39E-04	8.45E-05	3.43E-05	3.88E-05	1.33E-05	1.83E-05	1.82E-05	5.79E-06
1973	763453.76	4093048.96	2.12E-04	2.31E-04	8.17E-05	3.31E-05	3.75E-05	1.29E-05	1.77E-05	1.76E-05	5.40E-06
1974	763431.43	4093038.91	2.04E-04	2.22E-04	7.86E-05	3.19E-05	3.61E-05	1.24E-05	1.70E-05	1.69E-05	5.20E-06
1975	763409.1		1.96E-04	2.13E-04	7.55E-05	3.06E-05	3.46E-05	1.19E-05	1.64E-05	1.63E-05	4.99E-06
1976	763386.77	4093018.81	1.88E-04	2.13E-04 2.04E-04	7.23E-05	2.93E-05	3.40E-05	1.14E-05	1.57E-05	1.56E-05	4.78E-06
1977	763364.44	4093008.76	1.80E-04	1.96E-04	6.92E-05	2.81E-05	3.18E-05	1.14L-05 1.09E-05	1.50E-05	1.49E-05	4.78E-06
1978	763342.11		1.72E-04	1.88E-04	6.64E-05	2.69E-05	3.18E-05 3.04E-05	1.05E-05	1.44E-05	1.43E-05	4.39E-06
1979		4092965.72	1.65E-04	1.80E-04	6.36E-05	2.58E-05	2.92E-05	1.00E-05	1.44L-05 1.38E-05	1.43E-05	4.39L-06 4.20E-06
1980	763259.74		1.59E-04	1.73E-04	6.11E-05	2.48E-05		9.66E-06	1.33E-05	1.32E-05	4.20E-00 4.04E-06
1500	, 55255.74	.032020.1	1.552 07	1.752 07	J.11L 0J	2.40L 0J	2.552 05	J.30L 00	1.551 05	1.522 05	

1981	763251.16	4092805.17	1.56E-04	1.70E-04	6.00E-05	2.43E-05	2.75E-05	9.49E-06	1.30E-05	1.29E-05	3.97E-06
1982	763242.59	4092782.23	1.53E-04	1.66E-04	5.87E-05	2.38E-05	2.69E-05	9.28E-06	1.27E-05	1.27E-05	3.89E-06
1983	763234.01	4092759.29	1.49E-04	1.62E-04	5.73E-05	2.32E-05	2.63E-05	9.05E-06	1.24E-05	1.23E-05	3.79E-06
1984	763225.43	4092736.36	1.45E-04	1.57E-04	5.57E-05	2.26E-05	2.56E-05	8.80E-06	1.21E-05	1.20E-05	3.69E-06
1985	763216.85	4092713.42	1.40E-04	1.53E-04	5.41E-05	2.19E-05	2.48E-05	8.55E-06	1.17E-05	1.17E-05	3.58E-06
1986	763208.28	4092690.48	1.36E-04	1.48E-04	5.25E-05	2.13E-05	2.41E-05	8.29E-06	1.14E-05	1.13E-05	3.47E-06
1987	763199.7	4092667.55	1.32E-04	1.44E-04	5.09E-05	2.07E-05	2.34E-05	8.05E-06	1.10E-05	1.10E-05	3.37E-06
1988	763191.12	4092644.61	1.28E-04	1.40E-04	4.94E-05	2.00E-05	2.27E-05	7.81E-06	1.07E-05	1.07E-05	3.27E-06
1989	763182.55	4092621.68	1.25E-04	1.36E-04	4.80E-05	1.94E-05	2.20E-05	7.58E-06	1.04E-05	1.03E-05	3.17E-06
1990	763173.97	4092598.74	1.21E-04	1.31E-04	4.65E-05	1.89E-05	2.13E-05	7.35E-06	1.01E-05	1.00E-05	3.08E-06
1991	763165.39	4092575.8	1.17E-04	1.27E-04	4.51E-05	1.83E-05	2.07E-05	7.12E-06	9.78E-06	9.72E-06	2.98E-06
1992	763156.81	4092552.87	1.13E-04	1.23E-04	4.36E-05	1.77E-05	2.00E-05	6.90E-06	9.46E-06	9.41E-06	2.89E-06
1993	763148.24	4092529.93	1.10E-04	1.19E-04	4.22E-05	1.71E-05	1.93E-05	6.66E-06	9.14E-06	9.09E-06	2.79E-06
1994	763139.66	4092506.99	1.06E-04	1.15E-04	4.07E-05	1.65E-05	1.87E-05	6.43E-06	8.82E-06	8.77E-06	2.69E-06
1995	763811.03	4093209.78	1.82E-04	1.98E-04	7.02E-05	2.85E-05	3.22E-05	1.11E-05	1.52E-05	1.51E-05	4.64E-06
1996	763835.62	4093210.46	1.79E-04	1.95E-04	6.89E-05	2.79E-05	3.16E-05	1.09E-05	1.49E-05	1.49E-05	4.56E-06
1997	763860.2	4093210.40	1.76E-04	1.91E-04	6.76E-05	2.74E-05	3.10E-05	1.07E-05	1.47E-05	1.46E-05	4.47E-06
1998	763884.79	4093211.13	1.70E-04 1.72E-04	1.88E-04	6.64E-05	2.69E-05	3.10E-05 3.05E-05	1.07E-05	1.44E-05	1.43E-05	4.39E-06
1999	763909.37	4093211.64	1.69E-04				2.99E-05			1.43E-05	4.31E-06
				1.84E-04	6.52E-05	2.64E-05		1.03E-05	1.41E-05		
2000	763933.95	4093213.21	1.66E-04	1.81E-04	6.40E-05	2.59E-05	2.93E-05	1.01E-05	1.39E-05	1.38E-05	4.23E-06
2001	763958.54	4093213.9	1.63E-04	1.77E-04	6.28E-05	2.55E-05	2.88E-05	9.92E-06	1.36E-05	1.35E-05	4.15E-06
2002	763983.12	4093214.59	1.60E-04	1.74E-04	6.16E-05	2.50E-05	2.83E-05	9.74E-06	1.34E-05	1.33E-05	4.08E-06
2003	764007.71	4093215.28	1.57E-04	1.71E-04	6.05E-05	2.45E-05	2.77E-05	9.55E-06	1.31E-05	1.30E-05	4.00E-06
2004	764032.29	4093215.96	1.54E-04	1.68E-04	5.93E-05	2.40E-05	2.72E-05	9.37E-06	1.29E-05	1.28E-05	3.92E-06
2005	764056.88	4093216.65	1.51E-04	1.64E-04	5.81E-05	2.35E-05	2.66E-05	9.17E-06	1.26E-05	1.25E-05	3.84E-06
2006	764081.46	4093217.34	1.47E-04	1.61E-04	5.68E-05	2.30E-05	2.61E-05	8.97E-06	1.23E-05	1.22E-05	3.76E-06
2007	764106.04	4093218.03	1.44E-04	1.57E-04	5.54E-05	2.25E-05	2.54E-05	8.76E-06	1.20E-05	1.20E-05	3.67E-06
2008	764130.63	4093218.71	1.40E-04	1.53E-04	5.40E-05	2.19E-05	2.48E-05	8.54E-06	1.17E-05	1.16E-05	3.57E-06
2009	764155.21	4093219.4	1.37E-04	1.49E-04	5.26E-05	2.14E-05	2.42E-05	8.32E-06	1.14E-05	1.13E-05	3.48E-06
2010	764179.8	4093220.09	1.33E-04	1.45E-04	5.13E-05	2.08E-05	2.35E-05	8.10E-06	1.11E-05	1.10E-05	3.39E-06
2011	764204.38	4093220.78	1.30E-04	1.41E-04	4.99E-05	2.02E-05	2.29E-05	7.88E-06	1.08E-05	1.08E-05	3.30E-06
2012	763783.66	4093399.89	1.22E-04	1.33E-04	4.71E-05	1.91E-05	2.16E-05	7.44E-06	1.02E-05	1.02E-05	3.12E-06
2013	763761.88	4093390.09	1.26E-04	1.37E-04	4.86E-05	1.97E-05	2.23E-05	7.68E-06	1.05E-05	1.05E-05	3.22E-06
2014	763740.1	4093380.29	1.30E-04	1.42E-04	5.02E-05	2.04E-05	2.30E-05	7.93E-06	1.09E-05	1.08E-05	3.32E-06
2015	763718.32	4093370.48	1.35E-04	1.47E-04	5.19E-05	2.10E-05	2.38E-05	8.20E-06	1.13E-05	1.12E-05	3.43E-06
2016	763696.54	4093360.68	1.39E-04	1.52E-04	5.37E-05	2.18E-05	2.46E-05	8.48E-06	1.16E-05	1.16E-05	3.55E-06
2017	763674.76	4093350.88	1.44E-04	1.57E-04	5.55E-05	2.25E-05	2.54E-05	8.76E-06	1.20E-05	1.20E-05	
2018	763652.98	4093341.07	1.49E-04	1.62E-04	5.73E-05	2.32E-05	2.63E-05	9.05E-06	1.24E-05	1.23E-05	3.79E-06
2019	763631.2	4093331.27	1.53E-04	1.67E-04	5.90E-05	2.39E-05	2.71E-05	9.32E-06	1.28E-05	1.27E-05	3.90E-06
2020	763609.42	4093321.47	1.57E-04	1.71E-04	6.06E-05	2.46E-05	2.78E-05	9.58E-06	1.31E-05	1.31E-05	4.01E-06
2021	763587.64	4093311.66	1.61E-04	1.75E-04	6.21E-05	2.52E-05	2.85E-05	9.81E-06	1.35E-05	1.34E-05	4.11E-06
2022	763565.86	4093301.86	1.64E-04	1.79E-04	6.33E-05	2.57E-05	2.91E-05	1.00E-05	1.37E-05	1.37E-05	4.19E-06
2023	763544.09	4093292.06	1.67E-04	1.82E-04	6.43E-05	2.61E-05	2.95E-05	1.02E-05	1.39E-05	1.39E-05	4.26E-06
2024	763522.31	4093282.25	1.69E-04	1.84E-04	6.50E-05	2.64E-05	2.98E-05	1.03E-05	1.41E-05	1.40E-05	4.30E-06
2025	763500.53	4093272.45	1.70E-04	1.85E-04	6.54E-05	2.65E-05	3.00E-05	1.03E-05	1.42E-05	1.41E-05	4.33E-06
2026	763478.75	4093262.65	1.70E-04	1.85E-04	6.54E-05	2.65E-05	3.00E-05	1.03E-05	1.42E-05	1.41E-05	4.33E-06
2027	763456.97	4093252.84	1.69E-04	1.84E-04	6.51E-05	2.64E-05	2.99E-05	1.03E-05	1.41E-05	1.40E-05	4.31E-06
2028	763435.19	4093243.04	1.67E-04	1.82E-04	6.44E-05	2.61E-05	2.96E-05	1.02E-05	1.40E-05	1.39E-05	4.26E-06
2029	763413.41	4093233.24	1.65E-04	1.79E-04	6.34E-05	2.57E-05	2.91E-05	1.00E-05	1.38E-05	1.37E-05	4.20E-06
2030	763391.63	4093223.43	1.61E-04	1.76E-04	6.21E-05	2.52E-05	2.85E-05	9.82E-06	1.35E-05	1.34E-05	4.11E-06
2031	763369.85	4093213.63	1.57E-04	1.71E-04	6.06E-05	2.46E-05	2.78E-05	9.58E-06	1.31E-05	1.31E-05	4.01E-06
2032	763348.07	4093203.83	1.53E-04	1.66E-04	5.89E-05	2.39E-05	2.70E-05	9.30E-06	1.28E-05	1.27E-05	3.90E-06
2033	763326.29	4093194.02	1.48E-04	1.61E-04	5.70E-05	2.31E-05	2.62E-05	9.01E-06	1.24E-05	1.23E-05	3.77E-06
2034	763304.51	4093184.22	1.43E-04	1.56E-04	5.51E-05	2.23E-05	2.53E-05	8.71E-06	1.19E-05	1.19E-05	3.65E-06
2035	763282.73	4093174.42	1.38E-04	1.50E-04	5.32E-05	2.16E-05	2.44E-05	8.40E-06	1.15E-05	1.15E-05	3.52E-06
2036	763260.95	4093164.61	1.33E-04	1.45E-04	5.13E-05	2.08E-05	2.35E-05	8.10E-06	1.11E-05	1.11E-05	3.39E-06
2037	763239.17	4093154.81	1.28E-04	1.40E-04	4.94E-05	2.00E-05	2.27E-05	7.81E-06	1.07E-05	1.07E-05	3.27E-06
2038	763217.39	4093145.01	1.24E-04	1.35E-04	4.77E-05	1.94E-05	2.19E-05	7.54E-06	1.03E-05	1.03E-05	3.16E-06
2039	763195.61	4093135.2	1.20E-04	1.30E-04	4.62E-05	1.87E-05	2.12E-05	7.29E-06	1.00E-05	9.95E-06	3.05E-06
2040	763165.46	4093103.03	1.16E-04	1.26E-04	4.47E-05	1.81E-05	2.05E-05	7.06E-06	9.69E-06	9.64E-06	2.96E-06
2041	763081.81	4092879.31	1.10E-04	1.20E-04	4.23E-05	1.72E-05	1.94E-05	6.69E-06	9.18E-06	9.13E-06	2.80E-06
2042	763073.44	4092856.94	1.08E-04	1.17E-04	4.15E-05	1.68E-05	1.90E-05	6.56E-06	9.00E-06	8.95E-06	2.75E-06

2043	763065.07	4092834.57	1.06E-04	1.15E-04	4.06E-05	1.65E-05	1.86E-05	6.42E-06	8.81E-06	8.76E-06	2.69E-06
2044	763056.71	4092812.2	1.03E-04	1.12E-04	3.97E-05	1.61E-05	1.82E-05	6.28E-06	8.61E-06	8.57E-06	2.63E-06
2045	763048.34	4092789.83	1.01E-04	1.10E-04	3.88E-05	1.57E-05	1.78E-05	6.14E-06	8.42E-06	8.37E-06	2.57E-06
2046	763039.98	4092767.46	9.86E-05	1.07E-04	3.80E-05	1.54E-05	1.74E-05	6.00E-06	8.23E-06	8.18E-06	2.51E-06
2047	763031.61	4092745.09	9.64E-05	1.05E-04	3.71E-05	1.50E-05	1.70E-05	5.86E-06	8.05E-06	8.00E-06	2.46E-06
2048	763023.25	4092722.72	9.43E-05	1.03E-04	3.63E-05	1.47E-05	1.67E-05	5.74E-06	7.87E-06	7.83E-06	2.40E-06
2049	763014.88	4092700.34	9.22E-05	1.00E-04	3.55E-05	1.44E-05	1.63E-05	5.61E-06	7.70E-06	7.66E-06	2.35E-06
2050	763006.51	4092677.97	9.02E-05	9.82E-05	3.48E-05	1.41E-05	1.59E-05	5.49E-06	7.53E-06	7.49E-06	2.30E-06
2051	762998.15	4092655.6	8.83E-05	9.61E-05	3.40E-05	1.38E-05	1.56E-05	5.37E-06	7.37E-06	7.33E-06	2.25E-06
2052	762989.78	4092633.23	8.64E-05	9.40E-05	3.33E-05	1.35E-05	1.53E-05	5.26E-06	7.21E-06	7.17E-06	2.20E-06
2053	762981.42	4092610.86	8.44E-05	9.19E-05	3.25E-05	1.32E-05	1.49E-05	5.14E-06	7.05E-06	7.01E-06	2.15E-06
2054	762973.05	4092588.49	8.24E-05	8.97E-05	3.17E-05	1.29E-05	1.46E-05	5.01E-06	6.88E-06	6.84E-06	2.10E-06
2055	762964.68	4092566.12	8.03E-05	8.75E-05	3.09E-05	1.25E-05	1.42E-05	4.89E-06	6.71E-06	6.67E-06	2.05E-06
2056	762956.32	4092543.75	7.82E-05	8.52E-05	3.01E-05	1.22E-05	1.38E-05	4.76E-06	6.53E-06	6.50E-06	1.99E-06
2057	762947.95	4092521.37	7.61E-05	8.28E-05	2.93E-05	1.19E-05	1.34E-05	4.63E-06	6.35E-06	6.31E-06	1.94E-06
2058	762939.59	4092499	7.38E-05	8.04E-05	2.84E-05	1.15E-05	1.30E-05	4.49E-06	6.17E-06	6.13E-06	1.88E-06
2059	763805.44	4093409.7	1.19E-04	1.29E-04	4.57E-05	1.85E-05	2.10E-05	7.22E-06	9.90E-06	9.85E-06	3.02E-06
2060	763830.03	4093410.39	1.17E-04	1.27E-04		1.83E-05	2.10L-03 2.07E-05		9.77E-06	9.71E-06	2.98E-06
					4.50E-05			7.12E-06	9.77E-06 9.64E-06		
2061	763854.61	4093411.07	1.15E-04	1.26E-04	4.44E-05	1.80E-05	2.04E-05	7.02E-06		9.58E-06	2.94E-06
2062	763879.19	4093411.76	1.14E-04	1.24E-04	4.39E-05	1.78E-05	2.01E-05	6.94E-06	9.52E-06	9.47E-06	2.91E-06
2063	763903.78	4093412.45	1.13E-04	1.23E-04	4.34E-05	1.76E-05	1.99E-05	6.86E-06	9.41E-06	9.36E-06	2.87E-06
2064	763928.36	4093413.14	1.11E-04	1.21E-04	4.29E-05	1.74E-05	1.97E-05	6.78E-06	9.30E-06	9.25E-06	2.84E-06
2065	763952.95	4093413.82	1.10E-04	1.20E-04	4.24E-05	1.72E-05	1.95E-05	6.70E-06	9.19E-06	9.14E-06	2.81E-06
2066	763977.53	4093414.51	1.09E-04	1.18E-04	4.19E-05	1.70E-05	1.92E-05	6.62E-06	9.08E-06	9.03E-06	2.77E-06
2067	764002.12	4093415.2	1.07E-04	1.17E-04	4.13E-05	1.68E-05	1.90E-05	6.53E-06	8.96E-06	8.91E-06	2.73E-06
2068	764026.7	4093415.89	1.06E-04	1.15E-04	4.07E-05	1.65E-05	1.87E-05	6.43E-06	8.83E-06	8.78E-06	2.69E-06
2069	764051.29	4093416.57	1.04E-04	1.13E-04	4.01E-05	1.62E-05	1.84E-05	6.33E-06	8.69E-06	8.64E-06	2.65E-06
2070	764075.87	4093417.26	1.02E-04	1.11E-04	3.94E-05	1.60E-05	1.81E-05	6.22E-06	8.53E-06	8.48E-06	2.60E-06
2071	764100.45	4093417.95	1.00E-04	1.09E-04	3.86E-05	1.56E-05	1.77E-05	6.10E-06	8.37E-06	8.32E-06	2.55E-06
2072	764125.04	4093418.64	9.80E-05	1.07E-04	3.77E-05	1.53E-05	1.73E-05	5.96E-06	8.18E-06	8.14E-06	2.50E-06
2073	764149.62	4093419.32	9.58E-05	1.04E-04	3.69E-05	1.50E-05	1.69E-05	5.83E-06	8.00E-06	7.96E-06	2.44E-06
2074	764174.21	4093420.01	9.36E-05	1.02E-04	3.60E-05	1.46E-05	1.65E-05	5.70E-06	7.82E-06	7.77E-06	2.39E-06
2075	764198.79	4093420.7	9.14E-05	9.95E-05	3.52E-05	1.43E-05	1.61E-05	5.56E-06	7.63E-06	7.59E-06	2.33E-06
2076	763777.79	4093599.69	8.74E-05	9.52E-05	3.37E-05	1.37E-05	1.54E-05	5.32E-06	7.30E-06	7.26E-06	2.23E-06
2077	763755.74	4093589.76	8.95E-05	9.75E-05	3.45E-05	1.40E-05	1.58E-05	5.45E-06	7.48E-06	7.43E-06	2.28E-06
2078	763733.68	4093579.84	9.19E-05	1.00E-04	3.54E-05	1.44E-05	1.62E-05	5.59E-06	7.67E-06	7.63E-06	2.34E-06
2079	763711.63	4093569.91	9.45E-05	1.03E-04	3.64E-05	1.48E-05	1.67E-05	5.75E-06	7.89E-06	7.84E-06	2.41E-06
2080	763689.57	4093559.98	9.73E-05	1.06E-04	3.75E-05	1.52E-05	1.72E-05	5.92E-06	8.12E-06	8.08E-06	2.48E-06
2081	763667.51	4093550.05	1.00E-04	1.09E-04	3.86E-05	1.57E-05	1.77E-05	6.10E-06	8.38E-06	8.33E-06	2.56E-06
2082	763645.46	4093540.12	1.03E-04	1.13E-04	3.98E-05	1.62E-05	1.83E-05	6.29E-06	8.64E-06	8.59E-06	2.64E-06
2083	763623.4	4093530.2	1.07E-04	1.16E-04	4.11E-05	1.67E-05	1.88E-05	6.49E-06	8.91E-06	8.86E-06	2.72E-06
2084	763601.34	4093520.27	1.10E-04	1.20E-04	4.24E-05	1.72E-05	1.94E-05	6.69E-06	9.19E-06	9.13E-06	2.80E-06
2085	763579.29	4093510.34	1.13E-04	1.23E-04	4.36E-05	1.77E-05	2.00E-05	6.90E-06	9.46E-06	9.41E-06	2.89E-06
2086	763557.23	4093500.41	1.17E-04	1.27E-04	4.49E-05	1.82E-05	2.06E-05	7.09E-06	9.73E-06	9.67E-06	2.97E-06
2087	763535.18	4093490.49	1.20E-04	1.30E-04	4.61E-05	1.87E-05	2.11E-05	7.28E-06	9.99E-06	9.93E-06	3.05E-06
2088	763513.12	4093480.56	1.23E-04	1.33E-04	4.72E-05	1.91E-05	2.16E-05	7.45E-06	1.02E-05	1.02E-05	3.12E-06
2089	763491.06	4093470.63	1.25E-04	1.36E-04	4.81E-05	1.95E-05	2.21E-05	7.60E-06	1.04E-05	1.04E-05	3.18E-06
2090	763469.01	4093460.7	1.27E-04	1.38E-04	4.89E-05	1.98E-05	2.24E-05	7.73E-06	1.06E-05	1.05E-05	3.24E-06
2091	763446.95	4093450.77	1.29E-04	1.40E-04	4.95E-05	2.01E-05	2.27E-05	7.83E-06	1.07E-05	1.07E-05	3.28E-06
2092	763424.89	4093440.85	1.30E-04	1.41E-04	5.00E-05	2.03E-05	2.29E-05	7.89E-06	1.08E-05	1.08E-05	3.31E-06
2093	763402.84	4093430.92	1.30E-04	1.42E-04	5.02E-05	2.03E-05	2.30E-05	7.93E-06	1.09E-05	1.08E-05	3.32E-06
2094	763380.78	4093420.99	1.30E-04	1.42E-04	5.01E-05	2.03E-05	2.30E-05	7.92E-06	1.09E-05	1.08E-05	3.32E-06
2095	763358.73	4093411.06	1.30E-04	1.41E-04	4.99E-05	2.02E-05	2.29E-05	7.89E-06	1.08E-05	1.08E-05	3.30E-06
2096	763336.67	4093401.13	1.28E-04	1.40E-04	4.95E-05	2.01E-05	2.27E-05	7.81E-06	1.07E-05	1.07E-05	3.27E-06
2097	763314.61		1.27E-04	1.38E-04	4.88E-05	1.98E-05	2.24E-05	7.71E-06	1.06E-05	1.05E-05	3.23E-06
2098	763292.56	4093381.28	1.25E-04	1.36E-04	4.80E-05	1.95E-05	2.20E-05	7.58E-06	1.04E-05	1.03E-05	3.17E-06
2099	763270.5	4093371.35	1.22E-04	1.33E-04	4.70E-05	1.90E-05	2.15E-05	7.42E-06	1.02E-05	1.01E-05	3.11E-06
2100	763248.44	4093361.42	1.19E-04	1.30E-04	4.59E-05	1.86E-05	2.10E-05	7.24E-06	9.94E-06	9.88E-06	3.03E-06
2101	763226.39	4093351.49	1.16E-04	1.26E-04	4.46E-05	1.81E-05	2.05E-05	7.05E-06	9.67E-06	9.62E-06	2.95E-06
2102	763204.33	4093341.57	1.12E-04	1.22E-04	4.33E-05	1.76E-05	1.99E-05	6.84E-06	9.39E-06	9.34E-06	2.87E-06
2103	763182.28	4093331.64	1.09E-04	1.19E-04	4.20E-05	1.70E-05	1.92E-05	6.63E-06	9.10E-06	9.04E-06	2.78E-06
2104		4093321.71	1.05E-04	1.15E-04	4.06E-05	1.65E-05	1.86E-05	6.41E-06	8.80E-06	8.75E-06	2.68E-06
					502 05	2.002 00			3.332 00		

2105	763138.16	4093311.78	1.02E-04	1.11E-04	3.92E-05	1.59E-05	1.80E-05	6.20E-06	8.51E-06	8.46E-06	2.60E-06
2106	762960.11	4093080.9	8.86E-05	9.65E-05	3.41E-05	1.38E-05	1.57E-05	5.39E-06	7.40E-06	7.36E-06	2.26E-06
2107	762951.63	4093058.24	8.83E-05	9.61E-05	3.40E-05	1.38E-05	1.56E-05	5.37E-06	7.37E-06	7.33E-06	2.25E-06
2108	762943.16	4093035.59	8.76E-05	9.54E-05	3.37E-05	1.37E-05	1.55E-05	5.33E-06	7.32E-06	7.27E-06	2.23E-06
2109	762934.69	4093012.93	8.67E-05	9.44E-05	3.34E-05	1.35E-05	1.53E-05	5.28E-06	7.24E-06	7.20E-06	2.21E-06
2110	762926.22	4092990.28	8.56E-05	9.32E-05	3.30E-05	1.34E-05	1.51E-05	5.21E-06	7.15E-06	7.11E-06	2.18E-06
2111	762917.74	4092967.62	8.42E-05	9.17E-05	3.24E-05	1.32E-05	1.49E-05	5.13E-06	7.03E-06	6.99E-06	2.15E-06
2112	762883.86	4092877	7.82E-05	8.51E-05	3.01E-05	1.22E-05	1.38E-05	4.76E-06	6.53E-06	6.49E-06	1.99E-06
2113	762875.38	4092854.35	7.67E-05	8.35E-05	2.96E-05	1.20E-05	1.36E-05	4.67E-06	6.41E-06	6.37E-06	1.96E-06
2114	762866.91	4092831.69	7.54E-05	8.20E-05	2.90E-05	1.18E-05	1.33E-05	4.59E-06	6.29E-06	6.26E-06	1.92E-06
2115	762858.44	4092809.04	7.40E-05	8.06E-05	2.85E-05	1.16E-05	1.31E-05	4.51E-06	6.18E-06	6.15E-06	1.89E-06
2116	762849.97	4092786.38	7.28E-05	7.92E-05	2.80E-05	1.14E-05	1.29E-05	4.43E-06	6.08E-06	6.04E-06	1.85E-06
2117	762841.5	4092763.73	7.15E-05	7.79E-05	2.75E-05	1.12E-05	1.26E-05	4.35E-06	5.97E-06	5.94E-06	1.82E-06
2118	762833.02	4092741.07	7.03E-05	7.65E-05	2.71E-05	1.10E-05	1.24E-05	4.28E-06	5.87E-06	5.84E-06	1.79E-06
2119	762824.55	4092718.41	6.91E-05	7.52E-05	2.66E-05	1.08E-05	1.22E-05	4.21E-06	5.77E-06	5.74E-06	1.76E-06
2120	762816.08	4092695.76	6.79E-05	7.32E 05 7.39E-05	2.62E-05	1.06E-05	1.20E-05	4.13E-06	5.67E-06	5.64E-06	1.73E-06
2121	762810.08	4092673.1	6.67E-05	7.33E-05 7.26E-05	2.57E-05	1.04E-05	1.18E-05	4.13E-06 4.06E-06	5.57E-06	5.54E-06	1.70E-06
2121	762799.14	4092650.45	6.55E-05	7.20L-05 7.13E-05		1.04L-05	1.16E-05		5.47E-06		1.67E-06
					2.52E-05			3.99E-06		5.44E-06	
2123	762790.66	4092627.79	6.43E-05	6.99E-05	2.47E-05	1.00E-05	1.14E-05	3.91E-06	5.37E-06	5.33E-06	1.64E-06
2124	762782.19	4092605.14	6.30E-05	6.85E-05	2.42E-05	9.83E-06	1.11E-05	3.83E-06	5.26E-06	5.23E-06	1.60E-06
2125	762773.72	4092582.48	6.16E-05	6.71E-05	2.37E-05	9.63E-06	1.09E-05	3.75E-06	5.15E-06	5.12E-06	1.57E-06
2126	762765.25	4092559.83	6.03E-05	6.56E-05	2.32E-05	9.41E-06	1.07E-05	3.67E-06	5.03E-06	5.00E-06	1.54E-06
2127	762756.77	4092537.17	5.89E-05	6.41E-05	2.27E-05	9.19E-06	1.04E-05	3.58E-06	4.91E-06	4.89E-06	1.50E-06
2128	762748.3	4092514.52	5.74E-05	6.25E-05	2.21E-05	8.97E-06	1.01E-05	3.49E-06	4.79E-06	4.77E-06	1.46E-06
2129	762739.83	4092491.86	5.60E-05	6.09E-05	2.15E-05	8.74E-06	9.89E-06	3.40E-06	4.67E-06	4.65E-06	1.43E-06
2130	763799.85	4093609.62	8.55E-05	9.31E-05	3.29E-05	1.34E-05	1.51E-05	5.20E-06	7.14E-06	7.10E-06	2.18E-06
2131	763824.43	4093610.31	8.48E-05	9.23E-05	3.27E-05	1.32E-05	1.50E-05	5.16E-06	7.08E-06	7.04E-06	2.16E-06
2132	763849.02	4093611	8.42E-05	9.17E-05	3.24E-05	1.32E-05	1.49E-05	5.13E-06	7.03E-06	6.99E-06	2.15E-06
2133	763873.6	4093611.68	8.37E-05	9.11E-05	3.22E-05	1.31E-05	1.48E-05	5.09E-06	6.99E-06	6.95E-06	2.13E-06
2134	763898.19	4093612.37	8.31E-05	9.04E-05	3.20E-05	1.30E-05	1.47E-05	5.06E-06	6.94E-06	6.90E-06	2.12E-06
2135	763922.77	4093613.06	8.25E-05	8.98E-05	3.18E-05	1.29E-05	1.46E-05	5.02E-06	6.89E-06	6.85E-06	2.10E-06
2136	763947.36	4093613.75	8.18E-05	8.91E-05	3.15E-05	1.28E-05	1.45E-05	4.98E-06	6.83E-06	6.79E-06	2.09E-06
2137	763971.94	4093614.43	8.11E-05	8.82E-05	3.12E-05	1.27E-05	1.43E-05	4.93E-06	6.77E-06	6.73E-06	2.07E-06
2138	763996.53	4093615.12	8.02E-05	8.73E-05	3.09E-05	1.25E-05	1.42E-05	4.88E-06	6.70E-06	6.66E-06	2.04E-06
2139	764021.11	4093615.81	7.93E-05	8.63E-05	3.05E-05	1.24E-05	1.40E-05	4.82E-06	6.62E-06	6.58E-06	2.02E-06
2140	764045.69	4093616.5	7.82E-05	8.51E-05	3.01E-05	1.22E-05	1.38E-05	4.76E-06	6.53E-06	6.49E-06	1.99E-06
2141	764070.28	4093617.18	7.71E-05	8.39E-05	2.97E-05	1.20E-05	1.36E-05	4.69E-06	6.44E-06	6.40E-06	1.96E-06
2142	764094.86	4093617.87	7.58E-05	8.25E-05	2.92E-05	1.18E-05	1.34E-05	4.61E-06	6.33E-06	6.29E-06	1.93E-06
2143	764119.45	4093618.56	7.44E-05	8.10E-05	2.87E-05	1.16E-05	1.32E-05	4.53E-06	6.22E-06	6.18E-06	1.90E-06
2144	764144.03	4093619.25	7.30E-05	7.95E-05	2.81E-05	1.14E-05	1.29E-05	4.44E-06	6.10E-06	6.06E-06	1.86E-06
2145	764168.62	4093619.93	7.15E-05	7.79E-05	2.75E-05	1.12E-05	1.26E-05	4.35E-06	5.97E-06	5.94E-06	1.82E-06
2146	764193.2	4093620.62	7.00E-05	7.62E-05	2.70E-05	1.09E-05	1.24E-05	4.26E-06	5.85E-06	5.81E-06	1.78E-06
2147	763772.01	4093799.53	6.73E-05	7.33E-05	2.59E-05	1.05E-05	1.19E-05	4.10E-06	5.62E-06	5.59E-06	1.72E-06
2148	763749.76	4093789.51	6.84E-05	7.45E-05	2.64E-05	1.07E-05	1.21E-05	4.16E-06	5.72E-06	5.68E-06	1.74E-06
2149	763727.5	4093779.49	6.97E-05	7.59E-05	2.69E-05	1.09E-05	1.23E-05	4.24E-06	5.82E-06	5.79E-06	1.78E-06
2150	763705.25	4093769.48	7.12E-05	7.75E-05	2.74E-05	1.11E-05	1.26E-05	4.33E-06	5.94E-06	5.91E-06	1.81E-06
2151	763683	4093759.46	7.28E-05	7.92E-05	2.80E-05	1.14E-05	1.29E-05	4.43E-06	6.08E-06	6.04E-06	1.86E-06
2152	763660.75	4093749.45	7.46E-05	8.12E-05	2.87E-05	1.17E-05	1.32E-05	4.54E-06	6.23E-06	6.19E-06	1.90E-06
2153	763638.5	4093739.43	7.66E-05	8.34E-05	2.95E-05	1.20E-05	1.35E-05	4.66E-06	6.40E-06	6.36E-06	1.95E-06
2154	763616.24	4093729.41	7.87E-05	8.57E-05	3.03E-05	1.23E-05	1.39E-05	4.79E-06	6.57E-06	6.54E-06	2.01E-06
2155	763593.99	4093719.4	8.10E-05	8.82E-05	3.12E-05	1.27E-05	1.43E-05	4.93E-06	6.76E-06	6.73E-06	2.06E-06
2156	763571.74	4093709.38	8.35E-05	9.08E-05	3.21E-05	1.30E-05	1.47E-05	5.08E-06	6.97E-06	6.93E-06	2.13E-06
2157	763549.49	4093699.37	8.60E-05	9.36E-05	3.31E-05	1.34E-05	1.52E-05	5.23E-06	7.18E-06	7.14E-06	2.19E-06
2158	763527.24	4093689.35	8.85E-05	9.63E-05	3.41E-05	1.38E-05	1.56E-05	5.38E-06	7.39E-06	7.35E-06	2.25E-06
2159	763504.99	4093679.33	9.10E-05	9.90E-05	3.50E-05	1.42E-05	1.61E-05	5.53E-06	7.60E-06	7.55E-06	2.32E-06
2160	763482.73	4093669.32	9.34E-05	1.02E-04	3.60E-05	1.46E-05	1.65E-05	5.68E-06	7.80E-06	7.75E-06	2.38E-06
2161	763460.48	4093659.3	9.57E-05	1.04E-04	3.68E-05	1.49E-05	1.69E-05	5.82E-06	7.99E-06	7.94E-06	2.44E-06
2162	763438.23	4093649.29	9.78E-05	1.06E-04	3.77E-05	1.53E-05	1.73E-05	5.95E-06	8.16E-06	8.12E-06	2.49E-06
2163	763415.98	4093639.27	9.97E-05	1.08E-04	3.84E-05	1.56E-05	1.76E-05	6.06E-06	8.32E-06	8.28E-06	2.54E-06
2164	763393.73	4093629.25	1.01E-04	1.10E-04	3.90E-05	1.58E-05	1.79E-05	6.16E-06	8.46E-06	8.41E-06	2.58E-06
2165		4093619.24	1.03E-04	1.12E-04	3.95E-05	1.60E-05	1.81E-05	6.25E-06	8.57E-06	8.52E-06	2.62E-06
		4093609.22	1.04E-04	1.12E-04 1.13E-04	3.99E-05	1.62E-05		6.31E-06	8.66E-06		2.64E-06
_100	, 555-5.22	.055005.22	1.07L 07	1.132 07	3.332 03	1.022 03	1.000 00	5.51L 00	3.00L 00	5.51L 00	2.072 00

2167	763326.97	4093599.21	1.04E-04	1.14E-04	4.02E-05	1.63E-05	1.84E-05	6.35E-06	8.72E-06	8.67E-06	2.66E-06
2168	763304.72	4093589.19	1.05E-04	1.14E-04	4.03E-05	1.64E-05	1.85E-05	6.37E-06	8.74E-06	8.69E-06	2.67E-06
2169	763282.47	4093579.17	1.05E-04	1.14E-04	4.03E-05	1.63E-05	1.85E-05	6.37E-06	8.74E-06	8.69E-06	2.67E-06
2170	763260.22	4093569.16	1.04E-04	1.13E-04	4.01E-05	1.63E-05	1.84E-05	6.34E-06	8.70E-06	8.65E-06	2.65E-06
2171	763237.96	4093559.14	1.03E-04	1.13E-04	3.98E-05	1.61E-05	1.83E-05	6.29E-06	8.63E-06	8.58E-06	2.63E-06
2172	763215.71	4093549.13	1.02E-04	1.11E-04	3.94E-05	1.60E-05	1.81E-05	6.22E-06	8.54E-06	8.49E-06	2.61E-06
2173	763193.46	4093539.11	1.01E-04	1.10E-04	3.88E-05	1.57E-05	1.78E-05	6.13E-06	8.41E-06	8.37E-06	2.57E-06
2174	763171.21	4093529.09	9.90E-05	1.08E-04	3.81E-05	1.55E-05	1.75E-05	6.02E-06	8.27E-06	8.22E-06	2.52E-06
2175	763148.96	4093519.08	9.70E-05	1.06E-04	3.74E-05	1.52E-05	1.71E-05	5.90E-06	8.10E-06	8.05E-06	2.47E-06
2176	763126.7	4093509.06	9.48E-05	1.03E-04	3.65E-05	1.48E-05	1.67E-05	5.77E-06	7.91E-06	7.87E-06	2.41E-06
2177	763104.45	4093499.05	9.23E-05	1.01E-04	3.56E-05	1.44E-05	1.63E-05	5.62E-06	7.71E-06	7.67E-06	2.35E-06
2178	763082.2	4093489.03	8.98E-05	9.78E-05	3.46E-05	1.40E-05	1.59E-05	5.46E-06	7.50E-06	7.46E-06	2.29E-06
2179	763059.95	4093479.02	8.72E-05	9.49E-05	3.36E-05	1.36E-05	1.54E-05	5.31E-06	7.28E-06	7.24E-06	2.22E-06
2180	763037.7	4093469	8.46E-05	9.21E-05	3.26E-05	1.32E-05	1.49E-05	5.15E-06	7.06E-06	7.02E-06	2.16E-06
2181	763015.44	4093458.98	8.20E-05	8.93E-05	3.16E-05	1.28E-05	1.45E-05	4.99E-06	6.85E-06	6.81E-06	2.09E-06
2182	762993.19	4093448.97	7.95E-05	8.65E-05	3.06E-05	1.24E-05	1.40E-05	4.84E-06	6.64E-06	6.60E-06	2.03E-06
2183	762685.35	4092873.19	5.97E-05	6.50E-05	2.30E-05	9.32E-06	1.46E-05	3.63E-06	4.98E-06	4.96E-06	1.52E-06
2184		4092850.34	5.89E-05	6.41E-05		9.32L-00 9.19E-06	1.03E-05		4.91E-06	4.89E-06	1.50E-06
	762676.8				2.27E-05			3.58E-06			
2185	762668.25	4092827.48	5.81E-05	6.32E-05	2.24E-05	9.07E-06	1.03E-05	3.53E-06	4.85E-06	4.82E-06	1.48E-06
2186	762659.71	4092804.62	5.73E-05	6.23E-05	2.21E-05	8.94E-06	1.01E-05	3.48E-06	4.78E-06	4.75E-06	1.46E-06
2187	762651.16	4092781.77	5.65E-05	6.15E-05	2.18E-05	8.82E-06	9.98E-06	3.44E-06	4.72E-06	4.69E-06	1.44E-06
2188	762642.61	4092758.91	5.57E-05	6.06E-05	2.14E-05	8.69E-06	9.84E-06	3.39E-06	4.65E-06	4.62E-06	1.42E-06
2189	762634.06	4092736.06	5.49E-05	5.97E-05	2.11E-05	8.57E-06	9.69E-06	3.34E-06	4.58E-06	4.55E-06	1.40E-06
2190	762625.52	4092713.2	5.40E-05	5.88E-05	2.08E-05	8.44E-06	9.55E-06	3.29E-06	4.51E-06	4.49E-06	1.38E-06
2191	762616.97	4092690.34	5.32E-05	5.79E-05	2.05E-05	8.31E-06	9.40E-06	3.24E-06	4.44E-06	4.42E-06	1.36E-06
2192	762608.42	4092667.49	5.24E-05	5.70E-05	2.02E-05	8.18E-06	9.25E-06	3.19E-06	4.37E-06	4.35E-06	1.33E-06
2193	762599.87	4092644.63	5.15E-05	5.60E-05	1.98E-05	8.04E-06	9.10E-06	3.13E-06	4.30E-06	4.27E-06	1.31E-06
2194	762591.33	4092621.77	5.06E-05	5.51E-05	1.95E-05	7.90E-06	8.94E-06	3.08E-06	4.22E-06	4.20E-06	1.29E-06
2195	762582.78	4092598.92	4.97E-05	5.41E-05	1.91E-05	7.76E-06	8.77E-06	3.02E-06	4.15E-06	4.12E-06	1.27E-06
2196	762574.23	4092576.06	4.87E-05	5.30E-05	1.88E-05	7.61E-06	8.61E-06	2.97E-06	4.07E-06	4.05E-06	1.24E-06
2197	762565.69	4092553.2	4.77E-05	5.20E-05	1.84E-05	7.46E-06	8.44E-06	2.91E-06	3.99E-06	3.96E-06	1.22E-06
2198	762557.14	4092530.35	4.67E-05	5.09E-05	1.80E-05	7.30E-06	8.26E-06	2.84E-06	3.90E-06	3.88E-06	1.19E-06
2199	762548.59	4092507.49	4.57E-05	4.97E-05	1.76E-05	7.14E-06	8.08E-06	2.78E-06	3.82E-06	3.79E-06	1.16E-06
2200	762540.04	4092484.64	4.46E-05	4.86E-05	1.72E-05	6.97E-06	7.89E-06	2.72E-06	3.73E-06	3.71E-06	1.14E-06
2201	763794.26	4093809.54	6.63E-05	7.21E-05	2.55E-05	1.04E-05	1.17E-05	4.03E-06	5.53E-06	5.50E-06	1.69E-06
2202	763818.84	4093810.23	6.60E-05	7.19E-05	2.54E-05	1.03E-05	1.17E-05	4.02E-06	5.51E-06	5.48E-06	1.68E-06
2203	763843.43	4093810.92	6.58E-05	7.16E-05	2.53E-05	1.03E-05	1.16E-05	4.00E-06	5.49E-06	5.46E-06	1.68E-06
2204	763868.01	4093811.6	6.55E-05	7.13E-05	2.52E-05	1.02E-05	1.16E-05	3.99E-06	5.47E-06	5.44E-06	1.67E-06
2205	763892.6	4093812.29	6.52E-05	7.10E-05	2.51E-05	1.02E-05	1.15E-05	3.97E-06	5.45E-06	5.42E-06	1.66E-06
2206	763917.18	4093812.98	6.50E-05	7.07E-05	2.50E-05	1.01E-05	1.15E-05	3.95E-06	5.42E-06	5.39E-06	1.66E-06
2207	763941.77	4093813.67	6.46E-05	7.03E-05	2.49E-05	1.01E-05	1.14E-05	3.93E-06	5.39E-06	5.36E-06	1.65E-06
2208	763966.35	4093814.35	6.42E-05	6.98E-05	2.47E-05	1.00E-05	1.13E-05	3.90E-06	5.36E-06	5.33E-06	1.63E-06
2209	763990.93	4093815.04	6.36E-05	6.93E-05	2.45E-05	9.94E-06	1.12E-05	3.87E-06	5.31E-06	5.28E-06	1.62E-06
2210	764015.52	4093815.73	6.30E-05	6.86E-05	2.43E-05	9.84E-06	1.11E-05	3.83E-06	5.26E-06	5.23E-06	1.60E-06
2211	764040.1	4093816.42	6.22E-05	6.77E-05	2.40E-05	9.72E-06	1.10E-05	3.79E-06	5.20E-06	5.17E-06	1.59E-06
2212	764064.69	4093817.1	6.14E-05	6.69E-05	2.37E-05	9.60E-06	1.09E-05	3.74E-06	5.13E-06	5.10E-06	1.57E-06
2213	764089.27	4093817.79	6.06E-05	6.59E-05	2.33E-05	9.46E-06	1.07E-05	3.68E-06	5.06E-06	5.03E-06	1.54E-06
2214	764113.86	4093818.48	5.96E-05	6.49E-05	2.30E-05	9.31E-06	1.05E-05	3.63E-06	4.98E-06	4.95E-06	1.52E-06
2215	764138.44	4093819.17	5.86E-05	6.38E-05	2.26E-05	9.16E-06	1.04E-05	3.57E-06	4.89E-06	4.87E-06	1.49E-06
2216	764163.03	4093819.85	5.76E-05	6.27E-05	2.22E-05	8.99E-06	1.02E-05	3.50E-06	4.81E-06	4.78E-06	1.47E-06
2217	764187.61	4093820.54	5.65E-05	6.15E-05	2.18E-05	8.83E-06	9.99E-06	3.44E-06	4.72E-06	4.69E-06	1.44E-06
2218	763766.27	4093999.38	5.45E-05	5.93E-05	2.10E-05	8.51E-06	9.63E-06	3.32E-06	4.55E-06	4.52E-06	1.39E-06
2219	763743.87	4093989.3	5.51E-05	6.00E-05	2.12E-05	8.61E-06	9.74E-06	3.36E-06	4.60E-06	4.58E-06	1.41E-06
2220	763721.48	4093979.22	5.59E-05	6.08E-05	2.15E-05	8.73E-06	9.87E-06	3.40E-06	4.67E-06	4.64E-06	1.42E-06
2221	763699.08	4093969.14	5.67E-05	6.17E-05	2.18E-05	8.86E-06	1.00E-05	3.45E-06	4.73E-06	4.71E-06	1.44E-06
2222	763676.68	4093959.06	5.76E-05	6.27E-05	2.22E-05	9.00E-06	1.02E-05	3.51E-06	4.81E-06	4.78E-06	1.47E-06
2223	763654.28	4093948.97	5.87E-05	6.39E-05	2.26E-05	9.17E-06	1.04E-05	3.57E-06	4.90E-06	4.87E-06	1.50E-06
2224	763631.89	4093938.89	5.99E-05	6.52E-05	2.31E-05	9.35E-06	1.06E-05	3.64E-06	5.00E-06	4.97E-06	1.53E-06
2225	763609.49	4093928.81	6.12E-05	6.67E-05	2.36E-05	9.57E-06	1.08E-05	3.73E-06	5.11E-06	5.08E-06	1.56E-06
2226	763587.09	4093918.73	6.27E-05	6.83E-05	2.42E-05	9.80E-06	1.11E-05	3.82E-06	5.24E-06	5.21E-06	1.60E-06
2227	763564.69	4093908.65	6.43E-05	7.00E-05	2.48E-05	1.00E-05	1.11E 05	3.91E-06	5.37E-06	5.34E-06	1.64E-06
2228		4093898.57	6.61E-05	7.00E-05 7.19E-05	2.54E-05		1.14E-05		5.52E-06		1.68E-06
	, 555-72.5	.055050.57	5.51L 05	,.152 05	2.572 05	1.032 03	1.17.2 03		J.J2L 00	JOL 00	1.000 00

2229	763519.9	4093888.49	6.79E-05	7.39E-05	2.61E-05	1.06E-05	1.20E-05	4.13E-06	5.67E-06	5.64E-06	1.73E-06
2230	763497.5	4093878.4	6.98E-05	7.60E-05	2.69E-05	1.09E-05	1.23E-05	4.25E-06	5.83E-06	5.79E-06	1.78E-06
2231	763475.1	4093868.32	7.17E-05	7.81E-05	2.76E-05	1.12E-05	1.27E-05	4.37E-06	5.99E-06	5.96E-06	1.83E-06
2232	763452.71	4093858.24	7.37E-05	8.02E-05	2.84E-05	1.15E-05	1.30E-05	4.48E-06	6.15E-06	6.12E-06	1.88E-06
2233	763430.31	4093848.16	7.56E-05	8.23E-05	2.91E-05	1.18E-05	1.34E-05	4.60E-06	6.32E-06	6.28E-06	1.93E-06
2234	763407.91	4093838.08	7.75E-05	8.44E-05	2.98E-05	1.21E-05	1.37E-05	4.72E-06	6.47E-06	6.43E-06	1.97E-06
2235	763385.51	4093828	7.93E-05	8.63E-05	3.05E-05	1.24E-05	1.40E-05	4.82E-06	6.62E-06	6.58E-06	2.02E-06
2236	763363.12	4093817.91	8.09E-05	8.81E-05	3.12E-05	1.26E-05	1.43E-05	4.92E-06	6.76E-06	6.72E-06	2.06E-06
2237	763340.72	4093807.83	8.24E-05	8.97E-05	3.17E-05	1.29E-05	1.46E-05	5.02E-06	6.88E-06	6.84E-06	2.10E-06
2238	763318.32	4093797.75	8.37E-05	9.11E-05	3.22E-05	1.31E-05	1.48E-05	5.09E-06	6.99E-06	6.95E-06	2.13E-06
2239	763295.92	4093787.67	8.48E-05	9.23E-05	3.27E-05	1.32E-05	1.50E-05	5.16E-06	7.08E-06	7.04E-06	2.16E-06
2240	763273.53	4093777.59	8.57E-05	9.33E-05	3.30E-05	1.34E-05	1.51E-05	5.21E-06	7.16E-06	7.12E-06	2.18E-06
2241	763251.13	4093767.51	8.64E-05	9.40E-05	3.33E-05	1.35E-05	1.53E-05	5.25E-06	7.21E-06	7.17E-06	2.20E-06
2242	763228.73	4093757.43	8.68E-05	9.44E-05	3.34E-05	1.35E-05	1.53E-05	5.28E-06	7.24E-06	7.20E-06	2.21E-06
2243	763206.33	4093747.34	8.69E-05	9.46E-05	3.35E-05	1.36E-05	1.54E-05	5.29E-06	7.26E-06	7.22E-06	2.21E-06
2244	763183.94	4093737.26	8.68E-05	9.45E-05	3.34E-05	1.36E-05	1.53E-05	5.28E-06	7.25E-06	7.21E-06	2.21E-06
2245	763161.54	4093727.18	8.65E-05	9.41E-05	3.33E-05	1.35E-05	1.53E-05	5.26E-06	7.22E-06	7.18E-06	2.20E-06
2246	763139.14	4093717.1	8.60E-05	9.36E-05	3.31E-05	1.34E-05	1.52E-05	5.23E-06	7.18E-06	7.14E-06	2.19E-06
2247	763116.74	4093707.02	8.52E-05	9.27E-05	3.28E-05	1.33E-05	1.50E-05	5.18E-06	7.11E-06	7.07E-06	2.17E-06
2248	763094.35	4093696.94	8.42E-05	9.16E-05	3.24E-05	1.31E-05	1.49E-05	5.12E-06	7.03E-06	6.99E-06	2.14E-06
2249	763071.95	4093686.85	8.30E-05	9.03E-05	3.19E-05	1.30E-05	1.47E-05	5.05E-06	6.93E-06	6.89E-06	2.11E-06
2250	763049.55	4093676.77	8.15E-05	8.88E-05	3.14E-05	1.27E-05	1.44E-05	4.96E-06	6.81E-06	6.77E-06	2.08E-06
2251	763027.15	4093666.69	7.99E-05	8.70E-05	3.08E-05	1.25E-05	1.41E-05	4.86E-06	6.68E-06	6.64E-06	2.04E-06
2252	763004.76	4093656.61	7.82E-05	8.51E-05	3.01E-05	1.22E-05	1.38E-05	4.76E-06	6.53E-06	6.49E-06	1.99E-06
2253	762982.36	4093646.53	7.64E-05	8.32E-05	2.94E-05	1.19E-05	1.35E-05	4.65E-06	6.38E-06	6.34E-06	1.95E-06
2254	762959.96	4093636.45	7.45E-05	8.11E-05	2.87E-05	1.16E-05	1.32E-05	4.53E-06	6.22E-06	6.18E-06	1.90E-06
2255	762937.56	4093626.37	7.24E-05	7.89E-05	2.79E-05	1.13E-05	1.28E-05	4.41E-06	6.05E-06	6.01E-06	1.85E-06
2256	762915.16	4093616.28	7.04E-05	7.67E-05	2.71E-05	1.10E-05	1.24E-05	4.29E-06	5.88E-06	5.85E-06	1.79E-06
2257	762892.77	4093606.2	6.84E-05	7.45E-05	2.63E-05	1.07E-05	1.21E-05	4.16E-06	5.71E-06	5.68E-06	1.74E-06
2258	762870.37	4093596.12	6.65E-05	7.23E-05	2.56E-05	1.04E-05	1.17E-05	4.04E-06	5.55E-06	5.52E-06	1.69E-06
2259	762847.97	4093586.04	6.46E-05	7.03E-05	2.49E-05	1.01E-05	1.14E-05	3.93E-06	5.39E-06	5.36E-06	1.65E-06
2260	762825.57	4093575.96	6.28E-05	6.84E-05	2.42E-05	9.81E-06	1.11E-05	3.82E-06	5.25E-06	5.22E-06	1.60E-06
2261	762803.18	4093565.88	6.12E-05	6.66E-05	2.36E-05	9.56E-06	1.08E-05	3.72E-06	5.11E-06	5.08E-06	1.56E-06
2262	762710.18	4093466.61	5.73E-05	6.24E-05	2.21E-05	8.96E-06	1.01E-05	3.49E-06	4.79E-06	4.76E-06	1.46E-06
2263	762701.57	4093443.61	5.76E-05	6.27E-05	2.22E-05	9.00E-06	1.02E-05	3.51E-06	4.81E-06	4.78E-06	1.47E-06
2264	762692.97	4093420.6	5.79E-05	6.30E-05	2.23E-05	9.04E-06	1.02E-05	3.52E-06	4.84E-06	4.81E-06	1.48E-06
2265	762546.71	4093029.5		5.70E-05	2.02E-05	8.18E-06		3.19E-06		4.35E-06	
2266	762538.11	4093006.5	5.17E-05	5.62E-05	1.99E-05	8.07E-06	9.13E-06	3.14E-06	4.31E-06	4.29E-06	1.32E-06
2267	762529.51		5.10E-05	5.55E-05	1.96E-05	7.97E-06	9.01E-06	3.10E-06	4.26E-06	4.24E-06	1.30E-06
2268	762520.9	4092960.48	5.04E-05	5.48E-05	1.94E-05	7.87E-06	8.90E-06	3.07E-06	4.21E-06	4.18E-06	1.28E-06
2269	762512.3	4092937.48	4.98E-05	5.42E-05	1.92E-05	7.78E-06	8.80E-06	3.03E-06	4.16E-06	4.14E-06	1.27E-06
2270	762503.7	4092914.47	4.92E-05	5.36E-05	1.90E-05	7.69E-06	8.70E-06	3.00E-06	4.11E-06	4.09E-06	1.25E-06
2271	762495.1	4092891.47	4.87E-05	5.30E-05	1.88E-05	7.61E-06	8.60E-06	2.96E-06	4.07E-06	4.04E-06	1.24E-06
2272	762486.49	4092868.46	4.81E-05	5.24E-05	1.85E-05	7.52E-06	8.51E-06	2.93E-06	4.02E-06	4.00E-06	1.23E-06
2273	762477.89	4092845.45	4.76E-05	5.18E-05	1.83E-05	7.43E-06	8.41E-06	2.90E-06	3.97E-06	3.95E-06	1.21E-06
2274	762469.29	4092822.45	4.70E-05	5.12E-05	1.81E-05	7.34E-06	8.31E-06	2.86E-06	3.93E-06	3.90E-06	1.20E-06
2275	762460.68	4092799.44	4.64E-05	5.05E-05	1.79E-05	7.25E-06	8.20E-06	2.83E-06	3.88E-06	3.85E-06	1.18E-06
2276	762452.08	4092776.44	4.58E-05	4.99E-05	1.77E-05	7.16E-06	8.10E-06	2.79E-06	3.83E-06	3.81E-06	1.17E-06
2277	762443.48	4092753.43	4.52E-05	4.92E-05	1.74E-05	7.07E-06	7.99E-06	2.75E-06	3.78E-06	3.76E-06	1.15E-06
2278	762434.87	4092730.42	4.46E-05	4.86E-05	1.72E-05	6.97E-06	7.89E-06	2.72E-06	3.73E-06	3.71E-06	1.14E-06
2279	762426.27	4092707.42	4.40E-05	4.79E-05	1.69E-05	6.87E-06	7.78E-06	2.68E-06	3.67E-06	3.65E-06	1.12E-06
2280	762417.67	4092684.41	4.34E-05	4.72E-05	1.67E-05	6.78E-06	7.67E-06	2.64E-06	3.62E-06	3.60E-06	1.11E-06
2281	762409.06	4092661.41	4.28E-05	4.65E-05	1.65E-05	6.68E-06	7.55E-06	2.60E-06	3.57E-06	3.55E-06	1.09E-06
2282	762400.46	4092638.4	4.21E-05	4.59E-05	1.62E-05	6.58E-06	7.44E-06	2.56E-06	3.52E-06	3.50E-06	1.07E-06
2283	762391.86	4092615.39	4.15E-05	4.51E-05	1.60E-05	6.48E-06	7.32E-06	2.52E-06	3.46E-06	3.44E-06	1.06E-06
2284	762383.25	4092592.39	4.08E-05	4.44E-05	1.57E-05	6.36E-06	7.20E-06	2.48E-06	3.40E-06	3.38E-06	1.04E-06
2285	762374.65	4092569.38	4.00E-05	4.36E-05	1.54E-05	6.25E-06	7.07E-06	2.44E-06	3.34E-06	3.32E-06	1.02E-06
2286	762366.05	4092546.38	3.93E-05	4.28E-05	1.51E-05	6.14E-06	6.94E-06	2.39E-06	3.28E-06	3.26E-06	1.00E-06
2287	762357.44	4092523.37	3.85E-05	4.19E-05	1.48E-05	6.02E-06	6.81E-06	2.34E-06	3.22E-06	3.20E-06	9.82E-07
2288	762348.84	4092500.37	3.77E-05	4.11E-05	1.45E-05	5.89E-06	6.67E-06	2.30E-06	3.15E-06	3.13E-06	9.62E-07
2289	762340.24		3.69E-05	4.02E-05	1.42E-05	5.77E-06	6.52E-06	2.25E-06	3.13E-06 3.08E-06	3.13L-00 3.07E-06	9.41E-07
2290		4094009.46	5.39E-05	5.87E-05	2.08E-05	8.42E-06		3.28E-06	4.50E-06	4.48E-06	1.37E-06
2230	, 55, 55.07	103 4003.40	3.332 03	3.37 2 03	2.552 05	J72L 00	J.JJL 00	3.202 00	4.50L 00	702 00	1.37 - 00

2291	763813.25	4094010.15	5.38E-05	5.86E-05	2.07E-05	8.41E-06	9.51E-06	3.28E-06	4.49E-06	4.47E-06	1.37E-06
2292	763837.84	4094010.84	5.37E-05	5.85E-05	2.07E-05	8.39E-06	9.50E-06	3.27E-06	4.49E-06	4.46E-06	1.37E-06
2293	763862.42	4094011.53	5.37E-05	5.84E-05	2.07E-05	8.38E-06	9.48E-06	3.27E-06	4.48E-06	4.46E-06	1.37E-06
2294	763887.01	4094012.21	5.35E-05	5.83E-05	2.06E-05	8.36E-06	9.46E-06	3.26E-06	4.47E-06	4.45E-06	1.36E-06
2295	763911.59	4094012.9	5.34E-05	5.81E-05	2.06E-05	8.33E-06	9.43E-06	3.25E-06	4.46E-06	4.43E-06	1.36E-06
2296	763936.18	4094013.59	5.31E-05	5.78E-05	2.05E-05	8.30E-06	9.39E-06	3.23E-06	4.44E-06	4.41E-06	1.35E-06
2297	763960.76	4094014.28	5.28E-05	5.75E-05	2.03E-05	8.25E-06	9.34E-06	3.22E-06	4.41E-06	4.39E-06	1.35E-06
2298	763985.34	4094014.96	5.25E-05	5.71E-05	2.02E-05	8.20E-06	9.27E-06	3.19E-06	4.38E-06	4.36E-06	1.34E-06
2299	764009.93	4094015.65	5.20E-05	5.67E-05	2.00E-05	8.13E-06	9.20E-06	3.17E-06	4.35E-06	4.32E-06	1.33E-06
2300	764034.51	4094016.34	5.15E-05	5.61E-05	1.98E-05	8.05E-06	9.10E-06	3.14E-06	4.30E-06	4.28E-06	1.31E-06
2301	764059.1	4094017.03	5.09E-05	5.54E-05	1.96E-05	7.95E-06	9.00E-06	3.10E-06	4.25E-06	4.23E-06	1.30E-06
2302	764083.68	4094017.71	5.03E-05	5.47E-05	1.94E-05	7.85E-06	8.88E-06	3.06E-06	4.20E-06	4.17E-06	1.28E-06
2303	764108.27	4094018.4	4.96E-05	5.39E-05	1.91E-05	7.74E-06	8.76E-06	3.02E-06	4.14E-06	4.11E-06	1.26E-06
2304	764132.85	4094019.09	4.88E-05	5.32E-05	1.88E-05	7.63E-06	8.63E-06	2.97E-06	4.08E-06	4.05E-06	1.24E-06
2305	764157.43	4094019.78	4.81E-05	5.23E-05	1.85E-05	7.51E-06	8.49E-06	2.92E-06	4.01E-06	3.99E-06	1.22E-06
2306	764182.02	4094020.46	4.73E-05	5.15E-05	1.82E-05	7.38E-06	8.35E-06	2.88E-06	3.95E-06	3.93E-06	1.20E-06
2307	763760.98	4094199.44	4.57E-05	4.97E-05	1.76E-05	7.13E-06	8.07E-06	2.78E-06	3.81E-06	3.79E-06	1.16E-06
2308	763738.89	4094189.5	4.60E-05	5.01E-05	1.77E-05	7.19E-06	8.14E-06	2.80E-06	3.84E-06	3.82E-06	1.17E-06
2309	763716.8	4094179.55	4.65E-05	5.06E-05	1.79E-05	7.25E-06	8.21E-06	2.83E-06	3.88E-06	3.86E-06	1.18E-06
2310	763694.7	4094169.61	4.69E-05	5.11E-05	1.81E-05	7.33E-06	8.29E-06	2.86E-06	3.92E-06	3.90E-06	1.20E-06
2311	763672.61	4094159.66	4.75E-05	5.17E-05	1.83E-05	7.42E-06	8.39E-06	2.89E-06	3.96E-06	3.94E-06	1.21E-06
2312	763650.52	4094149.72	4.81E-05	5.23E-05	1.85E-05	7.51E-06	8.50E-06	2.93E-06	4.02E-06	3.99E-06	1.23E-06
2313	763628.42	4094139.77	4.88E-05	5.31E-05	1.88E-05	7.62E-06	8.62E-06	2.97E-06	4.07E-06	4.05E-06	1.24E-06
2314	763606.33	4094129.83	4.96E-05	5.40E-05	1.91E-05	7.75E-06	8.76E-06	3.02E-06	4.14E-06	4.12E-06	1.26E-06
2315	763584.24	4094119.88	5.05E-05	5.50E-05	1.94E-05	7.89E-06	8.92E-06	3.07E-06	4.22E-06	4.19E-06	1.29E-06
2316	763562.14	4094109.94	5.15E-05	5.60E-05	1.98E-05	8.04E-06	9.10E-06	3.13E-06	4.30E-06	4.27E-06	1.31E-06
2317	763540.05	4094099.99	5.26E-05	5.72E-05	2.03E-05	8.21E-06	9.29E-06	3.20E-06	4.39E-06	4.37E-06	1.34E-06
2318	763517.96	4094090.05	5.38E-05	5.85E-05	2.07E-05	8.40E-06	9.50E-06	3.27E-06	4.49E-06	4.47E-06	1.37E-06
2319	763495.86	4094080.11	5.51E-05	6.00E-05	2.12E-05	8.61E-06	9.74E-06	3.35E-06	4.60E-06	4.57E-06	1.40E-06
2320	763473.77	4094070.16	5.65E-05	6.15E-05	2.18E-05	8.82E-06	9.98E-06	3.44E-06	4.72E-06	4.69E-06	1.44E-06
2321	763451.68	4094060.22	5.79E-05	6.31E-05	2.23E-05	9.05E-06	1.02E-05	3.53E-06	4.84E-06	4.81E-06	1.48E-06
2322	763429.58	4094050.27	5.94E-05	6.47E-05	2.29E-05	9.28E-06	1.05E-05	3.62E-06	4.96E-06	4.94E-06	1.51E-06
2323	763407.49	4094040.33	6.10E-05	6.64E-05	2.35E-05	9.52E-06	1.08E-05	3.71E-06	5.09E-06	5.06E-06	1.55E-06
2324	763385.4	4094030.38	6.25E-05	6.81E-05	2.41E-05	9.76E-06	1.10E-05	3.80E-06	5.22E-06	5.19E-06	1.59E-06
2325	763363.3	4094020.44	6.41E-05	6.97E-05	2.47E-05	1.00E-05	1.13E-05	3.90E-06	5.35E-06	5.32E-06	1.63E-06
2326	763341.21	4094010.49	6.56E-05	7.14E-05	2.52E-05	1.02E-05	1.16E-05	3.99E-06	5.47E-06	5.44E-06 5.56E-06	1.67E-06
2327	763319.12			7.29E-05	2.58E-05		1.18E-05 1.21E-05		5.59E-06		1.71E-06
2328 2329	763297.02 763274.93	4093990.6 4093980.66	6.83E-05 6.95E-05	7.43E-05 7.57E-05	2.63E-05 2.68E-05	1.07E-05 1.09E-05	1.21E-05 1.23E-05	4.10E-06 4.23E-06	5.70E-06 5.81E-06	5.67E-06 5.77E-06	1.74E-06 1.77E-06
2330	763252.84	4093980.00	7.06E-05	7.69E-05	2.72E-05	1.10E-05	1.25E-05	4.23E-06 4.30E-06	5.90E-06	5.87E-06	1.77E-06 1.80E-06
2331	763230.74	4093960.71	7.16E-05	7.80E-05	2.72E-05 2.76E-05	1.10E-05	1.27E-05	4.36E-06	5.98E-06	5.95E-06	1.83E-06
2332	763208.65	4093950.83	7.10E-05 7.25E-05	7.89E-05	2.70E-05 2.79E-05	1.13E-05	1.28E-05	4.41E-06	6.05E-06	6.02E-06	1.85E-06
2333	763186.56	4093940.88	7.23E-05 7.31E-05	7.83E-05 7.96E-05	2.82E-05	1.14E-05	1.29E-05	4.41E-06 4.45E-06	6.10E-06	6.07E-06	1.86E-06
2334	763164.46	4093930.94	7.31E 05 7.36E-05	8.01E-05	2.83E-05	1.15E-05	1.30E-05	4.48E-06	6.15E-06	6.11E-06	1.88E-06
2335	763142.37	4093920.99	7.39E-05	8.05E-05	2.85E-05	1.15E-05	1.31E-05	4.50E-06	6.17E-06	6.14E-06	1.88E-06
2336	763120.28	4093911.05	7.41E-05	8.06E-05	2.85E-05	1.16E-05	1.31E-05	4.51E-06	6.19E-06	6.15E-06	1.89E-06
2337	763098.18	4093901.1	7.41E-05	8.06E-05	2.85E-05	1.16E-05	1.31E-05	4.51E-06	6.19E-06	6.15E-06	1.89E-06
2338	763076.09	4093891.16	7.39E-05	8.05E-05	2.85E-05	1.15E-05	1.31E-05	4.50E-06	6.17E-06	6.14E-06	1.88E-06
2339	763054	4093881.21	7.37E-05	8.02E-05	2.84E-05	1.15E-05	1.30E-05	4.48E-06	6.15E-06	6.12E-06	1.88E-06
2340	763031.9	4093871.27	7.32E-05	7.97E-05	2.82E-05	1.14E-05	1.29E-05	4.45E-06	6.11E-06	6.08E-06	1.86E-06
2341		4093861.32	7.26E-05	7.90E-05	2.79E-05	1.13E-05	1.28E-05	4.42E-06	6.06E-06	6.02E-06	1.85E-06
2342		4093851.38	7.18E-05	7.82E-05	2.77E-05	1.12E-05	1.27E-05	4.37E-06	6.00E-06	5.96E-06	1.83E-06
2343		4093841.43	7.09E-05	7.72E-05	2.73E-05	1.11E-05	1.25E-05	4.31E-06	5.92E-06	5.89E-06	1.81E-06
2344	762943.53	4093831.49	6.99E-05	7.61E-05	2.69E-05	1.09E-05	1.23E-05	4.25E-06	5.83E-06	5.80E-06	1.78E-06
2345	762921.44		6.87E-05	7.48E-05	2.65E-05	1.07E-05	1.21E-05	4.18E-06	5.74E-06	5.71E-06	1.75E-06
2346	762899.34	4093811.6	6.74E-05	7.34E-05	2.60E-05	1.05E-05	1.19E-05	4.10E-06	5.63E-06	5.60E-06	1.72E-06
2347	762877.25	4093801.66	6.61E-05	7.19E-05	2.54E-05	1.03E-05	1.17E-05	4.02E-06	5.52E-06	5.48E-06	1.68E-06
2348	762855.16	4093791.71	6.46E-05	7.03E-05	2.49E-05	1.01E-05	1.14E-05	3.93E-06	5.39E-06	5.36E-06	1.65E-06
2349	762833.06	4093781.77	6.31E-05	6.87E-05	2.43E-05	9.85E-06	1.11E-05	3.84E-06	5.27E-06	5.24E-06	1.61E-06
2350	762810.97		6.15E-05	6.70E-05	2.37E-05	9.61E-06	1.09E-05	3.75E-06	5.14E-06	5.11E-06	1.57E-06
2351	762788.88	4093761.88	6.00E-05	6.53E-05	2.31E-05	9.37E-06	1.06E-05	3.65E-06	5.01E-06	4.98E-06	1.53E-06
2352	762634.22	4093692.26	5.04E-05	5.48E-05	1.94E-05	7.86E-06	8.90E-06	3.06E-06	4.20E-06	4.18E-06	1.28E-06

2353	762612.13	4093682.32	4.94E-05	5.37E-05	1.90E-05	7.71E-06	8.72E-06	3.00E-06	4.12E-06	4.10E-06	1.26E-06
2354	762573.06	4093626.99	4.84E-05	5.27E-05	1.86E-05	7.56E-06	8.55E-06	2.94E-06	4.04E-06	4.02E-06	1.23E-06
2355	762564.58	4093604.3	4.85E-05	5.28E-05	1.87E-05	7.57E-06	8.56E-06	2.95E-06	4.05E-06	4.02E-06	1.24E-06
2356	762556.09	4093581.6	4.86E-05	5.29E-05	1.87E-05	7.60E-06	8.59E-06	2.96E-06	4.06E-06	4.04E-06	1.24E-06
2357	762547.6	4093558.91	4.89E-05	5.32E-05	1.88E-05	7.63E-06	8.64E-06	2.97E-06	4.08E-06	4.06E-06	1.25E-06
2358	762539.12	4093536.21	4.92E-05	5.35E-05	1.89E-05	7.68E-06	8.69E-06	2.99E-06	4.10E-06	4.08E-06	1.25E-06
2359	762530.63	4093513.52	4.95E-05	5.38E-05	1.90E-05	7.73E-06	8.74E-06	3.01E-06	4.13E-06	4.11E-06	1.26E-06
2360	762369.39	4093082.34	4.42E-05	4.81E-05	1.70E-05	6.90E-06	7.80E-06	2.69E-06	3.69E-06	3.67E-06	1.13E-06
2361	762360.9	4093059.65	4.37E-05	4.76E-05	1.68E-05	6.83E-06	7.72E-06	2.66E-06	3.65E-06	3.63E-06	1.11E-06
2362	762352.42	4093036.96	4.33E-05	4.71E-05	1.67E-05	6.76E-06	7.64E-06	2.63E-06	3.61E-06	3.59E-06	1.10E-06
2363	762343.93	4093014.26	4.29E-05	4.66E-05	1.65E-05	6.69E-06	7.57E-06	2.61E-06	3.58E-06	3.56E-06	1.09E-06
2364	762335.45	4092991.57	4.25E-05	4.62E-05	1.64E-05	6.63E-06	7.50E-06	2.58E-06	3.55E-06	3.53E-06	1.08E-06
2365	762326.96	4092968.88	4.21E-05	4.58E-05	1.62E-05	6.57E-06	7.43E-06	2.56E-06	3.51E-06	3.49E-06	1.07E-06
2366	762318.47	4092946.18	4.17E-05	4.54E-05	1.61E-05	6.51E-06	7.36E-06	2.54E-06	3.48E-06	3.46E-06	1.06E-06
2367	762309.99	4092923.49	4.13E-05	4.49E-05	1.59E-05	6.45E-06	7.29E-06	2.51E-06	3.45E-06	3.43E-06	1.05E-06
2368	762301.5	4092900.8	4.09E-05	4.45E-05	1.57E-05	6.38E-06	7.22E-06	2.49E-06	3.41E-06	3.39E-06	1.04E-06
2369	762293.01	4092878.1	4.04E-05	4.40E-05	1.56E-05	6.32E-06	7.15E-06	2.46E-06	3.38E-06	3.36E-06	1.03E-06
2370	762284.53	4092855.41	4.00E-05	4.36E-05	1.54E-05	6.25E-06	7.07E-06	2.44E-06	3.34E-06	3.32E-06	1.02E-06
2371	762276.04	4092832.72	3.96E-05	4.31E-05	1.52E-05	6.18E-06	6.99E-06	2.41E-06	3.30E-06	3.29E-06	1.01E-06
2372	762267.55	4092810.02	3.91E-05	4.26E-05	1.51E-05	6.11E-06	6.91E-06	2.38E-06	3.27E-06	3.25E-06	9.97E-07
2373	762259.07	4092787.33	3.87E-05	4.21E-05	1.49E-05	6.04E-06	6.84E-06	2.35E-06	3.23E-06	3.21E-06	9.86E-07
2374	762250.58	4092764.64	3.82E-05	4.16E-05	1.47E-05	5.97E-06	6.75E-06	2.33E-06	3.19E-06	3.17E-06	9.74E-07
2375	762242.1	4092741.94	3.78E-05	4.11E-05	1.45E-05	5.90E-06	6.67E-06	2.30E-06	3.15E-06	3.14E-06	9.63E-07
2376	762233.61	4092719.25	3.73E-05	4.06E-05	1.44E-05	5.83E-06	6.59E-06	2.27E-06	3.12E-06	3.10E-06	9.51E-07
2377	762225.12	4092696.56	3.68E-05	4.01E-05	1.42E-05	5.76E-06	6.51E-06	2.24E-06	3.08E-06	3.06E-06	9.39E-07
2378	762216.64	4092673.86	3.64E-05	3.96E-05	1.40E-05	5.68E-06	6.43E-06	2.21E-06	3.04E-06	3.02E-06	9.27E-07
2379	762208.15	4092651.17	3.59E-05	3.91E-05	1.38E-05	5.61E-06	6.34E-06	2.18E-06	3.00E-06	2.98E-06	9.15E-07
2380	762199.66	4092628.48	3.54E-05	3.85E-05	1.36E-05	5.53E-06	6.26E-06	2.15E-06	2.96E-06	2.94E-06	9.02E-07
2381	762191.18	4092605.78	3.49E-05	3.80E-05	1.34E-05	5.45E-06	6.16E-06	2.12E-06	2.91E-06	2.90E-06	8.89E-07
2382	762182.69	4092583.09	3.44E-05	3.74E-05	1.32E-05	5.37E-06	6.07E-06	2.09E-06	2.87E-06	2.85E-06	8.76E-07
2383	762174.2	4092560.39	3.38E-05	3.68E-05	1.30E-05	5.28E-06	5.97E-06	2.06E-06	2.82E-06	2.80E-06	8.61E-07
2384	762165.72	4092537.7	3.32E-05	3.61E-05	1.28E-05	5.18E-06	5.86E-06	2.02E-06	2.77E-06	2.76E-06	8.46E-07
2385	762157.23	4092515.01	3.26E-05	3.55E-05	1.26E-05	5.09E-06	5.76E-06	1.98E-06	2.72E-06	2.71E-06	8.31E-07
2386	762148.75	4092492.31	3.20E-05	3.48E-05	1.23E-05	4.99E-06	5.65E-06	1.95E-06	2.67E-06	2.65E-06	8.15E-07
2387	762140.26	4092469.62	3.14E-05	3.41E-05	1.21E-05	4.90E-06	5.54E-06	1.91E-06	2.62E-06	2.60E-06	7.99E-07
2388	763783.08	4094209.39	4.53E-05	4.93E-05	1.75E-05	7.08E-06	8.01E-06	2.76E-06	3.79E-06	3.76E-06	1.16E-06
2389	763807.66	4094210.07	4.53E-05	4.93E-05	1.75E-05	7.08E-06	8.01E-06	2.76E-06	3.79E-06	3.76E-06	1.16E-06
2390	763832.25	4094210.76	4.53E-05	4.93E-05	1.75E-05	7.08E-06	8.01E-06	2.76E-06	3.79E-06	3.76E-06	1.16E-06
2391	763856.83	4094211.45	4.53E-05	4.93E-05	1.75E-05	7.08E-06	8.01E-06	2.76E-06	3.78E-06	3.76E-06	1.15E-06
2392	763881.42	4094212.14	4.53E-05	4.93E-05	1.74E-05	7.07E-06	8.00E-06	2.75E-06	3.78E-06	3.76E-06	1.15E-06
2393	763906	4094212.82	4.52E-05	4.92E-05	1.74E-05	7.05E-06	7.98E-06	2.75E-06	3.77E-06	3.75E-06	1.15E-06
2394	763930.58	4094213.51	4.50E-05	4.90E-05	1.73E-05	7.03E-06	7.95E-06	2.74E-06	3.76E-06	3.74E-06	1.15E-06
2395	763955.17	4094214.2	4.48E-05	4.88E-05	1.73E-05	7.00E-06	7.92E-06	2.73E-06	3.74E-06	3.72E-06	1.14E-06
2396	763979.75	4094214.89	4.46E-05	4.85E-05	1.72E-05	6.96E-06	7.87E-06	2.71E-06	3.72E-06	3.70E-06	1.14E-06
2397	764004.34	4094215.57	4.42E-05	4.81E-05	1.70E-05	6.90E-06	7.81E-06	2.69E-06	3.69E-06	3.67E-06	1.13E-06
2398	764028.92	4094216.26	4.38E-05	4.77E-05	1.69E-05	6.84E-06	7.74E-06	2.67E-06	3.66E-06	3.64E-06	1.12E-06
2399	764053.51	4094216.95	4.34E-05	4.72E-05	1.67E-05	6.77E-06	7.66E-06	2.64E-06	3.62E-06	3.60E-06	1.11E-06
2400	764078.09	4094217.64	4.29E-05	4.67E-05	1.65E-05	6.70E-06	7.58E-06	2.61E-06	3.58E-06	3.56E-06	1.09E-06
2401	764102.68	4094218.32	4.23E-05	4.61E-05	1.63E-05	6.61E-06	7.48E-06	2.58E-06	3.54E-06	3.52E-06	1.08E-06
2402	764127.26	4094219.01	4.18E-05	4.55E-05	1.61E-05	6.53E-06	7.38E-06	2.54E-06	3.49E-06	3.47E-06	1.06E-06
2403	764151.84	4094219.7	4.12E-05	4.48E-05	1.59E-05	6.43E-06	7.28E-06	2.51E-06	3.44E-06	3.42E-06	1.05E-06
2404	764176.43	4094220.39	4.06E-05	4.42E-05	1.56E-05	6.34E-06	7.17E-06	2.47E-06	3.39E-06	3.37E-06	1.03E-06

T4

			4	764256.60	4092304.72									
						6.35E-07				1.01E-07				4.93E-08
	UTM X	UTM Y	Yr 1	Yr 2	Yr 3	Total	Yr 1	Yr 2	Yr 3	Total	Yr 1	Yr 2	Yr 3	Total
1	764254	4092377	2.43E-07	2.64E-07	9.35E-08	6.01E-07	3.79E-08	4.29E-08	1.48E-08	9.56E-08	2.03E-08	2.02E-08	6.19E-09	4.66E-08
2	764254.9	4092353	2.50E-07	2.72E-07	9.63E-08	6.18E-07	3.90E-08	4.42E-08	1.52E-08	9.84E-08	2.09E-08	2.08E-08	6.37E-09	4.80E-08
3	764255.8	4092329	2.55E-07	2.77E-07	9.80E-08	6.30E-07	3.98E-08	4.50E-08	1.55E-08	1.00E-07	2.13E-08	2.11E-08	6.49E-09	4.89E-08
4	764256.6	4092305	2.57E-07	2.80E-07	9.89E-08	6.35E-07	4.01E-08	4.54E-08	1.56E-08	1.01E-07	2.15E-08	2.13E-08	6.55E-09	4.93E-08
5	764257.5	4092281	2.57E-07	2.80E-07	9.89E-08	6.35E-07	4.01E-08	4.54E-08	1.56E-08	1.01E-07	2.14E-08	2.13E-08	6.54E-09	4.93E-08
6	764258.3	4092256	2.54E-07	2.76E-07	9.78E-08	6.28E-07	3.96E-08	4.49E-08	1.54E-08	9.99E-08	2.12E-08	2.11E-08	6.47E-09	4.87E-08
7	764259.2	4092232	2.47E-07	2.69E-07	9.50E-08	6.10E-07	3.85E-08	4.36E-08	1.50E-08	9.71E-08	2.06E-08	2.05E-08	6.29E-09	4.74E-08
8	764260	4092208	2.32E-07	2.52E-07	8.92E-08	5.73E-07	3.62E-08	4.09E-08	1.41E-08	9.12E-08	1.93E-08	1.92E-08	5.90E-09	4.45E-08
9	764279	4092378	1.66E-07	1.81E-07	6.40E-08	4.11E-07	2.60E-08	2.94E-08	1.01E-08	6.55E-08	1.39E-08	1.38E-08	4.24E-09	3.19E-08
10	764279.9	4092354	1.74E-07	1.89E-07	6.69E-08	4.30E-07	2.71E-08	3.07E-08	1.06E-08	6.84E-08	1.45E-08	1.44E-08	4.42E-09	3.33E-08
11	764280.7	4092330	1.79E-07	1.95E-07	6.88E-08	4.42E-07	2.79E-08	3.16E-08	1.09E-08	7.04E-08	1.49E-08	1.48E-08	4.55E-09	3.43E-08
12	764281.6	4092306	1.82E-07	1.98E-07	7.00E-08	4.49E-07	2.84E-08	3.21E-08	1.11E-08	7.15E-08	1.52E-08	1.51E-08	4.63E-09	3.49E-08
13	764282.4	4092281	1.83E-07	1.99E-07	7.03E-08	4.52E-07	2.85E-08	3.23E-08	1.11E-08	7.19E-08	1.52E-08	1.52E-08	4.65E-09	3.51E-08
14	764283.3	4092257	1.81E-07	1.97E-07	6.98E-08	4.48E-07	2.83E-08	3.20E-08	1.10E-08	7.14E-08	1.51E-08	1.50E-08	4.62E-09	3.48E-08
15	764284.1	4092233	1.77E-07	1.93E-07	6.82E-08	4.38E-07	2.77E-08	3.13E-08	1.08E-08	6.97E-08	1.48E-08	1.47E-08	4.51E-09	3.40E-08
16	764285	4092209	1.68E-07	1.83E-07	6.49E-08	4.17E-07	2.63E-08	2.98E-08	1.02E-08	6.63E-08	1.41E-08	1.40E-08	4.29E-09	3.23E-08
17	764304	4092379	1.22E-07	1.32E-07	4.68E-08	3.01E-07	1.90E-08	2.15E-08	7.39E-09	4.78E-08	1.01E-08	1.01E-08	3.10E-09	2.33E-08
18	764304.9	4092355	1.29E-07	1.40E-07	4.96E-08	3.19E-07	2.01E-08	2.28E-08	7.84E-09	5.07E-08	1.08E-08	1.07E-08	3.28E-09	2.47E-08
19	764305.7	4092331	1.34E-07	1.46E-07	5.17E-08	3.32E-07	2.09E-08	2.37E-08	8.16E-09	5.28E-08	1.12E-08	1.11E-08	3.42E-09	2.58E-08
20	764306.6	4092306	1.38E-07	1.50E-07	5.30E-08	3.40E-07	2.15E-08	2.43E-08	8.37E-09	5.42E-08	1.15E-08	1.14E-08	3.50E-09	2.64E-08
21	764307.4	4092282	1.39E-07	1.52E-07	5.36E-08	3.44E-07	2.18E-08	2.46E-08	8.47E-09	5.48E-08	1.16E-08	1.16E-08	3.55E-09	2.67E-08
22	764308.3	4092258	1.39E-07	1.51E-07	5.36E-08	3.44E-07	2.17E-08	2.46E-08	8.46E-09	5.48E-08	1.16E-08	1.15E-08	3.54E-09	2.67E-08
23	764309.1	4092234	1.37E-07	1.49E-07	5.27E-08	3.39E-07	2.14E-08	2.42E-08	8.33E-09	5.39E-08	1.14E-08	1.14E-08	3.49E-09	2.63E-08
24	764310	4092210	1.32E-07	1.43E-07	5.07E-08	3.26E-07	2.06E-08	2.33E-08	8.02E-09	5.19E-08	1.10E-08	1.09E-08	3.36E-09	2.53E-08
25	764329	4092380	9.24E-08	1.01E-07	3.56E-08	2.29E-07	1.44E-08	1.63E-08	5.62E-09	3.64E-08	7.72E-09	7.67E-09	2.36E-09	1.77E-08
26	764329.9	4092356	9.95E-08	1.08E-07	3.83E-08	2.46E-07	1.55E-08	1.76E-08	6.05E-09	3.92E-08	8.31E-09	8.26E-09	2.53E-09	1.91E-08
27	764330.7	4092332	1.05E-07	1.14E-07	4.04E-08	2.59E-07	1.64E-08	1.85E-08	6.38E-09	4.13E-08	8.75E-09	8.70E-09	2.67E-09	2.01E-08
28	764331.6	4092307	1.08E-07	1.18E-07	4.18E-08	2.68E-07	1.69E-08	1.92E-08	6.60E-09	4.27E-08	9.06E-09	9.01E-09	2.76E-09	2.08E-08
29	764332.4	4092283	1.11E-07	1.21E-07	4.26E-08	2.74E-07	1.73E-08	1.96E-08	6.74E-09	4.36E-08	9.24E-09	9.19E-09	2.82E-09	2.13E-08
30	764333.3	4092259	1.11E-07	1.21E-07	4.29E-08	2.76E-07	1.74E-08	1.97E-08	6.78E-09	4.39E-08	9.30E-09	9.25E-09	2.84E-09	2.14E-08
31	764334.1	4092235	1.10E-07	1.20E-07	4.25E-08	2.73E-07	1.73E-08	1.95E-08	6.72E-09	4.35E-08	9.22E-09	9.17E-09	2.81E-09	2.12E-08
32	764335	4092211	1.07E-07	1.17E-07	4.14E-08	2.66E-07	1.68E-08	1.90E-08	6.54E-09	4.23E-08	8.97E-09	8.92E-09	2.74E-09	2.06E-08
33	764377.3	4092430	4.36E-08	4.74E-08	1.68E-08	1.08E-07	6.81E-09	7.70E-09	2.65E-09	1.72E-08	3.64E-09	3.62E-09	1.11E-09	8.37E-09
34	764378.1	4092406	5.08E-08	5.53E-08	1.96E-08	1.26E-07	7.94E-09	8.98E-09	3.09E-09	2.00E-08	4.24E-09	4.22E-09	1.29E-09	9.76E-09
35	764379	4092382	5.75E-08	6.26E-08	2.22E-08	1.42E-07	8.98E-09	1.02E-08	3.50E-09	2.26E-08	4.80E-09	4.78E-09	1.47E-09	1.10E-08
36	764379.8	4092357	6.34E-08	6.90E-08	2.44E-08	1.57E-07	9.90E-09	1.12E-08	3.86E-09	2.50E-08	5.29E-09	5.26E-09	1.62E-09	1.22E-08
37	764380.7	4092333	6.83E-08	7.43E-08	2.63E-08	1.69E-07	1.07E-08	1.21E-08	4.15E-09	2.69E-08	5.70E-09	5.67E-09	1.74E-09	1.31E-08
38	764381.5	4092309	7.21E-08	7.85E-08	2.78E-08	1.78E-07	1.13E-08	1.27E-08	4.39E-09	2.84E-08	6.02E-09	5.99E-09	1.84E-09	1.38E-08
39	764382.4	4092285	7.49E-08	8.15E-08	2.88E-08	1.85E-07	1.17E-08	1.32E-08	4.56E-09	2.95E-08	6.25E-09	6.22E-09	1.91E-09	1.44E-08
40	764383.2	4092261	7.66E-08	8.34E-08	2.95E-08	1.89E-07	1.20E-08	1.35E-08	4.66E-09	3.02E-08	6.40E-09	6.36E-09	1.95E-09	1.47E-08

41	764384.1	4092237	7.72E-08	8.40E-08	2.97E-08	1.91E-07	1.21E-08	1.36E-08	4.70E-09	3.04E-08	6.45E-09	6.41E-09	1.97E-09	1.48E-08
42	764384.9	4092213	7.65E-08	8.33E-08	2.95E-08	1.89E-07	1.20E-08	1.35E-08	4.66E-09	3.01E-08	6.39E-09	6.35E-09	1.95E-09	1.47E-08
43	764385.8	4092188	7.44E-08	8.10E-08	2.87E-08	1.84E-07	1.16E-08	1.32E-08	4.53E-09	2.93E-08	6.22E-09	6.18E-09	1.90E-09	1.43E-08
44	764424.7	4092504	1.77E-08	1.93E-08	6.82E-09	4.38E-08	2.77E-09	3.13E-09	1.08E-09	6.98E-09	1.48E-09	1.47E-09	4.52E-10	3.40E-09
45	764425.5	4092480	2.09E-08	2.27E-08	8.05E-09	5.17E-08	3.26E-09	3.69E-09	1.27E-09	8.23E-09	1.75E-09	1.74E-09	5.33E-10	4.01E-09
46	764426.4	4092456	2.47E-08	2.69E-08	9.51E-09	6.11E-08	3.86E-09	4.37E-09	1.50E-09	9.73E-09	2.06E-09	2.05E-09	6.29E-10	4.74E-09
47	764427.2	4092432	2.90E-08	3.16E-08	1.12E-08	7.18E-08	4.54E-09	5.13E-09	1.77E-09	1.14E-08	2.43E-09	2.41E-09	7.40E-10	5.58E-09
48	764428.1	4092407	3.37E-08	3.67E-08	1.30E-08	8.34E-08	5.27E-09	5.96E-09	2.05E-09	1.33E-08	2.82E-09	2.80E-09	8.59E-10	6.47E-09
49	764428.9	4092383	3.84E-08	4.18E-08	1.48E-08	9.50E-08	6.00E-09	6.79E-09	2.34E-09	1.51E-08	3.21E-09	3.19E-09	9.79E-10	7.38E-09
50	764429.8	4092359	4.29E-08	4.67E-08	1.65E-08	1.06E-07	6.70E-09	7.58E-09	2.61E-09	1.69E-08	3.58E-09	3.56E-09	1.09E-09	8.24E-09
51	764430.6	4092335	4.69E-08	5.11E-08	1.81E-08	1.16E-07	7.33E-09	8.29E-09	2.86E-09	1.85E-08	3.92E-09	3.90E-09	1.20E-09	9.01E-09
52	764431.5	4092311	5.04E-08	5.49E-08	1.94E-08	1.25E-07	7.87E-09	8.91E-09	3.07E-09	1.99E-08	4.21E-09	4.19E-09	1.28E-09	9.68E-09
53	764432.3	4092287	5.32E-08	5.79E-08	2.05E-08	1.32E-07	8.31E-09	9.40E-09	3.24E-09	2.10E-08	4.44E-09	4.42E-09	1.36E-09	1.02E-08
54	764433.2	4092263	5.53E-08	6.02E-08	2.13E-08	1.37E-07	8.64E-09	9.77E-09	3.37E-09	2.18E-08	4.62E-09	4.59E-09	1.41E-09	1.06E-08
55	764434	4092238	5.66E-08	6.16E-08	2.18E-08	1.40E-07	8.84E-09	1.00E-08	3.44E-09	2.23E-08	4.73E-09	4.70E-09	1.44E-09	1.09E-08
56	764434.9	4092214	5.71E-08	6.21E-08	2.20E-08	1.41E-07	8.91E-09	1.01E-08	3.47E-09	2.25E-08	4.77E-09	4.74E-09	1.45E-09	1.10E-08
57	764435.8	4092190	5.66E-08	6.16E-08	2.18E-08	1.40E-07	8.84E-09	1.00E-08	3.44E-09	2.23E-08	4.73E-09	4.70E-09	1.44E-09	1.09E-08
58	764464	4092552	1.11E-08	1.21E-08	4.27E-09	2.74E-08	1.73E-09	1.96E-09	6.74E-10	4.36E-09	9.25E-10	9.20E-10	2.82E-10	2.13E-09
59	764454.1	4092573	1.03E-08	1.12E-08	3.96E-09	2.54E-08	1.61E-09	1.82E-09	6.26E-10	4.05E-09	8.58E-10	8.53E-10	2.62E-10	1.97E-09
60	764444.3	4092595	9.56E-09	1.04E-08	3.68E-09	2.37E-08	1.49E-09	1.69E-09	5.82E-10	3.77E-09	7.99E-10	7.94E-10	2.44E-10	1.84E-09
61	764434.4	4092617	8.92E-09	9.71E-09	3.43E-09	2.21E-08	1.39E-09	1.58E-09	5.43E-10	3.51E-09	7.45E-10	7.40E-10	2.27E-10	1.71E-09
62	764424.6	4092638	8.32E-09	9.06E-09	3.20E-09	2.06E-08	1.30E-09	1.47E-09	5.06E-10	3.28E-09	6.95E-10	6.91E-10	2.12E-10	1.60E-09
63	764473.8	4092530	1.20E-08	1.30E-08	4.61E-09	2.96E-08	1.87E-09	2.11E-09	7.28E-10	4.71E-09	9.99E-10	9.94E-10	3.05E-10	2.30E-09
64	764474.7	4092506	1.37E-08	1.49E-08	5.26E-09	3.38E-08	2.13E-09	2.41E-09	8.32E-10	5.38E-09	1.14E-09	1.13E-09	3.48E-10	2.62E-09
65	764475.5	4092482	1.57E-08	1.71E-08	6.05E-09	3.88E-08	2.45E-09	2.77E-09	9.55E-10	6.18E-09	1.31E-09	1.30E-09	4.00E-10	3.01E-09
66	764476.4	4092457	1.81E-08	1.97E-08	6.97E-09	4.48E-08	2.83E-09	3.20E-09	1.10E-09	7.13E-09	1.51E-09	1.50E-09	4.61E-10	3.48E-09
67	764477.2	4092433	2.09E-08	2.27E-08	8.04E-09	5.16E-08	3.26E-09	3.69E-09	1.27E-09	8.21E-09	1.74E-09	1.73E-09	5.32E-10	4.01E-09
68	764478.1	4092409	2.39E-08	2.60E-08	9.21E-09	5.92E-08	3.74E-09	4.23E-09	1.46E-09	9.42E-09	2.00E-09	1.99E-09	6.10E-10	4.59E-09
69	764478.9	4092385	2.72E-08	2.96E-08	1.05E-08	6.72E-08	4.24E-09	4.80E-09	1.65E-09	1.07E-08	2.27E-09	2.26E-09	6.92E-10	5.22E-09
70	764479.8	4092361	3.04E-08	3.31E-08	1.17E-08	7.53E-08	4.75E-09	5.38E-09	1.85E-09	1.20E-08	2.54E-09	2.53E-09	7.76E-10	5.84E-09
71	764480.6	4092337	3.36E-08	3.66E-08	1.29E-08	8.31E-08	5.25E-09	5.93E-09	2.04E-09	1.32E-08	2.80E-09	2.79E-09	8.56E-10	6.45E-09
72	764481.5	4092313	3.65E-08	3.97E-08	1.41E-08	9.03E-08	5.70E-09	6.45E-09	2.22E-09	1.44E-08	3.05E-09	3.03E-09	9.30E-10	7.01E-09
73	764482.3	4092289	3.90E-08	4.25E-08	1.50E-08	9.65E-08	6.09E-09	6.89E-09	2.37E-09	1.54E-08	3.26E-09	3.24E-09	9.94E-10	7.49E-09
74	764483.2	4092264	4.11E-08	4.47E-08	1.58E-08	1.02E-07	6.42E-09	7.26E-09	2.50E-09	1.62E-08	3.43E-09	3.41E-09	1.05E-09	7.89E-09
75	764484	4092240	4.26E-08	4.64E-08	1.64E-08	1.05E-07	6.66E-09	7.53E-09	2.59E-09	1.68E-08	3.56E-09	3.54E-09	1.09E-09	8.19E-09
76	764484.9	4092216	4.36E-08	4.75E-08	1.68E-08	1.08E-07	6.81E-09	7.71E-09	2.65E-09	1.72E-08	3.64E-09	3.62E-09	1.11E-09	8.37E-09
77	764485.7	4092192	4.40E-08	4.79E-08	1.69E-08	1.09E-07	6.87E-09	7.77E-09	2.68E-09	1.73E-08	3.67E-09	3.65E-09	1.12E-09	8.44E-09
78	764514.3	4092552	9.11E-09	9.92E-09	3.51E-09	2.25E-08	1.42E-09	1.61E-09	5.55E-10	3.59E-09	7.61E-10	7.57E-10	2.32E-10	1.75E-09
79	764504.9	4092573	8.57E-09	9.33E-09	3.30E-09	2.12E-08	1.34E-09	1.51E-09	5.22E-10	3.38E-09	7.16E-10	7.12E-10	2.18E-10	1.65E-09
		4092594	8.07E-09	8.78E-09	3.11E-09	1.99E-08	1.26E-09		4.91E-10			6.70E-10		
81	764486	4092615	7.60E-09	8.28E-09	2.93E-09	1.88E-08		1.34E-09				6.31E-10		
82	764476.5	4092636	7.18E-09	7.81E-09	2.76E-09	1.78E-08		1.27E-09				5.96E-10		
83	764467.1	4092657	6.78E-09	7.38E-09	2.61E-09	1.68E-08		1.20E-09				5.63E-10		
	764457.6	4092677	6.40E-09	6.97E-09	2.47E-09	1.58E-08		1.13E-09				5.31E-10		
			21.12.								2.22-29	2.2. 2.	0	

85	764448.2	4092698	6.04E-09	6.57E-09	2.33E-09	1.49E-08	9.43E-10	1.07E-09		2.38E-09	5.04E-10		1.54E-10	
86	764438.7	4092719	5.69E-09	6.19E-09	2.19E-09	1.41E-08	8.89E-10	1.01E-09		2.24E-09	4.75E-10	4.72E-10	1.45E-10	
87	764258.3	4092805	5.55E-09	6.05E-09	2.14E-09	1.37E-08	8.67E-10	9.81E-10		2.19E-09	4.64E-10	4.61E-10	1.42E-10	
88	764236.9	4092813	5.56E-09	6.05E-09	2.14E-09	1.38E-08	8.68E-10	9.82E-10		2.19E-09	4.64E-10	4.62E-10	1.42E-10	
89	764523.8	4092532	9.71E-09	1.06E-08	3.74E-09	2.40E-08	1.52E-09	1.72E-09		3.82E-09	8.11E-10	8.06E-10	2.47E-10	
90	764524.6	4092507	1.09E-08	1.19E-08	4.20E-09	2.70E-08	1.70E-09	1.93E-09	6.64E-10	4.30E-09	9.12E-10	9.06E-10	2.78E-10	2.10E-09
91	764525.5	4092483	1.23E-08	1.34E-08	4.75E-09	3.05E-08	1.93E-09	2.18E-09		4.85E-09	1.03E-09	1.02E-09	3.14E-10	
92	764526.3	4092459	1.39E-08	1.52E-08	5.37E-09	3.45E-08	2.18E-09	2.46E-09	8.48E-10	5.49E-09	1.16E-09	1.16E-09	3.55E-10	2.68E-09
93	764527.2	4092435	1.58E-08	1.72E-08	6.08E-09	3.91E-08	2.47E-09	2.79E-09	9.61E-10	6.22E-09	1.32E-09	1.31E-09	4.02E-10	3.03E-09
94	764528	4092411	1.79E-08	1.94E-08	6.88E-09	4.42E-08	2.79E-09	3.16E-09	1.09E-09	7.03E-09	1.49E-09	1.48E-09	4.55E-10	3.43E-09
95	764528.9	4092387	2.01E-08	2.19E-08	7.75E-09	4.98E-08	3.14E-09	3.55E-09	1.22E-09	7.92E-09	1.68E-09	1.67E-09	5.13E-10	3.86E-09
96	764529.7	4092363	2.25E-08	2.45E-08	8.66E-09	5.56E-08	3.51E-09	3.97E-09	1.37E-09	8.85E-09	1.88E-09	1.87E-09	5.73E-10	4.32E-09
97	764530.6	4092339	2.49E-08	2.71E-08	9.57E-09	6.15E-08	3.88E-09	4.39E-09	1.51E-09	9.79E-09	2.08E-09	2.06E-09	6.34E-10	4.77E-09
98	764531.4	4092314	2.72E-08	2.96E-08	1.05E-08	6.72E-08	4.24E-09	4.80E-09	1.65E-09	1.07E-08	2.27E-09	2.26E-09	6.92E-10	5.22E-09
99	764532.3	4092290	2.93E-08	3.19E-08	1.13E-08	7.25E-08	4.58E-09	5.18E-09	1.78E-09	1.15E-08	2.45E-09	2.43E-09	7.47E-10	5.63E-09
100	764533.1	4092266	3.12E-08	3.39E-08	1.20E-08	7.71E-08	4.87E-09	5.51E-09	1.90E-09	1.23E-08	2.60E-09	2.59E-09	7.94E-10	5.98E-09
101	764534	4092242	3.27E-08	3.56E-08	1.26E-08	8.09E-08	5.11E-09	5.78E-09	1.99E-09	1.29E-08	2.73E-09	2.72E-09	8.34E-10	6.28E-09
102	764534.8	4092218	3.39E-08	3.69E-08	1.30E-08	8.38E-08	5.29E-09	5.99E-09	2.06E-09	1.33E-08	2.83E-09	2.81E-09	8.63E-10	6.51E-09
103	764535.7	4092194	3.46E-08	3.77E-08	1.33E-08	8.56E-08	5.41E-09	6.12E-09	2.11E-09	1.36E-08	2.89E-09	2.87E-09	8.82E-10	6.65E-09
104	764614	4092557	6.47E-09	7.05E-09	2.49E-09	1.60E-08	1.01E-09	1.14E-09	3.94E-10	2.55E-09	5.41E-10	5.38E-10	1.65E-10	1.24E-09
105	764604.3	4092578	6.15E-09	6.69E-09	2.37E-09	1.52E-08	9.60E-10	1.09E-09	3.74E-10	2.42E-09	5.13E-10	5.10E-10	1.57E-10	1.18E-09
106	764594.6	4092599	5.84E-09	6.36E-09	2.25E-09	1.45E-08	9.13E-10	1.03E-09	3.56E-10	2.30E-09	4.88E-10	4.85E-10	1.49E-10	1.12E-09
107	764584.9	4092621	5.56E-09	6.06E-09	2.14E-09	1.38E-08	8.69E-10	9.83E-10	3.39E-10	2.19E-09	4.65E-10	4.62E-10	1.42E-10	1.07E-09
108	764575.2	4092642	5.31E-09	5.78E-09	2.04E-09	1.31E-08	8.29E-10	9.38E-10	3.23E-10	2.09E-09	4.43E-10	4.41E-10	1.35E-10	1.02E-09
109	764565.6	4092663	5.07E-09	5.52E-09	1.95E-09	1.25E-08	7.91E-10	8.95E-10	3.08E-10	2.00E-09	4.23E-10	4.21E-10	1.29E-10	9.73E-10
110	764555.9	4092685	4.84E-09	5.27E-09	1.86E-09	1.20E-08	7.56E-10	8.56E-10	2.95E-10	1.91E-09	4.04E-10	4.02E-10	1.23E-10	9.30E-10
111	764546.2	4092706	4.63E-09	5.04E-09	1.78E-09	1.14E-08	7.23E-10	8.18E-10	2.82E-10	1.82E-09	3.86E-10	3.84E-10	1.18E-10	8.88E-10
112	764536.5	4092727	4.42E-09	4.81E-09	1.70E-09	1.09E-08	6.91E-10	7.81E-10	2.69E-10	1.74E-09	3.69E-10	3.67E-10	1.13E-10	8.49E-10
113	764526.8	4092749	4.22E-09	4.60E-09	1.63E-09	1.04E-08	6.60E-10	7.46E-10	2.57E-10	1.66E-09	3.53E-10	3.51E-10	1.08E-10	8.11E-10
114	764517.1	4092770	4.03E-09	4.38E-09	1.55E-09	9.96E-09	6.29E-10	7.12E-10	2.45E-10	1.59E-09	3.36E-10	3.34E-10	1.03E-10	7.73E-10
115	764432	4092838	3.75E-09	4.09E-09	1.45E-09	9.28E-09	5.86E-10	6.63E-10	2.28E-10	1.48E-09	3.13E-10	3.12E-10	9.56E-11	7.21E-10
116	764410	4092846	3.77E-09	4.10E-09	1.45E-09	9.32E-09	5.88E-10	6.66E-10	2.29E-10	1.48E-09	3.15E-10	3.13E-10	9.60E-11	7.23E-10
117	764388.1	4092854	3.77E-09	4.11E-09	1.45E-09	9.33E-09	5.89E-10	6.67E-10	2.30E-10	1.49E-09	3.15E-10	3.13E-10	9.61E-11	7.24E-10
118	764366.2	4092863	3.77E-09	4.10E-09	1.45E-09	9.32E-09	5.89E-10	6.66E-10	2.29E-10	1.48E-09	3.15E-10	3.13E-10	9.60E-11	7.24E-10
119	764344.3	4092871	3.76E-09	4.09E-09	1.45E-09	9.30E-09	5.87E-10	6.64E-10	2.29E-10	1.48E-09	3.14E-10	3.12E-10	9.58E-11	7.22E-10
120	764322.4	4092879	3.75E-09	4.09E-09	1.45E-09	9.28E-09	5.86E-10	6.63E-10	2.28E-10	1.48E-09	3.13E-10	3.12E-10	9.56E-11	7.21E-10
121	764300.4	4092888	3.75E-09	4.08E-09	1.44E-09	9.28E-09	5.86E-10	6.63E-10	2.28E-10	1.48E-09	3.13E-10	3.11E-10	9.56E-11	7.20E-10
122	764278.5	4092896	3.74E-09	4.08E-09	1.44E-09	9.26E-09	5.85E-10	6.62E-10	2.28E-10	1.47E-09	3.13E-10	3.11E-10	9.54E-11	7.19E-10
123	764256.6	4092904	3.74E-09	4.08E-09	1.44E-09	9.26E-09	5.85E-10	6.62E-10	2.28E-10	1.47E-09	3.13E-10	3.11E-10	9.54E-11	7.19E-10
	764234.7	4092913	3.75E-09	4.08E-09	1.44E-09	9.27E-09	5.86E-10		2.28E-10			3.11E-10		
	764623.7	4092535	6.83E-09	7.43E-09	2.63E-09	1.69E-08		1.21E-09				5.67E-10		
	764624.6	4092511	7.50E-09	8.17E-09	2.89E-09	1.86E-08		1.33E-09				6.23E-10		
	764625.4	4092487	8.27E-09	9.00E-09	3.19E-09	2.05E-08		1.46E-09				6.87E-10		
	764626.3		9.13E-09	9.93E-09	3.51E-09	2.26E-08		1.61E-09				7.58E-10		
	2.220.3		2.== 2.0						2.22 2 20					=

129	764627.1	4092439	1.01E-08	1.10E-08	3.88E-09	2.49E-08	1.57E-09	1.78E-09		3.97E-09	8.41E-10	8.36E-10	2.57E-10	
130	764628	4092414	1.11E-08	1.21E-08	4.29E-09	2.75E-08	1.74E-09	1.97E-09		4.38E-09	9.30E-10	9.25E-10		2.14E-09
131	764628.8	4092390	1.23E-08	1.34E-08	4.74E-09	3.04E-08	1.92E-09	2.17E-09		4.84E-09	1.03E-09	1.02E-09		2.36E-09
132	764629.7	4092366	1.36E-08	1.48E-08	5.22E-09	3.36E-08	2.12E-09	2.40E-09		5.34E-09	1.13E-09	1.13E-09		2.60E-09
133	764630.5	4092342	1.49E-08	1.62E-08	5.74E-09	3.69E-08	2.33E-09	2.63E-09		5.87E-09	1.24E-09	1.24E-09		2.86E-09
134	764631.4	4092318	1.63E-08	1.77E-08	6.27E-09	4.02E-08	2.54E-09	2.87E-09		6.41E-09	1.36E-09	1.35E-09	4.15E-10	3.12E-09
135	764632.2	4092294	1.76E-08	1.92E-08	6.79E-09	4.36E-08	2.75E-09	3.12E-09	1.07E-09	6.94E-09	1.47E-09	1.46E-09	4.49E-10	3.39E-09
136	764633.1	4092270	1.90E-08	2.06E-08	7.30E-09	4.69E-08	2.96E-09	3.35E-09	1.15E-09	7.46E-09	1.58E-09	1.57E-09	4.83E-10	3.64E-09
137	764633.9	4092246	2.02E-08	2.20E-08	7.77E-09	4.99E-08	3.15E-09	3.56E-09	1.23E-09	7.94E-09	1.68E-09	1.67E-09	5.14E-10	3.87E-09
138	764634.8	4092221	2.12E-08	2.31E-08	8.18E-09	5.26E-08	3.32E-09	3.75E-09	1.29E-09	8.37E-09	1.77E-09	1.76E-09	5.41E-10	4.08E-09
139	764635.6	4092197	2.22E-08	2.41E-08	8.53E-09	5.48E-08	3.46E-09	3.91E-09	1.35E-09	8.72E-09	1.85E-09	1.84E-09	5.64E-10	4.25E-09
140	764713.8	4092560	4.90E-09	5.34E-09	1.89E-09	1.21E-08	7.66E-10	8.66E-10	2.98E-10	1.93E-09	4.09E-10	4.07E-10	1.25E-10	9.41E-10
141	764704	4092582	4.69E-09	5.10E-09	1.80E-09	1.16E-08	7.32E-10	8.28E-10	2.85E-10	1.85E-09	3.91E-10	3.89E-10	1.19E-10	9.00E-10
142	764694.1	4092604	4.49E-09	4.88E-09	1.73E-09	1.11E-08	7.01E-10	7.93E-10	2.73E-10	1.77E-09	3.75E-10	3.73E-10	1.14E-10	8.61E-10
143	764684.3	4092625	4.30E-09	4.68E-09	1.66E-09	1.06E-08	6.72E-10	7.60E-10	2.62E-10	1.69E-09	3.59E-10	3.57E-10	1.10E-10	8.26E-10
144	764674.4	4092647	4.13E-09	4.50E-09	1.59E-09	1.02E-08	6.46E-10	7.30E-10	2.51E-10	1.63E-09	3.45E-10	3.43E-10	1.05E-10	7.94E-10
145	764664.6	4092669	3.97E-09	4.33E-09	1.53E-09	9.83E-09	6.21E-10	7.02E-10	2.42E-10	1.56E-09	3.32E-10	3.30E-10	1.01E-10	7.63E-10
146	764654.7	4092690	3.82E-09	4.16E-09	1.47E-09	9.46E-09	5.97E-10	6.76E-10	2.33E-10	1.51E-09	3.19E-10	3.18E-10	9.75E-11	7.34E-10
147	764644.9	4092712	3.68E-09	4.01E-09	1.42E-09	9.11E-09	5.75E-10	6.51E-10	2.24E-10	1.45E-09	3.08E-10	3.06E-10	9.39E-11	7.07E-10
148	764635.1	4092734	3.55E-09	3.86E-09	1.37E-09	8.78E-09	5.54E-10	6.27E-10	2.16E-10	1.40E-09	2.96E-10	2.95E-10	9.04E-11	6.81E-10
149	764625.2	4092756	3.42E-09	3.72E-09	1.32E-09	8.46E-09	5.34E-10	6.05E-10	2.08E-10	1.35E-09	2.86E-10	2.84E-10	8.72E-11	6.57E-10
150	764615.4	4092777	3.29E-09	3.59E-09	1.27E-09	8.15E-09	5.15E-10	5.82E-10	2.00E-10	1.30E-09	2.75E-10	2.73E-10	8.39E-11	6.33E-10
151	764605.5	4092799	3.17E-09	3.45E-09	1.22E-09	7.83E-09	4.95E-10	5.59E-10	1.93E-10	1.25E-09	2.64E-10	2.63E-10	8.07E-11	6.08E-10
152	764595.7	4092821	3.04E-09	3.31E-09	1.17E-09	7.52E-09	4.75E-10	5.37E-10	1.85E-10	1.20E-09	2.54E-10	2.52E-10	7.75E-11	5.84E-10
153	764585.8	4092842	2.92E-09	3.18E-09	1.12E-09	7.22E-09	4.56E-10	5.16E-10	1.78E-10	1.15E-09	2.44E-10	2.42E-10	7.44E-11	5.60E-10
154	764576	4092864	2.80E-09	3.05E-09	1.08E-09	6.92E-09	4.37E-10	4.94E-10		1.10E-09	2.34E-10	2.32E-10	7.13E-11	5.37E-10
155	764543.9	4092894	2.71E-09	2.95E-09	1.04E-09	6.70E-09	4.23E-10	4.79E-10	1.65E-10		2.26E-10	2.25E-10		5.20E-10
156	764521.6	4092903	2.73E-09	2.97E-09	1.05E-09	6.75E-09	4.26E-10	4.82E-10		1.07E-09	2.28E-10	2.27E-10		5.24E-10
157	764499.4	4092911	2.75E-09	2.99E-09	1.06E-09	6.79E-09	4.29E-10	4.85E-10		1.08E-09	2.29E-10	2.28E-10	7.00E-11	
158	764477.1	4092919	2.76E-09	3.00E-09	1.06E-09	6.82E-09	4.31E-10	4.87E-10	1.68E-10		2.30E-10	2.29E-10	7.03E-11	
159	764454.9	4092928	2.76E-09	3.01E-09	1.06E-09	6.83E-09	4.31E-10	4.88E-10	1.68E-10		2.31E-10	2.29E-10	7.04E-11	
160	764432.6	4092936	2.76E-09	3.01E-09	1.06E-09	6.83E-09	4.32E-10	4.88E-10	1.68E-10		2.31E-10	2.29E-10	7.04E-11	
161	764410.3	4092945	2.76E-09	3.00E-09	1.06E-09	6.83E-09	4.31E-10	4.88E-10		1.09E-09	2.30E-10	2.29E-10		5.30E-10
162	764388.1	4092953	2.75E-09	3.00E-09	1.06E-09	6.81E-09	4.30E-10	4.86E-10	1.67E-10		2.30E-10	2.29E-10	7.01E-11	
	764365.8		2.74E-09	2.99E-09	1.06E-09	6.79E-09		4.85E-10				2.28E-10		
	764343.5		2.74E-09	2.98E-09	1.05E-09	6.77E-09		4.83E-10				2.27E-10		
	764321.3	4092979	2.73E-09	2.97E-09	1.05E-09	6.74E-09	4.26E-10					2.26E-10		
166	764299	4092987	2.72E-09	2.96E-09	1.05E-09	6.73E-09	4.25E-10		1.66E-10			2.26E-10		
	764276.8	4092995	2.72E-09	2.96E-09	1.05E-09	6.72E-09	4.24E-10	4.80E-10	1.65E-10			2.25E-10		
	764254.5		2.72E-03 2.71E-09	2.95E-09	1.05E-09	6.71E-09	4.24E-10		1.65E-10			2.25E-10 2.25E-10		
	764234.3		2.71E-09 2.72E-09	2.96E-09	1.05E-09	6.72E-09	4.24E-10 4.24E-10		1.65E-10			2.25E-10 2.26E-10		
	764723.6	4093012	5.13E-09	5.59E-09	1.98E-09	1.27E-08		9.07E-10				4.26E-10		
	764724.5	4092515	5.55E-09	6.04E-09	2.14E-09	1.37E-08	8.66E-10		3.38E-10			4.20E-10 4.61E-10		
	764724.3		6.00E-09	6.53E-09	2.14E-09 2.31E-09	1.48E-08		1.06E-09				4.98E-10		
1/2	104123.3	4032430	0.006-09	0.336-03	2.316-09	1.405-00	3.3/E-10	T.00E-09	3.03E-10	2.30E-03	3.01E-10	4.306-10	T.33E-10	1.136-09

173	764726.2	4092466	6.50E-09	7.08E-09	2.51E-09	1.61E-08	1.02E-09	1.15E-09	3.96E-10	2.56E-09	5.43E-10	5.40E-10	1.66E-10	1.25E-09
174	764727	4092442	7.07E-09	7.70E-09	2.72E-09	1.75E-08	1.10E-09	1.25E-09	4.30E-10	2.78E-09	5.91E-10	5.87E-10	1.80E-10	1.36E-09
175	764727.9	4092418	7.68E-09	8.36E-09	2.96E-09	1.90E-08	1.20E-09	1.36E-09	4.68E-10	3.03E-09	6.42E-10	6.38E-10	1.96E-10	1.48E-09
176	764728.8	4092394	8.35E-09	9.09E-09	3.22E-09	2.07E-08	1.30E-09	1.48E-09	5.08E-10	3.29E-09	6.97E-10	6.93E-10	2.13E-10	1.60E-09
177	764729.6	4092370	9.08E-09	9.88E-09	3.50E-09	2.24E-08	1.42E-09	1.60E-09	5.52E-10	3.57E-09	7.58E-10	7.53E-10	2.31E-10	1.74E-09
178	764730.5	4092346	9.85E-09	1.07E-08	3.79E-09	2.44E-08	1.54E-09	1.74E-09	5.99E-10	3.88E-09	8.22E-10	8.18E-10	2.51E-10	1.89E-09
179	764731.3	4092321	1.07E-08	1.16E-08	4.11E-09	2.64E-08	1.67E-09	1.88E-09	6.49E-10	4.20E-09	8.91E-10	8.85E-10	2.72E-10	2.05E-09
180	764732.2	4092297	1.15E-08	1.25E-08	4.43E-09	2.85E-08	1.80E-09	2.03E-09	7.00E-10	4.53E-09	9.61E-10	9.55E-10	2.93E-10	2.21E-09
181	764733	4092273	1.24E-08	1.35E-08	4.76E-09	3.06E-08	1.93E-09	2.18E-09	7.52E-10	4.87E-09	1.03E-09	1.03E-09	3.15E-10	2.37E-09
182	764733.9	4092249	1.32E-08	1.44E-08	5.08E-09	3.27E-08	2.06E-09	2.33E-09	8.03E-10	5.20E-09	1.10E-09	1.10E-09	3.36E-10	2.53E-09
183	764734.7	4092225	1.40E-08	1.52E-08	5.39E-09	3.46E-08	2.19E-09	2.47E-09	8.52E-10	5.51E-09	1.17E-09	1.16E-09	3.57E-10	2.69E-09
184	764735.6	4092201	1.47E-08	1.60E-08	5.67E-09	3.64E-08	2.30E-09	2.60E-09	8.97E-10	5.80E-09	1.23E-09	1.22E-09	3.75E-10	2.83E-09
185	764813.6	4092564	3.86E-09	4.20E-09	1.49E-09	9.54E-09	6.03E-10	6.82E-10	2.35E-10	1.52E-09	3.22E-10	3.20E-10	9.83E-11	7.41E-10
186	764803.7	4092586	3.71E-09	4.04E-09	1.43E-09	9.18E-09	5.80E-10	6.56E-10	2.26E-10	1.46E-09	3.10E-10	3.08E-10	9.46E-11	7.13E-10
187	764793.7	4092608	3.57E-09	3.89E-09	1.38E-09	8.84E-09	5.58E-10	6.32E-10	2.18E-10	1.41E-09	2.99E-10	2.97E-10	9.11E-11	6.86E-10
188	764783.8	4092630	3.44E-09	3.75E-09	1.33E-09	8.52E-09	5.38E-10	6.09E-10	2.10E-10	1.36E-09	2.88E-10	2.86E-10	8.78E-11	6.61E-10
189	764773.8	4092652	3.32E-09	3.62E-09	1.28E-09	8.22E-09	5.19E-10	5.87E-10	2.02E-10	1.31E-09	2.77E-10	2.76E-10	8.47E-11	6.38E-10
190	764763.9	4092674	3.21E-09	3.50E-09	1.24E-09	7.95E-09	5.02E-10	5.68E-10	1.95E-10	1.26E-09	2.68E-10	2.67E-10	8.18E-11	6.17E-10
191	764754	4092696	3.11E-09	3.38E-09	1.20E-09	7.69E-09	4.85E-10	5.49E-10	1.89E-10	1.22E-09	2.60E-10	2.58E-10	7.92E-11	5.97E-10
192	764744	4092717	3.01E-09	3.28E-09	1.16E-09	7.45E-09	4.70E-10	5.32E-10	1.83E-10	1.19E-09	2.51E-10	2.50E-10	7.67E-11	5.78E-10
193	764734.1	4092739	2.92E-09	3.18E-09	1.12E-09	7.22E-09	4.56E-10	5.15E-10	1.78E-10	1.15E-09	2.44E-10	2.42E-10	7.43E-11	5.60E-10
194	764724.1	4092761	2.83E-09	3.08E-09	1.09E-09	6.99E-09	4.42E-10	5.00E-10	1.72E-10	1.11E-09	2.36E-10	2.35E-10	7.20E-11	5.43E-10
195	764714.2	4092783	2.74E-09	2.98E-09	1.06E-09	6.78E-09	4.28E-10	4.84E-10	1.67E-10	1.08E-09	2.29E-10	2.27E-10	6.98E-11	5.26E-10
196	764704.2	4092805	2.65E-09	2.89E-09	1.02E-09	6.56E-09	4.14E-10	4.69E-10	1.61E-10	1.04E-09	2.21E-10	2.20E-10	6.76E-11	5.09E-10
197	764694.3	4092827	2.57E-09	2.79E-09	9.88E-10	6.35E-09	4.01E-10	4.53E-10	1.56E-10	1.01E-09	2.14E-10	2.13E-10	6.54E-11	4.93E-10
198	764684.3	4092849	2.48E-09	2.70E-09	9.55E-10	6.13E-09	3.87E-10	4.38E-10	1.51E-10	9.76E-10	2.07E-10	2.06E-10	6.32E-11	4.76E-10
199	764674.4	4092871	2.39E-09	2.61E-09	9.22E-10	5.92E-09	3.74E-10	4.23E-10	1.46E-10	9.42E-10	2.00E-10	1.99E-10	6.10E-11	4.60E-10
200	764664.4	4092893	2.31E-09	2.51E-09	8.90E-10	5.71E-09	3.61E-10	4.08E-10	1.41E-10	9.09E-10	1.93E-10	1.92E-10	5.89E-11	4.44E-10
201	764654.5	4092915	2.23E-09	2.43E-09	8.58E-10	5.51E-09	3.48E-10	3.94E-10	1.36E-10	8.77E-10	1.86E-10	1.85E-10	5.68E-11	4.28E-10
202	764644.5	4092937	2.15E-09	2.34E-09	8.28E-10	5.32E-09	3.36E-10	3.80E-10	1.31E-10	8.46E-10	1.79E-10	1.78E-10	5.48E-11	4.13E-10
203	764612.1	4092967	2.09E-09	2.28E-09	8.05E-10	5.17E-09	3.26E-10	3.69E-10	1.27E-10	8.23E-10	1.75E-10	1.74E-10	5.33E-11	4.01E-10
204	764589.6	4092976	2.11E-09	2.29E-09	8.11E-10	5.21E-09	3.29E-10	3.72E-10	1.28E-10	8.29E-10	1.76E-10	1.75E-10	5.36E-11	4.04E-10
205	764567.1	4092984	2.12E-09	2.30E-09	8.15E-10	5.24E-09	3.31E-10	3.74E-10	1.29E-10	8.34E-10	1.77E-10	1.76E-10	5.39E-11	4.06E-10
206	764544.6	4092993	2.13E-09	2.31E-09	8.19E-10	5.26E-09	3.32E-10	3.76E-10	1.29E-10	8.37E-10	1.78E-10	1.77E-10	5.42E-11	4.08E-10
207	764522.1	4093001	2.13E-09	2.32E-09	8.21E-10	5.28E-09	3.33E-10	3.77E-10	1.30E-10	8.40E-10	1.78E-10	1.77E-10	5.43E-11	4.09E-10
208	764499.6	4093010	2.14E-09	2.32E-09	8.22E-10	5.28E-09	3.33E-10	3.77E-10	1.30E-10	8.41E-10	1.78E-10	1.77E-10	5.44E-11	4.10E-10
209	764477.1	4093018	2.13E-09	2.32E-09	8.22E-10	5.28E-09	3.33E-10	3.77E-10	1.30E-10	8.41E-10	1.78E-10	1.77E-10	5.44E-11	4.10E-10
210	764454.6	4093027	2.13E-09	2.32E-09	8.21E-10	5.27E-09	3.33E-10	3.76E-10	1.30E-10	8.39E-10	1.78E-10	1.77E-10	5.43E-11	4.09E-10
211	764432.1	4093035	2.12E-09	2.31E-09	8.18E-10	5.25E-09	3.32E-10	3.75E-10	1.29E-10	8.36E-10	1.77E-10	1.76E-10	5.41E-11	4.08E-10
	764409.6	4093044	2.12E-09	2.30E-09	8.15E-10	5.23E-09	3.31E-10		1.29E-10		1.77E-10	1.76E-10	5.39E-11	4.06E-10
213	764387.1		2.11E-09	2.29E-09	8.11E-10	5.21E-09	3.29E-10		1.28E-10			1.75E-10		
	764364.7		2.10E-09	2.28E-09	8.08E-10	5.19E-09	3.28E-10		1.28E-10			1.74E-10		
	764342.2		2.09E-09	2.28E-09	8.05E-10	5.17E-09		3.69E-10			1.75E-10	1.74E-10	5.33E-11	4.01E-10
	764319.7		2.08E-09	2.27E-09	8.02E-10	5.15E-09		3.68E-10				1.73E-10		
							_	_	_			_		

217	764297.2	4093087	2.08E-09	2.26E-09	8.01E-10	5.14E-09	3.25E-10	3.67E-10		8.19E-10	1.74E-10	1.73E-10	5.30E-11	
218	764274.7	4093095	2.08E-09	2.26E-09	8.00E-10	5.14E-09	3.24E-10	3.67E-10		8.18E-10	1.73E-10	1.72E-10		3.99E-10
219	764252.2	4093104	2.08E-09	2.26E-09	8.01E-10	5.14E-09	3.25E-10	3.67E-10		8.18E-10	1.74E-10	1.73E-10	5.30E-11	
220	764229.7	4093112	2.08E-09	2.27E-09	8.02E-10	5.15E-09	3.25E-10	3.68E-10		8.20E-10	1.74E-10	1.73E-10	5.31E-11	
221	764823.6	4092542	4.01E-09	4.37E-09	1.55E-09	9.93E-09	6.27E-10	7.09E-10	2.44E-10	1.58E-09	3.35E-10	3.33E-10	1.02E-10	7.71E-10
222	764824.4	4092518	4.29E-09	4.67E-09	1.65E-09	1.06E-08	6.70E-10	7.58E-10	2.61E-10	1.69E-09	3.58E-10	3.56E-10	1.09E-10	8.24E-10
223	764825.3	4092494	4.59E-09	5.00E-09	1.77E-09	1.14E-08	7.17E-10	8.11E-10	2.79E-10	1.81E-09	3.83E-10	3.81E-10	1.17E-10	8.81E-10
224	764826.1	4092470	4.92E-09	5.36E-09	1.90E-09	1.22E-08	7.69E-10	8.70E-10	3.00E-10	1.94E-09	4.11E-10	4.09E-10	1.25E-10	9.45E-10
225	764827	4092446	5.28E-09	5.75E-09	2.03E-09	1.31E-08	8.25E-10	9.33E-10	3.21E-10	2.08E-09	4.41E-10	4.38E-10	1.35E-10	1.01E-09
226	764827.8	4092422	5.67E-09	6.17E-09	2.18E-09	1.40E-08	8.85E-10	1.00E-09	3.45E-10	2.23E-09	4.73E-10	4.70E-10	1.44E-10	1.09E-09
227	764828.7	4092397	6.08E-09	6.62E-09	2.34E-09	1.50E-08	9.50E-10	1.07E-09	3.70E-10	2.39E-09	5.08E-10	5.05E-10	1.55E-10	1.17E-09
228	764829.5	4092373	6.53E-09	7.11E-09	2.51E-09	1.61E-08	1.02E-09	1.15E-09	3.97E-10	2.57E-09	5.45E-10	5.42E-10	1.66E-10	1.25E-09
229	764830.4	4092349	7.00E-09	7.62E-09	2.70E-09	1.73E-08	1.09E-09	1.24E-09	4.26E-10	2.76E-09	5.85E-10	5.81E-10	1.78E-10	1.34E-09
230	764831.2	4092325	7.51E-09	8.17E-09	2.89E-09	1.86E-08	1.17E-09	1.33E-09	4.57E-10	2.95E-09	6.27E-10	6.23E-10	1.91E-10	1.44E-09
231	764832.1	4092301	8.03E-09	8.74E-09	3.09E-09	1.99E-08	1.25E-09	1.42E-09	4.89E-10	3.16E-09	6.71E-10	6.67E-10	2.05E-10	1.54E-09
232	764832.9	4092277	8.58E-09	9.34E-09	3.30E-09	2.12E-08	1.34E-09	1.52E-09	5.22E-10	3.38E-09	7.16E-10	7.12E-10	2.19E-10	1.65E-09
233	764833.8	4092253	9.14E-09	9.95E-09	3.52E-09	2.26E-08	1.43E-09	1.61E-09	5.56E-10	3.60E-09	7.63E-10	7.59E-10	2.33E-10	1.75E-09
234	764834.7	4092228	9.70E-09	1.06E-08	3.73E-09	2.40E-08	1.51E-09	1.71E-09	5.90E-10	3.82E-09	8.10E-10	8.05E-10	2.47E-10	1.86E-09
235	764835.5	4092204	1.02E-08	1.12E-08	3.95E-09	2.53E-08	1.60E-09	1.81E-09	6.23E-10	4.03E-09	8.56E-10	8.51E-10	2.61E-10	1.97E-09
236	764913.9	4092567	3.14E-09	3.41E-09	1.21E-09	7.76E-09	4.90E-10	5.54E-10	1.91E-10	1.24E-09	2.62E-10	2.60E-10	7.99E-11	6.02E-10
237	764904.3	4092588	3.03E-09	3.30E-09	1.17E-09	7.50E-09	4.74E-10	5.36E-10	1.85E-10	1.19E-09	2.53E-10	2.52E-10	7.73E-11	5.82E-10
238	764894.8	4092609	2.93E-09	3.19E-09	1.13E-09	7.26E-09	4.58E-10	5.18E-10	1.79E-10	1.16E-09	2.45E-10	2.44E-10	7.48E-11	5.63E-10
239	764885.2	4092630	2.84E-09	3.09E-09	1.09E-09	7.03E-09	4.44E-10	5.02E-10	1.73E-10	1.12E-09	2.37E-10	2.36E-10	7.24E-11	5.46E-10
240	764875.6	4092651	2.76E-09	3.00E-09	1.06E-09	6.82E-09	4.31E-10	4.87E-10	1.68E-10	1.09E-09	2.30E-10	2.29E-10	7.02E-11	5.29E-10
241	764866	4092672	2.68E-09	2.91E-09	1.03E-09	6.62E-09	4.18E-10	4.73E-10	1.63E-10	1.05E-09	2.24E-10	2.22E-10	6.82E-11	5.14E-10
242	764856.4	4092694	2.60E-09	2.83E-09	1.00E-09	6.44E-09	4.07E-10	4.60E-10	1.58E-10	1.03E-09	2.17E-10	2.16E-10	6.64E-11	5.00E-10
243	764846.8	4092715	2.54E-09	2.76E-09	9.76E-10	6.27E-09	3.96E-10	4.48E-10	1.54E-10	9.98E-10	2.12E-10	2.10E-10	6.46E-11	4.87E-10
244	764837.2	4092736	2.47E-09	2.69E-09	9.51E-10	6.11E-09	3.86E-10	4.36E-10	1.50E-10	9.73E-10	2.06E-10	2.05E-10	6.29E-11	4.74E-10
245	764827.7	4092757	2.41E-09	2.62E-09	9.28E-10	5.96E-09	3.76E-10	4.26E-10		9.48E-10	2.01E-10	2.00E-10		4.62E-10
246	764818.1	4092778	2.35E-09	2.56E-09	9.05E-10	5.81E-09	3.67E-10	4.15E-10		9.25E-10	1.96E-10	1.95E-10	5.99E-11	
247	764808.5	4092799	2.29E-09	2.49E-09	8.82E-10	5.66E-09	3.58E-10	4.05E-10		9.02E-10	1.91E-10	1.90E-10	5.84E-11	
248	764798.9	4092820	2.23E-09	2.43E-09	8.60E-10	5.52E-09	3.49E-10	3.94E-10	1.36E-10	8.79E-10	1.86E-10	1.85E-10	5.69E-11	
249	764789.3	4092841	2.17E-09	2.37E-09	8.37E-10	5.38E-09	3.40E-10	3.84E-10	1.32E-10	8.56E-10	1.82E-10	1.80E-10		4.17E-10
250	764779.7	4092862	2.12E-09	2.30E-09	8.15E-10	5.23E-09	3.30E-10	3.74E-10		8.33E-10	1.77E-10	1.76E-10	5.39E-11	
	764770.1		2.06E-09	2.24E-09	7.92E-10	5.09E-09		3.63E-10				1.71E-10		
	764760.6	4092905	2.00E-09	2.17E-09	7.69E-10	4.94E-09		3.53E-10				1.66E-10		
253	764751		1.94E-09	2.11E-09	7.46E-10	4.79E-09		3.42E-10				1.61E-10		
	764741.4	4092947	1.88E-09	2.05E-09	7.24E-10	4.65E-09	2.94E-10					1.56E-10		
	764731.8	4092968	1.82E-09	1.98E-09	7.01E-10	4.50E-09	2.84E-10		1.11E-10			1.51E-10		
	764722.2		1.77E-09	1.92E-09	6.80E-10	4.37E-09	2.76E-10		1.07E-10			1.47E-10		
	764712.6	4093010	1.71E-09	1.87E-09	6.60E-10	4.24E-09	2.68E-10		1.04E-10			1.42E-10		
258	764681.4	4093040	1.68E-09	1.82E-09	6.45E-10	4.14E-09		2.96E-10				1.39E-10		
259	764659.7	4093048	1.69E-09	1.83E-09	6.49E-10	4.17E-09		2.98E-10				1.40E-10		
260	764638		1.70E-09	1.85E-09	6.53E-10	4.19E-09		3.00E-10				1.41E-10		
200	, 04030	7023030	1.7 UL-UJ	1.03L-03	0.53L-10	-T.13L-UJ	2.03L-10	J.UUL-1U	1.036-10	J.UUL-1U	1.72L-1U	1.71∟10	7.JZL-11	J. 20L-10

261	764616.3	4093064	1.70E-09	1.85E-09	6.56E-10	4.21E-09	2.66E-10	3.01E-10		6.71E-10	1.42E-10	1.41E-10		3.27E-10
262	764594.6	4093073	1.71E-09	1.86E-09	6.59E-10	4.23E-09	2.67E-10	3.02E-10	1.04E-10	6.74E-10	1.43E-10	1.42E-10	4.36E-11	3.28E-10
263	764573	4093081	1.72E-09	1.87E-09	6.61E-10	4.25E-09	2.68E-10	3.03E-10	1.04E-10	6.76E-10	1.43E-10	1.42E-10	4.37E-11	3.30E-10
264	764551.3	4093089	1.72E-09	1.87E-09	6.62E-10	4.25E-09	2.68E-10	3.04E-10	1.05E-10	6.76E-10	1.43E-10	1.43E-10	4.38E-11	3.30E-10
265	764529.6	4093097	1.72E-09	1.87E-09	6.61E-10	4.25E-09	2.68E-10	3.03E-10	1.04E-10	6.76E-10	1.43E-10	1.43E-10	4.38E-11	3.30E-10
266	764507.9	4093106	1.71E-09	1.87E-09	6.60E-10	4.24E-09	2.68E-10	3.03E-10	1.04E-10	6.75E-10	1.43E-10	1.42E-10	4.37E-11	3.29E-10
267	764486.2	4093114	1.71E-09	1.86E-09	6.58E-10	4.23E-09	2.67E-10	3.02E-10	1.04E-10	6.73E-10	1.43E-10	1.42E-10	4.35E-11	3.28E-10
268	764464.6	4093122	1.70E-09	1.85E-09	6.55E-10	4.21E-09	2.66E-10	3.01E-10	1.04E-10	6.70E-10	1.42E-10	1.41E-10	4.34E-11	3.27E-10
269	764442.9	4093130	1.69E-09	1.84E-09	6.52E-10	4.19E-09	2.65E-10	2.99E-10	1.03E-10	6.67E-10	1.41E-10	1.41E-10	4.32E-11	3.25E-10
270	764421.2	4093138	1.69E-09	1.83E-09	6.49E-10	4.17E-09	2.63E-10	2.98E-10	1.03E-10	6.64E-10	1.41E-10	1.40E-10	4.29E-11	3.24E-10
271	764399.5	4093147	1.68E-09	1.82E-09	6.46E-10	4.15E-09	2.62E-10	2.96E-10	1.02E-10	6.60E-10	1.40E-10	1.39E-10	4.27E-11	3.22E-10
272	764377.8	4093155	1.67E-09	1.82E-09	6.43E-10	4.13E-09	2.61E-10	2.95E-10	1.02E-10	6.57E-10	1.39E-10	1.39E-10	4.25E-11	3.20E-10
273	764356.2	4093163	1.66E-09	1.81E-09	6.40E-10	4.11E-09	2.60E-10	2.94E-10	1.01E-10	6.54E-10	1.39E-10	1.38E-10	4.23E-11	3.19E-10
274	764334.5	4093171	1.66E-09	1.80E-09	6.38E-10	4.10E-09	2.59E-10	2.93E-10	1.01E-10	6.52E-10	1.38E-10	1.38E-10	4.22E-11	3.18E-10
275	764312.8	4093180	1.65E-09	1.80E-09	6.37E-10	4.09E-09	2.58E-10	2.92E-10	1.01E-10	6.51E-10	1.38E-10	1.37E-10	4.21E-11	3.17E-10
276	764291.1	4093188	1.65E-09	1.80E-09	6.36E-10	4.09E-09	2.58E-10	2.92E-10	1.01E-10	6.51E-10	1.38E-10	1.37E-10	4.21E-11	3.17E-10
277	764269.4	4093196	1.65E-09	1.80E-09	6.37E-10	4.09E-09	2.58E-10	2.92E-10	1.01E-10	6.51E-10	1.38E-10	1.37E-10	4.22E-11	3.18E-10
278	764247.7	4093204	1.66E-09	1.81E-09	6.39E-10	4.10E-09	2.59E-10	2.93E-10	1.01E-10	6.53E-10	1.38E-10	1.38E-10	4.23E-11	3.18E-10
279	764226.1	4093213	1.67E-09	1.81E-09	6.41E-10	4.12E-09	2.60E-10	2.94E-10	1.01E-10	6.56E-10	1.39E-10	1.38E-10	4.24E-11	3.20E-10
280	764923.5	4092546	3.25E-09	3.53E-09	1.25E-09	8.03E-09	5.07E-10	5.74E-10	1.98E-10	1.28E-09	2.71E-10	2.70E-10	8.27E-11	6.23E-10
281	764924.4	4092522	3.44E-09	3.75E-09	1.33E-09	8.52E-09	5.38E-10	6.08E-10	2.09E-10	1.36E-09	2.87E-10	2.86E-10	8.77E-11	6.61E-10
282	764925.2	4092497	3.66E-09	3.98E-09	1.41E-09	9.04E-09	5.71E-10	6.46E-10	2.22E-10	1.44E-09	3.05E-10	3.04E-10	9.32E-11	7.02E-10
283	764926.1	4092473	3.88E-09	4.23E-09	1.50E-09	9.61E-09	6.07E-10	6.86E-10	2.36E-10	1.53E-09	3.24E-10	3.22E-10	9.90E-11	7.46E-10
284	764926.9	4092449	4.13E-09	4.49E-09	1.59E-09	1.02E-08	6.45E-10	7.29E-10	2.51E-10	1.63E-09	3.45E-10	3.43E-10	1.05E-10	7.93E-10
285	764927.8	4092425	4.39E-09	4.78E-09	1.69E-09	1.09E-08	6.86E-10	7.76E-10	2.67E-10	1.73E-09	3.67E-10	3.64E-10	1.12E-10	8.43E-10
286	764928.6	4092401	4.66E-09	5.08E-09	1.80E-09	1.15E-08	7.29E-10	8.24E-10	2.84E-10	1.84E-09	3.89E-10	3.87E-10	1.19E-10	8.96E-10
287	764929.5	4092377	4.96E-09	5.39E-09	1.91E-09	1.23E-08	7.74E-10	8.76E-10	3.02E-10	1.95E-09	4.14E-10	4.11E-10	1.26E-10	9.51E-10
288	764930.3	4092353	5.26E-09	5.73E-09	2.03E-09	1.30E-08	8.22E-10	9.30E-10	3.20E-10	2.07E-09	4.40E-10	4.37E-10	1.34E-10	1.01E-09
289	764931.2	4092329	5.59E-09	6.08E-09	2.15E-09	1.38E-08	8.73E-10	9.88E-10	3.40E-10	2.20E-09	4.67E-10	4.64E-10	1.42E-10	1.07E-09
290	764932	4092304	5.93E-09	6.46E-09	2.28E-09	1.47E-08	9.26E-10	1.05E-09	3.61E-10	2.34E-09	4.95E-10	4.92E-10	1.51E-10	1.14E-09
291	764932.9	4092280	6.29E-09	6.85E-09	2.42E-09	1.56E-08	9.82E-10	1.11E-09	3.83E-10	2.48E-09	5.25E-10	5.22E-10	1.60E-10	1.21E-09
292	764933.7	4092256	6.66E-09	7.25E-09	2.57E-09	1.65E-08	1.04E-09	1.18E-09	4.05E-10	2.62E-09	5.56E-10	5.53E-10	1.70E-10	1.28E-09
293	764934.6	4092232	7.04E-09	7.67E-09	2.71E-09	1.74E-08	1.10E-09	1.24E-09	4.29E-10	2.77E-09	5.88E-10	5.85E-10	1.79E-10	1.35E-09
294	764935.4	4092208	7.43E-09	8.09E-09	2.86E-09	1.84E-08	1.16E-09	1.31E-09	4.52E-10	2.93E-09	6.20E-10	6.17E-10	1.89E-10	1.43E-09
295	765113.6	4092574	2.23E-09	2.43E-09	8.59E-10	5.52E-09	3.48E-10	3.94E-10	1.36E-10	8.78E-10	1.86E-10	1.85E-10	5.68E-11	4.28E-10
296	765103.8	4092596	2.17E-09	2.36E-09	8.34E-10	5.36E-09	3.38E-10	3.83E-10	1.32E-10	8.53E-10	1.81E-10	1.80E-10	5.52E-11	4.16E-10
297	765094.1	4092617	2.10E-09	2.29E-09	8.10E-10	5.20E-09	3.29E-10	3.72E-10	1.28E-10	8.28E-10	1.76E-10	1.75E-10	5.36E-11	4.04E-10
298	765084.3	4092639	2.05E-09	2.23E-09	7.88E-10	5.06E-09	3.19E-10	3.61E-10	1.24E-10	8.05E-10	1.71E-10	1.70E-10	5.21E-11	3.93E-10
299	765074.5	4092660	1.99E-09	2.17E-09	7.66E-10	4.92E-09	3.11E-10	3.52E-10	1.21E-10	7.83E-10	1.66E-10	1.65E-10	5.07E-11	3.82E-10
300	765064.7	4092682	1.94E-09	2.11E-09	7.46E-10	4.79E-09	3.03E-10	3.42E-10				1.61E-10		
301	765055	4092704	1.89E-09	2.06E-09	7.28E-10	4.68E-09	2.95E-10	3.34E-10				1.57E-10		
302	765045.2		1.85E-09	2.01E-09	7.11E-10	4.57E-09	2.89E-10					1.53E-10		
303			1.81E-09	1.97E-09	6.96E-10	4.47E-09		3.19E-10				1.50E-10		
	765025.6		1.77E-09	1.93E-09	6.82E-10	4.38E-09		3.13E-10				1.47E-10		
								2:== = =3		= 				51.12 = -9

305	765015.9	4092790	1.74E-09	1.89E-09	6.69E-10	4.30E-09	2.71E-10	3.07E-10	1.06E-10	6.84E-10	1.45E-10	1.44E-10	4.43E-11	3.34E-10
306	765006.1	4092811	1.71E-09	1.86E-09	6.57E-10	4.22E-09	2.66E-10	3.01E-10	1.04E-10	6.72E-10	1.42E-10	1.42E-10	4.35E-11	3.27E-10
307	764996.3	4092833	1.68E-09	1.82E-09	6.45E-10	4.14E-09	2.62E-10	2.96E-10	1.02E-10	6.60E-10	1.40E-10	1.39E-10	4.27E-11	3.22E-10
308	764986.5	4092854	1.65E-09	1.79E-09	6.34E-10	4.07E-09	2.57E-10	2.91E-10	1.00E-10	6.48E-10	1.37E-10	1.37E-10	4.19E-11	3.16E-10
309	764976.8	4092876	1.62E-09	1.76E-09	6.22E-10	3.99E-09	2.52E-10	2.85E-10	9.83E-11	6.36E-10	1.35E-10	1.34E-10	4.12E-11	3.10E-10
310	764967	4092897	1.58E-09	1.72E-09	6.10E-10	3.92E-09	2.47E-10	2.80E-10	9.64E-11	6.24E-10	1.32E-10	1.31E-10	4.04E-11	3.04E-10
311	764957.2	4092919	1.55E-09	1.69E-09	5.98E-10	3.84E-09	2.42E-10	2.74E-10	9.44E-11	6.11E-10	1.30E-10	1.29E-10	3.95E-11	2.98E-10
312	764947.4	4092940	1.52E-09	1.65E-09	5.85E-10	3.76E-09	2.37E-10	2.68E-10	9.24E-11	5.98E-10	1.27E-10	1.26E-10	3.87E-11	2.92E-10
313	764937.7	4092962	1.49E-09	1.62E-09	5.72E-10	3.68E-09	2.32E-10	2.63E-10	9.04E-11	5.85E-10	1.24E-10	1.23E-10	3.79E-11	2.85E-10
314	764927.9	4092983	1.45E-09	1.58E-09	5.59E-10	3.59E-09	2.27E-10	2.56E-10	8.83E-11	5.72E-10	1.21E-10	1.21E-10	3.70E-11	2.79E-10
315	764918.1	4093005	1.42E-09	1.54E-09	5.46E-10	3.50E-09	2.21E-10	2.50E-10	8.62E-11	5.58E-10	1.18E-10	1.18E-10	3.61E-11	2.72E-10
316	764908.3	4093027	1.38E-09	1.50E-09	5.32E-10	3.42E-09	2.16E-10	2.44E-10	8.41E-11	5.44E-10	1.15E-10	1.15E-10	3.52E-11	2.65E-10
317	764898.6	4093048	1.35E-09	1.47E-09	5.19E-10	3.33E-09	2.10E-10	2.38E-10	8.20E-11	5.30E-10	1.12E-10	1.12E-10	3.43E-11	2.59E-10
318	764888.8	4093070	1.31E-09	1.43E-09	5.06E-10	3.25E-09	2.05E-10	2.32E-10	7.99E-11	5.17E-10	1.10E-10	1.09E-10	3.35E-11	2.52E-10
319	764879	4093091	1.28E-09	1.39E-09	4.93E-10	3.17E-09	2.00E-10	2.26E-10	7.79E-11	5.04E-10	1.07E-10	1.06E-10	3.26E-11	2.46E-10
320	764869.2	4093113	1.25E-09	1.36E-09	4.81E-10	3.09E-09	1.95E-10	2.21E-10	7.59E-11	4.91E-10	1.04E-10	1.04E-10	3.18E-11	2.40E-10
321	764859.5	4093134	1.22E-09	1.33E-09	4.69E-10	3.01E-09	1.90E-10	2.15E-10	7.41E-11	4.80E-10	1.02E-10	1.01E-10	3.10E-11	2.34E-10
322	764849.7	4093156	1.19E-09	1.29E-09	4.58E-10	2.94E-09	1.86E-10	2.10E-10	7.24E-11	4.68E-10	9.93E-11	9.88E-11	3.03E-11	2.28E-10
323	764817.8	4093186	1.17E-09	1.27E-09	4.51E-10	2.89E-09	1.83E-10	2.07E-10	7.12E-11	4.61E-10	9.77E-11	9.71E-11	2.98E-11	2.25E-10
324	764795.7	4093194	1.18E-09	1.28E-09	4.53E-10	2.91E-09	1.84E-10	2.08E-10	7.16E-11	4.63E-10	9.82E-11	9.77E-11	3.00E-11	2.26E-10
325	764773.6	4093202	1.18E-09	1.29E-09	4.56E-10	2.93E-09	1.85E-10	2.09E-10	7.20E-11	4.66E-10	9.88E-11	9.83E-11	3.02E-11	2.27E-10
326	764751.5	4093211	1.19E-09	1.30E-09	4.58E-10	2.94E-09	1.86E-10	2.10E-10	7.24E-11	4.69E-10	9.94E-11	9.88E-11	3.03E-11	2.28E-10
327	764729.4	4093219	1.20E-09	1.30E-09	4.60E-10	2.96E-09	1.87E-10	2.11E-10	7.27E-11	4.71E-10	9.98E-11	9.93E-11	3.05E-11	2.30E-10
328	764707.3	4093228	1.20E-09	1.31E-09	4.62E-10	2.97E-09	1.87E-10	2.12E-10	7.30E-11	4.73E-10	1.00E-10	9.96E-11	3.06E-11	2.30E-10
329	764685.2	4093236	1.20E-09	1.31E-09	4.64E-10	2.98E-09	1.88E-10	2.13E-10	7.32E-11	4.74E-10	1.00E-10	9.99E-11	3.07E-11	2.31E-10
330	764663.1	4093244	1.21E-09	1.31E-09	4.64E-10	2.98E-09	1.88E-10	2.13E-10	7.33E-11	4.75E-10	1.01E-10	1.00E-10	3.07E-11	2.31E-10
331	764641	4093253	1.21E-09	1.31E-09	4.64E-10	2.98E-09	1.88E-10	2.13E-10	7.33E-11		1.01E-10	1.00E-10	3.07E-11	
332	764618.8	4093261	1.20E-09	1.31E-09	4.63E-10	2.98E-09	1.88E-10	2.13E-10	7.32E-11		1.00E-10	9.99E-11	3.07E-11	
333	764596.7	4093270	1.20E-09	1.31E-09	4.62E-10	2.97E-09	1.87E-10	2.12E-10	7.30E-11		1.00E-10	9.96E-11		2.30E-10
334	764574.6	4093278	1.19E-09	1.30E-09	4.60E-10	2.96E-09	1.87E-10	2.11E-10	7.27E-11		9.98E-11	9.92E-11	3.04E-11	
335	764552.5	4093286	1.19E-09	1.29E-09	4.58E-10	2.94E-09	1.86E-10	2.10E-10	7.23E-11		9.93E-11	9.87E-11	3.03E-11	
336	764530.4	4093295	1.18E-09	1.29E-09	4.55E-10	2.92E-09	1.85E-10	2.09E-10	7.19E-11		9.87E-11	9.81E-11	3.01E-11	
337	764508.3	4093303	1.17E-09	1.28E-09	4.52E-10	2.90E-09	1.83E-10	2.07E-10	7.15E-11		9.81E-11	9.75E-11	2.99E-11	
338	764486.2	4093312	1.17E-09	1.27E-09	4.50E-10	2.89E-09	1.82E-10	2.06E-10	7.11E-11	4.60E-10	9.75E-11	9.70E-11		
	764464.1			1.26E-09	4.47E-10	2.87E-09		2.05E-10				9.64E-11		
340	764442	4093328	1.16E-09	1.26E-09	4.45E-10	2.86E-09		2.04E-10				9.60E-11		
	764419.9			1.25E-09	4.43E-10	2.85E-09		2.03E-10				9.56E-11		
	764397.8		1.15E-09	1.25E-09	4.42E-10	2.84E-09		2.03E-10				9.53E-11		
	764375.7	4093354	1.15E-09	1.25E-09	4.41E-10	2.83E-09		2.02E-10	6.97E-11			9.51E-11		
	764353.6		1.14E-09	1.25E-09	4.41E-10	2.83E-09		2.02E-10	6.96E-11			9.50E-11		
	764331.4	4093370	1.14E-09	1.25E-09	4.41E-10	2.83E-09		2.02E-10	6.96E-11			9.50E-11		
	764309.3	4093379	1.15E-09	1.25E-09	4.42E-10	2.84E-09		2.03E-10	6.98E-11			9.52E-11		
	764287.2		1.15E-09	1.25E-09	4.43E-10	2.85E-09		2.03E-10				9.55E-11		
	764265.1		1.16E-09	1.26E-09	4.45E-10	2.86E-09		2.03E-10 2.04E-10				9.60E-11		
340	104203.1	+033330	1.106-03	1.200-03	→.4JE-1U	2.00L-UJ	T.01E-10	2.04E-10	/.U4E-11	7.JJL-1U	3.00E-11	3.00E-11	Z.33E-11	2.22E-10

349	764243	4093404	1.16E-09	1.27E-09	4.48E-10	2.88E-09	1.82E-10	2.06E-10		4.58E-10	9.71E-11	9.66E-11		
350	764220.9	4093412	1.17E-09	1.28E-09	4.51E-10	2.90E-09	1.83E-10	2.07E-10		4.61E-10	9.78E-11	9.73E-11	2.99E-11	
351	765123.4	4092553	2.30E-09	2.50E-09	8.84E-10	5.68E-09	3.59E-10	4.06E-10		9.04E-10	1.92E-10	1.91E-10	5.85E-11	4.41E-10
352	765124.2	4092529	2.41E-09	2.62E-09	9.28E-10	5.96E-09	3.76E-10	4.26E-10	_	9.48E-10	2.01E-10	2.00E-10		4.63E-10
353	765125.1	4092505	2.53E-09	2.75E-09	9.73E-10	6.25E-09	3.95E-10	4.47E-10	1.54E-10	9.95E-10	2.11E-10	2.10E-10	6.44E-11	4.85E-10
354	765125.9	4092480	2.65E-09	2.89E-09	1.02E-09	6.56E-09	4.14E-10	4.68E-10	1.61E-10	1.04E-09	2.21E-10	2.20E-10	6.76E-11	5.09E-10
355	765126.8	4092456	2.78E-09	3.03E-09	1.07E-09	6.88E-09	4.34E-10	4.91E-10	1.69E-10	1.09E-09	2.32E-10	2.31E-10	7.09E-11	5.34E-10
356	765127.7	4092432	2.92E-09	3.17E-09	1.12E-09	7.21E-09	4.55E-10	5.15E-10	1.77E-10	1.15E-09	2.43E-10	2.42E-10	7.43E-11	5.60E-10
357	765128.5	4092408	3.06E-09	3.33E-09	1.18E-09	7.56E-09	4.77E-10	5.40E-10	1.86E-10	1.20E-09	2.55E-10	2.54E-10	7.79E-11	5.87E-10
358	765129.4	4092384	3.20E-09	3.48E-09	1.23E-09	7.92E-09	5.00E-10	5.66E-10	1.95E-10	1.26E-09	2.67E-10	2.66E-10	8.16E-11	6.15E-10
359	765130.2	4092360	3.35E-09	3.65E-09	1.29E-09	8.29E-09	5.23E-10	5.92E-10	2.04E-10	1.32E-09	2.80E-10	2.78E-10	8.54E-11	6.44E-10
360	765131.1	4092336	3.51E-09	3.82E-09	1.35E-09	8.68E-09	5.48E-10	6.20E-10	2.13E-10	1.38E-09	2.93E-10	2.91E-10	8.94E-11	6.74E-10
361	765131.9	4092311	3.67E-09	4.00E-09	1.41E-09	9.08E-09	5.73E-10	6.49E-10	2.23E-10	1.45E-09	3.07E-10	3.05E-10	9.36E-11	7.05E-10
362	765132.8	4092287	3.84E-09	4.18E-09	1.48E-09	9.50E-09	6.00E-10	6.79E-10	2.34E-10	1.51E-09	3.21E-10	3.19E-10	9.79E-11	7.38E-10
363	765133.6	4092263	4.02E-09	4.38E-09	1.55E-09	9.94E-09	6.28E-10	7.10E-10	2.45E-10	1.58E-09	3.36E-10	3.34E-10	1.02E-10	7.72E-10
364	765134.5	4092239	4.21E-09	4.58E-09	1.62E-09	1.04E-08	6.57E-10	7.43E-10	2.56E-10	1.66E-09	3.51E-10	3.49E-10	1.07E-10	8.08E-10
365	765135.3	4092215	4.40E-09	4.79E-09	1.69E-09	1.09E-08	6.87E-10	7.77E-10	2.68E-10	1.73E-09	3.67E-10	3.65E-10	1.12E-10	8.45E-10
366	765313.4	4092582	1.70E-09	1.85E-09	6.53E-10	4.19E-09	2.65E-10	3.00E-10	1.03E-10	6.68E-10	1.42E-10	1.41E-10	4.32E-11	3.26E-10
367	765303.5	4092603	1.65E-09	1.80E-09	6.37E-10	4.09E-09	2.58E-10	2.92E-10	1.01E-10	6.51E-10	1.38E-10	1.37E-10	4.21E-11	3.18E-10
368	765293.6	4092625	1.61E-09	1.75E-09	6.21E-10	3.99E-09	2.52E-10	2.85E-10	9.81E-11	6.35E-10	1.35E-10	1.34E-10	4.11E-11	3.10E-10
369	765283.7	4092647	1.57E-09	1.71E-09	6.04E-10	3.88E-09	2.45E-10	2.77E-10	9.54E-11	6.17E-10	1.31E-10	1.30E-10	4.00E-11	3.01E-10
370	765273.8	4092669	1.53E-09	1.66E-09	5.89E-10	3.78E-09	2.39E-10	2.70E-10	9.30E-11	6.02E-10	1.28E-10	1.27E-10	3.89E-11	2.93E-10
371	765263.9	4092691	1.49E-09	1.62E-09	5.74E-10	3.69E-09	2.33E-10	2.63E-10	9.07E-11	5.87E-10	1.25E-10	1.24E-10	3.80E-11	2.86E-10
372	765254	4092712	1.46E-09	1.59E-09	5.61E-10	3.60E-09	2.28E-10	2.57E-10	8.87E-11	5.74E-10	1.22E-10	1.21E-10	3.71E-11	2.80E-10
373	765244.1	4092734	1.43E-09	1.55E-09	5.49E-10	3.53E-09	2.23E-10	2.52E-10	8.68E-11	5.62E-10	1.19E-10	1.18E-10	3.64E-11	2.74E-10
374	765234.2	4092756	1.40E-09	1.52E-09	5.38E-10	3.46E-09	2.18E-10	2.47E-10	8.51E-11	5.50E-10	1.17E-10	1.16E-10	3.56E-11	2.68E-10
375	765224.3	4092778	1.37E-09	1.49E-09	5.29E-10	3.39E-09	2.14E-10	2.43E-10	8.35E-11	5.40E-10	1.15E-10	1.14E-10		2.64E-10
376	765214.4	4092800	1.35E-09	1.47E-09	5.20E-10	3.34E-09	2.11E-10	2.38E-10	8.21E-11	5.31E-10	1.13E-10	1.12E-10	3.44E-11	2.59E-10
377	765204.5	4092822	1.33E-09	1.44E-09	5.11E-10	3.28E-09	2.07E-10	2.34E-10	8.07E-11	5.22E-10	1.11E-10	1.10E-10	3.38E-11	2.55E-10
378	765194.6	4092843	1.31E-09	1.42E-09	5.03E-10	3.23E-09	2.04E-10	2.31E-10	7.95E-11	5.14E-10	1.09E-10	1.08E-10	3.33E-11	2.51E-10
379	765184.7	4092865	1.29E-09	1.40E-09	4.95E-10	3.18E-09	2.01E-10	2.27E-10		5.07E-10	1.07E-10	1.07E-10	3.28E-11	
380	765174.8	4092887	1.27E-09	1.38E-09	4.88E-10	3.14E-09	1.98E-10	2.24E-10	7.72E-11	4.99E-10	1.06E-10	1.05E-10		2.43E-10
381	765164.9	4092909	1.25E-09	1.36E-09	4.82E-10	3.09E-09	1.95E-10	2.21E-10	7.61E-11	4.92E-10	1.04E-10	1.04E-10		2.40E-10
382	765155	4092931	1.23E-09	1.34E-09	4.75E-10	3.05E-09	1.93E-10	2.18E-10		4.86E-10	1.03E-10	1.02E-10	3.14E-11	
	765145.1			1.33E-09	4.69E-10	3.01E-09		2.15E-10	_			1.01E-10		
	765135.2		1.20E-09	1.31E-09	4.63E-10	2.97E-09		2.12E-10				9.97E-11		
	765125.3		1.18E-09	1.29E-09	4.56E-10	2.93E-09		2.09E-10				9.83E-11		
	765115.4	4093018	1.17E-09	1.27E-09	4.49E-10	2.88E-09						9.68E-11		
	765105.5	4093040	1.15E-09	1.25E-09	4.41E-10	2.83E-09		2.02E-10		4.51E-10		9.51E-11		
388			1.12E-09	1.22E-09	4.33E-10	2.78E-09		1.99E-10		4.43E-10		9.34E-11		
389			1.10E-09	1.20E-09	4.25E-10	2.73E-09		1.95E-10		4.34E-10		9.16E-11		
390		4093105	1.08E-09	1.18E-09	4.16E-10	2.67E-09		1.91E-10				8.97E-11		
391		4093127	1.06E-09	1.15E-09	4.08E-10	2.62E-09		1.87E-10				8.78E-11		
392		4093149	1.04E-09	1.13E-09	3.99E-10	2.56E-09		1.83E-10				8.60E-11		
332	, 05050	7033143	1.07L-UJ	1.1JL-U3	J.JJL-10	2.30L-03	1.02L-10	1.03L-10	0.JUL-11	-7.00L-10	0.0JL-11	0.00L-11	2.U4L-11	1.556-10

393	765046.1	4093170	1.01E-09	1.10E-09	3.90E-10	2.50E-09	1.58E-10	1.79E-10	6.16E-11	3.99E-10	8.45E-11	8.40E-11	2.58E-11	1.94E-10
394	765036.2	4093192	9.90E-10	1.08E-09	3.81E-10	2.45E-09	1.55E-10	1.75E-10	6.02E-11	3.90E-10	8.26E-11	8.22E-11	2.52E-11	1.90E-10
395	765026.3	4093214	9.68E-10	1.05E-09	3.73E-10	2.39E-09	1.51E-10	1.71E-10	5.89E-11	3.81E-10	8.08E-11	8.04E-11	2.47E-11	1.86E-10
396	765016.4	4093236	9.48E-10	1.03E-09	3.65E-10	2.34E-09	1.48E-10	1.67E-10	5.77E-11	3.73E-10	7.91E-11	7.87E-11	2.41E-11	1.82E-10
397	765006.5	4093258	9.29E-10	1.01E-09	3.58E-10	2.30E-09	1.45E-10	1.64E-10	5.65E-11	3.66E-10	7.75E-11	7.71E-11	2.37E-11	1.78E-10
398	764996.6	4093279	9.11E-10	9.91E-10	3.51E-10	2.25E-09	1.42E-10	1.61E-10	5.54E-11	3.59E-10	7.60E-11	7.56E-11	2.32E-11	1.75E-10
399	764986.7	4093301	8.94E-10	9.73E-10	3.44E-10	2.21E-09	1.40E-10	1.58E-10	5.44E-11	3.52E-10	7.47E-11	7.42E-11	2.28E-11	1.72E-10
400	764954.4	4093332	8.84E-10	9.62E-10	3.40E-10	2.19E-09	1.38E-10	1.56E-10	5.38E-11	3.48E-10	7.38E-11	7.34E-11	2.25E-11	1.70E-10
401	764932	4093340	8.89E-10	9.68E-10	3.42E-10	2.20E-09	1.39E-10	1.57E-10	5.41E-11	3.50E-10	7.43E-11	7.38E-11	2.27E-11	1.71E-10
402	764909.6	4093349	8.94E-10	9.73E-10	3.44E-10	2.21E-09	1.40E-10	1.58E-10	5.44E-11	3.52E-10	7.47E-11	7.42E-11	2.28E-11	1.72E-10
403	764887.2	4093357	8.99E-10	9.78E-10	3.46E-10	2.22E-09	1.40E-10	1.59E-10	5.47E-11	3.54E-10	7.51E-11	7.46E-11	2.29E-11	1.73E-10
404	764864.9	4093366	9.03E-10	9.83E-10	3.48E-10	2.23E-09	1.41E-10	1.60E-10	5.50E-11	3.56E-10	7.54E-11	7.50E-11	2.30E-11	1.73E-10
405	764842.5	4093374	9.07E-10	9.87E-10	3.49E-10	2.24E-09	1.42E-10	1.60E-10	5.52E-11	3.57E-10	7.57E-11	7.53E-11	2.31E-11	1.74E-10
406	764820.1	4093383	9.10E-10	9.90E-10	3.50E-10	2.25E-09	1.42E-10	1.61E-10	5.54E-11	3.58E-10	7.60E-11	7.55E-11	2.32E-11	1.75E-10
407	764797.7	4093391	9.12E-10	9.93E-10	3.51E-10	2.26E-09	1.42E-10	1.61E-10	5.55E-11	3.59E-10	7.62E-11	7.57E-11	2.32E-11	1.75E-10
408	764775.3	4093400	9.13E-10	9.94E-10	3.52E-10	2.26E-09	1.43E-10	1.61E-10	5.56E-11	3.60E-10	7.63E-11	7.58E-11	2.33E-11	1.75E-10
409	764752.9	4093408	9.13E-10	9.94E-10	3.52E-10	2.26E-09	1.43E-10	1.61E-10	5.56E-11	3.59E-10	7.62E-11	7.58E-11	2.33E-11	1.75E-10
410	764730.5	4093417	9.12E-10	9.93E-10	3.51E-10	2.26E-09	1.42E-10	1.61E-10	5.55E-11	3.59E-10	7.61E-11	7.57E-11	2.32E-11	1.75E-10
411	764708.1	4093425	9.10E-10	9.90E-10	3.50E-10	2.25E-09	1.42E-10	1.61E-10	5.53E-11	3.58E-10	7.60E-11	7.55E-11	2.32E-11	1.75E-10
412	764685.8	4093434	9.06E-10	9.86E-10	3.49E-10	2.24E-09	1.41E-10	1.60E-10	5.51E-11	3.57E-10	7.56E-11	7.52E-11	2.31E-11	1.74E-10
413	764663.4	4093442	9.01E-10	9.81E-10	3.47E-10	2.23E-09	1.41E-10	1.59E-10	5.49E-11	3.55E-10	7.53E-11	7.48E-11	2.30E-11	1.73E-10
414	764641	4093451	8.96E-10	9.75E-10	3.45E-10	2.22E-09	1.40E-10	1.58E-10	5.45E-11	3.53E-10	7.48E-11	7.44E-11	2.28E-11	1.72E-10
415	764618.6	4093459	8.91E-10	9.69E-10	3.43E-10	2.20E-09	1.39E-10	1.57E-10	5.42E-11	3.51E-10	7.44E-11	7.39E-11	2.27E-11	1.71E-10
416	764596.2	4093468	8.85E-10	9.63E-10	3.41E-10	2.19E-09	1.38E-10	1.56E-10	5.39E-11	3.48E-10	7.39E-11	7.35E-11	2.26E-11	1.70E-10
417	764573.8	4093476	8.80E-10	9.58E-10	3.39E-10	2.18E-09	1.37E-10	1.55E-10	5.35E-11	3.46E-10	7.35E-11	7.30E-11	2.24E-11	1.69E-10
418	764551.4	4093485	8.75E-10	9.52E-10	3.37E-10	2.16E-09	1.37E-10	1.55E-10	5.32E-11	3.44E-10	7.31E-11	7.26E-11	2.23E-11	1.68E-10
419	764529	4093493	8.70E-10	9.47E-10	3.35E-10	2.15E-09	1.36E-10	1.54E-10	5.29E-11	3.43E-10	7.27E-11	7.22E-11	2.22E-11	1.67E-10
420	764506.6	4093502	8.66E-10	9.43E-10	3.34E-10	2.14E-09	1.35E-10	1.53E-10	5.27E-11	3.41E-10	7.24E-11	7.19E-11	2.21E-11	1.66E-10
421	764484.3	4093510	8.64E-10	9.40E-10	3.33E-10	2.14E-09	1.35E-10	1.53E-10	5.25E-11	3.40E-10	7.21E-11	7.17E-11	2.20E-11	1.66E-10
422	764461.9	4093519	8.61E-10	9.37E-10	3.32E-10	2.13E-09	1.35E-10	1.52E-10	5.24E-11	3.39E-10	7.19E-11	7.15E-11	2.19E-11	1.65E-10
423	764439.5	4093527	8.60E-10	9.36E-10	3.31E-10	2.13E-09	1.34E-10	1.52E-10	5.23E-11	3.39E-10	7.18E-11	7.14E-11	2.19E-11	1.65E-10
424	764417.1	4093536	8.60E-10	9.36E-10	3.31E-10	2.13E-09	1.34E-10	1.52E-10	5.23E-11	3.38E-10	7.18E-11	7.14E-11	2.19E-11	1.65E-10
425	764394.7	4093544	8.60E-10	9.36E-10	3.31E-10	2.13E-09	1.34E-10	1.52E-10	5.23E-11	3.39E-10	7.18E-11	7.14E-11	2.19E-11	1.65E-10
426	764372.3	4093553	8.61E-10	9.37E-10	3.32E-10	2.13E-09	1.35E-10	1.52E-10	5.24E-11	3.39E-10	7.19E-11	7.15E-11	2.19E-11	1.65E-10
427	764349.9	4093561	8.64E-10	9.40E-10	3.33E-10	2.14E-09	1.35E-10	1.53E-10	5.25E-11	3.40E-10	7.21E-11	7.17E-11	2.20E-11	1.66E-10
428	764327.5	4093570	8.67E-10	9.44E-10	3.34E-10	2.14E-09	1.35E-10	1.53E-10	5.28E-11	3.41E-10	7.24E-11	7.20E-11	2.21E-11	1.66E-10
429	764305.1	4093578	8.71E-10	9.48E-10	3.36E-10	2.15E-09	1.36E-10	1.54E-10	5.30E-11	3.43E-10	7.27E-11	7.23E-11	2.22E-11	1.67E-10
430	764282.8	4093587	8.76E-10	9.54E-10	3.38E-10	2.17E-09	1.37E-10	1.55E-10	5.33E-11	3.45E-10	7.32E-11	7.28E-11	2.23E-11	1.68E-10
431	764260.4	4093595	8.83E-10	9.61E-10	3.40E-10	2.18E-09	1.38E-10	1.56E-10	5.37E-11	3.48E-10	7.37E-11	7.33E-11	2.25E-11	1.69E-10
432	764238	4093604	8.89E-10	9.68E-10	3.43E-10	2.20E-09	1.39E-10	1.57E-10	5.41E-11	3.50E-10	7.43E-11	7.38E-11	2.27E-11	1.71E-10
433	764215.6	4093612	8.97E-10	9.76E-10	3.45E-10	2.22E-09	1.40E-10	1.58E-10	5.46E-11	3.53E-10	7.49E-11	7.45E-11	2.29E-11	1.72E-10
434	765323.3	4092560	1.74E-09	1.89E-09	6.70E-10	4.30E-09	2.72E-10	3.07E-10	1.06E-10	6.85E-10	1.45E-10	1.44E-10	4.43E-11	3.34E-10
435	765324.1	4092536	1.81E-09	1.97E-09	6.97E-10	4.48E-09	2.83E-10	3.20E-10	1.10E-10	7.13E-10	1.51E-10	1.50E-10	4.61E-11	3.47E-10
436	765325	4092512	1.88E-09	2.05E-09	7.25E-10	4.66E-09	2.94E-10	3.33E-10	1.15E-10	7.41E-10	1.57E-10	1.56E-10	4.80E-11	3.62E-10

437	765325.8	4092487	1.96E-09	2.13E-09	7.54E-10	4.84E-09	3.06E-10	3.46E-10	1.19E-10	7.71E-10	1.64E-10	1.63E-10	4.99E-11	3.76E-10
438	765326.7	4092463	2.04E-09	2.22E-09	7.84E-10	5.04E-09	3.18E-10	3.60E-10	1.24E-10	8.02E-10	1.70E-10	1.69E-10	5.19E-11	3.91E-10
439	765327.5	4092439	2.12E-09	2.31E-09	8.16E-10	5.24E-09	3.31E-10	3.74E-10	1.29E-10	8.34E-10	1.77E-10	1.76E-10	5.40E-11	4.07E-10
440	765328.4	4092415	2.20E-09	2.39E-09	8.47E-10	5.44E-09	3.44E-10	3.89E-10	1.34E-10	8.66E-10	1.84E-10	1.83E-10	5.61E-11	4.22E-10
441	765329.2	4092391	2.28E-09	2.49E-09	8.79E-10	5.65E-09	3.57E-10	4.03E-10	1.39E-10	8.99E-10	1.91E-10	1.90E-10	5.82E-11	4.38E-10
442	765330.1	4092367	2.37E-09	2.58E-09	9.12E-10	5.86E-09	3.70E-10	4.19E-10	1.44E-10	9.33E-10	1.98E-10	1.97E-10	6.04E-11	4.55E-10
443	765330.9	4092343	2.46E-09	2.67E-09	9.46E-10	6.08E-09	3.84E-10	4.34E-10	1.49E-10	9.67E-10	2.05E-10	2.04E-10	6.26E-11	4.72E-10
444	765331.8	4092318	2.55E-09	2.77E-09	9.80E-10	6.30E-09	3.98E-10	4.50E-10	1.55E-10	1.00E-09	2.13E-10	2.11E-10	6.49E-11	4.89E-10
445	765332.6	4092294	2.64E-09	2.87E-09	1.02E-09	6.53E-09	4.12E-10	4.66E-10	1.61E-10	1.04E-09	2.20E-10	2.19E-10	6.72E-11	5.07E-10
446	765333.5	4092270	2.73E-09	2.98E-09	1.05E-09	6.76E-09	4.27E-10	4.83E-10	1.66E-10	1.08E-09	2.28E-10	2.27E-10	6.97E-11	5.25E-10
447	765334.3	4092246	2.83E-09	3.08E-09	1.09E-09	7.01E-09	4.43E-10	5.01E-10	1.72E-10	1.12E-09	2.37E-10	2.35E-10	7.22E-11	5.44E-10
448	765335.2	4092222	2.94E-09	3.20E-09	1.13E-09	7.27E-09	4.59E-10	5.19E-10	1.79E-10	1.16E-09	2.45E-10	2.44E-10	7.48E-11	5.64E-10
449	765513.4	4092588	1.35E-09	1.47E-09	5.21E-10	3.35E-09	2.11E-10	2.39E-10	8.23E-11	5.33E-10	1.13E-10	1.12E-10	3.45E-11	2.60E-10
450	765503.6	4092610	1.32E-09	1.44E-09	5.10E-10	3.27E-09	2.07E-10	2.34E-10	8.05E-11	5.21E-10	1.11E-10	1.10E-10	3.37E-11	2.54E-10
451	765493.9	4092631	1.29E-09	1.41E-09	4.99E-10	3.20E-09	2.02E-10	2.29E-10	7.88E-11	5.10E-10	1.08E-10	1.07E-10	3.30E-11	2.49E-10
452	765484.2	4092653	1.27E-09	1.38E-09	4.87E-10	3.13E-09	1.98E-10	2.24E-10	7.70E-11	4.98E-10	1.06E-10	1.05E-10	3.23E-11	2.43E-10
453	765474.4	4092674	1.24E-09	1.35E-09	4.77E-10	3.06E-09	1.93E-10	2.19E-10	7.53E-11	4.87E-10	1.03E-10	1.03E-10	3.15E-11	2.38E-10
454	765464.7	4092696	1.21E-09	1.32E-09	4.66E-10	2.99E-09	1.89E-10	2.14E-10	7.37E-11	4.77E-10	1.01E-10	1.01E-10	3.08E-11	2.32E-10
455	765454.9	4092717	1.18E-09	1.29E-09	4.56E-10	2.93E-09	1.85E-10	2.09E-10	7.21E-11	4.66E-10	9.89E-11	9.84E-11	3.02E-11	2.27E-10
456	765445.2	4092739	1.16E-09	1.26E-09	4.47E-10	2.87E-09	1.81E-10	2.05E-10	7.06E-11	4.57E-10	9.69E-11	9.63E-11	2.96E-11	2.23E-10
457	765435.4	4092760	1.14E-09	1.24E-09	4.38E-10	2.81E-09	1.78E-10	2.01E-10	6.92E-11	4.48E-10	9.50E-11	9.44E-11	2.90E-11	2.18E-10
458	765425.7	4092782	1.12E-09	1.21E-09	4.30E-10	2.76E-09	1.74E-10	1.97E-10	6.79E-11	4.39E-10	9.31E-11	9.26E-11	2.84E-11	2.14E-10
459	765415.9	4092803	1.10E-09	1.19E-09	4.22E-10	2.71E-09	1.71E-10	1.94E-10	6.67E-11	4.32E-10	9.15E-11	9.10E-11	2.79E-11	2.10E-10
460	765406.2	4092825	1.08E-09	1.17E-09	4.15E-10	2.67E-09	1.68E-10	1.90E-10	6.56E-11	4.24E-10	9.00E-11	8.95E-11	2.75E-11	2.07E-10
461	765396.4	4092846	1.06E-09	1.16E-09	4.09E-10	2.63E-09	1.66E-10	1.88E-10	6.46E-11	4.18E-10	8.86E-11	8.81E-11	2.70E-11	2.04E-10
462	765386.7	4092868	1.05E-09	1.14E-09	4.03E-10	2.59E-09	1.63E-10	1.85E-10	6.37E-11	4.12E-10	8.74E-11	8.69E-11	2.67E-11	2.01E-10
463	765376.9	4092889	1.03E-09	1.12E-09	3.98E-10	2.56E-09	1.61E-10	1.83E-10	6.29E-11	4.07E-10	8.63E-11	8.58E-11	2.63E-11	1.98E-10
464	765367.2	4092911	1.02E-09	1.11E-09	3.93E-10	2.53E-09	1.59E-10	1.80E-10	6.21E-11	4.02E-10	8.53E-11	8.48E-11	2.60E-11	1.96E-10
465	765357.4	4092932	1.01E-09	1.10E-09	3.89E-10	2.50E-09	1.58E-10	1.79E-10	6.15E-11	3.98E-10	8.44E-11	8.39E-11	2.57E-11	1.94E-10
466	765347.7	4092953	1.00E-09	1.09E-09	3.85E-10	2.47E-09	1.56E-10	1.77E-10	6.08E-11	3.94E-10	8.35E-11	8.30E-11	2.55E-11	1.92E-10
467	765337.9	4092975	9.90E-10	1.08E-09	3.81E-10	2.45E-09	1.55E-10	1.75E-10	6.03E-11	3.90E-10	8.27E-11	8.22E-11	2.52E-11	1.90E-10
468	765328.2	4092996	9.81E-10	1.07E-09	3.78E-10	2.43E-09	1.53E-10	1.73E-10	5.97E-11	3.86E-10	8.19E-11	8.15E-11	2.50E-11	1.88E-10
469	765318.4	4093018	9.72E-10	1.06E-09	3.74E-10	2.40E-09	1.52E-10	1.72E-10	5.91E-11	3.83E-10	8.12E-11	8.07E-11	2.48E-11	1.87E-10
470	765308.7	4093039	9.63E-10	1.05E-09	3.71E-10	2.38E-09	1.50E-10	1.70E-10	5.86E-11	3.79E-10	8.04E-11	7.99E-11	2.45E-11	1.85E-10
471	765298.9	4093061	9.53E-10	1.04E-09	3.67E-10	2.36E-09	1.49E-10	1.68E-10	5.80E-11	3.75E-10	7.96E-11	7.91E-11	2.43E-11	1.83E-10
472	765289.2	4093082	9.42E-10	1.03E-09	3.63E-10	2.33E-09	1.47E-10	1.67E-10	5.73E-11	3.71E-10	7.87E-11	7.82E-11	2.40E-11	1.81E-10
473	765279.4	4093104	9.31E-10	1.01E-09	3.59E-10	2.30E-09	1.45E-10	1.65E-10	5.67E-11	3.67E-10	7.78E-11	7.73E-11	2.37E-11	1.79E-10
	765269.7	4093125	9.19E-10	1.00E-09	3.54E-10	2.27E-09		1.62E-10				7.63E-11		
475	765259.9	4093147	9.06E-10	9.86E-10	3.49E-10	2.24E-09	1.41E-10	1.60E-10	5.51E-11	3.57E-10		7.52E-11		
	765250.2		8.92E-10	9.71E-10	3.43E-10	2.21E-09		1.58E-10		3.51E-10		7.40E-11		
	765240.4	4093190	8.77E-10	9.55E-10	3.38E-10	2.17E-09		1.55E-10				7.28E-11		
478		4093211	8.62E-10	9.38E-10	3.32E-10	2.13E-09		1.52E-10				7.15E-11		
479		4093233	8.46E-10	9.21E-10	3.26E-10	2.09E-09		1.49E-10				7.02E-11		
480				9.03E-10	3.20E-10	2.05E-09		1.47E-10				6.89E-11		
														

481	765201.4	4093276	8.14E-10	8.86E-10	3.13E-10	2.01E-09	1.27E-10	1.44E-10	4.95E-11	3.20E-10	6.80E-11	6.76E-11	2.07E-11	1.56E-10
482	765191.7	4093297	7.99E-10	8.69E-10	3.08E-10	1.98E-09	1.25E-10	1.41E-10	4.86E-11	3.14E-10	6.67E-11	6.63E-11	2.03E-11	1.53E-10
483	765181.9	4093319	7.84E-10	8.53E-10	3.02E-10	1.94E-09	1.22E-10	1.38E-10	4.77E-11	3.09E-10	6.54E-11	6.51E-11	2.00E-11	1.50E-10
484	765172.2	4093340	7.69E-10	8.37E-10	2.96E-10	1.90E-09	1.20E-10	1.36E-10	4.68E-11	3.03E-10	6.42E-11	6.39E-11	1.96E-11	1.48E-10
485	765162.4	4093362	7.56E-10	8.23E-10	2.91E-10	1.87E-09	1.18E-10	1.34E-10	4.60E-11	2.98E-10	6.31E-11	6.28E-11	1.93E-11	1.45E-10
486	765152.7	4093383	7.44E-10	8.10E-10	2.86E-10	1.84E-09	1.16E-10	1.31E-10	4.53E-11	2.93E-10	6.21E-11	6.18E-11	1.90E-11	1.43E-10
487	765142.9	4093404	7.32E-10	7.97E-10	2.82E-10	1.81E-09	1.14E-10	1.29E-10	4.46E-11	2.88E-10	6.11E-11	6.08E-11	1.87E-11	1.41E-10
488	765133.2	4093426	7.21E-10	7.85E-10	2.78E-10	1.78E-09	1.13E-10	1.27E-10	4.39E-11	2.84E-10	6.02E-11	5.99E-11	1.84E-11	1.39E-10
489	765123.4	4093447	7.11E-10	7.74E-10	2.74E-10	1.76E-09	1.11E-10	1.26E-10	4.33E-11	2.80E-10	5.94E-11	5.91E-11	1.81E-11	1.37E-10
490	765091.6	4093477	7.06E-10	7.69E-10	2.72E-10	1.75E-09	1.10E-10	1.25E-10	4.30E-11	2.78E-10	5.90E-11	5.86E-11	1.80E-11	1.36E-10
491	765069.6	4093486	7.10E-10	7.73E-10	2.73E-10	1.76E-09	1.11E-10	1.25E-10	4.32E-11	2.80E-10	5.93E-11	5.90E-11	1.81E-11	1.36E-10
492	765047.5	4093494	7.14E-10	7.77E-10	2.75E-10	1.77E-09	1.12E-10	1.26E-10	4.34E-11	2.81E-10	5.96E-11	5.93E-11	1.82E-11	1.37E-10
493	765025.5	4093502	7.18E-10	7.81E-10	2.76E-10	1.78E-09	1.12E-10	1.27E-10	4.37E-11	2.83E-10	5.99E-11	5.96E-11	1.83E-11	1.38E-10
494	765003.4	4093511	7.21E-10	7.85E-10	2.78E-10	1.78E-09	1.13E-10	1.27E-10	4.39E-11	2.84E-10	6.02E-11	5.99E-11	1.84E-11	1.38E-10
495	764981.4	4093519	7.24E-10	7.88E-10	2.79E-10	1.79E-09	1.13E-10	1.28E-10	4.41E-11	2.85E-10	6.05E-11	6.01E-11	1.84E-11	1.39E-10
496	764959.3	4093527	7.26E-10	7.91E-10	2.80E-10	1.80E-09	1.13E-10	1.28E-10	4.42E-11	2.86E-10	6.06E-11	6.03E-11	1.85E-11	1.39E-10
497	764937.3	4093536	7.28E-10	7.93E-10	2.80E-10	1.80E-09	1.14E-10	1.29E-10	4.43E-11	2.87E-10	6.08E-11	6.05E-11	1.86E-11	1.40E-10
498	764915.2	4093544	7.29E-10	7.94E-10	2.81E-10	1.80E-09	1.14E-10	1.29E-10	4.44E-11	2.87E-10	6.09E-11	6.06E-11	1.86E-11	1.40E-10
499	764893.2	4093553	7.30E-10	7.94E-10	2.81E-10	1.80E-09	1.14E-10	1.29E-10	4.44E-11	2.87E-10	6.09E-11	6.06E-11	1.86E-11	1.40E-10
500	764871.1	4093561	7.29E-10	7.94E-10	2.81E-10	1.80E-09	1.14E-10	1.29E-10	4.44E-11	2.87E-10	6.09E-11	6.05E-11	1.86E-11	1.40E-10
501	764849.1	4093569	7.28E-10	7.93E-10	2.80E-10	1.80E-09	1.14E-10	1.29E-10	4.43E-11	2.87E-10	6.08E-11	6.05E-11	1.86E-11	1.40E-10
502	764827	4093578	7.26E-10	7.91E-10	2.80E-10	1.80E-09	1.13E-10	1.28E-10	4.42E-11	2.86E-10	6.06E-11	6.03E-11	1.85E-11	1.39E-10
503	764805	4093586	7.24E-10	7.88E-10	2.79E-10	1.79E-09	1.13E-10	1.28E-10	4.41E-11	2.85E-10	6.05E-11	6.01E-11	1.84E-11	1.39E-10
504	764782.9	4093594	7.21E-10	7.85E-10	2.78E-10	1.78E-09	1.13E-10	1.27E-10	4.39E-11	2.84E-10	6.02E-11	5.99E-11	1.84E-11	1.38E-10
505	764760.9	4093603	7.18E-10	7.81E-10	2.76E-10	1.78E-09	1.12E-10	1.27E-10	4.37E-11	2.83E-10	5.99E-11	5.96E-11	1.83E-11	1.38E-10
506	764738.8	4093611	7.14E-10	7.77E-10	2.75E-10	1.77E-09	1.11E-10	1.26E-10	4.34E-11	2.81E-10	5.96E-11	5.93E-11	1.82E-11	1.37E-10
507	764716.8	4093620	7.10E-10	7.72E-10	2.73E-10	1.76E-09	1.11E-10	1.25E-10	4.32E-11	2.79E-10	5.93E-11	5.89E-11	1.81E-11	1.36E-10
508	764694.7	4093628	7.05E-10	7.68E-10	2.72E-10	1.74E-09	1.10E-10	1.25E-10	4.29E-11	2.78E-10	5.89E-11	5.85E-11	1.80E-11	1.35E-10
509	764672.7	4093636	7.01E-10	7.63E-10	2.70E-10	1.73E-09	1.09E-10	1.24E-10	4.27E-11	2.76E-10	5.85E-11	5.82E-11	1.79E-11	1.35E-10
510	764650.6	4093645	6.97E-10	7.58E-10	2.68E-10	1.72E-09	1.09E-10	1.23E-10	4.24E-11	2.74E-10	5.82E-11	5.79E-11	1.78E-11	1.34E-10
511	764628.6	4093653	6.93E-10	7.54E-10	2.67E-10	1.71E-09	1.08E-10	1.22E-10	4.22E-11	2.73E-10	5.79E-11	5.75E-11	1.77E-11	1.33E-10
512	764606.5	4093661	6.90E-10	7.51E-10	2.66E-10	1.71E-09	1.08E-10	1.22E-10	4.20E-11	2.72E-10	5.76E-11	5.73E-11	1.76E-11	1.32E-10
513	764584.5	4093670	6.87E-10	7.48E-10	2.65E-10	1.70E-09	1.07E-10	1.21E-10	4.18E-11	2.71E-10	5.74E-11	5.70E-11	1.75E-11	1.32E-10
514	764562.5	4093678	6.85E-10	7.46E-10	2.64E-10	1.69E-09	1.07E-10	1.21E-10	4.17E-11	2.70E-10	5.72E-11	5.69E-11	1.75E-11	1.32E-10
515	764540.4	4093687	6.84E-10	7.44E-10	2.63E-10	1.69E-09	1.07E-10	1.21E-10	4.16E-11	2.69E-10	5.71E-11	5.68E-11	1.74E-11	1.31E-10
516	764518.4	4093695	6.83E-10	7.43E-10	2.63E-10	1.69E-09	1.07E-10	1.21E-10	4.16E-11	2.69E-10	5.70E-11	5.67E-11	1.74E-11	1.31E-10
517	764496.3	4093703	6.83E-10	7.43E-10	2.63E-10	1.69E-09	1.07E-10	1.21E-10	4.15E-11	2.69E-10	5.70E-11	5.67E-11	1.74E-11	1.31E-10
518	764474.3	4093712	6.83E-10	7.43E-10	2.63E-10	1.69E-09	1.07E-10	1.21E-10	4.15E-11	2.69E-10	5.70E-11	5.67E-11	1.74E-11	1.31E-10
519	764452.2	4093720	6.83E-10	7.44E-10	2.63E-10	1.69E-09	1.07E-10	1.21E-10	4.16E-11	2.69E-10	5.71E-11	5.67E-11	1.74E-11	1.31E-10
520	764430.2	4093728	6.85E-10	7.45E-10	2.64E-10	1.69E-09	1.07E-10	1.21E-10	4.17E-11	2.70E-10	5.72E-11	5.69E-11	1.74E-11	1.31E-10
	764408.1		6.87E-10	7.47E-10	2.64E-10	1.70E-09		1.21E-10				5.70E-11		
522			6.89E-10	7.50E-10	2.65E-10	1.70E-09	1.08E-10	1.22E-10	4.19E-11	2.71E-10	5.75E-11	5.72E-11	1.75E-11	1.32E-10
523	764364	4093754	6.92E-10	7.53E-10	2.66E-10	1.71E-09	1.08E-10	1.22E-10	4.21E-11	2.72E-10		5.74E-11		
524	764342		6.95E-10	7.56E-10	2.68E-10	1.72E-09		1.23E-10				5.77E-11		
			-	-	-	· -		-		-		_	_	-

525	764319.9	4093770	6.99E-10	7.60E-10	2.69E-10	1.73E-09	1.09E-10	1.23E-10	4.25E-11	2.75E-10	5.83E-11	5.80E-11	1.78E-11	1.34E-10
526	764297.9	4093779	7.03E-10	7.65E-10	2.71E-10	1.74E-09	1.10E-10	1.24E-10	4.28E-11	2.77E-10	5.87E-11	5.84E-11	1.79E-11	1.35E-10
527	764275.8	4093787	7.08E-10	7.71E-10	2.73E-10	1.75E-09	1.11E-10	1.25E-10	4.31E-11	2.79E-10	5.91E-11	5.88E-11	1.80E-11	1.36E-10
528	764253.8	4093795	7.13E-10	7.76E-10	2.75E-10	1.76E-09	1.11E-10	1.26E-10	4.34E-11	2.81E-10	5.96E-11	5.92E-11	1.82E-11	1.37E-10
529	764231.7	4093804	7.19E-10	7.82E-10	2.77E-10	1.78E-09	1.12E-10	1.27E-10	4.37E-11	2.83E-10	6.00E-11	5.97E-11	1.83E-11	1.38E-10
530	764209.7	4093812	7.25E-10	7.89E-10	2.79E-10	1.79E-09	1.13E-10	1.28E-10	4.41E-11	2.85E-10	6.05E-11	6.02E-11	1.85E-11	1.39E-10
531	765523.1	4092567	1.38E-09	1.50E-09	5.32E-10	3.42E-09	2.16E-10	2.44E-10	8.41E-11	5.44E-10	1.15E-10	1.15E-10	3.52E-11	2.65E-10
532	765524	4092543	1.43E-09	1.56E-09	5.51E-10	3.54E-09	2.23E-10	2.53E-10	8.70E-11	5.63E-10	1.19E-10	1.19E-10	3.64E-11	2.74E-10
533	765524.8	4092519	1.48E-09	1.61E-09	5.69E-10	3.66E-09	2.31E-10	2.61E-10	9.00E-11	5.82E-10	1.23E-10	1.23E-10	3.77E-11	2.84E-10
534	765525.7	4092494	1.53E-09	1.66E-09	5.89E-10	3.78E-09	2.39E-10	2.70E-10	9.30E-11	6.02E-10	1.28E-10	1.27E-10	3.90E-11	2.94E-10
535	765526.6	4092470	1.58E-09	1.72E-09	6.08E-10	3.91E-09	2.47E-10	2.79E-10	9.61E-11	6.22E-10	1.32E-10	1.31E-10	4.03E-11	3.03E-10
536	765527.4	4092446	1.63E-09	1.78E-09	6.28E-10	4.04E-09	2.55E-10	2.88E-10	9.93E-11	6.42E-10	1.36E-10	1.35E-10	4.16E-11	3.13E-10
537	765528.3	4092422	1.68E-09	1.83E-09	6.49E-10	4.17E-09	2.63E-10	2.98E-10	1.02E-10	6.63E-10	1.41E-10	1.40E-10	4.29E-11	3.23E-10
538	765529.1	4092398	1.74E-09	1.89E-09	6.69E-10	4.30E-09	2.71E-10	3.07E-10	1.06E-10	6.84E-10	1.45E-10	1.44E-10	4.43E-11	3.34E-10
539	765530	4092374	1.79E-09	1.95E-09	6.90E-10	4.43E-09	2.80E-10	3.16E-10	1.09E-10	7.05E-10	1.50E-10	1.49E-10	4.56E-11	3.44E-10
540	765530.8	4092350	1.85E-09	2.01E-09	7.11E-10	4.57E-09	2.88E-10	3.26E-10	1.12E-10	7.27E-10	1.54E-10	1.53E-10	4.70E-11	3.54E-10
541	765531.7	4092326	1.90E-09	2.07E-09	7.32E-10	4.70E-09	2.97E-10	3.36E-10	1.16E-10	7.48E-10	1.59E-10	1.58E-10	4.84E-11	3.65E-10
542	765532.5	4092301	1.96E-09	2.13E-09	7.54E-10	4.84E-09	3.06E-10	3.46E-10	1.19E-10	7.71E-10	1.63E-10	1.63E-10	4.99E-11	3.76E-10
543	765533.4	4092277	2.01E-09	2.19E-09	7.76E-10	4.98E-09	3.15E-10	3.56E-10	1.23E-10	7.93E-10	1.68E-10	1.67E-10	5.13E-11	3.87E-10
544	765534.2	4092253	2.07E-09	2.26E-09	7.99E-10	5.13E-09	3.24E-10	3.66E-10	1.26E-10	8.16E-10	1.73E-10	1.72E-10	5.28E-11	3.98E-10
545	765535.1	4092229	2.13E-09	2.32E-09	8.22E-10	5.28E-09	3.33E-10	3.77E-10	1.30E-10	8.40E-10	1.78E-10	1.77E-10	5.44E-11	4.10E-10
546	765713.2	4092596	1.12E-09	1.22E-09	4.30E-10	2.76E-09	1.75E-10	1.97E-10	6.80E-11	4.40E-10	9.33E-11	9.28E-11	2.85E-11	2.15E-10
547	765703.3	4092617	1.10E-09	1.19E-09	4.22E-10	2.71E-09	1.71E-10	1.94E-10	6.67E-11	4.32E-10	9.15E-11	9.10E-11	2.79E-11	2.10E-10
548	765693.5	4092639	1.07E-09	1.17E-09	4.14E-10	2.66E-09	1.68E-10	1.90E-10	6.54E-11	4.23E-10	8.97E-11	8.92E-11	2.74E-11	2.06E-10
549	765683.7	4092661	1.05E-09	1.15E-09	4.06E-10	2.61E-09	1.65E-10	1.86E-10	6.41E-11	4.15E-10	8.80E-11	8.75E-11	2.68E-11	2.02E-10
550	765673.8	4092682	1.03E-09	1.12E-09	3.98E-10	2.55E-09	1.61E-10	1.82E-10	6.28E-11	4.06E-10	8.62E-11	8.57E-11	2.63E-11	1.98E-10
551	765664	4092704	1.01E-09	1.10E-09	3.90E-10	2.50E-09	1.58E-10	1.79E-10	6.16E-11	3.98E-10	8.45E-11	8.40E-11	2.58E-11	1.94E-10
552	765654.1	4092726	9.92E-10	1.08E-09	3.82E-10	2.45E-09	1.55E-10	1.75E-10	6.04E-11	3.90E-10	8.28E-11	8.23E-11	2.53E-11	1.90E-10
553	765644.3	4092747	9.72E-10	1.06E-09	3.74E-10	2.40E-09	1.52E-10	1.72E-10	5.92E-11	3.83E-10	8.12E-11	8.07E-11	2.48E-11	1.87E-10
554	765634.4	4092769	9.54E-10	1.04E-09	3.67E-10	2.36E-09	1.49E-10	1.69E-10	5.80E-11	3.75E-10	7.96E-11	7.92E-11	2.43E-11	1.83E-10
555	765624.6	4092791	9.36E-10	1.02E-09	3.60E-10	2.32E-09	1.46E-10	1.65E-10	5.69E-11	3.68E-10	7.82E-11	7.77E-11	2.38E-11	1.80E-10
556	765614.8	4092812	9.20E-10	1.00E-09	3.54E-10	2.28E-09	1.44E-10	1.63E-10	5.60E-11	3.62E-10	7.68E-11	7.64E-11	2.34E-11	1.77E-10
557	765604.9	4092834	9.05E-10	9.85E-10	3.48E-10	2.24E-09	1.41E-10	1.60E-10	5.50E-11	3.56E-10	7.55E-11	7.51E-11	2.31E-11	1.74E-10
558	765595.1	4092856	8.91E-10	9.69E-10	3.43E-10	2.20E-09	1.39E-10	1.57E-10	5.42E-11	3.51E-10	7.44E-11	7.39E-11	2.27E-11	1.71E-10
559	765585.2	4092877	8.77E-10	9.55E-10	3.38E-10	2.17E-09	1.37E-10	1.55E-10	5.34E-11	3.45E-10	7.32E-11	7.28E-11	2.24E-11	1.68E-10
560	765575.4	4092899	8.65E-10	9.42E-10	3.33E-10	2.14E-09	1.35E-10	1.53E-10	5.27E-11	3.41E-10	7.23E-11	7.19E-11	2.21E-11	1.66E-10
561	765565.5	4092921	8.55E-10	9.31E-10	3.29E-10	2.11E-09	1.34E-10	1.51E-10	5.20E-11	3.37E-10	7.14E-11	7.10E-11	2.18E-11	1.64E-10
562	765555.7	4092943	8.46E-10	9.20E-10	3.26E-10	2.09E-09	1.32E-10	1.49E-10	5.15E-11	3.33E-10	7.06E-11	7.02E-11	2.15E-11	1.62E-10
563	765545.8	4092964	8.37E-10	9.11E-10	3.22E-10	2.07E-09	1.31E-10	1.48E-10	5.09E-11	3.30E-10	6.99E-11	6.95E-11	2.13E-11	1.61E-10
564	765536	4092986	8.30E-10	9.03E-10	3.20E-10	2.05E-09	1.30E-10	1.47E-10	5.05E-11	3.27E-10	6.93E-11	6.89E-11	2.11E-11	1.59E-10
565	765526.2	4093008	8.23E-10	8.96E-10	3.17E-10	2.04E-09	1.29E-10	1.45E-10	5.01E-11	3.24E-10	6.87E-11	6.83E-11	2.10E-11	1.58E-10
566	765516.3	4093029	8.17E-10	8.89E-10	3.15E-10	2.02E-09	1.28E-10	1.44E-10	4.97E-11	3.22E-10	6.82E-11	6.78E-11	2.08E-11	1.57E-10
567	765506.5	4093051	8.11E-10	8.83E-10	3.12E-10	2.01E-09	1.27E-10	1.43E-10	4.94E-11	3.19E-10	6.77E-11	6.73E-11	2.07E-11	1.56E-10
568	765496.6	4093073	8.06E-10	8.77E-10	3.10E-10	1.99E-09	1.26E-10	1.42E-10	4.90E-11	3.17E-10	6.73E-11	6.69E-11	2.05E-11	1.55E-10

569	765486.8	4093094	8.00E-10	8.70E-10	3.08E-10	1.98E-09	1.25E-10	1.41E-10	4.87E-11	3.15E-10	6.68E-11	6.64E-11	2.04E-11	1.54E-10
570	765476.9	4093116	7.94E-10	8.64E-10	3.06E-10	1.96E-09	1.24E-10	1.40E-10	4.83E-11	3.13E-10	6.63E-11	6.59E-11	2.02E-11	1.52E-10
571	765467.1	4093138	7.88E-10	8.57E-10	3.03E-10	1.95E-09	1.23E-10	1.39E-10	4.79E-11	3.10E-10	6.58E-11	6.54E-11	2.01E-11	1.51E-10
572	765457.3	4093159	7.81E-10	8.50E-10	3.01E-10	1.93E-09	1.22E-10	1.38E-10	4.75E-11	3.07E-10	6.52E-11	6.48E-11	1.99E-11	1.50E-10
573	765447.4	4093181	7.74E-10	8.42E-10	2.98E-10	1.91E-09	1.21E-10	1.37E-10	4.71E-11	3.05E-10	6.46E-11	6.42E-11	1.97E-11	1.49E-10
574	765437.6	4093203	7.66E-10	8.34E-10	2.95E-10	1.89E-09	1.20E-10	1.35E-10	4.66E-11	3.02E-10	6.40E-11	6.36E-11	1.95E-11	1.47E-10
575	765427.7	4093224	7.58E-10	8.25E-10	2.92E-10	1.87E-09	1.18E-10	1.34E-10	4.61E-11	2.98E-10	6.33E-11	6.29E-11	1.93E-11	1.45E-10
576	765417.9	4093246	7.48E-10	8.14E-10	2.88E-10	1.85E-09	1.17E-10	1.32E-10	4.55E-11	2.95E-10	6.25E-11	6.21E-11	1.91E-11	1.44E-10
577	765408	4093268	7.38E-10	8.04E-10	2.84E-10	1.83E-09	1.15E-10	1.30E-10	4.49E-11	2.91E-10	6.17E-11	6.13E-11	1.88E-11	1.42E-10
578	765398.2	4093289	7.28E-10	7.92E-10	2.80E-10	1.80E-09	1.14E-10	1.29E-10	4.43E-11	2.87E-10	6.08E-11	6.04E-11	1.85E-11	1.40E-10
579	765388.4	4093311	7.17E-10	7.80E-10	2.76E-10	1.77E-09	1.12E-10	1.27E-10	4.36E-11	2.82E-10	5.98E-11	5.95E-11	1.83E-11	1.38E-10
580	765378.5	4093333	7.05E-10	7.68E-10	2.72E-10	1.74E-09	1.10E-10	1.25E-10	4.29E-11	2.78E-10	5.89E-11	5.86E-11	1.80E-11	1.35E-10
581	765368.7	4093355	6.94E-10	7.55E-10	2.67E-10	1.72E-09	1.08E-10	1.23E-10	4.22E-11	2.73E-10	5.79E-11	5.76E-11	1.77E-11	1.33E-10
582	765358.8	4093376	6.82E-10	7.42E-10	2.63E-10	1.69E-09	1.06E-10	1.20E-10	4.15E-11	2.68E-10	5.69E-11	5.66E-11	1.74E-11	1.31E-10
583	765349	4093398	6.70E-10	7.29E-10	2.58E-10	1.66E-09	1.05E-10	1.18E-10	4.08E-11	2.64E-10	5.59E-11	5.56E-11	1.71E-11	1.29E-10
584	765339.1	4093420	6.58E-10	7.17E-10	2.54E-10	1.63E-09	1.03E-10	1.16E-10	4.01E-11	2.59E-10	5.50E-11	5.47E-11	1.68E-11	1.26E-10
585	765329.3	4093441	6.47E-10	7.04E-10	2.49E-10	1.60E-09	1.01E-10	1.14E-10	3.94E-11	2.55E-10	5.40E-11	5.37E-11	1.65E-11	1.24E-10
586	765319.5	4093463	6.37E-10	6.93E-10	2.45E-10	1.58E-09	9.95E-11	1.13E-10	3.87E-11	2.51E-10	5.32E-11	5.29E-11	1.62E-11	1.22E-10
587	765309.6	4093485	6.27E-10	6.83E-10	2.42E-10	1.55E-09	9.79E-11	1.11E-10	3.82E-11	2.47E-10	5.24E-11	5.21E-11	1.60E-11	1.20E-10
588	765299.8	4093506	6.18E-10	6.73E-10	2.38E-10	1.53E-09	9.66E-11	1.09E-10	3.76E-11	2.43E-10	5.16E-11	5.13E-11	1.58E-11	1.19E-10
589	765289.9	4093528	6.10E-10	6.64E-10	2.35E-10	1.51E-09	9.53E-11	1.08E-10	3.71E-11	2.40E-10	5.09E-11	5.07E-11	1.55E-11	1.17E-10
590	765280.1	4093550	6.02E-10	6.56E-10	2.32E-10	1.49E-09	9.41E-11	1.06E-10	3.66E-11	2.37E-10	5.03E-11	5.00E-11	1.53E-11	1.16E-10
591	765270.2	4093571	5.96E-10	6.48E-10	2.29E-10	1.47E-09	9.30E-11	1.05E-10	3.63E-11	2.35E-10	4.97E-11	4.95E-11	1.52E-11	1.14E-10
592	765260.4	4093593	5.89E-10	6.41E-10	2.27E-10	1.46E-09	9.20E-11	1.04E-10	3.59E-11	2.32E-10	4.92E-11	4.89E-11	1.50E-11	1.13E-10
593	765228.3	4093623	5.87E-10	6.39E-10	2.26E-10	1.45E-09	9.16E-11	1.04E-10	3.57E-11	2.31E-10	4.90E-11	4.87E-11	1.49E-11	1.13E-10
594	765206	4093632	5.90E-10	6.42E-10	2.27E-10	1.46E-09	9.21E-11	1.04E-10	3.59E-11	2.32E-10	4.92E-11	4.90E-11	1.50E-11	1.13E-10
595	765183.8	4093640	5.93E-10	6.45E-10	2.28E-10	1.47E-09	9.26E-11	1.05E-10	3.61E-11	2.33E-10	4.95E-11	4.92E-11	1.51E-11	1.14E-10
596	765161.5	4093649	5.96E-10	6.48E-10	2.29E-10	1.47E-09	9.30E-11	1.05E-10	3.63E-11	2.35E-10	4.97E-11	4.95E-11	1.52E-11	1.14E-10
597	765139.3	4093657	5.98E-10	6.51E-10	2.30E-10	1.48E-09	9.35E-11	1.06E-10	3.64E-11	2.36E-10	5.00E-11	4.97E-11	1.52E-11	1.15E-10
598	765117	4093665	6.00E-10	6.54E-10	2.31E-10	1.49E-09	9.38E-11	1.06E-10	3.65E-11	2.36E-10	5.01E-11	4.99E-11	1.53E-11	1.15E-10
599	765094.7	4093674	6.03E-10	6.56E-10	2.32E-10	1.49E-09	9.41E-11	1.06E-10	3.67E-11	2.37E-10	5.03E-11	5.00E-11	1.54E-11	1.16E-10
600	765072.5	4093682	6.04E-10	6.57E-10	2.33E-10	1.49E-09	9.43E-11	1.07E-10	3.67E-11	2.38E-10	5.04E-11	5.01E-11	1.54E-11	1.16E-10
601	765050.2	4093691	6.05E-10	6.58E-10	2.33E-10	1.50E-09	9.44E-11	1.07E-10	3.68E-11	2.38E-10	5.05E-11	5.02E-11	1.54E-11	1.16E-10
602	765028	4093699	6.05E-10	6.58E-10	2.33E-10	1.50E-09	9.45E-11	1.07E-10	3.68E-11	2.38E-10	5.05E-11	5.02E-11	1.54E-11	1.16E-10
603	765005.7	4093708	6.05E-10	6.58E-10	2.33E-10	1.50E-09	9.44E-11	1.07E-10	3.68E-11	2.38E-10	5.05E-11	5.02E-11	1.54E-11	1.16E-10
604	764983.4	4093716	6.04E-10	6.58E-10	2.33E-10	1.49E-09	9.44E-11	1.07E-10	3.68E-11	2.38E-10	5.04E-11	5.02E-11	1.54E-11	1.16E-10
605	764961.2	4093725	6.03E-10	6.56E-10	2.32E-10	1.49E-09	9.42E-11	1.07E-10	3.67E-11	2.37E-10	5.03E-11	5.00E-11	1.54E-11	1.16E-10
606	764938.9	4093733	6.01E-10	6.54E-10	2.32E-10	1.49E-09	9.39E-11	1.06E-10	3.66E-11	2.37E-10	5.02E-11	4.99E-11	1.53E-11	1.15E-10
607	764916.6	4093742	5.99E-10	6.52E-10	2.31E-10	1.48E-09	9.36E-11	1.06E-10	3.65E-11	2.36E-10	5.01E-11	4.98E-11	1.53E-11	1.15E-10
608	764894.4	4093750	5.97E-10	6.50E-10	2.30E-10	1.48E-09	9.33E-11	1.05E-10	3.63E-11	2.35E-10	4.99E-11	4.96E-11	1.52E-11	1.15E-10
609	764872.1	4093758	5.94E-10	6.47E-10	2.29E-10	1.47E-09	9.28E-11	1.05E-10	3.62E-11	2.34E-10	4.96E-11	4.94E-11	1.51E-11	1.14E-10
610	764849.9	4093767	5.91E-10	6.44E-10	2.28E-10	1.46E-09	9.24E-11	1.04E-10	3.60E-11	2.33E-10	4.94E-11	4.91E-11	1.51E-11	1.14E-10
611	764827.6	4093775	5.88E-10	6.40E-10	2.27E-10	1.45E-09	9.19E-11	1.04E-10	3.58E-11	2.32E-10	4.91E-11	4.88E-11	1.50E-11	1.13E-10
612	764805.3	4093784	5.85E-10	6.37E-10	2.25E-10	1.45E-09	9.14E-11	1.03E-10	3.56E-11	2.30E-10	4.89E-11	4.86E-11	1.49E-11	1.12E-10

613	764783.1	4093792	5.82E-10	6.33E-10	2.24E-10	1.44E-09	9.08E-11	1.03E-10	3.54E-11	2.29E-10	4.86E-11	4.83E-11	1.48E-11	1.12E-10
614	764760.8	4093801	5.78E-10	6.29E-10	2.23E-10	1.43E-09	9.03E-11	1.02E-10	3.52E-11	2.28E-10	4.83E-11	4.80E-11	1.47E-11	1.11E-10
615	764738.6	4093809	5.75E-10	6.26E-10	2.21E-10	1.42E-09	8.98E-11	1.02E-10	3.50E-11	2.26E-10	4.80E-11	4.78E-11	1.47E-11	1.10E-10
616	764716.3	4093818	5.72E-10	6.23E-10	2.20E-10	1.41E-09	8.93E-11	1.01E-10	3.48E-11	2.25E-10	4.78E-11	4.75E-11	1.46E-11	1.10E-10
617	764694	4093826	5.69E-10	6.20E-10	2.19E-10	1.41E-09	8.89E-11	1.01E-10	3.46E-11	2.24E-10	4.75E-11	4.73E-11	1.45E-11	1.09E-10
618	764671.8	4093834	5.67E-10	6.17E-10	2.18E-10	1.40E-09	8.86E-11	1.00E-10	3.45E-11	2.23E-10	4.73E-11	4.71E-11	1.44E-11	1.09E-10
619	764649.5	4093843	5.65E-10	6.16E-10	2.18E-10	1.40E-09	8.83E-11	9.99E-11	3.44E-11	2.23E-10	4.72E-11	4.69E-11	1.44E-11	1.09E-10
620	764627.2	4093851	5.64E-10	6.14E-10	2.17E-10	1.40E-09	8.81E-11	9.97E-11	3.43E-11	2.22E-10	4.71E-11	4.68E-11	1.44E-11	1.08E-10
621	764605	4093860	5.63E-10	6.13E-10	2.17E-10	1.39E-09	8.80E-11	9.95E-11	3.43E-11	2.22E-10	4.70E-11	4.68E-11	1.44E-11	1.08E-10
622	764582.7	4093868	5.63E-10	6.13E-10	2.17E-10	1.39E-09	8.80E-11	9.95E-11	3.43E-11	2.22E-10	4.70E-11	4.68E-11	1.43E-11	1.08E-10
623	764560.5	4093877	5.63E-10	6.13E-10	2.17E-10	1.39E-09	8.80E-11	9.95E-11	3.43E-11	2.22E-10	4.70E-11	4.68E-11	1.43E-11	1.08E-10
624	764538.2	4093885	5.64E-10	6.14E-10	2.17E-10	1.39E-09	8.80E-11	9.96E-11	3.43E-11	2.22E-10	4.71E-11	4.68E-11	1.44E-11	1.08E-10
625	764515.9	4093894	5.65E-10	6.15E-10	2.17E-10	1.40E-09	8.82E-11	9.98E-11	3.44E-11	2.22E-10	4.72E-11	4.69E-11	1.44E-11	1.08E-10
626	764493.7	4093902	5.66E-10	6.16E-10	2.18E-10	1.40E-09	8.84E-11	1.00E-10	3.44E-11	2.23E-10	4.73E-11	4.70E-11	1.44E-11	1.09E-10
627	764471.4	4093911	5.67E-10	6.17E-10	2.18E-10	1.40E-09	8.86E-11	1.00E-10	3.45E-11	2.23E-10	4.74E-11	4.71E-11	1.45E-11	1.09E-10
628	764449.2	4093919	5.69E-10	6.19E-10	2.19E-10	1.41E-09	8.89E-11	1.01E-10	3.46E-11	2.24E-10	4.75E-11	4.73E-11	1.45E-11	1.09E-10
629	764426.9	4093927	5.71E-10	6.22E-10	2.20E-10	1.41E-09	8.92E-11	1.01E-10	3.48E-11	2.25E-10	4.77E-11	4.74E-11	1.46E-11	1.10E-10
630	764404.6	4093936	5.74E-10	6.24E-10	2.21E-10	1.42E-09	8.96E-11	1.01E-10	3.49E-11	2.26E-10	4.79E-11	4.76E-11	1.46E-11	1.10E-10
631	764382.4	4093944	5.76E-10	6.27E-10	2.22E-10	1.43E-09	9.00E-11	1.02E-10	3.51E-11	2.27E-10	4.81E-11	4.78E-11	1.47E-11	1.11E-10
632	764360.1	4093953	5.79E-10	6.30E-10	2.23E-10	1.43E-09	9.04E-11	1.02E-10	3.52E-11	2.28E-10	4.84E-11	4.81E-11	1.48E-11	1.11E-10
633	764337.9	4093961	5.82E-10	6.33E-10	2.24E-10	1.44E-09	9.09E-11	1.03E-10	3.54E-11	2.29E-10	4.86E-11	4.83E-11	1.48E-11	1.12E-10
634	764315.6	4093970	5.85E-10	6.37E-10	2.25E-10	1.45E-09	9.14E-11	1.03E-10	3.56E-11	2.30E-10	4.89E-11	4.86E-11	1.49E-11	1.12E-10
635	764293.3	4093978	5.89E-10	6.41E-10	2.27E-10	1.46E-09	9.20E-11	1.04E-10	3.59E-11	2.32E-10	4.92E-11	4.89E-11	1.50E-11	1.13E-10
636	764271.1	4093987	5.93E-10	6.46E-10	2.28E-10	1.47E-09	9.26E-11	1.05E-10	3.61E-11	2.34E-10	4.95E-11	4.92E-11	1.51E-11	1.14E-10
637	764248.8	4093995	5.97E-10	6.50E-10	2.30E-10	1.48E-09	9.33E-11	1.06E-10	3.63E-11	2.35E-10	4.99E-11	4.96E-11	1.52E-11	1.15E-10
638	764226.5	4094004	6.02E-10	6.55E-10	2.32E-10	1.49E-09	9.40E-11	1.06E-10	3.66E-11	2.37E-10	5.02E-11	5.00E-11	1.53E-11	1.16E-10
639	764204.3	4094012	6.06E-10	6.60E-10	2.33E-10	1.50E-09	9.47E-11	1.07E-10	3.69E-11	2.39E-10	5.06E-11	5.03E-11	1.54E-11	1.16E-10
640	765723	4092574	1.14E-09	1.24E-09	4.39E-10	2.82E-09	1.78E-10	2.01E-10	6.93E-11	4.48E-10	9.51E-11	9.45E-11	2.90E-11	2.19E-10
641	765723.9	4092550	1.17E-09	1.28E-09	4.51E-10	2.90E-09	1.83E-10	2.07E-10	7.13E-11	4.62E-10	9.79E-11	9.73E-11	2.99E-11	2.25E-10
642	765724.7	4092526	1.21E-09	1.31E-09	4.65E-10	2.98E-09	1.88E-10	2.13E-10	7.34E-11	4.75E-10	1.01E-10	1.00E-10	3.07E-11	2.32E-10
643	765725.6	4092502	1.24E-09	1.35E-09	4.78E-10	3.07E-09	1.94E-10	2.19E-10	7.55E-11	4.89E-10	1.04E-10	1.03E-10	3.16E-11	2.38E-10
644	765726.4	4092477	1.28E-09	1.39E-09	4.92E-10	3.16E-09	1.99E-10	2.26E-10	7.77E-11	5.03E-10	1.07E-10	1.06E-10	3.25E-11	2.45E-10
645	765727.3	4092453	1.31E-09	1.43E-09	5.05E-10	3.25E-09	2.05E-10	2.32E-10	7.99E-11	5.17E-10	1.10E-10	1.09E-10	3.34E-11	2.52E-10
646	765728.1	4092429	1.35E-09	1.47E-09	5.19E-10	3.34E-09	2.11E-10	2.38E-10	8.20E-11	5.31E-10	1.13E-10	1.12E-10	3.44E-11	2.59E-10
647	765729	4092405	1.38E-09	1.51E-09	5.33E-10	3.43E-09	2.16E-10	2.45E-10	8.43E-11	5.45E-10	1.16E-10	1.15E-10	3.53E-11	2.66E-10
648	765729.8	4092381	1.42E-09	1.55E-09	5.47E-10	3.52E-09	2.22E-10	2.51E-10	8.65E-11	5.60E-10	1.19E-10	1.18E-10	3.62E-11	2.73E-10
649	765730.7	4092357	1.46E-09	1.59E-09	5.62E-10	3.61E-09	2.28E-10	2.58E-10	8.87E-11	5.74E-10	1.22E-10	1.21E-10	3.72E-11	2.80E-10
650	765731.5	4092333	1.50E-09	1.63E-09	5.76E-10	3.70E-09	2.34E-10	2.64E-10	9.10E-11	5.89E-10	1.25E-10	1.24E-10	3.81E-11	2.87E-10
651	765732.4	4092308	1.53E-09	1.67E-09	5.90E-10	3.79E-09	2.39E-10	2.71E-10	9.33E-11	6.03E-10		1.27E-10		
	765733.2		1.57E-09	1.71E-09	6.05E-10	3.88E-09	2.45E-10	2.77E-10		6.18E-10		1.30E-10		
653			1.61E-09	1.75E-09	6.20E-10	3.98E-09	2.51E-10	2.84E-10		6.33E-10		1.34E-10		
654		4092236	1.65E-09	1.79E-09	6.35E-10	4.08E-09		2.91E-10				1.37E-10		
655	765913	4092603	9.48E-10	1.03E-09	3.65E-10	2.34E-09		1.67E-10				7.87E-11		
	765903.1		9.32E-10	1.01E-09	3.59E-10	2.31E-09		1.65E-10				7.74E-11		
		-					_	_						

