
Appendix

Appendix G Preliminary Environmental Assessment

Appendix

This page intentionally left blank.

PRELIMINARY ENVIRONMENTAL ASSESSMENT

HOPE ELEMENTARY SCHOOL EXPANSION PROJECT PORTERVILLE, TULARE COUNTY, CALIFORNIA (SITE CODE: 104883)

Prepared for:

HOPE ELEMENTARY SCHOOL DISTRICT

AUGUST 2024

August 26, 2024 Project Number: 2301-3641

Elizabeth "Liz" Tisdale, Project Manager California Department of Toxic Substances Control Northern California Schools Unit 8800 Cal Center Drive Sacramento, California 95826-3200

Subject: Preliminary Environmental Assessment Report Hope Elementary School Expansion Project (Project Code: 104883)

Dear Ms. Tisdale:

Padre Associates, Inc. (Padre), on behalf of Hope Elementary School District and PlaceWorks, has prepared this Preliminary Environmental Assessment (PEA) Report for the Hope Elementary School Expansion Project, located at 613 West Teapot Dome Avenue in Porterville, Tulare County, California.

The PEA was completed in accordance with the California Environmental Protection Agency (CalEPA) Department of Toxic Substances Control (DTSC) approved PEA workplan titled: *Preliminary Environmental Assessment Workplan, Hope Elementary School Expansion Project, Porterville, Tulare County, California (Padre, July 2024).*

The PEA results report will be made available to the public for review and comment pursuant to Option A of the California Education Code (CEC) §17213.1.a (6) (A). If you have any questions or require additional information, please contact the undersigned at (916) 333-5920 ext. 240 / 250.

Sincerely, **PADRE ASSOCIATES, INC.**

Alan Churchill, P.G. Senior Geologist

Alan J. Klein, R.E.P.A., C.P.E.S.C., QSD Associate Senior Environmental Scientist

CC: Melanie Matta, Superintendent/Principal, Hope Elementary School District Marianna Zimmerman, Senior Associate I, PlaceWorks Dwayne Mears, Principal, PlaceWorks

TABLE OF CONTENTS

			Page
EXEC	JTIVE	SUMMARY	ES1
1.0	INTRO	DUCTION	1-1
	1.1 1.2 1.3	PURPOSE OBJECTIVES PUBLIC PARTICIPATION	1-1 1-1 1-2
2.0	PROP	ERTY DESCRIPTION AND CONTACTS	2-1
	2.1 2.2 2.3 2.4 2.5 2.6 2.7	SITE ADDRESS / ASSESSOR'S PARCEL NUMBER DESIGNATED CONTACT PERSON AND MAILING ADDRESS PROPERTY USE ENVIROSTOR DATABASE NUMBER TOWNSHIP, RANGE, AND SECTION SITE MAPS PHYSICAL SETTING	2-1 2-1 2-1 2-1 2-1 2-1 2-1
3.0	BACK	GROUND	3-1
4.0	3.1 3.2 3.3	SITE HISTORY SURROUNDING PROPERTY LAND USE CHEMICALS OF POTENTIAL CONCERN EPTUAL SITE MODEL	3-1 3-1 3-2 4-1
5.0	5.1 5.2	SSESSMENT SAMPLE LOCATIONS 5.1.1 Soil Sampling 5.1.2 Quality Assurance / Quality Control Samples SAMPLE COLLECTION	5-1 5-1 5-1 5-2 5-2
	5.3	5.2.1 Soil Sample Collection5.2.2 Decontamination ProceduresSAMPLE ANALYSES	5-2 5-2 5-3
	5.4	5.3.1 Chain-of-Custody Records FIELD VARIANCES	5-3 5-3
6.0	FINDI	NGS	6-1
	6.1 6.2 6.3	SOIL RESULTS – CITRUS ORCHARD SOIL RESULTS – IMPORT FILL MATERIAL SOIL RESULTS – BUS BARN (ADJACENT)	6-1 6-1 6-2

Hope Elem Expansion_PEA_Aug 2024

TABLE OF CONTENTS (CONTINUED)

Page

	6.3	SOIL I	RESULTS – BUS BARN (ADJACENT)	6-2
	6.4		C SAMPLES	6-2
		6.4.1	Equipment Blank	6-2
		6.4.2	Field Blank	6-2
	6.5	LABO	RATORY QA/QC and DATA VALIDATION	6-2
		6.5.1	Precision	6-3
		6.5.2	Accuracy	6-4
		6.5.3	Representativeness	6-4
		6.5.4	Completeness	6-5
		6.5.5	Comparibility	6-5
		6.5.6	Reporting Limits	6-5
		6.5.7	Chain-of-Custody	6-5
		6.5.8	Holding Time(s)	6-5
7.0	HUMA	AN HEA	LTH SCREENING EVALUATION	7-1
	7.1	CHEM	IICALS OF POTENTIAL CONCERN	7-1
8.0	ECOL	OGICA	L SCREENING	8-1
9.0	CONC	CLUSIO	NS AND RECOMMENDATIONS	9-1
10.0	REFE	RENCE	S	10-1

TABLES

Soil Sample GPS Locations	Table 5-1
Field Sampling Schedule	Table 5-2
Sample Collection Information	Table 5-3
Soil Results for OCPs	Table 6-1
Soil Results for Arsenic and Lead	Table 6-2
Soil Results for TPH	Table 6-3
Soil Results for CAM 17 Metals	Table 6-4
Soil Results for SVOCs	Table 6-5
Soil Results for NOA	Table 6-6

TABLE OF CONTENTS (CONTINUED)

PLATES

Plate 1-1
Plate 1-2
Plate 4-1
Plate 5-1
Plate 6-1
Plate 6-2

APPENDICES

- APPENDIX A: DTSC CORRESPONDENCE
- APPENDIX B: SITE PHOTOGRAPHS
- APPENDIX C: HEALTH & SAFETY PLAN
- APPENDIX D: LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY DOCUMENTATION
- APPENDIX E: ARSENIC BACKGROUND DATA SET
- APPENDIX F: LEADSPREAD RISK ASSESSMENT SPREADSHEET

EXECUTIVE SUMMARY

Padre Associates, Inc. (Padre), on behalf of Hope Elementary School District (District), has prepared this Preliminary Environmental Assessment (PEA) Report for the Hope Elementary School Expansion Project located at 613 West Teapot Dome Avenue in Porterville, Tulare County, California (Project Site).

The District plans to construct a new gymnasium, which will contain three classrooms for up to 60 students. The existing parking area will be expanded, and a fire lane added. In addition, a new playfield will be constructed on the east portion of the Project Site. The anticipated opening date is August 2027.

The PEA was conducted in accordance with the document titled: *Preliminary Environmental Assessment Workplan, Hope Elementary School, Expansion Project, Porterville, Tulare County, California (Site Code: 104883, (Padre, July 2024).* The California Environmental Protection Agency (CalEPA) Department of Toxic Substances Control (DTSC) approved the PEA workplan in a letter dated July 11, 2024.

The PEA Report will be made available to the public for review and comment pursuant to Option A of the California Education Code (CEC) §17213.1.a (6)(A).

The purpose of the PEA was to establish whether a release or potential release of hazardous substances or naturally occurring material, which would pose a threat to human health via ingestion, dermal contact, and inhalation exposure pathways, exists at the Project Site. Chemicals of potential concern (COPC) identified at the Project Site included residual organochlorine pesticides (OCPs), arsenic, and lead from historic agricultural use; OCPs, petroleum hydrocarbons, metals, semi-volatile organic compounds (SVOCs), and naturally occurring asbestos (NOA) related to undocumented imported fill material; and petroleum hydrocarbons and metals related to a bus barn located west and adjacent to the Project Site that was constructed between 1977 and 1984.

Arsenic concentrations in soil ranged from 0.81 to 5.54 milligram per kilogram (mg/kg). Arsenic concentrations were compared to an arsenic data set from a school site located approximately 4 miles northwest of the Project Site. The property has a similar geologic setting (Pleistocene Nonmarine (Qc) sedimentary deposits) as the Project Site and consists of similar type soils (sandy loam). The arsenic concentrations at the background site ranged from 1.02 to 3.79 mg/kg. Arsenic concentrations identified in surface soil at the Project Site are comparable to background concentrations and further assessment and/or remedial action for arsenic in soil is not warranted.

Lead concentrations in soil ranged from 1.11 to 8.92 mg/kg in soil at the Project Site. Using DTSC's lead risk assessment spreadsheet model (*LeadSpread Version 9*), the model estimated a 90th percentile blood lead concentration of 0.1 µg/dl, which is below OEHHAs blood

toxicity level of 1 μ g/dl. Therefore, further assessment and/or remedial action for lead in soil is not warranted.

Based on the findings of the PEA, the Project Site has not been adversely impacted by historic or current land-use activities. Therefore, Padre recommends the issuance of a "No Further Action" designation from the DTSC regarding the proposed Hope Elementary School Expansion Project.

1.0 INTRODUCTION

Padre Associates, Inc., on behalf of Hope Elementary School District (District), has prepared this Preliminary Environmental Assessment (PEA) report for the Hope Elementary School Expansion Project located at 613 West Teapot Dome Avenue in Porterville, Tulare County, California (Project Site). The Project Site is identified on **Plate 1-1: Site Location** and **Plate 1-2: Site Map**.

The District plans to construct a new gymnasium, which will contain three classrooms for up to 60 students. The existing parking area will be expanded, and a fire lane added. In addition, a new playfield will be constructed on the east portion of the Project Site. The anticipated opening date is August 2027.

The PEA was conducted in accordance with the document titled: *Preliminary Environmental Assessment Workplan, Hope Elementary School Expansion Project, Porterville, Tulare County, California Site Code: 104883, (Padre, July 2024).* The California Environmental Protection Agency (CalEPA) Department of Toxic Substances Control (DTSC) approved the PEA workplan in a letter dated July 11, 2024. A copy of DTSC's approval letter is presented in **Appendix A**.

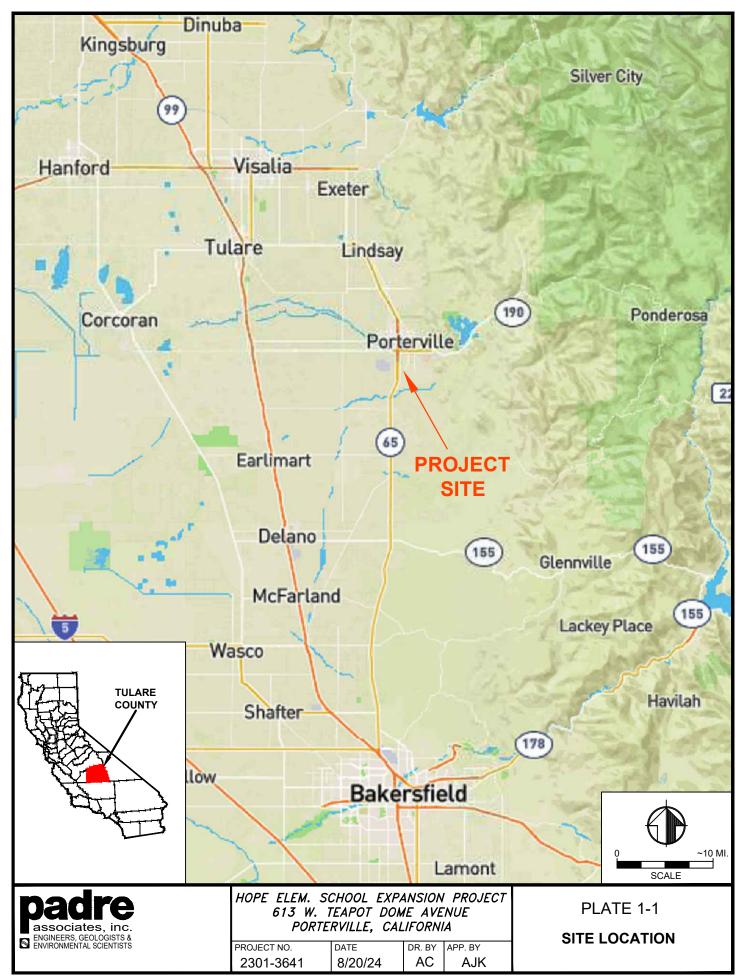
1.1 PURPOSE

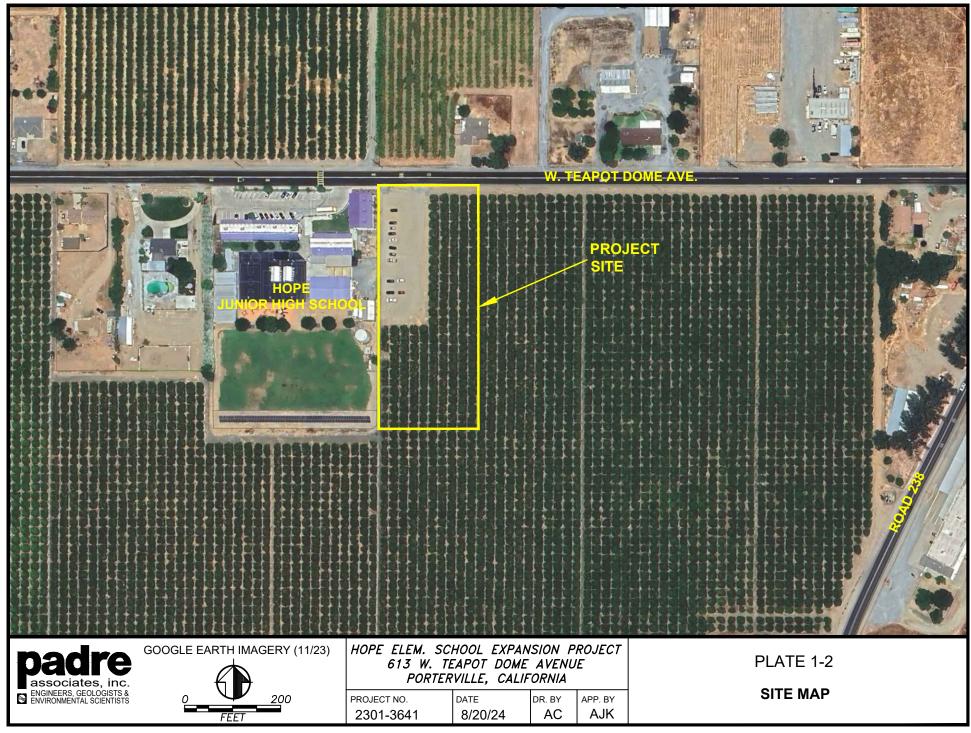
California Department of Education statutes (Assembly Bill 387, Senate Bill 162, and Assembly Bill 2644) require the CalEPA/DTSC to review environmental assessments for proposed new school sites and/or new construction school expansion projects. The role of the DTSC is to ensure that selected properties do not contain hazardous substances or naturally occurring materials that are a threat to public health and the environment.

1.2 OBJECTIVES

This PEA was conducted consistent with the DTSC guidance manual for evaluation of hazardous substance release sites titled *Preliminary Endangerment Assessment Guidance Manual*, State of California, Environmental Protection Agency, January 1994 (Revised October 2015). Pursuant to 79055(a) (1) (C) et. seq. (formerly Health and Safety Code §25355.5 (a) (1) (C)), the activities were performed to fulfill the requirements of the Environmental Oversight Agreement (EOA) issued to the school district by CalEPA/DTSC. The objectives of the PEA included:

- Evaluating historical information for indications of past use, storage, disposal, and/or release of hazardous substances at the Project Site;
- Establishing through a field sampling and laboratory analysis program, the nature, concentration, and general extent of hazardous substances that may be present in soil and/or groundwater at the Project Site; and
- Estimating the potential threat to public health and the environment presented by


hazardous constituents identified at the property and providing an indicator of relative risk using a residential land-use scenario.


Based on information developed during the course of the PEA and the conservative human and ecological risk evaluation using the DTSC's *PEA Guidance Manual*, January 1994, (Revised October 2015), DTSC will then make an informed decision regarding potential risks posed by the Project Site.

Possible outcomes of the PEA decision include the issuance of a "No Further Action" finding if the risk level is found to be less than 1 in 1,000,000 (>10⁻⁶) which is DTSC's "point of departure", and the health hazard index is less than 1.0. Additional outcomes may include the need for further assessment through the Remedial Investigation/ Feasibility Study (RI/FS) process if the Project Site presents a risk and/or health hazard; the need to perform a Removal Action if localized impacts by hazardous substances release(s) are found; or the abandonment of the Project Site as a potential school site and the pursuit of alternative sites.

1.3 PUBLIC PARTICIPATION

The PEA Report will be made available to the public for review and comment pursuant to Option A of the California Education Code (CEC) §17213.1.a (6)(A). When completed, public participation documentation will be submitted to DTSC under separate cover.

2.0 PROPERTY DESCRIPTION AND CONTACTS

2.1 SITE LOCATION AND ASSESSOR'S PARCEL NUMBER

The Project Site consists of approximately 2.2-acres of agricultural land that is a portion of a larger parcel of land (7.72-acres) identified by the Tulare County Assessor's Office as Assessor's Parcel Number (APN) 303-060-041. The Project Site is relatively flat and lies at an approximate elevation of 475-feet above mean sea level (amsl). A copy of the parcel map was presented in the PEA Workplan.

2.2 DESIGNATED CONTACT PERSON

Melanie Matta, Superintendent/Principal Hope Elementary School District 613 Teapot Dome Avenue, Porterville, CA 93257 (559) 784-1064 <u>mmatta@hope-esd.org</u>

2.3 PROPERTY USE

The Project Site consists of an unpaved parking lot at the northwest portion and an active citrus orchard on the remaining portion.

2.4 ENVIROSTOR DATABASE NUMBER

The EnviroStor database number for the Project Site is 60003755.

2.5 TOWNSHIP, RANGE, AND SECTION

The Project Site is located in portion Section 14, Township 22 South, Range 27 East, of the Porterville, California USGS 7½-Minute topographic series, Quadrangle Map, 2021. The latitude and longitude near the approximate center of the Project Site are identified as:

•	Latitude (North):	36° 01' 17.28" (36.021467)
•	Longitude (West):	-119° 01' 50.62" (-119.030728)

2.6 SITE MAPS

A site location map is included as **Plate 1-1**, and a site map is included as **Plate 1-2**.

2.7 PHYSICAL SETTING

Topography

Based on a site visit and a review of the USGS 7.5-minute topographic quadrangle – Porterville, California 2018, the Project Site is relatively level and situated at an approximate

elevation of 475 feet above mean sea level (amsl). Based on current site conditions rainfall would infiltrate into the exposed surface area of the Project Site. Surface drainage from excessive precipitation would be expected to flow north towards a drainage swale along West Teapot Dome Avenue.

Geology

The Project Site is located in the southeastern portion of the Great Valley Geomorphic Province. The Great Valley Geomorphic Province, a north-south trending valley, is approximately 400 miles long by 50 miles wide, and the southern portion of which is known as the San Joaquin Valley. The Project Site is located on the eastern flank of the San Joaquin Valley, west of the southern Sierra Nevada. The surface of the San Joaquin Valley is composed primarily of unconsolidated Pleistocene (1.6 million to 11,000 years ago) and Recent (11,000 years ago to the present) alluvial sediments. These lie unconformably on Mio-Pliocene, marine sediments, which extend to a crystalline basement at a depth of approximately 20,000 feet (Norris and Webb, 1990).

Stratigraphically, the subsurface of the Great Valley is complex, and is comprised of tens of thousands of feet of marine and non-marine sediments ranging in age from Jurassic to Recent. The sediments are important sources of groundwater and petroleum hydrocarbon resources (oil and gas). The relatively flat surface of the San Joaquin Valley is underlain by alluvial, lacustrine, and marine sedimentary deposits that accumulated as the structural trough formed as the adjacent mountain ranges were elevated through tectonic processes. The thickness of the sediments varies from a thin veneer along the valley margins to thousands of feet thick at the axis of the trough. The main axis of the trough is oriented north-south along the valley's main drainage axis.

According to the *Geologic Map of California – Fresno Sheet (1965), California Geological Survey*, the Project Site is underlain by the quaternary age Pleistocene Nonmarine (Qc) sedimentary deposits.

Soils

According to the United States Department of Agriculture, Soil Conservation Service's, Soil Survey of Tulare County, California, Central Part dated February 1982, the surface soil at the Project Site includes San Joaquin Ioam, 0 to 2 percent slopes and San Joaquin Ioam, 2 to 9 percent slopes in the north portion of the Project Site.

San Joaquin loam, 0 to 2 percent slopes consists of moderately deep, well drained soils which formed on terraces in alluvium derived from weathered granitic rock sources. Typically, the surface layer is brown and reddish-brown loam, moist, hard, slightly sticky and slightly plastic about 13 inches thick. The subsoil is reddish-brown sandy clay loam and clay 12 inches thick. Below the subsoil is a yellowish-red hardpan about 31 inches thick. Below the hardpan is brown, stratified sandy loam and loam to a depth of 78 inches. Permeability is very slow and the surface runoff is slow.

San Joaquin loam, 2 to 9 percent slopes consists of moderately deep, well drained soils which formed on terraces in alluvium derived from weathered granitic rock sources. Typically, the surface layer is brown and reddish-brown loam about 13 inches thick. The subsoil is reddish-brown sandy clay loam and clay 12 inches thick. Below the subsoil is a yellowish-red hardpan about 31 inches thick. Below the hardpan is brown, stratified sandy loam and loam to a depth of 78 inches. Permeability is very slow and the surface runoff is slow or medium.

Groundwater

According to the California Department of Water Resources (https://wdl.water.ca.gov/), groundwater level data for a water well (22S27E10R001M) located approximately 0.25 west of the Project Site, the depth to groundwater is greater than 100 feet below grade surface. Based on regional topographic maps, groundwater is inferred to flow northwesterly.

3.0 BACKGROUND

3.1 SITE HISTORY

The Project Site has been owned by the District since 2005 and consists of approximately 2.2-acres of agricultural land that is a portion of a larger parcel of land (7.72-acres) identified by the Tulare County Assessor's Office as Assessor's Parcel Number (APN) 303-060-041. The Project Site was previously owned by Laux Land Company.

Based on a review of aerial photographs the Project Site has been in agriculture-use since at least the 1950s through to the present day. There are no building structures currently or historically identified at the Project Site. The northwest portion of the Project Site (approximate 0.6 acres) was converted into an unpaved parking area circa 2011/2012 to support modernization activities at the adjacent school site.

Padre completed a reconnaissance of the Project Site on December 6, 2023. The Project Site is generally flat and includes an unpaved parking area and an active citrus orchard. The unpaved parking area consists of approximately 0.6 acres and is located at the northwest portion of the Project Site. The remaining portion of the Project Site is part of a larger citrus orchard. No water wells or electrical transformers were observed at the Project Site. The active citrus orchard is currently leased to Prado Farm Labor Services.

Pesticide-use permits for the Project Site were provided by the Tulare County Agricultural Commissioner. Chemical application permits were issued to Sergio Prado for the years 2020 through 2023. None of the listed chemicals were identified as OCPs, and once applied these chemicals are known to readily experience biodegradation and photodegradation. The list of chemical use in the orchard area of the Project Site was presented in the PEA Workplan (Padre, July 2024).

A review of the Environmental Data Resources (EDR) Radius Map Report did not identify facilities in the database records search within a one-mile radius of the Project Site that present a recognized environmental concern (REC) to the Project Site. According to the EDR Environmental Lien Search, no environmental liens or AULs were identified for the Project Site. A review of DTSC's Envirostor Database and the State Water Resources Control Board's (SWRCB) GeoTracker website, did not identify any facilities in the databases that present a REC to the Project Site.

3.2 SURROUNDING PROPERTY LAND USE

The Project Site is bordered to the north by West Teapot Dome Avenue, beyond which are residences and agricultural land; to the east and south by orchards; and to the west by Hope Elementary School.

A review of the EDR Radius Map Report, DTSC's Envirostor database, and the SWRCB's Geotracker database did not identify facilities in the database records search within a one-mile radius of the Project Site that present a REC to the Project Site.

3.3 CHEMICALS OF POTENTIAL CONCERN

The chemicals of potential concern (COPC) identified at the Project Site are based on current site conditions and historic property use. This information is summarized below:

- Organochlorine pesticides (OCPs), arsenic and lead in soil from agriculture-use with the presence of orchards (1930s present day);
- No historic building structures have been identified to have occupied the Project Site;
- An unpaved parking area was constructed at the northwest portion of the Project Site circa 2011/2012 to support modernization activities for the adjacent school site. The source of this import material is unknown. Therefore, undocumented import fill material will be assessed for the presence of OCPs, petroleum hydrocarbons, metals, semi-volatile organic compounds (SVOCs), and naturally occurring asbestos (NOA);
- There is a building located approximately 6- to 7-feet west of the Project Site that was constructed between 1977 and 1984. The building is steel framed with corrugated metal roofing and siding (unpainted) and sits on a concrete slab foundation. The building is used is used for general maintenance of the District's school buses and as a school equipment storage area. Therefore, Project Site soil located adjacent to this structure will be assessed for the presence of petroleum hydrocarbons and metals;
- According to the California Geological Survey (CGS) Map of California Fresno Sheet (1966, fourth printing 1991), the occurrence of small ultrabasic outcrops has been identified approximately 2.5 to 4 miles northeast, east, and southeast of the Project Site. The Project Site is not situated within the drainage (Tule River, Deer Creek) of these outcrops. Additionally, several proposed school sites (Envirostor Nos. 60000281 in the Porterville area and located in the drainage of these outcrops have been assessed for the presence of NOA. According to reported analytical results soil samples did not contain concentrations of NOA at concentrations requiring further DTSC action. The sites reviewed included Alta Vista Potential School Site (Envirostor No. 60000281); the Proposed Morton School Site (Envirostor No. 60000280); and the Future K-8 Site on Newcomb (Envirostor No. 60002413) located in the drainage of the ultrabasic outcrops. Therefore, sampling for NOA in native soil is not proposed;
- According to the U.S. EPA map of California radon zones, Tulare County is identified as a Zone 2 (orange) county. Zone 2 counties have a predicted average indoor radon screening level greater than 2 pCi/L and less than 4 pCi/L. According to the California database of indoor radon levels for Tulare County (zip Code: 93257), 23 out of 150 site radon tests exceeded 4.0 pCi/L. Therefore, the potential for radon hazard at the Project Site is considered moderate and is dependent on site-design and building construction specifications; and

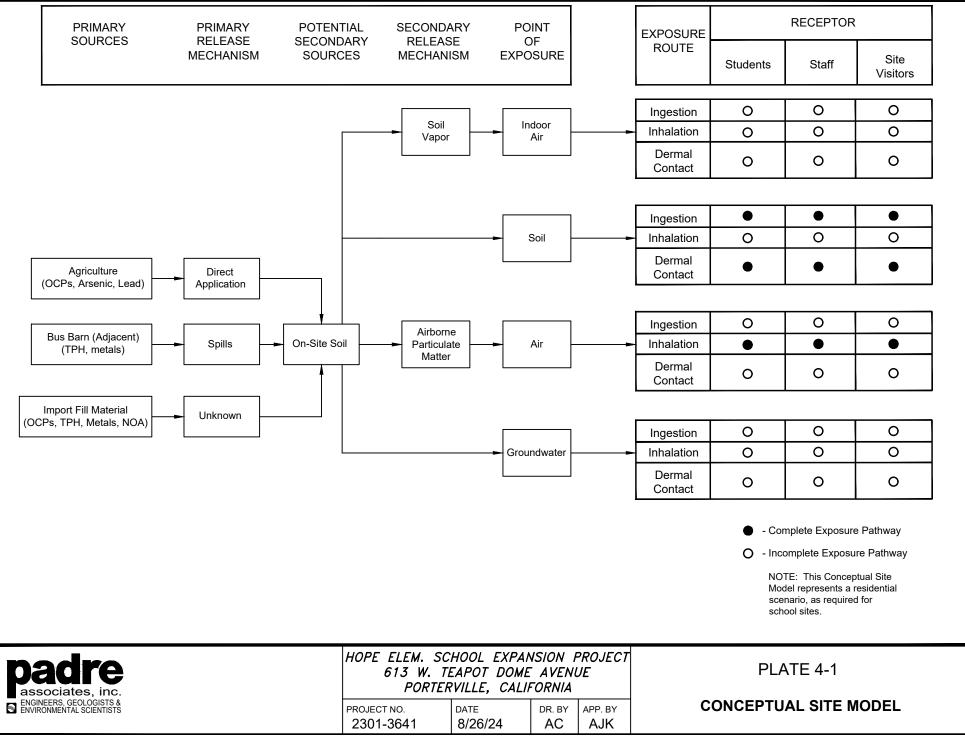
• The Project Site will be provided potable and irrigation water from a groundwater well located at the adjacent school site. The school's potable water system (Water System No. 5400994) is regulated by the California State Water Resources Control Board (SWRCB) Drinking Water Division and appears to be in compliance with drinking water standards. Therefore, the assessment of groundwater at the Project Site is not proposed. A copy of the 2022 Consumer Confidence Report along with water quality test results for the well are presented in PEA Workplan.

4.0 CONCEPTUAL SITE MODEL

The conceptual site model is the tool used to identify the primary sources of COPC identified at the Project Site, release mechanisms for the COPC, points of exposure at the Project Site, and the exposure pathways (ingestion, inhalation, and dermal contact) for the screening level evaluation of chronic health risks. The objective of this PEA is to evaluate the Project Site for an unrestricted land use (residential) scenario.

There are several ways a receptor may be exposed to COPC (i.e., pesticides, metals, etc.). Receptors can include humans, animals, vegetation, surface water, and/or groundwater. Typical pathways for exposure to COPC include:

- Physical transport via tracking chemicals of concern on people, clothing, and/or equipment; and
- Transport by airborne particulate matter.


For humans and animals, exposure usually occurs by the following exposure routes:

- Ingestion or inhalation of contaminated soil particles; and
- Dermal contact with contaminated soil particles.

The conceptual site model for the Project Site was developed based on the following assumptions:

- Exposure of students, staff, and site visitors to COPC in soil via the ingestion and dermal contact routes is considered a complete exposure pathway;
- Exposure of students, staff, and site visitors to COPC in airborne particulate matter via the inhalation route is considered a complete exposure pathway;
- Exposure of students, staff, and site visitors to COPC in soil vapor via the inhalation route is considered an incomplete exposure pathway;
- Potable and irrigation water will be provided to the Project Site from an existing groundwater well located at the adjacent school site. The school's water system is regulated by the California State Water Resources Control Board (SWRCB) Drinking Water Division. Therefore, further assessment of groundwater beneath the Project Site is not proposed;
- Surface water was not observed at the Project Site. Therefore, exposure to surface water at the Project Site is an incomplete exposure pathway; and
- Ingestion of vegetation and animals is considered an incomplete exposure pathway because of the proposed use as a school site.

A conceptual site model is presented on **Plate 4-1**.

5.0 PEA ASSESSMENT

The PEA soil sampling activities were completed on July 24, 2024, in general accordance with the DTSC approved PEA workplan dated July 11, 2024. Prior to initiating field activities for the PEA, a field activities notification letter presented on District letterhead was delivered to nearby residents (line-of-sight) and posted at the Project Site. Site photographs are presented in **Appendix B** and a copy of the Health & Safety Plan is presented in **Appendix C**.

5.1 SAMPLE LOCATIONS

Sample locations were identified using an EOS Arrow 100 handheld electronic navigating device operating with the United States Government's Global Positioning Satellite system. The GPS coordinates for the soil sample locations are presented in **Table 5-1**. The field sampling schedule is presented in **Table 5-2** and the sample collection information is presented in **Table 5-3**. Specific soil sample locations and sample depths are described below:

5.1.1 Soil Sampling

Based on site conditions and DTSC's sampling guidance documents the following sampling plan was implemented:

Citrus Orchard

Based on the approximate acreage of the citrus orchard (1.6 acres), four (4) discrete soil samples were collected within the orchard portion of the Project Site. The discrete soil samples were collected from surface to approximate depths of 0.5-feet and chemically analyzed for the presence of OCPs, arsenic, and lead. Soil sample locations are presented on **Plate 5-1**.

Import Fill Material

The northwest portion of the Project Site (approx. 0.6 acres) was improved as an unpaved parking area to support construction activities at the adjacent elementary school in the years 2011/2012. The source of the import material (decomposed granite?) is unknown. Therefore, four discrete soil samples were collected from approximate depths of surface to 0.5-feet bgs within the import fill material. The discrete soil samples were analyzed for the presence of OCPs, total petroleum hydrocarbons (TPH) identified as gasoline, diesel, motor oil, CAM 17 metals, SVOCs, and NOA. Soil sample location areas are presented on **Plate 5-1**.