657	765893.2	4092647	9.16E-10	9.97E-10	3.53E-10	2.27E-09	1.43E-10	1.62E-10	5.58E-11	3.61E-10	7.65E-11	7.61E-11	2.33E-11	1.76E-10
658	765883.2	4092668	9.00E-10	9.79E-10	3.46E-10	2.23E-09	1.41E-10	1.59E-10	5.47E-11	3.54E-10	7.51E-11	7.47E-11	2.29E-11	1.73E-10
659	765873.3	4092690	8.83E-10	9.61E-10	3.40E-10	2.18E-09	1.38E-10	1.56E-10	5.37E-11	3.48E-10	7.37E-11	7.33E-11	2.25E-11	1.70E-10
660	765863.4	4092712	8.67E-10	9.44E-10	3.34E-10	2.14E-09	1.35E-10	1.53E-10	5.28E-11	3.41E-10	7.24E-11	7.20E-11	2.21E-11	1.66E-10
661	765853.5	4092734	8.51E-10	9.26E-10	3.28E-10	2.11E-09	1.33E-10	1.50E-10	5.18E-11	3.35E-10	7.11E-11	7.07E-11	2.17E-11	1.63E-10
662	765843.6	4092756	8.35E-10	9.09E-10	3.22E-10	2.07E-09	1.30E-10	1.48E-10	5.08E-11	3.29E-10	6.98E-11	6.94E-11	2.13E-11	1.60E-10
663	765833.7	4092778	8.20E-10	8.93E-10	3.16E-10	2.03E-09	1.28E-10	1.45E-10	4.99E-11	3.23E-10	6.85E-11	6.81E-11	2.09E-11	1.57E-10
664	765823.7	4092799	8.05E-10	8.77E-10	3.10E-10	1.99E-09	1.26E-10	1.42E-10	4.90E-11	3.17E-10	6.73E-11	6.69E-11	2.05E-11	1.55E-10
665	765813.8	4092821	7.92E-10	8.62E-10	3.05E-10	1.96E-09	1.24E-10	1.40E-10	4.82E-11	3.12E-10	6.61E-11	6.57E-11	2.02E-11	1.52E-10
666	765803.9	4092843	7.78E-10	8.47E-10	3.00E-10	1.93E-09	1.22E-10	1.38E-10	4.74E-11	3.06E-10	6.50E-11	6.46E-11	1.98E-11	1.49E-10
667	765794	4092865	7.66E-10	8.34E-10	2.95E-10	1.89E-09	1.20E-10	1.35E-10	4.66E-11	3.02E-10	6.40E-11	6.36E-11	1.95E-11	1.47E-10
668	765784.1	4092887	7.55E-10	8.22E-10	2.91E-10	1.87E-09	1.18E-10	1.33E-10	4.59E-11	2.97E-10	6.30E-11	6.27E-11	1.92E-11	1.45E-10
669	765774.2	4092909	7.44E-10	8.10E-10	2.87E-10	1.84E-09	1.16E-10	1.32E-10	4.53E-11	2.93E-10	6.22E-11	6.18E-11	1.90E-11	1.43E-10
670	765764.2	4092930	7.35E-10	8.00E-10	2.83E-10	1.82E-09	1.15E-10	1.30E-10	4.47E-11	2.89E-10	6.14E-11	6.10E-11	1.87E-11	1.41E-10
671	765754.3	4092952	7.26E-10	7.91E-10	2.80E-10	1.80E-09	1.13E-10	1.28E-10	4.42E-11	2.86E-10	6.06E-11	6.03E-11	1.85E-11	1.39E-10
672	765744.4	4092974	7.19E-10	7.82E-10	2.77E-10	1.78E-09	1.12E-10	1.27E-10	4.37E-11	2.83E-10	6.00E-11	5.97E-11	1.83E-11	1.38E-10
673	765734.5	4092996	7.12E-10	7.75E-10	2.74E-10	1.76E-09	1.11E-10	1.26E-10	4.33E-11	2.80E-10	5.94E-11	5.91E-11	1.81E-11	1.37E-10
674	765724.6	4093018	7.06E-10	7.68E-10	2.72E-10	1.75E-09	1.10E-10	1.25E-10	4.29E-11	2.78E-10	5.89E-11	5.86E-11	1.80E-11	1.35E-10
675	765714.7	4093040	7.00E-10	7.62E-10	2.70E-10	1.73E-09	1.09E-10	1.24E-10	4.26E-11	2.76E-10	5.85E-11	5.81E-11	1.78E-11	1.34E-10
676	765704.7	4093062	6.95E-10	7.57E-10	2.68E-10	1.72E-09	1.09E-10	1.23E-10	4.23E-11	2.74E-10	5.81E-11	5.77E-11	1.77E-11	1.33E-10
677	765694.8	4093083	6.91E-10	7.52E-10	2.66E-10	1.71E-09	1.08E-10	1.22E-10	4.20E-11	2.72E-10	5.77E-11	5.74E-11	1.76E-11	1.33E-10
678	765684.9	4093105	6.87E-10	7.47E-10	2.64E-10	1.70E-09	1.07E-10	1.21E-10	4.18E-11	2.70E-10	5.73E-11	5.70E-11	1.75E-11	1.32E-10
679	765675	4093127	6.83E-10	7.43E-10	2.63E-10	1.69E-09	1.07E-10	1.21E-10	4.16E-11	2.69E-10	5.70E-11	5.67E-11	1.74E-11	1.31E-10
680	765665.1	4093149	6.79E-10	7.39E-10	2.62E-10	1.68E-09	1.06E-10	1.20E-10	4.13E-11	2.67E-10	5.67E-11	5.64E-11	1.73E-11	1.30E-10
681	765655.2	4093171	6.75E-10	7.35E-10	2.60E-10	1.67E-09	1.05E-10	1.19E-10	4.11E-11	2.66E-10	5.64E-11	5.61E-11	1.72E-11	1.30E-10
682	765645.3	4093193	6.71E-10	7.31E-10	2.59E-10	1.66E-09	1.05E-10	1.19E-10	4.09E-11	2.64E-10	5.61E-11	5.57E-11	1.71E-11	1.29E-10
683	765635.3	4093214	6.67E-10	7.26E-10	2.57E-10	1.65E-09	1.04E-10	1.18E-10	4.06E-11	2.63E-10	5.57E-11	5.54E-11	1.70E-11	1.28E-10
684	765625.4	4093236	6.63E-10	7.21E-10	2.55E-10	1.64E-09	1.04E-10	1.17E-10	4.03E-11	2.61E-10	5.53E-11	5.50E-11	1.69E-11	1.27E-10
685	765615.5	4093258	6.58E-10	7.17E-10	2.54E-10	1.63E-09	1.03E-10	1.16E-10	4.01E-11	2.59E-10	5.50E-11	5.47E-11	1.68E-11	1.26E-10
686	765605.6	4093280	6.53E-10	7.11E-10	2.52E-10	1.62E-09	1.02E-10	1.15E-10	3.98E-11	2.57E-10	5.46E-11	5.43E-11	1.67E-11	1.25E-10
687	765595.7	4093302	6.48E-10	7.05E-10	2.50E-10	1.60E-09	1.01E-10	1.14E-10	3.94E-11	2.55E-10	5.41E-11	5.38E-11	1.65E-11	1.24E-10
688	765585.8	4093324	6.42E-10	6.99E-10	2.47E-10	1.59E-09	1.00E-10	1.13E-10	3.91E-11	2.53E-10	5.36E-11	5.33E-11	1.64E-11	1.23E-10
689	765575.8	4093346	6.35E-10	6.92E-10	2.45E-10	1.57E-09	9.92E-11	1.12E-10	3.87E-11	2.50E-10	5.31E-11	5.28E-11	1.62E-11	1.22E-10
690	765565.9	4093367	6.28E-10	6.84E-10	2.42E-10	1.55E-09	9.81E-11	1.11E-10	3.82E-11	2.47E-10	5.25E-11	5.22E-11	1.60E-11	1.21E-10
691	765556	4093389	6.21E-10	6.75E-10	2.39E-10	1.54E-09	9.69E-11	1.10E-10	3.78E-11	2.44E-10	5.18E-11	5.15E-11	1.58E-11	1.19E-10
692	765546.1	4093411	6.12E-10	6.66E-10	2.36E-10	1.51E-09	9.56E-11	1.08E-10	3.72E-11	2.41E-10	5.11E-11	5.08E-11	1.56E-11	1.17E-10
693	765536.2	4093433	6.03E-10	6.57E-10	2.32E-10	1.49E-09	9.42E-11	1.07E-10	3.67E-11	2.38E-10	5.04E-11	5.01E-11	1.54E-11	1.16E-10
694	765526.3	4093455	5.94E-10	6.47E-10	2.29E-10	1.47E-09	9.28E-11	1.05E-10	3.62E-11	2.34E-10	4.96E-11	4.93E-11	1.51E-11	1.14E-10
695	765516.3	4093477	5.85E-10	6.37E-10	2.25E-10	1.45E-09	9.13E-11	1.03E-10	3.56E-11	2.30E-10		4.86E-11		
696	765506.4	4093498	5.76E-10	6.27E-10	2.22E-10	1.42E-09	8.99E-11	1.02E-10	3.50E-11	2.27E-10	4.81E-11	4.78E-11	1.47E-11	1.11E-10
	765496.5	4093520	5.67E-10	6.17E-10	2.18E-10	1.40E-09	8.85E-11	1.00E-10				4.70E-11		
698	765486.6	4093542	5.57E-10	6.07E-10	2.15E-10	1.38E-09		9.85E-11				4.63E-11		
699		4093564	5.49E-10	5.98E-10	2.11E-10	1.36E-09		9.70E-11				4.56E-11		
	765466.8		5.41E-10	5.89E-10	2.08E-10	1.34E-09		9.56E-11				4.49E-11		
			-	-	-			_	_	-	_	_	_	-

701	765456.9	4093608	5.34E-10	5.81E-10	2.06E-10	1.32E-09	8.34E-11	9.43E-11	3.25E-11	2.10E-10	4.46E-11	4.43E-11	1.36E-11	1.03E-10
702	765446.9	4093629	5.28E-10	5.74E-10	2.03E-10	1.31E-09	8.24E-11	9.32E-11	3.21E-11	2.08E-10	4.41E-11	4.38E-11	1.34E-11	1.01E-10
703	765437	4093651	5.22E-10	5.68E-10	2.01E-10	1.29E-09	8.15E-11	9.22E-11	3.17E-11	2.05E-10	4.36E-11	4.33E-11	1.33E-11	1.00E-10
704	765427.1	4093673	5.16E-10	5.62E-10	1.99E-10	1.28E-09	8.06E-11	9.12E-11	3.14E-11	2.03E-10	4.31E-11	4.29E-11	1.32E-11	9.91E-11
705	765417.2	4093695	5.11E-10	5.56E-10	1.97E-10	1.26E-09	7.98E-11	9.03E-11	3.11E-11	2.01E-10	4.27E-11	4.24E-11	1.30E-11	9.81E-11
706	765407.3	4093717	5.06E-10	5.51E-10	1.95E-10	1.25E-09	7.91E-11	8.95E-11	3.08E-11	1.99E-10	4.23E-11	4.20E-11	1.29E-11	9.72E-11
707	765397.4	4093739	5.02E-10	5.47E-10	1.93E-10	1.24E-09	7.85E-11	8.87E-11	3.06E-11	1.98E-10	4.19E-11	4.17E-11	1.28E-11	9.64E-11
708	765365	4093769	5.01E-10	5.46E-10	1.93E-10	1.24E-09	7.83E-11	8.86E-11	3.05E-11	1.97E-10	4.19E-11	4.16E-11	1.28E-11	9.62E-11
709	765342.6	4093778	5.04E-10	5.48E-10	1.94E-10	1.25E-09	7.87E-11	8.90E-11	3.07E-11	1.98E-10	4.21E-11	4.18E-11	1.28E-11	9.67E-11
710	765320.2	4093786	5.06E-10	5.51E-10	1.95E-10	1.25E-09	7.91E-11	8.95E-11	3.08E-11	1.99E-10	4.23E-11	4.20E-11	1.29E-11	9.72E-11
711	765297.7	4093795	5.09E-10	5.54E-10	1.96E-10	1.26E-09	7.95E-11	8.99E-11	3.10E-11	2.00E-10	4.25E-11	4.22E-11	1.30E-11	9.77E-11
712	765275.3	4093803	5.11E-10	5.56E-10	1.97E-10	1.26E-09	7.98E-11	9.03E-11	3.11E-11	2.01E-10	4.27E-11	4.24E-11	1.30E-11	9.81E-11
713	765252.9	4093812	5.13E-10	5.58E-10	1.97E-10	1.27E-09	8.01E-11	9.06E-11	3.12E-11	2.02E-10	4.28E-11	4.26E-11	1.31E-11	9.85E-11
714	765230.5	4093820	5.14E-10	5.60E-10	1.98E-10	1.27E-09	8.03E-11	9.08E-11	3.13E-11	2.02E-10	4.29E-11	4.27E-11	1.31E-11	9.87E-11
715	765208	4093829	5.15E-10	5.60E-10	1.98E-10	1.27E-09	8.04E-11	9.10E-11	3.13E-11	2.03E-10	4.30E-11	4.27E-11	1.31E-11	9.89E-11
716	765185.6	4093837	5.15E-10	5.61E-10	1.98E-10	1.27E-09	8.05E-11	9.11E-11	3.14E-11	2.03E-10	4.30E-11	4.28E-11	1.31E-11	9.90E-11
717	765163.2	4093846	5.16E-10	5.61E-10	1.99E-10	1.28E-09	8.05E-11	9.11E-11	3.14E-11	2.03E-10	4.31E-11	4.28E-11	1.31E-11	9.90E-11
718	765140.8	4093854	5.15E-10	5.61E-10	1.98E-10	1.27E-09	8.05E-11	9.11E-11	3.14E-11	2.03E-10	4.30E-11	4.28E-11	1.31E-11	9.90E-11
719	765118.3	4093863	5.15E-10	5.60E-10	1.98E-10	1.27E-09	8.04E-11	9.10E-11	3.13E-11	2.03E-10	4.30E-11	4.27E-11	1.31E-11	9.89E-11
720	765095.9	4093871	5.14E-10	5.59E-10	1.98E-10	1.27E-09	8.02E-11	9.08E-11	3.13E-11	2.02E-10	4.29E-11	4.27E-11	1.31E-11	9.87E-11
721	765073.5	4093880	5.13E-10	5.58E-10	1.97E-10	1.27E-09	8.01E-11	9.06E-11	3.12E-11	2.02E-10	4.28E-11	4.26E-11	1.31E-11	9.85E-11
722	765051.1	4093888	5.11E-10	5.57E-10	1.97E-10	1.27E-09	7.99E-11	9.04E-11	3.11E-11	2.01E-10	4.27E-11	4.25E-11	1.30E-11	9.82E-11
723	765028.6	4093897	5.10E-10	5.55E-10	1.96E-10	1.26E-09	7.96E-11	9.00E-11	3.10E-11	2.01E-10	4.26E-11	4.23E-11	1.30E-11	9.78E-11
724	765006.2	4093905	5.08E-10	5.53E-10	1.96E-10	1.26E-09	7.93E-11	8.97E-11	3.09E-11	2.00E-10	4.24E-11	4.22E-11	1.29E-11	9.75E-11
725	764983.8	4093914	5.06E-10	5.50E-10	1.95E-10	1.25E-09	7.90E-11	8.94E-11	3.08E-11	1.99E-10	4.22E-11	4.20E-11	1.29E-11	9.71E-11
726	764961.3	4093922	5.04E-10	5.48E-10	1.94E-10	1.25E-09	7.87E-11	8.90E-11	3.06E-11	1.98E-10	4.21E-11	4.18E-11	1.28E-11	9.67E-11
727	764938.9	4093931	5.01E-10	5.46E-10	1.93E-10	1.24E-09	7.83E-11	8.86E-11	3.05E-11	1.97E-10	4.19E-11	4.16E-11	1.28E-11	9.62E-11
728	764916.5	4093939	4.99E-10	5.43E-10	1.92E-10	1.23E-09	7.79E-11	8.81E-11	3.03E-11	1.96E-10	4.16E-11	4.14E-11	1.27E-11	9.57E-11
729	764894.1	4093948	4.96E-10	5.40E-10	1.91E-10	1.23E-09	7.75E-11	8.76E-11	3.02E-11	1.95E-10	4.14E-11	4.12E-11	1.26E-11	9.52E-11
730	764871.6	4093956	4.93E-10	5.37E-10	1.90E-10	1.22E-09	7.71E-11	8.72E-11	3.00E-11	1.94E-10	4.12E-11	4.10E-11	1.26E-11	9.47E-11
731	764849.2	4093965	4.91E-10	5.34E-10	1.89E-10	1.21E-09	7.67E-11	8.67E-11	2.99E-11	1.93E-10	4.10E-11	4.07E-11	1.25E-11	9.42E-11
732	764826.8	4093973	4.88E-10	5.31E-10	1.88E-10	1.21E-09	7.63E-11	8.63E-11	2.97E-11	1.92E-10	4.08E-11	4.05E-11	1.24E-11	9.37E-11
733	764804.4	4093982	4.86E-10	5.29E-10	1.87E-10	1.20E-09	7.59E-11	8.58E-11	2.96E-11	1.91E-10	4.06E-11	4.03E-11	1.24E-11	9.33E-11
734	764781.9	4093990	4.84E-10	5.27E-10	1.86E-10	1.20E-09	7.56E-11	8.55E-11	2.94E-11	1.90E-10	4.04E-11	4.02E-11	1.23E-11	9.29E-11
735	764759.5	4093999	4.82E-10	5.24E-10	1.86E-10	1.19E-09	7.52E-11	8.51E-11	2.93E-11	1.90E-10	4.02E-11	4.00E-11	1.23E-11	9.25E-11
736	764737.1	4094007	4.80E-10	5.23E-10	1.85E-10	1.19E-09	7.50E-11	8.48E-11	2.92E-11	1.89E-10	4.01E-11	3.99E-11	1.22E-11	9.22E-11
737	764714.7	4094016	4.79E-10	5.21E-10	1.84E-10	1.18E-09	7.48E-11	8.46E-11	2.91E-11	1.89E-10	4.00E-11	3.98E-11	1.22E-11	9.19E-11
738	764692.2	4094025	4.78E-10	5.21E-10	1.84E-10	1.18E-09	7.47E-11	8.45E-11	2.91E-11	1.88E-10	3.99E-11	3.97E-11	1.22E-11	9.18E-11
739	764669.8	4094033	4.78E-10	5.20E-10	1.84E-10	1.18E-09	7.46E-11	8.44E-11	2.91E-11	1.88E-10	3.99E-11	3.97E-11	1.22E-11	9.17E-11
740	764647.4	4094042	4.78E-10	5.20E-10	1.84E-10	1.18E-09	7.46E-11	8.44E-11	2.91E-11	1.88E-10	3.99E-11	3.97E-11	1.22E-11	9.17E-11
741	764625	4094050	4.78E-10	5.21E-10	1.84E-10	1.18E-09		8.45E-11				3.97E-11		
742	764602.5	4094059	4.79E-10	5.21E-10	1.84E-10	1.18E-09		8.46E-11			4.00E-11	3.98E-11	1.22E-11	9.20E-11
743	764580.1	4094067	4.80E-10	5.23E-10	1.85E-10	1.19E-09		8.48E-11			4.01E-11	3.99E-11	1.22E-11	9.22E-11
	764557.7		4.81E-10	5.24E-10	1.85E-10	1.19E-09		8.51E-11				4.00E-11		

745	764535.3	4094084	4.83E-10	5.25E-10	1.86E-10	1.19E-09	7.54E-11	8.53E-11				4.01E-11		
746	764512.8	4094093	4.84E-10	5.27E-10	1.87E-10	1.20E-09	7.56E-11	8.56E-11	2.95E-11		4.04E-11	-	1.23E-11	
747	764490.4	4094101	4.86E-10	5.29E-10	1.87E-10	1.20E-09	7.59E-11	8.58E-11	2.96E-11		4.06E-11	4.03E-11	1.24E-11	9.33E-11
748	764468	4094110	4.88E-10	5.31E-10	1.88E-10	1.21E-09	7.62E-11	8.62E-11	2.97E-11		4.07E-11	4.05E-11	1.24E-11	
749	764445.5	4094118	4.90E-10	5.33E-10	1.89E-10	1.21E-09	7.65E-11	8.65E-11	2.98E-11		4.09E-11		1.25E-11	
750	764423.1	4094127	4.91E-10	5.35E-10	1.89E-10	1.22E-09	7.67E-11	8.68E-11	2.99E-11	1.93E-10	4.10E-11	4.08E-11	1.25E-11	9.43E-11
751	764400.7	4094135	4.93E-10	5.37E-10	1.90E-10	1.22E-09	7.71E-11	8.72E-11	3.00E-11	1.94E-10	4.12E-11	4.10E-11	1.26E-11	9.47E-11
752	764378.3	4094144	4.96E-10	5.39E-10	1.91E-10	1.23E-09	7.74E-11	8.76E-11	3.02E-11	1.95E-10	4.14E-11	4.11E-11	1.26E-11	9.51E-11
753	764355.8	4094152	4.98E-10	5.42E-10	1.92E-10	1.23E-09	7.78E-11	8.80E-11	3.03E-11	1.96E-10	4.16E-11	4.13E-11	1.27E-11	9.56E-11
754	764333.4	4094161	5.00E-10	5.45E-10	1.93E-10	1.24E-09	7.82E-11	8.84E-11	3.05E-11	1.97E-10	4.18E-11	4.16E-11	1.28E-11	9.61E-11
755	764311	4094169	5.03E-10	5.48E-10	1.94E-10	1.25E-09	7.86E-11	8.89E-11	3.06E-11	1.98E-10	4.20E-11	4.18E-11	1.28E-11	9.66E-11
756	764288.6	4094178	5.06E-10	5.51E-10	1.95E-10	1.25E-09	7.91E-11	8.95E-11	3.08E-11	1.99E-10	4.23E-11	4.20E-11	1.29E-11	9.72E-11
757	764266.1	4094186	5.10E-10	5.55E-10	1.96E-10	1.26E-09	7.96E-11	9.00E-11	3.10E-11	2.01E-10	4.26E-11	4.23E-11	1.30E-11	9.78E-11
758	764243.7	4094195	5.13E-10	5.59E-10	1.98E-10	1.27E-09	8.02E-11	9.07E-11	3.12E-11	2.02E-10	4.29E-11	4.26E-11	1.31E-11	9.86E-11
759	764221.3	4094203	5.17E-10	5.63E-10	1.99E-10	1.28E-09	8.07E-11	9.13E-11	3.15E-11	2.04E-10	4.32E-11	4.29E-11	1.32E-11	9.93E-11
760	764198.9	4094212	5.21E-10	5.67E-10	2.00E-10	1.29E-09	8.13E-11	9.20E-11	3.17E-11	2.05E-10	4.35E-11	4.32E-11	1.33E-11	1.00E-10
761	765922.9	4092581	9.63E-10	1.05E-09	3.71E-10	2.38E-09	1.50E-10	1.70E-10	5.86E-11	3.79E-10	8.04E-11	8.00E-11	2.45E-11	1.85E-10
762	765923.7	4092557	9.88E-10	1.08E-09	3.80E-10	2.44E-09	1.54E-10	1.75E-10	6.01E-11	3.89E-10	8.25E-11	8.20E-11	2.52E-11	1.90E-10
763	765924.6	4092533	1.01E-09	1.10E-09	3.90E-10	2.51E-09	1.58E-10	1.79E-10	6.16E-11	3.99E-10	8.46E-11	8.41E-11	2.58E-11	1.94E-10
764	765925.5	4092509	1.04E-09	1.13E-09	4.00E-10	2.57E-09	1.62E-10	1.83E-10	6.32E-11	4.09E-10	8.67E-11	8.62E-11	2.65E-11	1.99E-10
765	765926.3	4092484	1.06E-09	1.16E-09	4.10E-10	2.63E-09	1.66E-10	1.88E-10	6.47E-11	4.19E-10	8.88E-11	8.83E-11	2.71E-11	2.04E-10
766	765927.2	4092460	1.09E-09	1.19E-09	4.20E-10	2.70E-09	1.70E-10	1.93E-10	6.63E-11	4.29E-10	9.10E-11	9.05E-11	2.78E-11	2.09E-10
767	765928	4092436	1.12E-09	1.21E-09	4.30E-10	2.76E-09	1.74E-10	1.97E-10	6.79E-11	4.39E-10	9.32E-11	9.26E-11	2.84E-11	2.14E-10
768	765928.9	4092412	1.14E-09	1.24E-09	4.40E-10	2.83E-09	1.78E-10	2.02E-10	6.95E-11	4.50E-10	9.54E-11	9.48E-11	2.91E-11	2.19E-10
769	765929.7	4092388	1.17E-09	1.27E-09	4.50E-10	2.89E-09	1.83E-10	2.06E-10	7.11E-11	4.60E-10	9.76E-11	9.70E-11	2.98E-11	2.24E-10
770	765930.6	4092364	1.19E-09	1.30E-09	4.60E-10	2.96E-09	1.87E-10	2.11E-10	7.27E-11	4.70E-10	9.98E-11	9.92E-11	3.04E-11	2.29E-10
771	765931.4	4092340	1.22E-09	1.33E-09	4.70E-10	3.02E-09	1.91E-10	2.16E-10	7.43E-11	4.81E-10	1.02E-10	1.01E-10	3.11E-11	2.34E-10
772	765932.3	4092316	1.25E-09	1.36E-09	4.80E-10	3.09E-09	1.95E-10	2.20E-10	7.59E-11	4.91E-10	1.04E-10	1.04E-10	3.18E-11	2.40E-10
773	765933.1	4092291	1.27E-09	1.39E-09	4.91E-10	3.15E-09	1.99E-10	2.25E-10	7.75E-11	5.02E-10	1.06E-10	1.06E-10	3.25E-11	2.45E-10
774	765934	4092267	1.30E-09	1.42E-09	5.01E-10	3.22E-09	2.03E-10	2.30E-10	7.92E-11	5.12E-10	1.09E-10	1.08E-10	3.32E-11	2.50E-10
775	765934.8	4092243	1.33E-09	1.45E-09	5.11E-10	3.29E-09	2.07E-10	2.35E-10	8.08E-11	5.23E-10	1.11E-10	1.10E-10	3.38E-11	2.55E-10
776	764256.4	4092091	5.51E-08	5.99E-08	2.12E-08	1.36E-07	8.60E-09	9.73E-09	3.35E-09	2.17E-08	4.60E-09	4.57E-09	1.40E-09	1.06E-08
777	764291.4	4092107	6.83E-08	7.43E-08	2.63E-08	1.69E-07	1.07E-08	1.21E-08	4.15E-09	2.69E-08	5.70E-09	5.67E-09	1.74E-09	1.31E-08
778	764217.4	4092083	4.43E-08	4.82E-08	1.70E-08	1.09E-07	6.91E-09	7.82E-09	2.69E-09	1.74E-08	3.70E-09	3.68E-09	1.13E-09	8.50E-09
779	764174.3	4092081	3.56E-08	3.88E-08	1.37E-08	8.81E-08	5.56E-09	6.29E-09	2.17E-09	1.40E-08	2.97E-09	2.96E-09	9.07E-10	6.84E-09
780	764131.2	4092080	2.61E-08	2.84E-08	1.01E-08	6.46E-08	4.08E-09	4.62E-09	1.59E-09	1.03E-08	2.18E-09	2.17E-09	6.66E-10	5.02E-09
781	764088.1	4092079	1.78E-08	1.93E-08	6.84E-09	4.39E-08	2.77E-09	3.14E-09	1.08E-09	6.99E-09	1.48E-09	1.47E-09	4.53E-10	3.41E-09
782	764257.9	4092041	3.11E-08	3.38E-08	1.20E-08	7.69E-08	4.86E-09	5.49E-09	1.89E-09	1.22E-08	2.60E-09	2.58E-09	7.92E-10	5.97E-09
	764292.9	4092057	4.03E-08	4.39E-08	1.55E-08	9.97E-08	6.30E-09		2.45E-09		3.37E-09		1.03E-09	
	764327.9	4092073	4.86E-08	5.29E-08	1.87E-08	1.20E-07	7.58E-09		2.95E-09		4.05E-09		1.24E-09	
	764352.1	4092099	5.86E-08	6.38E-08	2.26E-08	1.45E-07	9.16E-09		3.57E-09		4.90E-09		1.49E-09	
	764218.9	4092033	2.41E-08	2.63E-08	9.29E-09	5.97E-08		4.26E-09			2.01E-09		6.15E-10	
	764175.8	4092031	1.89E-08	2.05E-08	7.27E-09	4.67E-08		3.33E-09				1.57E-09	4.81E-10	
	764132.7			1.53E-08	5.40E-09	3.47E-08		2.48E-09				1.16E-09		
					22									

789	764259.4	4091991	1.87E-08	2.03E-08	7.19E-09	4.62E-08	2.92E-09	3.30E-09	1.14E-09		1.56E-09	1.55E-09		3.59E-09
790	764294.4	4092007	2.46E-08	2.68E-08	9.48E-09	6.09E-08	3.85E-09	4.35E-09	1.50E-09		2.06E-09	2.04E-09		4.73E-09
791	764329.4	4092023	3.10E-08	3.37E-08	1.19E-08	7.66E-08	4.83E-09	5.47E-09	1.88E-09		2.58E-09	2.57E-09	7.89E-10	
792	764364.4	4092039	3.65E-08	3.98E-08	1.41E-08	9.04E-08	5.71E-09	6.46E-09	2.22E-09		3.05E-09	3.03E-09		7.02E-09
793	764388.6	4092064	4.35E-08	4.73E-08	1.68E-08	1.08E-07	6.79E-09	7.69E-09	2.65E-09	1.71E-08	3.63E-09	3.61E-09	1.11E-09	8.35E-09
794	764402.1	4092100	5.21E-08	5.67E-08	2.01E-08	1.29E-07	8.13E-09	9.20E-09	3.17E-09	2.05E-08	4.35E-09	4.32E-09	1.33E-09	1.00E-08
795	764220.4	4091983	1.44E-08	1.57E-08	5.54E-09	3.56E-08	2.25E-09	2.54E-09	8.76E-10	5.67E-09	1.20E-09	1.20E-09	3.67E-10	2.76E-09
796	764177.3	4091981	1.13E-08	1.23E-08	4.35E-09	2.79E-08	1.76E-09	2.00E-09	6.88E-10	4.45E-09	9.43E-10	9.38E-10	2.88E-10	2.17E-09
797	764262.9	4091942	1.21E-08	1.32E-08	4.67E-09	3.00E-08	1.89E-09	2.14E-09	7.38E-10	4.78E-09	1.01E-09	1.01E-09	3.09E-10	2.33E-09
798	764301.8	4091960	1.64E-08	1.79E-08	6.32E-09	4.06E-08	2.56E-09	2.90E-09	9.98E-10	6.46E-09	1.37E-09	1.36E-09	4.18E-10	3.15E-09
799	764340.6	4091977	2.13E-08	2.32E-08	8.21E-09	5.28E-08	3.33E-09	3.77E-09	1.30E-09	8.40E-09	1.78E-09	1.77E-09	5.43E-10	4.10E-09
800	764379.5	4091995	2.62E-08	2.85E-08	1.01E-08	6.49E-08	4.10E-09	4.63E-09	1.60E-09	1.03E-08	2.19E-09	2.18E-09	6.68E-10	5.03E-09
801	764425.8	4092032	3.40E-08	3.70E-08	1.31E-08	8.42E-08	5.31E-09	6.01E-09	2.07E-09	1.34E-08	2.84E-09	2.82E-09	8.67E-10	6.53E-09
802	764440.8	4092072	4.11E-08	4.47E-08	1.58E-08	1.02E-07	6.41E-09	7.26E-09	2.50E-09	1.62E-08	3.43E-09	3.41E-09	1.05E-09	7.89E-09
803	764455.8	4092112	4.55E-08	4.95E-08	1.75E-08	1.13E-07	7.11E-09	8.04E-09	2.77E-09	1.79E-08	3.80E-09	3.78E-09	1.16E-09	8.74E-09
804	764470.7	4092152	4.63E-08	5.04E-08	1.78E-08	1.15E-07	7.23E-09	8.18E-09	2.82E-09	1.82E-08	3.87E-09	3.85E-09	1.18E-09	8.89E-09
805	764221.9	4091933	9.30E-09	1.01E-08	3.58E-09	2.30E-08	1.45E-09	1.64E-09	5.66E-10	3.66E-09	7.76E-10	7.72E-10	2.37E-10	1.79E-09
806	764092.6	4091929	4.72E-09	5.13E-09	1.82E-09	1.17E-08	7.36E-10	8.33E-10	2.87E-10	1.86E-09	3.94E-10	3.91E-10	1.20E-10	9.05E-10
807	764264.1	4091892	8.19E-09	8.92E-09	3.15E-09	2.03E-08	1.28E-09	1.45E-09	4.98E-10	3.23E-09	6.84E-10	6.80E-10	2.09E-10	1.57E-09
808	764302.2	4091909	1.09E-08	1.18E-08	4.19E-09	2.69E-08	1.70E-09	1.92E-09	6.62E-10	4.28E-09	9.08E-10	9.03E-10	2.77E-10	2.09E-09
809	764340.4	4091926	1.41E-08	1.54E-08	5.45E-09	3.50E-08	2.21E-09	2.50E-09	8.61E-10	5.57E-09	1.18E-09	1.17E-09	3.60E-10	2.72E-09
810	764378.5	4091944	1.78E-08	1.93E-08	6.84E-09	4.39E-08	2.77E-09	3.14E-09	1.08E-09	6.99E-09	1.48E-09	1.47E-09	4.52E-10	3.41E-09
811	764416.7	4091961	2.13E-08	2.32E-08	8.19E-09	5.26E-08	3.32E-09	3.76E-09	1.29E-09	8.38E-09	1.78E-09	1.77E-09	5.42E-10	4.09E-09
812	764462.2	4091998	2.70E-08	2.94E-08	1.04E-08	6.69E-08	4.22E-09	4.78E-09	1.65E-09	1.06E-08	2.26E-09	2.24E-09	6.89E-10	5.19E-09
813	764476.9	4092037	3.24E-08	3.53E-08	1.25E-08	8.02E-08	5.07E-09	5.73E-09	1.97E-09	1.28E-08	2.71E-09	2.69E-09	8.27E-10	6.23E-09
814	764491.6	4092076	3.64E-08	3.96E-08	1.40E-08	9.01E-08	5.69E-09	6.43E-09	2.22E-09	1.43E-08	3.04E-09	3.02E-09	9.28E-10	6.99E-09
815	764506.3	4092115	3.81E-08	4.14E-08	1.47E-08	9.42E-08	5.95E-09	6.73E-09	2.32E-09	1.50E-08	3.18E-09	3.16E-09	9.70E-10	7.31E-09
816	764521	4092155	3.73E-08	4.06E-08	1.44E-08	9.23E-08	5.83E-09	6.59E-09	2.27E-09	1.47E-08	3.12E-09	3.10E-09	9.51E-10	7.16E-09
817	764094.2	4091879	3.53E-09	3.84E-09	1.36E-09	8.74E-09	5.52E-10	6.24E-10	2.15E-10		2.95E-10	2.93E-10		6.78E-10
818	764341.3	4091825	6.97E-09	7.58E-09	2.68E-09	1.72E-08	1.09E-09	1.23E-09	4.24E-10		5.82E-10	5.78E-10	1.78E-10	
819	764378.6	4091842	8.73E-09	9.50E-09	3.36E-09	2.16E-08	1.36E-09	1.54E-09	5.31E-10		7.29E-10	7.25E-10	2.22E-10	
820	764415.9	4091859	1.07E-08	1.17E-08	4.13E-09	2.65E-08	1.67E-09	1.89E-09	6.52E-10		8.95E-10	8.90E-10	2.73E-10	2.06E-09
821	764453.2	4091876	1.28E-08	1.39E-08	4.93E-09	3.17E-08	2.00E-09	2.26E-09		5.04E-09	1.07E-09	1.06E-09		2.46E-09
822	764490.5	4091893	1.48E-08	1.61E-08	5.71E-09	3.67E-08	2.31E-09	2.62E-09	9.02E-10		1.24E-09	1.23E-09		2.85E-09
823			1.82E-08	1.99E-08	7.03E-09	4.51E-08		3.22E-09				1.51E-09		
	764549.4	4091967	2.16E-08	2.35E-08	8.31E-09	5.34E-08	3.37E-09					1.79E-09		
	764563.8	4092006	2.45E-08	2.66E-08	9.43E-09	6.05E-08	3.82E-09		1.49E-09			2.03E-09		
	764578.1		2.64E-08	2.87E-08	1.02E-08	6.53E-08	4.12E-09	4.66E-09	1.61E-09		2.20E-09			5.07E-09
	764592.5	4092082	2.70E-08	2.94E-08	1.04E-08	6.69E-08	4.22E-09	4.78E-09	1.64E-09			2.24E-09		5.19E-09
	764606.9		2.64E-08	2.87E-08	1.04E 08	6.52E-08	4.12E-09	4.66E-09	1.60E-09			2.19E-09		5.06E-09
	764621.3	4092159	2.46E-08	2.68E-08	9.49E-09	6.09E-08	3.85E-09		1.50E-09			2.05E-09		
	764183.4	4091781	2.40L-08 2.97E-09	3.23E-09	1.14E-09	7.35E-09	4.64E-10					2.47E-10		
	764140.3	4091780	2.54E-09	2.77E-09	9.80E-10	6.29E-09		4.49E-10				2.47E-10 2.11E-10		
	764097.2		2.22E-09	2.77E-09 2.41E-09	8.54E-10	5.48E-09		3.92E-10				1.84E-10		
032	/ UHUJ / .Z	+031//3	2.226-03	2.416-03	0.346-10	J.40L-UJ	3.40E-10	J.32E-10	T.33E-10	0.73L-1U	1.03E-10	1.046-10	J.UJE-11	4.ZUE-1U

833	764270.5	4091692	2.64E-09	2.87E-09	1.02E-09	6.52E-09	4.12E-10	4.66E-10		1.04E-09	2.20E-10	2.19E-10		5.06E-10
834	764387.1	4091745	5.04E-09	5.48E-09	1.94E-09	1.25E-08	7.87E-10	8.90E-10	3.06E-10	1.98E-09	4.21E-10	4.18E-10	1.28E-10	9.67E-10
835	764425.9	4091762	6.18E-09	6.72E-09	2.38E-09	1.53E-08	9.65E-10	1.09E-09	3.76E-10	2.43E-09	5.16E-10	5.13E-10	1.57E-10	1.19E-09
836	764464.8	4091780	7.46E-09	8.12E-09	2.87E-09	1.85E-08	1.16E-09	1.32E-09	4.54E-10	2.94E-09	6.23E-10	6.19E-10	1.90E-10	1.43E-09
837	764503.7	4091798	8.82E-09	9.60E-09	3.40E-09	2.18E-08	1.38E-09	1.56E-09	5.37E-10	3.47E-09	7.37E-10	7.32E-10	2.25E-10	1.69E-09
838	764542.5	4091815	1.02E-08	1.11E-08	3.92E-09	2.52E-08	1.59E-09	1.80E-09	6.20E-10	4.01E-09	8.51E-10	8.46E-10	2.60E-10	1.96E-09
839	764581.4	4091833	1.15E-08	1.25E-08	4.41E-09	2.84E-08	1.79E-09	2.03E-09	6.97E-10	4.51E-09	9.57E-10	9.52E-10	2.92E-10	2.20E-09
840	764608.3	4091861	1.32E-08	1.43E-08	5.07E-09	3.26E-08	2.06E-09	2.33E-09	8.02E-10	5.19E-09	1.10E-09	1.09E-09	3.36E-10	2.53E-09
841	764623.3	4091901	1.55E-08	1.69E-08	5.96E-09	3.83E-08	2.42E-09	2.74E-09	9.42E-10	6.10E-09	1.29E-09	1.29E-09	3.95E-10	2.97E-09
842	764638.3	4091941	1.76E-08	1.92E-08	6.78E-09	4.35E-08	2.75E-09	3.11E-09	1.07E-09	6.93E-09	1.47E-09	1.46E-09	4.48E-10	3.38E-09
843	764653.2	4091981	1.92E-08	2.09E-08	7.40E-09	4.75E-08	3.00E-09	3.40E-09	1.17E-09	7.57E-09	1.60E-09	1.60E-09	4.90E-10	3.69E-09
844	764668.2	4092021	2.01E-08	2.18E-08	7.73E-09	4.96E-08	3.13E-09	3.55E-09	1.22E-09	7.90E-09	1.68E-09	1.67E-09	5.11E-10	3.85E-09
845	764683.2	4092061	2.00E-08	2.18E-08	7.72E-09	4.96E-08	3.13E-09	3.54E-09	1.22E-09	7.89E-09	1.67E-09	1.66E-09	5.10E-10	3.85E-09
846	764698.1	4092101	1.92E-08	2.09E-08	7.38E-09	4.74E-08	2.99E-09	3.39E-09	1.17E-09	7.55E-09	1.60E-09	1.59E-09	4.89E-10	3.68E-09
847	764713.1	4092141	1.77E-08	1.92E-08	6.81E-09	4.37E-08	2.76E-09	3.12E-09	1.08E-09	6.96E-09	1.48E-09	1.47E-09	4.50E-10	3.39E-09
848	764229.5	4091683	2.21E-09	2.41E-09	8.52E-10	5.47E-09	3.45E-10	3.91E-10	1.35E-10	8.71E-10	1.85E-10	1.84E-10	5.64E-11	4.25E-10
849	764186.4	4091681	1.93E-09	2.10E-09	7.44E-10	4.78E-09	3.02E-10	3.41E-10	1.17E-10	7.60E-10	1.61E-10	1.60E-10	4.92E-11	3.71E-10
850	764143.3	4091680	1.71E-09	1.86E-09	6.59E-10	4.23E-09	2.67E-10	3.02E-10	1.04E-10	6.74E-10	1.43E-10	1.42E-10	4.36E-11	3.29E-10
851	764100.2	4091679	1.54E-09	1.68E-09	5.93E-10	3.81E-09	2.41E-10	2.72E-10	9.38E-11	6.07E-10	1.29E-10	1.28E-10	3.93E-11	2.96E-10
852	764273.2	4091592	1.77E-09	1.92E-09	6.80E-10	4.37E-09	2.76E-10	3.12E-10	1.07E-10	6.95E-10	1.47E-10	1.47E-10	4.50E-11	3.39E-10
853	764311.3	4091609	2.11E-09	2.30E-09	8.13E-10	5.22E-09	3.30E-10	3.73E-10	1.28E-10	8.31E-10	1.76E-10	1.75E-10	5.38E-11	4.05E-10
854	764349.5	4091627	2.54E-09	2.77E-09	9.80E-10	6.29E-09	3.97E-10	4.50E-10	1.55E-10	1.00E-09	2.12E-10	2.11E-10	6.48E-11	4.88E-10
855	764464	4091678	4.43E-09	4.82E-09	1.71E-09	1.10E-08	6.92E-10	7.82E-10	2.69E-10	1.74E-09	3.70E-10	3.68E-10	1.13E-10	8.50E-10
856	764502.1	4091695	5.23E-09	5.70E-09	2.02E-09	1.29E-08	8.18E-10	9.25E-10	3.19E-10	2.06E-09	4.37E-10	4.35E-10	1.33E-10	1.01E-09
857	764540.3	4091713	6.10E-09	6.64E-09	2.35E-09	1.51E-08	9.53E-10	1.08E-09	3.71E-10	2.40E-09	5.10E-10	5.07E-10	1.56E-10	1.17E-09
858	764578.4	4091730	7.00E-09	7.62E-09	2.70E-09	1.73E-08	1.09E-09	1.24E-09	4.26E-10	2.76E-09	5.85E-10	5.81E-10	1.78E-10	1.34E-09
859	764616.6	4091747	7.90E-09	8.60E-09	3.04E-09	1.95E-08	1.23E-09	1.40E-09	4.81E-10	3.11E-09	6.60E-10	6.56E-10	2.01E-10	1.52E-09
860	764654.7	4091764	8.74E-09	9.51E-09	3.37E-09	2.16E-08	1.37E-09	1.54E-09	5.32E-10	3.44E-09	7.30E-10	7.26E-10	2.23E-10	1.68E-09
861	764681.2	4091793	9.89E-09	1.08E-08	3.81E-09	2.45E-08	1.55E-09	1.75E-09	6.02E-10	3.89E-09	8.26E-10	8.21E-10	2.52E-10	1.90E-09
862	764695.9	4091832	1.15E-08	1.25E-08	4.42E-09	2.84E-08	1.79E-09	2.03E-09	6.98E-10	4.52E-09	9.58E-10	9.53E-10	2.92E-10	2.20E-09
863	764710.6	4091871	1.30E-08	1.42E-08	5.01E-09	3.22E-08	2.03E-09	2.30E-09	7.91E-10	5.12E-09	1.09E-09	1.08E-09	3.31E-10	2.50E-09
864	764725.3	4091910	1.43E-08	1.56E-08	5.51E-09	3.54E-08	2.24E-09	2.53E-09	8.71E-10	5.64E-09	1.20E-09	1.19E-09	3.65E-10	2.75E-09
865	764740	4091949	1.52E-08	1.66E-08	5.87E-09	3.77E-08	2.38E-09	2.69E-09	9.27E-10	6.00E-09	1.27E-09	1.26E-09	3.88E-10	2.92E-09
866	764754.7	4091989	1.56E-08	1.70E-08	6.02E-09	3.87E-08	2.44E-09	2.76E-09	9.51E-10	6.16E-09	1.31E-09	1.30E-09	3.98E-10	3.00E-09
867	764769.4	4092028	1.55E-08	1.68E-08	5.96E-09	3.83E-08	2.42E-09	2.73E-09	9.42E-10	6.09E-09	1.29E-09	1.28E-09	3.94E-10	2.97E-09
868	764784.1	4092067	1.48E-08	1.61E-08	5.70E-09	3.66E-08	2.31E-09	2.62E-09	9.01E-10	5.83E-09	1.24E-09	1.23E-09	3.77E-10	2.84E-09
869	764798.8	4092106	1.37E-08	1.49E-08	5.29E-09	3.40E-08	2.14E-09	2.43E-09	8.36E-10	5.41E-09	1.15E-09	1.14E-09	3.50E-10	2.64E-09
		4092146	1.24E-08	1.35E-08	4.78E-09	3.07E-08		2.19E-09	7.55E-10				3.16E-10	
871	764232.5	4091583	1.53E-09	1.67E-09	5.89E-10	3.78E-09	2.39E-10	2.70E-10	9.31E-11	6.02E-10	1.28E-10	1.27E-10	3.90E-11	2.94E-10
	764189.4		1.37E-09	1.49E-09	5.28E-10	3.39E-09		2.42E-10		5.40E-10	1.14E-10	1.14E-10	3.49E-11	2.63E-10
	764146.4	4091580	1.25E-09	1.36E-09	4.80E-10	3.08E-09	1.94E-10					1.03E-10		
			1.15E-09	1.25E-09	4.41E-10	2.83E-09		2.02E-10				9.51E-11		
	764276.7	4091492		1.39E-09	4.92E-10	3.16E-09		2.26E-10				1.06E-10		
	764315.9			1.62E-09	5.74E-10	3.69E-09		2.63E-10				1.24E-10		
2.3				_							_:_50			

877	764355.1	4091528	1.76E-09	1.92E-09	6.78E-10	4.35E-09	2.75E-10	3.11E-10		6.93E-10	1.47E-10	1.46E-10	4.48E-11	
878	764394.2	4091545	2.09E-09	2.28E-09	8.06E-10	5.18E-09	3.27E-10	3.70E-10		8.24E-10	1.75E-10	1.74E-10	5.33E-11	
879	764511.8	4091599	3.47E-09	3.78E-09	1.34E-09	8.59E-09	5.42E-10	6.13E-10		1.37E-09	2.90E-10	2.88E-10	8.85E-11	
880	764550.9	4091616	4.04E-09	4.40E-09	1.56E-09	1.00E-08	6.32E-10	7.14E-10		1.59E-09	3.38E-10	3.36E-10	1.03E-10	
881	764590.1	4091634	4.66E-09	5.07E-09	1.79E-09	1.15E-08	7.27E-10	8.23E-10	2.83E-10	1.83E-09	3.89E-10	3.87E-10	1.19E-10	8.94E-10
882	764629.3	4091652	5.29E-09	5.76E-09	2.04E-09	1.31E-08	8.26E-10	9.35E-10	3.22E-10	2.08E-09	4.42E-10	4.39E-10	1.35E-10	1.02E-09
883	764668.5	4091669	5.94E-09	6.46E-09	2.29E-09	1.47E-08	9.27E-10	1.05E-09	3.61E-10	2.34E-09	4.96E-10	4.93E-10	1.51E-10	1.14E-09
884	764707.6	4091687	6.57E-09	7.15E-09	2.53E-09	1.63E-08	1.03E-09	1.16E-09	4.00E-10	2.59E-09	5.49E-10	5.46E-10	1.67E-10	1.26E-09
885	764754.4	4091725	7.73E-09	8.42E-09	2.98E-09	1.91E-08	1.21E-09	1.37E-09	4.70E-10	3.04E-09	6.46E-10	6.42E-10	1.97E-10	1.48E-09
886	764769.5	4091765	8.90E-09	9.69E-09	3.43E-09	2.20E-08	1.39E-09	1.57E-09	5.42E-10	3.51E-09	7.43E-10	7.39E-10	2.27E-10	1.71E-09
887	764784.5	4091805	1.01E-08	1.10E-08	3.88E-09	2.49E-08	1.57E-09	1.78E-09	6.13E-10	3.96E-09	8.41E-10	8.36E-10	2.57E-10	1.93E-09
888	764799.6	4091846	1.11E-08	1.21E-08	4.28E-09	2.75E-08	1.74E-09	1.96E-09	6.76E-10	4.37E-09	9.28E-10	9.22E-10	2.83E-10	2.13E-09
889	764814.7	4091886	1.19E-08	1.30E-08	4.59E-09	2.95E-08	1.86E-09	2.10E-09	7.25E-10	4.69E-09	9.95E-10	9.89E-10	3.04E-10	2.29E-09
890	764829.8	4091926	1.24E-08	1.35E-08	4.77E-09	3.07E-08	1.94E-09	2.19E-09	7.54E-10	4.88E-09	1.03E-09	1.03E-09	3.16E-10	2.38E-09
891	764844.9	4091966	1.25E-08	1.36E-08	4.81E-09	3.09E-08	1.95E-09	2.21E-09	7.59E-10	4.91E-09	1.04E-09	1.04E-09	3.18E-10	2.40E-09
892	764860	4092007	1.22E-08	1.33E-08	4.69E-09	3.01E-08	1.90E-09	2.15E-09	7.41E-10	4.80E-09	1.02E-09	1.01E-09	3.10E-10	2.34E-09
893	764875.1	4092047	1.15E-08	1.25E-08	4.44E-09	2.85E-08	1.80E-09	2.04E-09	7.01E-10	4.54E-09	9.62E-10	9.57E-10	2.94E-10	2.21E-09
894	764890.2	4092087	1.06E-08	1.16E-08	4.09E-09	2.63E-08	1.66E-09	1.88E-09	6.46E-10	4.18E-09	8.87E-10	8.82E-10	2.71E-10	2.04E-09
895	764905.3	4092127	9.56E-09	1.04E-08	3.68E-09	2.36E-08	1.49E-09	1.69E-09	5.82E-10	3.76E-09	7.98E-10	7.94E-10	2.44E-10	1.84E-09
896	764920.4	4092168	8.47E-09	9.22E-09	3.26E-09	2.10E-08	1.32E-09	1.50E-09	5.16E-10	3.34E-09	7.08E-10	7.03E-10	2.16E-10	1.63E-09
897	764235.6	4091483	1.13E-09	1.23E-09	4.36E-10	2.80E-09	1.77E-10	2.00E-10	6.90E-11	4.46E-10	9.46E-11	9.41E-11	2.89E-11	2.18E-10
898	764192.5	4091482	1.04E-09	1.13E-09	3.99E-10	2.56E-09	1.62E-10	1.83E-10	6.30E-11	4.08E-10	8.65E-11	8.60E-11	2.64E-11	1.99E-10
899	764149.4	4091480	9.58E-10	1.04E-09	3.69E-10	2.37E-09	1.50E-10	1.69E-10	5.83E-11	3.77E-10	8.00E-11	7.95E-11	2.44E-11	1.84E-10
900	764106.3	4091479	8.94E-10	9.73E-10	3.44E-10	2.21E-09	1.40E-10	1.58E-10	5.44E-11	3.52E-10	7.47E-11	7.42E-11	2.28E-11	1.72E-10
901	764282.3	4091292	7.76E-10	8.45E-10	2.99E-10	1.92E-09	1.21E-10	1.37E-10	4.72E-11	3.06E-10	6.48E-11	6.45E-11	1.98E-11	1.49E-10
902	764320.4	4091309	8.63E-10	9.40E-10	3.32E-10	2.14E-09	1.35E-10	1.53E-10	5.25E-11	3.40E-10	7.21E-11	7.17E-11	2.20E-11	1.66E-10
903	764358.6	4091327	9.71E-10	1.06E-09	3.74E-10	2.40E-09	1.52E-10	1.71E-10	5.91E-11	3.82E-10	8.11E-11	8.06E-11	2.47E-11	1.86E-10
904	764396.7	4091344	1.10E-09	1.20E-09	4.24E-10	2.73E-09	1.72E-10	1.95E-10	6.71E-11	4.34E-10	9.20E-11	9.15E-11	2.81E-11	2.12E-10
905	764434.9	4091361	1.26E-09	1.37E-09	4.86E-10	3.12E-09	1.97E-10	2.23E-10		4.97E-10	1.05E-10	1.05E-10	3.21E-11	
906	764473.1	4091378	1.45E-09	1.58E-09	5.58E-10	3.59E-09	2.26E-10	2.56E-10		5.71E-10	1.21E-10	1.20E-10	3.69E-11	
907	764511.2	4091396	1.67E-09	1.81E-09	6.42E-10	4.12E-09	2.60E-10	2.95E-10	1.01E-10	6.56E-10	1.39E-10	1.38E-10	4.25E-11	
908	764549.4	4091413	1.91E-09	2.08E-09	7.35E-10	4.72E-09	2.98E-10	3.37E-10		7.52E-10	1.59E-10	1.58E-10	4.86E-11	
909	764587.5	4091430	2.18E-09	2.37E-09	8.38E-10	5.38E-09	3.40E-10	3.84E-10		8.56E-10	1.82E-10	1.81E-10	5.54E-11	
910	764625.7	4091447	2.46E-09	2.68E-09	9.48E-10	6.09E-09	3.84E-10	4.35E-10	1.50E-10		2.06E-10	2.04E-10	6.27E-11	
	764663.9		2.77E-09	3.01E-09	1.06E-09	6.84E-09		4.89E-10				2.30E-10		
912		4091482	3.08E-09	3.36E-09	1.19E-09	7.63E-09		5.45E-10				2.56E-10		
	764740.2		3.41E-09	3.72E-09	1.31E-09	8.45E-09		6.03E-10				2.83E-10		
	764778.3	4091516	3.75E-09	4.08E-09	1.45E-09	9.28E-09	5.86E-10				3.13E-10		9.56E-11	
	764816.5	4091534	4.09E-09	4.46E-09	1.58E-09	1.01E-08		7.23E-10			3.42E-10		1.04E-10	
	764854.6	4091551	4.44E-09	4.83E-09	1.71E-09	1.10E-08		7.23E 10 7.84E-10			3.70E-10		1.13E-10	
	764900.2	4091588	5.07E-09	5.52E-09	1.95E-09	1.25E-08	7.92E-10			2.00E-09		4.21E-10		
918	764914.9	4091627	5.72E-09	6.22E-09	2.20E-09	1.41E-08		1.01E-09	3.48E-10			4.75E-10		
919		4091666	6.38E-09	6.95E-09	2.46E-09	1.58E-08		1.13E-09		2.51E-09		5.30E-10		
	764944.2		7.04E-09	7.66E-09	2.40L-09 2.71E-09	1.74E-08		1.13E-09 1.24E-09				5.84E-10		
320	, U4344.Z	+031/03	7.046-03	7.00E-03	Z./ 1E-U3	1./4L-UO	1.106-09	1.246-03	4.206-10	2.//E-UJ	J.00E-10	3.04E-10	1.796-10	1.336-03

921	764958.9	4091744	7.62E-09	8.30E-09	2.94E-09	1.89E-08	1.19E-09	1.35E-09		3.00E-09	6.37E-10	6.33E-10	1.94E-10	
922	764973.6	4091784	8.10E-09	8.82E-09	3.12E-09	2.00E-08	1.27E-09	1.43E-09		3.19E-09	6.76E-10	6.73E-10	2.06E-10	
923	764988.3	4091823	8.42E-09	9.17E-09	3.24E-09	2.08E-08	1.32E-09	1.49E-09		3.32E-09	7.03E-10	6.99E-10	2.15E-10	
924	765003	4091862	8.55E-09	9.31E-09	3.29E-09	2.12E-08	1.34E-09	1.51E-09		3.37E-09	7.14E-10	7.10E-10	2.18E-10	
925	765017.7	4091901	8.49E-09	9.24E-09	3.27E-09	2.10E-08	1.33E-09	1.50E-09	5.16E-10	3.34E-09	7.09E-10	7.05E-10	2.16E-10	1.63E-09
926	765032.4	4091940	8.23E-09	8.96E-09	3.17E-09	2.04E-08	1.29E-09	1.45E-09	5.01E-10	3.24E-09	6.87E-10	6.84E-10	2.10E-10	1.58E-09
927	765047.1	4091980	7.82E-09	8.51E-09	3.01E-09	1.93E-08	1.22E-09	1.38E-09	4.76E-10	3.08E-09	6.53E-10	6.49E-10	1.99E-10	1.50E-09
928	765061.8	4092019	7.29E-09	7.93E-09	2.81E-09	1.80E-08	1.14E-09	1.29E-09	4.43E-10	2.87E-09	6.09E-10	6.05E-10	1.86E-10	1.40E-09
929	765076.5	4092058	6.69E-09	7.28E-09	2.58E-09	1.65E-08	1.04E-09	1.18E-09	4.07E-10	2.63E-09	5.58E-10	5.55E-10	1.70E-10	1.28E-09
930	765091.2	4092097	6.07E-09	6.60E-09	2.34E-09	1.50E-08	9.47E-10	1.07E-09	3.69E-10	2.39E-09	5.07E-10	5.04E-10	1.55E-10	1.16E-09
931	765105.9	4092136	5.46E-09	5.95E-09	2.10E-09	1.35E-08	8.54E-10	9.66E-10	3.33E-10	2.15E-09	4.56E-10	4.54E-10	1.39E-10	1.05E-09
932	765120.6	4092176	4.90E-09	5.34E-09	1.89E-09	1.21E-08	7.66E-10	8.67E-10	2.98E-10	1.93E-09	4.10E-10	4.07E-10	1.25E-10	9.42E-10
933	764241.6	4091283	7.14E-10	7.77E-10	2.75E-10	1.77E-09	1.12E-10	1.26E-10	4.35E-11	2.81E-10	5.96E-11	5.93E-11	1.82E-11	1.37E-10
934	764198.5	4091282	6.70E-10	7.30E-10	2.58E-10	1.66E-09	1.05E-10	1.18E-10	4.08E-11	2.64E-10	5.60E-11	5.57E-11	1.71E-11	1.29E-10
935	764155.5	4091280	6.34E-10	6.90E-10	2.44E-10	1.57E-09	9.90E-11	1.12E-10	3.86E-11	2.49E-10	5.29E-11	5.26E-11	1.61E-11	1.22E-10
936	764112.4	4091279	6.03E-10	6.56E-10	2.32E-10	1.49E-09	9.41E-11	1.06E-10	3.67E-11	2.37E-10	5.03E-11	5.00E-11	1.54E-11	1.16E-10
937	764288.5	4091092	5.40E-10	5.88E-10	2.08E-10	1.34E-09	8.44E-11	9.54E-11	3.29E-11	2.13E-10	4.51E-11	4.48E-11	1.38E-11	1.04E-10
938	764327	4091110	5.85E-10	6.37E-10	2.25E-10	1.45E-09	9.13E-11	1.03E-10	3.56E-11	2.30E-10	4.88E-11	4.86E-11	1.49E-11	1.12E-10
939	764365.5	4091127	6.38E-10	6.95E-10	2.46E-10	1.58E-09	9.97E-11	1.13E-10	3.88E-11	2.51E-10	5.33E-11	5.30E-11	1.63E-11	1.23E-10
940	764403.9	4091145	7.02E-10	7.64E-10	2.70E-10	1.74E-09	1.10E-10	1.24E-10	4.27E-11	2.76E-10	5.86E-11	5.83E-11	1.79E-11	1.35E-10
941	764442.4	4091162	7.78E-10	8.47E-10	3.00E-10	1.93E-09	1.22E-10	1.38E-10	4.74E-11	3.06E-10	6.50E-11	6.46E-11	1.98E-11	1.49E-10
942	764480.9	4091179	8.70E-10	9.47E-10	3.35E-10	2.15E-09	1.36E-10	1.54E-10	5.29E-11	3.42E-10	7.26E-11	7.22E-11	2.22E-11	1.67E-10
943	764519.4	4091197	9.77E-10	1.06E-09	3.76E-10	2.42E-09	1.53E-10	1.73E-10	5.95E-11	3.85E-10	8.16E-11	8.11E-11	2.49E-11	1.88E-10
944	764557.8	4091214	1.10E-09	1.20E-09	4.24E-10	2.72E-09	1.72E-10	1.94E-10	6.69E-11	4.33E-10	9.19E-11	9.13E-11	2.80E-11	2.11E-10
945	764596.3	4091231	1.24E-09	1.35E-09	4.77E-10	3.06E-09	1.93E-10	2.19E-10	7.54E-11	4.88E-10	1.03E-10	1.03E-10	3.16E-11	2.38E-10
946	764634.8	4091249	1.39E-09	1.51E-09	5.35E-10	3.44E-09	2.17E-10	2.46E-10	8.46E-11	5.47E-10	1.16E-10	1.15E-10	3.54E-11	2.67E-10
947	764673.3	4091266	1.55E-09	1.69E-09	5.97E-10	3.84E-09	2.42E-10	2.74E-10	9.44E-11	6.11E-10	1.29E-10	1.29E-10	3.95E-11	2.98E-10
948	764711.7	4091284	1.72E-09	1.87E-09	6.63E-10	4.26E-09	2.69E-10	3.04E-10	1.05E-10	6.78E-10	1.44E-10	1.43E-10	4.39E-11	3.30E-10
949	764750.2	4091301	1.90E-09	2.07E-09	7.31E-10	4.70E-09	2.97E-10	3.35E-10	1.16E-10	7.48E-10	1.59E-10	1.58E-10	4.84E-11	3.65E-10
950	764788.7	4091318	2.08E-09	2.27E-09	8.02E-10	5.15E-09	3.25E-10	3.68E-10	1.27E-10	8.20E-10	1.74E-10	1.73E-10	5.31E-11	4.00E-10
951	764827.2	4091336	2.27E-09	2.47E-09	8.76E-10	5.62E-09	3.55E-10	4.02E-10	1.38E-10	8.95E-10	1.90E-10	1.89E-10	5.79E-11	4.37E-10
952	764865.6	4091353	2.47E-09	2.69E-09	9.52E-10	6.11E-09	3.86E-10	4.37E-10	1.50E-10	9.73E-10	2.06E-10	2.05E-10	6.30E-11	4.75E-10
953	764904.1	4091370	2.68E-09	2.92E-09	1.03E-09	6.63E-09	4.18E-10	4.73E-10	1.63E-10	1.05E-09	2.24E-10	2.22E-10	6.83E-11	5.14E-10
954	764942.6	4091388	2.89E-09	3.14E-09	1.11E-09	7.14E-09	4.51E-10	5.10E-10	1.76E-10	1.14E-09	2.41E-10	2.40E-10	7.36E-11	5.55E-10
955	764981.1	4091405	3.10E-09	3.37E-09	1.19E-09	7.67E-09	4.84E-10	5.48E-10	1.89E-10	1.22E-09	2.59E-10	2.57E-10	7.90E-11	5.95E-10
956	765019.6	4091423	3.31E-09	3.60E-09	1.28E-09	8.19E-09	5.17E-10	5.85E-10	2.02E-10	1.30E-09	2.77E-10	2.75E-10	8.44E-11	6.36E-10
957	765046.2	4091451	3.61E-09	3.92E-09	1.39E-09	8.92E-09	5.63E-10	6.37E-10	2.19E-10	1.42E-09	3.01E-10	2.99E-10	9.19E-11	6.92E-10
958	765061	4091491	4.01E-09	4.36E-09	1.54E-09	9.91E-09	6.26E-10	7.08E-10	2.44E-10	1.58E-09	3.35E-10	3.33E-10	1.02E-10	7.70E-10
959	765075.8	4091530	4.43E-09	4.82E-09	1.71E-09	1.10E-08		7.83E-10			3.70E-10	3.68E-10	1.13E-10	8.51E-10
	765090.7	4091570	4.86E-09	5.29E-09	1.87E-09	1.20E-08		8.58E-10				4.03E-10		
		4091609	5.27E-09	5.74E-09	2.03E-09	1.30E-08	8.23E-10		3.21E-10			4.38E-10		
	765120.3	4091649	5.64E-09	6.14E-09	2.17E-09	1.40E-08		9.97E-10				4.68E-10		
963			5.94E-09	6.47E-09	2.29E-09	1.47E-08		1.05E-09				4.93E-10		
	765149.9		6.15E-09	6.70E-09	2.37E-09	1.52E-08		1.09E-09				5.11E-10		
- "		-					_				_	-	_	

065	765164.0	4001767	C 2CE 00	C 01E 00	2 445 00	1 555 00	0 775 10	1 11 5 00	2.015.10	2.465.00	E 22E 40	E 10E 10	1 505 10	1 205 00
965	765164.8	4091767	6.26E-09	6.81E-09	2.41E-09	1.55E-08	9.77E-10	1.11E-09	3.81E-10		5.22E-10		1.59E-10	
966	765179.6	4091807	6.24E-09	6.79E-09	2.40E-09	1.54E-08	9.75E-10	1.10E-09	3.80E-10		5.21E-10	5.18E-10	1.59E-10	
967	765194.4	4091846	6.12E-09	6.66E-09	2.36E-09	1.51E-08	9.55E-10	1.08E-09	3.72E-10		5.11E-10	5.08E-10	1.56E-10	
968	765209.2	4091886	5.89E-09	6.41E-09	2.27E-09	1.46E-08	9.20E-10	1.04E-09	3.58E-10		4.92E-10	4.89E-10	1.50E-10	
969	765224	4091925	5.58E-09	6.07E-09	2.15E-09	1.38E-08	8.72E-10	9.86E-10	3.40E-10		4.66E-10	4.63E-10	1.42E-10	
970	765238.9	4091965	5.22E-09	5.68E-09	2.01E-09	1.29E-08	8.15E-10	9.22E-10	3.18E-10		4.36E-10	4.33E-10	1.33E-10	
971	765253.7	4092005	4.82E-09	5.25E-09	1.86E-09	1.19E-08	7.53E-10	8.52E-10	2.93E-10		4.03E-10	4.00E-10	1.23E-10	
972	765268.5	4092044	4.42E-09	4.81E-09	1.70E-09	1.09E-08	6.91E-10	7.81E-10	2.69E-10		3.69E-10	3.67E-10	1.13E-10	
973	765283.3	4092084	4.04E-09	4.40E-09	1.56E-09	9.99E-09	6.31E-10	7.14E-10	2.46E-10		3.37E-10	3.35E-10	1.03E-10	
974	765298.1	4092123	3.68E-09	4.01E-09	1.42E-09	9.11E-09	5.75E-10	6.51E-10	2.24E-10		3.07E-10	3.06E-10	9.38E-11	
975	765313	4092163	3.36E-09	3.66E-09	1.29E-09	8.31E-09	5.25E-10	5.93E-10	2.04E-10		2.80E-10	2.79E-10	8.56E-11	
976	764247.7	4091083	5.07E-10	5.52E-10	1.95E-10	1.25E-09	7.92E-11	8.96E-11	3.09E-11		4.24E-11		1.29E-11	
977	764204.6	4091082	4.84E-10	5.26E-10	1.86E-10	1.20E-09	7.55E-11	8.54E-11	2.94E-11		4.04E-11		1.23E-11	
978	764161.5	4091080	4.63E-10	5.04E-10	1.78E-10	1.14E-09	7.23E-11	8.18E-11	2.82E-11		3.87E-11	3.84E-11	1.18E-11	
979	764118.4	4091079	4.45E-10	4.84E-10	1.71E-10	1.10E-09	6.95E-11	7.86E-11	2.71E-11		3.71E-11	3.69E-11	1.13E-11	8.54E-11
980	764294.7	4090893	4.08E-10	4.44E-10	1.57E-10	1.01E-09	6.37E-11	7.21E-11	2.48E-11	1.61E-10	3.41E-11	3.39E-11	1.04E-11	7.83E-11
981	764333.4	4090910	4.34E-10	4.73E-10	1.67E-10	1.07E-09	6.78E-11	7.67E-11	2.64E-11	1.71E-10	3.63E-11	3.60E-11	1.11E-11	8.34E-11
982	764372.1	4090927	4.64E-10	5.06E-10	1.79E-10	1.15E-09	7.25E-11	8.21E-11	2.83E-11	1.83E-10	3.88E-11	3.86E-11	1.18E-11	8.92E-11
983	764410.8	4090945	5.00E-10	5.44E-10	1.92E-10	1.24E-09	7.80E-11	8.83E-11	3.04E-11	1.97E-10	4.17E-11	4.15E-11	1.27E-11	9.59E-11
984	764449.5	4090962	5.41E-10	5.89E-10	2.08E-10	1.34E-09	8.45E-11	9.56E-11	3.29E-11	2.13E-10	4.52E-11	4.49E-11	1.38E-11	1.04E-10
985	764488.2	4090980	5.90E-10	6.42E-10	2.27E-10	1.46E-09	9.21E-11	1.04E-10	3.59E-11	2.32E-10	4.92E-11	4.90E-11	1.50E-11	1.13E-10
986	764526.9	4090997	6.47E-10	7.04E-10	2.49E-10	1.60E-09	1.01E-10	1.14E-10	3.94E-11	2.55E-10	5.40E-11	5.37E-11	1.65E-11	1.24E-10
987	764565.6	4091015	7.14E-10	7.77E-10	2.75E-10	1.77E-09	1.11E-10	1.26E-10	4.34E-11	2.81E-10	5.96E-11	5.93E-11	1.82E-11	1.37E-10
988	764604.3	4091032	7.90E-10	8.60E-10	3.04E-10	1.95E-09	1.23E-10	1.40E-10	4.81E-11	3.11E-10	6.60E-11	6.56E-11	2.01E-11	1.52E-10
989	764643	4091050	8.77E-10	9.54E-10	3.38E-10	2.17E-09	1.37E-10	1.55E-10	5.33E-11	3.45E-10	7.32E-11	7.28E-11	2.23E-11	1.68E-10
990	764681.7	4091067	9.72E-10	1.06E-09	3.74E-10	2.40E-09	1.52E-10	1.72E-10	5.91E-11	3.83E-10	8.11E-11	8.07E-11	2.48E-11	1.87E-10
991	764720.4	4091085	1.07E-09	1.17E-09	4.13E-10	2.65E-09	1.68E-10	1.90E-10	6.53E-11	4.23E-10	8.96E-11	8.91E-11	2.73E-11	2.06E-10
992	764759.1	4091102	1.18E-09	1.28E-09	4.54E-10	2.92E-09	1.84E-10	2.08E-10	7.18E-11	4.65E-10	9.85E-11	9.80E-11	3.01E-11	2.27E-10
993	764797.8	4091120	1.29E-09	1.40E-09	4.97E-10	3.19E-09	2.02E-10	2.28E-10	7.85E-11	5.08E-10	1.08E-10	1.07E-10	3.29E-11	2.48E-10
994	764836.5	4091137	1.40E-09	1.53E-09	5.41E-10	3.47E-09	2.19E-10	2.48E-10	8.54E-11	5.53E-10	1.17E-10	1.17E-10	3.58E-11	2.70E-10
995	764875.2	4091155	1.52E-09	1.65E-09	5.85E-10	3.76E-09	2.37E-10	2.68E-10	9.24E-11	5.98E-10	1.27E-10	1.26E-10	3.87E-11	2.92E-10
996	764913.9	4091172	1.64E-09	1.78E-09	6.31E-10	4.05E-09	2.56E-10	2.89E-10	9.97E-11	6.45E-10	1.37E-10	1.36E-10	4.17E-11	3.14E-10
997	764952.6	4091190	1.76E-09	1.92E-09	6.78E-10	4.35E-09	2.75E-10	3.11E-10	1.07E-10	6.93E-10	1.47E-10	1.46E-10	4.49E-11	3.38E-10
998	764991.3	4091207	1.89E-09	2.06E-09	7.27E-10	4.67E-09	2.95E-10	3.34E-10	1.15E-10	7.44E-10	1.58E-10	1.57E-10	4.81E-11	3.63E-10
999	765030	4091225	2.02E-09	2.20E-09	7.79E-10	5.00E-09	3.16E-10	3.57E-10	1.23E-10	7.96E-10	1.69E-10	1.68E-10	5.15E-11	3.88E-10
1000	765068.7	4091242	2.16E-09	2.35E-09	8.32E-10	5.35E-09	3.38E-10	3.82E-10	1.31E-10	8.51E-10	1.80E-10	1.79E-10	5.51E-11	4.15E-10
1001	765107.4	4091260	2.30E-09	2.51E-09	8.87E-10	5.70E-09	3.60E-10	4.07E-10	1.40E-10	9.06E-10	1.92E-10	1.91E-10	5.87E-11	4.42E-10
1002	765146.1	4091277	2.44E-09	2.66E-09	9.41E-10	6.04E-09	3.82E-10	4.32E-10	1.49E-10	9.62E-10	2.04E-10	2.03E-10	6.22E-11	4.69E-10
	765192.2		2.71E-09	2.95E-09	1.04E-09	6.70E-09	4.23E-10	4.79E-10			2.26E-10	2.25E-10	6.91E-11	5.20E-10
	765207.1	4091354	2.98E-09	3.24E-09	1.15E-09	7.36E-09	4.65E-10	5.26E-10				2.47E-10		
1005	765222		3.26E-09	3.55E-09	1.26E-09	8.07E-09	5.09E-10		1.98E-10			2.71E-10		
	765236.9	4091434	3.55E-09	3.87E-09	1.37E-09	8.79E-09	5.55E-10	6.28E-10				2.95E-10		
	765251.9		3.85E-09	4.19E-09	1.48E-09	9.51E-09		6.80E-10				3.19E-10		
	765266.8		4.13E-09	4.49E-09	1.59E-09	1.02E-08		7.29E-10				3.43E-10		
											2	21.129	-	

1009	765281.7	4091553	4.38E-09	4.76E-09	1.69E-09	1.08E-08	6.83E-10	7.73E-10	2.66E-10		3.65E-10	3.63E-10	1.11E-10	
1010	765296.6	4091593	4.58E-09	4.99E-09	1.76E-09	1.13E-08	7.15E-10	8.09E-10	2.79E-10	1.80E-09	3.83E-10	3.80E-10	1.17E-10	8.80E-10
1011	765311.5	4091633	4.73E-09	5.15E-09	1.82E-09	1.17E-08	7.38E-10	8.35E-10	2.88E-10	1.86E-09	3.95E-10	3.93E-10	1.20E-10	9.08E-10
1012	765326.4	4091672	4.81E-09	5.23E-09	1.85E-09	1.19E-08	7.51E-10	8.49E-10	2.93E-10	1.89E-09	4.01E-10	3.99E-10	1.23E-10	9.23E-10
1013	765341.3	4091712	4.82E-09	5.24E-09	1.85E-09	1.19E-08	7.52E-10	8.51E-10	2.93E-10	1.90E-09	4.02E-10	4.00E-10	1.23E-10	9.25E-10
1014	765356.2	4091752	4.75E-09	5.17E-09	1.83E-09	1.18E-08	7.42E-10	8.39E-10	2.89E-10	1.87E-09	3.97E-10	3.94E-10	1.21E-10	9.12E-10
1015	765371.1	4091792	4.62E-09	5.03E-09	1.78E-09	1.14E-08	7.22E-10	8.16E-10	2.81E-10	1.82E-09	3.86E-10	3.84E-10	1.18E-10	8.87E-10
1016	765386	4091831	4.43E-09	4.83E-09	1.71E-09	1.10E-08	6.92E-10	7.83E-10	2.70E-10	1.75E-09	3.70E-10	3.68E-10	1.13E-10	8.51E-10
1017	765400.9	4091871	4.20E-09	4.57E-09	1.62E-09	1.04E-08	6.56E-10	7.42E-10	2.56E-10	1.65E-09	3.51E-10	3.49E-10	1.07E-10	8.07E-10
1018	765415.8	4091911	3.94E-09	4.29E-09	1.52E-09	9.75E-09	6.16E-10	6.96E-10	2.40E-10	1.55E-09	3.29E-10	3.27E-10	1.00E-10	7.57E-10
1019	765430.7	4091951	3.67E-09	3.99E-09	1.41E-09	9.08E-09	5.73E-10	6.48E-10	2.23E-10	1.44E-09	3.06E-10	3.05E-10	9.35E-11	7.05E-10
1020	765445.6	4091990	3.40E-09	3.70E-09	1.31E-09	8.41E-09	5.31E-10	6.00E-10	2.07E-10	1.34E-09	2.84E-10	2.82E-10	8.66E-11	6.53E-10
1021	765460.5	4092030	3.14E-09	3.41E-09	1.21E-09	7.76E-09	4.90E-10	5.54E-10	1.91E-10	1.24E-09	2.62E-10	2.60E-10	7.99E-11	6.02E-10
1022	765475.4	4092070	2.89E-09	3.15E-09	1.11E-09	7.16E-09	4.52E-10	5.11E-10	1.76E-10	1.14E-09	2.42E-10	2.40E-10	7.37E-11	5.56E-10
1023	765490.3	4092110	2.67E-09	2.91E-09	1.03E-09	6.61E-09	4.17E-10	4.72E-10	1.63E-10	1.05E-09	2.23E-10	2.22E-10	6.81E-11	5.13E-10
1024	765505.3	4092149	2.47E-09	2.69E-09	9.52E-10	6.12E-09	3.86E-10	4.37E-10	1.50E-10	9.74E-10	2.06E-10	2.05E-10	6.30E-11	4.75E-10
1025	765520.2	4092189	2.29E-09	2.50E-09	8.83E-10	5.67E-09	3.58E-10	4.05E-10	1.40E-10	9.03E-10	1.92E-10	1.90E-10	5.85E-11	4.40E-10
1026	764253.8	4090883	3.88E-10	4.23E-10	1.50E-10	9.60E-10	6.06E-11	6.86E-11	2.36E-11	1.53E-10	3.24E-11	3.22E-11	9.89E-12	7.45E-11
1027	764210.7	4090882	3.74E-10	4.07E-10	1.44E-10	9.24E-10	5.83E-11	6.60E-11	2.27E-11	1.47E-10	3.12E-11	3.10E-11	9.52E-12	7.17E-11
1028	764167.6	4090881	3.61E-10	3.92E-10	1.39E-10	8.92E-10	5.63E-11	6.37E-11	2.19E-11	1.42E-10	3.01E-11	2.99E-11	9.19E-12	6.92E-11
1029	764124.5	4090879	3.49E-10	3.80E-10	1.34E-10	8.63E-10	5.45E-11	6.16E-11	2.12E-11	1.37E-10	2.91E-11	2.90E-11	8.89E-12	6.70E-11
1030	764300.8	4090693	3.26E-10	3.54E-10	1.25E-10	8.05E-10	5.08E-11	5.75E-11	1.98E-11	1.28E-10	2.72E-11	2.70E-11	8.30E-12	6.25E-11
1031	764339.7	4090710	3.43E-10	3.73E-10	1.32E-10	8.47E-10	5.35E-11	6.05E-11	2.08E-11	1.35E-10	2.86E-11	2.84E-11	8.73E-12	6.58E-11
1032	764378.6	4090728	3.62E-10	3.94E-10	1.39E-10	8.94E-10	5.65E-11	6.39E-11	2.20E-11	1.42E-10	3.02E-11	3.00E-11	9.21E-12	6.94E-11
1033	764417.4	4090745	3.84E-10	4.17E-10	1.48E-10	9.49E-10	5.99E-11	6.78E-11	2.33E-11	1.51E-10	3.20E-11	3.18E-11	9.77E-12	7.36E-11
1034	764456.3	4090763	4.08E-10	4.44E-10	1.57E-10	1.01E-09	6.38E-11	7.21E-11	2.48E-11	1.61E-10	3.41E-11	3.39E-11	1.04E-11	7.84E-11
1035	764495.2	4090780	4.37E-10	4.76E-10	1.68E-10	1.08E-09	6.83E-11	7.72E-11	2.66E-11	1.72E-10	3.65E-11	3.63E-11	1.11E-11	8.39E-11
1036	764534	4090798	4.70E-10	5.12E-10	1.81E-10	1.16E-09	7.34E-11	8.31E-11	2.86E-11	1.85E-10	3.93E-11	3.90E-11	1.20E-11	9.03E-11
1037	764572.9	4090816	5.08E-10	5.53E-10	1.96E-10	1.26E-09	7.94E-11	8.98E-11	3.09E-11	2.00E-10	4.24E-11	4.22E-11	1.30E-11	9.76E-11
1038	764611.8	4090833	5.52E-10	6.01E-10	2.13E-10	1.37E-09	8.62E-11	9.76E-11	3.36E-11	2.17E-10	4.61E-11	4.58E-11	1.41E-11	1.06E-10
1039	764650.6	4090851	6.03E-10	6.56E-10	2.32E-10	1.49E-09	9.41E-11	1.06E-10	3.67E-11	2.37E-10	5.03E-11	5.00E-11	1.54E-11	1.16E-10
1040	764689.5	4090868	6.59E-10	7.18E-10	2.54E-10	1.63E-09	1.03E-10	1.17E-10	4.01E-11	2.60E-10	5.51E-11	5.48E-11	1.68E-11	1.27E-10
1041	764728.4	4090886	7.22E-10	7.86E-10	2.78E-10	1.79E-09	1.13E-10	1.28E-10	4.39E-11	2.84E-10	6.03E-11	5.99E-11	1.84E-11	1.39E-10
1042	764767.2	4090903	7.91E-10	8.61E-10	3.05E-10	1.96E-09	1.24E-10	1.40E-10	4.81E-11	3.11E-10	6.60E-11	6.57E-11	2.01E-11	1.52E-10
1043	764806.1	4090921	8.63E-10	9.40E-10	3.32E-10	2.14E-09	1.35E-10	1.53E-10	5.25E-11	3.40E-10	7.21E-11	7.17E-11	2.20E-11	1.66E-10
	764844.9	4090938		1.02E-09	3.62E-10	2.32E-09		1.66E-10			7.84E-11	7.79E-11	2.39E-11	1.80E-10
	764883.8	4090956		1.11E-09	3.91E-10	2.51E-09	1.59E-10	1.79E-10	6.18E-11	4.00E-10	8.48E-11	8.43E-11	2.59E-11	1.95E-10
1046	764922.7	4090974		1.19E-09	4.21E-10	2.70E-09		1.93E-10				9.07E-11		
	764961.5	4090991		1.27E-09	4.50E-10	2.89E-09		2.07E-10				9.71E-11		
	765000.4	4091009	1.25E-09	1.36E-09	4.81E-10	3.09E-09		2.20E-10				1.04E-10	3.18E-11	
	765039.3	4091026	1.33E-09	1.45E-09	5.11E-10	3.29E-09		2.35E-10		5.23E-10		1.10E-10	3.38E-11	
	765078.1	4091044	1.41E-09	1.54E-09	5.44E-10	3.49E-09		2.49E-10		5.56E-10		1.17E-10	3.60E-11	
1051	765117	4091061		1.63E-09	5.77E-10	3.71E-09		2.65E-10				1.24E-10		
	765155.9	4091079		1.73E-09	6.12E-10	3.93E-09		2.81E-10				1.32E-10		
														

1053	765194.7	4091096	1.69E-09	1.84E-09	6.50E-10	4.17E-09	2.63E-10	2.98E-10		6.64E-10	1.41E-10		4.30E-11	
1054	765233.6	4091114	1.79E-09	1.94E-09	6.88E-10	4.42E-09	2.79E-10	3.16E-10	1.09E-10	7.03E-10	1.49E-10	1.48E-10	4.55E-11	3.43E-10
1055	765272.5	4091132	1.89E-09	2.05E-09	7.27E-10	4.67E-09	2.95E-10	3.33E-10	1.15E-10	7.43E-10	1.58E-10	1.57E-10	4.81E-11	3.62E-10
1056	765311.3	4091149	1.99E-09	2.16E-09	7.66E-10	4.92E-09	3.10E-10	3.51E-10	1.21E-10	7.83E-10	1.66E-10	1.65E-10	5.07E-11	3.82E-10
1057	765338.2	4091178	2.13E-09	2.31E-09	8.19E-10	5.26E-09	3.32E-10	3.76E-10	1.29E-10	8.37E-10	1.78E-10	1.77E-10	5.42E-11	4.08E-10
1058	765353.2	4091218	2.31E-09	2.52E-09	8.91E-10	5.72E-09	3.61E-10	4.09E-10	1.41E-10	9.11E-10	1.93E-10	1.92E-10	5.89E-11	4.44E-10
1059	765368.2	4091258	2.51E-09	2.73E-09	9.67E-10	6.21E-09	3.92E-10	4.44E-10	1.53E-10	9.89E-10	2.10E-10	2.09E-10	6.40E-11	4.82E-10
1060	765383.2	4091298	2.72E-09	2.96E-09	1.05E-09	6.73E-09	4.25E-10	4.81E-10	1.65E-10	1.07E-09	2.27E-10	2.26E-10	6.93E-11	5.22E-10
1061	765398.1	4091338	2.93E-09	3.19E-09	1.13E-09	7.25E-09	4.58E-10	5.18E-10	1.78E-10	1.15E-09	2.45E-10	2.43E-10	7.47E-11	5.63E-10
1062	765413.1	4091378	3.14E-09	3.42E-09	1.21E-09	7.77E-09	4.91E-10	5.55E-10	1.91E-10	1.24E-09	2.62E-10	2.61E-10	8.00E-11	6.03E-10
1063	765428.1	4091417	3.34E-09	3.64E-09	1.29E-09	8.26E-09	5.22E-10	5.90E-10	2.03E-10	1.31E-09	2.79E-10	2.77E-10	8.51E-11	6.41E-10
1064	765443	4091457	3.52E-09	3.83E-09	1.35E-09	8.70E-09	5.49E-10	6.22E-10	2.14E-10	1.39E-09	2.94E-10	2.92E-10	8.96E-11	6.75E-10
1065	765458	4091497	3.66E-09	3.99E-09	1.41E-09	9.07E-09	5.72E-10	6.48E-10	2.23E-10	1.44E-09	3.06E-10	3.04E-10	9.34E-11	7.04E-10
1066	765473	4091537	3.77E-09	4.11E-09	1.45E-09	9.33E-09	5.89E-10	6.67E-10	2.30E-10	1.49E-09	3.15E-10	3.13E-10	9.61E-11	7.24E-10
1067	765487.9	4091577	3.84E-09	4.18E-09	1.48E-09	9.49E-09	5.99E-10	6.78E-10	2.33E-10	1.51E-09	3.20E-10	3.18E-10	9.78E-11	7.37E-10
1068	765502.9	4091617	3.85E-09	4.19E-09	1.48E-09	9.53E-09	6.02E-10	6.81E-10	2.34E-10	1.52E-09	3.22E-10	3.20E-10	9.81E-11	7.40E-10
1069	765517.9	4091657	3.82E-09	4.16E-09	1.47E-09	9.45E-09	5.96E-10	6.75E-10	2.32E-10	1.50E-09	3.19E-10	3.17E-10	9.73E-11	7.33E-10
1070	765532.9	4091697	3.74E-09	4.07E-09	1.44E-09	9.25E-09	5.84E-10	6.61E-10	2.28E-10	1.47E-09	3.12E-10	3.11E-10	9.53E-11	7.18E-10
1071	765547.8	4091737	3.62E-09	3.94E-09	1.40E-09	8.96E-09	5.66E-10	6.40E-10	2.20E-10	1.43E-09	3.03E-10	3.01E-10	9.23E-11	6.96E-10
1072	765562.8	4091777	3.47E-09	3.78E-09	1.34E-09	8.59E-09	5.42E-10	6.13E-10	2.11E-10	1.37E-09	2.90E-10	2.88E-10	8.85E-11	6.67E-10
1073	765577.8	4091817	3.30E-09	3.59E-09	1.27E-09	8.16E-09	5.15E-10	5.83E-10	2.01E-10	1.30E-09	2.75E-10	2.74E-10	8.40E-11	6.33E-10
1074	765592.7	4091857	3.11E-09	3.38E-09	1.20E-09	7.69E-09	4.85E-10	5.49E-10	1.89E-10	1.22E-09	2.60E-10	2.58E-10	7.92E-11	5.97E-10
1075	765607.7	4091897	2.91E-09	3.17E-09	1.12E-09	7.20E-09	4.55E-10	5.14E-10	1.77E-10	1.15E-09	2.43E-10	2.42E-10	7.42E-11	5.59E-10
1076	765622.7	4091937	2.71E-09	2.95E-09	1.05E-09	6.71E-09	4.24E-10	4.80E-10	1.65E-10	1.07E-09	2.27E-10	2.25E-10	6.92E-11	5.21E-10
1077	765637.6	4091976	2.53E-09	2.75E-09	9.73E-10	6.25E-09	3.95E-10	4.46E-10	1.54E-10	9.95E-10	2.11E-10	2.10E-10	6.44E-11	4.85E-10
1078	765652.6	4092016	2.35E-09	2.56E-09	9.06E-10	5.82E-09	3.67E-10	4.16E-10	1.43E-10		1.96E-10	1.95E-10	5.99E-11	
1079	765667.6	4092056	2.19E-09	2.39E-09	8.44E-10	5.42E-09	3.42E-10	3.87E-10		8.63E-10	1.83E-10	1.82E-10	5.59E-11	
1080	765682.5	4092096	2.05E-09	2.23E-09	7.89E-10	5.06E-09	3.20E-10	3.62E-10		8.06E-10	1.71E-10	1.70E-10	5.22E-11	
1081	765697.5	4092136	1.92E-09	2.09E-09	7.39E-10	4.74E-09	3.00E-10	3.39E-10		7.55E-10	1.60E-10	1.59E-10	4.89E-11	
1082	765712.5	4092176	1.80E-09	1.96E-09	6.94E-10	4.46E-09	2.81E-10	3.18E-10		7.09E-10	1.50E-10	1.50E-10	4.59E-11	
1083	764259.9	4090683	3.13E-10	3.40E-10	1.20E-10	7.73E-10	4.88E-11	5.52E-11	1.90E-11		2.61E-11	2.59E-11	7.96E-12	
1084	764216.8	4090682	3.03E-10	3.29E-10	1.17E-10	7.48E-10	4.73E-11		1.84E-11		2.53E-11		7.71E-12	
1085	764173.7	4090681	2.93E-10	3.19E-10	1.13E-10	7.26E-10	4.58E-11	5.18E-11	1.79E-11		2.45E-11	2.44E-11	7.48E-12	
1086	764130.6	4090679	2.85E-10	3.11E-10	1.10E-10	7.06E-10		5.04E-11				2.37E-11		
1087	764307	4090493		2.94E-10	1.04E-10	6.68E-10		4.77E-11				2.24E-11		
1088	764346	4090510	2.82E-10	3.07E-10	1.08E-10	6.97E-10		4.98E-11				2.34E-11		
1089	764385	4090528		3.21E-10	1.14E-10	7.29E-10		5.21E-11				2.45E-11		
	764423.9		3.09E-10	3.37E-10	1.19E-10	7.65E-10		5.47E-11				2.57E-11		
	764462.9	4090563	3.26E-10	3.54E-10	1.25E-10	8.05E-10		5.75E-11				2.70E-11		
	764501.9	4090581	3.44E-10	3.75E-10	1.33E-10	8.51E-10		6.08E-11				2.86E-11		
	764540.9	4090598	3.65E-10	3.97E-10	1.41E-10	9.03E-10		6.45E-11				3.03E-11		
	764579.9	4090616	3.88E-10	4.23E-10	1.50E-10	9.61E-10		6.86E-11				3.23E-11		
	764618.9	4090634		4.52E-10	1.60E-10	1.03E-09		7.34E-11				3.45E-11		
	764657.9	4090651		4.86E-10	1.72E-10	1.10E-09		7.88E-11				3.70E-11		
1030	704037.3	+030031	4.406-10	4.00E-10	1./26-10	1.101-03	0.5/6-11	1.00E-11	Z./ 1E-11	1./UL-1U	J./JE-11	3.70E-11	1.14E-11	0.5/ 6-11

1097	764696.9	4090669	4.81E-10	5.23E-10	1.85E-10	1.19E-09	7.51E-11	8.49E-11	2.92E-11	1.89E-10	4.01E-11	3.99E-11	1.22E-11	9.23E-11
1098	764735.9	4090687	5.20E-10	5.66E-10	2.00E-10	1.29E-09	8.12E-11	9.18E-11	3.16E-11	2.05E-10	4.34E-11	4.32E-11	1.32E-11	9.98E-11
1099	764774.9	4090704	5.63E-10	6.13E-10	2.17E-10	1.39E-09	8.80E-11	9.95E-11	3.43E-11	2.22E-10	4.70E-11	4.68E-11	1.43E-11	1.08E-10
1100	764813.9	4090722	6.11E-10	6.65E-10	2.35E-10	1.51E-09	9.54E-11	1.08E-10	3.72E-11	2.40E-10	5.10E-11	5.07E-11	1.56E-11	1.17E-10
1101	764852.9	4090739	6.62E-10	7.21E-10	2.55E-10	1.64E-09	1.03E-10	1.17E-10	4.03E-11	2.61E-10	5.53E-11	5.50E-11	1.69E-11	1.27E-10
1102	764891.9	4090757	7.16E-10	7.80E-10	2.76E-10	1.77E-09	1.12E-10	1.27E-10	4.36E-11	2.82E-10	5.98E-11	5.95E-11	1.83E-11	1.38E-10
1103	764930.8	4090775	7.71E-10	8.40E-10	2.97E-10	1.91E-09	1.20E-10	1.36E-10	4.69E-11	3.04E-10	6.44E-11	6.40E-11	1.97E-11	1.48E-10
1104	764969.8	4090792	8.28E-10	9.01E-10	3.19E-10	2.05E-09	1.29E-10	1.46E-10	5.04E-11	3.26E-10	6.91E-11	6.87E-11	2.11E-11	1.59E-10
1105	765008.8	4090810	8.83E-10	9.61E-10	3.40E-10	2.18E-09	1.38E-10	1.56E-10	5.37E-11	3.48E-10	7.37E-11	7.33E-11	2.25E-11	1.70E-10
1106	765047.8	4090827	9.38E-10	1.02E-09	3.61E-10	2.32E-09	1.46E-10	1.66E-10	5.71E-11	3.69E-10	7.83E-11	7.79E-11	2.39E-11	1.80E-10
1107	765086.8	4090845	9.92E-10	1.08E-09	3.82E-10	2.45E-09	1.55E-10	1.75E-10	6.04E-11	3.91E-10	8.29E-11	8.24E-11	2.53E-11	1.91E-10
1108	765125.8	4090863	1.05E-09	1.14E-09	4.03E-10	2.59E-09	1.64E-10	1.85E-10	6.37E-11	4.12E-10	8.74E-11	8.69E-11	2.67E-11	2.01E-10
1109	765164.8	4090880	1.10E-09	1.20E-09	4.25E-10	2.73E-09	1.72E-10	1.95E-10	6.72E-11	4.35E-10	9.22E-11	9.16E-11	2.81E-11	2.12E-10
1110	765203.8	4090898	1.16E-09	1.27E-09	4.48E-10	2.88E-09	1.82E-10	2.06E-10	7.08E-11	4.58E-10	9.71E-11	9.66E-11	2.96E-11	2.23E-10
1111	765242.8	4090915	1.23E-09	1.33E-09	4.72E-10	3.03E-09	1.92E-10	2.17E-10	7.46E-11	4.83E-10	1.02E-10	1.02E-10	3.12E-11	2.35E-10
1112	765281.8	4090933	1.29E-09	1.41E-09	4.98E-10	3.20E-09	2.02E-10	2.28E-10	7.86E-11	5.09E-10	1.08E-10	1.07E-10	3.29E-11	2.48E-10
1113	765320.8	4090951	1.36E-09	1.48E-09	5.25E-10	3.37E-09	2.13E-10	2.41E-10	8.29E-11	5.36E-10	1.14E-10	1.13E-10	3.47E-11	2.62E-10
1114	765359.8	4090968	1.44E-09	1.56E-09	5.53E-10	3.55E-09	2.24E-10	2.54E-10	8.74E-11	5.65E-10	1.20E-10	1.19E-10	3.66E-11	2.76E-10
1115	765398.8	4090986	1.51E-09	1.64E-09	5.82E-10	3.74E-09	2.36E-10	2.67E-10	9.19E-11	5.95E-10	1.26E-10	1.25E-10	3.85E-11	2.90E-10
1116	765437.8	4091004	1.58E-09	1.73E-09	6.10E-10	3.92E-09	2.48E-10	2.80E-10	9.64E-11	6.24E-10	1.32E-10	1.32E-10	4.04E-11	3.04E-10
1117	765484.3	4091041	1.72E-09	1.88E-09	6.64E-10	4.26E-09	2.69E-10	3.05E-10	1.05E-10	6.79E-10	1.44E-10	1.43E-10	4.39E-11	3.31E-10
1118	765499.3	4091081	1.86E-09	2.02E-09	7.16E-10	4.60E-09	2.90E-10	3.29E-10	1.13E-10	7.32E-10	1.55E-10	1.54E-10	4.74E-11	3.57E-10
1119	765514.3	4091121	2.00E-09	2.18E-09	7.72E-10	4.96E-09	3.13E-10	3.54E-10	1.22E-10	7.89E-10	1.67E-10	1.66E-10	5.11E-11	3.85E-10
1120	765529.3	4091161	2.16E-09	2.35E-09	8.31E-10	5.33E-09	3.37E-10	3.81E-10	1.31E-10	8.49E-10	1.80E-10	1.79E-10	5.50E-11	4.14E-10
1121	765544.3	4091201	2.32E-09	2.52E-09	8.92E-10	5.73E-09	3.62E-10	4.09E-10	1.41E-10	9.12E-10	1.93E-10	1.92E-10	5.90E-11	4.45E-10
1122	765559.3	4091242	2.47E-09	2.69E-09	9.53E-10	6.12E-09	3.86E-10	4.37E-10	1.51E-10	9.74E-10	2.07E-10	2.05E-10	6.30E-11	4.75E-10
1123	765574.4	4091282	2.63E-09	2.86E-09	1.01E-09	6.51E-09	4.11E-10	4.65E-10	1.60E-10	1.04E-09	2.20E-10	2.18E-10	6.71E-11	5.05E-10
1124	765589.4	4091322	2.78E-09	3.03E-09	1.07E-09	6.88E-09	4.34E-10	4.91E-10	1.69E-10	1.09E-09	2.32E-10	2.31E-10	7.08E-11	5.34E-10
1125	765604.4	4091362	2.91E-09	3.17E-09	1.12E-09	7.20E-09	4.55E-10	5.15E-10	1.77E-10	1.15E-09	2.43E-10	2.42E-10	7.42E-11	5.59E-10
1126	765619.4	4091402	3.02E-09	3.29E-09	1.16E-09	7.47E-09	4.72E-10	5.34E-10	1.84E-10	1.19E-09	2.52E-10	2.51E-10	7.70E-11	5.80E-10
1127	765634.4	4091442	3.10E-09	3.38E-09	1.20E-09	7.68E-09	4.85E-10	5.49E-10	1.89E-10	1.22E-09	2.59E-10	2.58E-10	7.91E-11	5.96E-10
1128	765649.5	4091482	3.16E-09	3.43E-09	1.22E-09	7.80E-09	4.93E-10	5.58E-10	1.92E-10	1.24E-09	2.63E-10	2.62E-10	8.04E-11	6.06E-10
1129	765664.5	4091522	3.17E-09	3.45E-09	1.22E-09	7.85E-09	4.96E-10	5.61E-10	1.93E-10	1.25E-09	2.65E-10	2.63E-10	8.08E-11	6.09E-10
1130	765679.5	4091562	3.16E-09	3.44E-09	1.22E-09	7.81E-09	4.93E-10	5.58E-10	1.92E-10	1.24E-09	2.64E-10	2.62E-10	8.04E-11	6.06E-10
1131	765694.5	4091602	3.11E-09	3.38E-09	1.20E-09	7.69E-09	4.86E-10	5.49E-10	1.89E-10	1.22E-09	2.60E-10	2.58E-10	7.92E-11	5.97E-10
1132	765709.5	4091642	3.03E-09	3.30E-09	1.17E-09	7.50E-09	4.74E-10	5.36E-10	1.85E-10	1.19E-09	2.53E-10	2.52E-10	7.73E-11	5.82E-10
1133	765724.6	4091682	2.93E-09	3.19E-09	1.13E-09	7.25E-09	4.58E-10	5.18E-10	1.78E-10	1.15E-09	2.45E-10	2.43E-10	7.47E-11	5.63E-10
1134	765739.6	4091722	2.81E-09	3.06E-09	1.08E-09	6.95E-09	4.39E-10	4.97E-10	1.71E-10	1.11E-09	2.35E-10	2.33E-10	7.16E-11	5.40E-10
1135	765754.6	4091762	2.68E-09	2.91E-09	1.03E-09	6.62E-09	4.18E-10	4.73E-10	1.63E-10	1.05E-09	2.23E-10	2.22E-10	6.82E-11	5.14E-10
1136	765769.6	4091802	2.53E-09	2.75E-09	9.75E-10	6.26E-09	3.95E-10	4.47E-10	1.54E-10	9.96E-10		2.10E-10		
1137	765784.6	4091842	2.38E-09	2.59E-09	9.18E-10	5.90E-09	3.72E-10	4.21E-10	1.45E-10	9.38E-10	1.99E-10	1.98E-10	6.07E-11	4.58E-10
1138	765799.6	4091883	2.24E-09	2.44E-09	8.62E-10	5.54E-09	3.50E-10	3.95E-10	1.36E-10	8.81E-10		1.86E-10		
1139	765814.7	4091923	2.10E-09	2.28E-09	8.08E-10	5.19E-09	3.28E-10	3.71E-10	1.28E-10	8.26E-10	1.75E-10	1.74E-10	5.35E-11	4.03E-10
1140	765829.7	4091963		2.14E-09	7.58E-10	4.87E-09		3.48E-10				1.63E-10		
							-	-		_				

1141	765844.7	4092003	1.85E-09	2.01E-09	7.11E-10	4.57E-09	2.88E-10	3.26E-10	1.12E-10	7.27E-10	1.54E-10	1.53E-10	4.70E-11	3.55E-10
1142	765859.7	4092043	1.74E-09	1.89E-09	6.69E-10	4.30E-09	2.71E-10	3.07E-10	1.06E-10	6.84E-10	1.45E-10	1.44E-10	4.43E-11	3.34E-10
1143	765874.7	4092083	1.64E-09	1.78E-09	6.31E-10	4.05E-09	2.56E-10	2.90E-10	9.97E-11	6.45E-10	1.37E-10	1.36E-10	4.18E-11	3.15E-10
1144	765889.8	4092123	1.55E-09	1.69E-09	5.97E-10	3.83E-09	2.42E-10	2.74E-10	9.43E-11	6.10E-10	1.29E-10	1.29E-10	3.95E-11	2.98E-10
1145	765904.8	4092163	1.47E-09	1.60E-09	5.66E-10	3.64E-09	2.30E-10	2.60E-10	8.94E-11	5.79E-10	1.23E-10	1.22E-10	3.75E-11	2.82E-10
1146	765919.8	4092203	1.40E-09	1.52E-09	5.38E-10	3.45E-09	2.18E-10	2.47E-10	8.50E-11	5.50E-10	1.17E-10	1.16E-10	3.56E-11	2.68E-10
1147	764265.9	4090483	2.61E-10	2.84E-10	1.00E-10	6.44E-10	4.07E-11	4.60E-11	1.59E-11	1.03E-10	2.18E-11	2.16E-11	6.64E-12	5.00E-11
1148	764222.8	4090482	2.54E-10	2.76E-10	9.76E-11	6.27E-10	3.96E-11	4.48E-11	1.54E-11	9.98E-11	2.12E-11	2.10E-11	6.46E-12	4.87E-11
1149	764179.7	4090481	2.47E-10	2.69E-10	9.50E-11	6.10E-10	3.85E-11	4.36E-11	1.50E-11	9.71E-11	2.06E-11	2.05E-11	6.29E-12	4.74E-11
1150	764136.6	4090479	2.41E-10	2.62E-10	9.27E-11	5.95E-10	3.76E-11	4.25E-11	1.46E-11	9.48E-11	2.01E-11	2.00E-11	6.13E-12	4.62E-11
1151	764067.7	4091929	4.21E-09	4.59E-09	1.62E-09	1.04E-08	6.58E-10	7.45E-10	2.56E-10	1.66E-09	3.52E-10	3.50E-10	1.07E-10	8.09E-10
1152	764064.2	4091879	3.16E-09	3.44E-09	1.22E-09	7.82E-09	4.94E-10	5.58E-10	1.92E-10	1.24E-09	2.64E-10	2.62E-10	8.05E-11	6.07E-10
1153	764070.6	4091779	2.06E-09	2.25E-09	7.95E-10	5.11E-09	3.22E-10	3.65E-10	1.26E-10	8.13E-10	1.72E-10	1.71E-10	5.26E-11	3.96E-10
1154	764037.6	4091781	1.91E-09	2.08E-09	7.35E-10	4.72E-09	2.98E-10	3.37E-10	1.16E-10	7.51E-10	1.59E-10	1.58E-10	4.86E-11	3.66E-10
1155	764067	4091679	1.44E-09	1.57E-09	5.55E-10	3.56E-09	2.25E-10	2.55E-10	8.77E-11	5.67E-10	1.20E-10	1.20E-10	3.67E-11	2.77E-10
1156	764030.7	4091681	1.35E-09	1.47E-09	5.20E-10	3.34E-09	2.11E-10	2.39E-10	8.22E-11	5.32E-10	1.13E-10	1.12E-10	3.44E-11	2.59E-10
1157	764058.4	4091580	1.07E-09	1.16E-09	4.11E-10	2.64E-09	1.67E-10	1.89E-10	6.50E-11	4.20E-10	8.92E-11	8.86E-11	2.72E-11	2.05E-10
1158	764023.7	4091581	1.02E-09	1.11E-09	3.92E-10	2.52E-09	1.59E-10	1.80E-10	6.19E-11	4.01E-10	8.50E-11	8.45E-11	2.59E-11	1.95E-10
1159	764054	4091480	8.36E-10	9.10E-10	3.22E-10	2.07E-09	1.31E-10	1.48E-10	5.09E-11	3.29E-10	6.98E-11	6.94E-11	2.13E-11	1.61E-10
1160	764016.8	4091482	8.02E-10	8.73E-10	3.09E-10	1.98E-09	1.25E-10	1.42E-10	4.88E-11	3.16E-10	6.70E-11	6.66E-11	2.04E-11	1.54E-10
1161	764040.6	4091280	5.64E-10	6.14E-10	2.17E-10	1.40E-09	8.81E-11	9.97E-11	3.43E-11	2.22E-10	4.71E-11	4.68E-11	1.44E-11	1.08E-10
1162	764076.5	4091280	5.82E-10	6.34E-10	2.24E-10	1.44E-09	9.09E-11	1.03E-10	3.54E-11	2.29E-10	4.86E-11	4.83E-11	1.48E-11	1.12E-10
1163	764002.9	4091282	5.47E-10	5.96E-10	2.11E-10	1.35E-09	8.55E-11	9.67E-11	3.33E-11	2.16E-10	4.57E-11	4.55E-11	1.40E-11	1.05E-10
1164	764027	4091081	4.16E-10	4.53E-10	1.60E-10	1.03E-09	6.50E-11	7.36E-11	2.53E-11	1.64E-10	3.48E-11	3.46E-11	1.06E-11	8.00E-11
1165	764063.6	4091080	4.27E-10	4.65E-10	1.64E-10	1.06E-09	6.67E-11	7.54E-11	2.60E-11	1.68E-10	3.56E-11	3.54E-11	1.09E-11	8.20E-11
1166	763989.1	4091083	4.07E-10	4.43E-10	1.57E-10	1.01E-09	6.36E-11	7.19E-11	2.48E-11	1.60E-10	3.40E-11	3.38E-11	1.04E-11	7.81E-11
1167	764013.4	4090881	3.26E-10	3.55E-10	1.26E-10	8.07E-10	5.10E-11	5.77E-11	1.99E-11	1.28E-10	2.73E-11	2.71E-11	8.32E-12	6.27E-11
1168	764050.4	4090881	3.33E-10	3.63E-10	1.28E-10	8.24E-10	5.20E-11	5.89E-11	2.03E-11	1.31E-10	2.78E-11	2.77E-11	8.49E-12	6.40E-11
1169	764087.5	4090880	3.40E-10	3.71E-10	1.31E-10	8.42E-10	5.32E-11	6.02E-11	2.07E-11	1.34E-10	2.84E-11	2.83E-11	8.67E-12	6.54E-11
1170	763975.2	4090883	3.21E-10	3.49E-10	1.23E-10	7.93E-10	5.01E-11	5.66E-11	1.95E-11	1.26E-10	2.68E-11	2.66E-11	8.17E-12	6.16E-11
1171	763999.7	4090682	2.67E-10	2.90E-10	1.03E-10	6.60E-10	4.17E-11	4.71E-11	1.62E-11	1.05E-10	2.23E-11	2.22E-11	6.80E-12	5.12E-11
1172	764037.1	4090681	2.72E-10	2.96E-10	1.05E-10	6.72E-10	4.24E-11	4.80E-11	1.65E-11	1.07E-10	2.27E-11	2.25E-11	6.92E-12	5.21E-11
1173	764074.5	4090680	2.76E-10	3.01E-10	1.06E-10	6.84E-10	4.32E-11	4.88E-11	1.68E-11	1.09E-10	2.31E-11	2.30E-11	7.04E-12	5.31E-11
1174	763961.3	4090684	2.63E-10	2.86E-10	1.01E-10	6.50E-10	4.10E-11	4.64E-11	1.60E-11	1.03E-10	2.19E-11	2.18E-11	6.69E-12	5.04E-11
1175	763986	4090482	2.25E-10	2.45E-10	8.66E-11	5.56E-10	3.51E-11	3.97E-11	1.37E-11	8.85E-11	1.88E-11	1.87E-11	5.73E-12	4.32E-11
1176	764023.7	4090482	2.28E-10	2.48E-10	8.79E-11	5.64E-10	3.56E-11	4.03E-11	1.39E-11	8.98E-11	1.91E-11	1.89E-11	5.81E-12	4.38E-11
1177	764061.3	4090481	2.32E-10	2.53E-10	8.94E-11	5.74E-10	3.62E-11	4.10E-11	1.41E-11	9.14E-11	1.94E-11	1.93E-11	5.91E-12	4.46E-11
1178	764099	4090480	2.36E-10	2.57E-10	9.09E-11	5.84E-10	3.69E-11	4.17E-11	1.44E-11	9.29E-11	1.97E-11	1.96E-11	6.01E-12	4.53E-11
1179	763947.5	4090484	2.22E-10	2.42E-10	8.55E-11	5.49E-10	3.47E-11	3.92E-11	1.35E-11	8.74E-11	1.85E-11	1.84E-11	5.65E-12	4.26E-11
1180	764025.1	4091984	4.81E-09	5.23E-09	1.85E-09	1.19E-08	7.50E-10	8.49E-10	2.92E-10	1.89E-09	4.01E-10	3.99E-10	1.22E-10	9.23E-10
1181	764040.1	4091931	3.78E-09	4.12E-09	1.46E-09	9.36E-09	5.91E-10	6.68E-10	2.30E-10	1.49E-09	3.16E-10	3.14E-10	9.64E-11	7.26E-10
1182	764035	4091882	2.88E-09	3.13E-09	1.11E-09	7.12E-09	4.50E-10	5.09E-10	1.75E-10	1.13E-09	2.40E-10	2.39E-10	7.33E-11	5.53E-10
1183	764011.8	4091884	2.69E-09	2.93E-09	1.04E-09	6.66E-09	4.21E-10	4.76E-10	1.64E-10	1.06E-09			6.86E-11	
	764012.3	4091783		1.97E-09	6.96E-10	4.47E-09		3.19E-10			1.51E-10	1.50E-10	4.61E-11	3.47E-10

4405 75200	4004604	4 205 00	4 405 00	4.045.40	2 405 00	2 045 40	2 275 40	7.045.44	5 0CF 40	4 075 40	4 075 40	2 275 44	2 475 40
1185 763999		1.28E-09	1.40E-09	4.94E-10	3.18E-09	2.01E-10	_		5.06E-10		1.07E-10	3.27E-11	
1186 763998.4		9.86E-10	1.07E-09	3.80E-10	2.44E-09	1.54E-10	1.74E-10		3.88E-10	8.24E-11	8.19E-11	2.51E-11	
1187 76397		9.56E-10	1.04E-09	3.68E-10	2.36E-09	1.49E-10	1.69E-10		3.76E-10	7.98E-11	7.93E-11	2.43E-11	
1188 763983.0		7.76E-10	8.45E-10	2.99E-10	1.92E-09	1.21E-10	1.37E-10		3.06E-10	6.48E-11	6.45E-11	1.98E-11	
1189 763958.		7.58E-10	8.25E-10	2.92E-10	1.87E-09	1.18E-10	1.34E-10	4.61E-11		6.33E-11	6.29E-11	1.93E-11	
1190 763957.4		5.31E-10	5.78E-10	2.04E-10	1.31E-09	8.29E-11	9.38E-11	3.23E-11		4.43E-11	4.41E-11	1.35E-11	
1191 763980.		5.39E-10	5.87E-10	2.08E-10	1.33E-09	8.42E-11	9.53E-11		2.12E-10	4.50E-11	4.48E-11	1.37E-11	
1192 763932.2	4091290	5.22E-10	5.68E-10	2.01E-10	1.29E-09	8.15E-11	9.22E-11	3.18E-11	2.05E-10	4.36E-11	4.33E-11	1.33E-11	1.00E-10
1193 76393	L 4091089	3.95E-10	4.30E-10	1.52E-10	9.78E-10	6.17E-11	6.98E-11	2.41E-11	1.56E-10	3.30E-11	3.28E-11	1.01E-11	7.59E-11
1194 763954.2	4091086	4.00E-10	4.35E-10	1.54E-10	9.89E-10	6.25E-11	7.07E-11	2.43E-11	1.57E-10	3.34E-11	3.32E-11	1.02E-11	7.68E-11
1195 763905.	4091092	3.90E-10	4.25E-10	1.50E-10	9.65E-10	6.10E-11	6.90E-11	2.37E-11	1.54E-10	3.26E-11	3.24E-11	9.95E-12	7.49E-11
1196 763906.0	4090890	3.12E-10	3.39E-10	1.20E-10	7.71E-10	4.87E-11	5.51E-11	1.90E-11	1.23E-10	2.60E-11	2.59E-11	7.94E-12	5.99E-11
1197 763934.	L 4090887	3.15E-10	3.43E-10	1.21E-10	7.79E-10	4.92E-11	5.57E-11	1.92E-11	1.24E-10	2.63E-11	2.62E-11	8.03E-12	6.05E-11
1198 763879.2	4090893	3.08E-10	3.36E-10	1.19E-10	7.63E-10	4.82E-11	5.45E-11	1.88E-11	1.21E-10	2.57E-11	2.56E-11	7.86E-12	5.92E-11
1199 763879.9	4090692	2.56E-10	2.78E-10	9.85E-11	6.33E-10	4.00E-11	4.52E-11	1.56E-11	1.01E-10	2.14E-11	2.12E-11	6.52E-12	4.91E-11
1200 763907.3	L 4090689	2.58E-10	2.81E-10	9.93E-11	6.38E-10	4.03E-11	4.56E-11	1.57E-11	1.02E-10	2.15E-11	2.14E-11	6.57E-12	4.95E-11
1201 763934.2	4090686	2.60E-10	2.83E-10	1.00E-10	6.44E-10	4.07E-11	4.60E-11	1.58E-11	1.02E-10	2.17E-11	2.16E-11	6.63E-12	5.00E-11
1202 763852.0	4090695	2.54E-10	2.76E-10	9.76E-11	6.27E-10	3.96E-11	4.48E-11	1.54E-11	9.98E-11	2.12E-11	2.10E-11	6.46E-12	4.87E-11
1203 763853.3	3 4090494	2.16E-10	2.35E-10	8.32E-11	5.35E-10	3.38E-11	3.82E-11	1.32E-11	8.51E-11	1.81E-11	1.79E-11	5.51E-12	4.15E-11
1204 763880.2	4090491	2.18E-10	2.37E-10	8.39E-11	5.39E-10	3.40E-11	3.85E-11	1.32E-11	8.57E-11	1.82E-11	1.81E-11	5.55E-12	4.18E-11
1205 763907.	4090488	2.19E-10	2.39E-10	8.45E-11	5.42E-10	3.43E-11	3.87E-11	1.33E-11	8.63E-11	1.83E-11	1.82E-11	5.59E-12	4.21E-11
1206 763826.	4090497	2.14E-10	2.33E-10	8.25E-11	5.30E-10	3.35E-11	3.79E-11	1.30E-11	8.44E-11	1.79E-11	1.78E-11	5.46E-12	4.12E-11
1207 763999.4	4091990	4.39E-09	4.78E-09	1.69E-09	1.09E-08	6.85E-10	7.75E-10	2.67E-10	1.73E-09	3.66E-10	3.64E-10	1.12E-10	8.43E-10
1208 763971.9	4091998	4.02E-09	4.38E-09	1.55E-09	9.95E-09	6.29E-10	7.11E-10	2.45E-10	1.58E-09	3.36E-10	3.34E-10	1.03E-10	7.73E-10
1209 763982.4	4091943	3.17E-09	3.45E-09	1.22E-09	7.83E-09	4.94E-10	5.59E-10	1.93E-10	1.25E-09	2.64E-10	2.63E-10	8.07E-11	6.08E-10
1210 764006.4	4091937	3.39E-09	3.69E-09	1.30E-09	8.38E-09	5.29E-10	5.99E-10	2.06E-10	1.33E-09	2.83E-10	2.81E-10	8.63E-11	6.51E-10
1211 763955.	4091950	2.96E-09	3.22E-09	1.14E-09	7.31E-09	4.62E-10	5.22E-10	1.80E-10	1.16E-09	2.47E-10	2.45E-10	7.53E-11	5.68E-10
1212 763968.	4091895	2.43E-09	2.65E-09	9.37E-10	6.02E-09	3.80E-10	4.30E-10	1.48E-10	9.58E-10	2.03E-10	2.02E-10	6.20E-11	4.67E-10
1213 763939.4	4091903	2.28E-09	2.49E-09	8.80E-10	5.65E-09	3.57E-10	4.04E-10	1.39E-10	8.99E-10	1.91E-10	1.90E-10	5.82E-11	4.39E-10
1214 763934.4	4091800	1.58E-09	1.72E-09	6.07E-10	3.90E-09	2.46E-10	2.79E-10	9.60E-11	6.21E-10	1.32E-10	1.31E-10	4.02E-11	3.03E-10
1215 763960.3	L 4091794	1.65E-09	1.80E-09	6.35E-10	4.08E-09	2.58E-10	2.91E-10	1.00E-10	6.50E-10	1.38E-10	1.37E-10	4.20E-11	3.17E-10
1216 763985.	4091788	1.72E-09	1.87E-09	6.63E-10	4.26E-09	2.69E-10	3.04E-10	1.05E-10	6.78E-10	1.44E-10	1.43E-10	4.39E-11	3.31E-10
1217 763906.9	4091809	1.51E-09	1.64E-09	5.80E-10	3.73E-09	2.35E-10	2.66E-10	9.17E-11	5.93E-10	1.26E-10	1.25E-10	3.84E-11	2.89E-10
1218 763902.9	4091706	1.13E-09	1.23E-09	4.34E-10	2.79E-09	1.76E-10	1.99E-10	6.86E-11	4.44E-10	9.41E-11	9.36E-11	2.87E-11	2.16E-10
1219 763930.3	3 4091699	1.17E-09	1.28E-09	4.51E-10	2.90E-09	1.83E-10	2.07E-10	7.13E-11	4.61E-10	9.79E-11	9.73E-11	2.99E-11	2.25E-10
1220 763957.8		1.22E-09	1.32E-09	4.68E-10	3.01E-09		2.15E-10				1.01E-10		
1221 763874.		1.08E-09	1.18E-09	4.18E-10	2.68E-09		1.92E-10				9.00E-11		
1222 763871.:			9.32E-10	3.30E-10	2.12E-09		1.51E-10				7.11E-11		
1223 763899.9		8.86E-10	9.64E-10	3.41E-10	2.19E-09		1.57E-10				7.36E-11		
1224 763928.		9.15E-10	9.96E-10	3.52E-10	2.26E-09		1.62E-10				7.59E-11		
1225 763842		8.28E-10	9.01E-10	3.19E-10	2.05E-09		1.46E-10				6.87E-11		
1226 763839.3			7.39E-10	2.62E-10	1.68E-09		1.20E-10				5.64E-11		
1227 763869			7.63E-10	2.70E-10	1.73E-09		1.24E-10				5.82E-11		
1228 763898.9		7.01E-10 7.21E-10	7.85E-10	2.78E-10	1.78E-09		1.27E-10				5.99E-11		
1220 /03030.	, 4031302	/.ZIL-10	7.03L-10	2.70L-10	1.70L-03	1.136-10	1.2/L-10	4.33L-11	2.07L-10	0.02L-11	J.JJL-11	1.04L-11	1.30L-10

1229	763928.8	4091495	7.40E-10	8.06E-10	2.85E-10	1.83E-09	1.16E-10	1.31E-10	4.50E-11	2.91E-10	6.18E-11	6.14E-11	1.89E-11	1.42E-10
1230	763809.5	4091525	6.59E-10	7.17E-10	2.54E-10	1.63E-09	1.03E-10	1.16E-10	4.01E-11	2.59E-10	5.50E-11	5.47E-11	1.68E-11	1.27E-10
1231	763773.6	4091327	4.68E-10	5.09E-10	1.80E-10	1.16E-09	7.30E-11	8.26E-11	2.85E-11	1.84E-10	3.90E-11	3.88E-11	1.19E-11	8.98E-11
1232	763802.4	4091320	4.79E-10	5.22E-10	1.85E-10	1.19E-09	7.49E-11	8.47E-11	2.92E-11	1.89E-10	4.00E-11	3.98E-11	1.22E-11	9.20E-11
1233	763831.3	4091314	4.90E-10	5.34E-10	1.89E-10	1.21E-09	7.66E-11	8.66E-11	2.98E-11	1.93E-10	4.09E-11	4.07E-11	1.25E-11	9.41E-11
1234	763860.1	4091307	5.00E-10	5.45E-10	1.93E-10	1.24E-09	7.82E-11	8.84E-11	3.05E-11	1.97E-10	4.18E-11	4.16E-11	1.28E-11	9.61E-11
1235	763888.9	4091300	5.10E-10	5.55E-10	1.96E-10	1.26E-09	7.96E-11	9.00E-11	3.10E-11	2.01E-10	4.26E-11	4.23E-11	1.30E-11	9.78E-11
1236	763744.5	4091336	4.56E-10	4.96E-10	1.76E-10	1.13E-09	7.12E-11	8.06E-11	2.78E-11	1.80E-10	3.81E-11	3.79E-11	1.16E-11	8.76E-11
1237	763708.3	4091138	3.49E-10	3.80E-10	1.34E-10	8.63E-10	5.45E-11	6.17E-11	2.12E-11	1.37E-10	2.91E-11	2.90E-11	8.89E-12	6.70E-11
1238	763736.5	4091131	3.57E-10	3.88E-10	1.37E-10	8.82E-10	5.57E-11	6.30E-11	2.17E-11	1.40E-10	2.98E-11	2.96E-11	9.09E-12	6.85E-11
1239	763764.7	4091125	3.64E-10	3.96E-10	1.40E-10	9.00E-10	5.68E-11	6.43E-11	2.21E-11	1.43E-10	3.04E-11	3.02E-11	9.27E-12	6.98E-11
1240	763792.9	4091118	3.70E-10	4.03E-10	1.43E-10	9.16E-10	5.78E-11	6.54E-11	2.25E-11	1.46E-10	3.09E-11	3.07E-11	9.43E-12	7.11E-11
1241	763821.1	4091112	3.76E-10	4.09E-10	1.45E-10	9.30E-10	5.87E-11	6.64E-11	2.29E-11	1.48E-10	3.14E-11	3.12E-11	9.58E-12	7.22E-11
1242	763849.3	4091105	3.81E-10	4.15E-10	1.47E-10	9.43E-10	5.95E-11	6.73E-11	2.32E-11	1.50E-10	3.18E-11	3.16E-11	9.71E-12	7.32E-11
1243	763877.5	4091098	3.86E-10	4.20E-10	1.49E-10	9.54E-10	6.03E-11	6.82E-11	2.35E-11	1.52E-10	3.22E-11	3.20E-11	9.83E-12	7.41E-11
1244	763679.5	4091147	3.42E-10	3.72E-10	1.32E-10	8.45E-10	5.34E-11	6.04E-11	2.08E-11	1.35E-10	2.85E-11	2.84E-11	8.71E-12	6.56E-11
1245	763643.9	4090949	2.75E-10	3.00E-10	1.06E-10	6.81E-10	4.30E-11	4.86E-11	1.67E-11	1.08E-10	2.30E-11	2.28E-11	7.01E-12	5.28E-11
1246	763673.3	4090942	2.81E-10	3.05E-10	1.08E-10	6.94E-10	4.38E-11	4.96E-11	1.71E-11	1.10E-10	2.34E-11	2.33E-11	7.15E-12	5.39E-11
1247	763702.7	4090935	2.86E-10	3.11E-10	1.10E-10	7.07E-10	4.46E-11	5.05E-11	1.74E-11	1.13E-10	2.39E-11	2.37E-11	7.28E-12	5.49E-11
1248	763732.1	4090928	2.91E-10	3.17E-10	1.12E-10	7.19E-10	4.54E-11	5.14E-11	1.77E-11	1.15E-10	2.43E-11	2.41E-11	7.41E-12	5.58E-11
1249	763761.5	4090921	2.95E-10	3.21E-10	1.14E-10	7.30E-10	4.61E-11	5.22E-11	1.80E-11	1.16E-10	2.47E-11	2.45E-11	7.52E-12	5.67E-11
1250	763790.9	4090914	2.99E-10	3.26E-10	1.15E-10	7.40E-10	4.67E-11	5.29E-11	1.82E-11	1.18E-10	2.50E-11	2.48E-11	7.62E-12	5.74E-11
1251	763820.3	4090907	3.03E-10	3.29E-10	1.17E-10	7.48E-10	4.73E-11	5.35E-11	1.84E-11	1.19E-10	2.53E-11	2.51E-11	7.71E-12	5.81E-11
1252	763849.8	4090900	3.06E-10	3.33E-10	1.18E-10	7.56E-10	4.77E-11	5.40E-11	1.86E-11	1.20E-10	2.55E-11	2.54E-11	7.79E-12	5.87E-11
1253	763614.5	4090957	2.70E-10	2.94E-10	1.04E-10	6.67E-10	4.21E-11	4.76E-11	1.64E-11	1.06E-10	2.25E-11	2.24E-11	6.87E-12	5.18E-11
1254	763578.6	4090760	2.25E-10	2.45E-10	8.66E-11	5.56E-10	3.51E-11	3.97E-11	1.37E-11	8.85E-11	1.88E-11	1.87E-11	5.73E-12	4.32E-11
1255	763607.5	4090753	2.29E-10	2.49E-10	8.82E-11	5.66E-10	3.58E-11	4.05E-11	1.39E-11	9.01E-11	1.91E-11	1.90E-11	5.83E-12	4.40E-11
1256	763636.3	4090746	2.33E-10	2.53E-10	8.97E-11	5.76E-10	3.64E-11	4.11E-11	1.42E-11	9.17E-11	1.94E-11	1.93E-11	5.93E-12	4.47E-11
1257	763665.2	4090739	2.37E-10	2.57E-10	9.11E-11	5.85E-10	3.69E-11	4.18E-11	1.44E-11	9.31E-11	1.98E-11	1.96E-11	6.03E-12	4.54E-11
1258	763694	4090733	2.40E-10	2.61E-10	9.24E-11	5.93E-10	3.75E-11	4.24E-11	1.46E-11	9.45E-11	2.00E-11	1.99E-11	6.11E-12	4.61E-11
1259	763722.8	4090726	2.43E-10	2.65E-10	9.36E-11	6.01E-10	3.80E-11	4.29E-11	1.48E-11	9.57E-11	2.03E-11	2.02E-11	6.19E-12	4.67E-11
1260	763751.7	4090719	2.46E-10	2.68E-10	9.47E-11	6.08E-10	3.84E-11	4.35E-11	1.50E-11	9.68E-11	2.05E-11	2.04E-11	6.27E-12	4.72E-11
1261	763780.5	4090712	2.48E-10	2.70E-10	9.56E-11	6.14E-10	3.88E-11	4.39E-11	1.51E-11	9.78E-11	2.07E-11	2.06E-11	6.33E-12	4.77E-11
1262	763809.4	4090705	2.51E-10	2.73E-10	9.65E-11	6.20E-10	3.91E-11	4.43E-11	1.53E-11	9.87E-11	2.09E-11	2.08E-11	6.39E-12	4.81E-11
1263	763549.5	4090768	2.21E-10	2.40E-10	8.51E-11	5.46E-10	3.45E-11	3.90E-11	1.34E-11	8.70E-11	1.84E-11	1.83E-11	5.63E-12	4.24E-11
1264	763514.1	4090571	1.89E-10	2.06E-10	7.28E-11	4.68E-10	2.95E-11	3.34E-11	1.15E-11	7.44E-11	1.58E-11	1.57E-11	4.82E-12	3.63E-11
1265	763543.8	4090564	1.92E-10	2.09E-10	7.40E-11	4.75E-10	3.00E-11	3.39E-11	1.17E-11	7.57E-11	1.60E-11	1.60E-11	4.90E-12	3.69E-11
1266	763573.5	4090556	1.96E-10	2.13E-10	7.53E-11	4.84E-10	3.05E-11	3.45E-11	1.19E-11	7.70E-11	1.63E-11	1.62E-11	4.98E-12	3.75E-11
1267	763603.2	4090549	1.98E-10	2.16E-10	7.64E-11	4.91E-10	3.10E-11	3.51E-11	1.21E-11	7.81E-11	1.66E-11	1.65E-11	5.06E-12	3.81E-11
1268	763632.9	4090542	2.01E-10	2.19E-10	7.75E-11	4.98E-10	3.14E-11	3.56E-11	1.22E-11	7.92E-11	1.68E-11	1.67E-11	5.13E-12	3.86E-11
1269	763662.7	4090535	2.04E-10	2.22E-10	7.85E-11	5.04E-10	3.18E-11	3.60E-11	1.24E-11	8.03E-11	1.70E-11	1.69E-11	5.20E-12	3.91E-11
1270	763692.4	4090528	2.07E-10	2.25E-10	7.95E-11	5.11E-10	3.23E-11	3.65E-11	1.26E-11	8.13E-11	1.72E-11	1.71E-11	5.26E-12	3.97E-11
1271	763722.1	4090521	2.09E-10	2.27E-10	8.03E-11	5.16E-10	3.26E-11	3.69E-11	1.27E-11	8.21E-11	1.74E-11	1.73E-11	5.32E-12	4.01E-11
1272	763751.8	4090514	2.11E-10	2.29E-10	8.11E-11	5.21E-10	3.29E-11	3.72E-11	1.28E-11	8.30E-11	1.76E-11	1.75E-11	5.37E-12	4.05E-11

	763781.5	4090507	2.12E-10	2.31E-10	8.17E-11	5.25E-10		3.75E-11				1.76E-11		
1274	763484.6	4090579	1.86E-10	2.02E-10	7.16E-11	4.60E-10	2.90E-11	3.28E-11		7.32E-11		1.54E-11	4.74E-12	
1275	763917.7	4091911	2.19E-09	2.38E-09	8.42E-10	5.41E-09	3.41E-10	3.86E-10		8.61E-10	1.83E-10	1.81E-10	5.57E-11	
1276	763883.9	4091817	1.45E-09	1.58E-09	5.59E-10	3.59E-09	2.27E-10	2.57E-10		5.72E-10	1.21E-10	1.21E-10	3.70E-11	
1277	763850.1	4091723	1.05E-09	1.14E-09	4.04E-10	2.60E-09	1.64E-10	1.86E-10		4.13E-10	8.77E-11	8.72E-11	2.68E-11	
1278	763816.3	4091629	8.04E-10	8.75E-10	3.10E-10	1.99E-09	1.26E-10	1.42E-10	4.89E-11	3.16E-10	6.71E-11	6.67E-11	2.05E-11	1.54E-10
1279	763782.5	4091534	6.41E-10	6.98E-10	2.47E-10	1.59E-09	1.00E-10	1.13E-10	3.90E-11	2.52E-10	5.35E-11	5.32E-11	1.63E-11	1.23E-10
1280	763714.9	4091346	4.45E-10	4.84E-10	1.71E-10	1.10E-09	6.95E-11	7.86E-11	2.71E-11	1.75E-10	3.71E-11	3.69E-11	1.13E-11	8.54E-11
1281	763647.3	4091158	3.34E-10	3.63E-10	1.28E-10	8.25E-10	5.21E-11	5.90E-11	2.03E-11	1.31E-10	2.79E-11	2.77E-11	8.50E-12	6.41E-11
1282	763579.7	4090970	2.64E-10	2.87E-10	1.02E-10	6.52E-10	4.12E-11	4.66E-11	1.60E-11	1.04E-10	2.20E-11	2.19E-11	6.72E-12	5.06E-11
1283	763512.1	4090782	2.16E-10	2.35E-10	8.32E-11	5.35E-10	3.38E-11	3.82E-11	1.32E-11	8.51E-11	1.81E-11	1.79E-11	5.51E-12	4.15E-11
1284	763462.4	4090587	1.84E-10	2.00E-10	7.08E-11	4.55E-10	2.87E-11	3.25E-11	1.12E-11	7.24E-11	1.53E-11	1.53E-11	4.68E-12	3.53E-11
1285	763942.8	4092009	3.72E-09	4.05E-09	1.43E-09	9.20E-09	5.81E-10	6.57E-10	2.26E-10	1.46E-09	3.11E-10	3.09E-10	9.48E-11	7.14E-10
1286	763919.5	4092019	3.52E-09	3.83E-09	1.36E-09	8.71E-09	5.50E-10	6.22E-10	2.14E-10	1.39E-09	2.94E-10	2.92E-10	8.97E-11	6.76E-10
1287	763923.8	4091962	2.75E-09	2.99E-09	1.06E-09	6.80E-09	4.29E-10	4.86E-10	1.67E-10	1.08E-09	2.30E-10	2.28E-10	7.00E-11	5.28E-10
1288	763898.3	4091974	2.61E-09	2.84E-09	1.00E-09	6.45E-09	4.07E-10	4.61E-10	1.59E-10	1.03E-09	2.18E-10	2.16E-10	6.64E-11	5.01E-10
1289	763891.8	4091922	2.08E-09	2.26E-09	8.01E-10	5.14E-09	3.25E-10	3.67E-10	1.27E-10	8.19E-10	1.74E-10	1.73E-10	5.30E-11	3.99E-10
1290	763860.9	4091826	1.40E-09	1.52E-09	5.39E-10	3.46E-09	2.19E-10	2.47E-10	8.52E-11	5.51E-10	1.17E-10	1.16E-10	3.57E-11	2.69E-10
1291	763834.7	4091838	1.34E-09	1.46E-09	5.17E-10	3.32E-09	2.10E-10	2.37E-10	8.17E-11	5.29E-10	1.12E-10	1.11E-10	3.42E-11	2.58E-10
1292	763821.3	4091735	1.01E-09	1.10E-09	3.89E-10	2.50E-09	1.58E-10	1.79E-10	6.15E-11	3.98E-10	8.44E-11	8.39E-11	2.58E-11	1.94E-10
1293	763792.3	4091747	9.70E-10	1.06E-09	3.74E-10	2.40E-09	1.52E-10	1.71E-10	5.90E-11	3.82E-10	8.10E-11	8.05E-11	2.47E-11	1.86E-10
1294	763777.5	4091645	7.69E-10	8.37E-10	2.96E-10	1.90E-09	1.20E-10	1.36E-10	4.68E-11	3.03E-10	6.42E-11	6.38E-11	1.96E-11	1.48E-10
1295	763749.9	4091657	7.42E-10	8.08E-10	2.86E-10	1.84E-09	1.16E-10	1.31E-10	4.52E-11	2.92E-10	6.20E-11	6.16E-11	1.89E-11	1.43E-10
1296	763734.2	4091554	6.10E-10	6.64E-10	2.35E-10	1.51E-09	9.53E-11	1.08E-10	3.71E-11	2.40E-10	5.09E-11	5.07E-11	1.55E-11	1.17E-10
1297	763758.4	4091544	6.26E-10	6.81E-10	2.41E-10	1.55E-09	9.78E-11	1.11E-10	3.81E-11	2.46E-10	5.23E-11	5.20E-11	1.60E-11	1.20E-10
1298	763707.5	4091566	5.92E-10	6.44E-10	2.28E-10	1.46E-09	9.25E-11	1.05E-10	3.60E-11	2.33E-10	4.94E-11	4.92E-11	1.51E-11	1.14E-10
1299	763650.3	4091373	4.21E-10	4.58E-10	1.62E-10	1.04E-09	6.58E-11	7.44E-11	2.56E-11	1.66E-10	3.52E-11	3.50E-11	1.07E-11	8.09E-11
1300	763676.1	4091362	4.31E-10	4.69E-10	1.66E-10	1.07E-09	6.73E-11	7.61E-11	2.62E-11	1.70E-10	3.60E-11	3.58E-11	1.10E-11	8.27E-11
1301	763622.7	4091385	4.11E-10	4.47E-10	1.58E-10	1.02E-09	6.41E-11	7.26E-11	2.50E-11	1.62E-10	3.43E-11	3.41E-11	1.05E-11	7.89E-11
1302	763566.1	4091192	3.15E-10	3.42E-10	1.21E-10	7.78E-10	4.91E-11	5.56E-11	1.91E-11	1.24E-10	2.63E-11	2.61E-11	8.02E-12	6.04E-11
1303	763593.1	4091180	3.21E-10	3.49E-10	1.24E-10	7.94E-10	5.01E-11	5.67E-11	1.95E-11	1.26E-10	2.68E-11	2.66E-11	8.18E-12	6.16E-11
1304	763620.2	4091169	3.27E-10	3.56E-10	1.26E-10	8.10E-10	5.11E-11	5.78E-11			2.73E-11	2.72E-11	8.34E-12	
1305	763537.9	4091204	3.08E-10	3.36E-10	1.19E-10	7.63E-10	4.82E-11	5.45E-11	1.88E-11	1.21E-10	2.57E-11	2.56E-11	7.86E-12	5.92E-11
1306	763481.7	4091010	2.48E-10	2.70E-10	9.55E-11	6.13E-10	3.87E-11	4.38E-11	1.51E-11		2.07E-11	2.06E-11	6.32E-12	4.76E-11
	763509.7			2.75E-10	9.71E-11	6.24E-10	3.94E-11	4.46E-11				2.09E-11		
	763537.7		2.57E-10	2.79E-10	9.88E-11	6.35E-10		4.53E-11				2.13E-11		
1309	763453		2.44E-10	2.66E-10	9.40E-11	6.04E-10		4.31E-11				2.03E-11		
	763397.2		2.03E-10	2.21E-10	7.82E-11	5.02E-10		3.59E-11				1.69E-11		
1311	763426	4090817	2.06E-10	2.24E-10	7.93E-11	5.10E-10		3.64E-11				1.71E-11		
	763454.7		2.09E-10	2.28E-10	8.06E-11	5.18E-10		3.70E-11				1.74E-11		
	763483.4	4090793		2.31E-10	8.18E-11	5.26E-10		3.75E-11				1.76E-11		
	763368.2			2.18E-10	7.72E-11	4.96E-10		3.54E-11				1.66E-11		
	763300.2	4090648		1.86E-10	6.60E-11	4.24E-10		3.03E-11				1.42E-11		
1316	763342		1.71E-10 1.73E-10	1.89E-10	6.68E-11	4.29E-10		3.06E-11				1.44E-11		
1310	,03342	+020030	1.732-10	1.05L-10	0.00L-11	7.23L 1U	Z./ 1L-11	J.UUL-11	1.03L-11	J.UJL 11	1.77L-11	±.→→∟ <u>+</u> ±	-TTLL-1L	J.JJL-11

1317	763371.3	4090623	1.76E-10	1.91E-10	6.77E-11	4.35E-10	2.74E-11	3.10E-11				1.46E-11	4.48E-12	3.37E-11
1318	763400.6	4090611	1.78E-10	1.94E-10	6.86E-11	4.40E-10	2.78E-11	3.15E-11	1.08E-11		1.49E-11	1.48E-11	4.54E-12	
1319	763429.9	4090599	1.81E-10	1.97E-10	6.96E-11	4.47E-10	2.82E-11	3.19E-11	1.10E-11	7.11E-11	1.51E-11	1.50E-11	4.60E-12	
1320	763283.4	4090661	1.69E-10	1.84E-10	6.53E-11	4.19E-10	2.65E-11	2.99E-11	1.03E-11	6.67E-11	1.41E-11	1.41E-11	4.32E-12	3.25E-11
1321	763893.5	4092034	3.36E-09	3.66E-09	1.29E-09	8.31E-09	5.25E-10	5.94E-10	2.04E-10	1.32E-09	2.81E-10	2.79E-10	8.56E-11	6.45E-10
1322	763876.6	4091986	2.52E-09	2.74E-09	9.69E-10	6.22E-09	3.93E-10	4.44E-10	1.53E-10	9.90E-10	2.10E-10	2.09E-10	6.41E-11	4.83E-10
1323	763852	4092001	2.43E-09	2.64E-09	9.34E-10	6.00E-09	3.79E-10	4.29E-10	1.48E-10	9.55E-10	2.03E-10	2.01E-10	6.18E-11	4.66E-10
1324	763851	4091943	1.94E-09	2.12E-09	7.48E-10	4.81E-09	3.03E-10	3.43E-10	1.18E-10	7.65E-10	1.62E-10	1.61E-10	4.95E-11	3.73E-10
1325	763824.2	4091960	1.87E-09	2.03E-09	7.20E-10	4.62E-09	2.92E-10	3.30E-10	1.14E-10	7.36E-10	1.56E-10	1.55E-10	4.76E-11	3.59E-10
1326	763795.6	4091860	1.27E-09	1.38E-09	4.88E-10	3.14E-09	1.98E-10	2.24E-10	7.71E-11	4.99E-10	1.06E-10	1.05E-10	3.23E-11	2.43E-10
1327	763768.8	4091876	1.22E-09	1.33E-09	4.70E-10	3.02E-09	1.90E-10	2.15E-10	7.42E-11	4.80E-10	1.02E-10	1.01E-10	3.11E-11	2.34E-10
1328	763740.1	4091777	9.03E-10	9.83E-10	3.48E-10	2.23E-09	1.41E-10	1.60E-10	5.49E-11	3.55E-10	7.54E-11	7.50E-11	2.30E-11	1.73E-10
1329	763766.2	4091762	9.38E-10	1.02E-09	3.61E-10	2.32E-09	1.46E-10	1.66E-10	5.70E-11	3.69E-10	7.83E-11	7.78E-11	2.39E-11	1.80E-10
1330	763713.3	4091793	8.69E-10	9.46E-10	3.35E-10	2.15E-09	1.36E-10	1.54E-10	5.29E-11	3.42E-10	7.26E-11	7.21E-11	2.21E-11	1.67E-10
1331	763684.7	4091694	6.83E-10	7.43E-10	2.63E-10	1.69E-09	1.07E-10	1.21E-10	4.16E-11	2.69E-10	5.70E-11	5.67E-11	1.74E-11	1.31E-10
1332	763710.8	4091679	7.08E-10	7.70E-10	2.73E-10	1.75E-09	1.11E-10	1.25E-10	4.31E-11	2.79E-10	5.91E-11	5.88E-11	1.80E-11	1.36E-10
1333	763657.9	4091710	6.58E-10	7.16E-10	2.53E-10	1.63E-09	1.03E-10	1.16E-10	4.00E-11	2.59E-10	5.50E-11	5.46E-11	1.68E-11	1.26E-10
1334	763629.2	4091610	5.40E-10	5.88E-10	2.08E-10	1.34E-09	8.44E-11	9.55E-11	3.29E-11	2.13E-10	4.51E-11	4.49E-11	1.38E-11	1.04E-10
1335	763655.3	4091596	5.59E-10	6.08E-10	2.15E-10	1.38E-09	8.73E-11	9.87E-11	3.40E-11	2.20E-10	4.67E-11	4.64E-11	1.42E-11	1.07E-10
1336	763681.4	4091581	5.76E-10	6.27E-10	2.22E-10	1.43E-09	9.00E-11	1.02E-10	3.51E-11	2.27E-10	4.81E-11	4.78E-11	1.47E-11	1.11E-10
1337	763602.4	4091627	5.22E-10	5.68E-10	2.01E-10	1.29E-09	8.15E-11	9.22E-11	3.18E-11	2.05E-10	4.36E-11	4.33E-11	1.33E-11	1.00E-10
1338	763518.3	4091444	3.73E-10	4.06E-10	1.43E-10	9.22E-10	5.82E-11	6.58E-11	2.27E-11	1.47E-10	3.11E-11	3.09E-11	9.49E-12	7.15E-11
1339	763544.4	4091429	3.83E-10	4.17E-10	1.48E-10	9.47E-10	5.98E-11	6.77E-11	2.33E-11	1.51E-10	3.20E-11	3.18E-11	9.76E-12	7.35E-11
1340	763570.5	4091414	3.93E-10	4.28E-10	1.51E-10	9.72E-10	6.14E-11	6.94E-11	2.39E-11	1.55E-10	3.28E-11	3.26E-11	1.00E-11	7.54E-11
1341	763596.6	4091400	4.02E-10	4.38E-10	1.55E-10	9.94E-10	6.28E-11	7.10E-11	2.45E-11	1.58E-10	3.36E-11	3.34E-11	1.02E-11	7.72E-11
1342	763491.5	4091460	3.62E-10	3.94E-10	1.39E-10	8.94E-10	5.65E-11	6.39E-11	2.20E-11	1.42E-10	3.02E-11	3.00E-11	9.21E-12	6.94E-11
1343	763408.7	4091277	2.81E-10	3.05E-10	1.08E-10	6.94E-10	4.38E-11	4.96E-11	1.71E-11	1.10E-10	2.34E-11	2.33E-11	7.15E-12	5.39E-11
1344	763437.4	4091261	2.88E-10	3.13E-10	1.11E-10	7.12E-10	4.49E-11	5.08E-11	1.75E-11	1.13E-10	2.40E-11	2.39E-11	7.33E-12	5.52E-11
1345	763466.1	4091244	2.94E-10	3.20E-10	1.13E-10	7.28E-10	4.60E-11	5.20E-11	1.79E-11	1.16E-10	2.46E-11	2.44E-11	7.50E-12	5.65E-11
1346	763494.8	4091228	3.00E-10	3.27E-10	1.16E-10	7.42E-10	4.69E-11	5.30E-11	1.83E-11	1.18E-10	2.50E-11	2.49E-11	7.64E-12	5.76E-11
1347	763380.6	4091294	2.73E-10	2.98E-10	1.05E-10	6.76E-10	4.27E-11	4.83E-11	1.66E-11	1.08E-10	2.28E-11	2.27E-11	6.97E-12	5.25E-11
1348	763297.6	4091110	2.24E-10	2.44E-10	8.62E-11	5.53E-10	3.49E-11	3.95E-11	1.36E-11	8.81E-11	1.87E-11	1.86E-11	5.70E-12	4.30E-11
1349	763325.8	4091094	2.28E-10	2.48E-10	8.79E-11	5.64E-10	3.56E-11	4.03E-11	1.39E-11	8.98E-11	1.91E-11	1.89E-11	5.81E-12	4.38E-11
1350	763354.1	4091079	2.32E-10	2.53E-10	8.95E-11	5.75E-10	3.63E-11	4.11E-11	1.41E-11	9.15E-11	1.94E-11	1.93E-11	5.92E-12	4.46E-11
1351	763382.4	4091063	2.36E-10	2.57E-10	9.08E-11	5.83E-10	3.68E-11	4.17E-11	1.43E-11	9.28E-11	1.97E-11	1.96E-11	6.01E-12	4.53E-11
1352	763410.6	4091047	2.39E-10	2.60E-10	9.21E-11	5.92E-10	3.74E-11	4.23E-11	1.46E-11	9.42E-11	2.00E-11	1.99E-11	6.09E-12	4.59E-11
1353	763269.7	4091128	2.19E-10	2.38E-10	8.42E-11	5.41E-10	3.41E-11	3.86E-11	1.33E-11	8.60E-11	1.82E-11	1.81E-11	5.57E-12	4.20E-11
	763186.5	4090944	1.85E-10	2.02E-10	7.14E-11	4.59E-10		3.28E-11				1.54E-11		
1355	763214.5	4090928	1.89E-10	2.05E-10	7.27E-11	4.67E-10		3.34E-11			1.58E-11	1.57E-11	4.81E-12	3.62E-11
	763242.4	4090913		2.08E-10	7.37E-11	4.73E-10		3.38E-11			1.60E-11	1.59E-11	4.88E-12	3.67E-11
	763270.4	4090897		2.11E-10	7.46E-11	4.79E-10		3.42E-11				1.61E-11		
	763298.3	4090881		2.13E-10	7.54E-11	4.84E-10		3.46E-11				1.63E-11		
	763326.3	4090865		2.15E-10	7.61E-11	4.89E-10		3.49E-11				1.64E-11		
	763158.8	4090961		1.98E-10	7.00E-11	4.49E-10		3.21E-11				1.51E-11		
_555							=== = =	-	-: 	·	-			

	763075.5		1.58E-10	1.72E-10	6.09E-11	3.91E-10		2.80E-11		6.23E-11		1.31E-11		
1362	763103.2	4090762	1.61E-10	1.75E-10	6.18E-11	3.97E-10	2.51E-11	2.84E-11	_	6.32E-11		1.33E-11	4.09E-12	
1363	763130.9	4090746	1.63E-10	1.77E-10	6.26E-11	4.02E-10	2.54E-11	2.87E-11		6.40E-11		1.35E-11	4.14E-12	
1364	763158.6	4090731	1.64E-10	1.79E-10	6.32E-11	4.06E-10	2.56E-11	2.90E-11		6.47E-11	1.37E-11	1.36E-11	4.18E-12	
1365	763186.4	4090715	1.65E-10	1.80E-10	6.36E-11	4.09E-10	2.58E-11	2.92E-11		6.51E-11	1.38E-11	1.37E-11	4.21E-12	
1366	763214.1	4090700	1.67E-10	1.81E-10	6.41E-11	4.12E-10	2.60E-11	2.94E-11	1.01E-11	6.56E-11	1.39E-11	1.38E-11	4.24E-12	3.20E-11
1367	763241.8	4090684	1.68E-10	1.82E-10	6.45E-11	4.15E-10	2.62E-11	2.96E-11	1.02E-11	6.60E-11	1.40E-11	1.39E-11	4.27E-12	3.22E-11
1368	763047.9	4090795	1.55E-10	1.69E-10	5.98E-11	3.84E-10	2.43E-11	2.74E-11	9.45E-12	6.12E-11	1.30E-11	1.29E-11	3.96E-12	2.98E-11
1369	763872.1	4092048	3.27E-09	3.56E-09	1.26E-09	8.10E-09	5.11E-10	5.78E-10	1.99E-10	1.29E-09	2.73E-10	2.72E-10	8.34E-11	6.28E-10
1370	763746.8	4091892	1.19E-09	1.29E-09	4.57E-10	2.94E-09	1.85E-10	2.10E-10	7.22E-11	4.67E-10	9.91E-11	9.86E-11	3.03E-11	2.28E-10
1371	763694.5	4091806	8.48E-10	9.23E-10	3.27E-10	2.10E-09	1.32E-10	1.50E-10	5.16E-11	3.34E-10	7.08E-11	7.04E-11	2.16E-11	1.63E-10
1372	763635.2	4091726	6.39E-10	6.96E-10	2.46E-10	1.58E-09	9.99E-11	1.13E-10	3.89E-11	2.52E-10	5.34E-11	5.31E-11	1.63E-11	1.23E-10
1373	763582.6	4091641	5.09E-10	5.54E-10	1.96E-10	1.26E-09	7.95E-11	8.99E-11	3.10E-11	2.00E-10	4.25E-11	4.23E-11	1.30E-11	9.77E-11
1374	763464.3	4091479	3.51E-10	3.82E-10	1.35E-10	8.67E-10	5.48E-11	6.19E-11	2.13E-11	1.38E-10	2.93E-11	2.91E-11	8.93E-12	6.73E-11
1375	763346	4091318	2.64E-10	2.87E-10	1.02E-10	6.52E-10	4.12E-11	4.66E-11	1.60E-11	1.04E-10	2.20E-11	2.19E-11	6.72E-12	5.06E-11
1376	763226.8	4091158	2.10E-10	2.28E-10	8.07E-11	5.19E-10	3.27E-11	3.70E-11	1.28E-11	8.25E-11	1.75E-11	1.74E-11	5.34E-12	4.03E-11
1377	763251.3	4091140	2.15E-10	2.34E-10	8.27E-11	5.31E-10	3.36E-11	3.80E-11	1.31E-11	8.46E-11	1.79E-11	1.78E-11	5.47E-12	4.13E-11
1378	763108.5	4090996	1.74E-10	1.89E-10	6.69E-11	4.29E-10	2.71E-11	3.07E-11	1.06E-11	6.84E-11	1.45E-11	1.44E-11	4.42E-12	3.33E-11
1379	763127.3	4090983	1.77E-10	1.93E-10	6.82E-11	4.38E-10	2.76E-11	3.13E-11	1.08E-11	6.97E-11	1.48E-11	1.47E-11	4.51E-12	3.40E-11
1380	762990.1	4090835	1.48E-10	1.61E-10	5.70E-11	3.66E-10	2.31E-11	2.62E-11	9.01E-12	5.83E-11	1.24E-11	1.23E-11	3.77E-12	2.84E-11
1381	763009.4	4090822	1.51E-10	1.64E-10	5.80E-11	3.73E-10	2.35E-11	2.66E-11	9.17E-12	5.93E-11	1.26E-11	1.25E-11	3.84E-12	2.89E-11
1382	763028.6	4090808	1.53E-10	1.67E-10	5.90E-11	3.79E-10	2.39E-11	2.71E-11	9.32E-12	6.03E-11	1.28E-11	1.27E-11	3.90E-12	2.94E-11
1383	763902.6	4092152	7.72E-09	8.40E-09	2.97E-09	1.91E-08	1.21E-09	1.36E-09	4.69E-10	3.04E-09	6.44E-10	6.41E-10	1.97E-10	1.48E-09
1384	763823.2	4092023	2.36E-09	2.57E-09	9.10E-10	5.84E-09	3.69E-10	4.17E-10	1.44E-10	9.30E-10	1.97E-10	1.96E-10	6.02E-11	4.54E-10
1385	763791.1	4091984	1.81E-09	1.97E-09	6.96E-10	4.47E-09	2.82E-10	3.19E-10	1.10E-10	7.12E-10	1.51E-10	1.50E-10	4.61E-11	3.47E-10
1386	763726.9	4091908	1.16E-09	1.27E-09	4.48E-10	2.88E-09	1.82E-10	2.06E-10	7.09E-11	4.58E-10	9.72E-11	9.67E-11	2.97E-11	2.24E-10
1387	763675.2	4091821	8.30E-10	9.03E-10	3.20E-10	2.05E-09	1.30E-10	1.47E-10	5.05E-11	3.27E-10	6.93E-11	6.89E-11	2.11E-11	1.59E-10
1388	763645.8	4091845	8.08E-10	8.80E-10	3.11E-10	2.00E-09	1.26E-10	1.43E-10	4.92E-11	3.18E-10	6.75E-11	6.71E-11	2.06E-11	1.55E-10
1389	763613.5	4091743	6.23E-10	6.79E-10	2.40E-10	1.54E-09	9.74E-11	1.10E-10	3.79E-11	2.45E-10	5.21E-11	5.18E-11	1.59E-11	1.20E-10
1390	763581.6	4091769	6.05E-10	6.59E-10	2.33E-10	1.50E-09	9.46E-11	1.07E-10	3.68E-11	2.38E-10	5.06E-11	5.03E-11	1.54E-11	1.16E-10
1391	763551.7	4091664	4.91E-10	5.35E-10	1.89E-10	1.21E-09	7.67E-11	8.68E-11	2.99E-11	1.93E-10	4.10E-11	4.08E-11	1.25E-11	9.43E-11
1392	763517.4	4091692	4.75E-10	5.17E-10	1.83E-10	1.18E-09	7.42E-11	8.40E-11	2.89E-11	1.87E-10	3.97E-11	3.94E-11	1.21E-11	9.12E-11
1393	763420.8	4091513	3.34E-10	3.63E-10	1.28E-10	8.25E-10	5.21E-11	5.90E-11	2.03E-11	1.31E-10	2.79E-11	2.77E-11	8.50E-12	6.41E-11
1394	763389	4091539	3.23E-10	3.51E-10	1.24E-10	7.98E-10	5.04E-11	5.70E-11	1.96E-11	1.27E-10	2.69E-11	2.68E-11	8.22E-12	6.20E-11
	763291.2			2.69E-10	9.53E-11	6.12E-10		4.37E-11				2.05E-11		
	763318.6			2.78E-10	9.84E-11	6.32E-10		4.52E-11				2.12E-11		
	763260.6		2.39E-10	2.60E-10	9.21E-11	5.92E-10		4.23E-11				1.99E-11		
	763165.3		1.95E-10	2.13E-10	7.52E-11	4.83E-10		3.45E-11				1.62E-11		
	763197.6	4091180		2.21E-10	7.82E-11	5.02E-10		3.59E-11				1.69E-11		
	763137.0		1.87E-10	2.04E-10	7.22E-11	4.64E-10		3.31E-11				1.56E-11		
	763035.6		1.59E-10	1.73E-10	6.13E-11	3.94E-10		2.81E-11				1.32E-11		
	763065.5		1.66E-10	1.80E-10	6.37E-11	4.09E-10		2.92E-11				1.37E-11		
	763003.8		1.53E-10	1.66E-10	5.88E-11	3.78E-10		2.70E-11				1.27E-11		
	762909.2			1.46E-10	5.17E-11	3.32E-10		2.70L-11 2.37E-11				1.11E-11		
1404	, 02303.2	+020020	1.J-L-10	1. 4 0L-10	J.1/L-11	J.JZL 10	Z.10L-11	∠.J/ L-11	0.17L-1Z	J.20L 11	1.12L-11	T'TTF_TT	J.72L-12	2.50L-11

1405	762943	4090871	1.40E-10	1.53E-10	5.40E-11	3.47E-10	2.19E-11		8.53E-12		1.17E-11	1.16E-11		
1406	762875.4	4090925	1.28E-10	1.40E-10	4.94E-11	3.17E-10	2.00E-11	2.26E-11		5.05E-11	1.07E-11	1.06E-11	3.27E-12	
1407	763881.2	4092175	8.05E-09	8.76E-09	3.10E-09	1.99E-08	1.26E-09	1.42E-09	4.90E-10	3.17E-09	6.72E-10	6.68E-10	2.05E-10	1.55E-09
1408	763861.7	4092122	4.76E-09	5.18E-09	1.83E-09	1.18E-08	7.44E-10	8.41E-10	2.90E-10	1.87E-09	3.98E-10	3.95E-10	1.21E-10	9.14E-10
1409	763843.2	4092142	4.90E-09	5.34E-09	1.89E-09	1.21E-08	7.66E-10	8.66E-10	2.98E-10	1.93E-09	4.09E-10	4.07E-10	1.25E-10	9.41E-10
1410	763795.7	4092121	3.38E-09	3.67E-09	1.30E-09	8.35E-09	5.27E-10	5.96E-10	2.05E-10	1.33E-09	2.82E-10	2.80E-10	8.60E-11	6.48E-10
1411	763747.8	4092025	1.80E-09	1.96E-09	6.92E-10	4.44E-09	2.81E-10	3.17E-10	1.09E-10	7.07E-10	1.50E-10	1.49E-10	4.58E-11	3.45E-10
1412	763765.4	4092007	1.79E-09	1.95E-09	6.90E-10	4.43E-09	2.80E-10	3.16E-10	1.09E-10	7.05E-10	1.50E-10	1.49E-10	4.56E-11	3.44E-10
1413	763729.4	4092045	1.82E-09	1.98E-09	7.02E-10	4.51E-09	2.85E-10	3.22E-10	1.11E-10	7.17E-10	1.52E-10	1.51E-10	4.64E-11	3.50E-10
1414	763672.4	4091959	1.15E-09	1.25E-09	4.42E-10	2.84E-09	1.79E-10	2.03E-10	6.98E-11	4.52E-10	9.59E-11	9.53E-11	2.93E-11	2.20E-10
1415	763691.2	4091940	1.15E-09	1.25E-09	4.41E-10	2.84E-09	1.79E-10	2.03E-10	6.98E-11	4.51E-10	9.57E-11	9.52E-11	2.92E-11	2.20E-10
1416	763653.4	4091979	1.16E-09	1.26E-09	4.47E-10	2.87E-09	1.81E-10	2.05E-10	7.07E-11	4.57E-10	9.70E-11	9.64E-11	2.96E-11	2.23E-10
1417	763596.9	4091894	8.04E-10	8.76E-10	3.10E-10	1.99E-09	1.26E-10	1.42E-10	4.89E-11	3.17E-10	6.72E-11	6.68E-11	2.05E-11	1.54E-10
1418	763616.4	4091874	8.03E-10	8.74E-10	3.09E-10	1.99E-09	1.25E-10	1.42E-10	4.89E-11	3.16E-10	6.71E-11	6.67E-11	2.05E-11	1.54E-10
1419	763577.5	4091914	8.13E-10	8.85E-10	3.13E-10	2.01E-09	1.27E-10	1.44E-10	4.95E-11	3.20E-10	6.79E-11	6.75E-11	2.07E-11	1.56E-10
1420	763521.2	4091828	6.00E-10	6.53E-10	2.31E-10	1.48E-09	9.37E-11	1.06E-10	3.65E-11	2.36E-10	5.01E-11	4.98E-11	1.53E-11	1.15E-10
1421	763541.4	4091808	5.99E-10	6.52E-10	2.31E-10	1.48E-09	9.35E-11	1.06E-10	3.64E-11	2.36E-10	5.00E-11	4.97E-11	1.53E-11	1.15E-10
1422	763561.5	4091788	6.00E-10	6.54E-10	2.31E-10	1.49E-09	9.38E-11	1.06E-10	3.65E-11	2.36E-10	5.01E-11	4.99E-11	1.53E-11	1.15E-10
1423	763501.6	4091849	6.07E-10	6.61E-10	2.34E-10	1.50E-09	9.48E-11	1.07E-10	3.69E-11	2.39E-10	5.07E-11	5.04E-11	1.55E-11	1.17E-10
1424	763445.5	4091763	4.69E-10	5.10E-10	1.80E-10	1.16E-09	7.32E-11	8.28E-11	2.85E-11	1.85E-10	3.91E-11	3.89E-11	1.19E-11	9.00E-11
1425	763466.1	4091743	4.67E-10	5.09E-10	1.80E-10	1.16E-09	7.30E-11	8.26E-11	2.84E-11	1.84E-10	3.90E-11	3.88E-11	1.19E-11	8.97E-11
1426	763486.6	4091722	4.68E-10	5.10E-10	1.80E-10	1.16E-09	7.32E-11	8.28E-11	2.85E-11	1.84E-10	3.91E-11	3.89E-11	1.19E-11	8.99E-11
1427	763425.6	4091784	4.74E-10	5.16E-10	1.83E-10	1.17E-09	7.40E-11	8.38E-11	2.88E-11	1.87E-10	3.96E-11	3.94E-11	1.21E-11	9.10E-11
1428	763293	4091633	3.14E-10	3.42E-10	1.21E-10	7.76E-10	4.90E-11	5.54E-11	1.91E-11	1.24E-10	2.62E-11	2.61E-11	8.00E-12	6.03E-11
1429	763312.2	4091614	3.13E-10	3.40E-10	1.20E-10	7.73E-10	4.88E-11	5.52E-11	1.90E-11	1.23E-10	2.61E-11	2.59E-11	7.96E-12	6.00E-11
1430	763331.4	4091595	3.13E-10	3.40E-10	1.20E-10	7.74E-10	4.88E-11	5.53E-11	1.90E-11	1.23E-10	2.61E-11	2.60E-11	7.97E-12	6.01E-11
1431	763350.6	4091576	3.15E-10	3.42E-10	1.21E-10	7.78E-10	4.91E-11	5.56E-11	1.91E-11	1.24E-10	2.63E-11	2.61E-11	8.02E-12	6.04E-11
1432	763369.8	4091558	3.18E-10	3.46E-10	1.22E-10	7.87E-10	4.97E-11	5.62E-11	1.93E-11	1.25E-10	2.66E-11	2.64E-11	8.10E-12	6.11E-11
1433	763273.8	4091654	3.18E-10	3.46E-10	1.23E-10	7.87E-10	4.97E-11	5.62E-11	1.94E-11	1.25E-10	2.66E-11	2.64E-11	8.11E-12	6.11E-11
1434	763141.5	4091503	2.29E-10	2.49E-10	8.82E-11	5.66E-10	3.58E-11	4.05E-11	1.39E-11	9.01E-11	1.91E-11	1.90E-11	5.83E-12	4.40E-11
1435	763161.3	4091483	2.27E-10	2.47E-10	8.75E-11	5.62E-10	3.55E-11	4.01E-11	1.38E-11	8.94E-11	1.90E-11	1.89E-11	5.79E-12	4.36E-11
1436	763181.2	4091464	2.27E-10	2.47E-10	8.75E-11	5.62E-10	3.55E-11	4.01E-11	1.38E-11	8.94E-11	1.90E-11	1.89E-11	5.79E-12	4.36E-11
1437	763201	4091444	2.28E-10	2.49E-10	8.80E-11	5.65E-10	3.57E-11	4.04E-11	1.39E-11	8.99E-11	1.91E-11	1.90E-11	5.82E-12	4.39E-11
1438	763220.9	4091424	2.31E-10	2.51E-10	8.89E-11	5.71E-10	3.60E-11	4.08E-11	1.40E-11	9.09E-11	1.93E-11	1.92E-11	5.88E-12	4.43E-11
1439	763240.7	4091405		2.55E-10	9.03E-11	5.80E-10	3.66E-11	4.14E-11	1.43E-11	9.23E-11	1.96E-11	1.95E-11	5.97E-12	4.50E-11
	763121.9	4091524		2.53E-10	8.96E-11	5.75E-10		4.11E-11				1.93E-11		
	762989.9	4091373		1.93E-10	6.82E-11	4.38E-10		3.13E-11				1.47E-11		
	763010.2			1.91E-10	6.75E-11	4.33E-10		3.10E-11				1.45E-11		
	763030.5	4091332		1.90E-10	6.73E-11	4.32E-10		3.09E-11				1.45E-11		
	763050.8	4091312		1.91E-10	6.75E-11	4.33E-10		3.10E-11				1.45E-11		
	763071.2			1.93E-10	6.82E-11	4.38E-10		3.13E-11				1.47E-11		
	763091.5	4091272		1.96E-10	6.92E-11	4.44E-10		3.17E-11				1.49E-11		
	763111.8	4091252		1.99E-10	7.06E-11	4.53E-10		3.24E-11				1.52E-11		
	762970.1			1.96E-10	6.94E-11	4.46E-10		3.18E-11				1.50E-11		
1770	, 023, 0.1	1031334	1.001 10	1.502 10	J.J-12 11		2.016 11	J.10L 11	1.100 11	,.UJL 11	1.501 11	1.500 11	1.55L 1Z	JUL 11

1449	762838.2	4091242	1.43E-10	1.55E-10	5.50E-11	3.53E-10		2.52E-11				1.19E-11		
1450	762858.9	4091222	1.41E-10	1.53E-10	5.43E-11	3.49E-10	2.20E-11	2.49E-11		5.55E-11	_	1.17E-11	3.59E-12	
1451	762879.6	4091201	1.40E-10	1.53E-10	5.40E-11	3.47E-10	2.19E-11	2.48E-11		5.52E-11	1.17E-11	1.16E-11	3.57E-12	
1452	762900.3	4091181	1.40E-10	1.53E-10	5.40E-11	3.47E-10	2.19E-11	2.48E-11	8.53E-12		1.17E-11	1.16E-11	3.57E-12	
1453	762921	4091160	1.41E-10	1.54E-10	5.44E-11	3.49E-10	2.21E-11	2.50E-11			1.18E-11	1.17E-11	3.60E-12	
1454	762941.7	4091140	1.43E-10	1.56E-10	5.51E-11	3.54E-10	2.23E-11	2.53E-11	8.71E-12		1.19E-11	1.19E-11	3.65E-12	
1455	762962.4	4091119	1.46E-10	1.59E-10	5.61E-11	3.60E-10	2.28E-11		8.86E-12			1.21E-11	3.71E-12	
1456	762983.1	4091099	1.49E-10	1.62E-10	5.74E-11	3.69E-10	2.33E-11	2.63E-11		5.87E-11	1.24E-11	1.24E-11	3.80E-12	
1457	762818.2	4091264	1.46E-10	1.59E-10	5.61E-11	3.60E-10	2.28E-11	2.57E-11	8.86E-12	5.74E-11	1.22E-11	1.21E-11	3.71E-12	2.80E-11
1458	762686.5	4091112	1.19E-10	1.30E-10	4.58E-11	2.94E-10	1.86E-11	2.10E-11	7.24E-12		9.94E-12	9.88E-12	3.03E-12	
1459	762707.5	4091091	1.17E-10	1.28E-10	4.51E-11	2.90E-10	1.83E-11	2.07E-11	7.13E-12	4.62E-11	9.79E-12	9.73E-12	2.99E-12	2.25E-11
1460	762728.5	4091070	1.16E-10	1.26E-10	4.47E-11	2.87E-10	1.81E-11	2.05E-11	7.07E-12	4.57E-11	9.70E-12	9.65E-12	2.96E-12	2.23E-11
1461	762749.4	4091050	1.16E-10	1.26E-10	4.46E-11	2.87E-10	1.81E-11	2.05E-11	7.05E-12	4.56E-11	9.68E-12	9.62E-12	2.95E-12	2.23E-11
1462	762770.4	4091029	1.16E-10	1.26E-10	4.47E-11	2.87E-10	1.81E-11	2.05E-11	7.07E-12	4.57E-11	9.70E-12	9.65E-12	2.96E-12	2.23E-11
1463	762791.4	4091008	1.17E-10	1.28E-10	4.52E-11	2.91E-10	1.83E-11	2.08E-11	7.15E-12	4.63E-11	9.81E-12	9.75E-12	2.99E-12	2.26E-11
1464	762812.4	4090987	1.19E-10	1.30E-10	4.59E-11	2.95E-10	1.86E-11	2.11E-11	7.26E-12	4.70E-11	9.96E-12	9.91E-12	3.04E-12	2.29E-11
1465	762833.4	4090967	1.22E-10	1.33E-10	4.70E-11	3.02E-10	1.90E-11	2.15E-11	7.42E-12	4.80E-11	1.02E-11	1.01E-11	3.11E-12	2.34E-11
1466	762854.4	4090946	1.25E-10	1.36E-10	4.81E-11	3.09E-10	1.95E-11	2.20E-11	7.59E-12	4.91E-11	1.04E-11	1.04E-11	3.18E-12	2.40E-11
1467	762666.4	4091133	1.22E-10	1.32E-10	4.69E-11	3.01E-10	1.90E-11	2.15E-11	7.40E-12	4.79E-11	1.02E-11	1.01E-11	3.10E-12	2.34E-11
1468	763858.9	4092200	8.46E-09	9.20E-09	3.26E-09	2.09E-08	1.32E-09	1.49E-09	5.15E-10	3.33E-09	7.06E-10	7.02E-10	2.15E-10	1.62E-09
1469	763829.3	4092232	8.80E-09	9.58E-09	3.39E-09	2.18E-08	1.37E-09	1.56E-09	5.36E-10	3.47E-09	7.35E-10	7.31E-10	2.24E-10	1.69E-09
1470	763822	4092166	5.10E-09	5.55E-09	1.96E-09	1.26E-08	7.96E-10	9.01E-10	3.10E-10	2.01E-09	4.26E-10	4.23E-10	1.30E-10	9.79E-10
1471	763792.4	4092198	5.33E-09	5.80E-09	2.05E-09	1.32E-08	8.32E-10	9.41E-10	3.24E-10	2.10E-09	4.45E-10	4.42E-10	1.36E-10	1.02E-09
1472	763770.3	4092148	3.50E-09	3.81E-09	1.35E-09	8.66E-09	5.47E-10	6.18E-10	2.13E-10	1.38E-09	2.92E-10	2.91E-10	8.92E-11	6.72E-10
1473	763748.3	4092098	2.46E-09	2.68E-09	9.49E-10	6.09E-09	3.85E-10	4.35E-10	1.50E-10	9.70E-10	2.06E-10	2.05E-10	6.28E-11	4.73E-10
1474	763718.6	4092131	2.57E-09	2.80E-09	9.91E-10	6.36E-09	4.02E-10	4.55E-10	1.57E-10	1.01E-09	2.15E-10	2.14E-10	6.56E-11	4.94E-10
1475	763711.4	4092065	1.86E-09	2.03E-09	7.17E-10	4.61E-09	2.91E-10	3.29E-10	1.13E-10	7.33E-10	1.56E-10	1.55E-10	4.75E-11	3.58E-10
1476	763681.7	4092097	1.94E-09	2.12E-09	7.49E-10	4.81E-09	3.04E-10	3.43E-10	1.18E-10	7.65E-10	1.62E-10	1.61E-10	4.95E-11	3.73E-10
1477	763637.6	4091997	1.18E-09	1.29E-09	4.55E-10	2.92E-09	1.84E-10	2.09E-10	7.19E-11	4.65E-10	9.86E-11	9.80E-11	3.01E-11	2.27E-10
1478	763607.9	4092030	1.23E-09	1.34E-09	4.73E-10	3.04E-09	1.92E-10	2.17E-10	7.47E-11	4.84E-10	1.03E-10	1.02E-10	3.13E-11	2.36E-10
1479	763549	4091946	8.37E-10	9.11E-10	3.22E-10	2.07E-09	1.31E-10	1.48E-10	5.09E-11	3.30E-10	6.99E-11	6.95E-11	2.13E-11	1.61E-10
1480	763475.2	4091878	6.23E-10	6.78E-10	2.40E-10	1.54E-09	9.72E-11	1.10E-10	3.79E-11	2.45E-10	5.20E-11	5.17E-11	1.59E-11	1.20E-10
1481	763401.4	4091811	4.85E-10	5.28E-10	1.87E-10	1.20E-09	7.58E-11	8.58E-11	2.95E-11	1.91E-10	4.05E-11	4.03E-11	1.24E-11	9.32E-11
1482	763253.9	4091676	3.25E-10	3.53E-10	1.25E-10	8.03E-10	5.07E-11	5.73E-11	1.97E-11	1.28E-10	2.71E-11	2.69E-11	8.27E-12	6.23E-11
	763106.3		2.37E-10	2.57E-10	9.11E-11	5.85E-10		4.18E-11				1.96E-11		
1484	762944	4091422		2.03E-10	7.18E-11	4.61E-10		3.29E-11				1.55E-11		
	762796.4	4091287		1.63E-10	5.77E-11	3.71E-10		2.65E-11				1.24E-11		
	762648.9	4091152		1.36E-10	4.80E-11	3.08E-10		2.20E-11				1.03E-11		
	763814.7	4092250	9.03E-09	9.83E-09	3.48E-09	2.23E-08		1.60E-09				7.50E-10		
_	763775.8	4092218	5.51E-09	6.00E-09	2.12E-09	1.36E-08		9.73E-10				4.57E-10		
	763747.4	4092174	3.63E-09	3.95E-09	1.40E-09	8.98E-09		6.41E-10				3.01E-10		
	763726.3	4092200	3.81E-09	4.14E-09	1.47E-09	9.41E-09		6.72E-10				3.16E-10		
1491	763698		2.69E-09	2.93E-09	1.04E-09	6.65E-09		4.75E-10				2.23E-10		
	763659.1	4092134		2.22E-09	7.86E-10	5.05E-09		3.60E-10				1.69E-10		
1432	703033.1	7072124	2.046-03	2.22L-U3	7.00L-10	J.UJL-UJ	J.19L-10	J.00L-10	1.24L-10	0.03L-10	1.70L-10	1.03L-10	J.20L-11	J.J2L-10

1493	763591.8	4092048	1.27E-09	1.38E-09	4.88E-10	3.13E-09	1.98E-10	2.24E-10		4.99E-10	1.06E-10	1.05E-10	3.23E-11	
1494	763570.7	4092075	1.33E-09	1.45E-09	5.13E-10	3.29E-09	2.08E-10	2.35E-10		5.24E-10	1.11E-10	1.11E-10	3.39E-11	
1495	763524.1	4091974	8.68E-10	9.45E-10	3.34E-10	2.15E-09	1.36E-10	1.53E-10		3.42E-10	7.25E-11	7.21E-11	2.21E-11	
1496	763503.4	4091999	9.06E-10	9.86E-10	3.49E-10	2.24E-09	1.41E-10	1.60E-10		3.57E-10	7.56E-11	7.52E-11	2.31E-11	
1497	763444.2	4091913	6.51E-10	7.08E-10	2.51E-10	1.61E-09	1.02E-10	1.15E-10		2.56E-10	5.43E-11	5.40E-11	1.66E-11	1.25E-10
1498	763425.6	4091936	6.75E-10	7.35E-10	2.60E-10	1.67E-09	1.05E-10	1.19E-10	4.11E-11	2.66E-10	5.64E-11	5.60E-11	1.72E-11	1.30E-10
1499	763367.8	4091849	5.09E-10	5.54E-10	1.96E-10	1.26E-09	7.94E-11	8.99E-11	3.09E-11	2.00E-10	4.25E-11	4.22E-11	1.30E-11	9.76E-11
1500	763347.8	4091873	5.28E-10	5.75E-10	2.03E-10	1.31E-09	8.24E-11	9.33E-11	3.21E-11	2.08E-10	4.41E-11	4.38E-11	1.35E-11	1.01E-10
1501	763211.8	4091724	3.45E-10	3.76E-10	1.33E-10	8.54E-10	5.39E-11	6.10E-11	2.10E-11	1.36E-10	2.88E-11	2.87E-11	8.80E-12	6.63E-11
1502	763230	4091703	3.35E-10	3.65E-10	1.29E-10	8.29E-10	5.24E-11	5.92E-11	2.04E-11	1.32E-10	2.80E-11	2.78E-11	8.54E-12	6.44E-11
1503	763192.2	4091747	3.58E-10	3.90E-10	1.38E-10	8.85E-10	5.59E-11	6.32E-11	2.18E-11	1.41E-10	2.99E-11	2.97E-11	9.12E-12	6.87E-11
1504	763056	4091598	2.56E-10	2.78E-10	9.85E-11	6.33E-10	4.00E-11	4.52E-11	1.56E-11	1.01E-10	2.14E-11	2.12E-11	6.52E-12	4.91E-11
1505	763073.7	4091578	2.48E-10	2.70E-10	9.55E-11	6.13E-10	3.87E-11	4.38E-11	1.51E-11	9.77E-11	2.07E-11	2.06E-11	6.32E-12	4.76E-11
1506	763036.5	4091622	2.65E-10	2.89E-10	1.02E-10	6.56E-10	4.14E-11	4.69E-11	1.61E-11	1.04E-10	2.21E-11	2.20E-11	6.76E-12	5.09E-11
1507	762901.9	4091471	2.00E-10	2.18E-10	7.70E-11	4.95E-10	3.12E-11	3.53E-11	1.22E-11	7.87E-11	1.67E-11	1.66E-11	5.10E-12	3.84E-11
1508	762923	4091446	1.93E-10	2.10E-10	7.42E-11	4.77E-10	3.01E-11	3.40E-11	1.17E-11	7.59E-11	1.61E-11	1.60E-11	4.91E-12	3.70E-11
1509	762880.9	4091496	2.08E-10	2.26E-10	8.01E-11	5.15E-10	3.25E-11	3.68E-11	1.27E-11	8.19E-11	1.74E-11	1.73E-11	5.30E-12	4.00E-11
1510	762745.9	4091346	1.63E-10	1.78E-10	6.29E-11	4.04E-10	2.55E-11	2.89E-11	9.94E-12	6.43E-11	1.36E-11	1.36E-11	4.16E-12	3.14E-11
1511	762766.1	4091322	1.58E-10	1.72E-10	6.07E-11	3.90E-10	2.46E-11	2.79E-11	9.59E-12	6.21E-11	1.32E-11	1.31E-11	4.02E-12	3.03E-11
1512	762725.3	4091371	1.70E-10	1.85E-10	6.55E-11	4.20E-10	2.65E-11	3.00E-11	1.03E-11	6.69E-11	1.42E-11	1.41E-11	4.33E-12	3.26E-11
1513	762590	4091220	1.38E-10	1.50E-10	5.30E-11	3.40E-10	2.15E-11	2.43E-11	8.37E-12	5.42E-11	1.15E-11	1.14E-11	3.51E-12	2.64E-11
1514	762609.6	4091198	1.33E-10	1.45E-10	5.12E-11	3.29E-10	2.08E-11	2.35E-11	8.09E-12	5.23E-11	1.11E-11	1.10E-11	3.39E-12	2.55E-11
1515	762629.2	4091175	1.28E-10	1.40E-10	4.95E-11	3.18E-10	2.01E-11	2.27E-11	7.82E-12	5.06E-11	1.07E-11	1.07E-11	3.27E-12	2.47E-11
1516	762569.6	4091245	1.43E-10	1.55E-10	5.50E-11	3.53E-10	2.23E-11	2.52E-11	8.69E-12	5.62E-11	1.19E-11	1.19E-11	3.64E-12	2.74E-11
1517	763799.4	4092269	9.26E-09	1.01E-08	3.57E-09	2.29E-08	1.45E-09	1.64E-09	5.64E-10	3.65E-09	7.73E-10	7.69E-10	2.36E-10	1.78E-09
1518	763786.5	4092288	9.58E-09	1.04E-08	3.69E-09	2.37E-08	1.50E-09	1.69E-09	5.83E-10	3.77E-09	8.00E-10	7.95E-10	2.44E-10	1.84E-09
1519	763758.1	4092241	5.73E-09	6.23E-09	2.21E-09	1.42E-08	8.95E-10	1.01E-09	3.49E-10	2.25E-09	4.78E-10	4.76E-10	1.46E-10	1.10E-09
1520	763745.2	4092260	5.96E-09	6.48E-09	2.29E-09	1.47E-08	9.30E-10	1.05E-09	3.62E-10	2.34E-09	4.97E-10	4.94E-10	1.52E-10	1.14E-09
1521	763704	4092232	4.07E-09	4.43E-09	1.57E-09	1.01E-08	6.36E-10	7.20E-10	2.48E-10	1.60E-09	3.40E-10	3.38E-10	1.04E-10	7.82E-10
1522	763675.5	4092185	2.85E-09	3.10E-09	1.10E-09	7.04E-09	4.45E-10	5.03E-10	1.73E-10	1.12E-09	2.38E-10	2.36E-10	7.25E-11	5.47E-10
1523	763662.7	4092204	2.97E-09	3.23E-09	1.14E-09	7.35E-09	4.64E-10	5.25E-10	1.81E-10	1.17E-09	2.48E-10	2.47E-10	7.57E-11	5.70E-10
1524	763641.4	4092147	2.13E-09	2.32E-09	8.22E-10	5.28E-09	3.33E-10	3.77E-10	1.30E-10	8.40E-10	1.78E-10	1.77E-10	5.44E-11	4.10E-10
1525	763621.4	4092175	2.27E-09	2.47E-09	8.74E-10	5.62E-09	3.55E-10	4.01E-10	1.38E-10	8.94E-10	1.90E-10	1.88E-10	5.78E-11	4.36E-10
1526	763538.8	4092119	1.47E-09	1.60E-09	5.65E-10	3.63E-09	2.29E-10	2.59E-10	8.92E-11	5.77E-10	1.22E-10	1.22E-10	3.74E-11	2.82E-10
1527	763481	4092028	9.60E-10	1.05E-09	3.70E-10	2.38E-09	1.50E-10	1.70E-10	5.84E-11	3.78E-10	8.02E-11	7.97E-11	2.45E-11	1.84E-10
1528	763456.2		1.04E-09	1.13E-09	3.99E-10	2.56E-09		1.83E-10				8.60E-11		
1529	763396	4091975		7.91E-10	2.80E-10	1.80E-09	1.14E-10	1.28E-10	4.42E-11	2.86E-10	6.07E-11	6.04E-11	1.85E-11	1.40E-10
	763373.6		7.77E-10	8.46E-10	2.99E-10	1.92E-09		1.37E-10				6.45E-11		
1531	763315	4091916	5.71E-10	6.21E-10	2.20E-10	1.41E-09		1.01E-10				4.74E-11		
	763291.1	4091950	6.10E-10	6.64E-10	2.35E-10	1.51E-09		1.08E-10				5.07E-11		
	763149.5	4091804	3.93E-10	4.27E-10	1.51E-10	9.71E-10		6.94E-11				3.26E-11		
	763170.9		3.74E-10	4.07E-10	1.44E-10	9.26E-10		6.61E-11				3.11E-11		
	763175.9		4.15E-10	4.52E-10	1.60E-10	1.03E-09		7.33E-11				3.45E-11		
	762986.7	4091688		3.19E-10	1.13E-10	7.26E-10		5.18E-11				2.44E-11		
1330	, 02300.7	1031000	2.552 10	3.132 10	1.132 10	,.20L 10	7.50L 11	J.10L 11	1., 76 11	1.102 10	→JL 11	2.776 11	7OL 12	J.00L 11

	763012.9	4091653	2.78E-10	3.03E-10	1.07E-10	6.88E-10		4.92E-11				2.31E-11		
1538	762960.8	4091724	3.09E-10	3.37E-10	1.19E-10	7.65E-10	4.83E-11	5.47E-11		1.22E-10	2.58E-11		7.88E-12	
1539	762820.8	4091576	2.34E-10	2.55E-10	9.01E-11	5.79E-10	3.65E-11	4.13E-11		9.21E-11	1.95E-11	1.94E-11	5.96E-12	
1540	762845.6	4091543	2.23E-10	2.43E-10	8.61E-11	5.53E-10	3.49E-11	3.95E-11		8.80E-11	1.87E-11	1.86E-11	5.69E-12	
1541	762795.6	4091611	2.45E-10	2.67E-10	9.43E-11	6.06E-10	3.82E-11	4.33E-11	-		2.04E-11	2.03E-11	6.24E-12	-
1542	762655.2	4091464	1.94E-10	2.11E-10	7.46E-11	4.79E-10	3.03E-11	3.42E-11	1.18E-11		1.62E-11	1.61E-11	4.94E-12	
1543	762679	4091432	1.86E-10	2.02E-10	7.16E-11	4.60E-10	2.90E-11	3.28E-11		7.32E-11	1.55E-11	1.54E-11	4.74E-12	3.57E-11
1544	762702.8	4091400	1.78E-10	1.93E-10	6.84E-11	4.39E-10	2.77E-11	3.14E-11	1.08E-11	6.99E-11	1.48E-11	1.47E-11	4.52E-12	3.41E-11
1545	762630.4	4091499	2.02E-10	2.20E-10	7.77E-11	4.99E-10	3.15E-11	3.57E-11	1.23E-11	7.95E-11	1.69E-11	1.68E-11	5.14E-12	3.87E-11
1546	762491.6	4091349	1.65E-10	1.79E-10	6.34E-11	4.07E-10	2.57E-11	2.91E-11	1.00E-11	6.49E-11	1.38E-11	1.37E-11	4.20E-12	3.16E-11
1547	762505.1	4091331	1.61E-10	1.75E-10	6.20E-11	3.98E-10	2.52E-11	2.85E-11	9.80E-12	6.34E-11	1.35E-11	1.34E-11	4.10E-12	3.09E-11
1548	762518.6	4091313	1.57E-10	1.71E-10	6.06E-11	3.89E-10	2.46E-11	2.78E-11	9.58E-12	6.20E-11	1.31E-11	1.31E-11	4.01E-12	3.02E-11
1549	762532.1	4091294	1.54E-10	1.67E-10	5.91E-11	3.80E-10	2.40E-11	2.71E-11	9.34E-12	6.04E-11	1.28E-11	1.27E-11	3.91E-12	2.95E-11
1550	762545.6	4091276	1.50E-10	1.63E-10	5.76E-11	3.70E-10	2.34E-11	2.64E-11	9.10E-12	5.89E-11	1.25E-11	1.24E-11	3.81E-12	2.87E-11
1551	762478.1	4091367	1.68E-10	1.83E-10	6.47E-11	4.16E-10	2.63E-11	2.97E-11	1.02E-11	6.62E-11	1.40E-11	1.40E-11	4.28E-12	3.23E-11
1552	762465.3	4091386	1.71E-10	1.86E-10	6.60E-11	4.24E-10	2.67E-11	3.03E-11	1.04E-11	6.74E-11	1.43E-11	1.42E-11	4.36E-12	3.29E-11
1553	763730.2	4092284	6.29E-09	6.84E-09	2.42E-09	1.55E-08	9.82E-10	1.11E-09	3.82E-10	2.47E-09	5.25E-10	5.22E-10	1.60E-10	1.21E-09
1554	763687.5	4092258	4.33E-09	4.72E-09	1.67E-09	1.07E-08	6.77E-10	7.66E-10	2.64E-10	1.71E-09	3.62E-10	3.60E-10	1.10E-10	8.32E-10
1555	763644.7	4092233	3.18E-09	3.46E-09	1.22E-09	7.86E-09	4.97E-10	5.62E-10	1.93E-10	1.25E-09	2.65E-10	2.64E-10	8.10E-11	6.10E-10
1556	763601.9	4092207	2.44E-09	2.66E-09	9.40E-10	6.04E-09	3.81E-10	4.31E-10	1.49E-10	9.61E-10	2.04E-10	2.03E-10	6.22E-11	4.69E-10
1557	763516.3	4092155	1.59E-09	1.73E-09	6.12E-10	3.93E-09	2.48E-10	2.81E-10	9.67E-11	6.26E-10	1.33E-10	1.32E-10	4.05E-11	3.05E-10
1558	763441.3	4092086	1.09E-09	1.19E-09	4.20E-10	2.70E-09	1.70E-10	1.93E-10	6.63E-11	4.29E-10	9.10E-11	9.05E-11	2.78E-11	2.09E-10
1559	763355.8	4092034	8.25E-10	8.98E-10	3.18E-10	2.04E-09	1.29E-10	1.46E-10	5.02E-11	3.25E-10	6.89E-11	6.85E-11	2.10E-11	1.58E-10
1560	763270.2	4091982	6.52E-10	7.09E-10	2.51E-10	1.61E-09	1.02E-10	1.15E-10	3.97E-11	2.57E-10	5.44E-11	5.41E-11	1.66E-11	1.25E-10
1561	763108	4091865	4.35E-10	4.74E-10	1.68E-10	1.08E-09	6.80E-11	7.69E-11	2.65E-11	1.71E-10	3.63E-11	3.61E-11	1.11E-11	8.36E-11
1562	763088.6	4091896	4.59E-10	5.00E-10	1.77E-10	1.14E-09	7.17E-11	8.11E-11	2.79E-11	1.81E-10	3.83E-11	3.81E-11	1.17E-11	8.82E-11
1563	762938.9	4091758	3.25E-10	3.53E-10	1.25E-10	8.03E-10	5.07E-11	5.73E-11	1.97E-11	1.28E-10	2.71E-11	2.69E-11	8.27E-12	6.23E-11
1564	762917.4	4091793	3.40E-10	3.71E-10	1.31E-10	8.42E-10	5.32E-11	6.02E-11	2.07E-11	1.34E-10	2.84E-11	2.83E-11	8.67E-12	6.54E-11
1565	762766.5	4091657	2.58E-10	2.81E-10	9.94E-11	6.39E-10	4.03E-11	4.56E-11	1.57E-11	1.02E-10	2.16E-11	2.14E-11	6.58E-12	4.96E-11
1566	762746.3	4091689	2.68E-10	2.92E-10	1.03E-10	6.63E-10	4.18E-11	4.73E-11	1.63E-11	1.05E-10	2.24E-11	2.22E-11	6.83E-12	5.14E-11
1567	762594.7	4091554	2.14E-10	2.32E-10	8.22E-11	5.28E-10	3.34E-11	3.77E-11	1.30E-11	8.41E-11	1.78E-11	1.77E-11	5.44E-12	4.10E-11
1568	762612.6	4091526	2.08E-10	2.26E-10	8.00E-11	5.14E-10	3.25E-11	3.67E-11	1.26E-11	8.18E-11	1.74E-11	1.73E-11	5.30E-12	3.99E-11
1569	762575.2	4091585	2.20E-10	2.39E-10	8.47E-11	5.44E-10	3.43E-11	3.88E-11	1.34E-11	8.65E-11	1.84E-11	1.83E-11	5.60E-12	4.22E-11
1570	762424.8	4091449	1.81E-10	1.97E-10	6.99E-11	4.49E-10	2.83E-11	3.21E-11	1.10E-11	7.14E-11	1.52E-11	1.51E-11	4.62E-12	3.48E-11
1571	762445	4091417	1.76E-10	1.92E-10	6.80E-11	4.37E-10	2.76E-11	3.12E-11	1.07E-11	6.95E-11	1.47E-11	1.47E-11	4.50E-12	3.39E-11
	762404.1		1.86E-10	2.03E-10	7.17E-11	4.60E-10		3.29E-11			1.55E-11	1.55E-11	4.74E-12	3.57E-11
	763716.6	4092310	6.70E-09	7.29E-09	2.58E-09	1.66E-08		1.18E-09				5.56E-10		
	763671.9	4092288	4.66E-09	5.07E-09	1.80E-09	1.15E-08		8.24E-10				3.87E-10		
	763627.2	4092266	3.45E-09	3.75E-09	1.33E-09	8.53E-09		6.09E-10				2.86E-10		
	763590.3	4092228	2.57E-09	2.79E-09	9.89E-10	6.35E-09		4.54E-10				2.13E-10		
	763500.9	4092183	1.69E-09	1.84E-09	6.51E-10	4.18E-09		2.99E-10				1.40E-10		
	763417.9		1.19E-09	1.30E-09	4.58E-10	2.94E-09		2.10E-10				9.88E-11		
	763403.7			1.37E-09	4.84E-10	3.11E-09		2.22E-10				1.04E-10		
	763329.8		9.06E-10	9.87E-10	3.49E-10	2.24E-09		1.60E-10				7.53E-11		
1300	, 03323.0	-TUJZU13	J.00L-10	J.07 L-10	J. - JL-10	2.272 03	1.76L-10	1.00L-10	J.J2L-11	J.J/L 10	7.J/L-11	/.JJL-11	∠.J1L-11	1./ TL-1U

4=04	7600440		0.60= 40		2 725 42	2 275 22	4 505 40	4 705 40		0.705.40	0.015.11			
	763314.3	4092109	9.60E-10	1.04E-09	3.70E-10	2.37E-09		1.70E-10		3.78E-10		7.97E-11		
1582	763239.4	4092036	7.25E-10	7.89E-10	2.79E-10	1.79E-09	1.13E-10	1.28E-10		2.86E-10	6.06E-11	6.02E-11	1.85E-11	
1583	763252.9	4092012	6.92E-10	7.53E-10	2.66E-10	1.71E-09	1.08E-10	1.22E-10		2.72E-10	5.78E-11	5.74E-11	1.76E-11	
1584	763224.8	4092064	7.64E-10	8.31E-10	2.94E-10	1.89E-09	1.19E-10	1.35E-10		3.01E-10	6.38E-11	6.34E-11	1.95E-11	
1585	763060.7	4091946	5.01E-10	5.46E-10	1.93E-10	1.24E-09	7.83E-11	8.86E-11		1.97E-10	4.19E-11	4.16E-11	1.28E-11	
1586	763074.7	4091921	4.80E-10	5.22E-10	1.85E-10	1.19E-09	7.49E-11	8.48E-11		1.89E-10	4.01E-11	3.98E-11	1.22E-11	
1587	763046	4091975	5.26E-10	5.72E-10	2.02E-10	1.30E-09	8.21E-11	9.29E-11		2.07E-10	4.39E-11		1.34E-11	
1588	762882	4091857	3.74E-10	4.07E-10	1.44E-10	9.25E-10	5.84E-11	6.61E-11		1.47E-10	3.12E-11	3.11E-11	9.53E-12	_
1589	762896.2	4091831	3.60E-10	3.92E-10	1.39E-10	8.91E-10	5.62E-11	6.36E-11		1.42E-10	3.01E-11	2.99E-11	9.17E-12	
1590	762867.2	4091885	3.91E-10	4.25E-10	1.51E-10	9.67E-10	6.10E-11	6.91E-11	2.38E-11		3.26E-11	3.24E-11	9.96E-12	
1591	762704.5	4091765	2.94E-10	3.20E-10	1.13E-10	7.26E-10	4.59E-11		1.79E-11		2.45E-11	2.44E-11	7.48E-12	
1592	762721.2	4091735	2.83E-10	3.08E-10	1.09E-10	6.99E-10	4.42E-11	5.00E-11	1.72E-11		2.36E-11	2.35E-11	7.20E-12	
1593	762688.3	4091796	3.06E-10	3.33E-10	1.18E-10	7.57E-10	4.78E-11	5.41E-11	1.86E-11	1.20E-10	2.55E-11	2.54E-11	7.80E-12	5.87E-11
1594	762525.6	4091675	2.40E-10	2.62E-10	9.26E-11	5.95E-10	3.76E-11	4.25E-11	1.46E-11	9.47E-11	2.01E-11	2.00E-11	6.13E-12	4.62E-11
1595	762542.1	4091645	2.33E-10	2.54E-10	8.98E-11	5.77E-10	3.64E-11	4.12E-11	1.42E-11	9.18E-11	1.95E-11	1.94E-11	5.94E-12	4.48E-11
1596	762558.7	4091615	2.26E-10	2.46E-10	8.72E-11	5.60E-10	3.54E-11	4.00E-11	1.38E-11	8.91E-11	1.89E-11	1.88E-11	5.77E-12	4.35E-11
1597	762509.5	4091706	2.49E-10	2.71E-10	9.59E-11	6.16E-10	3.89E-11	4.40E-11	1.52E-11	9.81E-11	2.08E-11	2.07E-11	6.35E-12	4.78E-11
1598	762346.6	4091586	2.03E-10	2.21E-10	7.81E-11	5.02E-10	3.17E-11	3.58E-11	1.23E-11	7.99E-11	1.69E-11	1.68E-11	5.17E-12	3.89E-11
1599	762363.1	4091556	1.98E-10	2.15E-10	7.61E-11	4.89E-10	3.09E-11	3.49E-11	1.20E-11	7.78E-11	1.65E-11	1.64E-11	5.04E-12	3.79E-11
1600	762379.5	4091527	1.93E-10	2.10E-10	7.43E-11	4.77E-10	3.01E-11	3.41E-11	1.17E-11	7.60E-11	1.61E-11	1.60E-11	4.92E-12	3.70E-11
1601	762330.6	4091617	2.09E-10	2.27E-10	8.04E-11	5.17E-10	3.26E-11	3.69E-11	1.27E-11	8.22E-11	1.74E-11	1.73E-11	5.32E-12	4.01E-11
1602	763701.4	4092351	7.50E-09	8.17E-09	2.89E-09	1.86E-08	1.17E-09	1.33E-09	4.57E-10	2.95E-09	6.27E-10	6.23E-10	1.91E-10	1.44E-09
1603	763661.4	4092313	4.98E-09	5.42E-09	1.92E-09	1.23E-08	7.78E-10	8.80E-10	3.03E-10	1.96E-09	4.16E-10	4.13E-10	1.27E-10	9.56E-10
1604	763654.1	4092335	5.27E-09	5.74E-09	2.03E-09	1.30E-08	8.24E-10	9.32E-10	3.21E-10	2.08E-09	4.40E-10	4.38E-10	1.34E-10	1.01E-09
1605	763614.1	4092297	3.73E-09	4.06E-09	1.44E-09	9.23E-09	5.83E-10	6.59E-10	2.27E-10	1.47E-09	3.12E-10	3.10E-10	9.51E-11	7.17E-10
1606	763606.8	4092319	3.94E-09	4.29E-09	1.52E-09	9.74E-09	6.15E-10	6.96E-10	2.40E-10	1.55E-09	3.29E-10	3.27E-10	1.00E-10	7.56E-10
1607	763574.6	4092262	2.79E-09	3.04E-09	1.08E-09	6.91E-09	4.36E-10	4.94E-10	1.70E-10	1.10E-09	2.33E-10	2.32E-10	7.12E-11	5.37E-10
1608	763559.4	4092302	3.07E-09	3.34E-09	1.18E-09	7.60E-09	4.80E-10	5.43E-10	1.87E-10	1.21E-09	2.56E-10	2.55E-10	7.83E-11	5.90E-10
1609	763479.1	4092232	1.89E-09	2.05E-09	7.27E-10	4.67E-09	2.95E-10	3.34E-10	1.15E-10	7.43E-10	1.58E-10	1.57E-10	4.81E-11	3.62E-10
1610	763464.8	4092270	2.05E-09	2.23E-09	7.88E-10	5.06E-09	3.19E-10	3.61E-10	1.24E-10	8.05E-10	1.71E-10	1.70E-10	5.21E-11	3.93E-10
1611	763386.2	4092196	1.37E-09	1.49E-09	5.27E-10	3.39E-09	2.14E-10	2.42E-10	8.33E-11	5.39E-10	1.14E-10	1.14E-10	3.49E-11	2.63E-10
1612	763394.9	4092175	1.31E-09	1.43E-09	5.06E-10	3.25E-09	2.05E-10	2.32E-10	8.00E-11	5.17E-10	1.10E-10	1.09E-10	3.35E-11	2.52E-10
1613	763377.4	4092217	1.42E-09	1.55E-09	5.48E-10	3.52E-09	2.22E-10	2.52E-10	8.67E-11	5.61E-10	1.19E-10	1.18E-10	3.63E-11	2.73E-10
1614	763370.1	4092238	1.48E-09	1.61E-09	5.71E-10	3.67E-09	2.32E-10	2.62E-10	9.03E-11	5.84E-10	1.24E-10	1.23E-10	3.78E-11	2.85E-10
1615	763290.6	4092165	1.07E-09	1.16E-09	4.11E-10	2.64E-09	1.67E-10	1.88E-10	6.49E-11	4.20E-10	8.91E-11	8.86E-11	2.72E-11	2.05E-10
1616	763275.4	4092206	1.14E-09	1.24E-09	4.40E-10	2.83E-09	1.78E-10	2.02E-10	6.95E-11	4.50E-10	9.54E-11	9.49E-11	2.91E-11	2.19E-10
1617	763195.4	4092135	8.64E-10	9.41E-10	3.33E-10	2.14E-09	1.35E-10	1.53E-10	5.26E-11	3.40E-10	7.22E-11	7.17E-11	2.20E-11	1.66E-10
1618	763210.1	4092099	8.15E-10	8.87E-10	3.14E-10	2.01E-09	1.27E-10	1.44E-10	4.96E-11	3.21E-10	6.80E-11	6.76E-11	2.08E-11	1.56E-10
1619	763180.7	4092174	9.19E-10	1.00E-09	3.54E-10	2.27E-09	1.44E-10	1.62E-10	5.59E-11	3.62E-10	7.67E-11	7.63E-11	2.34E-11	1.76E-10
1620	763006.6	4092069	6.14E-10	6.68E-10	2.36E-10	1.52E-09	9.58E-11	1.08E-10	3.73E-11	2.42E-10	5.12E-11	5.09E-11	1.56E-11	1.18E-10
1621	763022.4	4092031	5.79E-10	6.30E-10	2.23E-10	1.43E-09	9.04E-11	1.02E-10	3.52E-11	2.28E-10	4.83E-11	4.81E-11	1.47E-11	1.11E-10
1622	762991.4	4092109	6.50E-10	7.07E-10	2.50E-10	1.61E-09	1.01E-10	1.15E-10	3.95E-11	2.56E-10	5.43E-11	5.39E-11	1.66E-11	1.25E-10
1623	762817.6	4092004	4.69E-10	5.11E-10	1.81E-10	1.16E-09	7.33E-11	8.29E-11	2.86E-11	1.85E-10	3.92E-11	3.90E-11	1.20E-11	9.01E-11
1624	762834.1	4091964	4.43E-10	4.82E-10	1.71E-10	1.10E-09	6.92E-11	7.82E-11	2.69E-11	1.74E-10	3.70E-11	3.68E-11	1.13E-11	8.50E-11

1625	762850.6	4091925	4.16E-10	4.53E-10	1.60E-10	1.03E-09		7.35E-11			3.47E-11	3.46E-11		
1626	762802	4092045	4.96E-10	5.40E-10	1.91E-10	1.23E-09	7.75E-11	8.77E-11		1.95E-10	4.14E-11		1.26E-11	
1627	762628.6	4091939	3.77E-10	4.10E-10	1.45E-10	9.32E-10	5.88E-11	6.66E-11		1.48E-10	3.15E-11	3.13E-11	9.60E-12	
1628	762645.6	4091898	3.56E-10	3.87E-10	1.37E-10	8.80E-10	5.55E-11	6.28E-11	2.16E-11		2.97E-11	2.95E-11	9.06E-12	
1629	762662.7	4091857	3.35E-10	3.64E-10	1.29E-10	8.28E-10	5.23E-11	5.91E-11	2.04E-11	1.32E-10	2.79E-11	2.78E-11	8.53E-12	6.43E-11
1630	762612.7	4091980	3.98E-10	4.33E-10	1.53E-10	9.85E-10	6.22E-11	7.03E-11	2.42E-11	1.57E-10	3.32E-11	3.31E-11	1.01E-11	7.64E-11
1631	762439.4	4091874	3.13E-10	3.41E-10	1.21E-10	7.74E-10	4.89E-11	5.53E-11	1.90E-11	1.23E-10	2.61E-11	2.60E-11	7.98E-12	6.01E-11
1632	762448.2	4091853	3.04E-10	3.31E-10	1.17E-10	7.52E-10	4.75E-11	5.37E-11	1.85E-11	1.20E-10	2.54E-11	2.53E-11	7.75E-12	5.84E-11
1633	762456.9	4091832	2.96E-10	3.22E-10	1.14E-10	7.31E-10	4.62E-11	5.22E-11	1.80E-11	1.16E-10	2.47E-11	2.45E-11	7.53E-12	5.67E-11
1634	762465.7	4091811	2.87E-10	3.12E-10	1.11E-10	7.10E-10	4.48E-11	5.07E-11	1.75E-11	1.13E-10	2.40E-11	2.38E-11	7.31E-12	5.51E-11
1635	762474.5	4091790	2.79E-10	3.03E-10	1.07E-10	6.89E-10	4.35E-11	4.92E-11	1.70E-11	1.10E-10	2.33E-11	2.31E-11	7.10E-12	5.35E-11
1636	762483.2	4091769	2.70E-10	2.94E-10	1.04E-10	6.69E-10	4.22E-11	4.78E-11	1.65E-11	1.06E-10	2.26E-11	2.25E-11	6.89E-12	5.19E-11
1637	762492	4091748	2.63E-10	2.86E-10	1.01E-10	6.50E-10	4.11E-11	4.65E-11	1.60E-11	1.04E-10	2.20E-11	2.18E-11	6.70E-12	5.05E-11
1638	762500.7	4091727	2.56E-10	2.78E-10	9.85E-11	6.33E-10	4.00E-11	4.52E-11	1.56E-11	1.01E-10	2.14E-11	2.12E-11	6.52E-12	4.91E-11
1639	762430.7	4091895	3.22E-10	3.50E-10	1.24E-10	7.96E-10	5.02E-11	5.68E-11	1.96E-11	1.27E-10	2.69E-11	2.67E-11	8.20E-12	6.18E-11
1640	762423.3	4091916	3.30E-10	3.59E-10	1.27E-10	8.17E-10	5.16E-11	5.84E-11	2.01E-11	1.30E-10	2.76E-11	2.74E-11	8.42E-12	6.34E-11
1641	762249.4	4091811	2.67E-10	2.91E-10	1.03E-10	6.61E-10	4.17E-11	4.72E-11	1.63E-11	1.05E-10	2.23E-11	2.22E-11	6.81E-12	5.13E-11
1642	762265.7	4091772	2.54E-10	2.76E-10	9.77E-11	6.28E-10	3.96E-11	4.48E-11	1.54E-11	9.99E-11	2.12E-11	2.11E-11	6.47E-12	4.87E-11
1643	762281.9	4091733	2.41E-10	2.62E-10	9.28E-11	5.96E-10	3.76E-11	4.26E-11	1.47E-11	9.49E-11	2.01E-11	2.00E-11	6.14E-12	4.63E-11
1644	762298.2	4091694	2.29E-10	2.49E-10	8.82E-11	5.66E-10	3.58E-11	4.05E-11	1.39E-11	9.01E-11	1.91E-11	1.90E-11	5.83E-12	4.40E-11
1645	762314.4	4091655	2.18E-10	2.38E-10	8.41E-11	5.40E-10	3.41E-11	3.86E-11	1.33E-11	8.59E-11	1.82E-11	1.81E-11	5.56E-12	4.19E-11
1646	762234	4091852	2.81E-10	3.06E-10	1.08E-10	6.95E-10	4.39E-11	4.96E-11	1.71E-11	1.11E-10	2.35E-11	2.33E-11	7.16E-12	5.39E-11
1647	763645.4	4092366	5.72E-09	6.23E-09	2.20E-09	1.42E-08	8.94E-10	1.01E-09	3.48E-10	2.25E-09	4.78E-10	4.75E-10	1.46E-10	1.10E-09
1648	763596.9	4092354	4.28E-09	4.66E-09	1.65E-09	1.06E-08	6.69E-10	7.57E-10	2.61E-10	1.69E-09	3.58E-10	3.56E-10	1.09E-10	8.22E-10
1649	763552.9	4092325	3.23E-09	3.51E-09	1.24E-09	7.98E-09	5.04E-10	5.70E-10	1.96E-10	1.27E-09	2.70E-10	2.68E-10	8.22E-11	6.20E-10
1650	763544.2	4092358	3.46E-09	3.77E-09	1.33E-09	8.56E-09	5.41E-10	6.12E-10	2.11E-10	1.36E-09	2.89E-10	2.87E-10	8.82E-11	6.65E-10
1651	763456	4092300	2.17E-09	2.36E-09	8.36E-10	5.37E-09	3.39E-10	3.83E-10	1.32E-10	8.54E-10	1.81E-10	1.80E-10	5.53E-11	4.17E-10
1652	763447.3	4092334	2.31E-09	2.51E-09	8.89E-10	5.71E-09	3.60E-10	4.08E-10	1.40E-10	9.08E-10	1.93E-10	1.92E-10	5.88E-11	4.43E-10
1653	763362.8	4092263	1.55E-09	1.69E-09	5.98E-10	3.84E-09	2.42E-10	2.74E-10	9.44E-11	6.11E-10	1.30E-10	1.29E-10	3.95E-11	2.98E-10
1654	763354.8	4092292	1.63E-09	1.77E-09	6.28E-10	4.03E-09	2.55E-10	2.88E-10	9.92E-11	6.42E-10	1.36E-10	1.35E-10	4.16E-11	3.13E-10
1655	763266.7	4092235	1.20E-09	1.31E-09	4.62E-10	2.97E-09	1.87E-10	2.12E-10	7.30E-11	4.72E-10	1.00E-10	9.96E-11	3.06E-11	2.30E-10
1656	763257.9	4092267	1.26E-09	1.37E-09	4.85E-10	3.11E-09	1.96E-10	2.22E-10	7.66E-11	4.95E-10	1.05E-10	1.04E-10	3.21E-11	2.42E-10
1657	763169.3	4092212	9.73E-10	1.06E-09	3.75E-10	2.41E-09	1.52E-10	1.72E-10	5.92E-11	3.83E-10	8.12E-11	8.08E-11	2.48E-11	1.87E-10
1658	763161.1	4092242	1.01E-09	1.10E-09	3.90E-10	2.51E-09	1.58E-10	1.79E-10	6.16E-11	3.99E-10	8.46E-11	8.41E-11	2.58E-11	1.94E-10
1659	762976.6	4092159	6.92E-10	7.53E-10	2.67E-10	1.71E-09	1.08E-10	1.22E-10	4.21E-11	2.72E-10	5.78E-11	5.75E-11	1.76E-11	1.33E-10
	762967.4	4092192		7.81E-10	2.76E-10	1.78E-09		1.27E-10				5.96E-11		
	762782.8	4092109	5.34E-10	5.82E-10	2.06E-10	1.32E-09	8.35E-11	9.44E-11	3.25E-11	2.10E-10	4.46E-11	4.44E-11	1.36E-11	1.03E-10
	762792.4	4092077	5.16E-10	5.62E-10	1.99E-10	1.28E-09		9.12E-11				4.29E-11		
	762773.6	4092143	5.51E-10	6.00E-10	2.12E-10	1.36E-09		9.73E-11				4.57E-11		
1664	762589	4092060	4.33E-10	4.72E-10	1.67E-10	1.07E-09		7.66E-11				3.60E-11		
	762598.5	4092028	4.20E-10	4.58E-10	1.62E-10	1.04E-09		7.43E-11				3.49E-11		
	762579.9	4092093	4.45E-10	4.84E-10	1.71E-10	1.10E-09		7.86E-11				3.69E-11		
	762395.2	4092010	3.64E-10	3.96E-10	1.40E-10	9.00E-10		6.43E-11				3.02E-11		
	762404.6	4091979		3.85E-10	1.36E-10	8.76E-10		6.25E-11				2.94E-11		
000		.0010,0	5.5 .2 10	0.002 10		3 02 10	J.JJL 11	JJ 11		10	1		5.0 12	2.002 11

16	669	762414	4091948	3.43E-10	3.73E-10	1.32E-10	8.48E-10	5.35E-11	6.06E-11	2.09E-11	1.35E-10	2.86E-11	2.85E-11	8.73E-12	6.58E-11
16	570	762386.2	4092043	3.73E-10	4.06E-10	1.43E-10	9.22E-10	5.82E-11	6.58E-11	2.27E-11	1.47E-10	3.11E-11	3.09E-11	9.49E-12	7.15E-11
16	571	762201.5	4091961	3.13E-10	3.40E-10	1.20E-10	7.74E-10	4.88E-11	5.53E-11	1.90E-11	1.23E-10	2.61E-11	2.60E-11	7.97E-12	6.01E-11
16	572	762210.8	4091930	3.05E-10	3.32E-10	1.17E-10	7.54E-10	4.76E-11	5.39E-11	1.86E-11	1.20E-10	2.55E-11	2.53E-11	7.77E-12	5.85E-11
16	573	762220.1	4091898	2.96E-10	3.22E-10	1.14E-10	7.32E-10	4.62E-11	5.23E-11	1.80E-11	1.17E-10	2.47E-11	2.46E-11	7.54E-12	5.68E-11
16	574	762192.5	4091993	3.20E-10	3.48E-10	1.23E-10	7.92E-10	5.00E-11	5.66E-11	1.95E-11	1.26E-10	2.67E-11	2.66E-11	8.16E-12	6.15E-11
16	575	763637.3	4092405	6.28E-09	6.83E-09	2.42E-09	1.55E-08	9.80E-10	1.11E-09	3.82E-10	2.47E-09	5.24E-10	5.21E-10	1.60E-10	1.21E-09
16	576	763634.3	4092430	6.65E-09	7.24E-09	2.56E-09	1.64E-08	1.04E-09	1.17E-09	4.04E-10	2.62E-09	5.55E-10	5.52E-10	1.69E-10	1.28E-09
16	577	763587.3	4092402	4.75E-09	5.17E-09	1.83E-09	1.17E-08	7.41E-10	8.39E-10	2.89E-10	1.87E-09	3.96E-10	3.94E-10	1.21E-10	9.11E-10
16	578	763584.5	4092426	4.98E-09	5.42E-09	1.92E-09	1.23E-08	7.78E-10	8.80E-10	3.03E-10	1.96E-09	4.16E-10	4.14E-10	1.27E-10	9.57E-10
16	579	763537.9	4092396	3.72E-09	4.05E-09	1.43E-09	9.21E-09	5.82E-10	6.58E-10	2.27E-10	1.47E-09	3.11E-10	3.09E-10	9.49E-11	7.15E-10
16	680	763534.6	4092422	3.90E-09	4.25E-09	1.50E-09	9.65E-09	6.09E-10	6.89E-10	2.37E-10	1.54E-09	3.26E-10	3.24E-10	9.94E-11	7.49E-10
16	81	763438.4	4092387	2.52E-09	2.74E-09	9.71E-10	6.23E-09	3.94E-10	4.45E-10	1.53E-10	9.92E-10	2.10E-10	2.09E-10	6.42E-11	4.84E-10
16	82	763442.8	4092360	2.42E-09	2.63E-09	9.32E-10	5.99E-09	3.78E-10	4.28E-10	1.47E-10	9.53E-10	2.02E-10	2.01E-10	6.17E-11	4.65E-10
	583	763435	4092414	2.62E-09	2.85E-09	1.01E-09	6.49E-09	4.10E-10	4.63E-10		1.03E-09	2.19E-10	2.18E-10		5.03E-10
16	584	763338.5	4092380	1.85E-09	2.02E-09	7.14E-10	4.59E-09	2.90E-10	3.28E-10		7.30E-10	1.55E-10	1.54E-10		3.56E-10
_		763342.5	4092356	1.80E-09	1.96E-09	6.93E-10	4.45E-09	2.81E-10	3.18E-10		7.08E-10	1.50E-10	1.49E-10		3.45E-10
_		763346.4	4092332	1.74E-09	1.89E-09	6.70E-10	4.30E-09	2.72E-10	3.07E-10		6.85E-10	1.45E-10	1.44E-10	4.43E-11	
_		763335.3	4092405	1.92E-09	2.09E-09	7.38E-10	4.74E-09	2.99E-10	3.39E-10		7.54E-10	1.60E-10	1.59E-10	4.88E-11	
_		763238.9	4092371	1.44E-09	1.57E-09	5.54E-10	3.56E-09	2.25E-10	2.54E-10		5.66E-10	1.20E-10	1.19E-10	3.67E-11	
_		763243.1	4092346	1.40E-09	1.52E-09	5.39E-10	3.46E-09	2.19E-10	2.47E-10	8.51E-11		1.17E-10	1.16E-10	3.57E-11	
_		763247.3	4092321	1.36E-09	1.48E-09	5.23E-10	3.36E-09	2.12E-10	2.40E-10		5.34E-10	1.17E 10	1.13E-10	3.46E-11	
_		763251.5	4092296	1.31E-09	1.43E-09	5.05E-10	3.25E-09	2.05E-10	2.32E-10		5.17E-10	1.10E-10	1.13E 10 1.09E-10	3.34E-11	
_		763235.7	4092397	1.48E-09	1.43E-03	5.71E-10	3.66E-09	2.31E-10	2.62E-10		5.83E-10	1.10E-10 1.24E-10	1.03E-10 1.23E-10		2.84E-10
		763139.3	4092362	1.46E-09	1.26E-09	4.48E-10	2.87E-09	1.81E-10	2.05E-10		4.58E-10	9.70E-11	9.65E-11	2.96E-11	
	594	763143.7	4092336	1.13E-09	1.23E-09	4.46E-10 4.36E-10	2.80E-09	1.77E-10	2.00E-10		4.46E-10	9.46E-11	9.40E-11	2.89E-11	
	595	763148	4092331	1.13E-09 1.10E-09	1.23E-09 1.20E-09	4.30E-10 4.24E-10	2.73E-09	1.77E-10 1.72E-10	1.95E-10		4.34E-10	9.40E-11 9.20E-11	9.40E-11 9.15E-11	2.89E-11 2.81E-11	
	96 596	763152.4	4092311		1.20E-09 1.16E-09	4.24E-10 4.12E-10			1.89E-10		4.21E-10		9.13E-11 8.88E-11		
	590 597	763136	4092285	1.07E-09			2.64E-09 2.95E-09	1.67E-10				8.93E-11	9.91E-11		2.03E-10 2.29E-10
_				1.19E-09	1.30E-09	4.60E-10		1.86E-10	2.11E-10 1.46E-10		4.70E-10 3.25E-10	9.97E-11			
	598	762940.1	4092345	8.24E-10	8.97E-10	3.17E-10	2.04E-09	1.29E-10			3.17E-10	6.88E-11	6.84E-11	2.10E-11	
_	599	762944.7	4092318	8.06E-10	8.78E-10	3.10E-10	1.99E-09	1.26E-10	1.42E-10	_		6.73E-11	6.69E-11	2.05E-11	
		762949.3	4092291	7.88E-10	8.58E-10	3.04E-10	1.95E-09	1.23E-10	1.39E-10		3.10E-10	6.58E-11	6.54E-11	2.01E-11	
		762953.9	4092263	7.70E-10	8.38E-10	2.96E-10	1.90E-09	1.20E-10	1.36E-10		3.03E-10	6.43E-11	6.39E-11	1.96E-11	
		762958.4	4092236	7.50E-10	8.17E-10	2.89E-10	1.86E-09	1.17E-10	1.33E-10	4.57E-11		6.27E-11		1.91E-11	
		762936.7	4092372		9.18E-10	3.25E-10	2.09E-09		1.49E-10				7.00E-11		
		762740.7	4092329	6.30E-10	6.86E-10	2.43E-10	1.56E-09		1.11E-10				5.23E-11		
		762745.1	4092303	6.19E-10	6.74E-10	2.38E-10	1.53E-09		1.09E-10				5.14E-11		
		762749.5	4092277	6.09E-10	6.62E-10	2.34E-10	1.51E-09		1.08E-10				5.05E-11		
		762753.9	4092251	5.98E-10	6.51E-10	2.30E-10	1.48E-09		1.06E-10	3.64E-11			4.96E-11		
		762758.3	4092225	5.87E-10	6.39E-10	2.26E-10	1.45E-09		1.04E-10				4.87E-11		
		762762.7	4092199	5.76E-10	6.27E-10	2.22E-10	1.43E-09		1.02E-10				4.78E-11		
		762767.1	4092173	5.65E-10	6.15E-10	2.17E-10	1.40E-09		9.98E-11				4.69E-11		
		762737.4	4092356	6.43E-10	7.00E-10	2.48E-10	1.59E-09		1.14E-10				5.34E-11		
17	712	762541.5	4092312	5.06E-10	5.51E-10	1.95E-10	1.25E-09	7.91E-11	8.95E-11	3.08E-11	1.99E-10	4.23E-11	4.20E-11	1.29E-11	9.72E-11

1713	762546	4092285	4.99E-10	5.43E-10	1.92E-10	1.23E-09		8.81E-11				4.14E-11		
1714	762550.6	4092258	4.91E-10	5.35E-10	1.89E-10	1.21E-09	7.67E-11	8.68E-11	2.99E-11		4.10E-11		1.25E-11	
1715	762555.1	4092231	4.84E-10	5.27E-10	1.86E-10	1.20E-09	7.56E-11	8.55E-11	2.95E-11		4.04E-11	4.02E-11	1.23E-11	
1716	762559.7	4092204	4.77E-10	5.19E-10	1.84E-10	1.18E-09	7.45E-11	8.43E-11	2.90E-11		3.98E-11		1.22E-11	
1717	762564.2	4092177	4.70E-10	5.12E-10	1.81E-10	1.16E-09	7.34E-11	8.31E-11	2.86E-11		3.93E-11		1.20E-11	
1718	762568.7	4092150	4.63E-10	5.04E-10	1.78E-10	1.14E-09	7.23E-11	8.18E-11	2.82E-11	1.82E-10	3.87E-11	3.84E-11	1.18E-11	8.89E-11
1719	762573.3	4092123	4.55E-10	4.95E-10	1.75E-10	1.12E-09	7.10E-11	8.04E-11	2.77E-11	1.79E-10	3.80E-11	3.78E-11	1.16E-11	8.73E-11
1720	762538.1	4092339	5.15E-10	5.61E-10	1.98E-10	1.27E-09	8.05E-11	9.11E-11	3.14E-11	2.03E-10	4.30E-11	4.28E-11	1.31E-11	9.90E-11
1721	762342.1	4092295	4.21E-10	4.59E-10	1.62E-10	1.04E-09	6.58E-11	7.45E-11	2.56E-11	1.66E-10	3.52E-11	3.50E-11	1.07E-11	8.09E-11
1722	762346.5	4092269	4.16E-10	4.53E-10	1.60E-10	1.03E-09	6.50E-11	7.35E-11	2.53E-11	1.64E-10	3.47E-11	3.46E-11	1.06E-11	7.99E-11
1723	762350.9	4092243	4.11E-10	4.48E-10	1.58E-10	1.02E-09	6.42E-11	7.27E-11	2.50E-11	1.62E-10	3.43E-11	3.41E-11	1.05E-11	7.90E-11
1724	762355.4	4092217	4.06E-10	4.42E-10	1.57E-10	1.01E-09	6.35E-11	7.18E-11	2.47E-11	1.60E-10	3.39E-11	3.37E-11	1.04E-11	7.80E-11
1725	762359.8	4092191	4.02E-10	4.37E-10	1.55E-10	9.94E-10	6.28E-11	7.10E-11	2.44E-11	1.58E-10	3.36E-11	3.34E-11	1.02E-11	7.71E-11
1726	762364.2	4092165	3.98E-10	4.33E-10	1.53E-10	9.84E-10	6.21E-11	7.03E-11	2.42E-11	1.57E-10	3.32E-11	3.30E-11	1.01E-11	7.63E-11
1727	762368.6	4092139	3.93E-10	4.28E-10	1.51E-10	9.72E-10	6.14E-11	6.94E-11	2.39E-11	1.55E-10	3.28E-11	3.26E-11	1.00E-11	7.54E-11
1728	762373	4092112	3.88E-10	4.23E-10	1.50E-10	9.60E-10	6.06E-11	6.86E-11	2.36E-11	1.53E-10	3.24E-11	3.22E-11	9.89E-12	7.45E-11
1729	762377.4	4092086	3.83E-10	4.17E-10	1.47E-10	9.47E-10	5.98E-11	6.76E-11	2.33E-11	1.51E-10	3.20E-11	3.18E-11	9.75E-12	7.35E-11
1730	762338.8	4092322	4.28E-10	4.66E-10	1.65E-10	1.06E-09	6.68E-11	7.56E-11	2.60E-11	1.68E-10	3.57E-11	3.55E-11	1.09E-11	8.22E-11
1731	762142.9	4092279	3.60E-10	3.92E-10	1.39E-10	8.91E-10	5.62E-11	6.36E-11	2.19E-11	1.42E-10	3.01E-11	2.99E-11	9.17E-12	6.91E-11
1732	762147.4	4092252	3.56E-10	3.87E-10	1.37E-10	8.80E-10	5.56E-11	6.29E-11	2.17E-11	1.40E-10	2.97E-11	2.95E-11	9.07E-12	6.83E-11
1733	762151.9	4092225	3.52E-10	3.83E-10	1.36E-10	8.71E-10	5.50E-11	6.22E-11	2.14E-11	1.39E-10	2.94E-11	2.92E-11	8.97E-12	6.76E-11
1734	762156.4	4092198	3.49E-10	3.80E-10	1.34E-10	8.63E-10	5.45E-11	6.16E-11	2.12E-11	1.37E-10	2.91E-11	2.90E-11	8.89E-12	6.70E-11
1735	762161	4092171	3.46E-10	3.76E-10	1.33E-10	8.55E-10	5.40E-11	6.11E-11	2.10E-11	1.36E-10	2.89E-11	2.87E-11	8.81E-12	6.64E-11
1736	762165.5	4092144	3.43E-10	3.73E-10	1.32E-10	8.48E-10	5.35E-11	6.06E-11	2.09E-11	1.35E-10	2.86E-11	2.85E-11	8.73E-12	6.58E-11
1737	762170	4092118	3.40E-10	3.70E-10	1.31E-10	8.40E-10	5.30E-11	6.00E-11	2.07E-11	1.34E-10	2.84E-11	2.82E-11	8.66E-12	6.52E-11
1738	762174.5	4092091	3.36E-10	3.66E-10	1.30E-10	8.32E-10	5.25E-11	5.94E-11	2.05E-11	1.32E-10	2.81E-11	2.79E-11	8.57E-12	6.46E-11
1739	762179.1	4092064	3.32E-10	3.62E-10	1.28E-10	8.22E-10	5.19E-11	5.87E-11	2.02E-11	1.31E-10	2.78E-11	2.76E-11	8.47E-12	6.38E-11
1740	762183.6	4092037	3.28E-10	3.57E-10	1.26E-10	8.12E-10	5.13E-11	5.80E-11	2.00E-11	1.29E-10	2.74E-11	2.72E-11	8.36E-12	6.30E-11
1741	762139.5	4092306	3.65E-10	3.97E-10	1.40E-10	9.02E-10	5.70E-11	6.44E-11	2.22E-11	1.44E-10	3.05E-11	3.03E-11	9.29E-12	7.00E-11
1742	763582.6	4092451	5.23E-09	5.69E-09	2.01E-09	1.29E-08	8.17E-10	9.24E-10	3.18E-10	2.06E-09	4.37E-10	4.34E-10	1.33E-10	1.00E-09
1743	763581.7	4092476	5.47E-09	5.96E-09	2.11E-09	1.35E-08	8.55E-10	9.67E-10	3.33E-10	2.15E-09	4.57E-10	4.54E-10	1.39E-10	1.05E-09
1744	763532.7	4092449	4.09E-09	4.45E-09	1.58E-09	1.01E-08	6.39E-10	7.23E-10	2.49E-10		3.42E-10	3.40E-10	1.04E-10	7.86E-10
1745	763531.7	4092474	4.26E-09	4.64E-09	1.64E-09	1.05E-08	6.66E-10	7.53E-10	2.59E-10	1.68E-09	3.56E-10	3.54E-10	1.09E-10	8.18E-10
1746	763530.8	4092499	4.41E-09	4.80E-09	1.70E-09	1.09E-08	6.89E-10	7.80E-10	2.68E-10	1.74E-09	3.68E-10	3.66E-10	1.12E-10	8.47E-10
	763432.7		2.75E-09	2.99E-09	1.06E-09	6.79E-09		4.85E-10				2.28E-10		
	763431.8	4092470		3.09E-09	1.09E-09	7.03E-09		5.02E-10				2.36E-10		
	763430.9		2.93E-09	3.19E-09	1.13E-09	7.24E-09		5.17E-10				2.43E-10		
	763332.8	4092442		2.18E-09	7.73E-10	4.96E-09		3.55E-10				1.67E-10		
	763331.9	4092467	2.07E-09	2.25E-09	7.96E-10	5.11E-09	3.23E-10	3.65E-10				1.72E-10		
	763331.9		2.12E-09	2.31E-09	8.18E-10	5.25E-09	3.32E-10		1.29E-10			1.76E-10		
	763233.7		1.53E-09	1.66E-09	5.89E-10	3.78E-09	2.39E-10	2.70E-10				1.27E-10		
	763233.7	4092463	1.60E-09	1.74E-09	6.15E-10	3.95E-09		2.82E-10				1.32E-10		
1755	763231		1.64E-09	1.74E-09	6.30E-10	4.04E-09		2.89E-10				1.36E-10		
	763133.9	4092418		1.34E-09	4.74E-10	3.05E-09		2.18E-10				1.02E-10		
1/50	, 03133.3	+022410	1.236-03	1.57L-05	4.74L-10	J.03L-03	1.72∟-10	2.10L-1U	7.JUL-11	4.03L 10	1.03L-10	1.02L-10	J.17L-11	2.57 L-10

1757	763132	4092459	1.28E-09	1.40E-09	4.94E-10	3.18E-09	2.01E-10	2.27E-10	7.81E-11	5.06E-10	1.07E-10	1.07E-10	3.27E-11	2.47E-10
1758	763131.1	4092484	1.31E-09	1.43E-09	5.06E-10	3.25E-09	2.05E-10	2.32E-10	7.99E-11	5.17E-10	1.10E-10	1.09E-10	3.35E-11	2.52E-10
1759	762934.3	4092406	8.70E-10	9.47E-10	3.35E-10	2.15E-09	1.36E-10	1.54E-10	5.30E-11	3.43E-10	7.27E-11	7.23E-11	2.22E-11	1.67E-10
1760	762932.1	4092452	9.06E-10	9.86E-10	3.49E-10	2.24E-09	1.41E-10	1.60E-10	5.51E-11	3.57E-10	7.56E-11	7.52E-11	2.31E-11	1.74E-10
1761	762931.2	4092477	9.24E-10	1.01E-09	3.56E-10	2.29E-09	1.44E-10	1.63E-10	5.63E-11	3.64E-10	7.72E-11	7.67E-11	2.36E-11	1.77E-10
1762	762734.2	4092403	6.68E-10	7.27E-10	2.57E-10	1.65E-09	1.04E-10	1.18E-10	4.07E-11	2.63E-10	5.58E-11	5.55E-11	1.70E-11	1.28E-10
1763	762732.3	4092444	6.90E-10	7.51E-10	2.66E-10	1.71E-09	1.08E-10	1.22E-10	4.20E-11	2.72E-10	5.76E-11	5.73E-11	1.76E-11	1.33E-10
1764	762731.4	4092469	7.03E-10	7.66E-10	2.71E-10	1.74E-09	1.10E-10	1.24E-10	4.28E-11	2.77E-10	5.87E-11	5.84E-11	1.79E-11	1.35E-10
1765	762534.5	4092392	5.35E-10	5.83E-10	2.06E-10	1.32E-09	8.36E-11	9.46E-11	3.26E-11	2.11E-10	4.47E-11	4.45E-11	1.36E-11	1.03E-10
1766	762532.4	4092437	5.53E-10	6.02E-10	2.13E-10	1.37E-09	8.64E-11	9.77E-11	3.36E-11	2.18E-10	4.62E-11	4.59E-11	1.41E-11	1.06E-10
1767	762531.5	4092462	5.63E-10	6.12E-10	2.17E-10	1.39E-09	8.79E-11	9.94E-11	3.42E-11	2.22E-10	4.70E-11	4.67E-11	1.43E-11	1.08E-10
1768	762334.9	4092382	4.45E-10	4.84E-10	1.71E-10	1.10E-09	6.94E-11	7.86E-11	2.71E-11	1.75E-10	3.71E-11	3.69E-11	1.13E-11	8.54E-11
1769	762336.2	4092359	4.38E-10	4.77E-10	1.69E-10	1.08E-09	6.84E-11	7.74E-11	2.67E-11	1.72E-10	3.66E-11	3.64E-11	1.12E-11	8.41E-11
1770	762333.5	4092405	4.51E-10	4.91E-10	1.74E-10	1.12E-09	7.05E-11	7.98E-11	2.75E-11	1.78E-10	3.77E-11	3.75E-11	1.15E-11	8.67E-11
1771	762332.6	4092430	4.59E-10	5.00E-10	1.77E-10	1.14E-09	7.17E-11	8.11E-11	2.79E-11	1.81E-10	3.83E-11	3.81E-11	1.17E-11	8.81E-11
1772	762331.6	4092454	4.67E-10	5.08E-10	1.80E-10	1.15E-09	7.29E-11	8.24E-11	2.84E-11	1.84E-10	3.90E-11	3.87E-11	1.19E-11	8.96E-11
1773	762134.8	4092378	3.80E-10	4.14E-10	1.46E-10	9.41E-10	5.94E-11	6.72E-11	2.31E-11	1.50E-10	3.18E-11	3.16E-11	9.69E-12	7.30E-11
1774	762137.1	4092339	3.72E-10	4.04E-10	1.43E-10	9.19E-10	5.80E-11	6.56E-11	2.26E-11	1.46E-10	3.10E-11	3.08E-11	9.47E-12	7.13E-11
1775	762132.7	4092422	3.91E-10	4.25E-10	1.51E-10	9.67E-10	6.10E-11	6.91E-11	2.38E-11	1.54E-10	3.26E-11	3.24E-11	9.96E-12	7.50E-11
1776	762131.8	4092447	3.97E-10	4.32E-10	1.53E-10	9.82E-10	6.20E-11	7.01E-11	2.41E-11	1.56E-10	3.31E-11	3.29E-11	1.01E-11	7.62E-11
1777	764025.2	4092591	4.41E-08	4.80E-08	1.70E-08	1.09E-07	6.89E-09	7.79E-09	2.68E-09	1.74E-08	3.68E-09	3.66E-09	1.12E-09	8.47E-09
1778	764049.8	4092591	4.36E-08	4.74E-08	1.68E-08	1.08E-07	6.81E-09	7.70E-09	2.65E-09	1.72E-08	3.64E-09	3.62E-09	1.11E-09	8.37E-09
1779	764074.4	4092592	4.25E-08	4.63E-08	1.64E-08	1.05E-07	6.64E-09	7.51E-09	2.59E-09	1.67E-08	3.55E-09	3.53E-09	1.08E-09	8.17E-09
1780	764098.9	4092593	4.09E-08	4.45E-08	1.58E-08	1.01E-07	6.39E-09	7.23E-09	2.49E-09	1.61E-08	3.42E-09	3.40E-09	1.04E-09	7.85E-09
1781	764123.5	4092593	3.86E-08	4.21E-08	1.49E-08	9.56E-08	6.03E-09	6.83E-09	2.35E-09	1.52E-08	3.23E-09	3.21E-09	9.84E-10	7.42E-09
1782	764148.1	4092594	3.57E-08	3.88E-08	1.37E-08	8.82E-08	5.57E-09	6.30E-09	2.17E-09	1.40E-08	2.98E-09	2.96E-09	9.09E-10	6.85E-09
1783	764172.7	4092595	3.21E-08	3.49E-08	1.24E-08	7.94E-08	5.01E-09	5.67E-09	1.95E-09	1.26E-08	2.68E-09	2.66E-09	8.18E-10	6.16E-09
1784	764197.3	4092595	2.83E-08	3.08E-08	1.09E-08	7.00E-08	4.42E-09	5.00E-09	1.72E-09	1.11E-08	2.36E-09	2.35E-09	7.21E-10	5.44E-09
1785	764024.5	4092616	3.34E-08	3.63E-08	1.29E-08	8.25E-08	5.21E-09	5.90E-09	2.03E-09	1.31E-08	2.79E-09	2.77E-09	8.50E-10	6.41E-09
1786	764049.1	4092616	3.28E-08	3.57E-08	1.26E-08	8.11E-08	5.12E-09	5.79E-09	1.99E-09	1.29E-08	2.74E-09	2.72E-09	8.35E-10	6.29E-09
1787	764073.7	4092617	3.18E-08	3.46E-08	1.22E-08	7.86E-08	4.96E-09	5.61E-09	1.93E-09	1.25E-08	2.65E-09	2.64E-09	8.10E-10	6.10E-09
1788	764098.2	4092618	3.04E-08	3.31E-08	1.17E-08	7.51E-08	4.74E-09	5.37E-09	1.85E-09	1.20E-08	2.54E-09	2.52E-09	7.74E-10	5.83E-09
1789	764122.8	4092618	2.85E-08	3.11E-08	1.10E-08	7.06E-08	4.46E-09	5.04E-09	1.74E-09	1.12E-08	2.38E-09	2.37E-09	7.27E-10	5.48E-09
1790	764147.4	4092619	2.63E-08	2.87E-08	1.01E-08	6.51E-08	4.11E-09	4.65E-09	1.60E-09	1.04E-08	2.20E-09	2.19E-09	6.71E-10	5.06E-09
1791	764172	4092620	2.39E-08	2.60E-08	9.21E-09	5.92E-08	3.73E-09	4.23E-09	1.46E-09	9.42E-09	2.00E-09	1.99E-09	6.09E-10	4.59E-09
1792	764196.6		2.15E-08	2.34E-08	8.28E-09	5.32E-08	3.36E-09	3.80E-09	1.31E-09	8.47E-09	1.80E-09	1.79E-09	5.48E-10	4.13E-09
1793	764023.1	4092665	2.11E-08	2.29E-08	8.11E-09	5.21E-08	3.29E-09	3.72E-09	1.28E-09	8.29E-09	1.76E-09	1.75E-09	5.36E-10	4.04E-09
	764047.7	4092666	2.05E-08	2.23E-08	7.88E-09	5.06E-08	3.20E-09	3.62E-09	1.25E-09	8.06E-09	1.71E-09	1.70E-09	5.22E-10	3.93E-09
1795	764072.3	4092667	1.97E-08	2.14E-08	7.58E-09	4.87E-08	3.07E-09	3.48E-09	1.20E-09	7.75E-09	1.64E-09	1.63E-09	5.01E-10	3.78E-09
	764096.8	4092668	1.87E-08	2.03E-08	7.20E-09	4.62E-08	2.92E-09	3.30E-09	1.14E-09				4.76E-10	
1797	764121.4	4092668	1.76E-08	1.91E-08	6.76E-09	4.34E-08	2.74E-09	3.10E-09	1.07E-09				4.47E-10	
1798	764146		1.63E-08	1.78E-08	6.30E-09	4.04E-08		2.89E-09	9.95E-10				4.17E-10	
	764170.6	4092670		1.65E-08	5.83E-09	3.74E-08		2.67E-09					3.86E-10	
	764195.2	4092670		1.52E-08	5.38E-09	3.46E-08		2.47E-09					3.56E-10	
_555						31.10= 00		00	2.2.2.2.2.0				2.2.2.	