Bus Barn (Adjacent)

There is a building located approximately 6- to 7-feet west of the Project Site that was constructed between 1977 and 1984. The building is steel framed with corrugated metal roofing and siding (unpainted) and sits on a concrete slab foundation. The building is used for general maintenance of the District's school buses and as a school equipment storage area. Therefore, adjacent to the

building, two soil samples were collected from approximate depths of 1.0- to 1.5-feet which is slightly below grade with the buildings concrete flooring and into native soil. The samples were chemically analyzed for the presence of TPH (identified as gasoline, diesel fuel, and motor oil) and CAM 17 metals. Soil sample locations are presented on **Plate 5-1**.

5.1.2 Quality Analysis/Quality Control Samples

For quality assurance/quality control (QA/QC), approximately 10% of the discrete soil samples were analyzed as duplicate soil samples. Padre requested the analytical laboratory to split selected soil samples to be chemically analyzed as duplicates for OCPs, arsenic, and lead. One equipment blank sample and one field blank sample per soil sampling event (water samples) were also collected and analyzed for the presence of arsenic and lead.

5.2 SAMPLE COLLECTION

5.2.1 Soil Sample Collection

Surface and subsurface soil samples were collected using hand sampling tools including a hand pick and auger. Soil sampling equipment was decontaminated prior to use at each sample collection location and sampling event. Soil samples were collected in 2-inch x 6-inch stainless steel sleeves and sealed with plastic end caps. Surface soil was loosened with the hand pick and placed into the sample sleeves. Soil cuttings will be placed back in the hole after sample collection. Field sampling methods conformed to guidelines set forth in the site-specific Health and Safety (Appendix C).

The soil samples were sealed, labeled, and preserved on ice in the field. After completion of soil sampling activities, the soil samples were transferred to a State-certified analytical laboratory under chain-of-custody protocol for chemical analyses. Field sampling methods conformed to guidelines set forth in the Health and Safety Plan (Appendix C).

5.2.2 Decontamination Procedures

Equipment that came into contact with potentially contaminated soil was decontaminated consistently so as to assure the quality of samples collected. Disposable equipment intended for one-time use was not decontaminated but packaged for appropriate disposal. Decontamination occurred prior to and after each use of a piece of equipment. All sampling devices used were decontaminated using the following procedures:

- Non-phosphate detergent and tap water wash, in a 5-gallon plastic bucket, using a brush;
- Deionized/distilled water rinse, in a 5-gallon plastic bucket; and
- Final deionized/distilled water rinse in a 5-gallon plastic bucket.

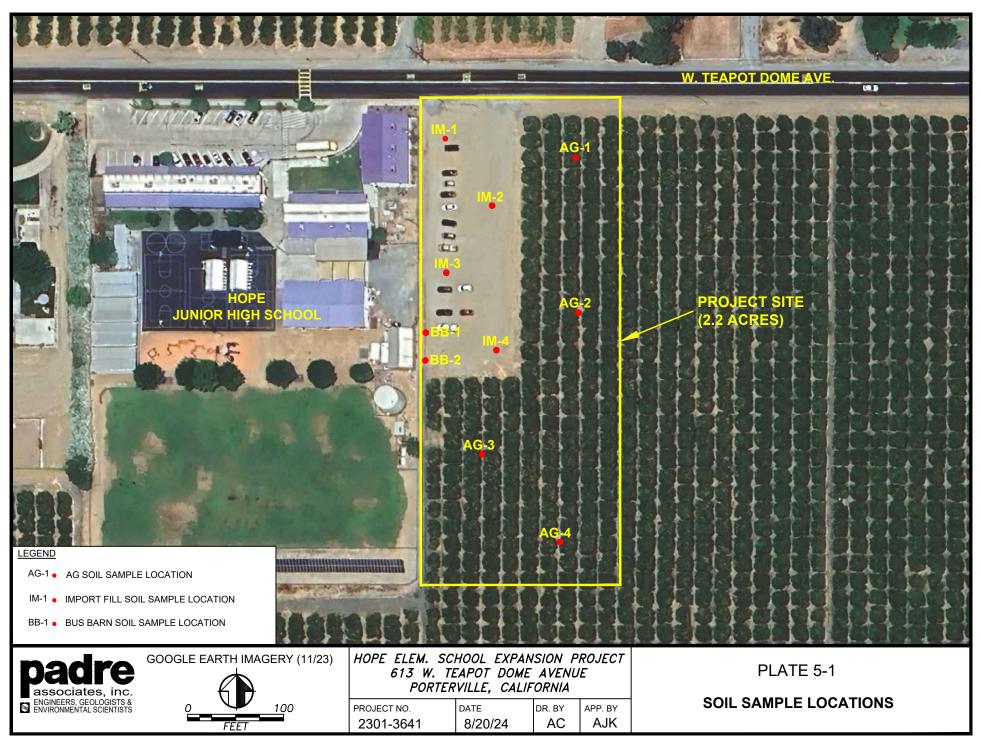
At the completion of sampling activities, the small amount of wash water was dispersed to the field area and allowed to infiltrate/evaporate. The wash water consisted of water, non-phosphate detergent, and a small amount of surface soil.

5.3 SAMPLE ANALYSES

The laboratory analytical program schedule is summarized in **Table 5-2**. Analytical methods, types of containers, preservative, and holding times are summarized in **Table 5-3**. The laboratory analytical program will consist of chemical analyses of soil samples collected from the Project Site for the presence of:

- OCPs by U.S. Environmental Protection Agency (EPA) Method 8081B;
- Arsenic and Lead by U.S. EPA Method 6020;
- TPH (-g, -d, -mo) by U.S. EPA Method 8015M;
- CAM 17 Metals by U.S. EPA Method 6000/7000 series;
- SVOCs by U.S. EPA Method 8270; and
- NOA by PLM and TEM.

Equipment blanks (water sample) and field blanks (water sample) were also collected and analyzed for the presence of arsenic and lead by U.S. EPA Method 200.8.


5.3.1 Chain-of-Custody Records

Chain-of-custody (C-O-C) records are used to document sample collection and shipment to the laboratory for analysis. A C-O-C record accompanied all samples shipped for analysis. Form(s) were completed and sent with the samples for each laboratory and each shipment. If multiple coolers were sent to a single laboratory on a single day, C-O-C form(s) were completed and sent with the samples for each cooler. The C-O-C record identified the contents of each shipment and maintained the custodial integrity of the samples. Generally, a sample was considered to be in someone's custody if it was either in someone's physical possession, in someone's view, locked up, or kept in a secured area that was restricted to authorized personnel. Until receipt by the laboratory, the custody of the samples was the responsibility of the sample collector.

5.4 FIELD VARIANCES

The import fill material located in the northwest portion of the Project Site was anticipated to be approximately 1-foot in depth. During field assessment activities, the import material was identified to be approximately 6- to 7-inches in depth. Therefore, samples collected of the import material ranged from surface to 0.5-feet.

Hope Elem Expansion_PEA_Aug 2024

Sample	Coordinates				
Identification	Latitude	Longitude			
AG-1	36.022021°	-119.030517°			
AG-2	36.021569°	-119.030523°			
AG-3	36.021202°	-119.030833°			
AG-4	36.020951°	-119.030604°			
IM-1	36.022001°	-119.030974°			
IM-2	36.021859°	-119.030839°			
IM-3	36.021693°	-119.030998°			
IM-4	36.021508°	-119.030821°			
BB-1	36.021503°	-119.031062°			
BB-2	36.021450°	-119.031070°			

Table 5-1: Soil Sample GPS Locations

GPS – U.S. Global Positioning Satellite System

Table 5-2. Field Sampling Schedule

Test Method	Sample Depth	Number of Samples	Sample Location	Submittal Status
Orchard			-	
OCPs by U.S. EPA Method 8081A	Surface (0-0.5 feet)	4 (discrete)	AG-1, AG-2, AG-3, and AG-4 Duplicate: AG-3	Analyze
Arsenic by U.S. EPA Method 6020	Surface (0-0.5 feet)	4 (discrete)	AG-1, AG-2, AG-3, AG-4 Duplicate: AG-2	Analyze
Lead by U.S. EPA Method 6020	Surface (0-0.5 feet)	4 (discrete)	AG-1, AG-2, AG-3, AG-4 Duplicate: AG-1	Analyze
Import Fill Material				
OCPs by U.S. EPA Method 8081A	Surface (0-0.5 feet)	4 (discrete)	IM-1, IM-2, IM-3, and IM-4	Analyze
TPH by U.S. EPA Method 8015	Surface (0-0.5 feet)	4 (discrete)	IM-1, IM-2, IM-3, and IM-4	Analyze
CAM 17 Metals by U.S. EPA Method 6020/7010	Surface (0-0.5 feet)	4 (discrete)	IM-1, IM-2, IM-3, and IM-4	Analyze
SVOCs by U.S. EPA Method 8270	Surface (0-0.5 feet)	4 (discrete)	IM-1, IM-2, IM-3, and IM-4	Analyze
NOA by CARB Method 435 w/ PLM	Surface (0-0.5 feet)	4 (discrete)	IM-1, IM-2, IM-3, and IM-4	Analyze
CARB Method 435 w/ TEM		1 (discrete)	IM-2	Analyze

Table 5-2. Field Sampling Schedule (continued)

Test Method	Sample Depth	Number of Samples	Sample Location	Submittal Status			
Bus Barn							
TPH by U.S. EPA Method 8015	Below grade of concrete flooring: (1.0-1.5 feet)	2 (discrete)	BB-1 and BB-2	Analyze			
CAM 17 Metals by U.S. EPA Method 6020/7010	Below grade of concrete flooring: (1.0-1.5 feet)	2 (discrete)	BB-1 and BB-2	Analyze			
QA/QC Samples (water)	QA/QC Samples (water)						
Arsenic and Lead by U.S. EPA Method 200.8	Not Applicable	1 per day 1 per day	Equipment Blank (EB-1, etc.) Field Blanks (FB-1, etc.)	Analyze Analyze			

Notes:

OCP – Organochlorine pesticides

TPH – Total petroleum hydrocarbons SVOC – Semi-volatile organic compounds NOA – Naturally occurring asbestos

CARB – California Air Resources Board

PLM – Polarized Light Microscopy

TEM – Transmission Electron Microscope

Table 5-3. Sample Collection Information
--

Sample Matrix and Test Method	Container	Preservative	Holding Time From Sample Collection to Extraction
Soil			
OCPs U.S. EPA Method 8081A	2-inch x 6-inch stainless steel sample sleeves and plastic end caps	lce	14 days
Arsenic U.S. EPA Method 6020	2-inch x 6-inch stainless steel sample sleeves and plastic end caps	lce	180 days
Lead U.S. EPA Method 6020	2-inch x 6-inch stainless steel sample sleeves and plastic end caps	lce	180 days
TPH (-g, -d, -mo) U.S. EPA Method 8015m	2-inch x 6-inch stainless steel sample sleeves and plastic end caps	lce	14 days
SVOCs U.S. EPA Method 8270	2-inch x 6-inch stainless steel sample sleeves and plastic end caps	lce	14 days
CAM 17 Metals U.S. EPA Method 6000/7000 series	2-inch x 6-inch stainless steel sample sleeves and plastic end caps	lce	180 days
NOA CARB 435 by PLM	2-inch x 6-inch stainless steel sample sleeves and plastic end caps	None	60 days
NOA CARB 435 by TEM	2-inch x 6-inch stainless steel sample sleeves and plastic end caps	None	60 days
Water			
Arsenic and Lead U.S. EPA Method 200.8	250 mL poly bottle	HNO3 / Ice	180 days

Notes:

OCPs – organochlorine pesticides TPH – total petroleum hydrocarbons SVOCs – Semi-volatile organic compounds NOA – naturally occurring asbestos HNO₃ – Nitric Acid

6.0 FINDINGS

The following sections describe the results of the PEA field activities performed by Padre at the Project Site. The following subsections describe soil sample analytical results, locations, and depth intervals for soil samples collected at the Project Site.

The laboratory analytical results are summarized in **Tables 6-1** through **6-4**. Arsenic in soil results are presented in **Plate 6-1** and lead in soil results are presented in **Plate 6-2**. Certified analytical laboratory reports and chain-of-custody documentation are provided in **Appendix D**.

6.1 SOIL RESULTS – CITRUS ORCHARD

The laboratory analytical results for soil samples collected from the citrus orchard are as follows:

- OCPs were not identified at or above their respective reporting limits.
- Arsenic concentrations ranged from 3.35 to 4.12 milligrams per kilogram (mg/kg).
- Lead concentrations ranged from 5.14 to 8.92 mg/kg.

6.2 SOIL RESULTS - IMPORT FILL MATERIAL

The laboratory analytical results for soil samples collected from the area of import fill material are as follows:

- OCPs were not identified at or above their respective reporting limits.
- TPH (-g, -d, -mo) was not identified at or above their respective reporting limits.
- SVOCs were not identified at or above their respective reporting limits.
- NOA was not detected at or above the 0.25% asbestos type sensitivity level by PLM.
- NOA was not detected at or above the 0.01% asbestos type sensitivity level by TEM.
- Arsenic concentrations ranged from 0.810 to 1.86 mg/kg.
- Lead concentrations ranged from 1.11 to 1.63 mg/kg.
- All other CAM 17 Metals were well below their respective Risk Screening Levels (RSLs).

6.3 SOIL RESULTS – BUS BARN (ADJACENT)

The laboratory analytical results for soil samples collected from the area adjacent to the bus barn are as follows:

- TPH (-g, -d, -mo) was not identified at or above their respective reporting limits.
- Arsenic concentrations ranged from 2.71 to 5.54 mg/kg;
- Lead concentrations ranged from 3.34 to 6.49 mg/kg;
- All other CAM 17 Metals were well below their respective RSLs.

6.4 QA/QC SAMPLES

6.4.1 Equipment Blank

For each sampling event, distilled water was used as rinseate for decontaminating soil sampling equipment. The equipment blank sample was collected by pouring rinseate water over and through recently cleaned equipment and collected directly into the appropriate sample container.

The equipment blank sample was chemically analyzed for arsenic by U.S. EPA Method 200.8. The results of the laboratory analysis did not identify the presence of arsenic or lead at or above the analytical reporting limit of 1.0 micrograms per liter (μ g/L).

6.4.2 Field Blank

For each sampling event, distilled water was used as rinseate for decontaminating sampling equipment. The field blank sample was collected by pouring rinseate water into the appropriate sample container.

The field blank sample was chemically analyzed for arsenic by U.S. EPA Method 200.8. The results of the laboratory analysis did not identify the presence of arsenic or lead at or above the analytical reporting limit of 1.0 μ g/L for field blank samples.

6.5 LABORATORY QA/QC and DATA VALIDATION

Eurofins Calscience, located in Tustin, California provided the required chemical analyses for soil and water samples collected at the Project Site. Eurofins Calscience is certified (No. 3082) by the State of California Environmental Laboratory Accreditation Program (ELAP) Branch to provide the required chemical analyses.

EMSL Analytical, Inc. (EMSL) located in San Leandro, California provided the required NOA analyses for soil samples collected at the Project Site. EMSL is certified (No. 1620) by the State of California ELAP Branch to provide the required analyses.

A cover letter with the signature of the laboratory director accompanies every laboratory report received for this project. According to the lab director, samples were analyzed utilizing EPA or other ELAP approved methodologies, and that the results are in compliance both technically and for completeness. The data quality objectives (DQO) met by the analytical laboratory for this project were level II.

6.5.1 Precision

Precision measures the reproducibility of repetitive measurements. It is strictly defined as the degree of mutual agreement among independent measurements as the result of repeated application of the sample process under similar conditions.

Analytical precision is a measurement of the variability associated with duplicate or replicate analyses of the same sample in the laboratory and is determined by analysis of laboratory quality control samples such as duplicate control samples (LCSD or DCS), matrix spike duplicates (MSD), or sample duplicates. If the recoveries of analytes in the specified control samples are comparable within established control limits, then precision is within limits.

Total precision is a measurement of the variability associated with the entire sampling and analytical process. It is determined by analysis of duplicate or replicate field samples, and measures variability introduced by other than laboratory and field operations. Field duplicate samples are analyzed to assess field and analytical precision.

Duplicate results are assessed using the relative percent difference (RPD) between duplicate measurements. If the RPD for laboratory quality control samples exceeds 30 percent, data shall be qualified as described in the applicable validation procedure. If the RPD between primary and duplicate field samples exceeds 100 percent for soil, data shall be qualified as described in the applicable validation procedure. The RPD shall be calculated as follows:

% RPD = 100% x
$$Abs(X_2 - X_1)$$

Avg(X₂ + X₁)

Where X_2 is the larger of the two observed values, and X_1 is the smaller of the two observed values. The RPDs for selected original and duplicate soil samples are calculated in the following tables.

Sample Identification	DDD	DDE	DDT	Chlordane	Dieldrin
AG-3	<5.0	<5.0	<5.0	<25	<5.0
AG-3 DUPE	<5.0	<5.0	<5.0	<25	<5.0
RPD (%)	0	0	0	0	0
Within Acceptable Range	Yes	Yes	Yes	Yes	Yes

<u>OCPs</u>

<u>Arsenic</u>

Sample Identification	Original Sample (mg/kg)	Duplicate Sample (mg/kg)	RPD (%)	Within Acceptable Range
AG-2 (Surf)	3.41	3.35	1.78	Yes

Lead

Sample Identification	Original Sample (mg/kg)	Duplicate Sample (mg/kg)	RPD (%)	Within Acceptable Range
AG-1 (0-0.5')	5.67	6.19	8.77	Yes

The RPDs for the original and duplicate constituents are acceptable.

One sample was chemically analyzed as a duplicate for arsenic and lead. The RPDs for the original and duplicate samples are acceptable.

6.5.2 Accuracy

Accuracy of laboratory analyses was by laboratory control samples, surrogate standards, matrix spikes, and initial and continuing calibrations of instruments. Laboratory accuracy is expressed as the percent recovery (%R). Accuracy limits are statistically generated by the laboratory or required by specified EPA methods. If the percent recovery is determined to be outside of acceptance criteria, the data was qualified. The percent recovery was calculated as follows:

where X_s is the measured value of the spike sample, X is measured value of the unspiked sample, and T is the true value of the spiked solution.

In general recoveries were within acceptance limits; however, if recoveries were outside of acceptance criteria, the data was qualified by the analytical laboratory.

6.5.3 Representativeness

Representativeness is the degree to which data accurately and precisely represent selected characteristics of the media sampled. Representiveness of data collection is addressed by the preparation of sampling and analyses programs. The PEA investigation had sufficient and the proper number of sample locations; incorporated the proper sampling methodologies; utilized the proper sample collection techniques and decontamination procedures; utilized the proper laboratory methods to prepare and analyze soil/water samples; and performed proper field and laboratory QA/QC protocols.

6.5.4 Completeness

Completeness is the amount of valid data obtained compared to the amount that was expected under ideal conditions. The number of valid results divided by the number of possible results, expressed as a percentage, determines the completeness of the data set. The objective for completeness is to recover at least 90 percent of the planned data to support field efforts. The formula for is completeness is presented below:

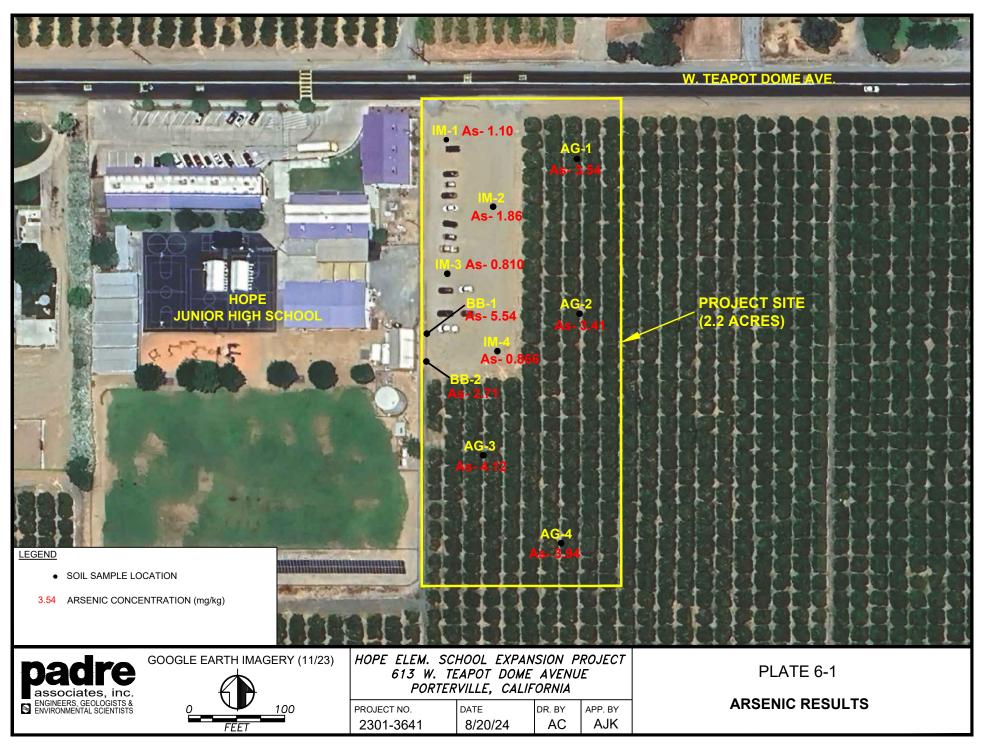
% Completeness = 100 x <u>number of valid results</u> number of expected results

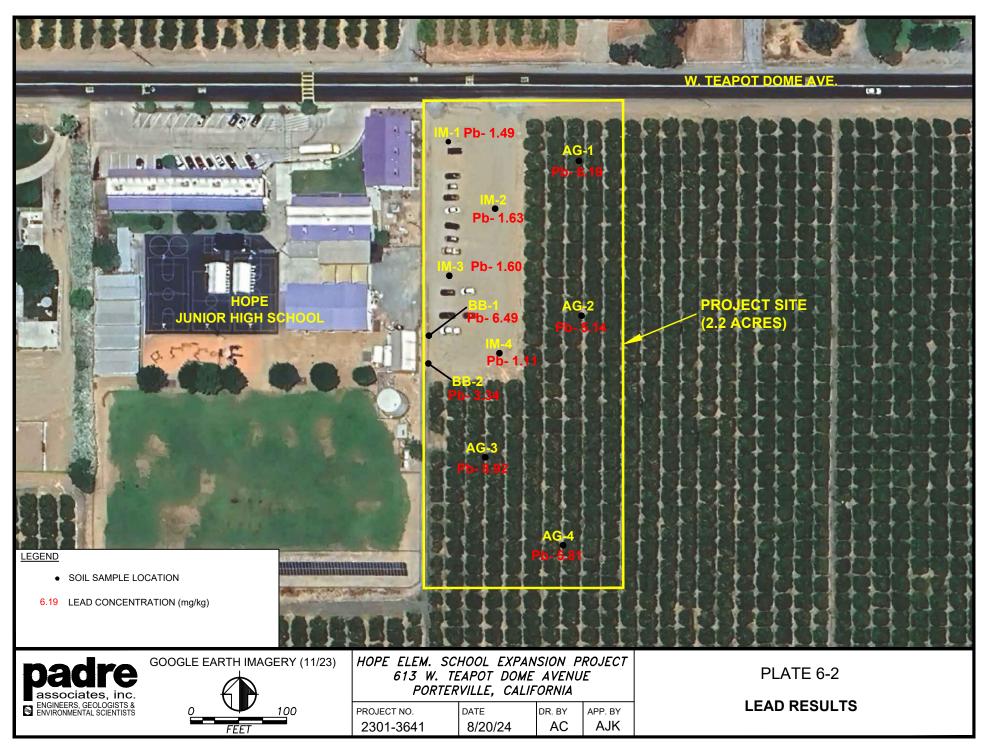
The analytical data for the soil and water samples is 100% complete.

6.5.5 Comparability

Comparability is an expression of confidence with which one data set can be compared to another data set. The objective of comparability is to ensure that data developed during the PEA investigation are comparable to site knowledge and adequately address applicable criteria or standards established by DTSC or the U.S. EPA. The laboratory methods that were utilized during this PEA investigation are consistent with the current standards of practice as approved by the DTSC and the USEPA.

6.5.6 Reporting Limits


Laboratory detection limits for the proposed analytical methods were presented in the PEA Workplan dated July 2024 and approved by DTSC. The detection limits for OCPs, TPH, SVOCs, and metals were met by the analytical laboratory.


6.5.7 Chain-of-Custody

Completed chain-of-custody forms were provided with the samples upon sample delivery to Eurofins and EMSL. Copies of the chain-of-custody forms were included in the final analytical report. No discrepancies were noted by the analytical laboratory.

6.5.8 Holding Time(s)

All soil and/or water analyses requested from the analytical laboratories (Eurofins and EMSL) were performed within the method-specific holding times.

Table 6-1: Soil Results for OCPs (results in µg/kg)

Sample Identification	Date Collected	Sample Depth (feet)	Aldrin	(a,b,d)-BHC	Gamma-BHC	Chlordane- technical	DDD	DDE	DDT	Dieldrin	Endosulfan I	Endosulfan II	Endosulfan Sulfate	Endrin	Endrin Aldehyde	Endrin Ketone	Heptachlor	Heptachlor Epoxide	Methoxychlor	Hexachloro benzene	Hexachloro cyclobpentadiene	Toxaphene
AG-1	7-24-24	0-0.5'	<4.9	<4.9	<4.9	<25	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<25
AG-2	7-24-24	0-0.5'	<4.9	<4.9	<4.9	<25	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<25
AG-3	7-24-24	0-0.5'	<5.0	<5.0	<5.0	<25	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<25
AG-3 Dupe	7-24-24	0-0.5'	<5.0	<5.0	<5.0	<25	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<25
AG-4	7-24-24	0-0.5'	<5.0	<5.0	<5.0	<25	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<25
IM-1	7-24-24	0-0.5'	<4.9	<4.9	<4.9	<25	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<25
IM-2	7-24-24	0-0.5'	<5.0	<5.0	<5.0	<25	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<25
IM-3	7-24-24	0-0.5'	<5.0	<5.0	<5.0	<25	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<25
IM-4	7-24-24	0-0.5'	<5.0	<5.0	<5.0	<25	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<25
SL			39	86	570	1,700	2,300	2,000	1,900	34	450,000 ^(a)	450,000 ^(a)	380,000	19,000	19,000 ^(b)	19,000 ^(b)	130	70	320,000	190	1,800 ^(c)	450

Notes:

μg/kg –micrograms per kilogram SL - HHRA Note #3, Table 1 - DTSC-Recommended Screening Level (Revised May 2022)

(a) – Screening Level for Endosulfan(b) – Screening Level for Endrin

(c) - USEPA Regional Screening Level (May 2024)

Table 6-2:	Soil Results for Arsenic and Lead
	(results in mg/kg)

Sample Identification	Date Collected	Depth (feet)	Arsenic	Lead
Agriculture (Citrus Or	chard)			
AG-1	7-24-24	0-0.5'	3.54	5.67
AG-1 Dupe	7-24-24	0-0.5'		6.19
AG-2	7-24-24	0-0.5'	3.41	5.14
AG-2 Dupe	7-24-24	0-0.5'	3.35	
AG-3	7-24-24	0-0.5'	4.12	8.92
AG-4	7-24-24	0-0.5'	3.94	5.81
Import Fill Material (p	arking area)			
IM-1	7-24-24	0-0.5'	1.10	1.49
IM-2	7-24-24	0-0.5'	1.86	1.63
IM-3	7-24-24	0-0.5'	0.810	1.60
IM-4	7-24-24	0-0.5'	0.866	1.11
Bus Barn (adjacent to	o)			•
BB-1	7-24-24	1-1.5'	5.54	6.49
BB-2	7-24-24	1-1.5'	2.71	3.34
Pro	oject Site Range	0.866 – 5.54		
Back	ground Site Rang	e	1.02 – 3.79 ^A	
S	creening Level			80 ^B

Notes:

mg/kg – milligrams per kilogram

-- Not analyzed

A – 2006 school site PEA (Envirostor Number 60000280)

 ${\bf B}-{\rm DTSC}{\rm 's}$ residential screening level based on LeadSpread Ver. 9

Sample	Date	Sample	TPH by EPA Method 8015M								
Identification	Collected	Depth	TPH - gasoline	TPH - diesel	TPH – motor oil						
IM-1	7-24-24	0-0.5'	<0.098	<5.0	<5.0						
IM-2	7-24-24	0-0.5'	<0.097	<5.0	<5.0						
IM-3	7-24-24	0-0.5'	<0.097	<5.0	<5.0						
IM-4	7-24-24	0-0.5'	<0.097	<5.0	<5.0						
BB-1	7-24-24	1-1.5'	<0.097	<5.0	<5.0						
BB-2	7-24-24	1-1.5'	<0.10	<5.0	<5.0						
	ES	SL	82	97 ^A	2,400 ^A						

Table 6-3: Soil Results for TPH (results in mg/kg)

Notes:

TPH – Total Petroleum Hydrocarbons

mg/kg – milligrams per kilogram

ESL – SF Bay Regional Water Quality Control Board, Environmental Screening Levels (July, 2019) A – HHRA Note #3, Table 1 - DTSC-Recommended Screening Level (Revised May 2022)

Table 6-4: CAM 17 Metals (results in mg/kg)

Sample Identification	Date Collected	Sample Depth (feet)	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
Import Material																			
IM-1	7-24-24	0-0.5'	1.13	1.10	198	<0.481	0.0813	27.5	12.5	22.8	1.49	<0.0868	5.20	15.8	1.00	<0.0962	0.848	75.5	48.1
IM-2	7-24-24	0-0.5'	0.324	1.86	160	<0.532	<0.532	23.2	10.1	21.5	1.63	<0.0887	1.80	12.5	0.834	<1.06	0.374	66.3	40.5
IM-3	7-24-24	0-0.5'	<0.481	0.810	171	<0.481	<0.481	26.1	11.1	20.2	1.60	<0.0887	0.353	14.0	0.642	<0.962	0.342	67.1	42.1
IM-4	7-24-24	0-0.5'	<0.49	0.866	187	<0.49	<0.49	27.0	12.1	22.4	1.11	<0.0868	5.00	15.1	0.724	<0.98	0.419	73.7	47.9
Bus Barn			·																
BB-1	7-24-24	1-1.5'	0.295	5.54	142	0.622	0.101	27.7	8.45	13.4	6.49	<0.0817	0.652	15.1	1.52	<0.943	0.274	51.4	43.2
BB-2	7-24-24	1-1.5'	<0.472	2.71	71.4	<0.472	<0.472	14.3	4.50	7.95	3.34	<0.0833	0.467	8.00	1.07	<0.943	<0.472	28.3	22.3
RSL			31	AB	15,000	16 ^A	7.1 ^A	120,000	23	3,100	80 ^в	1.0 ^A	390	820 ^A	390	390	1.6	390	23,000

Notes:

mg/kg – milligrams per kilogram AB - Ambient background (1.02 to 3.79 mg/kg) - 2006 school site PEA (Envirostor Number 60000280) RSL – USEPA Regional Screening Level (May 2024) A - HHRA Note #3, Table 1 - DTSC-Recommended Screening Level (Revised May 2022) B - DTSC residential screening level based on LeadSpread Ver. 9

Table 6-5: Soil Results for SVOCs (results in mg/kg)

Sample Identification	Date Collected	Depth (feet)	Acenaphthene	Acenaphthylene	Anthracene	Benzo (a) anthracene	Benzo (a) pyrene	Benzo (b) fluoranthene	Benzo (g,h,i) perylene	Benzo (k) fluoranthene	Chrysene	Dibenzo (a,h) anthracene	Fluoranthene	Fluorene	Indeno (1,2,3-cd) pyrene	1-Methylnapthalene	2-Methylnapthalene	Naphthalene	Phenanthrene	Pyrene	All Other SVOCs
IM-1	7-24-24	0-0.5'	<0.49	<0.49	<0.49	<0.49	<0.49	<0.49	<0.49	<0.49	<0.49	<0.49	<0.49	<0.49	<0.49	<0.49	<0.49	<0.49	<0.49	<0.49	ND
IM-2	7-24-24	0-0.5'	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	ND
IM-3	7-24-24	0-0.5'	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	ND
IM-4	7-24-24	0-0.5'	<0.49	<0.49	<0.49	<0.49	<0.49	<0.49	<0.49	<0.49	<0.49	<0.49	<0.49	<0.49	<0.49	<0.49	<0.49	<0.49	<0.49	<0.49	ND
SL			3,300*	NE	17,000*	1.1	0.11	1.1	NE	11	110	0.028	2,400*	2,300*	1.1	9.9	190*	2.0	NE	1,800*	

Notes:

PAH – Polyaromatic hydrocarbon

mg/kg – milligrams per kilogram

ND – Not dectected

SL – HHRA Note #3, Table 1 - DTSC-Recommended Screening Level (Revised May 2022)

* Non-carcinogenic

NE – Not established

Table 6-6:	Soil Results for NOA
------------	----------------------

Sample Identification	Date Collected	Sample Depth	NOA PLM Analysis (% Type)	NOA TEM Analysis (Asbestos Weight %)
IM-1	7-24-24	0-0.5'	None Detected	NA
IM-2	7-24-24	0-0.5'	None Detected	<0.01%
IM-3	7-24-24	0-0.5'	None Detected	NA
IM-4	7-24-24	0-0.5'	None Detected	NA
Analytical Sensitivity			0.25%	0.01%
Further Action Determination			0.25%	0.01%

Notes:

NOA – Naturally Occurring Asbestos PLM – Polarized Light Microscopy

TEM – Transmission Electron Microscopy

NA – Not Analyzed

7.0 HUMAN HEALTH SCREENING-LEVEL EVALUATION

7.1 CHEMICALS OF POTENTIAL CONCERN

Based on the laboratory analytical results for soil samples collected at the Project Site, the following chemicals of potential concern (COPC) were evaluated for risk assessment purposes:

• Metals – Arsenic and Lead

Arsenic concentrations in soil ranged from 0.81 to 5.54 mg/kg. Arsenic concentrations were compared to an arsenic data set from a PEA report for a school site (Envirostor ID: 60000280) and located approximately 4 miles northwest of the Project Site. The property has a similar geologic setting (Pleistocene Nonmarine (Qc) sedimentary deposits) as the Project Site and consists of similar type soils (sandy loam). The arsenic concentrations at the background site ranged from 1.02 to 3.79 mg/kg. In general, arsenic concentrations identified in surface soil at the Project Site are comparable to background concentrations and further assessment and/or remedial action for arsenic in soil is not warranted. A copy of the background arsenic concentrations is presented in **Appendix E**.