1801	763805	4092701	1.39E-08	1.51E-08	5.35E-09	3.44E-08	2.17E-09	2.45E-09	8.45E-10	5.47E-09	1.16E-09	1.15E-09	3.54E-10 2.67E-09
1802	763764.9	4092683	1.35E-08	1.47E-08	5.19E-09	3.33E-08	2.10E-09	2.38E-09	8.20E-10	5.31E-09	1.13E-09	1.12E-09	3.43E-10 2.59E-09
1803	763724.8	4092665	1.22E-08	1.33E-08	4.71E-09	3.02E-08	1.91E-09	2.16E-09	7.44E-10	4.81E-09	1.02E-09	1.01E-09	3.11E-10 2.35E-09
1804	763677	4092626	1.03E-08	1.12E-08	3.96E-09	2.54E-08	1.61E-09	1.82E-09	6.25E-10	4.05E-09	8.58E-10	8.53E-10	2.62E-10 1.97E-09
1805	764021.7	4092715	1.44E-08	1.57E-08	5.55E-09	3.57E-08	2.25E-09	2.55E-09	8.78E-10	5.68E-09	1.20E-09	1.20E-09	3.67E-10 2.77E-09
1806	764046.3	4092716	1.39E-08	1.52E-08	5.36E-09	3.45E-08	2.18E-09	2.46E-09	8.48E-10	5.48E-09	1.16E-09	1.16E-09	3.55E-10 2.67E-09
1807	764070.9	4092717	1.33E-08	1.45E-08	5.14E-09	3.30E-08	2.08E-09	2.36E-09	8.11E-10	5.25E-09	1.11E-09	1.11E-09	3.40E-10 2.56E-09
1808	764095.4	4092718	1.27E-08	1.38E-08	4.88E-09	3.13E-08	1.98E-09	2.24E-09	7.71E-10	4.99E-09	1.06E-09	1.05E-09	3.23E-10 2.43E-09
1809	764120	4092718	1.20E-08	1.30E-08	4.61E-09	2.96E-08	1.87E-09	2.12E-09	7.29E-10	4.71E-09	1.00E-09	9.94E-10	3.05E-10 2.30E-09
1810	764144.6	4092719	1.13E-08	1.23E-08	4.34E-09	2.79E-08	1.76E-09	1.99E-09	6.86E-10	4.44E-09	9.41E-10	9.36E-10	2.87E-10 2.16E-09
1811	764169.2	4092720	1.06E-08	1.15E-08	4.08E-09	2.62E-08	1.65E-09	1.87E-09	6.44E-10	4.17E-09	8.84E-10	8.79E-10	2.70E-10 2.03E-09
1812	764193.8	4092720	9.94E-09	1.08E-08	3.83E-09	2.46E-08	1.55E-09	1.76E-09	6.05E-10	3.91E-09	8.30E-10	8.25E-10	2.53E-10 1.91E-09
1813	763801.7	4092750	1.09E-08	1.19E-08	4.22E-09	2.71E-08	1.71E-09	1.93E-09	6.66E-10	4.31E-09	9.14E-10	9.09E-10	2.79E-10 2.10E-09
1814	763779.8	4092740	1.10E-08	1.19E-08	4.22E-09	2.71E-08	1.71E-09	1.94E-09	6.67E-10	4.32E-09	9.16E-10	9.11E-10	2.80E-10 2.11E-09
1815	763757.8	4092730	1.09E-08	1.18E-08	4.18E-09	2.68E-08	1.69E-09	1.92E-09	6.60E-10	4.27E-09	9.06E-10	9.01E-10	2.76E-10 2.08E-09
1816	763735.9	4092720	1.06E-08	1.15E-08	4.07E-09	2.61E-08	1.65E-09	1.87E-09	6.43E-10	4.16E-09	8.83E-10	8.78E-10	2.69E-10 2.03E-09
1817	763714	4092711	1.01E-08	1.10E-08	3.90E-09	2.50E-08	1.58E-09	1.79E-09	6.16E-10	3.99E-09	8.45E-10	8.40E-10	2.58E-10 1.94E-09
1818	763692	4092701	9.53E-09	1.04E-08	3.67E-09	2.36E-08	1.49E-09	1.68E-09	5.80E-10	3.75E-09	7.96E-10	7.91E-10	2.43E-10 1.83E-09
1819	763670.1	4092691	8.83E-09	9.62E-09	3.40E-09	2.19E-08	1.38E-09	1.56E-09	5.38E-10	3.48E-09	7.38E-10	7.34E-10	2.25E-10 1.70E-09
1820	763639.7	4092658	8.02E-09	8.73E-09	3.09E-09	1.98E-08	1.25E-09	1.42E-09	4.88E-10	3.16E-09	6.70E-10	6.66E-10	2.04E-10 1.54E-09
1821	763631.3	4092636	7.86E-09	8.56E-09	3.03E-09	1.95E-08	1.23E-09	1.39E-09	4.79E-10	3.10E-09	6.57E-10	6.53E-10	2.00E-10 1.51E-09
1822	764020.3	4092765	1.04E-08	1.14E-08	4.02E-09	2.58E-08	1.63E-09	1.84E-09	6.35E-10		8.72E-10	8.67E-10	2.66E-10 2.00E-09
1823	764044.9	4092766	1.01E-08	1.09E-08	3.87E-09	2.49E-08	1.57E-09	1.78E-09	6.12E-10		8.39E-10	8.35E-10	2.56E-10 1.93E-09
1824	764069.5	4092767	9.63E-09	1.05E-08	3.71E-09	2.38E-08	1.50E-09	1.70E-09	5.86E-10		8.04E-10	7.99E-10	2.45E-10 1.85E-09
1825	764094	4092768	9.19E-09	1.00E-08	3.54E-09	2.27E-08	1.43E-09	1.62E-09	5.59E-10		7.67E-10	7.63E-10	2.34E-10 1.76E-09
1826	763801.2	4092800	8.82E-09	9.60E-09	3.40E-09	2.18E-08	1.38E-09	1.56E-09	5.37E-10		7.36E-10	7.32E-10	2.25E-10 1.69E-09
1827	763780.1	4092791	8.92E-09	9.70E-09	3.43E-09	2.21E-08	1.39E-09	1.58E-09	5.42E-10		7.44E-10	7.40E-10	2.27E-10 1.71E-09
1828	763759.1	4092782	8.93E-09	9.72E-09	3.44E-09	2.21E-08	1.39E-09	1.58E-09	5.43E-10		7.46E-10	7.42E-10	2.28E-10 1.71E-09
1829	763738	4092772	8.86E-09	9.64E-09	3.41E-09	2.19E-08	1.38E-09	1.56E-09	5.39E-10		7.39E-10	7.35E-10	2.26E-10 1.70E-09
1830	763717	4092763	8.68E-09	9.44E-09	3.34E-09	2.15E-08	1.36E-09	1.53E-09			7.25E-10	7.20E-10	2.21E-10 1.67E-09
1831	763695.9	4092753	8.39E-09	9.13E-09	3.23E-09	2.08E-08	1.31E-09	1.48E-09	5.11E-10		7.01E-10	6.97E-10	2.14E-10 1.61E-09
1832	763674.8	4092744	8.01E-09	8.71E-09	3.08E-09	1.98E-08	1.25E-09	1.41E-09	4.87E-10		6.69E-10	6.65E-10	2.04E-10 1.54E-09
1833	763653.8	4092734	7.55E-09	8.22E-09	2.91E-09	1.87E-08	1.18E-09	1.33E-09	4.59E-10		6.30E-10	6.27E-10	1.92E-10 1.45E-09
1834	763632.7	4092725	7.05E-09	7.67E-09	2.71E-09	1.74E-08	1.10E-09	1.25E-09	4.29E-10		5.89E-10	5.85E-10	1.80E-10 1.35E-09
	763603.6	4092694	6.48E-09	7.06E-09	2.50E-09	1.60E-08		1.15E-09					1.65E-10 1.25E-09
	763595.5	4092672	6.39E-09	6.95E-09	2.46E-09	1.58E-08		1.13E-09	3.89E-10		5.33E-10		1.63E-10 1.23E-09
	763533.9	4092521		5.13E-09	1.82E-09	1.17E-08		8.33E-10					1.20E-10 9.06E-10
	764018.9	4092321	7.89E-09	8.59E-09	3.04E-09	1.17E-08 1.95E-08		1.39E-09	4.80E-10				2.01E-10
	764043.5				2.92E-09				4.62E-10				1.94E-10 1.46E-09
	764043.5	4092816 4092817	7.59E-09 7.29E-09	8.27E-09 7.94E-09	2.92E-09 2.81E-09	1.88E-08	1.19E-09 1.14E-09	1.34E-09	4.62E-10 4.44E-10		6.34E-10 6.09E-10		1.86E-10 1.40E-09
	764068.1					1.80E-08							
	764092.6 764215.6	4092818	6.99E-09	7.61E-09	2.69E-09	1.73E-08	1.09E-09		4.25E-10		5.84E-10		1.78E-10 1.34E-09 1.42E-10 1.07E-09
		4092821	5.57E-09	6.06E-09	2.14E-09	1.38E-08		9.84E-10	3.39E-10		4.65E-10		
	763797.8	4092900	6.02E-09	6.55E-09	2.32E-09	1.49E-08		1.06E-09	3.66E-10				1.53E-10 1.16E-09
1844	763776.2	4092890	6.16E-09	6.70E-09	2.37E-09	1.52E-08	9.02E-10	1.09E-09	3.75E-10	2.43E-U9	5.14E-1U	3.11E-10	1.57E-10 1.18E-09

1845	763754.6	4092881	6.26E-09	6.81E-09	2.41E-09	1.55E-08	9.78E-10	1.11E-09	3.81E-10	2.46E-09	5.23E-10	5.20E-10	1.60E-10	1.20E-09
1846	763733	4092871	6.31E-09	6.87E-09	2.43E-09	1.56E-08	9.86E-10	1.12E-09	3.84E-10	2.49E-09	5.27E-10	5.24E-10	1.61E-10	1.21E-09
1847	763711.5	4092861	6.32E-09	6.88E-09	2.43E-09	1.56E-08	9.87E-10	1.12E-09	3.84E-10	2.49E-09	5.27E-10	5.24E-10	1.61E-10	1.21E-09
1848	763689.9	4092852	6.26E-09	6.82E-09	2.41E-09	1.55E-08	9.78E-10	1.11E-09	3.81E-10	2.47E-09	5.23E-10	5.20E-10	1.60E-10	1.20E-09
1849	763668.3	4092842	6.14E-09	6.69E-09	2.37E-09	1.52E-08	9.60E-10	1.09E-09	3.74E-10	2.42E-09	5.13E-10	5.10E-10	1.57E-10	1.18E-09
1850	763646.7	4092832	5.97E-09	6.49E-09	2.30E-09	1.48E-08	9.32E-10	1.05E-09	3.63E-10	2.35E-09	4.98E-10	4.95E-10	1.52E-10	1.15E-09
1851	763625.1	4092822	5.74E-09	6.24E-09	2.21E-09	1.42E-08	8.96E-10	1.01E-09	3.49E-10	2.26E-09	4.79E-10	4.76E-10	1.46E-10	1.10E-09
1852	763603.5	4092813	5.46E-09	5.95E-09	2.10E-09	1.35E-08	8.53E-10	9.65E-10	3.32E-10	2.15E-09	4.56E-10	4.54E-10	1.39E-10	1.05E-09
1853	763581.9	4092803	5.17E-09	5.62E-09	1.99E-09	1.28E-08	8.07E-10	9.13E-10	3.14E-10	2.03E-09	4.31E-10	4.29E-10	1.32E-10	9.92E-10
1854	763560.3	4092793	4.86E-09	5.29E-09	1.87E-09	1.20E-08	7.59E-10	8.59E-10	2.96E-10	1.91E-09	4.06E-10	4.04E-10	1.24E-10	9.33E-10
1855	763530.4	4092761	4.53E-09	4.93E-09	1.75E-09	1.12E-08	7.08E-10	8.01E-10	2.76E-10	1.78E-09	3.78E-10	3.76E-10	1.15E-10	8.70E-10
1856	763522.1	4092739	4.48E-09	4.88E-09	1.73E-09	1.11E-08	7.00E-10	7.92E-10	2.73E-10	1.77E-09	3.75E-10	3.72E-10	1.14E-10	8.61E-10
1857	763472.4	4092606	3.79E-09	4.12E-09	1.46E-09	9.37E-09	5.92E-10	6.70E-10	2.31E-10	1.49E-09	3.16E-10	3.15E-10	9.66E-11	7.28E-10
1858	763464.1	4092584	3.62E-09	3.94E-09	1.39E-09	8.95E-09	5.65E-10	6.39E-10	2.20E-10	1.42E-09	3.02E-10	3.00E-10	9.22E-11	6.95E-10
1859	763455.8	4092562	3.45E-09	3.75E-09	1.33E-09	8.52E-09	5.38E-10	6.09E-10	2.10E-10	1.36E-09	2.88E-10	2.86E-10	8.78E-11	6.61E-10
1860	763447.5	4092540	3.27E-09	3.56E-09	1.26E-09	8.09E-09	5.11E-10	5.78E-10	1.99E-10	1.29E-09	2.73E-10	2.72E-10	8.33E-11	6.28E-10
1861	763439.2	4092517	3.10E-09	3.37E-09	1.19E-09	7.66E-09	4.84E-10	5.47E-10	1.88E-10	1.22E-09	2.59E-10	2.57E-10	7.89E-11	5.95E-10
1862	764016.1	4092915	4.97E-09	5.41E-09	1.91E-09	1.23E-08	7.76E-10	8.78E-10	3.02E-10	1.96E-09	4.15E-10	4.12E-10	1.27E-10	9.54E-10
1863	764040.7	4092916	4.80E-09	5.23E-09	1.85E-09	1.19E-08	7.50E-10	8.48E-10	2.92E-10	1.89E-09	4.01E-10	3.99E-10	1.22E-10	9.22E-10
1864	764065.3	4092917	4.64E-09	5.05E-09	1.79E-09	1.15E-08	7.25E-10	8.20E-10	2.82E-10	1.83E-09	3.88E-10	3.85E-10	1.18E-10	8.91E-10
1865	764089.9	4092917	4.49E-09	4.88E-09	1.73E-09	1.11E-08	7.01E-10	7.93E-10	2.73E-10	1.77E-09	3.75E-10	3.72E-10	1.14E-10	8.61E-10
1866	764212.8	4092921	3.75E-09	4.08E-09	1.45E-09	9.28E-09	5.86E-10	6.63E-10	2.28E-10	1.48E-09	3.13E-10	3.12E-10	9.56E-11	7.20E-10
1867	763794.7	4093000	4.30E-09	4.68E-09	1.66E-09	1.06E-08	6.71E-10	7.59E-10	2.61E-10	1.69E-09	3.59E-10	3.57E-10	1.10E-10	8.25E-10
1868	763772.8	4092990	4.44E-09	4.84E-09	1.71E-09	1.10E-08	6.94E-10	7.85E-10	2.70E-10		3.71E-10	3.69E-10	1.13E-10	
1869	763750.8	4092980	4.56E-09	4.97E-09	1.76E-09	1.13E-08	7.13E-10	8.06E-10	2.78E-10		3.81E-10	3.79E-10	1.16E-10	
1870	763728.9	4092970	4.66E-09	5.07E-09	1.80E-09	1.15E-08	7.28E-10	8.24E-10	2.84E-10		3.89E-10	3.87E-10	1.19E-10	
1871	763707	4092961	4.73E-09	5.15E-09	1.82E-09	1.17E-08	7.39E-10	8.35E-10	2.88E-10		3.95E-10	3.93E-10	1.20E-10	
1872	763685	4092951	4.76E-09	5.18E-09	1.83E-09	1.18E-08	7.44E-10	8.42E-10	2.90E-10		3.98E-10	3.95E-10	1.21E-10	
1873	763663.1	4092941	4.76E-09	5.18E-09	1.83E-09	1.18E-08	7.43E-10	8.41E-10	2.90E-10		3.97E-10	3.95E-10	1.21E-10	
1874	763641.2	4092931	4.72E-09	5.13E-09	1.82E-09	1.17E-08	7.37E-10	8.33E-10	2.87E-10		3.94E-10	3.92E-10	1.20E-10	
1875	763619.2	4092921	4.63E-09	5.04E-09	1.78E-09	1.15E-08	7.23E-10	8.18E-10	2.82E-10		3.87E-10	3.85E-10	1.18E-10	
1876	763597.3	4092911	4.51E-09	4.91E-09	1.74E-09	1.12E-08	7.04E-10	7.97E-10	2.74E-10		3.77E-10	3.74E-10	1.15E-10	
1877	763575.4	4092901	4.36E-09	4.74E-09	1.68E-09	1.08E-08	6.80E-10	7.70E-10	2.65E-10		3.64E-10	3.62E-10	1.11E-10	
_	763553.5	4092891	4.18E-09	4.55E-09	1.61E-09	1.03E-08		7.38E-10	2.54E-10		3.49E-10	3.47E-10	1.06E-10	
	763531.5	4092882		4.34E-09	1.53E-09	9.85E-09		7.04E-10				3.31E-10		
	763509.6	4092872	3.78E-09	4.12E-09	1.46E-09	9.36E-09		6.68E-10			3.16E-10		9.64E-11	
	763487.7	4092862		3.90E-09	1.38E-09	8.87E-09		6.33E-10				2.98E-10		
	763457.3	4092829	3.38E-09	3.68E-09	1.30E-09	8.36E-09		5.97E-10				2.81E-10		
	763448.9	4092807	3.36E-09	3.65E-09	1.29E-09	8.30E-09		5.93E-10	2.04E-10			2.79E-10		
	763406.8	4092694	3.07E-09	3.35E-09	1.18E-09	7.61E-09	4.80E-10		1.87E-10			2.55E-10		
	763398.3	4092672	2.98E-09	3.24E-09	1.15E-09	7.37E-09			1.81E-10			2.47E-10		
	763389.9	4092649	2.87E-09	3.13E-09	1.11E-09	7.11E-09			1.75E-10			2.39E-10		
	763383.5	4092627	2.77E-09	3.01E-09	1.07E-09	6.84E-09			1.68E-10			2.30E-10		
	763373.1	4092604	2.66E-09	2.89E-09	1.07E-09	6.57E-09		4.69E-10				2.30E-10 2.20E-10		
1000	/033/3.1	+032004	2.006-03	2.03E-03	1.026-03	0.37L-03	4.136-10	4.03E-10	1.026-10	1.UJL-UJ	2.225-10	Z.ZUE-1U	0.//[-11	2.105-10

1889	763364.6	4092582	2.55E-09	2.77E-09	9.81E-10	6.30E-09	3.98E-10	4.50E-10	1.55E-10	1.00E-09	2.13E-10	2.11E-10	6.49E-11	4.89E-10
1890	763356.2	4092559	2.44E-09	2.65E-09	9.39E-10	6.03E-09	3.81E-10	4.31E-10	1.48E-10	9.60E-10	2.04E-10	2.02E-10	6.21E-11	4.68E-10
1891	763347.8	4092537	2.33E-09	2.54E-09	8.98E-10	5.77E-09	3.64E-10	4.12E-10	1.42E-10	9.18E-10	1.95E-10	1.94E-10	5.94E-11	4.48E-10
1892	763339.4	4092514	2.23E-09	2.42E-09	8.58E-10	5.51E-09	3.48E-10	3.94E-10	1.36E-10	8.77E-10	1.86E-10	1.85E-10	5.68E-11	4.28E-10
1893	763816.6	4093010	4.14E-09	4.51E-09	1.59E-09	1.02E-08	6.47E-10	7.31E-10	2.52E-10	1.63E-09	3.46E-10	3.44E-10	1.05E-10	7.95E-10
1894	763841.2	4093011	4.09E-09	4.45E-09	1.57E-09	1.01E-08	6.39E-10	7.22E-10	2.49E-10	1.61E-09	3.41E-10	3.39E-10	1.04E-10	7.85E-10
1895	763865.8	4093011	4.02E-09	4.38E-09	1.55E-09	9.95E-09	6.28E-10	7.11E-10	2.45E-10	1.58E-09	3.36E-10	3.34E-10	1.03E-10	7.72E-10
1896	763890.4	4093012	3.94E-09	4.29E-09	1.52E-09	9.76E-09	6.16E-10	6.97E-10	2.40E-10	1.55E-09	3.29E-10	3.27E-10	1.00E-10	7.57E-10
1897	763915	4093013	3.86E-09	4.20E-09	1.48E-09	9.54E-09	6.02E-10	6.81E-10	2.35E-10	1.52E-09	3.22E-10	3.20E-10	9.82E-11	7.40E-10
1898	763939.5	4093013	3.76E-09	4.09E-09	1.45E-09	9.30E-09	5.87E-10	6.64E-10	2.29E-10	1.48E-09	3.14E-10	3.12E-10	9.58E-11	7.22E-10
1899	763964.1	4093014	3.66E-09	3.98E-09	1.41E-09	9.05E-09	5.72E-10	6.47E-10	2.23E-10	1.44E-09	3.06E-10	3.04E-10	9.33E-11	7.03E-10
1900	763988.7	4093015	3.56E-09	3.87E-09	1.37E-09	8.81E-09	5.56E-10	6.29E-10	2.17E-10	1.40E-09	2.97E-10	2.96E-10	9.07E-11	6.84E-10
1901	764013.3	4093015	3.46E-09	3.77E-09	1.33E-09	8.56E-09	5.41E-10	6.11E-10	2.11E-10	1.36E-09	2.89E-10	2.87E-10	8.82E-11	6.64E-10
1902	764037.9	4093016	3.36E-09	3.66E-09	1.30E-09	8.32E-09	5.25E-10	5.94E-10	2.05E-10	1.32E-09	2.81E-10	2.79E-10	8.57E-11	6.46E-10
1903	764062.5	4093017	3.27E-09	3.56E-09	1.26E-09	8.09E-09	5.11E-10	5.78E-10	1.99E-10	1.29E-09	2.73E-10	2.71E-10	8.33E-11	6.28E-10
1904	764087.1	4093017	3.18E-09	3.46E-09	1.22E-09	7.86E-09	4.96E-10	5.61E-10	1.93E-10	1.25E-09	2.65E-10	2.64E-10	8.09E-11	6.10E-10
1905	764111.6	4093018	3.09E-09	3.36E-09	1.19E-09	7.63E-09	4.82E-10	5.45E-10	1.88E-10	1.21E-09	2.58E-10	2.56E-10	7.86E-11	5.92E-10
1906	764136.2	4093019	2.99E-09	3.26E-09	1.15E-09	7.40E-09	4.67E-10	5.29E-10	1.82E-10	1.18E-09	2.50E-10	2.48E-10	7.63E-11	5.75E-10
1907	764160.8	4093019	2.90E-09	3.16E-09	1.12E-09	7.17E-09	4.53E-10	5.12E-10	1.76E-10	1.14E-09	2.42E-10	2.41E-10	7.39E-11	5.57E-10
1908	764185.4	4093020	2.81E-09	3.06E-09	1.08E-09	6.94E-09	4.38E-10	4.96E-10	1.71E-10		2.34E-10	2.33E-10	7.15E-11	5.39E-10
1909	764210	4093021	2.72E-09	2.96E-09	1.05E-09	6.73E-09	4.25E-10	4.81E-10	1.65E-10	1.07E-09	2.27E-10	2.26E-10	6.93E-11	5.22E-10
1910	763791.7	4093100	3.19E-09	3.47E-09	1.23E-09	7.88E-09	4.98E-10	5.63E-10	1.94E-10	1.25E-09	2.66E-10	2.65E-10	8.12E-11	
1911	763769.5	4093090	3.31E-09	3.60E-09	1.27E-09	8.18E-09	5.16E-10	5.84E-10	2.01E-10	1.30E-09	2.76E-10	2.75E-10	8.43E-11	
1912	763747.3	4093080	3.42E-09	3.72E-09	1.32E-09	8.46E-09	5.34E-10	6.04E-10	2.08E-10		2.86E-10	2.84E-10	8.72E-11	
1913	763725.2	4093070	3.52E-09	3.84E-09	1.36E-09	8.72E-09	5.50E-10	6.23E-10	2.14E-10		2.94E-10	2.93E-10	8.98E-11	
1914	763703	4093060	3.61E-09	3.93E-09	1.39E-09	8.94E-09	5.64E-10	6.39E-10	2.20E-10		3.02E-10	3.00E-10	9.21E-11	
1915	763680.9	4093050	3.69E-09	4.01E-09	1.42E-09	9.12E-09	5.76E-10	6.52E-10	2.24E-10		3.08E-10	3.06E-10	9.40E-11	
1916	763658.7	4093040	3.74E-09	4.07E-09	1.44E-09	9.24E-09	5.83E-10	6.60E-10	2.27E-10		3.12E-10	3.10E-10	9.52E-11	
1917	763636.5	4093030	3.76E-09	4.09E-09	1.45E-09	9.30E-09	5.87E-10	6.64E-10	2.29E-10		3.14E-10	3.12E-10	9.58E-11	
1918	763614.4	4093020	3.75E-09	4.08E-09	1.44E-09	9.28E-09	5.86E-10	6.63E-10	2.28E-10		3.13E-10	3.11E-10	9.56E-11	
1919	763592.2	4093010	3.72E-09	4.05E-09	1.43E-09	9.19E-09	5.81E-10	6.57E-10	2.26E-10		3.10E-10	3.09E-10	9.47E-11	
1920	763570.1	4093000	3.65E-09	3.98E-09	1.41E-09	9.04E-09	5.71E-10	6.46E-10	2.22E-10		3.05E-10	3.03E-10	9.31E-11	
1921	763547.9	4092990	3.57E-09	3.88E-09	1.37E-09	8.82E-09	5.57E-10	6.30E-10	2.17E-10		2.98E-10	2.96E-10	9.09E-11	
	763525.7	4092980	3.46E-09	3.76E-09	1.37E 03	8.55E-09	5.40E-10	6.11E-10	2.10E-10		2.89E-10	2.87E-10	8.80E-11	
_	763503.6	4092970		3.62E-09	1.28E-09	8.23E-09		5.88E-10					8.48E-11	
	763481.4	4092960	3.19E-09	3.47E-09	1.23E-09	7.90E-09		5.64E-10					8.13E-11	
	763459.2		3.15E-05 3.05E-09	3.47E-03	1.17E-09	7.55E-09		5.39E-10					7.77E-11	
	763437.1	4092930	2.91E-09	3.17E-09	1.17E-09 1.12E-09	7.20E-09		5.14E-10					7.77E-11 7.41E-11	
	763414.9	4092940	2.77E-09	3.17E-09 3.02E-09	1.12E-09 1.07E-09	6.86E-09		4.90E-10	1.69E-10				7.41E-11 7.07E-11	
	763384.2	4092930	2.77E-09 2.64E-09	3.02E-09 2.87E-09	1.07E-09 1.02E-09	6.52E-09			1.69E-10 1.61E-10		2.32E-10 2.20E-10		6.72E-11	
	7633333.2	4092761		2.70E-09	9.54E-10	6.32E-09 6.13E-09		4.38E-10			2.20E-10 2.07E-10		6.72E-11 6.31E-11	
	763333.2	4092761	2.48E-09 2.42E-09	2.70E-09 2.63E-09	9.34E-10 9.31E-10			4.38E-10 4.27E-10					6.31E-11 6.16E-11	
			2.42E-09 2.35E-09			5.98E-09		4.27E-10 4.15E-10						
	763316.1	4092715		2.56E-09	9.06E-10	5.82E-09							5.99E-11	
1932	763307.6	4092693	2.28E-09	2.48E-09	8.78E-10	5.64E-09	3.30E-10	4.03E-10	1.236-10	0.9/E-1U	1.906-10	1.03E-10	5.81E-11	4.300-10

1933	763299.1	4092670	2.20E-09	2.40E-09	8.49E-10	5.45E-09	3.44E-10	3.90E-10	1.34E-10	8.68E-10	1.84E-10	1.83E-10	5.62E-11	4.23E-10
1934	763290.6	4092647	2.13E-09	2.32E-09	8.20E-10	5.27E-09	3.33E-10	3.76E-10	1.30E-10	8.38E-10	1.78E-10	1.77E-10	5.43E-11	4.09E-10
1935	763282.1	4092624	2.06E-09	2.24E-09	7.92E-10	5.09E-09	3.21E-10	3.63E-10	1.25E-10	8.10E-10	1.72E-10	1.71E-10	5.24E-11	3.95E-10
1936	763273.6	4092602	1.98E-09	2.16E-09	7.64E-10	4.91E-09	3.10E-10	3.51E-10	1.21E-10	7.81E-10	1.66E-10	1.65E-10	5.06E-11	3.81E-10
1937	763265.1	4092579	1.91E-09	2.08E-09	7.37E-10	4.73E-09	2.99E-10	3.38E-10	1.16E-10	7.54E-10	1.60E-10	1.59E-10	4.88E-11	3.68E-10
1938	763256.6	4092556	1.84E-09	2.01E-09	7.10E-10	4.56E-09	2.88E-10	3.26E-10	1.12E-10	7.26E-10	1.54E-10	1.53E-10	4.70E-11	3.54E-10
1939	763248	4092533	1.78E-09	1.93E-09	6.84E-10	4.39E-09	2.77E-10	3.14E-10	1.08E-10	6.99E-10	1.48E-10	1.47E-10	4.52E-11	3.41E-10
1940	763239.5	4092511	1.71E-09	1.86E-09	6.57E-10	4.22E-09	2.66E-10	3.01E-10	1.04E-10	6.72E-10	1.42E-10	1.42E-10	4.35E-11	3.27E-10
1941	763813.8	4093110	3.06E-09	3.33E-09	1.18E-09	7.57E-09	4.78E-10	5.41E-10	1.86E-10	1.21E-09	2.56E-10	2.54E-10	7.80E-11	5.88E-10
1942	763838.4	4093111	3.01E-09	3.28E-09	1.16E-09	7.45E-09	4.70E-10	5.32E-10	1.83E-10	1.19E-09	2.51E-10	2.50E-10	7.67E-11	5.78E-10
1943	763863	4093111	2.95E-09	3.22E-09	1.14E-09	7.31E-09	4.61E-10	5.22E-10	1.80E-10	1.16E-09	2.47E-10	2.45E-10	7.53E-11	5.67E-10
1944	763887.6	4093112	2.89E-09	3.15E-09	1.11E-09	7.16E-09	4.52E-10	5.11E-10	1.76E-10	1.14E-09	2.42E-10	2.40E-10	7.38E-11	5.56E-10
1945	763912.2	4093113	2.83E-09	3.08E-09	1.09E-09	7.01E-09	4.42E-10	5.01E-10	1.72E-10	1.12E-09	2.37E-10	2.35E-10	7.22E-11	5.44E-10
1946	763936.8	4093113	2.77E-09	3.02E-09	1.07E-09	6.85E-09	4.33E-10	4.89E-10	1.69E-10	1.09E-09	2.31E-10	2.30E-10	7.06E-11	5.32E-10
1947	763961.3	4093114	2.71E-09	2.95E-09	1.04E-09	6.70E-09	4.23E-10	4.78E-10	1.65E-10	1.07E-09	2.26E-10	2.25E-10	6.90E-11	5.20E-10
1948	763985.9	4093115	2.64E-09	2.88E-09	1.02E-09	6.54E-09	4.13E-10	4.67E-10	1.61E-10	1.04E-09	2.21E-10	2.20E-10	6.74E-11	5.08E-10
1949	764010.5	4093115	2.58E-09	2.81E-09	9.94E-10	6.39E-09	4.03E-10	4.56E-10	1.57E-10	1.02E-09	2.16E-10	2.14E-10	6.58E-11	4.96E-10
1950	764035.1	4093116	2.52E-09	2.74E-09	9.71E-10	6.23E-09	3.94E-10	4.45E-10	1.53E-10	9.92E-10	2.10E-10	2.09E-10	6.42E-11	4.84E-10
1951	764059.7	4093117	2.46E-09	2.68E-09	9.48E-10	6.09E-09	3.84E-10	4.35E-10	1.50E-10	9.69E-10	2.05E-10	2.04E-10	6.27E-11	4.72E-10
1952	764084.3	4093117	2.40E-09	2.61E-09	9.24E-10	5.94E-09	3.75E-10	4.24E-10	1.46E-10	9.45E-10	2.00E-10	1.99E-10	6.12E-11	4.61E-10
1953	764108.8	4093118	2.34E-09	2.55E-09	9.01E-10	5.78E-09	3.65E-10	4.13E-10	1.42E-10	9.21E-10	1.95E-10	1.94E-10	5.96E-11	4.49E-10
1954	764133.4	4093119	2.28E-09	2.48E-09	8.76E-10	5.63E-09	3.55E-10	4.02E-10	1.38E-10	8.96E-10	1.90E-10	1.89E-10	5.80E-11	4.37E-10
1955	764158	4093119	2.21E-09	2.41E-09	8.52E-10	5.47E-09	3.46E-10	3.91E-10	1.35E-10	8.71E-10	1.85E-10	1.84E-10	5.64E-11	4.25E-10
1956	764182.6	4093120	2.15E-09	2.34E-09	8.28E-10	5.32E-09	3.36E-10	3.80E-10	1.31E-10	8.47E-10	1.80E-10	1.79E-10	5.48E-11	4.13E-10
1957	764207.2	4093121	2.09E-09	2.27E-09	8.05E-10	5.17E-09	3.26E-10	3.69E-10	1.27E-10	8.23E-10	1.74E-10	1.73E-10	5.32E-11	4.01E-10
1958	763788.7	4093200	2.45E-09	2.66E-09	9.42E-10	6.05E-09	3.82E-10	4.32E-10	1.49E-10	9.63E-10	2.04E-10	2.03E-10	6.23E-11	4.70E-10
1959	763766.4	4093190	2.54E-09	2.77E-09	9.78E-10	6.28E-09	3.97E-10	4.49E-10	1.55E-10	1.00E-09	2.12E-10	2.11E-10	6.47E-11	4.88E-10
1960	763744	4093180	2.64E-09	2.87E-09	1.01E-09	6.52E-09	4.12E-10	4.66E-10	1.60E-10	1.04E-09	2.20E-10	2.19E-10	6.71E-11	5.06E-10
1961	763721.7	4093170	2.73E-09	2.97E-09	1.05E-09	6.75E-09	4.26E-10	4.82E-10	1.66E-10	1.07E-09	2.28E-10	2.26E-10	6.95E-11	5.24E-10
1962	763699.4	4093160	2.81E-09	3.06E-09	1.08E-09	6.96E-09	4.40E-10	4.97E-10	1.71E-10	1.11E-09	2.35E-10	2.34E-10	7.17E-11	5.40E-10
1963	763677.1	4093149	2.89E-09	3.15E-09	1.11E-09	7.16E-09	4.52E-10	5.11E-10	1.76E-10	1.14E-09	2.42E-10	2.40E-10	7.37E-11	5.56E-10
1964	763654.7	4093139	2.96E-09	3.22E-09	1.14E-09	7.32E-09	4.62E-10	5.23E-10	1.80E-10	1.17E-09	2.47E-10	2.46E-10	7.54E-11	5.69E-10
1965	763632.4	4093129	3.02E-09	3.28E-09	1.16E-09	7.46E-09	4.71E-10	5.33E-10	1.84E-10	1.19E-09	2.52E-10	2.50E-10	7.68E-11	5.79E-10
1966	763610.1	4093119	3.05E-09	3.32E-09	1.18E-09	7.55E-09	4.77E-10	5.39E-10	1.86E-10	1.20E-09	2.55E-10	2.53E-10	7.78E-11	5.86E-10
1967	763587.7	4093109	3.07E-09	3.34E-09	1.18E-09	7.59E-09	4.79E-10	5.42E-10	1.87E-10	1.21E-09	2.56E-10	2.55E-10	7.81E-11	5.89E-10
1968	763565.4	4093099	3.06E-09	3.33E-09	1.18E-09	7.57E-09	4.78E-10	5.41E-10	1.86E-10	1.20E-09	2.56E-10	2.54E-10	7.80E-11	5.88E-10
1969	763543.1	4093089	3.03E-09	3.30E-09	1.17E-09	7.50E-09	4.74E-10	5.36E-10	1.84E-10	1.19E-09	2.53E-10	2.52E-10	7.73E-11	5.82E-10
	763520.8	4093079	2.98E-09	3.25E-09	1.15E-09	7.38E-09		5.27E-10			2.49E-10	2.48E-10	7.60E-11	5.73E-10
1971	763498.4	4093069	2.92E-09	3.17E-09	1.12E-09	7.21E-09	4.55E-10	5.15E-10	1.77E-10	1.15E-09		2.42E-10		
1972	763476.1	4093059	2.83E-09	3.08E-09	1.09E-09	7.01E-09		5.01E-10			2.37E-10	2.35E-10	7.22E-11	5.44E-10
	763453.8	4093049	2.74E-09	2.98E-09	1.05E-09	6.77E-09			1.67E-10			2.27E-10		
	763431.4	4093039	2.64E-09	2.87E-09	1.02E-09	6.52E-09		4.66E-10				2.19E-10		
	763409.1	4093029	2.53E-09	2.75E-09	9.75E-10	6.26E-09		4.47E-10				2.10E-10		
	763386.8	4093019		2.64E-09	9.34E-10	6.00E-09		4.28E-10				2.01E-10		
_3.3						3.55E	222 20		J		=:=====			

1977	763364.4	4093009	2.32E-09	2.53E-09	8.94E-10	5.74E-09	3.63E-10	4.10E-10	1.41E-10	9.14E-10	1.94E-10	1.93E-10	5.92E-11	4.46E-10
1978	763342.1	4092999	2.23E-09	2.42E-09	8.57E-10	5.51E-09	3.48E-10	3.93E-10	1.35E-10	8.76E-10	1.86E-10	1.85E-10	5.67E-11	4.27E-10
1979	763311.2	4092966	2.13E-09	2.32E-09	8.21E-10	5.27E-09	3.33E-10	3.77E-10	1.30E-10	8.39E-10	1.78E-10	1.77E-10	5.43E-11	4.09E-10
1980	763259.7	4092828	2.05E-09	2.23E-09	7.90E-10	5.07E-09	3.20E-10	3.62E-10	1.25E-10	8.07E-10	1.71E-10	1.70E-10	5.22E-11	3.94E-10
1981	763251.2	4092805	2.01E-09	2.19E-09	7.75E-10	4.98E-09	3.14E-10	3.56E-10	1.23E-10	7.93E-10	1.68E-10	1.67E-10	5.13E-11	3.87E-10
1982	763242.6	4092782	1.97E-09	2.14E-09	7.59E-10	4.87E-09	3.08E-10	3.48E-10	1.20E-10	7.76E-10	1.65E-10	1.64E-10	5.02E-11	3.78E-10
1983	763234	4092759	1.92E-09	2.09E-09	7.40E-10	4.75E-09	3.00E-10	3.39E-10	1.17E-10	7.56E-10	1.60E-10	1.59E-10	4.89E-11	3.69E-10
1984	763225.4	4092736	1.87E-09	2.03E-09	7.19E-10	4.62E-09	2.92E-10	3.30E-10	1.14E-10	7.36E-10	1.56E-10	1.55E-10	4.76E-11	3.59E-10
1985	763216.9	4092713	1.81E-09	1.97E-09	6.99E-10	4.49E-09	2.83E-10	3.21E-10	1.10E-10	7.14E-10	1.52E-10	1.51E-10	4.62E-11	3.48E-10
1986	763208.3	4092690	1.76E-09	1.92E-09	6.78E-10	4.36E-09	2.75E-10	3.11E-10	1.07E-10	6.93E-10	1.47E-10	1.46E-10	4.49E-11	3.38E-10
1987	763199.7	4092668	1.71E-09	1.86E-09	6.58E-10	4.23E-09	2.67E-10	3.02E-10	1.04E-10	6.73E-10	1.43E-10	1.42E-10	4.35E-11	3.28E-10
1988	763191.1	4092645	1.66E-09	1.80E-09	6.38E-10	4.10E-09	2.59E-10	2.93E-10	1.01E-10	6.53E-10	1.38E-10	1.38E-10	4.22E-11	3.18E-10
1989	763182.6	4092622	1.61E-09	1.75E-09	6.19E-10	3.98E-09	2.51E-10	2.84E-10	9.79E-11	6.33E-10	1.34E-10	1.34E-10	4.10E-11	3.09E-10
1990	763174	4092599	1.56E-09	1.70E-09	6.01E-10	3.86E-09	2.44E-10	2.76E-10	9.49E-11	6.14E-10	1.30E-10	1.30E-10	3.98E-11	3.00E-10
1991	763165.4	4092576	1.51E-09	1.65E-09	5.82E-10	3.74E-09	2.36E-10	2.67E-10	9.20E-11	5.95E-10	1.26E-10	1.26E-10	3.85E-11	2.90E-10
1992	763156.8	4092553	1.46E-09	1.59E-09	5.64E-10	3.62E-09	2.29E-10	2.59E-10	8.91E-11	5.76E-10	1.22E-10	1.22E-10	3.73E-11	2.81E-10
1993	763148.2	4092530	1.41E-09	1.54E-09	5.45E-10	3.50E-09	2.21E-10	2.50E-10	8.61E-11	5.57E-10	1.18E-10	1.17E-10	3.60E-11	2.72E-10
1994	763139.7	4092507	1.36E-09	1.49E-09	5.25E-10	3.37E-09	2.13E-10	2.41E-10	8.30E-11	5.37E-10	1.14E-10	1.13E-10	3.48E-11	2.62E-10
1995	763811	4093210	2.35E-09	2.56E-09	9.06E-10	5.82E-09	3.68E-10	4.16E-10	1.43E-10	9.26E-10	1.96E-10	1.95E-10	6.00E-11	4.52E-10
1996	763835.6	4093210	2.31E-09	2.52E-09	8.90E-10	5.72E-09	3.61E-10	4.08E-10	1.41E-10	9.10E-10	1.93E-10	1.92E-10	5.89E-11	4.44E-10
1997	763860.2	4093211	2.27E-09	2.47E-09	8.73E-10	5.61E-09	3.54E-10	4.01E-10	1.38E-10	8.93E-10	1.89E-10	1.88E-10	5.78E-11	4.35E-10
1998	763884.8	4093212	2.23E-09	2.42E-09	8.57E-10	5.51E-09	3.48E-10	3.93E-10	1.35E-10	8.77E-10	1.86E-10	1.85E-10	5.67E-11	4.27E-10
1999	763909.4	4093213	2.19E-09	2.38E-09	8.42E-10	5.41E-09	3.41E-10	3.86E-10	1.33E-10	8.60E-10	1.82E-10	1.81E-10	5.57E-11	4.20E-10
2000	763934	4093213	2.15E-09	2.34E-09	8.26E-10	5.31E-09	3.35E-10	3.79E-10	1.31E-10	8.45E-10	1.79E-10	1.78E-10	5.47E-11	4.12E-10
2001	763958.5	4093214	2.11E-09	2.29E-09	8.11E-10	5.21E-09	3.29E-10	3.72E-10	1.28E-10	8.29E-10	1.76E-10	1.75E-10	5.37E-11	4.04E-10
2002	763983.1	4093215	2.07E-09	2.25E-09	7.96E-10	5.11E-09	3.23E-10	3.65E-10	1.26E-10	8.14E-10	1.73E-10	1.72E-10	5.27E-11	3.97E-10
2003	764007.7	4093215	2.03E-09	2.21E-09	7.81E-10	5.02E-09	3.17E-10	3.58E-10	1.23E-10	7.98E-10	1.69E-10	1.68E-10	5.17E-11	3.89E-10
2004	764032.3	4093216	1.99E-09	2.16E-09	7.66E-10	4.92E-09	3.11E-10	3.51E-10	1.21E-10	7.83E-10	1.66E-10	1.65E-10	5.07E-11	3.82E-10
2005	764056.9	4093217	1.95E-09	2.12E-09	7.50E-10	4.82E-09	3.04E-10	3.44E-10	1.18E-10	7.67E-10	1.63E-10	1.62E-10	4.96E-11	3.74E-10
2006	764081.5	4093217	1.90E-09	2.07E-09	7.34E-10	4.71E-09	2.98E-10	3.37E-10	1.16E-10	7.50E-10	1.59E-10	1.58E-10	4.85E-11	3.66E-10
2007	764106	4093218	1.86E-09	2.02E-09	7.16E-10	4.60E-09	2.90E-10	3.29E-10	1.13E-10	7.32E-10	1.55E-10	1.54E-10	4.74E-11	3.57E-10
2008	764130.6	4093219	1.81E-09	1.97E-09	6.98E-10	4.48E-09	2.83E-10	3.20E-10	1.10E-10	7.13E-10	1.51E-10	1.50E-10	4.62E-11	3.48E-10
2009	764155.2	4093219	1.77E-09	1.92E-09	6.80E-10	4.37E-09	2.76E-10	3.12E-10	1.07E-10	6.95E-10	1.47E-10	1.47E-10	4.50E-11	3.39E-10
2010	764179.8	4093220	1.72E-09	1.87E-09	6.62E-10	4.25E-09	2.68E-10	3.04E-10	1.05E-10	6.77E-10	1.44E-10	1.43E-10	4.38E-11	3.30E-10
2011	764204.4	4093221	1.67E-09	1.82E-09	6.44E-10	4.14E-09	2.61E-10	2.96E-10	1.02E-10	6.59E-10	1.40E-10	1.39E-10	4.26E-11	3.21E-10
2012	763783.7	4093400	1.58E-09	1.72E-09	6.08E-10	3.91E-09	2.47E-10	2.79E-10	9.61E-11	6.22E-10	1.32E-10	1.31E-10	4.02E-11	3.03E-10
2013	763761.9	4093390	1.63E-09	1.77E-09	6.28E-10	4.03E-09	2.55E-10	2.88E-10	9.92E-11	6.42E-10	1.36E-10	1.35E-10	4.15E-11	3.13E-10
2014	763740.1	4093380	1.68E-09	1.83E-09	6.49E-10	4.17E-09	2.63E-10	2.98E-10	1.02E-10	6.63E-10	1.41E-10	1.40E-10	4.29E-11	3.23E-10
2015	763718.3	4093370	1.74E-09	1.89E-09	6.70E-10	4.31E-09	2.72E-10	3.08E-10	1.06E-10	6.85E-10			4.44E-11	
2016	763696.5	4093361	1.80E-09	1.96E-09	6.93E-10	4.45E-09	2.81E-10	3.18E-10	1.10E-10	7.09E-10	1.50E-10	1.49E-10	4.59E-11	3.46E-10
	763674.8	4093351		2.02E-09	7.16E-10	4.60E-09		3.29E-10			1.55E-10	1.54E-10	4.74E-11	3.57E-10
2018	763653	4093341		2.09E-09	7.40E-10	4.75E-09	3.00E-10	3.39E-10	1.17E-10	7.56E-10			4.89E-11	
2019	763631.2	4093331	1.98E-09	2.15E-09	7.62E-10	4.89E-09	3.09E-10	3.50E-10	1.20E-10	7.79E-10	1.65E-10	1.64E-10	5.04E-11	3.80E-10
	763609.4			2.21E-09	7.83E-10	5.03E-09		3.59E-10					5.18E-11	
						· - -			•	- 	-			

2021	763587.6	4093312	2.08E-09	2.27E-09	8.02E-10	5.15E-09	3.25E-10	3.68E-10	1.27E-10	8.20E-10	1.74E-10	1.73E-10	5.31E-11	4.00E-10
2022	763565.9	4093302	2.12E-09	2.31E-09	8.18E-10	5.25E-09	3.32E-10	3.75E-10	1.29E-10	8.36E-10	1.77E-10	1.76E-10	5.41E-11	4.08E-10
2023	763544.1	4093292	2.16E-09	2.35E-09	8.31E-10	5.34E-09	3.37E-10	3.81E-10	1.31E-10	8.49E-10	1.80E-10	1.79E-10	5.50E-11	4.14E-10
2024	763522.3	4093282	2.18E-09	2.37E-09	8.40E-10	5.39E-09	3.41E-10	3.85E-10	1.33E-10	8.59E-10	1.82E-10	1.81E-10	5.56E-11	4.19E-10
2025	763500.5	4093272	2.19E-09	2.39E-09	8.45E-10	5.42E-09	3.43E-10	3.87E-10	1.33E-10	8.63E-10	1.83E-10	1.82E-10	5.59E-11	4.21E-10
2026	763478.8	4093263	2.19E-09	2.39E-09	8.45E-10	5.43E-09	3.43E-10	3.88E-10	1.33E-10	8.64E-10	1.83E-10	1.82E-10	5.59E-11	4.21E-10
2027	763457	4093253	2.18E-09	2.38E-09	8.41E-10	5.40E-09	3.41E-10	3.86E-10	1.33E-10	8.59E-10	1.82E-10	1.81E-10	5.56E-11	4.19E-10
2028	763435.2	4093243	2.16E-09	2.35E-09	8.32E-10	5.35E-09	3.38E-10	3.82E-10	1.31E-10	8.51E-10	1.80E-10	1.79E-10	5.51E-11	4.15E-10
2029	763413.4	4093233	2.13E-09	2.32E-09	8.19E-10	5.26E-09	3.32E-10	3.76E-10	1.29E-10	8.37E-10	1.78E-10	1.77E-10	5.42E-11	4.08E-10
2030	763391.6	4093223	2.08E-09	2.27E-09	8.03E-10	5.15E-09	3.25E-10	3.68E-10	1.27E-10	8.20E-10	1.74E-10	1.73E-10	5.31E-11	4.00E-10
2031	763369.9	4093214	2.03E-09	2.21E-09	7.83E-10	5.03E-09	3.17E-10	3.59E-10	1.24E-10	8.00E-10	1.70E-10	1.69E-10	5.18E-11	3.90E-10
2032	763348.1	4093204	1.98E-09	2.15E-09	7.61E-10	4.89E-09	3.08E-10	3.49E-10	1.20E-10	7.78E-10	1.65E-10	1.64E-10	5.03E-11	3.79E-10
2033	763326.3	4093194	1.91E-09	2.08E-09	7.37E-10	4.73E-09	2.99E-10	3.38E-10	1.16E-10	7.53E-10	1.60E-10	1.59E-10	4.87E-11	3.67E-10
2034	763304.5	4093184	1.85E-09	2.01E-09	7.12E-10	4.57E-09	2.89E-10	3.27E-10	1.12E-10	7.28E-10	1.54E-10	1.53E-10	4.71E-11	3.55E-10
2035	763282.7	4093174	1.78E-09	1.94E-09	6.87E-10	4.41E-09	2.78E-10	3.15E-10	1.08E-10	7.02E-10	1.49E-10	1.48E-10	4.54E-11	3.42E-10
2036	763261	4093165	1.72E-09	1.87E-09	6.62E-10	4.25E-09	2.69E-10	3.04E-10	1.05E-10	6.77E-10	1.44E-10	1.43E-10	4.38E-11	3.30E-10
2037	763239.2	4093155	1.66E-09	1.80E-09	6.39E-10	4.10E-09	2.59E-10	2.93E-10	1.01E-10	6.53E-10	1.38E-10	1.38E-10	4.22E-11	3.18E-10
2038	763217.4	4093145	1.60E-09	1.74E-09	6.16E-10	3.96E-09	2.50E-10	2.83E-10	9.74E-11	6.30E-10	1.34E-10	1.33E-10	4.08E-11	3.07E-10
2039	763195.6	4093135	1.55E-09	1.69E-09	5.96E-10	3.83E-09	2.42E-10	2.74E-10	9.42E-11		1.29E-10	1.29E-10	3.94E-11	
2040	763165.5	4093103	1.50E-09	1.63E-09	5.77E-10	3.71E-09	2.34E-10	2.65E-10	9.12E-11		1.25E-10	1.24E-10	3.82E-11	
	763081.8	4092879	1.42E-09	1.55E-09	5.47E-10	3.51E-09	2.22E-10	2.51E-10	8.64E-11		1.19E-10	1.18E-10	3.62E-11	
	763073.4	4092857	1.39E-09	1.52E-09	5.36E-10	3.44E-09	2.17E-10	2.46E-10	8.47E-11		1.16E-10	1.16E-10	3.55E-11	
2043	763065.1	4092835	1.36E-09	1.48E-09	5.25E-10	3.37E-09	2.13E-10	2.41E-10	8.29E-11		1.14E-10	1.13E-10	3.47E-11	
2044	763056.7	4092812	1.33E-09	1.45E-09	5.13E-10	3.30E-09	2.08E-10	2.35E-10	8.11E-11		1.11E-10	1.11E-10	3.40E-11	
2045	763048.3	4092790	1.30E-09	1.42E-09	5.02E-10	3.22E-09	2.03E-10	2.30E-10	7.93E-11		1.09E-10	1.08E-10	3.32E-11	
2046	763040	4092767	1.27E-09	1.39E-09	4.90E-10	3.15E-09	1.99E-10	2.25E-10	7.75E-11		1.06E-10	1.06E-10	3.24E-11	
2047	763031.6	4092745	1.24E-09	1.35E-09	4.79E-10	3.08E-09	1.94E-10	2.20E-10	7.73E-11 7.57E-11		1.04E-10	1.03E-10	3.17E-11	
2048	763023.3	4092723	1.22E-09	1.33E-09	4.69E-10	3.01E-09	1.90E-10	2.15E-10	7.41E-11		1.02E-10	1.01E-10	3.10E-11	
2049	763014.9	4092700	1.19E-09	1.30E-09	4.59E-10	2.95E-09	1.86E-10	2.10E-10	7.41E-11 7.25E-11		9.95E-11	9.89E-11	3.03E-11	
2050	763006.5	4092678	1.17E-09	1.27E-09	4.49E-10	2.88E-09	1.82E-10	2.16E-10 2.06E-10	7.23E-11 7.09E-11		9.73E-11	9.68E-11	2.97E-11	
	762998.2	4092656	1.17E-09 1.14E-09	1.24E-09	4.49E-10 4.39E-10	2.82E-09	1.78E-10	2.00L-10 2.01E-10	6.94E-11		9.52E-11	9.47E-11	2.91E-11	
	762989.8	4092633	1.14E-09 1.12E-09	1.24E-09 1.21E-09	4.39E-10 4.30E-10	2.76E-09	1.78E-10 1.74E-10	1.97E-10	6.79E-11		9.31E-11	9.26E-11	2.84E-11	
2052	762981.4	4092633	1.12E-09 1.09E-09	1.21E-09 1.19E-09	4.30E-10 4.20E-10	2.70E-09 2.70E-09	1.74E-10 1.70E-10	1.97E-10 1.93E-10	6.63E-11		9.31E-11 9.10E-11	9.05E-11	2.78E-11	
	762973.1		1.09E-09		4.20E-10 4.10E-10	2.63E-09		1.88E-10	6.48E-11				2.76E-11 2.71E-11	
		4092588		1.16E-09			1.66E-10				8.89E-11			
	762964.7	4092566		1.13E-09	4.00E-10	2.57E-09		1.83E-10				8.62E-11		
	762956.3		1.01E-09	1.10E-09	3.89E-10	2.50E-09		1.79E-10				8.39E-11		
2057	762948	4092521		1.07E-09	3.78E-10	2.43E-09		1.74E-10				8.16E-11		
	762939.6		9.54E-10	1.04E-09	3.67E-10	2.36E-09		1.69E-10				7.92E-11		
	763805.4	4093410		1.67E-09	5.90E-10	3.79E-09		2.71E-10	9.32E-11			1.27E-10		
2060	763830	4093410		1.64E-09	5.82E-10	3.74E-09		2.67E-10	9.19E-11			1.25E-10		
	763854.6	4093411		1.62E-09	5.74E-10	3.69E-09		2.63E-10	9.07E-11			1.24E-10		
	763879.2	4093412		1.60E-09	5.67E-10	3.64E-09		2.60E-10	8.96E-11			1.22E-10		
	763903.8	4093412		1.58E-09	5.61E-10	3.60E-09		2.57E-10				1.21E-10		
2064	763928.4	4093413	1.44E-09	1.57E-09	5.54E-10	3.56E-09	2.25E-10	2.54E-10	8./6E-11	5.6/E-10	1.20E-10	1.19E-10	3.6/E-11	2./6E-10

2065	763953	4093414	1.42E-09	1.55E-09	5.48E-10	3.52E-09	2.22E-10	2.51E-10	8.65E-11	5.60E-10	1.19E-10	1.18E-10	3.62E-11	2.73E-10
2066	763977.5	4093415	1.40E-09	1.53E-09	5.41E-10	3.47E-09	2.19E-10	2.48E-10	8.55E-11	5.53E-10	1.17E-10	1.17E-10	3.58E-11	2.70E-10
2067	764002.1	4093415	1.39E-09	1.51E-09	5.34E-10	3.43E-09	2.16E-10	2.45E-10	8.43E-11	5.46E-10	1.16E-10	1.15E-10	3.53E-11	2.66E-10
2068	764026.7	4093416	1.37E-09	1.49E-09	5.26E-10	3.38E-09	2.13E-10	2.41E-10	8.31E-11	5.38E-10	1.14E-10	1.13E-10	3.48E-11	2.62E-10
2069	764051.3	4093417	1.34E-09	1.46E-09	5.17E-10	3.32E-09	2.10E-10	2.37E-10	8.17E-11	5.29E-10	1.12E-10	1.12E-10	3.42E-11	2.58E-10
2070	764075.9	4093417	1.32E-09	1.44E-09	5.08E-10	3.26E-09	2.06E-10	2.33E-10	8.03E-11	5.20E-10	1.10E-10	1.10E-10	3.36E-11	2.53E-10
2071	764100.5	4093418	1.29E-09	1.41E-09	4.98E-10	3.20E-09	2.02E-10	2.29E-10	7.87E-11	5.09E-10	1.08E-10	1.07E-10	3.30E-11	2.48E-10
2072	764125	4093419	1.27E-09	1.38E-09	4.88E-10	3.13E-09	1.98E-10	2.24E-10	7.70E-11	4.98E-10	1.06E-10	1.05E-10	3.23E-11	2.43E-10
2073	764149.6	4093419	1.24E-09	1.35E-09	4.77E-10	3.06E-09	1.93E-10	2.19E-10	7.53E-11	4.87E-10	1.03E-10	1.03E-10	3.15E-11	2.38E-10
2074	764174.2	4093420	1.21E-09	1.32E-09	4.66E-10	2.99E-09	1.89E-10	2.14E-10	7.36E-11	4.76E-10	1.01E-10	1.00E-10	3.08E-11	2.32E-10
2075	764198.8	4093421	1.18E-09	1.29E-09	4.55E-10	2.92E-09	1.84E-10	2.09E-10	7.18E-11	4.65E-10	9.86E-11	9.80E-11	3.01E-11	2.27E-10
2076	763777.8	4093600	1.13E-09	1.23E-09	4.35E-10	2.79E-09	1.76E-10	2.00E-10	6.87E-11	4.45E-10	9.43E-11	9.38E-11	2.88E-11	2.17E-10
2077	763755.7	4093590	1.16E-09	1.26E-09	4.45E-10	2.86E-09	1.81E-10	2.04E-10	7.04E-11	4.55E-10	9.66E-11	9.60E-11	2.95E-11	2.22E-10
2078	763733.7	4093580	1.19E-09	1.29E-09	4.57E-10	2.94E-09	1.85E-10	2.10E-10	7.22E-11	4.67E-10	9.91E-11	9.85E-11	3.02E-11	2.28E-10
2079	763711.6	4093570	1.22E-09	1.33E-09	4.70E-10	3.02E-09	1.91E-10	2.16E-10	7.42E-11	4.80E-10	1.02E-10	1.01E-10	3.11E-11	2.34E-10
2080	763689.6	4093560	1.26E-09	1.37E-09	4.84E-10	3.11E-09	1.96E-10	2.22E-10	7.65E-11	4.95E-10	1.05E-10	1.04E-10	3.20E-11	2.41E-10
2081	763667.5	4093550	1.30E-09	1.41E-09	4.99E-10	3.20E-09	2.02E-10	2.29E-10	7.88E-11	5.10E-10	1.08E-10	1.08E-10	3.30E-11	2.49E-10
2082	763645.5	4093540	1.34E-09	1.45E-09	5.14E-10	3.30E-09	2.09E-10	2.36E-10	8.13E-11	5.26E-10	1.12E-10	1.11E-10	3.40E-11	2.57E-10
2083	763623.4	4093530	1.38E-09	1.50E-09	5.31E-10	3.41E-09	2.15E-10	2.43E-10		5.43E-10	1.15E-10	1.14E-10	3.51E-11	
2084	763601.3	4093520	1.42E-09	1.55E-09	5.47E-10	3.51E-09	2.22E-10	2.51E-10		5.59E-10	1.19E-10	1.18E-10	3.62E-11	
2085	763579.3	4093510	1.46E-09	1.59E-09	5.64E-10	3.62E-09	2.29E-10	2.59E-10		5.76E-10	1.22E-10	1.22E-10	3.73E-11	
2086	763557.2	4093500	1.51E-09	1.64E-09	5.80E-10	3.72E-09	2.35E-10	2.66E-10		5.93E-10	1.26E-10	1.25E-10	3.84E-11	
2087	763535.2	4093490	1.55E-09	1.68E-09	5.95E-10	3.82E-09	2.41E-10	2.73E-10		6.08E-10	1.29E-10	1.28E-10	3.94E-11	
2088	763513.1	4093481	1.58E-09	1.72E-09	6.09E-10	3.91E-09	2.47E-10	2.80E-10		6.23E-10	1.32E-10	1.31E-10	4.03E-11	
2089	763491.1	4093471	1.61E-09	1.76E-09	6.22E-10	3.99E-09	2.52E-10	2.85E-10		6.36E-10	1.35E-10	1.34E-10	4.11E-11	
2090	763469	4093461	1.64E-09	1.79E-09	6.32E-10	4.06E-09	2.56E-10	2.90E-10		6.46E-10	1.37E-10	1.36E-10	4.18E-11	
2091	763447	4093451	1.66E-09	1.81E-09	6.40E-10	4.11E-09	2.60E-10	2.94E-10		6.54E-10	1.37E-10 1.39E-10	1.38E-10	4.23E-11	
2092	763424.9	4093441	1.68E-09	1.82E-09	6.45E-10	4.14E-09	2.62E-10	2.96E-10		6.60E-10	1.40E-10	1.39E-10	4.27E-11	
2093	763402.8	4093431	1.68E-09	1.83E-09	6.48E-10	4.14E-09	2.63E-10	2.97E-10		6.62E-10	1.40E-10	1.40E-10	4.29E-11	
2093	763380.8	4093431	1.68E-09	1.83E-09	6.48E-10	4.16E-09	2.63E-10	2.97E-10 2.97E-10		6.62E-10	1.40E-10	1.40E-10	4.29E-11	
2094	763358.7	4093421	1.67E-09	1.82E-09	6.45E-10	4.14E-09	2.61E-10	2.96E-10		6.59E-10	1.40E-10 1.40E-10	1.40E-10 1.39E-10	4.29E-11 4.26E-11	
2093	763336.7	4093411	1.66E-09		6.39E-10	4.14E-09 4.10E-09		2.93E-10 2.93E-10		6.53E-10		1.39E-10 1.38E-10	4.23E-11	
2096	763314.6	4093401	1.64E-09	1.81E-09 1.78E-09	6.39E-10 6.30E-10	4.10E-09 4.05E-09	2.59E-10 2.56E-10	2.89E-10		6.44E-10	1.38E-10 1.37E-10	1.36E-10	4.23E-11 4.17E-11	
					6.20E-10			2.84E-10	9.79E-11			1.34E-10	4.17E-11 4.10E-11	
	763292.6	4093381	1.61E-09	1.75E-09 1.71E-09		3.98E-09 3.90E-09	2.51E-10	2.84E-10 2.78E-10			1.34E-10	1.34E-10 1.31E-10	_	
	763270.5	4093371			6.07E-10									
	763248.4	4093361		1.67E-09	5.92E-10	3.80E-09		2.72E-10				1.28E-10		
	763226.4	4093351		1.63E-09	5.76E-10	3.70E-09		2.64E-10				1.24E-10		
	763204.3	4093342		1.58E-09	5.59E-10	3.59E-09		2.57E-10				1.21E-10		
	763182.3	4093332		1.53E-09	5.42E-10	3.48E-09			8.56E-11			1.17E-10		
	763160.2	4093322		1.48E-09	5.24E-10	3.37E-09		2.40E-10	8.28E-11			1.13E-10		
	763138.2	4093312		1.43E-09	5.07E-10	3.26E-09		2.33E-10				1.09E-10		
	762960.1	4093081		1.25E-09	4.41E-10	2.83E-09		2.02E-10	6.97E-11			9.50E-11		
	762951.6	4093058		1.24E-09	4.39E-10	2.82E-09			6.94E-11			9.46E-11		
2108	762943.2	4093036	1.13E-09	1.23E-09	4.36E-10	2.80E-09	1.77E-10	2.00E-10	6.89E-11	4.46E-10	9.45E-11	9.40E-11	2.88E-11	2.17E-10

	762934.7	4093013	1.12E-09	1.22E-09	4.31E-10	2.77E-09		1.98E-10		4.41E-10		9.30E-11		
2110	762926.2	4092990	1.11E-09	1.20E-09	4.26E-10	2.73E-09	1.73E-10	1.95E-10		4.35E-10	9.23E-11	9.18E-11	2.82E-11	
2111	762917.7	4092968	1.09E-09	1.18E-09	4.19E-10	2.69E-09	1.70E-10	1.92E-10		4.28E-10	9.09E-11	9.03E-11	2.77E-11	
2112	762883.9	4092877	1.01E-09	1.10E-09	3.89E-10	2.50E-09	1.58E-10	1.79E-10		3.98E-10	8.44E-11	8.39E-11	2.57E-11	
2113	762875.4	4092854	9.91E-10	1.08E-09	3.82E-10	2.45E-09	1.55E-10	1.75E-10		3.90E-10	8.28E-11	8.23E-11	2.53E-11	
2114	762866.9	4092832	9.73E-10	1.06E-09	3.75E-10	2.41E-09	1.52E-10	1.72E-10		3.83E-10	8.13E-11	8.08E-11	2.48E-11	
2115	762858.4	4092809	9.56E-10	1.04E-09	3.68E-10	2.37E-09	1.49E-10	1.69E-10		3.77E-10			2.44E-11	
2116	762850	4092786	9.40E-10	1.02E-09	3.62E-10	2.32E-09	1.47E-10	1.66E-10	5.72E-11	3.70E-10	7.85E-11	7.80E-11	2.39E-11	1.80E-10
2117	762841.5	4092764	9.24E-10	1.01E-09	3.56E-10	2.29E-09	1.44E-10	1.63E-10	5.62E-11	3.64E-10	7.71E-11	7.67E-11	2.35E-11	1.77E-10
2118	762833	4092741	9.08E-10	9.89E-10	3.50E-10	2.25E-09	1.42E-10	1.60E-10	5.53E-11	3.58E-10	7.58E-11	7.54E-11	2.31E-11	1.74E-10
2119	762824.6	4092718	8.93E-10	9.72E-10	3.44E-10	2.21E-09	1.39E-10	1.58E-10	5.43E-11	3.52E-10	7.46E-11	7.41E-11	2.28E-11	1.71E-10
2120	762816.1	4092696	8.77E-10	9.55E-10	3.38E-10	2.17E-09	1.37E-10	1.55E-10	5.34E-11	3.45E-10	7.33E-11	7.29E-11	2.24E-11	1.68E-10
2121	762807.6	4092673	8.62E-10	9.38E-10	3.32E-10	2.13E-09	1.35E-10	1.52E-10	5.25E-11	3.39E-10	7.20E-11	7.16E-11	2.20E-11	1.66E-10
2122	762799.1	4092650	8.46E-10	9.21E-10	3.26E-10	2.09E-09	1.32E-10	1.50E-10	5.15E-11	3.33E-10	7.07E-11	7.02E-11	2.16E-11	1.62E-10
2123	762790.7	4092628	8.30E-10	9.03E-10	3.20E-10	2.05E-09	1.30E-10	1.47E-10	5.05E-11	3.27E-10	6.93E-11	6.89E-11	2.11E-11	1.59E-10
2124	762782.2	4092605	8.13E-10	8.85E-10	3.13E-10	2.01E-09	1.27E-10	1.44E-10	4.95E-11	3.20E-10	6.79E-11	6.75E-11	2.07E-11	1.56E-10
2125	762773.7	4092582	7.96E-10	8.66E-10	3.07E-10	1.97E-09	1.24E-10	1.41E-10	4.84E-11	3.13E-10	6.65E-11	6.61E-11	2.03E-11	1.53E-10
2126	762765.3	4092560	7.79E-10	8.47E-10	3.00E-10	1.93E-09	1.22E-10	1.38E-10	4.74E-11	3.07E-10	6.50E-11	6.46E-11	1.98E-11	1.49E-10
2127	762756.8	4092537	7.60E-10	8.27E-10	2.93E-10	1.88E-09	1.19E-10	1.34E-10	4.63E-11	2.99E-10	6.35E-11	6.31E-11	1.94E-11	1.46E-10
2128	762748.3	4092515	7.41E-10	8.07E-10	2.86E-10	1.83E-09	1.16E-10	1.31E-10	4.51E-11	2.92E-10	6.19E-11	6.16E-11	1.89E-11	1.42E-10
2129	762739.8	4092492	7.23E-10	7.87E-10	2.78E-10	1.79E-09	1.13E-10	1.28E-10	4.40E-11	2.85E-10	6.03E-11	6.00E-11	1.84E-11	1.39E-10
2130	763799.9	4093610	1.10E-09	1.20E-09	4.25E-10	2.73E-09	1.73E-10	1.95E-10	6.72E-11	4.35E-10	9.22E-11	9.17E-11	2.81E-11	2.12E-10
2131	763824.4	4093610	1.10E-09	1.19E-09	4.22E-10	2.71E-09	1.71E-10	1.94E-10	6.67E-11	4.31E-10	9.15E-11	9.10E-11	2.79E-11	2.10E-10
2132	763849	4093611	1.09E-09	1.18E-09	4.19E-10	2.69E-09	1.70E-10	1.92E-10	6.62E-11	4.28E-10	9.08E-11	9.03E-11	2.77E-11	2.09E-10
2133	763873.6	4093612	1.08E-09	1.18E-09	4.16E-10	2.67E-09	1.69E-10	1.91E-10	6.58E-11	4.25E-10	9.02E-11	8.97E-11	2.75E-11	2.07E-10
2134	763898.2	4093612	1.07E-09	1.17E-09	4.13E-10	2.65E-09	1.68E-10	1.90E-10	6.53E-11	4.23E-10	8.96E-11	8.91E-11	2.73E-11	2.06E-10
2135	763922.8	4093613	1.07E-09	1.16E-09	4.10E-10	2.64E-09	1.66E-10	1.88E-10	6.48E-11	4.20E-10	8.90E-11	8.85E-11	2.72E-11	2.05E-10
2136	763947.4	4093614	1.06E-09	1.15E-09	4.07E-10	2.61E-09	1.65E-10	1.87E-10	6.43E-11	4.16E-10	8.83E-11	8.78E-11	2.69E-11	2.03E-10
2137	763971.9	4093614	1.05E-09	1.14E-09	4.03E-10	2.59E-09	1.64E-10	1.85E-10	6.37E-11	4.12E-10	8.74E-11	8.69E-11	2.67E-11	2.01E-10
2138	763996.5	4093615	1.04E-09	1.13E-09	3.99E-10	2.56E-09	1.62E-10	1.83E-10	6.31E-11	4.08E-10	8.65E-11	8.60E-11	2.64E-11	1.99E-10
2139	764021.1	4093616	1.02E-09	1.11E-09	3.94E-10	2.53E-09	1.60E-10	1.81E-10	6.23E-11	4.03E-10	8.55E-11	8.50E-11	2.61E-11	1.97E-10
2140	764045.7	4093617	1.01E-09	1.10E-09	3.89E-10	2.50E-09	1.58E-10	1.79E-10	6.15E-11	3.98E-10	8.44E-11	8.39E-11	2.57E-11	1.94E-10
2141	764070.3	4093617	9.95E-10	1.08E-09	3.83E-10	2.46E-09	1.55E-10	1.76E-10	6.06E-11	3.92E-10	8.31E-11	8.26E-11	2.54E-11	1.91E-10
2142	764094.9	4093618	9.79E-10	1.07E-09	3.77E-10	2.42E-09	1.53E-10	1.73E-10	5.96E-11	3.85E-10	8.17E-11	8.13E-11	2.49E-11	1.88E-10
2143	764119.5	4093619	9.62E-10	1.05E-09	3.70E-10	2.38E-09	1.50E-10	1.70E-10	5.85E-11	3.79E-10	8.03E-11	7.98E-11	2.45E-11	1.85E-10
2144	764144	4093619	9.43E-10	1.03E-09	3.63E-10	2.33E-09	1.47E-10	1.67E-10	5.74E-11	3.71E-10	7.87E-11	7.83E-11	2.40E-11	1.81E-10
2145	764168.6	4093620	9.24E-10	1.01E-09	3.56E-10	2.29E-09	1.44E-10	1.63E-10	5.62E-11	3.64E-10	7.71E-11	7.67E-11	2.35E-11	1.77E-10
2146	764193.2	4093621	9.05E-10	9.85E-10	3.48E-10	2.24E-09		1.60E-10			7.55E-11	7.51E-11	2.31E-11	1.74E-10
2147	763772	4093800	8.69E-10	9.46E-10	3.35E-10	2.15E-09		1.54E-10			7.26E-11	7.22E-11	2.22E-11	1.67E-10
	763749.8	4093790	8.84E-10	9.62E-10	3.40E-10	2.19E-09		1.56E-10				7.34E-11		
		4093779	9.01E-10	9.80E-10	3.47E-10	2.23E-09		1.59E-10				7.48E-11		
	763705.3	4093769	9.19E-10	1.00E-09	3.54E-10	2.27E-09		1.62E-10				7.63E-11		
2151	763683	4093759	9.40E-10	1.02E-09	3.62E-10	2.33E-09		1.66E-10				7.81E-11		
	763660.8	4093749		1.05E-09	3.71E-10	2.38E-09		1.70E-10				8.00E-11		
			3.0.2.20		J 10			1 52 15	J 11		2.222 11	J.JJL 11		10

2153	763638.5	4093739	9.89E-10	1.08E-09	3.81E-10	2.45E-09	1.54E-10	1.75E-10	6.02E-11	3.89E-10	8.26E-11	8.21E-11	2.52E-11	1.90E-10
2154	763616.2	4093729	1.02E-09	1.11E-09	3.92E-10	2.52E-09	1.59E-10	1.80E-10	6.19E-11	4.00E-10	8.49E-11	8.44E-11	2.59E-11	1.95E-10
2155	763594	4093719	1.05E-09	1.14E-09	4.03E-10	2.59E-09	1.63E-10	1.85E-10	6.37E-11	4.12E-10	8.74E-11	8.69E-11	2.67E-11	2.01E-10
2156	763571.7	4093709	1.08E-09	1.17E-09	4.15E-10	2.67E-09	1.68E-10	1.90E-10	6.56E-11	4.24E-10	9.00E-11	8.95E-11	2.75E-11	2.07E-10
2157	763549.5	4093699	1.11E-09	1.21E-09	4.28E-10	2.75E-09	1.73E-10	1.96E-10	6.76E-11	4.37E-10	9.27E-11	9.22E-11	2.83E-11	2.13E-10
2158	763527.2	4093689	1.14E-09	1.24E-09	4.40E-10	2.83E-09	1.78E-10	2.02E-10	6.95E-11	4.50E-10	9.54E-11	9.49E-11	2.91E-11	2.19E-10
2159	763505	4093679	1.17E-09	1.28E-09	4.52E-10	2.91E-09	1.83E-10	2.08E-10	7.15E-11	4.63E-10	9.81E-11	9.75E-11	2.99E-11	2.26E-10
2160	763482.7	4093669	1.21E-09	1.31E-09	4.64E-10	2.98E-09	1.88E-10	2.13E-10	7.34E-11	4.75E-10	1.01E-10	1.00E-10	3.07E-11	2.32E-10
2161	763460.5	4093659	1.24E-09	1.34E-09	4.76E-10	3.06E-09	1.93E-10	2.18E-10	7.52E-11	4.86E-10	1.03E-10	1.03E-10	3.15E-11	2.37E-10
2162	763438.2	4093649	1.26E-09	1.37E-09	4.86E-10	3.12E-09	1.97E-10	2.23E-10	7.68E-11	4.97E-10	1.05E-10	1.05E-10	3.22E-11	2.42E-10
2163	763416	4093639	1.29E-09	1.40E-09	4.96E-10	3.18E-09	2.01E-10	2.27E-10	7.83E-11	5.07E-10	1.07E-10	1.07E-10	3.28E-11	2.47E-10
2164	763393.7	4093629	1.31E-09	1.42E-09	5.04E-10	3.24E-09	2.04E-10	2.31E-10	7.96E-11	5.15E-10	1.09E-10	1.09E-10	3.33E-11	2.51E-10
2165	763371.5	4093619	1.33E-09	1.44E-09	5.11E-10	3.28E-09	2.07E-10	2.34E-10	8.07E-11	5.22E-10	1.11E-10	1.10E-10	3.38E-11	2.55E-10
2166	763349.2	4093609	1.34E-09	1.46E-09	5.16E-10	3.31E-09	2.09E-10	2.37E-10	8.15E-11	5.27E-10	1.12E-10	1.11E-10	3.41E-11	2.57E-10
2167	763327	4093599	1.35E-09	1.47E-09	5.19E-10	3.33E-09	2.11E-10	2.38E-10	8.20E-11	5.31E-10	1.13E-10	1.12E-10	3.44E-11	2.59E-10
2168	763304.7	4093589	1.35E-09	1.47E-09	5.21E-10	3.35E-09	2.11E-10	2.39E-10	8.23E-11	5.32E-10	1.13E-10	1.12E-10	3.45E-11	2.60E-10
2169	763282.5	4093579	1.35E-09	1.47E-09	5.20E-10	3.34E-09	2.11E-10	2.39E-10	8.22E-11	5.32E-10	1.13E-10	1.12E-10	3.44E-11	2.59E-10
2170	763260.2	4093569	1.35E-09	1.46E-09	5.18E-10	3.33E-09	2.10E-10	2.38E-10	8.19E-11	5.30E-10	1.12E-10	1.12E-10	3.43E-11	2.58E-10
2171	763238	4093559	1.34E-09	1.45E-09	5.14E-10	3.30E-09	2.09E-10	2.36E-10	8.12E-11	5.26E-10	1.11E-10	1.11E-10	3.40E-11	2.56E-10
2172	763215.7	4093549	1.32E-09	1.44E-09	5.09E-10	3.27E-09	2.06E-10	2.33E-10	8.03E-11	5.20E-10	1.10E-10	1.10E-10	3.36E-11	2.54E-10
2173	763193.5	4093539	1.30E-09	1.42E-09	5.01E-10	3.22E-09	2.03E-10	2.30E-10	7.92E-11	5.12E-10	1.09E-10	1.08E-10	3.32E-11	2.50E-10
2174	763171.2	4093529	1.28E-09	1.39E-09	4.92E-10	3.16E-09	2.00E-10	2.26E-10	7.78E-11	5.03E-10	1.07E-10	1.06E-10	3.26E-11	2.46E-10
2175	763149	4093519	1.25E-09	1.36E-09	4.83E-10	3.10E-09	1.96E-10	2.21E-10	7.62E-11	4.93E-10	1.05E-10	1.04E-10	3.19E-11	2.41E-10
2176	763126.7	4093509	1.22E-09	1.33E-09	4.71E-10	3.03E-09	1.91E-10	2.16E-10	7.45E-11	4.82E-10	1.02E-10	1.02E-10	3.12E-11	2.35E-10
2177	763104.5	4093499	1.19E-09	1.30E-09	4.59E-10	2.95E-09	1.86E-10	2.11E-10	7.26E-11	4.70E-10	9.96E-11	9.90E-11	3.04E-11	2.29E-10
2178	763082.2	4093489	1.16E-09	1.26E-09	4.47E-10	2.87E-09	1.81E-10	2.05E-10	7.06E-11	4.57E-10	9.69E-11	9.63E-11	2.96E-11	2.23E-10
2179	763060	4093479	1.13E-09	1.23E-09	4.34E-10	2.79E-09	1.76E-10	1.99E-10	6.85E-11	4.43E-10	9.40E-11	9.35E-11	2.87E-11	2.16E-10
2180	763037.7	4093469	1.09E-09	1.19E-09	4.21E-10	2.70E-09	1.71E-10	1.93E-10	6.65E-11	4.30E-10	9.12E-11	9.07E-11	2.78E-11	2.10E-10
2181	763015.4	4093459	1.06E-09	1.15E-09	4.08E-10	2.62E-09	1.65E-10	1.87E-10	6.45E-11	4.17E-10	8.85E-11	8.80E-11	2.70E-11	2.03E-10
2182	762993.2	4093449	1.03E-09	1.12E-09	3.95E-10	2.54E-09	1.60E-10	1.81E-10	6.25E-11	4.04E-10	8.57E-11	8.52E-11	2.62E-11	1.97E-10
2183	762685.4	4092873	7.71E-10	8.39E-10	2.97E-10	1.91E-09	1.20E-10	1.36E-10	4.69E-11	3.04E-10	6.44E-11	6.40E-11	1.96E-11	1.48E-10
2184	762676.8	4092850	7.60E-10	8.27E-10	2.93E-10	1.88E-09	1.19E-10	1.34E-10	4.63E-11	2.99E-10	6.35E-11	6.31E-11	1.94E-11	1.46E-10
2185	762668.3	4092827	7.50E-10	8.16E-10	2.89E-10	1.86E-09	1.17E-10	1.33E-10	4.56E-11	2.95E-10	6.26E-11	6.23E-11	1.91E-11	1.44E-10
2186	762659.7	4092805	7.40E-10	8.05E-10	2.85E-10	1.83E-09	1.16E-10	1.31E-10	4.50E-11	2.91E-10	6.18E-11	6.14E-11	1.88E-11	1.42E-10
2187	762651.2	4092782	7.29E-10	7.94E-10	2.81E-10	1.80E-09	1.14E-10	1.29E-10	4.44E-11	2.87E-10	6.09E-11	6.06E-11	1.86E-11	1.40E-10
2188	762642.6	4092759	7.19E-10	7.83E-10	2.77E-10	1.78E-09	1.12E-10	1.27E-10	4.37E-11	2.83E-10	6.00E-11	5.97E-11	1.83E-11	1.38E-10
2189	762634.1	4092736	7.09E-10	7.71E-10	2.73E-10	1.75E-09	1.11E-10	1.25E-10	4.31E-11	2.79E-10	5.92E-11	5.88E-11	1.81E-11	1.36E-10
	762625.5	4092713	6.98E-10	7.60E-10	2.69E-10	1.73E-09	1.09E-10	1.23E-10	4.25E-11	2.75E-10		5.79E-11		
2191	762617	4092690	6.87E-10	7.48E-10	2.65E-10	1.70E-09			4.18E-11			5.70E-11		
	762608.4	4092667	6.76E-10	7.36E-10	2.60E-10	1.67E-09	1.06E-10	1.19E-10			5.65E-11	5.61E-11	1.72E-11	1.30E-10
	762599.9	4092645	6.65E-10	7.24E-10	2.56E-10	1.64E-09		1.17E-10				5.52E-11		
	762591.3	4092622	6.53E-10	7.11E-10	2.52E-10	1.62E-09		1.15E-10				5.43E-11		
	762582.8	4092599	6.41E-10	6.98E-10	2.47E-10	1.59E-09		1.13E-10				5.33E-11		
	762574.2			6.85E-10	2.42E-10	1.56E-09		1.11E-10				5.23E-11		
	·-				_: - 		2.302 -1	 -				-		-

2197	762565.7	4092553	6.17E-10	6.71E-10	2.37E-10	1.53E-09	9.63E-11	1.09E-10	3.75E-11	2.43E-10	5.15E-11	5.12E-11	1.57E-11	1.18E-10
2198	762557.1	4092530	6.04E-10	6.57E-10	2.32E-10	1.49E-09	9.43E-11	1.07E-10	3.67E-11	2.38E-10	5.04E-11	5.01E-11	1.54E-11	1.16E-10
2199	762548.6	4092507	5.90E-10	6.42E-10	2.27E-10	1.46E-09	9.22E-11	1.04E-10	3.59E-11	2.32E-10	4.93E-11	4.90E-11	1.50E-11	1.13E-10
2200	762540	4092485	5.76E-10	6.27E-10	2.22E-10	1.43E-09	9.00E-11	1.02E-10	3.51E-11	2.27E-10	4.81E-11	4.79E-11	1.47E-11	1.11E-10
2201	763794.3	4093810	8.56E-10	9.32E-10	3.30E-10	2.12E-09	1.34E-10	1.51E-10	5.21E-11	3.37E-10	7.15E-11	7.11E-11	2.18E-11	1.64E-10
2202	763818.8	4093810	8.53E-10	9.28E-10	3.28E-10	2.11E-09	1.33E-10	1.51E-10	5.19E-11	3.36E-10	7.12E-11	7.08E-11	2.17E-11	1.64E-10
2203	763843.4	4093811	8.50E-10	9.25E-10	3.27E-10	2.10E-09	1.33E-10	1.50E-10	5.17E-11	3.34E-10	7.09E-11	7.05E-11	2.16E-11	1.63E-10
2204	763868	4093812	8.46E-10	9.21E-10	3.26E-10	2.09E-09	1.32E-10	1.50E-10	5.15E-11	3.33E-10	7.07E-11	7.03E-11	2.16E-11	1.63E-10
2205	763892.6	4093812	8.43E-10	9.17E-10	3.25E-10	2.08E-09	1.32E-10	1.49E-10	5.13E-11	3.32E-10	7.04E-11	7.00E-11	2.15E-11	1.62E-10
2206	763917.2	4093813	8.39E-10	9.13E-10	3.23E-10	2.08E-09	1.31E-10	1.48E-10	5.11E-11	3.30E-10	7.01E-11	6.97E-11	2.14E-11	1.61E-10
2207	763941.8	4093814	8.34E-10	9.08E-10	3.21E-10	2.06E-09	1.30E-10	1.47E-10	5.08E-11	3.29E-10	6.97E-11	6.93E-11	2.13E-11	1.60E-10
2208	763966.4	4093814	8.29E-10	9.02E-10	3.19E-10	2.05E-09	1.29E-10	1.46E-10	5.04E-11	3.26E-10	6.92E-11	6.88E-11	2.11E-11	1.59E-10
2209	763990.9	4093815	8.22E-10	8.95E-10	3.17E-10	2.03E-09	1.28E-10	1.45E-10	5.00E-11	3.24E-10	6.86E-11	6.82E-11	2.09E-11	1.58E-10
2210	764015.5	4093816	8.13E-10	8.85E-10	3.13E-10	2.01E-09	1.27E-10	1.44E-10	4.95E-11	3.20E-10	6.79E-11	6.75E-11	2.07E-11	1.56E-10
2211	764040.1	4093816	8.04E-10	8.75E-10	3.10E-10	1.99E-09	1.26E-10	1.42E-10	4.89E-11	3.16E-10	6.71E-11	6.67E-11	2.05E-11	1.54E-10
2212	764064.7	4093817	7.94E-10	8.64E-10	3.06E-10	1.96E-09	1.24E-10	1.40E-10	4.83E-11	3.12E-10	6.63E-11	6.59E-11	2.02E-11	1.52E-10
2213	764089.3	4093818	7.82E-10	8.51E-10	3.01E-10	1.93E-09	1.22E-10	1.38E-10	4.76E-11	3.08E-10	6.53E-11	6.49E-11	1.99E-11	1.50E-10
2214	764113.9	4093818	7.70E-10	8.38E-10	2.97E-10	1.90E-09	1.20E-10	1.36E-10	4.68E-11	3.03E-10	6.43E-11	6.39E-11	1.96E-11	1.48E-10
2215	764138.4	4093819	7.57E-10	8.24E-10	2.92E-10	1.87E-09	1.18E-10	1.34E-10	4.61E-11	2.98E-10	6.32E-11	6.29E-11	1.93E-11	1.45E-10
2216	764163	4093820	7.44E-10	8.10E-10	2.86E-10	1.84E-09	1.16E-10	1.31E-10	4.53E-11	2.93E-10	6.21E-11	6.18E-11	1.90E-11	1.43E-10
2217	764187.6	4093821	7.30E-10	7.95E-10	2.81E-10	1.81E-09	1.14E-10	1.29E-10	4.44E-11	2.88E-10	6.10E-11	6.06E-11	1.86E-11	1.40E-10
2218	763766.3	4093999	7.04E-10	7.66E-10	2.71E-10	1.74E-09	1.10E-10	1.24E-10	4.28E-11	2.77E-10	5.88E-11	5.84E-11	1.79E-11	1.35E-10
2219	763743.9	4093989	7.12E-10	7.75E-10	2.74E-10	1.76E-09	1.11E-10	1.26E-10	4.33E-11	2.80E-10	5.95E-11	5.91E-11	1.81E-11	1.37E-10
2220	763721.5	4093979	7.22E-10	7.85E-10	2.78E-10	1.78E-09	1.13E-10	1.27E-10	4.39E-11	2.84E-10	6.03E-11	5.99E-11	1.84E-11	1.39E-10
2221	763699.1	4093969	7.32E-10	7.97E-10	2.82E-10	1.81E-09	1.14E-10	1.29E-10	4.46E-11	2.88E-10	6.11E-11	6.08E-11	1.87E-11	1.41E-10
2222	763676.7	4093959	7.44E-10	8.10E-10	2.87E-10	1.84E-09	1.16E-10	1.32E-10	4.53E-11	2.93E-10	6.22E-11	6.18E-11	1.90E-11	1.43E-10
2223	763654.3	4093949	7.58E-10	8.25E-10	2.92E-10	1.88E-09	1.18E-10	1.34E-10	4.61E-11	2.98E-10	6.33E-11	6.29E-11	1.93E-11	1.46E-10
2224	763631.9	4093939	7.74E-10	8.42E-10	2.98E-10	1.91E-09	1.21E-10	1.37E-10	4.71E-11		6.46E-11	6.42E-11	1.97E-11	1.49E-10
2225	763609.5	4093929	7.91E-10	8.61E-10	3.05E-10	1.96E-09	1.24E-10	1.40E-10	4.81E-11	3.11E-10	6.61E-11	6.57E-11	2.02E-11	1.52E-10
2226	763587.1	4093919	8.10E-10	8.82E-10	3.12E-10	2.00E-09	1.27E-10	1.43E-10	4.93E-11	3.19E-10	6.76E-11	6.73E-11	2.06E-11	1.56E-10
2227	763564.7	4093909	8.31E-10	9.04E-10	3.20E-10	2.06E-09	1.30E-10	1.47E-10	5.06E-11	3.27E-10	6.94E-11	6.90E-11	2.12E-11	1.60E-10
2228	763542.3	4093899	8.53E-10	9.29E-10	3.29E-10	2.11E-09	1.33E-10	1.51E-10	5.19E-11		7.12E-11	7.08E-11	2.17E-11	1.64E-10
2229	763519.9	4093888	8.77E-10	9.55E-10	3.38E-10	2.17E-09	1.37E-10	1.55E-10	5.34E-11	3.45E-10	7.32E-11	7.28E-11	2.23E-11	1.68E-10
2230	763497.5	4093878	9.01E-10	9.81E-10	3.47E-10	2.23E-09	1.41E-10	1.59E-10	5.49E-11		7.53E-11	7.48E-11	2.30E-11	
2231	763475.1	4093868	9.27E-10	1.01E-09	3.57E-10	2.29E-09	1.45E-10	1.64E-10	5.64E-11	3.65E-10	7.74E-11	7.69E-11	2.36E-11	1.78E-10
	763452.7	4093858	9.52E-10	1.04E-09	3.67E-10	2.35E-09		1.68E-10				7.90E-11		
	763430.3	4093848	9.77E-10	1.06E-09	3.76E-10	2.42E-09		1.73E-10				8.11E-11		
	763407.9	4093838	1.00E-09	1.09E-09	3.85E-10	2.48E-09		1.77E-10				8.31E-11		
	763385.5	4093828	1.02E-09	1.11E-09	3.94E-10	2.53E-09	1.60E-10		6.23E-11			8.50E-11		
	763363.1	4093818	1.05E-09	1.14E-09	4.03E-10	2.59E-09	1.63E-10		6.36E-11			8.68E-11		
	763340.7	4093808	1.06E-09	1.16E-09	4.10E-10	2.63E-09	1.66E-10		6.48E-11			8.84E-11		
	763318.3	4093798	1.08E-09	1.18E-09	4.16E-10	2.67E-09	1.69E-10		6.58E-11			8.98E-11		
	763295.9		1.10E-09	1.19E-09	4.22E-10	2.71E-09	1.71E-10		6.67E-11			9.10E-11		
	763273.5	4093778		1.20E-09	4.26E-10	2.74E-09		1.96E-10				9.19E-11		
2240	, 052, 5.5	1033770	1.112 00	1.202 03	7.202 10	2.7 72 03	1., 32 10	1.501 10	J., 7L 11	502 10	J.∠-TL 11	J.1JL 11	2.021 11	L.13L 10

	763251.1	4093768	1.12E-09	1.21E-09	4.30E-10	2.76E-09		1.97E-10		4.39E-10		9.26E-11		
	763228.7	4093757	1.12E-09	1.22E-09	4.32E-10	2.77E-09	1.75E-10	1.98E-10		4.41E-10	9.36E-11	9.30E-11	2.86E-11	
2243	763206.3	4093747	1.12E-09	1.22E-09	4.32E-10	2.78E-09	1.75E-10	1.98E-10		4.42E-10	9.37E-11	9.32E-11	2.86E-11	
2244	763183.9	4093737	1.12E-09	1.22E-09	4.32E-10	2.77E-09	1.75E-10	1.98E-10		4.41E-10	9.36E-11	9.31E-11	2.86E-11	
2245	763161.5	4093727	1.12E-09	1.22E-09	4.30E-10	2.76E-09	1.74E-10	1.97E-10		4.40E-10	9.33E-11	9.27E-11	2.85E-11	
2246	763139.1	4093717	1.11E-09	1.21E-09	4.28E-10	2.75E-09	1.73E-10	1.96E-10	6.76E-11	4.37E-10	9.27E-11	9.22E-11	2.83E-11	2.13E-10
2247	763116.7	4093707	1.10E-09	1.20E-09	4.24E-10	2.72E-09	1.72E-10	1.94E-10	6.69E-11	4.33E-10	9.19E-11	9.13E-11	2.80E-11	2.11E-10
2248	763094.4	4093697	1.09E-09	1.18E-09	4.19E-10	2.69E-09	1.70E-10	1.92E-10	6.61E-11	4.28E-10	9.08E-11	9.03E-11	2.77E-11	2.09E-10
2249	763072	4093687	1.07E-09	1.17E-09	4.13E-10	2.65E-09	1.67E-10	1.89E-10	6.52E-11	4.22E-10	8.95E-11	8.90E-11	2.73E-11	2.06E-10
2250	763049.6	4093677	1.05E-09	1.15E-09	4.06E-10	2.61E-09	1.64E-10	1.86E-10	6.41E-11	4.15E-10	8.79E-11	8.74E-11	2.68E-11	2.02E-10
2251	763027.2	4093667	1.03E-09	1.12E-09	3.98E-10	2.55E-09	1.61E-10	1.82E-10	6.28E-11	4.07E-10	8.62E-11	8.57E-11	2.63E-11	1.98E-10
2252	763004.8	4093657	1.01E-09	1.10E-09	3.89E-10	2.50E-09	1.58E-10	1.79E-10	6.15E-11	3.98E-10	8.44E-11	8.39E-11	2.57E-11	1.94E-10
2253	762982.4	4093647	9.87E-10	1.07E-09	3.80E-10	2.44E-09	1.54E-10	1.74E-10	6.00E-11	3.89E-10	8.24E-11	8.19E-11	2.51E-11	1.89E-10
2254	762960	4093636	9.62E-10	1.05E-09	3.70E-10	2.38E-09	1.50E-10	1.70E-10	5.85E-11	3.79E-10	8.03E-11	7.99E-11	2.45E-11	1.85E-10
2255	762937.6	4093626	9.36E-10	1.02E-09	3.60E-10	2.31E-09	1.46E-10	1.65E-10	5.69E-11	3.68E-10	7.81E-11	7.77E-11	2.38E-11	1.80E-10
2256	762915.2	4093616	9.10E-10	9.90E-10	3.50E-10	2.25E-09	1.42E-10	1.61E-10	5.53E-11	3.58E-10	7.60E-11	7.55E-11	2.32E-11	1.75E-10
2257	762892.8	4093606	8.83E-10	9.62E-10	3.40E-10	2.19E-09	1.38E-10	1.56E-10	5.38E-11	3.48E-10	7.38E-11	7.33E-11	2.25E-11	1.70E-10
2258	762870.4	4093596	8.58E-10	9.34E-10	3.31E-10	2.12E-09	1.34E-10	1.52E-10	5.22E-11	3.38E-10	7.17E-11	7.13E-11	2.19E-11	1.65E-10
2259	762848	4093586	8.34E-10	9.08E-10	3.21E-10	2.06E-09	1.30E-10	1.47E-10	5.08E-11	3.28E-10	6.97E-11	6.93E-11	2.13E-11	1.60E-10
2260	762825.6	4093576	8.11E-10	8.83E-10	3.12E-10	2.01E-09	1.27E-10	1.43E-10	4.94E-11	3.19E-10	6.78E-11	6.74E-11	2.07E-11	1.56E-10
2261	762803.2	4093566	7.91E-10	8.60E-10	3.04E-10	1.96E-09	1.23E-10	1.40E-10	4.81E-11	3.11E-10	6.60E-11	6.56E-11	2.01E-11	1.52E-10
2262	762710.2	4093467	7.41E-10	8.06E-10	2.85E-10	1.83E-09	1.16E-10	1.31E-10	4.51E-11	2.92E-10	6.18E-11	6.15E-11	1.89E-11	1.42E-10
2263	762701.6	4093444	7.44E-10	8.10E-10	2.87E-10	1.84E-09	1.16E-10	1.31E-10	4.53E-11	2.93E-10	6.21E-11	6.18E-11	1.90E-11	1.43E-10
2264	762693	4093421	7.48E-10	8.14E-10	2.88E-10	1.85E-09	1.17E-10	1.32E-10	4.55E-11	2.94E-10	6.25E-11	6.21E-11	1.91E-11	1.44E-10
2265	762546.7	4093030	6.76E-10	7.36E-10	2.60E-10	1.67E-09	1.06E-10	1.19E-10	4.11E-11	2.66E-10	5.65E-11	5.61E-11	1.72E-11	1.30E-10
2266	762538.1	4093007	6.67E-10	7.26E-10	2.57E-10	1.65E-09	1.04E-10	1.18E-10	4.06E-11	2.63E-10	5.57E-11	5.54E-11	1.70E-11	1.28E-10
2267	762529.5	4092983	6.59E-10	7.17E-10	2.54E-10	1.63E-09	1.03E-10	1.16E-10	4.01E-11	2.59E-10	5.50E-11	5.47E-11	1.68E-11	1.27E-10
2268	762520.9	4092960	6.51E-10	7.08E-10	2.51E-10	1.61E-09	1.02E-10	1.15E-10	3.96E-11	2.56E-10	5.43E-11	5.40E-11	1.66E-11	1.25E-10
2269	762512.3	4092937	6.44E-10	7.00E-10	2.48E-10	1.59E-09	1.01E-10	1.14E-10	3.92E-11	2.53E-10	5.37E-11	5.34E-11	1.64E-11	1.24E-10
2270	762503.7	4092914	6.36E-10	6.92E-10	2.45E-10	1.57E-09	9.93E-11	1.12E-10	3.87E-11	2.50E-10	5.31E-11	5.28E-11	1.62E-11	1.22E-10
2271	762495.1	4092891	6.29E-10	6.85E-10	2.42E-10	1.56E-09	9.82E-11	1.11E-10	3.83E-11	2.48E-10	5.25E-11	5.22E-11	1.60E-11	1.21E-10
2272	762486.5	4092868	6.22E-10	6.77E-10	2.39E-10	1.54E-09	9.71E-11	1.10E-10	3.78E-11	2.45E-10	5.19E-11	5.16E-11	1.58E-11	1.19E-10
2273	762477.9	4092845	6.15E-10	6.69E-10	2.37E-10	1.52E-09	9.60E-11	1.09E-10	3.74E-11	2.42E-10	5.13E-11	5.10E-11	1.57E-11	1.18E-10
2274	762469.3	4092822	6.07E-10	6.61E-10	2.34E-10	1.50E-09	9.48E-11	1.07E-10	3.70E-11	2.39E-10	5.07E-11	5.04E-11	1.55E-11	1.17E-10
2275	762460.7	4092799	6.00E-10	6.53E-10	2.31E-10	1.48E-09	9.37E-11	1.06E-10	3.65E-11	2.36E-10	5.01E-11	4.98E-11	1.53E-11	1.15E-10
2276	762452.1	4092776	5.92E-10	6.44E-10	2.28E-10	1.46E-09	9.25E-11	1.05E-10	3.60E-11	2.33E-10	4.94E-11	4.92E-11	1.51E-11	1.14E-10
2277	762443.5	4092753	5.84E-10	6.36E-10	2.25E-10	1.45E-09	9.13E-11	1.03E-10	3.56E-11	2.30E-10	4.88E-11	4.85E-11	1.49E-11	1.12E-10
2278	762434.9	4092730	5.76E-10	6.27E-10	2.22E-10	1.43E-09	9.00E-11	1.02E-10	3.51E-11	2.27E-10	4.81E-11	4.79E-11	1.47E-11	1.11E-10
2279	762426.3	4092707	5.68E-10	6.19E-10	2.19E-10	1.41E-09		1.00E-10			4.75E-11	4.72E-11	1.45E-11	1.09E-10
2280	762417.7	4092684	5.61E-10	6.10E-10	2.16E-10	1.39E-09	8.75E-11	9.90E-11	3.41E-11	2.21E-10	4.68E-11	4.65E-11	1.43E-11	1.08E-10
	762409.1	4092661	5.52E-10	6.01E-10	2.13E-10	1.37E-09		9.76E-11				4.58E-11		
	762400.5	4092638	5.44E-10	5.92E-10	2.10E-10	1.35E-09		9.61E-11				4.52E-11		
	762391.9		5.35E-10	5.83E-10	2.06E-10	1.32E-09		9.46E-11				4.45E-11		
	762383.3			5.73E-10	2.03E-10	1.30E-09		9.30E-11				4.37E-11		
							-			= -0				

2285	762374.7	4092569	5.17E-10	5.63E-10	1.99E-10	1.28E-09		9.14E-11			4.32E-11	4.29E-11		
2286	762366.1	4092546	5.08E-10	5.52E-10	1.95E-10	1.26E-09	7.93E-11	8.97E-11	3.09E-11	2.00E-10	4.24E-11	4.21E-11	1.29E-11	9.74E-11
2287	762357.4	4092523	4.98E-10	5.42E-10	1.92E-10	1.23E-09	7.77E-11	8.79E-11	3.03E-11	1.96E-10	4.16E-11	4.13E-11	1.27E-11	9.55E-11
2288	762348.8	4092500	4.87E-10	5.31E-10	1.88E-10	1.21E-09	7.61E-11	8.61E-11	2.97E-11	1.92E-10	4.07E-11	4.05E-11	1.24E-11	9.36E-11
2289	762340.2	4092477	4.77E-10	5.19E-10	1.84E-10	1.18E-09	7.45E-11	8.43E-11	2.90E-11	1.88E-10	3.98E-11	3.96E-11	1.22E-11	9.16E-11
2290	763788.7	4094009	6.97E-10	7.58E-10	2.68E-10	1.72E-09	1.09E-10	1.23E-10	4.24E-11	2.74E-10	5.82E-11	5.78E-11	1.77E-11	1.34E-10
2291	763813.3	4094010	6.95E-10	7.57E-10	2.68E-10	1.72E-09	1.09E-10	1.23E-10	4.23E-11	2.74E-10	5.81E-11	5.77E-11	1.77E-11	1.33E-10
2292	763837.8	4094011	6.94E-10	7.56E-10	2.67E-10	1.72E-09	1.08E-10	1.23E-10	4.22E-11	2.73E-10	5.80E-11	5.76E-11	1.77E-11	1.33E-10
2293	763862.4	4094012	6.93E-10	7.54E-10	2.67E-10	1.71E-09	1.08E-10	1.22E-10	4.22E-11	2.73E-10	5.79E-11	5.75E-11	1.77E-11	1.33E-10
2294	763887	4094012	6.92E-10	7.53E-10	2.66E-10	1.71E-09	1.08E-10	1.22E-10	4.21E-11	2.72E-10	5.77E-11	5.74E-11	1.76E-11	1.33E-10
2295	763911.6	4094013	6.89E-10	7.50E-10	2.65E-10	1.70E-09	1.08E-10	1.22E-10	4.19E-11	2.71E-10	5.76E-11	5.72E-11	1.76E-11	1.32E-10
2296	763936.2	4094014	6.86E-10	7.47E-10	2.64E-10	1.70E-09	1.07E-10	1.21E-10	4.18E-11	2.70E-10	5.73E-11	5.70E-11	1.75E-11	1.32E-10
2297	763960.8	4094014	6.82E-10	7.43E-10	2.63E-10	1.69E-09	1.07E-10	1.21E-10	4.15E-11	2.69E-10	5.70E-11	5.67E-11	1.74E-11	1.31E-10
2298	763985.3	4094015	6.78E-10	7.38E-10	2.61E-10	1.68E-09	1.06E-10	1.20E-10	4.12E-11	2.67E-10	5.66E-11	5.63E-11	1.73E-11	1.30E-10
2299	764009.9	4094016	6.72E-10	7.32E-10	2.59E-10	1.66E-09	1.05E-10	1.19E-10	4.09E-11	2.65E-10	5.61E-11	5.58E-11	1.71E-11	1.29E-10
2300	764034.5	4094016	6.65E-10	7.24E-10	2.56E-10	1.65E-09	1.04E-10	1.18E-10	4.05E-11	2.62E-10	5.56E-11	5.52E-11	1.70E-11	1.28E-10
2301	764059.1	4094017	6.58E-10	7.16E-10	2.53E-10	1.63E-09	1.03E-10	1.16E-10	4.00E-11	2.59E-10	5.49E-11	5.46E-11	1.68E-11	1.26E-10
2302	764083.7	4094018	6.49E-10	7.07E-10	2.50E-10	1.61E-09	1.01E-10	1.15E-10	3.95E-11	2.56E-10	5.42E-11	5.39E-11	1.65E-11	1.25E-10
2303	764108.3	4094018	6.40E-10	6.97E-10	2.47E-10	1.58E-09	1.00E-10	1.13E-10	3.90E-11	2.52E-10	5.35E-11	5.31E-11	1.63E-11	1.23E-10
2304	764132.9	4094019	6.31E-10	6.87E-10	2.43E-10	1.56E-09	9.85E-11	1.11E-10	3.84E-11	2.48E-10	5.27E-11	5.24E-11	1.61E-11	1.21E-10
2305	764157.4	4094020	6.21E-10	6.76E-10	2.39E-10	1.54E-09	9.70E-11	1.10E-10	3.78E-11	2.44E-10	5.18E-11	5.15E-11	1.58E-11	1.19E-10
2306	764182	4094020	6.11E-10	6.65E-10	2.35E-10	1.51E-09	9.54E-11	1.08E-10	3.72E-11	2.40E-10	5.10E-11	5.07E-11	1.56E-11	1.17E-10
2307	763761	4094199	5.90E-10	6.42E-10	2.27E-10	1.46E-09	9.22E-11	1.04E-10	3.59E-11	2.32E-10	4.93E-11	4.90E-11	1.50E-11	1.13E-10
2308	763738.9	4094190	5.95E-10	6.47E-10	2.29E-10	1.47E-09	9.29E-11	1.05E-10	3.62E-11	2.34E-10	4.97E-11	4.94E-11	1.52E-11	1.14E-10
2309	763716.8	4094180	6.00E-10	6.53E-10	2.31E-10	1.48E-09	9.37E-11	1.06E-10	3.65E-11	2.36E-10	5.01E-11	4.98E-11	1.53E-11	1.15E-10
2310	763694.7	4094170	6.06E-10	6.60E-10	2.33E-10	1.50E-09	9.47E-11	1.07E-10	3.69E-11	2.39E-10	5.06E-11	5.03E-11	1.54E-11	1.16E-10
2311	763672.6	4094160	6.13E-10	6.68E-10	2.36E-10	1.52E-09	9.58E-11	1.08E-10	3.73E-11	2.41E-10	5.12E-11	5.09E-11	1.56E-11	1.18E-10
2312	763650.5	4094150	6.21E-10	6.76E-10	2.39E-10	1.54E-09	9.70E-11	1.10E-10	3.78E-11	2.45E-10	5.19E-11	5.16E-11	1.58E-11	1.19E-10
2313	763628.4	4094140	6.30E-10	6.86E-10	2.43E-10	1.56E-09	9.84E-11	1.11E-10	3.83E-11	2.48E-10	5.26E-11	5.23E-11	1.61E-11	1.21E-10
2314	763606.3	4094130	6.41E-10	6.97E-10	2.47E-10	1.58E-09	1.00E-10	1.13E-10	3.90E-11	2.52E-10	5.35E-11	5.32E-11	1.63E-11	1.23E-10
2315	763584.2	4094120	6.52E-10	7.10E-10	2.51E-10	1.61E-09	1.02E-10	1.15E-10	3.97E-11	2.57E-10	5.45E-11	5.41E-11	1.66E-11	1.25E-10
2316	763562.1	4094110	6.65E-10	7.24E-10	2.56E-10	1.64E-09	1.04E-10	1.17E-10	4.05E-11	2.62E-10	5.55E-11	5.52E-11	1.69E-11	1.28E-10
2317	763540.1	4094100	6.79E-10	7.39E-10	2.62E-10	1.68E-09	1.06E-10	1.20E-10	4.13E-11	2.67E-10	5.67E-11	5.64E-11	1.73E-11	1.30E-10
2318	763518	4094090	6.95E-10	7.56E-10	2.68E-10	1.72E-09	1.09E-10	1.23E-10			5.80E-11	5.77E-11		
	763495.9	4094080	7.12E-10	7.75E-10	2.74E-10	1.76E-09	1.11E-10	1.26E-10			5.94E-11	5.91E-11	1.81E-11	1.37E-10
	763473.8	4094070	7.29E-10	7.94E-10	2.81E-10	1.80E-09		1.29E-10				6.06E-11		
	763451.7		7.48E-10	8.14E-10	2.88E-10	1.85E-09		1.32E-10				6.21E-11		
	763429.6	4094050	7.68E-10	8.36E-10	2.96E-10	1.90E-09		1.36E-10				6.37E-11		
	763407.5	4094040	7.88E-10	8.57E-10	3.03E-10	1.95E-09		1.39E-10				6.54E-11		
	763385.4	4094030	8.07E-10	8.79E-10	3.11E-10	2.00E-09		1.43E-10		3.18E-10		6.70E-11		
	763363.3	4094020	8.27E-10	9.01E-10	3.19E-10	2.05E-09		1.46E-10				6.87E-11		
	763341.2	4094010	8.47E-10	9.22E-10	3.26E-10	2.09E-09		1.50E-10				7.03E-11		
2327	763319.1		8.65E-10	9.41E-10	3.33E-10	2.14E-09		1.53E-10				7.18E-11		
2328	763297	4093991	8.82E-10	9.60E-10	3.40E-10	2.14E 03		1.56E-10				7.32E-11		
2320	,03237	-r053551	J.UZL-10	J.00L-10	J.40L-10	2.101 03	1.30L-10	1.50L-10	J.J/ L-11	J.7/L 10	7.57L-11	/.JZL-11	∠.∠JL-11	1.05L-10

2329 763	3274.9	4093981	8.98E-10	9.78E-10	3.46E-10	2.22E-09	1.40E-10	1.59E-10	5.46E-11	3.54E-10	7.50E-11	7.46E-11	2.29E-11	1.72E-10
2330 763	3252.8	4093971	9.12E-10	9.93E-10	3.51E-10	2.26E-09	1.43E-10	1.61E-10	5.55E-11	3.59E-10	7.62E-11	7.58E-11	2.32E-11	1.75E-10
2331 763	3230.7	4093961	9.25E-10	1.01E-09	3.56E-10	2.29E-09	1.45E-10	1.63E-10	5.63E-11	3.64E-10	7.73E-11	7.68E-11	2.36E-11	1.78E-10
2332 763	3208.7	4093951	9.36E-10	1.02E-09	3.60E-10	2.32E-09	1.46E-10	1.65E-10	5.69E-11	3.68E-10	7.82E-11	7.77E-11	2.38E-11	1.80E-10
2333 763	3186.6	4093941	9.44E-10	1.03E-09	3.64E-10	2.34E-09	1.47E-10	1.67E-10	5.75E-11	3.72E-10	7.89E-11	7.84E-11	2.41E-11	1.81E-10
2334 763	3164.5	4093931	9.51E-10	1.03E-09	3.66E-10	2.35E-09	1.48E-10	1.68E-10	5.78E-11	3.74E-10	7.94E-11	7.89E-11	2.42E-11	1.83E-10
2335 763	3142.4	4093921	9.55E-10	1.04E-09	3.68E-10	2.36E-09	1.49E-10	1.69E-10	5.81E-11	3.76E-10	7.97E-11	7.93E-11	2.43E-11	1.83E-10
2336 763	3120.3	4093911	9.57E-10	1.04E-09	3.68E-10	2.37E-09	1.49E-10	1.69E-10	5.82E-11	3.77E-10	7.99E-11	7.94E-11	2.44E-11	1.84E-10
2337 763	3098.2	4093901	9.57E-10	1.04E-09	3.68E-10	2.37E-09	1.49E-10	1.69E-10	5.82E-11	3.77E-10	7.99E-11	7.94E-11	2.44E-11	1.84E-10
2338 763	3076.1	4093891	9.55E-10	1.04E-09	3.68E-10	2.36E-09	1.49E-10	1.69E-10	5.81E-11	3.76E-10	7.97E-11	7.93E-11	2.43E-11	1.83E-10
2339 76	63054	4093881	9.51E-10	1.04E-09	3.66E-10	2.35E-09	1.49E-10	1.68E-10	5.79E-11	3.75E-10	7.94E-11	7.90E-11	2.42E-11	1.83E-10
2340 763	3031.9	4093871	9.45E-10	1.03E-09	3.64E-10	2.34E-09	1.48E-10	1.67E-10	5.75E-11	3.72E-10	7.89E-11	7.85E-11	2.41E-11	1.82E-10
2341 763	3009.8	4093861	9.37E-10	1.02E-09	3.61E-10	2.32E-09	1.46E-10	1.66E-10	5.70E-11	3.69E-10	7.83E-11	7.78E-11	2.39E-11	1.80E-10
2342 762	2987.7	4093851	9.28E-10	1.01E-09	3.57E-10	2.29E-09	1.45E-10	1.64E-10	5.64E-11	3.65E-10	7.75E-11	7.70E-11	2.36E-11	1.78E-10
2343 762	2965.6	4093841	9.16E-10	9.97E-10	3.53E-10	2.27E-09	1.43E-10	1.62E-10	5.57E-11	3.61E-10	7.65E-11	7.60E-11	2.33E-11	1.76E-10
2344 762	2943.5	4093831	9.03E-10	9.82E-10	3.48E-10	2.23E-09	1.41E-10	1.59E-10	5.49E-11	3.55E-10	7.54E-11	7.49E-11	2.30E-11	1.73E-10
2345 762	2921.4	4093822	8.88E-10	9.66E-10	3.42E-10	2.20E-09	1.39E-10	1.57E-10	5.40E-11	3.49E-10	7.41E-11	7.37E-11	2.26E-11	1.70E-10
2346 762	2899.3	4093812	8.71E-10	9.48E-10	3.35E-10	2.15E-09	1.36E-10	1.54E-10	5.30E-11	3.43E-10	7.27E-11	7.23E-11	2.22E-11	1.67E-10
2347 762	2877.3	4093802	8.53E-10	9.29E-10	3.29E-10	2.11E-09	1.33E-10	1.51E-10	5.19E-11	3.36E-10	7.12E-11	7.08E-11	2.17E-11	1.64E-10
2348 762	2855.2	4093792	8.34E-10	9.08E-10	3.21E-10	2.06E-09	1.30E-10	1.47E-10	5.08E-11	3.29E-10	6.97E-11	6.93E-11	2.13E-11	1.60E-10
2349 762	2833.1	4093782	8.15E-10	8.87E-10	3.14E-10	2.02E-09	1.27E-10	1.44E-10	4.96E-11	3.21E-10	6.80E-11	6.76E-11	2.08E-11	1.56E-10
2350 76	62811	4093772	7.95E-10	8.65E-10	3.06E-10	1.97E-09	1.24E-10	1.40E-10	4.84E-11	3.13E-10	6.64E-11	6.60E-11	2.03E-11	1.53E-10
2351 762	2788.9	4093762	7.75E-10	8.43E-10	2.98E-10	1.92E-09	1.21E-10	1.37E-10	4.71E-11	3.05E-10	6.47E-11	6.43E-11	1.97E-11	1.49E-10
2352 762	2634.2	4093692	6.50E-10	7.08E-10	2.50E-10	1.61E-09	1.02E-10	1.15E-10	3.96E-11	2.56E-10	5.43E-11	5.40E-11	1.66E-11	1.25E-10
2353 762	2612.1	4093682	6.38E-10	6.94E-10	2.46E-10	1.58E-09	9.96E-11	1.13E-10	3.88E-11	2.51E-10	5.32E-11	5.29E-11	1.62E-11	1.22E-10
2354 762	2573.1	4093627	6.25E-10	6.80E-10	2.41E-10	1.55E-09	9.76E-11	1.10E-10	3.80E-11	2.46E-10	5.22E-11	5.19E-11	1.59E-11	1.20E-10
2355 762	2564.6	4093604	6.26E-10	6.81E-10	2.41E-10	1.55E-09	9.78E-11	1.11E-10	3.81E-11	2.46E-10	5.23E-11	5.20E-11	1.60E-11	1.20E-10
2356 762	2556.1	4093582	6.28E-10	6.84E-10	2.42E-10	1.55E-09	9.81E-11	1.11E-10	3.82E-11	2.47E-10	5.25E-11	5.22E-11	1.60E-11	1.21E-10
2357 762	2547.6	4093559	6.31E-10	6.87E-10	2.43E-10	1.56E-09	9.86E-11	1.12E-10	3.84E-11	2.49E-10	5.27E-11	5.24E-11	1.61E-11	1.21E-10
2358 762	2539.1	4093536	6.35E-10	6.91E-10	2.45E-10	1.57E-09	9.92E-11	1.12E-10	3.86E-11	2.50E-10	5.30E-11	5.27E-11	1.62E-11	1.22E-10
2359 762	2530.6	4093514	6.39E-10	6.95E-10	2.46E-10	1.58E-09	9.98E-11	1.13E-10	3.89E-11	2.52E-10	5.33E-11	5.30E-11	1.63E-11	1.23E-10
2360 762	2369.4	4093082	5.70E-10	6.21E-10	2.20E-10	1.41E-09	8.91E-11	1.01E-10	3.47E-11	2.25E-10	4.76E-11	4.74E-11	1.45E-11	1.10E-10
2361 762	2360.9	4093060	5.64E-10	6.14E-10	2.17E-10	1.40E-09	8.82E-11	9.97E-11	3.43E-11	2.22E-10	4.71E-11	4.69E-11	1.44E-11	1.08E-10
2362 762	2352.4	4093037	5.59E-10	6.08E-10	2.15E-10	1.38E-09	8.73E-11	9.87E-11	3.40E-11	2.20E-10	4.67E-11	4.64E-11	1.42E-11	1.07E-10
2363 762	2343.9	4093014	5.53E-10	6.02E-10	2.13E-10	1.37E-09	8.64E-11	9.78E-11	3.37E-11	2.18E-10	4.62E-11	4.60E-11	1.41E-11	1.06E-10
2364 762	2335.5	4092992	5.49E-10	5.97E-10	2.11E-10	1.36E-09	8.57E-11	9.69E-11	3.34E-11	2.16E-10	4.58E-11	4.55E-11	1.40E-11	1.05E-10
2365 76	62327	4092969	5.43E-10	5.91E-10	2.09E-10	1.34E-09	8.49E-11	9.60E-11	3.31E-11	2.14E-10	4.54E-11	4.51E-11	1.38E-11	1.04E-10
2366 762		4092946	5.38E-10	5.86E-10	2.07E-10	1.33E-09	8.41E-11	9.51E-11	3.28E-11	2.12E-10	4.50E-11	4.47E-11	1.37E-11	1.03E-10
2367 76		4092923	5.33E-10	5.80E-10	2.05E-10	1.32E-09		9.42E-11				4.43E-11		
2368 762	2301.5	4092901	5.28E-10	5.75E-10	2.03E-10	1.31E-09	8.24E-11	9.33E-11	3.21E-11	2.08E-10	4.41E-11	4.38E-11	1.35E-11	1.01E-10
		4092878	5.22E-10	5.69E-10	2.01E-10	1.29E-09		9.23E-11				4.34E-11		
2370 762		4092855	5.17E-10	5.63E-10	1.99E-10	1.28E-09		9.13E-11				4.29E-11		
			5.11E-10	5.56E-10	1.97E-10	1.26E-09	7.98E-11	9.03E-11	3.11E-11	2.01E-10		4.24E-11		
2372 762		4092810		5.50E-10	1.95E-10	1.25E-09		8.93E-11				4.20E-11		
-	-		-	-	-	· -	_	_	_	-	_	_	_	_

2373	762259.1	4092787	5.00E-10	5.44E-10	1.92E-10	1.24E-09	7.80E-11	8.83E-11	3.04E-11	1.97E-10	4.17E-11	4.15E-11	1.27E-11	9.59E-11
2374	762250.6	4092765	4.94E-10	5.37E-10	1.90E-10	1.22E-09	7.71E-11	8.72E-11	3.00E-11	1.94E-10	4.12E-11	4.10E-11	1.26E-11	9.48E-11
2375	762242.1	4092742	4.88E-10	5.31E-10	1.88E-10	1.21E-09	7.62E-11	8.62E-11	2.97E-11	1.92E-10	4.07E-11	4.05E-11	1.24E-11	9.37E-11
2376	762233.6	4092719	4.82E-10	5.25E-10	1.86E-10	1.19E-09	7.53E-11	8.52E-11	2.93E-11	1.90E-10	4.02E-11	4.00E-11	1.23E-11	9.25E-11
2377	762225.1	4092697	4.76E-10	5.18E-10	1.83E-10	1.18E-09	7.43E-11	8.41E-11	2.90E-11	1.87E-10	3.97E-11	3.95E-11	1.21E-11	9.14E-11
2378	762216.6	4092674	4.70E-10	5.12E-10	1.81E-10	1.16E-09	7.34E-11	8.30E-11	2.86E-11	1.85E-10	3.92E-11	3.90E-11	1.20E-11	9.02E-11
2379	762208.2	4092651	4.64E-10	5.05E-10	1.79E-10	1.15E-09	7.24E-11	8.19E-11	2.82E-11	1.83E-10	3.87E-11	3.85E-11	1.18E-11	8.90E-11
2380	762199.7	4092628	4.57E-10	4.98E-10	1.76E-10	1.13E-09	7.14E-11	8.08E-11	2.78E-11	1.80E-10	3.82E-11	3.80E-11	1.17E-11	8.78E-11
2381	762191.2	4092606	4.51E-10	4.90E-10	1.74E-10	1.11E-09	7.04E-11	7.96E-11	2.74E-11	1.77E-10	3.76E-11	3.74E-11	1.15E-11	8.65E-11
2382	762182.7	4092583	4.44E-10	4.83E-10	1.71E-10	1.10E-09	6.93E-11	7.84E-11	2.70E-11	1.75E-10	3.71E-11	3.68E-11	1.13E-11	8.52E-11
2383	762174.2	4092560	4.36E-10	4.75E-10	1.68E-10	1.08E-09	6.81E-11	7.71E-11	2.65E-11	1.72E-10	3.64E-11	3.62E-11	1.11E-11	8.38E-11
2384	762165.7	4092538	4.29E-10	4.67E-10	1.65E-10	1.06E-09	6.70E-11	7.57E-11	2.61E-11	1.69E-10	3.58E-11	3.56E-11	1.09E-11	8.23E-11
2385	762157.2	4092515	4.21E-10	4.58E-10	1.62E-10	1.04E-09	6.58E-11	7.44E-11	2.56E-11	1.66E-10	3.52E-11	3.50E-11	1.07E-11	8.09E-11
2386	762148.8	4092492	4.13E-10	4.50E-10	1.59E-10	1.02E-09	6.45E-11	7.30E-11	2.51E-11	1.63E-10	3.45E-11	3.43E-11	1.05E-11	7.93E-11
2387	762140.3	4092470	4.05E-10	4.41E-10	1.56E-10	1.00E-09	6.32E-11	7.15E-11	2.46E-11	1.59E-10	3.38E-11	3.36E-11	1.03E-11	7.77E-11
2388	763783.1	4094209	5.86E-10	6.37E-10	2.26E-10	1.45E-09	9.15E-11	1.03E-10	3.56E-11	2.31E-10	4.89E-11	4.86E-11	1.49E-11	1.12E-10
2389	763807.7	4094210	5.86E-10	6.37E-10	2.26E-10	1.45E-09	9.15E-11	1.03E-10	3.56E-11	2.31E-10	4.89E-11	4.86E-11	1.49E-11	1.12E-10
2390	763832.3	4094211	5.86E-10	6.37E-10	2.26E-10	1.45E-09	9.15E-11	1.03E-10	3.56E-11	2.31E-10	4.89E-11	4.86E-11	1.49E-11	1.12E-10
2391	763856.8	4094211	5.85E-10	6.37E-10	2.25E-10	1.45E-09	9.14E-11	1.03E-10	3.56E-11	2.30E-10	4.89E-11	4.86E-11	1.49E-11	1.12E-10
2392	763881.4	4094212	5.85E-10	6.36E-10	2.25E-10	1.45E-09	9.13E-11	1.03E-10	3.56E-11	2.30E-10	4.88E-11	4.85E-11	1.49E-11	1.12E-10
2393	763906	4094213	5.83E-10	6.35E-10	2.25E-10	1.44E-09	9.11E-11	1.03E-10	3.55E-11	2.30E-10	4.87E-11	4.84E-11	1.49E-11	1.12E-10
2394	763930.6	4094214	5.81E-10	6.33E-10	2.24E-10	1.44E-09	9.08E-11	1.03E-10	3.54E-11	2.29E-10	4.85E-11	4.83E-11	1.48E-11	1.12E-10
2395	763955.2	4094214	5.79E-10	6.30E-10	2.23E-10	1.43E-09	9.04E-11	1.02E-10	3.52E-11	2.28E-10	4.83E-11	4.81E-11	1.47E-11	1.11E-10
2396	763979.8	4094215	5.75E-10	6.26E-10	2.22E-10	1.42E-09	8.99E-11	1.02E-10	3.50E-11	2.27E-10	4.80E-11	4.78E-11	1.47E-11	1.10E-10
2397	764004.3	4094216	5.71E-10	6.21E-10	2.20E-10	1.41E-09	8.92E-11	1.01E-10	3.47E-11	2.25E-10	4.77E-11	4.74E-11	1.45E-11	1.10E-10
2398	764028.9	4094216	5.66E-10	6.16E-10	2.18E-10	1.40E-09	8.84E-11	1.00E-10	3.44E-11	2.23E-10	4.73E-11	4.70E-11	1.44E-11	1.09E-10
2399	764053.5	4094217	5.60E-10	6.10E-10	2.16E-10	1.39E-09	8.75E-11	9.90E-11	3.41E-11	2.21E-10	4.68E-11	4.65E-11	1.43E-11	1.08E-10
2400	764078.1	4094218	5.54E-10	6.03E-10	2.13E-10	1.37E-09	8.65E-11	9.79E-11	3.37E-11	2.18E-10	4.63E-11	4.60E-11	1.41E-11	1.06E-10
2401	764102.7	4094218	5.47E-10	5.95E-10	2.11E-10	1.35E-09	8.54E-11	9.66E-11	3.33E-11	2.15E-10	4.57E-11	4.54E-11	1.39E-11	1.05E-10
2402	764127.3	4094219	5.40E-10	5.87E-10	2.08E-10	1.33E-09	8.43E-11	9.53E-11	3.28E-11	2.12E-10	4.51E-11	4.48E-11	1.38E-11	1.04E-10
2403	764151.8	4094220	5.32E-10	5.79E-10	2.05E-10	1.32E-09	8.31E-11	9.40E-11	3.24E-11	2.09E-10	4.44E-11	4.42E-11	1.36E-11	1.02E-10
2404	764176.4	4094220	5.24E-10	5.71E-10	2.02E-10	1.30E-09	8.19E-11	9.26E-11	3.19E-11	2.06E-10	4.38E-11	4.35E-11	1.34E-11	1.01E-10

UTM X UTM Y Yr 1 Yr 2 Yr 3 <			T4			T2L3	8		T2			
UTM X UTM Y Yr 1 Yr 2 Yr 3 <							4092304.72	764256.60	4			
1 764254 4092377 1.88E-02 2.05E-02 7.24E-03 2.94E-03 3.32E-03 1.14E-03 1.57E-03 1.56E-03 4 2 764254.9 4092353 1.94E-02 2.11E-02 7.45E-03 3.02E-03 3.42E-03 1.18E-03 1.62E-03 1.61E-03 4 3 764255.8 4092329 1.97E-02 2.15E-02 7.59E-03 3.08E-03 3.48E-03 1.20E-03 1.65E-03 1.65E-03 5 4 764256.6 4092305 1.99E-02 2.17E-02 7.66E-03 3.11E-03 3.51E-03 1.21E-03 1.66E-03 1.65E-03 5 5 764257.5 4092281 1.99E-02 2.16E-02 7.66E-03 3.11E-03 3.51E-03 1.21E-03 1.66E-03 1.65E-03 5 6 764258.3 4092256 1.97E-02 2.14E-02 7.57E-03 3.07E-03 3.47E-03 1.20E-03 1.64E-03 1.63E-03 5 7 764259.2 4092232 1.91E-02 2.08E-02 7.36E-03 2.98E-03 3.37E-03 1.16E-03 1.50E-03 1.59E-03 1.59E-03<	5.07E-04	1.65E-03	1.66E-03	1.21E-03	3.51E-03	3.11E-03	7.66E-03	2.17E-02	1.99E-02			
2 764254.9 4092353 1.94E-02 2.11E-02 7.45E-03 3.02E-03 3.42E-03 1.18E-03 1.62E-03 1.61E-03 4 3 764255.8 4092329 1.97E-02 2.15E-02 7.59E-03 3.08E-03 3.48E-03 1.20E-03 1.65E-03 1.64E-03 5 4 764256.6 4092305 1.99E-02 2.16E-02 7.66E-03 3.11E-03 3.51E-03 1.21E-03 1.66E-03 1.65E-03 5 5 764257.5 4092281 1.99E-02 2.14E-02 7.57E-03 3.07E-03 3.47E-03 1.20E-03 1.64E-03 1.65E-03 5 6 764258.3 4092232 1.91E-02 2.08E-02 7.36E-03 2.98E-03 3.37E-03 1.16E-03 1.59E-03 1.59E-03 4 8 764259.2 4092208 1.79E-02 1.95E-02 6.90E-03 2.80E-03 3.17E-03 1.09E-03 1.59E-03 1.49E-03 4 9 764279 4092378 1.29E-02 1.40E-02 4.96E-03 2.01E-03 2.27E-03 7.83E-04 1.07E-03 1.12E-03 1.12E-03<	Yr 3	Yr 2	Yr 1	Yr 3	Yr 2	Yr 1	Yr 3	Yr 2	Yr 1	UTM Y	UTM X	
3 764255.8 4092329 1.97E-02 2.15E-02 7.59E-03 3.08E-03 3.48E-03 1.20E-03 1.65E-03 1.64E-03 5.764256.6 4 764256.6 4092305 1.99E-02 2.17E-02 7.66E-03 3.11E-03 3.51E-03 1.21E-03 1.66E-03 1.65E-03 5.764257.5 4092281 1.99E-02 2.16E-02 7.66E-03 3.11E-03 3.51E-03 1.21E-03 1.66E-03 1.65E-03 5.764257.5 4092281 1.99E-02 2.14E-02 7.57E-03 3.07E-03 3.47E-03 1.20E-03 1.64E-03 1.65E-03 5.7764259.2 4092232 1.91E-02 2.08E-02 7.36E-03 2.98E-03 3.37E-03 1.16E-03 1.59E-03 1.59E-03 4.96E-03 2.80E-03 3.17E-03 1.09E-03 1.50E-03 1.49E-03 4.96E-03 2.01E-03 2.27E-03 7.83E-04 1.07E-03 1.07E-03 3.12E-03 3.12E-03	4.79E-04	1.56E-03	1.57E-03	1.14E-03	3.32E-03	2.94E-03	7.24E-03	2.05E-02	1.88E-02	4092377	764254	1
4 764256.6 4092305 1.99E-02 2.17E-02 7.66E-03 3.11E-03 3.51E-03 1.21E-03 1.66E-03 1.65E-03 5 5 764257.5 4092281 1.99E-02 2.16E-02 7.66E-03 3.11E-03 3.51E-03 1.21E-03 1.66E-03 1.65E-03 5 6 764258.3 4092256 1.97E-02 2.14E-02 7.57E-03 3.07E-03 3.47E-03 1.20E-03 1.64E-03 1.63E-03 5 7 764259.2 4092232 1.91E-02 2.08E-02 7.36E-03 2.98E-03 3.37E-03 1.16E-03 1.59E-03 1.59E-03 4 8 764260 4092208 1.79E-02 1.95E-02 6.90E-03 2.80E-03 3.17E-03 1.09E-03 1.50E-03 1.49E-03 4 9 764279 4092378 1.29E-02 1.40E-02 4.96E-03 2.01E-03 2.27E-03 7.83E-04 1.07E-03 1.07E-03 3 10 764279.9 4092354 1.34E-02 1.51E-02 5.33E-03 2.10E-03 2.38E-03 8.18E-04 1.12E-03 1.15E-03 3	4.93E-04	1.61E-03	1.62E-03	1.18E-03	3.42E-03	3.02E-03	7.45E-03	2.11E-02	1.94E-02	4092353	764254.9	2
5 764257.5 4092281 1.99E-02 2.16E-02 7.66E-03 3.11E-03 3.51E-03 1.21E-03 1.66E-03 1.65E-03 5 6 764258.3 4092256 1.97E-02 2.14E-02 7.57E-03 3.07E-03 3.47E-03 1.20E-03 1.64E-03 1.63E-03 5 7 764259.2 4092232 1.91E-02 2.08E-02 7.36E-03 2.98E-03 3.37E-03 1.16E-03 1.59E-03 1.59E-03 4 8 764260 4092208 1.79E-02 1.95E-02 6.90E-03 2.80E-03 3.17E-03 1.09E-03 1.50E-03 1.49E-03 4 9 764279 4092378 1.29E-02 1.40E-02 4.96E-03 2.01E-03 2.27E-03 7.83E-04 1.07E-03 1.07E-03 3 10 764279.9 4092354 1.34E-02 1.46E-02 5.18E-03 2.10E-03 2.38E-03 8.18E-04 1.12E-03 1.12E-03 3 11 764280.7 4092330 1.38E-02 1.51E-02 5.33E-03 2.16E-03 2.44E-03 8.56E-04 1.17E-03 1.17E-03 3	5.02E-04	1.64E-03	1.65E-03	1.20E-03	3.48E-03	3.08E-03	7.59E-03	2.15E-02	1.97E-02	4092329	764255.8	3
6 764258.3 4092256 1.97E-02 2.14E-02 7.57E-03 3.07E-03 3.47E-03 1.20E-03 1.64E-03 1.63E-03 5.77 7 764259.2 4092232 1.91E-02 2.08E-02 7.36E-03 2.98E-03 3.37E-03 1.16E-03 1.59E-03 1.59E-03 4.96E-03 4.96E-03 2.80E-03 3.17E-03 1.09E-03 1.50E-03 1.49E-03 4.96E-03 2.01E-03 2.27E-03 7.83E-04 1.07E-03 1.07E-03 3.07E-03 3.07E-03 3.07E-03 1.09E-03 1.50E-03 1.59E-03 4.96E-03 4.96E-03 2.01E-03 2.27E-03 7.83E-04 1.07E-03 1.07E-03 3.07E-03 3.07E-03 2.27E-03 7.83E-04 1.07E-03 1.49E-03 4.96E-03 2.10E-03 2.38E-03 8.18E-04 1.12E-03 1.12E-03 3.11E-03	5.07E-04	1.65E-03	1.66E-03	1.21E-03	3.51E-03	3.11E-03	7.66E-03	2.17E-02	1.99E-02	4092305	764256.6	4
7 764259.2 4092232 1.91E-02 2.08E-02 7.36E-03 2.98E-03 3.37E-03 1.16E-03 1.59E-03 1.59E-03 4 8 764260 4092208 1.79E-02 1.95E-02 6.90E-03 2.80E-03 3.17E-03 1.09E-03 1.50E-03 1.49E-03 4 9 764279 4092378 1.29E-02 1.40E-02 4.96E-03 2.01E-03 2.27E-03 7.83E-04 1.07E-03 1.07E-03 3 10 764279.9 4092354 1.34E-02 1.46E-02 5.18E-03 2.10E-03 2.38E-03 8.18E-04 1.12E-03 1.12E-03 3 11 764280.7 4092330 1.38E-02 1.51E-02 5.33E-03 2.16E-03 2.44E-03 8.42E-04 1.16E-03 1.17E-03 3 12 764281.6 4092306 1.41E-02 1.53E-02 5.42E-03 2.20E-03 2.49E-03 8.56E-04 1.17E-03 1.17E-03 3 13 764282.4 4092281 1.41E-02 1.54E-02 5.44E-03 2.21E-03 2.50E-03 8.60E-04 1.18E-03 1.17E-03 3	5.07E-04	1.65E-03	1.66E-03	1.21E-03	3.51E-03	3.11E-03	7.66E-03	2.16E-02	1.99E-02	4092281	764257.5	5
8 764260 4092208 1.79E-02 1.95E-02 6.90E-03 2.80E-03 3.17E-03 1.09E-03 1.50E-03 1.49E-03 4 9 764279 4092378 1.29E-02 1.40E-02 4.96E-03 2.01E-03 2.27E-03 7.83E-04 1.07E-03 1.07E-03 3 10 764279.9 4092354 1.34E-02 1.46E-02 5.18E-03 2.10E-03 2.38E-03 8.18E-04 1.12E-03 1.12E-03 3 11 764280.7 4092330 1.38E-02 1.51E-02 5.33E-03 2.16E-03 2.44E-03 8.42E-04 1.16E-03 1.15E-03 3 12 764281.6 4092306 1.41E-02 1.53E-02 5.42E-03 2.20E-03 2.49E-03 8.56E-04 1.17E-03 1.17E-03 3 13 764282.4 4092281 1.41E-02 1.54E-02 5.44E-03 2.21E-03 2.50E-03 8.60E-04 1.18E-03 1.17E-03 3	5.01E-04	1.63E-03	1.64E-03	1.20E-03	3.47E-03	3.07E-03	7.57E-03	2.14E-02	1.97E-02	4092256	764258.3	6
9 764279 4092378 1.29E-02 1.40E-02 4.96E-03 2.01E-03 2.27E-03 7.83E-04 1.07E-03 1.07E-03 3 10 764279.9 4092354 1.34E-02 1.46E-02 5.18E-03 2.10E-03 2.38E-03 8.18E-04 1.12E-03 1.12E-03 3 11 764280.7 4092330 1.38E-02 1.51E-02 5.33E-03 2.16E-03 2.44E-03 8.42E-04 1.16E-03 1.15E-03 3 12 764281.6 4092306 1.41E-02 1.53E-02 5.42E-03 2.20E-03 2.49E-03 8.56E-04 1.17E-03 1.17E-03 3 13 764282.4 4092281 1.41E-02 1.54E-02 5.44E-03 2.21E-03 2.50E-03 8.60E-04 1.18E-03 1.17E-03 3	4.87E-04	1.59E-03	1.59E-03	1.16E-03	3.37E-03	2.98E-03	7.36E-03	2.08E-02	1.91E-02	4092232	764259.2	7
10 764279.9 4092354 1.34E-02 1.46E-02 5.18E-03 2.10E-03 2.38E-03 8.18E-04 1.12E-03 1.12E-03 3 11 764280.7 4092330 1.38E-02 1.51E-02 5.33E-03 2.16E-03 2.44E-03 8.42E-04 1.16E-03 1.15E-03 3 12 764281.6 4092306 1.41E-02 1.53E-02 5.42E-03 2.20E-03 2.49E-03 8.56E-04 1.17E-03 1.17E-03 3 13 764282.4 4092281 1.41E-02 1.54E-02 5.44E-03 2.21E-03 2.50E-03 8.60E-04 1.18E-03 1.17E-03 3	4.57E-04	1.49E-03	1.50E-03	1.09E-03	3.17E-03	2.80E-03	6.90E-03	1.95E-02	1.79E-02	4092208	764260	8
11 764280.7 4092330 1.38E-02 1.51E-02 5.33E-03 2.16E-03 2.44E-03 8.42E-04 1.16E-03 1.15E-03 3 12 764281.6 4092306 1.41E-02 1.53E-02 5.42E-03 2.20E-03 2.49E-03 8.56E-04 1.17E-03 1.17E-03 3 13 764282.4 4092281 1.41E-02 1.54E-02 5.44E-03 2.21E-03 2.50E-03 8.60E-04 1.18E-03 1.17E-03 3	3.28E-04	1.07E-03	1.07E-03	7.83E-04	2.27E-03	2.01E-03	4.96E-03	1.40E-02	1.29E-02	4092378	764279	9
12 764281.6 4092306 1.41E-02 1.53E-02 5.42E-03 2.20E-03 2.49E-03 8.56E-04 1.17E-03 1.17E-03 3 13 764282.4 4092281 1.41E-02 1.54E-02 5.44E-03 2.21E-03 2.50E-03 8.60E-04 1.18E-03 1.17E-03 3	3.43E-04	1.12E-03	1.12E-03	8.18E-04	2.38E-03	2.10E-03	5.18E-03	1.46E-02	1.34E-02	4092354	764279.9	10
13 764282.4 4092281 1.41E-02 1.54E-02 5.44E-03 2.21E-03 2.50E-03 8.60E-04 1.18E-03 1.17E-03 3	3.53E-04	1.15E-03	1.16E-03	8.42E-04	2.44E-03	2.16E-03	5.33E-03	1.51E-02	1.38E-02	4092330	764280.7	11
	3.58E-04	1.17E-03	1.17E-03	8.56E-04	2.49E-03	2.20E-03	5.42E-03	1.53E-02	1.41E-02	4092306	764281.6	12
14 764283.3 4092257 1.40E-02 1.53E-02 5.40E-03 2.19E-03 2.48E-03 8.54E-04 1.17E-03 1.17E-03 3	3.60E-04	1.17E-03	1.18E-03	8.60E-04	2.50E-03	2.21E-03	5.44E-03	1.54E-02	1.41E-02	4092281	764282.4	13
	3.58E-04	1.17E-03	1.17E-03	8.54E-04	2.48E-03	2.19E-03	5.40E-03	1.53E-02	1.40E-02	4092257	764283.3	14
15 764284.1 4092233 1.37E-02 1.49E-02 5.28E-03 2.14E-03 2.42E-03 8.34E-04 1.14E-03 1.14E-03 3	3.49E-04	1.14E-03	1.14E-03	8.34E-04	2.42E-03	2.14E-03	5.28E-03	1.49E-02	1.37E-02	4092233	764284.1	15
16 764285 4092209 1.30E-02 1.42E-02 5.02E-03 2.04E-03 2.30E-03 7.94E-04 1.09E-03 1.08E-03 3	3.32E-04	1.08E-03	1.09E-03	7.94E-04	2.30E-03	2.04E-03	5.02E-03	1.42E-02	1.30E-02	4092209	764285	16
17 764304 4092379 9.41E-03 1.02E-02 3.62E-03 1.47E-03 1.66E-03 5.73E-04 7.86E-04 7.81E-04 2	2.40E-04	7.81E-04	7.86E-04	5.73E-04	1.66E-03	1.47E-03	3.62E-03	1.02E-02	9.41E-03	4092379	764304	17
18 764304.9 4092355 9.98E-03 1.09E-02 3.84E-03 1.56E-03 1.76E-03 6.07E-04 8.33E-04 8.28E-04 2	2.54E-04	8.28E-04	8.33E-04	6.07E-04	1.76E-03	1.56E-03	3.84E-03	1.09E-02	9.98E-03	4092355	764304.9	18
19 764305.7 4092331 1.04E-02 1.13E-02 4.00E-03 1.62E-03 1.83E-03 6.32E-04 8.67E-04 8.62E-04 2	2.65E-04	8.62E-04	8.67E-04	6.32E-04	1.83E-03	1.62E-03	4.00E-03	1.13E-02	1.04E-02	4092331	764305.7	19
20 764306.6 4092306 1.06E-02 1.16E-02 4.10E-03 1.66E-03 1.88E-03 6.48E-04 8.89E-04 8.84E-04 2	2.71E-04	8.84E-04	8.89E-04	6.48E-04	1.88E-03	1.66E-03	4.10E-03	1.16E-02	1.06E-02	4092306	764306.6	20
21 764307.4 4092282 1.08E-02 1.17E-02 4.15E-03 1.68E-03 1.91E-03 6.56E-04 9.00E-04 8.95E-04 2	2.75E-04	8.95E-04	9.00E-04	6.56E-04	1.91E-03	1.68E-03	4.15E-03	1.17E-02	1.08E-02	4092282	764307.4	21
22 764308.3 4092258 1.08E-02 1.17E-02 4.15E-03 1.68E-03 1.90E-03 6.55E-04 8.99E-04 8.94E-04 2	2.74E-04	8.94E-04	8.99E-04	6.55E-04	1.90E-03	1.68E-03	4.15E-03	1.17E-02	1.08E-02	4092258	764308.3	22
23 764309.1 4092234 1.06E-02 1.15E-02 4.08E-03 1.65E-03 1.87E-03 6.45E-04 8.85E-04 8.80E-04 2	2.70E-04	8.80E-04	8.85E-04	6.45E-04	1.87E-03	1.65E-03	4.08E-03	1.15E-02	1.06E-02	4092234	764309.1	23
24 764310 4092210 1.02E-02 1.11E-02 3.93E-03 1.59E-03 1.80E-03 6.21E-04 8.52E-04 8.47E-04 2	2.60E-04	8.47E-04	8.52E-04	6.21E-04	1.80E-03	1.59E-03	3.93E-03	1.11E-02	1.02E-02	4092210	764310	24
25 764329 4092380 7.16E-03 7.79E-03 2.76E-03 1.12E-03 1.26E-03 4.35E-04 5.98E-04 5.94E-04 1	1.82E-04	5.94E-04	5.98E-04	4.35E-04	1.26E-03	1.12E-03	2.76E-03	7.79E-03	7.16E-03	4092380	764329	25
26 764329.9 4092356 7.70E-03 8.38E-03 2.97E-03 1.20E-03 1.36E-03 4.69E-04 6.43E-04 6.39E-04 1	1.96E-04	6.39E-04	6.43E-04	4.69E-04	1.36E-03	1.20E-03	2.97E-03	8.38E-03	7.70E-03	4092356	764329.9	26
27 764330.7 4092332 8.11E-03 8.83E-03 3.12E-03 1.27E-03 1.43E-03 4.94E-04 6.77E-04 6.73E-04 2	2.07E-04	6.73E-04	6.77E-04	4.94E-04	1.43E-03	1.27E-03	3.12E-03	8.83E-03	8.11E-03	4092332	764330.7	27
28 764331.6 4092307 8.40E-03 9.14E-03 3.24E-03 1.31E-03 1.48E-03 5.11E-04 7.01E-04 6.97E-04 2	2.14E-04	6.97E-04	7.01E-04	5.11E-04	1.48E-03	1.31E-03	3.24E-03	9.14E-03	8.40E-03	4092307	764331.6	28
29 764332.4 4092283 8.57E-03 9.33E-03 3.30E-03 1.34E-03 1.51E-03 5.22E-04 7.16E-04 7.12E-04 2	2.18E-04	7.12E-04	7.16E-04	5.22E-04	1.51E-03	1.34E-03	3.30E-03	9.33E-03	8.57E-03	4092283	764332.4	29
30 764333.3 4092259 8.63E-03 9.39E-03 3.32E-03 1.35E-03 1.52E-03 5.25E-04 7.20E-04 7.16E-04 2	2.20E-04	7.16E-04	7.20E-04	5.25E-04	1.52E-03	1.35E-03	3.32E-03	9.39E-03	8.63E-03	4092259	764333.3	30
31 764334.1 4092235 8.55E-03 9.31E-03 3.29E-03 1.34E-03 1.51E-03 5.20E-04 7.14E-04 7.10E-04 2	2.18E-04	7.10E-04	7.14E-04	5.20E-04	1.51E-03	1.34E-03	3.29E-03	9.31E-03	8.55E-03	4092235	764334.1	31
32 764335 4092211 8.32E-03 9.06E-03 3.20E-03 1.30E-03 1.47E-03 5.06E-04 6.95E-04 6.91E-04 2	2.12E-04	6.91E-04	6.95E-04	5.06E-04	1.47E-03	1.30E-03	3.20E-03	9.06E-03	8.32E-03	4092211	764335	32
33 764377.3 4092430 3.37E-03 3.67E-03 1.30E-03 5.27E-04 5.96E-04 2.05E-04 2.82E-04 2.80E-04 8	8.60E-05	2.80E-04	2.82E-04	2.05E-04	5.96E-04	5.27E-04	1.30E-03	3.67E-03	3.37E-03	4092430	764377.3	33
34 764378.1 4092406 3.93E-03 4.28E-03 1.52E-03 6.14E-04 6.95E-04 2.39E-04 3.28E-04 3.27E-04 1	1.00E-04	3.27E-04	3.28E-04	2.39E-04	6.95E-04	6.14E-04	1.52E-03	4.28E-03	3.93E-03	4092406	764378.1	34
35 764379 4092382 4.45E-03 4.85E-03 1.72E-03 6.96E-04 7.87E-04 2.71E-04 3.72E-04 3.70E-04 1	1.13E-04	3.70E-04	3.72E-04	2.71E-04	7.87E-04	6.96E-04	1.72E-03	4.85E-03	4.45E-03	4092382	764379	35

36	764379.8	4092357	4.91E-03	5.34E-03	1.89E-03	7.67E-04	8.67E-04	2.99E-04	4.10E-04	4.08E-04	1.25E-04
37	764380.7	4092333	5.29E-03	5.75E-03	2.04E-03	8.26E-04	9.34E-04	3.22E-04	4.41E-04	4.39E-04	1.35E-04
38	764381.5	4092309	5.58E-03	6.08E-03	2.15E-03	8.72E-04	9.87E-04	3.40E-04	4.66E-04	4.64E-04	1.42E-04
39	764382.4	4092285	5.80E-03	6.31E-03	2.23E-03	9.06E-04	1.02E-03	3.53E-04	4.84E-04	4.81E-04	1.48E-04
40	764383.2	4092261	5.93E-03	6.46E-03	2.28E-03	9.26E-04	1.05E-03	3.61E-04	4.95E-04	4.92E-04	1.51E-04
41	764384.1	4092237	5.98E-03	6.51E-03	2.30E-03	9.33E-04	1.06E-03	3.64E-04	4.99E-04	4.96E-04	1.52E-04
42	764384.9	4092213	5.93E-03	6.45E-03	2.28E-03	9.25E-04	1.05E-03	3.61E-04	4.95E-04	4.92E-04	1.51E-04
43	764385.8	4092188	5.76E-03	6.27E-03	2.22E-03	9.00E-04	1.02E-03	3.51E-04	4.81E-04	4.78E-04	1.47E-04
44	764424.7	4092504	1.37E-03	1.49E-03	5.28E-04	2.14E-04	2.42E-04	8.35E-05	1.15E-04	1.14E-04	3.50E-05
45	764425.5	4092480	1.62E-03	1.76E-03	6.23E-04	2.53E-04	2.86E-04	9.85E-05	1.35E-04	1.34E-04	4.12E-05
46	764426.4	4092456	1.91E-03	2.08E-03	7.37E-04	2.99E-04	3.38E-04	1.16E-04	1.60E-04	1.59E-04	4.87E-05
47	764427.2	4092432	2.25E-03	2.45E-03	8.66E-04	3.51E-04	3.97E-04	1.37E-04	1.88E-04	1.87E-04	5.73E-05
48	764428.1	4092407	2.61E-03	2.84E-03	1.01E-03	4.08E-04	4.61E-04	1.59E-04	2.18E-04	2.17E-04	6.65E-05
49	764428.9	4092383	2.97E-03	3.24E-03	1.15E-03	4.65E-04	5.26E-04	1.81E-04	2.48E-04	2.47E-04	7.58E-05
50	764429.8	4092359	3.32E-03	3.62E-03	1.28E-03	5.19E-04	5.87E-04	2.02E-04	2.77E-04	2.76E-04	8.46E-05
51	764430.6	4092335	3.63E-03	3.96E-03	1.40E-03	5.68E-04	6.42E-04	2.21E-04	3.04E-04	3.02E-04	9.26E-05
52	764431.5	4092311	3.90E-03	4.25E-03	1.50E-03	6.10E-04	6.90E-04	2.38E-04	3.26E-04	3.24E-04	9.95E-05
53	764432.3	4092287	4.12E-03	4.49E-03	1.59E-03	6.44E-04	7.28E-04	2.51E-04	3.44E-04	3.42E-04	1.05E-04
54	764433.2	4092263	4.28E-03	4.66E-03	1.65E-03	6.69E-04	7.57E-04	2.61E-04	3.58E-04	3.56E-04	1.09E-04
55	764434	4092238	4.38E-03	4.77E-03	1.69E-03	6.85E-04	7.74E-04	2.67E-04	3.66E-04	3.64E-04	1.12E-04
56	764434.9	4092214	4.42E-03	4.81E-03	1.70E-03	6.90E-04	7.81E-04	2.69E-04	3.69E-04	3.67E-04	1.13E-04
57	764435.8	4092190	4.38E-03	4.77E-03	1.69E-03	6.85E-04	7.74E-04	2.67E-04	3.66E-04	3.64E-04	1.12E-04
58	764464	4092552	8.58E-04	9.34E-04	3.30E-04	1.34E-04	1.52E-04	5.22E-05	7.16E-05	7.12E-05	2.19E-05
59	764454.1	4092573	7.96E-04	8.66E-04	3.07E-04	1.24E-04	1.41E-04	4.84E-05	6.65E-05	6.61E-05	2.03E-05
60	764444.3	4092595	7.40E-04	8.06E-04	2.85E-04	1.16E-04	1.31E-04	4.51E-05	6.18E-05	6.15E-05	1.89E-05
61	764434.4	4092617	6.90E-04	7.51E-04	2.66E-04	1.08E-04	1.22E-04	4.20E-05	5.76E-05	5.73E-05	1.76E-05
62	764424.6	4092638	6.44E-04	7.01E-04	2.48E-04	1.01E-04	1.14E-04	3.92E-05	5.38E-05	5.35E-05	1.64E-05
63	764473.8	4092530	9.27E-04	1.01E-03	3.57E-04	1.45E-04	1.64E-04	5.64E-05	7.74E-05	7.69E-05	2.36E-05
64	764474.7	4092506	1.06E-03	1.15E-03	4.07E-04	1.65E-04	1.87E-04	6.44E-05	8.83E-05	8.78E-05	2.70E-05
65	764475.5	4092482	1.22E-03	1.32E-03	4.68E-04	1.90E-04	2.15E-04	7.40E-05	1.02E-04	1.01E-04	3.10E-05
66	764476.4	4092457	1.40E-03	1.53E-03	5.40E-04	2.19E-04	2.48E-04	8.53E-05	1.17E-04	1.16E-04	3.57E-05
67	764477.2	4092433	1.62E-03	1.76E-03	6.22E-04	2.52E-04	2.85E-04	9.83E-05	1.35E-04	1.34E-04	4.12E-05
68	764478.1	4092409	1.85E-03	2.02E-03	7.13E-04	2.89E-04	3.27E-04	1.13E-04	1.55E-04	1.54E-04	4.72E-05
69	764478.9	4092385	2.10E-03	2.29E-03	8.10E-04	3.28E-04	3.72E-04	1.28E-04	1.76E-04	1.75E-04	5.36E-05
70	764479.8	4092361	2.36E-03	2.56E-03	9.08E-04	3.68E-04	4.16E-04	1.43E-04	1.97E-04	1.96E-04	6.00E-05
71	764480.6	4092337	2.60E-03	2.83E-03	1.00E-03	4.06E-04	4.59E-04	1.58E-04	2.17E-04	2.16E-04	6.63E-05
72	764481.5	4092313	2.82E-03	3.07E-03	1.09E-03	4.41E-04	4.99E-04	1.72E-04	2.36E-04	2.35E-04	7.20E-05
73	764482.3	4092289	3.02E-03	3.29E-03	1.16E-03	4.72E-04	5.34E-04	1.84E-04	2.52E-04	2.51E-04	7.70E-05
74	764483.2	4092264	3.18E-03	3.46E-03	1.22E-03	4.97E-04	5.62E-04	1.94E-04	2.66E-04	2.64E-04	8.10E-05

75	764484	4092240	3.30E-03	3.59E-03	1.27E-03	5.16E-04	5.83E-04	2.01E-04	2.76E-04	2.74E-04	8.41E-05
76	764484.9	4092216	3.38E-03	3.68E-03	1.30E-03	5.27E-04	5.97E-04	2.05E-04	2.82E-04	2.80E-04	8.60E-05
77	764485.7	4092192	3.40E-03	3.71E-03	1.31E-03	5.32E-04	6.01E-04	2.07E-04	2.84E-04	2.83E-04	8.67E-05
78	764514.3	4092552	7.06E-04	7.68E-04	2.72E-04	1.10E-04	1.25E-04	4.29E-05	5.89E-05	5.86E-05	1.80E-05
79	764504.9	4092573	6.64E-04	7.23E-04	2.56E-04	1.04E-04	1.17E-04	4.04E-05	5.54E-05	5.51E-05	1.69E-05
80	764495.4	4092594	6.24E-04	6.80E-04	2.40E-04	9.75E-05	1.10E-04	3.80E-05	5.21E-05	5.18E-05	1.59E-05
81	764486	4092615	5.89E-04	6.41E-04	2.27E-04	9.19E-05	1.04E-04	3.58E-05	4.92E-05	4.89E-05	1.50E-05
82	764476.5	4092636	5.56E-04	6.05E-04	2.14E-04	8.68E-05	9.82E-05	3.38E-05	4.64E-05	4.61E-05	1.42E-05
83	764467.1	4092657	5.25E-04	5.71E-04	2.02E-04	8.20E-05	9.27E-05	3.19E-05	4.38E-05	4.36E-05	1.34E-05
84	764457.6	4092677	4.96E-04	5.39E-04	1.91E-04	7.74E-05	8.76E-05	3.02E-05	4.14E-05	4.11E-05	1.26E-05
85	764448.2	4092698	4.68E-04	5.09E-04	1.80E-04	7.30E-05	8.26E-05	2.84E-05	3.90E-05	3.88E-05	1.19E-05
86	764438.7	4092719	4.41E-04	4.80E-04	1.70E-04	6.88E-05	7.78E-05	2.68E-05	3.68E-05	3.66E-05	1.12E-05
87	764258.3	4092805	4.30E-04	4.68E-04	1.66E-04	6.72E-05	7.60E-05	2.62E-05	3.59E-05	3.57E-05	1.10E-05
88	764236.9	4092813	4.31E-04	4.69E-04	1.66E-04	6.72E-05	7.61E-05	2.62E-05	3.59E-05	3.57E-05	1.10E-05
89	764523.8	4092532	7.52E-04	8.18E-04	2.89E-04	1.17E-04	1.33E-04	4.57E-05	6.28E-05	6.24E-05	1.92E-05
90	764524.6	4092507	8.45E-04	9.20E-04	3.25E-04	1.32E-04	1.49E-04	5.14E-05	7.06E-05	7.02E-05	2.15E-05
91	764525.5	4092483	9.54E-04	1.04E-03	3.68E-04	1.49E-04	1.69E-04	5.81E-05	7.97E-05	7.92E-05	2.43E-05
92	764526.3	4092459	1.08E-03	1.18E-03	4.16E-04	1.69E-04	1.91E-04	6.57E-05	9.01E-05	8.96E-05	2.75E-05
93	764527.2	4092435	1.22E-03	1.33E-03	4.71E-04	1.91E-04	2.16E-04	7.44E-05	1.02E-04	1.02E-04	3.12E-05
94	764528	4092411	1.38E-03	1.51E-03	5.33E-04	2.16E-04	2.44E-04	8.42E-05	1.16E-04	1.15E-04	3.52E-05
95	764528.9	4092387	1.56E-03	1.70E-03	6.00E-04	2.43E-04	2.75E-04	9.48E-05	1.30E-04	1.29E-04	3.97E-05
96	764529.7	4092363	1.74E-03	1.89E-03	6.70E-04	2.72E-04	3.08E-04	1.06E-04	1.45E-04	1.44E-04	4.43E-05
97	764530.6	4092339	1.92E-03	2.10E-03	7.41E-04	3.01E-04	3.40E-04	1.17E-04	1.61E-04	1.60E-04	4.90E-05
98	764531.4	4092314	2.10E-03	2.29E-03	8.10E-04	3.29E-04	3.72E-04	1.28E-04	1.76E-04	1.75E-04	5.36E-05
99	764532.3	4092290	2.27E-03	2.47E-03	8.74E-04	3.54E-04	4.01E-04	1.38E-04	1.89E-04	1.88E-04	5.78E-05
100	764533.1	4092266	2.41E-03	2.63E-03	9.29E-04	3.77E-04	4.26E-04	1.47E-04	2.01E-04	2.00E-04	6.15E-05
101	764534	4092242	2.53E-03	2.76E-03	9.75E-04	3.96E-04	4.47E-04	1.54E-04	2.11E-04	2.10E-04	6.45E-05
102	764534.8	4092218	2.62E-03	2.86E-03	1.01E-03	4.10E-04	4.63E-04	1.60E-04	2.19E-04	2.18E-04	6.68E-05
103	764535.7	4092194	2.68E-03	2.92E-03	1.03E-03	4.19E-04	4.74E-04	1.63E-04	2.24E-04	2.23E-04	6.83E-05
104	764614	4092557	5.01E-04	5.46E-04	1.93E-04	7.83E-05	8.86E-05	3.05E-05	4.19E-05	4.16E-05	1.28E-05
105	764604.3	4092578	4.76E-04	5.18E-04	1.83E-04	7.43E-05	8.41E-05	2.90E-05	3.97E-05	3.95E-05	1.21E-05
106	764594.6	4092599	4.53E-04	4.93E-04	1.74E-04	7.07E-05	8.00E-05	2.75E-05	3.78E-05	3.76E-05	1.15E-05
107	764584.9	4092621	4.31E-04	4.69E-04	1.66E-04	6.73E-05	7.61E-05	2.62E-05	3.60E-05	3.58E-05	1.10E-05
108	764575.2	4092642	4.11E-04	4.47E-04	1.58E-04	6.42E-05	7.26E-05	2.50E-05	3.43E-05	3.41E-05	1.05E-05
109	764565.6	4092663	3.92E-04	4.27E-04	1.51E-04	6.13E-05	6.93E-05	2.39E-05	3.28E-05	3.26E-05	1.00E-05
110	764555.9	4092685	3.75E-04	4.08E-04	1.44E-04	5.86E-05	6.62E-05	2.28E-05	3.13E-05	3.11E-05	9.55E-06
111	764546.2	4092706	3.58E-04	3.90E-04	1.38E-04	5.60E-05	6.33E-05	2.18E-05	2.99E-05	2.97E-05	9.13E-06
112	764536.5	4092727	3.42E-04	3.73E-04	1.32E-04	5.35E-05	6.05E-05	2.08E-05	2.86E-05	2.84E-05	8.72E-06
113	764526.8	4092749	3.27E-04	3.56E-04	1.26E-04	5.11E-05	5.78E-05	1.99E-05	2.73E-05	2.72E-05	8.33E-06

114	764517.1	4092770	3.12E-04	3.39E-04	1.20E-04	4.87E-05	5.51E-05	1.90E-05	2.60E-05	2.59E-05	7.95E-06
115	764432	4092838	2.91E-04	3.16E-04	1.12E-04	4.54E-05	5.13E-05	1.77E-05	2.43E-05	2.41E-05	7.40E-06
116	764410	4092846	2.92E-04	3.17E-04	1.12E-04	4.56E-05	5.15E-05	1.77E-05	2.44E-05	2.42E-05	7.43E-06
117	764388.1	4092854	2.92E-04	3.18E-04	1.12E-04	4.56E-05	5.16E-05	1.78E-05	2.44E-05	2.42E-05	7.44E-06
118	764366.2	4092863	2.92E-04	3.18E-04	1.12E-04	4.56E-05	5.16E-05	1.78E-05	2.44E-05	2.42E-05	7.43E-06
119	764344.3	4092871	2.91E-04	3.17E-04	1.12E-04	4.55E-05	5.14E-05	1.77E-05	2.43E-05	2.42E-05	7.42E-06
120	764322.4	4092879	2.91E-04	3.16E-04	1.12E-04	4.54E-05	5.13E-05	1.77E-05	2.43E-05	2.41E-05	7.41E-06
121	764300.4	4092888	2.90E-04	3.16E-04	1.12E-04	4.54E-05	5.13E-05	1.77E-05	2.42E-05	2.41E-05	7.40E-06
122	764278.5	4092896	2.90E-04	3.16E-04	1.12E-04	4.53E-05	5.12E-05	1.76E-05	2.42E-05	2.41E-05	7.39E-06
123	764256.6	4092904	2.90E-04	3.16E-04	1.12E-04	4.53E-05	5.12E-05	1.76E-05	2.42E-05	2.41E-05	7.39E-06
124	764234.7	4092913	2.90E-04	3.16E-04	1.12E-04	4.53E-05	5.13E-05	1.77E-05	2.42E-05	2.41E-05	7.40E-06
125	764623.7	4092535	5.29E-04	5.76E-04	2.04E-04	8.26E-05	9.34E-05	3.22E-05	4.42E-05	4.39E-05	1.35E-05
126	764624.6	4092511	5.81E-04	6.32E-04	2.24E-04	9.07E-05	1.03E-04	3.53E-05	4.85E-05	4.82E-05	1.48E-05
127	764625.4	4092487	6.40E-04	6.97E-04	2.47E-04	1.00E-04	1.13E-04	3.90E-05	5.35E-05	5.32E-05	1.63E-05
128	764626.3	4092463	7.07E-04	7.69E-04	2.72E-04	1.10E-04	1.25E-04	4.30E-05	5.90E-05	5.87E-05	1.80E-05
129	764627.1	4092439	7.80E-04	8.49E-04	3.00E-04	1.22E-04	1.38E-04	4.75E-05	6.51E-05	6.48E-05	1.99E-05
130	764628	4092414	8.62E-04	9.38E-04	3.32E-04	1.35E-04	1.52E-04	5.25E-05	7.20E-05	7.16E-05	2.20E-05
131	764628.8	4092390	9.53E-04	1.04E-03	3.67E-04	1.49E-04	1.68E-04	5.80E-05	7.95E-05	7.91E-05	2.43E-05
132	764629.7	4092366	1.05E-03	1.14E-03	4.05E-04	1.64E-04	1.86E-04	6.39E-05	8.77E-05	8.72E-05	2.68E-05
133	764630.5	4092342	1.15E-03	1.26E-03	4.44E-04	1.80E-04	2.04E-04	7.02E-05	9.63E-05	9.58E-05	2.94E-05
134	764631.4	4092318	1.26E-03	1.37E-03	4.85E-04	1.97E-04	2.23E-04	7.67E-05	1.05E-04	1.05E-04	3.21E-05
135	764632.2	4092294	1.37E-03	1.49E-03	5.26E-04	2.13E-04	2.41E-04	8.31E-05	1.14E-04	1.13E-04	3.48E-05
136	764633.1	4092270	1.47E-03	1.60E-03	5.65E-04	2.29E-04	2.59E-04	8.93E-05	1.23E-04	1.22E-04	3.74E-05
137	764633.9	4092246	1.56E-03	1.70E-03	6.01E-04	2.44E-04	2.76E-04	9.50E-05	1.30E-04	1.30E-04	3.98E-05
138	764634.8	4092221	1.65E-03	1.79E-03	6.34E-04	2.57E-04	2.91E-04	1.00E-04	1.37E-04	1.37E-04	4.19E-05
139	764635.6	4092197	1.71E-03	1.87E-03	6.60E-04	2.68E-04	3.03E-04	1.04E-04	1.43E-04	1.42E-04	4.37E-05
140	764713.8	4092560	3.80E-04	4.13E-04	1.46E-04	5.93E-05	6.71E-05	2.31E-05	3.17E-05	3.15E-05	9.67E-06
141	764704	4092582	3.63E-04	3.95E-04	1.40E-04	5.67E-05	6.41E-05	2.21E-05	3.03E-05	3.01E-05	9.25E-06
142	764694.1	4092604	3.47E-04	3.78E-04	1.34E-04	5.43E-05	6.14E-05	2.11E-05	2.90E-05	2.88E-05	8.85E-06
143	764684.3	4092625	3.33E-04	3.63E-04	1.28E-04	5.20E-05	5.89E-05	2.03E-05	2.78E-05	2.77E-05	8.49E-06
144	764674.4	4092647	3.20E-04	3.48E-04	1.23E-04	5.00E-05	5.65E-05	1.95E-05	2.67E-05	2.66E-05	8.15E-06
145	764664.6	4092669	3.08E-04	3.35E-04	1.18E-04	4.81E-05	5.44E-05	1.87E-05	2.57E-05	2.55E-05	7.84E-06
146	764654.7	4092690	2.96E-04	3.22E-04	1.14E-04	4.62E-05	5.23E-05	1.80E-05	2.47E-05	2.46E-05	7.55E-06
147	764644.9	4092712	2.85E-04	3.10E-04	1.10E-04	4.45E-05	5.04E-05	1.74E-05	2.38E-05	2.37E-05	7.27E-06
148	764635.1	4092734	2.75E-04	2.99E-04	1.06E-04	4.29E-05	4.85E-05	1.67E-05	2.29E-05	2.28E-05	7.00E-06
149	764625.2	4092756	2.65E-04	2.88E-04	1.02E-04	4.14E-05	4.68E-05	1.61E-05	2.21E-05	2.20E-05	6.75E-06
150	764615.4	4092777	2.55E-04	2.78E-04	9.82E-05	3.98E-05	4.51E-05	1.55E-05	2.13E-05	2.12E-05	6.50E-06
151	764605.5	4092799	2.45E-04	2.67E-04	9.44E-05	3.83E-05	4.33E-05	1.49E-05	2.05E-05	2.04E-05	6.25E-06
152	764595.7	4092821	2.35E-04	2.56E-04	9.07E-05	3.68E-05	4.16E-05	1.43E-05	1.97E-05	1.95E-05	6.00E-06

153	764585.8	4092842	2.26E-04	2.46E-04	8.70E-05	3.53E-05	3.99E-05	1.37E-05	1.89E-05	1.88E-05	5.76E-06
154	764576	4092864	2.17E-04	2.36E-04	8.34E-05	3.38E-05	3.83E-05	1.32E-05	1.81E-05	1.80E-05	5.52E-06
155	764543.9	4092894	2.10E-04	2.28E-04	8.08E-05	3.28E-05	3.70E-05	1.28E-05	1.75E-05	1.74E-05	5.34E-06
156	764521.6	4092903	2.11E-04	2.30E-04	8.14E-05	3.30E-05	3.73E-05	1.29E-05	1.76E-05	1.75E-05	5.38E-06
157	764499.4	4092911	2.13E-04	2.31E-04	8.19E-05	3.32E-05	3.76E-05	1.29E-05	1.78E-05	1.77E-05	5.42E-06
158	764477.1	4092919	2.13E-04	2.32E-04	8.22E-05	3.33E-05	3.77E-05	1.30E-05	1.78E-05	1.77E-05	5.44E-06
159	764454.9	4092928	2.14E-04	2.33E-04	8.24E-05	3.34E-05	3.78E-05	1.30E-05	1.79E-05	1.78E-05	5.45E-06
160	764432.6	4092936	2.14E-04	2.33E-04	8.24E-05	3.34E-05	3.78E-05	1.30E-05	1.79E-05	1.78E-05	5.45E-06
161	764410.3	4092945	2.14E-04	2.33E-04	8.23E-05	3.34E-05	3.77E-05	1.30E-05	1.78E-05	1.77E-05	5.44E-06
162	764388.1	4092953	2.13E-04	2.32E-04	8.21E-05	3.33E-05	3.77E-05	1.30E-05	1.78E-05	1.77E-05	5.43E-06
163	764365.8	4092962	2.12E-04	2.31E-04	8.18E-05	3.32E-05	3.75E-05	1.29E-05	1.77E-05	1.76E-05	5.41E-06
164	764343.5	4092970	2.12E-04	2.30E-04	8.15E-05	3.31E-05	3.74E-05	1.29E-05	1.77E-05	1.76E-05	5.40E-06
165	764321.3	4092979	2.11E-04	2.30E-04	8.13E-05	3.30E-05	3.73E-05	1.28E-05	1.76E-05	1.75E-05	5.38E-06
166	764299	4092987	2.11E-04	2.29E-04	8.11E-05	3.29E-05	3.72E-05	1.28E-05	1.76E-05	1.75E-05	5.37E-06
167	764276.8	4092995	2.10E-04	2.29E-04	8.10E-05	3.28E-05	3.72E-05	1.28E-05	1.76E-05	1.75E-05	5.36E-06
168	764254.5	4093004	2.10E-04	2.29E-04	8.09E-05	3.28E-05	3.71E-05	1.28E-05	1.76E-05	1.74E-05	5.36E-06
169	764232.2	4093012	2.10E-04	2.29E-04	8.10E-05	3.28E-05	3.72E-05	1.28E-05	1.76E-05	1.75E-05	5.36E-06
170	764723.6	4092539	3.97E-04	4.32E-04	1.53E-04	6.21E-05	7.02E-05	2.42E-05	3.32E-05	3.30E-05	1.01E-05
171	764724.5	4092515	4.29E-04	4.67E-04	1.65E-04	6.71E-05	7.59E-05	2.61E-05	3.59E-05	3.57E-05	1.09E-05
172	764725.3	4092490	4.65E-04	5.06E-04	1.79E-04	7.26E-05	8.21E-05	2.83E-05	3.88E-05	3.86E-05	1.18E-05
173	764726.2	4092466	5.04E-04	5.48E-04	1.94E-04	7.87E-05	8.90E-05	3.06E-05	4.21E-05	4.18E-05	1.28E-05
174	764727	4092442	5.48E-04	5.96E-04	2.11E-04	8.55E-05	9.68E-05	3.33E-05	4.57E-05	4.55E-05	1.40E-05
175	764727.9	4092418	5.95E-04	6.48E-04	2.29E-04	9.29E-05	1.05E-04	3.62E-05	4.97E-05	4.94E-05	1.52E-05
176	764728.8	4092394	6.47E-04	7.04E-04	2.49E-04	1.01E-04	1.14E-04	3.93E-05	5.40E-05	5.37E-05	1.65E-05
177	764729.6	4092370	7.03E-04	7.65E-04	2.71E-04	1.10E-04	1.24E-04	4.28E-05	5.87E-05	5.83E-05	1.79E-05
178	764730.5	4092346	7.63E-04	8.30E-04	2.94E-04	1.19E-04	1.35E-04	4.64E-05	6.37E-05	6.33E-05	1.94E-05
179	764731.3	4092321	8.26E-04	8.99E-04	3.18E-04	1.29E-04	1.46E-04	5.02E-05	6.90E-05	6.86E-05	2.10E-05
180	764732.2	4092297	8.91E-04	9.70E-04	3.43E-04	1.39E-04	1.57E-04	5.42E-05	7.44E-05	7.40E-05	2.27E-05
181	764733	4092273	9.57E-04	1.04E-03	3.69E-04	1.49E-04	1.69E-04	5.82E-05	7.99E-05	7.95E-05	2.44E-05
182	764733.9	4092249	1.02E-03	1.11E-03	3.94E-04	1.60E-04	1.81E-04	6.22E-05	8.53E-05	8.49E-05	2.60E-05
183	764734.7	4092225	1.08E-03	1.18E-03	4.18E-04	1.69E-04	1.92E-04	6.60E-05	9.06E-05	9.00E-05	2.76E-05
184	764735.6	4092201	1.14E-03	1.24E-03	4.39E-04	1.78E-04	2.02E-04	6.94E-05	9.53E-05	9.47E-05	2.91E-05
185	764813.6	4092564	2.99E-04	3.25E-04	1.15E-04	4.67E-05	5.28E-05	1.82E-05	2.49E-05	2.48E-05	7.61E-06
186	764803.7	4092586	2.87E-04	3.13E-04	1.11E-04	4.49E-05	5.08E-05	1.75E-05	2.40E-05	2.39E-05	7.32E-06
187	764793.7	4092608	2.77E-04	3.01E-04	1.07E-04	4.32E-05	4.89E-05	1.68E-05	2.31E-05	2.30E-05	7.05E-06
188	764783.8	4092630	2.67E-04	2.90E-04	1.03E-04	4.16E-05	4.71E-05	1.62E-05	2.23E-05	2.21E-05	6.79E-06
189	764773.8	4092652	2.57E-04	2.80E-04	9.91E-05	4.02E-05	4.55E-05	1.57E-05	2.15E-05	2.14E-05	6.55E-06
190	764763.9	4092674	2.49E-04	2.71E-04	9.58E-05	3.88E-05	4.39E-05	1.51E-05	2.08E-05	2.06E-05	6.34E-06
191	764754	4092696	2.41E-04	2.62E-04	9.27E-05	3.76E-05	4.25E-05	1.46E-05	2.01E-05	2.00E-05	6.13E-06

192	764744	4092717	2.33E-04	2.54E-04	8.98E-05	3.64E-05	4.12E-05	1.42E-05	1.95E-05	1.94E-05	5.94E-06
193	764734.1	4092739	2.26E-04	2.46E-04	8.70E-05	3.53E-05	3.99E-05	1.37E-05	1.89E-05	1.88E-05	5.76E-06
194	764724.1	4092761	2.19E-04	2.38E-04	8.43E-05	3.42E-05	3.87E-05	1.33E-05	1.83E-05	1.82E-05	5.58E-06
195	764714.2	4092783	2.12E-04	2.31E-04	8.17E-05	3.31E-05	3.75E-05	1.29E-05	1.77E-05	1.76E-05	5.40E-06
196	764704.2	4092805	2.05E-04	2.24E-04	7.91E-05	3.21E-05	3.63E-05	1.25E-05	1.71E-05	1.70E-05	5.23E-06
197	764694.3	4092827	1.99E-04	2.16E-04	7.65E-05	3.10E-05	3.51E-05	1.21E-05	1.66E-05	1.65E-05	5.06E-06
198	764684.3	4092849	1.92E-04	2.09E-04	7.39E-05	3.00E-05	3.39E-05	1.17E-05	1.60E-05	1.59E-05	4.89E-06
199	764674.4	4092871	1.85E-04	2.02E-04	7.14E-05	2.89E-05	3.27E-05	1.13E-05	1.55E-05	1.54E-05	4.72E-06
200	764664.4	4092893	1.79E-04	1.95E-04	6.89E-05	2.79E-05	3.16E-05	1.09E-05	1.49E-05	1.48E-05	4.56E-06
201	764654.5	4092915	1.73E-04	1.88E-04	6.64E-05	2.69E-05	3.05E-05	1.05E-05	1.44E-05	1.43E-05	4.40E-06
202	764644.5	4092937	1.66E-04	1.81E-04	6.41E-05	2.60E-05	2.94E-05	1.01E-05	1.39E-05	1.38E-05	4.24E-06
203	764612.1	4092967	1.62E-04	1.76E-04	6.23E-05	2.53E-05	2.86E-05	9.85E-06	1.35E-05	1.34E-05	4.12E-06
204	764589.6	4092976	1.63E-04	1.77E-04	6.28E-05	2.55E-05	2.88E-05	9.92E-06	1.36E-05	1.35E-05	4.15E-06
205	764567.1	4092984	1.64E-04	1.78E-04	6.31E-05	2.56E-05	2.90E-05	9.97E-06	1.37E-05	1.36E-05	4.18E-06
206	764544.6	4092993	1.65E-04	1.79E-04	6.34E-05	2.57E-05	2.91E-05	1.00E-05	1.37E-05	1.37E-05	4.20E-06
207	764522.1	4093001	1.65E-04	1.80E-04	6.36E-05	2.58E-05	2.92E-05	1.00E-05	1.38E-05	1.37E-05	4.21E-06
208	764499.6	4093010	1.65E-04	1.80E-04	6.37E-05	2.58E-05	2.92E-05	1.01E-05	1.38E-05	1.37E-05	4.21E-06
209	764477.1	4093018	1.65E-04	1.80E-04	6.37E-05	2.58E-05	2.92E-05	1.01E-05	1.38E-05	1.37E-05	4.21E-06
210	764454.6	4093027	1.65E-04	1.80E-04	6.35E-05	2.58E-05	2.91E-05	1.00E-05	1.38E-05	1.37E-05	4.20E-06
211	764432.1	4093035	1.64E-04	1.79E-04	6.33E-05	2.57E-05	2.90E-05	1.00E-05	1.37E-05	1.36E-05	4.19E-06
212	764409.6	4093044	1.64E-04	1.78E-04	6.31E-05	2.56E-05	2.89E-05	9.97E-06	1.37E-05	1.36E-05	4.18E-06
213	764387.1	4093052	1.63E-04	1.78E-04	6.28E-05	2.55E-05	2.88E-05	9.93E-06	1.36E-05	1.35E-05	4.16E-06
214	764364.7	4093061	1.62E-04	1.77E-04	6.25E-05	2.54E-05	2.87E-05	9.88E-06	1.36E-05	1.35E-05	4.14E-06
215	764342.2	4093070	1.62E-04	1.76E-04	6.23E-05	2.53E-05	2.86E-05	9.85E-06	1.35E-05	1.34E-05	4.12E-06
216	764319.7	4093078	1.61E-04	1.76E-04	6.21E-05	2.52E-05	2.85E-05	9.82E-06	1.35E-05	1.34E-05	4.11E-06
217	764297.2	4093087	1.61E-04	1.75E-04	6.20E-05	2.51E-05	2.84E-05	9.80E-06	1.34E-05	1.34E-05	4.10E-06
218	764274.7	4093095	1.61E-04	1.75E-04	6.19E-05	2.51E-05	2.84E-05	9.79E-06	1.34E-05	1.34E-05	4.10E-06
219	764252.2	4093104	1.61E-04	1.75E-04	6.20E-05	2.51E-05	2.84E-05	9.79E-06	1.34E-05	1.34E-05	4.10E-06
220	764229.7	4093112	1.61E-04	1.76E-04	6.21E-05	2.52E-05	2.85E-05	9.81E-06	1.35E-05	1.34E-05	4.11E-06
221	764823.6	4092542	3.11E-04	3.38E-04	1.20E-04	4.85E-05	5.49E-05	1.89E-05	2.59E-05	2.58E-05	7.92E-06
222	764824.4	4092518	3.32E-04	3.61E-04	1.28E-04	5.19E-05	5.87E-05	2.02E-05	2.77E-05	2.76E-05	8.46E-06
223	764825.3	4092494	3.55E-04	3.87E-04	1.37E-04	5.55E-05	6.28E-05	2.16E-05	2.97E-05	2.95E-05	9.06E-06
224	764826.1	4092470	3.81E-04	4.15E-04	1.47E-04	5.95E-05	6.74E-05	2.32E-05	3.18E-05	3.16E-05	9.71E-06
225	764827	4092446	4.09E-04	4.45E-04	1.57E-04	6.38E-05	7.22E-05	2.49E-05	3.41E-05	3.39E-05	1.04E-05
226	764827.8	4092422	4.39E-04	4.77E-04	1.69E-04	6.85E-05	7.75E-05	2.67E-05	3.66E-05	3.64E-05	1.12E-05
227	764828.7	4092397	4.71E-04	5.13E-04	1.81E-04	7.36E-05	8.32E-05	2.87E-05	3.93E-05	3.91E-05	1.20E-05
228	764829.5	4092373	5.05E-04	5.50E-04	1.95E-04	7.89E-05	8.93E-05	3.08E-05	4.22E-05	4.20E-05	1.29E-05
229	764830.4	4092349	5.42E-04	5.90E-04	2.09E-04	8.47E-05	9.58E-05	3.30E-05	4.53E-05	4.50E-05	1.38E-05
230	764831.2	4092325	5.81E-04	6.32E-04	2.24E-04	9.08E-05	1.03E-04	3.54E-05	4.85E-05	4.82E-05	1.48E-05

231	764832.1	4092301	6.22E-04	6.77E-04	2.40E-04	9.71E-05	1.10E-04	3.78E-05	5.19E-05	5.16E-05	1.58E-05
232	764832.9	4092277	6.64E-04	7.23E-04	2.56E-04	1.04E-04	1.17E-04	4.04E-05	5.55E-05	5.52E-05	1.69E-05
233	764833.8	4092253	7.08E-04	7.70E-04	2.72E-04	1.11E-04	1.25E-04	4.31E-05	5.91E-05	5.87E-05	1.80E-05
234	764834.7	4092228	7.51E-04	8.17E-04	2.89E-04	1.17E-04	1.33E-04	4.57E-05	6.27E-05	6.23E-05	1.91E-05
235	764835.5	4092204	7.93E-04	8.63E-04	3.06E-04	1.24E-04	1.40E-04	4.83E-05	6.62E-05	6.59E-05	2.02E-05
236	764913.9	4092567	2.43E-04	2.64E-04	9.35E-05	3.79E-05	4.29E-05	1.48E-05	2.03E-05	2.02E-05	6.19E-06
237	764904.3	4092588	2.35E-04	2.56E-04	9.04E-05	3.67E-05	4.15E-05	1.43E-05	1.96E-05	1.95E-05	5.98E-06
238	764894.8	4092609	2.27E-04	2.47E-04	8.75E-05	3.55E-05	4.01E-05	1.38E-05	1.90E-05	1.89E-05	5.79E-06
239	764885.2	4092630	2.20E-04	2.40E-04	8.48E-05	3.44E-05	3.89E-05	1.34E-05	1.84E-05	1.83E-05	5.61E-06
240	764875.6	4092651	2.13E-04	2.32E-04	8.22E-05	3.33E-05	3.77E-05	1.30E-05	1.78E-05	1.77E-05	5.44E-06
241	764866	4092672	2.07E-04	2.26E-04	7.98E-05	3.24E-05	3.66E-05	1.26E-05	1.73E-05	1.72E-05	5.28E-06
242	764856.4	4092694	2.02E-04	2.19E-04	7.76E-05	3.15E-05	3.56E-05	1.23E-05	1.68E-05	1.67E-05	5.14E-06
243	764846.8	4092715	1.96E-04	2.14E-04	7.56E-05	3.07E-05	3.47E-05	1.19E-05	1.64E-05	1.63E-05	5.00E-06
244	764837.2	4092736	1.91E-04	2.08E-04	7.37E-05	2.99E-05	3.38E-05	1.16E-05	1.60E-05	1.59E-05	4.87E-06
245	764827.7	4092757	1.86E-04	2.03E-04	7.18E-05	2.91E-05	3.29E-05	1.13E-05	1.56E-05	1.55E-05	4.75E-06
246	764818.1	4092778	1.82E-04	1.98E-04	7.00E-05	2.84E-05	3.21E-05	1.11E-05	1.52E-05	1.51E-05	4.63E-06
247	764808.5	4092799	1.77E-04	1.93E-04	6.83E-05	2.77E-05	3.13E-05	1.08E-05	1.48E-05	1.47E-05	4.52E-06
248	764798.9	4092820	1.73E-04	1.88E-04	6.66E-05	2.70E-05	3.05E-05	1.05E-05	1.44E-05	1.43E-05	4.40E-06
249	764789.3	4092841	1.68E-04	1.83E-04	6.48E-05	2.63E-05	2.97E-05	1.02E-05	1.41E-05	1.40E-05	4.29E-06
250	764779.7	4092862	1.64E-04	1.78E-04	6.31E-05	2.56E-05	2.89E-05	9.96E-06	1.37E-05	1.36E-05	4.17E-06
251	764770.1	4092884	1.59E-04	1.73E-04	6.13E-05	2.49E-05	2.81E-05	9.69E-06	1.33E-05	1.32E-05	4.06E-06
252	764760.6	4092905	1.55E-04	1.68E-04	5.95E-05	2.41E-05	2.73E-05	9.41E-06	1.29E-05	1.28E-05	3.94E-06
253	764751	4092926	1.50E-04	1.63E-04	5.78E-05	2.34E-05	2.65E-05	9.13E-06	1.25E-05	1.25E-05	3.82E-06
254	764741.4	4092947	1.46E-04	1.58E-04	5.60E-05	2.27E-05	2.57E-05	8.86E-06	1.22E-05	1.21E-05	3.71E-06
255	764731.8	4092968	1.41E-04	1.53E-04	5.43E-05	2.20E-05	2.49E-05	8.58E-06	1.18E-05	1.17E-05	3.59E-06
256	764722.2	4092989	1.37E-04	1.49E-04	5.27E-05	2.14E-05	2.42E-05	8.32E-06	1.14E-05	1.14E-05	3.48E-06
257	764712.6	4093010	1.33E-04	1.44E-04	5.11E-05	2.07E-05	2.34E-05	8.08E-06	1.11E-05	1.10E-05	3.38E-06
258	764681.4	4093040	1.30E-04	1.41E-04	5.00E-05	2.03E-05	2.29E-05	7.89E-06	1.08E-05	1.08E-05	3.31E-06
259	764659.7	4093048	1.31E-04	1.42E-04	5.03E-05	2.04E-05	2.31E-05	7.94E-06	1.09E-05	1.08E-05	3.33E-06
260	764638	4093056	1.31E-04	1.43E-04	5.06E-05	2.05E-05	2.32E-05	7.99E-06	1.10E-05	1.09E-05	3.34E-06
261	764616.3	4093064	1.32E-04	1.44E-04	5.08E-05	2.06E-05	2.33E-05	8.03E-06	1.10E-05	1.10E-05	3.36E-06
262	764594.6	4093073	1.32E-04	1.44E-04	5.10E-05	2.07E-05	2.34E-05	8.06E-06	1.11E-05	1.10E-05	3.38E-06
263	764573	4093081	1.33E-04	1.45E-04	5.12E-05	2.08E-05	2.35E-05	8.09E-06	1.11E-05	1.10E-05	3.39E-06
264	764551.3	4093089	1.33E-04	1.45E-04	5.12E-05	2.08E-05	2.35E-05	8.09E-06	1.11E-05	1.10E-05	3.39E-06
265	764529.6	4093097	1.33E-04	1.45E-04	5.12E-05	2.08E-05	2.35E-05	8.09E-06	1.11E-05	1.10E-05	3.39E-06
266	764507.9	4093106	1.33E-04	1.44E-04	5.11E-05	2.07E-05	2.34E-05	8.08E-06	1.11E-05	1.10E-05	3.38E-06
267	764486.2	4093114	1.32E-04	1.44E-04	5.10E-05	2.07E-05	2.34E-05	8.05E-06	1.10E-05	1.10E-05	3.37E-06
268	764464.6	4093122	1.32E-04	1.43E-04	5.07E-05	2.06E-05	2.33E-05	8.02E-06	1.10E-05	1.09E-05	3.36E-06
269	764442.9	4093130	1.31E-04	1.43E-04	5.05E-05	2.05E-05	2.32E-05	7.98E-06	1.10E-05	1.09E-05	3.34E-06

270	764421.2	4093138	1.30E-04	1.42E-04	5.02E-05	2.04E-05	2.31E-05	7.94E-06	1.09E-05	1.08E-05	3.32E-06
271	764399.5	4093147	1.30E-04	1.41E-04	5.00E-05	2.03E-05	2.29E-05	7.90E-06	1.08E-05	1.08E-05	3.31E-06
272	764377.8	4093155	1.29E-04	1.41E-04	4.98E-05	2.02E-05	2.28E-05	7.86E-06	1.08E-05	1.07E-05	3.29E-06
273	764356.2	4093163	1.29E-04	1.40E-04	4.96E-05	2.01E-05	2.27E-05	7.83E-06	1.07E-05	1.07E-05	3.28E-06
274	764334.5	4093171	1.28E-04	1.40E-04	4.94E-05	2.00E-05	2.27E-05	7.81E-06	1.07E-05	1.06E-05	3.27E-06
275	764312.8	4093180	1.28E-04	1.39E-04	4.93E-05	2.00E-05	2.26E-05	7.79E-06	1.07E-05	1.06E-05	3.26E-06
276	764291.1	4093188	1.28E-04	1.39E-04	4.93E-05	2.00E-05	2.26E-05	7.79E-06	1.07E-05	1.06E-05	3.26E-06
277	764269.4	4093196	1.28E-04	1.39E-04	4.93E-05	2.00E-05	2.26E-05	7.79E-06	1.07E-05	1.06E-05	3.26E-06
278	764247.7	4093204	1.28E-04	1.40E-04	4.95E-05	2.01E-05	2.27E-05	7.81E-06	1.07E-05	1.07E-05	3.27E-06
279	764226.1	4093213	1.29E-04	1.40E-04	4.97E-05	2.01E-05	2.28E-05	7.85E-06	1.08E-05	1.07E-05	3.29E-06
280	764923.5	4092546	2.51E-04	2.74E-04	9.68E-05	3.93E-05	4.44E-05	1.53E-05	2.10E-05	2.09E-05	6.40E-06
281	764924.4	4092522	2.67E-04	2.90E-04	1.03E-04	4.16E-05	4.71E-05	1.62E-05	2.23E-05	2.21E-05	6.79E-06
282	764925.2	4092497	2.83E-04	3.08E-04	1.09E-04	4.42E-05	5.00E-05	1.72E-05	2.36E-05	2.35E-05	7.21E-06
283	764926.1	4092473	3.01E-04	3.27E-04	1.16E-04	4.70E-05	5.31E-05	1.83E-05	2.51E-05	2.50E-05	7.66E-06
284	764926.9	4092449	3.20E-04	3.48E-04	1.23E-04	4.99E-05	5.65E-05	1.94E-05	2.67E-05	2.65E-05	8.14E-06
285	764927.8	4092425	3.40E-04	3.70E-04	1.31E-04	5.31E-05	6.01E-05	2.07E-05	2.84E-05	2.82E-05	8.66E-06
286	764928.6	4092401	3.61E-04	3.93E-04	1.39E-04	5.64E-05	6.38E-05	2.20E-05	3.02E-05	3.00E-05	9.20E-06
287	764929.5	4092377	3.84E-04	4.18E-04	1.48E-04	5.99E-05	6.78E-05	2.33E-05	3.20E-05	3.19E-05	9.78E-06
288	764930.3	4092353	4.08E-04	4.44E-04	1.57E-04	6.36E-05	7.20E-05	2.48E-05	3.40E-05	3.38E-05	1.04E-05
289	764931.2	4092329	4.33E-04	4.71E-04	1.67E-04	6.76E-05	7.65E-05	2.63E-05	3.61E-05	3.59E-05	1.10E-05
290	764932	4092304	4.59E-04	5.00E-04	1.77E-04	7.17E-05	8.11E-05	2.79E-05	3.83E-05	3.81E-05	1.17E-05
291	764932.9	4092280	4.87E-04	5.30E-04	1.88E-04	7.61E-05	8.61E-05	2.96E-05	4.07E-05	4.04E-05	1.24E-05
292	764933.7	4092256	5.16E-04	5.61E-04	1.99E-04	8.06E-05	9.11E-05	3.14E-05	4.31E-05	4.28E-05	1.31E-05
293	764934.6	4092232	5.45E-04	5.94E-04	2.10E-04	8.52E-05	9.64E-05	3.32E-05	4.55E-05	4.53E-05	1.39E-05
294	764935.4	4092208	5.75E-04	6.26E-04	2.22E-04	8.99E-05	1.02E-04	3.50E-05	4.80E-05	4.78E-05	1.47E-05
295	765113.6	4092574	1.73E-04	1.88E-04	6.65E-05	2.70E-05	3.05E-05	1.05E-05	1.44E-05	1.43E-05	4.40E-06
296	765103.8	4092596	1.68E-04	1.83E-04	6.46E-05	2.62E-05	2.96E-05	1.02E-05	1.40E-05	1.39E-05	4.27E-06
297	765094.1	4092617	1.63E-04	1.77E-04	6.27E-05	2.54E-05	2.88E-05	9.91E-06	1.36E-05	1.35E-05	4.15E-06
298	765084.3	4092639	1.58E-04	1.72E-04	6.10E-05	2.47E-05	2.80E-05	9.64E-06	1.32E-05	1.31E-05	4.04E-06
299	765074.5	4092660	1.54E-04	1.68E-04	5.93E-05	2.41E-05	2.72E-05	9.37E-06	1.29E-05	1.28E-05	3.93E-06
300	765064.7	4092682	1.50E-04	1.63E-04	5.78E-05	2.34E-05	2.65E-05	9.13E-06	1.25E-05	1.25E-05	3.82E-06
301	765055	4092704	1.46E-04	1.59E-04	5.64E-05	2.29E-05	2.59E-05	8.91E-06	1.22E-05	1.22E-05	3.73E-06
302	765045.2	4092725	1.43E-04	1.56E-04	5.51E-05	2.23E-05	2.53E-05	8.70E-06	1.19E-05	1.19E-05	3.64E-06
303	765035.4	4092747	1.40E-04	1.52E-04	5.39E-05	2.19E-05	2.47E-05	8.52E-06	1.17E-05	1.16E-05	3.57E-06
304	765025.6	4092768	1.37E-04	1.49E-04	5.28E-05	2.14E-05	2.42E-05	8.34E-06	1.15E-05	1.14E-05	3.49E-06
305	765015.9	4092790	1.35E-04	1.46E-04	5.18E-05	2.10E-05	2.38E-05	8.18E-06	1.12E-05	1.12E-05	3.43E-06
306	765006.1	4092811	1.32E-04	1.44E-04	5.09E-05	2.06E-05	2.33E-05	8.04E-06	1.10E-05	1.10E-05	3.36E-06
307	764996.3	4092833	1.30E-04	1.41E-04	5.00E-05	2.03E-05	2.29E-05	7.89E-06	1.08E-05	1.08E-05	3.31E-06
308	764986.5	4092854	1.27E-04	1.39E-04	4.91E-05	1.99E-05	2.25E-05	7.75E-06	1.06E-05	1.06E-05	3.25E-06