Lead concentrations in soil ranged from 1.11 to 8.92 mg/kg in soil at the Project Site. A risk assessment was performed using the DTSC lead risk assessment spreadsheet model (*LeadSpread Version 9*). Based on the LeadSpread output, exposure to the lead concentrations detected at the Project Site will result in a 90th percentile blood lead concentration of 0.1 micrograms per deciliter (μ g/dI) in children which is below the California Office of Environmental Health Hazard Assessment (OEHHA) blood toxicity level of 1 μ g/l. Therefore, further assessment and/or remedial action for lead in soil is not warranted. A copy of the LeadSpread Risk Assessment Spreadsheet is presented in **Appendix F**.

8.0 ECOLOGICAL SCREENING

A detailed ecological screening evaluation was not performed during this PEA. Based on a review of aerial photographs the Project Site has been in agriculture-use since at least the 1950s through to the present day. The northwest portion of the Project Site (approximate 0.6 acres) was converted into an unpaved parking area circa 2011/2012 to support modernization activities at the adjacent school site. Therefore, based on the available information, there does not appear to be a significant pathway of exposure to nonhuman, sensitive ecological species.

9.0 CONCLUSIONS AND RECOMMENDATIONS

The purpose of the PEA was to establish whether a release or potential release of hazardous substances, which potentially pose a threat to human health via ingestion, dermal contact, and inhalation exposure pathways, exists at the Project Site.

Evaluation

Based on the laboratory analytical results for soil samples collected at the Project Site, the following COPC were evaluated for risk assessment purposes:

• Metals – Arsenic and Lead

Risk Assessment

Arsenic concentrations in soil ranged from 0.81 to 5.54 mg/kg. Arsenic concentrations were compared to an arsenic data set from a school site located approximately 4 miles northwest of the Project Site. The property has a similar geologic setting (Pleistocene Nonmarine (Qc) sedimentary deposits) as the Project Site and consists of similar type soils (sandy loam). The arsenic concentrations at the background site ranged from 1.02 to 3.79 mg/kg. Arsenic concentrations identified in surface soil at the Project Site are comparable to background concentrations and further assessment and/or remedial action for arsenic in soil is not warranted.

Lead concentrations in soil ranged from 1.11 to 8.92 mg/kg in soil at the Project Site. Using DTSC's lead risk assessment spreadsheet model (*LeadSpread Version 9*), the model estimated a 90th percentile blood lead concentration of 0.1 μ g/dl, which is below OEHHAs blood toxicity level of 1 μ g/dl. Therefore, further assessment and/or remedial action for lead in soil is not warranted.

Recommendations

Based on the findings of the PEA, the Project Site has not been adversely impacted by historic or current land-use activities. Therefore, Padre recommends the issuance of a "No Further Action" designation from the DTSC regarding the proposed Hope Elementary School Expansion Project.

10.0 REFERENCES

- CalEPA, Department of Toxic Substances Control (DTSC), Envirostor Database, (https://www.envirostor.dtsc.ca.gov/public/).
 - ____, DTSC, Human Health Risk Assessment (HHRA) Note 3: DTSC-modified Screening Levels (DTSC-SLs), Released June 2020 Revised May 2022.
 - _____, DTSC, Human Health Risk Assessment (HHRA) Note 4: Screening Level Human Health Risk Assessments, Revised March 2022.
- _____, DTSC Information Advisory, Clean Imported Fill Material, October 2001.
- _____, DTSC Interim Guidance for Sampling Agricultural Soils (Third Revision), August 7, 2008.
 - ____, DTSC, *Preliminary Environmental Assessment Guidance Manual*, January 1994, (Revised October 2015).
- California Division of Mines and Geology, *Geologic Map of California Fresno Sheet, 1:250,000,* 1966, fourth printing 1991.
- California Geological Survey, A General Location Guide For Ultramafic Rocks in California Areas More Likely to Contain Naturally Occurring Asbestos. Open File Report 2000-19, 2000.
- Environmental Data Resources, Inc., EDR Radius Map Hope Junior High School Expansion, W. Teapot Dome Avenue, Porterville, CA 93257, November 20, 2023.

Environmental Data Resources, Inc., EDR Aerial Photographs Database, Aerial Photographs.

- Norris, R. M., & R. W. Webb, 1976 (Second Edition 1990), *Geology of California*, John Wiley & Sons, New York, pp. 412-427.
- Padre Associates Inc., Preliminary Environmental Assessment Work Plan, Hope Elementary School Expansion Project, Porterville, Tulare County, California (Site Code: 104883), July 2024.

State Water Resources Control Board Geotracker website, (http://geotracker.swrcb.ca.gov).

Tulare County Assessor (https://tularecounty.ca.gov/assessor/).

- United States (U.S.) Department of Agriculture, Soil Conservation Service, Soil Survey of Tulare County, California – Central Part, 1977.
- U.S. Environmental Protection Agency, *Regional Screening Levels (Region 9 RSLs)*, November 2023.
- U.S. Geological Survey, Topographic Map; Porterville, California, 2021.

APPENDIX A DTSC CORRESPONDENCE

Department of Toxic Substances Control

Gavin Newsom

Governor

Yana Garcia Secretary for Environmental Protection Meredith Williams, Ph.D., Director 8800 Cal Center Drive Sacramento, California 95826-3200

Sent Via Electronic Mail

July 11, 2024

Ms. Melanie Matta Superintendent/Principal Hope Elementary School District 613 West Teapot Dome Avenue Porterville, California 93257 MMatta@hope-esd.org

PRELIMINARY ENVIRONMENTAL ASSESSMENT WORKPLAN – APPROVAL LETTER, HOPE ELEMENTARY SCHOOL DISTRICT, HOPE ELEMENTARY SCHOOL EXPANSION PROJECT, PORTERVILLE, TULARE COUNTY, CALIFORNIA (PROJECT CODE: 104883)

Dear Ms. Matta:

The Department of Toxic Substances Control (DTSC) reviewed the final *Preliminary Environmental Assessment Workplan* (PEA Workplan – Padre Associates, Inc., July 10, 2024) received on July 10, 2024. The PEA Workplan includes project background information as well as proposed environmental investigation activities for a 2.2-acre expansion area for the Hope Junior High School located at 613 West Teapot Dome Avenue in Porterville, Tulare County, California (Site).

The PEA Workplan is approved.

If Site conditions differ from those presented in the approved PEA Workplan, additional work may be necessary. In accordance with Education Code section 17210.1(b), the Hope Elementary School District (District) shall provide written notice to businesses and residents in the immediate area, approved in form by DTSC, at least five days in advance of field investigation activities. The intent of this requirement is to provide advance notice

Ms. Melanie Matta July 10, 2024 Page 2

of fieldwork such as drilling, sampling, and other environmental data collection activities to anyone who lives or works in the line of sight of the Site. Please notify DTSC a minimum of 48 hours in advance of fieldwork or schedule changes.

The PEA Workplan states that the District intends to make the Draft PEA Report available for public review in compliance with Option A of the Education Code section 17213.1(a)(6)(A). Pursuant to Education Code section 17213.1, subdivision (a)(6), at the same time the Draft PEA Report is submitted to DTSC for review, the District shall publish a DTSC-approved notice in a local newspaper of general circulation and post the notice in a prominent manner at the Site. The notice should state the District's intent of making the Draft PEA Report available for public review pursuant to Option A. A copy of the notice shall be submitted to DTSC with the Draft PEA Report.

If you have any questions regarding the project, please contact me at (916) 255-6666 or via email at <u>Elizabeth.Tisdale@dtsc.ca.gov</u>.

Sincerely,

E. Sisdale

Elizabeth Tisdale Project Manager Northern California Schools Unit Site Mitigation and Restoration Program Department of Toxic Substances Control

cc: (see next page)

Ms. Melanie Matta July 10, 2024 Page 3

cc: (via email)

Alan Klein, REPA, CPESC, QSD/QSP Senior Environmental Scientist Padre Associates, Inc. <u>AKlein@padreinc.com</u>

Alan Churchill, PG Senior Geologist Padre Associates, Inc. <u>AChurchill@padreinc.com</u>

Weiying Jiang, PhD Staff Toxicologist Human and Ecological Risk Office Department of Toxic Substances Control Weiying.Jiang@dtsc.ca.gov

Tim Crick, PE, Chief Northern California Schools Unit Site Mitigation and Restoration Program Department of Toxic Substances Control <u>Tim.Crick@dtsc.ca.gov</u>

APPENDIX B SITE PHOTOGRAHS

APPENDIX C HEALTH & SAFETY PLAN (from Appendix F of the PEA Workplan)

APPENDIX F SITE HEALTH AND SAFETY PLAN

Project Title:	Preliminary Environmental Assessment (PEA) for the Hope Element School Expansion Project.					
Project Address:	613 West Teapot Dome Avenue, Portervill	e, California.				
Project Manager:	Alan J. Klein	Cell Phone: (916) 947-4831				
Project Supervisor:	Jerome K. Summerlin	Cell Phone: (805) 218-0109				
Office Phone:	(916) 333-5920 (Sacramento Office) ext. 2	240.				

INTRODUCTION

The purpose of this Site Health and Safety Plan (HSP) is to establish requirements for protecting the health and safety of site workers for the above-referenced project. The HSP contains safety information, instructions, and procedures.

ORGANIZATION

The following personnel are designated to carry out the stated job functions pertaining to the site activities. All site personnel have read this safety plan and are familiar with its provisions.

	Name	Signature
Site Safety Officer:	Alan Churchill	
Field Team Leader:	Matt Miller	
Field Personnel:		
Field Personnel:		
Field Personnel:		
Equipment Operator:		
Operator Helper:		
Work was a	accomplished in accordan	ce with the Site Safety Plan, with the following

Work was accomplished in accordance with the Site Safety Plan, with the following exceptions:

Site Safety Office: _____

Date: _____

(RETURN ORIGINAL COPY TO JOB FILE WITH SIGNATURES)

Hope Elementary._PEA Wkp_July 2024

EMERGENCY RESPONSE (DIAL 9-1-1)

Nearest phone:	On Padre staff.
Emergency Facility:	Sierra View Medical Center
Address:	465 W. Putnam Avenue, Porterville, CA 93257
Phone:	(559) 784-1110
Ambulance response time:	Approximately 12-minutes.

Fire and Police will also be contacted by dialing 911. Ambulance service is to be used in emergencies if the injured person cannot safely be transported by a Padre Associates, Inc., vehicle. When in doubt as to the severity of the situation, call 911. Driving directions to Memorial Medical Center Emergency Department and an illustrated map are located at the end of this HSP.

SITE DESCRIPTION

Location:	613 West Teapot Dome Avenue, Porterville, California.
Potential Hazards:	Soil containing organochlorine pesticides (OCPs), metals, total petroleum hydrocarbons (TPH), semi-volatile organic compounds (SVOCs), and naturally occurring asbestos (NOA).
Area of Interest:	Surface and shallow subsurface soil at the Project Site.
Surrounding Land Use:	Agricultural land (citrus orchards) and elementary school.
Topography:	Relatively flat.
Weather Conditions:	Expected temperatures 80-90 degrees.

PROJECT OBJECTIVE

The objectives of the environmental assessment program are to:

- Utilize hand sampling equipment to collect surface and subsurface soil samples across the Project Site; and
- Selected soil samples will be submitted to a certified analytical laboratory to be chemically analyzed for the presence of OCPs, metals, TPH, SVOCs, and NOA.

AGENCY REPRESENTATIVES

Name:	Elizabeth Tisdale, Project Manager
Agency:	California Department of Toxic Substances Control
Program:	Northern California Schools Unit
Phone Number:	(916) 255-6666

Hope Elementary._PEA Wkp_July 2024

SITE SETUP

A safe perimeter will be established at the work Project Site. The work area will be restricted to required personnel only. No unauthorized personnel will be allowed within the established safe perimeter or will be allowed to enter the Project Site during field work activities. Control boundaries will be marked with caution tape (if necessary) to maintain the established safe perimeter. The onsite command post will be established at the Padre Associates, Inc. vehicle onsite.

HAZARD EVALUATION

Chemicals Onsite. The following substance(s) are known or suspected to be onsite. The primary hazards of each are identified along with their concentrations, if known.

Substance Involved	Primary Hazard	Concentration
OCPs in soil	Ingestion, inhalation, and dermal contact	Unknown
Arsenic in soil	Ingestion, inhalation, and dermal contact	Unknown
Lead in soil	Ingestion, inhalation, and dermal contact	Unknown
TPH in soil	Ingestion, inhalation, and dermal contact	Unknown
SVOCs in soil	Ingestion, inhalation, and dermal contact	Unknown
CAM 17 metals in soil	Ingestion, inhalation, and dermal contact	Unknown
NOA in soil	Ingestion, inhalation, and dermal contact	Unknown

Notes:

OCPs - Organochlorine Pesticides TPH - Total Petroleum Hydrocarbons

TPH - Total Petroleum Hydrocarbons NOA - Naturally Occurring Asbestos

Physical Hazards Onsite. The physical hazards and potential for employee exposure to the hazards (i.e., low, moderate, and high) anticipated during the field investigation are discussed below.

<u>Heavy Equipment.</u> The hazards involved with using heavy equipment (i.e., Geoprobe, pick-up trucks, backhoe) include hazards of pinch points; impact from moving parts; fatigue; and improper operation. Heavy equipment used during field activities will consist of pick-up trucks. The potential for incidents to occur from exposure to heavy equipment is considered low. Precautions will be taken when working around heavy equipment. The following safe practices are to be followed during work around heavy equipment:

- While working onsite, wear reflective/visible safety vests, always maintain visual contact with the operator and remain alert.
- Never walk directly behind or to the side of heavy equipment without the operator's knowledge;
- All heavy equipment must be fitted with audible back-up alarms as mandated by OSHA;
- Blades, buckets, and other hydraulic systems will be fully lowered, and parking brakes engaged whenever equipment is not in use; and
- All non-essential personnel will be kept out of the work areas.

Heavy equipment other than pickup trucks is not anticipated for this project. Therefore, the potential for employee exposure to heavy equipment hazards during field activities is considered low.

<u>Slips, Trips and Falls.</u> Site activities can pose a variety of slip, trip and fall hazards. Examples that contribute to slips, trips and falls include uneven ground surfaces and slick or wet surfaces, and unstable earth slopes. The field activities will be conducted on a relatively level ground surface area. The immediate work area will remain clear of all sampling tools and equipment not in use.

<u>Overhead and Underground Utilities.</u> Typical site activities such as movement of equipment or intrusive activities such as excavations can present the risk of contact with overhead or underground utilities. Overhead utilities are not present at the Project Site. Soil collection activities will consist of using hand sampling equipment to collect surface and near surface soil samples. Therefore, the potential for employee exposure to utility hazards during field activities is considered low.

<u>Heat Stress</u>. High temperatures, direct sun, use of PPE, and labor-intensive activities may contribute to heat stress. Heat stress can involve a high risk of illness of death. Symptoms of heat stress or heat exhaustion include:

- Headaches, dizziness, lightheadedness, or fainting;
- Weakness and moist;
- Mood changes such as irritability or confusion;
- Upset stomach or vomiting.

Preventing heat stress while working outdoors includes:

- Know the signs/symptoms of heat stress, and monitor yourself and coworkers;
- Drink lots of water; about 1 cup every 15 minutes;
- Take regular breaks away from the sun;
- Wear lightweight, light colored, loose-fitting clothes;
- Avoid alcohol, caffeinated drinks, or heavy meals.

Treatment for heat related illness includes:

F - 4

- Move the worker to a cool shaded area;
- Loosen or remove heavy clothing;
- Provide cool drinking water;
- Fan and mist the person with water:
- Call 911.

Field work is expected to be completed during June 2024. Therefore, the potential for employee exposure to heat stress hazards during field activities is considered moderate.

<u>Fire and Explosion.</u> Gas or sewer lines can contain hazardous levels of explosive or toxic gases, which may pose a fire risk. The risk of fire on site may also stem from the presence of vegetation, heat and fuel sources from construction equipment and site vehicles, or from the presence of combustible gases or vapors in contaminated soil and/or wells. Padre vehicles will be parked on unvegetated work areas. Therefore, the potential for exposure to fire and explosion hazards is considered low.

<u>Traffic Hazards.</u> Work activities along roadways, parking areas, and entrance and exit areas create exposure to traffic hazards. The Project Site consists of an unpaved parking area and citrus orchard. Field sampling activities will not be performed along or near roadways. Therefore, the potential for exposure to traffic hazards is considered low.

<u>Biological Hazards.</u> The Project Site consists of an unpaved parking area and citrus orchard. Therefore, there is a potential presence for a wide variety of insects, including bees, ticks and spiders that may be encountered. Stings from bees may cause serious allergic reactions in certain individuals. Ticks are parasites that feed on the blood of an animal/human host and can carry several severe diseases, causing fever and pain for several days and even brain damage. Poisonous snakes or spiders may also be encountered. Skin contact with certain plants (i.e., poison oak and poison ivy) may cause severe reactions. The best protection is skin coverage (long pants, long shirts, and gloves). Avoid wearing perfumes and scents.

GENERAL SAFETY RULES

- 1. There will be no eating, drinking, or smoking within the work areas of the PEA.
- 2. Fire extinguishers will be in nearby Padre staff vehicles.
- 3. First aid kits will be in nearby Padre staff vehicles.

EQUIPMENT

Personal Protective Equipment. Based on the evaluation of potential hazards, the level of protection deemed appropriate for this site is Level D. Field sampling activities will be conducted in such a manner as to limit the creation of dust during soil disturbance.

Level D equipment includes:

hard hat steel toe and shank boots safety glasses or goggles gloves

Hope Elementary._PEA Wkp_July 2024

Level C equipment includes:

full or half face respirator dual cartridge with organic vapor/acid gas hepa filtration steel toe neoprene boots Tyvek suits latex inner gloves PVC outer gloves duct tape

DECONTAMINATION PROCEDURES

Level D - Decontamination. For Level D PPE work, the following personnel decontamination procedures must be observed by workers prior to rest breaks and upon leaving the exclusion zone:

- 1. Remove gross contamination from tools, monitoring equipment, boots, etc., prior to leaving the work site, using water, paper towels, Handi-Wipes[®], etc.
- 2. Either completely decontaminate solid equipment at the work site using detergent and water (if possible) or wrap equipment in a plastic bag for transport until complete decontamination is possible.
- 3. Always follow established personnel decontamination procedures and remove contaminated gloves, paper towels, etc. by placing them in a plastic bag and arranging for proper disposal.
- 4. Wash hands and face (field wash) thoroughly with soap and water before lunch or coffee breaks, and as soon as possible after finishing work for the day.

MONITORING

Safety Monitoring

- 1. The designated Site Safety Officer is responsible for onsite safety recommendations during fieldwork activities.
- 2. A daily safety meeting will be conducted onsite by the Site Safety Officer prior to initiation of activities. The technical work plan will be discussed, and any other topic considered relevant by the Site Safety Officer.

Environmental Monitoring

- The Site Safety Officer shall be notified of any onsite emergencies or potential hazards noticed by other site personnel. The Site Safety Officer is responsible for determining whether it is safe to proceed. If the Site Safety Officer does not or cannot make the determination, then the project manager shall be contacted prior to continuing with the investigation.
- 2. If any equipment onsite fails to operate properly, the Field Team Leader and Site Safety Officer shall be notified. It will be determined as to the effect of this failure on continuing

operations on the site. If the failure affects the safety of personnel or prevents completion of the work plan tasks, all personnel shall leave the job site until the situation is evaluated and appropriate actions taken.

Personal Monitoring.

The following personal monitoring will be in effect onsite:

• Site personnel will be observed by the Site Safety Officer to determine whether they are operating in a safe manner.

TRAINING REQUIREMENTS

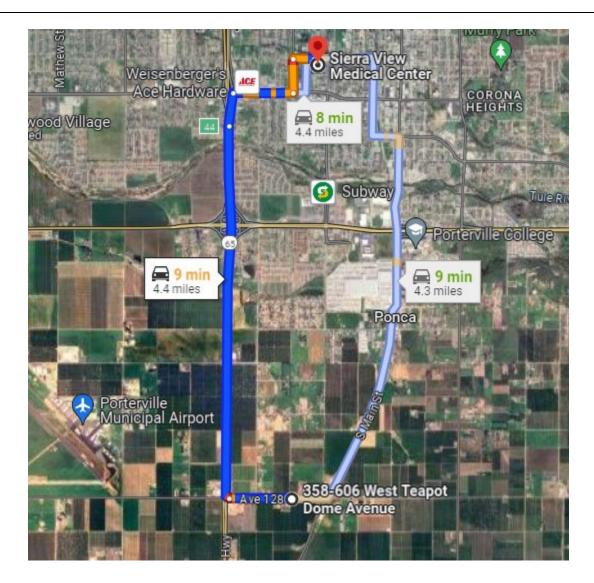
All personnel will be up to date on the requirements set forth in 29 CFR 1910.120. It is the responsibility of the Corporate Health and Safety Coordinator to maintain the required annual 8-hour refresher training for all personnel. Padre's Corporate Health and Safety Coordinator is Mr. Andreas Wedderien (805) 644-2220 x19.

DISPOSAL OF WASTES DURING FIELD ACTIVITIES

Generated waste solids (gloves, bottles, wrappers, etc.) will be placed in plastic trash bag and removed from the Project Site and the end of day of field activities. Soil cuttings will be placed back into the bore holes; therefore, no waste solids will be stored onsite. At the completion of sampling activities, the small amount of wash water will be dispersed to the ground surface. The wash water will consist of water, non-phosphate detergent, and a small amount of surface soil.

ROUTE TO HOSPITAL

Directions


- 1. From the work area, head West on Teapot Dome Avenue (0.4 mi.);
- 2. Turn Right on CA-65 North (2.8 mi.);
- 3. Take exit for Olive Avenue (0.2 mi.);
- 4. Turn Left onto Putman Avenue (0.3 mi.);
- 5. Turn Right onto Putnam Avenue (0.7 mi.);

Arrive: Sierra View Medical Center, 465 W. Putnam Ave, Porterville, CA 93257 Drive Time: 4.5-miles in approximately 10-minutes.

Hope Elementary._PEA Wkp_July 2024

APPENDIX D

LABORATORY ANALTYICAL REPORTS AND CHAIN-OF-CUSTODY DOCUMENTATION

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Alan Churchill Padre Associates, Inc. 350 University Ave Suite 250 Sacramento, California 95827 _{Generated 8/13/2024 11:51:02 AM}


JOB DESCRIPTION

Hope Elementary School, Porterville, CA

JOB NUMBER

570-193109-1

Eurofins Calscience 2841 Dow Avenue, Suite 100 Tustin CA 92780

Eurofins Calscience

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Calscience Project Manager.

Authorization

Authorized for release by Rossina Tomova, Project Manager I <u>Rossina.Tomova@et.eurofinsus.com</u> (657)210-6367 Generated

8/13/2024 11:51:02 AM

1

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	9
Surrogate Summary	32
QC Sample Results	34
QC Association Summary	50
Lab Chronicle	55
Certification Summary	60
Method Summary	61
Sample Summary	62
Chain of Custody	63
Receipt Checklists	66

Definitions/Glossary

Client: Padre Associates, Inc. Project/Site: Hope Elementary School, Porterville, CA Job ID: 570-193109-1

Qualifiers		3
GC/MS Semi	i VOA	
Qualifier	Qualifier Description	4
*1	LCS/LCSD RPD exceeds control limits.	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	5
Metals		
Qualifier	Qualifier Description	6
F1	MS and/or MSD recovery exceeds control limits.	
F2	MS/MSD RPD exceeds control limits	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
Glossary		8
Abbreviation	These commonly used abbreviations may or may not be present in this report.	Q
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	· · · ·
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEO	Toxicity Equivalent Quotient (Dioxin)	

Toxicity Equivalent Quotient (Dioxin) TEQ

TNTC Too Numerous To Count

Job ID: 570-193109-1

Eurofins Calscience

Job Narrative 570-193109-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these
 situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise
 specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 7/26/2024 9:40 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.0°C.

GC/MS Semi VOA

Method 8270C: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 570-466094 and analytical batch 570-466727 recovered outside control limits for the following analytes: Benzo[g,h,i]perylene, Dibenz(a,h)anthracene and Indeno[1,2,3-cd]pyrene.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Gasoline Range Organics

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Diesel Range Organics

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Pesticides

Method 8081A: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 570-466360 and analytical batch 570-468193 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

Method 8081A: The continuing calibration verification (CCV) associated with batch 570-468193 recovered above the upper control limit for Chlordane and Toxaphene. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated sample is impacted: AG-3 (SURF) DUP (570-193109-15).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Metals

Method 6020: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 570-467482 and 570-467599 and analytical batch 570-468126 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Detection Summary

Client: Padre Associates, Inc. Project/Site: Hope Elementary School, Porterville, CA Job ID: 570-193109-1

Client Sample ID: A	G-1 (SURF)					Lab Sa	mp	ole ID: 5	70-193109- [^]
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	DN	Nethod	Prep Type
Arsenic	3.54		0.513	0.0937	mg/Kg	20	- 6	6020	Total/NA
Lead	5.67		0.513	0.0671	mg/Kg	20	6	6020	Total/NA
Client Sample ID: A	G-2 (SURF)					Lab Sa	mp	ole ID: 5	70-193109-2
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	DN	Nethod	Prep Type
Arsenic	3.41		0.505	0.0923	mg/Kg	20	- 6	6020	Total/NA
Lead	5.14		0.505	0.0661	mg/Kg	20	6	6020	Total/NA
Client Sample ID: A	G-3 (SURF)					Lab Sa	mp	ole ID: 5	70-193109-3
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	DN	Nethod	Prep Type
Arsenic	4.12		0.495	0.0905	mg/Kg	20	- 6	6020	Total/NA
Lead	8.92		0.495	0.0648		20	6	6020	Total/NA
Client Sample ID: A	G-4 (SURF)					Lab Sa	mp	ole ID: 5	70-193109-4
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	DN	Nethod	Prep Type
Arsenic	3.94		0.508	0.0928	mg/Kg	20	- 6	6020	Total/NA
Lead	5.81		0.508	0.0664	mg/Kg	20	6	6020	Total/NA
Client Sample ID: IN	1-1 (0-6")					Lab Sa	mp	ole ID: 5	70-193109-
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	DN	lethod	Prep Type
Antimony	1.13		0.481	0.194	mg/Kg	5	- 6	6020	Total/NA
Arsenic	1.10	F2 F1	0.481	0.0758	mg/Kg	5	6	6020	Total/NA
Barium	198	F1	0.481	0.266	mg/Kg	5	6	6020	Total/NA
Cadmium	0.0813	J F2 F1	0.481	0.0692	mg/Kg	5	6	6020	Total/NA
Chromium	27.5	F2 F1	0.481	0.366	mg/Kg	5	6	6020	Total/NA
Cobalt	12.5	F2 F1	0.481	0.0492	mg/Kg	5	6	6020	Total/NA
Copper	22.8	F2 F1	0.481	0.0891	mg/Kg	5	6	6020	Total/NA
Lead	1.49	F2 F1	0.481	0.266	mg/Kg	5	6	6020	Total/NA
Molybdenum	5.20		0.481	0.237	mg/Kg	5	6	6020	Total/NA
Nickel	15.8	F2 F1	0.481	0.326	mg/Kg	5	6	6020	Total/NA
Selenium	1.00	F2 F1	0.481	0.366	mg/Kg	5	6	6020	Total/NA
Thallium	0.848	F2 F1	0.481	0.153	mg/Kg	5	6	6020	Total/NA
Vanadium	75.5	F2 F1	0.481	0.180	mg/Kg	5	6	6020	Total/NA
Zinc	48.1	F2 F1	4.81	2.90	mg/Kg	5	6	6020	Total/NA
Client Sample ID: IN	1-2 (0-6")					Lab Sa	mp	ole ID: 5	70-193109-0
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	DN	lethod	Prep Type
Antimony	0.324	J	0.532	0.215	mg/Kg	5	- 6	6020	Total/NA
Arsenic	1.86		0.532	0.0838	mg/Kg	5	6	6020	Total/NA
Barium	160		0.532	0.294	mg/Kg	5	6	6020	Total/NA
Chromium	23.2		0.532	0.405	mg/Kg	5		6020	Total/NA
Cobalt	10 1		0.532		ma/Ka	5		6020	Total/NA

				00			
Chromium	23.2	0.532	0.405	mg/Kg	5	6020	Total/NA
Cobalt	10.1	0.532 0	0.0545	mg/Kg	5	6020	Total/NA
Copper	21.5	0.532 0	0.0986	mg/Kg	5	6020	Total/NA
Lead	1.63	0.532	0.294	mg/Kg	5	6020	Total/NA
Molybdenum	1.80	0.532	0.262	mg/Kg	5	6020	Total/NA
Nickel	12.5	0.532	0.361	mg/Kg	5	6020	Total/NA
Selenium	0.834	0.532	0.405	mg/Kg	5	6020	Total/NA
Thallium	0.374 J	0.532	0.169	mg/Kg	5	6020	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins Calscience

Detection Summary

Client: Padre Associates, Inc. Project/Site: Hope Elementary School, Porterville, CA

Job ID: 570-193109-1

5

Lab Sample ID: 570-193109-6

Client Sample ID: IM-2 (0-6") (Continued)

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Vanadium	66.3	0.532	0.199	mg/Kg	5	6020	Total/NA
Zinc	40.5	5.32	3.21	mg/Kg	5	6020	Total/NA
Client Sample ID: IM-3 (0-6")					Lab San	nple ID: 5	70-193109-7

Client Sample ID: IM-3 (0-6")

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Arsenic	0.810		0.481	0.0758	mg/Kg	5	6020	Total/NA
Barium	171		0.481	0.266	mg/Kg	5	6020	Total/NA
Chromium	26.1		0.481	0.366	mg/Kg	5	6020	Total/NA
Cobalt	11.1		0.481	0.0492	mg/Kg	5	6020	Total/NA
Copper	20.2		0.481	0.0891	mg/Kg	5	6020	Total/NA
Lead	1.60		0.481	0.266	mg/Kg	5	6020	Total/NA
Molybdenum	0.353	J	0.481	0.237	mg/Kg	5	6020	Total/NA
Nickel	14.0		0.481	0.326	mg/Kg	5	6020	Total/NA
Selenium	0.642		0.481	0.366	mg/Kg	5	6020	Total/NA
Thallium	0.342	J	0.481	0.153	mg/Kg	5	6020	Total/NA
Vanadium	67.1		0.481	0.180	mg/Kg	5	6020	Total/NA
Zinc	42.1		4.81	2.90	mg/Kg	5	6020	Total/NA