309	764976.8	4092876	1.25E-04	1.36E-04	4.82E-05	1.95E-05	2.21E-05	7.61E-06	1.04E-05	1.04E-05	3.19E-06
310	764967	4092897	1.23E-04	1.33E-04	4.72E-05	1.92E-05	2.17E-05	7.46E-06	1.02E-05	1.02E-05	3.12E-06
311	764957.2	4092919	1.20E-04	1.31E-04	4.63E-05	1.88E-05	2.12E-05	7.31E-06	1.00E-05	9.97E-06	3.06E-06
312	764947.4	4092940	1.18E-04	1.28E-04	4.53E-05	1.84E-05	2.08E-05	7.16E-06	9.82E-06	9.76E-06	3.00E-06
313	764937.7	4092962	1.15E-04	1.25E-04	4.43E-05	1.80E-05	2.03E-05	7.00E-06	9.61E-06	9.55E-06	2.93E-06
314	764927.9	4092983	1.12E-04	1.22E-04	4.33E-05	1.76E-05	1.99E-05	6.84E-06	9.38E-06	9.33E-06	2.86E-06
315	764918.1	4093005	1.10E-04	1.19E-04	4.22E-05	1.71E-05	1.94E-05	6.67E-06	9.16E-06	9.11E-06	2.80E-06
316	764908.3	4093027	1.07E-04	1.16E-04	4.12E-05	1.67E-05	1.89E-05	6.51E-06	8.93E-06	8.88E-06	2.73E-06
317	764898.6	4093048	1.04E-04	1.14E-04	4.02E-05	1.63E-05	1.84E-05	6.35E-06	8.71E-06	8.66E-06	2.66E-06
318	764888.8	4093070	1.02E-04	1.11E-04	3.91E-05	1.59E-05	1.80E-05	6.19E-06	8.49E-06	8.44E-06	2.59E-06
319	764879	4093091	9.91E-05	1.08E-04	3.82E-05	1.55E-05	1.75E-05	6.03E-06	8.27E-06	8.23E-06	2.52E-06
320	764869.2	4093113	9.66E-05	1.05E-04	3.72E-05	1.51E-05	1.71E-05	5.88E-06	8.07E-06	8.02E-06	2.46E-06
321	764859.5	4093134	9.43E-05	1.03E-04	3.63E-05	1.47E-05	1.67E-05	5.74E-06	7.87E-06	7.83E-06	2.40E-06
322	764849.7	4093156	9.21E-05	1.00E-04	3.55E-05	1.44E-05	1.63E-05	5.60E-06	7.69E-06	7.65E-06	2.35E-06
323	764817.8	4093186	9.06E-05	9.86E-05	3.49E-05	1.41E-05	1.60E-05	5.51E-06	7.56E-06	7.52E-06	2.31E-06
324	764795.7	4093194	9.11E-05	9.92E-05	3.51E-05	1.42E-05	1.61E-05	5.54E-06	7.61E-06	7.56E-06	2.32E-06
325	764773.6	4093202	9.16E-05	9.98E-05	3.53E-05	1.43E-05	1.62E-05	5.58E-06	7.65E-06	7.61E-06	2.34E-06
326	764751.5	4093211	9.21E-05	1.00E-04	3.55E-05	1.44E-05	1.63E-05	5.61E-06	7.69E-06	7.65E-06	2.35E-06
327	764729.4	4093219	9.26E-05	1.01E-04	3.56E-05	1.45E-05	1.64E-05	5.63E-06	7.73E-06	7.68E-06	2.36E-06
328	764707.3	4093228	9.29E-05	1.01E-04	3.58E-05	1.45E-05	1.64E-05	5.65E-06	7.76E-06	7.71E-06	2.37E-06
329	764685.2	4093236	9.32E-05	1.01E-04	3.59E-05	1.46E-05	1.65E-05	5.67E-06	7.78E-06	7.74E-06	2.37E-06
330	764663.1	4093244	9.33E-05	1.02E-04	3.59E-05	1.46E-05	1.65E-05	5.68E-06	7.79E-06	7.75E-06	2.38E-06
331	764641	4093253	9.33E-05	1.02E-04	3.59E-05	1.46E-05	1.65E-05	5.68E-06	7.79E-06	7.75E-06	2.38E-06
332	764618.8	4093261	9.32E-05	1.01E-04	3.59E-05	1.46E-05	1.65E-05	5.67E-06	7.78E-06	7.73E-06	2.37E-06
333	764596.7	4093270	9.29E-05	1.01E-04	3.58E-05	1.45E-05	1.64E-05	5.65E-06	7.76E-06	7.71E-06	2.37E-06
334	764574.6	4093278	9.25E-05	1.01E-04	3.56E-05	1.44E-05	1.63E-05	5.63E-06	7.72E-06	7.68E-06	2.36E-06
335	764552.5	4093286	9.21E-05	1.00E-04	3.55E-05	1.44E-05	1.63E-05	5.60E-06	7.69E-06	7.64E-06	2.35E-06
336	764530.4	4093295	9.15E-05	9.96E-05	3.52E-05	1.43E-05	1.62E-05	5.57E-06	7.64E-06	7.60E-06	2.33E-06
337	764508.3	4093303	9.09E-05	9.90E-05	3.50E-05	1.42E-05	1.61E-05	5.53E-06	7.59E-06	7.55E-06	2.32E-06
338	764486.2	4093312	9.04E-05	9.84E-05	3.48E-05	1.41E-05	1.60E-05	5.50E-06	7.55E-06	7.51E-06	2.30E-06
339	764464.1	4093320	8.99E-05	9.79E-05	3.46E-05	1.40E-05	1.59E-05	5.47E-06	7.51E-06	7.47E-06	2.29E-06
340	764442	4093328	8.95E-05	9.74E-05	3.45E-05	1.40E-05	1.58E-05	5.44E-06	7.47E-06	7.43E-06	2.28E-06
341	764419.9	4093337	8.91E-05	9.70E-05	3.43E-05	1.39E-05	1.57E-05	5.42E-06	7.44E-06	7.40E-06	2.27E-06
342	764397.8	4093345	8.88E-05	9.67E-05	3.42E-05	1.39E-05	1.57E-05	5.41E-06	7.42E-06	7.38E-06	2.26E-06
343	764375.7	4093354	8.87E-05	9.65E-05	3.41E-05	1.38E-05	1.57E-05	5.39E-06	7.40E-06	7.36E-06	2.26E-06
344	764353.6	4093362	8.86E-05	9.64E-05	3.41E-05	1.38E-05	1.56E-05	5.39E-06	7.40E-06	7.35E-06	2.26E-06
345	764331.4	4093370	8.86E-05	9.65E-05	3.41E-05	1.38E-05	1.57E-05	5.39E-06	7.40E-06	7.36E-06	2.26E-06
346	764309.3	4093379	8.88E-05	9.66E-05	3.42E-05	1.39E-05	1.57E-05	5.40E-06	7.41E-06	7.37E-06	2.26E-06
347	764287.2	4093387	8.91E-05	9.70E-05	3.43E-05	1.39E-05	1.57E-05	5.42E-06	7.44E-06	7.40E-06	2.27E-06

348	764265.1	4093396	8.95E-05	9.74E-05	3.45E-05	1.40E-05	1.58E-05	5.45E-06	7.48E-06	7.43E-06	2.28E-06
349	764243	4093404	9.01E-05	9.80E-05	3.47E-05	1.41E-05	1.59E-05	5.48E-06	7.52E-06	7.48E-06	2.30E-06
350	764220.9	4093412	9.07E-05	9.87E-05	3.49E-05	1.42E-05	1.60E-05	5.52E-06	7.58E-06	7.53E-06	2.31E-06
351	765123.4	4092553	1.78E-04	1.94E-04	6.85E-05	2.78E-05	3.14E-05	1.08E-05	1.48E-05	1.48E-05	4.53E-06
352	765124.2	4092529	1.87E-04	2.03E-04	7.18E-05	2.91E-05	3.30E-05	1.13E-05	1.56E-05	1.55E-05	4.75E-06
353	765125.1	4092505	1.96E-04	2.13E-04	7.54E-05	3.06E-05	3.46E-05	1.19E-05	1.63E-05	1.62E-05	4.99E-06
354	765125.9	4092480	2.05E-04	2.23E-04	7.91E-05	3.21E-05	3.63E-05	1.25E-05	1.71E-05	1.70E-05	5.23E-06
355	765126.8	4092456	2.15E-04	2.34E-04	8.29E-05	3.36E-05	3.80E-05	1.31E-05	1.80E-05	1.79E-05	5.49E-06
356	765127.7	4092432	2.26E-04	2.46E-04	8.69E-05	3.53E-05	3.99E-05	1.37E-05	1.88E-05	1.87E-05	5.75E-06
357	765128.5	4092408	2.37E-04	2.58E-04	9.11E-05	3.69E-05	4.18E-05	1.44E-05	1.98E-05	1.96E-05	6.03E-06
358	765129.4	4092384	2.48E-04	2.70E-04	9.54E-05	3.87E-05	4.38E-05	1.51E-05	2.07E-05	2.06E-05	6.32E-06
359	765130.2	4092360	2.60E-04	2.82E-04	9.99E-05	4.05E-05	4.58E-05	1.58E-05	2.17E-05	2.15E-05	6.61E-06
360	765131.1	4092336	2.72E-04	2.96E-04	1.05E-04	4.24E-05	4.80E-05	1.65E-05	2.27E-05	2.26E-05	6.92E-06
361	765131.9	4092311	2.84E-04	3.09E-04	1.09E-04	4.44E-05	5.02E-05	1.73E-05	2.37E-05	2.36E-05	7.24E-06
362	765132.8	4092287	2.97E-04	3.24E-04	1.15E-04	4.65E-05	5.26E-05	1.81E-05	2.48E-05	2.47E-05	7.58E-06
363	765133.6	4092263	3.11E-04	3.39E-04	1.20E-04	4.86E-05	5.50E-05	1.89E-05	2.60E-05	2.58E-05	7.93E-06
364	765134.5	4092239	3.26E-04	3.54E-04	1.25E-04	5.09E-05	5.75E-05	1.98E-05	2.72E-05	2.70E-05	8.30E-06
365	765135.3	4092215	3.41E-04	3.71E-04	1.31E-04	5.32E-05	6.02E-05	2.07E-05	2.84E-05	2.83E-05	8.68E-06
366	765313.4	4092582	1.31E-04	1.43E-04	5.06E-05	2.05E-05	2.32E-05	7.99E-06	1.10E-05	1.09E-05	3.35E-06
367	765303.5	4092603	1.28E-04	1.39E-04	4.93E-05	2.00E-05	2.26E-05	7.79E-06	1.07E-05	1.06E-05	3.26E-06
368	765293.6	4092625	1.25E-04	1.36E-04	4.81E-05	1.95E-05	2.21E-05	7.59E-06	1.04E-05	1.04E-05	3.18E-06
369	765283.7	4092647	1.21E-04	1.32E-04	4.68E-05	1.90E-05	2.15E-05	7.39E-06	1.01E-05	1.01E-05	3.09E-06
370	765273.8	4092669	1.18E-04	1.29E-04	4.56E-05	1.85E-05	2.09E-05	7.20E-06	9.88E-06	9.82E-06	3.02E-06
371	765263.9	4092691	1.15E-04	1.26E-04	4.45E-05	1.80E-05	2.04E-05	7.02E-06	9.64E-06	9.58E-06	2.94E-06
372	765254	4092712	1.13E-04	1.23E-04	4.35E-05	1.76E-05	1.99E-05	6.87E-06	9.42E-06	9.37E-06	2.87E-06
373	765244.1	4092734	1.10E-04	1.20E-04	4.25E-05	1.73E-05	1.95E-05	6.72E-06	9.22E-06	9.17E-06	2.81E-06
374	765234.2	4092756	1.08E-04	1.18E-04	4.17E-05	1.69E-05	1.91E-05	6.59E-06	9.04E-06	8.99E-06	2.76E-06
375	765224.3	4092778	1.06E-04	1.16E-04	4.09E-05	1.66E-05	1.88E-05	6.47E-06	8.87E-06	8.82E-06	2.71E-06
376	765214.4	4092800	1.04E-04	1.14E-04	4.02E-05	1.63E-05	1.85E-05	6.36E-06	8.72E-06	8.67E-06	2.66E-06
377	765204.5	4092822	1.03E-04	1.12E-04	3.96E-05	1.60E-05	1.82E-05	6.25E-06	8.58E-06	8.53E-06	2.62E-06
378	765194.6	4092843	1.01E-04	1.10E-04	3.89E-05	1.58E-05	1.79E-05	6.15E-06	8.44E-06	8.39E-06	2.58E-06
379	765184.7	4092865	9.96E-05	1.08E-04	3.84E-05	1.56E-05	1.76E-05	6.06E-06	8.32E-06	8.27E-06	2.54E-06
380	765174.8	4092887	9.82E-05	1.07E-04	3.78E-05	1.53E-05	1.73E-05	5.97E-06	8.20E-06	8.15E-06	2.50E-06
381	765164.9	4092909	9.68E-05	1.05E-04	3.73E-05	1.51E-05	1.71E-05	5.89E-06	8.08E-06	8.04E-06	2.47E-06
382	765155	4092931	9.55E-05	1.04E-04	3.68E-05	1.49E-05	1.69E-05	5.81E-06	7.98E-06	7.93E-06	2.43E-06
383	765145.1	4092952	9.43E-05	1.03E-04	3.63E-05	1.47E-05	1.67E-05	5.74E-06	7.87E-06	7.83E-06	2.40E-06
384	765135.2	4092974	9.30E-05	1.01E-04	3.58E-05	1.45E-05	1.64E-05	5.66E-06	7.77E-06	7.72E-06	2.37E-06
385	765125.3	4092996	9.17E-05	9.98E-05	3.53E-05	1.43E-05	1.62E-05	5.58E-06	7.65E-06	7.61E-06	2.34E-06
386	765115.4	4093018	9.02E-05	9.82E-05	3.48E-05	1.41E-05	1.59E-05	5.49E-06	7.53E-06	7.49E-06	2.30E-06

387	765105.5	4093040	8.87E-05	9.66E-05	3.42E-05	1.39E-05	1.57E-05	5.40E-06	7.41E-06	7.37E-06	2.26E-06
388	765095.6	4093061	8.71E-05	9.48E-05	3.35E-05	1.36E-05	1.54E-05	5.30E-06	7.27E-06	7.23E-06	2.22E-06
389	765085.7	4093083	8.54E-05	9.30E-05	3.29E-05	1.33E-05	1.51E-05	5.20E-06	7.13E-06	7.09E-06	2.18E-06
390	765075.8	4093105	8.37E-05	9.11E-05	3.22E-05	1.31E-05	1.48E-05	5.09E-06	6.99E-06	6.95E-06	2.13E-06
391	765065.9	4093127	8.19E-05	8.92E-05	3.16E-05	1.28E-05	1.45E-05	4.98E-06	6.84E-06	6.80E-06	2.09E-06
392	765056	4093149	8.02E-05	8.73E-05	3.09E-05	1.25E-05	1.42E-05	4.88E-06	6.69E-06	6.66E-06	2.04E-06
393	765046.1	4093170	7.84E-05	8.53E-05	3.02E-05	1.22E-05	1.38E-05	4.77E-06	6.54E-06	6.51E-06	2.00E-06
394	765036.2	4093192	7.66E-05	8.34E-05	2.95E-05	1.20E-05	1.35E-05	4.66E-06	6.40E-06	6.36E-06	1.95E-06
395	765026.3	4093214	7.50E-05	8.16E-05	2.89E-05	1.17E-05	1.32E-05	4.56E-06	6.26E-06	6.22E-06	1.91E-06
396	765016.4	4093236	7.34E-05	7.99E-05	2.83E-05	1.15E-05	1.30E-05	4.46E-06	6.13E-06	6.09E-06	1.87E-06
397	765006.5	4093258	7.19E-05	7.83E-05	2.77E-05	1.12E-05	1.27E-05	4.37E-06	6.00E-06	5.97E-06	1.83E-06
398	764996.6	4093279	7.05E-05	7.67E-05	2.72E-05	1.10E-05	1.25E-05	4.29E-06	5.89E-06	5.85E-06	1.80E-06
399	764986.7	4093301	6.92E-05	7.54E-05	2.67E-05	1.08E-05	1.22E-05	4.21E-06	5.78E-06	5.75E-06	1.76E-06
400	764954.4	4093332	6.84E-05	7.45E-05	2.64E-05	1.07E-05	1.21E-05	4.16E-06	5.71E-06	5.68E-06	1.74E-06
401	764932	4093340	6.88E-05	7.49E-05	2.65E-05	1.08E-05	1.22E-05	4.19E-06	5.75E-06	5.72E-06	1.75E-06
402	764909.6	4093349	6.92E-05	7.54E-05	2.67E-05	1.08E-05	1.22E-05	4.21E-06	5.78E-06	5.75E-06	1.76E-06
403	764887.2	4093357	6.96E-05	7.58E-05	2.68E-05	1.09E-05	1.23E-05	4.23E-06	5.81E-06	5.78E-06	1.77E-06
404	764864.9	4093366	6.99E-05	7.61E-05	2.69E-05	1.09E-05	1.24E-05	4.26E-06	5.84E-06	5.81E-06	1.78E-06
405	764842.5	4093374	7.02E-05	7.64E-05	2.70E-05	1.10E-05	1.24E-05	4.27E-06	5.86E-06	5.83E-06	1.79E-06
406	764820.1	4093383	7.04E-05	7.67E-05	2.71E-05	1.10E-05	1.24E-05	4.29E-06	5.88E-06	5.85E-06	1.79E-06
407	764797.7	4093391	7.06E-05	7.69E-05	2.72E-05	1.10E-05	1.25E-05	4.30E-06	5.90E-06	5.86E-06	1.80E-06
408	764775.3	4093400	7.07E-05	7.70E-05	2.72E-05	1.10E-05	1.25E-05	4.30E-06	5.90E-06	5.87E-06	1.80E-06
409	764752.9	4093408	7.07E-05	7.69E-05	2.72E-05	1.10E-05	1.25E-05	4.30E-06	5.90E-06	5.87E-06	1.80E-06
410	764730.5	4093417	7.06E-05	7.69E-05	2.72E-05	1.10E-05	1.25E-05	4.30E-06	5.90E-06	5.86E-06	1.80E-06
411	764708.1	4093425	7.04E-05	7.67E-05	2.71E-05	1.10E-05	1.24E-05	4.29E-06	5.88E-06	5.85E-06	1.79E-06
412	764685.8	4093434	7.01E-05	7.63E-05	2.70E-05	1.10E-05	1.24E-05	4.27E-06	5.86E-06	5.82E-06	1.79E-06
413	764663.4	4093442	6.98E-05	7.60E-05	2.69E-05	1.09E-05	1.23E-05	4.25E-06	5.83E-06	5.79E-06	1.78E-06
414	764641	4093451	6.94E-05	7.55E-05	2.67E-05	1.08E-05	1.23E-05	4.22E-06	5.79E-06	5.76E-06	1.77E-06
415	764618.6	4093459	6.89E-05	7.50E-05	2.66E-05	1.08E-05	1.22E-05	4.20E-06	5.76E-06	5.72E-06	1.76E-06
416	764596.2	4093468	6.85E-05	7.46E-05	2.64E-05	1.07E-05	1.21E-05	4.17E-06	5.72E-06	5.69E-06	1.75E-06
417	764573.8	4093476	6.81E-05	7.41E-05	2.62E-05	1.06E-05	1.20E-05	4.14E-06	5.69E-06	5.66E-06	1.74E-06
418	764551.4	4093485	6.77E-05	7.37E-05	2.61E-05	1.06E-05	1.20E-05	4.12E-06	5.66E-06	5.62E-06	1.73E-06
419	764529	4093493	6.74E-05	7.33E-05	2.59E-05	1.05E-05	1.19E-05	4.10E-06	5.63E-06	5.59E-06	1.72E-06
420	764506.6	4093502	6.71E-05	7.30E-05	2.58E-05	1.05E-05	1.19E-05	4.08E-06	5.60E-06	5.57E-06	1.71E-06
421	764484.3	4093510	6.69E-05	7.28E-05	2.58E-05	1.04E-05	1.18E-05	4.07E-06	5.58E-06	5.55E-06	1.70E-06
422	764461.9	4093519	6.67E-05	7.26E-05	2.57E-05	1.04E-05	1.18E-05	4.06E-06	5.57E-06	5.54E-06	1.70E-06
423	764439.5	4093527	6.66E-05	7.25E-05	2.57E-05	1.04E-05	1.18E-05	4.05E-06	5.56E-06	5.53E-06	1.70E-06
424	764417.1	4093536	6.66E-05	7.25E-05	2.56E-05	1.04E-05	1.18E-05	4.05E-06	5.56E-06	5.53E-06	1.70E-06
425	764394.7	4093544	6.66E-05	7.25E-05	2.56E-05	1.04E-05	1.18E-05	4.05E-06	5.56E-06	5.53E-06	1.70E-06

426	764372.3	4093553	6.67E-05	7.26E-05	2.57E-05	1.04E-05	1.18E-05	4.06E-06	5.57E-06	5.54E-06	1.70E-06
427	764349.9	4093561	6.69E-05	7.28E-05	2.58E-05	1.04E-05	1.18E-05	4.07E-06	5.58E-06	5.55E-06	1.70E-06
428	764327.5	4093570	6.71E-05	7.31E-05	2.59E-05	1.05E-05	1.19E-05	4.08E-06	5.61E-06	5.57E-06	1.71E-06
429	764305.1	4093578	6.75E-05	7.34E-05	2.60E-05	1.05E-05	1.19E-05	4.10E-06	5.63E-06	5.60E-06	1.72E-06
430	764282.8	4093587	6.79E-05	7.39E-05	2.61E-05	1.06E-05	1.20E-05	4.13E-06	5.67E-06	5.63E-06	1.73E-06
431	764260.4	4093595	6.83E-05	7.44E-05	2.63E-05	1.07E-05	1.21E-05	4.16E-06	5.71E-06	5.67E-06	1.74E-06
432	764238	4093604	6.89E-05	7.50E-05	2.65E-05	1.08E-05	1.22E-05	4.19E-06	5.75E-06	5.72E-06	1.75E-06
433	764215.6	4093612	6.94E-05	7.56E-05	2.67E-05	1.08E-05	1.23E-05	4.22E-06	5.80E-06	5.76E-06	1.77E-06
434	765323.3	4092560	1.35E-04	1.47E-04	5.19E-05	2.10E-05	2.38E-05	8.19E-06	1.12E-05	1.12E-05	3.43E-06
435	765324.1	4092536	1.40E-04	1.53E-04	5.40E-05	2.19E-05	2.48E-05	8.53E-06	1.17E-05	1.16E-05	3.57E-06
436	765325	4092512	1.46E-04	1.59E-04	5.61E-05	2.28E-05	2.58E-05	8.87E-06	1.22E-05	1.21E-05	3.71E-06
437	765325.8	4092487	1.52E-04	1.65E-04	5.84E-05	2.37E-05	2.68E-05	9.23E-06	1.27E-05	1.26E-05	3.86E-06
438	765326.7	4092463	1.58E-04	1.72E-04	6.07E-05	2.46E-05	2.79E-05	9.59E-06	1.32E-05	1.31E-05	4.02E-06
439	765327.5	4092439	1.64E-04	1.78E-04	6.31E-05	2.56E-05	2.90E-05	9.98E-06	1.37E-05	1.36E-05	4.18E-06
440	765328.4	4092415	1.70E-04	1.85E-04	6.56E-05	2.66E-05	3.01E-05	1.04E-05	1.42E-05	1.41E-05	4.34E-06
441	765329.2	4092391	1.77E-04	1.92E-04	6.81E-05	2.76E-05	3.12E-05	1.08E-05	1.48E-05	1.47E-05	4.50E-06
442	765330.1	4092367	1.83E-04	2.00E-04	7.06E-05	2.86E-05	3.24E-05	1.12E-05	1.53E-05	1.52E-05	4.67E-06
443	765330.9	4092343	1.90E-04	2.07E-04	7.32E-05	2.97E-05	3.36E-05	1.16E-05	1.59E-05	1.58E-05	4.85E-06
444	765331.8	4092318	1.97E-04	2.15E-04	7.59E-05	3.08E-05	3.48E-05	1.20E-05	1.65E-05	1.64E-05	5.02E-06
445	765332.6	4092294	2.04E-04	2.22E-04	7.87E-05	3.19E-05	3.61E-05	1.24E-05	1.71E-05	1.70E-05	5.21E-06
446	765333.5	4092270	2.12E-04	2.30E-04	8.15E-05	3.31E-05	3.74E-05	1.29E-05	1.77E-05	1.76E-05	5.39E-06
447	765334.3	4092246	2.19E-04	2.39E-04	8.45E-05	3.43E-05	3.88E-05	1.33E-05	1.83E-05	1.82E-05	5.59E-06
448	765335.2	4092222	2.27E-04	2.48E-04	8.76E-05	3.55E-05	4.02E-05	1.38E-05	1.90E-05	1.89E-05	5.79E-06
449	765513.4	4092588	1.05E-04	1.14E-04	4.03E-05	1.64E-05	1.85E-05	6.37E-06	8.74E-06	8.69E-06	2.67E-06
450	765503.6	4092610	1.02E-04	1.12E-04	3.95E-05	1.60E-05	1.81E-05	6.23E-06	8.56E-06	8.51E-06	2.61E-06
451	765493.9	4092631	1.00E-04	1.09E-04	3.86E-05	1.57E-05	1.77E-05	6.10E-06	8.37E-06	8.32E-06	2.55E-06
452	765484.2	4092653	9.80E-05	1.07E-04	3.77E-05	1.53E-05	1.73E-05	5.96E-06	8.18E-06	8.14E-06	2.50E-06
453	765474.4	4092674	9.58E-05	1.04E-04	3.69E-05	1.50E-05	1.69E-05	5.83E-06	8.00E-06	7.95E-06	2.44E-06
454	765464.7	4092696	9.37E-05	1.02E-04	3.61E-05	1.46E-05	1.66E-05	5.70E-06	7.83E-06	7.78E-06	2.39E-06
455	765454.9	4092717	9.17E-05	9.98E-05	3.53E-05	1.43E-05	1.62E-05	5.58E-06	7.66E-06	7.62E-06	2.34E-06
456	765445.2	4092739	8.98E-05	9.78E-05	3.46E-05	1.40E-05	1.59E-05	5.47E-06	7.50E-06	7.46E-06	2.29E-06
457	765435.4	4092760	8.80E-05	9.58E-05	3.39E-05	1.38E-05	1.56E-05	5.36E-06	7.35E-06	7.31E-06	2.24E-06
458	765425.7	4092782	8.64E-05	9.40E-05	3.33E-05	1.35E-05	1.53E-05	5.26E-06	7.21E-06	7.17E-06	2.20E-06
459	765415.9	4092803	8.49E-05	9.24E-05	3.27E-05	1.33E-05	1.50E-05	5.16E-06	7.09E-06	7.04E-06	2.16E-06
460	765406.2	4092825	8.34E-05	9.08E-05	3.21E-05	1.30E-05	1.47E-05	5.08E-06	6.97E-06	6.93E-06	2.13E-06
461	765396.4	4092846	8.22E-05	8.94E-05	3.16E-05	1.28E-05	1.45E-05	5.00E-06	6.86E-06	6.82E-06	2.09E-06
462	765386.7	4092868	8.10E-05	8.82E-05	3.12E-05	1.27E-05	1.43E-05	4.93E-06	6.76E-06	6.73E-06	2.06E-06
463	765376.9	4092889	8.00E-05	8.71E-05	3.08E-05	1.25E-05	1.41E-05	4.87E-06	6.68E-06	6.64E-06	2.04E-06
464	765367.2	4092911	7.91E-05	8.60E-05	3.04E-05	1.23E-05	1.40E-05	4.81E-06	6.60E-06	6.56E-06	2.01E-06

465	765357.4	4092932	7.82E-05	8.51E-05	3.01E-05	1.22E-05	1.38E-05	4.76E-06	6.53E-06	6.49E-06	1.99E-06
466	765347.7	4092953	7.74E-05	8.43E-05	2.98E-05	1.21E-05	1.37E-05	4.71E-06	6.46E-06	6.43E-06	1.97E-06
467	765337.9	4092975	7.67E-05	8.35E-05	2.95E-05	1.20E-05	1.35E-05	4.67E-06	6.40E-06	6.37E-06	1.95E-06
468	765328.2	4092996	7.60E-05	8.27E-05	2.93E-05	1.19E-05	1.34E-05	4.62E-06	6.34E-06	6.31E-06	1.94E-06
469	765318.4	4093018	7.53E-05	8.19E-05	2.90E-05	1.18E-05	1.33E-05	4.58E-06	6.28E-06	6.25E-06	1.92E-06
470	765308.7	4093039	7.45E-05	8.11E-05	2.87E-05	1.16E-05	1.32E-05	4.54E-06	6.22E-06	6.19E-06	1.90E-06
471	765298.9	4093061	7.38E-05	8.03E-05	2.84E-05	1.15E-05	1.30E-05	4.49E-06	6.16E-06	6.13E-06	1.88E-06
472	765289.2	4093082	7.30E-05	7.94E-05	2.81E-05	1.14E-05	1.29E-05	4.44E-06	6.09E-06	6.06E-06	1.86E-06
473	765279.4	4093104	7.21E-05	7.85E-05	2.78E-05	1.13E-05	1.27E-05	4.39E-06	6.02E-06	5.99E-06	1.84E-06
474	765269.7	4093125	7.12E-05	7.74E-05	2.74E-05	1.11E-05	1.26E-05	4.33E-06	5.94E-06	5.91E-06	1.81E-06
475	765259.9	4093147	7.01E-05	7.63E-05	2.70E-05	1.10E-05	1.24E-05	4.27E-06	5.86E-06	5.82E-06	1.79E-06
476	765250.2	4093168	6.90E-05	7.52E-05	2.66E-05	1.08E-05	1.22E-05	4.20E-06	5.77E-06	5.73E-06	1.76E-06
477	765240.4	4093190	6.79E-05	7.39E-05	2.62E-05	1.06E-05	1.20E-05	4.13E-06	5.67E-06	5.64E-06	1.73E-06
478	765230.7	4093211	6.67E-05	7.26E-05	2.57E-05	1.04E-05	1.18E-05	4.06E-06	5.57E-06	5.54E-06	1.70E-06
479	765220.9	4093233	6.55E-05	7.13E-05	2.52E-05	1.02E-05	1.16E-05	3.98E-06	5.47E-06	5.44E-06	1.67E-06
480	765211.2	4093254	6.43E-05	6.99E-05	2.47E-05	1.00E-05	1.14E-05	3.91E-06	5.37E-06	5.33E-06	1.64E-06
481	765201.4	4093276	6.30E-05	6.86E-05	2.43E-05	9.84E-06	1.11E-05	3.83E-06	5.26E-06	5.23E-06	1.61E-06
482	765191.7	4093297	6.18E-05	6.73E-05	2.38E-05	9.66E-06	1.09E-05	3.76E-06	5.16E-06	5.13E-06	1.58E-06
483	765181.9	4093319	6.07E-05	6.60E-05	2.34E-05	9.48E-06	1.07E-05	3.69E-06	5.07E-06	5.04E-06	1.55E-06
484	765172.2	4093340	5.96E-05	6.48E-05	2.29E-05	9.30E-06	1.05E-05	3.62E-06	4.97E-06	4.95E-06	1.52E-06
485	765162.4	4093362	5.85E-05	6.37E-05	2.25E-05	9.14E-06	1.03E-05	3.56E-06	4.89E-06	4.86E-06	1.49E-06
486	765152.7	4093383	5.76E-05	6.27E-05	2.22E-05	8.99E-06	1.02E-05	3.50E-06	4.81E-06	4.78E-06	1.47E-06
487	765142.9	4093404	5.67E-05	6.17E-05	2.18E-05	8.86E-06	1.00E-05	3.45E-06	4.73E-06	4.71E-06	1.44E-06
488	765133.2	4093426	5.58E-05	6.08E-05	2.15E-05	8.72E-06	9.87E-06	3.40E-06	4.66E-06	4.64E-06	1.42E-06
489	765123.4	4093447	5.51E-05	6.00E-05	2.12E-05	8.60E-06	9.73E-06	3.35E-06	4.60E-06	4.57E-06	1.40E-06
490	765091.6	4093477	5.47E-05	5.95E-05	2.11E-05	8.54E-06	9.66E-06	3.33E-06	4.57E-06	4.54E-06	1.39E-06
491	765069.6	4093486	5.50E-05	5.98E-05	2.12E-05	8.59E-06	9.71E-06	3.35E-06	4.59E-06	4.56E-06	1.40E-06
492	765047.5	4093494	5.53E-05	6.02E-05	2.13E-05	8.63E-06	9.77E-06	3.36E-06	4.62E-06	4.59E-06	1.41E-06
493	765025.5	4093502	5.56E-05	6.05E-05	2.14E-05	8.68E-06	9.82E-06	3.38E-06	4.64E-06	4.61E-06	1.42E-06
494	765003.4	4093511	5.58E-05	6.08E-05	2.15E-05	8.72E-06	9.86E-06	3.40E-06	4.66E-06	4.64E-06	1.42E-06
495	764981.4	4093519	5.61E-05	6.10E-05	2.16E-05	8.75E-06	9.90E-06	3.41E-06	4.68E-06	4.65E-06	1.43E-06
496	764959.3	4093527	5.62E-05	6.12E-05	2.17E-05	8.78E-06	9.94E-06	3.42E-06	4.70E-06	4.67E-06	1.43E-06
497	764937.3	4093536	5.64E-05	6.14E-05	2.17E-05	8.80E-06	9.96E-06	3.43E-06	4.71E-06	4.68E-06	1.44E-06
498	764915.2	4093544	5.65E-05	6.15E-05	2.18E-05	8.82E-06	9.98E-06	3.44E-06	4.72E-06	4.69E-06	1.44E-06
499	764893.2	4093553	5.65E-05	6.15E-05	2.18E-05	8.82E-06	9.98E-06	3.44E-06	4.72E-06	4.69E-06	1.44E-06
500	764871.1	4093561	5.65E-05	6.14E-05	2.17E-05	8.82E-06	9.97E-06	3.44E-06	4.71E-06	4.69E-06	1.44E-06
501	764849.1	4093569	5.64E-05	6.14E-05	2.17E-05	8.80E-06	9.96E-06	3.43E-06	4.71E-06	4.68E-06	1.44E-06
502	764827	4093578	5.62E-05	6.12E-05	2.17E-05	8.78E-06	9.94E-06	3.42E-06	4.70E-06	4.67E-06	1.43E-06
503	764805	4093586	5.61E-05	6.10E-05	2.16E-05	8.75E-06	9.90E-06	3.41E-06	4.68E-06	4.65E-06	1.43E-06

504	764782.9	4093594	5.58E-05	6.08E-05	2.15E-05	8.72E-06	9.86E-06	3.40E-06	4.66E-06	4.64E-06	1.42E-06
505	764760.9	4093603	5.56E-05	6.05E-05	2.14E-05	8.68E-06	9.82E-06	3.38E-06	4.64E-06	4.61E-06	1.42E-06
506	764738.8	4093611	5.53E-05	6.02E-05	2.13E-05	8.63E-06	9.76E-06	3.36E-06	4.61E-06	4.59E-06	1.41E-06
507	764716.8	4093620	5.49E-05	5.98E-05	2.12E-05	8.58E-06	9.71E-06	3.34E-06	4.59E-06	4.56E-06	1.40E-06
508	764694.7	4093628	5.46E-05	5.94E-05	2.10E-05	8.53E-06	9.65E-06	3.32E-06	4.56E-06	4.53E-06	1.39E-06
509	764672.7	4093636	5.43E-05	5.91E-05	2.09E-05	8.48E-06	9.59E-06	3.30E-06	4.53E-06	4.51E-06	1.38E-06
510	764650.6	4093645	5.39E-05	5.87E-05	2.08E-05	8.43E-06	9.53E-06	3.28E-06	4.50E-06	4.48E-06	1.37E-06
511	764628.6	4093653	5.37E-05	5.84E-05	2.07E-05	8.38E-06	9.48E-06	3.27E-06	4.48E-06	4.46E-06	1.37E-06
512	764606.5	4093661	5.34E-05	5.81E-05	2.06E-05	8.34E-06	9.44E-06	3.25E-06	4.46E-06	4.44E-06	1.36E-06
513	764584.5	4093670	5.32E-05	5.79E-05	2.05E-05	8.31E-06	9.40E-06	3.24E-06	4.44E-06	4.42E-06	1.36E-06
514	764562.5	4093678	5.30E-05	5.77E-05	2.04E-05	8.28E-06	9.37E-06	3.23E-06	4.43E-06	4.40E-06	1.35E-06
515	764540.4	4093687	5.29E-05	5.76E-05	2.04E-05	8.27E-06	9.35E-06	3.22E-06	4.42E-06	4.40E-06	1.35E-06
516	764518.4	4093695	5.29E-05	5.76E-05	2.04E-05	8.26E-06	9.34E-06	3.22E-06	4.42E-06	4.39E-06	1.35E-06
517	764496.3	4093703	5.29E-05	5.75E-05	2.04E-05	8.26E-06	9.34E-06	3.22E-06	4.41E-06	4.39E-06	1.35E-06
518	764474.3	4093712	5.29E-05	5.75E-05	2.04E-05	8.26E-06	9.34E-06	3.22E-06	4.41E-06	4.39E-06	1.35E-06
519	764452.2	4093720	5.29E-05	5.76E-05	2.04E-05	8.27E-06	9.35E-06	3.22E-06	4.42E-06	4.39E-06	1.35E-06
520	764430.2	4093728	5.30E-05	5.77E-05	2.04E-05	8.28E-06	9.37E-06	3.23E-06	4.43E-06	4.40E-06	1.35E-06
521	764408.1	4093737	5.32E-05	5.79E-05	2.05E-05	8.30E-06	9.39E-06	3.23E-06	4.44E-06	4.41E-06	1.35E-06
522	764386.1	4093745	5.33E-05	5.80E-05	2.05E-05	8.33E-06	9.42E-06	3.24E-06	4.45E-06	4.43E-06	1.36E-06
523	764364	4093754	5.35E-05	5.83E-05	2.06E-05	8.36E-06	9.46E-06	3.26E-06	4.47E-06	4.45E-06	1.36E-06
524	764342	4093762	5.38E-05	5.85E-05	2.07E-05	8.40E-06	9.50E-06	3.27E-06	4.49E-06	4.47E-06	1.37E-06
525	764319.9	4093770	5.41E-05	5.89E-05	2.08E-05	8.45E-06	9.56E-06	3.29E-06	4.52E-06	4.49E-06	1.38E-06
526	764297.9	4093779	5.44E-05	5.92E-05	2.10E-05	8.50E-06	9.62E-06	3.31E-06	4.55E-06	4.52E-06	1.39E-06
527	764275.8	4093787	5.48E-05	5.97E-05	2.11E-05	8.56E-06	9.69E-06	3.34E-06	4.58E-06	4.55E-06	1.40E-06
528	764253.8	4093795	5.52E-05	6.01E-05	2.13E-05	8.62E-06	9.76E-06	3.36E-06	4.61E-06	4.58E-06	1.41E-06
529	764231.7	4093804	5.56E-05	6.06E-05	2.14E-05	8.69E-06	9.83E-06	3.39E-06	4.65E-06	4.62E-06	1.42E-06
530	764209.7	4093812	5.61E-05	6.11E-05	2.16E-05	8.76E-06	9.91E-06	3.41E-06	4.69E-06	4.66E-06	1.43E-06
531	765523.1	4092567	1.07E-04	1.16E-04	4.12E-05	1.67E-05	1.89E-05	6.51E-06	8.94E-06	8.88E-06	2.73E-06
532	765524	4092543	1.11E-04	1.20E-04	4.26E-05	1.73E-05	1.96E-05	6.74E-06	9.24E-06	9.19E-06	2.82E-06
533	765524.8	4092519	1.14E-04	1.25E-04	4.41E-05	1.79E-05	2.02E-05	6.97E-06	9.56E-06	9.50E-06	2.92E-06
534	765525.7	4092494	1.18E-04	1.29E-04	4.56E-05	1.85E-05	2.09E-05	7.20E-06	9.89E-06	9.83E-06	3.02E-06
535	765526.6	4092470	1.22E-04	1.33E-04	4.71E-05	1.91E-05	2.16E-05	7.44E-06	1.02E-05	1.02E-05	3.12E-06
536	765527.4	4092446	1.26E-04	1.38E-04	4.87E-05	1.97E-05	2.23E-05	7.69E-06	1.05E-05	1.05E-05	3.22E-06
537	765528.3	4092422	1.30E-04	1.42E-04	5.02E-05	2.04E-05	2.30E-05	7.93E-06	1.09E-05	1.08E-05	3.32E-06
538	765529.1	4092398	1.35E-04	1.46E-04	5.18E-05	2.10E-05	2.38E-05	8.18E-06	1.12E-05	1.12E-05	3.43E-06
539	765530	4092374	1.39E-04	1.51E-04	5.34E-05	2.17E-05	2.45E-05	8.44E-06	1.16E-05	1.15E-05	3.53E-06
540	765530.8	4092350	1.43E-04	1.56E-04	5.50E-05	2.23E-05	2.52E-05	8.69E-06	1.19E-05	1.19E-05	3.64E-06
541	765531.7	4092326	1.47E-04	1.60E-04	5.67E-05	2.30E-05	2.60E-05	8.96E-06	1.23E-05	1.22E-05	3.75E-06
542	765532.5	4092301	1.52E-04	1.65E-04	5.84E-05	2.37E-05	2.68E-05	9.22E-06	1.27E-05	1.26E-05	3.86E-06

543	765533.4	4092277	1.56E-04	1.70E-04	6.01E-05	2.44E-05	2.76E-05	9.49E-06	1.30E-05	1.30E-05	3.97E-06
544	765534.2	4092253	1.61E-04	1.75E-04	6.18E-05	2.51E-05	2.84E-05	9.77E-06	1.34E-05	1.33E-05	4.09E-06
545	765535.1	4092229	1.65E-04	1.80E-04	6.36E-05	2.58E-05	2.92E-05	1.01E-05	1.38E-05	1.37E-05	4.21E-06
546	765713.2	4092596	8.65E-05	9.42E-05	3.33E-05	1.35E-05	1.53E-05	5.26E-06	7.22E-06	7.18E-06	2.20E-06
547	765703.3	4092617	8.49E-05	9.24E-05	3.27E-05	1.33E-05	1.50E-05	5.16E-06	7.09E-06	7.04E-06	2.16E-06
548	765693.5	4092639	8.32E-05	9.06E-05	3.20E-05	1.30E-05	1.47E-05	5.06E-06	6.95E-06	6.91E-06	2.12E-06
549	765683.7	4092661	8.16E-05	8.88E-05	3.14E-05	1.27E-05	1.44E-05	4.96E-06	6.81E-06	6.77E-06	2.08E-06
550	765673.8	4092682	7.99E-05	8.70E-05	3.08E-05	1.25E-05	1.41E-05	4.86E-06	6.67E-06	6.64E-06	2.04E-06
551	765664	4092704	7.83E-05	8.53E-05	3.02E-05	1.22E-05	1.38E-05	4.77E-06	6.54E-06	6.50E-06	2.00E-06
552	765654.1	4092726	7.68E-05	8.36E-05	2.96E-05	1.20E-05	1.36E-05	4.67E-06	6.41E-06	6.38E-06	1.96E-06
553	765644.3	4092747	7.53E-05	8.19E-05	2.90E-05	1.18E-05	1.33E-05	4.58E-06	6.29E-06	6.25E-06	1.92E-06
554	765634.4	4092769	7.38E-05	8.04E-05	2.84E-05	1.15E-05	1.30E-05	4.49E-06	6.17E-06	6.13E-06	1.88E-06
555	765624.6	4092791	7.25E-05	7.89E-05	2.79E-05	1.13E-05	1.28E-05	4.41E-06	6.05E-06	6.02E-06	1.85E-06
556	765614.8	4092812	7.12E-05	7.75E-05	2.74E-05	1.11E-05	1.26E-05	4.33E-06	5.95E-06	5.91E-06	1.81E-06
557	765604.9	4092834	7.00E-05	7.62E-05	2.70E-05	1.09E-05	1.24E-05	4.26E-06	5.85E-06	5.81E-06	1.78E-06
558	765595.1	4092856	6.89E-05	7.50E-05	2.66E-05	1.08E-05	1.22E-05	4.20E-06	5.76E-06	5.72E-06	1.76E-06
559	765585.2	4092877	6.79E-05	7.39E-05	2.62E-05	1.06E-05	1.20E-05	4.13E-06	5.67E-06	5.64E-06	1.73E-06
560	765575.4	4092899	6.70E-05	7.29E-05	2.58E-05	1.05E-05	1.18E-05	4.08E-06	5.60E-06	5.56E-06	1.71E-06
561	765565.5	4092921	6.62E-05	7.21E-05	2.55E-05	1.03E-05	1.17E-05	4.03E-06	5.53E-06	5.50E-06	1.69E-06
562	765555.7	4092943	6.55E-05	7.13E-05	2.52E-05	1.02E-05	1.16E-05	3.98E-06	5.47E-06	5.44E-06	1.67E-06
563	765545.8	4092964	6.48E-05	7.06E-05	2.50E-05	1.01E-05	1.15E-05	3.94E-06	5.41E-06	5.38E-06	1.65E-06
564	765536	4092986	6.42E-05	6.99E-05	2.47E-05	1.00E-05	1.14E-05	3.91E-06	5.36E-06	5.33E-06	1.64E-06
565	765526.2	4093008	6.37E-05	6.94E-05	2.45E-05	9.95E-06	1.13E-05	3.88E-06	5.32E-06	5.29E-06	1.62E-06
566	765516.3	4093029	6.33E-05	6.89E-05	2.44E-05	9.88E-06	1.12E-05	3.85E-06	5.28E-06	5.25E-06	1.61E-06
567	765506.5	4093051	6.28E-05	6.84E-05	2.42E-05	9.81E-06	1.11E-05	3.82E-06	5.24E-06	5.21E-06	1.60E-06
568	765496.6	4093073	6.24E-05	6.79E-05	2.40E-05	9.74E-06	1.10E-05	3.80E-06	5.21E-06	5.18E-06	1.59E-06
569	765486.8	4093094	6.19E-05	6.74E-05	2.38E-05	9.67E-06	1.09E-05	3.77E-06	5.17E-06	5.14E-06	1.58E-06
570	765476.9	4093116	6.15E-05	6.69E-05	2.37E-05	9.60E-06	1.09E-05	3.74E-06	5.13E-06	5.10E-06	1.57E-06
571	765467.1	4093138	6.10E-05	6.64E-05	2.35E-05	9.52E-06	1.08E-05	3.71E-06	5.09E-06	5.06E-06	1.55E-06
572	765457.3	4093159	6.05E-05	6.58E-05	2.33E-05	9.44E-06	1.07E-05	3.68E-06	5.05E-06	5.02E-06	1.54E-06
573	765447.4	4093181	5.99E-05	6.52E-05	2.31E-05	9.36E-06	1.06E-05	3.65E-06	5.00E-06	4.97E-06	1.53E-06
574	765437.6	4093203	5.93E-05	6.46E-05	2.28E-05	9.26E-06	1.05E-05	3.61E-06	4.95E-06	4.92E-06	1.51E-06
575	765427.7	4093224	5.87E-05	6.38E-05	2.26E-05	9.16E-06	1.04E-05	3.57E-06	4.90E-06	4.87E-06	1.49E-06
576	765417.9	4093246	5.79E-05	6.31E-05	2.23E-05	9.05E-06	1.02E-05	3.53E-06	4.84E-06	4.81E-06	1.48E-06
577	765408	4093268	5.72E-05	6.22E-05	2.20E-05	8.93E-06	1.01E-05	3.48E-06	4.77E-06	4.75E-06	1.46E-06
578	765398.2	4093289	5.64E-05	6.13E-05	2.17E-05	8.80E-06	9.96E-06	3.43E-06	4.71E-06	4.68E-06	1.44E-06
579	765388.4	4093311	5.55E-05	6.04E-05	2.14E-05	8.67E-06	9.80E-06	3.38E-06	4.63E-06	4.61E-06	1.41E-06
580	765378.5	4093333	5.46E-05	5.94E-05	2.10E-05	8.53E-06	9.65E-06	3.32E-06	4.56E-06	4.53E-06	1.39E-06
581	765368.7	4093355	5.37E-05	5.85E-05	2.07E-05	8.39E-06	9.49E-06	3.27E-06	4.48E-06	4.46E-06	1.37E-06

582	765358.8	4093376	5.28E-05	5.74E-05	2.03E-05	8.24E-06	9.32E-06	3.21E-06	4.41E-06	4.38E-06	1.34E-06
583	765349	4093398	5.19E-05	5.65E-05	2.00E-05	8.10E-06	9.16E-06	3.16E-06	4.33E-06	4.31E-06	1.32E-06
584	765339.1	4093420	5.10E-05	5.55E-05	1.96E-05	7.96E-06	9.01E-06	3.10E-06	4.26E-06	4.23E-06	1.30E-06
585	765329.3	4093441	5.01E-05	5.45E-05	1.93E-05	7.83E-06	8.85E-06	3.05E-06	4.18E-06	4.16E-06	1.28E-06
586	765319.5	4093463	4.93E-05	5.37E-05	1.90E-05	7.70E-06	8.71E-06	3.00E-06	4.12E-06	4.09E-06	1.26E-06
587	765309.6	4093485	4.86E-05	5.28E-05	1.87E-05	7.58E-06	8.58E-06	2.95E-06	4.05E-06	4.03E-06	1.24E-06
588	765299.8	4093506	4.79E-05	5.21E-05	1.84E-05	7.48E-06	8.46E-06	2.91E-06	4.00E-06	3.97E-06	1.22E-06
589	765289.9	4093528	4.72E-05	5.14E-05	1.82E-05	7.38E-06	8.35E-06	2.87E-06	3.94E-06	3.92E-06	1.20E-06
590	765280.1	4093550	4.66E-05	5.08E-05	1.80E-05	7.28E-06	8.24E-06	2.84E-06	3.89E-06	3.87E-06	1.19E-06
591	765270.2	4093571	4.61E-05	5.02E-05	1.78E-05	7.20E-06	8.15E-06	2.81E-06	3.85E-06	3.83E-06	1.18E-06
592	765260.4	4093593	4.56E-05	4.97E-05	1.76E-05	7.13E-06	8.06E-06	2.78E-06	3.81E-06	3.79E-06	1.16E-06
593	765228.3	4093623	4.54E-05	4.94E-05	1.75E-05	7.09E-06	8.03E-06	2.76E-06	3.79E-06	3.77E-06	1.16E-06
594	765206	4093632	4.57E-05	4.97E-05	1.76E-05	7.13E-06	8.07E-06	2.78E-06	3.81E-06	3.79E-06	1.16E-06
595	765183.8	4093640	4.59E-05	5.00E-05	1.77E-05	7.17E-06	8.11E-06	2.79E-06	3.83E-06	3.81E-06	1.17E-06
596	765161.5	4093649	4.61E-05	5.02E-05	1.78E-05	7.20E-06	8.15E-06	2.81E-06	3.85E-06	3.83E-06	1.18E-06
597	765139.3	4093657	4.63E-05	5.04E-05	1.78E-05	7.24E-06	8.19E-06	2.82E-06	3.87E-06	3.85E-06	1.18E-06
598	765117	4093665	4.65E-05	5.06E-05	1.79E-05	7.26E-06	8.21E-06	2.83E-06	3.88E-06	3.86E-06	1.18E-06
599	765094.7	4093674	4.67E-05	5.08E-05	1.80E-05	7.29E-06	8.24E-06	2.84E-06	3.90E-06	3.87E-06	1.19E-06
600	765072.5	4093682	4.68E-05	5.09E-05	1.80E-05	7.30E-06	8.26E-06	2.84E-06	3.90E-06	3.88E-06	1.19E-06
601	765050.2	4093691	4.68E-05	5.10E-05	1.80E-05	7.31E-06	8.27E-06	2.85E-06	3.91E-06	3.89E-06	1.19E-06
602	765028	4093699	4.68E-05	5.10E-05	1.80E-05	7.31E-06	8.28E-06	2.85E-06	3.91E-06	3.89E-06	1.19E-06
603	765005.7	4093708	4.68E-05	5.10E-05	1.80E-05	7.31E-06	8.27E-06	2.85E-06	3.91E-06	3.89E-06	1.19E-06
604	764983.4	4093716	4.68E-05	5.09E-05	1.80E-05	7.31E-06	8.26E-06	2.85E-06	3.91E-06	3.88E-06	1.19E-06
605	764961.2	4093725	4.67E-05	5.08E-05	1.80E-05	7.29E-06	8.25E-06	2.84E-06	3.90E-06	3.87E-06	1.19E-06
606	764938.9	4093733	4.66E-05	5.07E-05	1.79E-05	7.27E-06	8.23E-06	2.83E-06	3.89E-06	3.86E-06	1.19E-06
607	764916.6	4093742	4.64E-05	5.05E-05	1.79E-05	7.25E-06	8.20E-06	2.82E-06	3.88E-06	3.85E-06	1.18E-06
608	764894.4	4093750	4.62E-05	5.03E-05	1.78E-05	7.22E-06	8.17E-06	2.81E-06	3.86E-06	3.84E-06	1.18E-06
609	764872.1	4093758	4.60E-05	5.01E-05	1.77E-05	7.19E-06	8.13E-06	2.80E-06	3.84E-06	3.82E-06	1.17E-06
610	764849.9	4093767	4.58E-05	4.98E-05	1.76E-05	7.15E-06	8.09E-06	2.79E-06	3.82E-06	3.80E-06	1.17E-06
611	764827.6	4093775	4.55E-05	4.96E-05	1.75E-05	7.11E-06	8.05E-06	2.77E-06	3.80E-06	3.78E-06	1.16E-06
612	764805.3	4093784	4.53E-05	4.93E-05	1.74E-05	7.07E-06	8.00E-06	2.76E-06	3.78E-06	3.76E-06	1.15E-06
613	764783.1	4093792	4.50E-05	4.90E-05	1.73E-05	7.03E-06	7.96E-06	2.74E-06	3.76E-06	3.74E-06	1.15E-06
614	764760.8	4093801	4.48E-05	4.87E-05	1.72E-05	6.99E-06	7.91E-06	2.72E-06	3.74E-06	3.72E-06	1.14E-06
615	764738.6	4093809	4.45E-05	4.85E-05	1.71E-05	6.95E-06	7.87E-06	2.71E-06	3.72E-06	3.70E-06	1.13E-06
616	764716.3	4093818	4.43E-05	4.82E-05	1.71E-05	6.92E-06	7.83E-06	2.69E-06	3.70E-06	3.68E-06	1.13E-06
617	764694	4093826	4.41E-05	4.80E-05	1.70E-05	6.89E-06	7.79E-06	2.68E-06	3.68E-06	3.66E-06	1.12E-06
618	764671.8	4093834	4.39E-05	4.78E-05	1.69E-05	6.86E-06	7.76E-06	2.67E-06	3.67E-06	3.65E-06	1.12E-06
619	764649.5	4093843	4.38E-05	4.77E-05	1.69E-05	6.84E-06	7.74E-06	2.66E-06	3.66E-06	3.63E-06	1.12E-06
620	764627.2	4093851	4.37E-05	4.75E-05	1.68E-05	6.82E-06	7.72E-06	2.66E-06	3.65E-06	3.63E-06	1.11E-06

621	764605	4093860	4.36E-05	4.75E-05	1.68E-05	6.81E-06	7.71E-06	2.65E-06	3.64E-06	3.62E-06	1.11E-06
622	764582.7	4093868	4.36E-05	4.75E-05	1.68E-05	6.81E-06	7.70E-06	2.65E-06	3.64E-06	3.62E-06	1.11E-06
623	764560.5	4093877	4.36E-05	4.75E-05	1.68E-05	6.81E-06	7.70E-06	2.65E-06	3.64E-06	3.62E-06	1.11E-06
624	764538.2	4093885	4.36E-05	4.75E-05	1.68E-05	6.82E-06	7.71E-06	2.66E-06	3.64E-06	3.62E-06	1.11E-06
625	764515.9	4093894	4.37E-05	4.76E-05	1.68E-05	6.83E-06	7.73E-06	2.66E-06	3.65E-06	3.63E-06	1.11E-06
626	764493.7	4093902	4.38E-05	4.77E-05	1.69E-05	6.84E-06	7.74E-06	2.67E-06	3.66E-06	3.64E-06	1.12E-06
627	764471.4	4093911	4.39E-05	4.78E-05	1.69E-05	6.86E-06	7.76E-06	2.67E-06	3.67E-06	3.65E-06	1.12E-06
628	764449.2	4093919	4.41E-05	4.80E-05	1.70E-05	6.88E-06	7.79E-06	2.68E-06	3.68E-06	3.66E-06	1.12E-06
629	764426.9	4093927	4.42E-05	4.81E-05	1.70E-05	6.91E-06	7.81E-06	2.69E-06	3.69E-06	3.67E-06	1.13E-06
630	764404.6	4093936	4.44E-05	4.83E-05	1.71E-05	6.94E-06	7.85E-06	2.70E-06	3.71E-06	3.69E-06	1.13E-06
631	764382.4	4093944	4.46E-05	4.86E-05	1.72E-05	6.97E-06	7.88E-06	2.71E-06	3.73E-06	3.70E-06	1.14E-06
632	764360.1	4093953	4.48E-05	4.88E-05	1.73E-05	7.00E-06	7.92E-06	2.73E-06	3.74E-06	3.72E-06	1.14E-06
633	764337.9	4093961	4.51E-05	4.90E-05	1.74E-05	7.04E-06	7.96E-06	2.74E-06	3.76E-06	3.74E-06	1.15E-06
634	764315.6	4093970	4.53E-05	4.93E-05	1.75E-05	7.08E-06	8.01E-06	2.76E-06	3.78E-06	3.76E-06	1.15E-06
635	764293.3	4093978	4.56E-05	4.97E-05	1.76E-05	7.13E-06	8.06E-06	2.78E-06	3.81E-06	3.79E-06	1.16E-06
636	764271.1	4093987	4.59E-05	5.00E-05	1.77E-05	7.17E-06	8.11E-06	2.79E-06	3.83E-06	3.81E-06	1.17E-06
637	764248.8	4093995	4.62E-05	5.03E-05	1.78E-05	7.22E-06	8.17E-06	2.81E-06	3.86E-06	3.84E-06	1.18E-06
638	764226.5	4094004	4.66E-05	5.07E-05	1.79E-05	7.28E-06	8.23E-06	2.84E-06	3.89E-06	3.87E-06	1.19E-06
639	764204.3	4094012	4.69E-05	5.11E-05	1.81E-05	7.33E-06	8.29E-06	2.86E-06	3.92E-06	3.90E-06	1.20E-06
640	765723	4092574	8.82E-05	9.60E-05	3.40E-05	1.38E-05	1.56E-05	5.36E-06	7.36E-06	7.32E-06	2.25E-06
641	765723.9	4092550	9.08E-05	9.88E-05	3.50E-05	1.42E-05	1.60E-05	5.52E-06	7.58E-06	7.54E-06	2.31E-06
642	765724.7	4092526	9.34E-05	1.02E-04	3.60E-05	1.46E-05	1.65E-05	5.68E-06	7.80E-06	7.76E-06	2.38E-06
643	765725.6	4092502	9.61E-05	1.05E-04	3.70E-05	1.50E-05	1.70E-05	5.85E-06	8.03E-06	7.98E-06	2.45E-06
644	765726.4	4092477	9.88E-05	1.08E-04	3.81E-05	1.54E-05	1.75E-05	6.01E-06	8.25E-06	8.21E-06	2.52E-06
645	765727.3	4092453	1.02E-04	1.11E-04	3.91E-05	1.59E-05	1.80E-05	6.18E-06	8.48E-06	8.44E-06	2.59E-06
646	765728.1	4092429	1.04E-04	1.14E-04	4.02E-05	1.63E-05	1.84E-05	6.35E-06	8.72E-06	8.67E-06	2.66E-06
647	765729	4092405	1.07E-04	1.17E-04	4.13E-05	1.67E-05	1.89E-05	6.52E-06	8.95E-06	8.90E-06	2.73E-06
648	765729.8	4092381	1.10E-04	1.20E-04	4.24E-05	1.72E-05	1.94E-05	6.70E-06	9.19E-06	9.14E-06	2.80E-06
649	765730.7	4092357	1.13E-04	1.23E-04	4.35E-05	1.76E-05	1.99E-05	6.87E-06	9.43E-06	9.37E-06	2.88E-06
650	765731.5	4092333	1.16E-04	1.26E-04	4.46E-05	1.81E-05	2.05E-05	7.04E-06	9.67E-06	9.61E-06	2.95E-06
651	765732.4	4092308	1.19E-04	1.29E-04	4.57E-05	1.85E-05	2.10E-05	7.22E-06	9.91E-06	9.85E-06	3.02E-06
652	765733.2	4092284	1.22E-04	1.32E-04	4.68E-05	1.90E-05	2.15E-05	7.40E-06	1.02E-05	1.01E-05	3.10E-06
653	765734.1	4092260	1.25E-04	1.36E-04	4.80E-05	1.95E-05	2.20E-05	7.58E-06	1.04E-05	1.03E-05	3.17E-06
654	765734.9	4092236	1.28E-04	1.39E-04	4.91E-05	1.99E-05	2.25E-05	7.76E-06	1.07E-05	1.06E-05	3.25E-06
655	765913	4092603	7.34E-05	7.99E-05	2.83E-05	1.15E-05	1.30E-05	4.46E-06	6.13E-06	6.09E-06	1.87E-06
656	765903.1	4092625	7.22E-05	7.86E-05	2.78E-05	1.13E-05	1.28E-05	4.39E-06	6.03E-06	5.99E-06	1.84E-06
657	765893.2	4092647	7.09E-05	7.72E-05	2.73E-05	1.11E-05	1.25E-05	4.32E-06	5.92E-06	5.89E-06	1.81E-06
658	765883.2	4092668	6.97E-05	7.58E-05	2.68E-05	1.09E-05	1.23E-05	4.24E-06	5.82E-06	5.78E-06	1.77E-06
659	765873.3	4092690	6.84E-05	7.44E-05	2.63E-05	1.07E-05	1.21E-05	4.16E-06	5.71E-06	5.68E-06	1.74E-06

660	765863.4	4092712	6.71E-05	7.31E-05	2.59E-05	1.05E-05	1.19E-05	4.08E-06	5.61E-06	5.57E-06	1.71E-06
661	765853.5	4092734	6.59E-05	7.17E-05	2.54E-05	1.03E-05	1.16E-05	4.01E-06	5.50E-06	5.47E-06	1.68E-06
662	765843.6	4092756	6.47E-05	7.04E-05	2.49E-05	1.01E-05	1.14E-05	3.94E-06	5.40E-06	5.37E-06	1.65E-06
663	765833.7	4092778	6.35E-05	6.91E-05	2.45E-05	9.92E-06	1.12E-05	3.86E-06	5.30E-06	5.27E-06	1.62E-06
664	765823.7	4092799	6.24E-05	6.79E-05	2.40E-05	9.74E-06	1.10E-05	3.79E-06	5.21E-06	5.18E-06	1.59E-06
665	765813.8	4092821	6.13E-05	6.67E-05	2.36E-05	9.57E-06	1.08E-05	3.73E-06	5.12E-06	5.09E-06	1.56E-06
666	765803.9	4092843	6.03E-05	6.56E-05	2.32E-05	9.41E-06	1.06E-05	3.67E-06	5.03E-06	5.00E-06	1.54E-06
667	765794	4092865	5.93E-05	6.46E-05	2.28E-05	9.26E-06	1.05E-05	3.61E-06	4.95E-06	4.92E-06	1.51E-06
668	765784.1	4092887	5.84E-05	6.36E-05	2.25E-05	9.13E-06	1.03E-05	3.56E-06	4.88E-06	4.85E-06	1.49E-06
669	765774.2	4092909	5.76E-05	6.27E-05	2.22E-05	9.00E-06	1.02E-05	3.51E-06	4.81E-06	4.78E-06	1.47E-06
670	765764.2	4092930	5.69E-05	6.19E-05	2.19E-05	8.89E-06	1.01E-05	3.46E-06	4.75E-06	4.72E-06	1.45E-06
671	765754.3	4092952	5.62E-05	6.12E-05	2.17E-05	8.78E-06	9.94E-06	3.42E-06	4.70E-06	4.67E-06	1.43E-06
672	765744.4	4092974	5.56E-05	6.06E-05	2.14E-05	8.69E-06	9.83E-06	3.39E-06	4.65E-06	4.62E-06	1.42E-06
673	765734.5	4092996	5.51E-05	6.00E-05	2.12E-05	8.61E-06	9.74E-06	3.35E-06	4.60E-06	4.57E-06	1.40E-06
674	765724.6	4093018	5.46E-05	5.95E-05	2.10E-05	8.53E-06	9.65E-06	3.32E-06	4.56E-06	4.54E-06	1.39E-06
675	765714.7	4093040	5.42E-05	5.90E-05	2.09E-05	8.47E-06	9.58E-06	3.30E-06	4.53E-06	4.50E-06	1.38E-06
676	765704.7	4093062	5.38E-05	5.86E-05	2.07E-05	8.41E-06	9.51E-06	3.28E-06	4.49E-06	4.47E-06	1.37E-06
677	765694.8	4093083	5.35E-05	5.82E-05	2.06E-05	8.35E-06	9.45E-06	3.25E-06	4.47E-06	4.44E-06	1.36E-06
678	765684.9	4093105	5.32E-05	5.79E-05	2.05E-05	8.30E-06	9.39E-06	3.23E-06	4.44E-06	4.41E-06	1.35E-06
679	765675	4093127	5.29E-05	5.76E-05	2.04E-05	8.26E-06	9.34E-06	3.22E-06	4.42E-06	4.39E-06	1.35E-06
680	765665.1	4093149	5.26E-05	5.72E-05	2.02E-05	8.21E-06	9.29E-06	3.20E-06	4.39E-06	4.36E-06	1.34E-06
681	765655.2	4093171	5.23E-05	5.69E-05	2.01E-05	8.17E-06	9.24E-06	3.18E-06	4.37E-06	4.34E-06	1.33E-06
682	765645.3	4093193	5.20E-05	5.66E-05	2.00E-05	8.12E-06	9.19E-06	3.16E-06	4.34E-06	4.32E-06	1.32E-06
683	765635.3	4093214	5.17E-05	5.62E-05	1.99E-05	8.07E-06	9.13E-06	3.14E-06	4.31E-06	4.29E-06	1.32E-06
684	765625.4	4093236	5.13E-05	5.59E-05	1.98E-05	8.02E-06	9.07E-06	3.12E-06	4.29E-06	4.26E-06	1.31E-06
685	765615.5	4093258	5.10E-05	5.55E-05	1.96E-05	7.96E-06	9.01E-06	3.10E-06	4.26E-06	4.23E-06	1.30E-06
686	765605.6	4093280	5.06E-05	5.51E-05	1.95E-05	7.90E-06	8.94E-06	3.08E-06	4.22E-06	4.20E-06	1.29E-06
687	765595.7	4093302	5.02E-05	5.46E-05	1.93E-05	7.84E-06	8.86E-06	3.05E-06	4.19E-06	4.17E-06	1.28E-06
688	765585.8	4093324	4.97E-05	5.41E-05	1.91E-05	7.76E-06	8.78E-06	3.02E-06	4.15E-06	4.13E-06	1.27E-06
689	765575.8	4093346	4.92E-05	5.36E-05	1.89E-05	7.68E-06	8.69E-06	2.99E-06	4.11E-06	4.08E-06	1.25E-06
690	765565.9	4093367	4.87E-05	5.30E-05	1.87E-05	7.60E-06	8.60E-06	2.96E-06	4.06E-06	4.04E-06	1.24E-06
691	765556	4093389	4.80E-05	5.23E-05	1.85E-05	7.50E-06	8.49E-06	2.92E-06	4.01E-06	3.99E-06	1.22E-06
692	765546.1	4093411	4.74E-05	5.16E-05	1.82E-05	7.40E-06	8.37E-06	2.88E-06	3.96E-06	3.93E-06	1.21E-06
693	765536.2	4093433	4.67E-05	5.08E-05	1.80E-05	7.30E-06	8.25E-06	2.84E-06	3.90E-06	3.88E-06	1.19E-06
694	765526.3	4093455	4.60E-05	5.01E-05	1.77E-05	7.19E-06	8.13E-06	2.80E-06	3.84E-06	3.82E-06	1.17E-06
695	765516.3	4093477	4.53E-05	4.93E-05	1.74E-05	7.07E-06	8.00E-06	2.76E-06	3.78E-06	3.76E-06	1.15E-06
696	765506.4	4093498	4.46E-05	4.85E-05	1.72E-05	6.96E-06	7.88E-06	2.71E-06	3.72E-06	3.70E-06	1.14E-06
697	765496.5	4093520	4.39E-05	4.77E-05	1.69E-05	6.85E-06	7.75E-06	2.67E-06	3.66E-06	3.64E-06	1.12E-06
698	765486.6	4093542	4.32E-05	4.70E-05	1.66E-05	6.74E-06	7.63E-06	2.63E-06	3.60E-06	3.58E-06	1.10E-06

699	765476.7	4093564	4.25E-05	4.63E-05	1.64E-05	6.64E-06	7.51E-06	2.59E-06	3.55E-06	3.53E-06	1.08E-06
700	765466.8	4093586	4.19E-05	4.56E-05	1.61E-05	6.54E-06	7.40E-06	2.55E-06	3.50E-06	3.48E-06	1.07E-06
701	765456.9	4093608	4.13E-05	4.50E-05	1.59E-05	6.46E-06	7.30E-06	2.52E-06	3.45E-06	3.43E-06	1.05E-06
702	765446.9	4093629	4.09E-05	4.45E-05	1.57E-05	6.38E-06	7.22E-06	2.49E-06	3.41E-06	3.39E-06	1.04E-06
703	765437	4093651	4.04E-05	4.40E-05	1.56E-05	6.31E-06	7.14E-06	2.46E-06	3.37E-06	3.35E-06	1.03E-06
704	765427.1	4093673	4.00E-05	4.35E-05	1.54E-05	6.24E-06	7.06E-06	2.43E-06	3.34E-06	3.32E-06	1.02E-06
705	765417.2	4093695	3.96E-05	4.31E-05	1.52E-05	6.18E-06	6.99E-06	2.41E-06	3.30E-06	3.28E-06	1.01E-06
706	765407.3	4093717	3.92E-05	4.27E-05	1.51E-05	6.12E-06	6.93E-06	2.39E-06	3.27E-06	3.26E-06	9.99E-07
707	765397.4	4093739	3.89E-05	4.23E-05	1.50E-05	6.07E-06	6.87E-06	2.37E-06	3.25E-06	3.23E-06	9.91E-07
708	765365	4093769	3.88E-05	4.22E-05	1.49E-05	6.06E-06	6.86E-06	2.36E-06	3.24E-06	3.22E-06	9.89E-07
709	765342.6	4093778	3.90E-05	4.25E-05	1.50E-05	6.09E-06	6.89E-06	2.37E-06	3.26E-06	3.24E-06	9.94E-07
710	765320.2	4093786	3.92E-05	4.27E-05	1.51E-05	6.12E-06	6.93E-06	2.39E-06	3.27E-06	3.26E-06	9.99E-07
711	765297.7	4093795	3.94E-05	4.29E-05	1.52E-05	6.15E-06	6.96E-06	2.40E-06	3.29E-06	3.27E-06	1.00E-06
712	765275.3	4093803	3.96E-05	4.31E-05	1.52E-05	6.18E-06	6.99E-06	2.41E-06	3.30E-06	3.28E-06	1.01E-06
713	765252.9	4093812	3.97E-05	4.32E-05	1.53E-05	6.20E-06	7.01E-06	2.42E-06	3.31E-06	3.30E-06	1.01E-06
714	765230.5	4093820	3.98E-05	4.33E-05	1.53E-05	6.22E-06	7.03E-06	2.42E-06	3.32E-06	3.30E-06	1.01E-06
715	765208	4093829	3.99E-05	4.34E-05	1.54E-05	6.23E-06	7.04E-06	2.43E-06	3.33E-06	3.31E-06	1.02E-06
716	765185.6	4093837	3.99E-05	4.34E-05	1.54E-05	6.23E-06	7.05E-06	2.43E-06	3.33E-06	3.31E-06	1.02E-06
717	765163.2	4093846	3.99E-05	4.35E-05	1.54E-05	6.24E-06	7.05E-06	2.43E-06	3.33E-06	3.31E-06	1.02E-06
718	765140.8	4093854	3.99E-05	4.34E-05	1.54E-05	6.23E-06	7.05E-06	2.43E-06	3.33E-06	3.31E-06	1.02E-06
719	765118.3	4093863	3.99E-05	4.34E-05	1.54E-05	6.23E-06	7.04E-06	2.43E-06	3.33E-06	3.31E-06	1.02E-06
720	765095.9	4093871	3.98E-05	4.33E-05	1.53E-05	6.21E-06	7.03E-06	2.42E-06	3.32E-06	3.30E-06	1.01E-06
721	765073.5	4093880	3.97E-05	4.32E-05	1.53E-05	6.20E-06	7.01E-06	2.42E-06	3.31E-06	3.30E-06	1.01E-06
722	765051.1	4093888	3.96E-05	4.31E-05	1.53E-05	6.18E-06	7.00E-06	2.41E-06	3.31E-06	3.29E-06	1.01E-06
723	765028.6	4093897	3.95E-05	4.29E-05	1.52E-05	6.16E-06	6.97E-06	2.40E-06	3.29E-06	3.28E-06	1.01E-06
724	765006.2	4093905	3.93E-05	4.28E-05	1.51E-05	6.14E-06	6.95E-06	2.39E-06	3.28E-06	3.26E-06	1.00E-06
725	764983.8	4093914	3.92E-05	4.26E-05	1.51E-05	6.12E-06	6.92E-06	2.38E-06	3.27E-06	3.25E-06	9.98E-07
726	764961.3	4093922	3.90E-05	4.24E-05	1.50E-05	6.09E-06	6.89E-06	2.37E-06	3.26E-06	3.24E-06	9.94E-07
727	764938.9	4093931	3.88E-05	4.22E-05	1.49E-05	6.06E-06	6.86E-06	2.36E-06	3.24E-06	3.22E-06	9.89E-07
728	764916.5	4093939	3.86E-05	4.20E-05	1.49E-05	6.03E-06	6.82E-06	2.35E-06	3.22E-06	3.21E-06	9.84E-07
729	764894.1	4093948	3.84E-05	4.18E-05	1.48E-05	6.00E-06	6.79E-06	2.34E-06	3.21E-06	3.19E-06	9.79E-07
730	764871.6	4093956	3.82E-05	4.16E-05	1.47E-05	5.97E-06	6.75E-06	2.32E-06	3.19E-06	3.17E-06	9.73E-07
731	764849.2	4093965	3.80E-05	4.14E-05	1.46E-05	5.94E-06	6.71E-06	2.31E-06	3.17E-06	3.15E-06	9.68E-07
732	764826.8	4093973	3.78E-05	4.11E-05	1.46E-05	5.90E-06	6.68E-06	2.30E-06	3.16E-06	3.14E-06	9.63E-07
733	764804.4	4093982	3.76E-05	4.09E-05	1.45E-05	5.88E-06	6.65E-06	2.29E-06	3.14E-06	3.12E-06	9.59E-07
734	764781.9	4093990	3.75E-05	4.08E-05	1.44E-05	5.85E-06	6.62E-06	2.28E-06	3.13E-06	3.11E-06	9.54E-07
735	764759.5	4093999	3.73E-05	4.06E-05	1.44E-05	5.82E-06	6.59E-06	2.27E-06	3.11E-06	3.10E-06	9.50E-07
736	764737.1	4094007	3.72E-05	4.05E-05	1.43E-05	5.81E-06	6.57E-06	2.26E-06	3.10E-06	3.09E-06	9.47E-07
737	764714.7	4094016	3.71E-05	4.04E-05	1.43E-05	5.79E-06	6.55E-06	2.26E-06	3.10E-06	3.08E-06	9.45E-07

738	764692.2	4094025	3.70E-05	4.03E-05	1.43E-05	5.78E-06	6.54E-06	2.25E-06	3.09E-06	3.07E-06	9.44E-07
739	764669.8	4094033	3.70E-05	4.03E-05	1.42E-05	5.78E-06	6.54E-06	2.25E-06	3.09E-06	3.07E-06	9.43E-07
740	764647.4	4094042	3.70E-05	4.03E-05	1.42E-05	5.78E-06	6.54E-06	2.25E-06	3.09E-06	3.07E-06	9.43E-07
741	764625	4094050	3.70E-05	4.03E-05	1.43E-05	5.78E-06	6.54E-06	2.25E-06	3.09E-06	3.07E-06	9.44E-07
742	764602.5	4094059	3.71E-05	4.04E-05	1.43E-05	5.79E-06	6.55E-06	2.26E-06	3.10E-06	3.08E-06	9.45E-07
743	764580.1	4094067	3.72E-05	4.05E-05	1.43E-05	5.81E-06	6.57E-06	2.26E-06	3.10E-06	3.09E-06	9.47E-07
744	764557.7	4094076	3.73E-05	4.06E-05	1.44E-05	5.82E-06	6.59E-06	2.27E-06	3.11E-06	3.09E-06	9.50E-07
745	764535.3	4094084	3.74E-05	4.07E-05	1.44E-05	5.84E-06	6.60E-06	2.27E-06	3.12E-06	3.10E-06	9.52E-07
746	764512.8	4094093	3.75E-05	4.08E-05	1.44E-05	5.86E-06	6.62E-06	2.28E-06	3.13E-06	3.11E-06	9.55E-07
747	764490.4	4094101	3.76E-05	4.09E-05	1.45E-05	5.88E-06	6.65E-06	2.29E-06	3.14E-06	3.12E-06	9.59E-07
748	764468	4094110	3.78E-05	4.11E-05	1.45E-05	5.90E-06	6.67E-06	2.30E-06	3.15E-06	3.13E-06	9.62E-07
749	764445.5	4094118	3.79E-05	4.13E-05	1.46E-05	5.92E-06	6.70E-06	2.31E-06	3.16E-06	3.15E-06	9.66E-07
750	764423.1	4094127	3.80E-05	4.14E-05	1.47E-05	5.94E-06	6.72E-06	2.31E-06	3.18E-06	3.16E-06	9.69E-07
751	764400.7	4094135	3.82E-05	4.16E-05	1.47E-05	5.97E-06	6.75E-06	2.32E-06	3.19E-06	3.17E-06	9.73E-07
752	764378.3	4094144	3.84E-05	4.18E-05	1.48E-05	5.99E-06	6.78E-06	2.33E-06	3.20E-06	3.19E-06	9.78E-07
753	764355.8	4094152	3.85E-05	4.20E-05	1.48E-05	6.02E-06	6.81E-06	2.35E-06	3.22E-06	3.20E-06	9.82E-07
754	764333.4	4094161	3.87E-05	4.22E-05	1.49E-05	6.05E-06	6.85E-06	2.36E-06	3.24E-06	3.22E-06	9.87E-07
755	764311	4094169	3.90E-05	4.24E-05	1.50E-05	6.09E-06	6.89E-06	2.37E-06	3.25E-06	3.24E-06	9.93E-07
756	764288.6	4094178	3.92E-05	4.27E-05	1.51E-05	6.12E-06	6.93E-06	2.39E-06	3.27E-06	3.26E-06	9.99E-07
757	764266.1	4094186	3.95E-05	4.29E-05	1.52E-05	6.16E-06	6.97E-06	2.40E-06	3.29E-06	3.28E-06	1.01E-06
758	764243.7	4094195	3.97E-05	4.33E-05	1.53E-05	6.21E-06	7.02E-06	2.42E-06	3.32E-06	3.30E-06	1.01E-06
759	764221.3	4094203	4.00E-05	4.36E-05	1.54E-05	6.25E-06	7.07E-06	2.44E-06	3.34E-06	3.32E-06	1.02E-06
760	764198.9	4094212	4.03E-05	4.39E-05	1.55E-05	6.30E-06	7.12E-06	2.45E-06	3.37E-06	3.35E-06	1.03E-06
761	765922.9	4092581	7.46E-05	8.12E-05	2.87E-05	1.16E-05	1.32E-05	4.54E-06	6.23E-06	6.19E-06	1.90E-06
762	765923.7	4092557	7.65E-05	8.33E-05	2.95E-05	1.19E-05	1.35E-05	4.65E-06	6.39E-06	6.35E-06	1.95E-06
763	765924.6	4092533	7.84E-05	8.54E-05	3.02E-05	1.22E-05	1.39E-05	4.77E-06	6.55E-06	6.51E-06	2.00E-06
764	765925.5	4092509	8.04E-05	8.75E-05	3.10E-05	1.26E-05	1.42E-05	4.89E-06	6.71E-06	6.67E-06	2.05E-06
765	765926.3	4092484	8.24E-05	8.97E-05	3.17E-05	1.29E-05	1.46E-05	5.01E-06	6.88E-06	6.84E-06	2.10E-06
766	765927.2	4092460	8.44E-05	9.18E-05	3.25E-05	1.32E-05	1.49E-05	5.13E-06	7.05E-06	7.00E-06	2.15E-06
767	765928	4092436	8.64E-05	9.40E-05	3.33E-05	1.35E-05	1.53E-05	5.26E-06	7.21E-06	7.17E-06	2.20E-06
768	765928.9	4092412	8.84E-05	9.63E-05	3.41E-05	1.38E-05	1.56E-05	5.38E-06	7.38E-06	7.34E-06	2.25E-06
769	765929.7	4092388	9.05E-05	9.85E-05	3.48E-05	1.41E-05	1.60E-05	5.51E-06	7.55E-06	7.51E-06	2.31E-06
770	765930.6	4092364	9.25E-05	1.01E-04	3.56E-05	1.44E-05	1.63E-05	5.63E-06	7.73E-06	7.68E-06	2.36E-06
771	765931.4	4092340	9.45E-05	1.03E-04	3.64E-05	1.48E-05	1.67E-05	5.75E-06	7.89E-06	7.85E-06	2.41E-06
772	765932.3	4092316	9.66E-05	1.05E-04	3.72E-05	1.51E-05	1.71E-05	5.88E-06	8.07E-06	8.02E-06	2.46E-06
773	765933.1	4092291	9.87E-05	1.07E-04	3.80E-05	1.54E-05	1.74E-05	6.00E-06	8.24E-06	8.19E-06	2.51E-06
774	765934	4092267	1.01E-04	1.10E-04	3.88E-05	1.57E-05	1.78E-05	6.13E-06	8.41E-06	8.36E-06	2.57E-06
775	765934.8	4092243	1.03E-04	1.12E-04	3.96E-05	1.61E-05	1.82E-05	6.26E-06	8.59E-06	8.54E-06	2.62E-06
776	764256.4	4092091	4.26E-03	4.64E-03	1.64E-03	6.66E-04	7.53E-04	2.59E-04	3.56E-04	3.54E-04	1.09E-04

777	764291.4	4092107	5.29E-03	5.75E-03	2.04E-03	8.26E-04	9.34E-04	3.22E-04	4.41E-04	4.39E-04	1.35E-04
778	764217.4	4092083	3.43E-03	3.73E-03	1.32E-03	5.35E-04	6.06E-04	2.09E-04	2.86E-04	2.85E-04	8.73E-05
779	764174.3	4092081	2.76E-03	3.00E-03	1.06E-03	4.31E-04	4.87E-04	1.68E-04	2.30E-04	2.29E-04	7.02E-05
780	764131.2	4092080	2.02E-03	2.20E-03	7.79E-04	3.16E-04	3.57E-04	1.23E-04	1.69E-04	1.68E-04	5.15E-05
781	764088.1	4092079	1.38E-03	1.50E-03	5.30E-04	2.15E-04	2.43E-04	8.37E-05	1.15E-04	1.14E-04	3.50E-05
782	764257.9	4092041	2.41E-03	2.62E-03	9.27E-04	3.76E-04	4.25E-04	1.46E-04	2.01E-04	2.00E-04	6.13E-05
783	764292.9	4092057	3.12E-03	3.40E-03	1.20E-03	4.88E-04	5.52E-04	1.90E-04	2.61E-04	2.59E-04	7.95E-05
784	764327.9	4092073	3.76E-03	4.09E-03	1.45E-03	5.87E-04	6.64E-04	2.29E-04	3.14E-04	3.12E-04	9.58E-05
785	764352.1	4092099	4.54E-03	4.94E-03	1.75E-03	7.09E-04	8.02E-04	2.76E-04	3.79E-04	3.77E-04	1.16E-04
786	764218.9	4092033	1.87E-03	2.03E-03	7.19E-04	2.92E-04	3.30E-04	1.14E-04	1.56E-04	1.55E-04	4.76E-05
787	764175.8	4092031	1.46E-03	1.59E-03	5.63E-04	2.28E-04	2.58E-04	8.89E-05	1.22E-04	1.21E-04	3.72E-05
788	764132.7	4092030	1.09E-03	1.18E-03	4.18E-04	1.70E-04	1.92E-04	6.61E-05	9.07E-05	9.02E-05	2.77E-05
789	764259.4	4091991	1.45E-03	1.57E-03	5.57E-04	2.26E-04	2.55E-04	8.80E-05	1.21E-04	1.20E-04	3.68E-05
790	764294.4	4092007	1.91E-03	2.08E-03	7.34E-04	2.98E-04	3.37E-04	1.16E-04	1.59E-04	1.58E-04	4.86E-05
791	764329.4	4092023	2.40E-03	2.61E-03	9.23E-04	3.74E-04	4.23E-04	1.46E-04	2.00E-04	1.99E-04	6.11E-05
792	764364.4	4092039	2.83E-03	3.08E-03	1.09E-03	4.42E-04	5.00E-04	1.72E-04	2.36E-04	2.35E-04	7.21E-05
793	764388.6	4092064	3.37E-03	3.67E-03	1.30E-03	5.26E-04	5.95E-04	2.05E-04	2.81E-04	2.80E-04	8.58E-05
794	764402.1	4092100	4.03E-03	4.39E-03	1.55E-03	6.30E-04	7.12E-04	2.45E-04	3.37E-04	3.35E-04	1.03E-04
795	764220.4	4091983	1.11E-03	1.21E-03	4.29E-04	1.74E-04	1.97E-04	6.78E-05	9.31E-05	9.25E-05	2.84E-05
796	764177.3	4091981	8.75E-04	9.52E-04	3.37E-04	1.37E-04	1.55E-04	5.32E-05	7.30E-05	7.26E-05	2.23E-05
797	764262.9	4091942	9.39E-04	1.02E-03	3.62E-04	1.47E-04	1.66E-04	5.71E-05	7.84E-05	7.80E-05	2.39E-05
798	764301.8	4091960	1.27E-03	1.38E-03	4.89E-04	1.98E-04	2.24E-04	7.73E-05	1.06E-04	1.05E-04	3.24E-05
799	764340.6	4091977	1.65E-03	1.80E-03	6.36E-04	2.58E-04	2.92E-04	1.00E-04	1.38E-04	1.37E-04	4.21E-05
800	764379.5	4091995	2.03E-03	2.21E-03	7.82E-04	3.17E-04	3.59E-04	1.24E-04	1.70E-04	1.69E-04	5.17E-05
801	764425.8	4092032	2.63E-03	2.87E-03	1.01E-03	4.11E-04	4.65E-04	1.60E-04	2.20E-04	2.19E-04	6.71E-05
802	764440.8	4092072	3.18E-03	3.46E-03	1.22E-03	4.97E-04	5.62E-04	1.93E-04	2.66E-04	2.64E-04	8.10E-05
803	764455.8	4092112	3.52E-03	3.83E-03	1.36E-03	5.50E-04	6.22E-04	2.14E-04	2.94E-04	2.92E-04	8.98E-05
804	764470.7	4092152	3.59E-03	3.90E-03	1.38E-03	5.60E-04	6.34E-04	2.18E-04	2.99E-04	2.98E-04	9.14E-05
805	764221.9	4091933	7.20E-04	7.83E-04	2.77E-04	1.12E-04	1.27E-04	4.38E-05	6.01E-05	5.98E-05	1.83E-05
806	764092.6	4091929	3.65E-04	3.97E-04	1.41E-04	5.70E-05	6.45E-05	2.22E-05	3.05E-05	3.03E-05	9.30E-06
807	764264.1	4091892	6.34E-04	6.90E-04	2.44E-04	9.91E-05	1.12E-04	3.86E-05	5.30E-05	5.27E-05	1.62E-05
808	764302.2	4091909	8.42E-04	9.17E-04	3.24E-04	1.32E-04	1.49E-04	5.12E-05	7.03E-05	6.99E-05	2.15E-05
809	764340.4	4091926	1.10E-03	1.19E-03	4.22E-04	1.71E-04	1.93E-04	6.66E-05	9.14E-05	9.09E-05	2.79E-05
810	764378.5	4091944	1.37E-03	1.50E-03	5.29E-04	2.15E-04	2.43E-04	8.36E-05	1.15E-04	1.14E-04	3.50E-05
811	764416.7	4091961	1.65E-03	1.79E-03	6.34E-04	2.57E-04	2.91E-04	1.00E-04	1.38E-04	1.37E-04	4.20E-05
812	764462.2	4091998	2.09E-03	2.28E-03	8.06E-04	3.27E-04	3.70E-04	1.27E-04	1.75E-04	1.74E-04	5.33E-05
813	764476.9	4092037	2.51E-03	2.73E-03	9.67E-04	3.92E-04	4.44E-04	1.53E-04	2.10E-04	2.09E-04	6.40E-05
814	764491.6	4092076	2.82E-03	3.07E-03	1.09E-03	4.40E-04	4.98E-04	1.72E-04	2.35E-04	2.34E-04	7.18E-05
815	764506.3	4092115	2.95E-03	3.21E-03	1.14E-03	4.60E-04	5.21E-04	1.79E-04	2.46E-04	2.45E-04	7.51E-05

816	764521	4092155	2.89E-03	3.14E-03	1.11E-03	4.51E-04	5.10E-04	1.76E-04	2.41E-04	2.40E-04	7.36E-05
817	764094.2	4091879	2.73E-04	2.98E-04	1.05E-04	4.27E-05	4.83E-05	1.66E-05	2.28E-05	2.27E-05	6.97E-06
818	764341.3	4091825	5.39E-04	5.87E-04	2.08E-04	8.42E-05	9.53E-05	3.28E-05	4.50E-05	4.48E-05	1.37E-05
819	764378.6	4091842	6.76E-04	7.36E-04	2.60E-04	1.06E-04	1.19E-04	4.11E-05	5.64E-05	5.61E-05	1.72E-05
820	764415.9	4091859	8.30E-04	9.03E-04	3.20E-04	1.30E-04	1.47E-04	5.05E-05	6.93E-05	6.89E-05	2.11E-05
821	764453.2	4091876	9.92E-04	1.08E-03	3.82E-04	1.55E-04	1.75E-04	6.03E-05	8.28E-05	8.23E-05	2.53E-05
822	764490.5	4091893	1.15E-03	1.25E-03	4.42E-04	1.79E-04	2.03E-04	6.98E-05	9.58E-05	9.53E-05	2.92E-05
823	764535	4091929	1.41E-03	1.54E-03	5.44E-04	2.21E-04	2.50E-04	8.59E-05	1.18E-04	1.17E-04	3.60E-05
824	764549.4	4091967	1.67E-03	1.82E-03	6.44E-04	2.61E-04	2.95E-04	1.02E-04	1.40E-04	1.39E-04	4.26E-05
825	764563.8	4092006	1.90E-03	2.06E-03	7.30E-04	2.96E-04	3.35E-04	1.15E-04	1.58E-04	1.57E-04	4.83E-05
826	764578.1	4092044	2.04E-03	2.22E-03	7.87E-04	3.19E-04	3.61E-04	1.24E-04	1.71E-04	1.70E-04	5.21E-05
827	764592.5	4092082	2.09E-03	2.28E-03	8.06E-04	3.27E-04	3.70E-04	1.27E-04	1.75E-04	1.74E-04	5.33E-05
828	764606.9	4092121	2.04E-03	2.22E-03	7.86E-04	3.19E-04	3.61E-04	1.24E-04	1.70E-04	1.70E-04	5.20E-05
829	764621.3	4092159	1.91E-03	2.08E-03	7.35E-04	2.98E-04	3.37E-04	1.16E-04	1.59E-04	1.58E-04	4.86E-05
830	764183.4	4091781	2.30E-04	2.50E-04	8.86E-05	3.59E-05	4.06E-05	1.40E-05	1.92E-05	1.91E-05	5.86E-06
831	764140.3	4091780	1.97E-04	2.14E-04	7.58E-05	3.08E-05	3.48E-05	1.20E-05	1.64E-05	1.64E-05	5.02E-06
832	764097.2	4091779	1.72E-04	1.87E-04	6.61E-05	2.68E-05	3.03E-05	1.04E-05	1.43E-05	1.43E-05	4.37E-06
833	764270.5	4091692	2.04E-04	2.22E-04	7.86E-05	3.19E-05	3.61E-05	1.24E-05	1.70E-05	1.69E-05	5.20E-06
834	764387.1	4091745	3.90E-04	4.24E-04	1.50E-04	6.09E-05	6.89E-05	2.37E-05	3.26E-05	3.24E-05	9.93E-06
835	764425.9	4091762	4.78E-04	5.21E-04	1.84E-04	7.47E-05	8.45E-05	2.91E-05	3.99E-05	3.97E-05	1.22E-05
836	764464.8	4091780	5.78E-04	6.29E-04	2.22E-04	9.02E-05	1.02E-04	3.51E-05	4.82E-05	4.79E-05	1.47E-05
837	764503.7	4091798	6.83E-04	7.43E-04	2.63E-04	1.07E-04	1.21E-04	4.16E-05	5.70E-05	5.67E-05	1.74E-05
838	764542.5	4091815	7.89E-04	8.59E-04	3.04E-04	1.23E-04	1.39E-04	4.80E-05	6.59E-05	6.55E-05	2.01E-05
839	764581.4	4091833	8.87E-04	9.66E-04	3.42E-04	1.39E-04	1.57E-04	5.40E-05	7.41E-05	7.37E-05	2.26E-05
840	764608.3	4091861	1.02E-03	1.11E-03	3.93E-04	1.59E-04	1.80E-04	6.21E-05	8.52E-05	8.47E-05	2.60E-05
841	764623.3	4091901	1.20E-03	1.30E-03	4.62E-04	1.87E-04	2.12E-04	7.29E-05	1.00E-04	9.95E-05	3.05E-05
842	764638.3	4091941	1.36E-03	1.48E-03	5.25E-04	2.13E-04	2.41E-04	8.29E-05	1.14E-04	1.13E-04	3.47E-05
843	764653.2	4091981	1.49E-03	1.62E-03	5.73E-04	2.32E-04	2.63E-04	9.05E-05	1.24E-04	1.24E-04	3.79E-05
844	764668.2	4092021	1.55E-03	1.69E-03	5.98E-04	2.43E-04	2.74E-04	9.45E-05	1.30E-04	1.29E-04	3.96E-05
845	764683.2	4092061	1.55E-03	1.69E-03	5.97E-04	2.42E-04	2.74E-04	9.44E-05	1.30E-04	1.29E-04	3.95E-05
846	764698.1	4092101	1.48E-03	1.62E-03	5.72E-04	2.32E-04	2.62E-04	9.03E-05	1.24E-04	1.23E-04	3.78E-05
847	764713.1	4092141	1.37E-03	1.49E-03	5.27E-04	2.14E-04	2.42E-04	8.33E-05	1.14E-04	1.14E-04	3.49E-05
848	764229.5	4091683	1.71E-04	1.86E-04	6.59E-05	2.67E-05	3.03E-05	1.04E-05	1.43E-05	1.42E-05	4.36E-06
849	764186.4	4091681	1.49E-04	1.63E-04	5.76E-05	2.33E-05	2.64E-05	9.10E-06	1.25E-05	1.24E-05	3.81E-06
850	764143.3	4091680	1.32E-04	1.44E-04	5.10E-05	2.07E-05	2.34E-05	8.06E-06	1.11E-05	1.10E-05	3.38E-06
851	764100.2	4091679	1.19E-04	1.30E-04	4.59E-05	1.86E-05	2.11E-05	7.26E-06	9.96E-06	9.90E-06	3.04E-06
852	764273.2	4091592	1.37E-04	1.49E-04	5.26E-05	2.14E-05	2.42E-05	8.32E-06	1.14E-05	1.13E-05	3.48E-06
853	764311.3	4091609	1.63E-04	1.78E-04	6.29E-05	2.55E-05	2.89E-05	9.94E-06	1.36E-05	1.36E-05	4.16E-06
854	764349.5	4091627	1.97E-04	2.14E-04	7.59E-05	3.08E-05	3.48E-05	1.20E-05	1.64E-05	1.64E-05	5.02E-06

855	764464	4091678	3.43E-04	3.73E-04	1.32E-04	5.35E-05	6.06E-05	2.09E-05	2.86E-05	2.85E-05	8.74E-06
856	764502.1	4091695	4.05E-04	4.41E-04	1.56E-04	6.33E-05	7.16E-05	2.47E-05	3.38E-05	3.36E-05	1.03E-05
857	764540.3	4091713	4.73E-04	5.14E-04	1.82E-04	7.38E-05	8.35E-05	2.88E-05	3.95E-05	3.92E-05	1.20E-05
858	764578.4	4091730	5.42E-04	5.90E-04	2.09E-04	8.47E-05	9.58E-05	3.30E-05	4.53E-05	4.50E-05	1.38E-05
859	764616.6	4091747	6.12E-04	6.66E-04	2.36E-04	9.55E-05	1.08E-04	3.72E-05	5.11E-05	5.08E-05	1.56E-05
860	764654.7	4091764	6.77E-04	7.37E-04	2.61E-04	1.06E-04	1.20E-04	4.12E-05	5.65E-05	5.62E-05	1.72E-05
861	764681.2	4091793	7.66E-04	8.34E-04	2.95E-04	1.20E-04	1.35E-04	4.66E-05	6.40E-05	6.36E-05	1.95E-05
862	764695.9	4091832	8.88E-04	9.67E-04	3.42E-04	1.39E-04	1.57E-04	5.41E-05	7.42E-05	7.38E-05	2.26E-05
863	764710.6	4091871	1.01E-03	1.10E-03	3.88E-04	1.57E-04	1.78E-04	6.13E-05	8.41E-05	8.36E-05	2.57E-05
864	764725.3	4091910	1.11E-03	1.21E-03	4.27E-04	1.73E-04	1.96E-04	6.74E-05	9.25E-05	9.20E-05	2.82E-05
865	764740	4091949	1.18E-03	1.28E-03	4.54E-04	1.84E-04	2.08E-04	7.18E-05	9.85E-05	9.79E-05	3.00E-05
866	764754.7	4091989	1.21E-03	1.32E-03	4.66E-04	1.89E-04	2.14E-04	7.37E-05	1.01E-04	1.00E-04	3.08E-05
867	764769.4	4092028	1.20E-03	1.30E-03	4.61E-04	1.87E-04	2.12E-04	7.29E-05	1.00E-04	9.95E-05	3.05E-05
868	764784.1	4092067	1.15E-03	1.25E-03	4.41E-04	1.79E-04	2.03E-04	6.97E-05	9.57E-05	9.52E-05	2.92E-05
869	764798.8	4092106	1.06E-03	1.16E-03	4.09E-04	1.66E-04	1.88E-04	6.47E-05	8.88E-05	8.83E-05	2.71E-05
870	764813.5	4092146	9.60E-04	1.05E-03	3.70E-04	1.50E-04	1.70E-04	5.84E-05	8.02E-05	7.97E-05	2.45E-05
871	764232.5	4091583	1.18E-04	1.29E-04	4.56E-05	1.85E-05	2.09E-05	7.21E-06	9.89E-06	9.83E-06	3.02E-06
872	764189.4	4091581	1.06E-04	1.16E-04	4.09E-05	1.66E-05	1.88E-05	6.46E-06	8.86E-06	8.81E-06	2.70E-06
873	764146.4	4091580	9.64E-05	1.05E-04	3.71E-05	1.51E-05	1.70E-05	5.87E-06	8.05E-06	8.01E-06	2.46E-06
874	764103.3	4091579	8.87E-05	9.65E-05	3.42E-05	1.39E-05	1.57E-05	5.40E-06	7.41E-06	7.36E-06	2.26E-06
875	764276.7	4091492	9.90E-05	1.08E-04	3.81E-05	1.55E-05	1.75E-05	6.02E-06	8.26E-06	8.22E-06	2.52E-06
876	764315.9	4091510	1.15E-04	1.26E-04	4.45E-05	1.80E-05	2.04E-05	7.02E-06	9.64E-06	9.58E-06	2.94E-06
877	764355.1	4091528	1.36E-04	1.48E-04	5.25E-05	2.13E-05	2.41E-05	8.29E-06	1.14E-05	1.13E-05	3.47E-06
878	764394.2	4091545	1.62E-04	1.76E-04	6.24E-05	2.53E-05	2.86E-05	9.86E-06	1.35E-05	1.35E-05	4.13E-06
879	764511.8	4091599	2.69E-04	2.93E-04	1.04E-04	4.20E-05	4.75E-05	1.64E-05	2.24E-05	2.23E-05	6.85E-06
880	764550.9	4091616	3.13E-04	3.41E-04	1.21E-04	4.89E-05	5.53E-05	1.91E-05	2.61E-05	2.60E-05	7.98E-06
881	764590.1	4091634	3.61E-04	3.92E-04	1.39E-04	5.63E-05	6.37E-05	2.19E-05	3.01E-05	2.99E-05	9.19E-06
882	764629.3	4091652	4.10E-04	4.46E-04	1.58E-04	6.40E-05	7.24E-05	2.49E-05	3.42E-05	3.40E-05	1.04E-05
883	764668.5	4091669	4.60E-04	5.00E-04	1.77E-04	7.18E-05	8.12E-05	2.80E-05	3.84E-05	3.82E-05	1.17E-05
884	764707.6	4091687	5.09E-04	5.54E-04	1.96E-04	7.95E-05	8.99E-05	3.10E-05	4.25E-05	4.22E-05	1.30E-05
885	764754.4	4091725	5.99E-04	6.52E-04	2.31E-04	9.35E-05	1.06E-04	3.64E-05	5.00E-05	4.97E-05	1.53E-05
886	764769.5	4091765	6.89E-04	7.50E-04	2.65E-04	1.08E-04	1.22E-04	4.19E-05	5.76E-05	5.72E-05	1.76E-05
887	764784.5	4091805	7.80E-04	8.49E-04	3.00E-04	1.22E-04	1.38E-04	4.74E-05	6.51E-05	6.47E-05	1.99E-05
888	764799.6	4091846	8.60E-04	9.36E-04	3.31E-04	1.34E-04	1.52E-04	5.23E-05	7.18E-05	7.14E-05	2.19E-05
889	764814.7	4091886	9.22E-04	1.00E-03	3.55E-04	1.44E-04	1.63E-04	5.61E-05	7.70E-05	7.66E-05	2.35E-05
890	764829.8	4091926	9.59E-04	1.04E-03	3.69E-04	1.50E-04	1.70E-04	5.84E-05	8.01E-05	7.96E-05	2.44E-05
891	764844.9	4091966	9.66E-04	1.05E-03	3.72E-04	1.51E-04	1.71E-04	5.88E-05	8.07E-05	8.02E-05	2.46E-05
892	764860	4092007	9.43E-04	1.03E-03	3.63E-04	1.47E-04	1.67E-04	5.74E-05	7.88E-05	7.83E-05	2.40E-05
893	764875.1	4092047	8.92E-04	9.71E-04	3.44E-04	1.39E-04	1.58E-04	5.43E-05	7.45E-05	7.41E-05	2.27E-05

894	764890.2	4092087	8.22E-04	8.95E-04	3.17E-04	1.28E-04	1.45E-04	5.00E-05	6.87E-05	6.83E-05	2.10E-05
895	764905.3	4092127	7.40E-04	8.06E-04	2.85E-04	1.16E-04	1.31E-04	4.50E-05	6.18E-05	6.15E-05	1.89E-05
896	764920.4	4092168	6.56E-04	7.14E-04	2.53E-04	1.02E-04	1.16E-04	3.99E-05	5.48E-05	5.45E-05	1.67E-05
897	764235.6	4091483	8.77E-05	9.55E-05	3.38E-05	1.37E-05	1.55E-05	5.34E-06	7.33E-06	7.28E-06	2.24E-06
898	764192.5	4091482	8.02E-05	8.73E-05	3.09E-05	1.25E-05	1.42E-05	4.88E-06	6.70E-06	6.66E-06	2.04E-06
899	764149.4	4091480	7.41E-05	8.07E-05	2.86E-05	1.16E-05	1.31E-05	4.51E-06	6.19E-06	6.16E-06	1.89E-06
900	764106.3	4091479	6.92E-05	7.54E-05	2.67E-05	1.08E-05	1.22E-05	4.21E-06	5.78E-06	5.75E-06	1.76E-06
901	764282.3	4091292	6.01E-05	6.54E-05	2.32E-05	9.39E-06	1.06E-05	3.66E-06	5.02E-06	4.99E-06	1.53E-06
902	764320.4	4091309	6.68E-05	7.28E-05	2.57E-05	1.04E-05	1.18E-05	4.07E-06	5.58E-06	5.55E-06	1.70E-06
903	764358.6	4091327	7.52E-05	8.18E-05	2.89E-05	1.17E-05	1.33E-05	4.57E-06	6.28E-06	6.24E-06	1.91E-06
904	764396.7	4091344	8.53E-05	9.29E-05	3.29E-05	1.33E-05	1.51E-05	5.19E-06	7.12E-06	7.08E-06	2.17E-06
905	764434.9	4091361	9.77E-05	1.06E-04	3.76E-05	1.53E-05	1.73E-05	5.94E-06	8.16E-06	8.11E-06	2.49E-06
906	764473.1	4091378	1.12E-04	1.22E-04	4.32E-05	1.75E-05	1.98E-05	6.83E-06	9.37E-06	9.32E-06	2.86E-06
907	764511.2	4091396	1.29E-04	1.41E-04	4.97E-05	2.02E-05	2.28E-05	7.85E-06	1.08E-05	1.07E-05	3.29E-06
908	764549.4	4091413	1.48E-04	1.61E-04	5.69E-05	2.31E-05	2.61E-05	8.99E-06	1.23E-05	1.23E-05	3.77E-06
909	764587.5	4091430	1.68E-04	1.83E-04	6.49E-05	2.63E-05	2.98E-05	1.02E-05	1.41E-05	1.40E-05	4.29E-06
910	764625.7	4091447	1.91E-04	2.07E-04	7.34E-05	2.98E-05	3.37E-05	1.16E-05	1.59E-05	1.58E-05	4.86E-06
911	764663.9	4091465	2.14E-04	2.33E-04	8.24E-05	3.34E-05	3.78E-05	1.30E-05	1.79E-05	1.78E-05	5.45E-06
912	764702	4091482	2.39E-04	2.60E-04	9.19E-05	3.73E-05	4.22E-05	1.45E-05	1.99E-05	1.98E-05	6.08E-06
913	764740.2	4091499	2.64E-04	2.88E-04	1.02E-04	4.13E-05	4.67E-05	1.61E-05	2.21E-05	2.19E-05	6.74E-06
914	764778.3	4091516	2.91E-04	3.16E-04	1.12E-04	4.54E-05	5.13E-05	1.77E-05	2.43E-05	2.41E-05	7.40E-06
915	764816.5	4091534	3.17E-04	3.45E-04	1.22E-04	4.95E-05	5.60E-05	1.93E-05	2.65E-05	2.63E-05	8.08E-06
916	764854.6	4091551	3.43E-04	3.74E-04	1.32E-04	5.36E-05	6.07E-05	2.09E-05	2.87E-05	2.85E-05	8.75E-06
917	764900.2	4091588	3.93E-04	4.28E-04	1.51E-04	6.13E-05	6.94E-05	2.39E-05	3.28E-05	3.26E-05	1.00E-05
918	764914.9	4091627	4.43E-04	4.82E-04	1.71E-04	6.91E-05	7.82E-05	2.69E-05	3.70E-05	3.68E-05	1.13E-05
919	764929.5	4091666	4.94E-04	5.38E-04	1.90E-04	7.72E-05	8.73E-05	3.01E-05	4.13E-05	4.10E-05	1.26E-05
920	764944.2	4091705	5.45E-04	5.93E-04	2.10E-04	8.51E-05	9.62E-05	3.31E-05	4.55E-05	4.52E-05	1.39E-05
921	764958.9	4091744	5.90E-04	6.43E-04	2.27E-04	9.22E-05	1.04E-04	3.59E-05	4.93E-05	4.90E-05	1.50E-05
922	764973.6	4091784	6.27E-04	6.83E-04	2.42E-04	9.80E-05	1.11E-04	3.82E-05	5.24E-05	5.21E-05	1.60E-05
923	764988.3	4091823	6.52E-04	7.10E-04	2.51E-04	1.02E-04	1.15E-04	3.97E-05	5.44E-05	5.41E-05	1.66E-05
924	765003	4091862	6.62E-04	7.21E-04	2.55E-04	1.03E-04	1.17E-04	4.03E-05	5.53E-05	5.50E-05	1.69E-05
925	765017.7	4091901	6.57E-04	7.15E-04	2.53E-04	1.03E-04	1.16E-04	4.00E-05	5.49E-05	5.46E-05	1.67E-05
926	765032.4	4091940	6.37E-04	6.94E-04	2.45E-04	9.96E-05	1.13E-04	3.88E-05	5.32E-05	5.29E-05	1.62E-05
927	765047.1	4091980	6.05E-04	6.59E-04	2.33E-04	9.46E-05	1.07E-04	3.68E-05	5.06E-05	5.03E-05	1.54E-05
928	765061.8	4092019	5.64E-04	6.14E-04	2.17E-04	8.81E-05	9.97E-05	3.43E-05	4.71E-05	4.68E-05	1.44E-05
929	765076.5	4092058	5.18E-04	5.63E-04	1.99E-04	8.09E-05	9.15E-05	3.15E-05	4.32E-05	4.30E-05	1.32E-05
930	765091.2	4092097	4.70E-04	5.11E-04	1.81E-04	7.34E-05	8.30E-05	2.86E-05	3.92E-05	3.90E-05	1.20E-05
931	765105.9	4092136	4.23E-04	4.61E-04	1.63E-04	6.61E-05	7.48E-05	2.57E-05	3.53E-05	3.51E-05	1.08E-05
932	765120.6	4092176	3.80E-04	4.13E-04	1.46E-04	5.93E-05	6.71E-05	2.31E-05	3.17E-05	3.15E-05	9.68E-06

933	764241.6	4091283	5.53E-05	6.02E-05	2.13E-05	8.64E-06	9.77E-06	3.37E-06	4.62E-06	4.59E-06	1.41E-06
934	764198.5	4091282	5.19E-05	5.65E-05	2.00E-05	8.11E-06	9.17E-06	3.16E-06	4.33E-06	4.31E-06	1.32E-06
935	764155.5	4091280	4.91E-05	5.34E-05	1.89E-05	7.66E-06	8.67E-06	2.99E-06	4.10E-06	4.07E-06	1.25E-06
936	764112.4	4091279	4.67E-05	5.08E-05	1.80E-05	7.29E-06	8.24E-06	2.84E-06	3.90E-06	3.87E-06	1.19E-06
937	764288.5	4091092	4.18E-05	4.55E-05	1.61E-05	6.53E-06	7.39E-06	2.54E-06	3.49E-06	3.47E-06	1.07E-06
938	764327	4091110	4.53E-05	4.93E-05	1.74E-05	7.07E-06	8.00E-06	2.76E-06	3.78E-06	3.76E-06	1.15E-06
939	764365.5	4091127	4.94E-05	5.38E-05	1.90E-05	7.72E-06	8.73E-06	3.01E-06	4.13E-06	4.10E-06	1.26E-06
940	764403.9	4091145	5.43E-05	5.91E-05	2.09E-05	8.49E-06	9.60E-06	3.31E-06	4.54E-06	4.51E-06	1.38E-06
941	764442.4	4091162	6.03E-05	6.56E-05	2.32E-05	9.41E-06	1.06E-05	3.67E-06	5.03E-06	5.00E-06	1.54E-06
942	764480.9	4091179	6.74E-05	7.33E-05	2.59E-05	1.05E-05	1.19E-05	4.10E-06	5.62E-06	5.59E-06	1.72E-06
943	764519.4	4091197	7.57E-05	8.24E-05	2.91E-05	1.18E-05	1.34E-05	4.60E-06	6.32E-06	6.28E-06	1.93E-06
944	764557.8	4091214	8.52E-05	9.27E-05	3.28E-05	1.33E-05	1.50E-05	5.18E-06	7.11E-06	7.07E-06	2.17E-06
945	764596.3	4091231	9.59E-05	1.04E-04	3.69E-05	1.50E-05	1.69E-05	5.83E-06	8.01E-06	7.96E-06	2.44E-06
946	764634.8	4091249	1.08E-04	1.17E-04	4.14E-05	1.68E-05	1.90E-05	6.55E-06	8.99E-06	8.93E-06	2.74E-06
947	764673.3	4091266	1.20E-04	1.31E-04	4.62E-05	1.88E-05	2.12E-05	7.31E-06	1.00E-05	9.97E-06	3.06E-06
948	764711.7	4091284	1.33E-04	1.45E-04	5.13E-05	2.08E-05	2.35E-05	8.11E-06	1.11E-05	1.11E-05	3.40E-06
949	764750.2	4091301	1.47E-04	1.60E-04	5.66E-05	2.30E-05	2.60E-05	8.95E-06	1.23E-05	1.22E-05	3.75E-06
950	764788.7	4091318	1.61E-04	1.76E-04	6.21E-05	2.52E-05	2.85E-05	9.81E-06	1.35E-05	1.34E-05	4.11E-06
951	764827.2	4091336	1.76E-04	1.92E-04	6.78E-05	2.75E-05	3.11E-05	1.07E-05	1.47E-05	1.46E-05	4.49E-06
952	764865.6	4091353	1.91E-04	2.08E-04	7.37E-05	2.99E-05	3.38E-05	1.16E-05	1.60E-05	1.59E-05	4.88E-06
953	764904.1	4091370	2.07E-04	2.26E-04	7.99E-05	3.24E-05	3.66E-05	1.26E-05	1.73E-05	1.72E-05	5.28E-06
954	764942.6	4091388	2.24E-04	2.43E-04	8.61E-05	3.49E-05	3.95E-05	1.36E-05	1.87E-05	1.86E-05	5.70E-06
955	764981.1	4091405	2.40E-04	2.61E-04	9.24E-05	3.75E-05	4.24E-05	1.46E-05	2.00E-05	1.99E-05	6.12E-06
956	765019.6	4091423	2.56E-04	2.79E-04	9.88E-05	4.00E-05	4.53E-05	1.56E-05	2.14E-05	2.13E-05	6.53E-06
957	765046.2	4091451	2.79E-04	3.04E-04	1.08E-04	4.36E-05	4.93E-05	1.70E-05	2.33E-05	2.32E-05	7.11E-06
958	765061	4091491	3.10E-04	3.38E-04	1.20E-04	4.85E-05	5.48E-05	1.89E-05	2.59E-05	2.58E-05	7.91E-06
959	765075.8	4091530	3.43E-04	3.73E-04	1.32E-04	5.36E-05	6.06E-05	2.09E-05	2.86E-05	2.85E-05	8.74E-06
960	765090.7	4091570	3.76E-04	4.09E-04	1.45E-04	5.88E-05	6.65E-05	2.29E-05	3.14E-05	3.12E-05	9.59E-06
961	765105.5	4091609	4.08E-04	4.44E-04	1.57E-04	6.37E-05	7.21E-05	2.48E-05	3.41E-05	3.39E-05	1.04E-05
962	765120.3	4091649	4.37E-04	4.75E-04	1.68E-04	6.82E-05	7.72E-05	2.66E-05	3.65E-05	3.63E-05	1.11E-05
963	765135.1	4091688	4.60E-04	5.01E-04	1.77E-04	7.19E-05	8.13E-05	2.80E-05	3.84E-05	3.82E-05	1.17E-05
964	765149.9	4091728	4.76E-04	5.19E-04	1.83E-04	7.44E-05	8.42E-05	2.90E-05	3.98E-05	3.96E-05	1.21E-05
965	765164.8	4091767	4.84E-04	5.27E-04	1.87E-04	7.57E-05	8.56E-05	2.95E-05	4.04E-05	4.02E-05	1.23E-05
966	765179.6	4091807	4.83E-04	5.26E-04	1.86E-04	7.55E-05	8.54E-05	2.94E-05	4.04E-05	4.01E-05	1.23E-05
967	765194.4	4091846	4.74E-04	5.15E-04	1.82E-04	7.40E-05	8.37E-05	2.88E-05	3.95E-05	3.93E-05	1.21E-05
968	765209.2	4091886	4.56E-04	4.96E-04	1.76E-04	7.12E-05	8.06E-05	2.77E-05	3.81E-05	3.79E-05	1.16E-05
969	765224	4091925	4.32E-04	4.70E-04	1.66E-04	6.75E-05	7.63E-05	2.63E-05	3.61E-05	3.59E-05	1.10E-05
970	765238.9	4091965	4.04E-04	4.40E-04	1.56E-04	6.31E-05	7.14E-05	2.46E-05	3.37E-05	3.35E-05	1.03E-05
971	765253.7	4092005	3.73E-04	4.06E-04	1.44E-04	5.83E-05	6.60E-05	2.27E-05	3.12E-05	3.10E-05	9.51E-06

972	765268.5	4092044	3.42E-04	3.73E-04	1.32E-04	5.35E-05	6.05E-05	2.08E-05	2.86E-05	2.84E-05	8.73E-06
973	765283.3	4092084	3.13E-04	3.40E-04	1.20E-04	4.88E-05	5.53E-05	1.90E-05	2.61E-05	2.60E-05	7.97E-06
974	765298.1	4092123	2.85E-04	3.10E-04	1.10E-04	4.45E-05	5.04E-05	1.73E-05	2.38E-05	2.37E-05	7.26E-06
975	765313	4092163	2.60E-04	2.83E-04	1.00E-04	4.06E-05	4.59E-05	1.58E-05	2.17E-05	2.16E-05	6.63E-06
976	764247.7	4091083	3.93E-05	4.27E-05	1.51E-05	6.13E-06	6.94E-06	2.39E-06	3.28E-06	3.26E-06	1.00E-06
977	764204.6	4091082	3.74E-05	4.07E-05	1.44E-05	5.85E-06	6.61E-06	2.28E-06	3.13E-06	3.11E-06	9.54E-07
978	764161.5	4091080	3.58E-05	3.90E-05	1.38E-05	5.60E-06	6.33E-06	2.18E-06	2.99E-06	2.98E-06	9.13E-07
979	764118.4	4091079	3.44E-05	3.75E-05	1.33E-05	5.38E-06	6.09E-06	2.10E-06	2.88E-06	2.86E-06	8.78E-07
980	764294.7	4090893	3.16E-05	3.44E-05	1.22E-05	4.93E-06	5.58E-06	1.92E-06	2.64E-06	2.62E-06	8.05E-07
981	764333.4	4090910	3.36E-05	3.66E-05	1.29E-05	5.25E-06	5.94E-06	2.05E-06	2.81E-06	2.79E-06	8.57E-07
982	764372.1	4090927	3.60E-05	3.91E-05	1.38E-05	5.62E-06	6.35E-06	2.19E-06	3.00E-06	2.99E-06	9.16E-07
983	764410.8	4090945	3.87E-05	4.21E-05	1.49E-05	6.04E-06	6.84E-06	2.35E-06	3.23E-06	3.21E-06	9.86E-07
984	764449.5	4090962	4.19E-05	4.56E-05	1.61E-05	6.54E-06	7.40E-06	2.55E-06	3.50E-06	3.48E-06	1.07E-06
985	764488.2	4090980	4.57E-05	4.97E-05	1.76E-05	7.13E-06	8.07E-06	2.78E-06	3.81E-06	3.79E-06	1.16E-06
986	764526.9	4090997	5.01E-05	5.45E-05	1.93E-05	7.82E-06	8.85E-06	3.05E-06	4.18E-06	4.16E-06	1.28E-06
987	764565.6	4091015	5.53E-05	6.02E-05	2.13E-05	8.63E-06	9.76E-06	3.36E-06	4.61E-06	4.59E-06	1.41E-06
988	764604.3	4091032	6.12E-05	6.66E-05	2.36E-05	9.56E-06	1.08E-05	3.72E-06	5.11E-06	5.08E-06	1.56E-06
989	764643	4091050	6.79E-05	7.39E-05	2.61E-05	1.06E-05	1.20E-05	4.13E-06	5.67E-06	5.64E-06	1.73E-06
990	764681.7	4091067	7.52E-05	8.19E-05	2.90E-05	1.18E-05	1.33E-05	4.58E-06	6.28E-06	6.25E-06	1.92E-06
991	764720.4	4091085	8.31E-05	9.04E-05	3.20E-05	1.30E-05	1.47E-05	5.06E-06	6.94E-06	6.90E-06	2.12E-06
992	764759.1	4091102	9.14E-05	9.94E-05	3.52E-05	1.43E-05	1.61E-05	5.56E-06	7.63E-06	7.59E-06	2.33E-06
993	764797.8	4091120	9.99E-05	1.09E-04	3.85E-05	1.56E-05	1.77E-05	6.08E-06	8.34E-06	8.30E-06	2.55E-06
994	764836.5	4091137	1.09E-04	1.18E-04	4.19E-05	1.70E-05	1.92E-05	6.61E-06	9.08E-06	9.02E-06	2.77E-06
995	764875.2	4091155	1.18E-04	1.28E-04	4.53E-05	1.84E-05	2.08E-05	7.16E-06	9.82E-06	9.76E-06	3.00E-06
996	764913.9	4091172	1.27E-04	1.38E-04	4.88E-05	1.98E-05	2.24E-05	7.72E-06	1.06E-05	1.05E-05	3.23E-06
997	764952.6	4091190	1.36E-04	1.48E-04	5.25E-05	2.13E-05	2.41E-05	8.29E-06	1.14E-05	1.13E-05	3.47E-06
998	764991.3	4091207	1.46E-04	1.59E-04	5.63E-05	2.28E-05	2.58E-05	8.90E-06	1.22E-05	1.21E-05	3.73E-06
999	765030	4091225	1.57E-04	1.70E-04	6.03E-05	2.45E-05	2.77E-05	9.53E-06	1.31E-05	1.30E-05	3.99E-06
1000	765068.7	4091242	1.67E-04	1.82E-04	6.44E-05	2.61E-05	2.96E-05	1.02E-05	1.40E-05	1.39E-05	4.26E-06
1001	765107.4	4091260	1.78E-04	1.94E-04	6.87E-05	2.78E-05	3.15E-05	1.08E-05	1.49E-05	1.48E-05	4.54E-06
1002	765146.1	4091277	1.89E-04	2.06E-04	7.28E-05	2.95E-05	3.34E-05	1.15E-05	1.58E-05	1.57E-05	4.82E-06
1003	765192.2	4091314	2.10E-04	2.28E-04	8.08E-05	3.28E-05	3.71E-05	1.28E-05	1.75E-05	1.74E-05	5.35E-06
1004	765207.1	4091354	2.31E-04	2.51E-04	8.88E-05	3.60E-05	4.07E-05	1.40E-05	1.92E-05	1.91E-05	5.87E-06
1005	765222	4091394	2.52E-04	2.75E-04	9.72E-05	3.94E-05	4.46E-05	1.54E-05	2.11E-05	2.10E-05	6.43E-06
1006	765236.9	4091434	2.75E-04	2.99E-04	1.06E-04	4.30E-05	4.86E-05	1.67E-05	2.30E-05	2.28E-05	7.01E-06
1007	765251.9	4091474	2.98E-04	3.24E-04	1.15E-04	4.65E-05	5.26E-05	1.81E-05	2.49E-05	2.47E-05	7.59E-06
1008	765266.8	4091513	3.19E-04	3.48E-04	1.23E-04	4.99E-05	5.64E-05	1.94E-05	2.67E-05	2.65E-05	8.14E-06
1009	765281.7	4091553	3.39E-04	3.69E-04	1.30E-04	5.29E-05	5.99E-05	2.06E-05	2.83E-05	2.81E-05	8.63E-06
1010	765296.6	4091593	3.55E-04	3.86E-04	1.37E-04	5.54E-05	6.27E-05	2.16E-05	2.96E-05	2.94E-05	9.04E-06

1011	765311.5	4091633	3.66E-04	3.98E-04	1.41E-04	5.72E-05	6.47E-05	2.23E-05	3.06E-05	3.04E-05	9.33E-06
1012	765326.4	4091672	3.72E-04	4.05E-04	1.43E-04	5.81E-05	6.58E-05	2.27E-05	3.11E-05	3.09E-05	9.49E-06
1013	765341.3	4091712	3.73E-04	4.06E-04	1.44E-04	5.82E-05	6.59E-05	2.27E-05	3.11E-05	3.10E-05	9.50E-06
1014	765356.2	4091752	3.68E-04	4.00E-04	1.42E-04	5.74E-05	6.50E-05	2.24E-05	3.07E-05	3.05E-05	9.37E-06
1015	765371.1	4091792	3.58E-04	3.89E-04	1.38E-04	5.59E-05	6.32E-05	2.18E-05	2.99E-05	2.97E-05	9.11E-06
1016	765386	4091831	3.43E-04	3.74E-04	1.32E-04	5.36E-05	6.06E-05	2.09E-05	2.87E-05	2.85E-05	8.75E-06
1017	765400.9	4091871	3.25E-04	3.54E-04	1.25E-04	5.08E-05	5.75E-05	1.98E-05	2.72E-05	2.70E-05	8.29E-06
1018	765415.8	4091911	3.05E-04	3.32E-04	1.18E-04	4.77E-05	5.39E-05	1.86E-05	2.55E-05	2.53E-05	7.78E-06
1019	765430.7	4091951	2.84E-04	3.09E-04	1.09E-04	4.44E-05	5.02E-05	1.73E-05	2.37E-05	2.36E-05	7.24E-06
1020	765445.6	4091990	2.63E-04	2.86E-04	1.01E-04	4.11E-05	4.65E-05	1.60E-05	2.20E-05	2.18E-05	6.70E-06
1021	765460.5	4092030	2.43E-04	2.64E-04	9.35E-05	3.79E-05	4.29E-05	1.48E-05	2.03E-05	2.02E-05	6.19E-06
1022	765475.4	4092070	2.24E-04	2.44E-04	8.63E-05	3.50E-05	3.96E-05	1.36E-05	1.87E-05	1.86E-05	5.71E-06
1023	765490.3	4092110	2.07E-04	2.25E-04	7.97E-05	3.23E-05	3.65E-05	1.26E-05	1.73E-05	1.72E-05	5.27E-06
1024	765505.3	4092149	1.91E-04	2.08E-04	7.37E-05	2.99E-05	3.38E-05	1.16E-05	1.60E-05	1.59E-05	4.88E-06
1025	765520.2	4092189	1.78E-04	1.93E-04	6.84E-05	2.77E-05	3.14E-05	1.08E-05	1.48E-05	1.47E-05	4.53E-06
1026	764253.8	4090883	3.01E-05	3.27E-05	1.16E-05	4.69E-06	5.31E-06	1.83E-06	2.51E-06	2.50E-06	7.66E-07
1027	764210.7	4090882	2.89E-05	3.15E-05	1.11E-05	4.52E-06	5.11E-06	1.76E-06	2.42E-06	2.40E-06	7.37E-07
1028	764167.6	4090881	2.79E-05	3.04E-05	1.08E-05	4.36E-06	4.93E-06	1.70E-06	2.33E-06	2.32E-06	7.11E-07
1029	764124.5	4090879	2.70E-05	2.94E-05	1.04E-05	4.22E-06	4.77E-06	1.64E-06	2.25E-06	2.24E-06	6.88E-07
1030	764300.8	4090693	2.52E-05	2.74E-05	9.71E-06	3.94E-06	4.45E-06	1.53E-06	2.10E-06	2.09E-06	6.42E-07
1031	764339.7	4090710	2.65E-05	2.89E-05	1.02E-05	4.14E-06	4.69E-06	1.61E-06	2.21E-06	2.20E-06	6.76E-07
1032	764378.6	4090728	2.80E-05	3.05E-05	1.08E-05	4.37E-06	4.95E-06	1.70E-06	2.34E-06	2.32E-06	7.13E-07
1033	764417.4	4090745	2.97E-05	3.23E-05	1.14E-05	4.64E-06	5.25E-06	1.81E-06	2.48E-06	2.47E-06	7.57E-07
1034	764456.3	4090763	3.16E-05	3.44E-05	1.22E-05	4.94E-06	5.59E-06	1.92E-06	2.64E-06	2.62E-06	8.06E-07
1035	764495.2	4090780	3.38E-05	3.68E-05	1.30E-05	5.28E-06	5.98E-06	2.06E-06	2.83E-06	2.81E-06	8.62E-07
1036	764534	4090798	3.64E-05	3.96E-05	1.40E-05	5.69E-06	6.43E-06	2.22E-06	3.04E-06	3.02E-06	9.28E-07
1037	764572.9	4090816	3.94E-05	4.28E-05	1.52E-05	6.15E-06	6.95E-06	2.39E-06	3.29E-06	3.27E-06	1.00E-06
1038	764611.8	4090833	4.28E-05	4.65E-05	1.65E-05	6.68E-06	7.55E-06	2.60E-06	3.57E-06	3.55E-06	1.09E-06
1039	764650.6	4090851	4.67E-05	5.08E-05	1.80E-05	7.29E-06	8.24E-06	2.84E-06	3.90E-06	3.87E-06	1.19E-06
1040	764689.5	4090868	5.11E-05	5.56E-05	1.97E-05	7.97E-06	9.02E-06	3.11E-06	4.26E-06	4.24E-06	1.30E-06
1041	764728.4	4090886	5.59E-05	6.08E-05	2.15E-05	8.73E-06	9.87E-06	3.40E-06	4.67E-06	4.64E-06	1.42E-06
1042	764767.2	4090903	6.12E-05	6.66E-05	2.36E-05	9.56E-06	1.08E-05	3.73E-06	5.11E-06	5.08E-06	1.56E-06
1043	764806.1	4090921	6.68E-05	7.28E-05	2.57E-05	1.04E-05	1.18E-05	4.07E-06	5.58E-06	5.55E-06	1.70E-06
1044	764844.9	4090938	7.27E-05	7.91E-05	2.80E-05	1.14E-05	1.28E-05	4.42E-06	6.07E-06	6.03E-06	1.85E-06
1045	764883.8	4090956	7.86E-05	8.56E-05	3.03E-05	1.23E-05	1.39E-05	4.78E-06	6.57E-06	6.53E-06	2.00E-06
1046	764922.7	4090974	8.46E-05	9.21E-05	3.26E-05	1.32E-05	1.49E-05	5.15E-06	7.06E-06	7.02E-06	2.15E-06
1047	764961.5	4090991	9.06E-05	9.86E-05	3.49E-05	1.41E-05	1.60E-05	5.51E-06	7.56E-06	7.52E-06	2.31E-06
1048	765000.4	4091009	9.66E-05	1.05E-04	3.72E-05	1.51E-05	1.71E-05	5.88E-06	8.07E-06	8.02E-06	2.46E-06
1049	765039.3	4091026	1.03E-04	1.12E-04	3.96E-05	1.61E-05	1.82E-05	6.26E-06	8.59E-06	8.54E-06	2.62E-06

1050	765078.1	4091044	1.09E-04	1.19E-04	4.21E-05	1.71E-05	1.93E-05	6.65E-06	9.12E-06	9.07E-06	2.78E-06
1051	765117	4091061	1.16E-04	1.26E-04	4.47E-05	1.81E-05	2.05E-05	7.06E-06	9.69E-06	9.63E-06	2.96E-06
1052	765155.9	4091079	1.23E-04	1.34E-04	4.74E-05	1.92E-05	2.18E-05	7.49E-06	1.03E-05	1.02E-05	3.14E-06
1053	765194.7	4091096	1.31E-04	1.42E-04	5.03E-05	2.04E-05	2.31E-05	7.95E-06	1.09E-05	1.08E-05	3.33E-06
1054	765233.6	4091114	1.38E-04	1.51E-04	5.33E-05	2.16E-05	2.44E-05	8.42E-06	1.15E-05	1.15E-05	3.52E-06
1055	765272.5	4091132	1.46E-04	1.59E-04	5.63E-05	2.28E-05	2.58E-05	8.89E-06	1.22E-05	1.21E-05	3.72E-06
1056	765311.3	4091149	1.54E-04	1.68E-04	5.93E-05	2.40E-05	2.72E-05	9.37E-06	1.29E-05	1.28E-05	3.92E-06
1057	765338.2	4091178	1.65E-04	1.79E-04	6.34E-05	2.57E-05	2.91E-05	1.00E-05	1.37E-05	1.37E-05	4.20E-06
1058	765353.2	4091218	1.79E-04	1.95E-04	6.90E-05	2.80E-05	3.16E-05	1.09E-05	1.50E-05	1.49E-05	4.56E-06
1059	765368.2	4091258	1.94E-04	2.12E-04	7.49E-05	3.04E-05	3.44E-05	1.18E-05	1.62E-05	1.61E-05	4.96E-06
1060	765383.2	4091298	2.11E-04	2.29E-04	8.11E-05	3.29E-05	3.72E-05	1.28E-05	1.76E-05	1.75E-05	5.37E-06
1061	765398.1	4091338	2.27E-04	2.47E-04	8.74E-05	3.55E-05	4.01E-05	1.38E-05	1.90E-05	1.88E-05	5.79E-06
1062	765413.1	4091378	2.43E-04	2.65E-04	9.36E-05	3.80E-05	4.30E-05	1.48E-05	2.03E-05	2.02E-05	6.20E-06
1063	765428.1	4091417	2.59E-04	2.81E-04	9.96E-05	4.04E-05	4.57E-05	1.57E-05	2.16E-05	2.15E-05	6.59E-06
1064	765443	4091457	2.72E-04	2.96E-04	1.05E-04	4.25E-05	4.81E-05	1.66E-05	2.27E-05	2.26E-05	6.94E-06
1065	765458	4091497	2.84E-04	3.09E-04	1.09E-04	4.43E-05	5.01E-05	1.73E-05	2.37E-05	2.36E-05	7.23E-06
1066	765473	4091537	2.92E-04	3.18E-04	1.13E-04	4.56E-05	5.16E-05	1.78E-05	2.44E-05	2.43E-05	7.44E-06
1067	765487.9	4091577	2.97E-04	3.23E-04	1.14E-04	4.64E-05	5.25E-05	1.81E-05	2.48E-05	2.47E-05	7.57E-06
1068	765502.9	4091617	2.98E-04	3.25E-04	1.15E-04	4.66E-05	5.27E-05	1.81E-05	2.49E-05	2.48E-05	7.60E-06
1069	765517.9	4091657	2.96E-04	3.22E-04	1.14E-04	4.62E-05	5.22E-05	1.80E-05	2.47E-05	2.45E-05	7.53E-06
1070	765532.9	4091697	2.90E-04	3.15E-04	1.12E-04	4.52E-05	5.12E-05	1.76E-05	2.42E-05	2.41E-05	7.38E-06
1071	765547.8	4091737	2.81E-04	3.05E-04	1.08E-04	4.38E-05	4.96E-05	1.71E-05	2.34E-05	2.33E-05	7.15E-06
1072	765562.8	4091777	2.69E-04	2.93E-04	1.04E-04	4.20E-05	4.75E-05	1.64E-05	2.24E-05	2.23E-05	6.85E-06
1073	765577.8	4091817	2.55E-04	2.78E-04	9.83E-05	3.99E-05	4.51E-05	1.55E-05	2.13E-05	2.12E-05	6.51E-06
1074	765592.7	4091857	2.41E-04	2.62E-04	9.27E-05	3.76E-05	4.25E-05	1.46E-05	2.01E-05	2.00E-05	6.13E-06
1075	765607.7	4091897	2.25E-04	2.45E-04	8.68E-05	3.52E-05	3.98E-05	1.37E-05	1.88E-05	1.87E-05	5.74E-06
1076	765622.7	4091937	2.10E-04	2.29E-04	8.09E-05	3.28E-05	3.71E-05	1.28E-05	1.75E-05	1.74E-05	5.35E-06
1077	765637.6	4091976	1.96E-04	2.13E-04	7.53E-05	3.06E-05	3.46E-05	1.19E-05	1.63E-05	1.62E-05	4.99E-06
1078	765652.6	4092016	1.82E-04	1.98E-04	7.01E-05	2.84E-05	3.22E-05	1.11E-05	1.52E-05	1.51E-05	4.64E-06
1079	765667.6	4092056	1.70E-04	1.85E-04	6.54E-05	2.65E-05	3.00E-05	1.03E-05	1.42E-05	1.41E-05	4.32E-06
1080	765682.5	4092096	1.59E-04	1.73E-04	6.11E-05	2.48E-05	2.80E-05	9.65E-06	1.32E-05	1.32E-05	4.04E-06
1081	765697.5	4092136	1.49E-04	1.62E-04	5.72E-05	2.32E-05	2.62E-05	9.04E-06	1.24E-05	1.23E-05	3.78E-06
1082	765712.5	4092176	1.40E-04	1.52E-04	5.37E-05	2.18E-05	2.46E-05	8.49E-06	1.16E-05	1.16E-05	3.55E-06
1083	764259.9	4090683	2.42E-05	2.63E-05	9.32E-06	3.78E-06	4.27E-06	1.47E-06	2.02E-06	2.01E-06	6.17E-07
1084	764216.8	4090682	2.34E-05	2.55E-05	9.02E-06	3.66E-06	4.14E-06	1.43E-06	1.96E-06	1.94E-06	5.97E-07
1085	764173.7	4090681	2.27E-05	2.47E-05	8.75E-06	3.55E-06	4.01E-06	1.38E-06	1.90E-06	1.89E-06	5.79E-07
1086	764130.6	4090679	2.21E-05	2.40E-05	8.51E-06	3.45E-06	3.90E-06	1.34E-06	1.84E-06	1.83E-06	5.63E-07
1087	764307	4090493	2.09E-05	2.27E-05	8.05E-06	3.26E-06	3.69E-06	1.27E-06	1.75E-06	1.74E-06	5.33E-07
1088	764346	4090510	2.18E-05	2.37E-05	8.40E-06	3.41E-06	3.85E-06	1.33E-06	1.82E-06	1.81E-06	5.56E-07

1089	764385	4090528	2.28E-05	2.48E-05	8.79E-06	3.56E-06	4.03E-06	1.39E-06	1.91E-06	1.89E-06	5.81E-07
1090	764423.9	4090546	2.40E-05	2.61E-05	9.22E-06	3.74E-06	4.23E-06	1.46E-06	2.00E-06	1.99E-06	6.10E-07
1091	764462.9	4090563	2.52E-05	2.74E-05	9.71E-06	3.94E-06	4.45E-06	1.53E-06	2.10E-06	2.09E-06	6.42E-07
1092	764501.9	4090581	2.66E-05	2.90E-05	1.03E-05	4.16E-06	4.71E-06	1.62E-06	2.22E-06	2.21E-06	6.79E-07
1093	764540.9	4090598	2.83E-05	3.08E-05	1.09E-05	4.41E-06	4.99E-06	1.72E-06	2.36E-06	2.35E-06	7.20E-07
1094	764579.9	4090616	3.01E-05	3.27E-05	1.16E-05	4.70E-06	5.31E-06	1.83E-06	2.51E-06	2.50E-06	7.66E-07
1095	764618.9	4090634	3.22E-05	3.50E-05	1.24E-05	5.02E-06	5.68E-06	1.96E-06	2.69E-06	2.67E-06	8.19E-07
1096	764657.9	4090651	3.45E-05	3.76E-05	1.33E-05	5.40E-06	6.10E-06	2.10E-06	2.88E-06	2.87E-06	8.80E-07
1097	764696.9	4090669	3.72E-05	4.05E-05	1.43E-05	5.81E-06	6.57E-06	2.26E-06	3.11E-06	3.09E-06	9.48E-07
1098	764735.9	4090687	4.02E-05	4.38E-05	1.55E-05	6.29E-06	7.11E-06	2.45E-06	3.36E-06	3.34E-06	1.03E-06
1099	764774.9	4090704	4.36E-05	4.75E-05	1.68E-05	6.81E-06	7.70E-06	2.65E-06	3.64E-06	3.62E-06	1.11E-06
1100	764813.9	4090722	4.73E-05	5.15E-05	1.82E-05	7.38E-06	8.35E-06	2.88E-06	3.95E-06	3.93E-06	1.20E-06
1101	764852.9	4090739	5.13E-05	5.58E-05	1.97E-05	8.01E-06	9.06E-06	3.12E-06	4.28E-06	4.26E-06	1.31E-06
1102	764891.9	4090757	5.55E-05	6.04E-05	2.14E-05	8.66E-06	9.80E-06	3.37E-06	4.63E-06	4.60E-06	1.41E-06
1103	764930.8	4090775	5.97E-05	6.50E-05	2.30E-05	9.33E-06	1.06E-05	3.63E-06	4.99E-06	4.96E-06	1.52E-06
1104	764969.8	4090792	6.41E-05	6.97E-05	2.47E-05	1.00E-05	1.13E-05	3.90E-06	5.35E-06	5.32E-06	1.63E-06
1105	765008.8	4090810	6.84E-05	7.44E-05	2.63E-05	1.07E-05	1.21E-05	4.16E-06	5.71E-06	5.68E-06	1.74E-06
1106	765047.8	4090827	7.26E-05	7.90E-05	2.80E-05	1.13E-05	1.28E-05	4.42E-06	6.06E-06	6.03E-06	1.85E-06
1107	765086.8	4090845	7.68E-05	8.36E-05	2.96E-05	1.20E-05	1.36E-05	4.67E-06	6.42E-06	6.38E-06	1.96E-06
1108	765125.8	4090863	8.11E-05	8.82E-05	3.12E-05	1.27E-05	1.43E-05	4.93E-06	6.77E-06	6.73E-06	2.07E-06
1109	765164.8	4090880	8.55E-05	9.30E-05	3.29E-05	1.33E-05	1.51E-05	5.20E-06	7.14E-06	7.10E-06	2.18E-06
1110	765203.8	4090898	9.00E-05	9.80E-05	3.47E-05	1.41E-05	1.59E-05	5.48E-06	7.52E-06	7.48E-06	2.29E-06
1111	765242.8	4090915	9.49E-05	1.03E-04	3.66E-05	1.48E-05	1.68E-05	5.78E-06	7.93E-06	7.88E-06	2.42E-06
1112	765281.8	4090933	1.00E-04	1.09E-04	3.85E-05	1.56E-05	1.77E-05	6.09E-06	8.35E-06	8.31E-06	2.55E-06
1113	765320.8	4090951	1.05E-04	1.15E-04	4.06E-05	1.65E-05	1.86E-05	6.42E-06	8.81E-06	8.76E-06	2.69E-06
1114	765359.8	4090968	1.11E-04	1.21E-04	4.28E-05	1.74E-05	1.96E-05	6.76E-06	9.28E-06	9.23E-06	2.83E-06
1115	765398.8	4090986	1.17E-04	1.27E-04	4.50E-05	1.83E-05	2.07E-05	7.11E-06	9.76E-06	9.71E-06	2.98E-06
1116	765437.8	4091004	1.23E-04	1.34E-04	4.73E-05	1.92E-05	2.17E-05	7.47E-06	1.02E-05	1.02E-05	3.13E-06
1117	765484.3	4091041	1.33E-04	1.45E-04	5.14E-05	2.08E-05	2.36E-05	8.12E-06	1.11E-05	1.11E-05	3.40E-06
1118	765499.3	4091081	1.44E-04	1.57E-04	5.54E-05	2.25E-05	2.54E-05	8.76E-06	1.20E-05	1.20E-05	3.67E-06
1119	765514.3	4091121	1.55E-04	1.69E-04	5.98E-05	2.42E-05	2.74E-05	9.44E-06	1.30E-05	1.29E-05	3.95E-06
1120	765529.3	4091161	1.67E-04	1.82E-04	6.43E-05	2.61E-05	2.95E-05	1.02E-05	1.39E-05	1.39E-05	4.25E-06
1121	765544.3	4091201	1.79E-04	1.95E-04	6.90E-05	2.80E-05	3.17E-05	1.09E-05	1.50E-05	1.49E-05	4.57E-06
1122	765559.3	4091242	1.92E-04	2.09E-04	7.38E-05	2.99E-05	3.38E-05	1.17E-05	1.60E-05	1.59E-05	4.88E-06
1123	765574.4	4091282	2.04E-04	2.22E-04	7.85E-05	3.18E-05	3.60E-05	1.24E-05	1.70E-05	1.69E-05	5.19E-06
1124	765589.4	4091322	2.15E-04	2.34E-04	8.29E-05	3.36E-05	3.80E-05	1.31E-05	1.80E-05	1.79E-05	5.48E-06
1125	765604.4	4091362	2.25E-04	2.45E-04	8.68E-05	3.52E-05	3.98E-05	1.37E-05	1.88E-05	1.87E-05	5.75E-06
1126	765619.4	4091402	2.34E-04	2.55E-04	9.01E-05	3.65E-05	4.13E-05	1.42E-05	1.95E-05	1.94E-05	5.96E-06
1127	765634.4	4091442	2.40E-04	2.62E-04	9.26E-05	3.75E-05	4.25E-05	1.46E-05	2.01E-05	2.00E-05	6.12E-06

1128	765649.5	4091482	2.44E-04	2.66E-04	9.41E-05	3.82E-05	4.32E-05	1.49E-05	2.04E-05	2.03E-05	6.22E-06
1129	765664.5	4091522	2.46E-04	2.67E-04	9.46E-05	3.84E-05	4.34E-05	1.49E-05	2.05E-05	2.04E-05	6.26E-06
1130	765679.5	4091562	2.44E-04	2.66E-04	9.41E-05	3.82E-05	4.32E-05	1.49E-05	2.04E-05	2.03E-05	6.23E-06
1131	765694.5	4091602	2.41E-04	2.62E-04	9.27E-05	3.76E-05	4.25E-05	1.46E-05	2.01E-05	2.00E-05	6.13E-06
1132	765709.5	4091642	2.35E-04	2.56E-04	9.05E-05	3.67E-05	4.15E-05	1.43E-05	1.96E-05	1.95E-05	5.98E-06
1133	765724.6	4091682	2.27E-04	2.47E-04	8.74E-05	3.54E-05	4.01E-05	1.38E-05	1.89E-05	1.88E-05	5.78E-06
1134	765739.6	4091722	2.18E-04	2.37E-04	8.38E-05	3.40E-05	3.85E-05	1.32E-05	1.82E-05	1.81E-05	5.55E-06
1135	765754.6	4091762	2.07E-04	2.25E-04	7.98E-05	3.24E-05	3.66E-05	1.26E-05	1.73E-05	1.72E-05	5.28E-06
1136	765769.6	4091802	1.96E-04	2.13E-04	7.55E-05	3.06E-05	3.46E-05	1.19E-05	1.64E-05	1.63E-05	4.99E-06
1137	765784.6	4091842	1.85E-04	2.01E-04	7.11E-05	2.88E-05	3.26E-05	1.12E-05	1.54E-05	1.53E-05	4.70E-06
1138	765799.6	4091883	1.73E-04	1.89E-04	6.67E-05	2.71E-05	3.06E-05	1.05E-05	1.45E-05	1.44E-05	4.42E-06
1139	765814.7	4091923	1.62E-04	1.77E-04	6.26E-05	2.54E-05	2.87E-05	9.89E-06	1.36E-05	1.35E-05	4.14E-06
1140	765829.7	4091963	1.52E-04	1.66E-04	5.87E-05	2.38E-05	2.69E-05	9.27E-06	1.27E-05	1.26E-05	3.88E-06
1141	765844.7	4092003	1.43E-04	1.56E-04	5.51E-05	2.23E-05	2.53E-05	8.70E-06	1.19E-05	1.19E-05	3.64E-06
1142	765859.7	4092043	1.35E-04	1.46E-04	5.18E-05	2.10E-05	2.38E-05	8.18E-06	1.12E-05	1.12E-05	3.43E-06
1143	765874.7	4092083	1.27E-04	1.38E-04	4.89E-05	1.98E-05	2.24E-05	7.72E-06	1.06E-05	1.05E-05	3.23E-06
1144	765889.8	4092123	1.20E-04	1.31E-04	4.62E-05	1.87E-05	2.12E-05	7.30E-06	1.00E-05	9.96E-06	3.06E-06
1145	765904.8	4092163	1.14E-04	1.24E-04	4.38E-05	1.78E-05	2.01E-05	6.92E-06	9.50E-06	9.45E-06	2.90E-06
1146	765919.8	4092203	1.08E-04	1.18E-04	4.16E-05	1.69E-05	1.91E-05	6.58E-06	9.03E-06	8.98E-06	2.76E-06
1147	764265.9	4090483	2.02E-05	2.20E-05	7.77E-06	3.15E-06	3.56E-06	1.23E-06	1.68E-06	1.67E-06	5.14E-07
1148	764222.8	4090482	1.96E-05	2.14E-05	7.56E-06	3.07E-06	3.47E-06	1.19E-06	1.64E-06	1.63E-06	5.00E-07
1149	764179.7	4090481	1.91E-05	2.08E-05	7.36E-06	2.98E-06	3.37E-06	1.16E-06	1.59E-06	1.59E-06	4.87E-07
1150	764136.6	4090479	1.86E-05	2.03E-05	7.18E-06	2.91E-06	3.29E-06	1.13E-06	1.56E-06	1.55E-06	4.75E-07
1151	764067.7	4091929	3.26E-04	3.55E-04	1.26E-04	5.10E-05	5.77E-05	1.99E-05	2.72E-05	2.71E-05	8.31E-06
1152	764064.2	4091879	2.45E-04	2.66E-04	9.42E-05	3.82E-05	4.32E-05	1.49E-05	2.04E-05	2.03E-05	6.23E-06
1153	764070.6	4091779	1.60E-04	1.74E-04	6.16E-05	2.50E-05	2.82E-05	9.73E-06	1.33E-05	1.33E-05	4.07E-06
1154	764037.6	4091781	1.48E-04	1.61E-04	5.69E-05	2.31E-05	2.61E-05	8.99E-06	1.23E-05	1.23E-05	3.76E-06
1155	764067	4091679	1.12E-04	1.21E-04	4.30E-05	1.74E-05	1.97E-05	6.79E-06	9.32E-06	9.26E-06	2.84E-06
1156	764030.7	4091681	1.05E-04	1.14E-04	4.03E-05	1.63E-05	1.85E-05	6.36E-06	8.73E-06	8.68E-06	2.66E-06
1157	764058.4	4091580	8.27E-05	9.00E-05	3.18E-05	1.29E-05	1.46E-05	5.03E-06	6.90E-06	6.86E-06	2.11E-06
1158	764023.7	4091581	7.88E-05	8.58E-05	3.03E-05	1.23E-05	1.39E-05	4.79E-06	6.58E-06	6.54E-06	2.01E-06
1159	764054	4091480	6.47E-05	7.05E-05	2.49E-05	1.01E-05	1.14E-05	3.94E-06	5.41E-06	5.38E-06	1.65E-06
1160	764016.8	4091482	6.21E-05	6.76E-05	2.39E-05	9.70E-06	1.10E-05	3.78E-06	5.19E-06	5.16E-06	1.58E-06
1161	764040.6	4091280	4.37E-05	4.75E-05	1.68E-05	6.82E-06	7.72E-06	2.66E-06	3.65E-06	3.63E-06	1.11E-06
1162	764076.5	4091280	4.51E-05	4.91E-05	1.74E-05	7.04E-06	7.96E-06	2.74E-06	3.76E-06	3.74E-06	1.15E-06
1163	764002.9	4091282	4.24E-05	4.61E-05	1.63E-05	6.62E-06	7.49E-06	2.58E-06	3.54E-06	3.52E-06	1.08E-06
1164	764027	4091081	3.22E-05	3.51E-05	1.24E-05	5.04E-06	5.70E-06	1.96E-06	2.69E-06	2.68E-06	8.22E-07
1165	764063.6	4091080	3.30E-05	3.60E-05	1.27E-05	5.16E-06	5.84E-06	2.01E-06	2.76E-06	2.74E-06	8.42E-07
1166	763989.1	4091083	3.15E-05	3.43E-05	1.21E-05	4.92E-06	5.57E-06	1.92E-06	2.63E-06	2.62E-06	8.03E-07

1167	764013.4	4090881	2.53E-05	2.75E-05	9.73E-06	3.95E-06	4.46E-06	1.54E-06	2.11E-06	2.10E-06	6.44E-07
1168	764050.4	4090881	2.58E-05	2.81E-05	9.93E-06	4.03E-06	4.56E-06	1.57E-06	2.15E-06	2.14E-06	6.57E-07
1169	764087.5	4090880	2.64E-05	2.87E-05	1.02E-05	4.12E-06	4.66E-06	1.60E-06	2.20E-06	2.19E-06	6.72E-07
1170	763975.2	4090883	2.48E-05	2.70E-05	9.56E-06	3.88E-06	4.39E-06	1.51E-06	2.07E-06	2.06E-06	6.32E-07
1171	763999.7	4090682	2.07E-05	2.25E-05	7.96E-06	3.23E-06	3.65E-06	1.26E-06	1.72E-06	1.72E-06	5.26E-07
1172	764037.1	4090681	2.10E-05	2.29E-05	8.10E-06	3.28E-06	3.71E-06	1.28E-06	1.76E-06	1.75E-06	5.36E-07
1173	764074.5	4090680	2.14E-05	2.33E-05	8.24E-06	3.34E-06	3.78E-06	1.30E-06	1.79E-06	1.78E-06	5.45E-07
1174	763961.3	4090684	2.03E-05	2.21E-05	7.83E-06	3.18E-06	3.59E-06	1.24E-06	1.70E-06	1.69E-06	5.18E-07
1175	763986	4090482	1.74E-05	1.89E-05	6.70E-06	2.72E-06	3.07E-06	1.06E-06	1.45E-06	1.44E-06	4.43E-07
1176	764023.7	4090482	1.77E-05	1.92E-05	6.80E-06	2.76E-06	3.12E-06	1.07E-06	1.48E-06	1.47E-06	4.50E-07
1177	764061.3	4090481	1.80E-05	1.96E-05	6.92E-06	2.81E-06	3.17E-06	1.09E-06	1.50E-06	1.49E-06	4.58E-07
1178	764099	4090480	1.83E-05	1.99E-05	7.04E-06	2.85E-06	3.23E-06	1.11E-06	1.53E-06	1.52E-06	4.66E-07
1179	763947.5	4090484	1.72E-05	1.87E-05	6.62E-06	2.68E-06	3.04E-06	1.05E-06	1.43E-06	1.43E-06	4.38E-07
1180	764025.1	4091984	3.72E-04	4.05E-04	1.43E-04	5.81E-05	6.57E-05	2.26E-05	3.11E-05	3.09E-05	9.48E-06
1181	764040.1	4091931	2.93E-04	3.19E-04	1.13E-04	4.57E-05	5.18E-05	1.78E-05	2.45E-05	2.43E-05	7.46E-06
1182	764035	4091882	2.23E-04	2.43E-04	8.58E-05	3.48E-05	3.94E-05	1.36E-05	1.86E-05	1.85E-05	5.68E-06
1183	764011.8	4091884	2.08E-04	2.27E-04	8.03E-05	3.26E-05	3.68E-05	1.27E-05	1.74E-05	1.73E-05	5.31E-06
1184	764012.3	4091783	1.40E-04	1.52E-04	5.39E-05	2.19E-05	2.47E-05	8.52E-06	1.17E-05	1.16E-05	3.57E-06
1185	763999	4091684	9.94E-05	1.08E-04	3.83E-05	1.55E-05	1.76E-05	6.05E-06	8.30E-06	8.25E-06	2.53E-06
1186	763998.4	4091584	7.64E-05	8.31E-05	2.94E-05	1.19E-05	1.35E-05	4.65E-06	6.38E-06	6.34E-06	1.95E-06
1187	763972	4091587	7.40E-05	8.05E-05	2.85E-05	1.16E-05	1.31E-05	4.50E-06	6.18E-06	6.14E-06	1.89E-06
1188	763983.6	4091485	6.01E-05	6.54E-05	2.32E-05	9.39E-06	1.06E-05	3.66E-06	5.02E-06	4.99E-06	1.53E-06
1189	763958.7	4091488	5.87E-05	6.39E-05	2.26E-05	9.16E-06	1.04E-05	3.57E-06	4.90E-06	4.87E-06	1.50E-06
1190	763957.4	4091287	4.11E-05	4.47E-05	1.58E-05	6.42E-06	7.26E-06	2.50E-06	3.43E-06	3.41E-06	1.05E-06
1191	763980.1	4091284	4.17E-05	4.54E-05	1.61E-05	6.52E-06	7.37E-06	2.54E-06	3.49E-06	3.47E-06	1.06E-06
1192	763932.2	4091290	4.04E-05	4.40E-05	1.56E-05	6.31E-06	7.14E-06	2.46E-06	3.37E-06	3.35E-06	1.03E-06
1193	763931	4091089	3.06E-05	3.33E-05	1.18E-05	4.78E-06	5.41E-06	1.86E-06	2.56E-06	2.54E-06	7.80E-07
1194	763954.2	4091086	3.10E-05	3.37E-05	1.19E-05	4.84E-06	5.47E-06	1.88E-06	2.59E-06	2.57E-06	7.89E-07
1195	763905.7	4091092	3.02E-05	3.29E-05	1.16E-05	4.72E-06	5.34E-06	1.84E-06	2.52E-06	2.51E-06	7.70E-07
1196	763906.6	4090890	2.41E-05	2.63E-05	9.29E-06	3.77E-06	4.26E-06	1.47E-06	2.02E-06	2.00E-06	6.15E-07
1197	763934.1	4090887	2.44E-05	2.66E-05	9.40E-06	3.81E-06	4.31E-06	1.48E-06	2.04E-06	2.03E-06	6.22E-07
1198	763879.2	4090893	2.39E-05	2.60E-05	9.19E-06	3.73E-06	4.22E-06	1.45E-06	1.99E-06	1.98E-06	6.08E-07
1199	763879.9	4090692	1.98E-05	2.16E-05	7.63E-06	3.09E-06	3.50E-06	1.21E-06	1.65E-06	1.64E-06	5.05E-07
1200	763907.1	4090689	2.00E-05	2.17E-05	7.69E-06	3.12E-06	3.53E-06	1.22E-06	1.67E-06	1.66E-06	5.09E-07
1201	763934.2	4090686	2.02E-05	2.19E-05	7.76E-06	3.15E-06	3.56E-06	1.23E-06	1.68E-06	1.67E-06	5.14E-07
1202	763852.6	4090695	1.96E-05	2.14E-05	7.56E-06	3.07E-06	3.47E-06	1.19E-06	1.64E-06	1.63E-06	5.00E-07
1203	763853.3	4090494	1.67E-05	1.82E-05	6.45E-06	2.61E-06	2.96E-06	1.02E-06	1.40E-06	1.39E-06	4.26E-07
1204	763880.2	4090491	1.69E-05	1.83E-05	6.49E-06	2.63E-06	2.98E-06	1.03E-06	1.41E-06	1.40E-06	4.30E-07
1205	763907.1	4090488	1.70E-05	1.85E-05	6.54E-06	2.65E-06	3.00E-06	1.03E-06	1.42E-06	1.41E-06	4.33E-07

1200	762026 1	4000407	1 665 05	1 015 05	C 20F 0C	2 505 06	2 025 06	1 01 5 06	1 205 00	1 205 00	4 225 07
1206	763826.1	4090497	1.66E-05	1.81E-05	6.39E-06	2.59E-06	2.93E-06	1.01E-06	1.39E-06	1.38E-06	4.23E-07
1207	763999.4	4091990	3.40E-04	3.70E-04	1.31E-04	5.31E-05	6.00E-05	2.07E-05	2.84E-05	2.82E-05	8.66E-06
1208	763971.9	4091998	3.12E-04	3.39E-04	1.20E-04	4.87E-05	5.51E-05	1.90E-05	2.60E-05	2.59E-05	7.94E-06
1209	763982.4	4091943	2.45E-04	2.67E-04	9.44E-05	3.83E-05	4.33E-05	1.49E-05	2.05E-05	2.03E-05	6.25E-06
1210	764006.4	4091937	2.62E-04	2.86E-04	1.01E-04	4.10E-05	4.64E-05	1.60E-05	2.19E-05	2.18E-05	6.68E-06
1211	763955.7	4091950	2.29E-04	2.49E-04	8.82E-05	3.57E-05	4.04E-05	1.39E-05	1.91E-05	1.90E-05	5.83E-06
1212	763968.5	4091895	1.88E-04	2.05E-04	7.26E-05	2.94E-05	3.33E-05	1.15E-05	1.57E-05	1.56E-05	4.80E-06
1213	763939.4	4091903	1.77E-04	1.93E-04	6.81E-05	2.76E-05	3.12E-05	1.08E-05	1.48E-05	1.47E-05	4.51E-06
1214	763934.4	4091800	1.22E-04	1.33E-04	4.70E-05	1.91E-05	2.16E-05	7.43E-06	1.02E-05	1.01E-05	3.11E-06
1215	763960.1	4091794	1.28E-04	1.39E-04	4.92E-05	1.99E-05	2.26E-05	7.77E-06	1.07E-05	1.06E-05	3.25E-06
1216	763985.7	4091788	1.33E-04	1.45E-04	5.14E-05	2.08E-05	2.36E-05	8.11E-06	1.11E-05	1.11E-05	3.40E-06
1217	763906.9	4091809	1.17E-04	1.27E-04	4.49E-05	1.82E-05	2.06E-05	7.10E-06	9.74E-06	9.68E-06	2.97E-06
1218	763902.9	4091706	8.73E-05	9.50E-05	3.36E-05	1.36E-05	1.54E-05	5.31E-06	7.29E-06	7.25E-06	2.22E-06
1219	763930.3	4091699	9.07E-05	9.88E-05	3.49E-05	1.42E-05	1.60E-05	5.52E-06	7.58E-06	7.53E-06	2.31E-06
1220	763957.8	4091693	9.41E-05	1.02E-04	3.62E-05	1.47E-05	1.66E-05	5.73E-06	7.86E-06	7.81E-06	2.40E-06
1221	763874.5	4091714	8.40E-05	9.14E-05	3.23E-05	1.31E-05	1.48E-05	5.11E-06	7.01E-06	6.97E-06	2.14E-06
1222	763871.1	4091611	6.63E-05	7.22E-05	2.55E-05	1.04E-05	1.17E-05	4.03E-06	5.54E-06	5.50E-06	1.69E-06
1223	763899.9	4091604	6.86E-05	7.47E-05	2.64E-05	1.07E-05	1.21E-05	4.17E-06	5.73E-06	5.70E-06	1.75E-06
1224	763928.7	4091597	7.08E-05	7.71E-05	2.73E-05	1.11E-05	1.25E-05	4.31E-06	5.91E-06	5.88E-06	1.80E-06
1225	763842	4091619	6.41E-05	6.97E-05	2.47E-05	1.00E-05	1.13E-05	3.90E-06	5.35E-06	5.32E-06	1.63E-06
1226	763839.1	4091516	5.26E-05	5.72E-05	2.03E-05	8.21E-06	9.29E-06	3.20E-06	4.39E-06	4.37E-06	1.34E-06
1227	763869	4091509	5.43E-05	5.91E-05	2.09E-05	8.47E-06	9.59E-06	3.30E-06	4.53E-06	4.50E-06	1.38E-06
1228	763898.9	4091502	5.58E-05	6.08E-05	2.15E-05	8.72E-06	9.86E-06	3.40E-06	4.66E-06	4.64E-06	1.42E-06
1229	763928.8	4091495	5.73E-05	6.24E-05	2.21E-05	8.95E-06	1.01E-05	3.49E-06	4.79E-06	4.76E-06	1.46E-06
1230	763809.5	4091525	5.10E-05	5.55E-05	1.96E-05	7.97E-06	9.01E-06	3.10E-06	4.26E-06	4.24E-06	1.30E-06
1231	763773.6	4091327	3.62E-05	3.94E-05	1.39E-05	5.65E-06	6.40E-06	2.20E-06	3.02E-06	3.01E-06	9.22E-07
1232	763802.4	4091320	3.71E-05	4.04E-05	1.43E-05	5.80E-06	6.56E-06	2.26E-06	3.10E-06	3.08E-06	9.46E-07
1233	763831.3	4091314	3.80E-05	4.13E-05	1.46E-05	5.93E-06	6.71E-06	2.31E-06	3.17E-06	3.15E-06	9.67E-07
1234	763860.1	4091307	3.87E-05	4.22E-05	1.49E-05	6.05E-06	6.85E-06	2.36E-06	3.24E-06	3.22E-06	9.87E-07
1235	763888.9	4091300	3.95E-05	4.29E-05	1.52E-05	6.16E-06	6.97E-06	2.40E-06	3.29E-06	3.28E-06	1.01E-06
1236	763744.5	4091336	3.53E-05	3.84E-05	1.36E-05	5.52E-06	6.24E-06	2.15E-06	2.95E-06	2.93E-06	9.00E-07
1237	763708.3	4091138	2.70E-05	2.94E-05	1.04E-05	4.22E-06	4.78E-06	1.64E-06	2.26E-06	2.24E-06	6.89E-07
1238	763736.5	4091131	2.76E-05	3.01E-05	1.06E-05	4.31E-06	4.88E-06	1.68E-06	2.31E-06	2.29E-06	7.04E-07
1239	763764.7	4091125	2.82E-05	3.06E-05	1.08E-05	4.40E-06	4.98E-06	1.71E-06	2.35E-06	2.34E-06	7.17E-07
1240	763792.9	4091118	2.87E-05	3.12E-05	1.10E-05	4.48E-06	5.06E-06	1.74E-06	2.39E-06	2.38E-06	7.30E-07
1241	763821.1	4091112	2.91E-05	3.17E-05	1.12E-05	4.55E-06	5.14E-06	1.77E-06	2.43E-06	2.42E-06	7.42E-07
1242	763849.3	4091105	2.95E-05	3.21E-05	1.14E-05	4.61E-06	5.21E-06	1.80E-06	2.46E-06	2.45E-06	7.52E-07
1243	763877.5	4091098	2.99E-05	3.25E-05	1.15E-05	4.67E-06	5.28E-06	1.82E-06	2.49E-06	2.48E-06	7.61E-07
	763679.5	4091147	2.65E-05	2.88E-05	1.02E-05	4.13E-06	4.68E-06	1.61E-06	2.21E-06	2.20E-06	6.74E-07

1245	762642.0	4000040	2 425 05	2 225 05	0.205.00	2 225 06	2.765.06	1 205 06	4 705 06	4 775 06	F 42F 07
1245	763643.9	4090949	2.13E-05	2.32E-05	8.20E-06	3.33E-06	3.76E-06	1.30E-06	1.78E-06	1.77E-06	5.43E-07
1246	763673.3	4090942	2.17E-05	2.37E-05	8.37E-06	3.39E-06	3.84E-06	1.32E-06	1.81E-06	1.80E-06	5.54E-07
1247	763702.7	4090935	2.21E-05	2.41E-05	8.52E-06	3.46E-06	3.91E-06	1.35E-06	1.85E-06	1.84E-06	5.64E-07
1248	763732.1	4090928	2.25E-05	2.45E-05	8.67E-06	3.52E-06	3.98E-06	1.37E-06	1.88E-06	1.87E-06	5.74E-07
1249	763761.5	4090921	2.29E-05	2.49E-05	8.80E-06	3.57E-06	4.04E-06	1.39E-06	1.91E-06	1.90E-06	5.83E-07
1250	763790.9	4090914	2.32E-05	2.52E-05	8.92E-06	3.62E-06	4.09E-06	1.41E-06	1.93E-06	1.92E-06	5.90E-07
1251	763820.3	4090907	2.34E-05	2.55E-05	9.02E-06	3.66E-06	4.14E-06	1.43E-06	1.96E-06	1.94E-06	5.97E-07
1252	763849.8	4090900	2.37E-05	2.58E-05	9.12E-06	3.70E-06	4.18E-06	1.44E-06	1.98E-06	1.97E-06	6.03E-07
1253	763614.5	4090957	2.09E-05	2.27E-05	8.04E-06	3.26E-06	3.69E-06	1.27E-06	1.74E-06	1.73E-06	5.32E-07
1254	763578.6	4090760	1.74E-05	1.89E-05	6.70E-06	2.72E-06	3.07E-06	1.06E-06	1.45E-06	1.44E-06	4.43E-07
1255	763607.5	4090753	1.77E-05	1.93E-05	6.83E-06	2.77E-06	3.13E-06	1.08E-06	1.48E-06	1.47E-06	4.52E-07
1256	763636.3	4090746	1.80E-05	1.96E-05	6.94E-06	2.82E-06	3.19E-06	1.10E-06	1.51E-06	1.50E-06	4.59E-07
1257	763665.2	4090739	1.83E-05	1.99E-05	7.05E-06	2.86E-06	3.24E-06	1.11E-06	1.53E-06	1.52E-06	4.67E-07
1258	763694	4090733	1.86E-05	2.02E-05	7.15E-06	2.90E-06	3.28E-06	1.13E-06	1.55E-06	1.54E-06	4.73E-07
1259	763722.8	4090726	1.88E-05	2.05E-05	7.25E-06	2.94E-06	3.32E-06	1.15E-06	1.57E-06	1.56E-06	4.80E-07
1260	763751.7	4090719	1.90E-05	2.07E-05	7.33E-06	2.97E-06	3.36E-06	1.16E-06	1.59E-06	1.58E-06	4.85E-07
1261	763780.5	4090712	1.92E-05	2.09E-05	7.40E-06	3.00E-06	3.40E-06	1.17E-06	1.61E-06	1.60E-06	4.90E-07
1262	763809.4	4090705	1.94E-05	2.11E-05	7.47E-06	3.03E-06	3.43E-06	1.18E-06	1.62E-06	1.61E-06	4.94E-07
1263	763549.5	4090768	1.71E-05	1.86E-05	6.59E-06	2.67E-06	3.02E-06	1.04E-06	1.43E-06	1.42E-06	4.36E-07
1264	763514.1	4090571	1.46E-05	1.59E-05	5.64E-06	2.29E-06	2.59E-06	8.90E-07	1.22E-06	1.22E-06	3.73E-07
1265	763543.8	4090564	1.49E-05	1.62E-05	5.73E-06	2.32E-06	2.63E-06	9.05E-07	1.24E-06	1.24E-06	3.79E-07
1266	763573.5	4090556	1.51E-05	1.65E-05	5.83E-06	2.36E-06	2.68E-06	9.21E-07	1.26E-06	1.26E-06	3.86E-07
1267	763603.2	4090549	1.54E-05	1.67E-05	5.92E-06	2.40E-06	2.71E-06	9.35E-07	1.28E-06	1.28E-06	3.91E-07
1268	763632.9	4090542	1.56E-05	1.70E-05	6.00E-06	2.43E-06	2.75E-06	9.48E-07	1.30E-06	1.29E-06	3.97E-07
1269	763662.7	4090535	1.58E-05	1.72E-05	6.08E-06	2.47E-06	2.79E-06	9.61E-07	1.32E-06	1.31E-06	4.02E-07
1270	763692.4	4090528	1.60E-05	1.74E-05	6.16E-06	2.50E-06	2.83E-06	9.73E-07	1.34E-06	1.33E-06	4.07E-07
1271	763722.1	4090521	1.62E-05	1.76E-05	6.22E-06	2.52E-06	2.85E-06	9.83E-07	1.35E-06	1.34E-06	4.12E-07
1272	763751.8	4090514	1.63E-05	1.78E-05	6.28E-06	2.55E-06	2.88E-06	9.93E-07	1.36E-06	1.35E-06	4.16E-07
1273	763781.5	4090507	1.64E-05	1.79E-05	6.33E-06	2.57E-06	2.90E-06	1.00E-06	1.37E-06	1.36E-06	4.19E-07
1274	763484.6	4090579	1.44E-05	1.57E-05	5.54E-06	2.25E-06	2.54E-06	8.76E-07	1.20E-06	1.19E-06	3.67E-07
1275	763917.7	4091911	1.69E-04	1.84E-04	6.52E-05	2.64E-05	2.99E-05	1.03E-05	1.41E-05	1.41E-05	4.31E-06
1276	763883.9	4091817	1.12E-04	1.22E-04	4.33E-05	1.76E-05	1.99E-05	6.84E-06	9.39E-06	9.33E-06	2.86E-06
1277	763850.1	4091723	8.13E-05	8.85E-05	3.13E-05	1.27E-05	1.44E-05	4.95E-06	6.79E-06	6.75E-06	2.07E-06
1278	763816.3	4091629	6.22E-05	6.77E-05	2.40E-05	9.72E-06	1.10E-05	3.79E-06	5.20E-06	5.17E-06	1.59E-06
1279	763782.5	4091534	4.96E-05	5.40E-05	1.91E-05	7.75E-06	8.77E-06	3.02E-06	4.15E-06	4.12E-06	1.26E-06
1280	763714.9	4091346	3.44E-05	3.75E-05	1.33E-05	5.38E-06	6.09E-06	2.10E-06	2.88E-06	2.86E-06	8.78E-07
1281		4091158	2.58E-05	2.81E-05	9.95E-06	4.03E-06	4.56E-06	1.57E-06	2.16E-06	2.14E-06	6.58E-07
1282	763579.7	4090970	2.04E-05	2.22E-05	7.86E-06	3.19E-06	3.61E-06	1.24E-06	1.70E-06	1.69E-06	5.20E-07
	763512.1	4090782	1.67E-05	1.82E-05	6.45E-06	2.61E-06	2.96E-06	1.02E-06	1.40E-06	1.39E-06	4.26E-07

1284	763462.4	4090587	1.42E-05	1.55E-05	5.48E-06	2.22E-06	2.51E-06	8.66E-07	1.19E-06	1.18E-06	3.63E-07
1285	763942.8	4092009	2.88E-04	3.13E-04	1.11E-04	4.50E-05	5.09E-05	1.75E-05	2.40E-05	2.39E-05	7.34E-06
1286	763919.5	4092019	2.73E-04	2.97E-04	1.05E-04	4.26E-05	4.82E-05	1.66E-05	2.28E-05	2.26E-05	6.95E-06
1287	763923.8	4091962	2.13E-04	2.32E-04	8.20E-05	3.32E-05	3.76E-05	1.30E-05	1.78E-05	1.77E-05	5.42E-06
1288	763898.3	4091974	2.02E-04	2.20E-04	7.78E-05	3.15E-05	3.57E-05	1.23E-05	1.69E-05	1.68E-05	5.14E-06
1289	763891.8	4091922	1.61E-04	1.75E-04	6.20E-05	2.51E-05	2.84E-05	9.80E-06	1.34E-05	1.34E-05	4.10E-06
1290	763860.9	4091826	1.08E-04	1.18E-04	4.18E-05	1.69E-05	1.92E-05	6.60E-06	9.06E-06	9.00E-06	2.76E-06
1291	763834.7	4091838	1.04E-04	1.13E-04	4.00E-05	1.62E-05	1.84E-05	6.33E-06	8.68E-06	8.63E-06	2.65E-06
1292	763821.3	4091735	7.83E-05	8.52E-05	3.01E-05	1.22E-05	1.38E-05	4.76E-06	6.54E-06	6.50E-06	1.99E-06
1293	763792.3	4091747	7.51E-05	8.18E-05	2.89E-05	1.17E-05	1.33E-05	4.57E-06	6.27E-06	6.24E-06	1.91E-06
1294	763777.5	4091645	5.95E-05	6.48E-05	2.29E-05	9.29E-06	1.05E-05	3.62E-06	4.97E-06	4.94E-06	1.52E-06
1295	763749.9	4091657	5.75E-05	6.26E-05	2.21E-05	8.98E-06	1.02E-05	3.50E-06	4.80E-06	4.77E-06	1.46E-06
1296	763734.2	4091554	4.72E-05	5.14E-05	1.82E-05	7.38E-06	8.35E-06	2.87E-06	3.94E-06	3.92E-06	1.20E-06
1297	763758.4	4091544	4.85E-05	5.28E-05	1.87E-05	7.57E-06	8.56E-06	2.95E-06	4.05E-06	4.02E-06	1.24E-06
1298	763707.5	4091566	4.58E-05	4.99E-05	1.77E-05	7.16E-06	8.10E-06	2.79E-06	3.83E-06	3.81E-06	1.17E-06
1299	763650.3	4091373	3.26E-05	3.55E-05	1.26E-05	5.09E-06	5.76E-06	1.98E-06	2.72E-06	2.71E-06	8.31E-07
1300	763676.1	4091362	3.34E-05	3.63E-05	1.28E-05	5.21E-06	5.89E-06	2.03E-06	2.78E-06	2.77E-06	8.50E-07
1301	763622.7	4091385	3.18E-05	3.46E-05	1.22E-05	4.97E-06	5.62E-06	1.93E-06	2.65E-06	2.64E-06	8.10E-07
1302	763566.1	4091192	2.44E-05	2.65E-05	9.38E-06	3.80E-06	4.30E-06	1.48E-06	2.03E-06	2.02E-06	6.21E-07
1303	763593.1	4091180	2.48E-05	2.70E-05	9.57E-06	3.88E-06	4.39E-06	1.51E-06	2.07E-06	2.06E-06	6.33E-07
1304	763620.2	4091169	2.53E-05	2.76E-05	9.76E-06	3.96E-06	4.48E-06	1.54E-06	2.12E-06	2.10E-06	6.46E-07
1305	763537.9	4091204	2.39E-05	2.60E-05	9.19E-06	3.73E-06	4.22E-06	1.45E-06	1.99E-06	1.98E-06	6.08E-07
1306	763481.7	4091010	1.92E-05	2.09E-05	7.40E-06	3.00E-06	3.39E-06	1.17E-06	1.60E-06	1.59E-06	4.89E-07
1307	763509.7	4090999	1.95E-05	2.13E-05	7.52E-06	3.05E-06	3.45E-06	1.19E-06	1.63E-06	1.62E-06	4.98E-07
1308	763537.7	4090987	1.99E-05	2.16E-05	7.65E-06	3.10E-06	3.51E-06	1.21E-06	1.66E-06	1.65E-06	5.06E-07
1309	763453	4091023	1.89E-05	2.06E-05	7.28E-06	2.95E-06	3.34E-06	1.15E-06	1.58E-06	1.57E-06	4.82E-07
1310	763397.2	4090829	1.57E-05	1.71E-05	6.06E-06	2.46E-06	2.78E-06	9.57E-07	1.31E-06	1.31E-06	4.01E-07
1311	763426	4090817	1.59E-05	1.74E-05	6.14E-06	2.49E-06	2.82E-06	9.70E-07	1.33E-06	1.32E-06	4.06E-07
1312	763454.7	4090805	1.62E-05	1.76E-05	6.24E-06	2.53E-06	2.86E-06	9.86E-07	1.35E-06	1.35E-06	4.13E-07
1313	763483.4	4090793	1.65E-05	1.79E-05	6.34E-06	2.57E-06	2.91E-06	1.00E-06	1.37E-06	1.37E-06	4.19E-07
1314	763368.2	4090842	1.55E-05	1.69E-05	5.98E-06	2.42E-06	2.74E-06	9.45E-07	1.30E-06	1.29E-06	3.96E-07
1315	763312.7	4090648	1.33E-05	1.44E-05	5.11E-06	2.07E-06	2.34E-06	8.07E-07	1.11E-06	1.10E-06	3.38E-07
1316	763342	4090636	1.34E-05	1.46E-05	5.17E-06	2.10E-06	2.37E-06	8.17E-07	1.12E-06	1.11E-06	3.42E-07
1317	763371.3	4090623	1.36E-05	1.48E-05	5.24E-06	2.12E-06	2.40E-06	8.28E-07	1.14E-06	1.13E-06	3.47E-07
1318	763400.6	4090611	1.38E-05	1.50E-05	5.31E-06	2.15E-06	2.44E-06	8.39E-07	1.15E-06	1.14E-06	3.51E-07
1319	763429.9	4090599	1.40E-05	1.52E-05	5.39E-06	2.18E-06	2.47E-06	8.51E-07	1.17E-06	1.16E-06	3.56E-07
1320	763283.4	4090661	1.31E-05	1.43E-05	5.05E-06	2.05E-06	2.32E-06	7.98E-07	1.10E-06	1.09E-06	3.34E-07
1321	763893.5	4092034	2.60E-04	2.83E-04	1.00E-04	4.06E-05	4.60E-05	1.58E-05	2.17E-05	2.16E-05	6.63E-06
1322	763876.6	4091986	1.95E-04	2.12E-04	7.50E-05	3.04E-05	3.44E-05	1.18E-05	1.63E-05	1.62E-05	4.96E-06

1323	763852	4092001	1.88E-04	2.04E-04	7.23E-05	2.93E-05	3.32E-05	1.14E-05	1.57E-05	1.56E-05	4.79E-06
1324	763851	4091943	1.50E-04	1.64E-04	5.79E-05	2.35E-05	2.66E-05	9.15E-06	1.26E-05	1.25E-05	3.83E-06
1325	763824.2	4091960	1.45E-04	1.57E-04	5.57E-05	2.26E-05	2.56E-05	8.80E-06	1.21E-05	1.20E-05	3.69E-06
1326	763795.6	4091860	9.82E-05	1.07E-04	3.78E-05	1.53E-05	1.73E-05	5.97E-06	8.20E-06	8.15E-06	2.50E-06
1327	763768.8	4091876	9.44E-05	1.03E-04	3.64E-05	1.47E-05	1.67E-05	5.75E-06	7.88E-06	7.84E-06	2.41E-06
1328	763740.1	4091777	6.99E-05	7.61E-05	2.69E-05	1.09E-05	1.23E-05	4.25E-06	5.84E-06	5.80E-06	1.78E-06
1329	763766.2	4091762	7.26E-05	7.90E-05	2.80E-05	1.13E-05	1.28E-05	4.42E-06	6.06E-06	6.03E-06	1.85E-06
1330	763713.3	4091793	6.73E-05	7.32E-05	2.59E-05	1.05E-05	1.19E-05	4.09E-06	5.62E-06	5.58E-06	1.71E-06
1331	763684.7	4091694	5.29E-05	5.76E-05	2.04E-05	8.26E-06	9.34E-06	3.22E-06	4.42E-06	4.39E-06	1.35E-06
1332	763710.8	4091679	5.48E-05	5.96E-05	2.11E-05	8.56E-06	9.68E-06	3.33E-06	4.58E-06	4.55E-06	1.40E-06
1333	763657.9	4091710	5.10E-05	5.55E-05	1.96E-05	7.96E-06	9.00E-06	3.10E-06	4.26E-06	4.23E-06	1.30E-06
1334	763629.2	4091610	4.18E-05	4.55E-05	1.61E-05	6.53E-06	7.39E-06	2.55E-06	3.49E-06	3.47E-06	1.07E-06
1335	763655.3	4091596	4.33E-05	4.71E-05	1.67E-05	6.76E-06	7.64E-06	2.63E-06	3.61E-06	3.59E-06	1.10E-06
1336	763681.4	4091581	4.46E-05	4.86E-05	1.72E-05	6.97E-06	7.88E-06	2.71E-06	3.73E-06	3.70E-06	1.14E-06
1337	763602.4	4091627	4.04E-05	4.40E-05	1.56E-05	6.31E-06	7.14E-06	2.46E-06	3.37E-06	3.35E-06	1.03E-06
1338	763518.3	4091444	2.88E-05	3.14E-05	1.11E-05	4.51E-06	5.10E-06	1.76E-06	2.41E-06	2.39E-06	7.35E-07
1339	763544.4	4091429	2.97E-05	3.23E-05	1.14E-05	4.63E-06	5.24E-06	1.80E-06	2.48E-06	2.46E-06	7.56E-07
1340	763570.5	4091414	3.04E-05	3.31E-05	1.17E-05	4.75E-06	5.38E-06	1.85E-06	2.54E-06	2.53E-06	7.75E-07
1341	763596.6	4091400	3.11E-05	3.39E-05	1.20E-05	4.86E-06	5.50E-06	1.89E-06	2.60E-06	2.58E-06	7.93E-07
1342	763491.5	4091460	2.80E-05	3.05E-05	1.08E-05	4.37E-06	4.95E-06	1.70E-06	2.34E-06	2.32E-06	7.13E-07
1343	763408.7	4091277	2.17E-05	2.37E-05	8.37E-06	3.39E-06	3.84E-06	1.32E-06	1.81E-06	1.80E-06	5.54E-07
1344	763437.4	4091261	2.23E-05	2.42E-05	8.58E-06	3.48E-06	3.94E-06	1.36E-06	1.86E-06	1.85E-06	5.68E-07
1345	763466.1	4091244	2.28E-05	2.48E-05	8.77E-06	3.56E-06	4.02E-06	1.39E-06	1.90E-06	1.89E-06	5.80E-07
1346	763494.8	4091228	2.32E-05	2.53E-05	8.94E-06	3.63E-06	4.10E-06	1.41E-06	1.94E-06	1.93E-06	5.92E-07
1347	763380.6	4091294	2.12E-05	2.30E-05	8.15E-06	3.31E-06	3.74E-06	1.29E-06	1.77E-06	1.76E-06	5.39E-07
1348	763297.6	4091110	1.73E-05	1.89E-05	6.67E-06	2.71E-06	3.06E-06	1.05E-06	1.45E-06	1.44E-06	4.41E-07
1349	763325.8	4091094	1.77E-05	1.92E-05	6.80E-06	2.76E-06	3.12E-06	1.07E-06	1.48E-06	1.47E-06	4.50E-07
1350	763354.1	4091079	1.80E-05	1.96E-05	6.93E-06	2.81E-06	3.18E-06	1.09E-06	1.50E-06	1.49E-06	4.58E-07
1351	763382.4	4091063	1.83E-05	1.99E-05	7.03E-06	2.85E-06	3.22E-06	1.11E-06	1.52E-06	1.52E-06	4.65E-07
1352	763410.6	4091047	1.85E-05	2.02E-05	7.13E-06	2.89E-06	3.27E-06	1.13E-06	1.55E-06	1.54E-06	4.72E-07
1353	763269.7	4091128	1.69E-05	1.84E-05	6.52E-06	2.64E-06	2.99E-06	1.03E-06	1.41E-06	1.40E-06	4.31E-07
1354	763186.5	4090944	1.44E-05	1.56E-05	5.53E-06	2.24E-06	2.54E-06	8.73E-07	1.20E-06	1.19E-06	3.66E-07
1355	763214.5	4090928	1.46E-05	1.59E-05	5.63E-06	2.28E-06	2.58E-06	8.89E-07	1.22E-06	1.21E-06	3.72E-07
1356	763242.4	4090913	1.48E-05	1.61E-05	5.71E-06	2.31E-06	2.62E-06	9.02E-07	1.24E-06	1.23E-06	3.78E-07
1357	763270.4	4090897	1.50E-05	1.63E-05	5.78E-06	2.34E-06	2.65E-06	9.13E-07	1.25E-06	1.25E-06	3.82E-07
1358	763298.3	4090881	1.52E-05	1.65E-05	5.84E-06	2.37E-06	2.68E-06	9.22E-07	1.27E-06	1.26E-06	3.86E-07
1359	763326.3	4090865	1.53E-05	1.67E-05	5.89E-06	2.39E-06	2.70E-06	9.31E-07	1.28E-06	1.27E-06	3.90E-07
1360	763158.8	4090961	1.41E-05	1.53E-05	5.42E-06	2.20E-06	2.49E-06	8.56E-07	1.17E-06	1.17E-06	3.58E-07
1361	763075.5	4090778	1.22E-05	1.33E-05	4.72E-06	1.91E-06	2.16E-06	7.45E-07	1.02E-06	1.02E-06	3.12E-07

1362	763103.2	4090762	1.24E-05	1.35E-05	4.79E-06	1.94E-06	2.20E-06	7.56E-07	1.04E-06	1.03E-06	3.17E-07
1363	763130.9	4090746	1.26E-05	1.37E-05	4.85E-06	1.97E-06	2.23E-06	7.66E-07	1.05E-06	1.05E-06	3.21E-07
1364	763158.6	4090731	1.27E-05	1.38E-05	4.90E-06	1.99E-06	2.25E-06	7.74E-07	1.06E-06	1.06E-06	3.24E-07
1365	763186.4	4090715	1.28E-05	1.39E-05	4.93E-06	2.00E-06	2.26E-06	7.79E-07	1.07E-06	1.06E-06	3.26E-07
1366	763214.1	4090700	1.29E-05	1.40E-05	4.97E-06	2.01E-06	2.28E-06	7.85E-07	1.08E-06	1.07E-06	3.29E-07
1367	763241.8	4090684	1.30E-05	1.41E-05	5.00E-06	2.03E-06	2.29E-06	7.90E-07	1.08E-06	1.08E-06	3.31E-07
1368	763047.9	4090795	1.20E-05	1.31E-05	4.63E-06	1.88E-06	2.13E-06	7.32E-07	1.00E-06	9.99E-07	3.06E-07
1369	763872.1	4092048	2.53E-04	2.76E-04	9.76E-05	3.96E-05	4.48E-05	1.54E-05	2.12E-05	2.10E-05	6.46E-06
1370	763746.8	4091892	9.19E-05	1.00E-04	3.54E-05	1.44E-05	1.62E-05	5.59E-06	7.68E-06	7.63E-06	2.34E-06
1371	763694.5	4091806	6.57E-05	7.15E-05	2.53E-05	1.03E-05	1.16E-05	3.99E-06	5.48E-06	5.45E-06	1.67E-06
1372	763635.2	4091726	4.95E-05	5.39E-05	1.91E-05	7.73E-06	8.75E-06	3.01E-06	4.13E-06	4.11E-06	1.26E-06
1373	763582.6	4091641	3.94E-05	4.29E-05	1.52E-05	6.16E-06	6.96E-06	2.40E-06	3.29E-06	3.27E-06	1.00E-06
1374	763464.3	4091479	2.71E-05	2.95E-05	1.05E-05	4.24E-06	4.80E-06	1.65E-06	2.27E-06	2.25E-06	6.92E-07
1375	763346	4091318	2.04E-05	2.22E-05	7.86E-06	3.19E-06	3.61E-06	1.24E-06	1.70E-06	1.69E-06	5.20E-07
1376	763226.8	4091158	1.62E-05	1.77E-05	6.25E-06	2.54E-06	2.87E-06	9.88E-07	1.36E-06	1.35E-06	4.14E-07
1377	763251.3	4091140	1.66E-05	1.81E-05	6.41E-06	2.60E-06	2.94E-06	1.01E-06	1.39E-06	1.38E-06	4.24E-07
1378	763108.5	4090996	1.34E-05	1.46E-05	5.18E-06	2.10E-06	2.38E-06	8.18E-07	1.12E-06	1.12E-06	3.43E-07
1379	763127.3	4090983	1.37E-05	1.49E-05	5.28E-06	2.14E-06	2.42E-06	8.34E-07	1.14E-06	1.14E-06	3.49E-07
1380	762990.1	4090835	1.15E-05	1.25E-05	4.41E-06	1.79E-06	2.03E-06	6.97E-07	9.57E-07	9.52E-07	2.92E-07
1381	763009.4	4090822	1.17E-05	1.27E-05	4.49E-06	1.82E-06	2.06E-06	7.10E-07	9.74E-07	9.68E-07	2.97E-07
1382	763028.6	4090808	1.19E-05	1.29E-05	4.57E-06	1.85E-06	2.10E-06	7.22E-07	9.91E-07	9.85E-07	3.02E-07
1383	763902.6	4092152	5.97E-04	6.50E-04	2.30E-04	9.33E-05	1.06E-04	3.64E-05	4.99E-05	4.96E-05	1.52E-05
1384	763823.2	4092023	1.83E-04	1.99E-04	7.04E-05	2.86E-05	3.23E-05	1.11E-05	1.53E-05	1.52E-05	4.66E-06
1385	763791.1	4091984	1.40E-04	1.52E-04	5.39E-05	2.19E-05	2.47E-05	8.52E-06	1.17E-05	1.16E-05	3.57E-06
1386	763726.9	4091908	9.02E-05	9.81E-05	3.47E-05	1.41E-05	1.59E-05	5.49E-06	7.53E-06	7.48E-06	2.30E-06
1387	763675.2	4091821	6.42E-05	6.99E-05	2.47E-05	1.00E-05	1.14E-05	3.91E-06	5.36E-06	5.33E-06	1.64E-06
1388	763645.8	4091845	6.26E-05	6.81E-05	2.41E-05	9.77E-06	1.11E-05	3.81E-06	5.23E-06	5.20E-06	1.59E-06
1389	763613.5	4091743	4.83E-05	5.25E-05	1.86E-05	7.54E-06	8.53E-06	2.94E-06	4.03E-06	4.01E-06	1.23E-06
1390	763581.6	4091769	4.69E-05	5.10E-05	1.81E-05	7.32E-06	8.28E-06	2.85E-06	3.91E-06	3.89E-06	1.19E-06
1391	763551.7	4091664	3.80E-05	4.14E-05	1.46E-05	5.94E-06	6.72E-06	2.31E-06	3.17E-06	3.16E-06	9.69E-07
1392	763517.4	4091692	3.68E-05	4.00E-05	1.42E-05	5.75E-06	6.50E-06	2.24E-06	3.07E-06	3.05E-06	9.37E-07
1393	763420.8	4091513	2.58E-05	2.81E-05	9.95E-06	4.03E-06	4.56E-06	1.57E-06	2.16E-06	2.14E-06	6.58E-07
1394	763389	4091539	2.50E-05	2.72E-05	9.62E-06	3.90E-06	4.41E-06	1.52E-06	2.09E-06	2.07E-06	6.37E-07
1395	763291.2	4091360	1.92E-05	2.09E-05	7.38E-06	2.99E-06	3.39E-06	1.17E-06	1.60E-06	1.59E-06	4.88E-07
1396	763318.6	4091339	1.98E-05	2.15E-05	7.62E-06	3.09E-06	3.50E-06	1.20E-06	1.65E-06	1.64E-06	5.04E-07
1397	763260.6	4091385	1.85E-05	2.02E-05	7.13E-06	2.89E-06	3.27E-06	1.13E-06	1.55E-06	1.54E-06	4.72E-07
1398	763165.3	4091205	1.51E-05	1.65E-05	5.82E-06	2.36E-06	2.67E-06	9.20E-07	1.26E-06	1.26E-06	3.85E-07
1399	763197.6	4091180	1.57E-05	1.71E-05	6.06E-06	2.46E-06	2.78E-06	9.57E-07	1.31E-06	1.31E-06	4.01E-07
1400	763132.2	4091232	1.45E-05	1.58E-05	5.59E-06	2.27E-06	2.56E-06	8.83E-07	1.21E-06	1.20E-06	3.70E-07

1401	763035.6	4091053	1.23E-05	1.34E-05	4.75E-06	1.93E-06	2.18E-06	7.50E-07	1.03E-06	1.02E-06	3.14E-07
1402	763065.5	4091029	1.28E-05	1.39E-05	4.94E-06	2.00E-06	2.26E-06	7.80E-07	1.07E-06	1.06E-06	3.27E-07
1403	763003.8	4091079	1.18E-05	1.29E-05	4.55E-06	1.85E-06	2.09E-06	7.20E-07	9.87E-07	9.82E-07	3.01E-07
1404	762909.2	4090898	1.04E-05	1.13E-05	4.00E-06	1.62E-06	1.84E-06	6.32E-07	8.68E-07	8.63E-07	2.65E-07
1405	762943	4090871	1.09E-05	1.18E-05	4.18E-06	1.70E-06	1.92E-06	6.60E-07	9.06E-07	9.01E-07	2.77E-07
1406	762875.4	4090925	9.92E-06	1.08E-05	3.82E-06	1.55E-06	1.75E-06	6.04E-07	8.29E-07	8.24E-07	2.53E-07
1407	763881.2	4092175	6.23E-04	6.78E-04	2.40E-04	9.73E-05	1.10E-04	3.79E-05	5.20E-05	5.17E-05	1.59E-05
1408	763861.7	4092122	3.69E-04	4.01E-04	1.42E-04	5.76E-05	6.51E-05	2.24E-05	3.08E-05	3.06E-05	9.39E-06
1409	763843.2	4092142	3.80E-04	4.13E-04	1.46E-04	5.93E-05	6.71E-05	2.31E-05	3.17E-05	3.15E-05	9.67E-06
1410	763795.7	4092121	2.61E-04	2.84E-04	1.01E-04	4.08E-05	4.62E-05	1.59E-05	2.18E-05	2.17E-05	6.66E-06
1411	763747.8	4092025	1.39E-04	1.51E-04	5.36E-05	2.17E-05	2.46E-05	8.46E-06	1.16E-05	1.15E-05	3.54E-06
1412	763765.4	4092007	1.39E-04	1.51E-04	5.34E-05	2.17E-05	2.45E-05	8.43E-06	1.16E-05	1.15E-05	3.53E-06
1413	763729.4	4092045	1.41E-04	1.54E-04	5.43E-05	2.20E-05	2.49E-05	8.58E-06	1.18E-05	1.17E-05	3.59E-06
1414	763672.4	4091959	8.89E-05	9.67E-05	3.42E-05	1.39E-05	1.57E-05	5.41E-06	7.42E-06	7.38E-06	2.26E-06
1415	763691.2	4091940	8.88E-05	9.66E-05	3.42E-05	1.39E-05	1.57E-05	5.40E-06	7.41E-06	7.37E-06	2.26E-06
1416	763653.4	4091979	8.99E-05	9.79E-05	3.46E-05	1.40E-05	1.59E-05	5.47E-06	7.51E-06	7.47E-06	2.29E-06
1417	763596.9	4091894	6.23E-05	6.78E-05	2.40E-05	9.73E-06	1.10E-05	3.79E-06	5.20E-06	5.17E-06	1.59E-06
1418	763616.4	4091874	6.22E-05	6.77E-05	2.39E-05	9.71E-06	1.10E-05	3.78E-06	5.19E-06	5.16E-06	1.58E-06
1419	763577.5	4091914	6.30E-05	6.86E-05	2.43E-05	9.84E-06	1.11E-05	3.83E-06	5.26E-06	5.23E-06	1.60E-06
1420	763521.2	4091828	4.65E-05	5.06E-05	1.79E-05	7.26E-06	8.21E-06	2.83E-06	3.88E-06	3.86E-06	1.18E-06
1421	763541.4	4091808	4.64E-05	5.05E-05	1.79E-05	7.24E-06	8.19E-06	2.82E-06	3.87E-06	3.85E-06	1.18E-06
1422	763561.5	4091788	4.65E-05	5.06E-05	1.79E-05	7.26E-06	8.21E-06	2.83E-06	3.88E-06	3.86E-06	1.18E-06
1423	763501.6	4091849	4.70E-05	5.12E-05	1.81E-05	7.34E-06	8.30E-06	2.86E-06	3.92E-06	3.90E-06	1.20E-06
1424	763445.5	4091763	3.63E-05	3.95E-05	1.40E-05	5.67E-06	6.41E-06	2.21E-06	3.03E-06	3.01E-06	9.25E-07
1425	763466.1	4091743	3.62E-05	3.94E-05	1.39E-05	5.65E-06	6.39E-06	2.20E-06	3.02E-06	3.00E-06	9.22E-07
1426	763486.6	4091722	3.63E-05	3.95E-05	1.40E-05	5.66E-06	6.41E-06	2.21E-06	3.03E-06	3.01E-06	9.24E-07
1427	763425.6	4091784	3.67E-05	4.00E-05	1.41E-05	5.73E-06	6.49E-06	2.23E-06	3.07E-06	3.05E-06	9.35E-07
1428	763293	4091633	2.43E-05	2.64E-05	9.36E-06	3.79E-06	4.29E-06	1.48E-06	2.03E-06	2.02E-06	6.19E-07
1429	763312.2	4091614	2.42E-05	2.63E-05	9.32E-06	3.78E-06	4.27E-06	1.47E-06	2.02E-06	2.01E-06	6.17E-07
1430	763331.4	4091595	2.42E-05	2.64E-05	9.33E-06	3.78E-06	4.28E-06	1.47E-06	2.02E-06	2.01E-06	6.17E-07
1431	763350.6	4091576	2.44E-05	2.65E-05	9.38E-06	3.80E-06	4.30E-06	1.48E-06	2.03E-06	2.02E-06	6.21E-07
1432	763369.8	4091558	2.46E-05	2.68E-05	9.48E-06	3.85E-06	4.35E-06	1.50E-06	2.06E-06	2.04E-06	6.27E-07
1433	763273.8	4091654	2.46E-05	2.68E-05	9.49E-06	3.85E-06	4.35E-06	1.50E-06	2.06E-06	2.05E-06	6.28E-07
1434	763141.5	4091503	1.77E-05	1.93E-05	6.83E-06	2.77E-06	3.13E-06	1.08E-06	1.48E-06	1.47E-06	4.52E-07
1435	763161.3	4091483	1.76E-05	1.91E-05	6.77E-06	2.75E-06	3.11E-06	1.07E-06	1.47E-06	1.46E-06	4.48E-07
1436	763181.2	4091464	1.76E-05	1.91E-05	6.77E-06	2.75E-06	3.11E-06	1.07E-06	1.47E-06	1.46E-06	4.48E-07
1437	763201	4091444	1.77E-05	1.93E-05	6.81E-06	2.76E-06	3.12E-06	1.08E-06	1.48E-06	1.47E-06	4.51E-07
1438	763220.9	4091424	1.79E-05	1.94E-05	6.88E-06	2.79E-06	3.16E-06	1.09E-06	1.49E-06	1.48E-06	4.55E-07
1439	763240.7	4091405	1.82E-05	1.98E-05	6.99E-06	2.83E-06	3.21E-06	1.10E-06	1.52E-06	1.51E-06	4.63E-07

1440	763121.9	4091524	1.80E-05	1.96E-05	6.94E-06	2.81E-06	3.18E-06	1.10E-06	1.50E-06	1.50E-06	4.59E-07
1441	762989.9	4091373	1.37E-05	1.49E-05	5.28E-06	2.14E-06	2.42E-06	8.34E-07	1.14E-06	1.14E-06	3.49E-07
1442	763010.2	4091352	1.36E-05	1.48E-05	5.22E-06	2.12E-06	2.40E-06	8.25E-07	1.13E-06	1.13E-06	3.46E-07
1443	763030.5	4091332	1.35E-05	1.47E-05	5.21E-06	2.11E-06	2.39E-06	8.23E-07	1.13E-06	1.12E-06	3.45E-07
1444	763050.8	4091312	1.36E-05	1.48E-05	5.22E-06	2.12E-06	2.40E-06	8.25E-07	1.13E-06	1.13E-06	3.46E-07
1445	763071.2	4091292	1.37E-05	1.49E-05	5.28E-06	2.14E-06	2.42E-06	8.34E-07	1.14E-06	1.14E-06	3.49E-07
1446	763091.5	4091272	1.39E-05	1.51E-05	5.36E-06	2.17E-06	2.46E-06	8.46E-07	1.16E-06	1.15E-06	3.54E-07
1447	763111.8	4091252	1.42E-05	1.54E-05	5.46E-06	2.22E-06	2.51E-06	8.63E-07	1.18E-06	1.18E-06	3.62E-07
1448	762970.1	4091394	1.39E-05	1.52E-05	5.37E-06	2.18E-06	2.46E-06	8.49E-07	1.16E-06	1.16E-06	3.55E-07
1449	762838.2	4091242	1.11E-05	1.20E-05	4.26E-06	1.73E-06	1.95E-06	6.73E-07	9.23E-07	9.18E-07	2.82E-07
1450	762858.9	4091222	1.09E-05	1.19E-05	4.20E-06	1.70E-06	1.93E-06	6.64E-07	9.11E-07	9.06E-07	2.78E-07
1451	762879.6	4091201	1.09E-05	1.18E-05	4.18E-06	1.70E-06	1.92E-06	6.60E-07	9.06E-07	9.01E-07	2.77E-07
1452	762900.3	4091181	1.09E-05	1.18E-05	4.18E-06	1.70E-06	1.92E-06	6.60E-07	9.06E-07	9.01E-07	2.77E-07
1453	762921	4091160	1.09E-05	1.19E-05	4.21E-06	1.71E-06	1.93E-06	6.65E-07	9.13E-07	9.08E-07	2.79E-07
1454	762941.7	4091140	1.11E-05	1.21E-05	4.27E-06	1.73E-06	1.96E-06	6.74E-07	9.25E-07	9.20E-07	2.82E-07
1455	762962.4	4091119	1.13E-05	1.23E-05	4.34E-06	1.76E-06	1.99E-06	6.86E-07	9.42E-07	9.36E-07	2.87E-07
1456	762983.1	4091099	1.15E-05	1.26E-05	4.44E-06	1.80E-06	2.04E-06	7.02E-07	9.64E-07	9.58E-07	2.94E-07
1457	762818.2	4091264	1.13E-05	1.23E-05	4.34E-06	1.76E-06	1.99E-06	6.86E-07	9.42E-07	9.36E-07	2.87E-07
1458	762686.5	4091112	9.22E-06	1.00E-05	3.55E-06	1.44E-06	1.63E-06	5.61E-07	7.70E-07	7.65E-07	2.35E-07
1459	762707.5	4091091	9.08E-06	9.88E-06	3.50E-06	1.42E-06	1.60E-06	5.52E-07	7.58E-07	7.54E-07	2.31E-07
1460	762728.5	4091070	8.99E-06	9.79E-06	3.46E-06	1.40E-06	1.59E-06	5.47E-07	7.51E-07	7.47E-07	2.29E-07
1461	762749.4	4091050	8.97E-06	9.77E-06	3.46E-06	1.40E-06	1.59E-06	5.46E-07	7.49E-07	7.45E-07	2.29E-07
1462	762770.4	4091029	8.99E-06	9.79E-06	3.46E-06	1.40E-06	1.59E-06	5.47E-07	7.51E-07	7.47E-07	2.29E-07
1463	762791.4	4091008	9.10E-06	9.90E-06	3.50E-06	1.42E-06	1.61E-06	5.53E-07	7.60E-07	7.55E-07	2.32E-07
1464	762812.4	4090987	9.24E-06	1.01E-05	3.56E-06	1.44E-06	1.63E-06	5.62E-07	7.71E-07	7.67E-07	2.35E-07
1465	762833.4	4090967	9.44E-06	1.03E-05	3.64E-06	1.47E-06	1.67E-06	5.74E-07	7.88E-07	7.84E-07	2.41E-07
1466	762854.4	4090946	9.66E-06	1.05E-05	3.72E-06	1.51E-06	1.71E-06	5.88E-07	8.07E-07	8.02E-07	2.46E-07
1467	762666.4	4091133	9.42E-06	1.03E-05	3.63E-06	1.47E-06	1.66E-06	5.73E-07	7.87E-07	7.82E-07	2.40E-07
1468	763858.9	4092200	6.55E-04	7.13E-04	2.52E-04	1.02E-04	1.16E-04	3.98E-05	5.47E-05	5.44E-05	1.67E-05
1469	763829.3	4092232	6.82E-04	7.42E-04	2.62E-04	1.06E-04	1.20E-04	4.15E-05	5.69E-05	5.66E-05	1.74E-05
1470	763822	4092166	3.95E-04	4.30E-04	1.52E-04	6.17E-05	6.98E-05	2.40E-05	3.30E-05	3.28E-05	1.01E-05
1471	763792.4	4092198	4.13E-04	4.49E-04	1.59E-04	6.44E-05	7.29E-05	2.51E-05	3.44E-05	3.42E-05	1.05E-05
1472	763770.3	4092148	2.71E-04	2.95E-04	1.04E-04	4.23E-05	4.79E-05	1.65E-05	2.26E-05	2.25E-05	6.90E-06
1473	763748.3	4092098	1.91E-04	2.08E-04	7.35E-05	2.98E-05	3.37E-05	1.16E-05	1.59E-05	1.58E-05	4.86E-06
1474	763718.6	4092131	1.99E-04	2.17E-04	7.67E-05	3.11E-05	3.52E-05	1.21E-05	1.66E-05	1.65E-05	5.08E-06
1475	763711.4	4092065	1.44E-04	1.57E-04	5.55E-05	2.25E-05	2.55E-05	8.77E-06	1.20E-05	1.20E-05	3.67E-06
1476	763681.7	4092097	1.51E-04	1.64E-04	5.80E-05	2.35E-05	2.66E-05	9.16E-06	1.26E-05	1.25E-05	3.84E-06
1477	763637.6	4091997	9.14E-05	9.95E-05	3.52E-05	1.43E-05	1.62E-05	5.56E-06	7.63E-06	7.59E-06	2.33E-06
1478	763607.9	4092030	9.51E-05	1.04E-04	3.66E-05	1.49E-05	1.68E-05	5.79E-06	7.94E-06	7.90E-06	2.42E-06

1479	763549	4091946	6.48E-05	7.06E-05	2.50E-05	1.01E-05	1.15E-05	3.94E-06	5.41E-06	5.38E-06	1.65E-06
1480	763475.2	4091878	4.82E-05	5.25E-05	1.86E-05	7.53E-06	8.52E-06	2.93E-06	4.03E-06	4.00E-06	1.23E-06
1481	763401.4	4091811	3.76E-05	4.09E-05	1.45E-05	5.87E-06	6.64E-06	2.29E-06	3.14E-06	3.12E-06	9.57E-07
1482	763253.9	4091676	2.51E-05	2.73E-05	9.68E-06	3.92E-06	4.44E-06	1.53E-06	2.10E-06	2.09E-06	6.40E-07
1483	763106.3	4091541	1.83E-05	1.99E-05	7.05E-06	2.86E-06	3.24E-06	1.11E-06	1.53E-06	1.52E-06	4.67E-07
1484	762944	4091422	1.44E-05	1.57E-05	5.56E-06	2.25E-06	2.55E-06	8.78E-07	1.21E-06	1.20E-06	3.68E-07
1485	762796.4	4091287	1.16E-05	1.26E-05	4.47E-06	1.81E-06	2.05E-06	7.06E-07	9.69E-07	9.63E-07	2.96E-07
1486	762648.9	4091152	9.64E-06	1.05E-05	3.71E-06	1.51E-06	1.70E-06	5.87E-07	8.05E-07	8.01E-07	2.46E-07
1487	763814.7	4092250	6.99E-04	7.61E-04	2.69E-04	1.09E-04	1.24E-04	4.25E-05	5.84E-05	5.80E-05	1.78E-05
1488	763775.8	4092218	4.26E-04	4.64E-04	1.64E-04	6.66E-05	7.54E-05	2.60E-05	3.56E-05	3.54E-05	1.09E-05
1489	763747.4	4092174	2.81E-04	3.06E-04	1.08E-04	4.39E-05	4.97E-05	1.71E-05	2.35E-05	2.33E-05	7.16E-06
1490	763726.3	4092200	2.95E-04	3.21E-04	1.13E-04	4.60E-05	5.21E-05	1.79E-05	2.46E-05	2.45E-05	7.51E-06
1491	763698	4092156	2.08E-04	2.26E-04	8.01E-05	3.25E-05	3.68E-05	1.27E-05	1.74E-05	1.73E-05	5.30E-06
1492	763659.1	4092124	1.58E-04	1.72E-04	6.08E-05	2.47E-05	2.79E-05	9.61E-06	1.32E-05	1.31E-05	4.02E-06
1493	763591.8	4092048	9.81E-05	1.07E-04	3.78E-05	1.53E-05	1.73E-05	5.97E-06	8.19E-06	8.14E-06	2.50E-06
1494	763570.7	4092075	1.03E-04	1.12E-04	3.97E-05	1.61E-05	1.82E-05	6.27E-06	8.61E-06	8.56E-06	2.63E-06
1495	763524.1	4091974	6.72E-05	7.32E-05	2.59E-05	1.05E-05	1.19E-05	4.09E-06	5.61E-06	5.58E-06	1.71E-06
1496	763503.4	4091999	7.01E-05	7.63E-05	2.70E-05	1.10E-05	1.24E-05	4.27E-06	5.86E-06	5.82E-06	1.79E-06
1497	763444.2	4091913	5.04E-05	5.48E-05	1.94E-05	7.87E-06	8.90E-06	3.07E-06	4.21E-06	4.18E-06	1.28E-06
1498	763425.6	4091936	5.23E-05	5.69E-05	2.01E-05	8.16E-06	9.23E-06	3.18E-06	4.36E-06	4.34E-06	1.33E-06
1499	763367.8	4091849	3.94E-05	4.29E-05	1.52E-05	6.15E-06	6.96E-06	2.40E-06	3.29E-06	3.27E-06	1.00E-06
1500	763347.8	4091873	4.09E-05	4.45E-05	1.57E-05	6.38E-06	7.22E-06	2.49E-06	3.41E-06	3.39E-06	1.04E-06
1501	763211.8	4091724	2.67E-05	2.91E-05	1.03E-05	4.18E-06	4.73E-06	1.63E-06	2.23E-06	2.22E-06	6.81E-07
1502	763230	4091703	2.60E-05	2.83E-05	1.00E-05	4.05E-06	4.59E-06	1.58E-06	2.17E-06	2.15E-06	6.61E-07
1503	763192.2	4091747	2.77E-05	3.02E-05	1.07E-05	4.33E-06	4.90E-06	1.69E-06	2.31E-06	2.30E-06	7.06E-07
1504	763056	4091598	1.98E-05	2.16E-05	7.63E-06	3.09E-06	3.50E-06	1.21E-06	1.65E-06	1.64E-06	5.05E-07
1505	763073.7	4091578	1.92E-05	2.09E-05	7.40E-06	3.00E-06	3.39E-06	1.17E-06	1.60E-06	1.59E-06	4.89E-07
1506	763036.5	4091622	2.05E-05	2.24E-05	7.91E-06	3.21E-06	3.63E-06	1.25E-06	1.71E-06	1.71E-06	5.23E-07
1507	762901.9	4091471	1.55E-05	1.69E-05	5.96E-06	2.42E-06	2.74E-06	9.42E-07	1.29E-06	1.29E-06	3.95E-07
1508	762923	4091446	1.49E-05	1.62E-05	5.74E-06	2.33E-06	2.64E-06	9.08E-07	1.25E-06	1.24E-06	3.80E-07
1509	762880.9	4091496	1.61E-05	1.75E-05	6.20E-06	2.52E-06	2.85E-06	9.80E-07	1.35E-06	1.34E-06	4.10E-07
1510	762745.9	4091346	1.27E-05	1.38E-05	4.87E-06	1.98E-06	2.24E-06	7.70E-07	1.06E-06	1.05E-06	3.22E-07
1511	762766.1	4091322	1.22E-05	1.33E-05	4.70E-06	1.91E-06	2.16E-06	7.43E-07	1.02E-06	1.01E-06	3.11E-07
1512	762725.3	4091371	1.32E-05	1.43E-05	5.07E-06	2.06E-06	2.33E-06	8.01E-07	1.10E-06	1.09E-06	3.35E-07
1513	762590	4091220	1.07E-05	1.16E-05	4.10E-06	1.66E-06	1.88E-06	6.48E-07	8.89E-07	8.84E-07	2.71E-07
1514	762609.6	4091198	1.03E-05	1.12E-05	3.96E-06	1.61E-06	1.82E-06	6.26E-07	8.59E-07	8.54E-07	2.62E-07
1515	762629.2	4091175	9.94E-06	1.08E-05	3.83E-06	1.55E-06	1.76E-06	6.05E-07	8.30E-07	8.26E-07	2.53E-07
1516	762569.6	4091245	1.11E-05	1.20E-05	4.26E-06	1.73E-06	1.95E-06	6.73E-07	9.23E-07	9.18E-07	2.82E-07
1517	763799.4	4092269	7.17E-04	7.81E-04	2.76E-04	1.12E-04	1.27E-04	4.36E-05	5.99E-05	5.95E-05	1.83E-05

1518	763786.5	4092288	7.42E-04	8.07E-04	2.86E-04	1.16E-04	1.31E-04	4.51E-05	6.19E-05	6.16E-05	1.89E-05
1519	763758.1	4092241	4.43E-04	4.83E-04	1.71E-04	6.93E-05	7.83E-05	2.70E-05	3.70E-05	3.68E-05	1.13E-05
1520	763745.2	4092260	4.61E-04	5.02E-04	1.78E-04	7.20E-05	8.15E-05	2.81E-05	3.85E-05	3.83E-05	1.17E-05
1521	763704	4092232	3.15E-04	3.43E-04	1.21E-04	4.92E-05	5.57E-05	1.92E-05	2.63E-05	2.62E-05	8.03E-06
1522	763675.5	4092185	2.20E-04	2.40E-04	8.49E-05	3.44E-05	3.89E-05	1.34E-05	1.84E-05	1.83E-05	5.62E-06
1523	763662.7	4092204	2.30E-04	2.50E-04	8.85E-05	3.59E-05	4.06E-05	1.40E-05	1.92E-05	1.91E-05	5.86E-06
1524	763641.4	4092147	1.65E-04	1.80E-04	6.36E-05	2.58E-05	2.92E-05	1.01E-05	1.38E-05	1.37E-05	4.21E-06
1525	763621.4	4092175	1.76E-04	1.91E-04	6.77E-05	2.75E-05	3.11E-05	1.07E-05	1.47E-05	1.46E-05	4.48E-06
1526	763538.8	4092119	1.14E-04	1.24E-04	4.37E-05	1.77E-05	2.01E-05	6.91E-06	9.48E-06	9.42E-06	2.89E-06
1527	763481	4092028	7.43E-05	8.09E-05	2.86E-05	1.16E-05	1.31E-05	4.52E-06	6.21E-06	6.17E-06	1.89E-06
1528	763456.2	4092063	8.02E-05	8.73E-05	3.09E-05	1.25E-05	1.42E-05	4.88E-06	6.70E-06	6.66E-06	2.04E-06
1529	763396	4091975	5.63E-05	6.13E-05	2.17E-05	8.79E-06	9.95E-06	3.43E-06	4.70E-06	4.67E-06	1.43E-06
1530	763373.6	4092006	6.02E-05	6.55E-05	2.32E-05	9.40E-06	1.06E-05	3.66E-06	5.02E-06	5.00E-06	1.53E-06
1531	763315	4091916	4.42E-05	4.81E-05	1.70E-05	6.90E-06	7.81E-06	2.69E-06	3.69E-06	3.67E-06	1.13E-06
1532	763291.1	4091950	4.72E-05	5.14E-05	1.82E-05	7.38E-06	8.35E-06	2.87E-06	3.94E-06	3.92E-06	1.20E-06
1533	763149.5	4091804	3.04E-05	3.31E-05	1.17E-05	4.75E-06	5.37E-06	1.85E-06	2.54E-06	2.52E-06	7.75E-07
1534	763170.9	4091775	2.90E-05	3.16E-05	1.12E-05	4.53E-06	5.12E-06	1.76E-06	2.42E-06	2.41E-06	7.39E-07
1535	763125.9	4091837	3.21E-05	3.50E-05	1.24E-05	5.02E-06	5.68E-06	1.96E-06	2.68E-06	2.67E-06	8.19E-07
1536	762986.7	4091688	2.27E-05	2.47E-05	8.75E-06	3.55E-06	4.01E-06	1.38E-06	1.90E-06	1.89E-06	5.79E-07
1537	763012.9	4091653	2.15E-05	2.35E-05	8.30E-06	3.37E-06	3.81E-06	1.31E-06	1.80E-06	1.79E-06	5.49E-07
1538	762960.8	4091724	2.40E-05	2.61E-05	9.22E-06	3.74E-06	4.23E-06	1.46E-06	2.00E-06	1.99E-06	6.10E-07
1539	762820.8	4091576	1.81E-05	1.97E-05	6.97E-06	2.83E-06	3.20E-06	1.10E-06	1.51E-06	1.50E-06	4.61E-07
1540	762845.6	4091543	1.73E-05	1.88E-05	6.66E-06	2.70E-06	3.06E-06	1.05E-06	1.44E-06	1.44E-06	4.41E-07
1541	762795.6	4091611	1.90E-05	2.06E-05	7.30E-06	2.96E-06	3.35E-06	1.15E-06	1.58E-06	1.57E-06	4.83E-07
1542	762655.2	4091464	1.50E-05	1.63E-05	5.78E-06	2.34E-06	2.65E-06	9.13E-07	1.25E-06	1.25E-06	3.82E-07
1543	762679	4091432	1.44E-05	1.57E-05	5.54E-06	2.25E-06	2.54E-06	8.76E-07	1.20E-06	1.19E-06	3.67E-07
1544	762702.8	4091400	1.37E-05	1.50E-05	5.29E-06	2.15E-06	2.43E-06	8.36E-07	1.15E-06	1.14E-06	3.50E-07
1545	762630.4	4091499	1.56E-05	1.70E-05	6.02E-06	2.44E-06	2.76E-06	9.51E-07	1.30E-06	1.30E-06	3.98E-07
1546	762491.6	4091349	1.28E-05	1.39E-05	4.91E-06	1.99E-06	2.25E-06	7.76E-07	1.06E-06	1.06E-06	3.25E-07
1547	762505.1	4091331	1.25E-05	1.36E-05	4.80E-06	1.95E-06	2.20E-06	7.59E-07	1.04E-06	1.04E-06	3.18E-07
1548	762518.6	4091313	1.22E-05	1.33E-05	4.69E-06	1.90E-06	2.15E-06	7.42E-07	1.02E-06	1.01E-06	3.11E-07
1549	762532.1	4091294	1.19E-05	1.29E-05	4.58E-06	1.86E-06	2.10E-06	7.23E-07	9.92E-07	9.87E-07	3.03E-07
1550	762545.6	4091276	1.16E-05	1.26E-05	4.46E-06	1.81E-06	2.05E-06	7.05E-07	9.67E-07	9.62E-07	2.95E-07
1551	762478.1	4091367	1.30E-05	1.42E-05	5.01E-06	2.03E-06	2.30E-06	7.92E-07	1.09E-06	1.08E-06	3.32E-07
1552	762465.3	4091386	1.33E-05	1.44E-05	5.11E-06	2.07E-06	2.34E-06	8.07E-07	1.11E-06	1.10E-06	3.38E-07
1553	763730.2	4092284	4.87E-04	5.30E-04	1.87E-04	7.60E-05	8.60E-05	2.96E-05	4.06E-05	4.04E-05	1.24E-05
1554	763687.5	4092258	3.36E-04	3.65E-04	1.29E-04	5.24E-05	5.93E-05	2.04E-05	2.80E-05	2.79E-05	8.55E-06
1555	763644.7	4092233	2.46E-04	2.68E-04	9.48E-05	3.84E-05	4.35E-05	1.50E-05	2.06E-05	2.04E-05	6.27E-06
1556	763601.9	4092207	1.89E-04	2.06E-04	7.28E-05	2.95E-05	3.34E-05	1.15E-05	1.58E-05	1.57E-05	4.82E-06