Client Sample ID: IM-4 (0-6")

Lab Sample ID: 570-193109-8

Lab Sample ID: 570-193109-9

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Arsenic	0.866		0.490	0.0773	mg/Kg	5	6020	Total/NA
Barium	187		0.490	0.271	mg/Kg	5	6020	Total/NA
Chromium	27.0		0.490	0.374	mg/Kg	5	6020	Total/NA
Cobalt	12.1		0.490	0.0502	mg/Kg	5	6020	Total/NA
Copper	22.4		0.490	0.0909	mg/Kg	5	6020	Total/NA
Lead	1.11		0.490	0.271	mg/Kg	5	6020	Total/NA
Molybdenum	5.00		0.490	0.241	mg/Kg	5	6020	Total/NA
Nickel	15.1		0.490	0.333	mg/Kg	5	6020	Total/NA
Selenium	0.724		0.490	0.373	mg/Kg	5	6020	Total/NA
Thallium	0.419	J	0.490	0.156	mg/Kg	5	6020	Total/NA
Vanadium	73.7		0.490	0.184	mg/Kg	5	6020	Total/NA
Zinc	47.9		4.90	2.96	mg/Kg	5	6020	Total/NA

Client Sample ID: BB-1 (1-1.5")

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Antimony	0.295	J	0.472	0.190	mg/Kg	5	_	6020	Total/NA
Arsenic	5.54		0.472	0.0743	mg/Kg	5		6020	Total/NA
Barium	142		0.472	0.261	mg/Kg	5		6020	Total/NA
Beryllium	0.622		0.472	0.376	mg/Kg	5		6020	Total/NA
Cadmium	0.101	J	0.472	0.0679	mg/Kg	5		6020	Total/NA
Chromium	27.7		0.472	0.359	mg/Kg	5		6020	Total/NA
Cobalt	8.45		0.472	0.0483	mg/Kg	5		6020	Total/NA
Copper	13.4		0.472	0.0875	mg/Kg	5		6020	Total/NA
Lead	6.49		0.472	0.261	mg/Kg	5		6020	Total/NA
Molybdenum	0.652		0.472	0.232	mg/Kg	5		6020	Total/NA
Nickel	15.1		0.472	0.320	mg/Kg	5		6020	Total/NA
Selenium	1.52		0.472	0.359	mg/Kg	5		6020	Total/NA
Thallium	0.274	J	0.472	0.150	mg/Kg	5		6020	Total/NA
Vanadium	51.4		0.472	0.177	mg/Kg	5		6020	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins Calscience

Detection Summary

Client: Padre Associates, Inc. Project/Site: Hope Elementary School, Porterville, CA Job ID: 570-193109-1

Client Sample ID: BB-1 (1-1.5") (Continued) Lab Sample ID: 570-193109-9 **Result Qualifier** RL MDL Unit Dil Fac D Method Analyte Prep Type 43.2 4.72 5 6020 Total/NA Zinc 2.85 mg/Kg Client Sample ID: BB-2 (1-1.5") Lab Sample ID: 570-193109-10 5 Result Qualifier Analyte RL MDL Unit Dil Fac D Method Prep Type 6020 Arsenic 2.71 0.472 0.0743 mg/Kg 5 Total/NA Barium 71.4 0.472 0.261 mg/Kg 5 6020 Total/NA 0.359 6020 Chromium 14.3 0.472 mg/Kg 5 Total/NA 5 Cobalt 4.50 0.472 0.0483 mg/Kg 6020 Total/NA Copper 7.95 0.472 0.0875 mg/Kg 5 6020 Total/NA Lead 3.34 0.472 0.261 mg/Kg 5 6020 Total/NA 0.467 J 5 6020 Molybdenum 0.472 0.232 mg/Kg Total/NA 5 6020 Nickel 8.00 0.472 0.320 mg/Kg Total/NA 0.359 mg/Kg 5 Selenium 1.07 0.472 6020 Total/NA 5 Vanadium 28.3 0.472 0.177 mg/Kg 6020 Total/NA 5 6020 Total/NA Zinc 22.3 4.72 2.85 mg/Kg Client Sample ID: FB#1 Lab Sample ID: 570-193109-11 No Detections. Client Sample ID: EB#1 Lab Sample ID: 570-193109-12 No Detections. Client Sample ID: AG-1 (SURF) DUP Lab Sample ID: 570-193109-13 Analyte **Result Qualifier** RL MDL Unit Dil Fac D Method Prep Type Lead 6.19 0.508 mg/Kg 20 6020 Total/NA 0.0664 Client Sample ID: AG-2 (SURF) DUP Lab Sample ID: 570-193109-14 Analvte **Result Qualifier** RL MDL Unit Dil Fac D Method Prep Type Arsenic 0.490 0.0896 mg/Kg 20 6020 Total/NA 3.35 Client Sample ID: AG-3 (SURF) DUP Lab Sample ID: 570-193109-15

No Detections.

This Detection Summary does not include radiochemical test results.

Client Sample Results		
lie		(
0		(
		(
		۵
		(
	, Inc.	
	: Padre Associates, Inc.	ī
	e As	
	: Padr	

Job ID: 570-193109-1

Project/Site: Hope Elementary School, Porterville, CA Client Sample ID: AG-1 (SURF) Date Collected: 07/24/24 08:50 Date Received: 07/26/24 09:40 Client:

Lab Sample ID: 570-193109-1 Matrix: Solid 6

Analyte 4,4'-DDD							
4,4'-DDD	Result Qualifier	RL	MDL Unit		D Prepared	Analyzed	Dil Fac
	ND	4.9	0.70 ug/Kg	j D	07/31/24 12:04	08/11/24 15:11	-
4,4'-DDE	ND	4.9	0.67 ug/Kg	ĝ	07/31/24 12:04	08/11/24 15:11	~
4,4'-DDT	ND	4.9	1.2 ug/Kg	ğ	07/31/24 12:04	08/11/24 15:11	~
Aldrin	ND	4.9	1.6 ug/Kg	ŋ	07/31/24 12:04	08/11/24 15:11	-
alpha-BHC	ND	4.9	0.58 ug/Kg	ŋ	07/31/24 12:04	08/11/24 15:11	-
alpha-Chlordane	ND	4.9	0.56 ug/Kg	Ð	07/31/24 12:04	08/11/24 15:11	~
beta-BHC	QN	4.9	0.88 ug/Kg	ŋ	07/31/24 12:04	08/11/24 15:11	-
Chlordane	ND	25	4.0 ug/Kg	ğ	07/31/24 12:04	08/11/24 15:11	~
delta-BHC	ND	4.9	0.92 ug/Kg	ĝ	07/31/24 12:04	08/11/24 15:11	~
Dieldrin	QN	4.9	0.54 ug/Kg	Ð	07/31/24 12:04	08/11/24 15:11	-
Endosulfan I	ND	4.9	1.1 ug/Kg	ŋ	07/31/24 12:04	08/11/24 15:11	~
Endosulfan II	ND	4.9	0.54 ug/Kg	Ð	07/31/24 12:04	08/11/24 15:11	-
Endosulfan sulfate	ND	4.9	0.62 ug/Kg	ŋ	07/31/24 12:04	08/11/24 15:11	-
Endrin	ND	4.9	0.66 ug/Kg	ĝ	07/31/24 12:04	08/11/24 15:11	~
Endrin aldehyde	ND	4.9	3.3 ug/Kg	ĝ	07/31/24 12:04	08/11/24 15:11	~
Endrin ketone	ND	4.9	0.89 ug/Kg	ŋ	07/31/24 12:04	08/11/24 15:11	-
gamma-Chlordane	ND	4.9	3.3 ug/Kg	ĝ	07/31/24 12:04	08/11/24 15:11	~
gamma-BHC	ND	4.9	0.51 ug/Kg	ĝ	07/31/24 12:04	08/11/24 15:11	~
Heptachlor	QN	4.9	0.59 ug/Kg	ß	07/31/24 12:04	08/11/24 15:11	-
Heptachlor epoxide	ND	4.9	0.53 ug/Kg	ĝ	07/31/24 12:04	08/11/24 15:11	~
Methoxychlor	ND	4.9	1.2 ug/Kg	ĝ	07/31/24 12:04	08/11/24 15:11	~
Toxaphene	ND	25	15 ug/Kg	ູດັ	07/31/24 12:04	08/11/24 15:11	-
Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene (Surr)	74	38 - 148			07/31/24 12:04	08/11/24 15:11	1
DCB Decachlorobiphenyl (Surr)	96	37 - 151			07/31/24 12:04	08/11/24 15:11	1
Method: SW846 6020 - Metals (ICP/MS)							
Analyte	Result Qualifier	RL	MDL Unit		D Prepared		Dil Fac
Arsenic	3.54	0.513	0.0937 mg/Kg	₹g	08/04/24 12:00	08/05/24 13:21	20
Lead	5.67	0.513	0.0671 mg/Kg	۶g	08/04/24 12:00	08/05/24 13:21	20

52

Pag&% of 66

8/13/2024

Eurofins Calscience

Results
Φ
0
Ξ
F
_
σ
S
÷
Ξ
_
Ψ
_
$\overline{\mathbf{n}}$

Client: Padre Associates, Inc. Project/Site: Hope Elementary School, Porterville, CA

Client Sample ID: AG-2 (SURF) Date Collected: 07/24/24 08:54 Date Received: 07/26/24 09:40

(F)

Lab Sample ID: 570-193109-2 Matrix: Solid

Job ID: 570-193109-1

Analyte 4,4-DDD 4,4-DDE 4,4-DDT Aldrin alpha-BHC alpha-Chlordane beta-BHC Chlordane delta-BHC	Result Qualifier ND						
4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-Chlordane beta-BHC Chlordane delta-BHC	QN	R	MDL Unit		D Prepared	Analyzed	Dil Fac
4,4'-DDE 4,4'-DDT Aldrin alpha-Chlordane beta-BHC Chlordane delta-BHC		4.9	0.71 ug	ug/Kg	07/31/24 12:04	08/11/24 15:25	-
4,4'-DDT Aldrin alpha-BHC alpha-Chlordane beta-BHC Chlordane delta-BHC	ND	4.9	0.68 ug	ug/Kg	07/31/24 12:04	08/11/24 15:25	-
Aldrin alpha-BHC alpha-Chlordane beta-BHC Chlordane delta-BHC	ND	4.9	1.2 ug	ug/Kg	07/31/24 12:04	08/11/24 15:25	-
alpha-BHC alpha-Chlordane beta-BHC Chlordane delta-BHC	QN	4.9	1.6 ug	ug/Kg	07/31/24 12:04	08/11/24 15:25	-
alpha-Chlordane beta-BHC Chlordane delta-BHC	QN	4.9	0.58 ug	ug/Kg	07/31/24 12:04	08/11/24 15:25	-
beta-BHC Chlordane delta-BHC	QN	4.9	0.56 ug	ug/Kg	07/31/24 12:04	08/11/24 15:25	-
Chlordane delta-BHC	QN	4.9	0.89 ug	ug/Kg	07/31/24 12:04	08/11/24 15:25	-
delta-BHC	QN	25	4.0 ug	ug/Kg	07/31/24 12:04	08/11/24 15:25	-
	ND	4.9	0.92 ug	ng/Kg	07/31/24 12:04	08/11/24 15:25	-
Dieldrin	QN	4.9	0.54 ug	ng/Kg	07/31/24 12:04	08/11/24 15:25	-
Endosulfan I	QN	4.9	1.1 ug	ng/Kg	07/31/24 12:04	08/11/24 15:25	-
Endosulfan II	QN	4.9	0.54 ug	ug/Kg	07/31/24 12:04	08/11/24 15:25	-
Endosulfan sulfate	QN	4.9	0.62 ug	ug/Kg	07/31/24 12:04	08/11/24 15:25	-
Endrin	QN	4.9	0.66 ug	ug/Kg	07/31/24 12:04	08/11/24 15:25	~
Endrin aldehyde	QN	4.9	3.3 ug	ng/Kg	07/31/24 12:04	08/11/24 15:25	~
Endrin ketone	QN	4.9	0.89 ug	ug/Kg	07/31/24 12:04	08/11/24 15:25	-
gamma-Chlordane	QN	4.9	3.3 ug	ug/Kg	07/31/24 12:04	08/11/24 15:25	-
gamma-BHC	QN	4.9	0.51 ug	ug/Kg	07/31/24 12:04	08/11/24 15:25	-
Heptachlor	QN	4.9	0.59 ug	ug/Kg	07/31/24 12:04	08/11/24 15:25	-
Heptachlor epoxide	QN	4.9	0.53 ug	ng/Kg	07/31/24 12:04	08/11/24 15:25	~
Methoxychlor	QN	4.9	1.2 ug	ug/Kg	07/31/24 12:04	08/11/24 15:25	-
Toxaphene	ND	25	15 ug	ug/Kg	07/31/24 12:04	08/11/24 15:25	~
Surrogate %	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene (Surr)	78	38 - 148			07/31/24 12:04	08/11/24 15:25	1
DCB Decachlorobiphenyl (Surr)	98	37 - 151			07/31/24 12:04	08/11/24 15:25	1
Method: SW846 6020 - Metals (ICP/MS)							
Analyte	Result Qualifier	ר ק	MDL Unit		D Prepared	Analyzed	Dil Fac
Arsenic	3.41	0.505	0.0923 mg	mg/Kg	08/04/24 12:00	08/05/24 13:42	20
Lead	5.14	0.505	0.0661 mg	mg/Kg	08/04/24 12:00	08/05/24 13:42	20

Eurofins Calscience

8/13/2024

S
Ξ
Ξ
ົ
Ö
Ľ
Φ
¥
F
g
S
Ļ
Φ
C

Client Sample ID: AG-3 (SURF) Date Collected: 07/24/24 08:57 Date Received: 07/26/24 09:40

Job ID: 570-193109-1

570-193109-3	Matrix: Solid
ID: 570-1	Mat
Sample	
Lab	

0

Method: 20040 0001A - Urga	Organochlorine Pesticides (GC)	ود)				
Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
4,4'-DDD	QN	5.0	0.72 ug/Kg	07/31/24 12:04	08/11/24 15:39	-
4,4'-DDE	ND	5.0	0.68 ug/Kg	07/31/24 12:04	08/11/24 15:39	-
4,4'-DDT	ND	5.0	1.2 ug/Kg	07/31/24 12:04	08/11/24 15:39	-
Aldrin	QN	5.0	1.6 ug/Kg	07/31/24 12:04	08/11/24 15:39	-
alpha-BHC	ND	5.0	0.59 ug/Kg	07/31/24 12:04	08/11/24 15:39	-
alpha-Chlordane	ND	5.0	0.56 ug/Kg	07/31/24 12:04	08/11/24 15:39	-
beta-BHC	QN	5.0	0.90 ug/Kg	07/31/24 12:04	08/11/24 15:39	-
Chlordane	ND	25	4.1 ug/Kg	07/31/24 12:04	08/11/24 15:39	-
delta-BHC	ND	5.0	0.93 ug/Kg	07/31/24 12:04	08/11/24 15:39	-
Dieldrin	DN	5.0	0.55 ug/Kg	07/31/24 12:04	08/11/24 15:39	-
Endosulfan I	ND	5.0	1.1 ug/Kg	07/31/24 12:04	08/11/24 15:39	~
Endosulfan II	ND	5.0	0.54 ug/Kg	07/31/24 12:04	08/11/24 15:39	~
Endosulfan sulfate	QN	5.0	0.63 ug/Kg	07/31/24 12:04	08/11/24 15:39	-
Endrin	ND	5.0	0.67 ug/Kg	07/31/24 12:04	08/11/24 15:39	-
Endrin aldehyde	ND	5.0	3.3 ug/Kg	07/31/24 12:04	08/11/24 15:39	-
Endrin ketone	QN	5.0	0.90 ug/Kg	07/31/24 12:04	08/11/24 15:39	-
gamma-Chlordane	ND	5.0	3.4 ug/Kg	07/31/24 12:04	08/11/24 15:39	~
gamma-BHC	ND	5.0	0.51 ug/Kg	07/31/24 12:04	08/11/24 15:39	~
Heptachlor	QN	5.0	0.60 ug/Kg	07/31/24 12:04	08/11/24 15:39	-
Heptachlor epoxide	ND	5.0	0.54 ug/Kg	07/31/24 12:04	08/11/24 15:39	~
Methoxychlor	ND	5.0	1.2 ug/Kg	07/31/24 12:04	08/11/24 15:39	-
Toxaphene	DN	25	15 ug/Kg	07/31/24 12:04	08/11/24 15:39	-
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene (Surr)	65	38 - 148		07/31/24 12:04	08/11/24 15:39	1
DCB Decachlorobiphenyl (Surr)	78	37 - 151		07/31/24 12:04	08/11/24 15:39	1
	etals (ICP/MS)					
Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Arsenic	4.12	0.495	0.0905 mg/Kg	08/05/24 10:42	08/06/24 17:23	20
lead	8 97	0.495	0.0648 ma/Ka	08/05/24 10:42	08/06/24 17-23	00