1557	763516.3	4092155	1.23E-04	1.34E-04	4.74E-05	1.92E-05	2.17E-05	7.49E-06	1.03E-05	1.02E-05	3.14E-06
1558	763441.3	4092086	8.44E-05	9.19E-05	3.25E-05	1.32E-05	1.49E-05	5.14E-06	7.05E-06	7.01E-06	2.15E-06
1559	763355.8	4092034	6.39E-05	6.95E-05	2.46E-05	9.98E-06	1.13E-05	3.89E-06	5.33E-06	5.30E-06	1.63E-06
1560	763270.2	4091982	5.05E-05	5.49E-05	1.94E-05	7.88E-06	8.91E-06	3.07E-06	4.21E-06	4.19E-06	1.29E-06
1561	763108	4091865	3.37E-05	3.67E-05	1.30E-05	5.26E-06	5.95E-06	2.05E-06	2.81E-06	2.80E-06	8.59E-07
1562	763088.6	4091896	3.56E-05	3.87E-05	1.37E-05	5.55E-06	6.28E-06	2.16E-06	2.97E-06	2.95E-06	9.06E-07
1563	762938.9	4091758	2.51E-05	2.73E-05	9.68E-06	3.92E-06	4.44E-06	1.53E-06	2.10E-06	2.09E-06	6.40E-07
1564	762917.4	4091793	2.64E-05	2.87E-05	1.02E-05	4.12E-06	4.66E-06	1.60E-06	2.20E-06	2.19E-06	6.72E-07
1565	762766.5	4091657	2.00E-05	2.18E-05	7.70E-06	3.12E-06	3.53E-06	1.22E-06	1.67E-06	1.66E-06	5.09E-07
1566	762746.3	4091689	2.07E-05	2.26E-05	7.99E-06	3.24E-06	3.66E-06	1.26E-06	1.73E-06	1.72E-06	5.28E-07
1567	762594.7	4091554	1.65E-05	1.80E-05	6.37E-06	2.58E-06	2.92E-06	1.01E-06	1.38E-06	1.37E-06	4.21E-07
1568	762612.6	4091526	1.61E-05	1.75E-05	6.20E-06	2.51E-06	2.84E-06	9.79E-07	1.34E-06	1.34E-06	4.10E-07
1569	762575.2	4091585	1.70E-05	1.85E-05	6.55E-06	2.66E-06	3.01E-06	1.04E-06	1.42E-06	1.41E-06	4.34E-07
1570	762424.8	4091449	1.40E-05	1.53E-05	5.41E-06	2.19E-06	2.48E-06	8.55E-07	1.17E-06	1.17E-06	3.58E-07
1571	762445	4091417	1.37E-05	1.49E-05	5.26E-06	2.13E-06	2.41E-06	8.31E-07	1.14E-06	1.13E-06	3.48E-07
1572	762404.1	4091482	1.44E-05	1.57E-05	5.55E-06	2.25E-06	2.55E-06	8.77E-07	1.20E-06	1.20E-06	3.67E-07
1573	763716.6	4092310	5.19E-04	5.64E-04	2.00E-04	8.10E-05	9.16E-05	3.16E-05	4.33E-05	4.31E-05	1.32E-05
1574	763671.9	4092288	3.61E-04	3.93E-04	1.39E-04	5.64E-05	6.38E-05	2.20E-05	3.01E-05	3.00E-05	9.20E-06
1575	763627.2	4092266	2.67E-04	2.91E-04	1.03E-04	4.17E-05	4.72E-05	1.62E-05	2.23E-05	2.22E-05	6.80E-06
1576	763590.3	4092228	1.99E-04	2.16E-04	7.65E-05	3.10E-05	3.51E-05	1.21E-05	1.66E-05	1.65E-05	5.06E-06
1577	763500.9	4092183	1.31E-04	1.43E-04	5.04E-05	2.05E-05	2.31E-05	7.97E-06	1.09E-05	1.09E-05	3.34E-06
1578	763417.9	4092126	9.21E-05	1.00E-04	3.55E-05	1.44E-05	1.63E-05	5.61E-06	7.69E-06	7.65E-06	2.35E-06
1579	763403.7	4092154	9.74E-05	1.06E-04	3.75E-05	1.52E-05	1.72E-05	5.93E-06	8.13E-06	8.09E-06	2.48E-06
1580	763329.8	4092079	7.02E-05	7.64E-05	2.70E-05	1.10E-05	1.24E-05	4.27E-06	5.86E-06	5.83E-06	1.79E-06
1581	763314.3	4092109	7.43E-05	8.09E-05	2.86E-05	1.16E-05	1.31E-05	4.52E-06	6.20E-06	6.17E-06	1.89E-06
1582	763239.4	4092036	5.62E-05	6.11E-05	2.16E-05	8.77E-06	9.92E-06	3.42E-06	4.69E-06	4.66E-06	1.43E-06
1583	763252.9	4092012	5.36E-05	5.83E-05	2.06E-05	8.37E-06	9.46E-06	3.26E-06	4.47E-06	4.45E-06	1.36E-06
1584	763224.8	4092064	5.91E-05	6.44E-05	2.28E-05	9.23E-06	1.04E-05	3.60E-06	4.94E-06	4.91E-06	1.51E-06
1585	763060.7	4091946	3.88E-05	4.22E-05	1.49E-05	6.06E-06	6.86E-06	2.36E-06	3.24E-06	3.22E-06	9.89E-07
1586	763074.7	4091921	3.72E-05	4.04E-05	1.43E-05	5.80E-06	6.56E-06	2.26E-06	3.10E-06	3.08E-06	9.47E-07
1587	763046	4091975	4.07E-05	4.43E-05	1.57E-05	6.36E-06	7.19E-06	2.48E-06	3.40E-06	3.38E-06	1.04E-06
1588	762882	4091857	2.90E-05	3.15E-05	1.12E-05	4.52E-06	5.12E-06	1.76E-06	2.42E-06	2.40E-06	7.38E-07
1589	762896.2	4091831	2.79E-05	3.03E-05	1.07E-05	4.35E-06	4.93E-06	1.70E-06	2.33E-06	2.31E-06	7.10E-07
1590	762867.2	4091885	3.03E-05	3.29E-05	1.17E-05	4.73E-06	5.35E-06	1.84E-06	2.53E-06	2.51E-06	7.71E-07
1591	762704.5	4091765	2.27E-05	2.48E-05	8.76E-06	3.55E-06	4.02E-06	1.38E-06	1.90E-06	1.89E-06	5.79E-07
1592	762721.2	4091735	2.19E-05	2.38E-05	8.43E-06	3.42E-06	3.87E-06	1.33E-06	1.83E-06	1.82E-06	5.58E-07
1593	762688.3	4091796	2.37E-05	2.58E-05	9.12E-06	3.70E-06	4.19E-06	1.44E-06	1.98E-06	1.97E-06	6.04E-07
1594	762525.6	4091675	1.86E-05	2.03E-05	7.17E-06	2.91E-06	3.29E-06	1.13E-06	1.55E-06	1.55E-06	4.74E-07
1595	762542.1	4091645	1.81E-05	1.96E-05	6.95E-06	2.82E-06	3.19E-06	1.10E-06	1.51E-06	1.50E-06	4.60E-07

1596	762558.7	4091615	1.75E-05	1.91E-05	6.75E-06	2.74E-06	3.10E-06	1.07E-06	1.46E-06	1.45E-06	4.47E-07
1597	762509.5	4091706	1.93E-05	2.10E-05	7.43E-06	3.01E-06	3.41E-06	1.17E-06	1.61E-06	1.60E-06	4.91E-07
1598	762346.6	4091586	1.57E-05	1.71E-05	6.05E-06	2.45E-06	2.78E-06	9.56E-07	1.31E-06	1.30E-06	4.00E-07
1599	762363.1	4091556	1.53E-05	1.67E-05	5.89E-06	2.39E-06	2.70E-06	9.31E-07	1.28E-06	1.27E-06	3.90E-07
1600	762379.5	4091527	1.49E-05	1.63E-05	5.75E-06	2.33E-06	2.64E-06	9.09E-07	1.25E-06	1.24E-06	3.81E-07
1601	762330.6	4091617	1.62E-05	1.76E-05	6.23E-06	2.53E-06	2.86E-06	9.84E-07	1.35E-06	1.34E-06	4.12E-07
1602	763701.4	4092351	5.81E-04	6.32E-04	2.24E-04	9.07E-05	1.03E-04	3.54E-05	4.85E-05	4.82E-05	1.48E-05
1603	763661.4	4092313	3.86E-04	4.20E-04	1.48E-04	6.02E-05	6.81E-05	2.35E-05	3.22E-05	3.20E-05	9.82E-06
1604	763654.1	4092335	4.08E-04	4.44E-04	1.57E-04	6.38E-05	7.21E-05	2.48E-05	3.41E-05	3.39E-05	1.04E-05
1605	763614.1	4092297	2.89E-04	3.15E-04	1.11E-04	4.51E-05	5.11E-05	1.76E-05	2.41E-05	2.40E-05	7.36E-06
1606	763606.8	4092319	3.05E-04	3.32E-04	1.17E-04	4.76E-05	5.39E-05	1.86E-05	2.55E-05	2.53E-05	7.77E-06
1607	763574.6	4092262	2.16E-04	2.36E-04	8.33E-05	3.38E-05	3.82E-05	1.32E-05	1.81E-05	1.80E-05	5.51E-06
1608	763559.4	4092302	2.38E-04	2.59E-04	9.16E-05	3.71E-05	4.20E-05	1.45E-05	1.99E-05	1.97E-05	6.06E-06
1609	763479.1	4092232	1.46E-04	1.59E-04	5.63E-05	2.28E-05	2.58E-05	8.89E-06	1.22E-05	1.21E-05	3.72E-06
1610	763464.8	4092270	1.58E-04	1.72E-04	6.10E-05	2.47E-05	2.80E-05	9.64E-06	1.32E-05	1.31E-05	4.04E-06
1611	763386.2	4092196	1.06E-04	1.15E-04	4.08E-05	1.66E-05	1.87E-05	6.45E-06	8.85E-06	8.80E-06	2.70E-06
1612	763394.9	4092175	1.02E-04	1.11E-04	3.92E-05	1.59E-05	1.80E-05	6.19E-06	8.49E-06	8.45E-06	2.59E-06
1613	763377.4	4092217	1.10E-04	1.20E-04	4.25E-05	1.72E-05	1.95E-05	6.71E-06	9.21E-06	9.15E-06	2.81E-06
1614	763370.1	4092238	1.15E-04	1.25E-04	4.42E-05	1.79E-05	2.03E-05	6.99E-06	9.59E-06	9.54E-06	2.93E-06
1615	763290.6	4092165	8.26E-05	8.99E-05	3.18E-05	1.29E-05	1.46E-05	5.03E-06	6.90E-06	6.86E-06	2.10E-06
1616	763275.4	4092206	8.85E-05	9.63E-05	3.41E-05	1.38E-05	1.56E-05	5.38E-06	7.39E-06	7.35E-06	2.25E-06
1617	763195.4	4092135	6.69E-05	7.28E-05	2.58E-05	1.04E-05	1.18E-05	4.07E-06	5.59E-06	5.55E-06	1.70E-06
1618	763210.1	4092099	6.31E-05	6.86E-05	2.43E-05	9.85E-06	1.11E-05	3.84E-06	5.27E-06	5.24E-06	1.61E-06
1619	763180.7	4092174	7.12E-05	7.74E-05	2.74E-05	1.11E-05	1.26E-05	4.33E-06	5.94E-06	5.91E-06	1.81E-06
1620	763006.6	4092069	4.75E-05	5.17E-05	1.83E-05	7.42E-06	8.39E-06	2.89E-06	3.97E-06	3.94E-06	1.21E-06
1621	763022.4	4092031	4.48E-05	4.88E-05	1.73E-05	7.00E-06	7.92E-06	2.73E-06	3.74E-06	3.72E-06	1.14E-06
1622	762991.4	4092109	5.03E-05	5.48E-05	1.94E-05	7.86E-06	8.89E-06	3.06E-06	4.20E-06	4.18E-06	1.28E-06
1623	762817.6	4092004	3.63E-05	3.96E-05	1.40E-05	5.68E-06	6.42E-06	2.21E-06	3.03E-06	3.02E-06	9.26E-07
1624	762834.1	4091964	3.43E-05	3.73E-05	1.32E-05	5.35E-06	6.06E-06	2.09E-06	2.86E-06	2.85E-06	8.74E-07
1625	762850.6	4091925	3.22E-05	3.51E-05	1.24E-05	5.03E-06	5.69E-06	1.96E-06	2.69E-06	2.68E-06	8.21E-07
1626	762802	4092045	3.84E-05	4.18E-05	1.48E-05	6.00E-06	6.79E-06	2.34E-06	3.21E-06	3.19E-06	9.79E-07
1627	762628.6	4091939	2.92E-05	3.17E-05	1.12E-05	4.56E-06	5.15E-06	1.77E-06	2.44E-06	2.42E-06	7.43E-07
1628	762645.6	4091898	2.75E-05	3.00E-05	1.06E-05	4.30E-06	4.86E-06	1.68E-06	2.30E-06	2.29E-06	7.01E-07
1629	762662.7	4091857	2.59E-05	2.82E-05	9.98E-06	4.05E-06	4.58E-06	1.58E-06	2.16E-06	2.15E-06	6.60E-07
1630	762612.7	4091980	3.08E-05	3.36E-05	1.19E-05	4.81E-06	5.45E-06	1.88E-06	2.57E-06	2.56E-06	7.85E-07
1631	762439.4	4091874	2.42E-05	2.64E-05	9.33E-06	3.79E-06	4.28E-06	1.47E-06	2.02E-06	2.01E-06	6.18E-07
1632	762448.2	4091853	2.35E-05	2.56E-05	9.07E-06	3.68E-06	4.16E-06	1.43E-06	1.97E-06	1.96E-06	6.00E-07
1633	762456.9	4091832	2.29E-05	2.49E-05	8.81E-06	3.57E-06	4.04E-06	1.39E-06	1.91E-06	1.90E-06	5.83E-07
1634	762465.7	4091811	2.22E-05	2.42E-05	8.56E-06	3.47E-06	3.92E-06	1.35E-06	1.85E-06	1.84E-06	5.66E-07

1635	762474.5	4091790	2.16E-05	2.35E-05	8.31E-06	3.37E-06	3.81E-06	1.31E-06	1.80E-06	1.79E-06	5.50E-07
1636	762483.2	4091769	2.09E-05	2.28E-05	8.06E-06	3.27E-06	3.70E-06	1.27E-06	1.75E-06	1.74E-06	5.34E-07
1637	762492	4091748	2.04E-05	2.22E-05	7.84E-06	3.18E-06	3.60E-06	1.24E-06	1.70E-06	1.69E-06	5.19E-07
1638	762500.7	4091727	1.98E-05	2.16E-05	7.63E-06	3.09E-06	3.50E-06	1.21E-06	1.65E-06	1.64E-06	5.05E-07
1639	762430.7	4091895	2.49E-05	2.71E-05	9.59E-06	3.89E-06	4.40E-06	1.52E-06	2.08E-06	2.07E-06	6.35E-07
1640	762423.3	4091916	2.56E-05	2.78E-05	9.85E-06	3.99E-06	4.52E-06	1.56E-06	2.14E-06	2.12E-06	6.52E-07
1641	762249.4	4091811	2.07E-05	2.25E-05	7.96E-06	3.23E-06	3.65E-06	1.26E-06	1.73E-06	1.72E-06	5.27E-07
1642	762265.7	4091772	1.96E-05	2.14E-05	7.57E-06	3.07E-06	3.47E-06	1.20E-06	1.64E-06	1.63E-06	5.01E-07
1643	762281.9	4091733	1.87E-05	2.03E-05	7.19E-06	2.91E-06	3.30E-06	1.14E-06	1.56E-06	1.55E-06	4.75E-07
1644	762298.2	4091694	1.77E-05	1.93E-05	6.83E-06	2.77E-06	3.13E-06	1.08E-06	1.48E-06	1.47E-06	4.52E-07
1645	762314.4	4091655	1.69E-05	1.84E-05	6.51E-06	2.64E-06	2.99E-06	1.03E-06	1.41E-06	1.40E-06	4.31E-07
1646	762234	4091852	2.17E-05	2.37E-05	8.38E-06	3.40E-06	3.84E-06	1.32E-06	1.82E-06	1.81E-06	5.54E-07
1647	763645.4	4092366	4.43E-04	4.82E-04	1.71E-04	6.92E-05	7.83E-05	2.70E-05	3.70E-05	3.68E-05	1.13E-05
1648	763596.9	4092354	3.32E-04	3.61E-04	1.28E-04	5.18E-05	5.86E-05	2.02E-05	2.77E-05	2.75E-05	8.45E-06
1649	763552.9	4092325	2.50E-04	2.72E-04	9.62E-05	3.90E-05	4.42E-05	1.52E-05	2.09E-05	2.07E-05	6.37E-06
1650	763544.2	4092358	2.68E-04	2.92E-04	1.03E-04	4.19E-05	4.73E-05	1.63E-05	2.24E-05	2.22E-05	6.83E-06
1651	763456	4092300	1.68E-04	1.83E-04	6.47E-05	2.62E-05	2.97E-05	1.02E-05	1.40E-05	1.39E-05	4.28E-06
1652	763447.3	4092334	1.79E-04	1.94E-04	6.88E-05	2.79E-05	3.16E-05	1.09E-05	1.49E-05	1.48E-05	4.55E-06
1653	763362.8	4092263	1.20E-04	1.31E-04	4.63E-05	1.88E-05	2.12E-05	7.31E-06	1.00E-05	9.98E-06	3.06E-06
1654	763354.8	4092292	1.26E-04	1.37E-04	4.86E-05	1.97E-05	2.23E-05	7.68E-06	1.05E-05	1.05E-05	3.22E-06
1655	763266.7	4092235	9.29E-05	1.01E-04	3.58E-05	1.45E-05	1.64E-05	5.65E-06	7.75E-06	7.71E-06	2.37E-06
1656	763257.9	4092267	9.74E-05	1.06E-04	3.75E-05	1.52E-05	1.72E-05	5.93E-06	8.13E-06	8.09E-06	2.48E-06
1657	763169.3	4092212	7.53E-05	8.20E-05	2.90E-05	1.18E-05	1.33E-05	4.58E-06	6.29E-06	6.25E-06	1.92E-06
1658	763161.1	4092242	7.84E-05	8.53E-05	3.02E-05	1.22E-05	1.39E-05	4.77E-06	6.55E-06	6.51E-06	2.00E-06
1659	762976.6	4092159	5.36E-05	5.83E-05	2.06E-05	8.37E-06	9.47E-06	3.26E-06	4.47E-06	4.45E-06	1.37E-06
1660	762967.4	4092192	5.56E-05	6.05E-05	2.14E-05	8.68E-06	9.82E-06	3.38E-06	4.64E-06	4.61E-06	1.42E-06
1661	762782.8	4092109	4.14E-05	4.50E-05	1.59E-05	6.46E-06	7.31E-06	2.52E-06	3.46E-06	3.44E-06	1.05E-06
1662	762792.4	4092077	4.00E-05	4.35E-05	1.54E-05	6.24E-06	7.06E-06	2.43E-06	3.34E-06	3.32E-06	1.02E-06
1663	762773.6	4092143	4.27E-05	4.64E-05	1.64E-05	6.66E-06	7.54E-06	2.60E-06	3.56E-06	3.54E-06	1.09E-06
1664	762589	4092060	3.36E-05	3.65E-05	1.29E-05	5.24E-06	5.93E-06	2.04E-06	2.80E-06	2.79E-06	8.55E-07
1665	762598.5	4092028	3.25E-05	3.54E-05	1.25E-05	5.08E-06	5.75E-06	1.98E-06	2.72E-06	2.70E-06	8.29E-07
1666	762579.9	4092093	3.44E-05	3.75E-05	1.33E-05	5.38E-06	6.09E-06	2.10E-06	2.88E-06	2.86E-06	8.78E-07
1667	762395.2	4092010	2.82E-05	3.06E-05	1.08E-05	4.40E-06	4.98E-06	1.71E-06	2.35E-06	2.34E-06	7.17E-07
1668	762404.6	4091979	2.74E-05	2.98E-05	1.06E-05	4.28E-06	4.84E-06	1.67E-06	2.29E-06	2.28E-06	6.98E-07
1669	762414	4091948	2.65E-05	2.89E-05	1.02E-05	4.15E-06	4.69E-06	1.61E-06	2.22E-06	2.20E-06	6.76E-07
1670	762386.2	4092043	2.88E-05	3.14E-05	1.11E-05	4.51E-06	5.10E-06	1.76E-06	2.41E-06	2.39E-06	7.35E-07
1671	762201.5	4091961	2.42E-05	2.64E-05	9.33E-06	3.78E-06	4.28E-06	1.47E-06	2.02E-06	2.01E-06	6.17E-07
1672	762210.8	4091930	2.36E-05	2.57E-05	9.09E-06	3.69E-06	4.17E-06	1.44E-06	1.97E-06	1.96E-06	6.02E-07
1673	762220.1	4091898	2.29E-05	2.49E-05	8.83E-06	3.58E-06	4.05E-06	1.39E-06	1.91E-06	1.90E-06	5.84E-07

1674	762192.5	4091993	2.48E-05	2.70E-05	9.54E-06	3.87E-06	4.38E-06	1.51E-06	2.07E-06	2.06E-06	6.31E-07
1675	763637.3	4092405	4.86E-04	5.29E-04	1.87E-04	7.59E-05	8.59E-05	2.96E-05	4.06E-05	4.03E-05	1.24E-05
1676	763634.3	4092430	5.15E-04	5.60E-04	1.98E-04	8.04E-05	9.09E-05	3.13E-05	4.30E-05	4.27E-05	1.31E-05
1677	763587.3	4092402	3.67E-04	4.00E-04	1.42E-04	5.74E-05	6.49E-05	2.24E-05	3.07E-05	3.05E-05	9.36E-06
1678	763584.5	4092426	3.86E-04	4.20E-04	1.49E-04	6.02E-05	6.82E-05	2.35E-05	3.22E-05	3.20E-05	9.83E-06
1679	763537.9	4092396	2.88E-04	3.14E-04	1.11E-04	4.50E-05	5.09E-05	1.75E-05	2.41E-05	2.39E-05	7.35E-06
1680	763534.6	4092422	3.02E-04	3.29E-04	1.16E-04	4.72E-05	5.34E-05	1.84E-05	2.52E-05	2.51E-05	7.70E-06
1681	763438.4	4092387	1.95E-04	2.12E-04	7.52E-05	3.05E-05	3.45E-05	1.19E-05	1.63E-05	1.62E-05	4.97E-06
1682	763442.8	4092360	1.87E-04	2.04E-04	7.21E-05	2.93E-05	3.31E-05	1.14E-05	1.56E-05	1.56E-05	4.77E-06
1683	763435	4092414	2.03E-04	2.21E-04	7.82E-05	3.17E-05	3.59E-05	1.24E-05	1.70E-05	1.69E-05	5.17E-06
1684	763338.5	4092380	1.44E-04	1.56E-04	5.53E-05	2.24E-05	2.54E-05	8.74E-06	1.20E-05	1.19E-05	3.66E-06
1685	763342.5	4092356	1.39E-04	1.52E-04	5.37E-05	2.18E-05	2.46E-05	8.48E-06	1.16E-05	1.16E-05	3.55E-06
1686	763346.4	4092332	1.35E-04	1.47E-04	5.19E-05	2.10E-05	2.38E-05	8.19E-06	1.12E-05	1.12E-05	3.43E-06
1687	763335.3	4092405	1.48E-04	1.61E-04	5.71E-05	2.32E-05	2.62E-05	9.03E-06	1.24E-05	1.23E-05	3.78E-06
1688	763238.9	4092371	1.11E-04	1.21E-04	4.29E-05	1.74E-05	1.97E-05	6.78E-06	9.30E-06	9.25E-06	2.84E-06
1689	763243.1	4092346	1.08E-04	1.18E-04	4.17E-05	1.69E-05	1.91E-05	6.59E-06	9.05E-06	9.00E-06	2.76E-06
1690	763247.3	4092321	1.05E-04	1.14E-04	4.05E-05	1.64E-05	1.86E-05	6.39E-06	8.77E-06	8.72E-06	2.68E-06
1691	763251.5	4092296	1.02E-04	1.11E-04	3.91E-05	1.59E-05	1.79E-05	6.18E-06	8.48E-06	8.43E-06	2.59E-06
1692	763235.7	4092397	1.15E-04	1.25E-04	4.42E-05	1.79E-05	2.03E-05	6.98E-06	9.58E-06	9.52E-06	2.92E-06
1693	763139.3	4092362	9.00E-05	9.79E-05	3.46E-05	1.41E-05	1.59E-05	5.47E-06	7.51E-06	7.47E-06	2.29E-06
1694	763143.7	4092336	8.77E-05	9.55E-05	3.38E-05	1.37E-05	1.55E-05	5.34E-06	7.32E-06	7.28E-06	2.23E-06
1695	763148	4092311	8.53E-05	9.29E-05	3.29E-05	1.33E-05	1.51E-05	5.19E-06	7.12E-06	7.08E-06	2.17E-06
1696	763152.4	4092285	8.28E-05	9.01E-05	3.19E-05	1.29E-05	1.46E-05	5.04E-06	6.91E-06	6.87E-06	2.11E-06
1697	763136	4092389	9.24E-05	1.01E-04	3.56E-05	1.44E-05	1.63E-05	5.62E-06	7.72E-06	7.67E-06	2.36E-06
1698	762940.1	4092345	6.38E-05	6.95E-05	2.46E-05	9.97E-06	1.13E-05	3.88E-06	5.33E-06	5.30E-06	1.63E-06
1699	762944.7	4092318	6.24E-05	6.79E-05	2.40E-05	9.75E-06	1.10E-05	3.80E-06	5.21E-06	5.18E-06	1.59E-06
1700	762949.3	4092291	6.10E-05	6.64E-05	2.35E-05	9.53E-06	1.08E-05	3.71E-06	5.10E-06	5.07E-06	1.55E-06
1701	762953.9	4092263	5.96E-05	6.49E-05	2.29E-05	9.31E-06	1.05E-05	3.63E-06	4.98E-06	4.95E-06	1.52E-06
1702	762958.4	4092236	5.81E-05	6.32E-05	2.24E-05	9.07E-06	1.03E-05	3.53E-06	4.85E-06	4.82E-06	1.48E-06
1703	762936.7	4092372	6.53E-05	7.11E-05	2.52E-05	1.02E-05	1.15E-05	3.97E-06	5.45E-06	5.42E-06	1.66E-06
1704	762740.7	4092329	4.88E-05	5.31E-05	1.88E-05	7.62E-06	8.62E-06	2.97E-06	4.07E-06	4.05E-06	1.24E-06
1705	762745.1	4092303	4.79E-05	5.22E-05	1.85E-05	7.49E-06	8.47E-06	2.92E-06	4.00E-06	3.98E-06	1.22E-06
1706	762749.5	4092277	4.71E-05	5.13E-05	1.81E-05	7.36E-06	8.33E-06	2.87E-06	3.93E-06	3.91E-06	1.20E-06
1707	762753.9	4092251	4.63E-05	5.04E-05	1.78E-05	7.23E-06	8.18E-06	2.82E-06	3.87E-06	3.84E-06	1.18E-06
1708	762758.3	4092225	4.55E-05	4.95E-05	1.75E-05	7.10E-06	8.03E-06	2.77E-06	3.80E-06	3.77E-06	1.16E-06
1709	762762.7	4092199	4.46E-05	4.86E-05	1.72E-05	6.97E-06	7.88E-06	2.71E-06	3.73E-06	3.70E-06	1.14E-06
1710	762767.1	4092173	4.37E-05	4.76E-05	1.68E-05	6.83E-06	7.73E-06	2.66E-06	3.65E-06	3.63E-06	1.11E-06
1711	762737.4	4092356	4.98E-05	5.42E-05	1.92E-05	7.78E-06	8.80E-06	3.03E-06	4.16E-06	4.13E-06	1.27E-06
1712	762541.5	4092312	3.92E-05	4.27E-05	1.51E-05	6.12E-06	6.93E-06	2.39E-06	3.27E-06	3.26E-06	9.99E-07

1713	762546	4092285	3.86E-05	4.20E-05	1.49E-05	6.03E-06	6.82E-06	2.35E-06	3.22E-06	3.21E-06	9.84E-07
1714	762550.6	4092258	3.80E-05	4.14E-05	1.46E-05	5.94E-06	6.72E-06	2.31E-06	3.17E-06	3.16E-06	9.69E-07
1715	762555.1	4092231	3.75E-05	4.08E-05	1.44E-05	5.85E-06	6.62E-06	2.28E-06	3.13E-06	3.11E-06	9.55E-07
1716	762559.7	4092204	3.69E-05	4.02E-05	1.42E-05	5.77E-06	6.53E-06	2.25E-06	3.09E-06	3.07E-06	9.42E-07
1717	762564.2	4092177	3.64E-05	3.96E-05	1.40E-05	5.69E-06	6.43E-06	2.22E-06	3.04E-06	3.02E-06	9.28E-07
1718	762568.7	4092150	3.58E-05	3.90E-05	1.38E-05	5.60E-06	6.33E-06	2.18E-06	2.99E-06	2.98E-06	9.13E-07
1719	762573.3	4092123	3.52E-05	3.83E-05	1.36E-05	5.50E-06	6.22E-06	2.14E-06	2.94E-06	2.92E-06	8.97E-07
1720	762538.1	4092339	3.99E-05	4.34E-05	1.54E-05	6.23E-06	7.05E-06	2.43E-06	3.33E-06	3.31E-06	1.02E-06
1721	762342.1	4092295	3.26E-05	3.55E-05	1.26E-05	5.10E-06	5.76E-06	1.99E-06	2.72E-06	2.71E-06	8.31E-07
1722	762346.5	4092269	3.22E-05	3.51E-05	1.24E-05	5.03E-06	5.69E-06	1.96E-06	2.69E-06	2.68E-06	8.21E-07
1723	762350.9	4092243	3.18E-05	3.47E-05	1.23E-05	4.97E-06	5.63E-06	1.94E-06	2.66E-06	2.64E-06	8.11E-07
1724	762355.4	4092217	3.15E-05	3.43E-05	1.21E-05	4.92E-06	5.56E-06	1.91E-06	2.63E-06	2.61E-06	8.02E-07
1725	762359.8	4092191	3.11E-05	3.39E-05	1.20E-05	4.86E-06	5.50E-06	1.89E-06	2.60E-06	2.58E-06	7.93E-07
1726	762364.2	4092165	3.08E-05	3.35E-05	1.19E-05	4.81E-06	5.44E-06	1.87E-06	2.57E-06	2.56E-06	7.84E-07
1727	762368.6	4092139	3.04E-05	3.31E-05	1.17E-05	4.75E-06	5.38E-06	1.85E-06	2.54E-06	2.53E-06	7.75E-07
1728	762373	4092112	3.01E-05	3.27E-05	1.16E-05	4.69E-06	5.31E-06	1.83E-06	2.51E-06	2.50E-06	7.66E-07
1729	762377.4	4092086	2.96E-05	3.23E-05	1.14E-05	4.63E-06	5.24E-06	1.80E-06	2.47E-06	2.46E-06	7.55E-07
1730	762338.8	4092322	3.31E-05	3.61E-05	1.28E-05	5.17E-06	5.85E-06	2.02E-06	2.77E-06	2.75E-06	8.44E-07
1731	762142.9	4092279	2.79E-05	3.03E-05	1.07E-05	4.35E-06	4.93E-06	1.70E-06	2.33E-06	2.31E-06	7.10E-07
1732	762147.4	4092252	2.76E-05	3.00E-05	1.06E-05	4.30E-06	4.87E-06	1.68E-06	2.30E-06	2.29E-06	7.02E-07
1733	762151.9	4092225	2.73E-05	2.97E-05	1.05E-05	4.26E-06	4.82E-06	1.66E-06	2.28E-06	2.26E-06	6.95E-07
1734	762156.4	4092198	2.70E-05	2.94E-05	1.04E-05	4.22E-06	4.77E-06	1.64E-06	2.25E-06	2.24E-06	6.88E-07
1735	762161	4092171	2.68E-05	2.91E-05	1.03E-05	4.18E-06	4.73E-06	1.63E-06	2.23E-06	2.22E-06	6.82E-07
1736	762165.5	4092144	2.65E-05	2.89E-05	1.02E-05	4.15E-06	4.69E-06	1.61E-06	2.22E-06	2.20E-06	6.76E-07
1737	762170	4092118	2.63E-05	2.86E-05	1.01E-05	4.11E-06	4.65E-06	1.60E-06	2.20E-06	2.18E-06	6.70E-07
1738	762174.5	4092091	2.60E-05	2.83E-05	1.00E-05	4.07E-06	4.60E-06	1.58E-06	2.17E-06	2.16E-06	6.63E-07
1739	762179.1	4092064	2.57E-05	2.80E-05	9.91E-06	4.02E-06	4.55E-06	1.57E-06	2.15E-06	2.14E-06	6.56E-07
1740	762183.6	4092037	2.54E-05	2.77E-05	9.79E-06	3.97E-06	4.49E-06	1.55E-06	2.12E-06	2.11E-06	6.47E-07
1741	762139.5	4092306	2.82E-05	3.07E-05	1.09E-05	4.41E-06	4.99E-06	1.72E-06	2.36E-06	2.34E-06	7.20E-07
1742	763582.6	4092451	4.05E-04	4.41E-04	1.56E-04	6.33E-05	7.16E-05	2.46E-05	3.38E-05	3.36E-05	1.03E-05
1743	763581.7	4092476	4.24E-04	4.61E-04	1.63E-04	6.62E-05	7.48E-05	2.58E-05	3.54E-05	3.52E-05	1.08E-05
1744	763532.7	4092449	3.17E-04	3.45E-04	1.22E-04	4.95E-05	5.60E-05	1.93E-05	2.65E-05	2.63E-05	8.07E-06
1745	763531.7	4092474	3.30E-04	3.59E-04	1.27E-04	5.15E-05	5.83E-05	2.01E-05	2.75E-05	2.74E-05	8.41E-06
1746	763530.8	4092499	3.42E-04	3.72E-04	1.32E-04	5.34E-05	6.04E-05	2.08E-05	2.85E-05	2.84E-05	8.70E-06
1747	763432.7	4092446	2.13E-04	2.31E-04	8.19E-05	3.32E-05	3.76E-05	1.29E-05	1.78E-05	1.77E-05	5.42E-06
1748	763431.8	4092470	2.20E-04	2.39E-04	8.47E-05	3.44E-05	3.89E-05	1.34E-05	1.84E-05	1.83E-05	5.61E-06
1749	763430.9	4092495	2.27E-04	2.47E-04	8.73E-05	3.54E-05	4.01E-05	1.38E-05	1.89E-05	1.88E-05	5.78E-06
1750	763332.8	4092442	1.55E-04	1.69E-04	5.98E-05	2.43E-05	2.75E-05	9.46E-06	1.30E-05	1.29E-05	3.96E-06
1751	763331.9	4092467	1.60E-04	1.74E-04	6.17E-05	2.50E-05	2.83E-05	9.74E-06	1.34E-05	1.33E-05	4.08E-06

1752	763330.9	4092491	1.64E-04	1.79E-04	6.33E-05	2.57E-05	2.91E-05	1.00E-05	1.37E-05	1.37E-05	4.19E-06
1753	763233.7	4092425	1.18E-04	1.29E-04	4.56E-05	1.85E-05	2.09E-05	7.21E-06	9.89E-06	9.83E-06	3.02E-06
1754	763231.9	4092463	1.24E-04	1.34E-04	4.76E-05	1.93E-05	2.18E-05	7.52E-06	1.03E-05	1.03E-05	3.15E-06
1755	763231	4092488	1.27E-04	1.38E-04	4.88E-05	1.98E-05	2.24E-05	7.70E-06	1.06E-05	1.05E-05	3.23E-06
1756	763133.9	4092418	9.54E-05	1.04E-04	3.67E-05	1.49E-05	1.69E-05	5.80E-06	7.96E-06	7.92E-06	2.43E-06
1757	763132	4092459	9.94E-05	1.08E-04	3.83E-05	1.55E-05	1.76E-05	6.05E-06	8.30E-06	8.25E-06	2.53E-06
1758	763131.1	4092484	1.02E-04	1.11E-04	3.92E-05	1.59E-05	1.80E-05	6.19E-06	8.49E-06	8.44E-06	2.59E-06
1759	762934.3	4092406	6.74E-05	7.34E-05	2.60E-05	1.05E-05	1.19E-05	4.10E-06	5.63E-06	5.60E-06	1.72E-06
1760	762932.1	4092452	7.01E-05	7.63E-05	2.70E-05	1.10E-05	1.24E-05	4.27E-06	5.86E-06	5.82E-06	1.79E-06
1761	762931.2	4092477	7.16E-05	7.79E-05	2.76E-05	1.12E-05	1.26E-05	4.36E-06	5.98E-06	5.94E-06	1.82E-06
1762	762734.2	4092403	5.17E-05	5.63E-05	1.99E-05	8.08E-06	9.14E-06	3.15E-06	4.32E-06	4.29E-06	1.32E-06
1763	762732.3	4092444	5.34E-05	5.82E-05	2.06E-05	8.35E-06	9.44E-06	3.25E-06	4.46E-06	4.44E-06	1.36E-06
1764	762731.4	4092469	5.45E-05	5.93E-05	2.10E-05	8.50E-06	9.62E-06	3.31E-06	4.55E-06	4.52E-06	1.39E-06
1765	762534.5	4092392	4.15E-05	4.51E-05	1.60E-05	6.48E-06	7.32E-06	2.52E-06	3.46E-06	3.44E-06	1.06E-06
1766	762532.4	4092437	4.28E-05	4.66E-05	1.65E-05	6.69E-06	7.56E-06	2.60E-06	3.57E-06	3.55E-06	1.09E-06
1767	762531.5	4092462	4.36E-05	4.74E-05	1.68E-05	6.80E-06	7.70E-06	2.65E-06	3.64E-06	3.62E-06	1.11E-06
1768	762334.9	4092382	3.44E-05	3.75E-05	1.33E-05	5.38E-06	6.08E-06	2.09E-06	2.87E-06	2.86E-06	8.77E-07
1769	762336.2	4092359	3.39E-05	3.69E-05	1.31E-05	5.30E-06	5.99E-06	2.06E-06	2.83E-06	2.82E-06	8.64E-07
1770	762333.5	4092405	3.49E-05	3.80E-05	1.35E-05	5.46E-06	6.17E-06	2.13E-06	2.92E-06	2.90E-06	8.91E-07
1771	762332.6	4092430	3.55E-05	3.87E-05	1.37E-05	5.55E-06	6.28E-06	2.16E-06	2.97E-06	2.95E-06	9.05E-07
1772	762331.6	4092454	3.61E-05	3.93E-05	1.39E-05	5.64E-06	6.38E-06	2.20E-06	3.02E-06	3.00E-06	9.20E-07
1773	762134.8	4092378	2.95E-05	3.21E-05	1.13E-05	4.60E-06	5.20E-06	1.79E-06	2.46E-06	2.45E-06	7.50E-07
1774	762137.1	4092339	2.88E-05	3.13E-05	1.11E-05	4.49E-06	5.08E-06	1.75E-06	2.40E-06	2.39E-06	7.33E-07
1775	762132.7	4092422	3.03E-05	3.29E-05	1.17E-05	4.73E-06	5.35E-06	1.84E-06	2.53E-06	2.51E-06	7.71E-07
1776	762131.8	4092447	3.07E-05	3.34E-05	1.18E-05	4.80E-06	5.43E-06	1.87E-06	2.57E-06	2.55E-06	7.83E-07
1777	764025.2	4092591	3.42E-03	3.72E-03	1.32E-03	5.33E-04	6.03E-04	2.08E-04	2.85E-04	2.84E-04	8.70E-05
1778	764049.8	4092591	3.37E-03	3.67E-03	1.30E-03	5.27E-04	5.96E-04	2.05E-04	2.82E-04	2.80E-04	8.60E-05
1779	764074.4	4092592	3.29E-03	3.58E-03	1.27E-03	5.14E-04	5.82E-04	2.00E-04	2.75E-04	2.73E-04	8.39E-05
1780	764098.9	4092593	3.17E-03	3.45E-03	1.22E-03	4.95E-04	5.60E-04	1.93E-04	2.64E-04	2.63E-04	8.07E-05
1781	764123.5	4092593	2.99E-03	3.26E-03	1.15E-03	4.67E-04	5.28E-04	1.82E-04	2.50E-04	2.48E-04	7.62E-05
1782	764148.1	4092594	2.76E-03	3.01E-03	1.06E-03	4.31E-04	4.88E-04	1.68E-04	2.31E-04	2.29E-04	7.04E-05
1783	764172.7	4092595	2.49E-03	2.70E-03	9.57E-04	3.88E-04	4.39E-04	1.51E-04	2.08E-04	2.06E-04	6.33E-05
1784	764197.3	4092595	2.19E-03	2.39E-03	8.44E-04	3.42E-04	3.87E-04	1.33E-04	1.83E-04	1.82E-04	5.58E-05
1785	764024.5	4092616	2.58E-03	2.81E-03	9.95E-04	4.03E-04	4.56E-04	1.57E-04	2.16E-04	2.14E-04	6.58E-05
1786	764049.1	4092616	2.54E-03	2.76E-03	9.77E-04	3.96E-04	4.48E-04	1.54E-04	2.12E-04	2.11E-04	6.46E-05
1787	764073.7	4092617	2.46E-03	2.68E-03	9.47E-04	3.84E-04	4.35E-04	1.50E-04	2.05E-04	2.04E-04	6.27E-05
1788	764098.2	4092618	2.35E-03	2.56E-03	9.06E-04	3.67E-04	4.15E-04	1.43E-04	1.96E-04	1.95E-04	5.99E-05
1789	764122.8	4092618	2.21E-03	2.41E-03	8.51E-04	3.45E-04	3.90E-04	1.34E-04	1.85E-04	1.83E-04	5.63E-05
		4092619	2.04E-03	2.22E-03	7.85E-04	3.18E-04	3.60E-04	1.24E-04	1.70E-04	1.69E-04	5.20E-05

1791	764172	4092620	1.85E-03	2.02E-03	7.13E-04	2.89E-04	3.27E-04	1.13E-04	1.55E-04	1.54E-04	4.72E-05
1792	764196.6	4092620	1.67E-03	1.81E-03	6.41E-04	2.60E-04	2.94E-04	1.01E-04	1.39E-04	1.38E-04	4.24E-05
1793	764023.1	4092665	1.63E-03	1.77E-03	6.28E-04	2.55E-04	2.88E-04	9.92E-05	1.36E-04	1.35E-04	4.15E-05
1794	764047.7	4092666	1.58E-03	1.73E-03	6.10E-04	2.48E-04	2.80E-04	9.64E-05	1.32E-04	1.32E-04	4.04E-05
1795	764072.3	4092667	1.52E-03	1.66E-03	5.87E-04	2.38E-04	2.69E-04	9.27E-05	1.27E-04	1.26E-04	3.88E-05
1796	764096.8	4092668	1.45E-03	1.58E-03	5.57E-04	2.26E-04	2.56E-04	8.81E-05	1.21E-04	1.20E-04	3.69E-05
1797	764121.4	4092668	1.36E-03	1.48E-03	5.23E-04	2.12E-04	2.40E-04	8.27E-05	1.13E-04	1.13E-04	3.46E-05
1798	764146	4092669	1.27E-03	1.38E-03	4.87E-04	1.98E-04	2.24E-04	7.70E-05	1.06E-04	1.05E-04	3.22E-05
1799	764170.6	4092670	1.17E-03	1.28E-03	4.51E-04	1.83E-04	2.07E-04	7.13E-05	9.79E-05	9.73E-05	2.99E-05
1800	764195.2	4092670	1.08E-03	1.18E-03	4.17E-04	1.69E-04	1.91E-04	6.59E-05	9.04E-05	8.99E-05	2.76E-05
1801	763805	4092701	1.08E-03	1.17E-03	4.14E-04	1.68E-04	1.90E-04	6.54E-05	8.98E-05	8.93E-05	2.74E-05
1802	763764.9	4092683	1.04E-03	1.14E-03	4.02E-04	1.63E-04	1.84E-04	6.35E-05	8.71E-05	8.66E-05	2.66E-05
1803	763724.8	4092665	9.46E-04	1.03E-03	3.64E-04	1.48E-04	1.67E-04	5.76E-05	7.90E-05	7.86E-05	2.41E-05
1804	763677	4092626	7.96E-04	8.66E-04	3.06E-04	1.24E-04	1.41E-04	4.84E-05	6.64E-05	6.61E-05	2.03E-05
1805	764021.7	4092715	1.12E-03	1.22E-03	4.30E-04	1.74E-04	1.97E-04	6.79E-05	9.32E-05	9.27E-05	2.85E-05
1806	764046.3	4092716	1.08E-03	1.17E-03	4.15E-04	1.68E-04	1.91E-04	6.56E-05	9.00E-05	8.95E-05	2.75E-05
1807	764070.9	4092717	1.03E-03	1.12E-03	3.98E-04	1.61E-04	1.82E-04	6.28E-05	8.62E-05	8.57E-05	2.63E-05
1808	764095.4	4092718	9.81E-04	1.07E-03	3.78E-04	1.53E-04	1.73E-04	5.97E-05	8.19E-05	8.15E-05	2.50E-05
1809	764120	4092718	9.27E-04	1.01E-03	3.57E-04	1.45E-04	1.64E-04	5.64E-05	7.74E-05	7.70E-05	2.36E-05
1810	764144.6	4092719	8.73E-04	9.50E-04	3.36E-04	1.36E-04	1.54E-04	5.31E-05	7.29E-05	7.25E-05	2.22E-05
1811	764169.2	4092720	8.20E-04	8.92E-04	3.16E-04	1.28E-04	1.45E-04	4.99E-05	6.85E-05	6.81E-05	2.09E-05
1812	764193.8	4092720	7.69E-04	8.37E-04	2.96E-04	1.20E-04	1.36E-04	4.68E-05	6.42E-05	6.39E-05	1.96E-05
1813	763801.7	4092750	8.48E-04	9.23E-04	3.26E-04	1.32E-04	1.50E-04	5.16E-05	7.08E-05	7.04E-05	2.16E-05
1814	763779.8	4092740	8.49E-04	9.24E-04	3.27E-04	1.33E-04	1.50E-04	5.17E-05	7.09E-05	7.05E-05	2.16E-05
1815	763757.8	4092730	8.40E-04	9.14E-04	3.24E-04	1.31E-04	1.48E-04	5.11E-05	7.01E-05	6.97E-05	2.14E-05
1816	763735.9	4092720	8.18E-04	8.91E-04	3.15E-04	1.28E-04	1.45E-04	4.98E-05	6.83E-05	6.79E-05	2.09E-05
1817	763714	4092711	7.84E-04	8.53E-04	3.02E-04	1.22E-04	1.38E-04	4.77E-05	6.54E-05	6.51E-05	2.00E-05
1818	763692	4092701	7.38E-04	8.03E-04	2.84E-04	1.15E-04	1.30E-04	4.49E-05	6.16E-05	6.12E-05	1.88E-05
1819	763670.1	4092691	6.84E-04	7.45E-04	2.63E-04	1.07E-04	1.21E-04	4.16E-05	5.71E-05	5.68E-05	1.74E-05
1820	763639.7	4092658	6.21E-04	6.76E-04	2.39E-04	9.70E-05	1.10E-04	3.78E-05	5.19E-05	5.16E-05	1.58E-05
1821	763631.3	4092636	6.09E-04	6.63E-04	2.34E-04	9.51E-05	1.08E-04	3.70E-05	5.08E-05	5.06E-05	1.55E-05
1822	764020.3	4092765	8.08E-04	8.80E-04	3.11E-04	1.26E-04	1.43E-04	4.92E-05	6.75E-05	6.71E-05	2.06E-05
1823	764044.9	4092766	7.78E-04	8.47E-04	3.00E-04	1.22E-04	1.38E-04	4.74E-05	6.50E-05	6.46E-05	1.98E-05
1824	764069.5	4092767	7.45E-04	8.11E-04	2.87E-04	1.16E-04	1.32E-04	4.54E-05	6.22E-05	6.19E-05	1.90E-05
1825	764094	4092768	7.11E-04	7.74E-04	2.74E-04	1.11E-04	1.26E-04	4.33E-05	5.94E-05	5.91E-05	1.81E-05
1826	763801.2	4092800	6.83E-04	7.43E-04	2.63E-04	1.07E-04	1.21E-04	4.15E-05	5.70E-05	5.67E-05	1.74E-05
1827	763780.1	4092791	6.90E-04	7.51E-04	2.66E-04	1.08E-04	1.22E-04	4.20E-05	5.76E-05	5.73E-05	1.76E-05
1828	763759.1	4092782	6.92E-04	7.53E-04	2.66E-04	1.08E-04	1.22E-04	4.21E-05	5.77E-05	5.74E-05	1.76E-05
1829	763738	4092772	6.86E-04	7.46E-04	2.64E-04	1.07E-04	1.21E-04	4.17E-05	5.73E-05	5.69E-05	1.75E-05

1830	763717	4092763	6.72E-04	7.31E-04	2.59E-04	1.05E-04	1.19E-04	4.09E-05	5.61E-05	5.58E-05	1.71E-05
1831	763695.9	4092753	6.50E-04	7.07E-04	2.50E-04	1.01E-04	1.15E-04	3.95E-05	5.42E-05	5.39E-05	1.66E-05
1832	763674.8	4092744	6.20E-04	6.75E-04	2.39E-04	9.68E-05	1.10E-04	3.77E-05	5.18E-05	5.15E-05	1.58E-05
1833	763653.8	4092734	5.84E-04	6.36E-04	2.25E-04	9.13E-05	1.03E-04	3.56E-05	4.88E-05	4.85E-05	1.49E-05
1834	763632.7	4092725	5.46E-04	5.94E-04	2.10E-04	8.52E-05	9.64E-05	3.32E-05	4.56E-05	4.53E-05	1.39E-05
1835	763603.6	4092694	5.02E-04	5.46E-04	1.93E-04	7.84E-05	8.87E-05	3.06E-05	4.19E-05	4.17E-05	1.28E-05
1836	763595.5	4092672	4.95E-04	5.38E-04	1.90E-04	7.72E-05	8.74E-05	3.01E-05	4.13E-05	4.11E-05	1.26E-05
1837	763538.9	4092521	3.65E-04	3.98E-04	1.41E-04	5.70E-05	6.45E-05	2.22E-05	3.05E-05	3.03E-05	9.31E-06
1838	764018.9	4092815	6.11E-04	6.65E-04	2.35E-04	9.54E-05	1.08E-04	3.72E-05	5.10E-05	5.07E-05	1.56E-05
1839	764043.5	4092816	5.88E-04	6.40E-04	2.26E-04	9.18E-05	1.04E-04	3.58E-05	4.91E-05	4.88E-05	1.50E-05
1840	764068.1	4092817	5.65E-04	6.15E-04	2.17E-04	8.82E-05	9.98E-05	3.44E-05	4.71E-05	4.69E-05	1.44E-05
1841	764092.6	4092818	5.41E-04	5.89E-04	2.09E-04	8.46E-05	9.57E-05	3.29E-05	4.52E-05	4.49E-05	1.38E-05
1842	764215.6	4092821	4.31E-04	4.69E-04	1.66E-04	6.73E-05	7.62E-05	2.62E-05	3.60E-05	3.58E-05	1.10E-05
1843	763797.8	4092900	4.66E-04	5.07E-04	1.79E-04	7.28E-05	8.23E-05	2.84E-05	3.89E-05	3.87E-05	1.19E-05
1844	763776.2	4092890	4.77E-04	5.19E-04	1.84E-04	7.45E-05	8.43E-05	2.90E-05	3.98E-05	3.96E-05	1.22E-05
1845	763754.6	4092881	4.85E-04	5.28E-04	1.87E-04	7.57E-05	8.56E-05	2.95E-05	4.05E-05	4.02E-05	1.23E-05
1846	763733	4092871	4.89E-04	5.32E-04	1.88E-04	7.64E-05	8.64E-05	2.97E-05	4.08E-05	4.06E-05	1.25E-05
1847	763711.5	4092861	4.89E-04	5.32E-04	1.88E-04	7.64E-05	8.64E-05	2.98E-05	4.08E-05	4.06E-05	1.25E-05
1848	763689.9	4092852	4.85E-04	5.28E-04	1.87E-04	7.57E-05	8.57E-05	2.95E-05	4.05E-05	4.02E-05	1.24E-05
1849	763668.3	4092842	4.76E-04	5.18E-04	1.83E-04	7.43E-05	8.41E-05	2.89E-05	3.97E-05	3.95E-05	1.21E-05
1850	763646.7	4092832	4.62E-04	5.03E-04	1.78E-04	7.22E-05	8.16E-05	2.81E-05	3.86E-05	3.84E-05	1.18E-05
1851	763625.1	4092822	4.44E-04	4.83E-04	1.71E-04	6.94E-05	7.85E-05	2.70E-05	3.71E-05	3.69E-05	1.13E-05
1852	763603.5	4092813	4.23E-04	4.60E-04	1.63E-04	6.61E-05	7.47E-05	2.57E-05	3.53E-05	3.51E-05	1.08E-05
1853	763581.9	4092803	4.00E-04	4.35E-04	1.54E-04	6.25E-05	7.07E-05	2.43E-05	3.34E-05	3.32E-05	1.02E-05
1854	763560.3	4092793	3.76E-04	4.10E-04	1.45E-04	5.88E-05	6.65E-05	2.29E-05	3.14E-05	3.12E-05	9.59E-06
1855	763530.4	4092761	3.51E-04	3.82E-04	1.35E-04	5.48E-05	6.20E-05	2.13E-05	2.93E-05	2.91E-05	8.94E-06
1856	763522.1	4092739	3.47E-04	3.78E-04	1.34E-04	5.42E-05	6.14E-05	2.11E-05	2.90E-05	2.88E-05	8.85E-06
1857	763472.4	4092606	2.93E-04	3.19E-04	1.13E-04	4.58E-05	5.18E-05	1.79E-05	2.45E-05	2.44E-05	7.48E-06
1858	763464.1	4092584	2.80E-04	3.05E-04	1.08E-04	4.38E-05	4.95E-05	1.70E-05	2.34E-05	2.33E-05	7.14E-06
1859	763455.8	4092562	2.67E-04	2.90E-04	1.03E-04	4.17E-05	4.71E-05	1.62E-05	2.23E-05	2.21E-05	6.80E-06
1860	763447.5	4092540	2.53E-04	2.76E-04	9.75E-05	3.95E-05	4.47E-05	1.54E-05	2.11E-05	2.10E-05	6.45E-06
1861	763439.2	4092517	2.40E-04	2.61E-04	9.24E-05	3.75E-05	4.24E-05	1.46E-05	2.00E-05	1.99E-05	6.11E-06
1862	764016.1	4092915	3.85E-04	4.19E-04	1.48E-04	6.01E-05	6.79E-05	2.34E-05	3.21E-05	3.19E-05	9.80E-06
1863	764040.7	4092916	3.72E-04	4.05E-04	1.43E-04	5.81E-05	6.57E-05	2.26E-05	3.10E-05	3.09E-05	9.47E-06
1864	764065.3	4092917	3.59E-04	3.91E-04	1.38E-04	5.61E-05	6.35E-05	2.19E-05	3.00E-05	2.98E-05	9.16E-06
1865	764089.9	4092917	3.47E-04	3.78E-04	1.34E-04	5.42E-05	6.14E-05	2.11E-05	2.90E-05	2.88E-05	8.85E-06
1866	764212.8	4092921	2.91E-04	3.16E-04	1.12E-04	4.54E-05	5.13E-05	1.77E-05	2.43E-05	2.41E-05	7.40E-06
1867	763794.7	4093000	3.33E-04	3.62E-04	1.28E-04	5.20E-05	5.88E-05	2.02E-05	2.78E-05	2.76E-05	8.48E-06
1868	763772.8	4092990	3.44E-04	3.74E-04	1.32E-04	5.37E-05	6.08E-05	2.09E-05	2.87E-05	2.86E-05	8.77E-06

1869	763750.8	4092980	3.53E-04	3.85E-04	1.36E-04	5.52E-05	6.24E-05	2.15E-05	2.95E-05	2.93E-05	9.00E-06
1870	763728.9	4092970	3.61E-04	3.93E-04	1.39E-04	5.64E-05	6.38E-05	2.20E-05	3.01E-05	3.00E-05	9.19E-06
1871	763707	4092961	3.66E-04	3.98E-04	1.41E-04	5.72E-05	6.47E-05	2.23E-05	3.06E-05	3.04E-05	9.33E-06
1872	763685	4092951	3.69E-04	4.01E-04	1.42E-04	5.76E-05	6.52E-05	2.24E-05	3.08E-05	3.06E-05	9.40E-06
1873	763663.1	4092941	3.68E-04	4.01E-04	1.42E-04	5.76E-05	6.51E-05	2.24E-05	3.08E-05	3.06E-05	9.39E-06
1874	763641.2	4092931	3.65E-04	3.97E-04	1.41E-04	5.70E-05	6.45E-05	2.22E-05	3.05E-05	3.03E-05	9.30E-06
1875	763619.2	4092921	3.59E-04	3.90E-04	1.38E-04	5.60E-05	6.34E-05	2.18E-05	2.99E-05	2.98E-05	9.14E-06
1876	763597.3	4092911	3.49E-04	3.80E-04	1.34E-04	5.45E-05	6.17E-05	2.12E-05	2.92E-05	2.90E-05	8.90E-06
1877	763575.4	4092901	3.37E-04	3.67E-04	1.30E-04	5.27E-05	5.96E-05	2.05E-05	2.82E-05	2.80E-05	8.60E-06
1878	763553.5	4092891	3.23E-04	3.52E-04	1.25E-04	5.05E-05	5.72E-05	1.97E-05	2.70E-05	2.69E-05	8.24E-06
1879	763531.5	4092882	3.08E-04	3.36E-04	1.19E-04	4.82E-05	5.45E-05	1.88E-05	2.58E-05	2.56E-05	7.86E-06
1880	763509.6	4092872	2.93E-04	3.19E-04	1.13E-04	4.57E-05	5.18E-05	1.78E-05	2.45E-05	2.43E-05	7.46E-06
1881	763487.7	4092862	2.78E-04	3.02E-04	1.07E-04	4.34E-05	4.90E-05	1.69E-05	2.32E-05	2.30E-05	7.07E-06
1882	763457.3	4092829	2.62E-04	2.85E-04	1.01E-04	4.09E-05	4.62E-05	1.59E-05	2.18E-05	2.17E-05	6.67E-06
1883	763448.9	4092807	2.60E-04	2.83E-04	1.00E-04	4.06E-05	4.59E-05	1.58E-05	2.17E-05	2.16E-05	6.62E-06
1884	763406.8	4092694	2.38E-04	2.59E-04	9.17E-05	3.72E-05	4.21E-05	1.45E-05	1.99E-05	1.98E-05	6.07E-06
1885	763398.3	4092672	2.31E-04	2.51E-04	8.88E-05	3.60E-05	4.07E-05	1.40E-05	1.93E-05	1.91E-05	5.88E-06
1886	763389.9	4092649	2.23E-04	2.42E-04	8.57E-05	3.48E-05	3.93E-05	1.35E-05	1.86E-05	1.85E-05	5.67E-06
1887	763381.5	4092627	2.14E-04	2.33E-04	8.25E-05	3.34E-05	3.78E-05	1.30E-05	1.79E-05	1.78E-05	5.46E-06
1888	763373.1	4092604	2.06E-04	2.24E-04	7.92E-05	3.21E-05	3.63E-05	1.25E-05	1.72E-05	1.71E-05	5.24E-06
1889	763364.6	4092582	1.97E-04	2.15E-04	7.59E-05	3.08E-05	3.48E-05	1.20E-05	1.65E-05	1.64E-05	5.02E-06
1890	763356.2	4092559	1.89E-04	2.06E-04	7.27E-05	2.95E-05	3.34E-05	1.15E-05	1.58E-05	1.57E-05	4.81E-06
1891	763347.8	4092537	1.81E-04	1.97E-04	6.96E-05	2.82E-05	3.19E-05	1.10E-05	1.51E-05	1.50E-05	4.60E-06
1892	763339.4	4092514	1.72E-04	1.88E-04	6.64E-05	2.69E-05	3.05E-05	1.05E-05	1.44E-05	1.43E-05	4.39E-06
1893	763816.6	4093010	3.21E-04	3.49E-04	1.23E-04	5.01E-05	5.66E-05	1.95E-05	2.68E-05	2.66E-05	8.17E-06
1894	763841.2	4093011	3.17E-04	3.45E-04	1.22E-04	4.94E-05	5.59E-05	1.93E-05	2.64E-05	2.63E-05	8.07E-06
1895	763865.8	4093011	3.11E-04	3.39E-04	1.20E-04	4.86E-05	5.50E-05	1.90E-05	2.60E-05	2.59E-05	7.94E-06
1896	763890.4	4093012	3.05E-04	3.32E-04	1.18E-04	4.77E-05	5.40E-05	1.86E-05	2.55E-05	2.54E-05	7.78E-06
1897	763915	4093013	2.99E-04	3.25E-04	1.15E-04	4.66E-05	5.27E-05	1.82E-05	2.49E-05	2.48E-05	7.61E-06
1898	763939.5	4093013	2.91E-04	3.17E-04	1.12E-04	4.55E-05	5.14E-05	1.77E-05	2.43E-05	2.42E-05	7.42E-06
1899	763964.1	4093014	2.83E-04	3.08E-04	1.09E-04	4.43E-05	5.01E-05	1.72E-05	2.37E-05	2.35E-05	7.22E-06
1900	763988.7	4093015	2.76E-04	3.00E-04	1.06E-04	4.30E-05	4.87E-05	1.68E-05	2.30E-05	2.29E-05	7.02E-06
1901	764013.3	4093015	2.68E-04	2.92E-04	1.03E-04	4.18E-05	4.73E-05	1.63E-05	2.24E-05	2.22E-05	6.83E-06
1902	764037.9	4093016	2.60E-04	2.83E-04	1.00E-04	4.07E-05	4.60E-05	1.58E-05	2.17E-05	2.16E-05	6.64E-06
1903	764062.5	4093017	2.53E-04	2.76E-04	9.75E-05	3.95E-05	4.47E-05	1.54E-05	2.11E-05	2.10E-05	6.45E-06
1904	764087.1	4093017	2.46E-04	2.68E-04	9.47E-05	3.84E-05	4.35E-05	1.50E-05	2.05E-05	2.04E-05	6.27E-06
1905	764111.6	4093018	2.39E-04	2.60E-04	9.20E-05	3.73E-05	4.22E-05	1.45E-05	1.99E-05	1.98E-05	6.09E-06
1906	764136.2	4093019	2.32E-04	2.52E-04	8.92E-05	3.62E-05	4.09E-05	1.41E-05	1.93E-05	1.92E-05	5.90E-06
1907	764160.8	4093019	2.24E-04	2.44E-04	8.64E-05	3.51E-05	3.97E-05	1.37E-05	1.87E-05	1.86E-05	5.72E-06

1908	764185.4	4093020	2.17E-04	2.37E-04	8.37E-05	3.39E-05	3.84E-05	1.32E-05	1.81E-05	1.80E-05	5.54E-06
1909	764210	4093021	2.11E-04	2.29E-04	8.11E-05	3.29E-05	3.72E-05	1.28E-05	1.76E-05	1.75E-05	5.37E-06
1910	763791.7	4093100	2.47E-04	2.68E-04	9.50E-05	3.85E-05	4.36E-05	1.50E-05	2.06E-05	2.05E-05	6.29E-06
1911	763769.5	4093090	2.56E-04	2.79E-04	9.86E-05	4.00E-05	4.52E-05	1.56E-05	2.14E-05	2.13E-05	6.52E-06
1912	763747.3	4093080	2.65E-04	2.88E-04	1.02E-04	4.14E-05	4.68E-05	1.61E-05	2.21E-05	2.20E-05	6.75E-06
1913	763725.2	4093070	2.73E-04	2.97E-04	1.05E-04	4.26E-05	4.82E-05	1.66E-05	2.28E-05	2.27E-05	6.95E-06
1914	763703	4093060	2.80E-04	3.05E-04	1.08E-04	4.37E-05	4.94E-05	1.70E-05	2.34E-05	2.32E-05	7.13E-06
1915	763680.9	4093050	2.86E-04	3.11E-04	1.10E-04	4.46E-05	5.04E-05	1.74E-05	2.38E-05	2.37E-05	7.27E-06
1916	763658.7	4093040	2.89E-04	3.15E-04	1.11E-04	4.52E-05	5.11E-05	1.76E-05	2.42E-05	2.40E-05	7.37E-06
1917	763636.5	4093030	2.91E-04	3.17E-04	1.12E-04	4.54E-05	5.14E-05	1.77E-05	2.43E-05	2.42E-05	7.41E-06
1918	763614.4	4093020	2.90E-04	3.16E-04	1.12E-04	4.54E-05	5.13E-05	1.77E-05	2.43E-05	2.41E-05	7.40E-06
1919	763592.2	4093010	2.88E-04	3.13E-04	1.11E-04	4.49E-05	5.08E-05	1.75E-05	2.40E-05	2.39E-05	7.33E-06
1920	763570.1	4093000	2.83E-04	3.08E-04	1.09E-04	4.42E-05	5.00E-05	1.72E-05	2.36E-05	2.35E-05	7.21E-06
1921	763547.9	4092990	2.76E-04	3.00E-04	1.06E-04	4.31E-05	4.88E-05	1.68E-05	2.31E-05	2.29E-05	7.03E-06
1922	763525.7	4092980	2.68E-04	2.91E-04	1.03E-04	4.18E-05	4.73E-05	1.63E-05	2.23E-05	2.22E-05	6.82E-06
1923	763503.6	4092970	2.58E-04	2.81E-04	9.93E-05	4.03E-05	4.55E-05	1.57E-05	2.15E-05	2.14E-05	6.57E-06
1924	763481.4	4092960	2.47E-04	2.69E-04	9.52E-05	3.86E-05	4.37E-05	1.50E-05	2.06E-05	2.05E-05	6.30E-06
1925	763459.2	4092950	2.36E-04	2.57E-04	9.10E-05	3.69E-05	4.17E-05	1.44E-05	1.97E-05	1.96E-05	6.02E-06
1926	763437.1	4092940	2.25E-04	2.45E-04	8.68E-05	3.52E-05	3.98E-05	1.37E-05	1.88E-05	1.87E-05	5.74E-06
1927	763414.9	4092930	2.15E-04	2.34E-04	8.27E-05	3.35E-05	3.80E-05	1.31E-05	1.79E-05	1.78E-05	5.47E-06
1928	763384.2	4092898	2.04E-04	2.22E-04	7.87E-05	3.19E-05	3.61E-05	1.24E-05	1.71E-05	1.70E-05	5.20E-06
1929	763333.2	4092761	1.92E-04	2.09E-04	7.39E-05	3.00E-05	3.39E-05	1.17E-05	1.60E-05	1.59E-05	4.89E-06
1930	763324.7	4092738	1.87E-04	2.04E-04	7.21E-05	2.92E-05	3.31E-05	1.14E-05	1.56E-05	1.55E-05	4.77E-06
1931	763316.1	4092715	1.82E-04	1.98E-04	7.01E-05	2.84E-05	3.22E-05	1.11E-05	1.52E-05	1.51E-05	4.64E-06
1932	763307.6	4092693	1.76E-04	1.92E-04	6.80E-05	2.76E-05	3.12E-05	1.07E-05	1.47E-05	1.47E-05	4.50E-06
1933	763299.1	4092670	1.71E-04	1.86E-04	6.57E-05	2.67E-05	3.02E-05	1.04E-05	1.43E-05	1.42E-05	4.35E-06
1934	763290.6	4092647	1.65E-04	1.79E-04	6.35E-05	2.58E-05	2.91E-05	1.00E-05	1.38E-05	1.37E-05	4.20E-06
1935	763282.1	4092624	1.59E-04	1.73E-04	6.13E-05	2.49E-05	2.81E-05	9.69E-06	1.33E-05	1.32E-05	4.06E-06
1936	763273.6	4092602	1.54E-04	1.67E-04	5.92E-05	2.40E-05	2.71E-05	9.35E-06	1.28E-05	1.28E-05	3.91E-06
1937	763265.1	4092579	1.48E-04	1.61E-04	5.71E-05	2.31E-05	2.62E-05	9.02E-06	1.24E-05	1.23E-05	3.78E-06
1938	763256.6	4092556	1.43E-04	1.55E-04	5.50E-05	2.23E-05	2.52E-05	8.69E-06	1.19E-05	1.19E-05	3.64E-06
1939	763248	4092533	1.37E-04	1.50E-04	5.29E-05	2.15E-05	2.43E-05	8.36E-06	1.15E-05	1.14E-05	3.50E-06
1940	763239.5	4092511	1.32E-04	1.44E-04	5.09E-05	2.06E-05	2.33E-05	8.04E-06	1.10E-05	1.10E-05	3.36E-06
1941	763813.8	4093110	2.37E-04	2.58E-04	9.13E-05	3.70E-05	4.19E-05	1.44E-05	1.98E-05	1.97E-05	6.04E-06
1942	763838.4	4093111	2.33E-04	2.54E-04	8.98E-05	3.64E-05	4.12E-05	1.42E-05	1.95E-05	1.94E-05	5.94E-06
1943	763863	4093111	2.29E-04	2.49E-04	8.81E-05	3.57E-05	4.04E-05	1.39E-05	1.91E-05	1.90E-05	5.83E-06
1944	763887.6	4093112	2.24E-04	2.44E-04	8.63E-05	3.50E-05	3.96E-05	1.36E-05	1.87E-05	1.86E-05	5.71E-06
1945	763912.2	4093113	2.19E-04	2.39E-04	8.45E-05	3.43E-05	3.88E-05	1.33E-05	1.83E-05	1.82E-05	5.59E-06
1946	763936.8	4093113	2.14E-04	2.33E-04	8.26E-05	3.35E-05	3.79E-05	1.31E-05	1.79E-05	1.78E-05	5.47E-06

1947	763961.3	4093114	2.10E-04	2.28E-04	8.07E-05	3.27E-05	3.70E-05	1.28E-05	1.75E-05	1.74E-05	5.34E-06
1948	763985.9	4093115	2.05E-04	2.23E-04	7.89E-05	3.20E-05	3.62E-05	1.25E-05	1.71E-05	1.70E-05	5.22E-06
1949	764010.5	4093115	2.00E-04	2.18E-04	7.70E-05	3.12E-05	3.53E-05	1.22E-05	1.67E-05	1.66E-05	5.09E-06
1950	764035.1	4093116	1.95E-04	2.12E-04	7.52E-05	3.05E-05	3.45E-05	1.19E-05	1.63E-05	1.62E-05	4.97E-06
1951	764059.7	4093117	1.91E-04	2.07E-04	7.34E-05	2.98E-05	3.37E-05	1.16E-05	1.59E-05	1.58E-05	4.85E-06
1952	764084.3	4093117	1.86E-04	2.02E-04	7.16E-05	2.90E-05	3.28E-05	1.13E-05	1.55E-05	1.54E-05	4.73E-06
1953	764108.8	4093118	1.81E-04	1.97E-04	6.97E-05	2.83E-05	3.20E-05	1.10E-05	1.51E-05	1.50E-05	4.61E-06
1954	764133.4	4093119	1.76E-04	1.92E-04	6.79E-05	2.75E-05	3.11E-05	1.07E-05	1.47E-05	1.46E-05	4.49E-06
1955	764158	4093119	1.71E-04	1.86E-04	6.60E-05	2.68E-05	3.03E-05	1.04E-05	1.43E-05	1.42E-05	4.37E-06
1956	764182.6	4093120	1.66E-04	1.81E-04	6.41E-05	2.60E-05	2.94E-05	1.01E-05	1.39E-05	1.38E-05	4.24E-06
1957	764207.2	4093121	1.62E-04	1.76E-04	6.23E-05	2.53E-05	2.86E-05	9.84E-06	1.35E-05	1.34E-05	4.12E-06
1958	763788.7	4093200	1.89E-04	2.06E-04	7.29E-05	2.96E-05	3.35E-05	1.15E-05	1.58E-05	1.57E-05	4.83E-06
1959	763766.4	4093190	1.97E-04	2.14E-04	7.58E-05	3.07E-05	3.48E-05	1.20E-05	1.64E-05	1.63E-05	5.01E-06
1960	763744	4093180	2.04E-04	2.22E-04	7.86E-05	3.19E-05	3.60E-05	1.24E-05	1.70E-05	1.69E-05	5.20E-06
1961	763721.7	4093170	2.11E-04	2.30E-04	8.13E-05	3.30E-05	3.73E-05	1.28E-05	1.76E-05	1.75E-05	5.38E-06
1962	763699.4	4093160	2.18E-04	2.37E-04	8.39E-05	3.40E-05	3.85E-05	1.33E-05	1.82E-05	1.81E-05	5.55E-06
1963	763677.1	4093149	2.24E-04	2.44E-04	8.63E-05	3.50E-05	3.96E-05	1.36E-05	1.87E-05	1.86E-05	5.71E-06
1964	763654.7	4093139	2.29E-04	2.50E-04	8.83E-05	3.58E-05	4.05E-05	1.40E-05	1.91E-05	1.90E-05	5.84E-06
1965	763632.4	4093129	2.33E-04	2.54E-04	8.99E-05	3.65E-05	4.13E-05	1.42E-05	1.95E-05	1.94E-05	5.95E-06
1966	763610.1	4093119	2.36E-04	2.57E-04	9.10E-05	3.69E-05	4.17E-05	1.44E-05	1.97E-05	1.96E-05	6.02E-06
1967	763587.7	4093109	2.37E-04	2.58E-04	9.14E-05	3.71E-05	4.20E-05	1.44E-05	1.98E-05	1.97E-05	6.05E-06
1968	763565.4	4093099	2.37E-04	2.58E-04	9.12E-05	3.70E-05	4.19E-05	1.44E-05	1.98E-05	1.97E-05	6.04E-06
1969	763543.1	4093089	2.35E-04	2.56E-04	9.04E-05	3.67E-05	4.15E-05	1.43E-05	1.96E-05	1.95E-05	5.98E-06
1970	763520.8	4093079	2.31E-04	2.51E-04	8.89E-05	3.61E-05	4.08E-05	1.41E-05	1.93E-05	1.92E-05	5.88E-06
1971	763498.4	4093069	2.26E-04	2.46E-04	8.69E-05	3.53E-05	3.99E-05	1.37E-05	1.89E-05	1.87E-05	5.75E-06
1972	763476.1	4093059	2.19E-04	2.39E-04	8.45E-05	3.43E-05	3.88E-05	1.33E-05	1.83E-05	1.82E-05	5.59E-06
1973	763453.8	4093049	2.12E-04	2.31E-04	8.17E-05	3.31E-05	3.75E-05	1.29E-05	1.77E-05	1.76E-05	5.40E-06
1974	763431.4	4093039	2.04E-04	2.22E-04	7.86E-05	3.19E-05	3.61E-05	1.24E-05	1.70E-05	1.69E-05	5.20E-06
1975	763409.1	4093029	1.96E-04	2.13E-04	7.55E-05	3.06E-05	3.46E-05	1.19E-05	1.64E-05	1.63E-05	4.99E-06
1976	763386.8	4093019	1.88E-04	2.04E-04	7.23E-05	2.93E-05	3.32E-05	1.14E-05	1.57E-05	1.56E-05	4.78E-06
1977	763364.4	4093009	1.80E-04	1.96E-04	6.92E-05	2.81E-05	3.18E-05	1.09E-05	1.50E-05	1.49E-05	4.58E-06
1978	763342.1	4092999	1.72E-04	1.88E-04	6.64E-05	2.69E-05	3.04E-05	1.05E-05	1.44E-05	1.43E-05	4.39E-06
1979	763311.2	4092966	1.65E-04	1.80E-04	6.36E-05	2.58E-05	2.92E-05	1.00E-05	1.38E-05	1.37E-05	4.20E-06
1980	763259.7	4092828	1.59E-04	1.73E-04	6.11E-05	2.48E-05	2.80E-05	9.66E-06	1.33E-05	1.32E-05	4.04E-06
1981	763251.2	4092805	1.56E-04	1.70E-04	6.00E-05	2.43E-05	2.75E-05	9.49E-06	1.30E-05	1.29E-05	3.97E-06
1982	763242.6	4092782	1.53E-04	1.66E-04	5.87E-05	2.38E-05	2.69E-05	9.28E-06	1.27E-05	1.27E-05	3.89E-06
1983	763234	4092759	1.49E-04	1.62E-04	5.73E-05	2.32E-05	2.63E-05	9.05E-06	1.24E-05	1.23E-05	3.79E-06
1984	763225.4	4092736	1.45E-04	1.57E-04	5.57E-05	2.26E-05	2.56E-05	8.80E-06	1.21E-05	1.20E-05	3.69E-06
1985	763216.9	4092713	1.40E-04	1.53E-04	5.41E-05	2.19E-05	2.48E-05	8.55E-06	1.17E-05	1.17E-05	3.58E-06

4000											
1986	763208.3	4092690	1.36E-04	1.48E-04	5.25E-05	2.13E-05	2.41E-05	8.29E-06	1.14E-05	1.13E-05	3.47E-06
1987	763199.7	4092668	1.32E-04	1.44E-04	5.09E-05	2.07E-05	2.34E-05	8.05E-06	1.10E-05	1.10E-05	3.37E-06
1988	763191.1	4092645	1.28E-04	1.40E-04	4.94E-05	2.00E-05	2.27E-05	7.81E-06	1.07E-05	1.07E-05	3.27E-06
1989	763182.6	4092622	1.25E-04	1.36E-04	4.80E-05	1.94E-05	2.20E-05	7.58E-06	1.04E-05	1.03E-05	3.17E-06
1990	763174	4092599	1.21E-04	1.31E-04	4.65E-05	1.89E-05	2.13E-05	7.35E-06	1.01E-05	1.00E-05	3.08E-06
1991	763165.4	4092576	1.17E-04	1.27E-04	4.51E-05	1.83E-05	2.07E-05	7.12E-06	9.78E-06	9.72E-06	2.98E-06
1992	763156.8	4092553	1.13E-04	1.23E-04	4.36E-05	1.77E-05	2.00E-05	6.90E-06	9.46E-06	9.41E-06	2.89E-06
1993	763148.2	4092530	1.10E-04	1.19E-04	4.22E-05	1.71E-05	1.93E-05	6.66E-06	9.14E-06	9.09E-06	2.79E-06
1994	763139.7	4092507	1.06E-04	1.15E-04	4.07E-05	1.65E-05	1.87E-05	6.43E-06	8.82E-06	8.77E-06	2.69E-06
1995	763811	4093210	1.82E-04	1.98E-04	7.02E-05	2.85E-05	3.22E-05	1.11E-05	1.52E-05	1.51E-05	4.64E-06
1996	763835.6	4093210	1.79E-04	1.95E-04	6.89E-05	2.79E-05	3.16E-05	1.09E-05	1.49E-05	1.49E-05	4.56E-06
1997	763860.2	4093211	1.76E-04	1.91E-04	6.76E-05	2.74E-05	3.10E-05	1.07E-05	1.47E-05	1.46E-05	4.47E-06
1998	763884.8	4093212	1.72E-04	1.88E-04	6.64E-05	2.69E-05	3.05E-05	1.05E-05	1.44E-05	1.43E-05	4.39E-06
1999	763909.4	4093213	1.69E-04	1.84E-04	6.52E-05	2.64E-05	2.99E-05	1.03E-05	1.41E-05	1.40E-05	4.31E-06
2000	763934	4093213	1.66E-04	1.81E-04	6.40E-05	2.59E-05	2.93E-05	1.01E-05	1.39E-05	1.38E-05	4.23E-06
2001	763958.5	4093214	1.63E-04	1.77E-04	6.28E-05	2.55E-05	2.88E-05	9.92E-06	1.36E-05	1.35E-05	4.15E-06
2002	763983.1	4093215	1.60E-04	1.74E-04	6.16E-05	2.50E-05	2.83E-05	9.74E-06	1.34E-05	1.33E-05	4.08E-06
2003	764007.7	4093215	1.57E-04	1.71E-04	6.05E-05	2.45E-05	2.77E-05	9.55E-06	1.31E-05	1.30E-05	4.00E-06
2004	764032.3	4093216	1.54E-04	1.68E-04	5.93E-05	2.40E-05	2.72E-05	9.37E-06	1.29E-05	1.28E-05	3.92E-06
2005	764056.9	4093217	1.51E-04	1.64E-04	5.81E-05	2.35E-05	2.66E-05	9.17E-06	1.26E-05	1.25E-05	3.84E-06
2006	764081.5	4093217	1.47E-04	1.61E-04	5.68E-05	2.30E-05	2.61E-05	8.97E-06	1.23E-05	1.22E-05	3.76E-06
2007	764106	4093218	1.44E-04	1.57E-04	5.54E-05	2.25E-05	2.54E-05	8.76E-06	1.20E-05	1.20E-05	3.67E-06
2008	764130.6	4093219	1.40E-04	1.53E-04	5.40E-05	2.19E-05	2.48E-05	8.54E-06	1.17E-05	1.16E-05	3.57E-06
2009	764155.2	4093219	1.37E-04	1.49E-04	5.26E-05	2.14E-05	2.42E-05	8.32E-06	1.14E-05	1.13E-05	3.48E-06
2010	764179.8	4093220	1.33E-04	1.45E-04	5.13E-05	2.08E-05	2.35E-05	8.10E-06	1.11E-05	1.10E-05	3.39E-06
2011	764204.4	4093221	1.30E-04	1.41E-04	4.99E-05	2.02E-05	2.29E-05	7.88E-06	1.08E-05	1.08E-05	3.30E-06
2012	763783.7	4093400	1.22E-04	1.33E-04	4.71E-05	1.91E-05	2.16E-05	7.44E-06	1.02E-05	1.02E-05	3.12E-06
2013	763761.9	4093390	1.26E-04	1.37E-04	4.86E-05	1.97E-05	2.23E-05	7.68E-06	1.05E-05	1.05E-05	3.22E-06
2014	763740.1	4093380	1.30E-04	1.42E-04	5.02E-05	2.04E-05	2.30E-05	7.93E-06	1.09E-05	1.08E-05	3.32E-06
2015	763718.3	4093370	1.35E-04	1.47E-04	5.19E-05	2.10E-05	2.38E-05	8.20E-06	1.13E-05	1.12E-05	3.43E-06
2016	763696.5	4093361	1.39E-04	1.52E-04	5.37E-05	2.18E-05	2.46E-05	8.48E-06	1.16E-05	1.16E-05	3.55E-06
2017	763674.8	4093351	1.44E-04	1.57E-04	5.55E-05	2.25E-05	2.54E-05	8.76E-06	1.20E-05	1.20E-05	3.67E-06
2018	763653	4093341	1.49E-04	1.62E-04	5.73E-05	2.32E-05	2.63E-05	9.05E-06	1.24E-05	1.23E-05	3.79E-06
2019	763631.2	4093331	1.53E-04	1.67E-04	5.90E-05	2.39E-05	2.71E-05	9.32E-06	1.28E-05	1.27E-05	3.90E-06
2020	763609.4	4093321	1.57E-04	1.71E-04	6.06E-05	2.46E-05	2.78E-05	9.58E-06	1.31E-05	1.31E-05	4.01E-06
2021	763587.6	4093312	1.61E-04	1.75E-04	6.21E-05	2.52E-05	2.85E-05	9.81E-06	1.35E-05	1.34E-05	4.11E-06
2022	763565.9	4093302	1.64E-04	1.79E-04	6.33E-05	2.57E-05	2.91E-05	1.00E-05	1.37E-05	1.37E-05	4.19E-06
2023	763544.1	4093292	1.67E-04	1.82E-04	6.43E-05	2.61E-05	2.95E-05	1.02E-05	1.39E-05	1.39E-05	4.26E-06
2024	763522.3	4093282	1.69E-04	1.84E-04	6.50E-05	2.64E-05	2.98E-05	1.03E-05	1.41E-05	1.40E-05	4.30E-06

2025	763500.5	4093272	1.70E-04	1.85E-04	6.54E-05	2.65E-05	3.00E-05	1.03E-05	1.42E-05	1.41E-05	4.33E-06
2026	763478.8	4093263	1.70E-04	1.85E-04	6.54E-05	2.65E-05	3.00E-05	1.03E-05	1.42E-05	1.41E-05	4.33E-06
2027	763457	4093253	1.69E-04	1.84E-04	6.51E-05	2.64E-05	2.99E-05	1.03E-05	1.41E-05	1.40E-05	4.31E-06
2028	763435.2	4093243	1.67E-04	1.82E-04	6.44E-05	2.61E-05	2.96E-05	1.02E-05	1.40E-05	1.39E-05	4.26E-06
2029	763413.4	4093233	1.65E-04	1.79E-04	6.34E-05	2.57E-05	2.91E-05	1.00E-05	1.38E-05	1.37E-05	4.20E-06
2030	763391.6	4093223	1.61E-04	1.76E-04	6.21E-05	2.52E-05	2.85E-05	9.82E-06	1.35E-05	1.34E-05	4.11E-06
2031	763369.9	4093214	1.57E-04	1.71E-04	6.06E-05	2.46E-05	2.78E-05	9.58E-06	1.31E-05	1.31E-05	4.01E-06
2032	763348.1	4093204	1.53E-04	1.66E-04	5.89E-05	2.39E-05	2.70E-05	9.30E-06	1.28E-05	1.27E-05	3.90E-06
2033	763326.3	4093194	1.48E-04	1.61E-04	5.70E-05	2.31E-05	2.62E-05	9.01E-06	1.24E-05	1.23E-05	3.77E-06
2034	763304.5	4093184	1.43E-04	1.56E-04	5.51E-05	2.23E-05	2.53E-05	8.71E-06	1.19E-05	1.19E-05	3.65E-06
2035	763282.7	4093174	1.38E-04	1.50E-04	5.32E-05	2.16E-05	2.44E-05	8.40E-06	1.15E-05	1.15E-05	3.52E-06
2036	763261	4093165	1.33E-04	1.45E-04	5.13E-05	2.08E-05	2.35E-05	8.10E-06	1.11E-05	1.11E-05	3.39E-06
2037	763239.2	4093155	1.28E-04	1.40E-04	4.94E-05	2.00E-05	2.27E-05	7.81E-06	1.07E-05	1.07E-05	3.27E-06
2038	763217.4	4093145	1.24E-04	1.35E-04	4.77E-05	1.94E-05	2.19E-05	7.54E-06	1.03E-05	1.03E-05	3.16E-06
2039	763195.6	4093135	1.20E-04	1.30E-04	4.62E-05	1.87E-05	2.12E-05	7.29E-06	1.00E-05	9.95E-06	3.05E-06
2040	763165.5	4093103	1.16E-04	1.26E-04	4.47E-05	1.81E-05	2.05E-05	7.06E-06	9.69E-06	9.64E-06	2.96E-06
2041	763081.8	4092879	1.10E-04	1.20E-04	4.23E-05	1.72E-05	1.94E-05	6.69E-06	9.18E-06	9.13E-06	2.80E-06
2042	763073.4	4092857	1.08E-04	1.17E-04	4.15E-05	1.68E-05	1.90E-05	6.56E-06	9.00E-06	8.95E-06	2.75E-06
2043	763065.1	4092835	1.06E-04	1.15E-04	4.06E-05	1.65E-05	1.86E-05	6.42E-06	8.81E-06	8.76E-06	2.69E-06
2044	763056.7	4092812	1.03E-04	1.12E-04	3.97E-05	1.61E-05	1.82E-05	6.28E-06	8.61E-06	8.57E-06	2.63E-06
2045	763048.3	4092790	1.01E-04	1.10E-04	3.88E-05	1.57E-05	1.78E-05	6.14E-06	8.42E-06	8.37E-06	2.57E-06
2046	763040	4092767	9.86E-05	1.07E-04	3.80E-05	1.54E-05	1.74E-05	6.00E-06	8.23E-06	8.18E-06	2.51E-06
2047	763031.6	4092745	9.64E-05	1.05E-04	3.71E-05	1.50E-05	1.70E-05	5.86E-06	8.05E-06	8.00E-06	2.46E-06
2048	763023.3	4092723	9.43E-05	1.03E-04	3.63E-05	1.47E-05	1.67E-05	5.74E-06	7.87E-06	7.83E-06	2.40E-06
2049	763014.9	4092700	9.22E-05	1.00E-04	3.55E-05	1.44E-05	1.63E-05	5.61E-06	7.70E-06	7.66E-06	2.35E-06
2050	763006.5	4092678	9.02E-05	9.82E-05	3.48E-05	1.41E-05	1.59E-05	5.49E-06	7.53E-06	7.49E-06	2.30E-06
2051	762998.2	4092656	8.83E-05	9.61E-05	3.40E-05	1.38E-05	1.56E-05	5.37E-06	7.37E-06	7.33E-06	2.25E-06
2052	762989.8	4092633	8.64E-05	9.40E-05	3.33E-05	1.35E-05	1.53E-05	5.26E-06	7.21E-06	7.17E-06	2.20E-06
2053	762981.4	4092611	8.44E-05	9.19E-05	3.25E-05	1.32E-05	1.49E-05	5.14E-06	7.05E-06	7.01E-06	2.15E-06
2054	762973.1	4092588	8.24E-05	8.97E-05	3.17E-05	1.29E-05	1.46E-05	5.01E-06	6.88E-06	6.84E-06	2.10E-06
2055	762964.7	4092566	8.03E-05	8.75E-05	3.09E-05	1.25E-05	1.42E-05	4.89E-06	6.71E-06	6.67E-06	2.05E-06
2056	762956.3	4092544	7.82E-05	8.52E-05	3.01E-05	1.22E-05	1.38E-05	4.76E-06	6.53E-06	6.50E-06	1.99E-06
2057	762948	4092521	7.61E-05	8.28E-05	2.93E-05	1.19E-05	1.34E-05	4.63E-06	6.35E-06	6.31E-06	1.94E-06
2058	762939.6	4092499	7.38E-05	8.04E-05	2.84E-05	1.15E-05	1.30E-05	4.49E-06	6.17E-06	6.13E-06	1.88E-06
2059	763805.4	4093410	1.19E-04	1.29E-04	4.57E-05	1.85E-05	2.10E-05	7.22E-06	9.90E-06	9.85E-06	3.02E-06
2060	763830	4093410	1.17E-04	1.27E-04	4.50E-05	1.83E-05	2.07E-05	7.12E-06	9.77E-06	9.71E-06	2.98E-06
2061	763854.6	4093411	1.15E-04	1.26E-04	4.44E-05	1.80E-05	2.04E-05	7.02E-06	9.64E-06	9.58E-06	2.94E-06
2062	763879.2	4093412	1.14E-04	1.24E-04	4.39E-05	1.78E-05	2.01E-05	6.94E-06	9.52E-06	9.47E-06	2.91E-06
2063	763903.8	4093412	1.13E-04	1.23E-04	4.34E-05	1.76E-05	1.99E-05	6.86E-06	9.41E-06	9.36E-06	2.87E-06

2064	762020 4	4002442	1 115 04	1 245 04	4 205 05	4 745 05	1 075 05	C 705 0C	0.205.00	0.355.06	2.045.06
2064	763928.4	4093413	1.11E-04	1.21E-04	4.29E-05	1.74E-05	1.97E-05	6.78E-06	9.30E-06	9.25E-06	2.84E-06
2065	763953	4093414	1.10E-04	1.20E-04	4.24E-05	1.72E-05	1.95E-05	6.70E-06	9.19E-06	9.14E-06	2.81E-06
2066	763977.5	4093415	1.09E-04	1.18E-04	4.19E-05	1.70E-05	1.92E-05	6.62E-06	9.08E-06	9.03E-06	2.77E-06
2067	764002.1	4093415	1.07E-04	1.17E-04	4.13E-05	1.68E-05	1.90E-05	6.53E-06	8.96E-06	8.91E-06	2.73E-06
2068	764026.7	4093416	1.06E-04	1.15E-04	4.07E-05	1.65E-05	1.87E-05	6.43E-06	8.83E-06	8.78E-06	2.69E-06
2069	764051.3	4093417	1.04E-04	1.13E-04	4.01E-05	1.62E-05	1.84E-05	6.33E-06	8.69E-06	8.64E-06	2.65E-06
2070	764075.9	4093417	1.02E-04	1.11E-04	3.94E-05	1.60E-05	1.81E-05	6.22E-06	8.53E-06	8.48E-06	2.60E-06
2071	764100.5	4093418	1.00E-04	1.09E-04	3.86E-05	1.56E-05	1.77E-05	6.10E-06	8.37E-06	8.32E-06	2.55E-06
2072	764125	4093419	9.80E-05	1.07E-04	3.77E-05	1.53E-05	1.73E-05	5.96E-06	8.18E-06	8.14E-06	2.50E-06
2073	764149.6	4093419	9.58E-05	1.04E-04	3.69E-05	1.50E-05	1.69E-05	5.83E-06	8.00E-06	7.96E-06	2.44E-06
2074	764174.2	4093420	9.36E-05	1.02E-04	3.60E-05	1.46E-05	1.65E-05	5.70E-06	7.82E-06	7.77E-06	2.39E-06
2075	764198.8	4093421	9.14E-05	9.95E-05	3.52E-05	1.43E-05	1.61E-05	5.56E-06	7.63E-06	7.59E-06	2.33E-06
2076	763777.8	4093600	8.74E-05	9.52E-05	3.37E-05	1.37E-05	1.54E-05	5.32E-06	7.30E-06	7.26E-06	2.23E-06
2077	763755.7	4093590	8.95E-05	9.75E-05	3.45E-05	1.40E-05	1.58E-05	5.45E-06	7.48E-06	7.43E-06	2.28E-06
2078	763733.7	4093580	9.19E-05	1.00E-04	3.54E-05	1.44E-05	1.62E-05	5.59E-06	7.67E-06	7.63E-06	2.34E-06
2079	763711.6	4093570	9.45E-05	1.03E-04	3.64E-05	1.48E-05	1.67E-05	5.75E-06	7.89E-06	7.84E-06	2.41E-06
2080	763689.6	4093560	9.73E-05	1.06E-04	3.75E-05	1.52E-05	1.72E-05	5.92E-06	8.12E-06	8.08E-06	2.48E-06
2081	763667.5	4093550	1.00E-04	1.09E-04	3.86E-05	1.57E-05	1.77E-05	6.10E-06	8.38E-06	8.33E-06	2.56E-06
2082	763645.5	4093540	1.03E-04	1.13E-04	3.98E-05	1.62E-05	1.83E-05	6.29E-06	8.64E-06	8.59E-06	2.64E-06
2083	763623.4	4093530	1.07E-04	1.16E-04	4.11E-05	1.67E-05	1.88E-05	6.49E-06	8.91E-06	8.86E-06	2.72E-06
2084	763601.3	4093520	1.10E-04	1.20E-04	4.24E-05	1.72E-05	1.94E-05	6.69E-06	9.19E-06	9.13E-06	2.80E-06
2085	763579.3	4093510	1.13E-04	1.23E-04	4.36E-05	1.77E-05	2.00E-05	6.90E-06	9.46E-06	9.41E-06	2.89E-06
2086	763557.2	4093500	1.17E-04	1.27E-04	4.49E-05	1.82E-05	2.06E-05	7.09E-06	9.73E-06	9.67E-06	2.97E-06
2087	763535.2	4093490	1.20E-04	1.30E-04	4.61E-05	1.87E-05	2.11E-05	7.28E-06	9.99E-06	9.93E-06	3.05E-06
2088	763513.1	4093481	1.23E-04	1.33E-04	4.72E-05	1.91E-05	2.16E-05	7.45E-06	1.02E-05	1.02E-05	3.12E-06
2089	763491.1	4093471	1.25E-04	1.36E-04	4.81E-05	1.95E-05	2.21E-05	7.60E-06	1.04E-05	1.04E-05	3.18E-06
2090	763469	4093461	1.27E-04	1.38E-04	4.89E-05	1.98E-05	2.24E-05	7.73E-06	1.06E-05	1.05E-05	3.24E-06
2091	763447	4093451	1.29E-04	1.40E-04	4.95E-05	2.01E-05	2.27E-05	7.83E-06	1.07E-05	1.07E-05	3.28E-06
2092	763424.9	4093441	1.30E-04	1.41E-04	5.00E-05	2.03E-05	2.29E-05	7.89E-06	1.08E-05	1.08E-05	3.31E-06
2093	763402.8	4093431	1.30E-04	1.42E-04	5.02E-05	2.03E-05	2.30E-05	7.93E-06	1.09E-05	1.08E-05	3.32E-06
2094	763380.8	4093421	1.30E-04	1.42E-04	5.01E-05	2.03E-05	2.30E-05	7.92E-06	1.09E-05	1.08E-05	3.32E-06
2095	763358.7	4093411	1.30E-04	1.41E-04	4.99E-05	2.02E-05	2.29E-05	7.89E-06	1.08E-05	1.08E-05	3.30E-06
2096	763336.7	4093401	1.28E-04	1.40E-04	4.95E-05	2.01E-05	2.27E-05	7.81E-06	1.07E-05	1.07E-05	3.27E-06
2097	763314.6	4093391	1.27E-04	1.38E-04	4.88E-05	1.98E-05	2.24E-05	7.71E-06	1.06E-05	1.05E-05	3.23E-06
2098	763292.6	4093381	1.25E-04	1.36E-04	4.80E-05	1.95E-05	2.20E-05	7.58E-06	1.04E-05	1.03E-05	3.17E-06
2099	763270.5	4093371	1.22E-04	1.33E-04	4.70E-05	1.90E-05	2.15E-05	7.42E-06	1.02E-05	1.01E-05	3.11E-06
2100	763248.4	4093361	1.19E-04	1.30E-04	4.59E-05	1.86E-05	2.10E-05	7.24E-06	9.94E-06	9.88E-06	3.03E-06
2101	763226.4	4093351	1.16E-04	1.26E-04	4.46E-05	1.81E-05	2.05E-05	7.05E-06	9.67E-06	9.62E-06	2.95E-06
	763204.3	4093342	1.12E-04	1.22E-04	4.33E-05	1.76E-05	1.99E-05	6.84E-06	9.39E-06	9.34E-06	2.87E-06

2103	763182.3	4093332	1.09E-04	1.19E-04	4.20E-05	1.70E-05	1.92E-05	6.63E-06	9.10E-06	9.04E-06	2.78E-06
2104	763160.2	4093322	1.05E-04	1.15E-04	4.06E-05	1.65E-05	1.86E-05	6.41E-06	8.80E-06	8.75E-06	2.68E-06
2105	763138.2	4093312	1.02E-04	1.11E-04	3.92E-05	1.59E-05	1.80E-05	6.20E-06	8.51E-06	8.46E-06	2.60E-06
2106	762960.1	4093081	8.86E-05	9.65E-05	3.41E-05	1.38E-05	1.57E-05	5.39E-06	7.40E-06	7.36E-06	2.26E-06
2107	762951.6	4093058	8.83E-05	9.61E-05	3.40E-05	1.38E-05	1.56E-05	5.37E-06	7.37E-06	7.33E-06	2.25E-06
2108	762943.2	4093036	8.76E-05	9.54E-05	3.37E-05	1.37E-05	1.55E-05	5.33E-06	7.32E-06	7.27E-06	2.23E-06
2109	762934.7	4093013	8.67E-05	9.44E-05	3.34E-05	1.35E-05	1.53E-05	5.28E-06	7.24E-06	7.20E-06	2.21E-06
2110	762926.2	4092990	8.56E-05	9.32E-05	3.30E-05	1.34E-05	1.51E-05	5.21E-06	7.15E-06	7.11E-06	2.18E-06
2111	762917.7	4092968	8.42E-05	9.17E-05	3.24E-05	1.32E-05	1.49E-05	5.13E-06	7.03E-06	6.99E-06	2.15E-06
2112	762883.9	4092877	7.82E-05	8.51E-05	3.01E-05	1.22E-05	1.38E-05	4.76E-06	6.53E-06	6.49E-06	1.99E-06
2113	762875.4	4092854	7.67E-05	8.35E-05	2.96E-05	1.20E-05	1.36E-05	4.67E-06	6.41E-06	6.37E-06	1.96E-06
2114	762866.9	4092832	7.54E-05	8.20E-05	2.90E-05	1.18E-05	1.33E-05	4.59E-06	6.29E-06	6.26E-06	1.92E-06
2115	762858.4	4092809	7.40E-05	8.06E-05	2.85E-05	1.16E-05	1.31E-05	4.51E-06	6.18E-06	6.15E-06	1.89E-06
2116	762850	4092786	7.28E-05	7.92E-05	2.80E-05	1.14E-05	1.29E-05	4.43E-06	6.08E-06	6.04E-06	1.85E-06
2117	762841.5	4092764	7.15E-05	7.79E-05	2.75E-05	1.12E-05	1.26E-05	4.35E-06	5.97E-06	5.94E-06	1.82E-06
2118	762833	4092741	7.03E-05	7.65E-05	2.71E-05	1.10E-05	1.24E-05	4.28E-06	5.87E-06	5.84E-06	1.79E-06
2119	762824.6	4092718	6.91E-05	7.52E-05	2.66E-05	1.08E-05	1.22E-05	4.21E-06	5.77E-06	5.74E-06	1.76E-06
2120	762816.1	4092696	6.79E-05	7.39E-05	2.62E-05	1.06E-05	1.20E-05	4.13E-06	5.67E-06	5.64E-06	1.73E-06
2121	762807.6	4092673	6.67E-05	7.26E-05	2.57E-05	1.04E-05	1.18E-05	4.06E-06	5.57E-06	5.54E-06	1.70E-06
2122	762799.1	4092650	6.55E-05	7.13E-05	2.52E-05	1.02E-05	1.16E-05	3.99E-06	5.47E-06	5.44E-06	1.67E-06
2123	762790.7	4092628	6.43E-05	6.99E-05	2.47E-05	1.00E-05	1.14E-05	3.91E-06	5.37E-06	5.33E-06	1.64E-06
2124	762782.2	4092605	6.30E-05	6.85E-05	2.42E-05	9.83E-06	1.11E-05	3.83E-06	5.26E-06	5.23E-06	1.60E-06
2125	762773.7	4092582	6.16E-05	6.71E-05	2.37E-05	9.63E-06	1.09E-05	3.75E-06	5.15E-06	5.12E-06	1.57E-06
2126	762765.3	4092560	6.03E-05	6.56E-05	2.32E-05	9.41E-06	1.07E-05	3.67E-06	5.03E-06	5.00E-06	1.54E-06
2127	762756.8	4092537	5.89E-05	6.41E-05	2.27E-05	9.19E-06	1.04E-05	3.58E-06	4.91E-06	4.89E-06	1.50E-06
2128	762748.3	4092515	5.74E-05	6.25E-05	2.21E-05	8.97E-06	1.01E-05	3.49E-06	4.79E-06	4.77E-06	1.46E-06
2129	762739.8	4092492	5.60E-05	6.09E-05	2.15E-05	8.74E-06	9.89E-06	3.40E-06	4.67E-06	4.65E-06	1.43E-06
2130	763799.9	4093610	8.55E-05	9.31E-05	3.29E-05	1.34E-05	1.51E-05	5.20E-06	7.14E-06	7.10E-06	2.18E-06
2131	763824.4	4093610	8.48E-05	9.23E-05	3.27E-05	1.32E-05	1.50E-05	5.16E-06	7.08E-06	7.04E-06	2.16E-06
2132	763849	4093611	8.42E-05	9.17E-05	3.24E-05	1.32E-05	1.49E-05	5.13E-06	7.03E-06	6.99E-06	2.15E-06
2133	763873.6	4093612	8.37E-05	9.11E-05	3.22E-05	1.31E-05	1.48E-05	5.09E-06	6.99E-06	6.95E-06	2.13E-06
2134	763898.2	4093612	8.31E-05	9.04E-05	3.20E-05	1.30E-05	1.47E-05	5.06E-06	6.94E-06	6.90E-06	2.12E-06
2135	763922.8	4093613	8.25E-05	8.98E-05	3.18E-05	1.29E-05	1.46E-05	5.02E-06	6.89E-06	6.85E-06	2.10E-06
2136	763947.4	4093614	8.18E-05	8.91E-05	3.15E-05	1.28E-05	1.45E-05	4.98E-06	6.83E-06	6.79E-06	2.09E-06
2137	763971.9	4093614	8.11E-05	8.82E-05	3.12E-05	1.27E-05	1.43E-05	4.93E-06	6.77E-06	6.73E-06	2.07E-06
2138	763996.5	4093615	8.02E-05	8.73E-05	3.09E-05	1.25E-05	1.42E-05	4.88E-06	6.70E-06	6.66E-06	2.04E-06
2139	764021.1	4093616	7.93E-05	8.63E-05	3.05E-05	1.24E-05	1.40E-05	4.82E-06	6.62E-06	6.58E-06	2.02E-06
2140	764045.7	4093617	7.82E-05	8.51E-05	3.01E-05	1.22E-05	1.38E-05	4.76E-06	6.53E-06	6.49E-06	1.99E-06
2141	764070.3	4093617	7.71E-05	8.39E-05	2.97E-05	1.20E-05	1.36E-05	4.69E-06	6.44E-06	6.40E-06	1.96E-06

2142	764094.9	4093618	7.58E-05	8.25E-05	2.92E-05	1.18E-05	1.34E-05	4.61E-06	6.33E-06	6.29E-06	1.93E-06
2143	764119.5	4093619	7.44E-05	8.10E-05	2.87E-05	1.16E-05	1.32E-05	4.53E-06	6.22E-06	6.18E-06	1.90E-06
2144	764144	4093619	7.30E-05	7.95E-05	2.81E-05	1.14E-05	1.29E-05	4.44E-06	6.10E-06	6.06E-06	1.86E-06
2145	764168.6	4093620	7.15E-05	7.79E-05	2.75E-05	1.12E-05	1.26E-05	4.35E-06	5.97E-06	5.94E-06	1.82E-06
2146	764193.2	4093621	7.00E-05	7.62E-05	2.70E-05	1.09E-05	1.24E-05	4.26E-06	5.85E-06	5.81E-06	1.78E-06
2147	763772	4093800	6.73E-05	7.33E-05	2.59E-05	1.05E-05	1.19E-05	4.10E-06	5.62E-06	5.59E-06	1.72E-06
2148	763749.8	4093790	6.84E-05	7.45E-05	2.64E-05	1.07E-05	1.21E-05	4.16E-06	5.72E-06	5.68E-06	1.74E-06
2149	763727.5	4093779	6.97E-05	7.59E-05	2.69E-05	1.09E-05	1.23E-05	4.24E-06	5.82E-06	5.79E-06	1.78E-06
2150	763705.3	4093769	7.12E-05	7.75E-05	2.74E-05	1.11E-05	1.26E-05	4.33E-06	5.94E-06	5.91E-06	1.81E-06
2151	763683	4093759	7.28E-05	7.92E-05	2.80E-05	1.14E-05	1.29E-05	4.43E-06	6.08E-06	6.04E-06	1.86E-06
2152	763660.8	4093749	7.46E-05	8.12E-05	2.87E-05	1.17E-05	1.32E-05	4.54E-06	6.23E-06	6.19E-06	1.90E-06
2153	763638.5	4093739	7.66E-05	8.34E-05	2.95E-05	1.20E-05	1.35E-05	4.66E-06	6.40E-06	6.36E-06	1.95E-06
2154	763616.2	4093729	7.87E-05	8.57E-05	3.03E-05	1.23E-05	1.39E-05	4.79E-06	6.57E-06	6.54E-06	2.01E-06
2155	763594	4093719	8.10E-05	8.82E-05	3.12E-05	1.27E-05	1.43E-05	4.93E-06	6.76E-06	6.73E-06	2.06E-06
2156	763571.7	4093709	8.35E-05	9.08E-05	3.21E-05	1.30E-05	1.47E-05	5.08E-06	6.97E-06	6.93E-06	2.13E-06
2157	763549.5	4093699	8.60E-05	9.36E-05	3.31E-05	1.34E-05	1.52E-05	5.23E-06	7.18E-06	7.14E-06	2.19E-06
2158	763527.2	4093689	8.85E-05	9.63E-05	3.41E-05	1.38E-05	1.56E-05	5.38E-06	7.39E-06	7.35E-06	2.25E-06
2159	763505	4093679	9.10E-05	9.90E-05	3.50E-05	1.42E-05	1.61E-05	5.53E-06	7.60E-06	7.55E-06	2.32E-06
2160	763482.7	4093669	9.34E-05	1.02E-04	3.60E-05	1.46E-05	1.65E-05	5.68E-06	7.80E-06	7.75E-06	2.38E-06
2161	763460.5	4093659	9.57E-05	1.04E-04	3.68E-05	1.49E-05	1.69E-05	5.82E-06	7.99E-06	7.94E-06	2.44E-06
2162	763438.2	4093649	9.78E-05	1.06E-04	3.77E-05	1.53E-05	1.73E-05	5.95E-06	8.16E-06	8.12E-06	2.49E-06
2163	763416	4093639	9.97E-05	1.08E-04	3.84E-05	1.56E-05	1.76E-05	6.06E-06	8.32E-06	8.28E-06	2.54E-06
2164	763393.7	4093629	1.01E-04	1.10E-04	3.90E-05	1.58E-05	1.79E-05	6.16E-06	8.46E-06	8.41E-06	2.58E-06
2165	763371.5	4093619	1.03E-04	1.12E-04	3.95E-05	1.60E-05	1.81E-05	6.25E-06	8.57E-06	8.52E-06	2.62E-06
2166	763349.2	4093609	1.04E-04	1.13E-04	3.99E-05	1.62E-05	1.83E-05	6.31E-06	8.66E-06	8.61E-06	2.64E-06
2167	763327	4093599	1.04E-04	1.14E-04	4.02E-05	1.63E-05	1.84E-05	6.35E-06	8.72E-06	8.67E-06	2.66E-06
2168	763304.7	4093589	1.05E-04	1.14E-04	4.03E-05	1.64E-05	1.85E-05	6.37E-06	8.74E-06	8.69E-06	2.67E-06
2169	763282.5	4093579	1.05E-04	1.14E-04	4.03E-05	1.63E-05	1.85E-05	6.37E-06	8.74E-06	8.69E-06	2.67E-06
2170	763260.2	4093569	1.04E-04	1.13E-04	4.01E-05	1.63E-05	1.84E-05	6.34E-06	8.70E-06	8.65E-06	2.65E-06
2171	763238	4093559	1.03E-04	1.13E-04	3.98E-05	1.61E-05	1.83E-05	6.29E-06	8.63E-06	8.58E-06	2.63E-06
2172	763215.7	4093549	1.02E-04	1.11E-04	3.94E-05	1.60E-05	1.81E-05	6.22E-06	8.54E-06	8.49E-06	2.61E-06
2173	763193.5	4093539	1.01E-04	1.10E-04	3.88E-05	1.57E-05	1.78E-05	6.13E-06	8.41E-06	8.37E-06	2.57E-06
2174	763171.2	4093529	9.90E-05	1.08E-04	3.81E-05	1.55E-05	1.75E-05	6.02E-06	8.27E-06	8.22E-06	2.52E-06
2175	763149	4093519	9.70E-05	1.06E-04	3.74E-05	1.52E-05	1.71E-05	5.90E-06	8.10E-06	8.05E-06	2.47E-06
2176	763126.7	4093509	9.48E-05	1.03E-04	3.65E-05	1.48E-05	1.67E-05	5.77E-06	7.91E-06	7.87E-06	2.41E-06
2177	763104.5	4093499	9.23E-05	1.01E-04	3.56E-05	1.44E-05	1.63E-05	5.62E-06		7.67E-06	2.35E-06
2178	763082.2	4093489	8.98E-05	9.78E-05	3.46E-05	1.40E-05	1.59E-05	5.46E-06	7.50E-06	7.46E-06	2.29E-06
2179	763060	4093479	8.72E-05	9.49E-05	3.36E-05	1.36E-05	1.54E-05	5.31E-06	7.28E-06	7.24E-06	2.22E-06
2180	763037.7	4093469	8.46E-05	9.21E-05	3.26E-05	1.32E-05	1.49E-05	5.15E-06	7.06E-06	7.02E-06	2.16E-06

2181	763015.4	4093459	8.20E-05	8.93E-05	3.16E-05	1.28E-05	1.45E-05	4.99E-06	6.85E-06	6.81E-06	2.09E-06
2182	762993.2	4093449	7.95E-05	8.65E-05	3.06E-05	1.24E-05	1.40E-05	4.84E-06	6.64E-06	6.60E-06	2.03E-06
2183	762685.4	4092873	5.97E-05	6.50E-05	2.30E-05	9.32E-06	1.05E-05	3.63E-06	4.98E-06	4.96E-06	1.52E-06
2184	762676.8	4092850	5.89E-05	6.41E-05	2.27E-05	9.19E-06	1.04E-05	3.58E-06	4.91E-06	4.89E-06	1.50E-06
2185	762668.3	4092827	5.81E-05	6.32E-05	2.24E-05	9.07E-06	1.03E-05	3.53E-06	4.85E-06	4.82E-06	1.48E-06
2186	762659.7	4092805	5.73E-05	6.23E-05	2.21E-05	8.94E-06	1.01E-05	3.48E-06	4.78E-06	4.75E-06	1.46E-06
2187	762651.2	4092782	5.65E-05	6.15E-05	2.18E-05	8.82E-06	9.98E-06	3.44E-06	4.72E-06	4.69E-06	1.44E-06
2188	762642.6	4092759	5.57E-05	6.06E-05	2.14E-05	8.69E-06	9.84E-06	3.39E-06	4.65E-06	4.62E-06	1.42E-06
2189	762634.1	4092736	5.49E-05	5.97E-05	2.11E-05	8.57E-06	9.69E-06	3.34E-06	4.58E-06	4.55E-06	1.40E-06
2190	762625.5	4092713	5.40E-05	5.88E-05	2.08E-05	8.44E-06	9.55E-06	3.29E-06	4.51E-06	4.49E-06	1.38E-06
2191	762617	4092690	5.32E-05	5.79E-05	2.05E-05	8.31E-06	9.40E-06	3.24E-06	4.44E-06	4.42E-06	1.36E-06
2192	762608.4	4092667	5.24E-05	5.70E-05	2.02E-05	8.18E-06	9.25E-06	3.19E-06	4.37E-06	4.35E-06	1.33E-06
2193	762599.9	4092645	5.15E-05	5.60E-05	1.98E-05	8.04E-06	9.10E-06	3.13E-06	4.30E-06	4.27E-06	1.31E-06
2194	762591.3	4092622	5.06E-05	5.51E-05	1.95E-05	7.90E-06	8.94E-06	3.08E-06	4.22E-06	4.20E-06	1.29E-06
2195	762582.8	4092599	4.97E-05	5.41E-05	1.91E-05	7.76E-06	8.77E-06	3.02E-06	4.15E-06	4.12E-06	1.27E-06
2196	762574.2	4092576	4.87E-05	5.30E-05	1.88E-05	7.61E-06	8.61E-06	2.97E-06	4.07E-06	4.05E-06	1.24E-06
2197	762565.7	4092553	4.77E-05	5.20E-05	1.84E-05	7.46E-06	8.44E-06	2.91E-06	3.99E-06	3.96E-06	1.22E-06
2198	762557.1	4092530	4.67E-05	5.09E-05	1.80E-05	7.30E-06	8.26E-06	2.84E-06	3.90E-06	3.88E-06	1.19E-06
2199	762548.6	4092507	4.57E-05	4.97E-05	1.76E-05	7.14E-06	8.08E-06	2.78E-06	3.82E-06	3.79E-06	1.16E-06
2200	762540	4092485	4.46E-05	4.86E-05	1.72E-05	6.97E-06	7.89E-06	2.72E-06	3.73E-06	3.71E-06	1.14E-06
2201	763794.3	4093810	6.63E-05	7.21E-05	2.55E-05	1.04E-05	1.17E-05	4.03E-06	5.53E-06	5.50E-06	1.69E-06
2202	763818.8	4093810	6.60E-05	7.19E-05	2.54E-05	1.03E-05	1.17E-05	4.02E-06	5.51E-06	5.48E-06	1.68E-06
2203	763843.4	4093811	6.58E-05	7.16E-05	2.53E-05	1.03E-05	1.16E-05	4.00E-06	5.49E-06	5.46E-06	1.68E-06
2204	763868	4093812	6.55E-05	7.13E-05	2.52E-05	1.02E-05	1.16E-05	3.99E-06	5.47E-06	5.44E-06	1.67E-06
2205	763892.6	4093812	6.52E-05	7.10E-05	2.51E-05	1.02E-05	1.15E-05	3.97E-06	5.45E-06	5.42E-06	1.66E-06
2206	763917.2	4093813	6.50E-05	7.07E-05	2.50E-05	1.01E-05	1.15E-05	3.95E-06	5.42E-06	5.39E-06	1.66E-06
2207	763941.8	4093814	6.46E-05	7.03E-05	2.49E-05	1.01E-05	1.14E-05	3.93E-06	5.39E-06	5.36E-06	1.65E-06
2208	763966.4	4093814	6.42E-05	6.98E-05	2.47E-05	1.00E-05	1.13E-05	3.90E-06	5.36E-06	5.33E-06	1.63E-06
2209	763990.9	4093815	6.36E-05	6.93E-05	2.45E-05	9.94E-06	1.12E-05	3.87E-06	5.31E-06	5.28E-06	1.62E-06
2210	764015.5	4093816	6.30E-05	6.86E-05	2.43E-05	9.84E-06	1.11E-05	3.83E-06	5.26E-06	5.23E-06	1.60E-06
2211	764040.1	4093816	6.22E-05	6.77E-05	2.40E-05	9.72E-06	1.10E-05	3.79E-06	5.20E-06	5.17E-06	1.59E-06
2212	764064.7	4093817	6.14E-05	6.69E-05	2.37E-05	9.60E-06	1.09E-05	3.74E-06	5.13E-06	5.10E-06	1.57E-06
2213	764089.3	4093818	6.06E-05	6.59E-05	2.33E-05	9.46E-06	1.07E-05	3.68E-06	5.06E-06	5.03E-06	1.54E-06
2214	764113.9	4093818	5.96E-05	6.49E-05	2.30E-05	9.31E-06	1.05E-05	3.63E-06	4.98E-06	4.95E-06	1.52E-06
2215	764138.4	4093819	5.86E-05	6.38E-05	2.26E-05	9.16E-06	1.04E-05	3.57E-06	4.89E-06	4.87E-06	1.49E-06
2216	764163	4093820	5.76E-05	6.27E-05	2.22E-05	8.99E-06	1.02E-05	3.50E-06	4.81E-06	4.78E-06	1.47E-06
2217	764187.6	4093821	5.65E-05	6.15E-05	2.18E-05	8.83E-06	9.99E-06	3.44E-06	4.72E-06	4.69E-06	1.44E-06
2218	763766.3	4093999	5.45E-05	5.93E-05	2.10E-05	8.51E-06	9.63E-06	3.32E-06	4.55E-06	4.52E-06	1.39E-06
2219	763743.9	4093989	5.51E-05	6.00E-05	2.12E-05	8.61E-06	9.74E-06	3.36E-06	4.60E-06	4.58E-06	1.41E-06

2220	763721.5	4093979	5.59E-05	6.08E-05	2.15E-05	8.73E-06	9.87E-06	3.40E-06	4.67E-06	4.64E-06	1.42E-06
2221	763699.1	4093969	5.67E-05	6.17E-05	2.18E-05	8.86E-06	1.00E-05	3.45E-06	4.73E-06	4.71E-06	1.44E-06
2222	763676.7	4093959	5.76E-05	6.27E-05	2.22E-05	9.00E-06	1.02E-05	3.51E-06	4.81E-06	4.78E-06	1.47E-06
2223	763654.3	4093949	5.87E-05	6.39E-05	2.26E-05	9.17E-06	1.04E-05	3.57E-06	4.90E-06	4.87E-06	1.50E-06
2224	763631.9	4093939	5.99E-05	6.52E-05	2.31E-05	9.35E-06	1.06E-05	3.64E-06	5.00E-06	4.97E-06	1.53E-06
2225	763609.5	4093929	6.12E-05	6.67E-05	2.36E-05	9.57E-06	1.08E-05	3.73E-06	5.11E-06	5.08E-06	1.56E-06
2226	763587.1	4093919	6.27E-05	6.83E-05	2.42E-05	9.80E-06	1.11E-05	3.82E-06	5.24E-06	5.21E-06	1.60E-06
2227	763564.7	4093909	6.43E-05	7.00E-05	2.48E-05	1.00E-05	1.14E-05	3.91E-06	5.37E-06	5.34E-06	1.64E-06
2228	763542.3	4093899	6.61E-05	7.19E-05	2.54E-05	1.03E-05	1.17E-05	4.02E-06	5.52E-06	5.48E-06	1.68E-06
2229	763519.9	4093888	6.79E-05	7.39E-05	2.61E-05	1.06E-05	1.20E-05	4.13E-06	5.67E-06	5.64E-06	1.73E-06
2230	763497.5	4093878	6.98E-05	7.60E-05	2.69E-05	1.09E-05	1.23E-05	4.25E-06	5.83E-06	5.79E-06	1.78E-06
2231	763475.1	4093868	7.17E-05	7.81E-05	2.76E-05	1.12E-05	1.27E-05	4.37E-06	5.99E-06	5.96E-06	1.83E-06
2232	763452.7	4093858	7.37E-05	8.02E-05	2.84E-05	1.15E-05	1.30E-05	4.48E-06	6.15E-06	6.12E-06	1.88E-06
2233	763430.3	4093848	7.56E-05	8.23E-05	2.91E-05	1.18E-05	1.34E-05	4.60E-06	6.32E-06	6.28E-06	1.93E-06
2234	763407.9	4093838	7.75E-05	8.44E-05	2.98E-05	1.21E-05	1.37E-05	4.72E-06	6.47E-06	6.43E-06	1.97E-06
2235	763385.5	4093828	7.93E-05	8.63E-05	3.05E-05	1.24E-05	1.40E-05	4.82E-06	6.62E-06	6.58E-06	2.02E-06
2236	763363.1	4093818	8.09E-05	8.81E-05	3.12E-05	1.26E-05	1.43E-05	4.92E-06	6.76E-06	6.72E-06	2.06E-06
2237	763340.7	4093808	8.24E-05	8.97E-05	3.17E-05	1.29E-05	1.46E-05	5.02E-06	6.88E-06	6.84E-06	2.10E-06
2238	763318.3	4093798	8.37E-05	9.11E-05	3.22E-05	1.31E-05	1.48E-05	5.09E-06	6.99E-06	6.95E-06	2.13E-06
2239	763295.9	4093788	8.48E-05	9.23E-05	3.27E-05	1.32E-05	1.50E-05	5.16E-06	7.08E-06	7.04E-06	2.16E-06
2240	763273.5	4093778	8.57E-05	9.33E-05	3.30E-05	1.34E-05	1.51E-05	5.21E-06	7.16E-06	7.12E-06	2.18E-06
2241	763251.1	4093768	8.64E-05	9.40E-05	3.33E-05	1.35E-05	1.53E-05	5.25E-06	7.21E-06	7.17E-06	2.20E-06
2242	763228.7	4093757	8.68E-05	9.44E-05	3.34E-05	1.35E-05	1.53E-05	5.28E-06	7.24E-06	7.20E-06	2.21E-06
2243	763206.3	4093747	8.69E-05	9.46E-05	3.35E-05	1.36E-05	1.54E-05	5.29E-06	7.26E-06	7.22E-06	2.21E-06
2244	763183.9	4093737	8.68E-05	9.45E-05	3.34E-05	1.36E-05	1.53E-05	5.28E-06	7.25E-06	7.21E-06	2.21E-06
2245	763161.5	4093727	8.65E-05	9.41E-05	3.33E-05	1.35E-05	1.53E-05	5.26E-06	7.22E-06	7.18E-06	2.20E-06
2246	763139.1	4093717	8.60E-05	9.36E-05	3.31E-05	1.34E-05	1.52E-05	5.23E-06	7.18E-06	7.14E-06	2.19E-06
2247	763116.7	4093707	8.52E-05	9.27E-05	3.28E-05	1.33E-05	1.50E-05	5.18E-06	7.11E-06	7.07E-06	2.17E-06
2248	763094.4	4093697	8.42E-05	9.16E-05	3.24E-05	1.31E-05	1.49E-05	5.12E-06	7.03E-06	6.99E-06	2.14E-06
2249	763072	4093687	8.30E-05	9.03E-05	3.19E-05	1.30E-05	1.47E-05	5.05E-06	6.93E-06	6.89E-06	2.11E-06
2250	763049.6	4093677	8.15E-05	8.88E-05	3.14E-05	1.27E-05	1.44E-05	4.96E-06	6.81E-06	6.77E-06	2.08E-06
2251	763027.2	4093667	7.99E-05	8.70E-05	3.08E-05	1.25E-05	1.41E-05	4.86E-06	6.68E-06	6.64E-06	2.04E-06
2252	763004.8	4093657	7.82E-05	8.51E-05	3.01E-05	1.22E-05	1.38E-05	4.76E-06	6.53E-06	6.49E-06	1.99E-06
2253	762982.4	4093647	7.64E-05	8.32E-05	2.94E-05	1.19E-05	1.35E-05	4.65E-06	6.38E-06	6.34E-06	1.95E-06
2254	762960	4093636	7.45E-05	8.11E-05	2.87E-05	1.16E-05	1.32E-05	4.53E-06	6.22E-06	6.18E-06	1.90E-06
2255	762937.6	4093626	7.24E-05	7.89E-05	2.79E-05	1.13E-05	1.28E-05	4.41E-06	6.05E-06	6.01E-06	1.85E-06
2256	762915.2	4093616	7.04E-05	7.67E-05	2.71E-05	1.10E-05	1.24E-05	4.29E-06	5.88E-06	5.85E-06	1.79E-06
2257	762892.8	4093606	6.84E-05	7.45E-05	2.63E-05	1.07E-05	1.21E-05	4.16E-06	5.71E-06	5.68E-06	1.74E-06
2258	762870.4	4093596	6.65E-05	7.23E-05	2.56E-05	1.04E-05	1.17E-05	4.04E-06	5.55E-06	5.52E-06	1.69E-06

2250	762040	4002506	C 465 05	7.025.05	2 405 05	1 01 5 05	1 1 1 5 0 5	2.025.06	E 20E 06	F 26F 06	1 (55 0)
2259	762848	4093586	6.46E-05	7.03E-05	2.49E-05	1.01E-05	1.14E-05	3.93E-06	5.39E-06	5.36E-06	1.65E-06
2260	762825.6	4093576	6.28E-05	6.84E-05	2.42E-05	9.81E-06	1.11E-05	3.82E-06	5.25E-06	5.22E-06	1.60E-06
2261	762803.2	4093566	6.12E-05	6.66E-05	2.36E-05	9.56E-06	1.08E-05	3.72E-06	5.11E-06	5.08E-06	1.56E-06
2262	762710.2	4093467	5.73E-05	6.24E-05	2.21E-05	8.96E-06	1.01E-05	3.49E-06	4.79E-06	4.76E-06	1.46E-06
2263	762701.6	4093444	5.76E-05	6.27E-05	2.22E-05	9.00E-06	1.02E-05	3.51E-06	4.81E-06	4.78E-06	1.47E-06
2264	762693	4093421	5.79E-05	6.30E-05	2.23E-05	9.04E-06	1.02E-05	3.52E-06	4.84E-06	4.81E-06	1.48E-06
2265	762546.7	4093030	5.24E-05	5.70E-05	2.02E-05	8.18E-06	9.25E-06	3.19E-06	4.37E-06	4.35E-06	1.33E-06
2266	762538.1	4093007	5.17E-05	5.62E-05	1.99E-05	8.07E-06	9.13E-06	3.14E-06	4.31E-06	4.29E-06	1.32E-06
2267	762529.5	4092983	5.10E-05	5.55E-05	1.96E-05	7.97E-06	9.01E-06	3.10E-06	4.26E-06	4.24E-06	1.30E-06
2268	762520.9	4092960	5.04E-05	5.48E-05	1.94E-05	7.87E-06	8.90E-06	3.07E-06	4.21E-06	4.18E-06	1.28E-06
2269	762512.3	4092937	4.98E-05	5.42E-05	1.92E-05	7.78E-06	8.80E-06	3.03E-06	4.16E-06	4.14E-06	1.27E-06
2270	762503.7	4092914	4.92E-05	5.36E-05	1.90E-05	7.69E-06	8.70E-06	3.00E-06	4.11E-06	4.09E-06	1.25E-06
2271	762495.1	4092891	4.87E-05	5.30E-05	1.88E-05	7.61E-06	8.60E-06	2.96E-06	4.07E-06	4.04E-06	1.24E-06
2272	762486.5	4092868	4.81E-05	5.24E-05	1.85E-05	7.52E-06	8.51E-06	2.93E-06	4.02E-06	4.00E-06	1.23E-06
2273	762477.9	4092845	4.76E-05	5.18E-05	1.83E-05	7.43E-06	8.41E-06	2.90E-06	3.97E-06	3.95E-06	1.21E-06
2274	762469.3	4092822	4.70E-05	5.12E-05	1.81E-05	7.34E-06	8.31E-06	2.86E-06	3.93E-06	3.90E-06	1.20E-06
2275	762460.7	4092799	4.64E-05	5.05E-05	1.79E-05	7.25E-06	8.20E-06	2.83E-06	3.88E-06	3.85E-06	1.18E-06
2276	762452.1	4092776	4.58E-05	4.99E-05	1.77E-05	7.16E-06	8.10E-06	2.79E-06	3.83E-06	3.81E-06	1.17E-06
2277	762443.5	4092753	4.52E-05	4.92E-05	1.74E-05	7.07E-06	7.99E-06	2.75E-06	3.78E-06	3.76E-06	1.15E-06
2278	762434.9	4092730	4.46E-05	4.86E-05	1.72E-05	6.97E-06	7.89E-06	2.72E-06	3.73E-06	3.71E-06	1.14E-06
2279	762426.3	4092707	4.40E-05	4.79E-05	1.69E-05	6.87E-06	7.78E-06	2.68E-06	3.67E-06	3.65E-06	1.12E-06
2280	762417.7	4092684	4.34E-05	4.72E-05	1.67E-05	6.78E-06	7.67E-06	2.64E-06	3.62E-06	3.60E-06	1.11E-06
2281	762409.1	4092661	4.28E-05	4.65E-05	1.65E-05	6.68E-06	7.55E-06	2.60E-06	3.57E-06	3.55E-06	1.09E-06
2282	762400.5	4092638	4.21E-05	4.59E-05	1.62E-05	6.58E-06	7.44E-06	2.56E-06	3.52E-06	3.50E-06	1.07E-06
2283	762391.9	4092615	4.15E-05	4.51E-05	1.60E-05	6.48E-06	7.32E-06	2.52E-06	3.46E-06	3.44E-06	1.06E-06
2284	762383.3	4092592	4.08E-05	4.44E-05	1.57E-05	6.36E-06	7.20E-06	2.48E-06	3.40E-06	3.38E-06	1.04E-06
2285	762374.7	4092569	4.00E-05	4.36E-05	1.54E-05	6.25E-06	7.07E-06	2.44E-06	3.34E-06	3.32E-06	1.02E-06
2286	762366.1	4092546	3.93E-05	4.28E-05	1.51E-05	6.14E-06	6.94E-06	2.39E-06	3.28E-06	3.26E-06	1.00E-06
2287	762357.4	4092523	3.85E-05	4.19E-05	1.48E-05	6.02E-06	6.81E-06	2.34E-06	3.22E-06	3.20E-06	9.82E-07
2288	762348.8	4092500	3.77E-05	4.11E-05	1.45E-05	5.89E-06	6.67E-06	2.30E-06	3.15E-06	3.13E-06	9.62E-07
2289	762340.2	4092477	3.69E-05	4.02E-05	1.42E-05	5.77E-06	6.52E-06	2.25E-06	3.08E-06	3.07E-06	9.41E-07
2290	763788.7	4094009	5.39E-05	5.87E-05	2.08E-05	8.42E-06	9.53E-06	3.28E-06	4.50E-06	4.48E-06	1.37E-06
2291	763813.3	4094010	5.38E-05	5.86E-05	2.07E-05	8.41E-06	9.51E-06	3.28E-06	4.49E-06	4.47E-06	1.37E-06
2292	763837.8	4094011	5.37E-05	5.85E-05	2.07E-05	8.39E-06	9.50E-06	3.27E-06	4.49E-06	4.46E-06	1.37E-06
2293	763862.4	4094012	5.37E-05	5.84E-05	2.07E-05	8.38E-06	9.48E-06	3.27E-06	4.48E-06	4.46E-06	1.37E-06
2294	763887	4094012	5.35E-05	5.83E-05	2.06E-05	8.36E-06	9.46E-06	3.26E-06	4.47E-06	4.45E-06	1.36E-06
2295	763911.6	4094013	5.34E-05	5.81E-05	2.06E-05	8.33E-06	9.43E-06	3.25E-06	4.46E-06	4.43E-06	1.36E-06
2296	763936.2	4094014	5.31E-05	5.78E-05	2.05E-05	8.30E-06	9.39E-06	3.23E-06	4.44E-06	4.41E-06	1.35E-06
	763960.8	4094014	5.28E-05	5.75E-05	2.03E-05	8.25E-06	9.34E-06	3.22E-06	4.41E-06	4.39E-06	1.35E-06

2298	763985.3	4094015	5.25E-05	5.71E-05	2.02E-05	8.20E-06	9.27E-06	3.19E-06	4.38E-06	4.36E-06	1.34E-06
2299	764009.9	4094016	5.20E-05	5.67E-05	2.00E-05	8.13E-06	9.20E-06	3.17E-06	4.35E-06	4.32E-06	1.33E-06
2300	764034.5	4094016	5.15E-05	5.61E-05	1.98E-05	8.05E-06	9.10E-06	3.14E-06	4.30E-06	4.28E-06	1.31E-06
2301	764059.1	4094017	5.09E-05	5.54E-05	1.96E-05	7.95E-06	9.00E-06	3.10E-06	4.25E-06	4.23E-06	1.30E-06
2302	764083.7	4094018	5.03E-05	5.47E-05	1.94E-05	7.85E-06	8.88E-06	3.06E-06	4.20E-06	4.17E-06	1.28E-06
2303	764108.3	4094018	4.96E-05	5.39E-05	1.91E-05	7.74E-06	8.76E-06	3.02E-06	4.14E-06	4.11E-06	1.26E-06
2304	764132.9	4094019	4.88E-05	5.32E-05	1.88E-05	7.63E-06	8.63E-06	2.97E-06	4.08E-06	4.05E-06	1.24E-06
2305	764157.4	4094020	4.81E-05	5.23E-05	1.85E-05	7.51E-06	8.49E-06	2.92E-06	4.01E-06	3.99E-06	1.22E-06
2306	764182	4094020	4.73E-05	5.15E-05	1.82E-05	7.38E-06	8.35E-06	2.88E-06	3.95E-06	3.93E-06	1.20E-06
2307	763761	4094199	4.57E-05	4.97E-05	1.76E-05	7.13E-06	8.07E-06	2.78E-06	3.81E-06	3.79E-06	1.16E-06
2308	763738.9	4094190	4.60E-05	5.01E-05	1.77E-05	7.19E-06	8.14E-06	2.80E-06	3.84E-06	3.82E-06	1.17E-06
2309	763716.8	4094180	4.65E-05	5.06E-05	1.79E-05	7.25E-06	8.21E-06	2.83E-06	3.88E-06	3.86E-06	1.18E-06
2310	763694.7	4094170	4.69E-05	5.11E-05	1.81E-05	7.33E-06	8.29E-06	2.86E-06	3.92E-06	3.90E-06	1.20E-06
2311	763672.6	4094160	4.75E-05	5.17E-05	1.83E-05	7.42E-06	8.39E-06	2.89E-06	3.96E-06	3.94E-06	1.21E-06
2312	763650.5	4094150	4.81E-05	5.23E-05	1.85E-05	7.51E-06	8.50E-06	2.93E-06	4.02E-06	3.99E-06	1.23E-06
2313	763628.4	4094140	4.88E-05	5.31E-05	1.88E-05	7.62E-06	8.62E-06	2.97E-06	4.07E-06	4.05E-06	1.24E-06
2314	763606.3	4094130	4.96E-05	5.40E-05	1.91E-05	7.75E-06	8.76E-06	3.02E-06	4.14E-06	4.12E-06	1.26E-06
2315	763584.2	4094120	5.05E-05	5.50E-05	1.94E-05	7.89E-06	8.92E-06	3.07E-06	4.22E-06	4.19E-06	1.29E-06
2316	763562.1	4094110	5.15E-05	5.60E-05	1.98E-05	8.04E-06	9.10E-06	3.13E-06	4.30E-06	4.27E-06	1.31E-06
2317	763540.1	4094100	5.26E-05	5.72E-05	2.03E-05	8.21E-06	9.29E-06	3.20E-06	4.39E-06	4.37E-06	1.34E-06
2318	763518	4094090	5.38E-05	5.85E-05	2.07E-05	8.40E-06	9.50E-06	3.27E-06	4.49E-06	4.47E-06	1.37E-06
2319	763495.9	4094080	5.51E-05	6.00E-05	2.12E-05	8.61E-06	9.74E-06	3.35E-06	4.60E-06	4.57E-06	1.40E-06
2320	763473.8	4094070	5.65E-05	6.15E-05	2.18E-05	8.82E-06	9.98E-06	3.44E-06	4.72E-06	4.69E-06	1.44E-06
2321	763451.7	4094060	5.79E-05	6.31E-05	2.23E-05	9.05E-06	1.02E-05	3.53E-06	4.84E-06	4.81E-06	1.48E-06
2322	763429.6	4094050	5.94E-05	6.47E-05	2.29E-05	9.28E-06	1.05E-05	3.62E-06	4.96E-06	4.94E-06	1.51E-06
2323	763407.5	4094040	6.10E-05	6.64E-05	2.35E-05	9.52E-06	1.08E-05	3.71E-06	5.09E-06	5.06E-06	1.55E-06
2324	763385.4	4094030	6.25E-05	6.81E-05	2.41E-05	9.76E-06	1.10E-05	3.80E-06	5.22E-06	5.19E-06	1.59E-06
2325	763363.3	4094020	6.41E-05	6.97E-05	2.47E-05	1.00E-05	1.13E-05	3.90E-06	5.35E-06	5.32E-06	1.63E-06
2326	763341.2	4094010	6.56E-05	7.14E-05	2.52E-05	1.02E-05	1.16E-05	3.99E-06	5.47E-06	5.44E-06	1.67E-06
2327	763319.1	4094001	6.70E-05	7.29E-05	2.58E-05	1.05E-05	1.18E-05	4.07E-06	5.59E-06	5.56E-06	1.71E-06
2328	763297	4093991	6.83E-05	7.43E-05	2.63E-05	1.07E-05	1.21E-05	4.16E-06	5.70E-06	5.67E-06	1.74E-06
2329	763274.9	4093981	6.95E-05	7.57E-05	2.68E-05	1.09E-05	1.23E-05	4.23E-06	5.81E-06	5.77E-06	1.77E-06
2330	763252.8	4093971	7.06E-05	7.69E-05	2.72E-05	1.10E-05	1.25E-05	4.30E-06	5.90E-06	5.87E-06	1.80E-06
2331	763230.7	4093961	7.16E-05	7.80E-05	2.76E-05	1.12E-05	1.27E-05	4.36E-06	5.98E-06	5.95E-06	1.83E-06
2332	763208.7	4093951	7.25E-05	7.89E-05	2.79E-05	1.13E-05	1.28E-05	4.41E-06	6.05E-06	6.02E-06	1.85E-06
2333	763186.6	4093941	7.31E-05	7.96E-05	2.82E-05	1.14E-05	1.29E-05	4.45E-06	6.10E-06	6.07E-06	1.86E-06
2334	763164.5	4093931	7.36E-05	8.01E-05	2.83E-05	1.15E-05	1.30E-05	4.48E-06	6.15E-06	6.11E-06	1.88E-06
2335	763142.4	4093921	7.39E-05	8.05E-05	2.85E-05	1.15E-05	1.31E-05	4.50E-06	6.17E-06	6.14E-06	1.88E-06
2336	763120.3	4093911	7.41E-05	8.06E-05	2.85E-05	1.16E-05	1.31E-05	4.51E-06	6.19E-06	6.15E-06	1.89E-06

2337	763098.2	4093901	7.41E-05	8.06E-05	2.85E-05	1.16E-05	1.31E-05	4.51E-06	6.19E-06	6.15E-06	1.89E-06
2338	763076.1	4093891	7.39E-05	8.05E-05	2.85E-05	1.15E-05	1.31E-05	4.50E-06	6.17E-06	6.14E-06	1.88E-06
2339	763054	4093881	7.37E-05	8.02E-05	2.84E-05	1.15E-05	1.30E-05	4.48E-06	6.15E-06	6.12E-06	1.88E-06
2340	763031.9	4093871	7.32E-05	7.97E-05	2.82E-05	1.14E-05	1.29E-05	4.45E-06	6.11E-06	6.08E-06	1.86E-06
2341	763009.8	4093861	7.26E-05	7.90E-05	2.79E-05	1.13E-05	1.28E-05	4.42E-06	6.06E-06	6.02E-06	1.85E-06
2342	762987.7	4093851	7.18E-05	7.82E-05	2.77E-05	1.12E-05	1.27E-05	4.37E-06	6.00E-06	5.96E-06	1.83E-06
2343	762965.6	4093841	7.09E-05	7.72E-05	2.73E-05	1.11E-05	1.25E-05	4.31E-06	5.92E-06	5.89E-06	1.81E-06
2344	762943.5	4093831	6.99E-05	7.61E-05	2.69E-05	1.09E-05	1.23E-05	4.25E-06	5.83E-06	5.80E-06	1.78E-06
2345	762921.4	4093822	6.87E-05	7.48E-05	2.65E-05	1.07E-05	1.21E-05	4.18E-06	5.74E-06	5.71E-06	1.75E-06
2346	762899.3	4093812	6.74E-05	7.34E-05	2.60E-05	1.05E-05	1.19E-05	4.10E-06	5.63E-06	5.60E-06	1.72E-06
2347	762877.3	4093802	6.61E-05	7.19E-05	2.54E-05	1.03E-05	1.17E-05	4.02E-06	5.52E-06	5.48E-06	1.68E-06
2348	762855.2	4093792	6.46E-05	7.03E-05	2.49E-05	1.01E-05	1.14E-05	3.93E-06	5.39E-06	5.36E-06	1.65E-06
2349	762833.1	4093782	6.31E-05	6.87E-05	2.43E-05	9.85E-06	1.11E-05	3.84E-06	5.27E-06	5.24E-06	1.61E-06
2350	762811	4093772	6.15E-05	6.70E-05	2.37E-05	9.61E-06	1.09E-05	3.75E-06	5.14E-06	5.11E-06	1.57E-06
2351	762788.9	4093762	6.00E-05	6.53E-05	2.31E-05	9.37E-06	1.06E-05	3.65E-06	5.01E-06	4.98E-06	1.53E-06
2352	762634.2	4093692	5.04E-05	5.48E-05	1.94E-05	7.86E-06	8.90E-06	3.06E-06	4.20E-06	4.18E-06	1.28E-06
2353	762612.1	4093682	4.94E-05	5.37E-05	1.90E-05	7.71E-06	8.72E-06	3.00E-06	4.12E-06	4.10E-06	1.26E-06
2354	762573.1	4093627	4.84E-05	5.27E-05	1.86E-05	7.56E-06	8.55E-06	2.94E-06	4.04E-06	4.02E-06	1.23E-06
2355	762564.6	4093604	4.85E-05	5.28E-05	1.87E-05	7.57E-06	8.56E-06	2.95E-06	4.05E-06	4.02E-06	1.24E-06
2356	762556.1	4093582	4.86E-05	5.29E-05	1.87E-05	7.60E-06	8.59E-06	2.96E-06	4.06E-06	4.04E-06	1.24E-06
2357	762547.6	4093559	4.89E-05	5.32E-05	1.88E-05	7.63E-06	8.64E-06	2.97E-06	4.08E-06	4.06E-06	1.25E-06
2358	762539.1	4093536	4.92E-05	5.35E-05	1.89E-05	7.68E-06	8.69E-06	2.99E-06	4.10E-06	4.08E-06	1.25E-06
2359	762530.6	4093514	4.95E-05	5.38E-05	1.90E-05	7.73E-06	8.74E-06	3.01E-06	4.13E-06	4.11E-06	1.26E-06
2360	762369.4	4093082	4.42E-05	4.81E-05	1.70E-05	6.90E-06	7.80E-06	2.69E-06	3.69E-06	3.67E-06	1.13E-06
2361	762360.9	4093060	4.37E-05	4.76E-05	1.68E-05	6.83E-06	7.72E-06	2.66E-06	3.65E-06	3.63E-06	1.11E-06
2362	762352.4	4093037	4.33E-05	4.71E-05	1.67E-05	6.76E-06	7.64E-06	2.63E-06	3.61E-06	3.59E-06	1.10E-06
2363	762343.9	4093014	4.29E-05	4.66E-05	1.65E-05	6.69E-06	7.57E-06	2.61E-06	3.58E-06	3.56E-06	1.09E-06
2364	762335.5	4092992	4.25E-05	4.62E-05	1.64E-05	6.63E-06	7.50E-06	2.58E-06	3.55E-06	3.53E-06	1.08E-06
2365	762327	4092969	4.21E-05	4.58E-05	1.62E-05	6.57E-06	7.43E-06	2.56E-06	3.51E-06	3.49E-06	1.07E-06
2366	762318.5	4092946	4.17E-05	4.54E-05	1.61E-05	6.51E-06	7.36E-06	2.54E-06	3.48E-06	3.46E-06	1.06E-06
2367	762310	4092923	4.13E-05	4.49E-05	1.59E-05	6.45E-06	7.29E-06	2.51E-06	3.45E-06	3.43E-06	1.05E-06
2368	762301.5	4092901	4.09E-05	4.45E-05	1.57E-05	6.38E-06	7.22E-06	2.49E-06	3.41E-06	3.39E-06	1.04E-06
2369	762293	4092878	4.04E-05	4.40E-05	1.56E-05	6.32E-06	7.15E-06	2.46E-06	3.38E-06	3.36E-06	1.03E-06
2370	762284.5	4092855	4.00E-05	4.36E-05	1.54E-05	6.25E-06	7.07E-06	2.44E-06	3.34E-06	3.32E-06	1.02E-06
2371	762276	4092833	3.96E-05	4.31E-05	1.52E-05	6.18E-06	6.99E-06	2.41E-06	3.30E-06	3.29E-06	1.01E-06
2372	762267.6	4092810	3.91E-05	4.26E-05	1.51E-05	6.11E-06	6.91E-06	2.38E-06	3.27E-06	3.25E-06	9.97E-07
2373	762259.1	4092787	3.87E-05	4.21E-05	1.49E-05	6.04E-06	6.84E-06	2.35E-06	3.23E-06	3.21E-06	9.86E-07
2374	762250.6	4092765	3.82E-05	4.16E-05	1.47E-05	5.97E-06	6.75E-06	2.33E-06	3.19E-06	3.17E-06	9.74E-07
2375	762242.1	4092742	3.78E-05	4.11E-05	1.45E-05	5.90E-06	6.67E-06	2.30E-06	3.15E-06	3.14E-06	9.63E-07

2376	762233.6	4092719	3.73E-05	4.06E-05	1.44E-05	5.83E-06	6.59E-06	2.27E-06	3.12E-06	3.10E-06	9.51E-07
2377	762225.1	4092697	3.68E-05	4.01E-05	1.42E-05	5.76E-06	6.51E-06	2.24E-06	3.08E-06	3.06E-06	9.39E-07
2378	762216.6	4092674	3.64E-05	3.96E-05	1.40E-05	5.68E-06	6.43E-06	2.21E-06	3.04E-06	3.02E-06	9.27E-07
2379	762208.2	4092651	3.59E-05	3.91E-05	1.38E-05	5.61E-06	6.34E-06	2.18E-06	3.00E-06	2.98E-06	9.15E-07
2380	762199.7	4092628	3.54E-05	3.85E-05	1.36E-05	5.53E-06	6.26E-06	2.15E-06	2.96E-06	2.94E-06	9.02E-07
2381	762191.2	4092606	3.49E-05	3.80E-05	1.34E-05	5.45E-06	6.16E-06	2.12E-06	2.91E-06	2.90E-06	8.89E-07
2382	762182.7	4092583	3.44E-05	3.74E-05	1.32E-05	5.37E-06	6.07E-06	2.09E-06	2.87E-06	2.85E-06	8.76E-07
2383	762174.2	4092560	3.38E-05	3.68E-05	1.30E-05	5.28E-06	5.97E-06	2.06E-06	2.82E-06	2.80E-06	8.61E-07
2384	762165.7	4092538	3.32E-05	3.61E-05	1.28E-05	5.18E-06	5.86E-06	2.02E-06	2.77E-06	2.76E-06	8.46E-07
2385	762157.2	4092515	3.26E-05	3.55E-05	1.26E-05	5.09E-06	5.76E-06	1.98E-06	2.72E-06	2.71E-06	8.31E-07
2386	762148.8	4092492	3.20E-05	3.48E-05	1.23E-05	4.99E-06	5.65E-06	1.95E-06	2.67E-06	2.65E-06	8.15E-07
2387	762140.3	4092470	3.14E-05	3.41E-05	1.21E-05	4.90E-06	5.54E-06	1.91E-06	2.62E-06	2.60E-06	7.99E-07
2388	763783.1	4094209	4.53E-05	4.93E-05	1.75E-05	7.08E-06	8.01E-06	2.76E-06	3.79E-06	3.76E-06	1.16E-06
2389	763807.7	4094210	4.53E-05	4.93E-05	1.75E-05	7.08E-06	8.01E-06	2.76E-06	3.79E-06	3.76E-06	1.16E-06
2390	763832.3	4094211	4.53E-05	4.93E-05	1.75E-05	7.08E-06	8.01E-06	2.76E-06	3.79E-06	3.76E-06	1.16E-06
2391	763856.8	4094211	4.53E-05	4.93E-05	1.75E-05	7.08E-06	8.01E-06	2.76E-06	3.78E-06	3.76E-06	1.15E-06
2392	763881.4	4094212	4.53E-05	4.93E-05	1.74E-05	7.07E-06	8.00E-06	2.75E-06	3.78E-06	3.76E-06	1.15E-06
2393	763906	4094213	4.52E-05	4.92E-05	1.74E-05	7.05E-06	7.98E-06	2.75E-06	3.77E-06	3.75E-06	1.15E-06
2394	763930.6	4094214	4.50E-05	4.90E-05	1.73E-05	7.03E-06	7.95E-06	2.74E-06	3.76E-06	3.74E-06	1.15E-06
2395	763955.2	4094214	4.48E-05	4.88E-05	1.73E-05	7.00E-06	7.92E-06	2.73E-06	3.74E-06	3.72E-06	1.14E-06
2396	763979.8	4094215	4.46E-05	4.85E-05	1.72E-05	6.96E-06	7.87E-06	2.71E-06	3.72E-06	3.70E-06	1.14E-06
2397	764004.3	4094216	4.42E-05	4.81E-05	1.70E-05	6.90E-06	7.81E-06	2.69E-06	3.69E-06	3.67E-06	1.13E-06
2398	764028.9	4094216	4.38E-05	4.77E-05	1.69E-05	6.84E-06	7.74E-06	2.67E-06	3.66E-06	3.64E-06	1.12E-06
2399	764053.5	4094217	4.34E-05	4.72E-05	1.67E-05	6.77E-06	7.66E-06	2.64E-06	3.62E-06	3.60E-06	1.11E-06
2400	764078.1	4094218	4.29E-05	4.67E-05	1.65E-05	6.70E-06	7.58E-06	2.61E-06	3.58E-06	3.56E-06	1.09E-06
2401	764102.7	4094218	4.23E-05	4.61E-05	1.63E-05	6.61E-06	7.48E-06	2.58E-06	3.54E-06	3.52E-06	1.08E-06
2402	764127.3	4094219	4.18E-05	4.55E-05	1.61E-05	6.53E-06	7.38E-06	2.54E-06	3.49E-06	3.47E-06	1.06E-06
2403	764151.8	4094220	4.12E-05	4.48E-05	1.59E-05	6.43E-06	7.28E-06	2.51E-06	3.44E-06	3.42E-06	1.05E-06
2404	764176.4	4094220	4.06E-05	4.42E-05	1.56E-05	6.34E-06	7.17E-06	2.47E-06	3.39E-06	3.37E-06	1.03E-06

PM 10												
Tons/Yr	T2	T2L3	T4									
Year 1	0.08365	0.013065	0.006985	0								
Year 2	0.09105	0.01478	0.006945	0								
Year 3	0.032215	0.00509	0.002132	0								
Year 4	0	0	0	0								

PM 10												
Lbs /Yr	T2	T2L3	T4	0								
Year 1	167.3	26.13	13.97	0								
Year 2	182.1	29.56	13.89	0								
Year 3	64.43	10.18	4.263	0								
Year 4	0	0	0	0								

PM 10												
% Chng	T2	T2L3	T4	0								
Year 1	100%	16%	8%	0%								
Year 2	100%	16%	8%	0%								
Year 3	100%	16%	7%	0%								
Year 4	0%	0%	0%	0%								

```
** Lakes Environmental AERMOD MPI
** AERMOD Input Produced by:
** AERMOD View Ver. 12.0.0
** Lakes Environmental Software Inc.
** Date: 10/19/2024
** File: D:\LSA\2024\20241527\Construction\Construction.ADI
*********
** AERMOD Control Pathway
*********
* *
CO STARTING
   TITLEONE D:\LSA\2024\20241527\Construction\Construction.isc
  MODELOPT DFAULT CONC
  AVERTIME 1 PERIOD
  URBANOPT 68598
   POLLUTID OTHER
  RUNORNOT RUN
   ERRORFIL Construction.err
CO FINISHED
*********
** AERMOD Source Pathway
**********
* *
SO STARTING
** Source Location **
** Source ID - Type - X Coord. - Y Coord. **
  LOCATION CONST AREAPOLY 763836.558 4092509.426
                                                                     80.980
** Source Parameters **
   SRCPARAM CONST 9.3259E-06
                                         3.048
                                                        24
                   763836.558 4092509.426 763838.233 4092461.081 763839.669 4092446.961 763843.498 4092427.575 763849.721 4092406.275 763860.491 4092378.752 763867.910 4092364.871 763879.158 4092346.921
   AREAVERT CONST
  AREAVERT CONST
  AREAVERT CONST
  AREAVERT CONST
                    763897.587 4092324.663 763957.898 4092256.454 763979.198 4092233.478 763987.336 4092225.820 763995.233 4092220.315 764008.157 4092211.460 764021 560 4092204 998 764035 920 4092199 254
  AREAVERT CONST
  AREAVERT CONST
   AREAVERT CONST
                        764021.560 4092204.998 764035.920 4092199.254
  AREAVERT CONST
                      764051.476 4092194.707 764066.315 4092191.596 764081.392 4092190.399 764098.145 4092190.160
   AREAVERT CONST
  AREAVERT CONST
                      764141.464 4092191.596 764234.803 4092193.989
   AREAVERT CONST
                         764223.076 4092520.435 763846.609 4092509.905
   AREAVERT CONST
   URBANSRC ALL
** Variable Emissions Type: "By Hour / Day (HRDOW)"
** Variable Emission Scenario: "Scenario 1"
```

```
** WeekDays:
  EMISFACT CONST
                       HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
                       HRDOW 0.0 0.0 1.0 1.0 1.0 1.0
  EMISFACT CONST
                       HRDOW 1.0 1.0 1.0 1.0 1.0 0.0
  EMISFACT CONST
                       HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
  EMISFACT CONST
** Saturday:
  EMISFACT CONST
                       HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
  EMISFACT CONST
                       HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
                  HRDOW 0.0 0.0 0.0 0.0 0.0 0.0 HRDOW 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  EMISFACT CONST
  EMISFACT CONST
** Sunday:
                  HRDOW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 HRDOW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 HRDOW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  EMISFACT CONST
  EMISFACT CONST
  EMISFACT CONST
  EMISFACT CONST
  SRCGROUP CONST
                  CONST
SO FINISHED
*********
** AERMOD Receptor Pathway
*********
* *
RE STARTING
  INCLUDED Construction.rou
RE FINISHED
** AERMOD Meteorology Pathway
**********
ME STARTING
  SURFFILE ..\madera-93242\Madera 18-22.SFC
  PROFFILE ..\madera-93242\Madera 18-22.PFL
  SURFDATA 93242 2018
  UAIRDATA 23230 2018 OAKLAND/WSO AP
  PROFBASE 75.0 METERS
ME FINISHED
*******
** AERMOD Output Pathway
*********
* *
OU STARTING
  RECTABLE ALLAVE 1ST
  RECTABLE 1 1ST
** Auto-Generated Plotfiles
  PLOTFILE 1 CONST 1ST Construction.AD\01H1G001.PLT 31
  PLOTFILE PERIOD CONST Construction.AD\PE00G001.PLT 32
  SUMMFILE Construction.sum
OU FINISHED
```

*** Message Summary For AERMOD Model Setup *** ----- Summary of Total Messages -----A Total of 0 Fatal Error Message(s) 2 Warning Message(s) A Total of 0 Informational Message(s) A Total of ****** FATAL ERROR MESSAGES ****** *** NONE *** ***** WARNING MESSAGES ****** 0.50 ME W186 MEOPEN: THRESH 1MIN 1-min ASOS wind speed threshold used MEOPEN: ADJ U* Option for Stable Low Winds used in AERMET ME W187 ******* *** SETUP Finishes Successfully ***

```
*** AERMOD - VERSION 23132 *** *** D:\LSA\2024\20241527\Construction\Construction.isc
                                                                                                               10/19/24
*** AERMET - VERSION 21112 *** ***
                                                                                                               18:11:02
                                                                                                               PAGE 1
*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*
                                         *** MODEL SETUP OPTIONS SUMMARY
** Model Options Selected:
    * Model Uses Regulatory DEFAULT Options
    * Model Is Setup For Calculation of Average CONCentration Values.
    * NO GAS DEPOSITION Data Provided.
    * NO PARTICLE DEPOSITION Data Provided.
    * Model Uses NO DRY DEPLETION. DDPLETE = F
    * Model Uses NO WET DEPLETION. WETDPLT = F
    * Stack-tip Downwash.
    * Model Accounts for ELEVated Terrain Effects.
    * Use Calms Processing Routine.
    * Use Missing Data Processing Routine.
    * No Exponential Decay.
    * Model Uses URBAN Dispersion Algorithm for the SBL for 1 Source(s),
      for Total of 1 Urban Area(s):
 Urban Population = 68598.0; Urban Roughness Length = 1.000 m
    * Urban Roughness Length of 1.0 Meter Used.
    * ADJ U* - Use ADJ U* option for SBL in AERMET
    * CCVR Sub - Meteorological data includes CCVR substitutions
    * TEMP Sub - Meteorological data includes TEMP substitutions
    * Model Assumes No FLAGPOLE Receptor Heights.
    * The User Specified a Pollutant Type of: OTHER
**Model Calculates 1 Short Term Average(s) of: 1-HR
   and Calculates PERIOD Averages
**This Run Includes: 1 Source(s); 1 Source Group(s); and 2404 Receptor(s)
              with: 0 POINT(s), including
                     and: 0 VOLUME source(s) and: 1 AREA type source(s)
              and: 0 LINE source(s)
              and: 0 RLINE/RLINEXT source(s)
and: 0 OPENPIT source(s)
               and: 0 BUOYANT LINE source(s) with a total of 0 line(s)
               and: 0 SWPOINT source(s)
**Model Set To Continue RUNning After the Setup Testing.
**The AERMET Input Meteorological Data Version Date: 21112
**Output Options Selected:
        Model Outputs Tables of PERIOD Averages by Receptor
        Model Outputs Tables of Highest Short Term Values by Receptor (RECTABLE Keyword)
        Model Outputs External File(s) of High Values for Plotting (PLOTFILE Keyword)
```

Model Outputs Separate Summary File of High Ranked Values (SUMMFILE Keyword)

**NOTE: The Following Flags May Appear Following CONC Values: c for Calm Hours

m for Missing Hours

b for Both Calm and Missing Hours

**Misc. Inputs: Base Elev. for Pot. Temp. Profile (m MSL) = 75.00; Decay Coef. = 0.000; Rot. Angle = 0.0

Emission Units = GRAMS/SEC

; Emission Rate Unit Factor = 0.10000E+07

Output Units = MICROGRAMS/M**3

**Approximate Storage Requirements of Model = 3.8 MB of RAM.

**Detailed Error/Message File: Construction.err
**File for Summary of Results: Construction.sum

*** AREAPOLY SOURCE DATA ***

SOURCE ID	NUMBER PART. CATS.	EMISSION RATE (GRAMS/SEC /METER**2)	E LOCATION OF AREA X Y (METERS) (METERS)	BASE ELEV. (METERS)	RELEASE HEIGHT (METERS)	NUMBER OF VERTS.	INIT. SZ (METERS)	URBAN SOURCE	EMISSION RATE SCALAR VARY BY	AIRCRAFT
CONST	0	0.93259E-05	763836.6 4092509.4	81.0	3.05	24	0.00	YES	HRDOW	NO

*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U*

*** SOURCE IDs DEFINING SOURCE GROUPS ***

SRCGROUP ID SOURCE IDS

CONST CONST ,

*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U*

*** SOURCE IDs DEFINED AS URBAN SOURCES ***

URBAN ID URBAN POP SOURCE IDS

68598. CONST ,

*** AERMET - VERSION 21112 *** ***

*** 10/19/24 *** 18:11:02

PAGE 5

*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U*

* SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK (HRDOW) *

SOURC	E ID = CONS	T	; SOURC	E TYPE	E = AREAPOL	Y:									
HOUR	SCALAR	HOUR	SCALAR	HOUR	SCALAR	HOUR	SCALAR	HOUR	SCALAR	HOUR	SCALAR	HOUR	SCALAR	HOUR	SCALAR
	DAY OF WEEK = WEEKDAY														
1	.0000E+00	2	.0000E+00	3	.0000E+00	4	.0000E+00	5	.0000E+00	6	.0000E+00	7	.0000E+00	8	.0000E+00
9	.1000E+01	10	.1000E+01	11	.1000E+01	12	.1000E+01	13	.1000E+01	14	.1000E+01	15	.1000E+01	16	.1000E+01
17	.1000E+01	18	.0000E+00	19	.0000E+00	20	.0000E+00	21	.0000E+00	22	.0000E+00	23	.0000E+00	24	.0000E+00
					DAY	OF W	EEK = SATUR	.DAY							
1	.0000E+00	2	.0000E+00	3	.0000E+00	4	.0000E+00	5	.0000E+00	6	.0000E+00	7	.0000E+00	8	.0000E+00
9	.0000E+00	10	.0000E+00	11	.0000E+00	12	.0000E+00	13	.0000E+00	14	.0000E+00	15	.0000E+00	16	.0000E+00
17	.0000E+00	18	.0000E+00	19	.0000E+00	20	.0000E+00	21	.0000E+00	22	.0000E+00	23	.0000E+00	24	.0000E+00
					DAY	OF W	EEK = SUNDA	Y.							
1	.0000E+00	2	.0000E+00	3	.0000E+00	4	.0000E+00	5	.0000E+00	6	.0000E+00	7	.0000E+00	8	.0000E+00
9	.0000E+00	10	.0000E+00	11	.0000E+00	12	.0000E+00	13	.0000E+00	14	.0000E+00	15	.0000E+00	16	.0000E+00
17	.0000E+00	18	.0000E+00	19	.0000E+00	20	.0000E+00	21	.0000E+00	22	.0000E+00	23	.0000E+00	24	.0000E+00

*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*

*** METEOROLOGICAL DAYS SELECTED FOR PROCESSING ***
(1=YES; 0=NO)

NOTE: METEOROLOGICAL DATA ACTUALLY PROCESSED WILL ALSO DEPEND ON WHAT IS INCLUDED IN THE DATA FILE.

*** UPPER BOUND OF FIRST THROUGH FIFTH WIND SPEED CATEGORIES ***

(METERS/SEC)

1.54, 3.09, 5.14, 8.23, 10.80,

*** AERMET - VERSION 21112 *** ***

18:11:02 PAGE 34

10/19/24

*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U*

*** UP TO THE FIRST 24 HOURS OF METEOROLOGICAL DATA ***

Surface file: ..\madera-93242\Madera_18-22.SFC Met Version: 21112

Profile file: ..\madera-93242\Madera_18-22.PFL

Surface format: FREE Profile format: FREE

Surface station no.: 93242 Upper air station no.: 23230

Name: UNKNOWN Name: OAKLAND/WSO AP

Year: 2018 Year: 2018

First 24 hours of scalar data

YR MO DY C		HO	U*	W*	DT/DZ	ZICNV	ZIMCH	M-O LEN	Z0	BOWEN	ALBEDO	REF WS	WD	HT	REF TA	HT
18 01 01	1 01	-3.3	0.073	-9.000	-9.000	-999.	48.	10.7	0.01	0.81	1.00	1.30	302.	10.0	277.0	2.0
18 01 01	1 02	-3.7	0.077	-9.000	-9.000	-999.	51.	11.1	0.01	0.81	1.00	1.38	315.	10.0	277.0	2.0
18 01 01	1 03	-3.2	0.073	-9.000	-9.000	-999.	47.	10.8	0.02	0.81	1.00	1.26	294.	10.0	275.4	2.0
18 01 01	1 04	-3.2	0.076	-9.000	-9.000	-999.	50.	12.5	0.05	0.81	1.00	1.06	344.	10.0	274.9	2.0
18 01 01	1 05	-2.0	0.066	-9.000	-9.000	-999.	41.	13.3	0.06	0.81	1.00	0.75	104.	10.0	274.2	2.0
18 01 01	1 06	-1.9	0.060	-9.000	-9.000	-999.	35.	10.4	0.01	0.81	1.00	0.91	130.	10.0	274.2	2.0
18 01 01	1 07	-4.2	0.082	-9.000	-9.000	-999.	56.	11.6	0.01	0.81	1.00	1.48	203.	10.0	274.9	2.0
18 01 01	1 08	-9.4	0.130	-9.000	-9.000	-999.	112.	21.1	0.06	0.81	0.67	1.84	68.	10.0	275.4	2.0
18 01 01	1 09	-4.5	0.150	-9.000	-9.000	-999.	139.	67.1	0.06	0.81	0.37	2.03	82.	10.0	276.4	2.0
18 01 01	1 10	47.1	0.092	0.576	0.006	147.	67.	-1.5	0.02	0.81	0.26	0.97	178.	10.0	281.4	2.0
18 01 01	1 11	78.8	0.152	0.997	0.015	456.	143.	-4.1	0.06	0.81	0.23	1.37	88.	10.0	284.9	2.0
18 01 01	1 12	95.7	0.167	1.130	0.017	545.	164.	-4.4	0.06	0.81	0.21	1.54	103.	10.0	286.4	2.0
18 01 01	1 13	97.2	0.134	1.188	0.018	624.	118.	-2.2	0.02	0.81	0.21	1.50	178.	10.0	288.1	2.0
18 01 01	1 14	83.3	0.135	1.170	0.019	695.	120.	-2.7	0.01	0.81	0.22	1.65	220.	10.0	289.9	2.0
18 01 01	1 15	54.3	0.143	1.028	0.019	722.	130.	-4.8	0.01	0.81	0.26	1.79	255.	10.0	290.4	2.0
18 01 01	1 16	13.2	0.175	0.642	0.019	725.	176.	-37.1	0.01	0.81	0.35	2.61	258.	10.0	290.4	2.0
18 01 01	1 17	-5.5	0.097	-9.000	-9.000	-999.	74.	14.9	0.02	0.81	0.61	1.72	290.	10.0	287.0	2.0
18 01 01	1 18	-8.3	0.116	-9.000	-9.000	-999.	95.	16.9	0.01	0.81	1.00	2.08	267.	10.0	284.2	2.0
18 01 01	1 19	-5.4	0.093	-9.000	-9.000	-999.	68.	13.3	0.01	0.81	1.00	1.69	261.	10.0	283.8	2.0
18 01 01	1 20	-4.0	0.084	-9.000	-9.000	-999.	59.	13.6	0.06	0.81	1.00	1.21	90.	10.0	282.5	2.0
18 01 01	1 21	-10.6	0.138	-9.000	-9.000	-999.	123.	22.3	0.06	0.81	1.00	1.96	90.	10.0	282.5	2.0
18 01 01	1 22	-9.6	0.131	-9.000	-9.000	-999.	113.	21.0	0.06	0.81	1.00	1.87	102.	10.0	280.9	2.0
18 01 01	1 23	-13.3	0.154	-9.000	-9.000	-999.	146.	26.2	0.06	0.81	1.00	2.18	94.	10.0	280.9	2.0
18 01 01	1 24	-7.6	0.116	-9.000	-9.000	-999.	95.	18.4	0.06	0.81	1.00	1.67	96.	10.0	280.9	2.0

First hour of profile data

YR MO DY HR HEIGHT F WDIR WSPD AMB_TMP sigmaA sigmaW sigmaV 18 01 01 01 10.0 1 302. 1.30 277.1 99.0 -99.00 -99.00

F indicates top of profile (=1) or below (=0)

*** 10/19/24 *** AERMET - VERSION 21112 *** *** ***

*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*

*** THE SUMMARY OF MAXIMUM PERIOD (43848 HRS) RESULTS ***

18:11:02 PAGE 97

** CONC OF OTHER IN MICROGRAMS/M**3

GROUP ID		AVERA	GE CONC	REC:	EPTOR (XR, YR	, ZELEV,	ZHILL, ZFLAG)	OF TYPE	NETWORK GRID-ID
CONST	1ST HIGHEST VA	ALUE IS	9.84026 AT (764256.60,	4092304.72,	80.77,	80.77,	0.00) DC	
	2ND HIGHEST VA	ALUE IS	9.83687 AT (764257.45,	4092280.59,	80.77,	80.77,	0.00) DC	
	3RD HIGHEST VA	ALUE IS	9.75131 AT (764255.75,	4092328.86,	80.77,	80.77,	0.00) DC	
	4TH HIGHEST VA	ALUE IS	9.72327 AT (764258.30,	4092256.45,	80.77,	80.77,	0.00) DC	
	5TH HIGHEST VA	ALUE IS	9.57419 AT (764254.89,	4092352.99,	80.77,	80.77,	0.00) DC	
	6TH HIGHEST VA	ALUE IS	9.44924 AT (764259.15,	4092232.32,	80.77,	80.77,	0.00) DC	
	7TH HIGHEST VA	ALUE IS	9.30102 AT (764254.04,	4092377.13,	80.78,	80.78,	0.00) DC	
	8TH HIGHEST VA	ALUE IS	8.87002 AT (764260.00,	4092208.19,	80.77,	80.77,	0.00) DC	
	9TH HIGHEST VA	ALUE IS	6.99328 AT (764282.43,	4092281.47,	80.77,	80.77,	0.00) DC	
	10TH HIGHEST VA	ALUE IS	6.95846 AT (764281.58,	4092305.60,	80.82,	80.82,	0.00) DC	

*** RECEPTOR TYPES: GC = GRIDCART

GP = GRIDPOLR

DC = DISCCART

DP = DISCPOLR

*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*

*** THE SUMMARY OF HIGHEST 1-HR RESULTS ***

PAGE 98

* *

** CONC OF OTHER IN MICROGRAMS/M**3

DATE

GROUP ID

AVERAGE CONC

(YYMMDDHH)

RECEPTOR (XR, YR, ZELEV, ZHILL, ZFLAG)

OF TYPE GRID-ID

CONST HIGH 1ST HIGH VALUE IS 358.75045 ON 20013117: AT (764260.00, 4092208.19, 80.77, 80.77, 0.00) DC

*** RECEPTOR TYPES: GC = GRIDCART

GP = GRIDPOLR

DC = DISCCART

DP = DISCPOLR

*** AERMET - VERSION 21112 *** *** *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U* *** Message Summary : AERMOD Model Execution *** ----- Summary of Total Messages -----0 Fatal Error Message(s) A Total of A Total of 2 Warning Message(s) 1068 Informational Message(s) A Total of 43848 Hours Were Processed A Total of A Total of 403 Calm Hours Identified A Total of 665 Missing Hours Identified (1.52 Percent) ****** FATAL ERROR MESSAGES ****** *** NONE *** ***** WARNING MESSAGES ****** MEOPEN: THRESH 1MIN 1-min ASOS wind speed threshold used 0.50

10/19/24

18:11:02 PAGE 99

ME W186 MEOPEN: ADJ U* Option for Stable Low Winds used in AERMET ME W187

******* *** AERMOD Finishes Successfully *** *********

HARP2 - HRACalc (dated 22118) 10/20/2024 7:33:57 PM - Output Log

RISK SCENARIO SETTINGS

Receptor Type: Resident

Scenario: All

Calculation Method: Derived

EXPOSURE DURATION PARAMETERS FOR CANCER

Start Age: -0.25

Total Exposure Duration: 1

Exposure Duration Bin Distribution

3rd Trimester Bin: 0.25

0<2 Years Bin: 1 2<9 Years Bin: 0 2<16 Years Bin: 0 16<30 Years Bin: 0 16 to 70 Years Bin: 0

PATHWAYS ENABLED

NOTE: Inhalation is always enabled and used for all assessments. The remaining pathways are only used for cancer and noncancer chronic assessments.

Inhalation: True

Soil: True Dermal: True

Mother's milk: True

Water: False Fish: False

Homegrown crops: True

Beef: False Dairy: False Pig: False Chicken: False Egg: False

INHALATION

Daily breathing rate: LongTerm24HR

Worker Adjustment Factors

Worker adjustment factors enabled: NO

Fraction at time at home
3rd Trimester to 16 years: ON
16 years to 70 years: ON

Deposition rate (m/s): 0.02 Soil mixing depth (m): 0.01 Dermal climate: Mixed

HOMEGROWN CROP PATHWAY SETTINGS

Household type: HouseholdsthatGarden

Fraction leafy: 0.137 Fraction exposed: 0.137 Fraction protected: 0.137 Fraction root: 0.137

TIER 2 SETTINGS

Tier2 adjustments were used in this assessment. Please see the input file for details.

Tier2 - What was changed: ED or start age changed

Calculating cancer risk

Cancer risk breakdown by pollutant and receptor saved to:

D:\LSA\2024\20241527\HARP CONST\hra\Const Sensitive T2 CancerRisk.csv

Cancer risk total by receptor saved to:

D:\LSA\2024\20241527\HARP_CONST\hra\Const_Sensitive_T2_CancerRiskSumByRec.csv

Calculating chronic risk

Chronic risk breakdown by pollutant and receptor saved to:

D:\LSA\2024\20241527\HARP CONST\hra\Const Sensitive T2 NCChronicRisk.csv

Chronic risk total by receptor saved to:

D:\LSA\2024\2024\527\HARP_CONST\hra\Const_Sensitive_T2_NCChronicRiskSumByRec.csv

Calculating acute risk

Acute risk breakdown by pollutant and receptor saved to:

D:\LSA\2024\20241527\HARP CONST\hra\Const Sensitive T2 NCAcuteRisk.csv

Acute risk total by receptor saved to:

D:\LSA\2024\2024\527\HARP CONST\hra\Const Sensitive T2 NCAcuteRiskSumByRec.csv

HRA ran successfully

HARP2 - HRACalc (dated 22118) 10/20/2024 7:38:23 PM - Output Log

RISK SCENARIO SETTINGS

Receptor Type: Resident

Scenario: All

Calculation Method: Derived

EXPOSURE DURATION PARAMETERS FOR CANCER

Start Age: 1

Total Exposure Duration: 1

Exposure Duration Bin Distribution

3rd Trimester Bin: 0 0<2 Years Bin: 1 2<9 Years Bin: 0 2<16 Years Bin: 0 16<30 Years Bin: 0 16 to 70 Years Bin: 0

PATHWAYS ENABLED

NOTE: Inhalation is always enabled and used for all assessments. The remaining pathways are only used for cancer and noncancer chronic assessments.

Inhalation: True Soil: True Dermal: True

Mother's milk: True

Water: False Fish: False

Homegrown crops: True

Beef: False Dairy: False Pig: False Chicken: False Egg: False

INHALATION

Daily breathing rate: LongTerm24HR

Worker Adjustment Factors

Worker adjustment factors enabled: NO

Fraction at time at home
3rd Trimester to 16 years: ON
16 years to 70 years: ON

Deposition rate (m/s): 0.02 Soil mixing depth (m): 0.01 Dermal climate: Mixed

HOMEGROWN CROP PATHWAY SETTINGS

Household type: HouseholdsthatGarden

Fraction leafy: 0.137 Fraction exposed: 0.137 Fraction protected: 0.137 Fraction root: 0.137

TIER 2 SETTINGS

Tier2 adjustments were used in this assessment. Please see the input file for details.

Tier2 - What was changed: ED or start age changed

Calculating cancer risk

Cancer risk breakdown by pollutant and receptor saved to:

D:\LSA\2024\20241527\HARP CONST\hra\Const Sensitive T2 Year2 CancerRisk.csv

Cancer risk total by receptor saved to:

D:\LSA\2024\2024\527\HARP_CONST\hra\Const_Sensitive_T2_Year2_CancerRiskSumByRec.csv

Calculating chronic risk

Chronic risk breakdown by pollutant and receptor saved to:

D:\LSA\2024\2024\527\HARP CONST\hra\Const Sensitive T2 Year2 NCChronicRisk.csv

Chronic risk total by receptor saved to:

D:\LSA\2024\20241527\HARP_CONST\hra\Const_Sensitive_T2_Year2_NCChronicRiskSumByRec.csv Calculating acute risk

Acute risk breakdown by pollutant and receptor saved to:

 $D: LSA \ 2024 \ 20241527 \ HARP_CONST \ hra \ Const_Sensitive_T2_Year2_NCA cuteRisk.csv$

Acute risk total by receptor saved to:

D:\LSA\2024\2024\527\HARP_CONST\hra\Const_Sensitive_T2_Year2_NCAcuteRiskSumByRec.csv

HRA ran successfully

HARP2 - HRACalc (dated 22118) 10/20/2024 7:40:31 PM - Output Log

RISK SCENARIO SETTINGS

Receptor Type: Resident

Scenario: All

Calculation Method: Derived

EXPOSURE DURATION PARAMETERS FOR CANCER

Start Age: 2

Total Exposure Duration: 1

Exposure Duration Bin Distribution

3rd Trimester Bin: 0 0<2 Years Bin: 0 2<9 Years Bin: 1 2<16 Years Bin: 0 16<30 Years Bin: 0 16 to 70 Years Bin: 0

PATHWAYS ENABLED

NOTE: Inhalation is always enabled and used for all assessments. The remaining pathways are only used for cancer and noncancer chronic assessments.

Inhalation: True Soil: True Dermal: True

Mother's milk: True

Water: False Fish: False

Homegrown crops: True

Beef: False Dairy: False Pig: False Chicken: False Egg: False

INHALATION

Daily breathing rate: LongTerm24HR

Worker Adjustment Factors

Worker adjustment factors enabled: NO

Fraction at time at home
3rd Trimester to 16 years: ON
16 years to 70 years: ON

Deposition rate (m/s): 0.02 Soil mixing depth (m): 0.01 Dermal climate: Mixed

HOMEGROWN CROP PATHWAY SETTINGS

Household type: HouseholdsthatGarden

Fraction leafy: 0.137 Fraction exposed: 0.137 Fraction protected: 0.137 Fraction root: 0.137

TIER 2 SETTINGS

Tier2 adjustments were used in this assessment. Please see the input file for details.

Tier2 - What was changed: ED or start age changed

Calculating cancer risk

Cancer risk breakdown by pollutant and receptor saved to:

D:\LSA\2024\20241527\HARP CONST\hra\Const Sensitive T2 Year3 CancerRisk.csv

Cancer risk total by receptor saved to:

D:\LSA\2024\2024\527\HARP_CONST\hra\Const_Sensitive_T2_Year3_CancerRiskSumByRec.csv

Calculating chronic risk

Chronic risk breakdown by pollutant and receptor saved to:

D:\LSA\2024\2024\527\HARP CONST\hra\Const Sensitive T2 Year3 NCChronicRisk.csv

Chronic risk total by receptor saved to:

D:\LSA\2024\20241527\HARP_CONST\hra\Const_Sensitive_T2_Year3_NCChronicRiskSumByRec.csv Calculating acute risk

Acute risk breakdown by pollutant and receptor saved to:

 $D: LSA \ 2024 \ 20241527 \ HARP_CONST \ hra \ Const_Sensitive_T2_Year3_NCA cuteRisk.csv$

Acute risk total by receptor saved to:

D:\LSA\2024\2024\527\HARP_CONST\hra\Const_Sensitive_T2_Year3_NCAcuteRiskSumByRec.csv

HRA ran successfully

HARP2 - HRACalc (dated 22118) 10/20/2024 9:06:33 PM - Output Log

RISK SCENARIO SETTINGS

Receptor Type: Worker

Scenario: All

Calculation Method: Derived

EXPOSURE DURATION PARAMETERS FOR CANCER

Start Age: 16

Total Exposure Duration: 1

Exposure Duration Bin Distribution

3rd Trimester Bin: 0 0<2 Years Bin: 0 2<9 Years Bin: 0 2<16 Years Bin: 0 16<30 Years Bin: 1 16 to 70 Years Bin: 0

PATHWAYS ENABLED

NOTE: Inhalation is always enabled and used for all assessments. The remaining pathways are only used for cancer and noncancer chronic assessments.

Inhalation: True Soil: True Dermal: True

Mother's milk: False

Water: False Fish: False

Homegrown crops: False

Beef: False Dairy: False Pig: False Chicken: False Egg: False

INHALATION

Daily breathing rate: Moderate8HR

Worker Adjustment Factors

Worker adjustment factors enabled: NO

Fraction at time at home
3rd Trimester to 16 years: OFF
16 years to 70 years: OFF

Deposition rate (m/s): 0.02 Soil mixing depth (m): 0.01 Dermal climate: Mixed

TIER 2 SETTINGS

Tier2 adjustments were used in this assessment. Please see the input file for details.

Tier2 - What was changed: ED or start age changed

Calculating cancer risk

Cancer risk breakdown by pollutant and receptor saved to:

D:\LSA\2024\20241527\HARP CONST\hra\Const Worker T2 Year1 CancerRisk.csv

Cancer risk total by receptor saved to:

D:\LSA\2024\20241527\HARP_CONST\hra\Const_Worker_T2_Year1_CancerRiskSumByRec.csv Calculating chronic risk

Chronic risk breakdown by pollutant and receptor saved to:

D:\LSA\2024\20241527\HARP_CONST\hra\Const_Worker_T2_Year1_NCChronicRisk.csv

Chronic risk total by receptor saved to:

D:\LSA\2024\20241527\HARP_CONST\hra\Const_Worker_T2_Year1_NCChronicRiskSumByRec.csv Calculating acute risk

Acute risk breakdown by pollutant and receptor saved to:

D:\LSA\2024\20241527\HARP_CONST\hra\Const_Worker_T2_Year1_NCAcuteRisk.csv

Acute risk total by receptor saved to:

D:\LSA\2024\20241527\HARP_CONST\hra\Const_Worker_T2_Year1_NCAcuteRiskSumByRec.csv HRA ran successfully

HARP2 - HRACalc (dated 22118) 10/20/2024 10:51:45 PM - Output Log

RISK SCENARIO SETTINGS

Receptor Type: Worker

Scenario: All

Calculation Method: Derived

EXPOSURE DURATION PARAMETERS FOR CANCER

Start Age: 17

Total Exposure Duration: 1

Exposure Duration Bin Distribution

3rd Trimester Bin: 0 0<2 Years Bin: 0 2<9 Years Bin: 0 2<16 Years Bin: 0 16<30 Years Bin: 1 16 to 70 Years Bin: 0

PATHWAYS ENABLED

NOTE: Inhalation is always enabled and used for all assessments. The remaining pathways are only used for cancer and noncancer chronic assessments.

Inhalation: True Soil: True Dermal: True

Mother's milk: False

Water: False Fish: False

Homegrown crops: False

Beef: False Dairy: False Pig: False Chicken: False Egg: False

INHALATION

Daily breathing rate: Moderate8HR

Worker Adjustment Factors

Worker adjustment factors enabled: NO

Fraction at time at home
3rd Trimester to 16 years: OFF
16 years to 70 years: OFF

Deposition rate (m/s): 0.02 Soil mixing depth (m): 0.01 Dermal climate: Mixed

TIER 2 SETTINGS

Tier2 adjustments were used in this assessment. Please see the input file for details.

Tier2 - What was changed: ED or start age changed

Calculating cancer risk

Cancer risk breakdown by pollutant and receptor saved to:

D:\LSA\2024\20241527\HARP CONST\hra\Const Worker T2 Year2 CancerRisk.csv

Cancer risk total by receptor saved to:

D:\LSA\2024\20241527\HARP_CONST\hra\Const_Worker_T2_Year2_CancerRiskSumByRec.csv Calculating chronic risk

Chronic risk breakdown by pollutant and receptor saved to:

 $D: LSA \ 2024 \ 20241527 \ HARP_CONST \ hra \ Const_Worker_T2_Year2_NCChronicRisk.csv$

Chronic risk total by receptor saved to:

D:\LSA\2024\20241527\HARP_CONST\hra\Const_Worker_T2_Year2_NCChronicRiskSumByRec.csv Calculating acute risk

Acute risk breakdown by pollutant and receptor saved to:

D:\LSA\2024\2024\1527\HARP_CONST\hra\Const_Worker_T2_Year2_NCAcuteRisk.csv

Acute risk total by receptor saved to:

D:\LSA\2024\20241527\HARP_CONST\hra\Const_Worker_T2_Year2_NCAcuteRiskSumByRec.csv HRA ran successfully

HARP2 - HRACalc (dated 22118) 10/20/2024 10:53:44 PM - Output Log

RISK SCENARIO SETTINGS

Receptor Type: Worker

Scenario: All

Calculation Method: Derived

EXPOSURE DURATION PARAMETERS FOR CANCER

Start Age: 18

Total Exposure Duration: 1

Exposure Duration Bin Distribution

3rd Trimester Bin: 0 0<2 Years Bin: 0 2<9 Years Bin: 0 2<16 Years Bin: 0 16<30 Years Bin: 1 16 to 70 Years Bin: 0

PATHWAYS ENABLED

NOTE: Inhalation is always enabled and used for all assessments. The remaining pathways are only used for cancer and noncancer chronic assessments.

Inhalation: True Soil: True Dermal: True

Mother's milk: False

Water: False Fish: False

Homegrown crops: False

Beef: False Dairy: False Pig: False Chicken: False Egg: False

INHALATION

Daily breathing rate: Moderate8HR

Worker Adjustment Factors

Worker adjustment factors enabled: NO

Fraction at time at home
3rd Trimester to 16 years: OFF
16 years to 70 years: OFF

Deposition rate (m/s): 0.02 Soil mixing depth (m): 0.01 Dermal climate: Mixed

TIER 2 SETTINGS

Tier2 adjustments were used in this assessment. Please see the input file for details.

Tier2 - What was changed: ED or start age changed

Calculating cancer risk

Cancer risk breakdown by pollutant and receptor saved to:

D:\LSA\2024\20241527\HARP CONST\hra\Const Worker T2 Year3 CancerRisk.csv

Cancer risk total by receptor saved to:

D:\LSA\2024\20241527\HARP_CONST\hra\Const_Worker_T2_Year3_CancerRiskSumByRec.csv Calculating chronic risk

Chronic risk breakdown by pollutant and receptor saved to:

D:\LSA\2024\20241527\HARP_CONST\hra\Const_Worker_T2_Year3_NCChronicRisk.csv

Chronic risk total by receptor saved to:

D:\LSA\2024\20241527\HARP_CONST\hra\Const_Worker_T2_Year3_NCChronicRiskSumByRec.csv Calculating acute risk

Acute risk breakdown by pollutant and receptor saved to:

D:\LSA\2024\2024\1527\HARP_CONST\hra\Const_Worker_T2_Year3_NCAcuteRisk.csv

Acute risk total by receptor saved to:

D:\LSA\2024\20241527\HARP_CONST\hra\Const_Worker_T2_Year3_NCAcuteRiskSumByRec.csv HRA ran successfully

Biological Resource Evaluation

February 2024

Madera Residential Development Project Madera County, CA

Prepared for: Crawford & Bowen Planning, Inc. 113 N. Church Street, Suite 310 Visalia, CA 93291

Prepared by:

Colibri Ecological Consulting, LLC
9493 N Fort Washington Road, Suite 108
Fresno, CA 93730
colibri-ecology.com

Executive Summary

The project applicant proposes to construct a residential development in southeast Madera, Madera County, California. The proposed residential development project (Project) will involve construction on approximately 29 acres that currently support an orchard.

To evaluate whether the Project may affect biological resources under California Environmental Quality Act (CEQA) purview, we (1) obtained lists of special-status species from the United States Fish and Wildlife Service, the California Department of Fish and Wildlife, and the California Native Plant Society; (2) reviewed other relevant background information such as satellite imagery and topographic maps; and (3) conducted a field reconnaissance survey at the Project site.

This biological resource evaluation summarizes (1) existing biological conditions on the Project site, (2) the potential for special-status species and regulated habitats to occur on or near the Project site, (3) the potential impacts of the proposed Project on biological resources and regulated habitats, and (4) measures to reduce those potential impacts to less-than-significant levels under CEQA.

We concluded the Project could affect the state listed as threatened Swainson's hawk (*Buteo swainsoni*) and nesting migratory birds. However, effects can be reduced to less-than-significant levels with mitigation.

Contents

Abbr	eviati	ons	5
1.0	Intro	oduction	6
1.1	Ва	ackground	6
1.2	Pr	oject Description	6
1.3	Pr	oject Location	6
1.4	Re	egulatory Framework	9
1	.4.1	State Requirements	9
1	.4.2	Federal Requirements	11
2.0	Metl	hods	13
2.1	De	esktop Review	13
2.2	2 Re	econnaissance Survey	13
2.3	3 Si	gnificance Criteria	14
3.0	Resi	ults	17
3.1	De	esktop Review	17
3.2	2 R	econnaissance Survey	26
3	3.2.1	Land Use and Habitats	26
3	3.2.2	Plant and Animal Species Observed	29
3	3.2.3	Nesting Birds	31
3	3.2.4	Regulated Habitats	32
3.3	3 S	pecial-Status Species	32
3	3.3.1	Swainson's Hawk	32
4.0	Envi	ironmental Impacts	33
4.1	Si	gnificance Determinations	33
2	4.1.1	Direct and Indirect Effects	34
5.0	Lite	rature Cited	36

Figures

Figure I. Project site vicinity map	/
Figure 2. Project site map	8
Figure 3. Reconnaissance survey area map	16
Figure 4. CNDDB occurrence map.	25
Figure 5. Photograph from the southeast corner of the Project si	ite, looking
northwest, showing an almond orchard	26
Figure 6. Photograph from the east-central portion of the Project s west, showing an almond orchard	_
Figure 7. Photograph from the north-central portion of the Project s west, showing an almond orchard and irrigation pumps	_
Figure 8. Photograph showing rural residential development east of site, looking northeast	
Figure 9. Photograph showing ruderal vegetation south of the Pl	roject site
looking northeast	28
Tables	
Table 1. Special-status species, their listing status, habitats, and poccur on or near the Project site	
Table 2. Plant and animal species observed during the reconnaissar	
Appendices	
Appendix A. USFWS list of threatened and endangered species	38
Appendix B. CNDDB occurrence records	
Appendix C. CNPS plant list	
Appendix D. Recommended timing and methodology for Swainson's ha	_
surveys in California's Central Valley	54

Abbreviations

Abbreviation	Definition
CCR	California Code of Regulations
CDFG	California Department of Fish and Game
CDFW	California Department of Fish and Wildlife
CESA	California Endangered Species Act
CEQA	California Environmental Quality Act
CFGC	California Fish and Game Code
CFR	Code of Federal Regulations
CNDDB	California Natural Diversity Data Base
CNPS	California Native Plant Society
CRPR	California Rare Plant Rank
FE	Federally listed as Endangered
FC	Federal Candidate for listing under the FESA
FESA	Federal Endangered Species Act
FP	State Fully Protected
FT	Federally listed as Threatened
MBTA	Migratory Bird Treaty Act
NRCS	Natural Resources Conservation Service
SC	State Candidate for listing under the CESA
SE	State listed as Endangered
SSSC	State Species of Special Concern
ST	State listed as Threatened
SWRCB	State Water Resources Control Board
USACE	United States Army Corps of Engineers
USC	United States Code
USFWS	United States Fish and Wildlife Service
USGS	United States Geological Survey

1.0 Introduction

1.1 Background

The applicant proposes to construct a residential development (the Project) on approximately 29 acres in southeast Madera, Madera County, California. The Project site currently supports an almond orchard.

The purpose of this biological resource evaluation is to assess whether the Project will affect protected biological resources pursuant to California Environmental Quality Act (CEQA) guidelines. Such resources include species of plants or animals listed or proposed for listing under the Federal Endangered Species Act (FESA) or the California Endangered Species Act (CESA) as well as those covered under the Migratory Bird Treaty Act (MBTA), the California Native Plant Protection Act, and various other sections of California Fish and Game Code (CFGC). This biological resource evaluation also addresses Project-related impacts to regulated habitats, which are those under the jurisdiction of the United States Army Corps of Engineers (USACE), State Water Resources Control Board (SWRCB), or California Department of Fish and Wildlife (CDFW).

1.2 Project Description

This Project will involve constructing a 184-unit subdivision on approximately 29 acres. The subdivision will include new residential streets, a park, and a detention basin.

1.3 Project Location

The approximately 29-acre Project site is north and east of Road 28 and west of Robbins Lane in southeast Madera, Madera County, California (Figures 1 and 2).

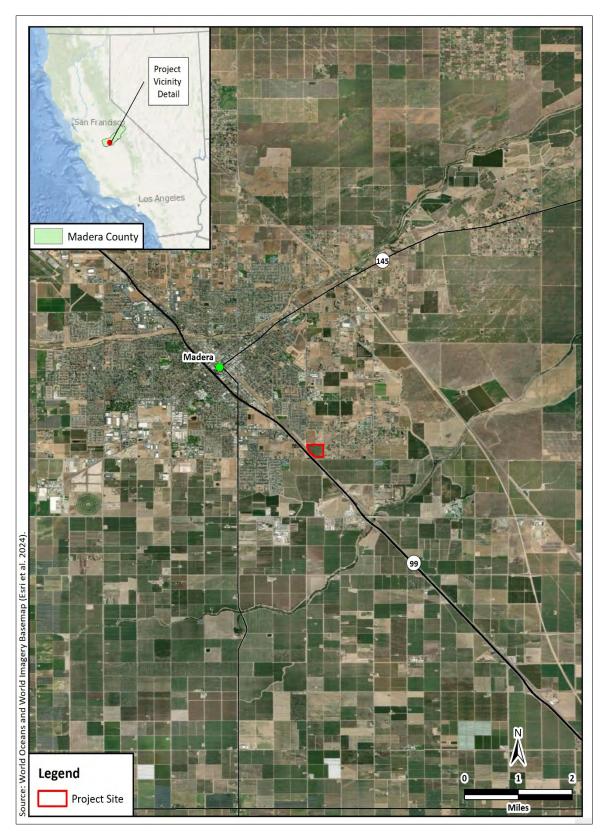


Figure 1. Project site vicinity map.

Figure 2. Project site map.

1.4 Regulatory Framework

The relevant regulatory requirements and policies that guide the impact analysis of the Project are summarized below.

1.4.1 State Requirements

California Department of Fish and Wildlife Jurisdiction. The CDFW has regulatory jurisdiction over lakes and streams in California. Activities that divert or obstruct the natural flow of a stream; substantially change its bed, channel, or bank; or use any materials (including vegetation) from the streambed may require that the project applicant enter into a Lake and Streambed Alteration Agreement with the CDFW in accordance with California Fish and Game Code [CFGC] Section 1602.

California Endangered Species Act. The CESA of 1970 (CFGC Section 2050 et seq. and California Code of Regulations (CCR) Title 14, Subsections 670.2 and 670.51) prohibits the take of species listed under CESA (14 CCR Subsections 670.2 and 670.5). Take is defined as hunt, pursue, catch, capture, or kill or attempt to hunt, pursue, catch, capture, or kill. Under CESA, state agencies are required to consult with the CDFW when preparing CEQA documents. Consultation ensures that proposed projects or actions do not adversely affect state listed species. During consultation, CDFW determines whether take would occur and identifies "reasonable and prudent alternatives" for the project and conservation of special-status species. CDFW can authorize take of state listed species under Sections 2080.1 and 2081(b) of the CFGC in those cases where it is demonstrated the impacts are minimized and mitigated. Take authorized under section 2081(b) must be minimized and fully mitigated. A CESA permit must be obtained if a project will result in take of listed species, either during construction or over the life of the project. Under CESA, CDFW is responsible for maintaining a list of threatened and endangered species designated under state law (CFGC Section 2070). CDFW also maintains lists of species of special concern, which serve as "watch lists." Pursuant to the requirements of CESA, a state or local agency reviewing a proposed project within its jurisdiction must determine whether the proposed project will have a potentially significant impact upon such species. Project-related impacts to species on the CESA list would be considered significant and would require mitigation. Impacts to species of concern or fully protected species would be considered significant under certain circumstances.

California Environmental Quality Act. The California Environmental Quality Act (CEQA) of 1970 (Subsections 21000–21178) requires that CDFW be consulted

during the CEQA review process regarding impacts of proposed projects on special-status species. Special-status species are defined under CEQA Guidelines subsection 15380(b) and (d) as those listed under FESA and CESA and species that are not currently protected by statute or regulation but would be considered rare, threatened, or endangered under these criteria or by the scientific community. Therefore, species considered rare or endangered are addressed in this biological resource evaluation regardless of whether they are afforded protection through any other statute or regulation. The California Native Plant Society (CNPS) inventories the native flora of California and ranks species according to rarity (CNPS 2024). Plants with Rare Plant Ranks 1A, 1B, 2A, or 2B are considered special-status species under CEQA.

Although threatened and endangered species are protected by specific federal and state statutes, CEQA Guidelines Section 15380(d) provides that a species not listed on the federal or state list of protected species may be considered rare or endangered if it can be shown to meet certain specified criteria. These criteria have been modeled after the definition in the FESA and the section of the CFGC dealing with rare and endangered plants and animals. Section 15380(d) allows a public agency to undertake a review to determine if a significant effect on species that have not yet been listed by either the United States Fish and Wildlife Service (USFWS) or CDFW (i.e., candidate species) would occur. Thus, CEQA provides an agency with the ability to protect a species from the potential impacts of a project until the respective government agency has an opportunity to designate the species as protected, if warranted.

California Native Plant Protection Act. The California Native Plant Protection Act of 1977 (CFGC Sections 1900–1913) requires all state agencies to use their authority to carry out programs to conserve endangered and otherwise rare species of native plants. Provisions of the act prohibit the taking of listed plants from the wild and require the project proponent to notify CDFW at least 10 days in advance of any change in land use, which allows CDFW to salvage listed plants that would otherwise be destroyed.

Nesting birds. CFGC Sections 3503, 3503.5, and 3800 prohibit the possession, incidental take, or needless destruction of birds, their nests, and eggs. CFGC Section 3511 lists birds that are "Fully Protected" as those that may not be taken or possessed except under specific permit.

Porter-Cologne Water Quality Control Act. The Porter-Cologne Water Quality Control Act (California Water Code Section 13000 et. sec.) was established in 1969 and entrusts the SWRCB and nine Regional Water Quality Control Boards (collectively Water Boards) with the responsibility to preserve and enhance all

beneficial uses of California's diverse waters. The Act grants the Water Boards authority to establish water quality objectives and regulate point- and nonpoint-source pollution discharge to the state's surface and ground waters. Under the auspices of the United States Environmental Protection Agency, the Water Boards are responsible for certifying, under Section 401 of the federal Clean Water Act, that activities affecting waters of the United States comply with California water quality standards. The Porter-Cologne Water Quality Control Act addresses all "waters of the State," which are more broadly defined than waters of the Unites States. Waters of the State include any surface water or groundwater, including saline waters, within the boundaries of the state. They include artificial as well as natural water bodies and federally jurisdictional and federally non-jurisdictional waters. The Water Boards may issue a Waste Discharge Requirement permit for projects that will affect only federally non-jurisdictional waters of the State.

1.4.2 Federal Requirements

Federal Endangered Species Act. The USFWS and the National Oceanographic and Atmospheric Administration's National Marine Fisheries Service enforce the provisions stipulated in the FESA of 1973 (FESA, 16 United States Code [USC] Section 1531 et seq.). Threatened and endangered species on the federal list (50 Code of Federal Regulations [CFR] 17.11 and 17.12) are protected from take unless a Section 10 permit is granted to an entity other than a federal agency or a Biological Opinion with incidental take provisions is rendered to a federal lead agency via a Section 7 consultation. Take is defined as harass, harm, pursue, hunt, shoot, wound, kill, trap, capture, or collect or attempt to engage in any such conduct. Pursuant to the requirements of the FESA, an agency reviewing a proposed action within its jurisdiction must determine whether any federally listed species may be present in the proposed action area and determine whether the proposed action may affect such species. Under the FESA, habitat loss is considered an effect to a species. In addition, the agency is required to determine whether the proposed action is likely to jeopardize the continued existence of any species that is listed or proposed for listing under the FESA (16 USC Section 1536[3], [4]). Therefore, proposed action-related effects to these species or their habitats would be considered significant and would require mitigation.

Migratory Bird Treaty Act. The federal MBTA (16 USC Section 703, Supp. I, 1989) prohibits killing, possessing, trading, or other forms of take of migratory birds except in accordance with regulations prescribed by the Secretary of the Interior. "Take" is defined as the pursuing, hunting, shooting, capturing, collecting, or killing of birds, their nests, eggs, or young (16 USC Section 703 and Section 715n).

This act encompasses whole birds, parts of birds, and bird nests and eggs. The MBTA specifically protects migratory bird nests from possession, sale, purchase, barter transport, import, and export, and take. For nests, the definition of take per 50 CFR 10.12 is to collect. The MBTA does not include a definition of an "active nest." However, the "Migratory Bird Permit Memorandum" issued by the USFWS in 2003 and updated in 2018 clarifies the MBTA in that regard and states that the removal of nests, without eggs or birds, is legal under the MBTA, provided no possession (which is interpreted as holding the nest with the intent of retaining it) occurs during the destruction (USFWS 2018).

United States Army Corps of Engineers Jurisdiction. Areas meeting the regulatory definition of "waters of the United States" (jurisdictional waters) are subject to the jurisdiction of the USACE under provisions of Section 404 of the Clean Water Act (1972) and Section 10 of the Rivers and Harbors Act (1899). These waters may include all waters used, or potentially used, for interstate commerce, including all waters subject to the ebb and flow of the tide, the territorial seas, all interstate waters, all impoundments of waters otherwise defined as waters of the United States, tributaries of waters otherwise defined as waters of the United States that are relatively permanent, standing, or continuously flowing bodies of water, and relatively permanent, standing or continuously flowing bodies of water with a continuous surface connection to waters of the United States (33 CFR part 328.3). Waters of the United States do not include prior converted cropland, waste treatment systems, ditches, artificially irrigated areas, artificial lakes or ponds, artificial reflecting pools or swimming pools, waterfilled depressions, and swales and erosional features. Under the 2006 Supreme Court ruling Rapanos v. United States, waters of the United States include non-navigable tributaries of traditional navigable waters that are relatively permanent. The 2023 Supreme Court ruling Sackett v. Environmental Protection Agency removed the significant nexus standard for tributaries and adjacent waters of the United States and requires tributaries and adjacent waters to have a continuous surface connection to a water of the United States. Wetlands on non-agricultural lands are identified using the Corps of Engineers Wetlands Delineation Manual and related Regional Supplement (USACE 1987 and 2008). Construction activities, including direct removal, filling, hydrologic disruption, or other means in jurisdictional waters are regulated by the USACE. The placement of dredged or fill material into such waters must comply with permit requirements of the USACE. No USACE permit will be effective in the absence of state water quality certification pursuant to Section 401 of the Clean Water Act. The State Water Resources Control Board is the state agency, together with the Regional Water Quality Control Boards, charged with implementing water quality certification in California.

2.0 Methods

2.1 Desktop Review

As a framework for the evaluation and reconnaissance survey, we obtained a USFWS species list for the Project (USFWS 2024a, Appendix A). In addition, we searched the California Natural Diversity Database (CNDDB, CDFW 2024, Appendix B) and the CNPS Inventory of Rare and Endangered Plants (CNPS 2024, Appendix C) for records of special-status plant and animal species from the vicinity of the Project site. Regional lists of special-status species were compiled using CNDDB and CNPS database searches confined to the Madera 7.5minute United States Geological Survey (USGS) topographic quadrangle, which encompasses the Project site, and the eight surrounding quadrangles (Berenda, Biola, Bonita Ranch, Daulton, Gravelly Ford, Gregg, Herndon, and Kismet). A local list of special-status species was compiled using CNDDB records from within 5 miles of the Project site. Species that lacked a CEQA-recognized special-status designation by state or federal regulatory agencies or public interest groups were omitted from the final list. Species for which the Project site does not provide habitat were eliminated from further consideration. We also reviewed satellite imagery from Google Earth (Google 2024) and other sources, USGS topographic maps, the Web Soil Survey (NRCS 2024), the National Wetlands Inventory (USFWS 2024b), and relevant literature.

2.2 Reconnaissance Survey

Colibri Senior Scientist Ryan Slezak conducted a field reconnaissance survey at the Project site on 12 February 2024. The Project site and a 50-foot buffer (Figure 3) surrounding the Project site were walked and thoroughly inspected to evaluate and document the potential for the area to support state or federally protected resources. All plants except those under cultivation or planted in residential areas and all vertebrate wildlife species observed within the survey area were identified and documented. The survey area was evaluated for the presence of regulated habitats, including lakes, streams, and other waters as defined by the USACE, CDFW, and under the Porter-Cologne Water Quality Control Act. An additional buffer of 0.5 miles around the Project site was inspected for potential nesting habitat for special-status raptors. The 0.5-mile buffer was surveyed by driving public roads and identifying the presence of large trees or other potentially suitable substrates for nesting raptors as well as open areas that could provide foraging habitat.

2.3 Significance Criteria

CEQA defines "significant effect on the environment" as "a substantial, or potentially substantial, adverse change in the environment" (California Public Resource Code § 21068). Under CEQA Guidelines Section 15065, a Project's effects on biological resources are deemed significant where the Project would do the following:

- a) Substantially reduce the habitat of a fish or wildlife species,
- b) Cause a fish or wildlife population to drop below self-sustaining levels,
- c) Threaten to eliminate a plant or animal community, or
- d) Substantially reduce the number or restrict the range of a rare or endangered plant or animal.

In addition to the Section 15065 criteria, Appendix E within the CEQA Guidelines includes six additional impacts to consider when analyzing the effects of a project. Under Appendix E, a project's effects on biological resources are deemed significant where the project would do any of the following:

- e) Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special-status species in local or regional plans, policies, or regulations, or by the CDFW or USFWS;
- f) Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, regulations, or by the CDFW or USFWS;
- g) Have a substantial adverse effect on state or federally protected wetlands (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means;
- h) Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites;
- i) Conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance; or
- j) Conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan.

These criteria were used to determine whether the potential effects of the Project on biological resources qualify as significant.

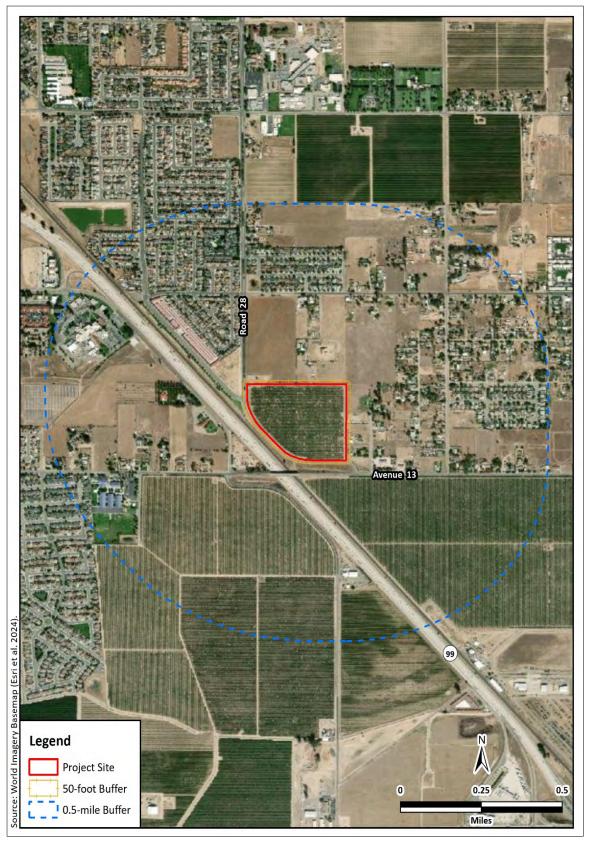


Figure 3. Reconnaissance survey area map.

3.0 Results

3.1 Desktop Review

The USFWS species list for the Project included 10 species listed as threatened, endangered, or proposed for listing under the FESA (USFWS 2024a, Table 1, Appendix A). None of those species could occur on or near the Project site due to the lack of habitat or because the Project site is outside the known range of the species (Table 1). As stated in the species list, the Project site occurs outside any proposed or designated USFWS critical habitat (USFWS 2024a, Appendix A).

Searching the CNDDB for records of special-status species from the Madera 7.5-minute USGS topographic quadrangle and the eight surrounding quadrangles produced 219 records of 35 species (Table 1, Appendix B). Of those 35 species, 7 were not considered further because they are not CEQA-recognized as special-status species by state or federal regulatory agencies or public interest groups or are considered extirpated in California (Appendix B). Of the remaining 28 species, 10 are known from within 5 miles of the Project site (Table 1, Figure 4). Of those species, only the state listed as threatened Swainson's hawk (*Buteo swainsoni*) could occur on or near the Project site (Table 1). None of the other species identified in the nine-quad search could occur on or near the Project site (Table 1).

Searching the CNPS inventory of rare and endangered plants of California yielded 17 species (CNPS 2024, Appendix C), 16 of which have a CRPR of 1 or 2 and four of which are also state or federally listed (Table 1). Of those 16 plant species, none could occur on or near the Project site due to the lack of habitat (Table 1).

The Project site is underlain by Greenfield fine sandy loam, 0 to 3 percent slopes (76.5%); Tujunga loamy sand, 0 to 3 percent slopes (9.4%); Borden loam, 0 to 1 percent slopes (8.2%); San Joaquin sandy loam, 0 to 3 percent slopes (3.6%); and Pachappa fine sandy loam, 0 to 1 percent slopes (2.2%) (NCRS 2024). The Project site has little topographic relief and is at an elevation of 263–268 feet above mean sea level (Google 2024).

Table 1. Special-status species, their listing status, habitats, and potential to occur on or near the Project site.

Species	Status ¹	Habitat	Potential to Occur ²				
Federally and State-Listed Endangered or Threatened Species							
Greene's tuctoria ³ (Tuctoria greenei)	FE, SR, 1B.1	Vernal pools in open grasslands below 3445 feet elevation.	None. No vernal pool habitat was present in the survey area.				
Hairy Orcutt grass³ (Orcuttia pilosa)	FE, SE, 1B.1	Vernal pools below 650 feet elevation.	None. No vernal pool habitat was present in the survey area.				
San Joaquin Valley Orcutt grass³ (Orcuttia inaequalis)	FT, SE, 1B.1	Vernal pools at or below 2700 feet elevation.	None. No vernal pool habitat was present in the survey area.				
Succulent owl's clover (Castilleja campestris var. succulenta)	FT, SE, 1B.2	Vernal pools with heavy clay soils at or below 2500 feet elevation.	None. No vernal pool habitat was present in the survey area.				
Monarch California overwintering population (Danaus plexippus)	FC	Groves of trees within 1.5 miles of the ocean that produce suitable micro-climates for overwintering such as high humidity, dappled sunlight, access to water and nectar, and protection from wind.	None. Habitat lacking; the Project site is not within 1.5 miles of the ocean.				
Valley elderberry longhorn beetle (Desmocerus californicus dimorphus)	FT	Elderberry (Sambucus sp.) plants having basal stem diameter greater than 1" at ground level.	None. No elderberry shrubs were found in the survey area.				

Species	Status ¹	Habitat	Potential to Occur ²
Vernal pool fairy shrimp³ (Branchinecta lynchi)	FT	Vernal pools; some artificial depressions, ditches, stock ponds, vernal swales, ephemeral drainages, and seasonal wetlands.	None. No vernal pool or other aquatic habitat was present in the survey area.
California tiger salamander³ (Ambystoma californiense)	FT, ST	Vernal pools or seasonal ponds for breeding; small mammal burrows for upland refugia in natural grasslands.	None. Habitat lacking; the survey area lacked vernal pools or seasonal ponds for breeding. Small mammal burrows that could provide upland refugia were not present in the survey area.
Blunt-nosed leopard lizard (Gambelia sila)	FE, SE, FP	Upland scrub and sparsely vegetated grassland with small mammal burrows.	None. Habitat lacking; the Project site is outside the current known range of this species.
Northwestern pond turtle (Actinemys marmorata)	FPT, SSSC	Ponds, rivers, marshes, streams, and irrigation ditches, usually with aquatic vegetation. Basking sites and suitable upland areas for egg laying.	None. Habitat lacking; the Project site and surrounding areas lacked the aquatic habitat this species requires.
Swainson's hawk³ (Buteo swainsoni)	ST	Large trees for nesting with adjacent grasslands, alfalfa fields, or grain fields for foraging.	Low. Potential nest trees with nearby foraging habitat were present within the 0.5-mile survey area.

Species	Status ¹	Habitat	Potential to Occur ²
Tricolored blackbird (Agelaius tricolor)	ST, SSSC	Freshwater emergent wetlands, some agricultural fields, grassland, and silage fields near dairies.	None. Habitat lacking; the Project site lacked freshwater emergent wetlands, agricultural fields, grassland, and silage fields.
Fresno kangaroo rat (Dipodomys nitratoides exilis)	FE, SE	Sandy, alkaline, saline, and clay-based soils in upland scrub and grassland.	None. Habitat lacking; the Project site is outside the current known range of this species.
San Joaquin kit fox (Vulpes macrotis mutica)	FE, ST	Grassland and upland scrub and fallowed agricultural lands adjacent to natural grasslands or upland scrub.	None. Habitat lacking; the Project site is outside the current known range of this species.
State Species of Spec	cial Concern		
Western spadefoot ³ (Spea hammondii)	SSSC	Open areas with sandy or gravelly soil that allow rain pools to gather for breeding.	None. Habitat lacking; no vernal pool or other aquatic habitat was present in the survey area.
Coast horned lizard (Phrynosoma blainvillii)	SSSC	Open, generally sandy areas, washes, and flood plains in a variety of habitats.	None. Habitat lacking; no open, generally sandy areas, washes, or flood plains were present in the survey area.

Species	Status ¹	Habitat	Potential to Occur ²
Burrowing owl ³ (Athene cunicularia)	SSSC	Grassland and upland scrub with friable soil; some agricultural or other developed and disturbed areas with ground squirrel burrows.	None. Habitat lacking; the Project site lacked grassland and upland scrub with friable soil. Suitable burrows were not present in the survey area during the 12 February 2024 reconnaissance survey.
American badger (Taxidea taxus)	SSSC	Variable. Open, dry areas with friable soils and small mammal populations in grassland, conifer forest, and desert.	None. Habitat lacking; the Project site lacked open, dry areas with friable soils and small mammal populations in grassland, conifer forest, or desert.
California Rare Plant	S		
Alkali sink goldfields (Lasthenia chrysantha)	1B.1	Vernal pools and wet saline flats below 320 feet elevation.	None. No vernal pool or wet saline flat habitats were present in the survey area.
California alkali grass (Puccinellia simplex)	1B.2	Saline flats and mineral springs below 3000 feet elevation.	None. Habitat lacking; the survey area lacked saline flats and mineral springs.
Heartscale (Atriplex cordulata var. cordulata)	1B.2	Saline or alkaline soils in grassland, meadows and seeps, and chenopod scrub communities below 230 feet elevation.	None. Habitat lacking; the survey area lacked saline or alkaline soils in grassland, meadows and seeps, and chenopod scrub communities.

Species	Status ¹	Habitat	Potential to Occur ²
Lesser saltscale (Atriplex minuscula)	1B.1	Sandy, alkaline soils in chenopod scrub, playa, and grassland in the San Joaquin Valley below 328 feet elevation.	None. Habitat lacking; the survey area lacked sandy, alkaline soils in chenopod scrub, playa, or grassland.
Madera leptosiphon ³ (<i>Leptosiphon</i> serrulatus)	1B.2	Openings in chaparral, cismontane woodland, and low elevation conifer forest at 980–4300 feet elevation.	None. Habitat lacking; the Project site is below the known elevational range of this species.
Munz's tidy tips ³ (<i>Layia munzii</i>)	1B.2	Alkaline clay soils in chenopod scrub and valley and foothill grassland at 300–2100 feet elevation.	None. Habitat lacking; the Project site is below the known elevational range of this species.
Recurved larkspur (Delphinium recurvatum)	1B.2	Poorly drained, fine, alkaline soils in grassland and saltbush scrub at 98–1969 feet elevation.	None. Habitat lacking; the Project site lacked poorly drained, fine, alkaline soils in grassland.
Sanford's arrowhead (Sagittaria sanfordii)	1B.2	Ponds, sloughs, and ditches at sea level to 650 feet elevation.	None. Habitat lacking; no freshwater marshes or other suitable aquatic features were present on the Project site.
Shining navarretia³ (Navarretia nigelliformis ssp. radians)	1B.2	Clay depressions in vernal pools at 490-3280 feet elevation.	None. No vernal pool habitat was present on the Project site.

Species	Status ¹	Habitat	Potential to Occur ²
Spiny-sepaled button-celery (Eryngium spinosepalum)	1B.2	Vernal pools, swales, and roadside ditches in valley and foothill grassland.	None. No vernal pool habitat was present on the Project site.
Subtle orache (Atriplex subtilis)	1B.2	Saline depressions below 230 feet elevation.	None. Habitat lacking; the Project site lacked saline depressions and is above the known elevational range of this species.
Vernal pool smallscale (Atriplex persistens)	1B.2 Alkaline vernal pools below 380 feet elevation.		None. Habitat lacking; the Project site lacked alkaline vernal pools.

CDFW (2024), CNPS (2024), USFWS (2024a).

Status ¹	Potential to	o Occur²
FC = Federal Candidate for listing	None:	Species or sign not observed; conditions unsuitable for occurrence.
FE = Federally listed as Endangered	Low:	Neither species nor sign observed; conditions marginal for occurrence.
FT = Federally listed as Threatened	Moderate:	Neither species nor sign observed; conditions suitable for occurrence.
FPT = Federally Proposed Threatened	High:	Neither species nor sign observed; conditions highly suitable for occurrence.
FP = State Fully Protected	Present:	Species or sign observed; conditions suitable for occurrence.
SC = State Candidate for listing		
SE = State listed as Endangered		
ST = State listed as Threatened		
SSSC = State Species of Special Concern		

CNPS California Rare Plant Rank ¹ :	Threat Ranks¹:
1B – plants rare, threatened, or endangered in California and elsewhere.	0.1 – seriously threatened in California (> 80% of occurrences).
2B – plants rare, threatened, or endangered in California but more common elsewhere.	0.2 — moderately threatened in California (20-80% of occurrences).
3 – plants about which more information is needed.	0.3 — not very threatened in California (<20% of occurrences).

CNPS California Rare Plant Rank¹:

4 – plants have limited distribution in California.

 $^{{}^{3}\}text{Record}$ from within 5 miles of the Project site.

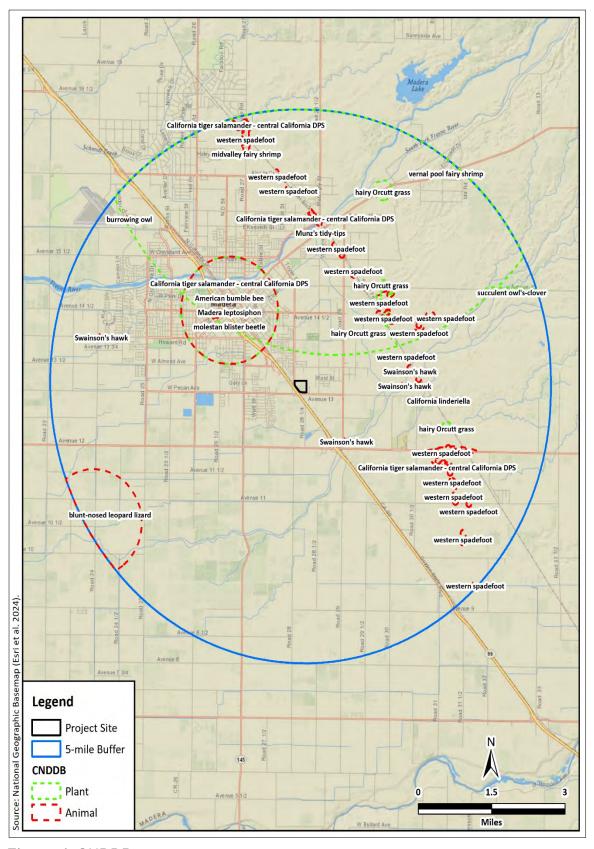


Figure 4. CNDDB occurrence map.

3.2 Reconnaissance Survey

3.2.1 Land Use and Habitats

The Project site consisted of an irrigated, maintained almond orchard (Figures 5–7). Ruderal herbaceous vegetation was sparsely distributed throughout the Project site. The site was bordered by rural residential development and ruderal vegetation to the north and east, ruderal vegetation and an orchard to the south, and a railroad and State Route 99 to the west (Figures 8 and 9). Satellite imagery indicates the Project site has been used for agricultural production since at least 1985 (Google 2024).

Figure 5. Photograph from the southeast corner of the Project site, looking northwest, showing an almond orchard.

Figure 6. Photograph from the east-central portion of the Project site, looking west, showing an almond orchard.

Figure 7. Photograph from the north-central portion of the Project site, looking west, showing an almond orchard and irrigation pumps.

Figure 8. Photograph showing rural residential development east of the Project site, looking northeast.

Figure 9. Photograph showing ruderal vegetation south of the Project site, looking northeast.

3.2.2 Plant and Animal Species Observed

A total of 25 plant species (four native and 21 nonnative), 15 bird species, and two mammal species were observed during the survey (Table 2).

Table 2. Plant and animal species observed during the reconnaissance survey.

Common Name	Scientific Name	Status
Plants		
Family Amaranthaceae		
Pigweed amaranth	Amaranthus albus	Nonnative
Family Asteraceae		
Common dandelion	Taraxacum officinale	Nonnative
Common groundsel	Senecio vulgaris	Nonnative
Common sow thistle	Sonchus oleraceus	Nonnative
Common sunflower	Helianthus annuus	Native
Flax-leaved horseweed	Erigeron bonariensis	Nonnative
Prickly lettuce	Lactuca serriola	Nonnative
Family Chenopodiaceae		
Russian thistle	Salsola tragus	Nonnative
Family Euphorbiaceae		
Turkey-mullein	Croton setiger	Native
Family Fabaceae		
California burclover	Medicago polymorpha	Nonnative
Family Geraniaceae		
Musky stork's bill	Erodium moschatum	Nonnative
Family Lamiaceae		
White horehound	Marrubium vulgare	Nonnative
Family Malvaceae		
Cheeseweed mallow	Malva parviflora	Nonnative
Family Moraceae		
Common fig	Ficus carica	Nonnative

Common Name	Scientific Name	Status
Family Oleaceae		
Olive	Olea europaea	Nonnative
Family Poaceae	1	
Bermuda grass	Cynodon dactylon	Nonnative
Foxtail brome	Bromus madritensis	Nonnative
Johnsongrass	Sorghum halepense	Nonnative
Kentucky bluegrass	Poa pratensis	Nonnative
Ripgut brome	Bromus diandrus	Nonnative
Slender wild oat	Avena barbata	Nonnative
Soft brome	Bromus hordeaceus	Nonnative
Sprangletop	Leptochloa fusca	Native
Family Polygonaceae		
Prostrate knotweed	Polygonum aviculare	Nonnative
Family Solanaceae		
Sacred datura	Datura wrightii	Native
Birds		
Family Accipitridae		
Red-shouldered hawk	Buteo lineatus	MBTA, CFGC
Red-tailed hawk	Buteo jamaicensis	MBTA, CFGC
Family Apodidae		
White-throated swift	Aeronautes saxatalis	MBTA, CFGC
Family Cathartidae		
Turkey vulture	Cathartes aura	MBTA, CFGC
Family Columbidae		
Eurasian collared-dove	Streptopelia orientalis	Nonnative
Family Corvidae		
American crow	Corvus brachyrhynchos	MBTA, CFGC
California scrub-jay	Aphelocoma californica	MBTA, CFGC

Scientific Name	Status
Zonotrichia leucophrys	MBTA, CFGC
Haemorhous mexicanus	MBTA, CFGC
Setophaga coronata	MBTA, CFGC
Passerculus sandwichensis	MBTA, CFGC
Passer domesticus	Nonnative
Sturnus vulgaris	Nonnative
Calypte anna	MBTA, CFGC
Sayornis nigricans	MBTA, CFGC
Sylvilagus audubonii	
	•
Otospermophilus beecheyi	
	Zonotrichia leucophrys Haemorhous mexicanus Setophaga coronata Passerculus sandwichensis Passer domesticus Sturnus vulgaris Calypte anna Sayornis nigricans Sylvilagus audubonii

MBTA = Protected under the MBTA (16 USC § 703 et seq.); CFGC = Protected under CFGC §§ 3503 and 3513

3.2.3 Nesting Birds

Migratory birds could nest on or near the Project site. Bird species that may nest on or near the property include, but are not limited to, California scrub-jay (*Aphelocoma californica*) and house finch (*Haemorhous mexicanus*). Large trees within 0.5 miles of the Project site could provide nesting substrates for raptors, including Swainson's hawk.

3.2.4 Regulated Habitats

No regulated habitats were found in the survey area.

3.3 Special-Status Species

The following special-status species could occur on or near the Project site based on the presence of habitat:

3.3.1 Swainson's Hawk

Swainson's hawk is a state listed as threatened raptor in the family Accipitridae. It is a migratory breeding resident of Central California. It uses open areas including grassland, sparse shrubland, pasture, open woodland, and annual agricultural fields such as grain and alfalfa to forage on small mammals, birds, and reptiles. After breeding, it eats mainly insects, especially grasshoppers (Bechard et al. 2020). Swainson's hawks build small to medium-sized nests in medium to large trees near foraging habitat. The nesting season begins in March or April in Central California when this species returns to its breeding grounds from wintering areas in Mexico and Central and South America. Nest building commences within one to two weeks of arrival to the breeding area and lasts about one week (Bechard et al. 2020). One to four eggs are laid and incubated for about 35 days. Young typically fledge in about 38–46 days and tend to leave the nest territory within 10 days of fledging (Bechard et al. 2020). Swainson's hawks depart for the non-breeding grounds between August and September.

There are three CNDDB occurrence records of Swainson's hawk, two from 2016 and one from 2017, from within 5 miles of the Project site. An additional six CNDDB occurrence records were found in the nine-quad search (CDFW 2024). Although no Swainson's hawk habitat was present on the Project site, grassland in the surrounding lands provide potential foraging habitat. Potential nest trees were observed within 0.5 miles of the Project site.

4.0 Environmental Impacts

4.1 Significance Determinations

This Project, which will result in temporary and permanent impacts to orchard, will not: (1) substantially reduce the habitat of a fish or wildlife species (criterion a) as no such habitat is present on the Project site; (2) cause a fish or wildlife population to drop below self-sustaining levels (criterion b) as no such potentially vulnerable population is known from the area; (3) threaten to eliminate a plant or animal community (criterion c) as no such potentially vulnerable communities are known from the area; (4) substantially reduce the number or restrict the range of a rare or endangered plant or animal (criterion d) as no such potentially vulnerable species are known from the area; (5) have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, regulations, or by the CDFW or USFWS (criterion f) as no riparian habitat or other sensitive natural community was present in the survey area; (6) have a substantial adverse effect on state or federally protected wetlands (including, but not limited to marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means (criterion g) as no impacts to wetlands will occur; (7) conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance (criterion i) as no such ordinances are pertinent to the Project; or (8) conflict with the provisions of an adopted Habitat Conservation Plan, Natural Communities Conservation Plan, or other approved local, regional, or state habitat conservation plan (criterion j) as no such plan has been adopted. Thus, these significance criteria are not analyzed further.

The remaining statutorily defined criteria provide the framework for Criterion BIO1 and Criterion BIO2 below. These criteria are used to assess the impacts to biological resources stemming from the Project and provide the basis for determinations of significance:

- <u>Criterion BIO1</u>: Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special-status species in local or regional plans, policies, or regulations, or by the CDFW or USFWS (significance criterion e).
- <u>Criterion BIO2</u>: Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native

resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites (significance criterion h).

4.1.1 Direct and Indirect Effects

4.1.1.1 Potential Effect #1: Have a Substantial Effect on Any Special-Status Species (Criterion BIO1)

The Project could adversely affect, either directly or through habitat modifications, one special-status animal species that occurs or may occur on or near the Project site. Construction activities such as excavating, trenching, or using other heavy equipment that disturbs or harms a special-status species or substantially modifies its habitat could constitute a significant impact. We recommend that Mitigation Measure BIO1 (below) be included in the conditions of approval to reduce the potential impacts to less-than-significant levels.

Mitigation Measure BIO1. Protect nesting Swainson's hawks.

- 1. To the extent practicable, construction shall be scheduled to avoid the Swainson's hawk nesting season, which extends from March through August.
- 2. If it is not possible to schedule construction between September and February, a qualified biologist shall conduct surveys for Swainson's hawk in accordance with the Swainson's Hawk Technical Advisory Committee's Recommended Timing and Methodology for Swainson's Hawk Nesting Surveys in California's Central Valley (SWTAC 2000, Appendix D). These methods require six surveys, three in each of the two survey periods, prior to project initiation. Surveys shall be conducted within a minimum 0.5-mile radius around the Project site.
- If an active Swainson's hawk nest is found within 0.5 miles of the Project site, and the qualified biologist determines that Project activities would disrupt the nesting birds, a construction-free buffer or limited operating period shall be implemented in consultation with the CDFW.

4.1.1.2 Potential Effect #2: Interfere Substantially with Native Wildlife Movements, Corridors, or Nursery Sites (Criterion BIO2)

The Project has the potential to impede the use of nursery sites for native birds protected under the MBTA and CFGC. Migratory birds are expected

to nest on and near the Project site. Construction disturbance during the breeding season could result in the incidental loss of fertile eggs or nestlings or otherwise lead to nest abandonment. Disturbance that causes nest abandonment or loss of reproductive effort can be considered take under the MBTA and CFGC. Loss of fertile eggs or nesting birds, or any activities resulting in nest abandonment, could constitute a significant effect if the species is particularly rare in the region. Construction activities such as excavating, trenching, and grading that disturb a nesting bird on the Project site or immediately adjacent to the construction zone could constitute a significant effect. We recommend that the mitigation measure BIO2 (below) be included in the conditions of approval to reduce the potential effect to a less-than-significant level.

Mitigation Measure BIO2. Protect nesting birds.

- 1. To the extent practicable, construction shall be scheduled to avoid the nesting season, which extends from February through August.
- 2. If it is not possible to schedule construction between September and January, pre-construction surveys for nesting birds shall be conducted by a qualified biologist to ensure that no active nests will be disturbed during the implementation of the Project. A pre-construction survey shall be conducted no more than 14 days prior to the initiation of construction activities. During this survey, the qualified biologist shall inspect all potential nest substrates in and immediately adjacent to the impact areas. If an active nest is found close enough to the construction area to be disturbed by these activities, the qualified biologist shall determine the extent of a construction-free buffer to be established around the nest. If work cannot proceed without disturbing the nesting birds, work may need to be halted or redirected to other areas until nesting and fledging are completed or the nest has otherwise failed for non-construction related reasons.

5.0 Literature Cited

- Bechard, M. J., C. S. Houston, J. H. Saransola, and A. S. England. 2020. Swainson's Hawk (*Buteo swainsoni*), version 1.0. *In* Birds of the World (A. F. Poole, Editor). Cornell Lab of Ornithology, Ithaca, NY, USA. https://doi.org/10.2173/bow.swahaw.01.
- California Department of Fish and Wildlife (CDFW). 2024. California Natural Diversity Database (CNDDB) RareFind 5. https://apps.wildlife.ca.gov. Accessed 9 February 2024.
- California Native Plant Society, Rare Plant Program (CNPS). 2024. Inventory of Rare and Endangered Plants (online edition, v9.5). California Native Plant Society, Sacramento, CA. http://www.rareplants.cnps.org. Accessed 9 February 2024.
- Google. 2024. Google Earth Pro. Version 7.3.6.9750 (https://www.google.com/earth/download/gep/agree.html). Accessed 9 February 2024.
- Natural Resources Conservation Service (NRCS), U.S. Department of Agriculture. 2024. Web Soil Survey, National Cooperative Soil Survey: http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx. Accessed 9 February 2024.
- Swainson's Hawk Technical Advisory Committee (SWTAC). 2000. Recommended Timing and Methodology for Swainson's Hawk Nesting Surveys in California's Central Valley. 5 pages.
- United States Army Corps of Engineers (USACE). 1987. Corps of Engineers Wetlands Delineation Manual. Wetland Research Program Technical Report Y-87-1.
- _____. 2008. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Arid West Region (Version 2.0). ERDC/EL TR-08-28. https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb10464 89.pdf. Accessed 9 February 2024.
- United States Fish and Wildlife Service (USFWS). 2018. Migratory Bird Permit Memorandum: Destruction and Relocation of Migratory Bird Nest Contents. FWS/DMBM/AMB/068029, 4 pages.

2024a. IPaC: Information for Planning and Conservation https://ecos.fws.gov/ipac/. Accessed 9 February 2024 2024b. National Wetlands Inventory website. U.S. Department of th Interior, Fish and Wildlife Service, Washington, D.C.												
	2024b.	National '	Wetlands In	ventory we	ebsite. U.S	6. Departmer	it of the					
Inte	erior, F	ïsh ar	nd Wildl	ife Ser	vice, V	Vashington,	D.C.					
htt	p://www.f	ws.gov/w	/etlands/. A	ccessed 9	February	2024.						

Appendix A. USFWS list of threatened and endangered species.

United States Department of the Interior

FISH AND WILDLIFE SERVICE

Sacramento Fish And Wildlife Office Federal Building 2800 Cottage Way, Room W-2605 Sacramento, CA 95825-1846 Phone: (916) 414-6600 Fax: (916) 414-6713

In Reply Refer To: February 09, 2024

Project Code: 2024-0047460

Project Name: Madera Residential Development Project

Subject: List of threatened and endangered species that may occur in your proposed project

location or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 *et seq.*), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2)

Project code: 2024-0047460

(c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

https://www.fws.gov/sites/default/files/documents/endangered-species-consultation-handbook.pdf

Migratory Birds: In addition to responsibilities to protect threatened and endangered species under the Endangered Species Act (ESA), there are additional responsibilities under the Migratory Bird Treaty Act (MBTA) and the Bald and Golden Eagle Protection Act (BGEPA) to protect native birds from project-related impacts. Any activity, intentional or unintentional, resulting in take of migratory birds, including eagles, is prohibited unless otherwise permitted by the U.S. Fish and Wildlife Service (50 C.F.R. Sec. 10.12 and 16 U.S.C. Sec. 668(a)). For more information regarding these Acts, see https://www.fws.gov/program/migratory-bird-permit/what-we-do.

The MBTA has no provision for allowing take of migratory birds that may be unintentionally killed or injured by otherwise lawful activities. It is the responsibility of the project proponent to comply with these Acts by identifying potential impacts to migratory birds and eagles within applicable NEPA documents (when there is a federal nexus) or a Bird/Eagle Conservation Plan (when there is no federal nexus). Proponents should implement conservation measures to avoid or minimize the production of project-related stressors or minimize the exposure of birds and their resources to the project-related stressors. For more information on avian stressors and recommended conservation measures, see https://www.fws.gov/library/collections/threats-birds.

In addition to MBTA and BGEPA, Executive Order 13186: *Responsibilities of Federal Agencies to Protect Migratory Birds*, obligates all Federal agencies that engage in or authorize activities that might affect migratory birds, to minimize those effects and encourage conservation measures that will improve bird populations. Executive Order 13186 provides for the protection of both migratory birds and migratory bird habitat. For information regarding the implementation of Executive Order 13186, please visit https://www.fws.gov/partner/council-conservation-migratory-birds.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Code in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

OFFICIAL SPECIES LIST

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

Sacramento Fish And Wildlife Office Federal Building

2800 Cottage Way, Room W-2605 Sacramento, CA 95825-1846 (916) 414-6600

PROJECT SUMMARY

Project Code: 2024-0047460

Project Name: Madera Residential Development Project

Project Type: Residential Construction

Project Description: A 29-acre residential development in Madera, California. The site is

currently an orchard and is located at 13251 Road 28, Madera, 93638.

Project Location:

The approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/@36.9401988,-120.03499911960881,14z

Counties: Madera County, California

ENDANGERED SPECIES ACT SPECIES

There is a total of 10 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

MAMMALS

NAME	STATUS
Fresno Kangaroo Rat <i>Dipodomys nitratoides exilis</i> There is final critical habitat for this species. Your location does not overlap the critical habitat. Species profile: https://ecos.fws.gov/ecp/species/5150	Endangered
San Joaquin Kit Fox <i>Vulpes macrotis mutica</i> No critical habitat has been designated for this species. Species profile: https://ecos.fws.gov/ecp/species/2873 REPTILES	Endangered
NAME	STATUS
Blunt-nosed Leopard Lizard <i>Gambelia silus</i> No critical habitat has been designated for this species. Species profile: https://ecos.fws.gov/ecp/species/625	Endangered
Northwestern Pond Turtle <i>Actinemys marmorata</i> No critical habitat has been designated for this species. Species profile: https://ecos.fws.gov/ecp/species/1111	Proposed Threatened

AMPHIBIANS

NAME STATUS

California Tiger Salamander *Ambystoma californiense*

Threatened

Population: U.S.A. (Central CA DPS)

There is **final** critical habitat for this species. Your location does not overlap the critical habitat.

Species profile: https://ecos.fws.gov/ecp/species/2076

Western Spadefoot Spea hammondii

Proposed

No critical habitat has been designated for this species. Species profile: https://ecos.fws.gov/ecp/species/5425

Threatened

INSECTS

NAME STATUS

Monarch Butterfly *Danaus plexippus*

Candidate

No critical habitat has been designated for this species. Species profile: https://ecos.fws.gov/ecp/species/9743

Valley Elderberry Longhorn Beetle Desmocerus californicus dimorphus

Threatened

There is **final** critical habitat for this species. Your location does not overlap the critical habitat.

Species profile: https://ecos.fws.gov/ecp/species/7850

CRUSTACEANS

NAME STATUS

Vernal Pool Fairy Shrimp *Branchinecta lynchi*

Threatened

There is **final** critical habitat for this species. Your location does not overlap the critical habitat.

Species profile: https://ecos.fws.gov/ecp/species/498

FLOWERING PLANTS

NAME STATUS

Hairy Orcutt Grass Orcuttia pilosa

Endangered

There is **final** critical habitat for this species. Your location does not overlap the critical habitat.

Species profile: https://ecos.fws.gov/ecp/species/2262

CRITICAL HABITATS

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

YOU ARE STILL REQUIRED TO DETERMINE IF YOUR PROJECT(S) MAY HAVE EFFECTS ON ALL ABOVE LISTED SPECIES.

IPAC USER CONTACT INFORMATION

Agency: Colibri Ecological Services

Name: Ryan Slezak

Address: 9493 N Ft Washington Rd

City: Fresno State: CA Zip: 93730

Email rslezak@colibri-ecology.com

Phone: 5592426178

Appendix B. CNDDB occurrence records.

California Department of Fish and Wildlife

California Natural Diversity Database

Query Criteria:

Quad IS (Madera (3612081) OR Daulton (3711918) OR Gregg (3611988) OR Herndon (3611978) OR Biola (3612071) OR Biola (3612071) OR Biola (3612082) OR Kismet (3712011))

				Elev.	ı	Elem	ent C	cc. F	Ranks	S	Population	on Status	Presence			
Name (Scientific/Common)	CNDDB Ranks	Listing Status (Fed/State)	Other Lists	Range (ft.)	Total EO's	A	В	С	D	Х	U	Historic > 20 yr	Recent <= 20 yr	Extant	Poss. Extirp.	Extirp.
Agelaius tricolor tricolored blackbird	G1G2 S2	None Threatened	BLM_S-Sensitive CDFW_SSC-Species of Special Concern IUCN_EN-Endangered USFWS_BCC-Birds of Conservation Concern	165 343	960 S:3	0	0	0	0	0	3	1	2	3	0	0
Ambystoma californiense pop. 1 California tiger salamander - central California DPS	G2G3T3 S3	Threatened Threatened	CDFW_WL-Watch List IUCN_VU-Vulnerable	100 575	1326 S:36	1	9	3	4	6	13	15	21	30	5	1
Athene cunicularia burrowing owl	G4 S2	None None	BLM_S-Sensitive CDFW_SSC-Species of Special Concern IUCN_LC-Least Concern USFWS_BCC-Birds of Conservation Concern	200 385	2017 S:3	0	1	0	0	1	1	2	1	2	1	0
Atriplex cordulata var. cordulata heartscale	G3T2 S2	None None	Rare Plant Rank - 1B.2 BLM_S-Sensitive	185 195	66 S:6	2	0	1	0	2	1	6	0	4	0	2
Atriplex minuscula lesser saltscale	G2 S2	None None	Rare Plant Rank - 1B.1 SB_CalBG/RSABG- California/Rancho Santa Ana Botanic Garden	185 190	52 S:6	3	0	1	0	0	2	6	0	6	0	0
Atriplex persistens vernal pool smallscale	G2 S2	None None	Rare Plant Rank - 1B.2	182 205	41 S:4	1	2	1	0	0	0	4	0	4	0	0
Atriplex subtilis subtle orache	G1 S1	None None	Rare Plant Rank - 1B.2	185 190	24 S:3	2	0	0	0	0	1	2	1	3	0	0
Bombus pensylvanicus American bumble bee	G3G4 S2	None None	IUCN_VU-Vulnerable	270 270	320 S:1	0	0	0	0	0	1	1	0	1	0	0
Branchinecta lynchi vernal pool fairy shrimp	G3 S3	Threatened None	IUCN_VU-Vulnerable	189 382	804 S:22	0	5	3	4	0	10	10	12	22	0	0
Branchinecta mesovallensis midvalley fairy shrimp	G2 S2S3	None None		294 299	147 S:2	0	0	2	0	0	0	0	2	2	0	0

California Department of Fish and Wildlife

California Natural Diversity Database

						Element Occ. Ranks						Populatio	Population Status		Presence	
Name (Scientific/Common)	CNDDB Ranks	Listing Status (Fed/State)	Other Lists	Range (ft.)	Total EO's	Α	В	С	D	х	U	Historic > 20 yr	Recent <= 20 yr	Extant	Poss. Extirp.	Extirp.
Buteo swainsoni Swainson's hawk	G5 S4	None Threatened	BLM_S-Sensitive IUCN_LC-Least Concern	175 466	2576 S:9	0	4	1	0	0	4	3	6	9	0	0
Castilleja campestris var. succulenta succulent owl's-clover	G4?T2T3 S2S3	Threatened Endangered	Rare Plant Rank - 1B.2	300 420	99 S:4	0	2	0	0	0	2	4	0	4	0	0
Delphinium recurvatum recurved larkspur	G2? S2?	None None	Rare Plant Rank - 1B.2 BLM_S-Sensitive SB_SBBG-Santa Barbara Botanic Garden	185 185	119 S:1	0	1	0	0	0	0	1	0	1	0	0
Desmocerus californicus dimorphus valley elderberry longhorn beetle	G3T3 S3	Threatened None		225 225	271 S:1	0	0	0	0	0	1	1	0	1	0	0
Dipodomys nitratoides exilis Fresno kangaroo rat	G3TH SH	Endangered Endangered	IUCN_VU-Vulnerable	200 200	12 S:1	0	0	0	0	0	1	1	0	1	0	0
Eryngium spinosepalum spiny-sepaled button-celery	G2 S2	None None	Rare Plant Rank - 1B.2 BLM_S-Sensitive SB_SBBG-Santa Barbara Botanic Garden	183 330	108 S:2	0	0	0	0	0	2	2	0	2	0	0
Gambelia sila blunt-nosed leopard lizard	G1 S2	Endangered Endangered	CDFW_FP-Fully Protected IUCN_EN-Endangered	180 232	447 S:11	0	0	0	0	1	10	11	0	10	1	0
Lasiurus cinereus hoary bat	G3G4 S4	None None	IUCN_LC-Least Concern	270 270	238 S:1	0	0	0	0	0	1	1	0	1	0	0
Lasthenia chrysantha alkali-sink goldfields	G2 S2	None None	Rare Plant Rank - 1B.1	195 195	55 S:1	0	0	0	0	1	0	1	0	0	1	0
Layia munzii Munz's tidy-tips	G2 S2	None None	Rare Plant Rank - 1B.2 BLM_S-Sensitive SB_SBBG-Santa Barbara Botanic Garden		68 S:1	0	0	0	0	0	1	1	0	1	0	0
Leptosiphon serrulatus Madera leptosiphon	G3 S3	None None	Rare Plant Rank - 1B.2 BLM_S-Sensitive SB_SBBG-Santa Barbara Botanic Garden USFS_S-Sensitive	270 270	26 S:1	0	0	0	0	0	1	1	0	1	0	0

California Department of Fish and Wildlife

California Natural Diversity Database

		Elev.		Element Occ. Ranks					5	Populatio	n Status	Presence				
Name (Scientific/Common)	CNDDB Ranks	Listing Status (Fed/State)	Other Lists	Range (ft.)	Total EO's	A	В	С	D	Х	U	Historic > 20 yr	Recent <= 20 yr	Extant	Poss. Extirp.	Extirp.
Linderiella occidentalis California linderiella	G2G3 S2S3	None None	IUCN_NT-Near Threatened	285 403	508 S:30	0	14	2	0	0	14	17	13	30	0	0
Lytta moesta moestan blister beetle	G2 S2	None None		280 280	12 S:1	0	0	0	0	0	1	1	0	0	1	0
Lytta molesta molestan blister beetle	G2 S2	None None		270 270	17 S:1	0	0	0	0	0	1	1	0	0	1	0
Navarretia nigelliformis ssp. radians shining navarretia	G4T2 S2	None None	Rare Plant Rank - 1B.2 BLM_S-Sensitive		102 S:2	0	0	0	0	2	0	2	0	0	2	0
Northern Hardpan Vernal Pool Northern Hardpan Vernal Pool	G3 S3.1	None None		290 350	126 S:5	0	1	1	1	0	2	5	0	5	0	0
Orcuttia inaequalis San Joaquin Valley Orcutt grass	G1 S1	Threatened Endangered	Rare Plant Rank - 1B.1	305 400	47 S:3	0	0	0	1	2	0	2	1	1	1	1
Orcuttia pilosa hairy Orcutt grass	G1 S1	Endangered Endangered	Rare Plant Rank - 1B.1 SB_CalBG/RSABG- California/Rancho Santa Ana Botanic Garden	275 400	35 S:10	1	2	0	2	5	0	6	4	5	3	2
Perognathus inornatus San Joaquin pocket mouse	G2G3 S2S3	None None	BLM_S-Sensitive IUCN_LC-Least Concern	265 265	140 S:1	0	0	0	0	1	0	1	0	0	0	1
Phrynosoma blainvillii coast horned lizard	G4 S4	None None	BLM_S-Sensitive CDFW_SSC-Species of Special Concern IUCN_LC-Least Concern	183 183	841 S:1	0	1	0	0	0	0	0	1	1	0	0
Puccinellia simplex California alkali grass	G2 S2	None None	Rare Plant Rank - 1B.2 BLM_S-Sensitive	180 200	80 S:5	0	0	0	0	0	5	0	5	5	0	0
Sagittaria sanfordii Sanford's arrowhead	G3 S3	None None	Rare Plant Rank - 1B.2 BLM_S-Sensitive	295 295	143 S:1	0	0	0	0	0	1	0	1	1	0	0
Spea hammondii western spadefoot	G2G3 S3S4	Proposed Threatened None	BLM_S-Sensitive CDFW_SSC-Species of Special Concern IUCN_NT-Near Threatened	192 472	1444 S:38	6	5	3	4	0	20	3	35	38	0	0

California Department of Fish and Wildlife

California Natural Diversity Database

				Elev.		Element Occ. Ranks			\$	Population Status		Presence				
Name (Scientific/Common)	CNDDB Ranks	Listing Status (Fed/State)	Other Lists	Range (ft.)	Total EO's	Α	В	O	D	х	C	Historic > 20 yr	Recent <= 20 yr	Extant	Poss. Extirp.	Extirp.
Taxidea taxus American badger	G5 S3	None	CDFW_SSC-Species of Special Concern IUCN_LC-Least Concern	182 400	645 S:4	0	0	0	0	0	4	3	1	4	0	0
Tuctoria greenei Greene's tuctoria	G1 S1	Endangered Rare	Rare Plant Rank - 1B.1	325 325	50 S:1	0	0	0	0	1	0	1	0	0	1	0
Valley Sacaton Grassland Valley Sacaton Grassland	G1 S1.1	None None		175 175	9 S:1	0	0	1	0	0	0	1	0	1	0	0
Vulpes macrotis mutica San Joaquin kit fox	G4T2 S3	Endangered Threatened		185 302	1020 S:2	0	0	0	0	0	2	2	0	2	0	0

Appendix C. CNPS plant list.

CNPS Rare Plant Inventory

Search Results

17 matches found. Click on scientific name for details

Search Criteria: <u>9-Quad</u> include [3711918:3611988:3611978:3612072:3612071:3612082:3612081:3712012:3712011]

▲ SCIENTIFIC NAME	COMMON NAME	FAMILY	LIFEFORM	BLOOMING PERIOD	FED LIST	STATE LIST	GLOBAL RANK	STATE RANK	CA RARE PLANT RANK	CA ENDEMIC	DATE ADDED
<u>Atriplex</u> cordulata var. cordulata	heartscale	Chenopodiaceae	annual herb	Apr-Oct	None	None	G3T2	S2	1B.2	Yes	1988- 01-01
<u>Atriplex</u> minuscula	lesser saltscale	Chenopodiaceae	annual herb	May-Oct	None	None	G2	S2	1B.1	Yes	1994- 01-01
<u>Atriplex</u> <u>persistens</u>	vernal pool smallscale	Chenopodiaceae	annual herb	Jun-Oct	None	None	G2	S2	1B.2	Yes	2001- 01-01
<u>Atriplex subtilis</u>	subtle orache	Chenopodiaceae	annual herb	(Apr)Jun- Sep(Oct)	None	None	G1	S1	1B.2	Yes	1994- 01-01
<u>Castilleja</u> <u>campestris var.</u> <u>succulenta</u>	succulent owl's-clover	Orobanchaceae	annual herb (hemiparasitic)	(Mar)Apr- May	FT	CE	G4? T2T3	S2S3	1B.2	Yes	1984- 01-01
<u>Delphinium</u> hansenii ssp. ewanianum	Ewan's larkspur	Ranunculaceae	perennial herb	Mar-May	None	None	G4T3	S3	4.2	Yes	1994- 01-01
<u>Delphinium</u> <u>recurvatum</u>	recurved larkspur	Ranunculaceae	perennial herb	Mar-Jun	None	None	G2?	S2?	1B.2	Yes	1988- 01-01
<u>Eryngium</u> <u>spinosepalum</u>	spiny-sepaled button-celery	Apiaceae	annual/perennial herb	Apr-Jun	None	None	G2	S2	1B.2	Yes	1980- 01-01
<u>Lasthenia</u> <u>chrysantha</u>	alkali-sink goldfields	Asteraceae	annual herb	Feb-Apr	None	None	G2	S2	1B.1	Yes	2019- 09-30
<u>Layia munzii</u>	Munz's tidy- tips	Asteraceae	annual herb	Mar-Apr	None	None	G2	S2	1B.2	Yes	1988- 01-01
<u>Leptosiphon</u> serrulatus	Madera leptosiphon	Polemoniaceae	annual herb	Apr-May	None	None	G3	S3	1B.2	Yes	1980- 01-01
<u>Navarretia</u> <u>nigelliformis ssp.</u> <u>radians</u>	_	Polemoniaceae	annual herb	(Mar)Apr- Jul	None	None	G4T2	S2	1B.2	Yes	1994- 01-01
<u>Orcuttia</u> <u>inaequalis</u>	San Joaquin Valley Orcutt grass	Poaceae	annual herb	Apr-Sep	FT	CE	G1	S1	1B.1	Yes	1974 - 01-01
<u>Orcuttia pilosa</u>	hairy Orcutt grass	Poaceae	annual herb	May-Sep	FE	CE	G1	S1	1B.1	Yes	1980- 01-01

Puccinellia simplex	California alkali grass	Poaceae	annual herb	Mar-May	None	None	G2	S2	1B.2		2015- 10-15
<u>Sagittaria</u> <u>sanfordii</u>	Sanford's arrowhead	Alismataceae	perennial rhizomatous herb (emergent)	May- Oct(Nov)	None	None	G3	S3	1B.2	Yes	1984- 01-01
Tuctoria greenei	Greene's tuctoria	Poaceae	annual herb	May- Jul(Sep)	FE	CR	G1	S1	1B.1	Yes	1974- 01-01

Showing 1 to 17 of 17 entries

Suggested Citation:

California Native Plant Society, Rare Plant Program. 2024. Rare Plant Inventory (online edition, v9.5). Website https://www.rareplants.cnps.org [accessed 9 February 2024].

Appendix D. Recommended timing and methodology for Swainson's hawk nesting surveys in California's Central Valley.

RECOMMENDED TIMING AND METHODOLOGY FOR SWAINSON'S HAWK NESTING SURVEYS IN CALIFORNIA'S CENTRAL VALLEY

Swainson's Hawk Technical Advisory Committee May 31, 2000

This set of survey recommendations was developed by the Swainson's Hawk Technical Advisory Committee (TAC) to maximize the potential for locating nesting Swainson's hawks, and thus reducing the potential for nest failures as a result of project activities/disturbances. The combination of appropriate surveys, risk analysis, and monitoring has been determined to be very effective in reducing the potential for project-induced nest failures. As with most species, when the surveyor is in the right place at the right time, Swainson's hawks may be easy to observe; but some nest sites may be very difficult to locate, and even the most experienced surveyors have missed nests, nesting pairs, mis-identified a hawk in a nest, or believed incorrectly that a nest had failed. There is no substitute for specific Swainson's hawk survey experience and acquiring the correct search image.

METHODOLOGY

Surveys should be conducted in a manner that maximizes the potential to observe the adult Swainson's hawks, as well as the nest/chicks second. To meet the California Department of Fish and Game's (CDFG) recommendations for mitigation and protection of Swainson's hawks, surveys should be conducted for a ½ mile radius around all project activities, and if active nesting is identified within the ½ mile radius, consultation is required. In general, the TAC recommends this approach as well.

Minimum Equipment

Minimum survey equipment includes a high-quality pair of binoculars and a high quality spotting scope. Surveying even the smallest project area will take hours, and poor optics often result in eye-strain and difficulty distinguishing details in vegetation and subject birds. Other equipment includes good maps, GPS units, flagging, and notebooks.

Walking vs Driving

Driving (car or boat) or "windshield surveys" are usually preferred to walking if an adequate roadway is available through or around the project site. While driving, the observer can typically approach much closer to a hawk without causing it to fly. Although it might appear that a flying bird is more visible, they often fly away from the observer using trees as screens; and it is difficult to determine from where a flying bird came. Walking surveys are useful in locating a nest after a nest territory is identified, or when driving is not an option.

Angle and Distance to the Tree

Surveying subject trees from multiple angles will greatly increase the observer's chance of detecting a nest or hawk, especially after trees are fully leafed and when surveying multiple trees

in close proximity. When surveying from an access road, survey in both directions. Maintaining a distance of 50 meters to 200 meters from subject trees is optimal for observing perched and flying hawks without greatly reducing the chance of detecting a nest/young: Once a nesting territory is identified, a closer inspection may be required to locate the nest.

Speed

Travel at a speed that allows for a thorough inspection of a potential nest site. Survey speeds should not exceed 5 miles per hour to the greatest extent possible. If the surveyor must travel faster than 5 miles per hour, stop frequently to scan subject trees.

Visual and Aural Ques

Surveys will be focused on both observations and vocalizations. Observations of nests, perched adults, displaying adults, and chicks during the nesting season are all indicators of nesting Swainson's hawks. In addition, vocalizations are extremely helpful in locating nesting territories. Vocal communication between hawks is frequent during territorial displays; during courtship and mating; through the nesting period as mates notify each other that food is available or that a threat exists; and as older chicks and fledglings beg for food.

Distractions

Minimize distractions while surveying. Although two pairs of eyes may be better than one pair at times, conversation may limit focus. Radios should be off, not only are they distracting, they may cover a hawk's call.

Notes and Species Observed

Take thorough field notes. Detailed notes and maps of the location of observed Swainson's hawk nests are essential for filling gaps in the Natural Diversity Data Base; please report all observed nest sites. Also document the occurrence of nesting great homed owls, red-tailed hawks, red-shouldered hawks and other potentially competitive species. These species will infrequently nest within 100 yards of each other, so the presence of one species will not necessarily exclude another.

TIMING

To meet **the minimum level** of protection for the species, surveys should be completed for **at least** the two survey periods immediately prior to a project's initiation. For example, if a project is scheduled to begin on June 20, you should complete 3 surveys in Period III and 3 surveys in Period V. However, it is always recommended that surveys be completed in Periods II, III and V. **Surveys should not be conducted in Period IV.**

The survey periods are defined by the timing of migration, courtship, and nesting in a "typical" year for the majority of Swainson's hawks from San Joaquin County to Northern Yolo County. Dates should be adjusted in consideration of early and late nesting seasons, and geographic differences (northern nesters tend to nest slightly later, etc). If you are not sure, contact a TAC member or CDFG biologist.

I. January-March 20 (recommended optional) All day

1

Prior to Swainson's hawks returning, it may be helpful to survey the project site to determine potential nest locations. Most nests are easily observed from relatively long distances, giving the surveyor the opportunity to identify potential nest sites, as well as becoming familiar with the project area. It also gives the surveyor the opportunity to locate and map competing species nest sites such as great homed owls from February on, and red-tailed hawks from March on. After March 1, surveyors are likely to observe Swainson's hawks staging in traditional nest territories.

II. March 20 to April 5

Sunrise to 1000 1600 to sunset

3

Most Central Valley Swainson's hawks return by April 1, and immediately begin occupying their traditional nest territories. For those few that do not return by April 1, there are often hawks ("floaters") that act as place-holders in traditional nest sites; they are birds that do not have mates, but temporarily attach themselves to traditional territories and/or one of the site's "owners." Floaters are usually displaced by the territories' owner(s) if the owner returns.

Most trees are leafless and are relatively transparent; it is easy to observe old nests, staging birds, and competing species. The hawks are usually in their territories during the survey hours, but typically soaring and foraging in the mid-day hours. Swainson's hawks may often be observed involved in territorial and courtship displays, and circling the nest territory. Potential nest sites identified by the observation of staging Swainson's hawks will usually be active territories during that season, although the pair may not successfully nest/reproduce that year.

III. April 5 to April 20

Sunrise to 1200 1630 to Sunset 3

Although trees are much less transparent at this time, 'activity at the nest site increases significantly. Both males and females are actively nest building, visiting their selected site frequently. Territorial and courtship displays are increased, as is copulation. The birds tend to vocalize often, and nest locations are most easily identified. This period may require a great deal of "sit and watch" surveying.

IV. April 21 to June 10

Monitoring known nest sites only Initiating Surveys is not recommended

Nests are extremely difficult to locate this time of year, and even the most experienced surveyor will miss them, especially if the previous surveys have not been done. During this phase of nesting, the female Swainson's hawk is in brood position, very low in the nest, laying eggs, incubating, or protecting the newly hatched and vulnerable chicks; her head may or may not be visible. Nests are often well-hidden, built into heavily vegetated sections of trees or in clumps of mistletoe, making them all but invisible. Trees are usually not viewable from all angles, which may make nest observation impossible.

Following the male to the nest may be the only method to locate it, and the male will spend hours away from the nest foraging, soaring, and will generally avoid drawing attention to the nest site. Even if the observer is fortunate enough to see a male returning with food for the female, if the female determines it is not safe she will not call the male in, and he will not approach the nest; this may happen if the observer, or others, are too close to the nest or if other threats, such as rival hawks, are apparent to the female or male.

V. June 10 to July 30 (post-fledging)

Sunrise to 1200 1600 to sunset 3

Young are active and visible, and relatively safe without parental protection. Both adults make numerous trips to the nest and are often soaring above, or perched near or on the nest tree. The location and construction of the nest may still limit visibility of the nest, young, 'and adults.

DETERMINING A PROJECT'S POTENTIAL FOR IMPACTING SWAINSON'S HAWKS

LEVEL OF RISK	REPRODUCTIVE SUCCESS (Individuals)	LONGTERM SURVIVABILITY (Population)	NORMAL SITE CHARACTERISTICS (Daily Average)	NEST MONI- TORING
HIGH	Direct physical contact with the nest tree while the birds are on eggs or protecting young. (Helicopters in close proximity)	Loss of available foraging area. Loss of nest trees.	Little human-created noise, little human use: nest is well away from dwellings, equipment yards, human access areas, etc.	MORE
	Loss of nest tree after nest building is begun prior to laying eggs.	Loss of potential nest trees.	Do not include general cultivation practices in evaluation.	
	Personnel within 50 yards of nest tree (out of vehicles) for extended periods while birds are on eggs or protecting young that are < 10 days old.	Cumulative: Multi-year, multi-site projects with substantial noise/personnel disturbance.		
	Initiating construction activities (machinery and personnel) within 200 yards of the nest after eggs are laid and before young are > 10 days old. Heavy machinery only working	Cumulative: Single-season projects with substantial noise/personnel disturbance that is greater than or significantly different from the daily norm.		
	within 50 yards of nest. Initiating construction activities within 200 yards of nest before nest building begins or after young > 10 days old.	Cumulative: Single-season projects with	Substantial human-created noise and occurrence: nest is near roadways, well-used waterways, active airstrips, areas that have high human use.	
LOW	All project activities (personnel and machinery) greater than 200 yards from nest.	activities that "blend" well with site's "normal" activities.	Do not include general cultivation practices in evaluation.	LESS

A PHASE I CULTURAL RESOURCE SURVEY FOR PROPERTY LOCATED ADJACENT TO ROAD 28, CITY OF MADERA, CALIFORNIA

Submitted to:

Crawford and Bowen Planning, Inc. 113 N. Church Street, Suite #302 Visalia, California 93291

Keywords:

Madera 7.5' Quadrangle, City of Madera, California Environmental Quality Act

Submitted by:

Hudlow Cultural Resource Associates 1405 Suffer Lane Bakersfield, California 93309

Author:

Scott M. Hudlow

March 2024

Management Summary

At the request of Crawford and Bowen Planning, Inc., a Phase I Cultural Resource Survey was conducted on an exact 29.08-acre parcel, located at the northeast corner of Road 28 and Avenue 13 in the City of Madera, California. The Phase I Cultural Resource Survey consisted of an archaeological survey and a cultural resource record search.

No cultural resources were identified. No further work is required. If archaeological resources are encountered during the course of construction, a qualified archaeologist should be consulted for further evaluation.

If human remains or potential human remains are observed during construction, work in the vicinity of the remains will cease, and the remains will be treated in accordance with the provisions of State Health and Safety Code Section 7050.5. The protection of human remains follows California Public Resources Codes, Sections 5097.94, 5097.98, and 5097.99.

Table of Contents

Manc	gement Summary2
Table	of Contents3
List of	Figures3
1.0	Introduction4
2.0	Project Location4
3.0	Record Search4
4.0	Environmental Background4
5.0	Prehistoric Archaeological Context
6.0	Ethnographic Background8
7.0	Historic Context
8.0	Field Procedures and Methods12
9.0	Report of Archaeological Findings12
10.0	Management Recommendations12
11.0	References12
Appe	ndix I15
Appe	ndix II19
	List of Figures
1	Project Area Location Map5
2	Project Area, View to the Northwest
3	Project Area, View to the Southwest

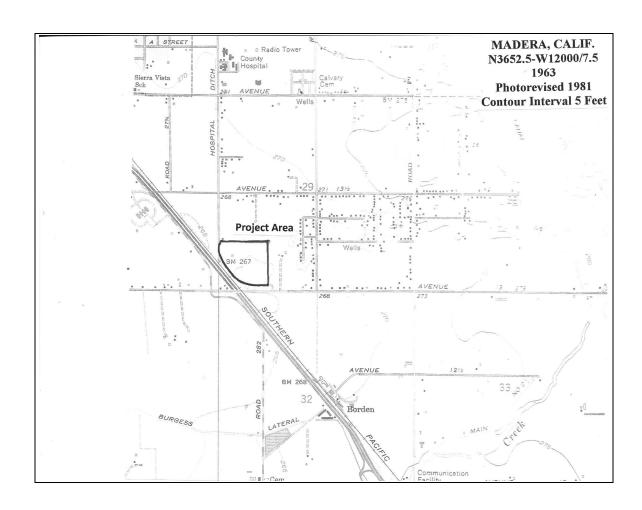
1.0 Introduction

At the request of Crawford and Bowen Planning, *Hudlow Cultural Resource Associates* conducted a Phase I Cultural Resource Survey in accordance with the California Environmental Quality Act for a proposed single-family residential development. The 29.08-acre property lies northeast of Road 28, north of Avenue 13, in the City of Madera, California. This project is being undertaken in accordance with the California Environmental Quality Act (CEQA) with the City of Madera responsible as Lead Agency to implement CEQA. The Phase I Cultural Resource Survey consisted of a pedestrian survey and a cultural resource record search.

2.0 Project Location

The project area is in the City of Madera, California. It is a portion of the SW ¼ of the SW ¼ of Section 29, T.11S., R.18E., Mount Diablo Baseline and Meridian, as displayed on the United States Geological Survey (USGS) Madera 7.5-minute quadrangle map (Figure 1). The proposed single-family residential development is located northeast of Road 28, north of Avenue 13, in the City of Madera, California.

3.0 Record Search


A record search of the project area and the environs within one half-mile was conducted at the Southern San Joaquin Valley Information Center. Scott M. Hudlow conducted the record search, RS# 24-069 on February 12, 2024. The record search revealed that eleven cultural resource surveys have been conducted within one half-mile of the project area. No surveys have previously addressed the parcel in question. One cultural resource, the Madera Canal, is located within one half-mile of the current project area (Appendix II).

4.0 Environmental Background

The project area is located at elevation of 267 feet above mean sea level in the Great Central Valley, which is composed of two valleys-the Sacramento Valley and the San Joaquin Valley. The parcel is located south of the Fresno River. The agricultural lot is covered with almond trees. No native vegetation survives. The lanes between the rows of almond trees were extremely weeds with a series of moss and turfgrass growing between the rows. Several rows of almond trees had been partially culled at the western edge of the orchard (Figures 2 and 3).

5.0 Prehistoric Archaeological Context

A limited amount of archaeological research has been conducted in the southern San Joaquin Valley. Thus, consensus on a generally agreed upon

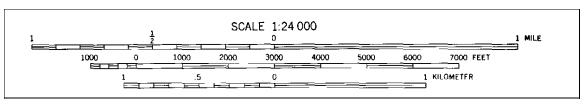


Figure 1
Project Area Location Map

regional cultural chronology has yet to be developed. Most cultural sequences can be summarized into several distinct time periods: Early, Middle, and Late. Sequences differ in their inclusion of various "horizons," "technologies," or "stages." A prehistoric archaeological summary of the southern San Joaquin Valley is available in Moratto (Moratto 1984).

Despite the preoccupation with chronological issues in most of the previous research, most suggested chronological sequences are borrowed from other regions with minor modifications based on sparse local data.

The following chronology is based on Parr and Osborne's Paleo-Indian, Proto-Archaic, Archaic, Post-Archaic periods (Parr and Osborne 1992:44-47). Most existing chronologies focus on stylistic changes of time-sensitive artifacts such as projectile points and beads rather than addressing the socioeconomic factors, which produced the myriad variations. In doing so, these attempts have encountered similar difficulties. These cultural changes are implied as environmentally determined, rather than economically driven.

Paleo-Indians, whom roamed the region approximately 12,000 years ago, were highly mobile individuals. Their subsistence is assumed to have been primarily big game, which was more plentiful 12,000 years ago than in the late twentieth century. However, in the Great Basin and California, Paleo people were also foragers who exploited a wide range of resources. Berries, seeds, and small game were also consumed. Their technology was portable, including manos (Parr and Osborne 1992:44). The paleo period is characterized by fluted Clovis and Folsom points, which have been identified throughout North America. The Tulare Lake region in Kings County has yielded several Paleo-Indian sites, which have included fluted points, scrapers, chipped crescents, and Lake Mojave-type points (Morratto 1984:81-2).

The Proto-Archaic period, which dates from approximately 11,000 to 8,000 years ago, was characterized by a reduction in mobility and conversely an increase in sedentism. This period is classified as the Western Pluvial Lake Tradition or the Proto-Archaic, of which the San Dieguito complex is a major aspect (Moratto 1984: 90-99; Warren 1967). An archaeological site along Buena Vista Lake in southwestern Kern County displays a similar assemblage to the San Dieguito type site. Claude Warren proposes that a majority of Proto-Archaic southern California could be culturally classified as the San Dieguito Complex (Warren 1967). The Buena Vista Lake site yielded manos, millingstones, large stemmed and foliate points, a mortar, and red ochre. During this period, subsistence patterns began to change. Hunting focused on smaller game and plant collecting became more integral. Large stemmed, lancelote (foliate) projectile points represents lithic technology. Millingstones became more prevalent. The increased sedentism possibly began to create regional stylistic and cultural differences not evident in the paleo period.

The Archaic period persisted in California for the next 4000 years. In 1959, Warren and McKusiak proposed a three-phase chronological sequence based

Figure 2 Project Area, View to the Northwest

Figure 3 Project Area, View to the Southeast

on a small sample of burial data for the Archaic period (Moratto 1984:189; Parr and Osborne 1992:47). It is distinguished by increased sedentism and extensive seed and plant exploitation. Millingstones, shaped through use, were abundant. Bedrock manos and metates were the most prevalent types of millingstones (Parr and Osborne 1992:45). The central valley began to develop distinct cultural variations, which can be distinguished by different regions throughout the valley, including Madera County.

In the Post-Archaic period enormous cultural variations began manifesting themselves throughout the entire San Joaquin Valley. This period extends into the contact period in the seventeenth, eighteenth and nineteenth centuries. Sedentary village life was emblematic of the Post-Archaic period, although hunting and gathering continued as the primary subsistence strategy. Agriculture was absent in California, partially due to the dense, predictable, and easily exploitable natural resources. The ancestral Yokuts have possibly been in the valley for the last three thousand years, and by the eighteenth century were the largest pre-contact population, approximately 40,000 individuals, in California (Moratto 1984).

6.0 Ethnographic Background

The Yokuts are a Penutian-speaking, non-political cultural group. Penutian speakers inhabit the San Joaquin Valley, the Bay Area, and the Central Sierra Nevada Mountains. The Yokuts are split into three major groups, the Northern Valley Yokuts, the Southern Valley Yokuts, and the Foothill Yokuts.

The San Joaquin Valley in the Madera area was home to the Yokuts tribelet, Heuche. The tribelet had approximately 550 people, had a special name for themselves, and spoke a unique dialect of the Yokuts language. Land was owned collectively, and every group member enjoyed the right to utilize food resources. The Hueche occupied the area on the north side of the Fresno River, east of the San Joaquin River (Latta 1999).

The Southern Valley Yokuts had a mixed economy emphasizing fishing, hunting, fowling, and collecting shellfish, roots, and seeds. Fish were the most prevalent resource and was a productive activity throughout the entire year. Fish were caught in many different manners, including nets, conical basket traps, catching with bare hands, shooting with bows and arrows, and stunning fish with mild floral toxins. Geese, ducks, mud hens and other waterfowl were caught in snares, long-handled nets, stuffed decoys, and brushing brush to trick the birds to fly low into waiting hunters. Mussels were gathered and steamed on beds of tule. Turtles and dogs were consumed (Wallace 1978:449-450).

Wild seeds and roots provided a large portion of the Yokuts' diet. Tule seeds, grass seeds, fiddleneck, alfilaria were also consumed. Acorns, the staple crop for many California native cultures, were not common in the San Joaquin Valley. Acorns were traded into the area. Land mammals, such as rabbits,

ground squirrels, antelope and tule elk, were not taken often (Wallace 1978:450).

The Yokuts occupied permanent structures in permanent villages for most of the year. During the late and early summer, families left for several months to gather seeds and plant foods, shifting camp locations when changing crops. Several different types of fiber-covered structures were common in Yokuts settlements. The largest was a communal tule mat-covered, wedge-shaped structure, which could house upward of ten individuals. These structures were established in a row, with the village chief's house in the middle and his messenger's houses were located at the ends of the house row. Dance houses and assembly buildings were located outside the village living area (Nabokov and Easton 1989:301).

The Yokuts also built smaller, oval, single-family tule dwellings. These houses were covered with tall mohya stalks or with sewn tule mats. Bent-pole ribs that met a ridgepole held by two crotched poles framed these small houses. The Yokuts also built a cone-shaped dwelling, which was framed with poles tied together with a hoop and then covered with tule or grass. These cone-shaped dwellings were large enough to contain multiple fireplaces (Nabokov and Easton 1989:301). Other structures included mat-covered granaries for storing food supplies, and a dirt-covered, communally owned sweathouse.

Clothing was minimal, men wore a breechclout or were naked. Women wore a narrow-fringed apron. Cold temperatures brought out rabbitskin or mud hen blankets. Moccasins were worn in certain places; however, most people went barefoot. Men wore no head coverings, but women wore basketry caps when they carried burden baskets on their heads. Hair was worn long. Women wore tattoos from the corners of the mouth to the chin; both men and women had ear and nose piercings. Bone, wood or shell ornaments were inserted (Wallace 1978:450-451).

Tule dominated the Yokut's material culture. It was used for many purposes, including sleeping mats, wall coverings, cradles, and basketry. Ceramics are uncommon to Yokuts culture as is true throughout most California native cultures. Basketry was common to Yokuts culture. Yokuts made cooking containers, conical burden baskets, flat winnowing trays, seed beaters, and necked water bottles. Yokuts also manufactured wooden digging sticks, fire drills, mush stirrers, and sinew-backed bows. Knives, projectile points, and scraping tools were chipped from imported lithic materials including obsidian, chert, and chalcedony. Stone mortars and pestles were secured in trade. Cordage was manufactured from milkweed fibers, animal skins were tanned, and awls were made from bone. Marine shells, particularly olivella shells, were used in the manufacture of money and articles of personal adornment. Shells were acquired from the Chumash along the coast (Wallace 1978:451-453).

The basic social and economic unit was the nuclear family. Lineages were organized along patrilineal lines. Yokuts fathers transmitted totems, particular to each paternal lineage, to each of his children. The totem was an animal or bird that no member would kill or eat and that was dreamed of and prayed to. The mother's totem was not passed to her offspring; but was treated with respect. Families sharing the same totem formed an exogamous lineage. The lineage had no formal leader nor did it own land. The lineage was a mechanism for transmitting offices and performing ceremonial functions. The lineages formed two moieties, East and West, which consisted of several different lineages. Moieties were customarily exogamous. Children followed the paternal moiety. Certain official positions within the villages were associated with certain totems. The most important was the Eagle lineage from which the village chief was appointed. A member of the Dove lineage acted as the chief's assistant. He supervised food distribution and gave commands during ceremonies. Another hereditary position was common to the Magpie lineage, was that of spokesman or crier.

7.0 Historical Overview

Merced County was formed in 1855 from parts of Mariposa County. Fresno County was created from Merced County in 1856, and Madera County ceded from Fresno County in 1893. Madera County was settled in the 1850s, soon after California joined the United States after the passage of the Compromise of 1850. The Compromise of 1850 allowed California to join the Union as a free state even though a major portion of the state lied beneath the Missouri Compromise line; and was potentially subject to southern settlement and slavery. Americans had long been visiting and working in California prior to the admission of California into the Union.

The Spanish moving north from Baja California into Alta California began European settlement of California in 1769. Father Junipero Serra, a Franciscan friar founded Mission San Diego de Alcala, which began California's active European settlement. However, Spanish mission efforts were focused on California's coastal regions. Spanish exploration of the San Joaquin Valley region began in the 1770s. In 1772, Pedro Fages arrived in the San Joaquin Valley searching for army deserters. Father Francisco Garces, a Franciscan priest, soon visited the vicinity in 1776. The Spanish empire collapsed in 1820, all of Spain's former Central and South American colonies became independent nations. As a result, California became Mexican territory. California stayed in Mexican hands until the Mexican-American War. Mexican California remained a coastal society; California's hot, dry interior valleys held little interest.

Madera County derives its name from the Spanish word for lumber; the eastern portion of Madera County extends across the crest of the Sierra Nevada mountains. American exploration of the San Joaquin Valley begins in the 1820s with Jedediah Smith, Kit Carson, and Joseph Walker looking for commercial opportunities. The United States government began exploring California in the

1830s. The Americans were, soon, searching for intercontinental railroad routes to link the eastern and western halves of the continent.

The defeat of the Mexicans during the Mexican-American War in 1848 and the subsequent discovery of gold in 1848 drastically altered the complicated political realities of the west. The Mexican-American War was ostensible fought to settle a boundary dispute with the Mexicans over the western boundary of the newly-annexed state of Texas, which had fought a successful rebellion against the Mexican government in the mid 1830s. The Republic of Texas was an independent country for nine years, until the United States annexed Texas in 1845. One major outcome of the Mexican-American War was that Mexico rescinded its claims to much of the American southwest. In 1848, these territories were folded into the United States, including California.

In January 1848, the discovery of gold in Coloma, California changed the settlement of California, forever. In the summer of 1848, when the gold strike was publicly announced, the overnight settlement of California began. The Mexican population of California was small and limited to the coasts and a few of southern California's interior valleys. A sizable native population settled the remainder of California; Madera County was Yokuts territory. The Gold Rush tipped the balance of native communities throughout California; California's native population was decimated.

In 1893, Madera County was created from the northern half of Fresno County. The county seat was at the city of Madera. The Central Pacific (CP) Railroad came through the northern half of Fresno County in the 1860s, after the Civil War. However, the CP, now the Southern Pacific (SP), did not build a station. The Madera area did not fit into SP's plans to develop along the railroad's right-of-way. Instead, the California Lumber Company saw the area as a terminus for its lumber, and a junction with the railroad. The Company laid out the town of Madera in 1876 along the railroad right-of-way. Madera city began growing immediately behind the twin economic forces of the railroad and the lumber company. The lumber company due to the enormous expense of hauling lumber from the Sierra Nevada Mountains, instead built a fifty-four-mile long lug flume to bring lumber into Madera from the Sierra Nevada Mountains. The California Lumber Company and its various corporate incarnations flourished until the Great Depression.

Madera city became the Madera County seat in 1896 and incorporated in 1907. Although the lumber industry dominated Madera's local economy, agriculture in the valley portion of Madera County began to grow, giving the area economic stability. The agricultural economy was dominated by permanent crops, such as almonds and fruits, such as table grapes, which continue into the twenty-first century.

8.0 Field Procedures and Methods

On February 28, 2024, Scott M. Hudlow (for qualifications see Appendix I) conducted a pedestrian archaeological survey of the entire proposed project area. Hudlow surveyed in east/west transects across the entire lot in 15-meter (33 feet) intervals.

9.0 Report of Archaeological Findings

No archaeological resources were identified.

10.0 Management Recommendations

At the request of Crawford and Bowen Planning, Inc., a Phase I Cultural Resource Survey was conducted on an exact 29.08-acre parcel, located at the northeast corner of Road 28 and Avenue 13 in the City of Madera, California. The Phase I Cultural Resource Survey consisted of an archaeological survey and a cultural resource record search.

No cultural resources were identified. No further work is required. If archaeological resources are encountered during the course of construction, a qualified archaeologist should be consulted for further evaluation.

If human remains or potential human remains are observed during construction, work in the vicinity of the remains will cease, and the remains will be treated in accordance with the provisions of State Health and Safety Code Section 7050.5. The protection of human remains follows California Public Resources Codes, Sections 5097.94, 5097.98, and 5097.99.

11.0 References

Latta, Frank F.

1999 Handbook of Yokuts Indians. Coyote Press, Salinas, California.

Moratto, Michael J.

1984 California Archaeology, Academic Press, Orlando, Florida.

Nabokov, Peter and Robert Easton

1989 Native American Architecture. Oxford University Press, New York, New York.

Parr, Robert E. and Richard Osborne

Route Adoption Study for Highway 58, Kern County, California.
Report on file, Southern San Joaquin Archaeological Information
Center, California State University, Bakersfield, Bakersfield,
California.

Wallace, William J.

1978 "Southern Valley Yokuts" in Handbook of North American Indians. Vol. 8, California, Robert F. Heizer, ed. Washington, D.C.: Smithsonian Institution, pp. 437-445.

Warren, Claude N. and M. B. McKusiak

1959 A Burial Complex from the southern San Joaquin Valley. Los Angeles: University of California, Los Angeles, Archaeological Survey Annual Report, 1959: 17-26.

Warren, Claude N.

1967 "The San Dieguito Complex: A Review and Hypothesis" American Antiquity 32(2): 168-185.

Appendix I

Scott M. Hudlow

1405 Sutter Lane Bakersfield, California 93309 (661) 834-9183

Education

The George Washington University M.A. American Studies, 1993 Specialization in Historical Archaeology and Architectural History

University of California, Berkeley B.A. History, 1987 B.A. Anthropology, 1987 Specialization in Historical Archaeology and Colonial History

Public Service

3/94-12/02 Historic Preservation Commission. City of Bakersfield, Bakersfield, California 93305.

7/97-12/01 Newsletter Editor. California History Action, newsletter for the California Council for the Promotion of History.

Relevant Work Experience

8/96- Adjutant Faculty. Bakersfield College, 1801 Panorama Drive, Bakersfield, California, 93305. Teach History 17A, Introduction to American History and Anthropology 5, Introduction to North American Indians.

Owner, Sole Proprietorship. Hudlow Cultural Resource Associates. 1405 Sutter Lane, Bakersfield California 93309. Operate small cultural resource management business. Manage contracts, respond to RFP's, bill clients, manage temporary employees. Conduct Phase I archaeological and architectural surveys for private and public clients; including the cultural resource survey, documentary photography, measured drawings, mapping of structures, filing of survey forms, historic research, assessing impact and writing reports. Evaluated archaeological and architectural sites and properties in lieu of their eligibility for the National Register of Historic Places in association with Section 106 and 110 requirements of the National Historic Preservation Act of 1966 and CEQA (California Environmental Quality Act).

Full resume is available upon request.

Appendix II

Resource List

P-20-002308	Primary No.
3 CA-MAD-002649H	Primary No. Trinomial
Resource Name - Madera Canal; Madera Irigation District; MID; Resource Name - MID Lateral 6.2 Segments; OTIS Resource Number - 676884; OTIS Resource Number - 691057; OTIS Resource Number - 691058	Other IDs
Structure	Type
Historic	Age
AH08; AH08; HP20	Attribute codes
1992 (Unknown, JRP Historical Consulting Services); 2000 (Karana Hattersley-Drayton, Caltrans); 2000 (Karana Hattersley-Drayton, Caltrans); 2000 (Karana Hattersley-Drayton, Caltrans); 2005 (G. Roark, C. Fish, Jones & Stokes); 2005 (G. Roark, C. Fish, Jones & Stokes); 2005 (Unknown, Applied EarthWorks, Inc.); 2009 (Joseph Freeman and Rebecca Flores, JRP Historical Consulting, LLC); 2013 (Mark Kile, Culturescape); 2014 (R. Scott Baxter, ESA); 2016 (K. Assein, Applied EarthWorks, Inc.); 2016 (Mark Kile, Culturescape);	Recorded by
MA-01203, MA- 01254, MA-01257, MA-01266, MA-01267, 01267, MA-01287, MA-01332	Reports

Page 1 of 1

Report List

Report No.	Other IDs	Year	Author(s)	Title	Affiliation	Resources
MA-00083	NADB-R - 1140863	1995	Hatoff, Brian, Voss, Barb, Waechter, Sharon, Wee, Stephen, and Benté, Vance	Cultural Resources Inventory Report for the Proposed Mojave Northward Expansion Project	Woodward-Clyde Consultants	20-002122
MA-00173		1999	Varner, Dudley M.	A Cultural Resource Study for the Parksdale Village Housing Project, in the City of Madera, Madera County, California	Varner Associates	
MA-00214		1981	Crist, Michael K.	Cultural Resource Reconnaissance for the Sayre Ranch Annexation EIR, Madera County	Buada Associates	
MA-00391		1975	Varner, Dudley M.	Parksdale Sewer System Project	California State University, Fresno	
MA-00956	Caltrans - 06-MAD- 99 EA 06-407200; Submitter - LSA Project No. URS032	2001	Kelley, John and Marvin, Judith	Historic Property Survey Report (Positive) for the State Route 99/State Route 145 and State Route 99/Gateway Drive Interchange Improvements	LSA Associates, Inc.	20-002495, 20-002496, 20-002497
MA-00956A		2001	Marvin, Judith	Historic Study Report and Historic Architectural Survey Report (Positive) for the State Route 98/State Route 145, and State Route 98/Gateway Drive Interchange Improvements, City of Madera, Madera County, California	LSA Associates, Inc.	
MA-00956B		2001	Kelley, John and Kaptain, Neal	Archaeological Survey Report (Positive) for the State Route 99/State Route 145, and State Route 99/State Route 90/Gateway Drive Interchange Improvements, City of Madera, Madera County, California	LSA Associates, Inc.	
MA-01003	Submitter - LSA Project No. KBH540	2005	Kaptain, Neal and Matzen, Ben	A Cultural and Paleontological Resources Study for Eight KB Home Projects, Stanislaus, Merced, Madera, and Tulare Counties, California	LSA Associates, Inc.	
MA-01026	Submitter - SWCA Cultural Resources Report Database No. 06-507; Submitter - SWCA Project No. 10715- 180	2006	Arrington, Cindy, Bass, Bryon, Brown, Joan, Corey, Chris, and Hunt, Kevin	Cultural Resources Final Report of Monitoring and Findings for the Qwest Network Construction Project, State of California	SWCA Environmental Consultants	
MA-01026A		2000	SWCA Environmental Consultants	Qwest Fiber Optic Project Cultural Resources Protocols	SWCA Environmental Consultants	

SSJVIC 2/12/2024 11:08:33 AM

Page 1 of 2

Year Author(s)

MA-01217 Caltrans - 06-MAD- 2014 Miller, Michelle 99 PM 7.5/15.1 EA 06-47090

Title

Archaeological Survey Report for the Madera California Department of 99 Widening Project 06-MAD-99 Madera Transportation County, California

Affiliation

SSJVIC 2/12/2024 11:08:33 AM

Traffic Impact Analysis

Tozer III Subdivision

Located on the East Side of Tozer Street and North of Avenue 13

In the City of Madera, California

Prepared for:

Joseph Crown Construction 5320 East Pine Street Fresno, CA 93727

December 14, 2024

Project No. 008-013

Traffic Engineering, Transportation Planning, & Parking Solutions

516 W. Shaw Ave., Ste. 103 Fresno, CA 93704 Phone: (559) 570-8991

www.JLBtraffic.com

Traffic Engineering, Transportation Planning, & Parking Solutions

Traffic Impact Analysis

For the Tozer III Subdivision located on the East Side of Tozer Street and North of Avenue 13

In the City of Madera, CA

December 14, 2024

This Traffic Impact Analysis Report has been prepared under the direction of a licensed Traffic Engineer. The licensed Traffic Engineer attests to the technical information contained therein and has judged the qualifications of any technical specialists providing engineering data from which recommendations, conclusions and decisions are based.

Prepared by:
Jose Luis Benavides, PE, TE
President

Traffic Engineering, Transportation Planning, & Parking Solutions
516 W. Shaw Ave., Ste. 103
Fresno, CA 93704

Phone: (559) 570-8991 www.JLBtraffic.com

Table of Contents

Introduction and Summary	1
Introduction	1
Summary	1
Existing Traffic Conditions	1
Existing plus Project Traffic Conditions	1
Near Term plus Project Traffic Conditions	2
Cumulative Year 2046 plus Project Traffic Conditions	3
Queuing Analysis	3
Scope of Work	4
Study Facilities	4
Study Intersections	4
Study Scenarios	5
Existing Traffic Conditions	5
Existing plus Project Traffic Conditions	5
Near Term plus Project Traffic Conditions	5
Cumulative Year 2046 plus Project Traffic Conditions	5
LOS Methodology	6
LOS Thresholds	6
Operational Analysis Assumptions and Defaults	
Existing Traffic Conditions	8
Roadway Network	8
Collision Analysis	9
Traffic Signal Warrants	10
Results of Existing Level of Service Analysis	10
Existing plus Project Traffic Conditions	14
Project Description	14
Project Access	14
Corner Sight Distance	14
Project Trip Generation	15
Trip Distribution	15

(559) 570-8991

Bikeways	15
Walkways	16
Transit	16
Safe Routes to School	16
Roadway Network	17
Traffic Signal Warrants	17
Results of Existing plus Project Level of Service Analysis	18
Near Term plus Project Traffic Conditions	23
Description of Near Term Projects	23
Roadway Network	23
Traffic Signal Warrants	23
Results of Near Term plus Project Level of Service Analysis	24
Cumulative Year 2046 plus Project Traffic Conditions	28
Description of Long Term Projects	28
Roadway Network	28
Traffic Signal Warrants	28
Results of Cumulative Year 2046 plus Project Level of Service Analysis	29
Queuing Analysis	33
Conclusions and Recommendations	37
Existing Traffic Conditions	37
Existing plus Project Traffic Conditions	37
Near Term plus Project Traffic Conditions	39
Cumulative Year 2046 plus Project Traffic Conditions	39
Queuing Analysis	40
Study Participants	41
References	12

List of Figures

Figure 1: Vicinity Map	12
Figure 2: Existing - Traffic Volumes, Geometrics and Controls	13
Figure 3: Project Site Plan	
Figure 4: Project Only Trips	21
Figure 5: Existing plus Project - Traffic Volumes, Geometrics and Controls	22
Figure 6: Near Term Projects' Trip Assignment	26
Figure 7: Near Term plus Project - Traffic Volumes, Geometrics and Controls	27
Figure 8: 2046 Long Term Projects' Trip Assignment	31
Figure 9: Cumulative Year 2046 plus Project - Traffic Volumes, Geometrics and Controls	
List of Tables	
Table I: State Route Collision Rates	g
Table II: Existing Intersection LOS Results	11
Table III: Project Trip Generation	15
Table IV: Existing plus Project Intersection LOS Results	19
Table V: Near Term Projects' Trip Generation	23
Table VI: Near Term plus Project Intersection LOS Results	25
Table VII: Near Term Projects' Trip Generation	
Table VIII: Cumulative Year 2046 plus Project Intersection LOS Results	
Table IX: Queuing Analysis	

List of Appendices

Appendix A: Scope of Work Appendix B: Traffic Counts Appendix C: Traffic Modeling Appendix D: Methodology Appendix E: Collision Analysis

Appendix F: Existing Traffic Conditions
Appendix G: Corner Sight Distance

Appendix H: Existing plus Project Traffic Conditions
Appendix I: Near Term plus Project Traffic Conditions

Appendix J: Cumulative Year 2046 plus Project Traffic Conditions

Appendix K: Traffic Signal Warrants

(559) 570-8991

Introduction and Summary

Introduction

This Report describes a **Traffic Impact Analysis (TIA)** prepared by **JLB Traffic Engineering**, **Inc. (JLB)** for the **Tozer III Subdivision (Project)** located on the east side of Tozer Street (Road 28) and north of Avenue 13 in the City of Madera. The Project proposes to develop up to 168 single family residential units and a neighborhood park. Based on information provided to JLB, the Project is consistent with the City of Madera *General Plan*. Figure 1 shows the location of the proposed Project site relative to the surrounding roadway network.

The purpose of the TIA is to evaluate the potential on-site and off-site traffic impacts, identify short-term roadway and circulation needs, determine potential mitigation measures and identify any critical traffic issues that should be addressed in the on-going planning process. The TIA primarily focused on evaluating traffic conditions at study intersections that may potentially be impacted by the proposed Project. The Scope of Work was prepared via consultation with City of Madera, County of Madera and Caltrans staff.

Summary

The potential traffic impacts of the proposed Project were evaluated in accordance with the standards set forth by the Level of Service (LOS) policies of the City of Madera, County of Madera and Caltrans.

Existing Traffic Conditions

- Based on this three-year period, the State Route 99 Southbound Ramps at Almond Avenue and the
 State Route 99 Northbound Off-Ramps at Avenue12 all have collision rates that are lower than the
 statewide averages. The State Route 99 On-Ramp at Avenue 12 has a collision rate that exceeds the
 Statewide Average. However, given the low total number of collisions, it is not recommended that any
 changes be implemented for the State Route 99 On-Ramp at Avenue 12.
- At present, the study intersections of Road 28¼ at Avenue 13 and Tozer Street at Avenue 13 exceed their LOS threshold during one or both peak periods. Additional details as to the recommended improvements for this intersection are presented later in this Report.

Existing plus Project Traffic Conditions

- JLB analyzed the location of the proposed roadways and access points relative to those in the vicinity of the Project. A review of the access points to be constructed resulted in the following recommendations. It is recommended that the lane drop of the second northbound lane on Tozer Street adjacent to the Project occur south of the intersection of Tozer Street at Knox Street.
- The curvature of Tozer Street between Knox Street and Avenue 13 will likely inhibit the speed of drivers, especially near Avenue 13. Based on the minimum radius of Tozer Street adjacent to the Project, the maximum comfortable driving speed is approximately 35 MPH. As illustrated in Exhibit G-1, due to the small radius of the curvature for Tozer Street, the maximum CSD that could be provided to allow for full access at Avenue B is that of 40 MPH. Based on the CSD displayed in Exhibit G-2, there are no concerns with the CSD as access to Avenue C is proposed to be limited to right-in, right-out and left in.

- Prior to allowing full access to the intersection of Tozer Street at Avenue B, it is recommended that an
 Engineering & Traffic Survey be completed for Tozer Street between Knox Street and Avenue 13 and
 subsequently adopted by the City of Madera. If the findings of the Engineering and Traffic Survey
 support a speed limit of 40 MPH or less, then full access to Tozer Street at B Avenue can be supported.
 However, if the Engineering and Traffic survey findings support a speed limit of 45 MPH or more, then
 access to Tozer Street at B Avenue shall prohibit left turns out.
- At buildout, the proposed Project is estimated to generate approximately 1,584 daily trips, 118 AM peak hour trips and 158 PM peak hour trips.
- It is recommended that the Project implement a Class II Bikeways along its frontage to Tozer Street.
- It is recommended that the Project construct ADA compliant pedestrian sidewalks along internal streets connecting to all external sidewalks and along its frontage to Tozer Street.
- It is recommended that the Project and MUSD look into funding sources to enhance the walkways for Elementary School students to and from Cesar Chavez Elementary School.
- Under this scenario, the intersections of Road 28¼ at Avenue 13, Tozer Street at Avenue 13 and Road 29 at Avenue 13 are projected to exceed their LOS threshold during the one or both peak periods. Since these three intersections under the Existing traffic conditions exceed or are borderline on exceeding their respective LOS threshold, the Project's impacts to these facilities would be considered cumulative impacts. Therefore, these cumulative impacts would be addressed by having the Project be responsible for a fair share contribution for the recommended improvements needed to improve their LOS. Additional details as to the recommended improvements for this intersection are presented later in this Report.

Near Term plus Project Traffic Conditions

- The total trip generation for the Approved & Pending Projects is 40,580 weekday daily trips, 2,927 weekday AM peak hour trips and 3,449 weekday PM peak hour trips.
- Under this scenario, the intersections of Road 28¼ at Avenue 13, Tozer Street at Avenue 13 and Road 29 at Avenue 13 are projected to exceed their LOS threshold during the one or both peak periods. Since these three intersections under the Existing traffic conditions exceed or are borderline on exceeding their respective LOS threshold, the Project's impacts to these facilities would be considered cumulative impacts. Therefore, these cumulative impacts would be addressed by having the Project be responsible for a fair share contribution for the recommended improvements needed to improve their LOS. Additional details as to the recommended improvements for this intersection are presented later in this Report.

(559) 570-8991

Cumulative Year 2046 plus Project Traffic Conditions

- The total trip generation for the Long Term Approved & Pending Projects is 10,385 weekday daily trips, 721 weekday AM peak hour trips and 821 weekday PM peak hour trips.
- Under this scenario, the intersections of Road 28¼ at Avenue 13, Tozer Street at Avenue 13, Road 29 at Avenue 13 and Road 29 at Avenue 12 are projected to exceed their LOS threshold during the one or both peak periods. Since these three intersections under the Existing traffic conditions exceed or are borderline on exceeding their respective LOS threshold, the Project's impacts to these facilities would be considered cumulative impacts. Therefore, these cumulative impacts would be addressed by having the Project be responsible for a fair share contribution for the recommended improvements needed to improve their LOS. Additional details as to the recommended improvements for this intersection are presented later in this Report.

Queuing Analysis

• It is recommended that the City consider left-turn and right-turn lane storage lengths as indicated in the Queuing Analysis.

Scope of Work

The TIA focused on evaluating traffic conditions at study intersections that may potentially be impacted by the proposed Project. On May 24, 2024, a Draft Scope of Work for the preparation of a Traffic Impact Analysis for this Project was provided to the City of Madera, County of Madera and Caltrans for their review and comment.

On May 30, 2024, the City of Madera responded to the Draft Scope of Work requesting that the safe route to school evaluation include recommendations for new paved walking path and/or traffic control devices and the addition of the Ventana near term project. On June 11, 2024, the County of Madera responded to the Draft Scope of Work stating that the Project is located within the County's Dial-A-Ride service area as well as one of several preliminary proposed Microtransit Zones identified in the Microtransit Strategy Analysis which was under review at the time of the preparation of this study. On July 2, 2024, Caltrans responded to the Draft Scope of Work requesting that the TIA include the intersections of State Route 99 Northbound Ramps at Avenue 12, State Route 99 Ramps at Almond Avenue and Road 29 at Avenue 12 as study intersections and provide a safety review analysis for state route intersections impacted by the project.

Based on the comments received, this TIA includes a recommendation within the safe routes to school evaluation, the requested near term project, the three additional study intersections and a safety review analysis of State Route intersections. The Scope of Work and the comments received from the responsible agencies are included in Appendix A.

Study Facilities

The existing intersection peak hour turning movement counts were conducted at the study intersections in August 2024 while schools the vicinity of the Project site were in session. The intersection turning movement counts included pedestrian and bicycle volumes. The intersections of State Route 99 Northbound Ramps at Avenue 12 and Road 29 at Avenue 12 utilized historical counts collected in November 2022. These counts were expanded by a growth rate of 3.8%, which was calculated using the Madera County Transportation Commission (MCTC), over two (2) years. The traffic counts for the existing study intersections are contained in Appendix B. The existing intersection turning movement volumes, intersection geometrics and traffic controls are illustrated in Figure 2.

Study Intersections

- 1. State Route 99 Southbound Ramps / Almond Avenue
- 2. Tozer Street (Road 28) / Avenue 13½
- 3. Tozer Street (Road 28) / Knox Road
- 4. Tozer Street (Road 28) / B Avenue (Future Project Access)
- 5. Tozer Street (Road 28) / C Avenue (Future Project Access)
- 6. Golden State Boulevard / Road 28¼ / Avenue 13
- 7. Tozer Street (Road 28) / Avenue 13
- 8. Road 29 / Avenue 13
- 9. State Route 99 Northbound Ramps / Avenue 12
- 10. Road 29 / Avenue 12

(559) 570-8991

Study Scenarios

Existing Traffic Conditions

This scenario evaluates the Existing Traffic Conditions based on existing traffic volumes and roadway conditions from traffic counts and field surveys conducted in August 2024 and historical counts collected in November 2022 which were expanded by a growth rate of 3.8%.

Existing plus Project Traffic Conditions

This scenario evaluates total traffic volumes and roadway conditions based on the Existing plus Project Traffic Conditions. The Existing plus Project traffic volumes were obtained by adding the Project Only Trips to the Existing Traffic Conditions scenario. The Project Only Trips to the study facilities were developed based on existing travel patterns, the surrounding roadway network, engineering judgment, knowledge of the study area, existing residential densities, location of the anticipated K-12 schools to serve the project and the City of Madera *General Plan* Circulation Element in the vicinity of the Project site.

Near Term plus Project Traffic Conditions

This scenario evaluates total traffic volumes and roadway conditions based on the Near Term plus Project Traffic Conditions. The Near Term plus Project traffic volumes were obtained by adding the Near Term Project related trips to the Existing plus Project Traffic Conditions scenario. Near Term Projects were either requested by responsible agencies or discovered during field reconnaissance conducted by JLB staff.

Cumulative Year 2046 plus Project Traffic Conditions

This scenario evaluates total traffic volumes and roadways conditions based on the Cumulative Year 2046 plus Project Traffic Conditions. The Cumulative Year 2046 plus Project traffic volumes were obtained by using the Madera County Transportation Commission (MCTC) Model (Base Year 2022 and Cumulative Year 2046), existing traffic counts and the Project Only Trips. The Project Only Trips to the study facilities were developed based on existing travel patterns, the surrounding roadway network, engineering judgment, knowledge of the study area, existing residential densities, location of the anticipated K-12 schools to serve the project and the City of Madera *General Plan* Circulation Element in the vicinity of the Project site. The MCTC Model results are contained in Appendix C.

LOS Methodology

LOS is a qualitative index of the performance of an element of the transportation system. LOS is a rating scale running from "A" to "F", with "A" indicating no congestion of any kind and "F" indicating unacceptable congestion and delays. LOS in this study describes the operating conditions for signalized and unsignalized intersections.

The Highway Capacity Manual (HCM) 7th Edition is the standard reference published by the Transportation Research Board and contains the specific criteria and methods to be used in assessing LOS. Synchro software was used to define LOS in this study. Details regarding these calculations are included in Appendix D.

While LOS is no longer the criteria of significance for traffic impacts in the state of California, the City of Madera continues to apply congestion-related conditions or requirements for land development projects through planning approval processes outside of CEQA Guidelines in order to continue the implementation of the City of Madera General Plan policies.

LOS Thresholds

The City of Madera General Plan has established LOS C as the acceptable level of traffic congestion on most roadways and intersections with three exceptions that the City seek to maintain LOS D or better. These exceptions are on arterial roadways or roadways with at-grade railway crossings, all freeways where Caltrans policies apply or in the Downtown District. As all study facilities fall within the City of Madera Sphere of Influence (SOI), LOS C or D, as appropriate, are used to evaluate the potential LOS impacts for all study intersections pursuant to the City of Madera General Plan. Cases in which a LOS criterion for facilities falls under an exception, such exceptions are identified in the roadway description.

The County of Madera General Plan has established LOS D as the acceptable level of traffic congestion on most major streets. Therefore, the City of Madera LOS thresholds are utilized.

Caltrans no longer considers delay as a significant impact to the environment, for land use projects and plans. According to the Caltrans document VMT Focused Transportation Impact Study Guidelines dated May 2020, Caltrans review of land use projects and plans is focused on a VMT metric consistent with CEQA. Intersections at state route ramps utilize the concept State Route 99 LOS D as the LOS threshold for the Caltrans maintained intersections.

Operational Analysis Assumptions and Defaults

The following operational analysis values, assumptions and defaults were used in this study to ensure a consistent analysis of LOS among the various scenarios.

- Intersections at state route ramps utilize Caltrans Singal Timing Plans.
- Yellow time consistent with the *California Manual on Uniform Traffic Control Devices* (CA MUTCD) based on approach speeds (Caltrans, 2023).
- Yellow time of 3.2 seconds for left-turn phases.
- All-red clearance intervals of 1.0 second for all phases.
- Walk intervals of 7.0 seconds.
- Flashing Don't Walk based on 3.5 feet/second walking speed with yellow plus all-red clearance subtracted and 2.0 seconds added.
 - Pedestrian phases were not included in the timing for the study intersection of State Route 99 Northbound Ramps at Avenue 12 and Road 29 at Avenue 12. This decision was made as pedestrian traffic does not currently occur along Avenue 12. However, an eastbound pedestrian phase was added at the intersection of Road 29 at Avenue 12 in the Cumulative Year 2046 plus Project scenario due to the completion of the Parcel Map 4290 Near Term Project.
- At existing intersections, the heavy vehicle factor observed for each intersection was utilized under all scenarios.
- The number of observed pedestrians at existing intersections was utilized under all study scenarios.
- An average of 3 pedestrian calls per hour at signalized intersections.
- At existing intersections, the observed approach Peak Hour Factor (PHF) is utilized in the Existing and Existing plus Project scenarios.
- For the Near Term plus Project and Cumulative Year 2046 plus Project scenarios, the following PHF was utilized to reflect traffic operations and an increase in future traffic volumes. As roadways start to reach their saturated flow rates, PHF's tend to increase to 0.90 or higher in urban settings. A PHF of 0.92, or the existing PHF if higher, is utilized for all remaining study intersections with one exception. The study intersection of Road 29 at Avenue 13 utilizes the following PHF's:
 - o A PHF of 0.86, or the existing if higher, is utilized during the AM peak.
 - o A PHF of 0.90, or the existing if higher, is utilized during the PM peak.

Existing Traffic Conditions

Roadway Network

The Project site and surrounding study area are illustrated in Figure 1. Important roadways serving the Project are discussed below.

Golden State Boulevard is an existing northwest-southeast two-lane undivided collector in the vicinity of the proposed Project site. In this area, Golden State Boulevard exists as a two-lane undivided collector through the City of Madera. The City of Madera General Plan Circulation Element designates Golden State Boulevard as a collector through the City of Madera.

Knox Street is an existing north-south four-lane undivided local roadway in the vicinity of the proposed Project site. In this area, Knox Road exists as a two-lane undivided local roadway between Oso Drive and Neplus Way and a four-lane undivided local roadway between Neplus Way and Tozer Street. The City of Madera General Plan Circulation Element designates Knox Road as a local roadway between Oso Drive and Tozer Street.

Tozer Street (Road 28) is an existing north-south two-lane undivided arterial adjacent to the proposed Project site. In this area, Tozer Street exists as a four-lane divided arterial between Yosemite Avenue and Clinton Street, a two-lane undivided arterial between Clinton Street and Fig Street, a three-lane divided arterial between Fig Street and Knox Street and a two-lane undivided arterial between Knox Street and Avenue 13. The City of Madera General Plan Circulation Element designates Tozer Street as an arterial between Yosemite Avenue and Road 29. As Tozer Street is classified as an arterial within the City of Madera SOI, study facilities along Tozer Street utilize an LOS threshold of D.

Road 28 % is an existing north-south two-lane undivided local roadway in the vicinity of the proposed Project site. In this area, Road 28 1/4 exists as a two-lane undivided local roadway through the City of Madera except for the segment between Avenue 13 and Avenue 12 where it exists as a two-lane undivided collector. The City of Madera General Plan Circulation Element designates Road 28 ¼ as a local roadway through the City of Madera except for the segment between Avenue 13 and Avenue 12 which is designated as a collector within the City of Madera SOI.

Road 29 is an existing north-south two-lane undivided arterial in the vicinity of the proposed Project site. In this area, Road 29 exists as a two-lane undivided local roadway between Avenue 15 ½ and Avenue 12. The City of Madera General Plan Circulation Element designates Road 29 as an arterial between Avenue 15 ½ and Avenue 12. As Road 29 is classified as an arterial within the City of Madera SOI, study facilities along Road 29 utilize an LOS threshold of D.

Almond Avenue is an existing east-west two-lane undivided collector in the vicinity of the proposed Project site. In this area, Almond Avenue exists as a two-lane undivided collector between Rubicon Avenue and Golden State Boulevard. The City of Madera General Plan Circulation Element designates Almond Avenue as a collector between Rubicon Avenue and Golden State Boulevard.

Avenue 13 ½ is an existing east-west two-lane undivided collector in the vicinity of the proposed Project site. In this area, Avenue 13 ½ exists as a two-lane undivided collector between Knox Street and the Madera Main Canal. The City of Madera *General Plan* Circulation Element designates Avenue 13 ½ as a collector between Knox Street and the Madera Main Canal.

Avenue 13 is an existing east-west two-lane undivided arterial in the vicinity of the proposed Project site. In this area, Avenue 13 exists as a two-lane undivided arterial between Madera Avenue and Road 30 ½. The City of Madera *General Plan* Circulation Element designates Avenue 13 as an arterial between Madera Avenue and Road 30 ½. As Avenue 13 is classified as an arterial within the City of Madera SOI, study facilities along Avenue 13 utilize an LOS threshold of D.

Avenue 12 is an existing east-west six-lane divided arterial in the vicinity of the proposed Project site. In this area, Avenue 12 is a two-lane undivided arterial between Madera Avenue and Golden State Boulevard, a six-lane divided arterial between Golden State Boulevard and a point 0.70 miles east of Road 29 and a two-lane undivided arterial between a point 0.70 miles east of Road 29 and the BNSF Railroad. The City of Madera General Plan Circulation Element designates Avenue 12 as an arterial through the City of Madera. As Avenue 12 is classified as an arterial within the City of Madera SOI, study facilities along Avenue 12 utilize an LOS threshold of D.

State Route 99 is an existing north-south six-lane divided highway in the vicinity of the proposed Project site. State Route 99 traverses the City of Fresno in a northwest-southeast direction and serves as the principal connection to various metropolitan areas within the Central San Joaquin Valley.

The TCR for State Route 99 by Caltrans District 6 classifies State Route 99 as a six-lane freeway. The State Route 99 TCR has a concept LOS of LOS D. Therefore, intersections at State Route 99 ramps utilize an LOS threshold of D.

Collision Analysis

JLB requested collision information for the Caltrans controlled study intersections of State Route 99 at Almond Avenue, State Route 99 at Avenue 12 and Road 29 at Avenue 12 between the dates of January 1, 2021 and December 31, 2023 from Caltrans. Caltrans provided the collision information for the study intersections of State Route 99 at Almond Avenue and State Route 99 at Avenue 12, but informed JLB that Caltrans did not have data collision for Road 29 at Avenue 12. Table I presents the collision information for the study intersections of State Route 99 at Almond Avenue and State Route 99 at Avenue 12.

Table I: State Route Collision Rates

	Number	Actual	(per million ve	ehicles)	Average (per million vehicles)					
State Route 99 Ramps	of Collisions	Fatal Collisions	Fatal + Inj. Collisions	Total Collisions	Fatal Collisions	Fatal + Inj. Collisions	Total Collisions			
SB Off-Ramp at Almond Ave	0	0.000	0.00	0.00	0.002	0.18	0.57			
SB On-Ramp at Almond Ave	2	0.000	0.37	0.74	0007	0.42	1.37			
NB Off-Ramp at Avenue 12	5	0.000	0.39	0.97	0.009	0.48	1.31			
NB On-Ramp at Avenue 12	4	0.000	0.58	0.78	0.002	0.23	0.63			

Based on this three-year period, the State Route 99 Southbound Ramps at Almond Avenue and the State Route 99 Northbound Off-Ramps at Avenue12 all have collision rates that are lower than the statewide averages. The State Route 99 On-Ramp at Avenue 12 has a collision rate that exceeds the Statewide Average. However, given the low total number of collisions, it is not recommended that any changes be implemented for the State Route 99 On-Ramp at Avenue 12. The collision data sheets provided by Caltrans can be found in Appendix E.

Traffic Signal Warrants

The CA MUTCD indicates that an engineering study of traffic conditions, pedestrian characteristics and physical features of an intersection shall be conducted to determine whether the installation of traffic signal controls are justified. The CA MUTCD provides a total of nine (9) warrants to evaluate the need for traffic signal controls. These warrants include 1) Eight-Hour Vehicular Volume, 2) Four-Hour Vehicular Volume, 3) Peak Hour, 4) Pedestrian Volume, 5) School Crossing, 6) Coordinated Signal System, 7) Crash Experience, 8) Roadway Network and 9) Intersection Near a Grade Crossing. Signalization of an intersection may be appropriate if one or more of the signal warrants are satisfied. However, the CA MUTCD also states that "[t]he satisfaction of a signal warrant or warrants shall not in itself require the installation of a traffic control signal" (Caltrans, 2021).

If traffic signal warrants are satisfied when a LOS threshold impact is identified at an unsignalized intersection, then installation of a traffic signal control may serve as an improvement measure. For instances where traffic signal warrants are satisfied, a traffic signal control is not considered to be the default improvement measure. Since the installation of a traffic signal control typically requires the construction of additional lanes, an attempt is made to improve the intersection approach lane geometrics in order to improve its LOS while maintaining the existing intersection controls. If the additional lanes did not result in acceptable LOS at the intersection, then in those cases implementation of a traffic signal control would be considered.

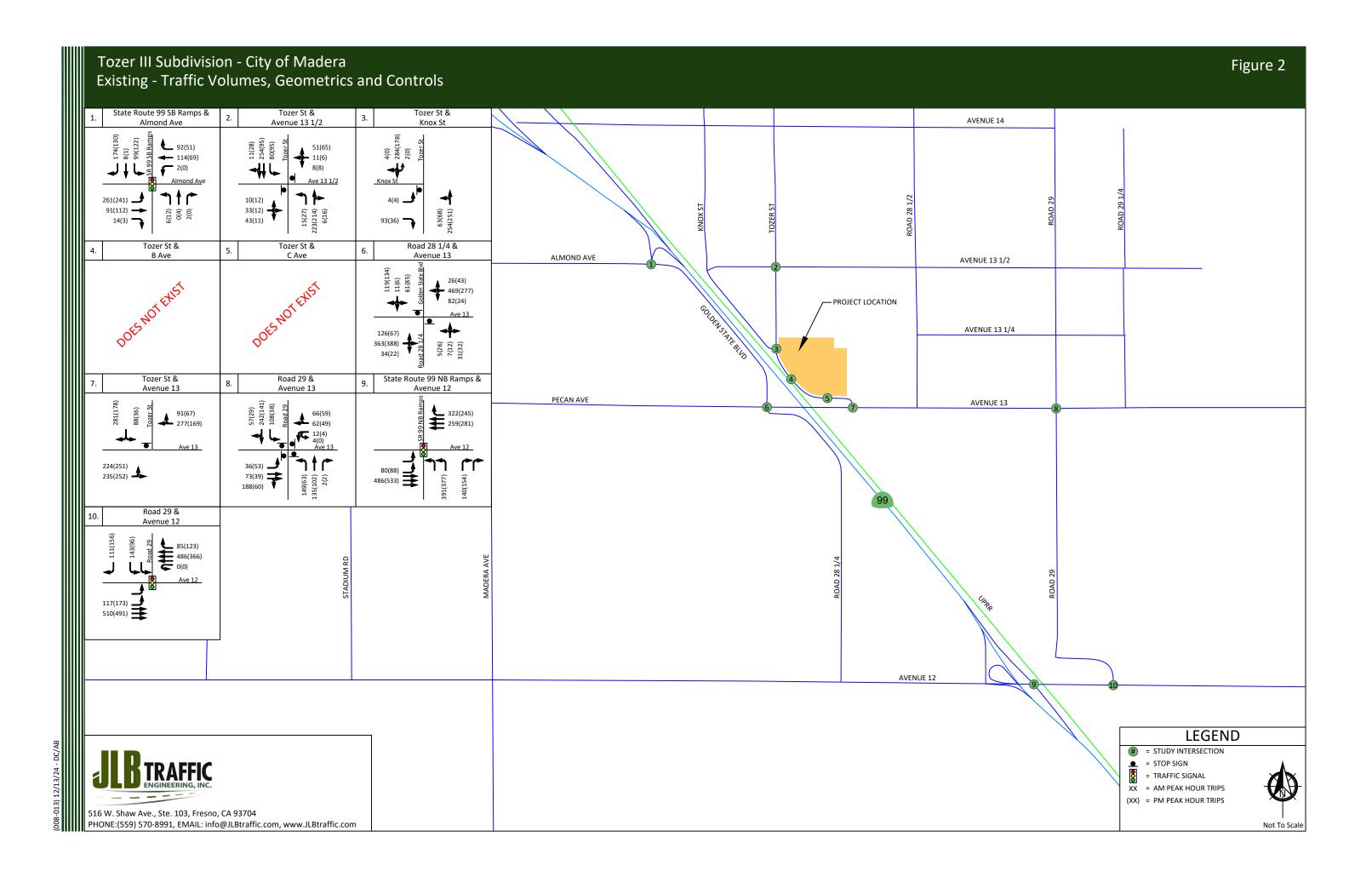
Warrant 3 was prepared for the unsignalized intersections under the Existing Traffic Conditions scenario. These warrants are contained in Appendix K. At present, Warrant 3 is met for the intersections of Road 28% at Avenue 13, Tozer Street at Avenue 13 and Road 29 at Avenue 13 during one or both peak periods. Based on the traffic signal warrants, operational analysis and engineering judgment, signalization is recommended for the study intersection of Road 28% at Avenue 13.

Results of Existing Level of Service Analysis

Figure 2 illustrates the Existing Traffic Conditions turning movement volumes, intersection geometrics and traffic controls. LOS worksheets for the Existing Traffic Conditions scenario are provided in Appendix F. Table II presents a summary of the Existing peak hour LOS at the study intersections.

At present, the study intersections of Road 28½ at Avenue 13 and Tozer Street at Avenue 13 exceed their LOS threshold during one or both peak periods. It is recommended that the following improvements be considered for implementation to improve the LOS at these intersections.

- Road 28¼ / Avenue 13
 - Add an eastbound left-turn lane;
 - Modify the eastbound left-through-right lane to a through-right lane;
 - Add a westbound left-turn lane;
 - Modify the westbound left-through-right lane to a through-right lane;
 - Add a northbound left-turn lane;
 - Modify the northbound left-through-right lane to a through-right lane;
 - Add a southbound left-turn lane;
 - o Modify the southbound left-through-right lane to a through-right lane; and
 - $\circ\quad$ Signalize the intersection with protective left-turn phasing in all directions.
- Tozer Street / Avenue 13
 - Add an eastbound left-turn lane;
 - Modify the eastbound left-through lane to a through lane;
 - Add a southbound left-turn lane; and
 - o Modify the southbound left-right lane to a trap right lane.


Table II: Existing Intersection LOS Results

			AM (7 - 9) Peak	Hour	PM (4 - 6) Peak	Hour
ID	Intersection	Intersection Control	Average Delay (sec/veh)	LOS	Average Delay (sec/veh)	LOS
1	SR 99 Southbound Ramps / Almond Ramps	outhbound Ramps / Almond Ramps Traffic Signal		C	23.5	С
2	Tozer Street / Avenue 13½	Two-Way Stop	20.7	С	16.1	С
3	Tozer Street / Knox Street	One-Way Stop	11.8	В	10.1	В
4	Tozer Street / B Avenue	Does Not Exist	-	-	-	-
5	Tozer Street / C Avenue	Does Not Exist	-	1	-	-
6	Two-Way Stop		>120.0	F	95.5	F
О	Road 28¼ / Avenue 13	Traffic Signal (Improved)	25.9	C	28.4	С
	Tanan Street / Assault 12	One-Way Stop	>120.0	F	23.6	С
7	Tozer Street / Avenue 13	One-Way Stop (Improved)	27.9	D	15.7	С
8	Road 29 / Avenue 13	All-Way Stop	33.6	D	10.0	Α
9	SR 99 Northbound Ramps / Avenue 12	Traffic Signal	23.8	С	17.0	В
10	Road 29 / Avenue 12	Traffic Signal	11.3	В	16.5	В

Note: LOS = Level of Service based on average delay on signalized intersections and All-Way STOP Controls

LOS for two-way and one-way STOP controlled intersections are based on the worst approach/movement of the minor street.

Existing plus Project Traffic Conditions

Project Description

The Project proposes to develop up to 168 single family residential units and a neighborhood park. Figure 3 illustrates the latest Project Site Plan.

Project Access

Based on the latest Project Site Plan, access to and from the Project site will be from three (3) access points along the east side of Tozer Street (Road 28). The first access point, A Avenue, is located along the northern boundary of the proposed project. This access is proposed to be limited to right-in right-out access. The second access point, B Avenue, is located approximately 575 feet south of Knox Street. This access is proposed to have full access. The third access point, C Avenue, is located approximately 1,400 feet south of Knox Street. This access point is proposed to be limited to three-quarter access (left-in, right-in, right-out). Additionally, there is one (1) outlet to the north and two (2) outlets to the east for future connections.

JLB analyzed the location of the proposed roadways and access points relative to those in the vicinity of the Project. A review of the access points to be constructed resulted in the following recommendations. It is recommended that the lane drop of the second northbound lane on Tozer Street adjacent to the Project occur south of the intersection of Tozer Street at Knox Street. Figure 3 illustrates the latest Project Site Plan.

Corner Sight Distance

A Corner Sight Distance (CSD) Analysis was conducted by JLB pursuant to the guidelines within the *Highway Design Manual* (HDM). Based on the HDM, a passenger car at private driveway "The minimum corner sight distance should be determined by the equation: $1.46V_mT_g$, where V_m is the design speed of the major road and T_g is the time gap for the minor road vehicle to enter the major road". The segment of Tozer Street north of Knox Street has a speed limit of 45 MPH, but south of Knox Street is currently unposted and subject to the California Vehicle Code Prima Facie Speed limit of 55 MPH. The CSD was conducted with critical speeds of 45 MPH, 40 MPH and 35 MPH in order to determine which speed would allow for full vision of the applicable CSD. The time gap is 7.5 second for left-turns and 6.5 second for right-turns. Appendix G includes the CSD evaluations for the speeds of 45 MPH, 40 MPH and 35 MPH. Exhibit G-1, located within Appendix G, displays the CSD for the access point at B Avenue with a critical speed of 35 MPH, 40 MPH and 45 MPH. Exhibit G-2, located within Appendix G, displays the CSD for the access point at C Avenue with a critical speed of 35 MPH, 40 MPH and 45 MPH. These CSD exhibits display hatched areas where obstructions greater than two (2) feet above street grade should not be approved.

The curvature of Tozer Street between Knox Street and Avenue 13 will likely inhibit the speed of drivers, especially near Avenue 13. Based on the minimum radius of Tozer Street adjacent to the Project, the maximum comfortable driving speed is approximately 35 MPH. As illustrated in Exhibit G-1, due to the small radius of the curvature for Tozer Street, the maximum CSD that could be provided to allow for full access at Avenue B is that of 40 MPH. Based on the CSD displayed in Exhibit G-2, there are no concerns with the CSD as access to Avenue C is proposed to be limited to right-in, right-out and left in.

Prior to allowing full access to the intersection of Tozer Street at B Avenue, it is recommended that an Engineering & Traffic Survey be completed for Tozer Street between Knox Street and Avenue 13 and subsequently adopted by the City of Madera. If the findings of the Engineering and Traffic Survey support a speed limit of 40 MPH or less, then full access to Tozer Street at B Avenue can be supported. However, if the Engineering and Traffic survey findings support a speed limit of 45 MPH or more, then access to Tozer Street at B Avenue shall prohibit left turns out.

Project Trip Generation

The trip generation rates for the proposed Project were obtained from the 11th Edition of the Trip Generation Manual published by the Institute of Transportation Engineers (ITE). Table III presents the trip generation for the proposed Project with trip generation rates for Single-Family Detached Housing (210). At buildout, the proposed Project is estimated to generate approximately 1,584 daily trips, 118 AM peak hour trips and 158 PM peak hour trips.

Table III: Project Trip Generation

			D	aily		AM (7-9) I	Peak	Hour	•		PM (4-6) I	Peak	Hour	•
Land Use (ITE Code)	Size L	Unit			Trip	Trip In			/m 04	Total	Trip	In	Out		0	Total
			Rate To	Total	Rate		%		Out	Total	Rate	9	6	In	Out	Total
Single-Family Detached Housing (210)	168	d.u.	9.43	1,584	0.70	26	74	31	87	118	0.94	63	37	100	58	158
Total Driveway Trips				1,584				31	87	118				100	58	158

Trip Distribution

The trip distribution to the study facilities were developed based on existing travel patterns, the surrounding roadway network, engineering judgment, knowledge of the study area, existing residential densities, location of the anticipated K-12 schools to serve the project and the City of Madera *General Plan* Circulation Element in the vicinity of the Project site. Figure 4 illustrates the Project Only Trips at the study intersections.

Bikeways

The MCTC Madera Active Transportation Plan (ATP) classifies bicycle facilities into the following types:

- Class I Bikeway (Bike Path) Provides a completely separated right-of-way for exclusive use of bicycles and pedestrians with crossflow minimized.
- Class II Bikeway (Bike Lane) Provides a striped lane for one-way bike travel on a street or highway.
- Class III Bikeway (Bike Route) Provides a shared use with pedestrians or motor vehicle traffic, typically on lower volume roadways.
- Class IV Bikeways (Separated Bikeways) Provides a protected lane for one-way bike travel (one-way cycle track) and protected lanes for two-way bike travel (two-way cycle track) on a street or highway.

Class II (Bike Lane) Bikeways exist in the vicinity of the Project site. In the vicinity of the Project site, Class II Bikeways exist along portions of Tozer Street and Avenue 12. The MCTC *Madera ATP* recommends that Class II Bikeways be implemented in the vicinity of the Project Site (MCTC, 2018). In the vicinity of the Project site, Class II Bikeways are planned on Tozer Street, Almond Avenue and Avenue 13. Therefore, it is recommended that the Project construct Class II Bikeways along its frontage to Tozer Street.

Walkways

The MCTC ATP recommends that more sidewalks be constructed to improve pedestrian safety and promote alternative modes of transportation. It is stated that the needs of pedestrians shall be considered and accommodated in all roadway construction and renovation projects. Therefore, it is recommended that the Project construct ADA compliant pedestrian sidewalks along internal streets connecting to all external sidewalks and along its frontage to Tozer Street. Further discussion about walkways can be found in the Safe Routes to School section.

Transit

Madera Metro is the transit operator in the City of Madera. At present, there are two (2) Madera Metro transit routes that operate in the vicinity of the proposed Project site. Route 2 operates at 1-hour intervals on weekdays and weekends. It's nearest stop to the Project site is located on the east side of Tozer Street approximately 400 feet south of Sunrise Avenue. Route 3 operates at 1-hour intervals on weekdays and weekends. It's nearest stop to the Project site is located on the east side of Tozer Street approximately 400 feet south of Sunrise Avenue. The County of Madera also stated that the Project is located within the County's Dial-A-Ride service area as well as one of several preliminary proposed Microtransit Zones identified in the Microtransit Strategy Analysis which was currently under review at the time of the preparation of this report. Retention of the existing and expansion of future transit routes is dependent on transit ridership demand and available funding.

Safe Routes to School

Kindergarten through 12th grade students from the Project will be served by the Madera Unified School District (MUSD). MUSD provides transportation for students who live in excess of an established radius zone. The zone is a radius of 1.0 miles for kindergarten through grade 6, 1.5 miles for grades 7 through 8 and 2.0 miles for grades 9 through 12.

Based on attendance area boundaries at the time of the preparation of this TIA, elementary school students would attend Cesar Chavez Elementary School located on the southeast corner of Road 29 at Avenue 13. Cesar Chavez Elementary School is located 0.85 and 1.10 miles from the nearest and farthest home on the Project. Therefore, it is anticipated that some elementary school students will need to walk, bike or be driven between the Project and the school.

The most direct path from the Project to the Cesar Chavez Elementary School campus can begin from the southernmost portion of the Project at Tozer Street. Students would proceed southeast to the intersection of Tozer Street at Avenue 13. The intersection of Tozer Street at Avenue 13 is controlled by a one-way stop. Students would then proceed to travel east on the north side of Avenue 13 until reaching the northwest corner of Road 29 at Avenue 13. The intersection of Road 29 at Avenue 13 is controlled by an all-way stop that with marked crosswalks across all legs. Students would cross either the north and east legs or the west and south legs at this intersection to reach the southeast corner of Road 29 at Avenue 13. Students would proceed to travel south on the east side of Road 29 or east on the south side of Avenue 13 until reaching the entrance to the school campus. Considering the distance is approximately one mile and the lack of walkway surfaces for the majority of the routes to school, it is more likely that all elementary school students for which busing is not provided will be driven to and from school. The portion of Tozer Street southeast of the Project and Avenue 13 could be utilized by students to reach their elementary school campus; however, these roads do not contain sidewalks. As such, it is recommended that the Project and MUSD look into funding sources to enhance the walkways for Elementary School students to and from Cesar Chavez Elementary School.

Based on attendance area boundaries at the time of the preparation of this TIA, middle school students would attend Martin Luther King Middle School located on the northwest quadrant of Tozer Street at Sunrise Avenue. Martin Luther King Middle School is located 1.55 and 1.80 miles from the nearest and farthest home on the Project. Therefore, it is anticipated that middle school students will qualify to be bussed to and from school.

Based on attendance area boundaries at the time of the preparation of this TIA, high school students would attend Madera South High School located on the northwest corner of Stadium Road at Pecan Avenue. Madera South High School is located 1.60 and 1.85 miles from the nearest and farthest home on the Project. However, as Madera South High School is located on the other side of State Route 99, students will qualify to be bussed to and from school.

Roadway Network

The Existing plus Project Traffic Conditions scenario assumes that the existing roadway geometrics and traffic controls will remain in place except for the addition of the Project with its access points. Figure 5 illustrates the assumed intersection geometrics and traffic controls for these intersections under this scenario.

Traffic Signal Warrants

Warrant 3 was prepared for the unsignalized intersections under the Existing plus Project Traffic Conditions scenario. These warrants are contained in Appendix K. Under this scenario, Warrant 3 is projected to be met for the intersections of Road 28¼ at Avenue 13, Tozer Street at Avenue 13 and Road 29 at Avenue 13 during one or both peak periods. Based on the traffic signal warrants, operational analysis and engineering judgment, signalization is recommended for the study intersections of Road 28¼ at Avenue 13 and Road 29 at Avenue 13.

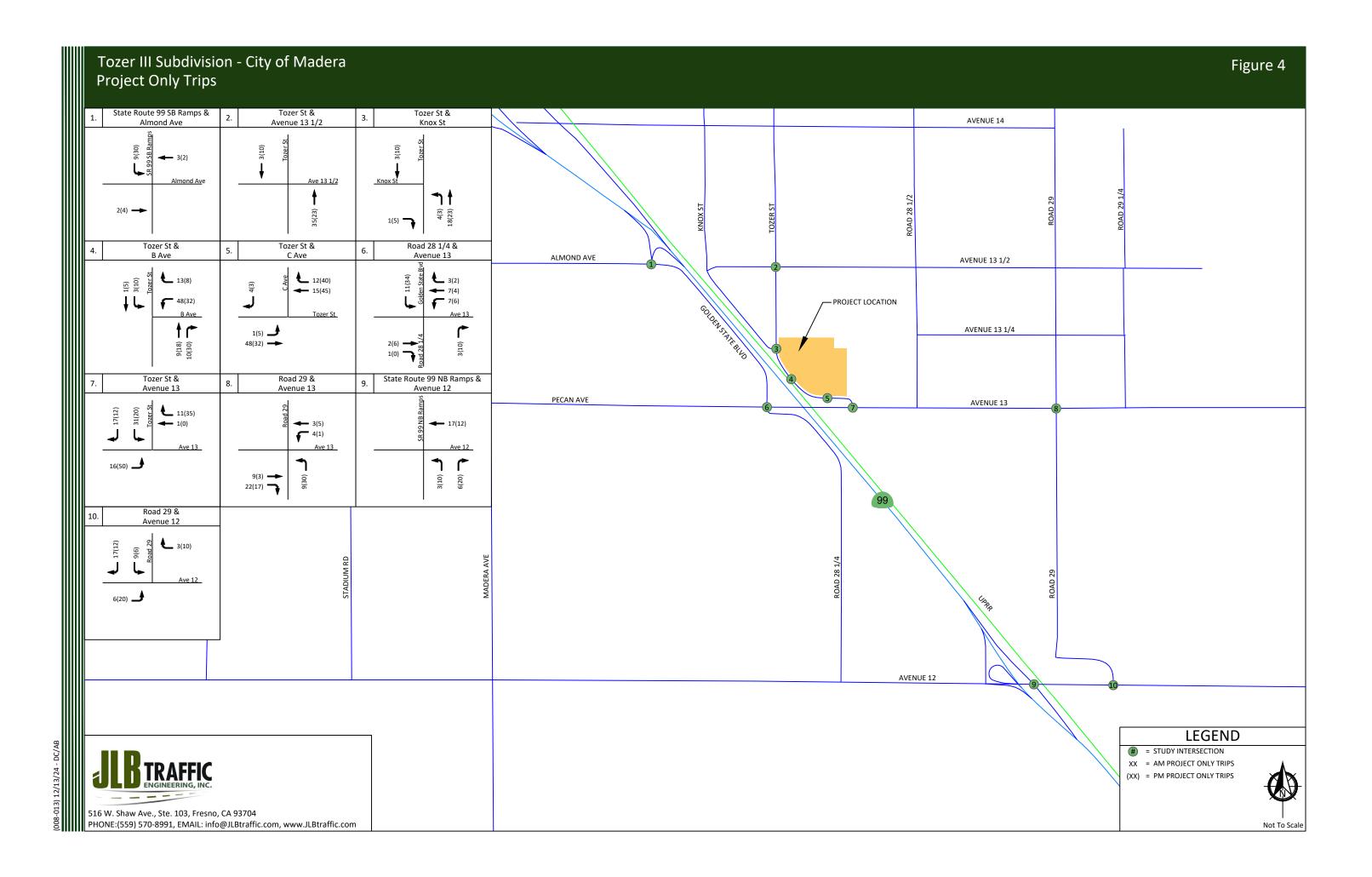
Results of Existing plus Project Level of Service Analysis

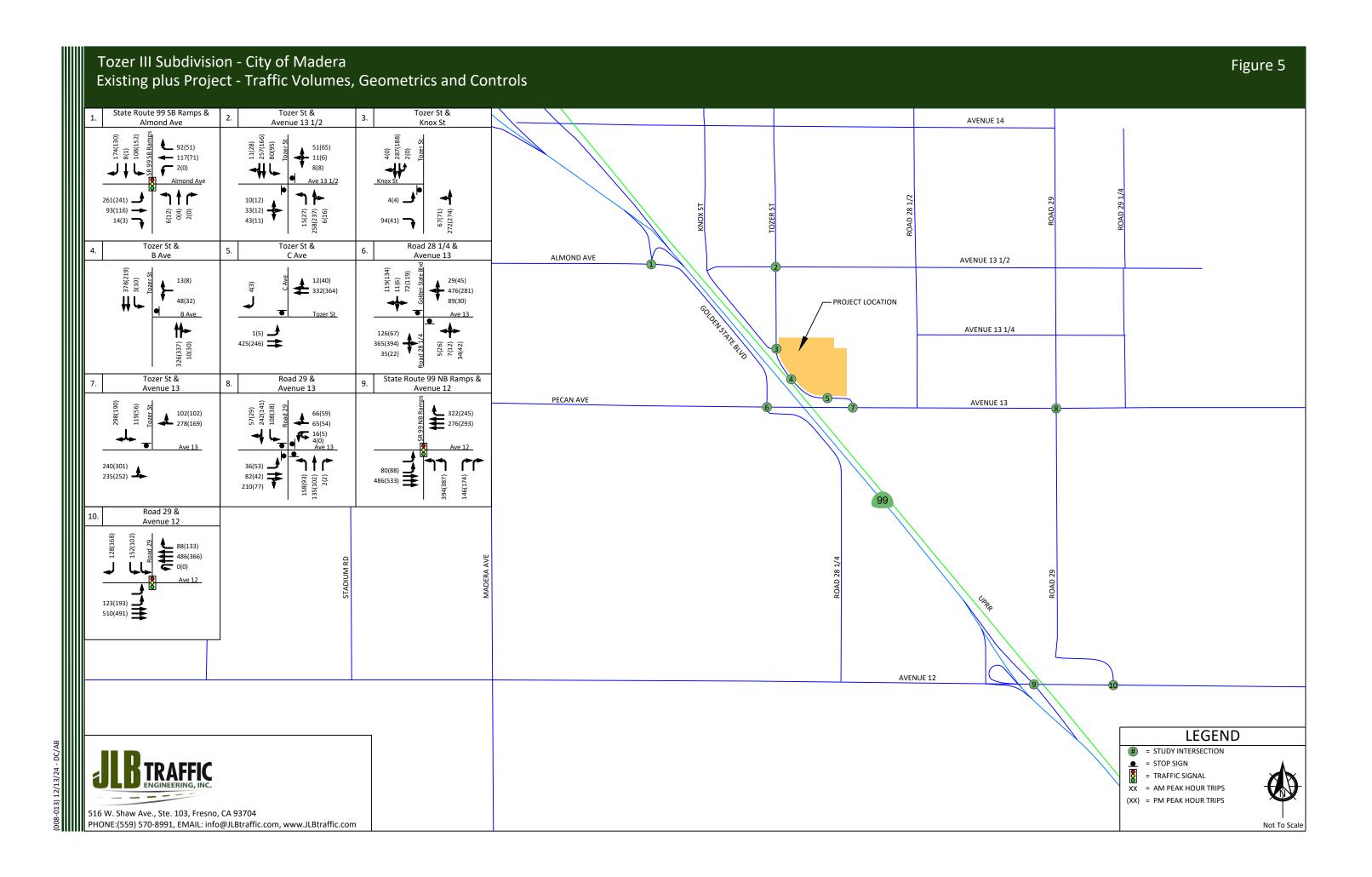
Figure 5 illustrates the Existing plus Project turning movement volumes, intersection geometrics and traffic controls. LOS worksheets for the Existing plus Project Traffic Conditions scenario are provided in Appendix H. Table IV presents a summary of the Existing plus Project peak hour LOS at the study intersections.

Under this scenario, the intersections of Road 28% at Avenue 13, Tozer Street at Avenue 13 and Road 29 at Avenue 13 are projected to exceed their LOS threshold during the one or both peak periods. It should be noted that the intersections of Road 28¼ at Avenue 13 and Tozer Street at Avenue 13 also exceed their LOS threshold in the Existing Traffic Conditions without the Project. Furthermore, it should be noted that the intersection of Road 29 at Avenue 13 is 1.4 seconds from exceeding its LOS threshold in the Existing Traffic Conditions. Since these three intersections under the Existing traffic conditions exceed or are borderline on exceeding their respective LOS threshold the Project's impacts to these facilities would be considered cumulative impacts. Therefore, these Project cumulative impacts would be addressed by having the Project being responsible for a fair share contribution for the following improvements.

- Road 28¼ / Avenue 13
 - Add an eastbound left-turn lane;
 - Modify the eastbound left-through-right lane to a through-right lane;
 - Add a westbound left-turn lane;
 - Modify the westbound left-through-right lane to a through-right lane;
 - Add a northbound left-turn lane;
 - Modify the northbound left-through-right lane to a through-right lane;
 - Add a southbound left-turn lane;
 - Modify the southbound left-through-right lane to a through-right lane; and
 - Signalize the intersection with protective left-turn phasing in all directions.
- Tozer Street / Avenue 13
 - Add an eastbound left-turn lane;
 - Modify the eastbound left-through lane to a through lane;
 - Add a southbound trap left lane;
 - Modify the southbound left-right lane to a trap right lane; and
 - Convert to an all-way stop traffic control.
- Road 29 / Avenue 13
 - Signalize the intersection with protective left-turn phasing in all directions.

Table IV: Existing plus Project Intersection LOS Results


			AM (7 - 9) Peak	Hour	PM (4 - 6) Peak	Hour
ID	Intersection	Intersection Control	Average Delay (sec/veh)	LOS	Average Delay (sec/veh)	LOS
1	SR 99 Southbound Ramps / Almond Ramps	Traffic Signal	25.0	С	23.9	С
2	Tozer Street / Avenue 13½ Two-Way Stop		22.3	С	16.8	С
3	Tozer Street / Knox Street	One-Way Stop	10.6	В	9.7	Α
4	Tozer Street / B Avenue	Does Not Exist	13.8	В	12.9	В
5	Tozer Street / C Avenue	Does Not Exist	9.5	Α	9.7	Α
	Road 201/ / Avenue 12	Two-Way Stop	>120.0	F	>120.0	F
6	Road 28¼ / Avenue 13	Traffic Signal (Improved)	24.0	С	25.6	С
7	Torox Street / Avenue 12	One-Way Stop	>120.0	F	76.3	F
	Tozer Street / Avenue 13	All-Way Stop (Improved)	23.3	С	16.9	С
	Band 20 / Avanua 12	All-Way Stop	38.7	E	10.3	В
8	Road 29 / Avenue 13	Traffic Signal (Improved)	34.1	С	16.8	В
9	SR 99 Northbound Ramps / Avenue 12	Traffic Signal	25.3	С	17.2	В
10	Road 29 / Avenue 12	Traffic Signal	14.1	В	16.7	В


Note: LOS = Level of Service based on average delay on signalized intersections and All-Way STOP Controls

LOS for two-way and one-way STOP controlled intersections are based on the worst approach/movement of the minor street.

Near Term plus Project Traffic Conditions

Description of Near Term Projects

Near Term Projects consist of developments that are either under construction, built but not fully occupied, are not built but have final site development review (SDR) approval, or for which the lead agency or responsible agencies have knowledge of. City of Madera, County of Madera and Caltrans staff were consulted throughout the preparation of this TIA regarding Near Term Projects that could potentially impact the study intersections. JLB staff conducted a reconnaissance of the surrounding area to confirm the Near Term Projects. Therefore, the Near Term Projects listed in Table V were within the proximity of the Project site.

Table V: Near Term Projects' Trip Generation

Project ID	Project Name	Daily Trips	AM Peak Hour	PM Peak Hour
Α	Madera Community Hospital ¹	3,278	250	262
В	Parcel Map 4290 Phases 1 and 2 ²	10,724	683	839
С	Valero Mini Mart and Gas Station ²	9,548	768	661
D	Ventana²	17,030	1,226	1,687
	Total Near Term Project Trips	40,580	2,927	3,449

Note: 1 = Trip Generation prepared by JLB Traffic Engineering, Inc. based on readily available information

2 = Trip Generation from a TIA prepared by another Traffic Engineering Firm

The trip generation listed in Table V is that which is anticipated to be added to the streets and highways by Near Term Projects between the time of the preparation of this Report and five (5) years after buildout of the proposed Project. As shown in Table V, the total trip generation for the Near Term Projects is 40,580 weekday daily trips, 2,927 weekday AM peak hour trips and 3,449 weekday PM peak hour trips. Figure 6 illustrates the location of the Near Term Projects and their combined trip assignment to the study intersections under the Near Term plus Project Traffic Conditions scenario.

Roadway Network

The Near Term plus Project Traffic Conditions scenario assumes that the Existing plus Project Traffic Conditions roadway geometrics and traffic controls will remain in place with one exception. It is assumed that with the construction of Phases 1 and 2 of the Parcel Map 4290 Near Term Project, the south leg of the intersection of Road 29 at Avenue 12 will be constructed. Figure 7 illustrates the assumed intersection geometrics and traffic controls for these intersections under this scenario.

Traffic Signal Warrants

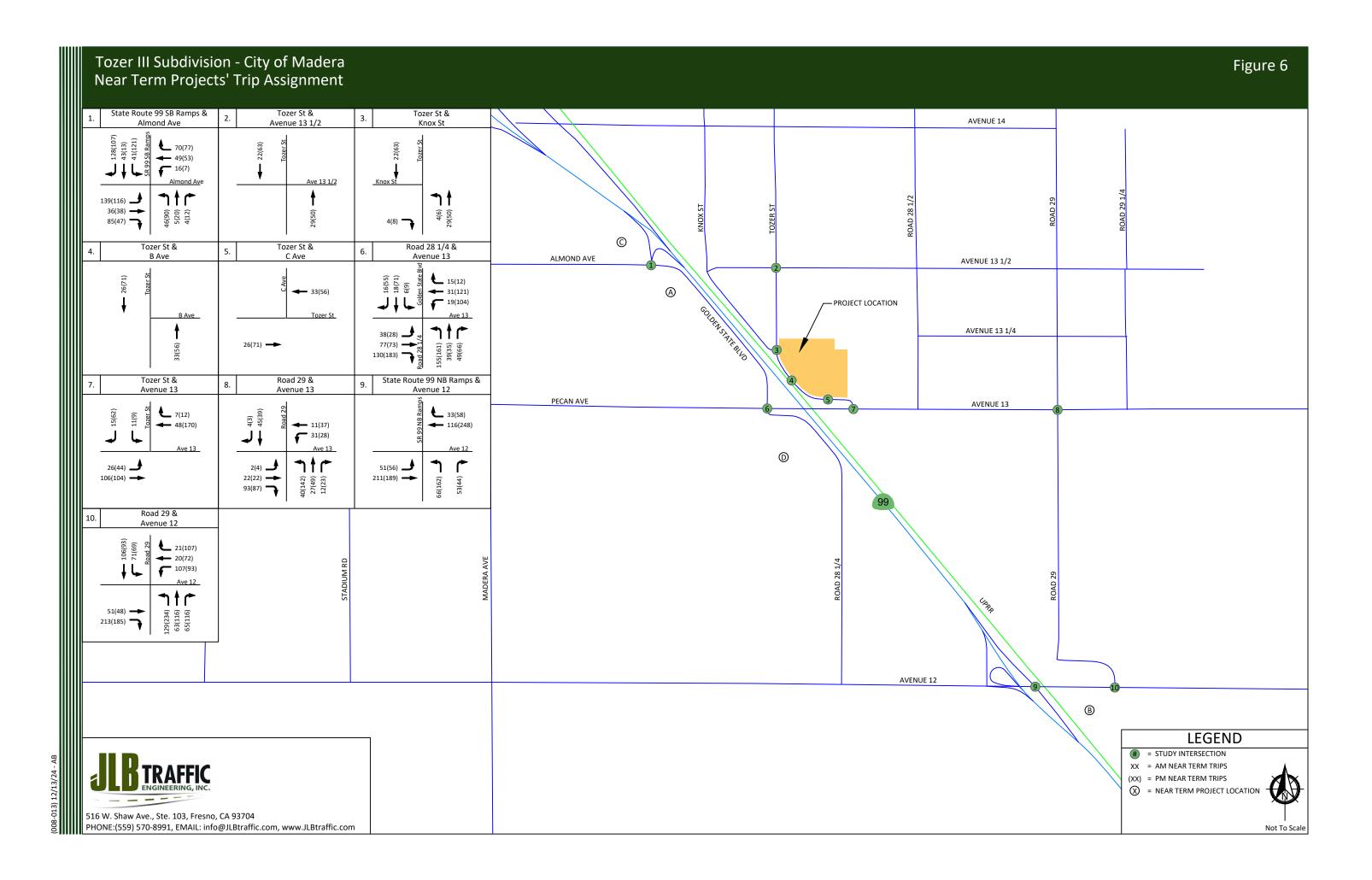
Warrant 3 was prepared for the unsignalized intersections under the Near Term plus Project Traffic Conditions scenario. These warrants are contained in Appendix K. Under this scenario, Warrant 3 is projected to be met for the intersections of Road 28¼ at Avenue 13, Tozer Street at Avenue 13 and Road 29 at Avenue 13 during both peak periods. Based on the traffic signal warrants, operational analysis and engineering judgment, signalization is recommended for the study intersection of Road 28¼ at Avenue 13 and Road 29 at Avenue 13.

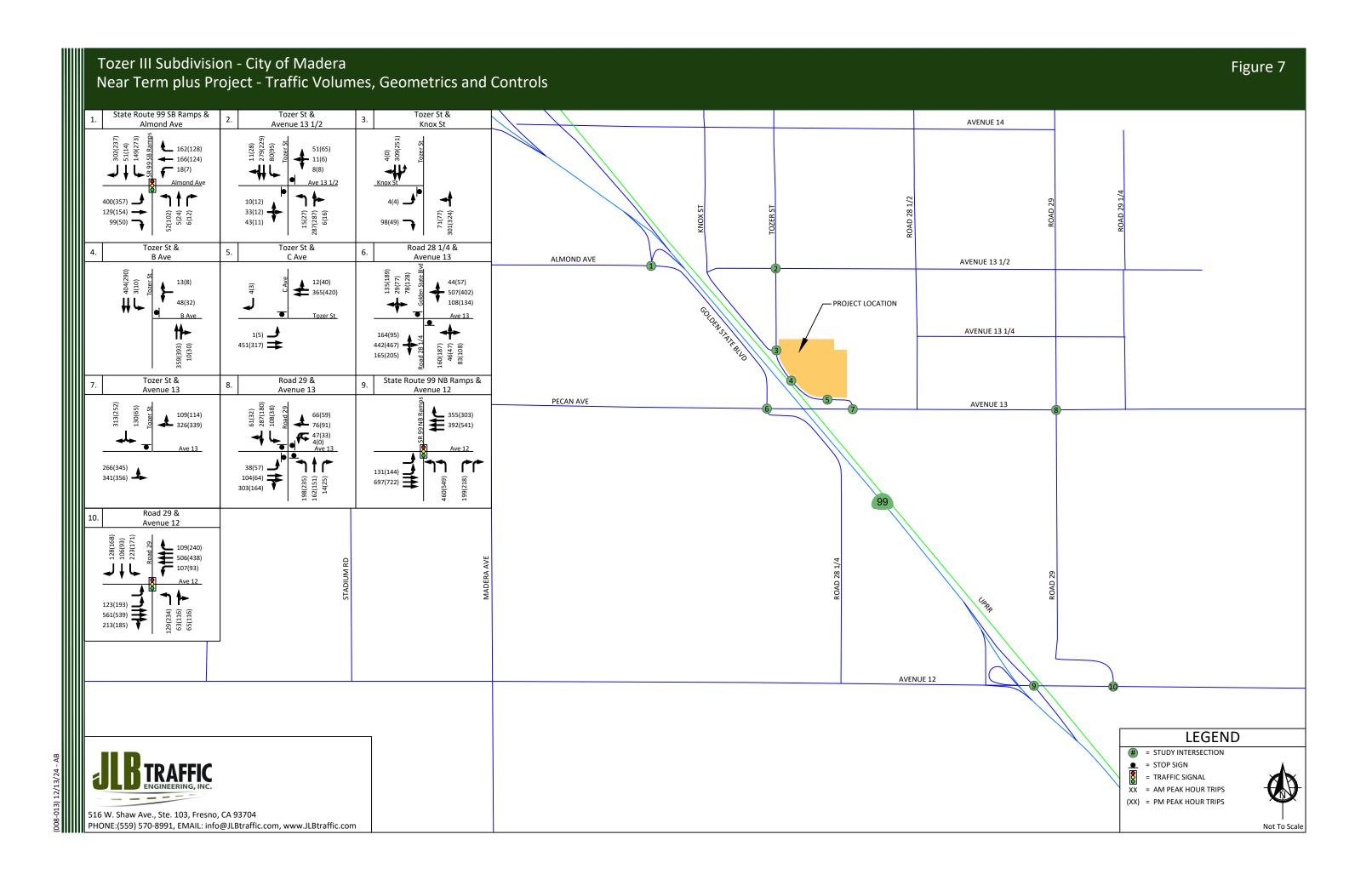
Results of Near Term plus Project Level of Service Analysis

Figure 7 illustrates the Near Term plus Project turning movement volumes, intersection geometrics and traffic controls. LOS worksheets for the Near Term plus Project Traffic Conditions scenario are provided in Appendix I. Table VI presents a summary of the Near Term plus Project peak hour LOS at the study intersections.

Under this scenario, the intersections of Road 28% at Avenue 13, Tozer Street at Avenue 13 and Road 29 at Avenue 13 are projected to exceed their LOS threshold during the one or both peak periods. Since these three intersections under the Existing traffic conditions exceed or are borderline on exceeding their respective LOS threshold the Project's impacts to these facilities would be considered cumulative impacts. Therefore, these cumulative impacts would be addressed by having the Project be responsible for a fair share contribution for the following improvements.

- Road 28¼ / Avenue 13
 - Add an eastbound left-turn lane;
 - Modify the eastbound left-through-right lane to a through lane;
 - Add an eastbound right-turn lane;
 - Add a westbound left-turn lane;
 - Modify the westbound left-through-right lane to a through-right lane;
 - Add a northbound left-turn lane;
 - Modify the northbound left-through-right lane to a through-right lane;
 - Add a southbound left-turn lane;
 - Modify the southbound left-through-right lane to a through-right lane; and
 - Signalize the intersection with protective left-turn phasing in all directions.
- Tozer Street / Avenue 13
 - Add an eastbound left-turn lane;
 - Modify the eastbound left-through lane to a through lane;
 - Add a southbound trap left lane;
 - Modify the southbound left-right lane to a trap right lane; and
 - Convert to an all-way stop traffic control.
- Road 29 / Avenue 13
 - Signalize the intersection with protective left-turn phasing in all directions.


Table VI: Near Term plus Project Intersection LOS Results


			AM (7 - 9) Peak	Hour	PM (4 - 6) Peak	Hour
ID	Intersection	Intersection Control	Average Delay (sec/veh)	LOS	Average Delay (sec/veh)	LOS
1	SR 99 Southbound Ramps / Almond Ramps	Traffic Signal	46.3	D	35.3	D
2	Tozer Street / Avenue 13½ Two-Way Stop		17.5	С	18.6	С
3	Tozer Street / Knox Street	One-Way Stop	10.2	В	9.9	Α
4	Tozer Street / B Avenue	Does Not Exist	14.1	В	13.8	В
5	Tozer Street / C Avenue	Does Not Exist	9.5	Α	9.8	Α
6	Road 201/ / Avenue 12	Two-Way Stop	>120.0	F	>120.0	F
6	Road 28¼ / Avenue 13	Traffic Signal (Improved)	34.0	С	40.7	D
_	Taran Street / Assault 12	One-Way Stop	>120.0	F	>120.0	F
7	Tozer Street / Avenue 13	All-Way Stop (Improved)	27.1	D	27.3	D
	Danid 20 / Avenue 12	All-Way Stop	51.5	F	15.1	С
8	Road 29 / Avenue 13	Traffic Signal (Improved)	44.9	D	21.4	С
9	SR 99 Northbound Ramps / Avenue 12	Traffic Signal	26.4	С	23.4	С
10	Road 29 / Avenue 12	Traffic Signal	31.8	С	38.7	D

Note: LOS = Level of Service based on average delay on signalized intersections and All-Way STOP Controls

LOS for two-way and one-way STOP controlled intersections are based on the worst approach/movement of the minor street.

Cumulative Year 2046 plus Project Traffic Conditions

Description of Long Term Projects

Long Term Projects consist of developments that are either built but not fully occupied, are not built but have final site development review (SDR) approval, or for which the lead agency or responsible agencies have knowledge of and their construction as projected to take place after five years from the date of preparation of this TIA. Based on data with the TIA prepare for Parcel Map 4290, it is reasonable to assume that phases three and four will take longer than five years to be built and occupied. Therefore, the Long Term Projects listed in Table VII were within the proximity of the Project site and are not anticipated to be built until after five years from the time of preparation of this TIA.

Table VII: Near Term Projects' Trip Generation

Project ID	Project Name	Daily Trips	AM Peak Hour	PM Peak Hour
В	Parcel Map 4290 Phases 1 and 2 ¹	10,385	721	821
	Total Near Term Project Trips	10,385	721	821

Note: 1 = Trip Generation from a TIA prepared by another Traffic Engineering Firm

The trip generation listed in Table VII is that which is anticipated to be added to the streets and highways by Long Term Projects between the Near Term plus Project Scenario and the Cumulative Year 2046 plus Project scenario. As shown in Table VII, the total trip generation for the Long Term Projects is 10,385 weekday daily trips, 721 weekday AM peak hour trips and 821 weekday PM peak hour trips. Figure 8 illustrates the location of the Long Term Projects and their combined trip assignment to the study intersections under the Cumulative Year 2046 plus Project Traffic Conditions scenario.

Roadway Network

The Cumulative Year 2046 plus Project Traffic Conditions scenario assumes that the Near Term plus Project roadway geometrics and traffic controls will remain in place but that the Long Term Project Trips are added to the study facilities in addition the cumulative year traffic volumes. Figure 9 illustrates the assumed intersection geometrics and traffic controls for these intersections under this scenario.

Traffic Signal Warrants

Warrant 3 was prepared for the unsignalized intersections under the Cumulative Year 2046 plus Project Traffic Conditions scenario. These warrants are contained in Appendix K. Under this scenario, Warrant 3 is projected to be met for the intersections of Road 28¼ at Avenue 13, Tozer Street at Avenue 13 and Road 29 at Avenue 13 during both peak periods. Based on the traffic signal warrants, operational analysis and engineering judgment, signalization is recommended for the study intersection of Road 28¼ at Avenue 13 and Road 29 at Avenue 13.

Results of Cumulative Year 2046 plus Project Level of Service Analysis

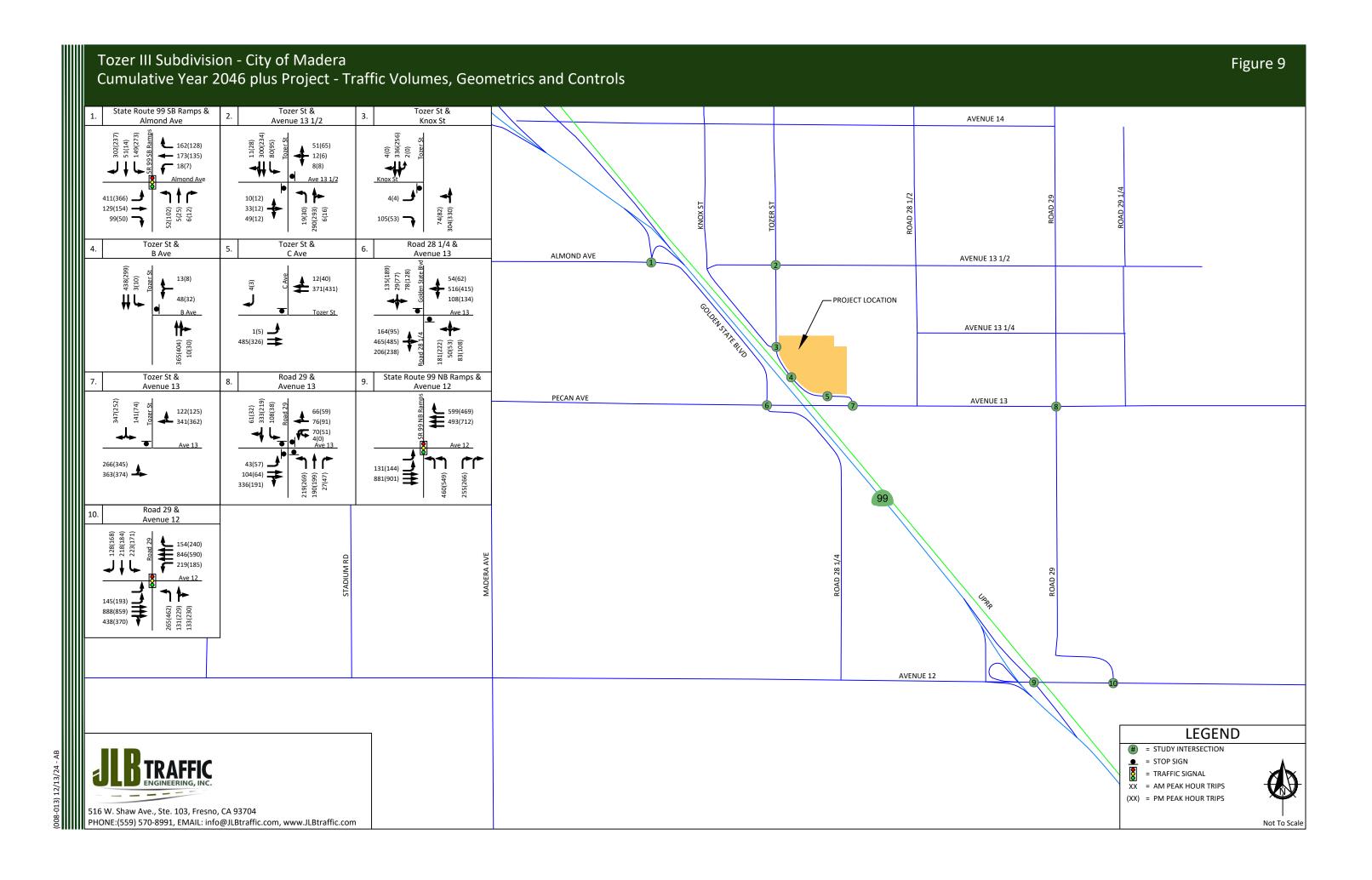
Figure 9 illustrates the Cumulative Year 2046 plus Project turning movement volumes, intersection geometrics and traffic controls. LOS worksheets for the Cumulative Year 2046 plus Project Traffic Conditions scenario are provided in Appendix J. Table VIII presents a summary of the Cumulative Year 2046 plus Project peak hour LOS at the study intersections.

Under this scenario, the intersections of Road 28¼ at Avenue 13, Tozer Street at Avenue 13, Road 29 at Avenue 13 and Road 29 at Avenue 12 are projected to exceed their LOS threshold during the one or both peak periods. Since these three intersections under the Existing traffic conditions exceed or are borderline on exceeding their respective LOS threshold the Project's impacts to these facilities would be considered cumulative impacts. Therefore, these Project cumulative impacts would be addressed by having the Project being responsible for a fair share contribution for the following improvements.

- Road 28¼ / Avenue 13
 - Add an eastbound left-turn lane;
 - Modify the eastbound left-through-right lane to a through lane;
 - Add an eastbound right-turn lane;
 - Add a westbound left-turn lane;
 - Modify the westbound left-through-right lane to a through-right lane;
 - Add a northbound left-turn lane;
 - Modify the northbound left-through-right lane to a through-right lane;
 - Add a southbound left-turn lane;
 - Modify the southbound left-through-right lane to a through-right lane; and
 - Signalize the intersection with protective left-turn phasing in all directions.
- Tozer Street / Avenue 13
 - Add an eastbound left-turn lane;
 - Modify the eastbound left-through lane to a through lane;
 - Add a westbound right-turn lane;
 - Modify the westbound through-right lane to a through lane;
 - Add a southbound trap left lane;
 - Modify the southbound left-right lane to a trap right lane; and
 - Convert to an all-way stop traffic control.
- Road 29 / Avenue 13
 - Signalize the intersection with protective left-turn phasing in all directions.
- Road 29 / Avenue 12
 - Add a second northbound left-turn lane;
 - o Modify the northbound through-right lane to a through lane;
 - Add a northbound right-turn lane;
 - Add a second southbound left-turn lane; and
 - Modify the traffic signal to accommodate the additional lanes.

It should be noted that the requirements for additional lanes at the intersection of Road 29 at Avenue 12 are a result of the full build out of the Parcel Map 4290.


Table VIII: Cumulative Year 2046 plus Project Intersection LOS Results


			AM (7 - 9) Peak	Hour	PM (4 - 6) Peak	Hour
ID	Intersection	Intersection Control	Average Delay (sec/veh)	LOS	Average Delay (sec/veh)	LOS
1	SR 99 Southbound Ramps / Almond Ramps	nd Ramps / Almond Ramps Traffic Signal		D	36.3	D
2	Tozer Street / Avenue 13½	Two-Way Stop	17.9	С	18.8	С
3	Tozer Street / Knox Street	One-Way Stop	10.4	В	9.9	Α
4	Tozer Street / B Avenue	Does Not Exist	14.4	В	14.0	В
5	Tozer Street / C Avenue	Does Not Exist	9.6	Α	9.9	Α
	Dood 201/ / Assessed 12	Two-Way Stop	>120	F	>120	F
6	Road 28¼ / Avenue 13	Traffic Signal (Improved)	37.3	D	43.3	D
7	Taran Street / Assault 12	One-Way Stop	>120	F	>120	F
7	Tozer Street / Avenue 13	All-Way Stop (Improved)	26.8	D	25.3	D
	Panel 20 / August 12	All-Way Stop	78.2	F	19.4	С
8	Road 29 / Avenue 13	Traffic Signal (Improved)	48.8	D	25.4	С
9	SR 99 Northbound Ramps / Avenue 12	Traffic Signal	34.4	С	25.3	С
10	Pood 20 / Avenue 12	Traffic Signal	47.6	D	69.2	E
10	Road 29 / Avenue 12	Traffic Signal (Improved)	48.4	D	41.8	D

Note: LOS = Level of Service based on average delay on signalized intersections and All-Way STOP Controls.

LOS for two-way STOP controlled intersections are based on the worst approach/movement of the minor street.

Queuing Analysis

Table IX provides a queue length summary for left-turn and right-turn lanes at the study intersections under all study scenarios. The queuing analyses for the study intersections are contained in the LOS worksheets for the respective scenarios. Appendix D contains the methodologies used to evaluate these intersections. Queuing analyses were completed using SimTraffic output information. Synchro provides both 50th and 95th percentile maximum queue lengths (in feet). According to the *Synchro Studio 12 User Guide*, "the 50th percentile maximum queue is the maximum back of queue on a typical cycle and the 95th percentile queue is the maximum back of queue with 95th percentile volumes" (Cubic ITS, Inc., 2023). The queues shown in Table IX are the 95th percentile queue lengths for the respective lane movements.

The *California Highway Design Manual* (CA HDM) provides guidance for determining deceleration lengths for the left-turn and right-turn lanes based on design speeds. According to the CA HDM, tapers for right-turn lanes are "usually unnecessary since main line traffic need not be shifted laterally to provide space for the right-turn lane. If, in some rare instances, a lateral shift were needed, the approach taper would use the same formula as for a left-turn lane" (Caltrans, 2019). Therefore, a bay taper length pursuant to the CA HDM would need to be added, as necessary, to the recommended storage lengths presented in Table IX.

The storage capacity for the Cumulative Year 2046 plus Project Traffic Conditions shall be based on the SimTraffic output files and engineering judgment. The values in bold presented in Table IX are the projected queue lengths that will likely need to be accommodated by the Cumulative Year 2046 plus Project Traffic Conditions scenario. At the remaining approaches of the study intersections, the existing storage capacity will be sufficient to accommodate the maximum queue.

Table IX: Queuing Analysis

ID	Int.	Existing Queue Storage Lengt	h (ft.)	Exis	ting		ng plus ject	Near Term plus Project		Cumul Year 20 Proj	46 plus
				AM	PM	AM	PM	PM	PM	AM	PM
		Eastbound Left	80	177	137	145	149	386	315	396	411
		Eastbound Through	>500	158	111	115	185	794	217	1806	1132
		Eastbound Right	80	6	9	51	0	81	28	49	35
		Westbound Left	120	12	0	10	0	53	24	77	32
	S	Westbound Through	>500	80	59	90	76	176	137	226	148
1	State Route 99 Southbound Ramps	Westbound Right	120	80	48	58	51	111	87	166	83
1	/ Almond Avenue	Northbound Left	75	27	33	21	23	73	103	75	105
	Allifoliu Avellue	Northbound Through	>500	0	15	0	23	21	60	24	79
		Northbound Right	75	15	0	15	0	16	17	18	27
		Southbound Left	300	90	82	86	100	99	103	97	96
		Southbound Through	>500	19	0	14	7	53	31	50	40
		Southbound Right	300	61	52	57	52	79	84	81	78
		Eastbound Left-Through-Right	>500	62	47	63	43	65	51	76	44
		Westbound Left-Through-Right	>500	52	68	60	54	50	74	58	67
	Tozer Street	Northbound Left	150	12	16	8	17	16	16	34	23
2	/	Northbound Through-Right	>300	0	0	10	0	0	0	0	0
	Avenue 13½	Southbound Left	150	38	49	42	40	41	41	53	40
		Southbound Through	>500	0	0	0	0	0	0	6	0
		Southbound Through-Right	>500	0	0	0	0	0	0	0	0
		Eastbound Left	>300	14	18	7	12	11	12	19	15
2	Tozer Street	Eastbound Right	>300	48	25	29	31	40	22	45	34
3	/ Knox Street	Northbound Left-Through	>500	57	43	42	53	64	60	50	46
		Southbound Through-Right	>500	0	0	0	0	0	0	12	0
		Southeast Left	*	*	*	8	15	9	20	0	21
		Southeast Through	*	*	*	0	0	0	0	0	0
4	Tozer Street	Southeast Through	*	*	*	0	0	0	0	0	0
4	/ B Avenue	Northwest Through	*	*	*	0	0	0	0	0	0
		Northwest Through-Right	*	*	*	0	0	0	0	0	0
		Southwest Left-Right	*	*	*	52	49	65	65	57	73

Note: * = Does not exist or is not projected to exist

Table IX: Queuing Analysis (Continued)

ID	Int.	Existing Queue Storage Lengt	h (ft.)	Exis	ting		ng plus ject	Near Term plus Project		Cumu Year 20 Proj	46 plus
				AM	PM	AM	PM	PM	PM	AM	PM
		Eastbound Left	*	*	*	0	12	0	0	0	8
		Eastbound Through	*	*	*	0	0	0	0	0	0
	Tozer Street	Eastbound Through	*	*	*	0	0	0	0	0	0
5	/ C Avenue	Westbound Through	*	*	*	0	0	0	0	0	0
		Westbound Through-Right	*	*	*	0	0	0	0	0	0
		Southbound Right	*	*	*	24	30	10	18	28	18
		Eastbound Left	*	120	86	115	78	172	128	275	136
		Eastbound Through	*	*	*	*	*	282	340	313	381
		Eastbound Through-Right	*	212	252	167	196	*	*	*	*
		Eastbound Right	*	*	*	*	*	146	163	205	214
	Road 28¼	Westbound Left	*	88	51	94	57	178	176	182	248
6	/ Avenue 13	Westbound Through-Right	*	334	175	207	135	325	318	427	347
	Aveilde 13	Northbound Left	*	17	37	22	54	152	192	221	217
		Northbound Through-Right	*	44	38	44	54	138	155	204	162
		Southbound Left	*	78	87	80	106	102	116	98	102
		Southbound Through-Right	*	103	70	74	89	111	201	151	179
		Eastbound Left	*	80	76	99	95	152	153	122	140
		Eastbound Through	*	0	0	72	74	134	103	144	100
	Tozer Street	Westbound Through	*	*	*	*	*	*	*	135	130
7	/	Westbound Through-Right	>300	0	0	110	101	327	236	*	*
	Avenue 13	Westbound Right	*	*	*	*	*	*	*	71	70
		Southbound Left	*	83	48	65	39	64	57	72	48
		Southbound Right	*	98	63	115	67	106	92	113	103
		Eastbound left	100	42	51	50	60	55	67	74	65
		Eastbound Through	>500	68	50	73	54	100	68	117	63
		Eastbound Through-Right	>500	80	49	117	53	179	80	192	79
		Westbound Left	275	21	6	36	21	66	56	82	77
	Avenue 29	Westbound Through-Right	>300	63	45	76	72	79	114	123	95
8	/ Avenue 13	Northbound Left	100	84	54	139	86	203	186	173	218
		Northbound Through	>300	92	62	107	86	564	251	304	865
		Northbound Right	100	9	14	10	15	32	47	74	94
		Southbound Left	100	52	46	129	69	183	62	192	55
		Southbound Through-Right	>300	96	79	171	88	364	112	344	166

Note: * = Does not exist or is not projected to exist

Table IX: Queuing Analysis (Continued)

ID	Int.	Existing Queue Storage Length	th (ft.)	Exis	ting		ng plus ject	Near Te Proj	•	Cumui Year 20 Proj	46 plus
				AM	PM	AM	PM	PM	PM	AM	PM
		Eastbound Dual Left	425	40	48	46	42	75	71	84	74
		Eastbound Through	>500	58	65	67	79	79	93	112	141
		Eastbound Through	>500	53	45	42	60	71	90	127	125
	S	Eastbound Through	>500	15	16	12	12	55	52	110	102
	State Route 99 Northbound Ramps / Avenue 12	Westbound Through	>500	24	55	10	41	46	90	78	96
9		Westbound Through	>500	14	5	8	6	48	71	63	89
		Westbound Through	>500	0	3	3	2	34	45	33	53
		Westbound Right	950	73	40	69	53	46	38	85	78
		Northbound Dual Lefts	150	134	120	147	128	234	167	300	262
		Northbound Dual Rights	150	55	59	44	52	65	62	83	87
		Eastbound Dual Lefts	575	95	103	82	118	103	98	103	142
		Eastbound Through	>500	84	64	82	72	162	175	401	393
		Eastbound Through	>500	50	41	52	38	141	150	357	347
		Eastbound Through	>500	24	0	14	0	*	*	*	*
		Eastbound Through-Right	*	*	*	*	*	97	76	298	294
		Westbound Left	*	*	*	*	*	123	91	243	248
		Westbound Through	>500	70	68	61	67	92	81	130	177
		Westbound Through	>500	95	59	82	73	110	109	204	229
	Avenue 12	Westbound Through	>500	144	89	145	127	171	165	284	277
10	/	Westbound Right	600	47	50	51	71	64	95	61	76
	Road 29	Northbound Left	*	*	*	*	*	150	184	*	*
		Northbound Dual Lefts	*	*	*	*	*	*	*	236	325
		Northbound Through	*	*	*	*	*	*	*	191	338
		Northbound Through-Right	*	*	*	*	*	111	172	*	*
		Northbound Right	*	*	*	*	*	*	*	76	121
		Southbound Dual Lefts	460	85	49	86	60	*	*	179	104
		Southbound Left	*	*	*	*	*	228	144	*	*
		Southbound Through	*	*	*	*	*	117	95	250	281
		Southbound Right	>300	55	59	74	55	79	78	106	130

Note: * = Does not exist or is not projected to exist

www.JLBtraffic.com

info@JLBtraffic.com

Conclusions and Recommendations

Conclusions and recommendations regarding the proposed Project are presented below.

Existing Traffic Conditions

- Based on this three-year period, the State Route 99 Southbound Ramps at Almond Avenue and the
 State Route 99 Northbound Off-Ramps at Avenue12 all have collision rates that are lower than the
 statewide averages. The State Route 99 On-Ramp at Avenue 12 has a collision rate that exceeds the
 Statewide Average. However, given the low total number of collisions, it is not recommended that any
 changes be implemented for the State Route 99 On-Ramp at Avenue 12.
- At present, the study intersections of Road 28¼ at Avenue 13 and Tozer Street at Avenue 13 exceed their LOS threshold during one or both peak periods. It is recommended that the following improvements be considered for implementation to improve the LOS at these intersections.
 - Road 28¼ / Avenue 13
 - Add an eastbound left-turn lane;
 - Modify the eastbound left-through-right lane to a through-right lane;
 - Add a westbound left-turn lane;
 - Modify the westbound left-through-right lane to a through-right lane;
 - Add a northbound left-turn lane;
 - Modify the northbound left-through-right lane to a through-right lane;
 - Add a southbound left-turn lane;
 - Modify the southbound left-through-right lane to a through-right lane; and
 - Signalize the intersection with protective left-turn phasing in all directions.
 - Tozer Street / Avenue 13
 - Add an eastbound left-turn lane;
 - Modify the eastbound left-through lane to a through lane;
 - Add a southbound left-turn lane; and
 - Modify the southbound left-right lane to a trap right lane.

Existing plus Project Traffic Conditions

- JLB analyzed the location of the proposed roadways and access points relative to those in the vicinity of the Project. A review of the access points to be constructed resulted in the following recommendations. It is recommended that the lane drop of the second northbound lane on Tozer Street adjacent to the Project occur south of the intersection of Tozer Street at Knox Street.
- The curvature of Tozer Street between Knox Street and Avenue 13 will likely inhibit the speed of drivers, especially near Avenue 13. Based on the minimum radius of Tozer Street adjacent to the Project, the maximum comfortable driving speed is approximately 35 MPH. As illustrated in Exhibit G-1, due to the small radius of the curvature for Tozer Street, the maximum CSD that could be provided to allow for full access at Avenue B is that of 40 MPH. Based on the CSD displayed in Exhibit G-2, there are no concerns with the CSD as access to Avenue C is proposed to be limited to right-in, right-out and left in.

- Prior to allowing full access to the intersection of Tozer Street at B Avenue, it is recommended that an Engineering & Traffic Survey be completed for Tozer Street between Knox Street and Avenue 13 and subsequently adopted by the City of Madera. If the findings of the Engineering and Traffic Survey support a speed limit of 40 MPH or less, then full access to Tozer Street at B Avenue can be supported. However, if the Engineering and Traffic survey findings support a speed limit of 45 MPH or more, then access to Tozer Street at B Avenue shall prohibit left turns out.
- At buildout, the proposed Project is estimated to generate approximately 1,584 daily trips, 118 AM peak hour trips and 158 PM peak hour trips.
- It is recommended that the Project implement a Class II Bikeways along its frontage to Tozer Street.
- It is recommended that the Project construct ADA compliant pedestrian sidewalks along internal streets connecting to all external sidewalks and along its frontage to Tozer Street.
- It is recommended that the Project and MUSD look into funding sources to enhance the walkways for Elementary School students to and from Cesar Chavez Elementary School.
- Under this scenario, the intersections of Road 28¼ at Avenue 13, Tozer Street at Avenue 13 and Road 29 at Avenue 13 are projected to exceed their LOS threshold during the one or both peak periods. Since these three intersections under the Existing traffic conditions exceed or are borderline on exceeding their respective LOS threshold the Project's impacts to these facilities would be considered cumulative impacts. Therefore, these cumulative impacts would be addressed by having the Project be responsible for a fair share contribution for the following improvements.
 - Road 28¼ / Avenue 13
 - Add an eastbound left-turn lane;
 - Modify the eastbound left-through-right lane to a through-right lane;
 - Add a westbound left-turn lane;
 - Modify the westbound left-through-right lane to a through-right lane;
 - Add a northbound left-turn lane;
 - Modify the northbound left-through-right lane to a through-right lane;
 - Add a southbound left-turn lane;
 - Modify the southbound left-through-right lane to a through-right lane; and
 - Signalize the intersection with protective left-turn phasing in all directions.
 - Tozer Street / Avenue 13
 - Add an eastbound left-turn lane;
 - Modify the eastbound left-through lane to a through lane;
 - Add a southbound trap left lane;
 - Modify the southbound left-right lane to a trap right lane; and
 - Convert to an all-way stop traffic control.
 - Road 29 / Avenue 13
 - Signalize the intersection with protective left-turn phasing in all directions.

Near Term plus Project Traffic Conditions

- The total trip generation for the Approved & Pending Projects is 50,965 weekday daily trips, 3,648 weekday AM peak hour trips and 4,270 weekday PM peak hour trips.
- Under this scenario, the intersections of Road 28¼ at Avenue 13, Tozer Street at Avenue 13 and Road 29 at Avenue 13 are projected to exceed their LOS threshold during the one or both peak periods. Since these three intersections under the Existing traffic conditions exceed or are borderline on exceeding their respective LOS threshold, the Project's impacts to these facilities would be considered cumulative impacts. Therefore, these cumulative impacts would be addressed by having the Project be responsible for a fair share contribution for the following improvements.
 - Road 28¼ / Avenue 13
 - Add an eastbound left-turn lane;
 - Modify the eastbound left-through-right lane to a through lane;
 - Add an eastbound right-turn lane;
 - Add a westbound left-turn lane;
 - Modify the westbound left-through-right lane to a through-right lane;
 - Add a northbound left-turn lane;
 - Modify the northbound left-through-right lane to a through-right lane;
 - Add a southbound left-turn lane;
 - Modify the southbound left-through-right lane to a through-right lane; and
 - Signalize the intersection with protective left-turn phasing in all directions.
 - Tozer Street / Avenue 13
 - Add an eastbound left-turn lane;
 - Modify the eastbound left-through lane to a through lane;
 - Add a southbound trap left lane;
 - Modify the southbound left-right lane to a trap right lane; and
 - Convert to an all-way stop traffic control.
 - Road 29 / Avenue 13
 - Signalize the intersection with protective left-turn phasing in all directions.

Cumulative Year 2046 plus Project Traffic Conditions

- Under this scenario, the intersections of Road 28¼ at Avenue 13, Tozer Street at Avenue 13, Road 29 at Avenue 13 and Road 29 at Avenue 12 are projected to exceed their LOS threshold during the one or both peak periods. Since these three intersections under the Existing traffic conditions exceed or are borderline on exceeding their respective LOS threshold, the Project's impacts to these facilities would be considered cumulative impacts. Therefore, these cumulative impacts would be addressed by having the Project be responsible for a fair share contribution for the following improvements.
 - Road 28¼ / Avenue 13
 - Add an eastbound left-turn lane;
 - Modify the eastbound left-through-right lane to a through lane;
 - Add an eastbound right-turn lane;
 - Add a westbound left-turn lane;
 - Modify the westbound left-through-right lane to a through-right lane;

- Add a northbound left-turn lane;
- Modify the northbound left-through-right lane to a through-right lane;
- Add a southbound left-turn lane;
- Modify the southbound left-through-right lane to a through-right lane; and
- Signalize the intersection with protective left-turn phasing in all directions.
- Tozer Street / Avenue 13
 - Add an eastbound left-turn lane;
 - Modify the eastbound left-through lane to a through lane;
 - Add a westbound right-turn lane;
 - Modify the westbound through-right lane to a through lane;
 - Add a southbound trap left lane;
 - Modify the southbound left-right lane to a trap right lane; and
 - Convert to an all-way stop traffic control.
- o Road 29 / Avenue 13
 - Signalize the intersection with protective left-turn phasing in all directions.
- o Road 29 / Avenue 12
 - Add a second northbound left-turn lane;
 - Modify the northbound through-right lane to a through lane;
 - Add a northbound right-turn lane;
 - Add a second southbound left-turn lane; and
 - Modify the traffic signal to accommodate the additional lanes.

Queuing Analysis

• It is recommended that the City consider left-turn and right-turn lane storage lengths as indicated in the Queuing Analysis.

Study Participants

JLB Traffic Engineering, Inc. Personnel:

Jose Luis Benavides, PE, TE Project Manager

Matthew Arndt, EIT Engineer I/II

Christian Sanchez, EIT Engineer I/II

Adrian Benavides Engineer I/II

Diana Cortez Engineering Aide

Arjun Dhillon Engineering Aide

Persons Consulted:

Joseph Crown Construction

Andres Castrejon Land Design Consulting

Juan Luis Carranco Land Design Consulting

Emily Bowen Crawford & Bowen Planning, Inc.

Keith Helmuth, PE City of Madera

Will Tackett City of Madera

Raquel Rios City of Madera

Phu Duong County of Madera

Monty Cox County of Madera

Keyomi Jones Caltrans, D6

David Padilla Caltrans, D6

Tozer III Subdivision - City of Madera Traffic Impact Analysis Report December 14, 2024

References

Caltrans. 2019. "Highway Design Manual". Sacramento: State of California.

Caltrans. 2020. "Vehicle Miles Traveled-Focused Transportation Impact Study Guide". Sacramento: State of California.

Caltrans. 2021. "California Manual on Uniform Traffic Control Devices". Sacramento: State of California.

City of Madera. 2009. "City of Madera General Plan". Madera: City of Madera.

County of Madera. 1995. "Madera County General Plan". Madera: Madera County.

Madera County Transportation Commission. 2018. "Madera Active Transportation Plan". Madera: County of Madera.

Cubic ITS, Inc. 2023. "Synchro Studio 12 User Guide". Sugar Land: Trafficware, LLC.

"All Route Schedules | Madera Metro". 2019. Madera.Gov. https://www.madera.gov/home/departments/transit/.

Institute of Transportation Engineers. 2017. "Trip Generation Manual". Washington: Institute of Transportation Engineers.

National Academies of Sciences, Engineering, and Medicine. 2022. "Highway Capacity Manual 7th Edition: A Guide for Multimodal Mobility Analysis" Washington: The National Academies Press.

Transportation Research Board. 2016. "Highway Capacity Manual". Washington: The National Academy of Sciences.

Appendix A: Scope of Work

May 24, 2024

Keith Helmuth, PE City Engineer City of Madera 205 West 4th Street Madera, CA 93637

Via email only: khelmuth@cityofmadera.com

Subject: Proposed Scope of Work for the Preparation of a Traffic Impact Analysis & Vehicle

Miles Traveled Analysis for the Tozer 3 Subdivision in the City of Madera (JLB

Project 008-013)

Dear Mr. Helmuth,

JLB Traffic Engineering, Inc. (JLB) hereby submits this Draft Scope of Work for the preparation of a Traffic Impact Analysis (TIA) and Vehicle Miles Traveled (VMT) Analysis for the Tozer 3 Subdivision (Project) to be located on the east side of Road 28 and north of Avenue 13 in the City of Madera. The Project proposes to develop approximately 29.08 acres with up to 168 single family residential units and 1.27 acres of public park. Based on information provided to JLB, the Project is consistent with the City of Madera *General Plan*. An aerial of the Project vicinity and Project Site Plan are shown in Exhibits A and Exhibit B, respectively.

The purpose of the TIA and VMT analysis is to evaluate the potential on-site and off-site traffic impacts, identify short-term roadway and circulation needs, conduct a vehicle miles traveled (VMT) analysis, determine potential mitigation measures and identify any critical traffic issues that should be addressed in the on-going planning process. To evaluate the on-site and off-site traffic impacts of the proposed Project, JLB proposes the following Scope of Work.

Scope of Work

- JLB will obtain recent or schedule conduct new traffic counts at the study facility(ies) when schools
 in the vicinity are in session. These counts will include pedestrians and vehicles. The counts will be
 collected during typical school operations and not during weeks with holidays, non-school days,
 roadway construction, inclement weather, etc.
- JLB will perform a site visit to observe existing traffic conditions, especially during the AM and PM
 peak hours. Existing roadway conditions including intersection geometrics and traffic controls will be
 verified.
- JLB will evaluate on-site circulation and provide recommendations as necessary to improve circulation to and within the Project site.
- JLB will prepare CA MUTCD Warrant 3 "Peak Hour" for unsignalized study intersections under all study scenarios.
- JLB will qualitatively analyze existing and planned bikeways in the vicinity of the Project.

Mr. Helmuth - City of Madera Draft Scope of Work (008-013) May 24, 2024

- JLB will qualitatively analyze existing and planned transit routes in the vicinity of the Project.
- JLB will conduct a qualitative safe route to school evaluation from the Project site to the K-12 school(s) which would most likely serve the Project on opening day.
- JLB will forecast trip distribution based on turn count information knowledge of the existing and planned circulation network in the vicinity of the Project.
- JLB will prepare a corner sight distance evaluation for the two (2) southernmost local street connections to Tozer Avenue.
- JLB will evaluate existing and forecasted levels of service (LOS) at the study intersection(s). JLB will use HCM 7th Edition or HCM 2000 methodologies (as appropriate) within Synchro to perform this analysis for the AM and PM peak hours. JLB will identify the causes of poor LOS.
- JLB will evaluate the VMT of the proposed Project. If the proposed Project exceeds the VMT thresholds set forth by the State of California, then JLB will prepare recommended mitigation measures to reduce the transportation VMT impact.

Study Scenarios

- 1. Existing Traffic Conditions with needed improvements (if any);
- 2. Existing plus Project Traffic Conditions with proposed improvement measures (if any);
- 3. Existing plus Approved and Pending Developments plus Project Traffic Conditions with proposed mitigation measures (if any); and
- 4. Cumulative Year 2046 plus Project Traffic Conditions with proposed mitigation measures (if any).

Weekday peak hours to be analyzed (Tuesday, Wednesday or Thursday only):

- 1. 7 9 AM peak hour
- 2. 4 6 PM peak hour

Study Intersections

- 1. Tozer Avenue (Road 28) / Avenue 13½
- 2. Tozer Avenue (Road 28) / Know Road
- 3. Tozer Avenue (Road 28) / B Avenue (Future)
- 4. Tozer Avenue (Road 28) / C Avenue (Future)
- 5. Avenue 13 / Road 281/4
- 6. Avenue 13 / Tozer Avenue (Road 28)
- 7. Avenue 13 / Road 29

Queuing analysis is included in the proposed Scope of Work for the study intersection(s) listed above under all study scenarios. This analysis will be utilized to recommend minimum storage lengths for left-and right-turn lanes at all study intersections.

Study Segments:

1. None

Project Only Trip Assignment to State Facilities:

- 1. State Route 99 / Almond Avenue
- 2. State Route 99 / Avenue 12

Mr. Helmuth - City of Madera Draft Scope of Work (008-013) May 24, 2024

Project Trip Generation

The trip generation rates for the proposed Project land use were obtained from the 11th Edition of the Trip Generation Manual published by the Institute of Transportation Engineers (ITE). Table I presents the trip generation for the proposed Project with trip generation rates for Single-Family Detached Housing and Public Park. At buildout, the proposed Project is estimated to generate approximately 1,585 daily trips, 118 AM peak hour trips and 158 PM peak hour trips.

Table I: Project Trip Generation

			Da	ily		AM	(7-9)	Peal	k Hou	r		PIV	1 (4-6)	Peak	Hour	
Land Use (ITE Code)	Size	Unit	Rate	Total	Trip	In	Out		Out	Total	Trip	In	Out	In	Out	Total
			Kute	Total	Rate	9,	%	""	Out	Total	Rate	•	%	"	Out	Total
Single-Family Detached Housing (210)	168	d.u.	9.43	1,584	0.70	26	74	31	87	118	0.94	63	37	100	58	158
Public Park (411)	1.27	Acres	0.78	1	0.02	59	41	0	0	0	0.11	55	45	0	0	0
Total Project Trips				1,585				31	87	118				100	58	158

Note: d.u. = Dwelling Unit

Near Term Projects to be Included

JLB is unaware of other projects in the vicinity of the proposed Project that have the ability to impact traffic operations in the Near Term scenario. However, JLB will include in the Near Term scenario, near term projects provided to us by responsible agencies. These would include near term projects that the City of Madera, Madera County or Caltrans has knowledge of and for which it is anticipated that said project(s) is/are projected to be whole or partially built by the Near Term project year 2029. Also, that the City of Madera, County of Madera or Caltrans provides JLB with near term project details. Near term project details include project description, location, proposed land uses with breakdowns and type of residential units and amount of square footages for non-residential uses.

The Scope of Work is based on our understanding of this Project and our experience with similar TIAs. We kindly ask that all responsible agencies submit any comments by June 14, 2024. If you have any questions or require additional information, please contact me by phone at (559) 317-6243, or via email at marndt@jlbtraffic.com.

Sincerely,

Matthew Arndt

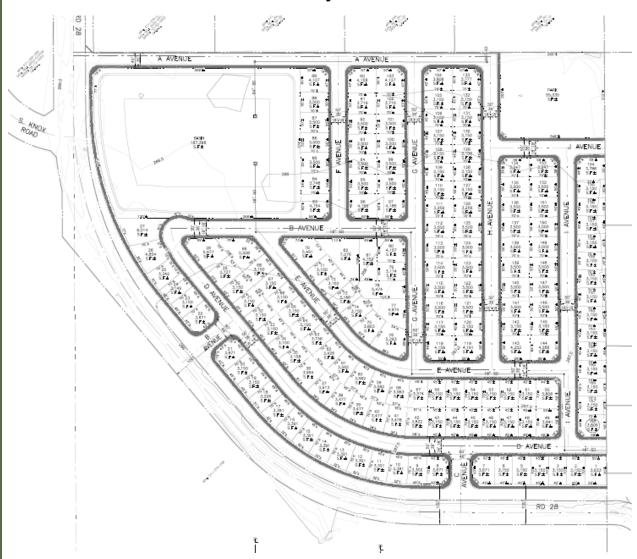
JLB Traffic Engineering, Inc.

cc: Phu Duong, Madera County

David Padilla, Caltrans

Jose Luis Benavides, JLB Traffic Engineering, Inc.

Z:\01 Projects\008 Madera\008-013 Tozer 3 TIA\Draft Scope of Work\L20240524 Draft Scope of Work (008-013).docx


Exhibit A – Project Vicinity

Mr. Helmuth - City of Madera Draft Scope of Work (008-013) May 24, 2024

Exhibit B - Project Site Plan

Matt Arndt

From: Keith Helmuth <khelmuth@madera.gov>

Sent: Thursday, June 6, 2024 5:05 PM

To: Matt Arndt Cc: Will Tackett

Subject: RE: Tozer 3 Subdivision TIA Draft Scope of Work

Attachments: 3.15 Transportation-Traffic.pdf; Fig 3.15-2.pdf; Fig 3.15-3.pdf; Fig 3.15-4.pdf; Fig

3.15-5.pdf; Fig 3.15-5A.pdf; Fig 3.15-6.pdf; Fig 3.15-7.pdf; Fig 3.15-7A.pdf; Fig 3.15-1.pdf

Hello Matt,

It looks as though Triple L is not active so we will be dropping that from the Near Term projects.

Ventana however continues to be active. Unfortunately, I have the traffic study in the format (pieces) attached. This is a consequence of the way we received documents in the day.

Keith Helmuth, P.E. | City Engineer
City of Madera | Engineering Department
428 East Yosemite Avenue, Madera, CA 93638
p. (559) 661.5418
khelmuth@madera.gov

From: Matt Arndt <marndt@jlbtraffic.com>
Sent: Thursday, June 6, 2024 1:23 PM
Tay Kaith University of the June 10, 2024 1:23 PM

To: Keith Helmuth < khelmuth@madera.gov>

Subject: RE: Tozer 3 Subdivision TIA Draft Scope of Work

Hello Keith,

Can you please provide me with information on the near term projects listed in your response? Thanks.

Sincerely,

Matthew Arndt

Traffic Engineering, Transportation Planning and Parking Solutions

Certified Disadvantaged Business Enterprise (DBE) and Small Business Enterprise (SBE)

516 W. Shaw Ave., Ste. 103

Fresno, CA 93704 Office: (559) 570-8991 Direct: (559) 317-6243 Cell: (559) 360-1886 www.JLBtraffic.com

From: Keith Helmuth < khelmuth@madera.gov>

Sent: Thursday, May 30, 2024 2:32 PM **To:** Matt Arndt <marndt@jlbtraffic.com>

Cc: phu.duong@maderacounty.com; Padilla, Dave@DOT dave.padilla@dot.ca.gov; Jose Benavides jbenavides@jlbtraffic.com; Raquel Rios rrios@madera.gov; Will Tackett wtackett@madera.gov>

Subject: RE: Tozer 3 Subdivision TIA Draft Scope of Work

Thank you Matt,

My comments are as follows:

- Safe route to school evaluation shall make recommendations for new sidewalks or paved walking paths, traffic control devices including traffic signals, Hawks or RRFBs as may be warranted or reasonably foreseeable as a need to protect school age children. Staff does not foresee the developer being responsible for traffic control devices. Staff does expect that sidewalks or paths be provided between the subdivision and schools or to the next viable path or sidewalk.
- Intersection 2 misspelling for Knox
- Near Term Project Ventana (TSM 2022-03 and 2022-04)
- Near Term Project (possible) Triple L I need to confirm if this map is still active.

Keith Helmuth, P.E. | City Engineer
City of Madera | Engineering Department
428 East Yosemite Avenue, Madera, CA 93638
p. (559) 661.5418
khelmuth@madera.gov

From: Matt Arndt < marndt@jlbtraffic.com >

Sent: Friday, May 24, 2024 1:39 PM

To: Keith Helmuth < khelmuth@madera.gov>

Cc: phu.duong@maderacounty.com; Padilla, Dave@DOT <dave.padilla@dot.ca.gov>; Jose Benavides

<jbenavides@jlbtraffic.com>

Subject: Tozer 3 Subdivision TIA Draft Scope of Work

Hello,

Attached to this email is the Draft Scope of Work for the preparation of a Traffic Impact Analysis and Vehicle Miles Traveled Analysis for the Tozer 3 Subidivison. This Project is located on the east side of Road 28 north of Avenue 13 in the City of Madera.

We kindly ask that you take a moment to review and comment on the proposed Draft Scope of Work. If you have any questions or require additional information, please contact me by at (559) 317-6243 or by responding to this email. We appreciate your time and attention to this matter and look forward to hearing from you soon.

Sincerely,

Matthew Arndt

Traffic Engineering, Transportation Planning and Parking Solutions Certified Disadvantaged Business Enterprise (DBE) and Small Business Enterprise (SBE)

516 W. Shaw Ave., Ste. 103

Fresno, CA 93704 Office: (559) 570-8991 Direct: (559) 317-6243 Cell: (559) 360-1886

Matt Arndt

From: Phu Duong <phu.duong@maderacounty.com>

Sent: Tuesday, June 11, 2024 9:30 AM

To: Matt Arndt

Subject: RE: Tozer 3 Subdivision TIA Draft Scope of Work

Hi Matt,

I did not receive any additional comments from my team. Please proceed.

Thank you.

Phu Duong | Development Services Engineer

PUBLIC WORKS, ENGINEERING SERVICES

200 W. 4th Street, Suite 3100, Madera, CA 93637

Office: (559) 675-7811

From: Phu Duong <phu.duong@maderacounty.com>

Sent: Thursday, June 6, 2024 9:23 AM To: 'Matt Arndt' <marndt@jlbtraffic.com>

Subject: RE: Tozer 3 Subdivision TIA Draft Scope of Work

Yes sir. That was the only comment I received from the team. I will send out a follow up email to the team asking for final comments if they have any.

Phu Duong | Development Services Engineer

PUBLIC WORKS. ENGINEERING SERVICES

200 W. 4th Street, Suite 3100, Madera, CA 93637

Office: (559) 675-7811

From: Matt Arndt <marndt@jlbtraffic.com> **Sent:** Thursday, June 6, 2024 9:21 AM

To: Phu Duong <phu.duong@maderacounty.com> Subject: RE: Tozer 3 Subdivision TIA Draft Scope of Work

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you validate the sender and know the content is safe. Please forward this email to phish@maderacounty.com if you believe this email is suspicious.

Hello Phu.

Is the comment below the only comment to this Draft Scope of Work from the County?

Sincerely,

Matthew Arndt

Traffic Engineering, Transportation Planning and Parking Solutions

Certified Disadvantaged Business Enterprise (DBE) and Small Business Enterprise (SBE)

516 W. Shaw Ave., Ste. 103

Fresno, CA 93704

Office: (559) 570-8991 Direct: (559) 317-6243 Cell: (559) 360-1886 www.JLBtraffic.com

From: Phu Duong <phu.duong@maderacounty.com>

Sent: Wednesday, May 29, 2024 6:37 AM

To: Matt Arndt <marndt@jlbtraffic.com>; Keith Helmuth <khelmuth@madera.gov>

Cc: Padilla, Dave@DOT <dave.padilla@dot.ca.gov>; Jose Benavides <jbenavides@jlbtraffic.com>; Monty Cox

<<p><<u>Monty.Cox@maderacounty.com</u>>; Steve Deis <<u>Steve.Deis@maderacounty.com</u>>

Subject: RE: Tozer 3 Subdivision TIA Draft Scope of Work

Hi Matt,

Below is a comment from our Transit team. If you need more information about the analysis or have further questions regarding the transit program, please feel free to reach out to Monty. He's included in this email response.

Thanks.

Phu

Hi Phu.

From the County Transit Program, the only thing that I would like to point out regarding this project is that it is located within the County's Madera Dial-A-Ride service area as well as one of several preliminarily proposed Microtransit Zones identified in our Microtransit Strategy Analysis, currently under review.

If you would like any more information on the Analysis or the status of the review, please let me know.

Thanks Monty

Monty Cox | Program Manager

PUBLIC WORKS DEPARTMENT, ADMINISTRATIVE SERVICES

200 W. 4th Street, Suite 3100, Madera, CA 93637 Office: (559) 675-7811 Ext. 3588 | Cell: (559) 536-7821

Phu Duong | Development Services Engineer

PUBLIC WORKS, ENGINEERING SERVICES

200 W. 4th Street, Suite 3100, Madera, CA 93637

Office: (559) 675-7811

From: Phu Duong <phu.duong@maderacounty.com>

Sent: Friday, May 24, 2024 3:37 PM

To: 'Matt Arndt' <marndt@jlbtraffic.com>; Keith Helmuth <khelmuth@madera.gov>

Cc: Padilla, Dave@DOT <dave.padilla@dot.ca.gov>; Jose Benavides <jbenavides@jlbtraffic.com>

Subject: RE: Tozer 3 Subdivision TIA Draft Scope of Work

Received.

Thanks Matt. I'll circulate it to my team for their inputs.

Have a nice weekend.

Phu Duong | Development Services Engineer

PUBLIC WORKS, ENGINEERING SERVICES

200 W. 4th Street, Suite 3100, Madera, CA 93637

Office: (559) 675-7811

From: Matt Arndt < marndt@jlbtraffic.com >

Sent: Friday, May 24, 2024 1:39 PM

To: Keith Helmuth < khelmuth@madera.gov>

Cc: Phu Duong <phu.duong@maderacounty.com>; Padilla, Dave@DOT <dave.padilla@dot.ca.gov>; Jose Benavides

<jbenavides@jlbtraffic.com>

Subject: Tozer 3 Subdivision TIA Draft Scope of Work

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you validate the sender and know the content is safe. Please forward this email to phish@maderacounty.com if you believe this email is suspicious.

Hello,

Attached to this email is the Draft Scope of Work for the preparation of a Traffic Impact Analysis and Vehicle Miles Traveled Analysis for the Tozer 3 Subidivison. This Project is located on the east side of Road 28 north of Avenue 13 in the City of Madera.

We kindly ask that you take a moment to review and comment on the proposed Draft Scope of Work. If you have any questions or require additional information, please contact me by at (559) 317-6243 or by responding to this email. We appreciate your time and attention to this matter and look forward to hearing from you soon.

Sincerely,

Matthew Arndt

Traffic Engineering, Transportation Planning and Parking Solutions

Certified Disadvantaged Business Enterprise (DBE) and Small Business Enterprise (SBE)

516 W. Shaw Ave., Ste. 103

Fresno, CA 93704

Office: (559) 570-8991 Direct: (559) 317-6243 Cell: (559) 360-1886 www.JLBtraffic.com

California Department of Transportation

DISTRICT 6 OFFICE
1352 WEST OLIVE AVENUE | P.O. BOX 12616 | FRESNO, CA 93778-2616
(559) 981-7284 | FAX (559) 488-4195 | TTY 711
www.dot.ca.gov

July 2, 2024

MAD-99-8.772 Draft Scope of Work (008-013)

GTS #: https://ld-igr-gts.dot.ca.gov/district/6/report/32927

REVISED

SENT VIA EMAIL

Mr. Matthew Arndt JLB Traffic Engineering 516 W. Shaw Ave. Ste. 103 Fresno, CA 93704 marndt@jlbtraffic.com

Dear Mr. Arndt:

Caltrans has completed the review of the draft scope of work for the preparation of a Traffic Impact Analysis and Vehicle Miles Traveled Analysis for the Tozer 3 Subdivision in the City of Madera. The project proposes to develop approximately 29.08-acres with up to 168 single family residential units and 1.27-acres of public park.

The project site is located on the east side of Road 28 just north of Avenue 13 in the City of Madera. This is approximately 200 feet to the east of State Route (SR) 99.

The mission of Caltrans is to provide a safe and reliable transportation network that serves all people and respects the environment. The Local Development Review (LDR) process reviews land use projects and plans through the lenses of our mission and state planning priorities of infill, conservation, and travel-efficient development. To ensure a safe and efficient transportation system, we encourage early consultation and coordination with local jurisdictions and project proponents on all development projects that utilize the multimodal transportation network.

Caltrans provides the following comments consistent with the State's smart mobility goals that support a vibrant economy and sustainable communities:

The scope of work proposes to provide Project Only Trip Assignments to SR 99
interchanges at Avenue 12 and Almond Avenue. It is expected that the project trips
would impact these two interchanges. Therefore, the traffic study should include the

intersections of SR 99 northbound Ramp/Avenue 12 and SR 99/Almond Avenue ramp intersection. The intersection of Road 29 and Avenue 12 should also be included in the study since it has not been relinquished to Madera County and it is currently within the Caltrans right of way.

- A safety review analysis for State Route intersections that would be impacted by the project per the current LDR Safety Review Guideline dated February 2024, should be provided.
- 3. The Near-Term projects on Page 3 were requested. Four proposed developments have been recorded and routed to Caltrans since 2020. They are as follows:
 - Commercial development (car dealerships, gas stations, and fast-food restaurants) along the south side of Avenue 12 opposite of Road 29 north.
 - Valero gas station at the northeast corner of Almond Avenue/Gateway Drive.

Please verify the above proposed developments with the City of Madera and County of Madera, and for additional proposed developments that were not recorded by Caltrans.

- 4. Alternative transportation policies should be applied to the development. An assessment of multi-modal facilities should be conducted to develop an integrated multi-modal transportation system to serve and help alleviate traffic congestion caused by the project and related development in this area of the city. The assessment should include the following:
 - a. Pedestrian walkways should link this Project to transit facilities, bicycle pathways and other walkways in the surrounding area.
 - b. Coordinating connections to local and regional bicycle pathways should be done to encourage further the use of bicycles for commuter and recreational purposes.
 - c. Transit service and bus stop accommodations should be extended to within $\frac{1}{4}$ -mile of the Project site.
- 5. Caltrans **recommends** that the Project implement "smart growth" principles regarding parking solutions, providing alternative transportation choices to residents. Alternative transportation choices may include but are not limited to parking for carpools/vanpools, car-share and/or ride-share programs.
- 6. Based on Caltrans Vehicle Miles Traveled (VMT)-Focused Transportation Impact Study Guide, dated May 20, 2020, and effective as of July 1, 2020, Caltrans seeks to reduce single occupancy vehicle trips, provide a safe transportation system, reduce per capita VMT, increase accessibility to destinations via cycling, walking,

Mr. Matthew Arndt– Draft Scope of Work (008-013) July 2, 2024 Page 3

carpooling, transit and reduce greenhouse gas (GHG) emissions. Caltrans recommends that the project proponent continue to work with the city to implement further improvements to reduce VMT and offer a variety of transportation modes for residents.

If you have any other questions, please call or email: Keyomi Jones, Transportation Planner at (559) 981-7284 or keyomi.jones@dot.ca.gov.

Sincerely,

Mr. Dave Padilla, Branch Chief, Transportation Planning – North

Appendix B: Traffic Counts

310 N. Irwin Street - Suite 20 Hanford, CA 93230

800-975-6938 Phone/Fax www.metrotrafficdata.com

Turning Movement Report

Prepared For:

JLB Traffic Engineering, Inc. 516 W. Shaw Ave, Suite 103 Fresno, CA 93704

LOCATION	SR99 SB Ramps @ Almond Ave	LATITUDE	36.9455
COUNTY_	Fresno	LONGITUDE	-120.0455
COLLECTION DATE _	Tuesday, August 27, 2024	WEATHER	Clear

		1	Northboun	ıd			9	Southbour	nd				Eastboun	d			1	Vestboun	d	
Time	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks
7:00 AM - 7:15 AM	0	0	0	0	0	0	11	1	16	0	0	68	14	1	4	0	1	9	32	0
7:15 AM - 7:30 AM	0	1	0	0	0	0	16	1	24	0	0	86	20	0	3	0	0	14	34	0
7:30 AM - 7:45 AM	0	3	0	0	0	0	33	0	36	1	0	69	33	4	2	0	0	24	22	0
7:45 AM - 8:00 AM	0	2	0	1	0	0	28	2	72	0	0	52	24	5	2	0	0	46	18	0
8:00 AM - 8:15 AM	0	0	0	1	1	0	22	5	42	2	0	54	14	5	3	0	2	30	18	2
8:15 AM - 8:30 AM	0	4	0	0	0	0	16	3	17	2	0	63	20	2	7	0	1	28	24	0
8:30 AM - 8:45 AM	0	1	0	1	1	0	23	0	30	1	0	41	15	3	2	0	1	14	12	1
8:45 AM - 9:00 AM	0	4	0	1	0	0	12	2	33	1	0	32	17	7	1	0	2	12	16	1
TOTAL	0	15	0	4	2	0	161	14	270	7	0	465	157	27	24	0	7	177	176	4

		1	orthboun	ıd			8	outhbour	ıd				Eastboun	t			1	Nestboun	d	
Time	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks
4:00 PM - 4:15 PM	0	4	1	0	0	0	29	2	24	3	0	56	30	0	4	0	0	24	8	0
4:15 PM - 4:30 PM	0	1	3	0	0	0	28	0	25	1	0	54	29	2	2	0	0	21	10	0
4:30 PM - 4:45 PM	0	5	0	0	0	0	27	0	35	1	0	53	26	0	1	0	0	12	12	1
4:45 PM - 5:00 PM	0	2	1	0	0	0	32	0	27	0	0	50	25	1	2	0	0	26	8	1
5:00 PM - 5:15 PM	0	5	1	0	0	1	29	0	34	2	0	77	31	1	2	0	0	17	23	1
5:15 PM - 5:30 PM	0	0	2	0	0	0	34	1	34	0	0	61	30	1	1	0	0	14	8	0
5:30 PM - 5:45 PM	0	4	0	0	0	0	25	1	22	0	0	43	20	0	3	0	0	18	5	0
5:45 PM - 6:00 PM	0	1	0	0	0	0	34	1	15	0	0	38	26	0	2	0	0	12	15	4
TOTAL	0	22	8	0	0	1	238	5	216	7	0	432	217	5	17	0	0	144	89	7

		١	lorthboun	d			S	outhbour	ıd				Eastboun	t			1	Nestboun	d	
PEAK HOUR	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks
7:15 AM - 8:15 AM	0	6	0	2	1	0	99	8	174	3	0	261	91	14	10	0	2	114	92	2
4:30 PM - 5:30 PM	0	12	4	0	0	1	122	1	130	3	0	241	112	3	6	0	0	69	51	3

	PHF	Trucks							SR99 SI	3 Ramps	<u>s</u>	<u>PHF</u>				
АМ	0.863	1.9%					РМ	130	1	122	1	0.92				
PM	0.852	1.6%					AM	174	8	99	0	0.689				
			•	<u>PHF</u>	0.817	0.863		4	1	L	b		AM	PM		
					0	0	2		•			L	92	51		
					241	261						\leftarrow	114	69		
			Almond Ave		112	91	\rightarrow		No	orth		L	2	0		Almond Ave
					3	14	7					5	0	0		
					PM	AM	PHF	A	4	1	P	•	0.813	0.75	<u>PHF</u>	
							0.667	0	6	0	2	AM				
							0.667	0	12	4	0	PM				

Hospital parking lot

310 N. Irwin Street - Suite 20 Hanford, CA 93230

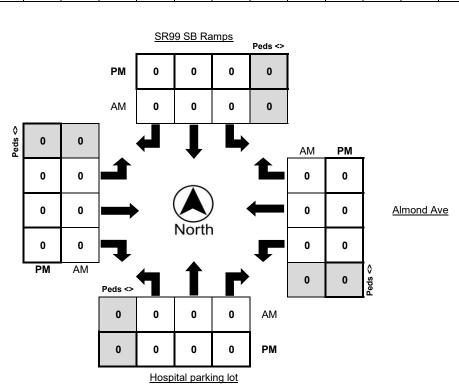
800-975-6938 Phone/Fax www.metrotrafficdata.com

Turning Movement Report

Prepared For:

JLB Traffic Engineering, Inc. 516 W. Shaw Ave, Suite 103 Fresno, CA 93704

LOCATION	SR99 SB Ramps @ Almond Ave	LATITUDE	36.9455	
COUNTY	Fresno	LONGITUDE	-120.0455	
COLLECTION DATE	Tuesday, August 27, 2024	WEATHER	Clear	


	Nort	hbound E	Bikes	N.Leg	Sout	thbound E	Bikes	S.Leg	Eas	tbound B	ikes	E.Leg	Wes	tbound B	ikes	W.Leg
Time	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds
7:00 AM - 7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM - 7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30 AM - 7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM - 8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM - 8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15 AM - 8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30 AM - 8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45 AM - 9:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Nort	hbound E	Bikes	N.Leg	Sout	thbound E	Bikes	S.Leg	Eas	tbound B	ikes	E.Leg	Wes	stbound B	ikes	W.Leg
Time	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds
4:00 PM - 4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM - 4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM - 4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM - 5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM - 5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM - 5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM - 5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM - 6:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Nort	thbound E	Bikes	N.Leg	Sout	thbound E	Bikes	S.Leg	Eas	tbound B	ikes	E.Leg	Wes	tbound B	ikes	W.Leg
PEAK HOUR	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds
7:15 AM - 8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM - 5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bikes	Peds
AM Peak Total	0	0
PM Peak Total	0	0

Almond Ave

Page 2 of 3

310 N. Irwin Street - Suite 20 Hanford, CA 93230

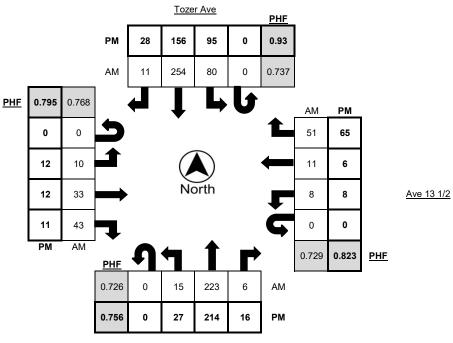
800-975-6938 Phone/Fax www.metrotrafficdata.com

Ave 13 1/2

Turning Movement Report

Prepared For:

JLB Traffic Engineering, Inc. 516 W. Shaw Ave, Suite 103 Fresno, CA 93704


LOCATION	Tozer Ave (Rd 28) @ Ave 13 1/2	LATITUDE	36.9454
COUNTY_	Fresno	LONGITUDE	-120.0376
COLLECTION DATE_	Tuesday, August 27, 2024	WEATHER	Clear

		N	lorthboun	d			S	outhbour	ıd				Eastboun	d			1	Nestboun	d	
Time	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks
7:00 AM - 7:15 AM	0	3	18	0	2	0	4	35	0	0	0	0	0	9	0	0	3	1	7	0
7:15 AM - 7:30 AM	0	2	36	1	1	0	10	47	0	0	0	5	4	13	1	0	2	0	9	1
7:30 AM - 7:45 AM	0	2	56	2	3	0	25	47	5	3	0	2	14	12	2	0	2	3	13	0
7:45 AM - 8:00 AM	0	8	76	0	5	0	37	77	3	2	0	0	14	9	0	0	3	4	17	3
8:00 AM - 8:15 AM	0	3	55	3	2	0	8	83	3	4	0	3	1	9	1	0	1	4	12	1
8:15 AM - 8:30 AM	0	4	47	4	2	0	13	36	3	3	0	4	1	3	0	0	3	4	4	0
8:30 AM - 8:45 AM	0	6	48	3	6	0	7	27	0	2	0	6	1	5	0	0	3	2	12	0
8:45 AM - 9:00 AM	0	2	38	0	2	0	13	37	1	1	0	3	1	6	0	0	2	0	15	1
TOTAL	0	30	374	13	23	0	117	389	15	15	0	23	36	66	4	0	19	18	89	6

		N	lorthboun	d			S	outhboun	ıd				Eastbound	d			,	Nestboun	d	
Time	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks
4:00 PM - 4:15 PM	0	5	74	6	3	0	26	39	5	4	0	3	5	3	1	0	3	0	16	0
4:15 PM - 4:30 PM	0	5	54	5	2	0	26	41	8	0	0	5	4	1	0	0	1	4	15	2
4:30 PM - 4:45 PM	0	12	42	2	1	0	21	34	9	0	0	1	2	4	0	0	2	2	20	0
4:45 PM - 5:00 PM	0	5	44	3	2	0	22	42	6	3	0	3	1	3	0	0	2	0	14	1
5:00 PM - 5:15 PM	1	0	39	2	0	0	17	75	4	0	0	2	0	2	0	0	2	3	15	0
5:15 PM - 5:30 PM	0	7	43	4	2	0	18	53	2	0	0	4	3	7	2	0	3	4	14	1
5:30 PM - 5:45 PM	0	3	39	1	1	0	17	46	7	0	0	3	2	5	0	0	4	1	16	1
5:45 PM - 6:00 PM	0	3	37	1	1	0	22	47	5	1	0	4	2	4	1	0	4	1	12	0
TOTAL	1	40	372	24	12	0	169	377	46	8	0	25	19	29	4	0	21	15	122	5

		١	lorthboun	d			S	outhbour	ıd				Eastboun	t			1	Nestboun	d	
PEAK HOUR	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks
7:15 AM - 8:15 AM	0	15	223	6	11	0	80	254	11	9	0	10	33	43	4	0	8	11	51	5
4:00 PM - 5:00 PM	0	27	214	16	8	0	95	156	28	7	0	12	12	11	1	0	8	6	65	3

	PHF	Trucks
АМ	0.751	3.9%
РМ	0.878	2.9%

Tozer Ave

310 N. Irwin Street - Suite 20 Hanford, CA 93230

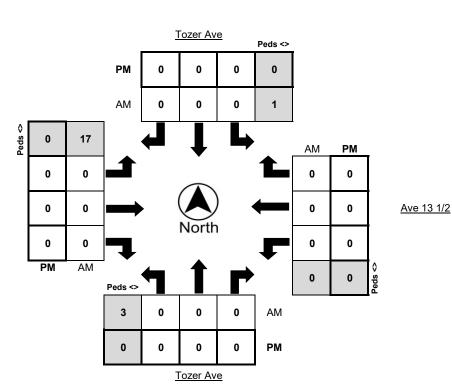
800-975-6938 Phone/Fax www.metrotrafficdata.com

Turning Movement Report

Prepared For:

JLB Traffic Engineering, Inc. 516 W. Shaw Ave, Suite 103 Fresno, CA 93704

Tozer Ave (Rd 28) @ Ave 13 1/2	LATITUDE	36.9454	
Fresno	LONGITUDE	-120.0376	
Tuesday, August 27, 2024	WEATHER	Clear	
	Fresno	Fresno LONGITUDE	Fresno LONGITUDE -120.0376


	Nort	hbound E	Bikes	N.Leg	Sout	thbound E	Bikes	S.Leg	Eas	tbound B	ikes	E.Leg	Wes	tbound B	ikes	W.Leg
Time	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds
7:00 AM - 7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4
7:15 AM - 7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30 AM - 7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7
7:45 AM - 8:00 AM	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	4
8:00 AM - 8:15 AM	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	6
8:15 AM - 8:30 AM	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0
8:30 AM - 8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4
8:45 AM - 9:00 AM	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	3
TOTAL	0	0	0	1	0	0	0	6	0	0	0	1	0	0	0	28

	Nort	hbound E	Bikes	N.Leg	Sout	thbound E	Bikes	S.Leg	Eas	tbound B	ikes	E.Leg	Wes	tbound B	likes	W.Leg
Time	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds
4:00 PM - 4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM - 4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM - 4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM - 5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM - 5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
5:15 PM - 5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
5:30 PM - 5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM - 6:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4
TOTAL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6

	Nort	thbound E	Bikes	N.Leg	Sout	thbound E	Bikes	S.Leg	Eas	tbound B	ikes	E.Leg	Wes	tbound B	ikes	W.Leg
PEAK HOUR	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds
7:15 AM - 8:15 AM	0	0	0	1	0	0	0	3	0	0	0	0	0	0	0	17
4:00 PM - 5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bikes	Peds
AM Peak Total	0	21
PM Peak Total	0	0

Ave 13 1/2

Page 2 of 3

310 N. Irwin Street - Suite 20 Hanford, CA 93230

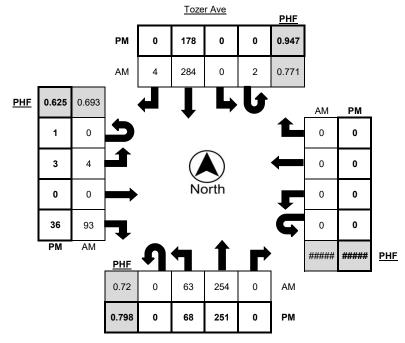
800-975-6938 Phone/Fax www.metrotrafficdata.com

Knox St

Turning Movement Report

Prepared For:

JLB Traffic Engineering, Inc. 516 W. Shaw Ave, Suite 103 Fresno, CA 93704


LOCATION	Tozer Ave (Rd 28) @ Knox St	LATITUDE	36.9412
COUNTY	Fresno	LONGITUDE	-120.0376
COLLECTION DATE	Tuesday, August 27, 2024	WEATHER	Clear

		١	Northboun	nd			8	Southbour	nd				Eastboun	d			1	Westboun	d	
Time	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks
7:00 AM - 7:15 AM	0	3	17	0	0	0	0	47	0	0	0	1	0	9	1	0	0	0	0	0
7:15 AM - 7:30 AM	0	9	40	0	3	0	0	62	0	1	0	0	0	13	0	0	0	0	0	0
7:30 AM - 7:45 AM	0	9	58	0	2	0	0	57	2	1	0	1	0	34	0	0	0	0	0	0
7:45 AM - 8:00 AM	0	29	81	0	5	1	0	91	2	1	0	1	0	25	1	0	0	0	0	0
8:00 AM - 8:15 AM	0	14	60	0	2	0	0	93	0	5	0	2	0	15	0	0	0	0	0	0
8:15 AM - 8:30 AM	0	11	55	0	2	1	0	43	0	1	0	0	0	19	0	0	0	0	0	0
8:30 AM - 8:45 AM	0	9	57	0	6	0	0	35	0	1	0	0	0	7	0	0	0	0	0	0
8:45 AM - 9:00 AM	0	5	38	0	2	0	0	41	1	0	0	1	0	7	0	0	0	0	0	0
TOTAL	0	89	406	0	22	2	0	469	5	10	0	6	0	129	2	0	0	0	0	0

		N	orthboun	d			S	outhbour	ıd				Eastboun	d			1	Nestboun	d	
Time	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks
4:00 PM - 4:15 PM	0	17	83	0	3	0	0	43	0	4	0	2	0	14	1	0	0	0	0	0
4:15 PM - 4:30 PM	0	18	61	0	2	0	0	47	0	1	0	1	0	8	0	0	0	0	0	0
4:30 PM - 4:45 PM	0	14	57	0	1	0	0	41	0	1	1	0	0	8	0	0	0	0	0	0
4:45 PM - 5:00 PM	0	19	50	0	2	0	0	47	0	3	0	0	0	6	0	0	0	0	0	0
5:00 PM - 5:15 PM	0	8	42	0	0	0	0	72	0	0	0	1	0	11	0	0	0	0	0	0
5:15 PM - 5:30 PM	0	12	53	0	2	0	0	62	1	1	0	0	0	8	0	0	0	0	0	0
5:30 PM - 5:45 PM	0	10	42	0	1	0	0	58	0	0	0	0	0	16	0	0	0	0	0	0
5:45 PM - 6:00 PM	0	9	42	0	1	0	0	52	3	1	0	1	0	10	0	0	0	0	0	0
TOTAL	0	107	430	0	12	0	0	422	4	11	1	5	0	81	1	0	0	0	0	0

		N	Northboun	ıd			S	outhbour	ıd				Eastbound	t			1	Nestboun	d	
PEAK HOUR	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks
7:30 AM - 8:30 AM	0	63	254	0	11	2	0	284	4	8	0	4	0	93	1	0	0	0	0	0
4:00 PM - 5:00 PM	0	68	251	0	8	0	0	178	0	9	1	3	0	36	1	0	0	0	0	0

	PHF	Trucks
АМ	0.765	2.8%
PM	0.844	3.4%

Tozer Ave

310 N. Irwin Street - Suite 20 Hanford, CA 93230

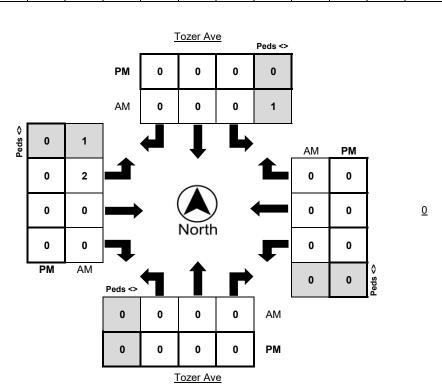
800-975-6938 Phone/Fax www.metrotrafficdata.com

Turning Movement Report

Prepared For:

JLB Traffic Engineering, Inc. 516 W. Shaw Ave, Suite 103 Fresno, CA 93704

LOCATION	Tozer Ave (Rd 28) @ Knox St	LATITUDE	36.9412
COUNTY	Fresno	LONGITUDE	-120.0376
COLLECTION DATE	Tuesday, August 27, 2024	WEATHER	Clear
OOLLEGIION DAIL	rucsday, August 21, 2024	WEATHER.	Cicai


	Nort	hbound E	Bikes	N.Leg	Sout	thbound E	Bikes	S.Leg	Eas	tbound B	ikes	E.Leg	Wes	tbound B	ikes	W.Leg
Time	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds
7:00 AM - 7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM - 7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30 AM - 7:45 AM	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM - 8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM - 8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
8:15 AM - 8:30 AM	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0
8:30 AM - 8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45 AM - 9:00 AM	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0
TOTAL	0	0	0	1	0	0	0	1	2	0	1	0	0	0	0	1

-	Nort	hbound E	Bikes	N.Leg	Sout	thbound E	Bikes	S.Leg	Eas	tbound B	ikes	E.Leg	Wes	stbound B	ikes	W.Leg
Time	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds
4:00 PM - 4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM - 4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM - 4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM - 5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM - 5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
5:15 PM - 5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM - 5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM - 6:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

	Nort	thbound E	Bikes	N.Leg	Sout	hbound E	Bikes	S.Leg	Eas	tbound B	ikes	E.Leg	Wes	tbound B	ikes	W.Leg
PEAK HOUR	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds
7:30 AM - 8:30 AM	0	0	0	1	0	0	0	0	2	0	0	0	0	0	0	1
4:00 PM - 5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bikes	Peds
AM Peak Total	2	2
PM Peak Total	0	0

Knox St

Page 2 of 3

310 N. Irwin Street - Suite 20 Hanford, CA 93230

800-975-6938 Phone/Fax www.metrotrafficdata.com

Turning Movement Report

Prepared For:

JLB Traffic Engineering, Inc. 516 W. Shaw Ave, Suite 103 Fresno, CA 93704

LOCATION	Ave 13 @ Golden State / Rd 28 1/4	LATITUDE	36.9381	
COUNTY	Fresno	LONGITUDE	-120.0382	
COLLECTION DATE	Tuesday, August 27, 2024	WEATHER	Clear	

		1	Northboun	nd			8	outhbour	nd				Eastboun	d			'	Westboun	d	
Time	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks
7:00 AM - 7:15 AM	0	1	2	7	0	0	8	3	11	2	0	19	42	8	1	0	24	38	6	0
7:15 AM - 7:30 AM	0	3	1	8	0	0	13	6	17	2	0	26	61	6	2	0	23	46	6	1
7:30 AM - 7:45 AM	0	1	0	9	1	0	24	2	33	1	0	30	86	12	3	0	20	83	10	2
7:45 AM - 8:00 AM	0	2	3	12	0	0	11	5	43	2	0	33	105	12	7	0	25	124	8	4
8:00 AM - 8:15 AM	0	1	1	6	0	0	8	3	19	0	0	31	81	3	3	0	24	168	5	7
8:15 AM - 8:30 AM	0	1	3	4	1	0	18	1	24	4	0	32	91	7	3	0	13	94	3	4
8:30 AM - 8:45 AM	0	1	2	4	1	0	13	3	20	3	0	15	92	5	5	0	10	40	5	3
8:45 AM - 9:00 AM	0	1	3	4	1	0	13	4	10	0	0	15	52	1	2	0	9	31	6	0
TOTAL	0	11	15	54	4	0	108	27	177	14	0	201	610	54	26	0	148	624	49	21

		N	orthboun	d			S	Southbour	nd				Eastboun	t			1	Nestboun	d	
Time	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks
4:00 PM - 4:15 PM	0	11	3	11	0	0	20	1	33	1	0	19	137	9	3	0	7	82	10	7
4:15 PM - 4:30 PM	0	5	2	6	2	0	29	2	36	2	0	17	84	7	4	0	6	68	9	1
4:30 PM - 4:45 PM	0	2	3	3	0	0	17	2	32	2	0	18	84	1	2	0	6	63	9	5
4:45 PM - 5:00 PM	0	8	4	12	2	0	19	1	33	0	0	13	83	5	1	0	5	64	15	2
5:00 PM - 5:15 PM	0	7	4	9	1	0	16	4	39	0	0	11	69	1	0	0	4	91	18	3
5:15 PM - 5:30 PM	0	6	3	6	0	0	21	1	44	1	0	10	78	3	3	0	13	69	10	2
5:30 PM - 5:45 PM	0	4	5	8	0	0	14	2	32	0	0	10	52	2	1	0	3	83	8	0
5:45 PM - 6:00 PM	0	11	1	2	0	0	24	2	33	0	0	14	62	7	4	0	7	83	9	1
TOTAL	0	54	25	57	5	0	160	15	282	6	0	112	649	35	18	0	51	603	88	21

		1	Northboun	ıd			S	outhbour	ıd				Eastbound	t			١	Nestboun	d	
PEAK HOUR	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks
7:30 AM - 8:30 AM	0	5	7	31	2	0	61	11	119	7	0	126	363	34	16	0	82	469	26	17
4:00 PM - 5:00 PM	0	26	12	32	4	0	85	6	134	5	0	67	388	22	10	0	24	277	43	15

	PHF	Trucks						<u>(</u>	Golden S	State Blv	<u>'d</u>	<u>PHF</u>	_			
АМ	0.871	3.1%					PM	134	6	85	0	0.84				
PM	0.813	3.0%					AM	119	11	61	0	0.809				
				PHF	0.723	0.872		4	1	L	b		AM	PM		
					0	0	ڪ		·			L	26	43		
					67	126	1					—	469	277		
			<u>Ave 13</u>		388	363	\longrightarrow		No	orth		L	82	24		Ave 13
					22	34	1					5	0	0		
					PM	AM	PHF	ŋ	4	1	P	•	0.732	0.869	<u>PHF</u>	
							0.632	0	5	7	31	AM			1	

0.700

Rd 28 1/4

12

26

32

PM

310 N. Irwin Street - Suite 20 Hanford, CA 93230

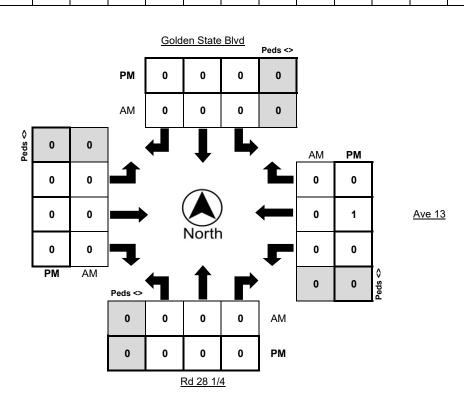
800-975-6938 Phone/Fax www.metrotrafficdata.com

Turning Movement Report

Prepared For:

JLB Traffic Engineering, Inc. 516 W. Shaw Ave, Suite 103 Fresno, CA 93704

LOCATION	Ave 13 @ Golden State / Rd 28 1/4	LATITUDE	36.9381	
COUNTY	Fresno	LONGITUDE	-120.0382	_
	T	WEATHER	OI.	
COLLECTION DATE	Tuesday, August 27, 2024	WEATHER	Clear	


	Nort	hbound E	Bikes	N.Leg	Sout	thbound E	Bikes	S.Leg	Eas	tbound B	ikes	E.Leg	Wes	tbound B	ikes	W.Leg
Time	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds
7:00 AM - 7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM - 7:30 AM	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
7:30 AM - 7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM - 8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM - 8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15 AM - 8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30 AM - 8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45 AM - 9:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0

	Nort	hbound E	Bikes	N.Leg	Sout	thbound E	Bikes	S.Leg	Eas	tbound B	ikes	E.Leg	Wes	stbound B	ikes	W.Leg
Time	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds
4:00 PM - 4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM - 4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM - 4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
4:45 PM - 5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM - 5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM - 5:30 PM	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0
5:30 PM - 5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM - 6:00 PM	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
TOTAL	0	0	0	0	0	0	0	0	0	1	2	0	0	1	0	0

	Nort	thbound E	Bikes	N.Leg	Sout	thbound E	Bikes	S.Leg	Eas	tbound B	ikes	E.Leg	Wes	tbound B	ikes	W.Leg
PEAK HOUR	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds
7:30 AM - 8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:00 PM - 5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0

	Bikes	Peds
AM Peak Total	0	0
PM Peak Total	1	0

Ave 13

Page 2 of 3

310 N. Irwin Street - Suite 20 Hanford, CA 93230

800-975-6938 Phone/Fax www.metrotrafficdata.com

Turning Movement Report

Prepared For:

JLB Traffic Engineering, Inc. 516 W. Shaw Ave, Suite 103 Fresno, CA 93704

LOCATION	Ave 13 @ Tozer Ave (Rd 28)	LATITUDE	36.9381	
COUNTY	Fresno	LONGITUDE	-120.0326	
COLLECTION DATE	Tuesday, August 27, 2024	WEATHER	Clear	

		١	orthboun	d			S	outhbour	ıd				Eastbound	t			'	Vestboun	d	
Time	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks
7:00 AM - 7:15 AM	0	0	0	0	0	0	11	0	45	0	0	22	30	0	1	0	0	23	0	1
7:15 AM - 7:30 AM	0	0	0	0	0	0	25	0	47	0	0	43	36	0	3	0	0	39	7	3
7:30 AM - 7:45 AM	0	0	0	0	0	0	38	0	46	0	0	48	75	0	5	0	0	60	16	2
7:45 AM - 8:00 AM	0	0	0	0	0	0	27	0	75	3	0	70	59	0	7	0	0	78	46	1
8:00 AM - 8:15 AM	0	0	0	0	0	0	16	0	98	3	0	47	50	0	2	0	0	97	20	3
8:15 AM - 8:30 AM	0	0	0	0	0	0	7	0	62	1	0	59	51	0	6	0	0	42	9	3
8:30 AM - 8:45 AM	0	0	0	0	0	0	15	0	31	1	0	59	54	0	7	0	0	27	1	1
8:45 AM - 9:00 AM	0	0	0	0	0	0	19	0	28	0	0	39	28	0	2	0	0	16	4	1
TOTAL	0	0	0	0	0	0	158	0	432	8	0	387	383	0	33	0	0	382	103	15

		ı	orthboun	ıd			9	outhbour	ıd				Eastboun	t			1	Vestboun	d	
Time	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks
4:00 PM - 4:15 PM	0	0	0	0	0	0	10	0	51	6	0	89	79	0	5	0	0	50	17	1
4:15 PM - 4:30 PM	0	0	0	0	0	0	7	0	46	1	0	64	53	0	6	0	0	40	11	2
4:30 PM - 4:45 PM	0	0	0	0	0	0	8	0	40	0	0	48	59	0	5	0	0	36	24	2
4:45 PM - 5:00 PM	0	0	0	0	0	0	11	0	41	3	0	50	61	0	2	0	0	43	15	1
5:00 PM - 5:15 PM	0	0	0	0	0	0	11	0	74	1	0	41	48	0	1	0	0	41	12	1
5:15 PM - 5:30 PM	0	0	0	0	0	0	10	0	56	1	0	51	56	0	4	0	0	27	16	2
5:30 PM - 5:45 PM	0	0	0	0	0	0	15	0	54	0	0	41	42	0	1	0	0	45	14	0
5:45 PM - 6:00 PM	0	0	0	0	0	0	15	0	48	1	0	40	40	0	1	0	0	43	13	0
TOTAL	0	0	0	0	0	0	87	0	410	13	0	424	438	0	25	0	0	325	122	9

		1	Northboun	ıd			S	outhbour	ıd				Eastbound	t			١	Nestboun	d	
PEAK HOUR	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks
7:30 AM - 8:30 AM	0	0	0	0	0	0	88	0	281	7	0	224	235	0	20	0	0	277	91	9
4:00 PM - 5:00 PM	0	0	0	0	0	0	36	0	178	10	0	251	252	0	18	0	0	169	67	6

									Toza	r Ave						
	PHF	Trucks							1020	1 AVE		PHF				
АМ	0.842	3.0%					PM	178	0	36	0	0.877				
PM	0.805	3.6%					AM	281	0	88	0	0.809				
			•	<u>PHF</u>	0.749	0.89] .	L	1	L	b		AM	PM		
					0	0	2		•			1	91	67		
					251	224						—	277	169		
			<u>Ave 13</u>		252	235	\rightarrow		No	orth		L	0	0		<u>Ave 13</u>
					0	0	1					5	0	0		
					PM	AM	PHF	A	4	1	P	•	0.742	0.881	<u>PHF</u>	
							#####	0	0	0	0	AM			-	
							#####	0	0	0	0	PM				

310 N. Irwin Street - Suite 20 Hanford, CA 93230

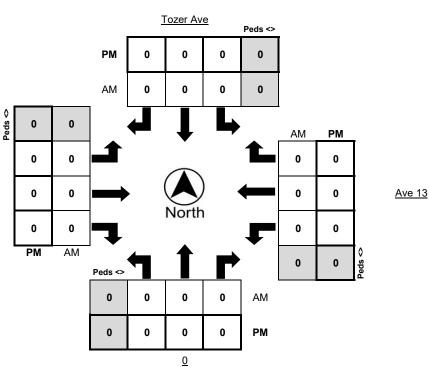
800-975-6938 Phone/Fax www.metrotrafficdata.com

Turning Movement Report

Prepared For:

JLB Traffic Engineering, Inc. 516 W. Shaw Ave, Suite 103 Fresno, CA 93704

LOCATION	Ave 13 @ Tozer Ave (Rd 28)	LATITUDE	36.9381	
COUNTY	Fresno	LONGITUDE	-120.0326	
COLLECTION DATE	Tuesday, August 27, 2024	WEATHER	Clear	
COLLECTION DATE	ruesuay, August 21, 2024	WEATHER	Clear	


	Nort	hbound E	Bikes	N.Leg	Sout	thbound E	Bikes	S.Leg	Eas	tbound B	ikes	E.Leg	Wes	tbound B	ikes	W.Leg
Time	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds
7:00 AM - 7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM - 7:30 AM	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0
7:30 AM - 7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM - 8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM - 8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15 AM - 8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30 AM - 8:45 AM	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
8:45 AM - 9:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	0	0	0	1	1	0	0	0	0	1	0	0	0	0	0	0

	Nort	hbound E	Bikes	N.Leg	Sout	thbound E	Bikes	S.Leg	Eas	tbound B	ikes	E.Leg	Wes	tbound B	ikes	W.Leg
Time	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds
4:00 PM - 4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM - 4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM - 4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM - 5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM - 5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM - 5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM - 5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM - 6:00 PM	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
TOTAL	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0

	Nort	thbound E	Bikes	N.Leg	Sout	thbound E	Bikes	S.Leg	Eas	tbound B	ikes	E.Leg	Wes	tbound B	ikes	W.Leg
PEAK HOUR	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds
7:30 AM - 8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:00 PM - 5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bikes	Peds
AM Peak Total	0	0
PM Peak Total	0	0

Ave 13

310 N. Irwin Street - Suite 20 Hanford, CA 93230

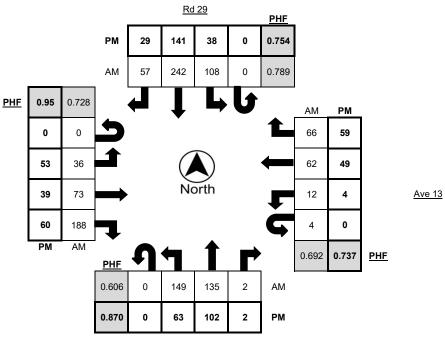
800-975-6938 Phone/Fax www.metrotrafficdata.com

Ave 13

Turning Movement Report

Prepared For:

JLB Traffic Engineering, Inc. 516 W. Shaw Ave, Suite 103 Fresno, CA 93704


LOCATION	Ave 13 @ Rd 29	LATITUDE	36.9380
COUNTY	Fresno	LONGITUDE_	-120.0194
COLLECTION DATE	Tuesday, August 27, 2024	WEATHER	Clear

		1	Northboun	nd			8	Southbour	nd				Eastboun	d			'	Vestboun	d	
Time	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks
7:00 AM - 7:15 AM	0	2	7	1	3	0	2	33	4	2	0	9	6	26	0	0	0	1	1	0
7:15 AM - 7:30 AM	0	13	14	0	4	0	7	52	14	9	0	5	16	25	0	2	1	2	1	0
7:30 AM - 7:45 AM	0	34	38	1	6	0	39	78	12	9	0	7	35	60	2	1	3	15	21	3
7:45 AM - 8:00 AM	0	71	46	1	5	0	43	66	12	6	0	11	14	74	2	1	5	20	26	1
8:00 AM - 8:15 AM	0	31	37	0	6	0	19	46	19	10	0	13	8	29	0	0	3	25	18	1
8:15 AM - 8:30 AM	0	9	10	1	6	0	10	27	15	4	0	8	7	13	3	0	2	1	4	1
8:30 AM - 8:45 AM	0	4	7	0	2	0	9	37	5	7	0	17	8	18	1	0	4	5	2	1
8:45 AM - 9:00 AM	0	4	8	0	5	0	6	43	2	7	0	7	9	25	1	0	0	1	3	0
TOTAL	0	168	167	4	37	0	135	382	83	54	0	77	103	270	9	4	18	70	76	7

		N	orthboun	d			S	outhbour	ıd				Eastboun	t			1	Nestboun	d	
Time	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks
4:00 PM - 4:15 PM	0	14	40	0	0	0	5	24	6	4	0	18	4	18	1	0	1	15	15	1
4:15 PM - 4:30 PM	0	20	23	0	4	0	9	39	10	3	0	12	6	11	1	0	2	6	12	1
4:30 PM - 4:45 PM	0	16	31	1	2	0	7	26	9	7	0	14	16	10	1	0	1	18	19	0
4:45 PM - 5:00 PM	0	18	23	0	0	0	13	22	7	0	0	15	9	15	1	0	2	12	12	1
5:00 PM - 5:15 PM	0	14	25	0	2	0	8	55	6	2	0	8	10	21	0	0	1	7	13	1
5:15 PM - 5:30 PM	0	15	23	1	1	0	10	38	7	2	0	16	4	14	0	0	0	12	15	0
5:30 PM - 5:45 PM	0	18	23	2	0	0	7	25	4	2	0	24	12	13	0	1	3	10	13	1
5:45 PM - 6:00 PM	0	22	24	1	0	0	7	27	12	1	0	14	6	17	0	1	1	6	6	0
TOTAL	0	137	212	5	9	0	66	256	61	21	0	121	67	119	4	2	11	86	105	5

		N	lorthboun	d			S	outhbour	ıd				Eastbound	t			١	Nestboun	d	
PEAK HOUR	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks
7:15 AM - 8:15 AM	0	149	135	2	21	0	108	242	57	34	0	36	73	188	4	4	12	62	66	5
4:30 PM - 5:30 PM	0	63	102	2	5	0	38	141	29	11	0	53	39	60	2	0	4	49	59	2

	PHF	Trucks
АМ	0.727	5.6%
РМ	0.951	3.1%

Rd 29

310 N. Irwin Street - Suite 20 Hanford, CA 93230

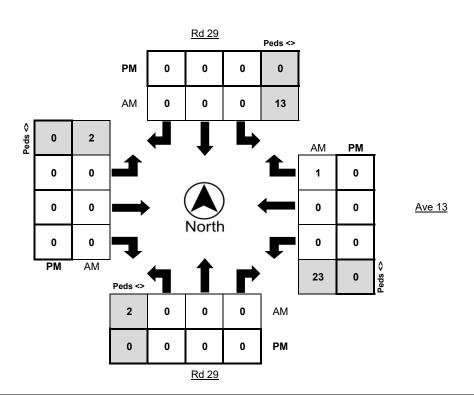
800-975-6938 Phone/Fax www.metrotrafficdata.com

Turning Movement Report

Prepared For:

JLB Traffic Engineering, Inc. 516 W. Shaw Ave, Suite 103 Fresno, CA 93704

LOCATION	Ave 13 @ Rd 29	LATITUDE	36.9380
COUNTY	Fresno	LONGITUDE	-120.0194
COLLECTION DATE	Tuesday, August 27, 2024	WEATHER	Clear


	Nort	hbound E	Bikes	N.Leg	Sout	thbound E	Bikes	S.Leg	Eas	tbound B	ikes	E.Leg	Wes	tbound B	ikes	W.Leg
Time	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds
7:00 AM - 7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
7:15 AM - 7:30 AM	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	2
7:30 AM - 7:45 AM	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM - 8:00 AM	0	0	0	9	0	0	0	0	0	0	0	20	0	0	1	0
8:00 AM - 8:15 AM	0	0	0	2	0	0	0	0	0	0	0	3	0	0	0	0
8:15 AM - 8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30 AM - 8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45 AM - 9:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	0	0	0	13	0	0	0	2	0	0	0	23	0	0	1	4

	Nort	hbound E	Bikes	N.Leg	Sout	thbound E	Bikes	S.Leg	Eas	tbound B	ikes	E.Leg	Wes	tbound B	ikes	W.Leg
Time	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds
4:00 PM - 4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM - 4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM - 4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM - 5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM - 5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM - 5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM - 5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM - 6:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Nort	thbound E	Bikes	N.Leg	Sout	thbound E	Bikes	S.Leg	Eas	tbound B	ikes	E.Leg	Wes	tbound B	ikes	W.Leg
PEAK HOUR	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds
7:15 AM - 8:15 AM	0	0	0	13	0	0	0	2	0	0	0	23	0	0	1	2
4:30 PM - 5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bikes	Peds
AM Peak Total	1	40
PM Peak Total	0	0

Ave 13

Page 2 of 3

Metro Traffic Data Inc. 310 N. Irwin Street - Suite 20 Hanford, CA 93230

800-975-6938 Phone/Fax www.metrotrafficdata.com

Turning Movement Report

Prepared For:

LOCATION	Ave 12 @ SR 99 NB Ramps	LATITUDE_	36.9238
COUNTY	Fresno	LONGITUDE	-120.0213
COLLECTION DATE	Tuesday, November 15, 2022	WEATHER_	Clear

		N	lorthboun	ıd			S	outhbour	nd				Eastboun	d			١	Vestboun	d	
Time	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks
7:00 AM - 7:15 AM	0	73	0	21	15	0	0	0	0	0	0	10	73	0	22	0	0	51	41	5
7:15 AM - 7:30 AM	0	99	0	31	15	0	0	0	0	0	0	20	92	0	18	0	0	63	56	5
7:30 AM - 7:45 AM	0	109	0	40	23	0	0	0	0	0	0	18	121	0	20	0	0	63	78	5
7:45 AM - 8:00 AM	0	97	0	32	15	0	0	0	0	0	0	19	147	0	19	0	0	54	96	11
8:00 AM - 8:15 AM	0	58	0	27	12	0	0	0	0	0	0	17	91	0	19	0	0	60	69	8
8:15 AM - 8:30 AM	0	58	0	16	15	0	0	0	0	0	0	20	90	0	26	0	0	52	45	8
8:30 AM - 8:45 AM	0	51	1	11	13	0	0	0	0	0	1	24	80	0	16	0	0	29	33	4
8:45 AM - 9:00 AM	0	37	0	20	11	0	0	0	0	0	0	22	74	0	22	0	0	45	45	8
TOTAL	0	582	1	198	119	0	0	0	0	0	1	150	768	0	162	0	0	417	463	54

		N	lorthboun	ıd			S	outhbour	nd				Eastboun	d			٧	Vestboun	d	
Time	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks
4:00 PM - 4:15 PM	0	79	0	26	16	0	0	0	0	0	0	26	92	0	23	1	0	66	70	5
4:15 PM - 4:30 PM	0	80	2	35	11	0	0	0	0	0	0	21	121	0	19	0	0	56	52	5
4:30 PM - 4:45 PM	0	80	0	40	12	0	0	0	0	0	0	18	116	0	12	0	0	55	54	3
4:45 PM - 5:00 PM	0	91	0	37	13	0	0	0	0	0	0	16	118	0	13	0	0	66	55	5
5:00 PM - 5:15 PM	0	92	0	41	7	0	0	0	0	0	0	27	126	0	14	0	0	75	64	2
5:15 PM - 5:30 PM	0	87	0	25	6	0	0	0	0	0	0	21	135	0	14	0	0	65	54	1
5:30 PM - 5:45 PM	0	85	0	41	11	0	0	0	0	0	0	19	93	0	20	0	0	66	46	3
5:45 PM - 6:00 PM	0	85	0	32	8	0	0	0	0	0	0	12	66	0	5	0	0	55	53	1
TOTAL	0	679	2	277	84	0	0	0	0	0	0	160	867	0	120	1	0	504	448	25

		N	lorthboun	nd			S	outhbour	nd				Eastboun	t			١	Vestboun	d	
PEAK HOUR	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks
7:15 AM - 8:15 AM	0	363	0	130	65	0	0	0	0	0	0	74	451	0	76	0	0	240	299	29
4:30 PM - 5:30 PM	0	350	0	143	38	0	0	0	0	0	0	82	495	0	53	0	0	261	227	11

	PHF	Trucks						SF	R 99 Nor	th On-ra	<u>mp</u>	PHF				
АМ	0.875	10.9%					РМ	0	0	0	0	#####				
PM	0.916	6.5%				=	AM	0	0	0	0	#####				
				PHF	0.925	0.791		4	1	L	b		AM	PM		
					0	0	2					L	299	227		
					82	74	1						240	261		
			<u>Ave 12</u>		495	451	\rightarrow		No	orth		L	0	0		<u>Ave 12</u>
					0	0	7					5	0	0		
					PM	AM	PHF	P	4	1		•	0.898	0.878	<u>PHF</u>	
							0.827	0	363	0	130	AM			,	
							0.927	0	350	0	143	РМ				

SR 99 North Off-ramp

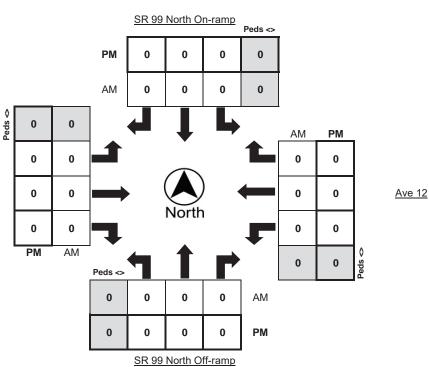
310 N. Irwin Street - Suite 20 Hanford, CA 93230

800-975-6938 Phone/Fax www.metrotrafficdata.com

Turning Movement Report

Prepared For:

LOCATION Ave 12 @ SR 99 NB Ramps **LATITUDE** 36.9238 Fresno COUNTY **LONGITUDE** -120.0213 COLLECTION DATE Tuesday, November 15, 2022 WEATHER Clear


	Nort	hbound E	Bikes	N.Leg	Sou	hbound E	Bikes	S.Leg	Eas	tbound B	ikes	E.Leg	Wes	stbound B	ikes	W.Leg
Time	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds
7:00 AM - 7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM - 7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30 AM - 7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM - 8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM - 8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15 AM - 8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30 AM - 8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45 AM - 9:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Nort	thbound E	Bikes	N.Leg	Sout	hbound E	Bikes	S.Leg	Eas	tbound B	ikes	E.Leg	Wes	stbound B	ikes	W.Leg
Time	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds
4:00 PM - 4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM - 4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM - 4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM - 5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM - 5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM - 5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM - 5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM - 6:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Nort	hbound E	Bikes	N.Leg	Sout	hbound E	Bikes	S.Leg	Eas	tbound B	ikes	E.Leg	Wes	tbound B	ikes	W.Leg
PEAK HOUR	Left	Thru	Right	Peds												
7:15 AM - 8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM - 5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bikes	Peds
AM Peak Total	0	0
PM Peak Total	0	0

Ave 12

Metro Traffic Data Inc. 310 N. Irwin Street - Suite 20 Hanford, CA 93230

800-975-6938 Phone/Fax www.metrotrafficdata.com

Turning Movement Report

Prepared For:

LOCATION	Ave 12 @ Rd 29	LATITUDE	36.9237	
COUNTY	Fresno	LONGITUDE	-120.0157	
COLLECTION DATE	Tuesday, November 15, 2022	WEATHER	Clear	

		N	lorthboun	d			S	outhbour	nd				Eastboun	d			١	Vestboun	d	
Time	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks
7:00 AM - 7:15 AM	0	0	0	0	0	0	16	0	26	3	0	22	73	0	8	0	0	71	9	3
7:15 AM - 7:30 AM	0	0	0	0	0	0	35	0	26	1	1	24	93	0	5	0	0	94	25	10
7:30 AM - 7:45 AM	0	0	0	0	0	0	34	0	19	3	0	31	117	0	8	0	0	123	20	5
7:45 AM - 8:00 AM	0	0	0	0	0	0	38	0	28	4	2	35	157	0	15	0	0	119	22	8
8:00 AM - 8:15 AM	0	0	0	0	0	0	26	0	30	3	0	19	106	0	6	0	0	115	12	6
8:15 AM - 8:30 AM	0	0	0	0	0	0	30	0	22	4	0	17	87	0	5	0	0	73	6	5
8:30 AM - 8:45 AM	0	0	0	0	0	0	31	0	14	2	0	11	80	0	2	0	0	47	11	5
8:45 AM - 9:00 AM	0	0	0	0	0	0	27	0	17	4	1	15	80	0	10	0	0	74	16	5
TOTAL	0	0	0	0	0	0	237	0	182	24	4	174	793	0	59	0	0	716	121	47

	Northbound					Southbound				Eastbound					Westbound					
Time	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks
4:00 PM - 4:15 PM	0	0	0	0	0	0	19	0	32	1	0	29	89	0	11	0	0	105	21	4
4:15 PM - 4:30 PM	0	0	0	0	0	0	15	0	27	3	0	43	116	0	7	0	0	80	20	4
4:30 PM - 4:45 PM	0	0	0	0	0	0	24	0	32	2	0	41	107	0	7	0	0	81	26	5
4:45 PM - 5:00 PM	0	0	0	0	0	0	14	0	30	0	0	45	106	0	3	0	0	84	23	4
5:00 PM - 5:15 PM	0	0	0	0	0	0	28	0	40	1	0	42	121	0	4	0	0	99	30	3
5:15 PM - 5:30 PM	0	0	0	0	0	0	23	0	43	1	0	33	122	0	4	0	0	76	35	0
5:30 PM - 5:45 PM	0	0	0	0	0	0	16	0	24	1	0	30	103	0	2	0	0	93	33	3
5:45 PM - 6:00 PM	0	0	0	0	0	0	17	0	21	2	0	25	77	0	3	0	0	102	28	1
TOTAL	0	0	0	0	0	0	156	0	249	11	0	288	841	0	41	0	0	720	216	24

	Northbound					Southbound				Eastbound					Westbound					
PEAK HOUR	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks	U-Turn	Left	Thru	Right	Trucks
7:15 AM - 8:15 AM	0	0	0	0	0	0	133	0	103	11	3	109	473	0	34	0	0	451	79	29
4:30 PM - 5:30 PM	0	0	0	0	0	0	89	0	145	4	0	161	456	0	18	0	0	340	114	12

	PHF	Trucks							Rd	l <u>29</u>		PHF				
АМ	0.842	5.5%					PM	145	0	89	0	0.86				
PM	0.906	2.6%				_	AM	103	0	133	0	0.894				
			•	PHF	0.946	0.754		4	1	4	b		AM	PM		
					0	3	2		·			1	79	114		
					161	109						\leftarrow	451	340		
			<u>Ave 12</u>		456	473	\rightarrow		No	orth		L	0	0		<u>Ave 12</u>
					0	0	7					5	0	0		
					PM	AM	PHF	P	4	1	P	•	0.927	0.88	PHF	
							#####	0	0	0	0	AM			•	
							#####	0	0	0	0	РМ				

Page 1 of 3

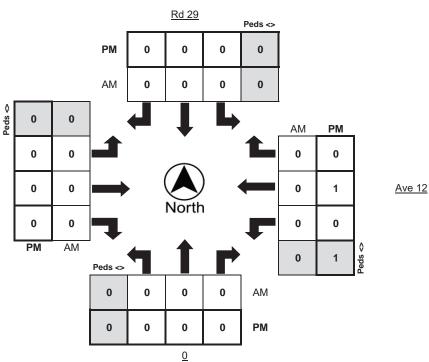
310 N. Irwin Street - Suite 20 Hanford, CA 93230

800-975-6938 Phone/Fax www.metrotrafficdata.com

Turning Movement Report

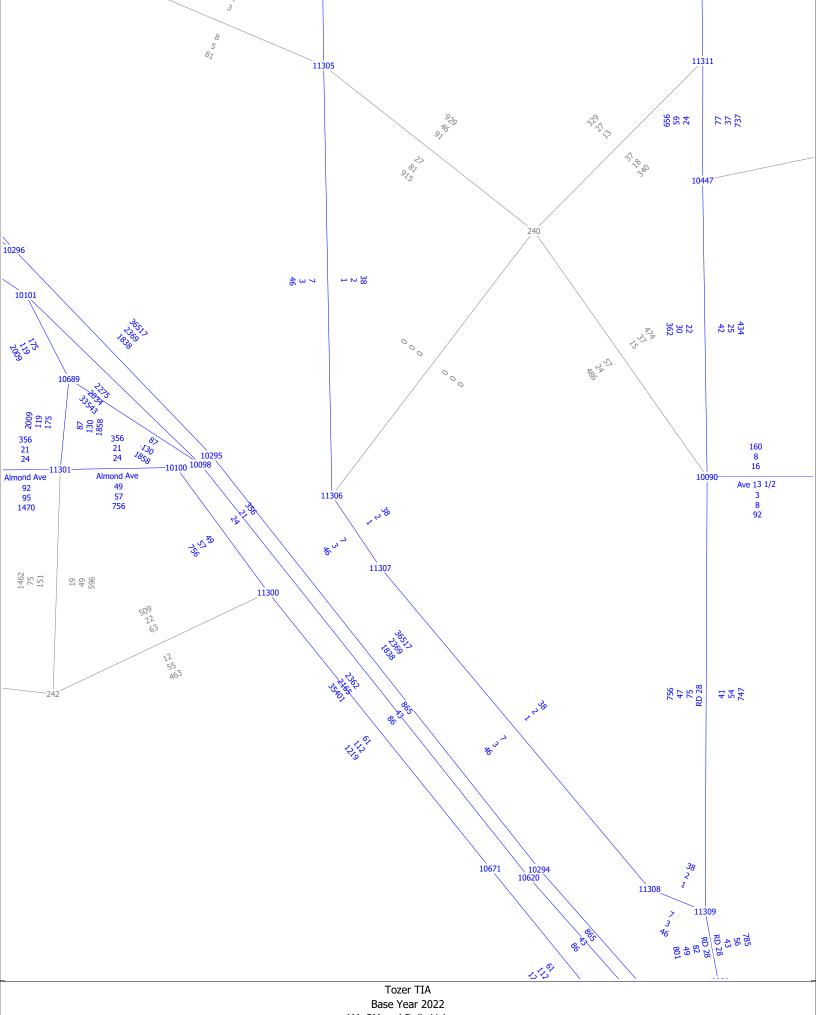
Prepared For:

LOCATION Ave 12 @ Rd 29 **LATITUDE** 36.9237 COUNTY Fresno LONGITUDE -120.0157 COLLECTION DATE Tuesday, November 15, 2022 WEATHER Clear

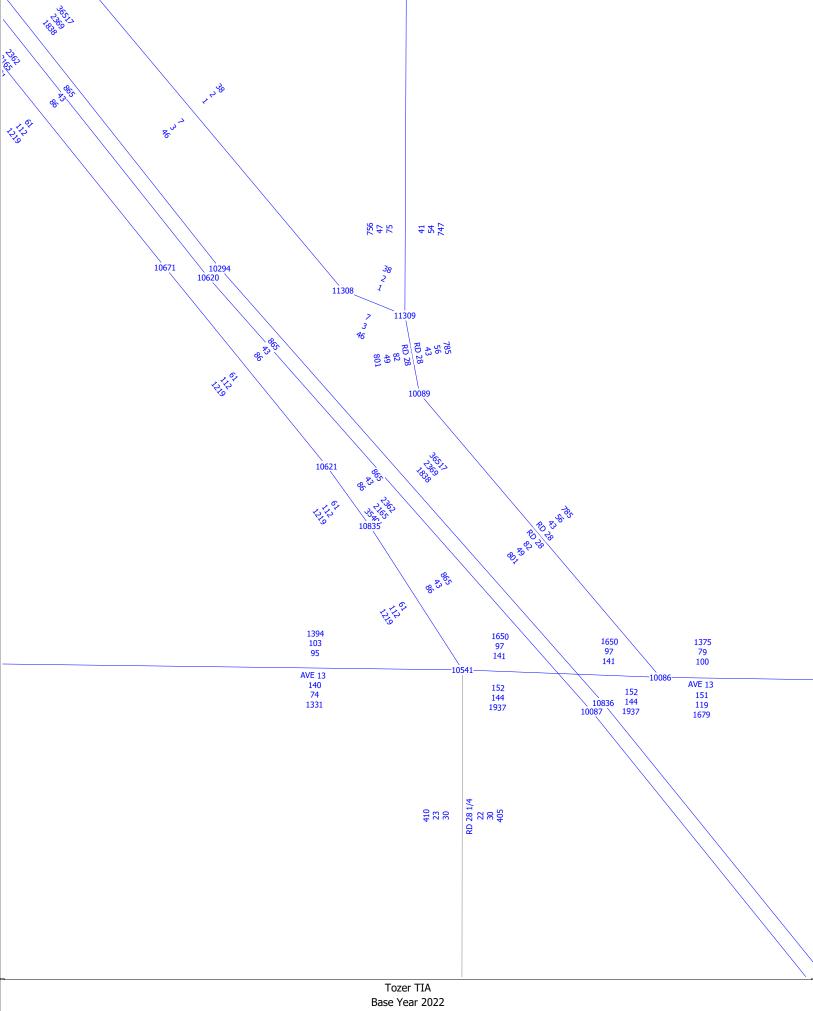

	Northbound Bikes		N.Leg	Southbound Bikes			S.Leg	Eastbound Bikes			E.Leg	Westbound Bikes		ikes	W.Leg	
Time	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds
7:00 AM - 7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM - 7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30 AM - 7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM - 8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM - 8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15 AM - 8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30 AM - 8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45 AM - 9:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Nort	thbound E	Bikes	N.Leg	Sout	thbound E	Bikes	S.Leg	Eas	tbound B	ikes	E.Leg	Wes	stbound B	ikes	W.Leg
Time	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds
4:00 PM - 4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM - 4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM - 4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM - 5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM - 5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
5:15 PM - 5:30 PM	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
5:30 PM - 5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
5:45 PM - 6:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	0

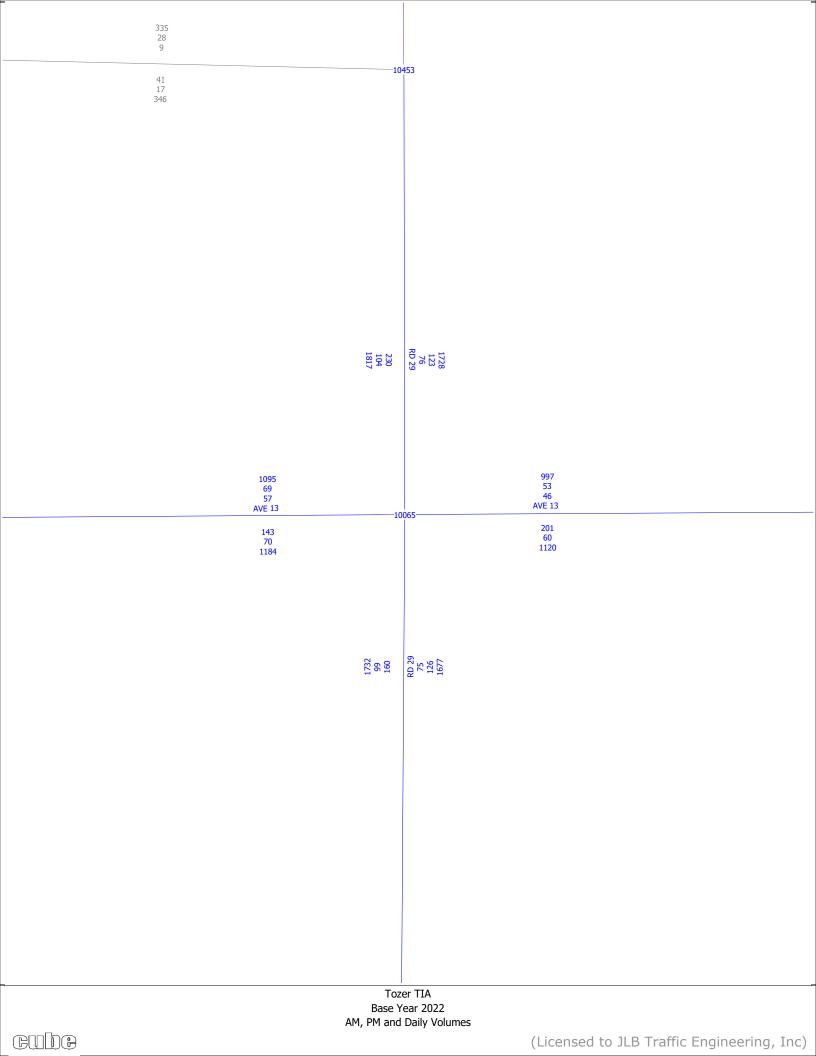
	Northbound Bikes		N.Leg	Southbound Bikes			S.Leg	Eastbound Bikes			E.Leg Westbound Bikes		ikes	W.Leg		
PEAK HOUR	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds
7:15 AM - 8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM - 5:30 PM	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0

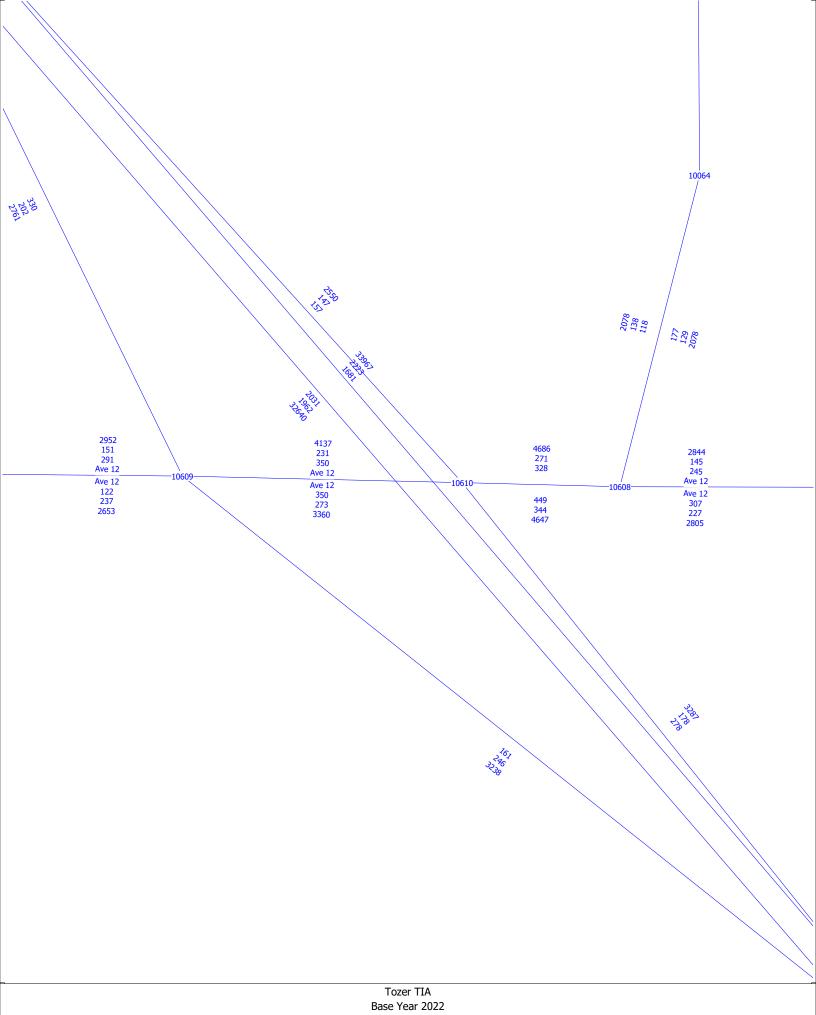

	Bikes	Peds
AM Peak Total	0	0
PM Peak Total	1	1

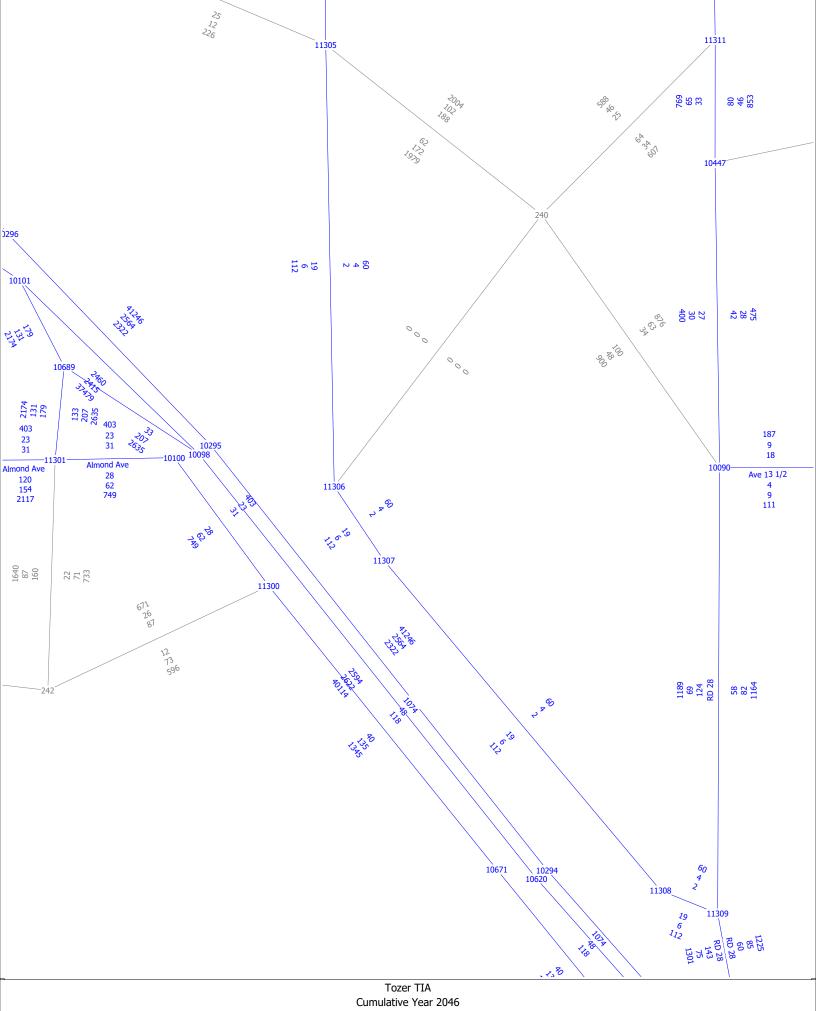
Ave 12

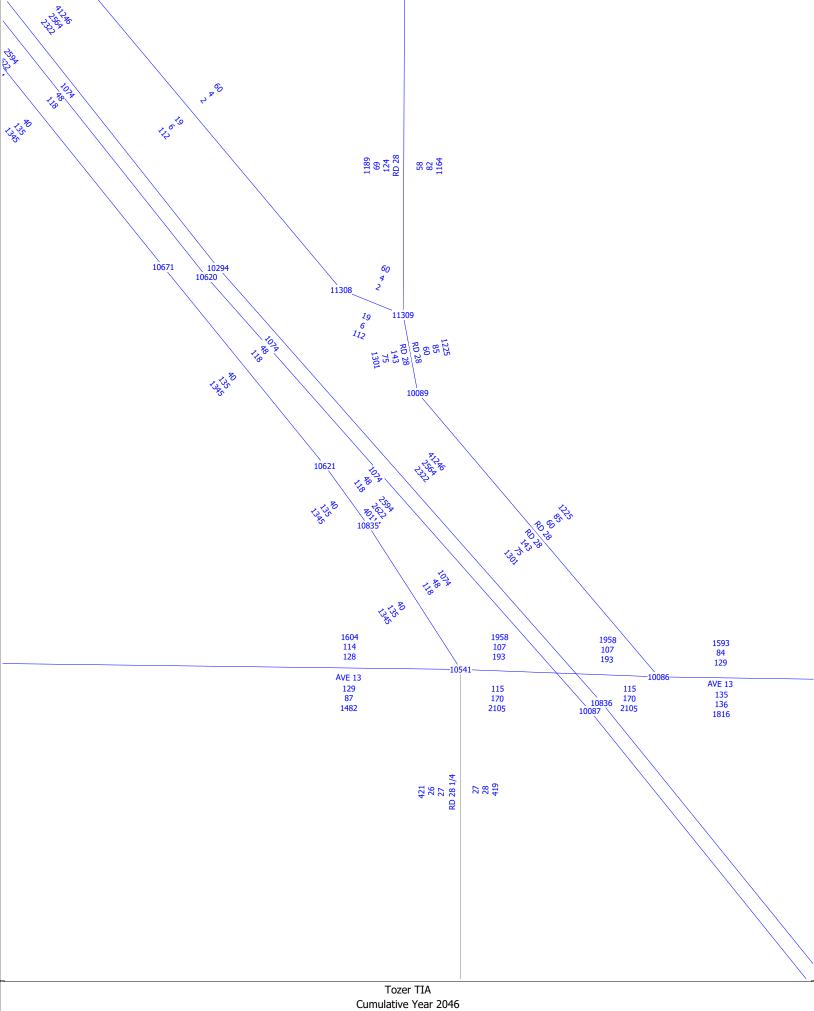


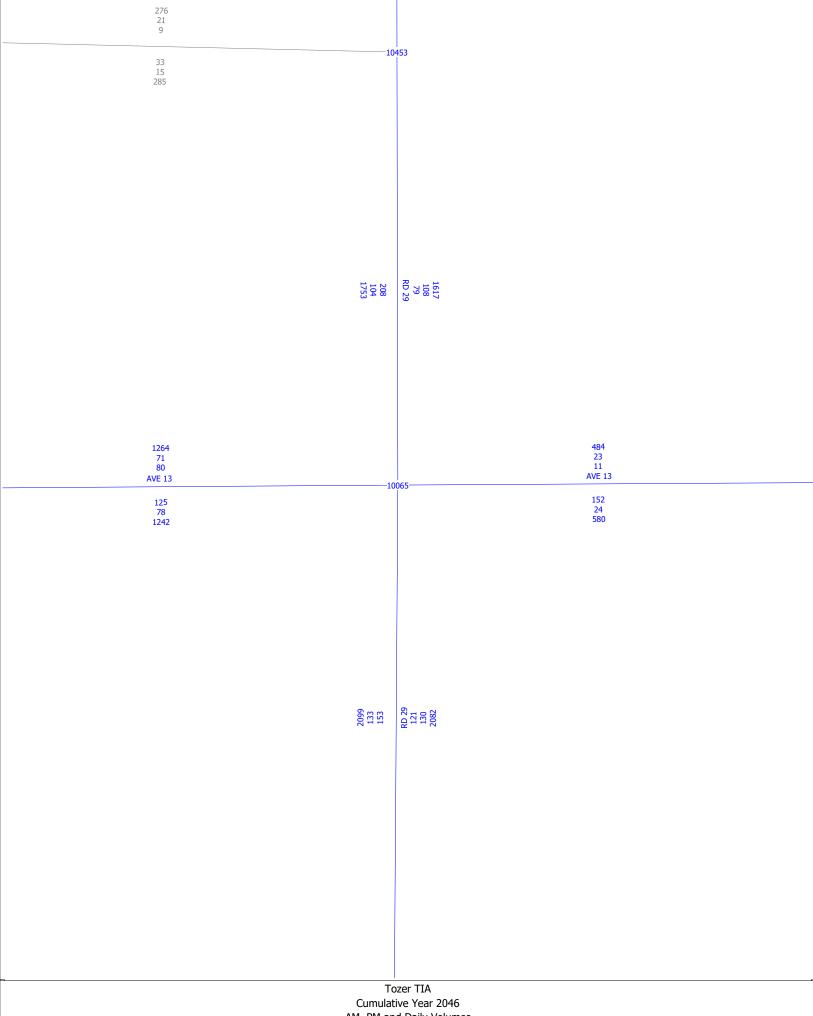
Appendix C: Traffic Modeling

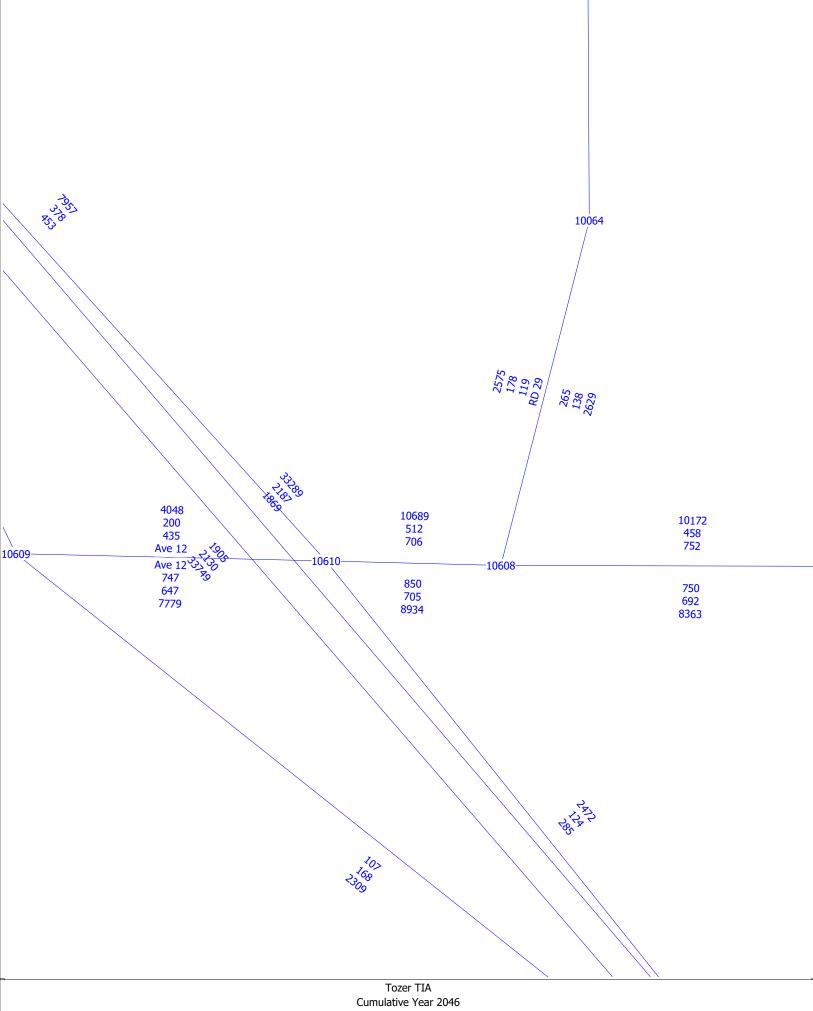





AM, PM and Daily Volumes


Base Year 2022 AM, PM and Daily Volumes





AM, PM and Daily Volumes

Cumulative Year 2046 AM, PM and Daily Volumes

AM, PM and Daily Volumes

Appendix D: Methodology

Levels of Service Methodology

The description and procedures for calculating capacity and level of service (LOS) are found in the Transportation Research Board, Highway Capacity Manual (HCM). The HCM 7th Edition represents the research on capacity and quality of service for transportation facilities.

Quality of service requires quantitative measures to characterize operational conditions within a traffic stream. Level of service is a quality measure describing operational conditions within a traffic stream, generally in terms of such service measures as speed and travel time, freedom to maneuver, traffic interruptions, comfort and convenience.

Six levels of service are defined for each type of facility that has analysis procedures available. Letters designate each level of service (LOS), from A to F, with LOS A representing the best operating conditions and LOS F the worst. Each LOS represents a range of operating conditions and the driver's perception of these conditions. Safety is not included in the measures that establish an LOS.

Intersection Levels of Service

One of the more important elements limiting and often interrupting the flow of traffic on a highway is the intersection. Flow on an interrupted facility is usually dominated by points of fixed operation such as traffic signals, stop signs and yield signs.

Signalized Intersections

LOS can be characterized for the entire intersection, each intersection approach and each lane group. Control delay alone is used to characterize LOS for the entire intersection or an approach. Control delay and volume-to-capacity ratio are used to characterize LOS for a lane group. Delay quantifies the increase in travel time due to traffic signal control. It is also a surrogate measure of driver discomfort and fuel consumption. The volume-to-capacity ratio quantifies the degree to which a phase's capacity is utilized by a lane group. A description of LOS for signalized intersections is found in Table A-1.

www.JLBtraffic.com

info@JLBtraffic.com

Table 1: Signalized Intersection LOS Description (Motorized Vehicle Mode)

Level of Service	Description	Average Control Delay (Seconds per Vehicle)
А	Operations with a control delay of 10 seconds/vehicle or less and a volume-to-capacity ratio no greater than 1.0. This level is typically assigned when the volume-to-capacity ratio is really low and either progression is exceptionally favorable or the cycle length is very short. If it's due to favorable progression, most vehicles arrive during the green indication and travel through the intersection without stopping.	≤10
В	Operations with control delay between 10.1 to 20.0 seconds/vehicle and a volume-to-capacity ratio no greater than 1.0. This level is typically assigned when the volume-to-capacity ratio is low and either progression is highly favorable or the cycle length is short. More vehicles stop than with LOS A.	>10.0 to 20.0
С	Operations with average control delays between 20.1 to 35.0 seconds/vehicle and a volume-to-capacity ratio no greater than 1.0. This level is typically assigned when the volume-to-capacity ratio no greater than 1.0, the progression is favorable or the cycle length is moderate. Individual cycle failures (i.e., one or more queued vehicles are not able to depart as a result of insufficient capacity during the cycle) may begin to appear at this level. The number of vehicles stopping is significant, although many vehicles still pass through the intersection without stopping.	>20 to 35
D	Operations with control delay between 35.1 to 55.0 seconds/vehicle and a volume-to-capacity ratio no greater than 1.0. This level is typically assigned when the volume-to-capacity ratio is high and either progression is ineffective or the cycle length is long. Many vehicles stop and individual cycle failures are noticeable.	>35 to 55
E	Operations with control delay between 55.1 to 80.0 seconds/vehicle and a volume-to-capacity ratio no greater than 1.0. This level is typically assigned when the volume-to-capacity ratio is high, progression is unfavorable and the cycle length is long. Individual cycle failures are frequent.	>55 to 80
F	Operations with unacceptable control delay exceeding 80.0 seconds/vehicle and a volume-to-capacity ratio greater than 1.0. This level is typically assigned when the volume-to-capacity ratio is very high, progression is very poor and the cycle length is long. Most cycles fail to clear the queue.	>80

Note: Source: Highway Capacity Manual 7th Edition

All-Way Stop Controlled Intersections

All-way stop controlled intersections are common in the United States. They are characterized by having all approaches controlled by stop sign without any street having priority. Streets intersecting at all-way stop controlled intersections can be public or private. The intersection analysis boundaries for an all-way stop controlled intersection are assumed to be those of an isolated intersection, no upstream or downstream effects are accounted for in analysis.

516 W. Shaw Ave., Ste. 103

www.JLBtraffic.com

Two-Way Stop Controlled Intersections

Two-way stop controlled (TWSC) intersections are also common in the United States. A typical configuration is a four-leg intersection in which one street, the major street, is uncontrolled and the other street, the minor street, is controlled by stop signs. The other typical intersection is a three-leg intersection in which a single minor street approach is controlled by a stop sign.

For the analysis of the motorized vehicle mode, the methodology addresses special circumstances that may exist at two-way stop controlled intersections including two-stage gap acceptance, approaches with shared lanes, the presence of upstream traffic signals and flared approaches for minor-street right-turning vehicles. Table A-2 provides a description of LOS at unsignalized intersections.

Table 2: Unsignalized Intersection LOS Description (Motorized Vehicle Mode)

Control Dolay (Seconds nor Vehicle)	LOS by Volume-to	-Capacity Ratio
Control Delay (Seconds per Vehicle)	v/c ≤ 1.0	v/c > 1.0
≤10	A	F
>10 to 15	В	F
>15 to 25	С	F
>25 to 35	D	F
>35 to 50	Е	F
>50	F	F

Note: Source: HCM 7th Edition, Exhibit 21-8.

Roundabout Controlled Intersections

Roundabouts are intersections with a generally circular shape, characterized by yield on entry and circulation around a central island. Roundabouts have been used successfully throughout the world and are being used increasingly in the United States, especially since 1990. Intersection analysis models generally fall into two categories: regression models and analytical models. Regression models use field data to develop statistically derived relationships between geometric features and performance measures such as capacity and delay. Analytical models are based on traffic flow theory combined with field measures of driver behavior, resulting in an analytical formulation of the relationship of driver behavior, resulting in an analytical formulation of the relationship between those field measures and performance measures such as capacity and delay. Table A-3 provides a description of LOS at roundabout intersections.

Table 3: Roundabout Intersection Level of Service Description (Automobile Mode)

Control Dolay (Seconds nor Vehicle)	LOS by Volume-to	-Capacity Ratio
Control Delay (Seconds per Vehicle)	v/c ≤ 1.0	v/c > 1.0
≤10	A	F
>10 to 15	В	F
>15 to 25	С	F
>25 to 35	D	F
>35 to 50	E	F
>50	F	F

Note: Source: HCM 7th Edition, Exhibit 22-8.

516 W. Shaw Ave., Ste. 103

Fresno, CA 93704

(559) 570-8991

App | **D-3**

Segment Levels of Service

Segments are portions of roads without any interruption of flow. These typically include basic freeway segments, multilane highway segments, freeway weaving segments, freeway merge and diverge segments, two-lane highway segments and urban street segments.

Urban Street Segments (Motorized Vehicle Mode)

The term "urban street segments" refers to two elements that are found: points and segments. A point is the boundary between links and is represented by an intersection or ramp terminal. A link is a length of roadway between two points. A link and its boundary are referred to as a segment. A signalized intersection is always used to define a boundary. Only intersections, or ramp terminals, in which the segment through volumes is uncontrolled can exist along the segment. A midsegment traffic control signal provided for the exclusive use of pedestrians should not be used to define a segment boundary. Chapter 18 of the Highway Capacity Manual categorizes each LOS as follows:

LOS A describes primarily free-flow operation. Vehicles are completely unimpeded in their ability to maneuver within the traffic stream. Control delay at signalized intersections is minimal. Travel speeds exceed 80 percent of the base free flow speed (FFS) and the volume-to-capacity ratio is no greater than 1.0.

LOS B describes reasonably unimpeded operation. The ability to maneuver within the traffic stream is only slightly restricted and control delay at the boundary intersections is not significant. The travel speed is between 67 and 80 percent of the base FFS and the volume-to-capacity ratio is no greater than 1.0.

LOS C describes stable operations. The ability to maneuver and change lanes in midblock location may be more restricted than at LOS B. Longer queues at the boundary intersections may contribute to lower travel speeds. The travel speed is between 50 and 67 percent of the base FFS and the volume-tocapacity ratio is no greater than 1.0.

LOS D indicates a less stable condition in which small increases in flow may cause substantial increases in delay and decreases in travel speed. This operation may be due to adverse signal progression, high volumes or inappropriate signal timing at the boundary intersections. The travel speed is between 40 and 50 percent of the base FFS and the volume-to-capacity ratio is no greater than 1.0.

LOS E is characterized as an unstable operation and has significant delay. Such operations may be due to some combination of adverse progression, high volume and inappropriate signal timing at the boundary intersections. The travel speed is between 30 and 40 percent of the base FFS and the volume-to-capacity ratio is no greater than 1.0.

LOS F is characterized by flow at extremely low speed. Congestion is likely occurring at the boundary intersections, as indicated by high delay and extensive queuing. The travel speed is 30 percent or less of the base FFS or the volume-to-capacity ratio is greater than 1.0.

www.JLBtraffic.com

info@JLBtraffic.com

Urban Street Segments LOS

Two performance measures are used to characterize vehicular LOS for a given direction of travel along an urban street segment. One measure is travel speed for through vehicles. This speed reflects the factors that influence running time along the link and the delay uncured by through vehicles at the boundary intersections. The second measures Is the volume-to-capacity ratio for the through movements at the downstream boundary intersection. These performance measures indicate the degree of mobility provided by the segment. Table A-4 provides a description of LOS for Urban Street Segments.

Table 4: Urban Street Segment Levels of Service (Motorized Vehicle Mode)

100	Tr	Travel Speed Threshold by Base Free-Flow Speed (miles/hour)										
LOS	55	50	45	40	35	30	25	Capacity Ratio				
Α	>44	>40	>36	>32	>28	>24	>20					
В	>37	>34	>30	>27	>23	>20	>17					
С	>28	>25	>23	>20	>18	>15	>13	<10				
D	>22	>20	>18	>16	>14	>12	>10	≤ 1.0				
E	>17	>15	>14	>12	>11	>9	>8					
F	≤17	≤15	≤14	≤12	≤11	≤9	≤8					
F				Any				> 1.0				

Note:

Basic Freeway and Multilane Highway Segments

Segments of multilane highways and basic freeways outside the influence of merging maneuvers, diverging maneuvers, weaving maneuvers, or signalized intersections define LOS by density. Density describes a motorist's proximity to other vehicles and is related to a motorist's freedom to maneuver within the traffic stream. Chapter 12 of the Highway Capacity Manual categorizes each LOS as follows:

LOS A describes free-flow operations. FFS prevails on the freeway or multilane highway, and vehicles are almost completely unimpeded in their ability to maneuver within the traffic stream. The effects of incidents or point breakdowns are easily absorbed.

LOS B represents reasonably free-flow operations, and FFS on the freeway or multilane highway is maintained. The ability to maneuver within the traffic stream is only slightly restricted, and the general level of physical and psychological comfort provided to drivers is still high. The effects of minor incidents are still easily absorbed.

LOS C provides for flow with speeds near the FFS of the freeway or multilane highway. Freedom to maneuver within the traffic stream is noticeably restricted, and lane changes require more care and vigilance on the part of the driver. Minor incidents may still be absorbed, but the local deterioration in service quality will be significant. Queues may be expected to form behind any significant blockages.

LOS D is the level at which speeds begin to decline with increasing flows, with density increasing more quickly. Freedom to maneuver within the traffic stream is seriously limited, and drivers experience reduced physical and psychological comfort levels. Even minor incidents can be expected to create queuing, because the traffic stream has little space to absorb disruptions.

516 W. Shaw Ave., Ste. 103

Fresno, CA 93704

(559) 570-8991

App | **D-5**

a = Volume-to-capacity ratio of through movement at downstream boundary intersection. Source: Highway Capacity Manual 7th Edition, Exhibit 18-1.

LOS E describes operation at or near capacity. Operations on the freeway or multilane highway at this level are highly volatile because there are virtually no usable gaps within the traffic stream, leaving little room to maneuver within the traffic stream. Any disruption to the traffic stream, such as vehicles entering from a ramp or an access point or a vehicle changing lanes, can establish a disruption wave that propagates throughout the upstream traffic stream. Toward the upper boundary of LOS E, the traffic stream has no ability to dissipate even the most minor disruption, and any incident can be expected to produce a serious breakdown and substantial queuing. The physical and psychological comfort afforded to drivers is poor.

LOS F describes unstable flow. Such conditions exist within queues forming behind bottlenecks. Breakdowns occur for a number of reasons:

- Traffic incidents can temporarily reduce the capacity of a short segment so that the number of vehicles arriving at a point is greater than the number of vehicles that can move through it.
- Points of recurring congestion, such as merge or weaving segments and lane drops, experience very high demand in which the number of vehicles arriving is greater than the number of vehicles that can be discharged.
- In analyses using forecast volumes, the projected flow rate can exceed the estimated capacity of a given location.

Basic Freeway

Basic Freeway segments generally have four to eight lanes (in both directions) and posted speed limits between 50 and 75 mi/hr. The median type depends on right-of-way constraints and other factors. The performance measures include capacity, free flow speed, demand and volume-to-capacity ratio, space mean speed, average density and LOS. The following performance measures are evaluated for each segment: capacity, FFS, demand-to-capacity or volume-to-capacity ratios, space mean average, average density, travel time, vehicle miles traveled, vehicle hours of travel and vehicle hours of delay. Table A-5 provides a description of LOS for Basic Freeway Segments.

Multilane Highway

Multilane Highway segments generally have four to six lanes (in both directions) and posted speed limits between 40 and 55 mi/hr. These highways may be divided, undivided or divided by a two-way left-turn lane. The performance measures include capacity, free flow speed, demand and volume-to-capacity ratio, space mean speed, average density and LOS. The following performance measures are evaluated for each segment: capacity, FFS, demand-to-capacity or volume-to-capacity ratios, space mean average, average density, travel time, vehicle miles traveled, vehicle hours of travel and vehicle hours of delay. Table A-5 provides a description of LOS for Multilane Highway Segments.

www.JLBtraffic.com

info@JLBtraffic.com

516 W. Shaw Ave., Ste. 103

Table 5: Basic Freeway and Multilane Highway Segment Level of Service Description

Lavel of Camina	Density (Passenger Cars per Mile per Lane)							
Level of Service	Urban	Rural						
А	≤11	≤6						
В	>11 to 18	>6 to 14						
С	>18 to 26	>14 to 22						
D	>26 to 35	>22 to 29						
E	>35 to 45	>29 to 39						
F	>45 or Demand Exceeds Capacity	>39 or Demand Exceeds Capacity						

Note: Source: HCM 7th Edition, Exhibit 10-6.

Two-Lane Highway Segments

Two-Lane Highways generally have one lane per direction. The single lane in each direction may be supplemented with passing lanes, truck climbing lanes, turnouts or pullouts. If allowed, passing maneuvers are limited by the availability of gaps in the opposing traffic stream and by the availability of sufficient sight distance for a driver to discern the approach of an opposing vehicle safely. A principal measure of LOS is average speed, percent followers and follower density. Chapter 15 of the Highway Capacity Manual categorizes each LOS as follows:

At **LOS A**, motorists experience operating speeds near the posted speed limit and little difficulty in passing. Platooning is minimal and follower density is very low.

At LOS B through LOS D, represent gradations between the conditions for LOS A and LOS E.

At **LOS E**, speeds may still be reasonable, but platooning is significant and follower density is high. Passing, if allowed is essentially impossible.

LOS F exists whenever demand flow in one or both directions exceeds the segment's capacity. When demand exceeds capacity, it is expected that there will be a reduction in the capacity at the bottleneck.

Two-Lane Highway

The performance measures include average speed, FFS and follower density. The LOS output is calculated for an establish segment boundary that includes consistent terrain, lane widths, shoulder widths, facility classification and demand flow rate. Table A-6 provides a description of LOS for Two-Lane Highway Segments.

Table 6: Two-Lane Highway Segment Level of Service Description

	- unic ci. 110 _ unic 11.8.111 u / cc8.1111 _ cc. ci. ci. ci. ci. ci. ci. ci. ci. ci.										
	Follower Density (Followers per Mile per Lane)										
LOS	Higher-Speed Highways	Lower-Speed Highways									
	Posted Speed Limit ≥ 50 miles per hour	Posted Speed Limit < 50 miles per hour									
Α	≤2.0	≤2.5									
В	>2.0 to 4.0	>2.5 to 5.0									
С	>4.0 to 8.0	>5.0 to 10.0									
D	>8.0 to 12.0	>10.0 to 15.0									
Е	>12.0	>15.0									

Note: Source: HCM 7th Edition, Exhibit 15-6.

516 W. Shaw Ave., Ste. 103

Fresno, CA 93704

(559) 570-8991

Appendix E: Collision Analysis

Traffic Accident Surveillance and Analysis System (TASAS) Collision Data Summary:

The data provided is protected by 23 U.S.C. § 407, and shall not be subject to discovery, nor admitted as evidence in any applicable legal proceeding against the State of California. By allowing the release of this information, the State of California, Department of Transportation does not waive any rights it has under 23 U.S.C. § 407.

Table 1 summarizes collision rates for the SR99 northbound ramps at Avenue 12 and southbound ramps at Almond Avenue (PM R7.27/9.595) in the City of Madera and Madera County. The Table B reports were generated on October 2, 2024, and they depict existing collision rates per million vehicles for the most recent 36-month period from January 1, 2021, to December 31, 2023, from the Traffic Accident Surveillance and Analysis System (TASAS).

Table 1. TASAS Table B Collision Rates

	PM	TOTAL	(per	ACTUAL million vehic	les)	AVERAGE (per million vehicles)			
SR99 RAMPS		No. of Collisions	Fatal Collisions	Fatal + Injury Collisions	Total (1)	Fatal Collisions	Fatal + Injury Collisions	Total (1)	
NB off-Ramp to Ave 12	R7.27	5	0.000	0.39	0.97	0.009	0.48	1.31	
NB on-Ramp from Ave 12	R7.653	4	0.000	0.58	0.78	0.002	0.23	0.63	
SB on-Ramp from Almond Ave	9.468	0	0.000	0.00	0.00	0.002	0.18	0.57	
SB off-Ramp to Almond Ave	9.595	2	0.000	0.37	0.74	0.007	0.42	1.37	

⁽¹⁾ All reported collisions (includes Property Damage Only (PDO) Collisions)

NB off-Ramp to Avenue 12 (PM R7.27)

Analysis of the TASAS Table B records shows a total of 5 collisions (0-Fatal, 2-Injuries, 3-PDO) within the Northbound off-ramp to Avenue 12 and study periods summarized above, with Actual Fatal, Fatal plus Injury, and Total collision rates that are below the Average for similar facilities Statewide. Below table are the types of collisions.

Table 2A. Types of Collision

		14510 271	i y pes ei	0011131011							
PRIMARY COLLISION	TYPES OF COLLISION										
FACTOR	Head- on	Sideswipe	Rear End	Broadside	Hit Object	Overturn	Auto/Ped	Other			
Influence OF Alcohol			1	1							
Following Too Close											
Failure To Yield				1							
Improper Turn											
Speeding			1								
Other Violation			1								
Other Than Driver											
Total	0	0	3	2	0	0	0	0			

NB on-Ramp from Avenue 12 (PM R7.653)

Analysis of the TASAS Table B records shows a total of 4 collisions (0-Fatal, 3-Injuries, 1-PDO) within the Northbound on-ramp from Avenue 12 and study periods summarized above, with Actual Fatal collision rate that is below the Average for similar facilities Statewide, and the Actual Fatal plus Injury, and Total collision rates that are above the Average for similar facilities Statewide. Below table are the types of collisions.

Table 2B. Types of Collision

				pes e. ee.								
PRIMARY COLLISION		TYPES OF COLLISION										
FACTOR							X					
	Head-on	Sideswipe	Rear End	Broadside	Hit Object	Overturn	Auto/Ped	Other				
Influence OF Alcohol			1		1	5						
Following Too Close												
Failure To Yield						•						
Improper Turn				1								
Speeding					1							
Other Violation												
Other Than Driver												
Total	0	0	1	1	2	0	0	0				

Detailed analysis per the Traffic Accident Surveillance and Analysis System (TASAS) generated on October 2, 2024, shows the Object struck, summarized in Table 3 below:

Table 3. Objects Struck

Object Struck	Hit Object
Dike or Curb	2
Total 😾	2

SB on-Ramp from Almond Avenue (PM 9.468)

Analysis of the TASAS Table B records shows a total of 0 (zero) collisions (0-Fatal, 0-Injuries, 0-PDO) within the Southbound on-ramp from Almond Avenue and study periods summarized above, with Actual Fatal, Actual Fatal plus Injury, and Total collision rates that are below the Average for similar facilities Statewide.

SB off-Ramp to Almond Avenue (PM 9.595)

Analysis of the TASAS Table B records shows a total of 2 collisions (0-Fatal, 1-Injuries, 1-PDO) within the Southbound off-ramp to Almond Avenue and study periods summarized above, with Actual Fatal, Actual Fatal plus Injury, and Total collision rates that are below the Average for similar facilities Statewide. Below table are the types of collisions.

Table 2C. Types of Collisions

PRIMARY COLLISION FACTOR		TYPES OF COLLISION									
	Head- on	Sideswipe	Rear End	Broadside	Hit Object	Overturn	Auto/Ped	Other			
Influence OF Alcohol											
Following Too Close											
Failure To Yield											
Improper Turn											
Speeding			1								
Other Violation			1								
Other Than Driver						S					
Total	0	0	2	0	0	0	0	0			

End of summary.

SL/CW

Appendix F: Existing Traffic Conditions

	ၨ	→	\rightarrow	•	←	•	•	†	/	\	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	1	7	ሻ	1	7	ሻ		7	ሻ		7
Traffic Volume (veh/h)	261	91	14	2	114	92	6	0	2	99	8	174
Future Volume (veh/h)	261	91	14	2	114	92	6	0	2	99	8	174
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856
Adj Flow Rate, veh/h	303	106	16	2	133	107	7	0	2	115	9	202
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Percent Heavy Veh, %	3	3	3	3	3	3	3	3	3	3	3	3
Cap, veh/h	355	653	553	9	290	246	29	227	193	216	418	354
Arrive On Green	0.20	0.35	0.35	0.00	0.16	0.16	0.02	0.00	0.12	0.12	0.23	0.23
Sat Flow, veh/h	1767	1856	1572	1767	1856	1572	1767	1856	1572	1767	1856	1572
Grp Volume(v), veh/h	303	106	16	2	133	107	7	0	2	115	9	202
Grp Sat Flow(s),veh/h/ln	1767	1856	1572	1767	1856	1572	1767	1856	1572	1767	1856	1572
Q Serve(g_s), s	10.6	2.5	0.4	0.1	4.2	3.9	0.3	0.0	0.1	3.9	0.2	7.3
Cycle Q Clear(g_c), s	10.6	2.5	0.4	0.1	4.2	3.9	0.3	0.0	0.1	3.9	0.2	7.3
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	355	653	553	9	290	246	29	227	193	216	418	354
V/C Ratio(X)	0.85	0.16	0.03	0.23	0.46	0.44	0.24	0.00	0.01	0.53	0.02	0.57
Avail Cap(c_a), veh/h	638	820	695	248	412	349	248	696	589	364	811	688
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	24.7	14.3	13.6	31.7	24.6	24.5	31.1	0.0	24.7	26.4	19.3	22.0
Incr Delay (d2), s/veh	2.3	0.2	0.0	4.9	2.0	2.2	1.6	0.0	0.0	0.8	0.0	2.6
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	4.1	0.9	0.1	0.0	1.8	1.6	0.1	0.0	0.0	1.5	0.1	2.8
Unsig. Movement Delay, s/veh	07.0	44.5	40.0	20.0	00.0	00.0	20.7	0.0	047	07.4	40.0	04.0
LnGrp Delay(d), s/veh	27.0	14.5	13.6	36.6	26.6	26.6	32.7	0.0	24.7	27.1	19.3	24.6
LnGrp LOS	С	<u>B</u>	В	D	C 040	С	С		С	С	B	С
Approach Vol, veh/h		425			242			9			326	
Approach Delay, s/veh		23.4			26.7			30.9			25.4	
Approach LOS		С			С			С			С	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	6.2	29.3	7.0	21.5	18.7	16.8	13.5	14.9				
Change Period (Y+Rc), s	5.9	6.8	5.9	* 7.1	5.9	6.8	5.7	* 7.1				
Max Green Setting (Gmax), s	9.0	28.3	9.0	* 28	23.1	14.2	13.2	* 24				
Max Q Clear Time (g_c+l1), s	2.1	4.5	2.3	9.3	12.6	6.2	5.9	2.1				
Green Ext Time (p_c), s	0.0	0.9	0.0	1.2	0.3	1.0	0.1	0.0				
Intersection Summary												
HCM 7th Control Delay, s/veh			24.9									
HCM 7th LOS			С									
Notes												

Notes

^{*} HCM 7th computational engine requires equal clearance times for the phases crossing the barrier.

Intersection												
Int Delay, s/veh	4.8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ሻ	\$		ሻ	↑ ↑	
Traffic Vol, veh/h	10	33	43	8	11	51	15	223	6	80	254	11
Future Vol, veh/h	10	33	43	8	11	51	15	223	6	80	254	11
Conflicting Peds, #/hr	1	0	3	3	0	1	17	0	0	0	0	17
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	150	-	-	150	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	75	75	75	75	75	75	75	75	75	75	75	75
Heavy Vehicles, %	4	4	4	4	4	4	4	4	4	4	4	4
Mvmt Flow	13	44	57	11	15	68	20	297	8	107	339	15
Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	922	922	197	749	925	302	370	0	0	305	0	0
Stage 1	576	576	-	341	341	-	-	-	-	-	-	-
Stage 2	346	345	-	408	584	-	_	_	_	_	-	-
Critical Hdwy	7.36	6.56	6.96	7.36	6.56	6.26	4.16	-	-	4.16	-	_
Critical Hdwy Stg 1	6.56	5.56	-	6.16	5.56	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.16	5.56	-	6.56	5.56	-	-	-	-	-	-	-
Follow-up Hdwy	3.538	4.038	3.338	3.538	4.038	3.338	2.238	-	-	2.238	-	-
Pot Cap-1 Maneuver	235	267	807	311	266	731	1174	-	-	1241	-	-
Stage 1	466	497	-	668	633	-	-	-	-	-	-	-
Stage 2	664	631	-	588	493	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	177	236	791	214	235	730	1155	-	-	1241	-	-
Mov Cap-2 Maneuver	177	236	-	214	235	-	-	-	-	-	-	-
Stage 1	419	447	-	656	622	-	-	-	-	-	-	-
Stage 2	578	620	-	448	444	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Ctrl Dly, s/v	20.67			14.96			0.5			1.9		
HCM LOS	С			В								
Minor Lane/Major Mvm	nt	NBL	NBT	NRD	EBLn1V	WRI n1	SBL	SBT	SBR			
Capacity (veh/h)	IC .	1155	ND I	NDIN -	0.40	454	1241	- 301	JODIN			
HCM Lane V/C Ratio		0.017				0.205			•			
HCM Ctrl Dly (s/v)		8.2	-			15	8.2	-	-			
HCM Lane LOS		0.2 A	-	-	20.7 C	В	0.Z A	-	-			
HCM 95th %tile Q(veh	١	0.1	-	-	1.4	0.8	0.3	-	-			
HOW JOHN JOHN WINE WIVELL	J	0.1	_	_	1.4	0.0	0.0	_				

Intersection							
Int Delay, s/veh	2.4						
Movement	EBL	EBR	NBL	NBT	SBU	SBT	SBR
Lane Configurations	*	7		4		1	
Traffic Vol, veh/h	4	93	63	254	2	284	4
Future Vol, veh/h	4	93	63	254	2	284	4
Conflicting Peds, #/hr	1	0	1	0	0	0	1
Sign Control	Stop	Stop	Free	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	-	None
Storage Length	0	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	-	0	-	0	-
Grade, %	0	-	-	0	-	0	-
Peak Hour Factor	77	77	77	77	77	77	77
Heavy Vehicles, %	3	3	3	3	3	3	3
Mvmt Flow	5	121	82	330	3	369	5
Major/Minor	Minor2		Major1	ı	Major2		
Conflicting Flow All	867	372	375	0	- viajuiz	_	0
Stage 1	372	312	3/3	-	-	-	-
Stage 2	495	-	_	_	-	_	_
Critical Hdwy	6.43	6.23	4.13	_	-	-	_
Critical Hdwy Stg 1	5.43	0.23	4.13	_	-	_	_
	5.43	-		_	-		
Critical Hdwy Stg 2	3.527	3.327	2 227	_	-	_	-
Follow-up Hdwy	322			-			
Pot Cap-1 Maneuver		671	1178	-	-	-	-
Stage 1	695	-	-	-	-	-	-
Stage 2	611	-	-	-	-	-	-
Platoon blocked, %	00.4	074	4477	-		-	-
Mov Cap-1 Maneuver	294	671	1177	-	-	-	-
Mov Cap-2 Maneuver	294	-	-	-	-	-	-
Stage 1	635	-	-	-	-	-	-
Stage 2	610	-	-	-	-	-	-
Approach	EB		NB		SB		
HCM Ctrl Dly, s/v	11.79		1.65		<u> </u>		
HCM LOS	11.79 B		1.05				
I IOIVI LUO	В						
Minor Lane/Major Mvn	nt	NBL	NBT	EBLn1 [SBT	SBR
Capacity (veh/h)		358	-	294	671	-	-
HCM Lane V/C Ratio		0.07	-	0.018	0.18	-	-
HCM Ctrl Dly (s/v)		8.3	0	17.5	11.5	-	-
HCM Lane LOS		Α	Α	С	В	-	-
HCM 95th %tile Q(veh)	0.2	-	0.1	0.7	-	-
	,						

Intersection												
Int Delay, s/veh	44.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	126	363	34	82	469	26	5	7	31	61	11	119
Future Vol, veh/h	126	363	34	82	469	26	5	7	31	61	11	119
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	_	-	None	_	-	None	-	_	None	-	-	
Storage Length	-	-	-	-	-	-	-	-	-	-	-	_
Veh in Median Storage	e.# -	0	_	_	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	87	87	87	87	87	87	87	87	87	87	87	87
Heavy Vehicles, %	3	3	3	3	3	3	3	3	3	3	3	3
Mvmt Flow	145	417	39	94	539	30	6	8	36	70	13	137
Major/Minor I	Major1			Major2			Minor1			Minor2		
Conflicting Flow All	569	0	0	456	0	0	1460	1484	437	1453	1489	554
Stage 1		-	-	700	-	-	726	726	437	743	743	-
Stage 2	_	_		_	_	_	734	757		711	746	_
Critical Hdwy	4.13	_	-	4.13	-	-	7.13	6.53	6.23	7.13	6.53	6.23
Critical Hdwy Stg 1	4.13	_	_	4.13	-	_	6.13	5.53	0.23	6.13	5.53	0.23
Critical Hdwy Stg 2		_				-	6.13	5.53	-	6.13	5.53	
Follow-up Hdwy	2.227	_	_	2.227	-	_	3.527		3.327	3.527		3.327
Pot Cap-1 Maneuver	998	-		1099		_	106	124	618	108	123	530
Stage 1	330	_		1000		_	414	428	010	406	421	550
Stage 2	-	_	-	-	-	-	410	414	-	422	419	_
Platoon blocked, %	_	_	_	_	_	_	+10	714	<u>-</u>	722	713	_
Mov Cap-1 Maneuver	998	_	-	1099	-	-	50	87	618	~ 67	87	530
Mov Cap-2 Maneuver	990	_		1000	_	_	50	87	010	~ 67	87	550
Stage 1	-	-	-	-	-	-	333	344	-	355	368	-
Stage 2	-	_		_		_	257	362	-	313	337	_
Staye 2	-	_	-		_	_	201	302	_	313	331	_
Annanah				\A/D			NID			OB		
Approach	EB			WB			NB			SB		
HCM Ctrl Dly, s/v	2.22			1.22			31.22			293.85		
HCM LOS							D			F		
14.		UDL (EDI	E5.	===	14/51	14/57	14/55	OD! (
Minor Lane/Major Mvm	וד	VBLn1	EBL	EBT	EBR	WBL	WBT	WBR :				
Capacity (veh/h)		186	426	-	-	253	-	-	151			
HCM Lane V/C Ratio			0.145	-	-	0.086	-		1.457			
HCM Ctrl Dly (s/v)		31.2	9.2	0	-	8.6	0	-	293.9			
HCM Lane LOS	,	D	A	Α	-	A	Α	-	F			
HCM 95th %tile Q(veh))	1	0.5	-	-	0.3	-	-	14.3			
Notes												
~: Volume exceeds cap	pacity	\$: De	elay exc	eeds 3	00s							
+: Computation Not De	efined	*: All	major v	olume i	n plato	on						

Intersection						
Int Delay, s/veh	49.2					
		FDT	WDT	WDD	CDI	CDD
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	004	4	∱	04	\	004
Traffic Vol, veh/h	224	235	277	91	88	281
Future Vol, veh/h	224	235	277	91	88	281
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-			None	-	
Storage Length	-	-	-	-	0	-
Veh in Median Storage		0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	84	84	84	84	84	84
Heavy Vehicles, %	3	3	3	3	3	3
Mvmt Flow	267	280	330	108	105	335
Major/Minor I	Major1	N	Major2	1	Minor2	
Conflicting Flow All	438	0	- -	0	1197	384
Stage 1	-	-	-	-	384	-
Stage 2	_			_	813	_
Critical Hdwy	4.13	_		_	6.43	6.23
Critical Hdwy Stg 1	4.13	_	_	_	5.43	0.23
Critical Hdwy Stg 2	-	_	-	-	5.43	-
Follow-up Hdwy	2.227	-	-		0 -0-	2 227
	1116	-	-		204	661
Pot Cap-1 Maneuver	1110	-	-	-		
Stage 1	-	-	-	-	686	-
Stage 2	-	-	-	-	434	-
Platoon blocked, %	4440	-	-	-	4.47	004
Mov Cap-1 Maneuver	1116	-	-	-	147	661
Mov Cap-2 Maneuver	-	-	-	-	147	-
Stage 1	-	-	-	-	492	-
Stage 2	-	-	-	-	434	-
Approach	EB		WB		SB	
HCM Ctrl Dly, s/v	4.51		0		153.81	
HCM LOS	7.01		U		F	
TIOWI LOO					1	
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR :	SBLn1
Capacity (veh/h)		878	-	-	-	360
HCM Lane V/C Ratio		0.239	-	-	-	1.221
HCM Ctrl Dly (s/v)		9.2	0	-	-	153.8
		Λ	Α	-	-	F
HCM Lane LOS		Α	А	-		
HCM Lane LOS HCM 95th %tile Q(veh))	0.9	- -		-	18.7

Intersection			
Intersection Delay, s/veh	33.6		
Intersection LOS	D		

	_											
Movement	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT
Lane Configurations	7	↑ ₽			Ä	ĵ.		J.		7	J.	4
Traffic Vol, veh/h	36	73	188	4	12	62	66	149	135	2	108	242
Future Vol, veh/h	36	73	188	4	12	62	66	149	135	2	108	242
Peak Hour Factor	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73
Heavy Vehicles, %	6	6	6	6	6	6	6	6	6	6	6	6
Mvmt Flow	49	100	258	5	16	85	90	204	185	3	148	332
Number of Lanes	1	2	0	0	1	1	0	1	1	1	1	1
Approach	EB			WB				NB			SB	
Opposing Approach	WB			EB				SB			NB	
Opposing Lanes	2			3				2			3	
Conflicting Approach Left	SB			NB				EB			WB	
Conflicting Lanes Left	2			3				3			2	
Conflicting Approach Right	NB			SB				WB			EB	
Conflicting Lanes Right	3			2				2			3	
HCM Control Delay, s/veh	24.7			19.6				22			53.2	
HCM LOS	С			С				С			F	

Lane	NBLn1	NBLn2	NBLn3	EBLn1	EBLn2	EBLn3	WBLn1	WBLn2	SBLn1	SBLn2	
Vol Left, %	100%	0%	0%	100%	0%	0%	100%	0%	100%	0%	
Vol Thru, %	0%	100%	0%	0%	100%	11%	0%	48%	0%	81%	
Vol Right, %	0%	0%	100%	0%	0%	89%	0%	52%	0%	19%	
Sign Control	Stop	Stop	Stop	Stop							
Traffic Vol by Lane	149	135	2	36	49	212	16	128	108	299	
LT Vol	149	0	0	36	0	0	16	0	108	0	
Through Vol	0	135	0	0	49	24	0	62	0	242	
RT Vol	0	0	2	0	0	188	0	66	0	57	
Lane Flow Rate	204	185	3	49	67	291	22	175	148	410	
Geometry Grp	6	6	6	6	6	6	6	6	6	6	
Degree of Util (X)	0.551	0.473	0.006	0.134	0.171	0.696	0.063	0.463	0.377	0.97	
Departure Headway (Hd)	9.717	9.201	8.478	9.769	9.253	8.613	10.398	9.507	9.174	8.525	
Convergence, Y/N	Yes	Yes	Yes	Yes							
Cap	371	390	421	366	387	419	344	379	392	426	
Service Time	7.492	6.976	6.253	7.542	7.026	6.386	8.179	7.288	6.939	6.29	
HCM Lane V/C Ratio	0.55	0.474	0.007	0.134	0.173	0.695	0.064	0.462	0.378	0.962	
HCM Control Delay, s/veh	23.9	20	11.3	14.1	13.9	29	13.9	20.3	17.4	66.1	
HCM Lane LOS	С	С	В	В	В	D	В	С	С	F	
HCM 95th-tile Q	3.2	2.5	0	0.5	0.6	5.2	0.2	2.4	1.7	11.6	

Int	ı	v	v	u	v	ш	

Intersection Delay, s/veh Intersection LOS

Movement	SBR
Lane Configurations	
Traffic Vol, veh/h	57
Future Vol, veh/h	57
Peak Hour Factor	0.73
Heavy Vehicles, %	6
Mvmt Flow	78
Number of Lanes	0

Approach

Opposing Approach
Opposing Lanes
Conflicting Approach Left
Conflicting Lanes Left
Conflicting Approach Right
Conflicting Lanes Right
HCM Control Delay, s/veh

	>	-	\searrow	•	←	*_		ሻ	/	\	\	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL2	NBL	NBR	SEL	SER	
Lane Configurations	44	ተተተ			ተተተ	7	ሻሻ		77			
Traffic Volume (veh/h)	80	486	0	0	259	322	391	0	140	0	0	
Future Volume (veh/h)	80	486	0	0	259	322	391	0	140	0	0	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0			
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00	1.00	1.00			
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Work Zone On Approac	h	No			No			No				
Adj Sat Flow, veh/h/ln	1737	1737	0	0	1737	1737	1737	1737	1737			
Adj Flow Rate, veh/h	91	552	0	0	294	366	444	444	159			
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88			
Percent Heavy Veh, %	11	11	0	0	11	11	11	11	11			
Cap, veh/h	405	2566	0	0	1344	417	569	569	459			
Arrive On Green	0.13	0.54	0.00	0.00	0.28	0.28	0.18	0.18	0.18			
Sat Flow, veh/h	3209	4898	0	0	4898	1472	3209	3209	2591			
Grp Volume(v), veh/h	91	552	0	0	294	366	444	444	159			
Grp Sat Flow(s), veh/h/lr		1581	0	0	1581	1472	1605	1605	1295			
Q Serve(g_s), s	1.5	3.6	0.0	0.0	2.8	14.2	7.9	7.9	3.2			
Cycle Q Clear(g_c), s	1.5	3.6	0.0	0.0	2.8	14.2	7.9	7.9	3.2			
Prop In Lane	1.00		0.00	0.00		1.00	1.00	1.00	1.00			
Lane Grp Cap(c), veh/h		2566	0	0	1344	417	569	569	459			
V/C Ratio(X)	0.22	0.22	0.00	0.00	0.22	0.88	0.78	0.78	0.35			
Avail Cap(c_a), veh/h	428	2566	0	0	1383	429	588	588	475			
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Upstream Filter(I)	1.00	1.00	0.00	0.00	0.98	0.98	1.00	1.00	1.00			
Uniform Delay (d), s/vel		7.1	0.0	0.0	16.4	20.5	23.6	23.6	21.6			
Incr Delay (d2), s/veh	0.2	0.2	0.0	0.0	0.4	21.7	10.2	10.2	2.1			
Initial Q Delay(d3), s/vel	h 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
%ile BackOfQ(50%),vel		0.9	0.0	0.0	0.9	6.6	3.4	3.4	1.0			
Unsig. Movement Delay)										
LnGrp Delay(d), s/veh	23.8	7.3	0.0	0.0	16.8	42.2	33.8	33.8	23.7			
LnGrp LOS	С	Α			В	D	С	С	С			
Approach Vol, veh/h		643			660		603	603				
Approach Delay, s/veh		9.7			30.9		31.1	31.1				
Approach LOS		Α			С		С	С				
Timer - Assigned Phs		2			5	6		8				
Phs Duration (G+Y+Rc)	, s	40.4			15.5	24.9		19.6				
Change Period (Y+Rc),	S	7.9			7.9	* 7.9		9.0				
Max Green Setting (Gm		32.1			8.0	* 18		11.0				
Max Q Clear Time (g_c-		5.6			3.5	16.2		9.9				
Green Ext Time (p_c), s		10.0			0.1	0.7		0.7				
Intersection Summary												
HCM 7th Control Delay,	s/veh		23.8									
HCM 7th LOS			С									
Notes												
* HCM 7th computation	al engi	ne requ	ires equ	ıal clea	rance ti	mes fo	r the ph	ases cr	ossing t	the barr	ier.	

Baseline
JLB Traffic Engineering, Inc.

Movement Lane Configurations	EBL	ГРТ					
Lane Configurations		EBT	WBU	WBT	WBR	SBL	SBR
	ሻሻ	ተተተ	Ð	ተተተ	7	ሻሻ	7
Traffic Volume (veh/h)		510	0	486	85	143	111
Future Volume (veh/h		510	0	486	85	143	111
Initial Q (Qb), veh	0	0		0	0	0	0
Lane Width Adj.	1.00	1.00		1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	1.00				1.00	1.00	1.00
Parking Bus, Adj	1.00	1.00		1.00	1.00	1.00	1.00
Work Zone On Approx		No		No		No	
Adj Sat Flow, veh/h/ln		1811		1811	1811	1811	1811
Adj Flow Rate, veh/h	139	607		579	101	170	132
Peak Hour Factor	0.84	0.84		0.84	0.84	0.84	0.84
Percent Heavy Veh, %		6		6	6	6	6
Cap, veh/h	503	2791		1562	485	609	510
Arrive On Green	0.30	1.00		0.32	0.32	0.18	0.18
Sat Flow, veh/h	3346	5107		5107	1535	3346	1535
Grp Volume(v), veh/h	139	607		579	101	170	132
Grp Sat Flow(s), veh/h		1648		1648	1535	1673	1535
Q Serve(g_s), s	1.9	0.0		5.4	2.9	2.6	3.8
Cycle Q Clear(g_c), s	1.9	0.0		5.4	2.9	2.6	3.8
Prop In Lane	1.00	5.0		J.¬	1.00	1.00	1.00
Lane Grp Cap(c), veh		2791		1562	485	609	510
V/C Ratio(X)	0.28	0.22		0.37	0.21	0.28	0.26
Avail Cap(c_a), veh/h	619	2791		1562	485	703	553
HCM Platoon Ratio	2.00	2.00		1.00	1.00	1.00	1.00
Upstream Filter(I)	0.99	0.99		1.00	1.00	1.00	1.00
Uniform Delay (d), s/v		0.0		15.9	15.0	21.1	14.6
Incr Delay (d2), s/veh	0.1	0.0		0.7	1.0	0.5	0.5
Initial Q Delay(d3), s/\		0.2		0.7	0.0	0.0	0.0
%ile BackOfQ(50%),v		0.0		1.8	1.0	0.0	3.7
Unsig. Movement Del				1.0	1.0	0.5	J.1
LnGrp Delay(d), s/veh	•	0.2		16.6	16.0	21.6	15.1
LnGrp LOS	10.0 B	0.2 A		В	10.0	21.0 C	15.1 B
Approach Vol, veh/h	Б	746		680	D	302	D
Approach Vol, ven/n Approach Delay, s/vel	1	3.6		16.5		18.8	
	Г			10.5 B		10.0 B	
Approach LOS		Α		В		В	
Timer - Assigned Phs		2		4	5	6	
Phs Duration (G+Y+R	c), s	40.7		19.3	14.9	25.8	
Change Period (Y+Ro	s), s	6.8		8.4	5.9	6.8	
Max Green Setting (G		20.3		12.6	11.1	15.2	
Max Q Clear Time (g_		2.0		5.8	3.9	7.4	
Green Ext Time (p_c)	, S	7.0		1.0	0.1	4.1	
Intersection Summary	,						
HCM 7th Control Dela			11.3				
	y, S/VEII		11.3 B				
H(, / / + / / C,			D				
HCM 7th LOS							
HCM 7th LOS Notes							

	ၨ	→	\rightarrow	•	←	•	•	†	/	\	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	^	7	¥	^	7	7	†	7	7	†	7
Traffic Volume (veh/h)	241	112	3	0	69	51	12	4	0	122	1	130
Future Volume (veh/h)	241	112	3	0	69	51	12	4	0	122	1	130
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856
Adj Flow Rate, veh/h	284	132	4	0	81	60	14	5	0	144	1	153
Peak Hour Factor	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Percent Heavy Veh, %	3	3	3	3	3	3	3	3	3	3	3	3
Cap, veh/h	336	818	693	3	292	248	55	223	189	231	402	340
Arrive On Green	0.19	0.44	0.44	0.00	0.16	0.16	0.03	0.12	0.00	0.13	0.22	0.22
Sat Flow, veh/h	1767	1856	1572	1767	1856	1572	1767	1856	1572	1767	1856	1572
Grp Volume(v), veh/h	284	132	4	0	81	60	14	5	0	144	1	153
Grp Sat Flow(s),veh/h/ln	1767	1856	1572	1767	1856	1572	1767	1856	1572	1767	1856	1572
Q Serve(g_s), s	9.8	2.7	0.1	0.0	2.4	2.1	0.5	0.2	0.0	4.9	0.0	5.4
Cycle Q Clear(g_c), s	9.8	2.7	0.1	0.0	2.4	2.1	0.5	0.2	0.0	4.9	0.0	5.4
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	336	818	693	3	292	248	55	223	189	231	402	340
V/C Ratio(X)	0.84	0.16	0.01	0.00	0.28	0.24	0.26	0.02	0.00	0.62	0.00	0.45
Avail Cap(c_a), veh/h	735	827	701	250	318	270	250	625	530	440	818	693
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	24.8	10.7	10.0	0.0	23.6	23.4	30.1	24.7	0.0	26.1	19.5	21.6
Incr Delay (d2), s/veh	2.3	0.2	0.0	0.0	0.9	0.9	0.9	0.0	0.0	1.0	0.0	1.7
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	3.8	0.9	0.0	0.0	1.0	0.8	0.2	0.1	0.0	1.9	0.0	2.0
Unsig. Movement Delay, s/veh	07.0	40.0	40.0	0.0	04.5	04.0	04.0	04.7	0.0	07.0	40.5	00.0
LnGrp Delay(d), s/veh	27.0	10.9	10.0	0.0	24.5	24.3	31.0	24.7	0.0	27.2	19.5	23.3
LnGrp LOS	С	<u>B</u>	А		C	С	С	<u>C</u>		С	В	С
Approach Vol, veh/h		420			141			19			298	
Approach Delay, s/veh		21.8			24.4			29.3			25.1	
Approach LOS		С			С			С			С	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	0.0	34.8	7.9	20.8	18.0	16.8	14.0	14.7				
Change Period (Y+Rc), s	5.9	6.8	5.9	* 7.1	5.9	6.8	5.7	* 7.1				
Max Green Setting (Gmax), s	9.0	28.3	9.0	* 28	26.4	10.9	15.8	* 21				
Max Q Clear Time (g_c+l1), s	0.0	4.7	2.5	7.4	11.8	4.4	6.9	2.2				
Green Ext Time (p_c), s	0.0	1.0	0.0	0.8	0.3	0.4	0.1	0.0				
Intersection Summary												
HCM 7th Control Delay, s/veh			23.5									
HCM 7th LOS			С									
Notes												

Notes

* HCM 7th computational engine requires equal clearance times for the phases crossing the barrier.

Intersection												
Int Delay, s/veh	3.8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		44			4		Ĭ	ĵ.		*	↑ ↑	
Traffic Vol, veh/h	12	12	11	8	6	65	27	214	16	95	156	28
Future Vol, veh/h	12	12	11	8	6	65	27	214	16	95	156	28
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	150	-	-	150	-	-
Veh in Median Storage	е,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	88	88	88	88	88	88	88	88	88	88	88	88
Heavy Vehicles, %	3	3	3	3	3	3	3	3	3	3	3	3
Mvmt Flow	14	14	13	9	7	74	31	243	18	108	177	32
Major/Minor	Minor2			Minor1			Major1		N	Major2		
Conflicting Flow All	717	732	105	625	739	252	209	0	0	261	0	0
Stage 1	409	409	-	314	314	-	-	_	-	-	_	_
Stage 2	308	323	-	311	425	-	_	-	_	-	-	-
Critical Hdwy	7.345	6.545	6.945	7.345	6.545	6.245	4.145	-	-	4.145	-	-
Critical Hdwy Stg 1	6.545	5.545	-	6.145		-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.145	5.545	-	6.545	5.545	-	-	-	-	-	-	-
	3.5285	4.0285	3.3285	3.5285	4.0285	3.3285	2.2285	-	-2	2.2285	-	-
Pot Cap-1 Maneuver	329	346	927	381	343	783	1354	-	-	1295	-	-
Stage 1	589	593	-	694	654	-	-	-	-	-	-	-
Stage 2	699	648	-	672	584	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	262	310	927	324	307	783	1354	-	-	1295	-	-
Mov Cap-2 Maneuver	262	310	-	324	307	-	-	-	-	-	-	-
Stage 1	540	544	-	678	639	-	-	-	-	-	-	-
Stage 2	612	633	-	593	535	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Ctrl Dly, s/v	16.14			11.78			0.81			2.74		
HCM LOS	C			В			J.0.					
Minor Lane/Major Mvn	nt	NBL	NBT	NBR	EBLn1V	WBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1354	-	-	000	621	1295	-	_			
HCM Lane V/C Ratio		0.023	_	-		0.145		_	_			
HCM Ctrl Dly (s/v)		7.7	-	-	40.4	11.8	8	-	-			
HCM Lane LOS		Α	-	-	C	В	A	-	-			
HCM 95th %tile Q(veh)	0.1	-	-	0.4	0.5	0.3	-	-			
	,					J.3						

Intersection						
Int Delay, s/veh	1.7					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ች	7		4	ĵ.	
Traffic Vol, veh/h	4	36	68	251	178	0
Future Vol, veh/h	4	36	68	251	178	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	0	-	-	-	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	84	84	84	84	84	84
Heavy Vehicles, %	3	3	3	3	3	3
Mvmt Flow	5	43	81	299	212	0
		10	•	200		
	Minor2		Major1		Major2	
Conflicting Flow All	673	212	212	0	-	0
Stage 1	212	-	-	-	-	-
Stage 2	461	-	-	-	-	-
Critical Hdwy	6.43	6.23	4.13	-	-	-
Critical Hdwy Stg 1	5.43	-	-	-	-	-
Critical Hdwy Stg 2	5.43	-	-	-	-	-
Follow-up Hdwy	3.527	3.327	2.227	-	-	-
Pot Cap-1 Maneuver	419	826	1353	-	-	-
Stage 1	821	-	-	-	-	_
Stage 2	633	_	_	-	-	-
Platoon blocked, %				_	_	_
Mov Cap-1 Maneuver	389	826	1353	_	_	-
Mov Cap-2 Maneuver	389	-	1000	_	_	_
Stage 1	762	_	_	_	_	_
-	633	_	-	_	_	_
Stage 2	033	_				
Approach	EB		NB		SB	
HCM Ctrl Dly, s/v	10.08		1.67		0	
HCM LOS	В					
Minor Long/Major Myr	.4	NDI	NDT	CDI 54 I	EDI 22	CDT
Minor Lane/Major Mvm	11	NBL		EBLn1 I		SBT
Capacity (veh/h)		384	-		826	-
HCM Lane V/C Ratio		0.06		0.012		-
HCM Ctrl Dly (s/v)		7.8	0	14.4	9.6	-
HCM Lane LOS		A	Α	В	A	-
HCM 95th %tile Q(veh))	0.2	-	0	0.2	-

Intersection												
Int Delay, s/veh	22											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			44	
Traffic Vol, veh/h	67	388	22	24	277	43	26	12	32	85	6	134
Future Vol, veh/h	67	388	22	24	277	43	26	12	32	85	6	134
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	81	81	81	81	81	81	81	81	81	81	81	81
Heavy Vehicles, %	3	3	3	3	3	3	3	3	3	3	3	3
Mvmt Flow	83	479	27	30	342	53	32	15	40	105	7	165
Major/Minor N	Major1			Major2			Minor1			Minor2		
Conflicting Flow All	395	0	0	506	0	0	1063	1112	493	1080	1099	369
Stage 1	-	-	-	-	-	-	658	658	-	428	428	-
Stage 2	_	-	-	-	-	-	405	454	_	652	672	_
Critical Hdwy	4.13	-	_	4.13	-	-	7.13	6.53	6.23	7.13	6.53	6.23
Critical Hdwy Stg 1	-	-	-	-	-	-	6.13	5.53	-	6.13	5.53	_
Critical Hdwy Stg 2	-	-	_	-	-	-	6.13	5.53	-	6.13	5.53	-
Follow-up Hdwy	2.227	-	-	2.227	-	-	3.527	4.027	3.327	3.527	4.027	3.327
Pot Cap-1 Maneuver	1158	-	-	1053	-	-	200	208	574	195	211	675
Stage 1	-	-	-	-	-	-	452	460	-	603	583	-
Stage 2	-	-	-	-	-	-	621	567	-	455	453	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1158	-	-	1053	-	-	126	180	574	146	183	675
Mov Cap-2 Maneuver	-	-	-	-	-	-	126	180	-	146	183	-
Stage 1	-	-	-	-	-	-	407	414	-	581	562	-
Stage 2	-	-	-	-	-	-	445	547	-	368	408	-
Approach	EB			WB			NB			SB		
HCM Ctrl Dly, s/v	1.17			0.59			32.89			95.49		
HCM LOS							D			F		
Minor Lane/Major Mvm	nt l	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBL n1			
Capacity (veh/h)		213	250	-		122	-	-	277			
HCM Lane V/C Ratio		0.405		<u>-</u>		0.028	<u>-</u>	_				
HCM Ctrl Dly (s/v)		32.9	8.3	0	_	8.5	0	-	95.5			
HCM Lane LOS		02.5 D	Α	A	_	Α.	A	_	55.5 F			
HCM 95th %tile Q(veh)	1	1.8	0.2	-	_	0.1	-	-	10.3			
TOW JOHN JOHN Q(VEII)		1.0	0.2			0.1			10.0			

Intersection						
Int Delay, s/veh	7.6					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		<u></u>	1	11511	¥/	0511
Traffic Vol, veh/h	251	252	169	67	36	178
Future Vol, veh/h	251	252	169	67	36	178
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-		-		-	None
Storage Length	_	-	_	-	0	-
Veh in Median Storage	.# -	0	0	-	0	-
Grade, %	-	0	0	_	0	_
Peak Hour Factor	81	81	81	81	81	81
Heavy Vehicles, %	4	4	4	4	4	4
Mvmt Flow	310	311	209	83	44	220
IVIVIIIL FIOW	310	311	209	03	44	220
Major/Minor N	Major1	N	Major2	1	Minor2	
Conflicting Flow All	291	0	-	0	1181	250
Stage 1	-	-	-	-	250	-
Stage 2	-	-	-	-	931	-
Critical Hdwy	4.14	-	-	-	6.44	6.24
Critical Hdwy Stg 1	_	_	-	-	5.44	_
Critical Hdwy Stg 2	_	_	-	-	5.44	_
Follow-up Hdwy	2.236	_	_	_	3.536	3.336
Pot Cap-1 Maneuver	1259	-	_	-	208	784
Stage 1	-	_	_	_	787	-
Stage 2	_	_	-	-	381	-
Platoon blocked, %		_	_	-	001	
Mov Cap-1 Maneuver	1259	_		-	146	784
Mov Cap-1 Maneuver			-		146	
Stage 1	-	-	-	-	553	-
		-	-	-		
Stage 2	-	-	-	-	381	-
Approach	EB		WB		SB	
HCM Ctrl Dly, s/v	4.39		0		23.57	
HCM LOS	1.00		•		C	
TIOM EGG						
Minor Lane/Major Mvm	ıt	EBL	EBT	WBT	WBR	SBLn1
Capacity (veh/h)		898	-	-	-	452
HCM Lane V/C Ratio		0.246	-	-	-	0.584
HCM Ctrl Dly (s/v)		8.8	0	-	-	23.6
HCM Lane LOS		Α	Α	-	-	С
HCM 95th %tile Q(veh)		1	-	-	-	3.7
HCM 95th %tile Q(veh)		1	-	-	-	3.7

Intersection	
Intersection Delay, s/veh	10
Intersection LOS	Α

Movement	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT
Lane Configurations	J.	↑ ↑			ă	f)		J.	†	7	,	<u></u>
Traffic Vol, veh/h	53	39	60	0	4	49	59	63	102	2	38	141
Future Vol, veh/h	53	39	60	0	4	49	59	63	102	2	38	141
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Heavy Vehicles, %	3	3	3	3	3	3	3	3	3	3	3	3
Mvmt Flow	56	41	63	0	4	52	62	66	107	2	40	148
Number of Lanes	1	2	0	0	1	1	0	1	1	1	1	1
Approach	EB				WB			NB			SB	
Opposing Approach	WB				EB			SB			NB	
Opposing Lanes	2				3			2			3	
Conflicting Approach Left	SB				NB			EB			WB	
Conflicting Lanes Left	2				3			3			2	
Conflicting Approach Right	NB				SB			WB			EB	

Opposing Approach	WB	EB	SB	NB	
Opposing Lanes	2	3	2	3	
Conflicting Approach Left	SB	NB	EB	WB	
Conflicting Lanes Left	2	3	3	2	
Conflicting Approach Right	NB	SB	WB	EB	
Conflicting Lanes Right	3	2	2	3	
HCM Control Delay, s/veh	9.4	9.8	10	10.5	
HCM LOS	Α	А	Α	В	

Lane	NBLn1	NBLn2	NBLn3	EBLn1	EBLn2	EBLn3	WBLn1	WBLn2	SBLn1	SBLn2	
Vol Left, %	100%	0%	0%	100%	0%	0%	100%	0%	100%	0%	
Vol Thru, %	0%	100%	0%	0%	100%	18%	0%	45%	0%	83%	
Vol Right, %	0%	0%	100%	0%	0%	82%	0%	55%	0%	17%	
Sign Control	Stop										
Traffic Vol by Lane	63	102	2	53	26	73	4	108	38	170	
LT Vol	63	0	0	53	0	0	4	0	38	0	
Through Vol	0	102	0	0	26	13	0	49	0	141	
RT Vol	0	0	2	0	0	60	0	59	0	29	
Lane Flow Rate	66	107	2	56	27	77	4	114	40	179	
Geometry Grp	6	6	6	6	6	6	6	6	6	6	
Degree of Util (X)	0.119	0.178	0.003	0.102	0.046	0.117	0.008	0.183	0.071	0.285	
Departure Headway (Hd)	6.455	5.952	5.248	6.579	6.076	5.497	6.671	5.783	6.36	5.737	
Convergence, Y/N	Yes										
Сар	556	603	682	546	590	652	537	621	564	628	
Service Time	4.184	3.681	2.976	4.311	3.808	3.229	4.403	3.514	4.085	3.462	
HCM Lane V/C Ratio	0.119	0.177	0.003	0.103	0.046	0.118	0.007	0.184	0.071	0.285	
HCM Control Delay, s/veh	10.1	10	8	10.1	9.1	9	9.5	9.8	9.6	10.7	
HCM Lane LOS	В	Α	Α	В	Α	Α	Α	Α	Α	В	
HCM 95th-tile Q	0.4	0.6	0	0.3	0.1	0.4	0	0.7	0.2	1.2	

ln'	וםו	re	۵	0	ti	^	n
ш	נטו	3	C	U	u	v	ш

Intersection Delay, s/veh Intersection LOS

Movement	SBR
Lane Configurations	
Traffic Vol, veh/h	29
Future Vol, veh/h	29
Peak Hour Factor	0.95
Heavy Vehicles, %	3
Mvmt Flow	31
Number of Lanes	0

Approach

HCM LOS

Opposing Approach
Opposing Lanes
Conflicting Approach Left
Conflicting Lanes Left
Conflicting Approach Right
Conflicting Lanes Right
HCM Control Delay, s/veh

	>	\rightarrow	7	•	•	*_	1	ሽ	/	\	→	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL2	NBL	NBR	SEL	SER	
Lane Configurations	44	ተተተ			ተተተ	7	ሻሻ		77			
Traffic Volume (veh/h)	88	533	0	0	281	245	377	0	154	0	0	
Future Volume (veh/h)	88	533	0	0	281	245	377	0	154	0	0	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0			
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00	1.00	1.00			
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Work Zone On Approac	h	No			No			No				
	1796	1796	0	0	1796	1796	1796	1796	1796			
Adj Flow Rate, veh/h	96	579	0	0	305	266	410	410	167			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92			
Percent Heavy Veh, %	7	7	0	0	7	7	7	7	7			
Cap, veh/h	440	2685	0	0	1389	431	567	567	458			
Arrive On Green	0.13	0.55	0.00	0.00	0.57	0.57	0.17	0.17	0.17			
Sat Flow, veh/h	3319	5065	0	0	5065	1522	3319	3319	2679			
Grp Volume(v), veh/h	96	579	0	0	305	266	410	410	167			
Grp Sat Flow(s), veh/h/lr		1635	0	0	1635	1522	1659	1659	1340			
Q Serve(g_s), s	1.6	3.6	0.0	0.0	1.8	7.0	7.0	7.0	3.3			
Cycle Q Clear(g_c), s	1.6	3.6	0.0	0.0	1.8	7.0	7.0	7.0	3.3			
Prop In Lane	1.00	0.0	0.00	0.00	1.0	1.00	1.00	1.00	1.00			
Lane Grp Cap(c), veh/h		2685	0.00	0.00	1389	431	567	567	458			
V/C Ratio(X)	0.22	0.22	0.00	0.00	0.22	0.62	0.72	0.72	0.36			
Avail Cap(c_a), veh/h	443	2685	0.00	0.00	1430	444	608	608	491			
HCM Platoon Ratio	1.00	1.00	1.00	1.00	2.00	2.00	1.00	1.00	1.00			
Upstream Filter(I)	1.00	1.00	0.00	0.00	0.98	0.98	1.00	1.00	1.00			
Uniform Delay (d), s/vel		7.0	0.0	0.0	9.7	10.8	23.5	23.5	22.0			
Incr Delay (d2), s/veh	0.2	0.2	0.0	0.0	0.4	6.3	7.8	7.8	2.2			
Initial Q Delay(d3), s/vel		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
%ile BackOfQ(50%),veh		0.0	0.0	0.0	0.6	2.3	3.0	3.0	1.1			
Unsig. Movement Delay			0.0	0.0	0.0	2.5	3.0	3.0	1.1			
		7.2	0.0	0.0	10.1	17.2	31.3	31.3	24.2			
LnGrp Delay(d), s/veh	23.4 C	7.2 A	0.0	0.0	В	17.2 B	31.3 C	31.3 C	24.2 C			
LnGrp LOS	U					D			U			
Approach Vol, veh/h		675			571		577	577				
Approach Delay, s/veh		9.5			13.4		29.3	29.3				
Approach LOS		Α			В		С	С				
Timer - Assigned Phs		2			5	6		8				
Phs Duration (G+Y+Rc)	, S	40.7			15.8	24.9		19.3				
Change Period (Y+Rc),	S	7.9			7.9	* 7.9		9.0				
Max Green Setting (Gm		32.1			8.0	* 18		11.0				
Max Q Clear Time (g_c-	+I1), s	5.6			3.6	9.0		9.0				
Green Ext Time (p_c), s		10.5			0.1	3.5		1.2				
Intersection Summary												
HCM 7th Control Delay,	s/veh		17.0									
HCM 7th LOS			В									
Notes												

	_	\rightarrow	F	_	_	-	*
Movement	EBL	EBT	WBU	WBT	WBR	SBL	SBR
Lane Configurations	76	ተተተ	Ð	ተተተ	7	ሻሻ	7
Traffic Volume (veh/h)	173	491	0	366	123	96	156
Future Volume (veh/h)	173	491	0	366	123	96	156
Initial Q (Qb), veh	0	0		0	0	0	0
Lane Width Adj.	1.00	1.00		1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	1.00				1.00	1.00	1.00
Parking Bus, Adj	1.00	1.00		1.00	1.00	1.00	1.00
Work Zone On Approach		No		No		No	
	1856	1856		1856	1856	1856	1856
Adj Flow Rate, veh/h	190	540		402	135	105	171
Peak Hour Factor	0.91	0.91		0.91	0.91	0.91	0.91
Percent Heavy Veh, %	3	3		3	3	3	3
Cap, veh/h	547	2863		1556	483	622	536
Arrive On Green	0.05	0.19		0.31	0.31	0.18	0.18
	3428	5233		5233	1572	3428	1572
Grp Volume(v), veh/h	190	540		402	135	105	171
Grp Sat Flow(s), veh/h/ln		1689		1689	1572	1714	1572
Q Serve(g_s), s	3.2	5.4		3.6	3.9	1.6	4.8
Cycle Q Clear(g_c), s	3.2	5.4		3.6	3.9	1.6	4.8
Prop In Lane	1.00	J. T		0.0	1.00	1.00	1.00
Lane Grp Cap(c), veh/h		2863		1556	483	622	536
V/C Ratio(X)	0.35	0.19		0.26	0.28	0.17	0.32
Avail Cap(c_a), veh/h	691	2863		1556	483	720	581
HCM Platoon Ratio	0.33	0.33		1.00	1.00	1.00	1.00
Upstream Filter(I)	0.98	0.98		1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh		12.8		15.6	15.8	20.7	14.6
Incr Delay (d2), s/veh	0.1	0.1		0.4	1.4	0.2	0.6
Initial Q Delay(d3), s/ver		0.0		0.4	0.0	0.2	0.0
%ile BackOfQ(50%),veh		1.6		1.2	1.4	0.0	4.8
Unsig. Movement Delay				1.2	1.4	0.0	4.0
LnGrp Delay(d), s/veh	25.5	12.9		16.0	17.2	21.0	15.2
LnGrp LOS	25.5 C	12.9 B		16.0 B	17.2 B	21.0 C	15.2 B
	U				D		D
Approach Vol, veh/h		730		537		276	
Approach Delay, s/veh		16.2		16.3		17.4	
Approach LOS		В		В		В	
Timer - Assigned Phs		2		4	5	6	
Phs Duration (G+Y+Rc)	, s	40.7	-	19.3	15.5	25.2	
Change Period (Y+Rc),	S	6.8		8.4	5.9	6.8	
Max Green Setting (Gma		20.3		12.6	12.1	14.2	
Max Q Clear Time (g_c+		7.4		6.8	5.2	5.9	
Green Ext Time (p_c), s	, .	5.0		0.8	0.2	3.4	
Intersection Summary							
HCM 7th Control Delay,	chrob		16.5				
HCM 7th LOS	5/VEII		10.5 B				
HOW / (II LUS			В				
Notes							_
User approved ignoring	U-Turi	ning mo	vemen	t.			

	۶	→	•	•	←	4	•	†	/	/	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ħ	f)		ħ	-î		7	f)		, j	f)	
Traffic Volume (veh/h)	126	363	34	82	469	26	5	7	31	61	11	119
Future Volume (veh/h)	126	363	34	82	469	26	5	7	31	61	11	119
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856
Adj Flow Rate, veh/h	145	417	39	94	539	30	6	8	36	70	13	137
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Percent Heavy Veh, %	3	3	3	3	3	3	3	3	3	3	3	3
Cap, veh/h	198	619	58	174	621	35	189	44	199	153	18	189
Arrive On Green	0.11	0.37	0.37	0.10	0.36	0.36	0.11	0.15	0.15	0.09	0.13	0.13
Sat Flow, veh/h	1767	1671	156	1767	1741	97	1767	294	1323	1767	138	1455
Grp Volume(v), veh/h	145	0	456	94	0	569	6	0	44	70	0	150
Grp Sat Flow(s),veh/h/ln	1767	0	1827	1767	0	1838	1767	0	1617	1767	0	1594
Q Serve(g_s), s	5.1	0.0	13.5	3.3	0.0	18.6	0.2	0.0	1.5	2.4	0.0	5.8
Cycle Q Clear(g_c), s	5.1	0.0	13.5	3.3	0.0	18.6	0.2	0.0	1.5	2.4	0.0	5.8
Prop In Lane	1.00		0.09	1.00		0.05	1.00		0.82	1.00		0.91
Lane Grp Cap(c), veh/h	198	0	677	174	0	656	189	0	243	153	0	207
V/C Ratio(X)	0.73	0.00	0.67	0.54	0.00	0.87	0.03	0.00	0.18	0.46	0.00	0.72
Avail Cap(c_a), veh/h	241	0	898	214	0	874	214	0	594	214	0	585
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	27.7	0.0	17.0	27.7	0.0	19.3	25.8	0.0	23.9	28.0	0.0	27.0
Incr Delay (d2), s/veh	8.8	0.0	1.2	2.6	0.0	7.2	0.1	0.0	0.4	2.1	0.0	4.7
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	2.4	0.0	4.9	1.4	0.0	7.9	0.1	0.0	0.5	1.0	0.0	2.3
Unsig. Movement Delay, s/veh	l											
LnGrp Delay(d), s/veh	36.5	0.0	18.3	30.3	0.0	26.6	25.9	0.0	24.3	30.2	0.0	31.7
LnGrp LOS	D		В	С		С	С		С	С		С
Approach Vol, veh/h		601			663			50			220	
Approach Delay, s/veh		22.7			27.1			24.5			31.2	
Approach LOS		С			С			С			С	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	9.8	15.0	10.6	29.2	11.1	13.7	11.4	28.3				
Change Period (Y+Rc), s	4.2	5.3	4.2	5.3	4.2	5.3	4.2	5.3				
Max Green Setting (Gmax), s	7.8	23.7	7.8	31.7	7.8	23.7	8.8	30.7				
Max Q Clear Time (g_c+l1), s	4.4	3.5	5.3	15.5	2.2	7.8	7.1	20.6				
Green Ext Time (p_c), s	0.0	0.1	0.0	2.3	0.0	0.6	0.1	2.4				
Intersection Summary	J. C											
•			25.0									
HCM 7th Control Delay, s/veh			25.9 C									
HCM 7th LOS			С									

Intersection							
Int Delay, s/veh	10.3						
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	EDL Š	<u>⊏DI</u>		WDK	SDL T	SDR 7	
Traffic Vol, veh/h	224	T 235	1 → 277	91	88	281	
Future Vol, veh/h	224	235	277	91	88	281	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None		None	-	None	
Storage Length	250	-	-	-	250	0	
Veh in Median Storage		0	0	-	0	-	
Grade, %	-	0	0	-	0	-	
Peak Hour Factor	84	84	84	84	84	84	
Heavy Vehicles, %	3	3	3	3	3	3	
Mvmt Flow	267	280	330	108	105	335	
Major/Minor I	Major1	N	//ajor2		Minor2		
Conflicting Flow All	438	0	//aj012 -	0	1197	384	
Stage 1	430	-	_	-	384	-	
Stage 2	_	_	_	_	813	_	
Critical Hdwy	4.13	-	-	-	6.43	6.23	
Critical Hdwy Stg 1	-	-	_	-	5.43	-	
Critical Hdwy Stg 2	-	-	-	-	5.43	-	
Follow-up Hdwy	2.227	-	-	-	0 505	3.327	
Pot Cap-1 Maneuver	1116	-	-	-	204	661	
Stage 1	-	-	-	-	686	-	
Stage 2	-	-	-	-	434	-	
Platoon blocked, %		-	-	-			
Mov Cap-1 Maneuver	1116	-	-	-	156	661	
Mov Cap-2 Maneuver	-	-	-	-	156	-	
Stage 1	-	-	-	-	522	-	
Stage 2	-	-	-	-	434	-	
Approach	EB		WB		SB		
HCM Ctrl Dly, s/v	4.51		0		27.85		
HCM LOS			•		D		
Minor Lanc/Major Mym	nt .	EBL	EBT	WBT	MPD	SBLn1 S	רמ ום
Minor Lane/Major Mvm	IL	1116			WDK -		661
Capacity (veh/h) HCM Lane V/C Ratio		0.239	-	-		0.673	
HCM Ctrl Dly (s/v)		9.2	-		-		15.9
HCM Lane LOS		9.2 A	-	-	-	60.1 F	15.9 C
HCM 95th %tile Q(veh)	\	0.9			-	3.9	2.9
HOW BOTH WITH MILE MINE	1	0.5	_	-	-	5.5	2.3

	۶	→	•	✓	←	•	1	†	<i>></i>	/	+	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	₽		ሻ	4		ሻ	₽.		ሻ	₽	
Traffic Volume (veh/h)	67	388	22	24	277	43	26	12	32	85	6	134
Future Volume (veh/h)	67	388	22	24	277	43	26	12	32	85	6	134
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856
Adj Flow Rate, veh/h	83	479	27	30	342	53	32	15	40	105	7	165
Peak Hour Factor	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81
Percent Heavy Veh, %	3	3	3	3	3	3	3	3	3	3	3	3
Cap, veh/h	216	541	30	216	488	76	216	74	198	183	9	222
Arrive On Green	0.12	0.31	0.31	0.12	0.31	0.31	0.12	0.17	0.17	0.10	0.15	0.15
Sat Flow, veh/h	1767	1740	98	1767	1569	243	1767	447	1193	1767	64	1518
Grp Volume(v), veh/h	83	0	506	30	0	395	32	0	55	105	0	172
Grp Sat Flow(s),veh/h/ln	1767	0	1838	1767	0	1812	1767	0	1641	1767	0	1582
Q Serve(g_s), s	2.8	0.0	16.7	1.0	0.0	12.3	1.0	0.0	1.8	3.6	0.0	6.6
Cycle Q Clear(g_c), s	2.8	0.0	16.7	1.0	0.0	12.3	1.0	0.0	1.8	3.6	0.0	6.6
Prop In Lane	1.00		0.05	1.00		0.13	1.00	_	0.73	1.00	_	0.96
Lane Grp Cap(c), veh/h	216	0	571	216	0	563	216	0	272	183	0	232
V/C Ratio(X)	0.38	0.00	0.89	0.14	0.00	0.70	0.15	0.00	0.20	0.58	0.00	0.74
Avail Cap(c_a), veh/h	216	0	660	216	0	651	216	0	579	216	0	558
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	25.8	0.0	20.9	25.0	0.0	19.4	25.0	0.0	23.0	27.3	0.0	26.1
Incr Delay (d2), s/veh	1.1	0.0	12.4	0.3	0.0	2.8	0.3	0.0	0.4	2.8	0.0	4.6
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.1	0.0	8.0	0.4	0.0	4.8	0.4	0.0	0.6	1.5	0.0	2.5
Unsig. Movement Delay, s/veh		0.0	22.2	05.0	0.0	00.0	05.0	0.0	00.0	20.4	0.0	20.7
LnGrp Delay(d), s/veh	26.9	0.0	33.3 C	25.3	0.0	22.2 C	25.3 C	0.0	23.3 C	30.1	0.0	30.7
LnGrp LOS	С	500	C	С	405	C	C	07	U	С	077	С
Approach Vol, veh/h		589			425			87			277	
Approach Delay, s/veh		32.4			22.4			24.1			30.5	
Approach LOS		С			С			С			С	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	10.8	15.9	12.0	25.1	12.0	14.6	12.0	25.1				
Change Period (Y+Rc), s	4.2	5.3	4.2	5.3	4.2	5.3	4.2	5.3				
Max Green Setting (Gmax), s	7.8	22.5	7.8	22.9	7.8	22.5	7.8	22.9				
Max Q Clear Time (g_c+l1), s	5.6	3.8	3.0	18.7	3.0	8.6	4.8	14.3				
Green Ext Time (p_c), s	0.0	0.2	0.0	1.1	0.0	0.7	0.0	1.4				
Intersection Summary												
HCM 7th Control Delay, s/veh			28.4									
HCM 7th LOS			С									

Intersection						
Int Delay, s/veh	5.8					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
				WDK		
Lane Configurations	251	752	∱	67	أ	170
Traffic Vol, veh/h	251	252	169	67	36	178
Future Vol, veh/h	251	252	169	67	36	178
Conflicting Peds, #/hr	_ 0	_ 0	_ 0	_ 0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None		None	-	None
Storage Length	250	-	-	-	250	0
Veh in Median Storage	e,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	81	81	81	81	81	81
Heavy Vehicles, %	4	4	4	4	4	4
Mvmt Flow	310	311	209	83	44	220
NA=:==(NA:===	N 4 = ! 4		1-1-0		\ d: C	
	Major1		Major2		Minor2	
Conflicting Flow All	291	0	-	0	1181	250
Stage 1	-	-	-	-	250	-
Stage 2	-	-	-	-	931	-
Critical Hdwy	4.14	-	-	-	6.44	6.24
Critical Hdwy Stg 1	-	-	-	-	5.44	-
Critical Hdwy Stg 2	-	-	-	-	5.44	-
Follow-up Hdwy	2.236	-	-	-	3.536	3.336
Pot Cap-1 Maneuver	1259	-	-	-	208	784
Stage 1	-	-	-	-	787	-
Stage 2	_	_	_	_	381	_
Platoon blocked, %		_	_	_		
Mov Cap-1 Maneuver	1259	_	_	_	157	784
Mov Cap-2 Maneuver	1200	_		_	157	- 104
		_	-		593	-
Stage 1	-	-	-	-		
Stage 2	-	-	-	_	381	-
Approach	EB		WB		SB	
HCM Ctrl Dly, s/v	4.39		0		15.65	
HCM LOS					С	
110111 200						
Minor Lane/Major Mvn	nt	EBL	EBT	WBT	WBR:	SBLn1 S
Capacity (veh/h)		1259	-	-	-	
HCM Lane V/C Ratio		0.246	-	-	-	0.283
HCM Ctrl Dly (s/v)		8.8	-	-	-	36.8
HCM Lane LOS		Α	-	-	-	Е
HCM 95th %tile Q(veh)	1	-	-	-	1.1
3341 /0413 04(1011	1					

Intersection: 1: Private Driveway/SR 99 SB Ramps & Almond Avenue

Movement	EB	EB	EB	WB	WB	WB	NB	NB	SB	SB	SB	
Directions Served	L	Т	R	L	T	R	L	R	L	T	R	
Maximum Queue (ft)	170	189	18	26	89	146	45	23	91	43	66	
Average Queue (ft)	113	55	1	2	45	36	7	3	50	4	37	
95th Queue (ft)	177	158	6	12	80	80	27	15	90	19	61	
Link Distance (ft)		1361			725				79	79	79	
Upstream Blk Time (%)									2		0	
Queuing Penalty (veh)									2		0	
Storage Bay Dist (ft)	80		80	120		120	75	75				
Storage Blk Time (%)	29	1				1						
Queuing Penalty (veh)	31	2				1						

Intersection: 2: Tozer Avenue & Avenue 13.5

Movement	EB	WB	NB	SB
Directions Served	LTR	LTR	L	L
Maximum Queue (ft)	72	54	26	76
Average Queue (ft)	37	27	2	10
95th Queue (ft)	62	52	12	38
Link Distance (ft)	1240	1264		
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)			150	150
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 3: Tozer Avenue & Knox Street

Movement	EB	EB	NB
Directions Served	L	R	LT
Maximum Queue (ft)	18	63	98
Average Queue (ft)	3	24	19
95th Queue (ft)	14	48	57
Link Distance (ft)	1831	1831	554
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 6: Road 28.25/Golden State Boulevard & Avenue 13

Movement	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	L	TR	L	TR	L	TR	L	TR	
Maximum Queue (ft)	182	287	97	398	25	53	98	142	
Average Queue (ft)	64	110	48	191	4	17	40	57	
95th Queue (ft)	120	212	88	334	17	44	78	103	
Link Distance (ft)		1102		1588		448		2836	
Upstream Blk Time (%)									
Queuing Penalty (veh)									
Storage Bay Dist (ft)	250		250		250		250		
Storage Blk Time (%)		0		5					
Queuing Penalty (veh)		1		4					

Intersection: 7: Avenue 13 & Tozer Avenue

Movement	EB	SB	SB
Directions Served	L	L	R
Maximum Queue (ft)	77	135	102
Average Queue (ft)	45	39	61
95th Queue (ft)	80	83	98
Link Distance (ft)			510
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)	250	250	
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 8: Avenue 29 & Avenue 13

Movement	EB	EB	EB	WB	WB	NB	NB	NB	SB	SB	
Directions Served	L	Т	TR	UL	TR	L	Т	R	L	TR	_
Maximum Queue (ft)	49	77	112	23	88	92	115	26	72	110	
Average Queue (ft)	16	38	44	6	32	50	52	1	35	65	
95th Queue (ft)	42	68	80	21	63	84	92	9	52	96	
Link Distance (ft)		237	237		914		4336			1337	
Upstream Blk Time (%)											
Queuing Penalty (veh)											
Storage Bay Dist (ft)	100			275		100		100	100		
Storage Blk Time (%)						0	0			0	
Queuing Penalty (veh)						0	0			0	

Intersection: 9: SR 99 NB Off-Ramp & Avenue 12 & SR 99 NB On-Ramp

Movement	EB	EB	EB	EB	EB	WB	WB	WB	NB	NB	NB	NB
Directions Served	L	L	Т	Т	T	T	Т	R	<	<	R	R
Maximum Queue (ft)	56	74	122	63	35	40	36	128	126	140	124	27
Average Queue (ft)	12	11	18	17	2	6	2	23	66	96	40	8
95th Queue (ft)	40	39	58	53	15	24	14	73	124	144	83	27
Link Distance (ft)			1743	1743	1743	1494	1494			1105		
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)	425	425						950	150		150	150
Storage Blk Time (%)										0		
Queuing Penalty (veh)										0		

Intersection: 10: Avenue 12 & Road 29

Movement	EB	EB	EB	EB	EB	WB	WB	WB	WB	SB	SB	SB
Directions Served	L	L	Т	Т	T	Т	Т	Т	R	L	L	R
Maximum Queue (ft)	200	174	117	75	43	91	129	182	53	158	106	51
Average Queue (ft)	60	17	38	17	4	44	44	90	26	53	24	28
95th Queue (ft)	119	71	84	50	24	70	95	144	47	105	65	55
Link Distance (ft)			1494	1494	1494	1424	1424	1424				818
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)	575	575							600	460	460	
Storage Blk Time (%)												
Queuing Penalty (veh)												

Intersection: 25: SR 99 SB Ramps/SR 99 SB Off-Ramp & SR 99 SB On-Ramp

Movement	SB
Directions Served	T
Maximum Queue (ft)	74
Average Queue (ft)	4
95th Queue (ft)	29
Link Distance (ft)	59
Upstream Blk Time (%)	1
Queuing Penalty (veh)	0
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Network Summary

Network wide Queuing Penalty: 41

Intersection: 1: Private Driveway/SR 99 SB Ramps & Almond Avenue

Movement	EB	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	L	T	R	T	R	L	Т	L	R	
Maximum Queue (ft)	145	152	20	73	52	45	25	88	65	
Average Queue (ft)	83	41	1	29	24	11	3	45	28	
95th Queue (ft)	137	111	9	59	48	33	15	82	52	
Link Distance (ft)		1361		725			437	79	79	
Upstream Blk Time (%)								2	0	
Queuing Penalty (veh)								2	0	
Storage Bay Dist (ft)	80		80		120	75				
Storage Blk Time (%)	9	2								
Queuing Penalty (veh)	11	5								

Intersection: 2: Tozer Avenue & Avenue 13.5

Movement	EB	WB	NB	SB
Directions Served	LTR	LTR	L	L
Maximum Queue (ft)	54	79	27	61
Average Queue (ft)	19	37	3	20
95th Queue (ft)	47	68	16	49
Link Distance (ft)	1240	1264		
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)			150	150
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 3: Tozer Avenue & Knox Street

Movement	EB	EB	NB
Directions Served	L	R	LT
Maximum Queue (ft)	18	39	53
Average Queue (ft)	5	10	12
95th Queue (ft)	18	25	43
Link Distance (ft)	1831	1831	586
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 6: Road 28.25/Golden State Boulevard & Avenue 13

Movement	EB	EB	WB	WB	NB	NB	SB	SB
Directions Served	L	TR	L	TR	L	TR	L	TR
Maximum Queue (ft)	120	284	71	181	50	47	96	76
Average Queue (ft)	45	140	21	114	12	15	52	42
95th Queue (ft)	86	252	51	175	37	38	87	70
Link Distance (ft)		1102		1588		448		2836
Upstream Blk Time (%)								
Queuing Penalty (veh)								
Storage Bay Dist (ft)	250		250		250		250	
Storage Blk Time (%)		1						
Queuing Penalty (veh)		1						

Intersection: 7: Avenue 13 & Tozer Avenue

Movement	EB	SB	SB
Directions Served	L	L	R
Maximum Queue (ft)	120	52	71
Average Queue (ft)	39	22	41
95th Queue (ft)	76	48	63
Link Distance (ft)			495
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)	250	250	
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 8: Avenue 29 & Avenue 13

Movement	EB	EB	EB	WB	WB	NB	NB	NB	SB	SB	
Directions Served	L	Т	TR	UL	TR	L	Т	R	L	TR	
Maximum Queue (ft)	78	53	75	18	66	72	76	31	53	97	
Average Queue (ft)	26	24	25	1	25	30	39	2	24	47	
95th Queue (ft)	51	50	49	6	45	54	62	14	46	79	
Link Distance (ft)		237	237		914		4336			1337	
Upstream Blk Time (%)											
Queuing Penalty (veh)											
Storage Bay Dist (ft)	100			275		100		100	100		
Storage Blk Time (%)										0	
Queuing Penalty (veh)										0	

Intersection: 9: SR 99 NB Off-Ramp & Avenue 12 & SR 99 NB On-Ramp

Movement	EB	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	NB
Directions Served	L	L	Т	Т	T	T	T	T	R	<	<	R
Maximum Queue (ft)	116	29	89	63	47	86	16	8	62	133	185	111
Average Queue (ft)	19	14	30	17	2	16	1	0	12	54	78	37
95th Queue (ft)	62	33	65	45	16	55	5	3	40	110	130	72
Link Distance (ft)			1743	1743	1743	1494	1494	1494			1105	
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)	425	425							950	150		150
Storage Blk Time (%)										0	0	
Queuing Penalty (veh)										0	1	

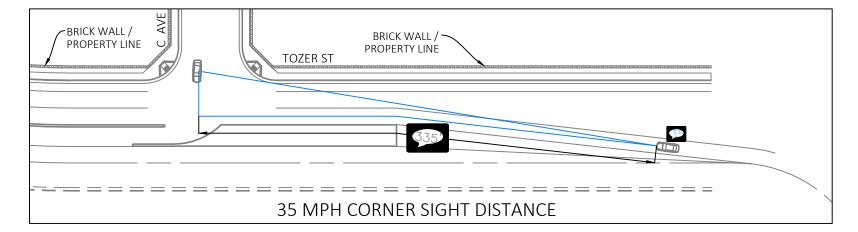
Intersection: 9: SR 99 NB Off-Ramp & Avenue 12 & SR 99 NB On-Ramp

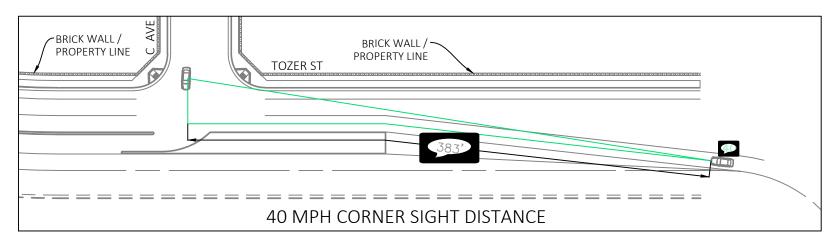
Movement	NB
Directions Served	R
Maximum Queue (ft)	69
Average Queue (ft)	14
95th Queue (ft)	45
Link Distance (ft)	
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	150
Storage Blk Time (%)	
Queuing Penalty (veh)	

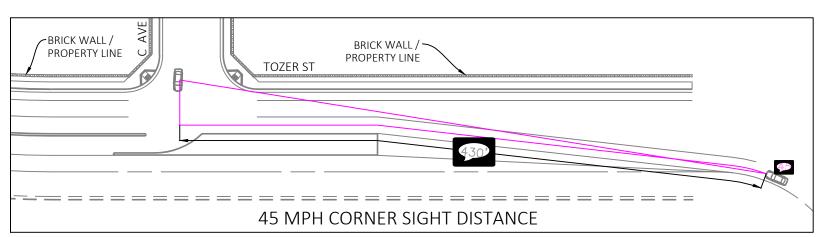
Intersection: 10: Avenue 12 & Road 29

Movement	EB	EB	EB	EB	WB	WB	WB	WB	SB	SB	SB	
Directions Served	L	L	Т	Т	Т	T	T	R	L	L	R	
Maximum Queue (ft)	162	127	76	54	94	67	98	53	73	50	67	
Average Queue (ft)	85	25	32	14	35	28	51	27	33	12	37	
95th Queue (ft)	135	71	64	41	68	59	89	50	61	37	59	
Link Distance (ft)			1494	1494	1424	1424	1424				818	
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)	575	575						600	460	460		
Storage Blk Time (%)												
Queuing Penalty (veh)												

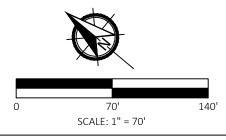
Intersection: 25: SR 99 SB Ramps/SR 99 SB Off-Ramp & SR 99 SB On-Ramp


Movement	SB
Directions Served	T
Maximum Queue (ft)	31
Average Queue (ft)	2
95th Queue (ft)	12
Link Distance (ft)	59
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	


Network Summary


Network wide Queuing Penalty: 19

Appendix G: Corner Sight Distance



ROADWAY: TOZER AVENUE DESIGN SPEED: 35, 40, 45 MPH

Appendix H: Existing plus Project Traffic Conditions

	ၨ	→	•	•	+	A.	•	†	<i>></i>	\	 	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			7	ሻ	↑	7		†	7	ች	↑	7
Traffic Volume (veh/h)	261	93	14	2	117	92	6	Ö	2	108	8	174
Future Volume (veh/h)	261	93	14	2	117	92	6	0	2	108	8	174
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856
Adj Flow Rate, veh/h	303	108	16	2	136	107	7	0	2	126	9	202
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Percent Heavy Veh, %	3	3	3	3	3	3	3	3	3	3	3	3
Cap, veh/h	354	652	552	9	289	245	29	226	192	221	422	358
Arrive On Green	0.20	0.35	0.35	0.00	0.16	0.16	0.02	0.00	0.12	0.13	0.23	0.23
Sat Flow, veh/h	1767	1856	1572	1767	1856	1572	1767	1856	1572	1767	1856	1572
Grp Volume(v), veh/h	303	108	16	2	136	107	7	0	2	126	9	202
Grp Sat Flow(s),veh/h/ln	1767	1856	1572	1767	1856	1572	1767	1856	1572	1767	1856	1572
Q Serve(g_s), s	10.6	2.6	0.4	0.1	4.3	4.0	0.3	0.0	0.1	4.3	0.2	7.3
Cycle Q Clear(g_c), s	10.6	2.6	0.4	0.1	4.3	4.0	0.3	0.0	0.1	4.3	0.2	7.3
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	354	652	552	9	289	245	29	226	192	221	422	358
V/C Ratio(X)	0.85	0.17	0.03	0.23	0.47	0.44	0.24	0.00	0.01	0.57	0.02	0.56
Avail Cap(c_a), veh/h	635	817	692	247	410	347	247	647	548	407	808	685
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	24.8	14.4	13.7	31.9	24.7	24.6	31.2	0.0	24.8	26.5	19.3	22.0
Incr Delay (d2), s/veh	2.3	0.2	0.0	4.9	2.1	2.2	1.6	0.0	0.0	0.9	0.0	2.5
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	4.1	1.0	0.1	0.0	1.9	1.6	0.1	0.0	0.0	1.7	0.1	2.8
Unsig. Movement Delay, s/veh												
LnGrp Delay(d), s/veh	27.1	14.6	13.7	36.8	26.9	26.8	32.8	0.0	24.8	27.3	19.3	24.5
LnGrp LOS	С	В	В	D	С	С	С		С	С	В	С
Approach Vol, veh/h		427			245			9			337	
Approach Delay, s/veh		23.4			26.9			31.0			25.4	
Approach LOS		С			С			С			С	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	6.2	29.4	7.0	21.7	18.8	16.8	13.8	14.9				
Change Period (Y+Rc), s	5.9	6.8	5.9	* 7.1	5.9	6.8	5.7	* 7.1				
Max Green Setting (Gmax), s	9.0	28.3	9.0	* 28	23.1	14.2	14.8	* 22				
Max Q Clear Time (g_c+l1), s	2.1	4.6	2.3	9.3	12.6	6.3	6.3	2.1				
Green Ext Time (p_c), s	0.0	0.9	0.0	1.2	0.3	1.0	0.1	0.0				
Intersection Summary												
HCM 7th Control Delay, s/veh			25.0									
HCM 7th LOS			С									
Notes												

Intersection												
Int Delay, s/veh	4.9											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	LDL	4	LDI	WDL	4	WOIN	NDL T		TIDIN	JDL	↑ ↑	ODIX
Traffic Vol, veh/h	10	33	43	8	11	51	15	258	6	80	257	11
Future Vol, veh/h	10	33	43	8	11	51	15	258	6	80	257	11
Conflicting Peds, #/hr	1	0	3	3	0	1	17	0	0	0	0	17
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	150	-	-	150	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	_	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	75	75	75	75	75	75	75	75	75	75	75	75
Heavy Vehicles, %	4	4	4	4	4	4	4	4	4	4	4	4
Mvmt Flow	13	44	57	11	15	68	20	344	8	107	343	15
Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	973	972	199	798	976	349	374	0	0	352	0	0
Stage 1	580	580	-	388	388	-	-	-	-	-	-	-
Stage 2	392	392	-	410	588	-	-	-	-	-	-	-
Critical Hdwy	7.36	6.56	6.96	7.36	6.56	6.26	4.16	-	-	4.16	-	-
Critical Hdwy Stg 1	6.56	5.56	-	6.16	5.56	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.16	5.56	-	6.56	5.56	-	-	-	-	-	-	-
Follow-up Hdwy	3.538	4.038	3.338	3.538	4.038	3.338	2.238	-	-	2.238	-	-
Pot Cap-1 Maneuver	216	249	804	287	248	688	1170	-	-	1192	-	-
Stage 1	464	495	-	630	604	-	-	-	-	-	-	-
Stage 2	627	601	-	586	491	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	161	219	789	194	218	687	1151	-	-	1192	-	-
Mov Cap-2 Maneuver	161	219	-	194	218	-	-	-	-	-	-	-
Stage 1	415	443	-	619	593	-	-	-	-	-	-	-
Stage 2	541	591	-	444	440	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Ctrl Dly, s/v	22.25			15.93			0.44			1.91		
HCM LOS	С			С								
Minor Lane/Major Mvm	nt _	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1151	-	-	322	422	1192	-	-			
HCM Lane V/C Ratio		0.017	-	-	0.356	0.221	0.089	-	-			
HCM Ctrl Dly (s/v)		8.2	-	-	22.2	15.9	8.3	-	-			
HCM Lane LOS		Α	-	-	С	С	Α	-	-			
HCM 95th %tile Q(veh))	0.1	-	-	1.6	0.8	0.3	-	-			

2.2						
EBL	EBR	NBL	NBT	SBU	SBT	SBR
4	94	67	272	2	287	4
4	94	67	272	2	287	4
1	0	1	0	0	0	1
Stop	Stop	Free	Free	Free	Free	Free
-	None	-	None	-	-	None
0	0	-	-	-	-	-
e, # 0	-	-	0	-	0	-
0	-	-	0	-	0	-
77	77	77	77	77	77	77
3	3	3	3	3	3	3
5	122	87	353	3	373	5
Minor2		Maior1		Maior2		
						0
		010				-
						_
			_	_	_	_
	J.J7J -	T. 170	_	_	_	_
	_	_	_	_	_	_
	3.3285	2.2285	_	_	_	_
			-	_	_	-
	-		_	_	_	_
	-	_	_	-	_	-
300			_		_	-
260	817	1170	-	-	-	-
	-	-	-	-	-	-
	_	-	-	-	-	-
	_	_	_	_	_	_
001						
ED		ND		CD		
				SB		
		1.64				
В						
nt	NBL	NBT I	EBLn1 I	EBLn2	SBT	SBR
	356	-	260	817	-	-
	0.074	-			-	-
	8.3	0	19.1	10.2	-	-
	Α	A	С	В	-	-
)	0.2	-	0.1	0.5	-	-
	EBL 4 4 1 Stop 0 77 3 5 Minor2 910 382 528 6.645 5.845 5.445 3.5285 3.5285 288 658 588 260 260 597 587 EB 10.55 B	EBL EBR 4 94 4 94 1 0 Stop Stop - None 0 0 - 77 77 3 3 3 5 122 Minor2 910 190 382 - 528 - 6.645 6.945 5.845 - 5.445 - 3.5285 3.3285 288 817 658 - 5.445 - 5.445 - 5.47 658 - 5.48 - 1.588 - 260 817 260 - 597 - 587 - EB 10.55 B	EBL EBR NBL 4 94 67 4 94 67 1 0 1 Stop Stop Free - None - 0 0 - 77 77 77 3 3 3 3 5 122 87 Minor2 Major1 910 190 379 382 528 6.645 6.945 4.145 5.845 5.445 3.5285 3.3285 2.2285 288 817 1172 658 588 260 817 1170 260 597 587 EB NB 10.55 1.64 B	EBL EBR NBL NBT 4 94 67 272 4 94 67 272 1 0 1 0 Stop Stop Free Free - None 0 0 None 0 0 0 77 77 77 77 77 3 3 3 3 3 5 122 87 353 Minor2 Major1 910 190 379 0 382 528 528 6.645 6.945 4.145 - 5.845 5.445 5.445 5.445 5.445 5.445 5.445 5.445 5.445 5.45 5.87 EB NB 10.55 1.64 B	EBL EBR NBL NBT SBU 4 94 67 272 2 4 94 67 272 2 1 0 1 0 0 Stop Stop Free Free Free - None - - - 0 0 - - 0 - 8,# 0 - - 0 - 77 77 77 77 77 77 3 </td <td> BBL BBR NBL NBT SBU SBT </td>	BBL BBR NBL NBT SBU SBT

Intersection						
Int Delay, s/veh	1.1					
		CET	NIVACT	NIVACO	CVAIL	CIMP
Movement	SEL	SET	NWT	NWR	SWL	SWR
Lane Configurations	<u>ች</u>	^	_^↑	40	¥	40
Traffic Vol, veh/h	3	378	326	10	48	13
Future Vol, veh/h	3	378	326	10	48	13
Conflicting Peds, #/hr	_ 0	_ 0	_ 0	_ 0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	
Storage Length	285	-	-	-	0	-
Veh in Median Storage	,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	88	88	88	88	88	88
Heavy Vehicles, %	3	3	3	3	3	3
Mvmt Flow	3	430	370	11	55	15
Major/Minor N	Major1	N	Major2	N	/linor2	
Conflicting Flow All	382	0	viajui <u>-</u>	0	598	191
Stage 1		U	-		376	
	-	-	-	-		-
Stage 2	4.40	-	-	-	222	-
Critical Hdwy	4.16	-	-	-	6.86	6.96
Critical Hdwy Stg 1	-	-	-	-	5.86	-
Critical Hdwy Stg 2	-	-	-	-	5.86	-
Follow-up Hdwy	2.23	-	-	-	3.53	3.33
Pot Cap-1 Maneuver	1166	-	-	-	431	815
Stage 1	-	-	-	-	661	-
Stage 2	-	-	-	-	791	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1166	-	-	-	430	815
Mov Cap-2 Maneuver	-	-	-	-	430	-
Stage 1	-	-	-	_	659	_
Stage 2	-	-	-	-	791	-
Annroach	SE		NW		SW	
Approach						
HCM Ctrl Dly, s/v	0.06		0		13.8	
HCM LOS					В	
Minor Lane/Major Mvm	ıt	NWT	NWR	SEL	SETS	SWLn1
Capacity (veh/h)		-		1166		478
HCM Lane V/C Ratio		_		0.003		0.145
HCM Ctrl Dly (s/v)		-	-	• •	-	
HCM Lane LOS		_	_	A	_	В
HCM 95th %tile Q(veh)		-	-	^	_	0.5
TOW JOHN JULIE Q(VEII)				U		0.0

Intersection						
Int Delay, s/veh	0.1					
Movement	EBL	EBT	WDT	WDD	SBL	SBR
			WBT	WBR	ODL	
Lane Configurations	<u> </u>	^	↑ ↑	10	٥	7
Traffic Vol, veh/h	1	425	332	12	0	4
Future Vol, veh/h	1	425	332	12	0	4
Conflicting Peds, #/hr	0	_ 0	0	_ 0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None		None	-	
Storage Length	285	-	-	-	-	0
Veh in Median Storage,		0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	88	88	88	88	88	88
Heavy Vehicles, %	3	3	3	3	3	3
Mvmt Flow	1	483	377	14	0	5
Major/Minor N	/lajor1	N	//ajor2	N	/linor2	
						405
Conflicting Flow All	391	0	-	0	-	195
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	4.16	-	-	-	-	6.96
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	2.23	-	-	-	-	3.33
Pot Cap-1 Maneuver	1157	-	-	-	0	810
Stage 1	-	-	-	-	0	-
Stage 2	-	-	-	-	0	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1157	-	-	-	-	810
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	_	_	-	-	-	-
Stage 2	_	_	_	_	_	_
5.a.go _						
Approach	EB		WB		SB	
HCM Ctrl Dly, s/v	0.02		0		9.47	
					Α	
HCM LOS						
HCM LOS		EDI	EDT	MDT	WDD (DI n1
HCM LOS Minor Lane/Major Mymi	t	EBL	EBT	WBT	WBR	
Minor Lane/Major Mvmt Capacity (veh/h)	t	1157	-	-	-	810
Minor Lane/Major Mvmi Capacity (veh/h) HCM Lane V/C Ratio	t	1157 0.001	-	-	-	810 0.006
Minor Lane/Major Mvml Capacity (veh/h) HCM Lane V/C Ratio HCM Ctrl Dly (s/v)	t	1157 0.001 8.1	- - -	- - -	- - -	810 0.006 9.5
Minor Lane/Major Mvmi Capacity (veh/h) HCM Lane V/C Ratio		1157 0.001	-	-	-	810 0.006

Intersection												
Int Delay, s/veh	65.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	126	365	35	89	476	29	5	7	34	72	11	119
Future Vol, veh/h	126	365	35	89	476	29	5	7	34	72	11	119
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	87	87	87	87	87	87	87	87	87	87	87	87
Heavy Vehicles, %	3	3	3	3	3	3	3	3	3	3	3	3
Mvmt Flow	145	420	40	102	547	33	6	8	39	83	13	137
Major/Minor	Major1		- 1	Major2			Minor1			Minor2		
Conflicting Flow All	580	0	0	460	0	0	1487	1514	440	1482	1518	564
Stage 1	-	-	-	-	-	-	729	729	-	768	768	-
Stage 2	-	-	-	-	-	-	758	785	-	713	749	-
Critical Hdwy	4.13	-	-	4.13	-	-	7.13	6.53	6.23	7.13	6.53	6.23
Critical Hdwy Stg 1	-	-	-	-	-	-	6.13	5.53	-	6.13	5.53	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.13	5.53	-	6.13	5.53	-
Follow-up Hdwy	2.227	-	-	2.227	-	-	3.527	4.027	3.327	3.527		3.327
Pot Cap-1 Maneuver	989	-	-	1096	-	-	102	119	615	103	118	523
Stage 1	-	-	-	-	-	-	413	427	-	393	409	-
Stage 2	-	-	-	-	-	-	398	402	-	421	418	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	989	-	-	1096	-	-	46	82	615	~ 62	82	523
Mov Cap-2 Maneuver	-	-	-	-	-	-	46	82	-	~ 62	82	-
Stage 1	-	-	-	-	-	-	331	342	-	338	353	-
Stage 2	-	-	-	-	-	-	244	346	-	309	335	-
Approach	EB			WB			NB			SB		
HCM Ctrl Dly, s/v	2.22			1.29			32.07		\$ 4	425.37		
HCM LOS							D			F		
Minor Lane/Major Mvm	nt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR :	SBL n1			
Capacity (veh/h)		185	424	-	-	267	-	-	132			
HCM Lane V/C Ratio			0.146	_		0.093	_		1.753			
HCM Ctrl Dly (s/v)		32.1	9.3	0	-	8.6	0		425.4			
HCM Lane LOS		D	A	Ā	_	A	Ā	-	F			
HCM 95th %tile Q(veh)	1.1	0.5	-	-	0.3	-	-	17.5			
Notes												
~: Volume exceeds car	nacity	\$· D/	elay exc	pade 31)Ne							
+: Computation Not De			major v			n .						
. Joinpalation Not De	, iii iGU	. 🗥	major v	Julie I	יי אימנטי	J11						

Intersection						
Int Delay, s/veh	106					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
	LDL	<u>- €</u>		וטייי	NA.	אופט
Lane Configurations	240		279	100		298
Traffic Vol, veh/h	240	235	278	102	119	
Future Vol, veh/h	240	235	278	102	119	298
Conflicting Peds, #/hr	_ 0	_ 0	0	_ 0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	e, # -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	84	84	84	84	84	84
Heavy Vehicles, %	3	3	3	3	3	3
Mymt Flow	286	280	331	121	142	355
IVIVIIIL I IOW	200	200	001	121	172	000
Major/Minor I	Major1	<u> </u>	Major2	<u> </u>	Minor2	
Conflicting Flow All	452	0	-	0	1243	392
Stage 1	-	-	-	-	392	-
Stage 2	_	-	-	-	851	-
Critical Hdwy	4.13	_	-	-	6.43	6.23
Critical Hdwy Stg 1		_	_	_	5.43	- 0.20
Critical Hdwy Stg 2	_		_	_	5.43	-
	2.227	_			3.527	
Follow-up Hdwy		-	-			
Pot Cap-1 Maneuver	1103	-	-	-	192	655
Stage 1	-	-	-	-	681	-
Stage 2	-	-	-	-	417	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1103	-	-		~ 133	655
Mov Cap-2 Maneuver	-	-	-	-	~ 133	-
Stage 1	-	-	-	-	472	-
Stage 2	-	-	-	-	417	-
Approach	EB		WB		SB	
HCM Ctrl Dly, s/v	4.75		0	\$ 3	318.01	
HCM LOS					F	
N		FB1	F0.7	\A/D.T	14/00	OD: 4
Minor Lane/Major Mvm	Ιτ	EBL	EBT	WBT	WBR:	
Capacity (veh/h)		909	-	-	-	309
HCM Lane V/C Ratio		0.259	-	-		1.607
HCM Ctrl Dly (s/v)		9.4	0	-	-	\$ 318
HCM Lane LOS		Α	Α	-	-	F
HCM 95th %tile Q(veh))	1	-	-	-	
` '	,					
Notes						
Notes ~: Volume exceeds car	pacity			eeds 30		

Intersection			
Intersection Delay, s/veh	38.7		
Intersection LOS	Е		

Movement	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT
Lane Configurations	ሻ	∱ Ъ			ă	ĵ.		7	^	7	7	1→
Traffic Vol, veh/h	36	82	210	4	16	65	66	158	135	2	108	242
Future Vol, veh/h	36	82	210	4	16	65	66	158	135	2	108	242
Peak Hour Factor	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73
Heavy Vehicles, %	6	6	6	6	6	6	6	6	6	6	6	6
Mvmt Flow	49	112	288	5	22	89	90	216	185	3	148	332
Number of Lanes	1	2	0	0	1	1	0	1	1	1	1	1
Approach	EB			WB				NB			SB	
Opposing Approach	WB			EB				SB			NB	
Opposing Lanes	2			3				2			3	
Conflicting Approach Left	SB			NB				EB			WB	
Conflicting Lanes Left	2			3				3			2	
Conflicting Approach Right	NB			SB				WB			EB	
Conflicting Lanes Right	3			2				2			3	
HCM Control Delay, s/veh	31.3			20.7				24.1			62	
HCM LOS	D			С				С			F	

Lane	NBLn1	NBLn2	NBLn3	EBLn1	EBLn2	EBLn3	WBLn1	WBLn2	SBLn1	SBLn2	
Vol Left, %	100%	0%	0%	100%	0%	0%	100%	0%	100%	0%	
Vol Thru, %	0%	100%	0%	0%	100%	12%	0%	50%	0%	81%	
Vol Right, %	0%	0%	100%	0%	0%	88%	0%	50%	0%	19%	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	158	135	2	36	55	237	20	131	108	299	
LT Vol	158	0	0	36	0	0	20	0	108	0	
Through Vol	0	135	0	0	55	27	0	65	0	242	
RT Vol	0	0	2	0	0	210	0	66	0	57	
Lane Flow Rate	216	185	3	49	75	325	27	179	148	410	
Geometry Grp	6	6	6	6	6	6	6	6	6	6	
Degree of Util (X)	0.599	0.485	0.007	0.135	0.195	0.789	0.08	0.485	0.392	1.011	
Departure Headway (Hd)	10.127	9.609	8.832	10.065	9.548	8.907	10.826	9.94	9.537	8.886	
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Cap	359	377	405	359	378	410	333	364	379	410	
Service Time	7.827	7.309	6.584	7.765	7.248	6.607	8.526	7.64	7.264	6.614	
HCM Lane V/C Ratio	0.602	0.491	0.007	0.136	0.198	0.793	0.081	0.492	0.391	1	
HCM Control Delay, s/veh	26.9	21	11.6	14.3	14.5	37.7	14.5	21.7	18.3	77.8	
HCM Lane LOS	D	С	В	В	В	Е	В	С	С	F	
HCM 95th-tile Q	3.7	2.6	0	0.5	0.7	6.8	0.3	2.5	1.8	12.7	

Int				

Intersection Delay, s/veh Intersection LOS

Movement	SBR
Lane Configurations	
Traffic Vol, veh/h	57
Future Vol, veh/h	57
Peak Hour Factor	0.73
Heavy Vehicles, %	6
Mvmt Flow	78
Number of Lanes	0

Approach

Opposing Approach
Opposing Lanes
Conflicting Approach Left
Conflicting Lanes Left
Conflicting Approach Right
Conflicting Lanes Right
HCM Control Delay, s/veh

HCM LOS

	>	-	\rightarrow	•	•	*_	1	ሽ	/	\	→	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL2	NBL	NBR	SEL	SER	
Lane Configurations	77	^			^	7	ሻሻ		11			
Traffic Volume (veh/h)	80	486	0	0	276	322	394	0	146	0	0	
Future Volume (veh/h)	80	486	0	0	276	322	394	0	146	0	0	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0			
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00	1.00	1.00			
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Work Zone On Approac	h	No			No			No				
Adj Sat Flow, veh/h/ln	1737	1737	0	0	1737	1737	1737	1737	1737			
Adj Flow Rate, veh/h	91	552	0	0	314	366	448	448	166			
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88			
Percent Heavy Veh, %	11	11	0	0	11	11	11	11	11			
Cap, veh/h	393	2563	0	0	1359	422	571	571	461			
Arrive On Green	0.12	0.54	0.00	0.00	0.09	0.09	0.18	0.18	0.18			
Sat Flow, veh/h	3209	4898	0	0	4898	1472	3209	3209	2591			
Grp Volume(v), veh/h	91	552	0	0	314	366	448	448	166			
Grp Sat Flow(s),veh/h/li		1581	0	0	1581	1472	1605	1605	1295			
Q Serve(g_s), s	1.5	3.6	0.0	0.0	3.7	14.7	8.0	8.0	3.4			
Cycle Q Clear(g_c), s	1.5	3.6	0.0	0.0	3.7	14.7	8.0	8.0	3.4			
Prop In Lane	1.00	0.0	0.00	0.00	• • • • • • • • • • • • • • • • • • • •	1.00	1.00	1.00	1.00			
_ane Grp Cap(c), veh/h		2563	0.00	0	1359	422	571	571	461			
V/C Ratio(X)	0.23	0.22	0.00	0.00	0.23	0.87	0.79	0.79	0.36			
Avail Cap(c_a), veh/h	428	2563	0	0	1383	429	588	588	475			
HCM Platoon Ratio	1.00	1.00	1.00	1.00	0.33	0.33	1.00	1.00	1.00			
Upstream Filter(I)	1.00	1.00	0.00	0.00	0.96	0.96	1.00	1.00	1.00			
Uniform Delay (d), s/vel		7.2	0.0	0.0	21.0	26.0	23.6	23.6	21.7			
Incr Delay (d2), s/veh	0.2	0.2	0.0	0.0	0.4	20.1	10.4	10.4	2.2			
nitial Q Delay(d3), s/ve		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
%ile BackOfQ(50%),vel		0.9	0.0	0.0	1.3	7.9	3.5	3.5	1.0			
Unsig. Movement Delay			0.0	0.0	1.0	7.0	0.0	0.0	1.0			
LnGrp Delay(d), s/veh	24.0	7.4	0.0	0.0	21.4	46.2	34.0	34.0	23.9			
LnGrp LOS	24.0 C	Α.	0.0	0.0	C C	40.2 D	C	C	23.3 C			
Approach Vol, veh/h		643			680		614	614				
Approach Delay, s/veh		9.7			34.7		31.2	31.2				
Approach LOS		9.7 A			34.7 C		31.2 C	31.2 C				
• •												
Timer - Assigned Phs		2			5	6		8				
Phs Duration (G+Y+Rc)		40.3			15.2	25.1		19.7				
Change Period (Y+Rc),	S	7.9			7.9	* 7.9		9.0				
Max Green Setting (Gm	nax), s	32.1			8.0	* 18		11.0				
Max Q Clear Time (g_c		5.6			3.5	16.7		10.0				
Green Ext Time (p_c), s		10.0			0.1	0.5		0.7				
ntersection Summary												
HCM 7th Control Delay	s/veh		25.3									
HCM 7th LOS	, 5, 7011		C									
Notes												
* 11014 711	, .											

,	•	-	F	•	•	-	4	
Movement E	BL	EBT	WBU	WBT	WBR	SBL	SBR	
	ነኘ	ተተተ	Ð	^	7	16	7	
	23	510	0	486	88	152	128	
Future Volume (veh/h) 1	23	510	0	486	88	152	128	
nitial Q (Qb), veh	0	0		0	0	0	0	
_ane Width Adj. 1.	.00	1.00		1.00	1.00	1.00	1.00	
Ped-Bike Adj(A_pbT) 1.	.00				1.00	1.00	1.00	
Parking Bus, Adj 1.	.00	1.00		1.00	1.00	1.00	1.00	
Nork Zone On Approach		No		No		No		
Adj Sat Flow, veh/h/ln 18	311	1811		1811	1811	1811	1811	
	46	607		579	105	181	152	
	.84	0.84		0.84	0.84	0.84	0.84	
Percent Heavy Veh, %	6	6		6	6	6	6	
•	509	2789		1551	481	611	514	
• *	.15	0.56		0.31	0.31	0.18	0.18	
	346	5107		5107	1535	3346	1535	
· · · · · · · · · · · · · · · · · · ·	46	607		579	105	181	152	
Grp Sat Flow(s), veh/h/ln16		1648		1648	1535	1673	1535	
	2.3	3.7		5.5	3.0	2.8	4.4	
	2.3 2.3	3.7		5.5	3.0	2.8	4.4	
	.00	J.1		5.5	1.00	1.00	1.00	
	509	2789		1551	481	611	514	
	.29	0.22		0.37	0.22	0.30	0.30	
\ /	.29 619	2789				703		
1 \ — //				1551	481		556	
	.00	1.00		1.00	1.00	1.00	1.00	
1 \/	.99	0.99		1.00	1.00	1.00	1.00	
Jniform Delay (d), s/veh 22		6.5		16.0	15.2	21.2	14.7	
J \ //	0.1	0.2		0.7	1.0	0.5	0.6	
nitial Q Delay(d3), s/veh (0.0		0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/lr		0.9		1.8	1.0	1.0	4.3	
Jnsig. Movement Delay, sa								
1 7 7	2.7	6.7		16.7	16.2	21.7	15.3	
nGrp LOS	С	Α		В	В	С	В	
pproach Vol, veh/h		753		684		333		
pproach Delay, s/veh		9.8		16.6		18.8		
pproach LOS		Α		В		В		
imer - Assigned Phs		2		4	5	6		
Phs Duration (G+Y+Rc), s		40.6		19.4	15.0	25.6		
Change Period (Y+Rc), s		6.8		8.4	5.9	6.8		
Max Green Setting (Gmax)), s	20.3		12.6	11.1	15.2		
/lax Q Clear Time (g_c+l1)), s	5.7		6.4	4.3	7.5		
Green Ext Time (p_c), s		6.1		1.1	0.1	4.1		
ntersection Summary								
HCM 7th Control Delay, s/v	veh		14.1					
HCM 7th LOS			В					
Votes								
Jser approved ignoring U-	Turn	ning mo	vemen	t				

-	ၨ	→	•	•	←	•	•	<u>†</u>	<i>></i>	\	 	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^	7	ሻ	†	7		†	7	ሻ	↑	7
Traffic Volume (veh/h)	241	116	3	0	71	51	12	4	0	152	1	130
Future Volume (veh/h)	241	116	3	0	71	51	12	4	0	152	1	130
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856
Adj Flow Rate, veh/h	284	136	4	0	84	60	14	5	0	179	1	153
Peak Hour Factor	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Percent Heavy Veh, %	3	3	3	3	3	3	3	3	3	3	3	3
Cap, veh/h	336	815	690	3	290	246	55	221	188	238	409	346
Arrive On Green	0.19	0.44	0.44	0.00	0.16	0.16	0.03	0.12	0.00	0.13	0.22	0.22
Sat Flow, veh/h	1767	1856	1572	1767	1856	1572	1767	1856	1572	1767	1856	1572
Grp Volume(v), veh/h	284	136	4	0	84	60	14	5	0	179	1	153
Grp Sat Flow(s),veh/h/ln	1767	1856	1572	1767	1856	1572	1767	1856	1572	1767	1856	1572
Q Serve(g_s), s	9.9	2.8	0.1	0.0	2.6	2.1	0.5	0.2	0.0	6.2	0.0	5.4
Cycle Q Clear(g_c), s	9.9	2.8	0.1	0.0	2.6	2.1	0.5	0.2	0.0	6.2	0.0	5.4
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	336	815	690	3	290	246	55	221	188	238	409	346
V/C Ratio(X)	0.84	0.17	0.01	0.00	0.29	0.24	0.26	0.02	0.00	0.75	0.00	0.44
Avail Cap(c_a), veh/h	730	822	696	249	316	268	249	543	460	512	813	689
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	25.0	10.9	10.1	0.0	23.8	23.6	30.2	24.8	0.0	26.6	19.4	21.5
Incr Delay (d2), s/veh	2.3	0.2	0.0	0.0	1.0	0.9	0.9	0.0	0.0	1.8	0.0	1.6
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	3.9	1.0	0.0	0.0	1.1	0.8	0.2	0.1	0.0	2.5	0.0	2.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d), s/veh	27.2	11.0	10.1	0.0	24.8	24.5	31.1	24.9	0.0	28.4	19.4	23.1
LnGrp LOS	С	В	В		С	С	С	С		С	В	С
Approach Vol, veh/h		424			144			19			333	
Approach Delay, s/veh		21.9			24.7			29.5			25.9	
Approach LOS		С			С			С			С	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	0.0	34.9	7.9	21.2	18.1	16.8	14.3	14.7				
Change Period (Y+Rc), s	5.9	6.8	5.9	* 7.1	5.9	6.8	5.7	* 7.1				
Max Green Setting (Gmax), s	9.0	28.3	9.0	* 28	26.4	10.9	18.5	* 19				
Max Q Clear Time (g_c+l1), s	0.0	4.8	2.5	7.4	11.9	4.6	8.2	2.2				
Green Ext Time (p_c), s	0.0	1.1	0.0	0.8	0.3	0.4	0.2	0.0				
Intersection Summary												
HCM 7th Control Delay, s/veh			23.9									
HCM 7th LOS			С									
Notes												

Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR SBL SBT SBT SBR SBT SBT SBR SBT SBT SBR SBT SBR SBT SBR SBT SBR SBT SBR SBT SBT SBR SBT
Lane Configurations
Traffic Vol, veh/h 12 12 11 8 6 65 27 237 16 95 166 28 Future Vol, veh/h 12 12 11 8 6 65 27 237 16 95 166 28 Conflicting Peds, #/hr 0
Traffic Vol, veh/h 12 12 11 8 6 65 27 237 16 95 166 28 Future Vol, veh/h 12 12 11 8 6 65 27 237 16 95 166 28 Conflicting Peds, #/hr 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0
Conflicting Peds, #/hr
Sign Control Stop Stop Stop Stop Stop Stop Free
RT Channelized - - None - - None - - None Storage Length - - - - - - - 150 - - 150 - - - 0 - - - - - - 0 - -
RT Channelized - - None - - None - - O - - O - - O - - O - - O - - O - - O - - O - - O - - O - - O - - O - - O - - O - - O - - O - - No - - No - - No -
Veh in Median Storage, # - 0 - 1 0 -
Veh in Median Storage, # - 0
Grade, % - 0 - -<
Heavy Vehicles, % 3
Mymt Flow 14 14 13 9 7 74 31 269 18 108 189 32 Major/Minor Minor2 Minor1 Major1 Major2 Conflicting Flow All 755 769 110 657 776 278 220 0 0 288 0 0 Stage 1 420 420 - 340 340 -
Major/Minor Minor2 Minor1 Major1 Major2 Conflicting Flow All 755 769 110 657 776 278 220 0 0 288 0 0 Stage 1 420 420 - 340 340 -
Major/Minor Minor2 Minor1 Major1 Major2 Conflicting Flow All 755 769 110 657 776 278 220 0 0 288 0 0 Stage 1 420 420 - 340 340 -
Conflicting Flow All 755 769 110 657 776 278 220 0 0 288 0 0 Stage 1 420 420 - 340 340 - <t< td=""></t<>
Conflicting Flow All 755 769 110 657 776 278 220 0 0 288 0 0 Stage 1 420 420 - 340 340 - <t< td=""></t<>
Stage 1 420 420 - 340 340
Stage 2 334 349 - 317 436 -
Critical Hdwy 7.345 6.545 6.945 7.345 6.545 6.245 4.145 - - 4.145 - - 4.145 - - 4.145 - - - 4.145 -
Critical Hdwy Stg 1 6.545 5.545 - 6.145 5.545
Critical Hdwy Stg 2 6.145 5.545 - 6.545 5.545
Follow-up Hdwy 3.5285 4.0285 3.3285 3.5285 4.0285 3.3285 2.2285 2.2285 Pot Cap-1 Maneuver 310 329 920 362 326 757 1341 1266 Stage 1 580 586 - 672 637
Pot Cap-1 Maneuver 310 329 920 362 326 757 1341 - - 1266 - - Stage 1 580 586 - 672 637 -
Stage 1 580 586 - 672 637 -
Stage 2 676 631 - 667 577 -
Platoon blocked, % -
Mov Cap-1 Maneuver 245 294 920 306 291 757 1341 - - 1266 - - Mov Cap-2 Maneuver 245 294 - 306 291 - - - - - - - Stage 1 530 536 - 656 622 - - - - - - -
Mov Cap-2 Maneuver 245 294 - 306 291 Stage 1 530 536 - 656 622
Stage 1 530 536 - 656 622
010 0 10 - 001 020
Anneceh ED M/D ND - OD
Approach EB WB NB SB
HCM Ctrl Dly, s/v 16.84 12.11 0.75 2.66
HCM LOS C B
M' I /M ' . M . I NDI . NDT . NDD EDI . (NDI . 4
Minor Lane/Major Mvmt NBL NBT NBR EBLn1WBLn1 SBL SBT SBR
Capacity (veh/h) 1341 344 596 1266
HCM Lane V/C Ratio 0.023 0.116 0.151 0.085
HCM Ctrl Dly (s/v) 7.7 16.8 12.1 8.1
HCM Lane LOS A C B A
HCM 95th %tile Q(veh) 0.1 0.4 0.5 0.3

Intersection							
Int Delay, s/veh	1.7						
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	*	7		स	† 1>		
Traffic Vol, veh/h	4	41	71	274	188	0	
Future Vol, veh/h	4	41	71	274	188	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	0	0	-	-	-	-	
Veh in Median Storage		-	-	0	0	-	
Grade, %	0	_	-	0	0	-	
Peak Hour Factor	84	84	84	84	84	84	
Heavy Vehicles, %	3	3	3	3	3	3	
Mvmt Flow	5	49	85	326	224	0	
	14' - 0						
	Minor2		Major1		Major2		
Conflicting Flow All	719	112	224	0	-	0	
Stage 1	224	-	-	-	-	-	
Stage 2	495	-	-	-	-	-	
Critical Hdwy		6.945	4.145	-	-	-	
Critical Hdwy Stg 1	5.845	-	-	-	-	-	
Critical Hdwy Stg 2	5.445	-	-	-	-	-	
	3.5285			-	-	-	
Pot Cap-1 Maneuver	377	917	1337	-	-	-	
Stage 1	790	-	-	-	-	-	
Stage 2	609	-	-	-	-	-	
Platoon blocked, %				-	-	-	
Mov Cap-1 Maneuver		917	1337	-	-	-	
Mov Cap-2 Maneuver		-	-	-	-	-	
Stage 1	729	-	-	-	-	-	
Stage 2	609	-	-	-	-	-	
Approach	EB		NB		SB		
HCM Ctrl Dly, s/v	9.71		1.62		0		
HCM LOS	9.71 A		1.02		U		
I IOW LOG	٨						
Minor Lane/Major Mvr	nt	NBL	NBT	EBLn1 I		SBT	SBR
Capacity (veh/h)		370	-	348	917	-	-
HCM Lane V/C Ratio		0.063	-		0.053	-	-
HCM Ctrl Dly (s/v)		7.9	0	15.5	9.1	-	-
HCM Lane LOS		Α	Α	С	Α	-	-
HCM 95th %tile Q(veh	۱)	0.2	-	0	0.2	-	-

Intersection						
Int Delay, s/veh	0.9					
		CET	NINAT	NIVAID	CIAII	CIVID
Movement	SEL	SET	NWT	NWR	SWL	SWR
Lane Configurations	10	^	↑ ↑	20	***	0
Traffic Vol, veh/h	10	219	337	30	32	8
Future Vol, veh/h	10	219	337	30	32	8
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None		None	-	None
Storage Length	285	-	-	-	0	-
Veh in Median Storage,		0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	88	88	88	88	88	88
Heavy Vehicles, %	3	3	3	3	3	3
Mvmt Flow	11	249	383	34	36	9
Major/Minor M	lajor1	N	Major2	N	Minor2	
Conflicting Flow All	417	0	viajui <u>-</u>	0	547	209
		U	-			
Stage 1	-	-	-	-	400	-
Stage 2	-	-	-	-	147	-
Critical Hdwy	4.16	-	-	-	6.86	6.96
Critical Hdwy Stg 1	-	-	-	-	5.86	-
Critical Hdwy Stg 2	-	-	-	-	5.86	-
Follow-up Hdwy	2.23	-	-	-	3.53	3.33
	1131	-	-	-	465	794
Stage 1	-	-	-	-	643	-
Stage 2	-	-	-	-	862	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1131	-	-	-	460	794
Mov Cap-2 Maneuver	-	-	-	-	460	-
Stage 1	-	-	-	-	636	-
Stage 2	-	_	-	-	862	-
A	0.5		N IV A /		CVA	
Approach	SE		NW		SW	
HCM Ctrl Dly, s/v	0.36		0		12.88	
HCM LOS					В	
Minor Lane/Major Mvmt		NWT	NWR	SEL	SETS	SWLn1
Capacity (veh/h)		-		1131	-	
HCM Lane V/C Ratio				0.01		0.091
		-	-			
HCM Lang LOS		-	-	8.2	-	
HCM Lane LOS		-	-	A	-	В
HCM 95th %tile Q(veh)		-	-	0	-	0.3

L. (C						
Intersection	0.4					
Int Delay, s/veh	0.1					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		^	ħβ			7
Traffic Vol, veh/h	5	246	364	40	0	3
Future Vol, veh/h	5	246	364	40	0	3
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	
Storage Length	285	-	-	-	-	0
Veh in Median Storage,	# -	0	0	-	0	-
Grade, %	_	0	0	-	0	-
Peak Hour Factor	88	88	88	88	88	88
Heavy Vehicles, %	3	3	3	3	3	3
Mvmt Flow	6	280	414	45	0	3
					0	
	/lajor1		//ajor2		/linor2	
Conflicting Flow All	459	0	-	0	-	230
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	4.16	-	-	-	-	6.96
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	2.23	-	-	-	-	3.33
Pot Cap-1 Maneuver	1091	-	-	-	0	770
Stage 1	-	-	-	-	0	-
Stage 2	-	-	-	-	0	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1091	-	-	-	-	770
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Ŭ						
Annragah	ΓD		WB		SB	
Approach	EB					
HCM Ctrl Dly, s/v	0.17		0		9.7	
HCM LOS					Α	
Minor Lane/Major Mvmt		EBL	EBT	WBT	WBR :	SBLn1
		1091	-	-	_	770
Capacity (ven/n)						
Capacity (veh/h) HCM Lane V/C Ratio			-	-	-	0.004
HCM Lane V/C Ratio		0.005	-	-	-	0.004 9.7
						0.004 9.7 A

Intersection												
Int Delay, s/veh	55.2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			44	
Traffic Vol, veh/h	67	394	22	30	281	45	26	12	42	119	6	134
Future Vol, veh/h	67	394	22	30	281	45	26	12	42	119	6	134
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	81	81	81	81	81	81	81	81	81	81	81	81
Heavy Vehicles, %	3	3	3	3	3	3	3	3	3	3	3	3
Mvmt Flow	83	486	27	37	347	56	32	15	52	147	7	165
Major/Minor I	Major1			Major2			Minor1			Minor2		
Conflicting Flow All	402	0	0	514	0	0	1090	1142	500	1108	1128	375
Stage 1	-	-	-	-	-	-	665	665	-	449	449	-
Stage 2	-	-	_	_	-	_	425	477	_	659	679	_
Critical Hdwy	4.13	-	-	4.13	-	-	7.13	6.53	6.23	7.13	6.53	6.23
Critical Hdwy Stg 1	-	-	-	_	-	_	6.13	5.53	_	6.13	5.53	-
Critical Hdwy Stg 2	-	-	-	_	-	_	6.13	5.53	-	6.13	5.53	_
Follow-up Hdwy	2.227	-	-	2.227	-	-	3.527	4.027	3.327	3.527		3.327
Pot Cap-1 Maneuver	1151	-	-	1047	-	-	192	200	569	186	203	669
Stage 1	-	-	-	-	-	-	447	456	-	588	571	-
Stage 2	-	-	-	-	-	-	605	555	-	451	450	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1151	-	-	1047	-	-	119	171	569	~ 134	174	669
Mov Cap-2 Maneuver	-	-	-	-	-	-	119	171		~ 134	174	-
Stage 1	-	-	-	-	-	-	402	410	-	561	544	-
Stage 2	-	-	-	-	-	-	429	529	-	355	404	-
, and the second												
Approach	EB			WB			NB			SB		
HCM Ctrl Dly, s/v	1.16			0.72			33.82			237.53		
HCM LOS	-						D			F		
										•		
Minor Lane/Major Mvm	nt 1	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR :	SBLn1			
Capacity (veh/h)		221	247	-	-	148	-	-	231			
HCM Lane V/C Ratio			0.072	-	-	0.035	-	-	1.383			
HCM Ctrl Dly (s/v)		33.8	8.4	0	-	8.6	0		237.5			
HCM Lane LOS		D	Α	Α	-	Α	Α	-	F			
HCM 95th %tile Q(veh))	2.1	0.2	-	-	0.1	-	-	17.8			
Notes												
~: Volume exceeds cap	nacity	\$· D4	elay exc	eeds 30	00s							
+: Computation Not De			major v			on						
Computation Not De	, iii iGU	. 🗥	major v	Jiuiii c I	יי אימנט	OI I						

Intersection						
Int Delay, s/veh	20.2					
		EDT	WDT	WDD	CDL	CDD
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	204	4	160	100	\	100
Traffic Vol, veh/h	301	252	169	102	56	190
Future Vol, veh/h	301	252	169	102	56	190
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-			None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage		0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	81	81	81	81	81	81
Heavy Vehicles, %	4	4	4	4	4	4
Mvmt Flow	372	311	209	126	69	235
Major/Minor I	Major1	N	Major2		Minor2	
Conflicting Flow All	335	0	_	0	1326	272
Stage 1	-	_	_	-	272	
Stage 2	_	_	_	_	1054	_
Critical Hdwy	4.14	_		_	6.44	6.24
Critical Hdwy Stg 1	1	_	_	_	5.44	0.24
Critical Hdwy Stg 2	-	-	-	-	5.44	-
Follow-up Hdwy	2.236	_	-			3.336
	1214	_	-			762
Pot Cap-1 Maneuver	1214	-	-	-	170	
Stage 1	-	-	-	-	769	-
Stage 2	-	-	-	-	332	-
Platoon blocked, %	1011	-	-	-	407	700
Mov Cap-1 Maneuver	1214	-	-	-	107	762
Mov Cap-2 Maneuver	-	-	-	-	107	-
Stage 1	-	-	-	-	485	-
Stage 2	-	-	-	-	332	-
Approach	EB		WB		SB	
HCM Ctrl Dly, s/v	5.05		0		76.34	
HCM LOS	3.03		U		70.54 F	
TIGIVI LOS					ı	
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR	SBLn1
Capacity (veh/h)		980	-	-	-	318
HCM Lane V/C Ratio		0.306	-	-	-	0.954
HCM Ctrl Dly (s/v)		9.3	0	-	-	76.3
HCM Lane LOS		Α	Α	-	-	F
HCM 95th %tile Q(veh))	1.3	-	-	-	9.8

Intersection		
Intersection Delay, s/veh	10.3	
Intersection LOS	В	

Movement	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT
Lane Configurations	Ŋ	↑ ↑			Ä	f)		7	^	7	ň	7
Traffic Vol, veh/h	53	42	77	0	5	54	59	93	102	2	38	141
Future Vol, veh/h	53	42	77	0	5	54	59	93	102	2	38	141
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Heavy Vehicles, %	3	3	3	3	3	3	3	3	3	3	3	3
Mvmt Flow	56	44	81	0	5	57	62	98	107	2	40	148
Number of Lanes	1	2	0	0	1	1	0	1	1	1	1	1
Approach	EB				WB			NB			SB	
Opposing Approach	WB				EB			SB			NB	
Opposing Lanes	2				3			2			3	
Conflicting Approach Left	SB				NB			EB			WB	
Conflicting Lanes Left	2				3			3			2	
Conflicting Approach Right	NB				SB			WB			EB	
Conflicting Lanes Right	3				2			2			3	
HCM Control Delay, s/veh	9.6				10.2			10.4			10.9	
HCM LOS	Α				В			В			В	

Lane	NBLn1	NBLn2	NBLn3	EBLn1	EBLn2	EBLn3	WBLn1	WBLn2	SBLn1	SBLn2	
Vol Left, %	100%	0%	0%	100%	0%	0%	100%	0%	100%	0%	
Vol Thru, %	0%	100%	0%	0%	100%	15%	0%	48%	0%	83%	
Vol Right, %	0%	0%	100%	0%	0%	85%	0%	52%	0%	17%	
Sign Control	Stop										
Traffic Vol by Lane	93	102	2	53	28	91	5	113	38	170	
LT Vol	93	0	0	53	0	0	5	0	38	0	
Through Vol	0	102	0	0	28	14	0	54	0	141	
RT Vol	0	0	2	0	0	77	0	59	0	29	
Lane Flow Rate	98	107	2	56	29	96	5	119	40	179	
Geometry Grp	6	6	6	6	6	6	6	6	6	6	
Degree of Util (X)	0.179	0.181	0.003	0.104	0.051	0.15	0.01	0.197	0.073	0.294	
Departure Headway (Hd)	6.568	6.065	5.36	6.727	6.223	5.627	6.848	5.975	6.541	5.918	
Convergence, Y/N	Yes										
Сар	546	592	667	533	575	637	523	601	548	608	
Service Time	4.304	3.801	3.096	4.465	3.961	3.364	4.588	3.715	4.275	3.651	
HCM Lane V/C Ratio	0.179	0.181	0.003	0.105	0.05	0.151	0.01	0.198	0.073	0.294	
HCM Control Delay, s/veh	10.7	10.1	8.1	10.2	9.3	9.4	9.7	10.2	9.8	11.1	
HCM Lane LOS	В	В	Α	В	Α	Α	Α	В	Α	В	
HCM 95th-tile Q	0.6	0.7	0	0.3	0.2	0.5	0	0.7	0.2	1.2	

		on

Intersection Delay, s/veh Intersection LOS

Movement	SBR
Lane Configurations	_
Traffic Vol, veh/h	29
Future Vol, veh/h	29
Peak Hour Factor	0.95
Heavy Vehicles, %	3
Mvmt Flow	31
Number of Lanes	0

Approach

Opposing Approach
Opposing Lanes
Conflicting Approach Left
Conflicting Lanes Left
Conflicting Approach Right
Conflicting Lanes Right
HCM Control Delay, s/veh

HCM LOS

	>	-	\searrow	•	←	*_	•	ሻ	/	\	>
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL2	NBL	NBR	SEL	SER
Lane Configurations	ሻሻ	ተተተ			ተተተ	7	ሻሻ		77		
Traffic Volume (veh/h)	88	533	0	0	293	245	387	0	174	0	0
Future Volume (veh/h)	88	533	0	0	293	245	387	0	174	0	0
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0		
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00	1.00	1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
Work Zone On Approach		No			No			No			
Adj Sat Flow, veh/h/ln	1796	1796	0	0	1796	1796	1796	1796	1796		
Adj Flow Rate, veh/h	96	579	0	0	318	266	421	421	189		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92		
Percent Heavy Veh, %	7	7	0	0	7	7	7	7	7		
Cap, veh/h	433	2674	0	0	1389	431	574	574	463		
Arrive On Green	0.13	0.55	0.00	0.00	0.57	0.57	0.17	0.17	0.17		
Sat Flow, veh/h	3319	5065	0	0	5065	1522	3319	3319	2679		
Grp Volume(v), veh/h	96	579	0	0	318	266	421	421	189		
Grp Sat Flow(s),veh/h/ln	1659	1635	0	0	1635	1522	1659	1659	1340		
Q Serve(g_s), s	1.6	3.7	0.0	0.0	1.9	7.0	7.2	7.2	3.8		
Cycle Q Clear(g_c), s	1.6	3.7	0.0	0.0	1.9	7.0	7.2	7.2	3.8		
Prop In Lane	1.00		0.00	0.00		1.00	1.00	1.00	1.00		
Lane Grp Cap(c), veh/h	433	2674	0	0	1389	431	574	574	463		
V/C Ratio(X)	0.22	0.22	0.00	0.00	0.23	0.62	0.73	0.73	0.41		
Avail Cap(c_a), veh/h	443	2674	0	0	1430	444	608	608	491		
HCM Platoon Ratio	1.00	1.00	1.00	1.00	2.00	2.00	1.00	1.00	1.00		
Upstream Filter(I)	1.00	1.00	0.00	0.00	0.98	0.98	1.00	1.00	1.00		
Uniform Delay (d), s/veh	23.4	7.0	0.0	0.0	9.7	10.8	23.5	23.5	22.1		
Incr Delay (d2), s/veh	0.2	0.2	0.0	0.0	0.4	6.3	8.1	8.1	2.6		
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
%ile BackOfQ(50%),veh/ln	0.6	0.9	0.0	0.0	0.6	2.3	3.1	3.1	1.2		
Unsig. Movement Delay, s/veh		_									
LnGrp Delay(d), s/veh	23.6	7.2	0.0	0.0	10.1	17.2	31.6	31.6	24.7		
LnGrp LOS	С	A			В	В	C	С	С		
Approach Vol, veh/h		675			584		610	610			
Approach Delay, s/veh		9.5			13.3		29.5	29.5			
Approach LOS		Α			В		С	С			
Timer - Assigned Phs		2			5	6		8			
Phs Duration (G+Y+Rc), s		40.6			15.7	24.9		19.4			
Change Period (Y+Rc), s		7.9			7.9	* 7.9		9.0			
Max Green Setting (Gmax), s		32.1			8.0	* 18		11.0			
Max Q Clear Time (g_c+l1), s		5.7			3.6	9.0		9.2			
Green Ext Time (p_c), s		10.5			0.1	3.6		1.2			
Intersection Summary			47.0								
HCM 7th Control Delay, s/veh			17.2								
HCM 7th LOS			В								

* HCM 7th computational engine requires equal clearance times for the phases crossing the barrier.

•	-	F	-	•	-	4	
Movement EBI	_ EBT	WBU	WBT	WBR	SBL	SBR	
_ane Configurations 🦷 🐴		Ð	ተተተ	7	ሻሻ	7	
Traffic Volume (veh/h) 193	3 491	0	366	133	102	168	
Future Volume (veh/h) 193	3 491	0	366	133	102	168	
nitial Q (Qb), veh	0 0		0	0	0	0	
ane Width Adj. 1.0	1.00		1.00	1.00	1.00	1.00	
Ped-Bike Adj(A_pbT) 1.0)			1.00	1.00	1.00	
Parking Bus, Adj 1.0	1.00		1.00	1.00	1.00	1.00	
Nork Zone On Approach	No		No		No		
Adj Sat Flow, veh/h/ln 1850	1856		1856	1856	1856	1856	
Adj Flow Rate, veh/h 21	2 540		402	146	112	185	
Peak Hour Factor 0.9	0.91		0.91	0.91	0.91	0.91	
Percent Heavy Veh, %	3		3	3	3	3	
Cap, veh/h 55	2860		1542	479	624	541	
Arrive On Green 0.0			0.30	0.30	0.18	0.18	
Sat Flow, veh/h 342			5233	1572	3428	1572	
Grp Volume(v), veh/h 21			402	146	112	185	
Grp Sat Flow(s), veh/h/ln171			1689	1572	1714	1572	
Q Serve(g_s), s 3.0			3.6	4.3	1.7	5.2	
Cycle Q Clear(g_c), s 3.0			3.6	4.3	1.7	5.2	
Prop In Lane 1.0			3.0	1.00	1.00	1.00	
ane Grp Cap(c), veh/h 55			1542	479	624	541	
//C Ratio(X) 0.3			0.26	0.30	0.18	0.34	
Avail Cap(c_a), veh/h 69			1542	479	720	585	
HCM Platoon Ratio 0.3			1.00	1.00	1.00	1.00	
Jpstream Filter(I) 0.9			1.00	1.00	1.00	1.00	
Jniform Delay (d), s/veh 25.			15.8	16.0	20.7	14.6	
ncr Delay (d2), s/veh 0.3			0.4	1.6	0.3	0.7	
			0.4	0.0	0.0	0.7	
nitial Q Delay(d3), s/veh 0.				1.5	0.0	5.2	
%ile BackOfQ(50%),veh/lnl.			1.2	1.5	0.0	5.2	
Jnsig. Movement Delay, s/v			40.0	47 C	04.0	45.0	
nGrp Delay(d), s/veh 25.			16.2	17.6	21.0	15.3	
) B		B 540	В	<u>C</u>	В	
Approach Vol, veh/h	752		548		297		
Approach Delay, s/veh	16.5		16.6		17.5		
pproach LOS	В		В		В		
imer - Assigned Phs	2		4	5	6		
Phs Duration (G+Y+Rc), s	40.7		19.3	15.6	25.1		
Change Period (Y+Rc), s	6.8		8.4	5.9	6.8		
Max Green Setting (Gmax),			12.6	12.1	14.2		
Max Q Clear Time (g_c+l1),			7.2	5.6	6.3		
Green Ext Time (p_c), s	5.0		0.8	0.2	3.3		
ntersection Summary							
HCM 7th Control Delay, s/ve	h	16.7					
HCM 7th LOS		В					
lotes							
Jser approved ignoring U-To	ırning m	ovemen	t.				

	۶	→	•	•	←	•	•	†	<i>></i>	/	Ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	1≽		ሻ	Դ		ሻ	₽		ሻ	₽	
Traffic Volume (veh/h)	126	365	35	89	476	29	5	7	34	72	11	119
Future Volume (veh/h)	126	365	35	89	476	29	5	7	34	72	11	119
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856
Adj Flow Rate, veh/h	145	420	40	102	547	33	6	8	39	83	13	137
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Percent Heavy Veh, %	3	3	3	3	3	3	3	3	3	3	3	3
Cap, veh/h	203	628	60	183	633	38	22	33	162	168	28	297
Arrive On Green	0.11	0.38	0.38	0.10	0.37	0.37	0.01	0.12	0.12	0.10	0.20	0.20
Sat Flow, veh/h	1767	1668	159	1767	1732	105	1767	275	1340	1767	138	1455
Grp Volume(v), veh/h	145	0	460	102	0	580	6	0	47	83	0	150
Grp Sat Flow(s),veh/h/ln	1767	0	1827	1767	0	1837	1767	0	1614	1767	0	1594
Q Serve(g_s), s	4.9	0.0	13.1	3.4	0.0	18.3	0.2	0.0	1.6	2.8	0.0	5.2
Cycle Q Clear(g_c), s	4.9	0.0	13.1	3.4	0.0	18.3	0.2	0.0	1.6	2.8	0.0	5.2
Prop In Lane	1.00	0.0	0.09	1.00	0.0	0.06	1.00		0.83	1.00		0.91
Lane Grp Cap(c), veh/h	203	0	688	183	0	671	22	0	195	168	0	325
V/C Ratio(X)	0.72	0.00	0.67	0.56	0.00	0.86	0.28	0.00	0.24	0.49	0.00	0.46
Avail Cap(c_a), veh/h	249	0	926	220	0	902	220	0	612	220	0	604
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	26.7	0.0	16.3	26.7	0.0	18.4	30.6	0.0	24.9	26.9	0.0	21.9
Incr Delay (d2), s/veh	7.3	0.0	1.1	2.6	0.0	6.8	6.6	0.0	0.6	2.2	0.0	1.0
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	2.3	0.0	4.7	1.4	0.0	7.6	0.1	0.0	0.6	1.2	0.0	1.8
Unsig. Movement Delay, s/veh		0.0	7.7	1.7	0.0	7.0	0.1	0.0	0.0	1.2	0.0	1.0
LnGrp Delay(d), s/veh	34.0	0.0	17.4	29.3	0.0	25.2	37.2	0.0	25.5	29.1	0.0	22.9
LnGrp LOS	34.0 C	0.0	17.4 B	29.5 C	0.0	23.2 C	37.2 D	0.0	25.5 C	29.1 C	0.0	22.9 C
	<u> </u>	COF	D	U	600	U	U	F2	U	U	222	U
Approach Vol, veh/h		605			682			53			233	
Approach Delay, s/veh		21.4			25.8			26.8			25.1	
Approach LOS		С			С			С			С	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	10.2	12.9	10.7	28.8	5.0	18.1	11.4	28.1				
Change Period (Y+Rc), s	4.2	5.3	4.2	5.3	4.2	5.3	4.2	5.3				
Max Green Setting (Gmax), s	7.8	23.7	7.8	31.7	7.8	23.7	8.8	30.7				
Max Q Clear Time (g_c+l1), s	4.8	3.6	5.4	15.1	2.2	7.2	6.9	20.3				
Green Ext Time (p_c), s	0.0	0.1	0.0	2.4	0.0	0.6	0.1	2.5				
Intersection Summary												
HCM 7th Control Delay, s/veh			24.0									
HCM 7th LOS			С									

Intersection					
Intersection Delay, s/ve Intersection LOS	eh23.3				
Intersection LOS	С				

Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	7	•	ĵ.		¥	7
Traffic Vol, veh/h	240	235	278	102	119	298
Future Vol, veh/h	240	235	278	102	119	298
Peak Hour Factor	0.84	0.84	0.84	0.84	0.84	0.84
Heavy Vehicles, %	3	3	3	3	3	3
Mvmt Flow	286	280	331	121	142	355
Number of Lanes	1	1	1	0	1	1

Approach	EB	WB	SB
Opposing Approach	WB	EB	
Opposing Lanes	1	2	0
Conflicting Approach L	eft SB		WB
Conflicting Lanes Left	2	0	1
Conflicting Approach F	Right	SB	EB
Conflicting Lanes Righ	it 0	2	2
HCM Control Delay, s/	veh 19	33.4	19
HCM LOS	С	D	С

Lane	EBLn1	EBLn2\	WBLn1	SBLn1	SBLn2
Vol Left, %	100%	0%	0%	100%	0%
Vol Thru, %	0%	100%	73%	0%	0%
Vol Right, %	0%	0%	27%	0%	100%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	240	235	380	119	298
LT Vol	240	0	0	119	0
Through Vol	0	235	278	0	0
RT Vol	0	0	102	0	298
Lane Flow Rate	286	280	452	142	355
Geometry Grp	5	5	3b	5	5
Degree of Util (X)	0.59	0.537	0.823	0.308	0.65
Departure Headway (Hd)	7.428	6.916	6.551	7.82	6.591
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Cap	483	518	547	458	546
Service Time	5.225	4.712	4.632	5.604	4.375
HCM Lane V/C Ratio	0.592	0.541	0.826	0.31	0.65
HCM Control Delay, s/veh	20.5	17.5	33.4	14.1	20.9
HCM Lane LOS	С	С	D	В	С
HCM 95th-tile Q	3.7	3.1	8.3	1.3	4.7

	۶	→	•	F	•	+	•	•	†	/	/	ļ	4
Movement	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	∱ }			ă	1		*	†	7		1>	
Fraffic Volume (veh/h)	36	82	210	4	16	65	66	158	135	2	108	242	57
uture Volume (veh/h)	36	82	210	4	16	65	66	158	135	2	108	242	57
itial Q (Qb), veh	0	0	0	-	0	0	0	0	0	0	0	0	0
ane Width Adj.	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
ed-Bike Adj(A_pbT)	1.00		0.97		1.00		0.97	1.00		0.98	1.00		0.96
arking Bus, Adj	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
ork Zone On Approac		No				No			No			No	
dj Sat Flow, veh/h/ln	1811	1811	1811		1811	1811	1811	1811	1811	1811	1811	1811	1811
dj Flow Rate, veh/h	49	112	288		22	89	90	216	185	3	148	332	78
eak Hour Factor	0.73	0.73	0.73		0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73
ercent Heavy Veh, %	6	6	6		6	6	6	6	6	6	6	6	6
ap, veh/h	116	439	381		66	184	186	233	614	509	183	436	102
rrive On Green	0.07	0.26	0.26		0.04	0.23	0.23	0.13	0.34	0.34	0.11	0.31	0.31
at Flow, veh/h	1725	1721	1496		1725	813	822	1725	1811	1504	1725	1406	330
Grp Volume(v), veh/h	49	112	288		22	0	179	216	185	3	148	0	410
Grp Sat Flow(s), veh/h/li		1721	1496		1725	0	1634	1725	1811	1504	1725	0	1737
) Serve(g_s), s	2.0	3.8	12.9		0.9	0.0	6.9	9.0	5.5	0.1	6.1	0.0	15.5
sycle Q Clear(g_c), s	2.0	3.8	12.9		0.9	0.0	6.9	9.0	5.5	0.1	6.1	0.0	15.5
rop In Lane	1.00	0.0	1.00		1.00	0.0	0.50	1.00	0.0	1.00	1.00	0.0	0.19
ne Grp Cap(c), veh/h		439	381		66	0	370	233	614	509	183	0	538
C Ratio(X)	0.42	0.26	0.75		0.33	0.00	0.48	0.93	0.30	0.01	0.81	0.00	0.76
vail Cap(c_a), veh/h	185	592	515		185	0.00	562	233	733	608	209	0.00	679
CM Platoon Ratio	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
ostream Filter(I)	1.00	1.00	1.00		1.00	0.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00
niform Delay (d), s/vel		21.6	25.0		34.0	0.0	24.4	31.1	17.7	15.9	31.7	0.0	22.6
cr Delay (d2), s/veh	2.4	0.3	4.3		2.9	0.0	1.0	39.8	0.3	0.0	18.5	0.0	3.9
itial Q Delay(d3), s/ve		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
sile BackOfQ(50%),vel		1.4	4.5		0.4	0.0	2.5	6.0	2.1	0.0	3.3	0.0	6.1
nsig. Movement Delay			1.0		0.1	0.0	2.0	0.0		0.0	0.0	0.0	0.1
Grp Delay(d), s/veh	34.9	21.9	29.3		36.9	0.0	25.4	70.9	18.0	15.9	50.3	0.0	26.5
Grp LOS	C	C C	23.0 C		D	3.0	C C	7 G.S	В	В	D	3.0	C C
proach Vol, veh/h		449				201		_	404			558	
oproach Delay, s/veh		28.1				26.7			46.2			32.8	
pproach LOS		20.1 C				20.7 C			70.2 D			02.0 C	
				4	_		_	_					
mer - Assigned Phs	1	2	3	4	5	6	7	8					
ns Duration (G+Y+Rc)		29.9	7.0	23.8	14.0	27.8	9.1	21.7					
hange Period (Y+Rc),		5.3	4.2	5.3	4.2	5.3	4.2	5.3					
ax Green Setting (Gm		29.4	7.8	25.0	9.8	28.4	7.8	25.0					
ax Q Clear Time (g_c		7.5	2.9	14.9	11.0	17.5	4.0	8.9					
reen Ext Time (p_c), s	s 0.0	0.9	0.0	1.6	0.0	1.7	0.0	8.0					
tersection Summary													
CM 7th Control Delay	, s/veh		34.1										
ICM 7th LOS			С										
lotes													
ser approved ignoring	U-Turr	ning mo	vemen	t.									

Improved JLB Traffic Engineering, Inc.

	۶	→	•	•	+	•	•	†	/	\	+	-√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	₽		ሻ	₽		ሻ	₽		ሻ	₽	
Traffic Volume (veh/h)	67	394	22	30	281	45	26	12	42	119	6	134
Future Volume (veh/h)	67	394	22	30	281	45	26	12	42	119	6	134
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856
Adj Flow Rate, veh/h	83	486	27	37	347	56	32	15	52	147	7	165
Peak Hour Factor	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81
Percent Heavy Veh, %	3	3	3	3	3	3	3	3	3	3	3	3
Cap, veh/h	176	564	31	107	443	72	236	60	208	217	10	229
Arrive On Green	0.10	0.32	0.32	0.06	0.28	0.28	0.13	0.16	0.16	0.12	0.15	0.15
Sat Flow, veh/h	1767	1741	97	1767	1559	252	1767	364	1264	1767	64	1518
Grp Volume(v), veh/h	83	0	513	37	0	403	32	0	67	147	0	172
Grp Sat Flow(s),veh/h/ln	1767	0	1838	1767	0	1810	1767	0	1628	1767	0	1582
Q Serve(g_s), s	2.5	0.0	15.0	1.2	0.0	11.7	0.9	0.0	2.1	4.6	0.0	5.9
Cycle Q Clear(g_c), s	2.5	0.0	15.0	1.2	0.0	11.7	0.9	0.0	2.1	4.6	0.0	5.9
Prop In Lane	1.00		0.05	1.00		0.14	1.00		0.78	1.00		0.96
Lane Grp Cap(c), veh/h	176	0	595	107	0	515	236	0	268	217	0	238
V/C Ratio(X)	0.47	0.00	0.86	0.35	0.00	0.78	0.14	0.00	0.25	0.68	0.00	0.72
Avail Cap(c_a), veh/h	241	0	744	241	0	733	241	0	634	244	0	613
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	24.4	0.0	18.2	25.8	0.0	18.9	21.9	0.0	20.9	24.0	0.0	23.2
Incr Delay (d2), s/veh	1.9	0.0	8.5	1.9	0.0	3.6	0.3	0.0	0.5	6.3	0.0	4.1
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.0	0.0	6.5	0.5	0.0	4.6	0.3	0.0	0.7	2.0	0.0	2.2
Unsig. Movement Delay, s/veh												
LnGrp Delay(d), s/veh	26.3	0.0	26.7	27.7	0.0	22.4	22.2	0.0	21.3	30.3	0.0	27.3
LnGrp LOS	С		С	С		С	С		С	С		С
Approach Vol, veh/h		596			440			99			319	
Approach Delay, s/veh		26.6			22.9			21.6			28.7	
Approach LOS		С			C			С			С	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	11.0	14.7	7.7	23.8	11.8	13.9	9.9	21.6				
Change Period (Y+Rc), s	4.0	5.3	4.2	5.3	4.2	5.3	4.2	5.3				
Max Green Setting (Gmax), s	7.9	22.3	7.8	23.2	7.8	22.2	7.8	23.2				
Max Q Clear Time (g_c+l1), s	6.6	4.1	3.2	17.0	2.9	7.9	4.5	13.7				
Green Ext Time (p_c), s	0.0	0.2	0.0	1.5	0.0	0.7	0.0	1.5				
Intersection Summary	0.0	0.2	0.0	1.0	0.0	V. .	0.0	1.0				
			25.6									
HCM 7th Control Delay, s/veh												
HCM 7th LOS			С									

Intersection					
Intersection Delay, s/v Intersection LOS	eh16.9				
Intersection LOS	С				

Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	Ţ	<u></u>	ĵ.		¥	7
Traffic Vol, veh/h	301	252	169	102	56	190
Future Vol, veh/h	301	252	169	102	56	190
Peak Hour Factor	0.81	0.81	0.81	0.81	0.81	0.81
Heavy Vehicles, %	4	4	4	4	4	4
Mvmt Flow	372	311	209	126	69	235
Number of Lanes	1	1	1	0	1	1

Approach	EB	WB	SB
Opposing Approach	WB	EB	
Opposing Lanes	1	2	0
Conflicting Approach L	eft SB		WB
Conflicting Lanes Left	2	0	1
Conflicting Approach F	Right	SB	EB
Conflicting Lanes Righ	t 0	2	2
HCM Control Delay, s/	ve118.9	16.3	13.2
HCM LOS	С	С	В

Lane	EBLn1	EBLn2V	VBLn1	SBLn1	SBLn2	2
Vol Left, %	100%	0%	0%	100%	0%	, 0
Vol Thru, %	0%	100%	62%	0%	0%	0
Vol Right, %	0%	0%	38%	0%	100%	, 0
Sign Control	Stop	Stop	Stop	Stop	Stop	כ
Traffic Vol by Lane	301	252	271	56	190)
LT Vol	301	0	0	56	0)
Through Vol	0	252	169	0	0)
RT Vol	0	0	102	0	190)
Lane Flow Rate	372	311	335	69	235	5
Geometry Grp	5	5	3b	5	5	5
Degree of Util (X)	0.676	0.522	0.555	0.146	0.416	3
Departure Headway (Hd)	6.55	6.043	5.974	7.605	6.381	1
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	3
Сар	550	597	602	471	563	3
Service Time	4.295	3.788	4.019	5.359	4.135	5
HCM Lane V/C Ratio	0.676	0.521		0.146	0.417	7
HCM Control Delay, s/veh	22	15.2	16.3	11.7	13.6	ò
HCM Lane LOS	С	С	С	В	В	3
HCM 95th-tile Q	5.1	3	3.4	0.5	2	2

	۶	→	\searrow	•	←	•	•	†	<i>></i>	\	ţ	✓	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	*	ħβ		Ä	ĵ»		ች	†	7		ĵ.		
Traffic Volume (veh/h)	53	42	77	5	54	59	93	102	2	38	141	29	
Future Volume (veh/h)	53	42	77	5	54	59	93	102	2	38	141	29	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approac		No			No			No			No		
Adj Sat Flow, veh/h/ln	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	
Adj Flow Rate, veh/h	56	44	81	5	57	62	98	107	2	40	148	31	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	
Percent Heavy Veh, %	3	3	3	3	3	3	3	3	3	3	3	3	
Cap, veh/h	156	438	390	19	139	151	220	437	370	121	267	56	
Arrive On Green	0.09	0.25	0.25	0.01	0.17	0.17	0.12	0.24	0.24	0.07	0.18	0.18	
Sat Flow, veh/h	1767	1763	1572	1767	813	884	1767	1856	1572	1767	1488	312	
·	56	44	81	5	013	119	98	107	2	40	0	179	
Grp Volume(v), veh/h Grp Sat Flow(s),veh/h/lı		1763	1572	1767	0	1696	1767	1856	1572	1767	0	179	
		0.8	1.8				2.2		0.0		0.0	3.9	
Q Serve(g_s), s	1.3			0.1	0.0	2.7		2.0		0.9			
Cycle Q Clear(g_c), s	1.3	0.8	1.8	0.1	0.0	2.7	2.2	2.0	0.0	0.9	0.0	3.9	
Prop In Lane	1.00	400	1.00	1.00	0	0.52	1.00	407	1.00	1.00	^	0.17	
Lane Grp Cap(c), veh/h		438	390	19	0	289	220	437	370	121	0	323	
V/C Ratio(X)	0.36	0.10	0.21	0.27	0.00	0.41	0.45	0.25	0.01	0.33	0.00	0.55	
Avail Cap(c_a), veh/h	317	1014	905	317	0	976	399	1298	1100	317	0	1176	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	
Uniform Delay (d), s/vel		12.6	12.9	21.3	0.0	16.1	17.6	13.5	12.7	19.3	0.0	16.2	
Incr Delay (d2), s/veh	1.4	0.1	0.3	7.5	0.0	0.9	1.4	0.3	0.0	1.6	0.0	1.5	
Initial Q Delay(d3), s/ve		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),vel		0.3	0.5	0.1	0.0	0.9	0.8	0.7	0.0	0.4	0.0	1.4	
Unsig. Movement Delay			46.5	00.0		4= ^	46.5	46.5	46 =	00.0		4	
LnGrp Delay(d), s/veh	20.0	12.7	13.2	28.9	0.0	17.0	19.0	13.8	12.7	20.8	0.0	17.7	
_nGrp LOS	С	В	В	С		В	В	В	В	С		В	
Approach Vol, veh/h		181			124			207			219		
Approach Delay, s/veh		15.2			17.5			16.3			18.3		
Approach LOS		В			В			В			В		
Timer - Assigned Phs	1	2	3	4	5	6	7	8					
Phs Duration (G+Y+Rc)), s7.2	15.5	4.7	16.1	9.6	13.1	8.0	12.7					
Change Period (Y+Rc),		5.3	4.2	5.3	4.2	5.3	4.2	5.3					
Max Green Setting (Gm		30.4	7.8	25.0	9.8	28.4	7.8	25.0					
Max Q Clear Time (g_c		4.0	2.1	3.8	4.2	5.9	3.3	4.7					
Green Ext Time (p_c), s		0.5	0.0	0.6	0.1	0.8	0.0	0.5					
Intersection Summary													
HCM 7th Control Delay	. s/veh		16.8										
HCM 7th LOS	,		В										

Intersection: 1: Private Driveway/SR 99 SB Ramps & Almond Avenue

Movement	EB	EB	EB	WB	WB	WB	NB	NB	SB	SB	SB	
Directions Served	L	Т	R	L	T	R	L	R	L	T	R	
Maximum Queue (ft)	174	167	139	30	95	74	27	23	86	21	79	
Average Queue (ft)	87	37	9	1	48	29	5	3	46	3	31	
95th Queue (ft)	145	115	51	10	90	58	21	15	86	14	57	
Link Distance (ft)		1361			725				79	79	79	
Upstream Blk Time (%)									1		0	
Queuing Penalty (veh)									1		0	
Storage Bay Dist (ft)	80		80	120		120	75	75				
Storage Blk Time (%)	13	0										
Queuing Penalty (veh)	14	0										

Intersection: 2: Tozer Avenue & Avenue 13.5

Movement	EB	WB	NB	NB	SB
Directions Served	LTR	LTR	L	TR	L
Maximum Queue (ft)	74	74	26	31	52
Average Queue (ft)	37	36	1	1	16
95th Queue (ft)	63	60	8	10	42
Link Distance (ft)	1240	1264		1098	
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (ft)			150		150
Storage Blk Time (%)					
Queuing Penalty (veh)					

Intersection: 3: Tozer Avenue & Knox Street

Movement	EB	EB	NB
Directions Served	L	R	LT
Maximum Queue (ft)	19	39	53
Average Queue (ft)	1	18	14
95th Queue (ft)	7	29	42
Link Distance (ft)	1823	1823	116
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 4: Tozer Avenue & B Avenue

Movement	SE	SW
Directions Served	L	LR
Maximum Queue (ft)	24	75
Average Queue (ft)	1	31
95th Queue (ft)	8	52
Link Distance (ft)		215
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)	285	
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 5: Tozer Avenue & C Avenue

Movement	SB
Directions Served	R
Maximum Queue (ft)	31
Average Queue (ft)	5
95th Queue (ft)	24
Link Distance (ft)	213
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Intersection: 6: Road 28.25/Golden State Boulevard & Avenue 13

Movement	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	L	TR	L	TR	L	TR	L	TR	
Maximum Queue (ft)	143	272	96	244	27	72	91	92	
Average Queue (ft)	66	91	58	124	6	16	44	42	
95th Queue (ft)	115	167	94	207	22	44	80	74	
Link Distance (ft)		1102		1582		448		2836	
Upstream Blk Time (%)									
Queuing Penalty (veh)									
Storage Bay Dist (ft)	250		250		250		250		
Storage Blk Time (%)		0		0					
Queuing Penalty (veh)		0		0					

Intersection: 7: Avenue 13 & Tozer Avenue

Movement	EB	EB	WB	SB	SB
Directions Served	L	T	TR	L	R
Maximum Queue (ft)	114	79	124	117	190
Average Queue (ft)	60	49	75	35	59
95th Queue (ft)	99	72	110	65	115
Link Distance (ft)		1582	3486	178	178
Upstream Blk Time (%)					0
Queuing Penalty (veh)					0
Storage Bay Dist (ft)	250				
Storage Blk Time (%)					
Queuing Penalty (veh)					

Intersection: 8: Avenue 29 & Avenue 13

Movement	EB	EB	EB	WB	WB	NB	NB	NB	SB	SB	
Directions Served	L	Т	TR	UL	TR	L	Т	R	L	TR	
Maximum Queue (ft)	70	95	179	68	108	151	149	31	164	197	
Average Queue (ft)	27	35	61	14	32	82	54	1	69	111	
95th Queue (ft)	50	73	117	36	76	139	107	10	129	171	
Link Distance (ft)		237	237		914		4336			1337	
Upstream Blk Time (%)											
Queuing Penalty (veh)											
Storage Bay Dist (ft)	100			275		100		100	100		
Storage Blk Time (%)		0				6	0		6	11	
Queuing Penalty (veh)		0				9	1		19	12	

Intersection: 9: SR 99 NB Off-Ramp & Avenue 12 & SR 99 NB On-Ramp

Movement	EB	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	NB
Directions Served	L	L	Т	Т	Т	T	T	T	R	<	<	R
Maximum Queue (ft)	77	68	71	77	36	20	14	8	82	160	190	89
Average Queue (ft)	14	20	23	14	1	2	1	0	25	77	98	33
95th Queue (ft)	44	48	67	42	12	10	8	3	69	137	157	69
Link Distance (ft)			1743	1743	1743	1494	1494	1494			1105	
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)	425	425							950	150		150
Storage Blk Time (%)										0	1	
Queuing Penalty (veh)										1	4	

Intersection: 9: SR 99 NB Off-Ramp & Avenue 12 & SR 99 NB On-Ramp

Movement	NB
Directions Served	R
Maximum Queue (ft)	28
Average Queue (ft)	4
95th Queue (ft)	19
Link Distance (ft)	
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	150
Storage Blk Time (%)	
Queuing Penalty (veh)	

Intersection: 10: Avenue 12 & Road 29

Movement	EB	EB	EB	EB	EB	WB	WB	WB	WB	SB	SB	SB
Directions Served	L	L	Т	Т	Т	Т	Т	Т	R	L	L	R
Maximum Queue (ft)	137	102	98	81	42	73	96	202	72	128	114	117
Average Queue (ft)	64	13	48	18	1	40	46	86	20	49	30	38
95th Queue (ft)	113	50	82	52	14	61	82	145	51	96	75	74
Link Distance (ft)			1494	1494	1494	1424	1424	1424				818
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)	575	575							600	460	460	
Storage Blk Time (%)												
Queuing Penalty (veh)												

Intersection: 25: SR 99 SB Ramps/SR 99 SB Off-Ramp & SR 99 SB On-Ramp

Movement	SB
Directions Served	T
Maximum Queue (ft)	31
Average Queue (ft)	1
95th Queue (ft)	10
Link Distance (ft)	59
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Network Summary

Network wide Queuing Penalty: 61

Intersection: 1: Private Driveway/SR 99 SB Ramps & Almond Avenue

Movement	EB	EB	WB	WB	NB	NB	SB	SB	SB
Directions Served	L	Т	Т	R	L	Т	L	Т	R
Maximum Queue (ft)	179	358	94	73	46	45	89	20	62
Average Queue (ft)	93	59	35	23	5	5	64	1	27
95th Queue (ft)	149	185	76	51	23	23	100	7	52
Link Distance (ft)		1361	725			437	79	79	79
Upstream Blk Time (%)							5		0
Queuing Penalty (veh)							5		0
Storage Bay Dist (ft)	80			120	75				
Storage Blk Time (%)	15	1							
Queuing Penalty (veh)	18	2							

Intersection: 2: Tozer Avenue & Avenue 13.5

Movement	EB	WB	NB	SB
Directions Served	LTR	LTR	L	L
Maximum Queue (ft)	30	75	30	52
Average Queue (ft)	20	34	3	17
95th Queue (ft)	43	54	17	40
Link Distance (ft)	1240	1264		
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)			150	150
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 3: Tozer Avenue & Knox Street

Movement	EB	EB	NB
Directions Served	L	R	LT
Maximum Queue (ft)	18	52	72
Average Queue (ft)	2	14	18
95th Queue (ft)	12	31	53
Link Distance (ft)	1823	1823	105
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 4: Tozer Avenue & B Avenue

Movement	SE	SW
Directions Served	L	LR
Maximum Queue (ft)	27	52
Average Queue (ft)	3	26
95th Queue (ft)	15	49
Link Distance (ft)		194
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)	285	
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 5: Tozer Avenue & C Avenue

Movement	EB	SB
Directions Served	L	R
Maximum Queue (ft)	26	31
Average Queue (ft)	2	8
95th Queue (ft)	12	30
Link Distance (ft)		214
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)	285	
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 6: Road 28.25/Golden State Boulevard & Avenue 13

Movement	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	L	TR	L	TR	L	TR	L	TR	
Maximum Queue (ft)	95	210	72	156	57	85	115	94	
Average Queue (ft)	43	114	24	76	24	25	63	50	
95th Queue (ft)	78	196	57	135	54	54	106	89	
Link Distance (ft)		1102		1584		448		2836	
Upstream Blk Time (%)									
Queuing Penalty (veh)									
Storage Bay Dist (ft)	250		250		250		250		
Storage Blk Time (%)									
Queuing Penalty (veh)									

Intersection: 7: Avenue 13 & Tozer Avenue

Movement	EB	EB	WB	SB	SB
Directions Served	L	Т	TR	L	R
Maximum Queue (ft)	102	73	139	29	101
Average Queue (ft)	62	53	61	19	40
95th Queue (ft)	95	74	101	39	67
Link Distance (ft)		1584	3485	184	184
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (ft)	250				
Storage Blk Time (%)					
Queuing Penalty (veh)					

Intersection: 8: Avenue 29 & Avenue 13

Movement	EB	EB	EB	WB	WB	NB	NB	NB	SB	SB	
Directions Served	L	Т	TR	UL	TR	L	T	R	L	TR	
Maximum Queue (ft)	73	51	60	44	89	126	113	31	109	103	
Average Queue (ft)	34	21	28	5	36	49	41	2	28	48	
95th Queue (ft)	60	54	53	21	72	86	86	15	69	88	
Link Distance (ft)		237	237		914		4336			1337	
Upstream Blk Time (%)											
Queuing Penalty (veh)											
Storage Bay Dist (ft)	100			275		100		100	100		
Storage Blk Time (%)						0	1		0	1	
Queuing Penalty (veh)						0	1		1	0	

Intersection: 9: SR 99 NB Off-Ramp & Avenue 12 & SR 99 NB On-Ramp

Movement	EB	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	NB
Directions Served	L	L	Т	Т	Т	T	Т	T	R	<	<	R
Maximum Queue (ft)	70	49	110	86	37	75	14	6	89	124	162	88
Average Queue (ft)	13	13	36	20	1	10	1	0	13	66	94	35
95th Queue (ft)	44	40	79	60	12	41	6	2	53	116	139	68
Link Distance (ft)			1743	1743	1743	1494	1494	1494			1105	
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)	425	425							950	150		150
Storage Blk Time (%)											0	
Queuing Penalty (veh)											1	

Intersection: 9: SR 99 NB Off-Ramp & Avenue 12 & SR 99 NB On-Ramp

Movement	NB
Directions Served	R
Maximum Queue (ft)	51
Average Queue (ft)	11
95th Queue (ft)	35
Link Distance (ft)	
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	150
Storage Blk Time (%)	
Queuing Penalty (veh)	

Intersection: 10: Avenue 12 & Road 29

Movement	EB	EB	EB	EB	WB	WB	WB	WB	SB	SB	SB	
Directions Served	L	L	Т	Т	Т	Т	Т	R	L	L	R	
Maximum Queue (ft)	159	105	93	55	71	100	166	90	95	70	51	
Average Queue (ft)	86	33	33	12	40	38	66	35	37	18	31	
95th Queue (ft)	144	91	72	38	67	73	127	71	73	46	55	
Link Distance (ft)			1494	1494	1424	1424	1424				818	
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)	575	575						600	460	460		
Storage Blk Time (%)												
Queuing Penalty (veh)												

Intersection: 25: SR 99 SB Ramps/SR 99 SB Off-Ramp & SR 99 SB On-Ramp

Movement	SB
Directions Served	T
Maximum Queue (ft)	50
Average Queue (ft)	7
95th Queue (ft)	29
Link Distance (ft)	59
Upstream Blk Time (%)	0
Queuing Penalty (veh)	0
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Network Summary

Network wide Queuing Penalty: 28

Appendix I: Near Term plus Project Traffic Conditions

		→	•	•	+	•	•	†	/	\	1	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	†	7	ሻ	^	7	ሻ	1	7	ሻ	†	7
Traffic Volume (veh/h)	400	129	99	18	166	162	52	5	6	149	51	302
Future Volume (veh/h)	400	129	99	18	166	162	52	5	6	149	51	302
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856
Adj Flow Rate, veh/h	435	140	108	20	180	176	57	5	7	162	55	328
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	3	3	3	3	3	3	3	3	3	3	3	3
Cap, veh/h	469	652	553	70	233	198	136	387	328	197	447	379
Arrive On Green	0.27	0.35	0.35	0.04	0.13	0.13	0.08	0.21	0.21	0.11	0.24	0.24
Sat Flow, veh/h	1767	1856	1572	1767	1856	1572	1767	1856	1572	1767	1856	1572
Grp Volume(v), veh/h	435	140	108	20	180	176	57	5	7	162	55	328
Grp Sat Flow(s),veh/h/ln	1767	1856	1572	1767	1856	1572	1767	1856	1572	1767	1856	1572
Q Serve(g_s), s	21.2	4.7	4.2	1.0	8.3	9.7	2.7	0.2	0.3	7.9	2.0	17.7
Cycle Q Clear(g_c), s	21.2	4.7	4.2	1.0	8.3	9.7	2.7	0.2	0.3	7.9	2.0	17.7
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	469	652	553	70	233	198	136	387	328	197	447	379
V/C Ratio(X)	0.93	0.21	0.20	0.29	0.77	0.89	0.42	0.01	0.02	0.82	0.12	0.87
Avail Cap(c_a), veh/h	524	652	553	180	233	198	180	401	340	362	588	499
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	31.6	20.1	19.9	41.2	37.4	38.0	38.9	27.7	27.8	38.4	26.2	32.1
Incr Delay (d2), s/veh	20.7	0.3	0.3	8.0	16.2	36.7	0.8	0.0	0.0	3.2	0.2	14.3
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	11.0	1.9	1.6	0.4	4.6	5.7	1.2	0.1	0.1	3.4	0.9	8.1
Unsig. Movement Delay, s/veh												
LnGrp Delay(d), s/veh	52.3	20.4	20.2	42.0	53.6	74.7	39.7	27.7	27.8	41.6	26.4	46.4
LnGrp LOS	D	С	С	D	D	Е	D	С	С	D	С	D
Approach Vol, veh/h		683			376			69			545	
Approach Delay, s/veh		40.7			62.8			37.6			43.0	
Approach LOS		D			Е			D			D	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	9.4	37.8	12.7	28.4	29.3	17.9	15.5	25.5				
Change Period (Y+Rc), s	5.9	6.8	5.9	* 7.1	5.9	6.8	5.7	* 7.1				
Max Green Setting (Gmax), s	9.0	28.3	9.0	* 28	26.2	11.1	18.1	* 19				
Max Q Clear Time (g_c+l1), s	3.0	6.7	4.7	19.7	23.2	11.7	9.9	2.3				
Green Ext Time (p_c), s	0.0	1.8	0.0	1.6	0.2	0.0	0.1	0.0				
Intersection Summary			46.2									
HCM 7th Control Delay, s/veh			46.3									
HCM 7th LOS			D									

* HCM 7th computational engine requires equal clearance times for the phases crossing the barrier.

Synchro 12 Report

Intersection												
Int Delay, s/veh	3.9											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		7	f)		¥	↑ ↑	
Traffic Vol, veh/h	10	33	43	8	11	51	15	287	6	80	279	11
Future Vol, veh/h	10	33	43	8	11	51	15	287	6	80	279	11
Conflicting Peds, #/hr	1	0	3	3	0	1	17	0	0	0	0	17
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	150	-	-	150	-	-
Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	_	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	4	4	4	4	4	4	4	4	4	4	4	4
Mvmt Flow	11	36	47	9	12	55	16	312	7	87	303	12
Major/Minor I	Minor2			Minor1			Major1		N	//ajor2		
Conflicting Flow All	852	851	178	694	854	316	332	0	0	318	0	0
Stage 1	500	500	-	348	348	_	-	-	-		-	-
Stage 2	352	351	-	346	506	-	-	-	-	-	-	-
Critical Hdwy	7.36	6.56	6.96	7.36	6.56	6.26	4.16	-	-	4.16	-	-
Critical Hdwy Stg 1	6.56	5.56	-	6.16	5.56	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.16	5.56	-	6.56	5.56	-	-	-	-	-	-	-
Follow-up Hdwy	3.538	4.038	3.338	3.538	4.038	3.338	2.238	-	-	2.238	-	-
Pot Cap-1 Maneuver	263	293	830	340	292	718	1213	-	-	1227	-	-
Stage 1	518	538	-	662	629	-	-	-	-	-	-	-
Stage 2	659	627	-	639	535	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	210	265	814	256	264	717	1193	-	-	1227	-	-
Mov Cap-2 Maneuver	210	265	-	256	264	-	-	-	-	-	-	-
Stage 1	473	492	-	653	621	-	-	-	-	-	-	-
Stage 2	588	619	-	517	489	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Ctrl Dly, s/v	17.46			13.78			0.39			1.76		
HCM LOS	C			В			0.00			1.70		
TOWI EOU				J								
Minor Lane/Major Mvm	nt	NBL	NBT	NBR	EBLn1V	VBL n1	SBL	SBT	SBR			
Capacity (veh/h)		1193	-	-		486	1227	-				
HCM Lane V/C Ratio		0.014	_		0.245			_	_			
HCM Ctrl Dly (s/v)		8.1	_	-		13.8	8.2	-	-			
HCM Lane LOS		Α	_	_	C	В	Α	_	<u>-</u>			
HCM 95th %tile Q(veh))	0	_	-	0.9	0.6	0.2	-	-			
					0.0	5.5	J.L					

Intersection							
Int Delay, s/veh	2.1						
Movement	EBL	EBR	NBL	NBT	SBU	SBT	SBR
Lane Configurations	ሻ	7		स		ħβ	
Traffic Vol, veh/h	4	98	71	301	2	309	4
Future Vol, veh/h	4	98	71	301	2	309	4
Conflicting Peds, #/hr	1	0	1	0	0	0	1
Sign Control	Stop	Stop	Free	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	-	None
Storage Length	0	0	-	-	-	-	-
Veh in Median Storage	e,# 0	-	-	0	-	0	-
Grade, %	0	-	-	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92
Heavy Vehicles, %	3	3	3	3	3	3	3
Mvmt Flow	4	107	77	327	2	336	4
Major/Minor	Minor2		Major1		Major2		
Conflicting Flow All	826	171	341	0	- viajoiz	_	0
Stage 1	343	- 171	J + 1	-	_	-	-
Stage 2	483	_	-	_	-	_	_
Critical Hdwy		6.945		-	-	_	-
Critical Hdwy Stg 1	5.845	U.UTU	T. 170	_	_	_	_
Critical Hdwy Stg 2	5.445	_	_	_	_	_	_
Follow-up Hdwy	3.5285	3.3285	2.2285	_	_	_	_
Pot Cap-1 Maneuver	324	841	1210	_	-	-	-
Stage 1	688	-		-	-	-	-
Stage 2	617	-	-	_	-	-	-
Platoon blocked, %	•			-		_	-
Mov Cap-1 Maneuver	298	840	1209	-	-	-	-
Mov Cap-2 Maneuver		-		-	-	-	-
Stage 1	634	-	-	_	-	-	-
Stage 2	617	_	_	_	_	_	-
Clayo 2	317						
A I			NE		0.0		
Approach	EB		NB		SB		
HCM Ctrl Dly, s/v	10.2		1.56				
HCM LOS	В						
Minor Lane/Major Mvr	nt	NBL	NBT	EBLn1 l	EBLn2	SBT	SBR
Capacity (veh/h)		344	-		840	-	-
HCM Lane V/C Ratio		0.064	-	0.015		-	-
HCM Ctrl Dly (s/v)		8.2	0	17.3	9.9	-	-
HCM Lane LOS		A	A	С	A	_	-
HCM 95th %tile Q(veh	1)	0.2	-	0	0.4	-	-
3041 /0410 @(101	-/	Ų.L			V. 1		

Intersection		_				
Int Delay, s/veh	1.1					
Movement	SEL	SET	NWT	NWR	SWL	SWR
Lane Configurations	ሻ	^	↑ ↑		W	
Traffic Vol, veh/h	3	404	359	10	48	13
Future Vol, veh/h	3	404	359	10	48	13
Conflicting Peds, #/hr	0	0	0	0	0	0
_	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		-	None
Storage Length	285	-	-	-	0	-
Veh in Median Storage,		0	0	_	0	_
Grade, %	" <u>-</u>	0	0	_	0	_
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	3	3	3	3	3	3
Mymt Flow	3	439	390	11	52	14
IVIVIIIL I IOW	J	700	000		JZ	17
Major/Minor M	lajor1	N	Major2	N	Minor2	
Conflicting Flow All	401	0	-	0	622	201
Stage 1	-	-	-	-	396	-
Stage 2	-	-	-	-	226	-
Critical Hdwy	4.16	-	-	-	6.86	6.96
Critical Hdwy Stg 1	-	-	-	-	5.86	-
Critical Hdwy Stg 2	-	-	-	-	5.86	-
Follow-up Hdwy	2.23	-	-	-	3.53	3.33
	1147	_	-	-	417	804
Stage 1	-	-	-	-	646	-
Stage 2	_	-	_	_	787	-
Platoon blocked, %		_	-	-		
	1147	_	-	_	415	804
Mov Cap-2 Maneuver	-	_	-	_	415	-
Stage 1	_	_	_	_	644	-
Stage 2	_	_	_	_	787	_
Olage 2					101	
Approach	SE		NW		SW	
HCM Ctrl Dly, s/v	0.06		0		14.07	
HCM LOS					В	
Minor Lane/Major Mvmt		NI\A/T	NWR	SEL	SET	SWLn1
Capacity (veh/h)		-	-		-	463
HCM Carl Div (-/-)		-		0.003		0.143
HCM Ctrl Dly (s/v)		-	-	8.1	-	14.1
HCM Lane LOS		-	-	Α	-	В
HCM 95th %tile Q(veh)				0	_	0.5

Intersection						
Int Delay, s/veh	0.1					
		EDT	WDT	WIDD	CDI	CDD
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	<u>ች</u>		↑ ↑	40	^	7
Traffic Vol, veh/h	1	451	365	12	0	4
Future Vol, veh/h	1	451	365	12	0	4
Conflicting Peds, #/hr	_ 0	_ 0	_ 0	_ 0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	285	-	-	-	-	0
Veh in Median Storage	, # -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	3	3	3	3	3	3
Mvmt Flow	1	490	397	13	0	4
N A - 1 /N A1	M. ' A		4		ı o	
	Major1		//ajor2		/linor2	
Conflicting Flow All	410	0	-	0	-	205
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	4.16	-	-	-	-	6.96
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	2.23	-	-	-	-	3.33
Pot Cap-1 Maneuver	1138	-	-	-	0	799
Stage 1	_	-	-	-	0	-
Stage 2	-	_	-	-	0	_
Platoon blocked, %		_	_	_		
Mov Cap-1 Maneuver	1138	-	_	_	_	799
Mov Cap-1 Maneuver	-	<u>-</u>	_	_	_	
Stage 1	_					
-	_	_	_	_	_	-
Stage 2	-	-	-	-	_	-
Approach	EB		WB		SB	
HCM Ctrl Dly, s/v	0.02		0		9.53	
HCM LOS					Α	
110111 200					,,	
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR :	
Capacity (veh/h)		1138	-	-	-	799
HCM Lane V/C Ratio		0.001	-	-	-	0.005
HCM Ctrl Dly (s/v)		8.2	-	-	-	9.5
HCM Lane LOS		Α	-	-	-	Α
HCM 95th %tile Q(veh))	0	-	-	-	0
		_				_

Intersection												
Int Delay, s/veh	1110											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			44	
Traffic Vol, veh/h	164	442	165	108	507	44	160	46	83	78	29	135
Future Vol, veh/h	164	442	165	108	507	44	160	46	83	78	29	135
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	e, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	3	3	3	3	3	3	3	3	3	3	3	3
Mvmt Flow	178	480	179	117	551	48	174	50	90	85	32	147
	Major1			Major2			Minor1			Minor2		
Conflicting Flow All	599	0	0	660	0	0	1728	1760	570	1672	1826	575
Stage 1	-	-	-	-	-	-	927	927	-	810	810	-
Stage 2	-	-	-	-	-	-	802	834	-	862	1016	-
Critical Hdwy	4.13	-	-	4.13	-	-	7.13	6.53	6.23	7.13	6.53	6.23
Critical Hdwy Stg 1	-	-	-	-	-	-	6.13	5.53	-	6.13	5.53	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.13	5.53	-	6.13	5.53	-
Follow-up Hdwy	2.227	-	-	2.227	-	-		4.027	3.327		4.027	
Pot Cap-1 Maneuver	973	-	-	924	-	-	~ 69	84	519	~ 76	76	516
Stage 1	-	-	-	-	-	-	321	346	-	372	392	-
Stage 2	-	-	-	-	-	-	376	382	-	348	314	-
Platoon blocked, %	070	-	-	004	-	-	. 11	40	E40		42	E46
Mov Cap-1 Maneuver	973	-	-	924	-	-	~ 11	~ 48 ~ 48	519	-	43 43	516
Mov Cap-2 Maneuver	-	-	-	-	-	-	~ 11	~ 48 243	-	301	317	-
Stage 1 Stage 2	-	-	-	-	-	-	196	309	-	160	220	-
Slaye Z	-	-	-	-		_	190	209	-	100	220	-
Approach	EB			WB			NB			SB		
HCM Ctrl Dly, s/v	2.03			1.55		\$ 7	523.08					
HCM LOS							F			-		
Minor Lane/Major Mvm	nt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1			
Capacity (veh/h)		19	363	-	-	290	-	-	-			
HCM Lane V/C Ratio		16.835	0.183	-	-	0.127	-	-	-			
HCM Ctrl Dly (s/v)	\$	7523.1	9.5	0	-	9.5	0	-	-			
HCM Lane LOS		F	Α	Α	-	Α	Α	-	-			
HCM 95th %tile Q(veh))	39.9	0.7	-	-	0.4	-	-	-			
Notes												
~: Volume exceeds cap	pacity	\$: De	elay exc	eeds 30	00s							
+: Computation Not De	•		major v			on						

Intersection						
Int Delay, s/veh	129.3	_				
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	LDL	<u>- ₽</u>	<u>₩Ы</u>	WDIX	Ŋ.	אומט
Traffic Vol, veh/h	266	341	326	109	130	313
Future Vol, veh/h	266	341	326	109	130	313
· · · · · · · · · · · · · · · · · · ·		0				
Conflicting Peds, #/hr	0		0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	9,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	3	3	3	3	3	3
Mvmt Flow	289	371	354	118	141	340
Major/Minor I	Major1	N	Major2	N	Minor2	
Conflicting Flow All	473	0	- viajoiz	0	1363	414
Stage 1				-	414	414
ŭ .	-	-	-		949	
Stage 2	- 4.40	-	-	-		-
Critical Hdwy	4.13	-	-	-	6.43	6.23
Critical Hdwy Stg 1	-	-	-	-	5.43	-
Critical Hdwy Stg 2	-	-	-	-	5.43	-
Follow-up Hdwy	2.227	-	-	-	3.527	
Pot Cap-1 Maneuver	1084	-	-	-	162	636
Stage 1	-	-	-	-	665	-
Stage 2	-	-	-	-	375	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1084	-	_	_	~ 108	636
Mov Cap-2 Maneuver	-	_	_		~ 108	-
Stage 1	-	-	_		442	-
•	_	_	_	_	375	_
Stage 2	-	_	-	-	3/3	_
Approach	EB		WB		SB	
HCM Ctrl Dly, s/v	4.17		0	\$ 4	127.69	
HCM LOS					F	
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR :	SBI n1
	IL .					
Capacity (veh/h)		789	-	-	-	261
HCM Lane V/C Ratio		0.267	-	-		1.846
HCM Ctrl Dly (s/v)		9.5	0	-	-\$	427.7
HCM Lane LOS		Α	Α	-	-	F
HCM 95th %tile Q(veh))	1.1	-	-	-	33.1
Notes						
	,	Α ¬			20	
~: Volume exceeds cap	pacity	\$: De		eeds 30		
+: Computation Not De			major v			

Intersection			
Intersection Delay, s/veh	51.5		
Intersection LOS	F		

Movement	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT
Lane Configurations	, N	↑ ↑			Ä	ĵ.		7		7	J.	<u></u>
Traffic Vol, veh/h	38	104	303	4	47	76	66	198	162	14	108	287
Future Vol, veh/h	38	104	303	4	47	76	66	198	162	14	108	287
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Heavy Vehicles, %	6	6	6	6	6	6	6	6	6	6	6	6
Mvmt Flow	44	121	352	5	55	88	77	230	188	16	126	334
Number of Lanes	1	2	0	0	1	1	0	1	1	1	1	1
Approach	EB			WB				NB			SB	
Opposing Approach	WB			EB				SB			NB	
Opposing Lanes	2			3				2			3	
Conflicting Approach Left	SB			NB				EB			WB	
Conflicting Lanes Left	2			3				3			2	
Conflicting Approach Right	NB			SB				WB			EB	
Conflicting Lanes Right	3			2				2			3	
HCM Control Delay, s/veh	57.4			20.7				27.4			78.4	
HCM LOS	F			С				D			F	

Lane	NBLn1	NBLn2	NBLn3	EBLn1	EBLn2	EBLn3	WBLn1	WBLn2	SBLn1	SBLn2	
Vol Left, %	100%	0%	0%	100%	0%	0%	100%	0%	100%	0%	
Vol Thru, %	0%	100%	0%	0%	100%	10%	0%	54%	0%	82%	
Vol Right, %	0%	0%	100%	0%	0%	90%	0%	46%	0%	18%	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	198	162	14	38	69	338	51	142	108	348	
LT Vol	198	0	0	38	0	0	51	0	108	0	
Through Vol	0	162	0	0	69	35	0	76	0	287	
RT Vol	0	0	14	0	0	303	0	66	0	61	
Lane Flow Rate	230	188	16	44	81	393	59	165	126	405	
Geometry Grp	6	6	6	6	6	6	6	6	6	6	
Degree of Util (X)	0.662	0.515	0.041	0.124	0.215	0.978	0.18	0.468	0.354	1.069	
Departure Headway (Hd)	10.647	10.126	9.397	10.403	9.884	9.233	11.389	10.527	10.156	9.513	
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Сар	341	358	383	347	365	397	317	345	357	384	
Service Time	8.347	7.826	7.097	8.103	7.584	6.933	9.089	8.227	7.853	7.21	
HCM Lane V/C Ratio	0.674	0.525	0.042	0.127	0.222	0.99	0.186	0.478	0.353	1.055	
HCM Control Delay, s/veh	31.9	23.1	12.5	14.6	15.3	70.9	16.6	22.2	18.3	97.1	
HCM Lane LOS	D	С	В	В	С	F	С	С	С	F	
HCM 95th-tile Q	4.5	2.8	0.1	0.4	0.8	11.4	0.6	2.4	1.6	14.1	

ection	COLO

Intersection Delay, s/veh Intersection LOS

Movement	SBR
Lane Configurations	
Traffic Vol, veh/h	61
Future Vol, veh/h	61
Peak Hour Factor	0.86
Heavy Vehicles, %	6
Mvmt Flow	71
Number of Lanes	0

Approach

Opposing Approach
Opposing Lanes
Conflicting Approach Left
Conflicting Lanes Left
Conflicting Approach Right
Conflicting Lanes Right
HCM Control Delay, s/veh

HCM LOS

	*	-	\searrow	•	•	*_	•	ሻ		\	7	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL2	NBL	NBR	SEL	SER	
Lane Configurations	ሻሻ	^			ተተተ	7	44		77			
Traffic Volume (veh/h)	131	697	0	0	392	355	460	0	199	0	0	
Future Volume (veh/h)	131	697	0	0	392	355	460	0	199	0	0	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0			
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00	1.00	1.00			
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Work Zone On Approac	h	No			No			No				
Adj Sat Flow, veh/h/ln	1737	1737	0	0	1737	1737	1737	1737	1737			
Adj Flow Rate, veh/h	142	758	0	0	426	386	500	500	216			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92			
Percent Heavy Veh, %	11	11	0	0	11	11	11	11	11			
Cap, veh/h	460	2684	0	0	1537	477	715	715	577			
Arrive On Green	0.14	0.57	0.00	0.00	0.11	0.11	0.22	0.22	0.22			
Sat Flow, veh/h	3209	4898	0	0	4898	1472	3209	3209	2591			
Grp Volume(v), veh/h	142	758	0	0	426	386	500	500	216			
Grp Sat Flow(s), veh/h/lr	n1605	1581	0	0	1581	1472	1605	1605	1295			
Q Serve(g_s), s	3.2	6.6	0.0	0.0	6.6	20.5	11.5	11.5	5.7			
Cycle Q Clear(g_c), s	3.2	6.6	0.0	0.0	6.6	20.5	11.5	11.5	5.7			
Prop In Lane	1.00		0.00	0.00		1.00	1.00	1.00	1.00			
Lane Grp Cap(c), veh/h		2684	0	0	1537	477	715	715	577			
V/C Ratio(X)	0.31	0.28	0.00	0.00	0.28	0.81	0.70	0.70	0.37			
Avail Cap(c_a), veh/h	460	2684	0	0	1666	517	802	802	648			
HCM Platoon Ratio	1.00	1.00	1.00	1.00	0.33	0.33	1.00	1.00	1.00			
Upstream Filter(I)	1.00	1.00	0.00	0.00	0.91	0.91	1.00	1.00	1.00			
Uniform Delay (d), s/vel		9.0	0.0	0.0	27.1	33.3	28.6	28.6	26.4			
Incr Delay (d2), s/veh	0.3	0.3	0.0	0.0	0.4	12.7	5.6	5.6	1.9			
Initial Q Delay(d3), s/ve		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
%ile BackOfQ(50%),vel		1.9	0.0	0.0	2.5	9.6	4.6	4.6	1.8			
Unsig. Movement Delay												
LnGrp Delay(d), s/veh	31.0	9.2	0.0	0.0	27.5	46.0	34.3	34.3	28.2			
LnGrp LOS	С	Α			С	D	С	С	С			
Approach Vol, veh/h		900			812		716	716				
Approach Delay, s/veh		12.7			36.3		32.4	32.4				
Approach LOS		В			D		С	С				
Timer - Assigned Phs		2			5	6		8				
Phs Duration (G+Y+Rc)		53.2			19.4	33.8		26.8				
Change Period (Y+Rc),		7.9			7.9	* 7.9		9.0				
Max Green Setting (Gm		43.1			8.4	* 28		20.0				
Max Q Clear Time (g_c		8.6			5.2	22.5		13.5				
Green Ext Time (p_c), s	3	16.0			0.1	3.4		4.3				
Intersection Summary	, .		00 1									
HCM 7th Control Delay,	, s/veh		26.4									
HCM 7th LOS			С									
Notes												
* HCM 7th computation	al engi	ne requ	ires equ	ıal clea	rance ti	mes for	r the ph	ases cr	ossing t	the barr	ier.	

	۶	-	\searrow	•	•	•	•	†	/	>	↓	✓	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	ሻሻ	ተ ተጉ		*	ተተተ	7		1		- 1	†	7	
Traffic Volume (veh/h)	123	561	213	107	506	109	129	63	65	223	106	128	
Future Volume (veh/h)	123	561	213	107	506	109	129	63	65	223	106	128	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approac	h	No			No			No			No		
Adj Sat Flow, veh/h/ln	1811	1811	1811	1811	1811	1811	1811	1811	1811	1811	1811	1811	
Adj Flow Rate, veh/h	134	610	232	116	550	118	140	68	71	242	115	139	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	
Percent Heavy Veh, %	6	6	6	6	6	6	6	6	6	6	6	6	
Cap, veh/h	397	747	278	280	1311	407	206	101	106	280	325	457	
Arrive On Green	0.24	0.42	0.42	0.16	0.27	0.27	0.12	0.12	0.12	0.16	0.18	0.18	
Sat Flow, veh/h	3346	3549	1320	1725	4944	1535	1725	811	847	1725	1811	1535	
Grp Volume(v), veh/h	134	566	276	116	550	118	140	0	139	242	115	139	
Grp Sat Flow(s),veh/h/li		1648	1573	1725	1648	1535	1725	0	1659	1725	1811	1535	
Q Serve(g_s), s	2.7	12.1	12.6	4.8	7.4	2.7	6.2	0.0	6.4	10.9	4.5	5.6	
Cycle Q Clear(g_c), s	2.7	12.1	12.6	4.8	7.4	2.7	6.2	0.0	6.4	10.9	4.5	5.6	
Prop In Lane	1.00		0.84	1.00		1.00	1.00		0.51	1.00		1.00	
_ane Grp Cap(c), veh/h		694	331	280	1311	407	206	0	207	280	325	457	
V/C Ratio(X)	0.34	0.82	0.83	0.41	0.42	0.29	0.68	0.00	0.67	0.86	0.35	0.30	
Avail Cap(c_a), veh/h	422	733	350	280	1311	407	302	0	207	360	325	457	
HCM Platoon Ratio	2.00	2.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	0.97	0.97	0.97	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/vel		21.8	21.9	30.1	24.3	7.0	33.8	0.0	33.4	32.6	28.8	21.7	
Incr Delay (d2), s/veh	0.2	9.9	20.8	0.4	1.0	1.8	1.5	0.0	10.0	13.3	1.2	0.7	
nitial Q Delay(d3), s/ve	h 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),vel		4.3	5.2	1.9	2.8	1.8	2.5	0.0	3.0	5.3	1.9	1.9	
Jnsig. Movement Delay													
_nGrp Delay(d), s/veh	28.1	31.7	42.8	30.5	25.3	8.8	35.2	0.0	43.5	45.9	30.0	22.4	
_nGrp LOS	С	С	D	С	С	Α	D		D	D	С	С	
Approach Vol, veh/h		976			784			279			496		
Approach Delay, s/veh		34.3			23.6			39.3			35.6		
Approach LOS		С			С			D			D		
Timer - Assigned Phs	1	2	3	4	5	6	7	8					
Phs Duration (G+Y+Rc)		23.6	15.5	21.1	15.4	28.0	19.8	16.8					
Change Period (Y+Rc),		* 6.8	5.9	6.8	5.9	6.8	6.8	* 6.8					
Max Green Setting (Gm		* 18	14.0	12.7	10.1	17.8	16.7	* 10					
Max Q Clear Time (g_c		14.6	8.2	7.6	4.7	9.4	12.9	8.4					
Green Ext Time (p_c), s	s 0.0	2.3	0.1	0.7	0.1	4.3	0.1	0.1					
Intersection Summary	, ,		04.0										
HCM 7th Control Delay	, s/veh		31.8										
HCM 7th LOS			С										
Notes * HCM 7th computation	al enc	no ros:	iron os:	ıol olos	ronco 1	mac fo	the nh	0000.07	oooina l	the be-	ior		
* HCM 7th computation	ai erigi	ne requ	nes equ	iai ciea	rance t	mes ioi	the ph	ases cr	ussing i	uie barr	IEI.		

	ၨ	-	•	•	-	•	•	T	_	-	. ↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	1	7	ሻ	^	7	ሻ	1	7	ሻ		7
Traffic Volume (veh/h)	357	154	50	7	124	128	102	24	12	273	14	237
Future Volume (veh/h)	357	154	50	7	124	128	102	24	12	273	14	237
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856
Adj Flow Rate, veh/h	388	167	54	8	135	139	111	26	13	297	15	258
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	3	3	3	3	3	3	3	3	3	3	3	3
Cap, veh/h	429	652	553	32	235	199	184	212	180	340	372	315
Arrive On Green	0.24	0.35	0.35	0.02	0.13	0.13	0.10	0.11	0.11	0.19	0.20	0.20
Sat Flow, veh/h	1767	1856	1572	1767	1856	1572	1767	1856	1572	1767	1856	1572
Grp Volume(v), veh/h	388	167	54	8	135	139	111	26	13	297	15	258
Grp Sat Flow(s),veh/h/ln	1767	1856	1572	1767	1856	1572	1767	1856	1572	1767	1856	1572
Q Serve(g_s), s	16.8	5.1	1.8	0.4	5.4	6.7	4.7	1.0	0.6	12.9	0.5	12.4
Cycle Q Clear(g_c), s	16.8	5.1	1.8	0.4	5.4	6.7	4.7	1.0	0.6	12.9	0.5	12.4
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	429	652	553	32	235	199	184	212	180	340	372	315
V/C Ratio(X)	0.90	0.26	0.10	0.25	0.57	0.70	0.60	0.12	0.07	0.87	0.04	0.82
Avail Cap(c_a), veh/h	585	663	562	202	261	221	204	212	180	654	659	558
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	29.0	18.2	17.2	38.2	32.4	33.0	33.8	31.4	31.2	30.9	25.4	30.2
Incr Delay (d2), s/veh	11.8	0.4	0.1	1.5	4.1	10.5	2.4	0.1	0.1	2.8	0.1	9.0
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	7.9	2.0	0.7	0.2	2.5	3.1	2.1	0.4	0.2	5.3	0.2	5.4
Unsig. Movement Delay, s/veh												
LnGrp Delay(d), s/veh	40.7	18.6	17.3	39.6	36.5	43.5	36.2	31.5	31.3	33.7	25.5	39.2
LnGrp LOS	D	В	В	D	D	D	D	С	С	С	С	D
Approach Vol, veh/h		609			282			150			570	
Approach Delay, s/veh		32.6			40.1			34.9			35.9	
Approach LOS		С			D			С			D	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	7.3	34.5	14.1	22.9	25.1	16.8	20.9	16.1				
Change Period (Y+Rc), s	5.9	6.8	5.9	* 7.1	5.9	6.8	5.7	* 7.1				
Max Green Setting (Gmax), s	9.0	28.2	9.1	* 28	26.1	11.1	29.2	* 8.1				
Max Q Clear Time (g_c+l1), s	2.4	7.1	6.7	14.4	18.8	8.7	14.9	3.0				
Green Ext Time (p_c), s	0.0	1.6	0.0	1.4	0.4	0.4	0.3	0.0				
Intersection Summary			25.2									
HCM 7th Control Delay, s/veh			35.3									
HCM 7th LOS Notes			D									

* HCM 7th computational engine requires equal clearance times for the phases crossing the barrier.

Intersection												
Int Delay, s/veh	3.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		44			4		Į.	ĵ.		¥	ħβ	
Traffic Vol, veh/h	12	12	11	8	6	65	27	287	16	95	229	28
Future Vol, veh/h	12	12	11	8	6	65	27	287	16	95	229	28
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	150	-	-	150	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	3	3	3	3	3	3	3	3	3	3	3	3
Mvmt Flow	13	13	12	9	7	71	29	312	17	103	249	30
Major/Minor	Minor2			Minor1			Major1		N	//ajor2		
Conflicting Flow All	845	859	140	717	865	321	279	0	0	329	0	0
Stage 1	471	471	-	379	379	-	-	-	-	-	-	-
Stage 2	374	388	-	338	486	-	-	-	-	-	-	-
Critical Hdwy	7.345	6.545	6.945	7.345	6.545	6.245	4.145	-	-	4.145	-	-
Critical Hdwy Stg 1	6.545	5.545	-	6.145	5.545	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.145	5.545	-	6.545	5.545	-	-	-	-	-	-	-
Follow-up Hdwy	3.5285	4.0285	3.3285	3.5285	4.0285	3.3285	2.2285	-	- 2	2.2285	-	-
Pot Cap-1 Maneuver	268	292	881	329	289	717	1275	-	-	1222	-	-
Stage 1	541	557	-	639	611	-	-	-	-	-	-	-
Stage 2	644	606	-	649	548	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver		261	881	277	259	717	1275	-	-	1222	-	-
Mov Cap-2 Maneuver		261	-	277	259	-	-	-	-	-	-	-
Stage 1	496	510	-	625	597	-	-	-	-	-	-	-
Stage 2	561	592	-	571	502	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Ctrl Dly, s/v	18.55			12.7			0.65			2.22		
HCM LOS	С			В								
Minor Lane/Major Mvr	nt	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1275	-		304	553	1222	-	_			
HCM Lane V/C Ratio		0.023	_	_	0.125			_	_			
HCM Ctrl Dly (s/v)		7.9	-	-	18.6	12.7	8.2	-	-			
HCM Lane LOS		Α.	_	_	C	В	Α	_	-			
HCM 95th %tile Q(veh	1)	0.1	-	-	0.4	0.5	0.3	-	-			
2000	,				<u> </u>	- 0.3						

Intersection						
Int Delay, s/veh	1.6					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Ť	7	1,00	4	↑ ↑	JJN
Traffic Vol, veh/h	4	49	77	324	251	0
Future Vol, veh/h	4	49	77	324	251	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	- Stop	None		None	-	
Storage Length	0	0	-	-	_	NOHE -
		-	-	0	0	-
Veh in Median Storag	0			0		
Grade, %		-	-		0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	3	3	3	3	3	3
Mvmt Flow	4	53	84	352	273	0
Major/Minor	Minor2		Major1	N	Major2	
Conflicting Flow All	792	136	273	0		0
Stage 1	273	-		_	_	_
Stage 2	520	_	-	_	_	_
Critical Hdwy		6.945	4 145	-	_	_
Critical Hdwy Stg 1	5.845	-	-	_	_	_
Critical Hdwy Stg 2	5.445	_	_	_	_	_
	3.5285	3 3285	2 2285	_	_	_
Pot Cap-1 Maneuver	340	885	1282			
Stage 1	747	-	1202	_		_
Stage 2	593	_	_		_	
Platoon blocked, %	595	-	-	-	_	_
	210	005	1202	_		
Mov Cap-1 Maneuver		885	1282	-	-	-
Mov Cap-2 Maneuver		-	-	-	-	-
Stage 1	686	-	-	-	-	-
Stage 2	593	-	-	-	-	-
Approach	EB		NB		SB	
HCM Ctrl Dly, s/v	9.88		1.54		0	
HCM LOS	3.00 A		1.54		U	
TIOWI LOG						
Minor Lane/Major Mvr	nt	NBL	NBT	EBLn1 E	EBLn2	SBT
Capacity (veh/h)		346	-	312	885	-
HCM Lane V/C Ratio		0.065	-	0.014	0.06	-
HCM Ctrl Dly (s/v)		8	0	16.7	9.3	-
HCM Lane LOS		Α	Α	С	Α	-
HCM 95th %tile Q(veh	1)	0.2	-		0.2	-
	,					

Intersection						
Int Delay, s/veh	0.8					
Movement	SEL	SET	NWT	NWR	SWL	SWR
Lane Configurations	*	^	∱ 1≽		W	-
Traffic Vol, veh/h	10	290	393	30	32	8
Future Vol, veh/h	10	290	393	30	32	8
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	_	None	-		-	
Storage Length	285	-	-	-	0	-
Veh in Median Storage,		0	0	_	0	_
Grade, %	_	0	0	_	0	_
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	3	3	3	3	3	3
Mymt Flow	11	315	427	33	35	9
WWW.CT IOW	• • •	010	121	- 00		
	/lajor1		Major2		Minor2	
Conflicting Flow All	460	0	-	0	623	230
Stage 1	-	-	-	-	443	-
Stage 2	-	-	-	-	179	-
Critical Hdwy	4.16	-	-	-	6.86	6.96
Critical Hdwy Stg 1	-	-	-	-	5.86	-
Critical Hdwy Stg 2	-	-	-	-	5.86	-
Follow-up Hdwy	2.23	-	-	-	3.53	3.33
Pot Cap-1 Maneuver	1091	-	-	-	416	769
Stage 1	-	-	-	-	611	-
Stage 2	-	-	-	-	831	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1091	-	-	-	412	769
Mov Cap-2 Maneuver	-	-	-	-	412	-
Stage 1	-	-	-	-	605	-
Stage 2	-	-	-	-	831	-
Ü						
Annroach	CE.		NIVA/		CIA	
Approach	SE		NW		SW	
HCM Ctrl Dly, s/v	0.28		0		13.77	
HCM LOS					В	
Minor Lane/Major Mvmt	l .	NWT	NWR	SEL	SETS	SWLn1
Capacity (veh/h)		-	-		-	454
HCM Lane V/C Ratio		_	-	0.01		0.096
HCM Ctrl Dly (s/v)		_	-		-	13.8
HCM Lane LOS		_	-	A	_	В
HCM 95th %tile Q(veh)		-	-	0	-	0.3

Novement EBL EBT WBR WBR SBL SBR Same SBR SBR
Movement
Traffic Vol, veh/h
Traffic Vol, veh/h
Traffic Vol, veh/h
Future Vol, veh/h Conflicting Peds, #/hr O O O O O O O O O O O O O O O O O O O
Conflicting Peds, #/hr 0 Stop RT Channelized - None - None <th< td=""></th<>
Sign Control Free Free Free Free Free Free Stop Stop RT Channelized - None - None - None - None - None Storage Length 285 0 0 - 0 - 0 Veh in Median Storage, # - 0 0 0 - 0 - 0 0 - 0 - 0 - 0 - 0 - 0 Grade, % - 0 0 0 0 - 0 0 - 0 - 0 - 292 92<
RT Channelized - None - None - None Storage Length 285 0 0 Veh in Median Storage, # - 0 0 0 - 0 - 0 0 - 0 - 0 Grade, % - 0 0 0 - 0 - 0 - 0 - 0 - 0 Peak Hour Factor 92 92 92 92 92 92 Heavy Vehicles, % 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Storage Length 285 - - - 0 Veh in Median Storage, # - 0 0 - 0 - Grade, % - 0 0 - 0 - Peak Hour Factor 92 92 92 92 92 92 Heavy Vehicles, % 3 4 5 6 </td
Veh in Median Storage, # 0 0 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - Peak Hour Factor 92
Grade, % - 0 0 - 0 - Peak Hour Factor 92
Peak Hour Factor 92
Heavy Vehicles, % 3 4
Mvmt Flow 5 345 457 43 0 3 Major/Minor Major1 Major2 Minor2 Conflicting Flow All 500 0 - 0 - 250 Stage 1 - <td< td=""></td<>
Major/Minor Major1 Major2 Minor2 Conflicting Flow All 500 0 - 0 - 250 Stage 1 -
Conflicting Flow All 500 0 - 0 - 250 Stage 1
Conflicting Flow All 500 0 - 0 - 250 Stage 1
Stage 1 - </td
Stage 2 - - - - - Critical Hdwy 4.16 - - - 6.96 Critical Hdwy Stg 1 - - - - - Critical Hdwy Stg 2 - - - - - Follow-up Hdwy 2.23 - 0 - - - 0 - - - 0 - - - 0 - - - - 0 - - - - 0 -
Critical Hdwy Stg 1 6.96 Critical Hdwy Stg 1
Critical Hdwy Stg 1
Critical Hdwy Stg 2
Follow-up Hdwy 2.23 3.33 Pot Cap-1 Maneuver 1053 0 747 Stage 1 0 - 0 - Stage 2 0 - 0 - Platoon blocked, % Mov Cap-1 Maneuver 1053 747 Mov Cap-2 Maneuver Stage 1 Stage 2 Stage 2
Pot Cap-1 Maneuver 1053 0 747
Stage 1 - - - 0 - Stage 2 - - - 0 - Platoon blocked, % - - - - - Mov Cap-1 Maneuver 1053 - - - 747 Mov Cap-2 Maneuver - - - - - - Stage 1 - - - - - - - Stage 2 - - - - - - - -
Stage 2 - - - 0 - Platoon blocked, % - - - - Mov Cap-1 Maneuver 1053 - - - 747 Mov Cap-2 Maneuver - - - - - - Stage 1 - - - - - - Stage 2 - - - - - - -
Platoon blocked, %
Mov Cap-1 Maneuver 1053 - - - 747 Mov Cap-2 Maneuver - - - - - Stage 1 - - - - - Stage 2 - - - - -
Mov Cap-2 Maneuver
Mov Cap-2 Maneuver - - - - - - Stage 1 - - - - - - Stage 2 - - - - - -
Stage 1
Stage 2
Approach EB WB SB
Approach EB WB SB
''
HCM Ctrl Dly, s/v 0.13 0 9.84
HCM LOS A
Minor Lane/Major Mvmt EBL EBT WBT WBR SBLn1
Capacity (veh/h) 1053 747
110141
HCM Lane V/C Ratio 0.005 0.004

Intersection												
Int Delay, s/veh	888.4											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	95	467	205	134	402	57	187	47	108	128	77	189
Future Vol, veh/h	95	467	205	134	402	57	187	47	108	128	77	189
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	81	92	92	92	92	92
Heavy Vehicles, %	3	3	3	3	3	3	3	3	3	3	3	3
Mvmt Flow	103	508	223	146	437	62	231	51	117	139	84	205
Major/Minor	Major1		ı	Major2			Minor1			Minor2		
Conflicting Flow All	499	0	0	730	0	0	1596	1616	619	1499	1696	468
Stage 1	-	-	-	-	-	-	826	826	-	759	759	-
Stage 2	-	-	-	-	-	-	770	790	-	740	937	-
Critical Hdwy	4.13	-	-	4.13	-	-	7.13	6.53	6.23	7.13	6.53	6.23
Critical Hdwy Stg 1	-	-	-	-	-	-	6.13	5.53	-	6.13	5.53	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.13	5.53	-	6.13	5.53	-
Follow-up Hdwy	2.227	-	-	2.227	-	-	3.527	4.027	3.327	3.527	4.027	3.327
Pot Cap-1 Maneuver	1060	-	-	869	-	-	~ 86	103	487	~ 100	92	593
Stage 1	-	-	-	-	-	-	365	385	-	397	413	-
Stage 2	-	-	-	-	-	-	392	400	-	407	342	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1060	-	-	869	-	-	-	65	487	~ 15	~ 58	593
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	65	-	~ 15	~ 58	-
Stage 1	-	-	-	-	-	-	303	319	-	304	317	-
Stage 2	-	-	-	-	-	-	~ 144	306	-	215	284	-
Approach	EB			WB			NB			SB		
HCM Ctrl Dly, s/v	1.09			2.25					\$ 4	777.81		
HCM LOS							-			F		
Minor Lane/Major Mvm	nt I	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR :	SBLn1			
Capacity (veh/h)		-	210	-	-	397	-	-	38			
HCM Lane V/C Ratio			0.097	_		0.168	_		11.173			
HCM Ctrl Dly (s/v)		-	8.8	0	-	10	0		4777.8			
HCM Lane LOS		_	A	Ā	_	A	Ā	-	F			
HCM 95th %tile Q(veh)	-	0.3	-	-	0.6	-	-	51.8			
Notes												
~: Volume exceeds ca	nacity	\$· D	elay exc	pade 31)Ns							
+: Computation Not De			major v			on						
· . Computation NOt De	illieu	. 📶	major v	Julie I	ii piatu	UII						

Intersection						
Int Delay, s/veh	64.4					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	LDL	- - 	<u>₩</u>	אטוא	SDL W	אםט
Traffic Vol, veh/h	345	356	339	114	65	252
Future Vol, veh/h	345	356	339	114	65	252
· · · · · · · · · · · · · · · · · · ·	0	330	339	0	00	252
Conflicting Peds, #/hr						
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized		None	-		-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage		0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	4	4	4	4	4	4
Mvmt Flow	375	387	368	124	71	274
Major/Minor I	Major1	N	//ajor2	N	Minor2	
Conflicting Flow All	492	0	- najoiz	0	1567	430
Stage 1	492			U	430	
	-	-	-	-		-
Stage 2	-	-	-	-	1137	-
Critical Hdwy	4.14	-	-	-	6.44	6.24
Critical Hdwy Stg 1	-	-	-	-	5.44	-
Critical Hdwy Stg 2		-	-	-	5.44	-
Follow-up Hdwy	2.236	-	-	-		
Pot Cap-1 Maneuver	1061	-	-	-	121	621
Stage 1	-	-	-	-	651	-
Stage 2	-	-	-	-	303	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1061	-	-	-	~ 66	621
Mov Cap-2 Maneuver	-	_	-	-	~ 66	_
Stage 1	_	-	_	-	358	-
Stage 2	_	_	_	_	303	_
Olago Z					000	
Approach	EB		WB		SB	
HCM Ctrl Dly, s/v	5.04		0	2	287.75	
HCM LOS					F	
Minor Long/Major Muse	.1	EDI	CDT	WDT	WDD	CDI1
Minor Lane/Major Mvm	Ι	EBL	EBT	WBT	WBR :	
Capacity (veh/h)		833	-	-	-	229
HCM Lane V/C Ratio		0.354	-	-		1.505
HCM Ctrl Dly (s/v)		10.2	0	-	-	287.8
HCM Lane LOS		В	Α	-	-	F
HCM 95th %tile Q(veh)		1.6	-	-	-	20.7
Notes						
	.,	Φ. D.			20.	
~: Volume exceeds cap				eeds 30		
+: Computation Not De	tined	*: All	major v	olume i	n plato	on

Intersection			
Intersection Delay, s/veh	15.1		
Intersection LOS	С		

Intersection LOS	C											
Movement	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT
Lane Configurations	, A	ተ ኈ			ă	ĵ.		, J	1	7	J.	<u> </u>
Traffic Vol, veh/h	57	64	164	0	33	91	59	235	151	25	38	180
Future Vol, veh/h	57	64	164	0	33	91	59	235	151	25	38	180
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Heavy Vehicles, %	3	3	3	3	3	3	3	3	3	3	3	3
Mvmt Flow	60	67	173	0	35	96	62	247	159	26	40	189
Number of Lanes	1	2	0	0	1	1	0	1	1	1	1	1
Approach	EB				WB			NB			SB	
Opposing Approach	WB				EB			SB			NB	
Opposing Lanes	2				3			2			3	
Conflicting Approach Left	SB				NB			EB			WB	
Conflicting Lanes Left	2				3			3			2	
Conflicting Approach Right	NB				SB			WB			EB	
Conflicting Lanes Right	3				2			2			3	
HCM Control Delay, s/veh	13.4				13.8			16.4			15.9	
HCM LOS	В				В			С			С	

Lane	NBLn1	NBLn2	NBLn3	EBLn1	EBLn2	EBLn3	WBLn1	WBLn2	SBLn1	SBLn2	
Vol Left, %	100%	0%	0%	100%	0%	0%	100%	0%	100%	0%	
Vol Thru, %	0%	100%	0%	0%	100%	12%	0%	61%	0%	85%	
Vol Right, %	0%	0%	100%	0%	0%	88%	0%	39%	0%	15%	
Sign Control	Stop										
Traffic Vol by Lane	235	151	25	57	43	185	33	150	38	212	
LT Vol	235	0	0	57	0	0	33	0	38	0	
Through Vol	0	151	0	0	43	21	0	91	0	180	
RT Vol	0	0	25	0	0	164	0	59	0	32	
Lane Flow Rate	247	159	26	60	45	195	35	158	40	223	
Geometry Grp	6	6	6	6	6	6	6	6	6	6	
Degree of Util (X)	0.533	0.32	0.048	0.137	0.096	0.383	0.081	0.335	0.09	0.466	
Departure Headway (Hd)	7.76	7.252	6.541	8.212	7.703	7.072	8.438	7.648	8.13	7.515	
Convergence, Y/N	Yes										
Сар	465	496	546	436	464	507	424	469	440	480	
Service Time	5.513	5.005	4.294	5.969	5.46	4.829	6.2	5.41	5.887	5.272	
HCM Lane V/C Ratio	0.531	0.321	0.048	0.138	0.097	0.385	0.083	0.337	0.091	0.465	
HCM Control Delay, s/veh	19.1	13.4	9.6	12.3	11.3	14.2	11.9	14.2	11.7	16.7	
HCM Lane LOS	С	В	Α	В	В	В	В	В	В	С	
HCM 95th-tile Q	3.1	1.4	0.2	0.5	0.3	1.8	0.3	1.5	0.3	2.4	

Intersection

Intersection Delay, s/veh Intersection LOS

Movement	SBR
Lane Configurations	
Traffic Vol, veh/h	32
Future Vol, veh/h	32
Peak Hour Factor	0.95
Heavy Vehicles, %	3
Mvmt Flow	34
Number of Lanes	0

Approach

Opposing Approach
Opposing Lanes
Conflicting Approach Left
Conflicting Lanes Left
Conflicting Approach Right
Conflicting Lanes Right
HCM Control Delay, s/veh

HCM LOS

	>	→	\searrow	•	•	*_	•	ሻ	/	\	7	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL2	NBL	NBR	SEL	SER	
Lane Configurations	ሻሻ	^ ^			ተተተ	7	ሻሻ		77			
Traffic Volume (veh/h)	144	722	0	0	541	303	549	0	218	0	0	
Future Volume (veh/h)	144	722	0	0	541	303	549	0	218	0	0	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0			
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00	1.00	1.00			
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Work Zone On Approac	ch	No			No			No				
Adj Sat Flow, veh/h/ln	1796	1796	0	0	1796	1796	1796	1796	1796			
Adj Flow Rate, veh/h	157	785	0	0	588	329	597	597	237			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92			
Percent Heavy Veh, %	7	7	0	0	7	7	7	7	7			
Cap, veh/h	361	2443	0	0	1447	449	864	864	697			
Arrive On Green	0.11	0.50	0.00	0.00	0.10	0.10	0.26	0.26	0.26			
Sat Flow, veh/h	3319	5065	0	0	5065	1522	3319	3319	2679			
Grp Volume(v), veh/h	157	785	0	0	588	329	597	597	237			
Grp Sat Flow(s), veh/h/l	n1659	1635	0	0	1635	1522	1659	1659	1340			
Q Serve(g_s), s	3.1	6.7	0.0	0.0	7.9	14.7	11.4	11.4	5.0			
Cycle Q Clear(g_c), s	3.1	6.7	0.0	0.0	7.9	14.7	11.4	11.4	5.0			
Prop In Lane	1.00		0.00	0.00		1.00	1.00	1.00	1.00			
Lane Grp Cap(c), veh/h	361	2443	0	0	1447	449	864	864	697			
V/C Ratio(X)	0.43	0.32	0.00	0.00	0.41	0.73	0.69	0.69	0.34			
Avail Cap(c_a), veh/h	379	2443	0	0	1447	449	948	948	765			
HCM Platoon Ratio	1.00	1.00	1.00	1.00	0.33	0.33	1.00	1.00	1.00			
Upstream Filter(I)	1.00	1.00	0.00	0.00	0.85	0.85	1.00	1.00	1.00			
Uniform Delay (d), s/ve	h 29.2	10.5	0.0	0.0	25.8	28.9	23.4	23.4	21.0			
Incr Delay (d2), s/veh	0.6	0.3	0.0	0.0	0.7	8.7	4.5	4.5	1.3			
Initial Q Delay(d3), s/ve	h 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
%ile BackOfQ(50%),ve	h/ln1.2	2.0	0.0	0.0	3.1	6.9	4.5	4.5	1.5			
Unsig. Movement Delay	y, s/veh	1										
LnGrp Delay(d), s/veh	29.8	10.8	0.0	0.0	26.6	37.6	27.9	27.9	22.3			
LnGrp LOS	С	В			С	D	С	С	С			
Approach Vol, veh/h		942			917		834	834				
Approach Delay, s/veh		14.0			30.5		26.3	26.3				
Approach LOS		В			С		С	С				
Timer - Assigned Phs		2			5	6		8				
Phs Duration (G+Y+Rc), s	42.8			14.2	28.6		27.2				
Change Period (Y+Rc),	, .	7.9			* 6.6	7.9		9.0				
Max Green Setting (Gr		33.1			* 8	18.5		20.0				
Max Q Clear Time (g_c		8.7			5.1	16.7		13.4				
Green Ext Time (p_c),		13.4			0.1	1.3		4.9				
Intersection Summary												
HCM 7th Control Delay	, s/veh		23.4			-	-			-		
HCM 7th LOS			С									
Notes												

* HCM 7th computational engine requires equal clearance times for the phases crossing the barrier.

	۶	→	•	•	←	•	•	†	<u> </u>	\	ļ	✓	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		ተተ _ጉ		*	ተተተ	7		f)		- 1	†	7	
Traffic Volume (veh/h)	193	539	185	93	438	240	234	116	116	171	93	168	
Future Volume (veh/h)	193	539	185	93	438	240	234	116	116	171	93	168	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approac	:h	No			No			No			No		
Adj Sat Flow, veh/h/ln	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	
Adj Flow Rate, veh/h	210	586	201	101	476	261	254	126	126	186	101	183	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	
Percent Heavy Veh, %	3	3	3	3	3	3	3	3	3	3	3	3	
Cap, veh/h	482	670	224	239	943	293	296	146	146	246	266	446	
Arrive On Green	0.28	0.36	0.36	0.14	0.19	0.19	0.17	0.17	0.17	0.14	0.14	0.14	
Sat Flow, veh/h	3428	3750	1256	1767	5066	1572	1767	851	851	1767	1856	1572	
Grp Volume(v), veh/h	210	526	261	101	476	261	254	0	252	186	101	183	
Grp Sat Flow(s), veh/h/lr	ո1714	1689	1629	1767	1689	1572	1767	0	1702	1767	1856	1572	
Q Serve(g_s), s	3.5	10.2	10.6	3.7	5.9	11.3	9.8	0.0	10.1	7.1	3.5	6.6	
Cycle Q Clear(g_c), s	3.5	10.2	10.6	3.7	5.9	11.3	9.8	0.0	10.1	7.1	3.5	6.6	
Prop In Lane	1.00		0.77	1.00		1.00	1.00		0.50	1.00		1.00	
Lane Grp Cap(c), veh/h		603	291	239	943	293	296	0	292	246	266	446	
V/C Ratio(X)	0.44	0.87	0.90	0.42	0.50	0.89	0.86	0.00	0.86	0.76	0.38	0.41	
Avail Cap(c_a), veh/h	490	603	291	252	943	293	305	0	292	255	266	446	
HCM Platoon Ratio	2.00	2.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	0.96	0.96	0.96	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/vel		21.8	21.9	27.8	25.6	27.8	28.3	0.0	28.2	29.0	27.2	20.3	
Incr Delay (d2), s/veh	0.2	15.5	30.8	0.4	1.9	30.9	19.5	0.0	23.6	10.5	1.7	1.1	
Initial Q Delay(d3), s/ve		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),vel		4.2	5.4	1.4	2.3	6.6	5.5	0.0	5.8	3.5	1.5	0.1	
Unsig. Movement Delay			F0 7	00.0	07.5	F0 7	47.0	0.0	540	20.5	00.0	04.5	
LnGrp Delay(d), s/veh	23.1	37.2	52.7	28.2	27.5	58.7	47.9	0.0	51.8	39.5	28.8	21.5	
LnGrp LOS	С	D	D	С	<u>C</u>	E	D	500	D	D	C	С	
Approach Vol, veh/h		997			838			506			470		
Approach Delay, s/veh		38.3			37.3			49.8			30.2		
Approach LOS		D			D			D			С		
Timer - Assigned Phs	1	2	3	4	5	6	7	8					
Phs Duration (G+Y+Rc)		19.3	17.6	16.8	15.7	19.8	15.6	18.8					
Change Period (Y+Rc),		* 6.8	5.9	6.8	5.9	6.8	5.9	6.8					
Max Green Setting (Gm		* 13	12.1	10.0	10.0	12.5	10.1	12.0					
Max Q Clear Time (g_c	, .	12.6	11.8	8.6	5.5	13.3	9.1	12.1					
Green Ext Time (p_c), s	0.0	0.0	0.0	0.3	0.1	0.0	0.0	0.0					
Intersection Summary													
HCM 7th Control Delay,	, s/veh		38.7										
HCM 7th LOS			D										
Notes													
* HCM 7th computation	al engi	ne requ	ires equ	ual clea	rance ti	mes for	r the ph	ases cr	ossing	the barr	ier.		

	۶	→	•	•	←	4	1	†	<i>></i>	\	+	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	↑	7	ሻ	₽		ሻ	₽		ሻ	₽	
Traffic Volume (veh/h)	164	442	165	108	507	44	160	46	83	78	29	135
Future Volume (veh/h)	164	442	165	108	507	44	160	46	83	78	29	135
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856
Adj Flow Rate, veh/h	178	480	179	117	551	48	174	50	90	85	32	147
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	3	3	3	3	3	3	3	3	3	3	3	3
Cap, veh/h	216	715	606	169	604	53	210	104	187	154	41	190
Arrive On Green	0.12	0.39	0.39	0.10	0.36	0.36	0.12	0.17	0.17	0.09	0.14	0.14
Sat Flow, veh/h	1767	1856	1572	1767	1683	147	1767	594	1069	1767	289	1328
Grp Volume(v), veh/h	178	480	179	117	0	599	174	0	140	85	0	179
Grp Sat Flow(s),veh/h/ln	1767	1856	1572	1767	0	1829	1767	0	1663	1767	0	1617
Q Serve(g_s), s	7.3	15.9	5.8	4.7	0.0	23.1	7.1	0.0	5.6	3.4	0.0	7.9
Cycle Q Clear(g_c), s	7.3	15.9	5.8	4.7	0.0	23.1	7.1	0.0	5.6	3.4	0.0	7.9
Prop In Lane	1.00		1.00	1.00		0.08	1.00	_	0.64	1.00	_	0.82
Lane Grp Cap(c), veh/h	216	715	606	169	0	657	210	0	291	154	0	231
V/C Ratio(X)	0.82	0.67	0.30	0.69	0.00	0.91	0.83	0.00	0.48	0.55	0.00	0.77
Avail Cap(c_a), veh/h	234	792	671	186	0	731	210	0	535	186	0	498
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	31.7	18.9	15.8	32.4	0.0	22.6	31.9	0.0	27.5	32.4	0.0	30.6
Incr Delay (d2), s/veh	19.4	1.9	0.3	9.3	0.0	14.8	23.3	0.0	1.2	3.1	0.0	5.4
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	4.0	6.3	1.9	2.3	0.0	11.3	4.1	0.0	2.1	1.5	0.0	3.2
Unsig. Movement Delay, s/veh		00.0	40.0	44.7	0.0	07.5	FF 4	0.0	00.7	25.5	0.0	20.0
LnGrp Delay(d), s/veh	51.1	20.8	16.0	41.7	0.0	37.5	55.1	0.0	28.7	35.5	0.0	36.0
LnGrp LOS	D	<u>C</u>	В	D	740	D	Е	04.4	С	D	004	D
Approach Vol, veh/h		837			716			314			264	
Approach Delay, s/veh		26.2			38.1			43.4			35.8	
Approach LOS		С			D			D			D	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	10.6	18.3	11.3	33.8	13.0	15.9	13.3	31.9				
Change Period (Y+Rc), s	4.2	5.3	4.2	5.3	4.2	5.3	4.2	5.3				
Max Green Setting (Gmax), s	7.8	23.8	7.8	31.6	8.8	22.8	9.8	29.6				
Max Q Clear Time (g_c+l1), s	5.4	7.6	6.7	17.9	9.1	9.9	9.3	25.1				
Green Ext Time (p_c), s	0.0	0.5	0.0	2.8	0.0	0.7	0.0	1.5				
Intersection Summary												
HCM 7th Control Delay, s/veh			34.0									
HCM 7th LOS			С									

Intersection					
Intersection Delay, s/ve	eh27.1				
Intersection LOS	D				

Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	¥		ĵ.		¥	7
Traffic Vol, veh/h	266	341	326	109	130	313
Future Vol, veh/h	266	341	326	109	130	313
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, %	3	3	3	3	3	3
Mvmt Flow	289	371	354	118	141	340
Number of Lanes	1	1	1	0	1	1

Approach	EB	WB	SB
Opposing Approach	WB	EB	
Opposing Lanes	1	2	0
Conflicting Approach L	eft SB		WB
Conflicting Lanes Left	2	0	1
Conflicting Approach F	Right	SB	EB
Conflicting Lanes Righ	it 0	2	2
HCM Control Delay, sa	ve23.6	40	19.1
HCM LOS	С	Е	С

Lane	EBLn1	EBLn2\	WBLn1	SBLn1	SBLn2
Vol Left, %	100%	0%	0%	100%	0%
Vol Thru, %	0%	100%	75%	0%	0%
Vol Right, %	0%	0%	25%	0%	100%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	266	341	435	130	313
LT Vol	266	0	0	130	0
Through Vol	0	341	326	0	0
RT Vol	0	0	109	0	313
Lane Flow Rate	289	371	473	141	340
Geometry Grp	5	5	3b	5	5
Degree of Util (X)	0.6	0.716	0.873	0.315	0.641
Departure Headway (Hd)	7.468	6.956	6.645	8.019	6.788
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Cap	480	515	544	447	527
Service Time	5.266	4.753	4.724	5.805	4.572
HCM Lane V/C Ratio	0.602	0.72	0.869	0.315	0.645
HCM Control Delay, s/veh	21	25.6	40	14.5	21
HCM Lane LOS	С	D	Ε	В	С
HCM 95th-tile Q	3.9	5.7	9.7	1.3	4.5

e Configurations	,	<u>*</u>	→	•	F	√	+	•	▼	1	<i>></i>	\		4
file Volume (veh/h) 38 104 303 4 47 76 66 198 162 14 108 287 61 per Volume (veh/h) 38 104 303 4 47 76 66 198 162 14 108 287 61 are Volume (veh/h) 38 104 303 4 47 76 66 198 162 14 108 287 61 are Volume (veh/h) 38 104 303 4 47 76 66 198 162 14 108 287 61 are Volume (veh/h) 38 104 303 4 47 76 66 198 162 14 108 287 61 are Volume (veh/h) 38 104 303 4 47 76 66 198 162 14 108 287 61 are Volume (veh/h) 38 104 303 4 47 76 66 198 162 14 108 287 61 are Volume (veh/h) 38 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Movement E	BL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
file Volume (veh/h) 38 104 303 4 47 76 66 198 162 14 108 287 61 per Volume (veh/h) 38 104 303 4 47 76 66 198 162 14 108 287 61 are Volume (veh/h) 38 104 303 4 47 76 66 198 162 14 108 287 61 are Volume (veh/h) 38 104 303 4 47 76 66 198 162 14 108 287 61 are Volume (veh/h) 38 104 303 4 47 76 66 198 162 14 108 287 61 are Volume (veh/h) 38 104 303 4 47 76 66 198 162 14 108 287 61 are Volume (veh/h) 38 104 303 4 47 76 66 198 162 14 108 287 61 are Volume (veh/h) 38 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ane Configurations	*	≜ 1.			3	14		*	A	#	*	T ₄	
izer Volume (veh/h) 38 104 303 4 47 76 66 198 162 14 108 287 61 al Q (Qb), veh 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				303	4			66						61
al Q (Qb), veh														
e Width Adj:	, ,				•									
Labelie Adj(A pbT)														
king Bus, Adj 1.00 No No <t< td=""><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	•													
R. Zöne On Ápproach No No No No Sat Flow, yeh/h/ln 1811	2		1.00				1.00			1.00			1.00	
Sat Flow, veh/h/h 1811 1811 1811 1811 1811 1811 1811	· ,													
Flow Rate, veh/h ## Hour Factor ## Hour Fact		311		1811		1811		1811	1811		1811	1811		1811
k Hour Factor														
Sent Heavy Veh, % 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	•													
Nehrh														
Veroin Green 0.06 0.28 0.28 0.07 0.28 0.28 0.12 0.33 0.33 0.09 0.30	•													
Flow, veh/h 1725 1721 1499 1725 881 771 1725 1811 1502 1725 1436 305 Volume(v), veh/h 44 121 352 55 0 165 230 188 16 126 0 405 Sat Flow(s), veh/h/h1725 1721 1499 1725 0 1651 1725 1811 1502 1725 0 1742 1496 1725 0 1651 1725 1811 1502 1725 0 1742 1810 1810 1725 0 1725 1811 1502 1725 0 1742 1810 1810 1725 0 1725 1811 1502 1725 0 1742 1810 1810 1810 1725 0 1725 1811 1502 1725 0 1742 1810 1810 1810 1725 0 1725 1811 1502 1725 0 1742 1810 1810 1810 1725 0 1725 1811 1502 1725 0 1742 1810 1810 1810 1810 1810 1810 1810 181	1.7													
Volume(v), veh/h 44 121 352 55 0 165 230 188 16 126 0 405 Sat Flow(s), veh/h/ln1725 1721 1499 1725 0 1651 1725 1811 1502 1725 0 1742 erve(g.s), s														
Sat Flow(s),veh/h/ln1725	<u> </u>													
erve(g_s), s														
le Q Clear(g_c), s 2.0 4.4 17.8 2.5 0.0 6.4 9.8 6.2 0.6 5.7 0.0 17.1 oln Lane 1.00 1.00 1.00 1.00 0.47 1.00 1.00 1.00 1.00 0.18 e Grp Cap(c), veh/h 105 475 413 119 0 469 211 591 490 158 0 514 Ratio(X) 0.42 0.25 0.85 0.46 0.00 0.35 1.09 0.32 0.03 0.80 0.00 0.79 il Cap(c_a), veh/h 168 538 468 168 0 516 211 666 552 190 0 618 M Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0														
p In Lane	(O— /·													
e Grp Cap(c), veh/h 105	(O—)·		4.4				0.0			0.2			0.0	
Ratio(X)			175				Λ			501			٥	
il Cap(c_a), veh/h 168 538 468 168 0 516 211 666 552 190 0 618 M Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0														
M Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	\ /													
tream Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	1 \ - /-													
form Delay (d), s/veh 36.2														
Delay (d2), s/veh 2.7 0.3 12.8 2.8 0.0 0.5 87.5 0.3 0.0 17.8 0.0 5.6 al Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	\ /													
al Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	,													
BackOfQ(50%),veh/ln0.9 1.7 7.2 1.1 0.0 2.3 9.0 2.4 0.2 3.0 0.0 7.2 ig. Movement Delay, s/veh imp Delay(d), s/veh 38.9 22.8 40.2 38.6 0.0 23.2 122.6 20.6 18.4 53.4 0.0 31.5 imp LOS D C D D C F C B D C creach Vol, veh/ln 517 220 434 531 creach Delay, s/veh 36.0 27.1 74.5 36.7 creach LOS D C E D C E D C C E D C C C C C C C C C														
ig. Movement Delay, s/veh size Delay(d), s/veh 38.9 22.8 40.2 38.6 0.0 23.2 122.6 20.6 18.4 53.4 0.0 31.5 size LOS D C D D C F C B D C roach Vol, veh/h 517 220 434 531 roach Delay, s/veh 36.0 27.1 74.5 36.7 roach LOS D C E D er - Assigned Phs 1 2 3 4 5 6 7 8 Duration (G+Y+Rc), \$1.5 31.4 9.7 27.4 14.0 28.9 9.1 28.0 size Green Setting (Gmax\$, \$2.94 7.8 25.0 9.8 28.4 7.8 25.0 size Q Clear Time (g_c+I17), \$2.0 8.2 4.5 19.8 11.8 19.1 4.0 8.4 en Ext Time (p_c), s 0.0 0.9 0.0 1.3 0.0 1.5 0.0 0.7 resection Summary M 7th Control Delay, s/veh M 7th LOS D	• ()													
sirp Delay(d), s/veh 38.9 22.8 40.2 38.6 0.0 23.2 122.6 20.6 18.4 53.4 0.0 31.5 inp LOS D C D D C F C B D C croach Vol, veh/h 517 220 434 531			1.7	1.2		1.1	0.0	2.3	9.0	2.4	0.2	3.0	0.0	1.2
sirp LOS D C D D C F C B D C groach Vol, veh/h 517 220 434 531 36.7 36.7 36.7 74.5 36.7 36.7 36.7 74.5 36.7 74.5 36.7 7 74.5 36.7 7 74.5 36.7 7 74.5 36.7 7 8 9 74.5 36.7 7 8 9 74.5 36.7 7 8 9 74.5 36.7 7 8 9 74.5 36.7 8 9 74.5 36.7 8 9 74.5 36.7 8 9 74.5 36.7 8 9 74.5 36.7 8 9 74.2 8 9 74.2 8 9 9 74.2 8 9 9 74.2 8 9 9 74.2 8 9 9 74.2 8 9 9 9			22.0	40.0		20.6	0.0	22.2	122.6	20.6	10 /	E2 4	0.0	24 5
roach Vol, veh/h 517 220 434 531 roach Delay, s/veh 36.0 27.1 74.5 36.7 roach LOS D C E D er - Assigned Phs 1 2 3 4 5 6 7 8 Duration (G+Y+Rc), \$1.5 31.4 9.7 27.4 14.0 28.9 9.1 28.0 rage Period (Y+Rc), s 4.2 5.3 4.2 5.3 4.2 5.3 4.2 5.3 c Green Setting (Gmax\$, \$29.4 7.8 25.0 9.8 28.4 7.8 25.0 c Q Clear Time (g_c+17), \$2.2 4.5 19.8 11.8 19.1 4.0 8.4 ren Ext Time (p_c), s 0.0 0.9 0.0 1.3 0.0 1.5 0.0 0.7 rsection Summary M 7th Control Delay, s/veh M 7th LOS D							0.0						0.0	
roach Delay, s/veh 36.0 27.1 74.5 36.7 roach LOS D C E D er - Assigned Phs 1 2 3 4 5 6 7 8 Duration (G+Y+Rc), \$1.5 31.4 9.7 27.4 14.0 28.9 9.1 28.0 roge Period (Y+Rc), s 4.2 5.3 4.	•	U		U		U	000	U	Г		В	U	F04	U
Troach LOS D C E D er - Assigned Phs 1 2 3 4 5 6 7 8 Duration (G+Y+Rc), \$1.5 31.4 9.7 27.4 14.0 28.9 9.1 28.0 Inge Period (Y+Rc), s 4.2 5.3 4.2 5.3 4.2 5.3 Green Setting (Gmax 8, 8 29.4 7.8 25.0 9.8 28.4 7.8 25.0 It Q Clear Time (g_c+I17), 8 8.2 4.5 19.8 11.8 19.1 4.0 8.4 en Ext Time (p_c), s 0.0 0.9 0.0 1.3 0.0 1.5 0.0 0.7 resection Summary M 7th Control Delay, s/veh M 7th LOS D														
Per - Assigned Phs 1 2 3 4 5 6 7 8 Duration (G+Y+Rc), \$1.5 31.4 9.7 27.4 14.0 28.9 9.1 28.0 Inge Period (Y+Rc), \$ 4.2 5.3 4.2 5.3 4.2 5.3 Green Setting (Gmax 8.8 29.4 7.8 25.0 9.8 28.4 7.8 25.0 It Q Clear Time (g_c+17), \$ 8.2 4.5 19.8 11.8 19.1 4.0 8.4 Iten Ext Time (p_c), \$ 0.0 0.9 0.0 1.3 0.0 1.5 0.0 0.7 Insection Summary M 7th Control Delay, s/veh M 7th LOS D														
Duration (G+Y+Rc), \$1.5 31.4 9.7 27.4 14.0 28.9 9.1 28.0 ringe Period (Y+Rc), \$ 4.2 5.3 4.2 5.	oroach LOS		D				C			E			ט	
Inge Period (Y+Rc), s 4.2 5.3	ner - Assigned Phs	1						7						
c Green Setting (Gmax), 8 29.4 7.8 25.0 9.8 28.4 7.8 25.0 c Q Clear Time (g_c+I7), 7s 8.2 4.5 19.8 11.8 19.1 4.0 8.4 en Ext Time (p_c), s 0.0 0.9 0.0 1.3 0.0 1.5 0.0 0.7 rsection Summary M 7th Control Delay, s/veh 44.9 M 7th LOS D	` , ,		31.4	9.7	27.4	14.0	28.9	9.1	28.0					
x Q Clear Time (g_c+l17), 7s 8.2 4.5 19.8 11.8 19.1 4.0 8.4 en Ext Time (p_c), s 0.0 0.9 0.0 1.3 0.0 1.5 0.0 0.7 rsection Summary M 7th Control Delay, s/veh 44.9 M 7th LOS D	nange Period (Y+Rc), s	4.2	5.3	4.2	5.3	4.2	5.3	4.2	5.3					
en Ext Time (p_c), s 0.0 0.9 0.0 1.3 0.0 1.5 0.0 0.7 rsection Summary M 7th Control Delay, s/veh 44.9 M 7th LOS D	ax Green Setting (Gmax	Ø,. 8	29.4	7.8	25.0	9.8	28.4	7.8	25.0					
en Ext Time (p_c), s 0.0 0.9 0.0 1.3 0.0 1.5 0.0 0.7 rsection Summary M 7th Control Delay, s/veh 44.9 M 7th LOS D	x Q Clear Time (g_c+l1	17,7s	8.2	4.5	19.8	11.8	19.1	4.0	8.4					
M 7th Control Delay, s/veh 44.9 M 7th LOS D			0.9	0.0				0.0						
M 7th Control Delay, s/veh 44.9 M 7th LOS D	ersection Summary													
M 7th LOS D		veh		44.9										
	CM 7th LOS													
	otes													
		-Turn	ing mo	vemen										

	۶	→	•	•	←	4	1	†	<i>></i>	\	+	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7		7	ሻ	₽		ሻ	₽		ሻ	₽.	
Traffic Volume (veh/h)	95	467	205	134	402	57	187	47	108	128	77	189
Future Volume (veh/h)	95	467	205	134	402	57	187	47	108	128	77	189
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856
Adj Flow Rate, veh/h	103	508	223	146	437	62	231	51	117	139	84	205
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.81	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	3	3	3	3	3	3	3	3	3	3	3	3
Cap, veh/h	155	565	479	173	500	71	270	130	299	175	99	241
Arrive On Green	0.09	0.30	0.30	0.10	0.31	0.31	0.15	0.26	0.26	0.10	0.21	0.21
Sat Flow, veh/h	1767	1856	1572	1767	1589	226	1767	501	1148	1767	478	1167
Grp Volume(v), veh/h	103	508	223	146	0	499	231	0	168	139	0	289
Grp Sat Flow(s),veh/h/ln	1767	1856	1572	1767	0	1815	1767	0	1649	1767	0	1645
Q Serve(g_s), s	4.5	20.9	9.2	6.5	0.0	20.7	10.2	0.0	6.7	6.1	0.0	13.5
Cycle Q Clear(g_c), s	4.5	20.9	9.2	6.5	0.0	20.7	10.2	0.0	6.7	6.1	0.0	13.5
Prop In Lane	1.00		1.00	1.00		0.12	1.00		0.70	1.00		0.71
Lane Grp Cap(c), veh/h	155	565	479	173	0	571	270	0	430	175	0	340
V/C Ratio(X)	0.66	0.90	0.47	0.84	0.00	0.87	0.85	0.00	0.39	0.80	0.00	0.85
Avail Cap(c_a), veh/h	173	621	527	173	0	608	284	0	490	284	0	489
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	35.2	26.6	22.5	35.4	0.0	25.8	32.9	0.0	24.3	35.1	0.0	30.5
Incr Delay (d2), s/veh	8.0	15.2	0.7	30.0	0.0	12.9	21.0	0.0	0.6	8.0	0.0	9.5
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	2.2	10.7	3.2	4.1	0.0	10.0	5.5	0.0	2.4	2.9	0.0	5.8
Unsig. Movement Delay, s/veh			<u> </u>									
LnGrp Delay(d), s/veh	43.2	41.8	23.2	65.3	0.0	38.7	53.9	0.0	24.8	43.1	0.0	40.0
LnGrp LOS	D	D	С	E		D	D		С	D		D
Approach Vol, veh/h		834			645			399			428	_
Approach Delay, s/veh		37.0			44.7			41.7			41.0	
Approach LOS		D			D			D			D	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	12.1	26.1	12.0	29.6	16.4	21.8	11.2	30.4				
Change Period (Y+Rc), s	4.2	5.3	4.2	5.3	4.2	5.3	4.2	5.3				
Max Green Setting (Gmax), s	12.8	23.7	7.8	26.7	12.8	23.7	7.8	26.7				
Max Q Clear Time (g_c+l1), s	8.1	8.7	8.5	22.9	12.0	15.5	6.5	22.7				
Green Ext Time (p_c), s	0.1	0.6	0.0	1.4	0.0	1.0	0.0	1.1				
	U. I	0.0	0.0	1.4	0.0	1.0	0.0	1.1				
Intersection Summary			10 =									
HCM 7th Control Delay, s/veh			40.7									
HCM 7th LOS			D									

Intersection		
Intersection De	elay, s/veh27.3	
Intersection LC	DS D	

Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	, N	1	ĵ.		ħ	7
Traffic Vol, veh/h	345	356	339	114	65	252
Future Vol, veh/h	345	356	339	114	65	252
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, %	4	4	4	4	4	4
Mvmt Flow	375	387	368	124	71	274
Number of Lanes	1	1	1	0	1	1

Approach	EB	WB	SB
Opposing Approach	WB	EB	
Opposing Lanes	1	2	0
Conflicting Approach L	eft SB		WB
Conflicting Lanes Left	2	0	1
Conflicting Approach F	Right	SB	EB
Conflicting Lanes Righ	t 0	2	2
HCM Control Delay, s/	ve25.4	38	16.1
HCM LOS	D	E	С

Lane	EBLn1	EBLn2V	VBLn1	SBLn1	SBLn2	2
Vol Left, %	100%	0%	0%	100%	0%	ó
Vol Thru, %	0%	100%	75%	0%	0%	0
Vol Right, %	0%	0%	25%	0%	100%	ó
Sign Control	Stop	Stop	Stop	Stop	Stop	þ
Traffic Vol by Lane	345	356	453	65	252	2
LT Vol	345	0	0	65	0)
Through Vol	0	356	339	0	0)
RT Vol	0	0	114	0	252	2
Lane Flow Rate	375	387	492	71	274	4
Geometry Grp	5	5	3b	5	5	5
Degree of Util (X)	0.736	0.704	0.869	0.159	0.524	1
Departure Headway (Hd)	7.063	6.553	6.351	8.12	6.888	3
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	S
Cap	510	549	571	440	520)
Service Time	4.84	4.329	4.412	5.892	4.659	9
HCM Lane V/C Ratio	0.735	0.705	0.862	0.161	0.527	7
HCM Control Delay, s/veh	27.2	23.6	38	12.4	17.1	1
HCM Lane LOS	D	С	Е	В	С)
HCM 95th-tile Q	6.1	5.6	9.7	0.6	3	3

	۶	→	•	•	←	•	•	†	/	/	ļ	✓	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	*	ħβ		ă	1>			†	7		ĵ.		
Traffic Volume (veh/h)	57	64	164	33	91	59	235	151	25	38	180	32	
Future Volume (veh/h)	57	64	164	33	91	59	235	151	25	38	180	32	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approac		No	1.00	1.00	No	1.00	1.00	No	1.00	1.00	No	1.00	
Adj Sat Flow, veh/h/ln	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	
Adj Flow Rate, veh/h	60	67	173	35	96	62	247	159	26	40	189	34	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	
	0.95		0.95	0.95	0.95	0.95	0.95	0.95		0.95	0.95	0.95	
Percent Heavy Veh, %		3							3				
Cap, veh/h	158	337	301	107	171	110	303	527	447	119	275	49	
Arrive On Green	0.09	0.19	0.19	0.06	0.16	0.16	0.17	0.28	0.28	0.07	0.18	0.18	
Sat Flow, veh/h	1767	1763	1572	1767	1053	680	1767	1856	1572	1767	1531	275	
Grp Volume(v), veh/h	60	67	173	35	0	158	247	159	26	40	0	223	
Grp Sat Flow(s), veh/h/l		1763	1572	1767	0	1733	1767	1856	1572	1767	0	1806	
Q Serve(g_s), s	1.5	1.5	4.8	0.9	0.0	4.0	6.4	3.2	0.6	1.0	0.0	5.5	
Cycle Q Clear(g_c), s	1.5	1.5	4.8	0.9	0.0	4.0	6.4	3.2	0.6	1.0	0.0	5.5	
Prop In Lane	1.00		1.00	1.00		0.39	1.00		1.00	1.00		0.15	
Lane Grp Cap(c), veh/h	า 158	337	301	107	0	281	303	527	447	119	0	324	
V/C Ratio(X)	0.38	0.20	0.58	0.33	0.00	0.56	0.81	0.30	0.06	0.34	0.00	0.69	
Avail Cap(c_a), veh/h	288	920	821	288	0	905	362	1178	998	288	0	1071	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	
Uniform Delay (d), s/ve	h 20.5	16.3	17.6	21.6	0.0	18.5	19.1	13.4	12.5	21.3	0.0	18.4	
Incr Delay (d2), s/veh	1.5	0.3	1.7	1.8	0.0	1.8	11.5	0.3	0.1	1.7	0.0	2.6	
Initial Q Delay(d3), s/ve	h 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),ve		0.5	1.5	0.4	0.0	1.5	3.1	1.1	0.2	0.4	0.0	2.1	
Unsig. Movement Delay										***			
LnGrp Delay(d), s/veh	22.0	16.6	19.3	23.3	0.0	20.2	30.6	13.7	12.5	23.0	0.0	21.0	
LnGrp LOS	C	В	В	C	3.0	C	C	В	В	C	3.0	C C	
Approach Vol, veh/h		300			193			432			263		
Approach Delay, s/veh		19.3			20.8			23.3			21.3		
Approach LOS		19.3 B			20.6 C			23.3 C			21.3 C		
		D											
Timer - Assigned Phs	1	2	3	4	5	6	7	8					
Phs Duration (G+Y+Rc		18.9	7.1	14.5	12.4	13.9	8.5	13.1					
Change Period (Y+Rc),		5.3	4.2	5.3	4.2	5.3	4.2	5.3					
Max Green Setting (Gn	nax) ,.8	30.4	7.8	25.0	9.8	28.4	7.8	25.0					
Max Q Clear Time (g_c		5.2	2.9	6.8	8.4	7.5	3.5	6.0					
Green Ext Time (p_c),	, .	8.0	0.0	1.2	0.1	1.1	0.0	0.7					
Intersection Summary													
HCM 7th Control Delay	s/veh		21.4										
HCM 7th LOS	, 3/ 1011		21.4 C										
HOW 7 th LOS			U										

Intersection: 1: Private Driveway/SR 99 SB Ramps & Almond Avenue

Movement	EB	EB	EB	WB	WB	WB	NB	NB	NB	SB	SB	SB
Directions Served	L	T	R	L	T	R	L	T	R	L	Т	R
Maximum Queue (ft)	345	842	137	68	211	199	84	26	23	90	64	85
Average Queue (ft)	276	334	26	21	100	54	42	6	3	65	24	48
95th Queue (ft)	386	794	81	53	176	111	73	21	16	99	53	79
Link Distance (ft)		1361			725			437		79	79	79
Upstream Blk Time (%)										6	0	1
Queuing Penalty (veh)										11	0	2
Storage Bay Dist (ft)	225		80	120		120	75		75			
Storage Blk Time (%)	54	3	0		10	1	1					
Queuing Penalty (veh)	122	15	0		17	1	0					

Intersection: 2: Tozer Avenue & Avenue 13.5

Movement	EB	WB	NB	SB
Directions Served	LTR	LTR	L	L
Maximum Queue (ft)	73	55	27	52
Average Queue (ft)	37	35	3	13
95th Queue (ft)	65	50	16	41
Link Distance (ft)	1240	1264		
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)			150	150
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 3: Tozer Avenue & Knox Street

Movement	EB	EB	NB
Directions Served	L	R	LT
Maximum Queue (ft)	19	52	74
Average Queue (ft)	2	21	25
95th Queue (ft)	11	40	64
Link Distance (ft)	1823	1823	116
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 4: Tozer Avenue & B Avenue

Movement	SE	SW
Directions Served	L	LR
Maximum Queue (ft)	28	73
Average Queue (ft)	1	34
95th Queue (ft)	9	65
Link Distance (ft)		215
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)	285	
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 5: Tozer Avenue & C Avenue

Movement	SB
Directions Served	R
Maximum Queue (ft)	31
Average Queue (ft)	1
95th Queue (ft)	10
Link Distance (ft)	213
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Intersection: 6: Road 28.25/Golden State Boulevard & Avenue 13

Movement	EB	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	L	Т	R	L	TR	L	TR	L	TR	
Maximum Queue (ft)	201	390	370	222	378	185	212	119	134	
Average Queue (ft)	104	174	43	88	229	87	61	54	68	
95th Queue (ft)	172	282	146	178	325	152	138	102	111	
Link Distance (ft)		1102			1582		436		2836	
Upstream Blk Time (%)										
Queuing Penalty (veh)										
Storage Bay Dist (ft)	250		250	250		250		250		
Storage Blk Time (%)		2			7					
Queuing Penalty (veh)		5			7					

Intersection: 7: Avenue 13 & Tozer Avenue

Movement	EB	EB	WB	SB	SB
Directions Served	L	T	TR	L	R
Maximum Queue (ft)	184	144	409	71	156
Average Queue (ft)	87	87	165	40	64
95th Queue (ft)	152	134	327	64	106
Link Distance (ft)		1582	3486	178	178
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (ft)	250				
Storage Blk Time (%)					
Queuing Penalty (veh)					

Intersection: 8: Avenue 29 & Avenue 13

Movement	EB	EB	EB	WB	WB	NB	NB	NB	SB	SB	
Directions Served	L	Т	TR	UL	TR	L	Т	R	L	TR	
Maximum Queue (ft)	74	112	261	86	84	174	701	68	174	395	
Average Queue (ft)	24	55	106	33	41	132	219	7	101	194	
95th Queue (ft)	55	100	179	66	79	203	564	32	183	364	
Link Distance (ft)		237	237		914		4336			1337	
Upstream Blk Time (%)			0								
Queuing Penalty (veh)			1								
Storage Bay Dist (ft)	100			275		100		100	100		
Storage Blk Time (%)		1				39	12		9	28	
Queuing Penalty (veh)		0				69	25		32	30	

Intersection: 9: SR 99 NB Off-Ramp & Avenue 12 & SR 99 NB On-Ramp

Movement	EB	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	NB
Directions Served	L	L	Т	Т	Т	Т	T	T	R	<	<	R
Maximum Queue (ft)	99	86	100	119	70	66	72	65	64	216	252	108
Average Queue (ft)	32	36	41	29	20	18	14	7	14	113	148	44
95th Queue (ft)	76	74	79	71	55	46	48	34	46	220	248	87
Link Distance (ft)			1743	1743	1743	1487	1487	1487			1105	
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)	425	425							950	150		150
Storage Blk Time (%)										3	9	
Queuing Penalty (veh)										15	39	

Intersection: 9: SR 99 NB Off-Ramp & Avenue 12 & SR 99 NB On-Ramp

Movement	NB
Directions Served	R
Maximum Queue (ft)	50
Average Queue (ft)	20
95th Queue (ft)	42
Link Distance (ft)	
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	150
Storage Blk Time (%)	
Queuing Penalty (veh)	

Intersection: 10: Private Drwy/Road 29 & Avenue 12

Movement	EB	EB	EB	EB	EB	WB	WB	WB	WB	WB	NB	NB
Directions Served	L	L	T	Т	TR	L	T	T	T	R	L	TR
Maximum Queue (ft)	141	154	196	150	115	150	100	135	200	75	197	116
Average Queue (ft)	62	27	99	70	44	63	57	68	110	37	86	63
95th Queue (ft)	114	91	162	141	97	123	92	110	171	64	150	111
Link Distance (ft)			1487	1487	1487		1430	1430	1430			625
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)	575	575				300				600	250	
Storage Blk Time (%)												
Queuing Penalty (veh)												

Intersection: 10: Private Drwy/Road 29 & Avenue 12

Movement	SB	SB	SB
Directions Served	L	T	R
Maximum Queue (ft)	266	131	117
Average Queue (ft)	141	61	37
95th Queue (ft)	228	117	79
Link Distance (ft)		817	
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)	460		460
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 25: SR 99 SB Ramps/SR 99 SB Off-Ramp & SR 99 SB On-Ramp

Movement	SB	SB
Directions Served	T	T
Maximum Queue (ft)	67	79
Average Queue (ft)	9	5
95th Queue (ft)	40	31
Link Distance (ft)	59	59
Upstream Blk Time (%)	0	0
Queuing Penalty (veh)	0	0
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Network Summary

Network wide Queuing Penalty: 391

Intersection: 1: Private Driveway/SR 99 SB Ramps & Almond Avenue

Movement	EB	EB	EB	WB	WB	WB	NB	NB	NB	SB	SB	SB
Directions Served	L	Т	R	L	T	R	L	T	R	L	Т	R
Maximum Queue (ft)	344	391	44	30	177	111	120	130	23	107	62	87
Average Queue (ft)	203	72	10	6	77	45	57	19	4	79	7	56
95th Queue (ft)	315	217	28	24	137	87	103	60	17	103	31	84
Link Distance (ft)		1361			725			437		79	79	79
Upstream Blk Time (%)										19	0	1
Queuing Penalty (veh)										18	0	1
Storage Bay Dist (ft)	225		80	120		120	75		75			
Storage Blk Time (%)	9	2			4	0	9					
Queuing Penalty (veh)	18	9			5	0	3					

Intersection: 2: Tozer Avenue & Avenue 13.5

Movement	EB	WB	NB	SB
Directions Served	LTR	LTR	L	L
Maximum Queue (ft)	55	101	28	46
Average Queue (ft)	24	39	3	17
95th Queue (ft)	51	74	16	41
Link Distance (ft)	1240	1264		
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)			150	150
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 3: Tozer Avenue & Knox Street

Movement	EB	EB	NB
Directions Served	L	R	LT
Maximum Queue (ft)	18	20	97
Average Queue (ft)	2	12	20
95th Queue (ft)	12	22	60
Link Distance (ft)	1823	1823	105
Upstream Blk Time (%)			0
Queuing Penalty (veh)			0
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 4: Tozer Avenue & B Avenue

Movement	SE	SW
Directions Served	L	LR
Maximum Queue (ft)	27	96
Average Queue (ft)	4	30
95th Queue (ft)	20	65
Link Distance (ft)		194
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)	285	
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 5: Tozer Avenue & C Avenue

Movement	SB
Directions Served	R
Maximum Queue (ft)	30
Average Queue (ft)	3
95th Queue (ft)	18
Link Distance (ft)	214
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Intersection: 6: Road 28.25/Golden State Boulevard & Avenue 13

Movement	EB	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	L	Т	R	L	TR	L	TR	L	TR	
Maximum Queue (ft)	154	414	370	205	384	227	199	138	272	
Average Queue (ft)	76	201	63	94	205	117	81	75	114	
95th Queue (ft)	128	340	163	176	318	192	155	116	201	
Link Distance (ft)		1102			1584		436		2836	
Upstream Blk Time (%)										
Queuing Penalty (veh)										
Storage Bay Dist (ft)	250		250	250		250		250		
Storage Blk Time (%)		5			5				0	
Queuing Penalty (veh)		15			7				0	

Intersection: 7: Avenue 13 & Tozer Avenue

Movement	EB	EB	WB	SB	SB
Directions Served	L	Т	TR	L	R
Maximum Queue (ft)	150	124	318	74	118
Average Queue (ft)	93	70	128	31	56
95th Queue (ft)	153	103	236	57	92
Link Distance (ft)		1584	3485	184	184
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (ft)	250				
Storage Blk Time (%)					
Queuing Penalty (veh)					

Intersection: 8: Avenue 29 & Avenue 13

Movement	EB	EB	EB	WB	WB	NB	NB	NB	SB	SB	
Directions Served	L	Т	TR	UL	TR	L	Т	R	L	TR	
Maximum Queue (ft)	73	75	96	86	129	174	371	68	94	116	
Average Queue (ft)	35	30	47	24	54	119	110	17	29	75	
95th Queue (ft)	67	68	80	56	114	186	251	47	62	112	
Link Distance (ft)		237	237		914		4336			1337	
Upstream Blk Time (%)											
Queuing Penalty (veh)											
Storage Bay Dist (ft)	100			275		100		100	100		
Storage Blk Time (%)						26	4		0	2	
Queuing Penalty (veh)						45	9		1	1	

Intersection: 9: SR 99 NB Off-Ramp & Avenue 12 & SR 99 NB On-Ramp

Movement	EB	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	NB
Directions Served	L	L	Т	Т	Т	T	T	Т	R	<	<	R
Maximum Queue (ft)	92	85	124	110	100	133	80	79	67	179	214	102
Average Queue (ft)	30	32	46	43	15	38	29	11	11	87	117	40
95th Queue (ft)	71	70	93	90	52	90	71	45	38	155	179	76
Link Distance (ft)			1743	1743	1743	1487	1487	1487			1105	
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)	425	425							950	150		150
Storage Blk Time (%)										0	3	
Queuing Penalty (veh)										0	14	

Intersection: 9: SR 99 NB Off-Ramp & Avenue 12 & SR 99 NB On-Ramp

Movement	NB
Directions Served	R
Maximum Queue (ft)	51
Average Queue (ft)	22
95th Queue (ft)	47
Link Distance (ft)	
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	150
Storage Blk Time (%)	
Queuing Penalty (veh)	

Intersection: 10: Avenue 12 & Road 29

Movement	EB	EB	EB	EB	EB	WB	WB	WB	WB	WB	NB	NB
Directions Served	L	L	T	Т	TR	L	Т	T	T	R	L	TR
Maximum Queue (ft)	112	117	189	194	87	107	100	141	223	144	201	202
Average Queue (ft)	63	27	107	76	36	48	50	60	85	56	117	101
95th Queue (ft)	113	82	175	150	76	91	81	109	165	95	184	172
Link Distance (ft)			1487	1487	1487		1430	1430	1430			609
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)	575	575				300				600	250	
Storage Blk Time (%)												
Queuing Penalty (veh)												

Intersection: 10: Avenue 12 & Road 29

Movement	SB	SB	SB
Directions Served	L	T	R
Maximum Queue (ft)	157	114	93
Average Queue (ft)	88	47	43
95th Queue (ft)	144	95	78
Link Distance (ft)		817	
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)	460		460
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 25: SR 99 SB Ramps/SR 99 SB Off-Ramp & SR 99 SB On-Ramp

Movement	SB	SB
Directions Served	T	T
Maximum Queue (ft)	99	66
Average Queue (ft)	28	3
95th Queue (ft)	78	25
Link Distance (ft)	59	59
Upstream Blk Time (%)	4	0
Queuing Penalty (veh)	0	0
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Network Summary

Network wide Queuing Penalty: 145

Appendix J: Cumulative Year 2046 plus Project Traffic Conditions

	۶	→	•	•	←	•	•	†	/	>	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		^	7	ሻ	^	7	7	^	7	ች	^	7
Traffic Volume (veh/h)	411	129	99	18	173	162	52	5	6	149	51	302
Future Volume (veh/h)	411	129	99	18	173	162	52	5	6	149	51	302
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856
Adj Flow Rate, veh/h	447	140	108	20	188	176	57	5	7	162	55	328
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	3	3	3	3	3	3	3	3	3	3	3	3
Cap, veh/h	479	662	561	70	232	197	135	385	326	197	446	378
Arrive On Green	0.27	0.36	0.36	0.04	0.13	0.13	0.08	0.21	0.21	0.11	0.24	0.24
Sat Flow, veh/h	1767	1856	1572	1767	1856	1572	1767	1856	1572	1767	1856	1572
Grp Volume(v), veh/h	447	140	108	20	188	176	57	5	7	162	55	328
Grp Sat Flow(s),veh/h/ln	1767	1856	1572	1767	1856	1572	1767	1856	1572	1767	1856	1572
Q Serve(g_s), s	22.1	4.7	4.2	1.0	8.8	9.9	2.8	0.2	0.3	8.0	2.1	17.9
Cycle Q Clear(g_c), s	22.1	4.7	4.2	1.0	8.8	9.9	2.8	0.2	0.3	8.0	2.1	17.9
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	479	662	561	70	232	197	135	385	326	197	446	378
V/C Ratio(X)	0.93	0.21	0.19	0.29	0.81	0.89	0.42	0.01	0.02	0.82	0.12	0.87
Avail Cap(c_a), veh/h	515	662	561	178	232	197	178	408	346	346	581	492
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	31.8	20.0	19.9	41.8	38.1	38.6	39.5	28.2	28.2	38.9	26.6	32.6
Incr Delay (d2), s/veh	22.6	0.3	0.3	0.8	20.4	37.6	8.0	0.0	0.0	3.3	0.2	14.8
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	11.7	1.9	1.6	0.4	5.1	5.8	1.2	0.1	0.1	3.5	0.9	8.3
Unsig. Movement Delay, s/veh												
LnGrp Delay(d), s/veh	54.4	20.3	20.2	42.6	58.5	76.2	40.2	28.2	28.2	42.2	26.8	47.4
LnGrp LOS	D	С	С	D	E	E	D	С	С	D	С	D
Approach Vol, veh/h		695			384			69			545	
Approach Delay, s/veh		42.2			65.8			38.2			43.8	
Approach LOS		D			Е			D			D	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	9.4	38.7	12.7	28.6	30.2	18.0	15.7	25.7				
Change Period (Y+Rc), s	5.9	6.8	5.9	* 7.1	5.9	6.8	5.7	* 7.1				
Max Green Setting (Gmax), s	9.0	28.3	9.0	* 28	26.1	11.2	17.5	* 20				
Max Q Clear Time (g_c+I1), s	3.0	6.7	4.8	19.9	24.1	11.9	10.0	2.3				
Green Ext Time (p_c), s	0.0	1.8	0.0	1.6	0.2	0.0	0.1	0.0				
Intersection Summary												
HCM 7th Control Delay, s/veh			47.9									
HCM 7th LOS			D									
Notes												

* HCM 7th computational engine requires equal clearance times for the phases crossing the barrier.

Intersection												
Int Delay, s/veh	4											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		Į.	f)		Ť	↑ Ъ	
Traffic Vol, veh/h	10	33	49	8	12	51	19	290	6	80	300	11
Future Vol, veh/h	10	33	49	8	12	51	19	290	6	80	300	11
Conflicting Peds, #/hr	1	0	3	3	0	1	17	0	0	0	0	17
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	_	-	None	-	-	None	-	-	None	-	-	None
Storage Length	_	-	-	-	-	-	150	-	-	150	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	4	4	4	4	4	4	4	4	4	4	4	4
Mvmt Flow	11	36	53	9	13	55	21	315	7	87	326	12
Major/Minor	Minor2			Minor1			Major1		1	Major2		
Conflicting Flow All	887	886	189	718	889	319	355	0	0	322	0	0
Stage 1	523	523	-	360	360	-	-	-	-	-	-	-
Stage 2	364	363	-	358	529	-	-	-	-	-	-	-
Critical Hdwy	7.36	6.56	6.96	7.36	6.56	6.26	4.16	-	-	4.16	-	-
Critical Hdwy Stg 1	6.56	5.56	-	6.16	5.56	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.16	5.56	-	6.56	5.56	-	-	-	-	-	-	-
Follow-up Hdwy	3.538	4.038	3.338	3.538	4.038	3.338	2.238	-	-	2.238	-	-
Pot Cap-1 Maneuver	249	280	816	327	279	715	1189	-	-	1224	-	-
Stage 1	502	525	-	653	622	-	-	-	-	-	-	-
Stage 2	649	620	-	629	522	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	196	251	800	241	250	714	1170	-	-	1224	-	-
Mov Cap-2 Maneuver	196	251	-	241	250	-	-	-	-	-	-	-
Stage 1	459	480	-	641	611	-	-	-	-	-	-	-
Stage 2	575	609	-	503	477	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Ctrl Dly, s/v	17.93			14.26			0.49			1.67		
HCM LOS	С			В								
Minor Lane/Major Mvm	nt	NBL	NBT	NBR	EBLn1V	VBL n1	SBL	SBT	SBR			
Capacity (veh/h)		1170	-		378	466	1224	-	_			
HCM Lane V/C Ratio		0.018	_	_	0.265			_	_			
HCM Ctrl Dly (s/v)		8.1	_	_	17.9	14.3	8.2	-	-			
HCM Lane LOS		A	_	_	C	В	A	_	_			
HCM 95th %tile Q(veh)	0.1	-	-	1	0.6	0.2	-	-			
200 2200 7000 24 7000	,					- 5.5						

Intersection							
Int Delay, s/veh	2.1						
Movement	EBL	EBR	NBL	NBT	SBU	SBT	SBF
Lane Configurations	CDL Š	EDK	NDL	<u> </u>	טפט		אמט
Traffic Vol, veh/h	<u>ግ</u>	105	74	304	2	↑ ↑	4
Future Vol, veh/h	4	105	74	304	2	336	4
		0	1	0	0	0	1
Conflicting Peds, #/hr		-		Free	Free	Free	Free
Sign Control RT Channelized	Stop	Stop	Free				
	-			None	-	-	None
Storage Length	0 # 0	0	-	-	-	-	-
Veh in Median Storag	-	-	-	0	-	0	-
Grade, %	0	-	-	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92
Heavy Vehicles, %	3	3	3	3	3	3	3
Mvmt Flow	4	114	80	330	2	365	4
Major/Minor	Minor2		Major1		Major2		
Conflicting Flow All	865	186	371	0	-	_	0
Stage 1	373	-	-	-	-	-	-
Stage 2	492	_	_	_	_	_	_
Critical Hdwy	6.645		4 145	_	_		_
Critical Hdwy Stg 1	5.845	0.070	T. 17J	_	_	_	_
Critical Hdwy Stg 2	5.445	-	_		-		
Follow-up Hdwy	3.5285		2 2285	<u>-</u>	_	_	
Pot Cap-1 Maneuver	307	3.3263 <i>1</i> 823	1180	-	-	_	-
•	665		1100	-	-	-	-
Stage 1		-	-	-	-	-	
Stage 2	611	-	-	-	-	-	-
Platoon blocked, %	000	000	4470	-		-	-
Mov Cap-1 Maneuver		822	1179	-	-	-	-
Mov Cap-2 Maneuver		-	-	-	-	-	-
Stage 1	609	-	-	-	-	-	-
Stage 2	610	-	-	-	-	-	-
Approach	EB		NB		SB		
HCM Ctrl Dly, s/v	10.38		1.62				
HCM LOS	В		1.02				
TIOW LOO							
Minor Lane/Major Mvr	nt	NBL	NBT	EBLn1		SBT	SBR
Capacity (veh/h)		352	-	_00	822	-	-
HCM Lane V/C Ratio		0.068	-	0.016		-	-
HCM Ctrl Dly (s/v)		8.3	0	18	10.1	-	-
HCM Lane LOS		Α	Α	С	В	-	-
HCM 95th %tile Q(veh	1)	0.2	-	0	0.5	-	-

Intersection						
Int Delay, s/veh	1					
Movement	SEL	SET	NWT	NWR	SWL	SWR
Lane Configurations	ኘ	^	↑ ⊅		W	<u> </u>
Traffic Vol, veh/h	3	438	365	10	48	13
Future Vol, veh/h	3	438	365	10	48	13
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized						
	205	None	-	None	-	None
Storage Length	285	-	-	-	0	-
Veh in Median Storage		0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	3	3	3	3	3	3
Mvmt Flow	3	476	397	11	52	14
Majar/Minar	14-:1		Maia#0		Ain and	
	Major1		Major2		Minor2	00.4
Conflicting Flow All	408	0	-	0	647	204
Stage 1	-	-	-	-	402	-
Stage 2	-	-	-	-	245	<u>-</u>
Critical Hdwy	4.16	-	-	-	6.86	6.96
Critical Hdwy Stg 1	-	-	-	-	5.86	-
Critical Hdwy Stg 2	-	-	-	-	5.86	-
Follow-up Hdwy	2.23	-	-	-	3.53	3.33
Pot Cap-1 Maneuver	1141	-	-	-	402	800
Stage 1	_	_	-	-	641	-
Stage 2	_	-	_	-	770	_
Platoon blocked, %		_	-	_	770	
Mov Cap-1 Maneuver	1141			-	400	800
•		_	_		400	
Mov Cap-2 Maneuver	-	-	-	-		-
Stage 1	-	-	-	-	639	-
Stage 2	-	-	-	-	770	-
Approach	SE		NW		SW	
HCM Ctrl Dly, s/v	0.06		0		14.42	
	0.00		U		14.42 B	
HCM LOS					В	
				SEL	SETS	SWLn1
Minor Lane/Major Mvm	nt	NWT	NWR	OLL		
Minor Lane/Major Mvm	nt	NWT -	NWR -			448
Capacity (veh/h)	nt	-	-	1141	-	
Capacity (veh/h) HCM Lane V/C Ratio	nt	-	-	1141 0.003	-	0.148
Capacity (veh/h) HCM Lane V/C Ratio HCM Ctrl Dly (s/v)	it	- - -	- - -	1141 0.003 8.2	- - -	0.148 14.4
Capacity (veh/h) HCM Lane V/C Ratio		-	-	1141 0.003	-	0.148

Intersection						
Int Delay, s/veh	0.1					
	EBL	EBT	WBT	WPD	SBL	SBR
Movement				WBR	SBL	SBK
Lane Configurations	<u> </u>	^	↑ ↑	10	٥	
Traffic Vol, veh/h	1	485	371	12	0	4
Future Vol, veh/h	1	485	371	12	0	4
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None		None	-	
Storage Length	285	-	-	-	-	0
Veh in Median Storage	,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	3	3	3	3	3	3
Mvmt Flow	1	527	403	13	0	4
Major/Minor N	Major1	N	Major2	N	/linor2	
Conflicting Flow All	416	0	- viajoiz	0	-	208
			-			200
Stage 1	-	-	-	-	-	-
Stage 2	- 4.40	-	-	-	-	-
Critical Hdwy	4.16	-	-	-	-	6.96
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	2.23	-	-	-	-	3.33
Pot Cap-1 Maneuver	1132	-	-	-	0	795
Stage 1	-	-	-	-	0	-
Stage 2	-	-	-	-	0	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1132	-	-	-	-	795
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
0- =						
Annroach	EB		WB		SB	
Approach						
HCM Ctrl Dly, s/v	0.02		0		9.55	
HCM LOS					Α	
Minor Lane/Major Mvm	ıt	EBL	EBT	WBT	WBR S	SBLn1
Capacity (veh/h)		1132	_	-	-	
HCM Lane V/C Ratio		0.001	_	-		0.005
HCM Ctrl Dly (s/v)		8.2	_		-	9.6
HCM Lane LOS		Α	_	-	_	Α.
HCM 95th %tile Q(veh)		0	_		_	0
HOW SOUT MUTE Q(VEIT)		U	•	•	_	U

Intersection												
	2814.8											
IIIL Delay, 5/Vell												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	164	465	206	108	516	54	181	50	83	78	29	135
Future Vol, veh/h	164	465	206	108	516	54	181	50	83	78	29	135
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	э,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	3	3	3	3	3	3	3	3	3	3	3	3
Mvmt Flow	178	505	224	117	561	59	197	54	90	85	32	147
Major/Minor	Major1			Major2			Minor1			Minor2		
	Major1	^		Major2	^			1000			1011	500
Conflicting Flow All	620	0	0	729	0	0	1785	1828	617	1714	1911	590
Stage 1	-	-	-	-	-	-	974 811	974	-	825 889	825 1086	-
Stage 2	4.42	-	-	1.12	-	-		854	6 00		6.53	6.00
Critical Hdwy	4.13	-	-	4.13	-	-	7.13	6.53 5.53	6.23	7.13 6.13	5.53	6.23
Critical Hdwy Stg 1	-	-	-	-	-	-	6.13	5.53	-	6.13	5.53	-
Critical Hdwy Stg 2	2 227	-	-	2.227	-	-	6.13		2 227	3.527		2 227
Follow-up Hdwy	2.227	-	-		-	-	3.527		3.327		4.027	3.327
Pot Cap-1 Maneuver	956	-	-	870	-	-	~ 63	76	488	~ 71	386	506
Stage 1	-	-	-	-	-	-	302	329	-	365		-
Stage 2	-	-	-	-	-	-	372	374	-	336	291	-
Platoon blocked, %	056	-	-	070	-	-	, 5	11	100		26	EOG
Mov Cap-1 Maneuver	956	-	-	870	-	-	~ 5	~ 41	488	-	36	506
Mov Cap-2 Maneuver	-	-	-	-	-	-	~ 5	~ 41	-	200	36	-
Stage 1	-	-	-	-	-	-	203	221	-	289	305	-
Stage 2	-	-	-	-	-	-	~ 187	296	-	139	196	-
Approach	EB			WB			NB			SB		
HCM Ctrl Dly, s/v	1.89			1.56		\$ 18	538.91					
HCM LOS							F			-		
Minor Lanc/Major Myn	ot N	IDI n1	EDI	EDT	EDD	\\/DI	\\/DT	WPD	CDI n1			
Minor Lane/Major Mvn	it l	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR :	ODLIII			
Capacity (veh/h)		8	333	-	-	281	-	-	-			
HCM Ct-I Div (a/a)			0.186	-	-	0.135	-	-	-			
HCM Ctrl Dly (s/v)	\$ 18	3538.9	9.6	0	-	9.8	0	-	-			
HCM Lane LOS		F	A	Α	-	A	Α	-	-			
HCM 95th %tile Q(veh)	44.5	0.7	-	-	0.5	-	-	-			
Notes												
~: Volume exceeds ca	pacity	\$: De	elay exc	eeds 3	00s							
+: Computation Not De					n plato	on						

Intersection						
Int Delay, s/veh	177.8					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		सी	₽		W	
Traffic Vol, veh/h	266	363	341	122	141	347
Future Vol, veh/h	266	363	341	122	141	347
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	
Storage Length	-	-	-	-	0	-
Veh in Median Storage	e,# -	0	0	-	0	-
Grade, %	_	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	3	3	3	3	3	3
Mvmt Flow	289	395	371	133	153	377
IVIVIIIL I IOVV	200	000	011	100	100	011
Major/Minor	Major1	N	Major2	1	Minor2	
Conflicting Flow All	503	0	-	0	1410	437
Stage 1	-	_	-	-	437	-
Stage 2	-	-	-	-	973	-
Critical Hdwy	4.13	-	-	-	6.43	6.23
Critical Hdwy Stg 1	-	_	_	_	5.43	-
Critical Hdwy Stg 2	_	_	-	-	5.43	_
Follow-up Hdwy	2.227	_	_	_	3.527	3 327
Pot Cap-1 Maneuver	1056				~ 152	617
Stage 1	1000	_			649	-
Stage 2	-	_	_		365	_
Platoon blocked, %	-	-	-	-	303	-
	4050	-	-	-	00	C47
Mov Cap-1 Maneuver	1056	-	-	-	~ 99	617
Mov Cap-2 Maneuver	-	-	-	-	~ 99	-
Stage 1	-	-	-	-	421	-
Stage 2	-	-	-	-	365	-
Approach	EB		WB		SB	
	4.1			Ф.	570.28	
HCM Ctrl Dly, s/v	4.1		0	φ:		
HCM LOS					F	
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR	SBLn1
Capacity (veh/h)		761			-	245
HCM Lane V/C Ratio		0.274	_	_		2.166
		9.7	0			570.3
HCM Ctrl Dly (s/v) HCM Lane LOS				-	-⊅	
	\	A	Α	-	-	F
HCM 95th %tile Q(veh)	1.1	-	-	-	40.6
Notes						
~: Volume exceeds car	pacity	\$ De	elav exc	ceeds 30	00s	
+: Computation Not De				olume i		on
T. Computation NOt De	illieu	. All	шај∪г \	olulle l	ii piato	UII

Intersection			
Intersection Delay, s/veh	78.2		
Intersection LOS	F		

Intersection LOS	F											
Movement	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT
Lane Configurations	¥	∱ 1≽			ă	fa fa		7	^	7	, M	1
Traffic Vol, veh/h	43	104	336	4	70	76	66	219	190	27	108	333
Future Vol, veh/h	43	104	336	4	70	76	66	219	190	27	108	333
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Heavy Vehicles, %	6	6	6	6	6	6	6	6	6	6	6	6
Mvmt Flow	50	121	391	5	81	88	77	255	221	31	126	387
Number of Lanes	1	2	0	0	1	1	0	1	1	1	1	1
Approach	EB			WB				NB			SB	
Opposing Approach	WB			EB				SB			NB	
Opposing Lanes	2			3				2			3	
Conflicting Approach Left	SB			NB				EB			WB	
Conflicting Lanes Left	2			3				3			2	
Conflicting Approach Right	NB			SB				WB			EB	
Conflicting Lanes Right	3			2				2			3	
HCM Control Delay, s/veh	90.1			22.6				34.1			128.9	
HCM LOS	F			С				D			F	

Lane	NBLn1	NBLn2	NBLn3	EBLn1	EBLn2	EBLn3	WBLn1	WBLn2	SBLn1	SBLn2	
Vol Left, %	100%	0%	0%	100%	0%	0%	100%	0%	100%	0%	
Vol Thru, %	0%	100%	0%	0%	100%	9%	0%	54%	0%	85%	
Vol Right, %	0%	0%	100%	0%	0%	91%	0%	46%	0%	15%	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	219	190	27	43	69	371	74	142	108	394	
LT Vol	219	0	0	43	0	0	74	0	108	0	
Through Vol	0	190	0	0	69	35	0	76	0	333	
RT Vol	0	0	27	0	0	336	0	66	0	61	
Lane Flow Rate	255	221	31	50	81	431	86	165	126	458	
Geometry Grp	6	6	6	6	6	6	6	6	6	6	
Degree of Util (X)	0.743	0.614	0.081	0.145	0.222	1.112	0.271	0.482	0.36	1.238	
Departure Headway (Hd)	11.349	10.826	10.092	11.101	10.579	9.917	12.213	11.346	10.817	10.187	
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Cap	321	336	357	325	342	371	296	320	335	362	
Service Time	9.049	8.526	7.792	8.801	8.279	7.617	9.913	9.046	8.517	7.887	
HCM Lane V/C Ratio	0.794	0.658	0.087	0.154	0.237	1.162	0.291	0.516	0.376	1.265	
HCM Control Delay, s/veh	40.7	29.3	13.7	15.7	16.3	112.6	19.4	24.2	19.5	158.9	
HCM Lane LOS	Е	D	В	С	С	F	С	С	С	F	
HCM 95th-tile Q	5.6	3.8	0.3	0.5	0.8	15.1	1.1	2.5	1.6	19.1	

JI	J	u	C	u	rs	ı	Щ	Ш

Intersection Delay, s/veh Intersection LOS

Movement	SBR
Lane Configurations	
Traffic Vol, veh/h	61
Future Vol, veh/h	61
Peak Hour Factor	0.86
Heavy Vehicles, %	6
Mvmt Flow	71
Number of Lanes	0

Approach

Opposing Approach
Opposing Lanes
Conflicting Approach Left
Conflicting Lanes Left
Conflicting Approach Right
Conflicting Lanes Right
HCM Control Delay, s/veh

HCM LOS

Movement EBL EBT EBR WBL WBT WBR NBL NBL NBR SEL SER	3	\rightarrow	•	1	-	~_	1	ሻ	_	/	•
Traffic Volume (veh/h) 131 881 0 0 493 599 460 0 255 0 0 Future Volume (veh/h) 131 881 0 0 0 493 599 460 0 255 0 0 Initial Q (Qb), veh 0 0 0 0 0 0 0 0 0 0 0 0 Lane Width Adj. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.	Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL2	NBL	NBR	SEL	SER
Traffic Volume (veh/h) 131 881 0 0 493 599 460 0 255 0 0 Future Volume (veh/h) 131 881 0 0 493 599 460 0 255 0 0 Initial Q (Qb), veh 0 0 0 0 0 0 0 0 0 0 0 0 Lane Width Adj. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.	Lane Configurations 77	ተተተ			ተተተ	7	ሻሻ		77		
Initial Q (Qb), veh			0	0		599	460	0	255	0	0
Lane Width Adj. 1.00 1.0	Future Volume (veh/h) 131	881	0	0	493	599	460	0	255	0	0
Ped-Bike Adj(Á_pbT) 1.00	nitial Q (Qb), veh 0	0	0	0	0	0	0	0	0		
Parking Bus, Adj	ane Width Adj. 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
Not Not	Ped-Bike Adj(A_pbT) 1.00		1.00	1.00		1.00	1.00	1.00	1.00		
Adj Sat Flow, veh/h/ln	Parking Bus, Adj 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
Adj Flow Rate, veh/h 142 958 0 0 536 651 500 500 277 Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92	Nork Zone On Approach	No			No			No			
Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92	Adj Sat Flow, veh/h/ln 1737	1737	0	0	1737	1737	1737	1737	1737		
Percent Heavy Veh, % 11 11 0 0 0 11 11 11 11 11 11 11 22ap, veh/h 212 3055 0 0 2481 770 690 690 557 Arrive On Green 0.07 0.64 0.00 0.00 0.17 0.17 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21	Adj Flow Rate, veh/h 142	958	0	0	536	651	500	500	277		
Cap, veh/h	Peak Hour Factor 0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92		
Arrive On Green 0.07 0.64 0.00 0.00 0.17 0.17 0.21 0.21 0.21 Sat Flow, veh/h 3209 4898 0 0 4898 1472 3209 3209 2591 3209 3209 2591 3209 3209 2591 3209 3209 2591 3209 3209 2591 3209 3209 2591 3209 3209 2591 3209 3209 2591 3209 3209 2591 3209 3209 2591 3209 3209 2591 3209 3209 3209 2591 3209 3209 3209 2591 3209 3209 3209 2591 3209 3209 3209 3209 3209 3209 3209 3209	Percent Heavy Veh, % 11	11	0	0	11	11	11	11	11		
Sat Flow, veh/h 3209 4898 0 0 4898 1472 3209 3209 2591 Grp Volume(v), veh/h 142 958 0 0 536 651 500 500 277 Grp Sat Flow(s),veh/h/ln1605 1581 0 0 1581 1472 1605 1605 1295 Q Serve(g_s), s 5.2 10.8 0.0 0.0 11.7 51.4 17.4 17.4 11.3 Cycle Q Clear(g_c), s 5.2 10.8 0.0 0.0 11.7 51.4 17.4 17.4 11.3 Cycle Q Clear(g_c), s 5.2 10.8 0.0 0.0 11.7 51.4 17.4 17.4 11.3 Cycle Q Clear(g_c), s 5.2 10.8 0.0 0.0 0.0 11.7 51.4 17.4 17.4 11.3 Cycle Q Clear(g_c), s 5.2 10.8 0.0 0.0 0.0 0.0 1.00 1.00 1.00 1.0	Cap, veh/h 212	3055	0	0	2481	770	690	690	557		
Grp Volume(v), veh/h 142 958 0 0 536 651 500 500 277 Grp Sat Flow(s),veh/h/ln1605 1581 0 0 1581 1472 1605 1605 1295 Q Serve(g_s), s 5.2 10.8 0.0 0.0 11.7 51.4 17.4 17.4 11.3 Cycle Q Clear(g_c), s 5.2 10.8 0.0 0.0 11.7 51.4 17.4 17.4 11.3 Prop In Lane 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.0	Arrive On Green 0.07	0.64	0.00	0.00	0.17	0.17	0.21	0.21	0.21		
Grp Sat Flow(s),veh/h/ln1605	Sat Flow, veh/h 3209	4898	0	0	4898	1472	3209	3209	2591		
Q Serve(g_s), s 5.2 10.8 0.0 0.0 11.7 51.4 17.4 17.4 11.3 Cycle Q Clear(g_c), s 5.2 10.8 0.0 0.0 11.7 51.4 17.4 17.4 11.3 Cycle Q Clear(g_c), s 5.2 10.8 0.0 0.0 11.7 51.4 17.4 17.4 11.3 Cycle Q Clear(g_c), s 5.2 10.8 0.0 0.0 11.7 51.4 17.4 17.4 11.3 Cycle Q Clear(g_c), s 5.2 10.8 0.0 0.0 11.7 51.4 17.4 17.4 11.3 Cycle Q Clear(g_c), s 5.2 10.8 0.0 0.0 11.7 51.4 17.4 17.4 11.3 Cycle Q Clear(g_c), s 5.2 10.8 0.0 0.0 11.7 51.4 17.4 17.4 11.3 Cycle Q Clear(g_c), s 5.2 10.8 0.0 0.0 0.0 1.00 1.00 1.00 1.00 Cycle Q Clear(g_c), s 5.2 10.8 0.0 0.0 0.0 0.0 0.0 690 690 557 Cycle Q Clear(g_c), s 6.5 0.0 0.0 0.0 0.0 0.2 0.5 0 Cycle Q Clear(g_c), s 6.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Grp Volume(v), veh/h 142	958	0	0	536	651	500	500	277		
Q Serve(g_s), s 5.2 10.8 0.0 0.0 11.7 51.4 17.4 17.4 11.3 Cycle Q Clear(g_c), s 5.2 10.8 0.0 0.0 11.7 51.4 17.4 17.4 11.3 Prop In Lane 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.0	Grp Sat Flow(s), veh/h/ln1605	1581	0	0	1581	1472	1605	1605	1295		
Prop In Lane 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.0		10.8	0.0	0.0	11.7	51.4	17.4	17.4	11.3		
Lane Grp Cap(c), veh/h 212 3055 0 0 2481 770 690 690 557 V/C Ratio(X) 0.67 0.31 0.00 0.00 0.22 0.85 0.72 0.72 0.50 Avail Cap(c_a), veh/h 305 3055 0 0 2481 770 776 776 626 HCM Platoon Ratio 1.00 1.00 1.00 1.00 0.33 0.33 1.00 1.00	Cycle Q Clear(g_c), s 5.2	10.8	0.0	0.0	11.7	51.4	17.4	17.4	11.3		
V/C Ratio(X) 0.67 0.31 0.00 0.00 0.22 0.85 0.72 0.72 0.50 Avail Cap(c_a), veh/h 305 3055 0 0 2481 770 776 776 626 HCM Platoon Ratio 1.00 1.00 1.00 0.33 0.33 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 0.00 0.00 0.80 0.80 1.00 1.00 1.00 Uniform Delay (d), s/veh 54.8 9.5 0.0 0.0 28.5 44.9 43.8 43.8 41.4 Incr Delay (d2), s/veh 2.7 0.3 0.0 0.0 0.2 9.1 6.5 6.5 3.2 Initial Q Delay(d3), s/veh 0.0	Prop In Lane 1.00		0.00	0.00		1.00	1.00	1.00	1.00		
Avail Cap(c_a), veh/h 305 3055 0 0 2481 770 776 776 626 HCM Platoon Ratio 1.00 1.00 1.00 1.00 0.33 0.33 1.00 1.00	Lane Grp Cap(c), veh/h 212	3055	0	0	2481	770	690	690	557		
HCM Platoon Ratio 1.00 1.00 1.00 1.00 0.33 0.33 1.00 1.00	V/C Ratio(X) 0.67	0.31	0.00	0.00	0.22	0.85	0.72	0.72	0.50		
Upstream Filter(I) 1.00 1.00 0.00 0.00 0.80 0.80 1.00 1.00	Avail Cap(c_a), veh/h 305	3055	0	0	2481	770	776	776	626		
Uniform Delay (d), s/veh 54.8 9.5 0.0 0.0 28.5 44.9 43.8 43.8 41.4 Incr Delay (d2), s/veh 2.7 0.3 0.0 0.0 0.2 9.1 6.5 6.5 3.2 Initial Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	HCM Platoon Ratio 1.00	1.00	1.00	1.00	0.33	0.33	1.00	1.00	1.00		
Incr Delay (d2), s/veh 2.7 0.3 0.0 0.0 0.2 9.1 6.5 6.5 3.2 Initial Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Upstream Filter(I) 1.00	1.00	0.00	0.00	0.80	0.80	1.00	1.00	1.00		
Initial Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Uniform Delay (d), s/veh 54.8	9.5	0.0	0.0	28.5	44.9	43.8	43.8	41.4		
%ile BackOfQ(50%),veh/lr2.1 3.4 0.0 0.0 4.8 22.1 7.3 7.3 3.7 Unsig. Movement Delay, s/veh LnGrp Delay(d), s/veh 57.5 9.8 0.0 0.0 28.7 54.0 50.3 50.3 44.6 LnGrp LOS E A C D D D D Approach Vol, veh/h 1100 1187 777 777 Approach Delay, s/veh 15.9 42.6 48.3 48.3 Approach LOS B D D D Timer - Assigned Phs 2 5 6 8 Phs Duration (G+Y+Rc), s 85.2 14.5 70.7 34.8 Change Period (Y+Rc), s 7.9 *6.6 7.9 9.0 Max Green Setting (Gmax), s 74.1 *11 56.1 29.0 Max Q Clear Time (g_c+l1), s 12.8 7.2 53.4 19.4 Green Ext Time (p_c), s 27.7 0.1 2.2 6.4 Intersection Summary HCM 7th Control Delay, s/veh	Incr Delay (d2), s/veh 2.7	0.3	0.0	0.0	0.2	9.1	6.5	6.5	3.2		
Unsig. Movement Delay, s/veh LnGrp Delay(d), s/veh 57.5 9.8 0.0 0.0 28.7 54.0 50.3 50.3 44.6 LnGrp LOS E A C D D D D Approach Vol, veh/h 1100 1187 777 777 Approach Delay, s/veh 15.9 42.6 48.3 48.3 Approach LOS B D D D Timer - Assigned Phs 2 5 6 8 Phs Duration (G+Y+Rc), s 85.2 14.5 70.7 34.8 Change Period (Y+Rc), s 7.9 *6.6 7.9 9.0 Max Green Setting (Gmax), s 74.1 *11 56.1 29.0 Max Q Clear Time (g_c+I1), s 12.8 7.2 53.4 19.4 Green Ext Time (p_c), s 27.7 0.1 2.2 6.4 Intersection Summary HCM 7th Control Delay, s/veh 34.4	Initial Q Delay(d3), s/veh 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
LnGrp Delay(d), s/veh 57.5 9.8 0.0 0.0 28.7 54.0 50.3 50.3 44.6 LnGrp LOS E A C D D D D Approach Vol, veh/h 1100 1187 777 777 Approach Delay, s/veh 15.9 42.6 48.3 48.3 Approach LOS B D D D Timer - Assigned Phs 2 5 6 8 Phs Duration (G+Y+Rc), s 85.2 14.5 70.7 34.8 Change Period (Y+Rc), s 7.9 * 6.6 7.9 9.0 Max Green Setting (Gmax), s 74.1 * 11 56.1 29.0 Max Q Clear Time (g_c+I1), s 12.8 7.2 53.4 19.4 Green Ext Time (p_c), s 27.7 0.1 2.2 6.4 Intersection Summary HCM 7th Control Delay, s/veh 34.4	%ile BackOfQ(50%),veh/lr2.1	3.4	0.0	0.0	4.8	22.1	7.3	7.3	3.7		
LnGrp LOS E A C D D D Approach Vol, veh/h 1100 1187 777 777 Approach Delay, s/veh 15.9 42.6 48.3 48.3 Approach LOS B D D D Timer - Assigned Phs 2 5 6 8 Phs Duration (G+Y+Rc), s 85.2 14.5 70.7 34.8 Change Period (Y+Rc), s 7.9 *6.6 7.9 9.0 Max Green Setting (Gmax), s 74.1 *11 56.1 29.0 Max Q Clear Time (g_c+l1), s 12.8 7.2 53.4 19.4 Green Ext Time (p_c), s 27.7 0.1 2.2 6.4 Intersection Summary HCM 7th Control Delay, s/veh 34.4	Unsig. Movement Delay, s/vel	1									
Approach Vol, veh/h 1100 1187 777 777 Approach Delay, s/veh 15.9 42.6 48.3 48.3 Approach LOS B D D D Timer - Assigned Phs 2 5 6 8 Phs Duration (G+Y+Rc), s 85.2 14.5 70.7 34.8 Change Period (Y+Rc), s 7.9 *6.6 7.9 9.0 Max Green Setting (Gmax), s 74.1 *11 56.1 29.0 Max Q Clear Time (g_c+l1), s 12.8 7.2 53.4 19.4 Green Ext Time (p_c), s 27.7 0.1 2.2 6.4 Intersection Summary HCM 7th Control Delay, s/veh 34.4		9.8	0.0	0.0	28.7	54.0	50.3		44.6		
Approach Delay, s/veh 15.9 42.6 48.3 48.3 Approach LOS B D D D Timer - Assigned Phs 2 5 6 8 Phs Duration (G+Y+Rc), s 85.2 14.5 70.7 34.8 Change Period (Y+Rc), s 7.9 *6.6 7.9 9.0 Max Green Setting (Gmax), s 74.1 *11 56.1 29.0 Max Q Clear Time (g_c+I1), s 12.8 7.2 53.4 19.4 Green Ext Time (p_c), s 27.7 0.1 2.2 6.4 Intersection Summary HCM 7th Control Delay, s/veh 34.4	LnGrp LOS E	A			С	D	D	D	D		
Approach LOS B D D D Timer - Assigned Phs 2 5 6 8 Phs Duration (G+Y+Rc), s 85.2 14.5 70.7 34.8 Change Period (Y+Rc), s 7.9 *6.6 7.9 9.0 Max Green Setting (Gmax), s 74.1 *11 56.1 29.0 Max Q Clear Time (g_c+I1), s 12.8 7.2 53.4 19.4 Green Ext Time (p_c), s 27.7 0.1 2.2 6.4 Intersection Summary HCM 7th Control Delay, s/veh 34.4	Approach Vol, veh/h	1100			1187		777	777			
Timer - Assigned Phs 2 5 6 8 Phs Duration (G+Y+Rc), s 85.2 14.5 70.7 34.8 Change Period (Y+Rc), s 7.9 * 6.6 7.9 9.0 Max Green Setting (Gmax), s 74.1 * 11 56.1 29.0 Max Q Clear Time (g_c+I1), s 12.8 7.2 53.4 19.4 Green Ext Time (p_c), s 27.7 0.1 2.2 6.4 Intersection Summary HCM 7th Control Delay, s/veh 34.4	Approach Delay, s/veh	15.9			42.6		48.3	48.3			
Phs Duration (G+Y+Rc), s 85.2 14.5 70.7 34.8 Change Period (Y+Rc), s 7.9 *6.6 7.9 9.0 Max Green Setting (Gmax), s 74.1 *11 56.1 29.0 Max Q Clear Time (g_c+l1), s 12.8 7.2 53.4 19.4 Green Ext Time (p_c), s 27.7 0.1 2.2 6.4 Intersection Summary HCM 7th Control Delay, s/veh 34.4	Approach LOS	В			D		D	D			
Change Period (Y+Rc), s 7.9 * 6.6 7.9 9.0 Max Green Setting (Gmax), s 74.1 * 11 56.1 29.0 Max Q Clear Time (g_c+l1), s 12.8 7.2 53.4 19.4 Green Ext Time (p_c), s 27.7 0.1 2.2 6.4 Intersection Summary HCM 7th Control Delay, s/veh 34.4	· · · · · · · · · · · · · · · · · · ·				5						
Max Green Setting (Gmax), s 74.1 * 11 56.1 29.0 Max Q Clear Time (g_c+l1), s 12.8 7.2 53.4 19.4 Green Ext Time (p_c), s 27.7 0.1 2.2 6.4 Intersection Summary HCM 7th Control Delay, s/veh 34.4	Phs Duration (G+Y+Rc), s	85.2			14.5	70.7		34.8			
Max Q Clear Time (g_c+l1), s 12.8 7.2 53.4 19.4 Green Ext Time (p_c), s 27.7 0.1 2.2 6.4 Intersection Summary HCM 7th Control Delay, s/veh 34.4		7.9			* 6.6	7.9		9.0			
Green Ext Time (p_c), s 27.7 0.1 2.2 6.4 Intersection Summary HCM 7th Control Delay, s/veh 34.4	Max Green Setting (Gmax), s	74.1			* 11			29.0			
Intersection Summary HCM 7th Control Delay, s/veh 34.4	Max Q Clear Time (g_c+I1), s	12.8			7.2	53.4		19.4			
HCM 7th Control Delay, s/veh 34.4	Green Ext Time (p_c), s	27.7			0.1	2.2		6.4			
	·										
HCM 7th LOS C											
			С								
Notes	Notes										

* HCM 7th computational engine requires equal clearance times for the phases crossing the barrier.

	ၨ	→	•	•	←	•	•	†	/	/	ļ	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ተ ተጉ		*	ተተተ	7		4				7
Traffic Volume (veh/h)	145	888	438	219	846	154	265	131	133	223	218	128
Future Volume (veh/h)	145	888	438	219	846	154	265	131	133	223	218	128
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approac		No			No			No			No	
Adj Sat Flow, veh/h/ln	1811	1811	1811	1811	1811	1811	1811	1811	1811	1811	1811	1811
Adj Flow Rate, veh/h	158	965	476	238	920	167	288	142	145	242	237	139
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	6	6	6	6	6	6	6	6	6	6	6	6
Cap, veh/h	277	1796	836	256	3017	937	306	142	145	263	255	343
Arrive On Green	0.03	0.18	0.18	0.15	0.61	0.61	0.18	0.17	0.17	0.15	0.14	0.14
Sat Flow, veh/h	3346	3296	1535	1725	4944	1535	1725	821	839	1725	1811	1535
Grp Volume(v), veh/h	158	965	476	238	920	167	288	0	287	242	237	139
Grp Sat Flow(s), veh/h/lr		1648	1535	1725	1648	1535	1725	0	1660	1725	1811	1535
Q Serve(g_s), s	5.6	31.9	34.0	16.4	10.7	5.7	19.8	0.0	20.7	16.6	15.5	8.0
Cycle Q Clear(g_c), s	5.6	31.9	34.0	16.4	10.7	5.7	19.8	0.0	20.7	16.6	15.5	8.0
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.51	1.00		1.00
Lane Grp Cap(c), veh/h		1796	836	256	3017	937	306	0	288	263	255	343
V/C Ratio(X)	0.57	0.54	0.57	0.93	0.30	0.18	0.94	0.00	1.00	0.92	0.93	0.40
Avail Cap(c_a), veh/h	298	1796	836	256	3017	937	306	0	288	263	255	343
HCM Platoon Ratio	0.33	0.33	0.33	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	0.95	0.95	0.95	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/vel		35.5	36.3	50.5	11.2	10.2	48.7	0.0	49.6	50.1	51.0	33.0
Incr Delay (d2), s/veh	1.1	1.1	2.7	37.3	0.3	0.4	35.6	0.0	52.3	34.4	38.4	1.4
Initial Q Delay(d3), s/vel		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),vel		14.3	14.5	9.5	3.6	1.9	11.3	0.0	12.5	9.5	9.5	3.0
Unsig. Movement Delay)										
LnGrp Delay(d), s/veh	57.3	36.6	39.0	87.8	11.5	10.6	84.3	0.0	101.9	84.5	89.4	34.4
LnGrp LOS	Е	D	D	F	В	В	F		F	F	F	С
Approach Vol, veh/h		1599			1325			575			618	
Approach Delay, s/veh		39.4			25.1			93.1			75.1	
Approach LOS		D			С			F			Ε	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc)		72.9	28.1	23.7	15.8	80.7	24.2	27.6				
Change Period (Y+Rc),		6.8	6.8	* 6.8	5.9	6.8	5.9	6.8				
Max Green Setting (Gm		38.6	21.3	* 17	10.7	45.7	18.3	19.9				
Max Q Clear Time (g_c		36.0	21.8	17.5	7.6	12.7	18.6	22.7				
Green Ext Time (p_c), s	0.0	2.4	0.0	0.0	0.1	16.8	0.0	0.0				
Intersection Summary												
HCM 7th Control Delay,	, s/veh		47.6									
HCM 7th LOS			D									
Notes												
* HCM 7th computation	al engi	ne requ	ires equ	ıal clea	rance ti	mes for	the ph	ases cr	ossing t	the barr	ier.	

12	/na	/20	12/
	l U.S	120	125

	ၨ	-	\rightarrow	•	←	•	•	†	/	>	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ች	^	7	ሻ	1	7	ሻ	^	7	ሻ	*	7
Traffic Volume (veh/h)	366	154	50	7	135	128	102	25	12	273	14	237
Future Volume (veh/h)	366	154	50	7	135	128	102	25	12	273	14	237
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856
Adj Flow Rate, veh/h	398	167	54	8	147	139	111	27	13	297	15	258
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	3	3	3	3	3	3	3	3	3	3	3	3
Cap, veh/h	438	659	559	32	233	198	183	211	179	340	371	314
Arrive On Green	0.25	0.36	0.36	0.02	0.13	0.13	0.10	0.11	0.11	0.19	0.20	0.20
Sat Flow, veh/h	1767	1856	1572	1767	1856	1572	1767	1856	1572	1767	1856	1572
Grp Volume(v), veh/h	398	167	54	8	147	139	111	27	13	297	15	258
Grp Sat Flow(s),veh/h/ln	1767	1856	1572	1767	1856	1572	1767	1856	1572	1767	1856	1572
Q Serve(g_s), s	17.4	5.1	1.8	0.4	6.0	6.7	4.8	1.0	0.6	13.0	0.5	12.5
Cycle Q Clear(g_c), s	17.4	5.1	1.8	0.4	6.0	6.7	4.8	1.0	0.6	13.0	0.5	12.5
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	438	659	559	32	233	198	183	211	179	340	371	314
V/C Ratio(X)	0.91	0.25	0.10	0.25	0.63	0.70	0.61	0.13	0.07	0.87	0.04	0.82
Avail Cap(c_a), veh/h	558	659	559	200	282	239	202	238	202	602	653	553
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	29.0	18.2	17.1	38.5	33.0	33.4	34.1	31.7	31.5	31.2	25.7	30.5
Incr Delay (d2), s/veh	14.3	0.4	0.1	1.5	5.3	9.8	2.6	0.1	0.1	2.8	0.1	9.1
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	8.4	2.0	0.7	0.2	2.9	3.1	2.2	0.5	0.2	5.4	0.2	5.4
Unsig. Movement Delay, s/veh												
LnGrp Delay(d), s/veh	43.4	18.5	17.3	40.0	38.3	43.1	36.7	31.8	31.6	34.0	25.7	39.5
LnGrp LOS	D	В	В	D	D	D	D	С	С	С	С	D
Approach Vol, veh/h		619			294			151			570	
Approach Delay, s/veh		34.4			40.6			35.4			36.3	
Approach LOS		С			D			D			D	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	7.4	35.1	14.1	23.0	25.6	16.8	21.0	16.1				
Change Period (Y+Rc), s	5.9	6.8	5.9	* 7.1	5.9	6.8	5.7	* 7.1				
Max Green Setting (Gmax), s	9.0	28.2	9.1	* 28	25.1	12.1	27.1	* 10				
Max Q Clear Time (g_c+l1), s	2.4	7.1	6.8	14.5	19.4	8.7	15.0	3.0				
Green Ext Time (p_c), s	0.0	1.6	0.0	1.4	0.3	0.6	0.3	0.0				
Intersection Summary												
HCM 7th Control Delay, s/veh			36.3									
HCM 7th LOS			D									
Notes												

* HCM 7th computational engine requires equal clearance times for the phases crossing the barrier.

Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR SBT SBT
Traffic Vol, veh/h
Traffic Vol, veh/h 12 12 12 12 12 8 6 65 30 293 16 95 234 28 Future Vol, veh/h 12 12 12 8 6 65 30 293 16 95 234 28 Conflicting Peds, #/hr 0
Traffic Vol, veh/h 12 12 12 12 8 6 65 30 293 16 95 234 28 Future Vol, veh/h 12 12 12 8 6 65 30 293 16 95 234 28 Conflicting Peds, #/hr 0
Conflicting Peds, #/hr 0
Sign Control Stop Stop Stop Stop Stop Stop Free
RT Channelized - - None - - None - - None Storage Length - - - - - 150 - - 150 - - 0
Storage Length - - - - - 150 - 150 - - - - - - - - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - 2 92 92 92 92 92 92 92 92 92 92 92 92 92 92 <
Veh in Median Storage, # - 0
Grade, % - 0 - - - - -<
Peak Hour Factor 92
Heavy Vehicles, % 3 Morrison Microscope Stage I
Mvmt Flow 13 13 13 13 9 7 71 33 318 17 103 254 30 Major/Minor Minor1 Major1 Major2 Major2 Major2 Major2 Major3 Major3 Major3 Major4 Major3 Major4 Major3 Major4 Major4<
Major/Minor Minor2 Minor1 Major1 Major2 Conflicting Flow All 863 877 142 733 884 327 285 0 0 336 0 0 Stage 1 476 476 - 392 392 -
Conflicting Flow All 863 877 142 733 884 327 285 0 0 336 0 0 Stage 1 476 476 - 392 392 - <t< td=""></t<>
Conflicting Flow All 863 877 142 733 884 327 285 0 0 336 0 0 Stage 1 476 476 - 392 392 - <t< td=""></t<>
Conflicting Flow All 863 877 142 733 884 327 285 0 0 336 0 0 Stage 1 476 476 - 392 392 - <t< td=""></t<>
Stage 1 476 476 - 392 392
Stage 2 387 401 - 340 491 -
Critical Hdwy Stg 1 6.545 6.545 6.945 7.345 6.545 6.245 4.145 - 4.145 - Critical Hdwy Stg 1 6.545 5.545 - 6.145 5.545
Critical Hdwy Stg 1 6.545 5.545 - 6.145 5.545
Critical Hdwy Stg 2 6.145 5.545 - 6.545 5.545
Follow-up Hdwy 3.5285 4.0285 3.3285 3.5285 4.0285 3.3285 2.2285 2.2285 Pot Cap-1 Maneuver 260 285 877 321 282 711 1269 - 1215 - Stage 1 537 554 - 629 603
Pot Cap-1 Maneuver 260 285 877 321 282 711 1269 - - 1215 - - Stage 1 537 554 - 629 603 -
Stage 1 537 554 - 629 603 -
Stage 2 633 598 - 646 545
Platoon blocked, %
,
Mov Cap-1 Maneuver 204 254 877 269 252 711 1269 1215
Mov Cap-2 Maneuver 204 254 - 269 252
Stage 1 492 507 - 613 588
Stage 2 550 583 - 568 499
Approach EB WB NB SB
HCM Ctrl Dly, s/v 18.77 12.85 0.7 2.19 HCM LOS C B
TIOWI LOG G B
Minutes (Minutes Marie Anni Anni Anni Anni Anni Anni Anni An
Minor Lane/Major Mvmt NBL NBT NBR EBLn1WBLn1 SBL SBT SBR
Capacity (veh/h) 1269 300 544 1215
HCM Lane V/C Ratio 0.026 0.13 0.158 0.085
HCM Ctrl Dly (s/v) 7.9 18.8 12.8 8.2
HCM Lane LOS A C B A
HCM 95th %tile Q(veh) 0.1 0.4 0.6 0.3

Intersection						
Int Delay, s/veh	1.7					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ች	7		4	↑ 1>	
Traffic Vol, veh/h	4	53	82	330	256	0
Future Vol, veh/h	4	53	82	330	256	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-		-	None	-	None
Storage Length	0	0	-	-	-	-
Veh in Median Storag	e,# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	3	3	3	3	3	3
Mvmt Flow	4	58	89	359	278	0
	•	00	00	000		•
	Minor2		Major1		Major2	
Conflicting Flow All	815	139	278	0	-	0
Stage 1	278	-	-	-	-	-
Stage 2	537	-	-	-	-	-
Critical Hdwy	6.645	6.945	4.145	-	-	-
Critical Hdwy Stg 1	5.845	-	-	-	-	-
Critical Hdwy Stg 2	5.445	-	-	-	-	-
Follow-up Hdwy	3.5285	3.3285	2.2285	-	-	-
Pot Cap-1 Maneuver	329	881	1276	-	-	-
Stage 1	742	-	-	-	-	-
Stage 2	582	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	300	881	1276	_	-	-
Mov Cap-2 Maneuver		-		_	_	_
Stage 1	677	-	_	_	_	_
Stage 2	582	_	_	_	_	_
Olage 2	302					
Approach	EB		NB		SB	
HCM Ctrl Dly, s/v	9.92		1.6		0	
HCM LOS	Α					
Minor Lane/Major Mvr	nt	NBL	NIDT	EBLn1	EDI n2	SBT
	IIL					
Capacity (veh/h)		358	-		881	-
HCM Lane V/C Ratio		0.07		0.014		-
HCM Ctrl Dly (s/v)		8	0	17.2	9.4	-
HCM Lane LOS	,	A	Α	С	A	-
HCM 95th %tile Q(veh	1)	0.2	-	0	0.2	-

led Delevi elvele						
Int Delay, s/veh	0.8					
Movement	SEL	SET	NWT	NWR	SWL	SWR
Lane Configurations) j	1	†	TAVVIX	N/	OVVIX
Traffic Vol, veh/h	10	77 299	T → 404	30	32	8
Future Vol, veh/h	10	299	404	30	32	8
Conflicting Peds, #/hr	0	299	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None		None	Stop -	
Storage Length	285	None -	_	INOHE -	0	NONE -
Veh in Median Storage		0	0	-	0	-
		0	0			
Grade, %	- 00			-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	3	3	3	3	3	3
Mvmt Flow	11	325	439	33	35	9
Major/Minor	Major1	N	Major2	N	Minor2	
Conflicting Flow All	472	0		0	640	236
Stage 1	-	_	-	_	455	
Stage 2	_	_	-	-	184	-
Critical Hdwy	4.16	_	_	_	6.86	6.96
Critical Hdwy Stg 1	-	_	_	_	5.86	-
Critical Hdwy Stg 2	_	_	_	-	5.86	-
Follow-up Hdwy	2.23	_	_	_	3.53	3.33
Pot Cap-1 Maneuver	1079	_	_	_	406	763
Stage 1	1075	_	_	_	602	-
Stage 2	_		_	_	826	_
Platoon blocked, %	-	_	_	-	020	-
	1079	_	-		402	763
Mov Cap-1 Maneuver		-	-	-		
Mov Cap-2 Maneuver	-	-	-	-	402	-
Stage 1	-	-	-	-	596	-
Stage 2	-	-	-	-	826	-
Approach	SE		NW		SW	
HCM Ctrl Dly, s/v	0.27		0		13.99	
HCM LOS	0.21		v		В	
Minor Lane/Major Mvm	nt	NWT		SEL	SETS	SWLn1
Capacity (veh/h)		-	-	1079	-	
HCM Lane V/C Ratio		-	-			0.098
HCM Ctrl Dly (a/y)		-	-	8.4	-	14
HCM Ctrl Dly (s/v)				_		_
HCM Lane LOS HCM 95th %tile Q(veh		-	-	A 0	-	0.3

Intersection						
Int Delay, s/veh	0.1					
			14/5=	14/5-5	05:	055
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		^	Λ₽			7
Traffic Vol, veh/h	5	326	431	40	0	3
Future Vol, veh/h	5	326	431	40	0	3
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	285	-	-	-	-	0
Veh in Median Storage	,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	3	3	3	3	3	3
Mvmt Flow	5	354	468	43	0	3
	Major1		//ajor2		/linor2	
Conflicting Flow All	512	0	-	0	-	256
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	4.16	-	-	-	-	6.96
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	2.23	-	-	-	-	3.33
Pot Cap-1 Maneuver	1043	-	-	-	0	740
Stage 1	_	-	-	-	0	-
Stage 2	-	-	-	-	0	-
Platoon blocked, %		_	-	-	•	
Mov Cap-1 Maneuver	1043	_	_	_	_	740
Mov Cap-2 Maneuver	-	_	_	_	_	-
Stage 1	_		_	_	_	_
	_	_	_	_	_	_
Stage 2	_	-	_	-	-	_
Approach	EB		WB		SB	
HCM Ctrl Dly, s/v	0.13		0		9.89	
HCM LOS					Α	
N.C	,	EDI	СОТ	MOT	WDD	
Minor Lane/Major Mvm	IT	EBL	EBT	WBT	WBR S	
Capacity (veh/h)		1043	-	-	-	740
HCM Lane V/C Ratio		0.005	-	-	-	0.004
HCM Ctrl Dly (s/v)		8.5	-	-	-	9.9
HCM Lane LOS		Α	-	-	-	Α
HCM 95th %tile Q(veh))	0	-	-	-	0

Intersection												
	17740.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	95	485	238	134	415	62	222	53	108	128	77	189
Future Vol, veh/h	95	485	238	134	415	62	222	53	108	128	77	189
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storag	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	3	3	3	3	3	3	3	3	3	3	3	3
Mvmt Flow	103	527	259	146	451	67	241	58	117	139	84	205
Major/Minor	Major1		N	Major2			Minor1			Minor2		
Conflicting Flow All	518	0	0	786	0	0	1647	1673	657	1539	1768	485
Stage 1	-	-	-	-	-	-	863	863	-	776	776	-
Stage 2	-	-	-	-	-	-	784	810	-	763	992	-
Critical Hdwy	4.13	-	-	4.13	-	-	7.13	6.53	6.23	7.13	6.53	6.23
Critical Hdwy Stg 1	-	-	-	-	-	-	6.13	5.53	-	6.13	5.53	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.13	5.53	-	6.13	5.53	-
Follow-up Hdwy	2.227	-	-	2.227	-	-	3.527	4.027	3.327	3.527	4.027	3.327
Pot Cap-1 Maneuver	1042	-	-	829	-	-	~ 79	95	463	~ 94	~ 83	580
Stage 1	-	-	-	-	-	-	348	370	-	389	406	-
Stage 2	-	-	-	-	-	-	385	392	-	396	322	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1042	-	-	829	-	-	-	58	463	~ 1	~ 51	580
Mov Cap-2 Maneuver		-	-	-	-	-	-	58	-	~ 1	~ 51	-
Stage 1	-	-	-	-	-	-	283	302	-	292	305	-
Stage 2	-	-	-	-	-	-	~ 135	294	-	195	263	-
Approach	EB			WB			NB			SB		
HCM Ctrl Dly, s/v	1.03			2.25					\$ 993	323.92		
HCM LOS							-		7 3 3	F		
										•		
Minor Lane/Major Mvr	mt 1	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR S	SBLn1			
Capacity (veh/h)		-	196	-	-	385	-	-	2			
HCM Lane V/C Ratio		_	0.099	_	_	0.176	-	2	13.776			
HCM Ctrl Dly (s/v)		-	8.8	0	-	10.3	0		9323.9			
HCM Lane LOS		_	A	Ā	_	В	Ā	-	F			
HCM 95th %tile Q(veh	h)	-	0.3	-	-	0.6	-	-	56.1			
Notes	,											
	anaoit.	¢. D.	elay exc	oodo 20)Oc							
~: Volume exceeds ca			•			nn.						
+: Computation Not D	eimed	: All	major v	oiume i	n piato	ווכ						

Baseline JLB Traffic Engineering, Inc.

Intersection						
Int Delay, s/veh	93					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
	LDL	- €	<u>₩</u>	אטוז	SDL W	JON
Lane Configurations Traffic Vol, veh/h	345	€ 4	362	125	'T' 74	252
Future Vol, veh/h	345	374	362	125	74	252
<u>'</u>	0	0	302	125	0	252
Conflicting Peds, #/hr						
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized		None	-		-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage		0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	4	4	4	4	4	4
Mvmt Flow	375	407	393	136	80	274
Major/Minor I	Major1	N	Jaior?		Minor2	
	Major1		//ajor2			464
Conflicting Flow All	529	0	-	0	1618	461
Stage 1	-	-	-	-	461	-
Stage 2	-	-	-	-	1157	-
Critical Hdwy	4.14	-	-	-	6.44	6.24
Critical Hdwy Stg 1	-	-	-	-	5.44	-
Critical Hdwy Stg 2	-	-	-	-	5.44	-
Follow-up Hdwy	2.236	-	-	-	3.536	
Pot Cap-1 Maneuver	1028	-	-	-	112	596
Stage 1	-	-	-	-	630	-
Stage 2	-	-	-	-	297	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1028	-	_	_	~ 59	596
Mov Cap-2 Maneuver	-	_	_	_	~ 59	-
Stage 1	_	_	_	_	333	_
Stage 2	_	_	_		297	_
Stage 2					231	
Approach	EB		WB		SB	
HCM Ctrl Dly, s/v	5.04		0	\$ 4	126.09	
HCM LOS					F	
Minor Long/Major Mare	.+	EDI	EDT	WDT	WDD	CDI 51
Minor Lane/Major Mvm	IL	EBL	EBT	WBT	WBR	
Capacity (veh/h)		796	-	-	-	
HCM Lane V/C Ratio		0.365	-	-		1.812
HCM Ctrl Dly (s/v)		10.5	0	-	-\$	426.1
HCM Lane LOS		В	Α	-		F
HCM 95th %tile Q(veh))	1.7	-	-	-	25.1
Notos						
Notes	•,	Α -			20	
~: Volume exceeds cap				eeds 30		
+: Computation Not De	fined	*: All	major v	olume i	n plato	on

Baseline JLB Traffic Engineering, Inc.

Intersection		
Intersection Delay, s/veh	19.4	
Intersection LOS	С	

IIILEISECLIOII LOS	U											
Movement	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT
Lane Configurations	7	ተ ኈ			Ä	f)		J.		7	J.	(
Traffic Vol, veh/h	57	64	191	0	51	91	59	269	199	47	38	219
Future Vol, veh/h	57	64	191	0	51	91	59	269	199	47	38	219
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Heavy Vehicles, %	3	3	3	3	3	3	3	3	3	3	3	3
Mvmt Flow	60	67	201	0	54	96	62	283	209	49	40	231
Number of Lanes	1	2	0	0	1	1	0	1	1	1	1	1
Approach	EB				WB			NB			SB	
Opposing Approach	WB				EB			SB			NB	
Opposing Lanes	2				3			2			3	
Conflicting Approach Left	SB				NB			EB			WB	
Conflicting Lanes Left	2				3			3			2	
Conflicting Approach Right	NB				SB			WB			EB	
Conflicting Lanes Right	3				2			2			3	
HCM Control Delay, s/veh	16.4				15.6			21.3			21.8	
HCM LOS	С				С			С			С	

Lane	NBLn1	NBLn2	NBLn3	EBLn1	EBLn2	EBLn3	WBLn1	WBLn2	SBLn1	SBLn2	
Vol Left, %	100%	0%	0%	100%	0%	0%	100%	0%	100%	0%	
Vol Thru, %	0%	100%	0%	0%	100%	10%	0%	61%	0%	87%	
Vol Right, %	0%	0%	100%	0%	0%	90%	0%	39%	0%	13%	
Sign Control	Stop										
Traffic Vol by Lane	269	199	47	57	43	212	51	150	38	251	
LT Vol	269	0	0	57	0	0	51	0	38	0	
Through Vol	0	199	0	0	43	21	0	91	0	219	
RT Vol	0	0	47	0	0	191	0	59	0	32	
Lane Flow Rate	283	209	49	60	45	224	54	158	40	264	
Geometry Grp	6	6	6	6	6	6	6	6	6	6	
Degree of Util (X)	0.661	0.459	0.099	0.151	0.107	0.49	0.139	0.374	0.099	0.609	
Departure Headway (Hd)	8.407	7.896	7.181	9.055	8.543	7.897	9.32	8.525	8.903	8.301	
Convergence, Y/N	Yes										
Сар	430	457	500	397	420	458	385	422	404	436	
Service Time	6.137	5.626	4.911	6.79	6.277	5.632	7.07	6.274	6.637	6.035	
HCM Lane V/C Ratio	0.658	0.457	0.098	0.151	0.107	0.489	0.14	0.374	0.099	0.606	
HCM Control Delay, s/veh	26.1	17.2	10.7	13.4	12.3	18	13.6	16.3	12.6	23.2	
HCM Lane LOS	D	С	В	В	В	С	В	С	В	С	
HCM 95th-tile Q	4.7	2.4	0.3	0.5	0.4	2.6	0.5	1.7	0.3	3.9	

Baseline
JLB Traffic Engineering, Inc.

Inte		

Intersection Delay, s/veh Intersection LOS

Movement	SBR
Lane Configurations	
Traffic Vol, veh/h	32
Future Vol, veh/h	32
Peak Hour Factor	0.95
Heavy Vehicles, %	3
Mvmt Flow	34
Number of Lanes	0

Approach

Opposing Approach
Opposing Lanes
Conflicting Approach Left
Conflicting Lanes Left
Conflicting Approach Right
Conflicting Lanes Right
HCM Control Delay, s/veh

HCM LOS

	_5	\rightarrow	•	•	_	~_	1	ገ		1	•	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL2	NBL	NBR	SEL	SER	
Lane Configurations	77	ተተተ			ተተተ	7	757		77			
Traffic Volume (veh/h)	144	901	0	0	712	469	549	0	266	0	0	
Future Volume (veh/h)	144	901	0	0	712	469	549	0	266	0	0	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0			
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00	1.00	1.00			
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Work Zone On Approac	h	No			No			No				
Adj Sat Flow, veh/h/ln	1796	1796	0	0	1796	1796	1796	1796	1796			
Adj Flow Rate, veh/h	157	979	0	0	774	510	597	597	289			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92			
Percent Heavy Veh, %	7	7	0	0	7	7	7	7	7			
Cap, veh/h	589	2995	0	0	1826	567	861	861	695			
Arrive On Green	0.18	0.61	0.00	0.00	0.74	0.74	0.26	0.26	0.26			
Sat Flow, veh/h	3319	5065	0	0	5065	1522	3319	3319	2679			
Grp Volume(v), veh/h	157	979	0	0	774	510	597	597	289			
Grp Sat Flow(s), veh/h/lr		1635	0	0	1635	1522	1659	1659	1340			
Q Serve(g_s), s	5.3	12.6	0.0	0.0	7.7	33.7	21.1	21.1	11.6			
Cycle Q Clear(g_c), s	5.3	12.6	0.0	0.0	7.7	33.7	21.1	21.1	11.6			
Prop In Lane	1.00		0.00	0.00		1.00	1.00	1.00	1.00			
Lane Grp Cap(c), veh/h		2995	0.00	0	1826	567	861	861	695			
V/C Ratio(X)	0.27	0.33	0.00	0.00	0.42	0.90	0.69	0.69	0.42			
Avail Cap(c_a), veh/h	589	2995	0.00	0	2041	633	996	996	804			
HCM Platoon Ratio	1.00	1.00	1.00	1.00	2.00	2.00	1.00	1.00	1.00			
Upstream Filter(I)	1.00	1.00	0.00	0.00	0.59	0.59	1.00	1.00	1.00			
Uniform Delay (d), s/veh		12.3	0.0	0.0	11.4	14.7	43.5	43.5	40.0			
Incr Delay (d2), s/veh	0.2	0.3	0.0	0.0	0.4	13.1	4.6	4.6	1.8			
Initial Q Delay(d3), s/vel		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
%ile BackOfQ(50%),veh		4.4	0.0	0.0	2.2	6.6	9.0	9.0	3.9			
Unsig. Movement Delay			0.0	0.0		0.0	0.0	0.0	0.0			
LnGrp Delay(d), s/veh		12.6	0.0	0.0	11.8	27.8	48.1	48.1	41.8			
LnGrp LOS	D	В	0.0	0.0	В	C C	D	D	D			
Approach Vol, veh/h		1136			1284		886	886				
Approach Delay, s/veh		17.3			18.2		46.0	46.0				
Approach LOS		17.3 B			В		70.0 D	70.0 D				
Timer - Assigned Phs		2			5	6		8				
Phs Duration (G+Y+Rc)		87.3			31.0	56.3		42.7				
Change Period (Y+Rc),		7.9			7.9	* 7.9		9.0				
Max Green Setting (Gm		74.1			13.4	* 54		39.0				
Max Q Clear Time (g_c-	, .	14.6			7.3	35.7		23.1				
Green Ext Time (p_c), s	3	28.0			0.2	12.7		10.6				
Intersection Summary												
HCM 7th Control Delay,	s/veh		25.3									
HCM 7th LOS			С									
Notes												

Baseline
JLB Traffic Engineering, Inc.

* HCM 7th computational engine requires equal clearance times for the phases crossing the barrier.

	۶	→	\searrow	•	•	•	•	†	/	-	↓	✓	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	ሻሻ	ተ ተጉ		*	ተተተ	7		ĵ.		*	†	7	
Traffic Volume (veh/h)	193	859	370	185	590	240	462	229	230	171	184	168	
Future Volume (veh/h)	193	859	370	185	590	240	462	229	230	171	184	168	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approac	h	No			No			No			No		
Adj Sat Flow, veh/h/ln	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	
Adj Flow Rate, veh/h	210	934	402	201	641	261	502	249	250	186	200	183	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	
Percent Heavy Veh, %	3	3	3	3	3	3	3	3	3	3	3	3	
Cap, veh/h	575	1031	443	207	1212	376	495	238	239	194	206	438	
Arrive On Green	0.22	0.39	0.39	0.12	0.24	0.24	0.28	0.28	0.28	0.11	0.11	0.11	
Sat Flow, veh/h	3428	3471	1493	1767	5066	1572	1767	849	853	1767	1856	1572	
Grp Volume(v), veh/h	210	909	427	201	641	261	502	0	499	186	200	183	
Grp Sat Flow(s),veh/h/lı		1689	1587	1767	1689	1572	1767	0	1702	1767	1856	1572	
Q Serve(g_s), s	6.7	33.0	33.0	14.7	14.3	19.7	36.4	0.0	36.5	13.6	14.0	0.0	
Cycle Q Clear(g_c), s	6.7	33.0	33.0	14.7	14.3	19.7	36.4	0.0	36.5	13.6	14.0	0.0	
Prop In Lane	1.00		0.94	1.00		1.00	1.00		0.50	1.00		1.00	
Lane Grp Cap(c), veh/h		1003	471	207	1212	376	495	0	478	194	206	438	
V/C Ratio(X)	0.37	0.91	0.91	0.97	0.53	0.69	1.01	0.00	1.04	0.96	0.97	0.42	
Avail Cap(c_a), veh/h	575	1003	471	207	1555	483	495	0	478	194	206	438	
HCM Platoon Ratio	1.33	1.33	1.33	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	0.95	0.95	0.95	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/vel	h 44.7	37.6	37.6	57.2	43.1	45.1	46.8	0.0	46.8	57.5	57.6	38.3	
Incr Delay (d2), s/veh	0.1	12.7	22.9	54.4	1.7	10.1	44.2	0.0	53.2	51.6	55.2	1.2	
Initial Q Delay(d3), s/ve	h 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),vel	h/ln2.8	13.9	14.4	9.5	6.0	8.7	21.9	0.0	22.4	8.7	9.5	4.9	
Unsig. Movement Delay	, s/veł	า											
LnGrp Delay(d), s/veh	44.8	50.3	60.5	111.6	44.7	55.2	91.0	0.0	99.9	109.2	112.8	39.5	
LnGrp LOS	D	D	E	F	D	E	F		F	F	F	D	
Approach Vol, veh/h		1546			1103			1001			569		
Approach Delay, s/veh		52.4			59.4			95.4			88.0		
Approach LOS		D			Е			F			F		
Timer - Assigned Phs	1	2	3	4	5	6	7	8					
Phs Duration (G+Y+Rc)		45.4	42.3	21.2	28.6	37.9	20.2	43.3		-			
Change Period (Y+Rc),		6.8	5.9	6.8	6.8	* 6.8	5.9	6.8					
Max Green Setting (Gm		38.6	36.4	14.4	13.9	* 40	14.3	36.5					
Max Q Clear Time (g_c		35.0	38.4	16.0	8.7	21.7	15.6	38.5					
Green Ext Time (p_c), s	0.0	3.2	0.0	0.0	0.2	9.4	0.0	0.0					
Intersection Summary													
HCM 7th Control Delay	, s/veh		69.2										
HCM 7th LOS			Е										
Notes													
* HCM 7th computation	al engi	ne requ	ires eq	ual clea	rance ti	mes for	the ph	ases cr	ossing	the bar	rier.		

Baseline
JLB Traffic Engineering, Inc.

	ၨ	→	•	<	—	•	•	†	<i>></i>	\	↓	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	1	7	ሻ	ĵ.		ሻ	ĵ»		ሻ	ĵ»	
Traffic Volume (veh/h)	164	465	206	108	516	54	181	50	83	78	29	135
Future Volume (veh/h)	164	465	206	108	516	54	181	50	83	78	29	135
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856
Adj Flow Rate, veh/h	178	505	224	117	561	59	197	54	90	85	32	147
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	3	3	3	3	3	3	3	3	3	3	3	3
Cap, veh/h	204	717	608	166	602	63	227	116	193	151	41	189
Arrive On Green	0.12	0.39	0.39	0.09	0.36	0.36	0.13	0.19	0.19	0.09	0.14	0.14
Sat Flow, veh/h	1767	1856	1572	1767	1651	174	1767	625	1042	1767	289	1328
Grp Volume(v), veh/h	178	505	224	117	0	620	197	0	144	85	0	179
Grp Sat Flow(s),veh/h/ln	1767	1856	1572	1767	0	1824	1767	0	1668	1767	0	1617
Q Serve(g_s), s	7.6	17.5	7.8	4.9	0.0	24.9	8.3	0.0	5.9	3.5	0.0	8.1
Cycle Q Clear(g_c), s	7.6	17.5	7.8	4.9	0.0	24.9	8.3	0.0	5.9	3.5	0.0	8.1
Prop In Lane	1.00		1.00	1.00		0.10	1.00		0.63	1.00		0.82
Lane Grp Cap(c), veh/h	204	717	608	166	0	666	227	0	309	151	0	230
V/C Ratio(X)	0.87	0.70	0.37	0.71	0.00	0.93	0.87	0.00	0.47	0.56	0.00	0.78
Avail Cap(c_a), veh/h	204	737	625	181	0	701	227	0	527	204	0	490
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	33.2	19.7	16.7	33.6	0.0	23.3	32.6	0.0	27.7	33.5	0.0	31.6
Incr Delay (d2), s/veh	31.4	3.0	0.4	10.8	0.0	18.7	28.0	0.0	1.1	3.3	0.0	5.6
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	4.8	7.1	2.5	2.5	0.0	12.8	5.0	0.0	2.2	1.5	0.0	3.3
Unsig. Movement Delay, s/veh												
LnGrp Delay(d), s/veh	64.6	22.7	17.1	44.4	0.0	42.0	60.6	0.0	28.8	36.8	0.0	37.2
LnGrp LOS	Е	С	В	D		D	Е		С	D		D
Approach Vol, veh/h		907			737			341			264	
Approach Delay, s/veh		29.5			42.4			47.2			37.1	
Approach LOS		С			D			D			D	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	10.7	19.4	11.3	34.8	14.0	16.1	13.0	33.1				
Change Period (Y+Rc), s	4.2	5.3	4.2	5.3	4.2	5.3	4.2	5.3				
Max Green Setting (Gmax), s	8.8	24.1	7.8	30.3	9.8	23.1	8.8	29.3				
Max Q Clear Time (g_c+l1), s	5.5	7.9	6.9	19.5	10.3	10.1	9.6	26.9				
Green Ext Time (p_c), s	0.0	0.5	0.0	2.8	0.0	0.7	0.0	0.9				
Intersection Summary												
HCM 7th Control Delay, s/veh			37.3									
HCM 7th LOS			D									

Synchro 12 Report

Intersection			
Intersection Delay, s/veh26	6.8		
Intersection LOS	D		

Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	ħ	1	†	7	ħ	7
Traffic Vol, veh/h	266	363	341	122	141	347
Future Vol, veh/h	266	363	341	122	141	347
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, %	3	3	3	3	3	3
Mvmt Flow	289	395	371	133	153	377
Number of Lanes	1	1	1	1	1	1

Approach	EB	WB	SB
Opposing Approach	WB	EB	
Opposing Lanes	2	2	0
Conflicting Approach L	eft SB		WB
Conflicting Lanes Left	2	0	2
Conflicting Approach F	Right	SB	EB
Conflicting Lanes Righ	t 0	2	2
HCM Control Delay, s/	ve29.1	27.2	23.5
HCM LOS	D	D	С

Lane	EBLn1	EBLn ₂ V	VBLn ₁ V	VBLn2	SBLn1	SBLn2	
Vol Left, %	100%	0%	0%	0%	100%	0%	
Vol Thru, %	0%	100%	100%	0%	0%	0%	
Vol Right, %	0%	0%	0%	100%	0%	100%	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	266	363	341	122	141	347	
LT Vol	266	0	0	0	141	0	
Through Vol	0	363	341	0	0	0	
RT Vol	0	0	0	122	0	347	
Lane Flow Rate	289	395	371	133	153	377	
Geometry Grp	5	5	5	5	5	5	
Degree of Util (X)	0.629	0.802	0.782	0.253	0.351	0.735	
Departure Headway (Hd)	7.833	7.318	7.6	6.878	8.243	7.013	
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes	
Сар	463	493	478	522	437	517	
Service Time	5.574	5.059	5.343	4.621	5.977	4.746	
HCM Lane V/C Ratio	0.624	0.801	0.776	0.255	0.35	0.729	
HCM Control Delay, s/veh	23	33.6	32.7	11.9	15.4	26.8	
HCM Lane LOS	С	D	D	В	С	D	
HCM 95th-tile Q	4.2	7.5	7	1	1.6	6.1	

	۶	→	•	F	•	+	•	•	†	/	/	↓	4
Movement	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	∱ }			ă	1		*	†	7	*	1≽	
Traffic Volume (veh/h)	43	104	336	4	70	76	66	219	190	27	108	333	61
Future Volume (veh/h)	43	104	336	4	70	76	66	219	190	27	108	333	61
Initial Q (Qb), veh	0	0	0		0	0	0	0	0	0	0	0	0
Lane Width Adj.	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	1.00		0.98		1.00		0.98	1.00		0.98	1.00		0.96
Parking Bus, Adj	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approac	:h	No				No			No			No	
	1811	1811	1811		1811	1811	1811	1811	1811	1811	1811	1811	1811
Adj Flow Rate, veh/h	50	121	391		81	88	77	255	221	31	126	387	71
Peak Hour Factor	0.86	0.86	0.86		0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Percent Heavy Veh, %	6	6	6		6	6	6	6	6	6	6	6	6
Cap, veh/h	104	458	399		126	245	215	287	666	554	157	431	79
Arrive On Green	0.06	0.27	0.27		0.07	0.28	0.28	0.17	0.37	0.37	0.09	0.29	0.29
Sat Flow, veh/h	1725	1721	1497		1725	880	770	1725	1811	1506	1725	1478	271
Grp Volume(v), veh/h	50	121	391		81	0	165	255	221	31	126	0	458
Grp Sat Flow(s),veh/h/lr		1721	1497		1725	0	1651	1725	1811	1506	1725	0	1749
Q Serve(g_s), s	2.6	5.2	24.4		4.3	0.0	7.5	13.6	8.3	1.2	6.7	0.0	23.6
Cycle Q Clear(g_c), s	2.6	5.2	24.4		4.3	0.0	7.5	13.6	8.3	1.2	6.7	0.0	23.6
Prop In Lane	1.00		1.00		1.00		0.47	1.00		1.00	1.00		0.16
Lane Grp Cap(c), veh/h		458	399		126	0	460	287	666	554	157	0	510
V/C Ratio(X)	0.48	0.26	0.98		0.64	0.00	0.36	0.89	0.33	0.06	0.80	0.00	0.90
Avail Cap(c_a), veh/h	143	458	399		143	0	460	309	666	554	272	0	585
HCM Platoon Ratio	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00		1.00	0.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/vel		27.2	34.2		42.3	0.0	27.1	38.3	21.4	19.2	41.9	0.0	31.9
Incr Delay (d2), s/veh	3.4	0.3	39.9		7.8	0.0	0.5	24.2	0.3	0.0	9.2	0.0	15.3
Initial Q Delay(d3), s/vel		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh		2.1	12.7		2.0	0.0	2.9	7.4	3.3	0.4	3.1	0.0	11.4
Unsig. Movement Delay	7, s/ven 46.1	27.5	74.1		50.2	0.0	27.6	62.5	21.7	19.2	51.1	0.0	47.2
LnGrp Delay(d), s/veh LnGrp LOS	40.1 D	27.5 C	74.1 E		50.2 D	0.0	21.0 C	02.5 E	21.7 C	19.2 B	51.1 D	0.0	47.2 D
Approach Vol, veh/h	ט	562	E		ע	246	U	E	507	D	U	E01	U
Approach Vol, ven/n Approach Delay, s/veh		61.6				35.0			42.1			584 48.0	
Approach LOS		61.6 E				ან.U D			42.1 D			46.0 D	
									U			U	
Timer - Assigned Phs	1	2	3	4	5	6	7	8					
Phs Duration (G+Y+Rc)		39.8	11.1	30.3	19.9	32.7	9.9	31.5					
Change Period (Y+Rc),		5.3	4.2	5.3	4.2	5.3	4.2	5.3					
Max Green Setting (Gm		33.4	7.8	25.0	16.8	31.4	7.8	25.0					
Max Q Clear Time (g_c-		10.3	6.3	26.4	15.6	25.6	4.6	9.5					
Green Ext Time (p_c), s	0.1	1.2	0.0	0.0	0.1	1.3	0.0	0.7					
Intersection Summary													
HCM 7th Control Delay,	, s/veh		48.8										
HCM 7th LOS			D										
Notes	II Tues	nina ma	vomon										
User approved ignoring	u-Turr	iirig mo	vemen	l.									

	۶	-	•	•	←	•	•	†	<u> </u>	/	ļ	✓	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		ተ ተጉ		*	ተተተ	7	ሻሻ	†	7	ኘኘ	†	7	
Traffic Volume (veh/h)	145	888	438	219	846	154	265	131	133	223	218	128	
Future Volume (veh/h)	145	888	438	219	846	154	265	131	133	223	218	128	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approac	:h	No			No			No			No		
Adj Sat Flow, veh/h/ln	1811	1811	1811	1811	1811	1811	1811	1811	1811	1811	1811	1811	
Adj Flow Rate, veh/h	158	965	476	238	920	167	288	142	145	242	237	139	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	
Percent Heavy Veh, %	6	6	6	6	6	6	6	6	6	6	6	6	
Cap, veh/h	277	1239	577	264	2206	685	341	309	262	297	272	357	
Arrive On Green	0.03	0.12	0.12	0.15	0.45	0.45	0.10	0.17	0.17	0.09	0.15	0.15	
Sat Flow, veh/h	3346	3296	1535	1725	4944	1535	3346	1811	1535	3346	1811	1535	
Grp Volume(v), veh/h	158	965	476	238	920	167	288	142	145	242	237	139	
Grp Sat Flow(s),veh/h/li	n1673	1648	1535	1725	1648	1535	1673	1811	1535	1673	1811	1535	
Q Serve(g_s), s	5.6	34.1	36.3	16.3	15.2	8.1	10.1	8.5	10.4	8.5	15.4	6.0	
Cycle Q Clear(g_c), s	5.6	34.1	36.3	16.3	15.2	8.1	10.1	8.5	10.4	8.5	15.4	6.0	
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00	
Lane Grp Cap(c), veh/h	277	1239	577	264	2206	685	341	309	262	297	272	357	
V/C Ratio(X)	0.57	0.78	0.82	0.90	0.42	0.24	0.85	0.46	0.55	0.81	0.87	0.39	
Avail Cap(c_a), veh/h	298	1239	577	305	2206	685	371	309	262	382	297	379	
HCM Platoon Ratio	0.33	0.33	0.33	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	0.95	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/vel	h 56.2	47.7	48.7	49.9	22.6	20.7	53.0	44.8	45.6	53.7	49.9	18.3	
Incr Delay (d2), s/veh	1.1	4.6	12.1	24.2	0.6	8.0	14.1	2.0	3.9	7.9	24.2	1.3	
Initial Q Delay(d3), s/ve		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),vel		15.8	16.8	8.6	5.7	3.0	4.8	3.9	4.1	3.8	8.6	2.6	
Unsig. Movement Delay													
LnGrp Delay(d), s/veh	57.3	52.4	60.8	74.1	23.2	21.5	67.1	46.8	49.5	61.6	74.0	19.6	
LnGrp LOS	E	D	E	E	С	С	E	D	D	E	E	В	
Approach Vol, veh/h		1599			1325			575			618		
Approach Delay, s/veh		55.4			32.1			57.6			56.9		
Approach LOS		Е			С			Е			Е		
Timer - Assigned Phs	1	2	3	4	5	6	7	8					
Phs Duration (G+Y+Rc)		51.9	19.0	24.8	15.8	60.3	16.6	27.3					
Change Period (Y+Rc),		6.8	6.8	* 6.8	5.9	6.8	5.9	6.8					
Max Green Setting (Gm		40.4	13.3	* 20	10.7	50.9	13.7	19.3					
Max Q Clear Time (g_c		38.3	12.1	17.4	7.6	17.2	10.5	12.4					
Green Ext Time (p_c), s	0.1	1.9	0.1	0.6	0.1	17.0	0.1	1.1					
Intersection Summary													
HCM 7th Control Delay	, s/veh		48.4										
HCM 7th LOS			D										
Notes													
* HCM 7th computation	al engi	ne requ	ires equ	ual clea	rance ti	imes for	the ph	ases cr	ossing	the barr	ier.		

	۶	→	•	•	←	4	•	†	<i>></i>	\	+	-√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	1	7	ሻ	f)		ሻ	f.		ሻ	1>	
Traffic Volume (veh/h)	95	485	238	134	415	62	222	53	108	128	77	189
Future Volume (veh/h)	95	485	238	134	415	62	222	53	108	128	77	189
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856
Adj Flow Rate, veh/h	103	527	259	146	451	67	241	58	117	139	84	205
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	3	3	3	3	3	3	3	3	3	3	3	3
Cap, veh/h	152	575	488	169	504	75	277	145	292	174	98	240
Arrive On Green	0.09	0.31	0.31	0.10	0.32	0.32	0.16	0.26	0.26	0.10	0.21	0.21
Sat Flow, veh/h	1767	1856	1572	1767	1579	235	1767	549	1107	1767	478	1167
Grp Volume(v), veh/h	103	527	259	146	0	518	241	0	175	139	0	289
Grp Sat Flow(s),veh/h/ln	1767	1856	1572	1767	0	1813	1767	0	1656	1767	0	1645
Q Serve(g_s), s	4.6	22.4	11.1	6.7	0.0	22.2	10.9	0.0	7.1	6.3	0.0	13.8
Cycle Q Clear(g_c), s	4.6	22.4	11.1	6.7	0.0	22.2	10.9	0.0	7.1	6.3	0.0	13.8
Prop In Lane	1.00		1.00	1.00		0.13	1.00		0.67	1.00		0.71
Lane Grp Cap(c), veh/h	152	575	488	169	0	579	277	0	436	174	0	338
V/C Ratio(X)	0.68	0.92	0.53	0.87	0.00	0.89	0.87	0.00	0.40	0.80	0.00	0.86
Avail Cap(c_a), veh/h	169	606	514	169	0	592	277	0	480	277	0	477
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	36.2	27.2	23.3	36.4	0.0	26.5	33.7	0.0	24.8	36.0	0.0	31.3
Incr Delay (d2), s/veh	9.0	18.3	0.9	34.5	0.0	15.9	24.6	0.0	0.6	8.2	0.0	10.4
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	2.3	11.8	3.9	4.3	0.0	11.2	6.1	0.0	2.6	2.9	0.0	6.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d), s/veh	45.3	45.4	24.2	71.0	0.0	42.4	58.2	0.0	25.4	44.3	0.0	41.7
LnGrp LOS	D	D	С	E		D	E		С	D		D
Approach Vol, veh/h		889			664			416			428	
Approach Delay, s/veh		39.2			48.7			44.4			42.5	
Approach LOS		D			D			D			D	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	12.3	26.8	12.0	30.6	17.0	22.1	11.2	31.4				
Change Period (Y+Rc), s	4.2	5.3	4.2	5.3	4.2	5.3	4.2	5.3				
Max Green Setting (Gmax), s	12.8	23.7	7.8	26.7	12.8	23.7	7.8	26.7				
Max Q Clear Time (g_c+l1), s	8.3	9.1	8.7	24.4	12.9	15.8	6.6	24.2				
Green Ext Time (p_c), s	0.1	0.7	0.0	1.0	0.0	0.9	0.0	0.7				
Intersection Summary												
HCM 7th Control Delay, s/veh			43.3									
HCM 7th LOS			D									

Synchro 12 Report

Intersection			
Intersection Delay, s	/veh25.3		
Intersection LOS	D		

Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	¥	•	1	7	¥	7
Traffic Vol, veh/h	345	374	362	125	74	252
Future Vol, veh/h	345	374	362	125	74	252
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, %	4	4	4	4	4	4
Mvmt Flow	375	407	393	136	80	274
Number of Lanes	1	1	1	1	1	1

Approach	EB	WB	SB
Opposing Approach	WB	EB	
Opposing Lanes	2	2	0
Conflicting Approach L	eft SB		WB
Conflicting Lanes Left	2	0	2
Conflicting Approach R	light	SB	EB
Conflicting Lanes Right	t 0	2	2
HCM Control Delay, s/v	ve 2 8.9	25.8	16.8
HCM LOS	D	D	С

Lane	EBLn1	EBLn2V	VBLn1\	VBLn2	SBLn1	SBLn2
Vol Left, %	100%	0%	0%	0%	100%	0%
Vol Thru, %	0%	100%	100%	0%	0%	0%
Vol Right, %	0%	0%	0%	100%	0%	100%
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	345	374	362	125	74	252
LT Vol	345	0	0	0	74	0
Through Vol	0	374	362	0	0	0
RT Vol	0	0	0	125	0	252
Lane Flow Rate	375	407	393	136	80	274
Geometry Grp	5	5	5	5	5	5
Degree of Util (X)	0.759	0.766	0.78	0.242	0.186	0.54
Departure Headway (Hd)	7.29	6.779	7.132	6.415	8.327	7.096
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes
Сар	499	537	508	560	433	509
Service Time	5.01	4.498	4.868	4.151	6.043	4.813
HCM Lane V/C Ratio	0.752	0.758	0.774	0.243	0.185	0.538
HCM Control Delay, s/veh	29.5	28.4	30.8	11.2	12.9	17.9
HCM Lane LOS	D	D	D	В	В	С
HCM 95th-tile Q	6.6	6.8	7	0.9	0.7	3.2

	ၨ	→	•	<	←	•	•	†	/	/	↓	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		∱ Љ		ă	ĵ∍			↑	7	*	₽	
Traffic Volume (veh/h)	57	64	191	51	91	59	269	199	47	38	219	32
Future Volume (veh/h)	57	64	191	51	91	59	269	199	47	38	219	32
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approac	h	No			No			No			No	
	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856
Adj Flow Rate, veh/h	60	67	201	54	96	62	283	209	49	40	231	34
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	3	3	3	3	3	3	3	3	3	3	3	3
Cap, veh/h	152	320	285	142	185	120	325	588	498	116	314	46
Arrive On Green	0.09	0.18	0.18	0.08	0.18	0.18	0.18	0.32	0.32	0.07	0.20	0.20
Sat Flow, veh/h	1767	1763	1572	1767	1053	680	1767	1856	1572	1767	1581	233
Grp Volume(v), veh/h	60	67	201	54	0	158	283	209	49	40	0	265
Grp Sat Flow(s), veh/h/lr		1763	1572	1767	0	1733	1767	1856	1572	1767	0	1814
Q Serve(g_s), s	1.7	1.7	6.4	1.5	0.0	4.4	8.3	4.6	1.2	1.2	0.0	7.3
Cycle Q Clear(g_c), s	1.7	1.7	6.4	1.5	0.0	4.4	8.3	4.6	1.2	1.2	0.0	7.3
Prop In Lane	1.00		1.00	1.00		0.39	1.00		1.00	1.00		0.13
Lane Grp Cap(c), veh/h		320	285	142	0	305	325	588	498	116	0	360
V/C Ratio(X)	0.39	0.21	0.70	0.38	0.00	0.52	0.87	0.36	0.10	0.35	0.00	0.74
Avail Cap(c_a), veh/h	258	826	737	258	0	812	325	1057	896	258	0	965
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh		18.6	20.5	23.3	0.0	19.9	21.2	14.0	12.9	23.8	0.0	20.1
Incr Delay (d2), s/veh	1.7	0.3	3.2	1.7	0.0	1.4	21.9	0.4	0.1	1.8	0.0	3.0
Initial Q Delay(d3), s/vel		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh		0.6	2.2	0.6	0.0	1.6	4.8	1.6	0.3	0.5	0.0	2.9
Unsig. Movement Delay												
LnGrp Delay(d), s/veh	24.7	18.9	23.7	24.9	0.0	21.3	43.0	14.4	12.9	25.6	0.0	23.0
LnGrp LOS	С	В	С	С		С	D	В	В	С		С
Approach Vol, veh/h		328			212			541			305	
Approach Delay, s/veh		22.9			22.2			29.3			23.4	
Approach LOS		C			С			С			С	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc)	, s7.7	22.2	8.5	15.0	14.0	15.9	8.8	14.7				
Change Period (Y+Rc),		5.3	4.2	5.3	4.2	5.3	4.2	5.3				
Max Green Setting (Gm		30.4	7.8	25.0	9.8	28.4	7.8	25.0				
Max Q Clear Time (g_c-		6.6	3.5	8.4	10.3	9.3	3.7	6.4				
Green Ext Time (p_c), s	, .	1.2	0.0	1.3	0.0	1.3	0.0	0.7				
Intersection Summary												
HCM 7th Control Delay,	s/veh		25.4									
HCM 7th LOS			С									

	ၨ	→	•	<	←	•	•	†	*	/	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ተ ተጉ		*	ተተተ	7	ሻሻ		7	ሻሻ	†	7
Traffic Volume (veh/h)	193	859	370	185	590	240	462	229	230	171	184	168
Future Volume (veh/h)	193	859	370	185	590	240	462	229	230	171	184	168
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approac		No			No			No			No	
Adj Sat Flow, veh/h/ln	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856
Adj Flow Rate, veh/h	210	934	402	201	641	261	502	249	250	186	200	183
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	3	3	3	3	3	3	3	3	3	3	3	3
Cap, veh/h	871	1342	577	226	1284	398	557	314	266	415	237	601
Arrive On Green	0.51	0.77	0.77	0.13	0.25	0.25	0.16	0.17	0.17	0.12	0.13	0.13
Sat Flow, veh/h	3428	3471	1493	1767	5066	1572	3428	1856	1572	3428	1856	1572
Grp Volume(v), veh/h	210	909	427	201	641	261	502	249	250	186	200	183
Grp Sat Flow(s), veh/h/lr		1689	1587	1767	1689	1572	1714	1856	1572	1714	1856	1572
Q Serve(g_s), s	4.5	17.2	17.2	14.5	14.1	19.3	18.7	16.7	14.9	6.6	13.7	0.0
Cycle Q Clear(g_c), s	4.5	17.2	17.2	14.5	14.1	19.3	18.7	16.7	14.9	6.6	13.7	0.0
Prop In Lane	1.00		0.94	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h		1306	613	226	1284	398	557	314	266	415	237	601
V/C Ratio(X)	0.24	0.70	0.70	0.89	0.50	0.66	0.90	0.79	0.94	0.45	0.84	0.30
Avail Cap(c_a), veh/h	871	1306	613	273	1847	573	636	440	373	415	274	632
HCM Platoon Ratio	2.00	2.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	0.95	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/vel		11.0	11.0	55.8	41.5	43.4	53.4	51.8	28.3	53.1	55.4	28.1
Incr Delay (d2), s/veh	0.0	2.9	6.1	22.6	1.4	8.2	13.9	9.6	30.4	0.3	21.3	0.5
Initial Q Delay(d3), s/ve		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),vel		4.0	4.3	7.7	5.9	8.4	9.1	8.6	7.9	2.8	7.7	4.1
Unsig. Movement Delay												
LnGrp Delay(d), s/veh	25.0	13.9	17.1	78.4	42.9	51.6	67.3	61.5	58.7	53.4	76.7	28.6
LnGrp LOS	С	В	В	Е	D	D	Е	Е	Е	D	Е	С
Approach Vol, veh/h		1546			1103			1001			569	
Approach Delay, s/veh		16.3			51.4			63.7			53.6	
Approach LOS		В			D			Е			D	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc)		57.1	27.0	23.4	39.8	39.7	21.6	28.8				
Change Period (Y+Rc),		6.8	5.9	6.8	6.8	* 6.8	5.9	6.8				
Max Green Setting (Gm		41.2	24.1	19.2	13.9	* 47	12.5	30.8				
Max Q Clear Time (g_c		19.2	20.7	15.7	6.5	21.3	8.6	18.7				
Green Ext Time (p_c), s	0.1	16.1	0.4	0.9	0.2	11.6	0.1	3.2				
Intersection Summary	, .		44.5									
HCM 7th Control Delay,	, s/veh		41.8									
HCM 7th LOS			D									
Notes	al == -'		in a c	الماما			411		!	lla a la		
* HCM 7th computation	aı engi	ne requ	ıres equ	iai ciea	rance ti	mes to	tne ph	ases cro	ussing 1	me barr	ier.	

Intersection: 1: Private Driveway/SR 99 SB Ramps & Almond Avenue

Movement	EB	EB	EB	WB	WB	WB	NB	NB	NB	SB	SB	SB
Directions Served	L	Т	R	L	T	R	L	Т	R	L	Т	R
Maximum Queue (ft)	345	1413	64	200	244	200	116	45	23	91	64	85
Average Queue (ft)	333	1050	20	15	119	81	34	6	4	59	19	52
95th Queue (ft)	396	1806	49	77	226	166	75	24	18	97	50	81
Link Distance (ft)		1361			725			437		79	79	79
Upstream Blk Time (%)		51								6	0	2
Queuing Penalty (veh)		0								10	0	3
Storage Bay Dist (ft)	225		80	120		120	75		75			
Storage Blk Time (%)	91	0	0		15	1	3					
Queuing Penalty (veh)	207	1	0		27	1	0					

Intersection: 2: Tozer Avenue & Avenue 13.5

Movement	EB	WB	NB	SB	SB
Directions Served	LTR	LTR	L	L	T
Maximum Queue (ft)	114	74	50	75	19
Average Queue (ft)	36	34	10	20	1
95th Queue (ft)	76	58	34	53	6
Link Distance (ft)	1240	1264			2555
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (ft)			150	150	
Storage Blk Time (%)					
Queuing Penalty (veh)					

Intersection: 3: Tozer Avenue & Knox Street

Movement	EB	EB	NB	SB
Directions Served	L	R	LT	UT
Maximum Queue (ft)	19	61	65	25
Average Queue (ft)	5	21	18	2
95th Queue (ft)	19	45	50	12
Link Distance (ft)	1823	1823	116	313
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 4: Tozer Avenue & B Avenue

Movement	SW
Directions Served	LR
Maximum Queue (ft)	74
Average Queue (ft)	32
95th Queue (ft)	57
Link Distance (ft)	215
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Intersection: 5: Tozer Avenue & C Avenue

Movement	SB
Directions Served	R
Maximum Queue (ft)	31
Average Queue (ft)	7
95th Queue (ft)	28
Link Distance (ft)	213
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Intersection: 6: Road 28.25/Golden State Boulevard & Avenue 13

Movement	EB	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	L	Т	R	L	TR	L	TR	L	TR	
Maximum Queue (ft)	369	437	370	369	523	255	262	118	186	
Average Queue (ft)	153	176	69	81	252	130	99	52	86	
95th Queue (ft)	275	313	205	182	427	221	204	98	151	
Link Distance (ft)		1102			1582		436		2836	
Upstream Blk Time (%)										
Queuing Penalty (veh)										
Storage Bay Dist (ft)	250		250	250		250		250		
Storage Blk Time (%)	0	4			15	0	1			
Queuing Penalty (veh)	0	16			16	0	1			

Intersection: 7: Avenue 13 & Tozer Avenue

Movement	EB	EB	WB	WB	SB	SB
Directions Served	L	Т	T	R	L	R
Maximum Queue (ft)	137	186	184	84	74	142
Average Queue (ft)	78	86	89	42	42	72
95th Queue (ft)	122	144	135	71	72	113
Link Distance (ft)		1582	3488		174	174
Upstream Blk Time (%)						
Queuing Penalty (veh)						
Storage Bay Dist (ft)	250			250		
Storage Blk Time (%)						
Queuing Penalty (veh)						

Intersection: 8: Avenue 29 & Avenue 13

Movement	EB	EB	EB	WB	WB	NB	NB	NB	B32	SB	SB	
Directions Served	L	Т	TR	UL	TR	L	Т	R	Т	L	TR	
Maximum Queue (ft)	111	149	240	90	146	174	489	175	56	174	376	
Average Queue (ft)	30	57	106	50	56	118	138	19	2	105	210	
95th Queue (ft)	74	117	192	82	123	173	304	74	18	192	344	
Link Distance (ft)		237	237		914		4336		818		1337	
Upstream Blk Time (%)			0									
Queuing Penalty (veh)			0									
Storage Bay Dist (ft)	100			275		100		100		100		
Storage Blk Time (%)	1	3				19	9			6	33	
Queuing Penalty (veh)	1	1				42	21			25	36	

Intersection: 9: SR 99 NB Off-Ramp & Avenue 12 & SR 99 NB On-Ramp

Movement	EB	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	NB
Directions Served	L	L	Т	Т	T	Т	Т	Т	R	<	<	R
Maximum Queue (ft)	103	108	144	155	139	120	97	55	121	349	385	123
Average Queue (ft)	42	41	58	61	48	29	20	7	31	162	198	49
95th Queue (ft)	84	84	112	127	110	78	63	33	85	275	324	89
Link Distance (ft)			1743	1743	1743	1481	1481	1481			1105	
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)	425	425							950	150		150
Storage Blk Time (%)										10	17	
Queuing Penalty (veh)										47	83	

Intersection: 9: SR 99 NB Off-Ramp & Avenue 12 & SR 99 NB On-Ramp

Movement	NB
Directions Served	R
Maximum Queue (ft)	109
Average Queue (ft)	38
95th Queue (ft)	77
Link Distance (ft)	
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	150
Storage Blk Time (%)	
Queuing Penalty (veh)	

Intersection: 10: Private Drwy/Road 29 & Avenue 12

Movement	EB	EB	EB	EB	EB	WB	WB	WB	WB	WB	NB	NB
Directions Served	L	L	T	T	TR	L	T	T	T	R	L	L
Maximum Queue (ft)	112	123	471	384	384	260	154	269	296	70	256	269
Average Queue (ft)	77	33	285	240	182	169	75	121	192	36	89	179
95th Queue (ft)	117	89	401	357	298	243	130	204	284	61	225	246
Link Distance (ft)			1481	1481	1481		1418	1418	1418			
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)	575	575				300				600	250	250
Storage Blk Time (%)											0	1
Queuing Penalty (veh)											0	3

Intersection: 10: Private Drwy/Road 29 & Avenue 12

Movement	NB	NB	SB	SB	SB	SB
Directions Served	T	R	L	L	T	R
Maximum Queue (ft)	224	76	200	189	262	114
Average Queue (ft)	100	48	101	89	164	55
95th Queue (ft)	191	76	187	170	250	106
Link Distance (ft)	625				818	
Upstream Blk Time (%)						
Queuing Penalty (veh)						
Storage Bay Dist (ft)		250	460	460		460
Storage Blk Time (%)						
Queuing Penalty (veh)						

Intersection: 25: SR 99 SB Ramps/SR 99 SB Off-Ramp & SR 99 SB On-Ramp

Movement	SB	SB
Directions Served	T	Т
Maximum Queue (ft)	94	75
Average Queue (ft)	15	7
95th Queue (ft)	61	38
Link Distance (ft)	59	59
Upstream Blk Time (%)	1	1
Queuing Penalty (veh)	0	0
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Network Summary

Network wide Queuing Penalty: 543

Intersection: 1: Private Driveway/SR 99 SB Ramps & Almond Avenue

Movement	EB	EB	EB	WB	WB	WB	NB	NB	NB	SB	SB	SB
Directions Served	L	T	R	L	Т	R	L	Т	R	L	T	R
Maximum Queue (ft)	345	1187	46	50	161	96	118	153	23	92	79	82
Average Queue (ft)	308	541	15	8	82	46	59	28	9	82	9	46
95th Queue (ft)	411	1132	35	32	148	83	105	79	27	96	40	78
Link Distance (ft)		1361			725			437		79	79	79
Upstream Blk Time (%)										30	0	1
Queuing Penalty (veh)										52	0	1
Storage Bay Dist (ft)	225		80	120		120	75		75			
Storage Blk Time (%)	74	2			4		10					
Queuing Penalty (veh)	151	7			5		4					

Intersection: 2: Tozer Avenue & Avenue 13.5

Movement	EB	WB	NB	SB
Directions Served	LTR	LTR	L	L
Maximum Queue (ft)	52	91	30	52
Average Queue (ft)	19	37	5	18
95th Queue (ft)	44	67	23	40
Link Distance (ft)	1240	1264		
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)			150	150
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 3: Tozer Avenue & Knox Street

Movement	EB	EB	NB
Directions Served	L	R	LT
Maximum Queue (ft)	19	51	53
Average Queue (ft)	4	17	19
95th Queue (ft)	15	34	46
Link Distance (ft)	1823	1823	105
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 4: Tozer Avenue & B Avenue

Movement	SE	SW
Directions Served	L	LR
Maximum Queue (ft)	27	113
Average Queue (ft)	5	35
95th Queue (ft)	21	73
Link Distance (ft)		194
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)	285	
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 5: Tozer Avenue & C Avenue

Movement	EB	SB
Directions Served	L	R
Maximum Queue (ft)	25	31
Average Queue (ft)	1	3
95th Queue (ft)	8	18
Link Distance (ft)		214
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)	285	
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 6: Road 28.25/Golden State Boulevard & Avenue 13

Movement	EB	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	L	Т	R	L	TR	L	TR	L	TR	
Maximum Queue (ft)	153	568	370	370	436	253	219	120	179	
Average Queue (ft)	83	215	81	120	215	134	79	67	104	
95th Queue (ft)	136	381	214	248	347	217	162	102	179	
Link Distance (ft)		1102			1584		436		2836	
Upstream Blk Time (%)										
Queuing Penalty (veh)										
Storage Bay Dist (ft)	250		250	250		250		250		
Storage Blk Time (%)		7		1	8	0				
Queuing Penalty (veh)		22		7	10	0				

Intersection: 7: Avenue 13 & Tozer Avenue

Movement	EB	EB	WB	WB	SB	SB
Directions Served	L	Т	T	R	L	R
Maximum Queue (ft)	176	134	140	78	52	135
Average Queue (ft)	84	63	84	44	30	57
95th Queue (ft)	140	100	130	70	48	103
Link Distance (ft)		1584	3486		177	177
Upstream Blk Time (%)						
Queuing Penalty (veh)						
Storage Bay Dist (ft)	250			250		
Storage Blk Time (%)						
Queuing Penalty (veh)						

Intersection: 8: Avenue 29 & Avenue 13

Movement	EB	EB	EB	WB	WB	NB	NB	NB	SB	SB	
Directions Served	L	Т	TR	UL	TR	L	Т	R	L	TR	
Maximum Queue (ft)	73	72	96	111	126	175	895	175	72	221	
Average Queue (ft)	33	30	48	30	50	146	377	25	25	111	
95th Queue (ft)	65	63	79	77	95	218	865	94	55	166	
Link Distance (ft)		237	237		914		4336			1337	
Upstream Blk Time (%)											
Queuing Penalty (veh)											
Storage Bay Dist (ft)	100			275		100		100	100		
Storage Blk Time (%)						54	5			12	
Queuing Penalty (veh)						132	15			4	

Intersection: 9: SR 99 NB Off-Ramp & Avenue 12 & SR 99 NB On-Ramp

Movement	EB	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	NB
Directions Served	L	L	T	T	Т	Т	T	Т	R	<	<	R
Maximum Queue (ft)	97	71	161	166	117	151	120	74	116	262	278	122
Average Queue (ft)	36	35	67	65	45	32	28	14	20	169	187	64
95th Queue (ft)	75	72	141	125	102	96	89	53	78	253	270	103
Link Distance (ft)			1743	1743	1743	1481	1481	1481			1105	
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)	425	425							950	150		150
Storage Blk Time (%)										14	23	
Queuing Penalty (veh)										75	123	

Intersection: 9: SR 99 NB Off-Ramp & Avenue 12 & SR 99 NB On-Ramp

Movement	NB
Directions Served	R
Maximum Queue (ft)	110
Average Queue (ft)	34
95th Queue (ft)	70
Link Distance (ft)	
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	150
Storage Blk Time (%)	
Queuing Penalty (veh)	

Intersection: 10: Avenue 12 & Road 29

Movement	EB	EB	EB	EB	EB	WB	WB	WB	WB	WB	NB	NB
Directions Served	L	L	T	Т	TR	L	Т	Т	Т	R	L	L
Maximum Queue (ft)	156	143	371	399	416	252	198	230	288	84	309	370
Average Queue (ft)	90	52	286	239	162	169	115	147	196	50	194	259
95th Queue (ft)	160	124	393	347	294	248	177	229	277	76	299	350
Link Distance (ft)			1481	1481	1481		1418	1418	1418			
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)	575	575				300				600	250	250
Storage Blk Time (%)											0	11
Queuing Penalty (veh)											1	52

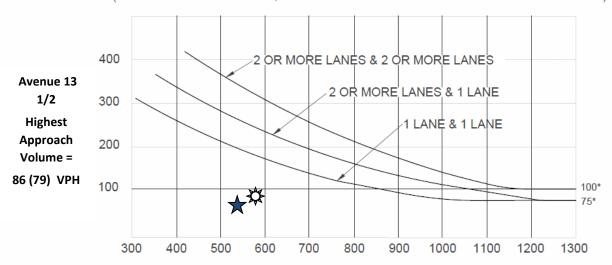
Intersection: 10: Avenue 12 & Road 29

Movement	NB	NB	SB	SB	SB	SB
Directions Served	T	R	L	L	Т	R
Maximum Queue (ft)	489	138	137	101	317	197
Average Queue (ft)	186	70	68	47	184	63
95th Queue (ft)	338	121	111	97	281	130
Link Distance (ft)	609				818	
Upstream Blk Time (%)						
Queuing Penalty (veh)						
Storage Bay Dist (ft)		250	460	460		460
Storage Blk Time (%)	3					
Queuing Penalty (veh)	21					

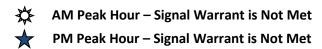
Intersection: 25: SR 99 SB Ramps/SR 99 SB Off-Ramp & SR 99 SB On-Ramp

Movement	SB	SB	B37
Directions Served	Т	T	T
Maximum Queue (ft)	210	290	75
Average Queue (ft)	67	22	5
95th Queue (ft)	163	138	33
Link Distance (ft)	59	59	560
Upstream Blk Time (%)	14	0	
Queuing Penalty (veh)	0	0	
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

Network Summary


Network wide Queuing Penalty: 683

Appendix K: Traffic Signal Warrants


Existing Traffic Conditions 2. Tozer Avenue / Avenue 13 1/2 AM (PM) Peak Hour

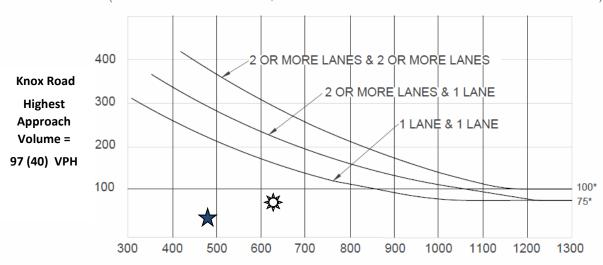
(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

Tozer Avenue Total of Both Approaches = 589 (536) VPH

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor street approach with one lane.

Source: California Manual of Uniform Traffic Control Devices (CA MUTCD 2014 Edition)
Chapter 4C: Traffic Control Signal Needs Studies
Part 4: Highway Traffic Signals
November 7, 2014

516 W. Shaw Ave., Ste. 103


Fresno, CA 93704

info@JLBtraffic.com

www.JLBtraffic.com

Existing Traffic Conditions 3. Tozer Avenue / Knox Road AM (PM) Peak Hour

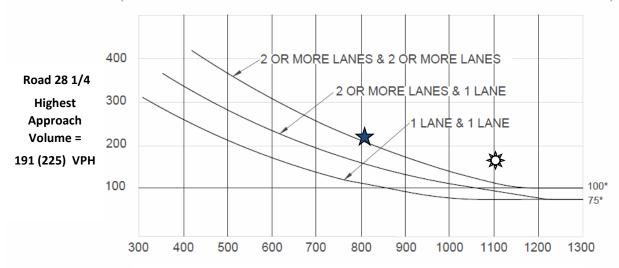
(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

Tozer Avenue Total of Both Approaches = 607 (497) VPH

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor street approach with one lane.

Source: California Manual of Uniform Traffic Control Devices (CA MUTCD 2014 Edition)
Chapter 4C: Traffic Control Signal Needs Studies
Part 4: Highway Traffic Signals
November 7, 2014

516 W. Shaw Ave., Ste. 103


Fresno, CA 93704

info@JLBtraffic.com

www.JLBtraffic.com

Existing Traffic Conditions 6. Road 28 1/4 / Avenue 13 AM (PM) Peak Hour

(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

Avenue 13 Total of Both Approaches = 1100 (821) VPH

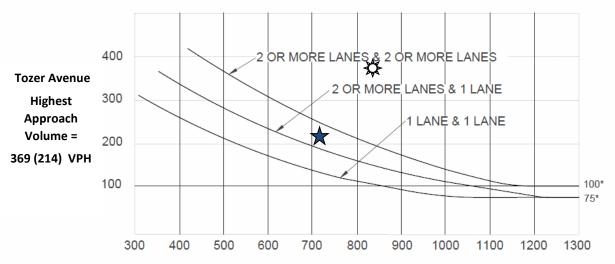
*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor street approach with one lane.

AM Peak Hour - Signal Warrant is Met

PM Peak Hour - Signal Warrant is Met

Source: California Manual of Uniform Traffic Control Devices (CA MUTCD 2014 Edition)
Chapter 4C: Traffic Control Signal Needs Studies
Part 4: Highway Traffic Signals
November 7, 2014

516 W. Shaw Ave., Ste. 103


Fresno, CA 93704

info@JLBtraffic.com

www.JLBtraffic.com

Existing Traffic Conditions 7. Tozer Avenue / Avenue 13 AM (PM) Peak Hour

(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

Avenue 13 Total of Both Approaches = 827 (739) VPH

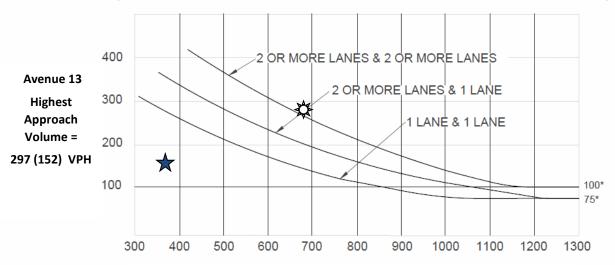
*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor street approach with one lane.

AM Peak Hour - Signal Warrant is Met

PM Peak Hour - Signal Warrant is Met

Source: California Manual of Uniform Traffic Control Devices (CA MUTCD 2014 Edition)
Chapter 4C: Traffic Control Signal Needs Studies
Part 4: Highway Traffic Signals
November 7, 2014

516 W. Shaw Ave., Ste. 103


Fresno, CA 93704

info@JLBtraffic.com

www.JLBtraffic.com

Existing Traffic Conditions 8. Road 29 / Avenue 13 AM (PM) Peak Hour

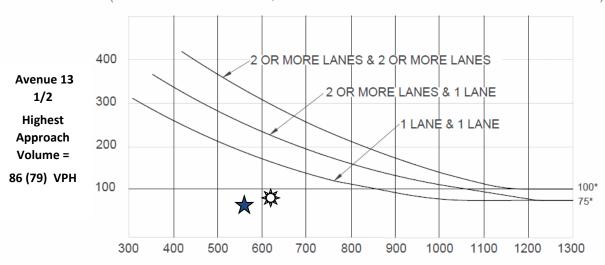
(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

Road 29 Total of Both Approaches = 693 (375) VPH

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor street approach with one lane.

Source: California Manual of Uniform Traffic Control Devices (CA MUTCD 2014 Edition)
Chapter 4C: Traffic Control Signal Needs Studies
Part 4: Highway Traffic Signals
November 7, 2014

516 W. Shaw Ave., Ste. 103


Fresno, CA 93704

info@JLBtraffic.com

www.JLBtraffic.com

Existing plus Project Traffic Conditions 2. Tozer Avenue / Avenue 13 1/2 AM (PM) Peak Hour

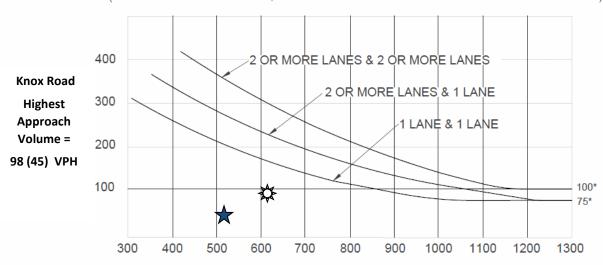
(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

Tozer Avenue Total of Both Approaches = 627 (569) VPH

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor street approach with one lane.

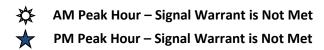
Source: California Manual of Uniform Traffic Control Devices (CA MUTCD 2014 Edition)
Chapter 4C: Traffic Control Signal Needs Studies
Part 4: Highway Traffic Signals
November 7, 2014

516 W. Shaw Ave., Ste. 103


Fresno, CA 93704

info@JLBtraffic.com

www.JLBtraffic.com


Existing plus Project Traffic Conditions 3. Tozer Avenue / Knox Road AM (PM) Peak Hour

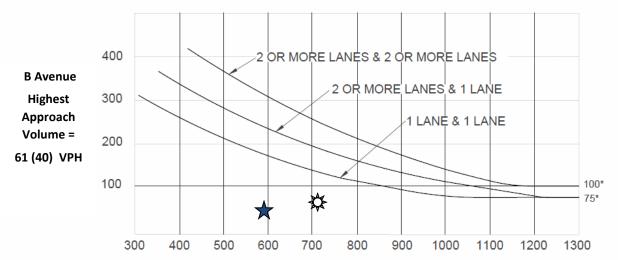
(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

Tozer Avenue Total of Both Approaches = 632 (533) VPH

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor street approach with one lane.

Source: California Manual of Uniform Traffic Control Devices (CA MUTCD 2014 Edition)
Chapter 4C: Traffic Control Signal Needs Studies
Part 4: Highway Traffic Signals
November 7, 2014

516 W. Shaw Ave., Ste. 103


Fresno, CA 93704

info@JLBtraffic.com

www.JLBtraffic.com

Existing plus Project Traffic Conditions 4. Tozer Avenue / B Avenue AM (PM) Peak Hour

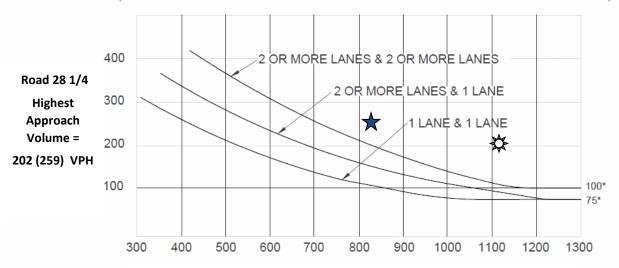
(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

Tozer Avenue Total of Both Approaches = 717 (596) VPH

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor street approach with one lane.

Source: California Manual of Uniform Traffic Control Devices (CA MUTCD 2014 Edition)
Chapter 4C: Traffic Control Signal Needs Studies
Part 4: Highway Traffic Signals
November 7, 2014

516 W. Shaw Ave., Ste. 103


Fresno, CA 93704

info@JLBtraffic.com

www.JLBtraffic.com

Existing plus Project Traffic Conditions 6. Road 28 1/4 / Avenue 13 AM (PM) Peak Hour

(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

Avenue 13 Total of Both Approaches = 1120 (839) VPH

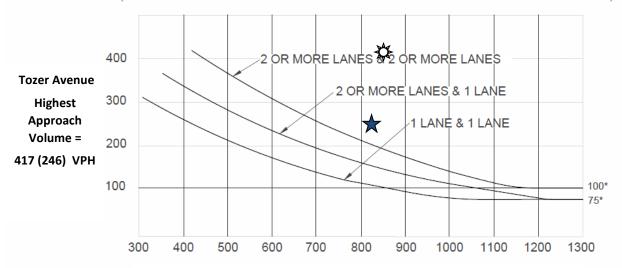
*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor street approach with one lane.

AM Peak Hour - Signal Warrant is Met

PM Peak Hour - Signal Warrant is Met

Source: California Manual of Uniform Traffic Control Devices (CA MUTCD 2014 Edition)
Chapter 4C: Traffic Control Signal Needs Studies
Part 4: Highway Traffic Signals
November 7, 2014

www.JLBtraffic.com


516 W. Shaw Ave., Ste. 103

Fresno, CA 93704

info@JLBtraffic.com

Existing plus Project Traffic Conditions 7. Tozer Avenue / Avenue 13 AM (PM) Peak Hour

(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

Avenue 13 Total of Both Approaches = 855 (824) VPH

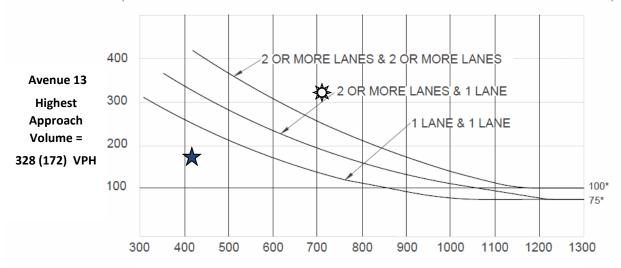
*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor street approach with one lane.

AM Peak Hour - Signal Warrant is Met

PM Peak Hour - Signal Warrant is Met

Source: California Manual of Uniform Traffic Control Devices (CA MUTCD 2014 Edition)
Chapter 4C: Traffic Control Signal Needs Studies
Part 4: Highway Traffic Signals
November 7, 2014

516 W. Shaw Ave., Ste. 103


Fresno, CA 93704

info@JLBtraffic.com

www.JLBtraffic.com

Existing plus Project Traffic Conditions 8. Road 29 / Avenue 13 AM (PM) Peak Hour

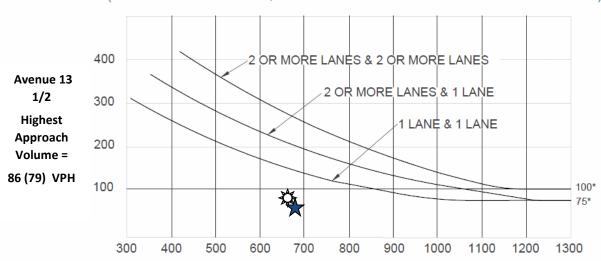
(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

Road 29 Total of Both Approaches = 702 (405) VPH

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor street approach with one lane.

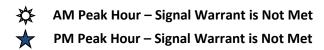
Source: California Manual of Uniform Traffic Control Devices (CA MUTCD 2014 Edition)
Chapter 4C: Traffic Control Signal Needs Studies
Part 4: Highway Traffic Signals
November 7, 2014

516 W. Shaw Ave., Ste. 103


Fresno, CA 93704

info@JLBtraffic.com

www.JLBtraffic.com


Near Term plus Project Traffic Conditions 2. Tozer Avenue / Avenue 13 1/2 AM (PM) Peak Hour

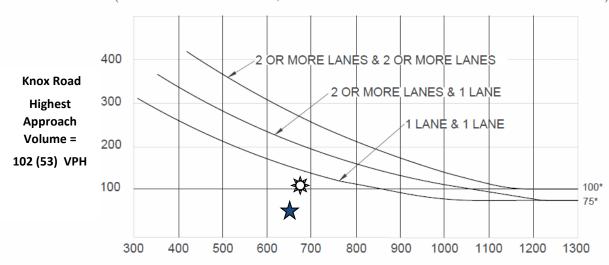
(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

Tozer Avenue Total of Both Approaches = 678 (682) VPH

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor street approach with one lane.

Source: California Manual of Uniform Traffic Control Devices (CA MUTCD 2014 Edition)
Chapter 4C: Traffic Control Signal Needs Studies
Part 4: Highway Traffic Signals
November 7, 2014

516 W. Shaw Ave., Ste. 103


Fresno, CA 93704

info@JLBtraffic.com

www.JLBtraffic.com

Near Term plus Project Traffic Conditions 3. Tozer Avenue / Knox Road AM (PM) Peak Hour

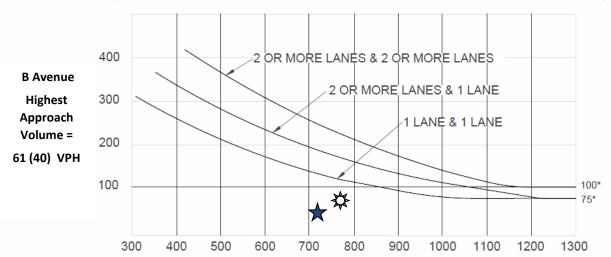
(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

Tozer Avenue Total of Both Approaches = 687 (652) VPH

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor street approach with one lane.

Source: California Manual of Uniform Traffic Control Devices (CA MUTCD 2014 Edition)
Chapter 4C: Traffic Control Signal Needs Studies
Part 4: Highway Traffic Signals
November 7, 2014

516 W. Shaw Ave., Ste. 103


Fresno, CA 93704

info@JLBtraffic.com

www.JLBtraffic.com

Near Term plus Project Traffic Conditions 4. Tozer Avenue / B Avenue AM (PM) Peak Hour

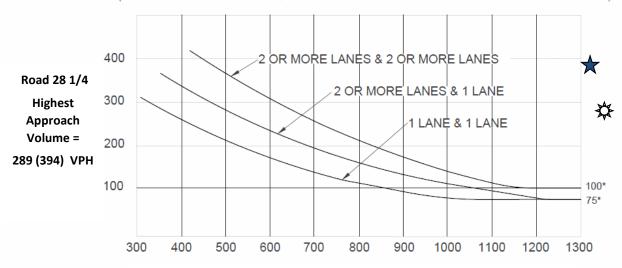
(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

Tozer Avenue Total of Both Approaches = 776 (723) VPH

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor street approach with one lane.

Source: California Manual of Uniform Traffic Control Devices (CA MUTCD 2014 Edition)
Chapter 4C: Traffic Control Signal Needs Studies
Part 4: Highway Traffic Signals
November 7, 2014

516 W. Shaw Ave., Ste. 103


Fresno, CA 93704

info@JLBtraffic.com

www.JLBtraffic.com

Near Term plus Project Traffic Conditions 6. Road 28 1/4 / Avenue 13 AM (PM) Peak Hour

(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

Avenue 13 Total of Both Approaches = 1430 (1360) VPH

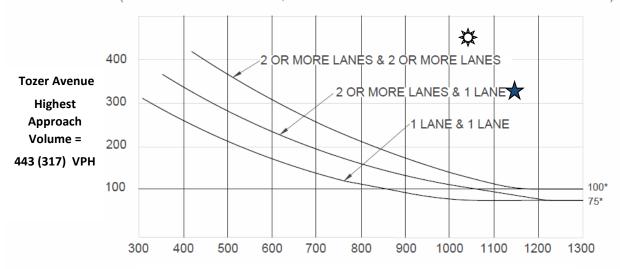
*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor street approach with one lane.

AM Peak Hour - Signal Warrant is Met

PM Peak Hour - Signal Warrant is Met

Source: California Manual of Uniform Traffic Control Devices (CA MUTCD 2014 Edition)
Chapter 4C: Traffic Control Signal Needs Studies
Part 4: Highway Traffic Signals
November 7, 2014

516 W. Shaw Ave., Ste. 103


Fresno, CA 93704

info@JLBtraffic.com

www.JLBtraffic.com

Near Term plus Project Traffic Conditions 7. Tozer Avenue / Avenue 13 AM (PM) Peak Hour

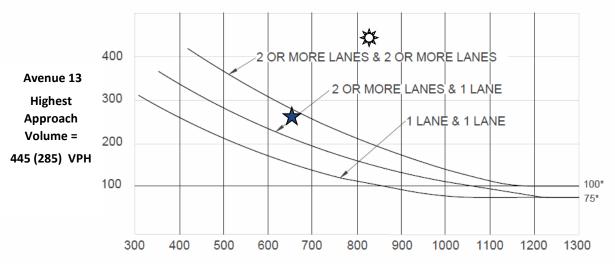
(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

Avenue 13 Total of Both Approaches = 1042 (1154) VPH

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor street approach with one lane.

Source: California Manual of Uniform Traffic Control Devices (CA MUTCD 2014 Edition)
Chapter 4C: Traffic Control Signal Needs Studies
Part 4: Highway Traffic Signals
November 7, 2014

516 W. Shaw Ave., Ste. 103


Fresno, CA 93704

info@JLBtraffic.com

www.JLBtraffic.com

Near Term plus Project Traffic Conditions 8. Road 29 / Avenue 13 AM (PM) Peak Hour

(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

Road 29 Total of Both Approaches = 830 (661) VPH

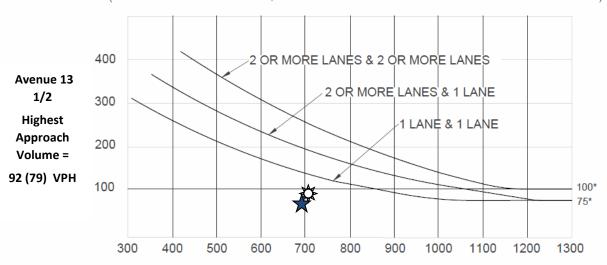
*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor street approach with one lane.

AM Peak Hour - Signal Warrant is Met

PM Peak Hour - Signal Warrant is Met

Source: California Manual of Uniform Traffic Control Devices (CA MUTCD 2014 Edition)
Chapter 4C: Traffic Control Signal Needs Studies
Part 4: Highway Traffic Signals
November 7, 2014

516 W. Shaw Ave., Ste. 103


Fresno, CA 93704

info@JLBtraffic.com

www.JLBtraffic.com

Cumulative Year 2046 plus Project Traffic Conditions 2. Tozer Avenue / Avenue 13 1/2 AM (PM) Peak Hour

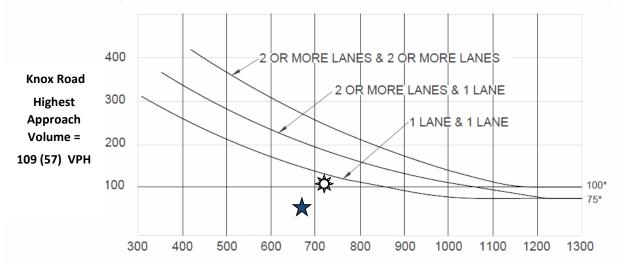
(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

Tozer Avenue Total of Both Approaches = 706 (696) VPH

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor street approach with one lane.

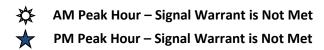
Source: California Manual of Uniform Traffic Control Devices (CA MUTCD 2014 Edition)
Chapter 4C: Traffic Control Signal Needs Studies
Part 4: Highway Traffic Signals
November 7, 2014

516 W. Shaw Ave., Ste. 103


Fresno, CA 93704

info@JLBtraffic.com

www.JLBtraffic.com


Cumulative Year 2046 plus Project Traffic Conditions 3. Tozer Avenue / Knox Road AM (PM) Peak Hour

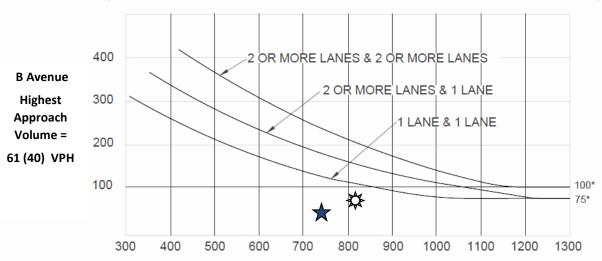
(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

Tozer Avenue Total of Both Approaches = 720 (668) VPH

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor street approach with one lane.

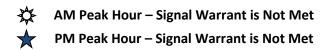
Source: California Manual of Uniform Traffic Control Devices (CA MUTCD 2014 Edition)
Chapter 4C: Traffic Control Signal Needs Studies
Part 4: Highway Traffic Signals
November 7, 2014

516 W. Shaw Ave., Ste. 103


Fresno, CA 93704

info@JLBtraffic.com

www.JLBtraffic.com


Cumulative Year 2046 plus Project Traffic Conditions 4. Tozer Avenue / B Avenue AM (PM) Peak Hour

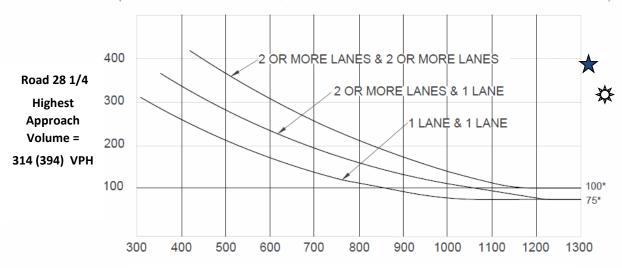
(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

Tozer Avenue Total of Both Approaches = 816 (743) VPH

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor street approach with one lane.

Source: California Manual of Uniform Traffic Control Devices (CA MUTCD 2014 Edition)
Chapter 4C: Traffic Control Signal Needs Studies
Part 4: Highway Traffic Signals
November 7, 2014

516 W. Shaw Ave., Ste. 103


Fresno, CA 93704

info@JLBtraffic.com

www.JLBtraffic.com

Cumulative Year 2046 plus Project Traffic Conditions 6. Road 28 1/4 / Avenue 13 AM (PM) Peak Hour

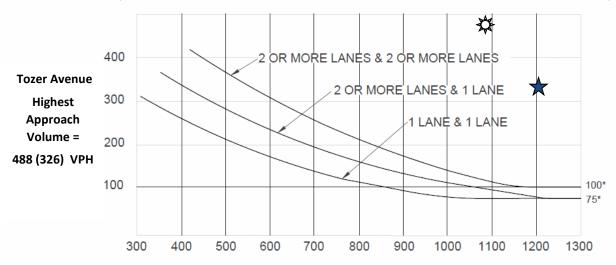
(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

Avenue 13 Total of Both Approaches = 1513 (1429) VPH

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor street approach with one lane.

Source: California Manual of Uniform Traffic Control Devices (CA MUTCD 2014 Edition)
Chapter 4C: Traffic Control Signal Needs Studies
Part 4: Highway Traffic Signals
November 7, 2014

516 W. Shaw Ave., Ste. 103


Fresno, CA 93704

info@JLBtraffic.com

www.JLBtraffic.com

Cumulative Year 2046 plus Project Traffic Conditions 7. Tozer Avenue / Avenue 13 AM (PM) Peak Hour

(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

Avenue 13 Total of Both Approaches = 1092 (1206) VPH

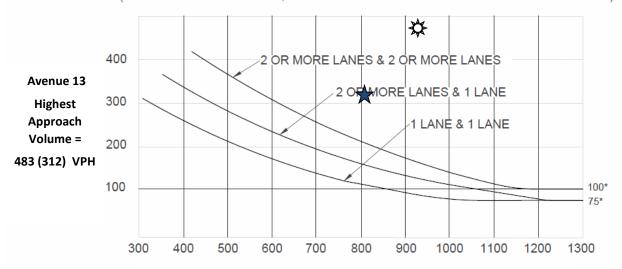
*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor street approach with one lane.

AM Peak Hour - Signal Warrant is Met

PM Peak Hour - Signal Warrant is Met

Source: California Manual of Uniform Traffic Control Devices (CA MUTCD 2014 Edition)
Chapter 4C: Traffic Control Signal Needs Studies
Part 4: Highway Traffic Signals
November 7, 2014

516 W. Shaw Ave., Ste. 103


Fresno, CA 93704

info@JLBtraffic.com

www.JLBtraffic.com

Cumulative Year 2046 plus Project Traffic Conditions 8. Road 29 / Avenue 13 AM (PM) Peak Hour

(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

Road 29 Total of Both Approaches = 938 (804) VPH

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor street approach with one lane.

Source: California Manual of Uniform Traffic Control Devices (CA MUTCD 2014 Edition)
Chapter 4C: Traffic Control Signal Needs Studies
Part 4: Highway Traffic Signals
November 7, 2014

516 W. Shaw Ave., Ste. 103

Fresno, CA 93704

info@JLBtraffic.com

www.JLBtraffic.com

Vehicle Miles Traveled Analysis

Tozer III Subdivision

Located on the East Side of Tozer Street and North of Avenue 13

In the City of Madera, California

Prepared for:

Joseph Crown Construction 5320 East Pine Street Fresno, CA 93727

December 14, 2024

Project No. 008-013

Traffic Engineering, Transportation Planning, & Parking Solutions

516 W. Shaw Ave., Ste. 103 Fresno, CA 93704 Phone: (559) 570-8991

www.JLBtraffic.com

Traffic Engineering, Transportation Planning, & Parking Solutions Vehicle Miles Traveled Analysis

For the Tozer III Subdivision located on the East Side of Tozer Street and North of Avenue 13

In the City of Madera, CA

December 14, 2024

This Vehicle Miles Traveled Analysis has been prepared under the direction of a licensed Traffic Engineer. The licensed Traffic Engineer attests to the technical information contained therein and has judged the qualifications of any technical specialists providing engineering data from which recommendations, conclusions and decisions are based.

Prepared by:

^LJose Luis Benavides, P.E., T.E.

President

Traffic Engineering, Transportation Planning, & Parking Solutions

516 W. Shaw Ave., Ste. 103 Fresno, CA 93704 Phone: (559) 570-8991 www.JLBtraffic.com

Table of Contents

Project Description	1
Project Trip Generation	
·	
Regulatory Setting and Criteria of Significance	
Conclusions	
Study Participants	3
References	4

List of Appendices

Appendix A: Site Plan

Appendix B: City of Madera VMT Screening Map (VMT per Capita)

Project Description

This report describes a **Vehicle Miles Traveled (VMT) Analysis** prepared by **JLB Traffic Engineering, Inc. (JLB)** for **Tozer III Subdivision (Project)** located on the east side of Tozer Street (Road 28) and north of Avenue 13 in the City of Madera. The Project proposes to develop up to 168 single family residential units and a neighborhood park. Based on information provided to JLB, the Project is consistent with the City of Madera *General Plan*. A Project Site Plan is shown in Appendix A.

Project Trip Generation

The trip generation rates for the proposed Project site were obtained from the 11th Edition of the Trip Generation Manual published by the Institute of Transportation Engineers (ITE). Table I presents the trip generation for the proposed Project with trip generations rates for 168 dwelling units of Single-Family Detached Housing (210) and 1.27 acres of Public Park (411). At buildout, the proposed project is estimated to generate approximately 1,584 daily trips, 118 AM peak hour trips and 158 PM peak hour trips.

Table I: Project Trip Generation

Land Use (ITE Code)	Size	Unit	Daily		AM (7-9) Peak Hour						PM (4-6) Peak Hour					
			Rate	Total	Trip	In	Out	<i>i</i> 0	0	Total		In	Out		0	Total
					Rate	9	6	In	Out	iotai		%		In	Out	Total
Single-Family Detached Housing (210)	168	d.u.	9.43	1,584	0.70	26	74	31	87	118	0.94	63	37	100	58	158
Total Project Driveway Trips				1,584				31	87	118				100	58	158

Note:

d.u. = Dwelling Units

VMT Analysis

Regulatory Setting and Criteria of Significance

Senate Bill (SB) 743 requires that relevant CEQA analysis of transportation impacts be conducted using a metric known as VMT instead of Level of Service (LOS). VMT measures how much actual auto travel (additional miles driven) a proposed project would create on California roads. If the project adds excessive car travel onto our roads, the project may cause a significant transportation impact.

The State CEQA Guidelines were amended to implement SB 743, by adding Section 15064.3. Among its provisions, Section 15064.3 confirms that, except with respect to transportation projects, a project's effect on automobile delay shall not constitute a significant environmental impact. Therefore, LOS measures of impacts on traffic facilities are no longer a relevant CEQA criteria for transportation impacts.

CEQA Guidelines Section 15064.3(b)(4) states that "[a] lead agency has discretion to evaluate a project's vehicle miles traveled, including whether to express the change in absolute terms, per capita, per household or in any other measure. A lead agency may use models to estimate a project's vehicle miles traveled, and may revise those estimates to reflect professional judgment based on substantial evidence. Any assumptions used to estimate vehicle miles traveled and any revision to model outputs should be documented and explained in the environmental document prepared for the project. The standard of adequacy in Section 15151 shall apply to the analysis described in this section."

The Madera County Transportation Commission (MCTC) has created screening maps to be used to screen out projects from a quantitative VMT analysis based on location and land use. The screening maps depict each traffic analysis zone (TAZ) within the County of Madera with a shade of red, orange, yellow green or blue. Blue areas are TAZs that have a VMT that is below the county average VMT by 15% or more, green areas are TAZs that have a VMT that is below the county average VMT by less than 15%, yellow areas are TAZs that have a VMT that is above the county average VMT by less than 15%, orange areas are TAZs that have a VMT that is above the county average VMT between 15% to 30% and red areas are TAZs that have a VMT that is above the county average VMT by more than 30%. These maps are shown in terms of VMT per employee and VMT per capita. The screening map for VMT per Capita is illustrated in Appendix B.

This Project is located within TAZ 321. TAZ 321 is comprised of the area bound by Avenue 13 ½, Avenue 13, Tozer Avenue and Road 28 ½. The screening map in Appendix B shows TAZ 321 in a blue shade. The blue shade depicts TAZs that have a VMT that is below the county average VMT by 15% or more. Based on its location and the MCTC VMT screening maps, this Project is screened out from a quantitative VMT analysis and this Report serves as the required VMT Analysis for this Project.

Conclusions

The Madera County Transportation Commission (MCTC) has created screening maps to be used to screen out projects from a quantitative VMT analysis based on location. The screening maps depict each traffic analysis zone (TAZ) within the County of Madera with a shade of red, orange, yellow green or blue. Blue areas are TAZs that have a VMT that is below the county average VMT by 15% or more and can be screened from a quantitative VMT analysis. This Project is located within TAZ 321. Based on its location and the MCTC VMT screening maps, this Project is screened out from a quantitative VMT analysis and this Report serves as the required VMT Analysis for this Project.

Study Participants

JLB Traffic Engineering, Inc. Personnel

Jose Luis Benavides, PE, TE Project Manager

Matthew Arndt, EIT Engineer I/II

Christian Sanchez, EIT Engineer I/II

Adrian Benavides Engineer I/II

Arjun Dhillon Engineering Aide

Diana Cortes Engineering Aide

Persons Consulted:

Joseph Crown Construction

Keith Helmuth City of Madera

Will Tackett City of Madera

Phu Duong County of Madera

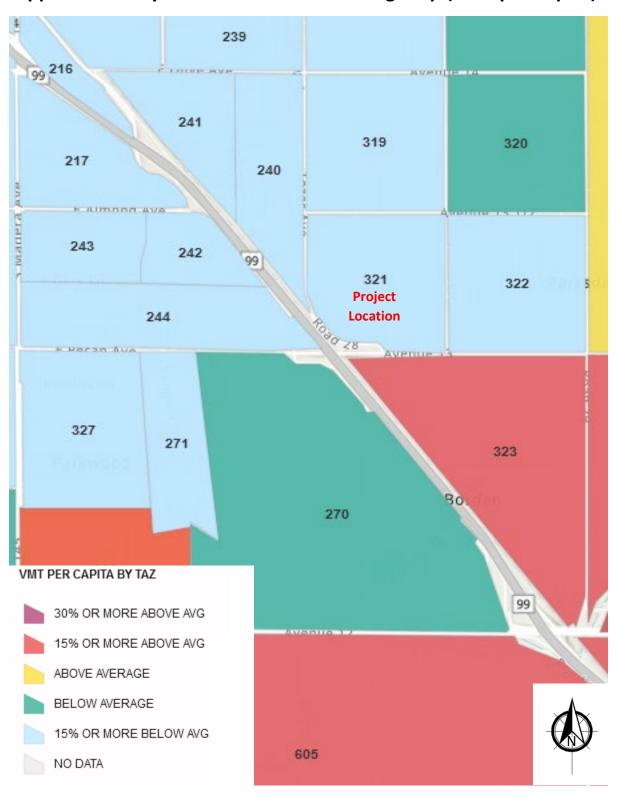
Monty Cox County of Madera

Keyomi Jones Caltrans, D6

David Padilla Caltrans, D6

References

- California Air Pollution Control Officers Association. 2021. "Handbook for Analyzing Greenhouse Gas Emission Reductions, Assessing Climate Vulnerabilities, and Health and Equity". Sacramento: State of California.
- Caltrans. 2020. "Vehicle Miles Traveled-Focused Transportation Impact Study Guide". Sacramento: State of California.
- Caltrans. 2021. "California Manual On Uniform Traffic Control Devices". Sacramento: State of California.
- City of Madera. 2009. "City of Madera General Plan". Madera: City of Madera.
- Governor's Office of Planning and Research. 2018. Technical Advisory On Evaluating Transportation Impacts In CEQA. Ebook. Sacramento: State of California.
- Institute of Transportation Engineers. 2021. "Trip Generation Manual: 11th Edition". Washington: Institute of Transportation Engineers.


Appendix A: Site Plan

Appendix B: City of Madera VMT Screening Map (VMT per Capita)

www.JLBtraffic.com

info@JLBtraffic.com

516 W. Shaw Ave., Ste. 103 Fresno, CA 93704

(559) 570-8991

A p p | **B**