Page^{Gt}11of 66

Eurofins Calscience 8/13/2024

Results
Sample
Client

Client Sample ID: AG-4 (SURF) Date Collected: 07/24/24 09:02 Date Received: 07/26/24 09:40

Lab Sample ID: 570-193109-4 **Matrix: Solid**

Job ID: 570-193109-1

	Urganochlorine Pesticides (GC)	A Sancines ((20)					
Analyte	Result Qu	Qualifier	RL	MDL Unit	۵	Prepared	Analyzed	Dil Fac
4,4'-DDD	R		5.0	0.71 ug/Kg		07/31/24 12:04	08/11/24 15:53	-
4,4'-DDE	QN		5.0	0.68 ug/Kg		07/31/24 12:04	08/11/24 15:53	-
4,4'-DDT	QN		5.0	1.2 ug/Kg		07/31/24 12:04	08/11/24 15:53	-
Aldrin	Q		5.0	1.6 ug/Kg		07/31/24 12:04	08/11/24 15:53	-
alpha-BHC	QN		5.0	0.58 ug/Kg		07/31/24 12:04	08/11/24 15:53	-
alpha-Chlordane	QN		5.0	0.56 ug/Kg		07/31/24 12:04	08/11/24 15:53	-
beta-BHC	Q		5.0	0.89 ug/Kg		07/31/24 12:04	08/11/24 15:53	-
Chlordane	QN		25	4.1 ug/Kg		07/31/24 12:04	08/11/24 15:53	-
delta-BHC	QN		5.0	0.93 ug/Kg		07/31/24 12:04	08/11/24 15:53	-
Dieldrin	QN		5.0	0.54 ug/Kg		07/31/24 12:04	08/11/24 15:53	-
Endosulfan I	QN		5.0	1.1 ug/Kg		07/31/24 12:04	08/11/24 15:53	-
Endosulfan II	QN		5.0	0.54 ug/Kg		07/31/24 12:04	08/11/24 15:53	~
Endosulfan sulfate	QN		5.0	0.63 ug/Kg		07/31/24 12:04	08/11/24 15:53	-
Endrin	QN		5.0	0.67 ug/Kg		07/31/24 12:04	08/11/24 15:53	-
Endrin aldehyde	QN		5.0	3.3 ug/Kg		07/31/24 12:04	08/11/24 15:53	-
Endrin ketone	Q		5.0	0.89 ug/Kg		07/31/24 12:04	08/11/24 15:53	-
gamma-Chlordane	QN		5.0	3.3 ug/Kg		07/31/24 12:04	08/11/24 15:53	~
gamma-BHC	QN		5.0	0.51 ug/Kg		07/31/24 12:04	08/11/24 15:53	~
Heptachlor	Q		5.0	0.60 ug/Kg		07/31/24 12:04	08/11/24 15:53	-
Heptachlor epoxide	QN		5.0	0.53 ug/Kg		07/31/24 12:04	08/11/24 15:53	-
Methoxychlor	QN		5.0	1.2 ug/Kg		07/31/24 12:04	08/11/24 15:53	~
Toxaphene	QN		25	15 ug/Kg		07/31/24 12:04	08/11/24 15:53	-
Surrogate	%Recovery Qu	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene (Surr)	85		38 - 148			07/31/24 12:04	08/11/24 15:53	1
DCB Decachlorobiphenyl (Surr)	103		37 - 151			07/31/24 12:04	08/11/24 15:53	1
Method: SW846 6020 - Metals	Metals (ICP/MS)							
Analyte	Result Qu	Qualifier	RL	MDL Unit		Prepared	Analyzed	Dil Fac
Arsenic	3.94		0.508	0.0928 mg/Kg		08/04/24 12:00	08/05/24 13:47	20
Lead	5.81		0.508	0.0664 mg/Kg		08/04/24 12:00	08/05/24 13:47	20

PageGt⊉2of 66

Eurofins Calscience

8/13/2024

9

Client Sample ID: IM-1 (0-6") Date Collected: 07/24/24 09:40 Date Received: 07/26/24 09:40

Method: SW846 8270C	Complexed at the Or		a a sum al a d	COMMON	
	- Semivolatile Ur	Canic Com	oounas (GC/1031	
		game een			

Analyte	Result Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	ND	0.49	0.12	mg/Kg		07/31/24 18:33	08/04/24 04:48	1
1,2-Dichlorobenzene	ND	0.49	0.083	mg/Kg		07/31/24 18:33	08/04/24 04:48	1
1,3-Dichlorobenzene	ND	0.49	0.10	mg/Kg		07/31/24 18:33	08/04/24 04:48	1
1,4-Dichlorobenzene	ND	0.49	0.094	mg/Kg		07/31/24 18:33	08/04/24 04:48	1
1-Methylnaphthalene	ND	0.49	0.10	mg/Kg		07/31/24 18:33	08/04/24 04:48	1
2,4,5-Trichlorophenol	ND	0.49	0.19	mg/Kg		07/31/24 18:33	08/04/24 04:48	1
2,4,6-Trichlorophenol	ND	0.49	0.12	mg/Kg		07/31/24 18:33	08/04/24 04:48	1
2,4-Dichlorophenol	ND	0.49	0.13	mg/Kg		07/31/24 18:33	08/04/24 04:48	1
2,4-Dimethylphenol	ND	0.49	0.13	mg/Kg		07/31/24 18:33	08/04/24 04:48	1
2,4-Dinitrophenol	ND	2.0	0.90	mg/Kg		07/31/24 18:33	08/04/24 04:48	1
2,4-Dinitrotoluene	ND	0.49	0.080	mg/Kg		07/31/24 18:33	08/04/24 04:48	1
2,6-Dichlorophenol	ND	0.49	0.11	mg/Kg		07/31/24 18:33	08/04/24 04:48	1
2,6-Dinitrotoluene	ND	0.49	0.085	mg/Kg		07/31/24 18:33	08/04/24 04:48	1
2-Chloronaphthalene	ND	0.49	0.085	mg/Kg		07/31/24 18:33	08/04/24 04:48	1
2-Chlorophenol	ND	0.49	0.13	mg/Kg		07/31/24 18:33	08/04/24 04:48	1
2-Methylnaphthalene	ND	0.49	0.099	mg/Kg		07/31/24 18:33	08/04/24 04:48	1
2-Methylphenol	ND	0.49	0.095	mg/Kg		07/31/24 18:33	08/04/24 04:48	1
2-Nitroaniline	ND	0.49	0.090	mg/Kg		07/31/24 18:33	08/04/24 04:48	1
2-Nitrophenol	ND	0.49	0.14	mg/Kg		07/31/24 18:33	08/04/24 04:48	1
3,3'-Dichlorobenzidine	ND	2.5	0.53	mg/Kg		07/31/24 18:33	08/04/24 04:48	1
3/4-Methylphenol	ND	0.99	0.10	mg/Kg		07/31/24 18:33	08/04/24 04:48	1
3-Nitroaniline	ND	0.49	0.082	mg/Kg		07/31/24 18:33	08/04/24 04:48	1
4,6-Dinitro-2-methylphenol	ND	2.5	0.93	mg/Kg		07/31/24 18:33	08/04/24 04:48	1
4-Bromophenyl phenyl ether	ND	0.49	0.072	mg/Kg		07/31/24 18:33	08/04/24 04:48	1
4-Chloro-3-methylphenol	ND	0.49	0.091	mg/Kg		07/31/24 18:33	08/04/24 04:48	1
4-Chloroaniline	ND	0.49	0.081	mg/Kg		07/31/24 18:33	08/04/24 04:48	1
4-Chlorophenyl phenyl ether	ND	0.49	0.10	mg/Kg		07/31/24 18:33	08/04/24 04:48	1
4-Nitroaniline	ND	0.49	0.10	mg/Kg		07/31/24 18:33	08/04/24 04:48	1
4-Nitrophenol	ND	0.49	0.31	mg/Kg		07/31/24 18:33	08/04/24 04:48	1
Acenaphthene	ND	0.49	0.078	mg/Kg		07/31/24 18:33	08/04/24 04:48	1
Acenaphthylene	ND	0.49	0.095	mg/Kg		07/31/24 18:33	08/04/24 04:48	1
Aniline	ND	0.49	0.094	mg/Kg		07/31/24 18:33	08/04/24 04:48	1
Anthracene	ND	0.49	0.076	mg/Kg		07/31/24 18:33	08/04/24 04:48	1
Azobenzene	ND	0.49	0.077	mg/Kg		07/31/24 18:33	08/04/24 04:48	1
Benzidine	ND	4.9	0.57	mg/Kg		07/31/24 18:33	08/04/24 04:48	1
Benzo[a]anthracene	ND	0.49	0.082	mg/Kg		07/31/24 18:33	08/04/24 04:48	1
Benzo[a]pyrene	ND	0.49	0.098	mg/Kg		07/31/24 18:33	08/04/24 04:48	1
Benzo[b]fluoranthene	ND	0.49		mg/Kg		07/31/24 18:33	08/04/24 04:48	1
Benzo[g,h,i]perylene	ND *1	0.49		mg/Kg		07/31/24 18:33	08/04/24 04:48	1
Benzo[k]fluoranthene	ND	0.49	0.093	mg/Kg		07/31/24 18:33	08/04/24 04:48	1
Benzoic acid	ND	2.5		mg/Kg		07/31/24 18:33	08/04/24 04:48	1
Benzyl alcohol	ND	0.49	0.16	mg/Kg		07/31/24 18:33	08/04/24 04:48	1
Bis(2-chloroethoxy)methane	ND	0.49	0.11	mg/Kg		07/31/24 18:33	08/04/24 04:48	1
Bis(2-chloroethyl)ether	ND	2.5		mg/Kg			08/04/24 04:48	1
bis (2-Chloroisopropyl) ether	ND	0.49	0.12	mg/Kg		07/31/24 18:33	08/04/24 04:48	1
Bis(2-ethylhexyl) phthalate	ND	0.49	0.21	mg/Kg		07/31/24 18:33	08/04/24 04:48	1
Butyl benzyl phthalate	ND	0.49	0.23	mg/Kg		07/31/24 18:33	08/04/24 04:48	1
Chrysene	ND	0.49	0.082	mg/Kg		07/31/24 18:33	08/04/24 04:48	1
Dibenz(a,h)anthracene	ND *1	0.49	0.079	mg/Kg		07/31/24 18:33	08/04/24 04:48	1

Eurofins Calscience

Job ID: 570-193109-1

Matrix: Solid

Lab Sample ID: 570-193109-5

PageG133of 66

Project/Site: Hope Elementary School, Porterville, CA

Client Sample Results

Client Sample ID: IM-1 (0-6") Date Collected: 07/24/24 09:40 Date Received: 07/26/24 09:40

Client: Padre Associates, Inc.

Analyte		Qualifier	RL	MDL		<u>D</u>	Prepared	Analyzed	Dil Fa
Dibenzofuran	ND		0.49	0.093	mg/Kg		07/31/24 18:33	08/04/24 04:48	
Diethyl phthalate	ND		0.49	0.11	mg/Kg		07/31/24 18:33	08/04/24 04:48	
Dimethyl phthalate	ND		0.49	0.097	mg/Kg		07/31/24 18:33	08/04/24 04:48	
0i-n-butyl phthalate	ND		0.49	0.11	mg/Kg		07/31/24 18:33	08/04/24 04:48	
0i-n-octyl phthalate	ND		0.49	0.23	mg/Kg		07/31/24 18:33	08/04/24 04:48	
luoranthene	ND		0.49	0.093	mg/Kg		07/31/24 18:33	08/04/24 04:48	
luorene	ND		0.49	0.093	mg/Kg		07/31/24 18:33	08/04/24 04:48	
lexachloro-1,3-butadiene	ND		0.49	0.12	mg/Kg		07/31/24 18:33	08/04/24 04:48	
lexachlorobenzene	ND		0.49	0.079	mg/Kg		07/31/24 18:33	08/04/24 04:48	
lexachlorocyclopentadiene	ND		1.5	0.085	mg/Kg		07/31/24 18:33	08/04/24 04:48	
lexachloroethane	ND		0.49	0.091	mg/Kg		07/31/24 18:33	08/04/24 04:48	
ndeno[1,2,3-cd]pyrene	ND	*1	0.49	0.12	mg/Kg		07/31/24 18:33	08/04/24 04:48	
sophorone	ND		0.49	0.078	mg/Kg		07/31/24 18:33	08/04/24 04:48	
laphthalene	ND		0.49	0.14	mg/Kg		07/31/24 18:33	08/04/24 04:48	
itrobenzene	ND		2.0	0.13	mg/Kg		07/31/24 18:33	08/04/24 04:48	
-Nitrosodimethylamine	ND		0.49	0.088	mg/Kg		07/31/24 18:33	08/04/24 04:48	
-Nitrosodi-n-propylamine	ND		0.49	0.084	mg/Kg		07/31/24 18:33	08/04/24 04:48	
Nitrosodiphenylamine(as phenylamine)	ND		0.49	0.084	mg/Kg		07/31/24 18:33	08/04/24 04:48	
entachlorophenol	ND		2.5	1.8	mg/Kg		07/31/24 18:33	08/04/24 04:48	
nenanthrene	ND		0.49	0.071	mg/Kg		07/31/24 18:33	08/04/24 04:48	
nenol	ND		0.49	0.096	mg/Kg		07/31/24 18:33	08/04/24 04:48	
rene	ND		0.49	0.10	mg/Kg		07/31/24 18:33	08/04/24 04:48	
ridine	ND		0.49	0.23	mg/Kg		07/31/24 18:33	08/04/24 04:48	
ırrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4,6-Tribromophenol (Surr)	85		10_134				07/31/24 18:33	08/04/24 04:48	
Fluorobiphenyl (Surr)	68		14_142				07/31/24 18:33	08/04/24 04:48	
Fluorophenol (Surr)	76		10 - 123				07/31/24 18:33	08/04/24 04:48	
trobenzene-d5 (Surr)	70		10 - 129				07/31/24 18:33	08/04/24 04:48	
Terphenyl-d14 (Surr)	84		31 - 139				07/31/24 18:33	08/04/24 04:48	
enol-d6 (Surr)	75		10 - 120				07/31/24 18:33	08/04/24 04:48	
ethod: SW846 8015B - Gasc		-							
nalyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
asoline Range Organics (C4-C12)	ND		0.098	0.043	mg/Kg		08/05/24 10:39	08/05/24 12:37	
rrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
Bromofluorobenzene (Surr)	99		42 - 126				08/05/24 10:39	08/05/24 12:37	
ethod: SW846 8015B - Diese	-	-	RO) (GC)						
nalyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
3-C22	ND		5.0		mg/Kg		08/03/24 16:24	08/07/24 00:56	
3-C40	ND		5.0	4.6	mg/Kg		08/03/24 16:24	08/07/24 00:56	
rrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
Octacosane (Surr)	103		60 - 138				08/03/24 16:24	08/07/24 00:56	
ethod: SW846 8081A - Orga	nochlorine	Pesticides	(GC)						
nalyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa

Lab Sample ID: 570-193109-5 Matrix: Solid

8/13/2024

Eurofins Calscience

Job ID: 570-193109-1

(Continued)

MDL Unit

0.68 ug/Kg

1.2 ug/Kg

1.6 ug/Kg

0.58 ug/Kg

0.56 ug/Kg

0.89 ug/Kg

4.0 ug/Kg

0.92 ug/Kg

0.54 ug/Kg

1.1 ug/Kg

0.54 ug/Kg

0.62 ug/Kg

0.67 ug/Kg

3.3 ug/Kg

0.89 ug/Kg

3.3 ug/Kg

0.51 ug/Kg

0.59 ug/Kg

0.53 ug/Kg

1.2 ug/Kg

D

Prepared

07/31/24 12:04 08/12/24 12:42

07/31/24 12:04 08/12/24 12:42

07/31/24 12:04 08/12/24 12:42

07/31/24 12:04 08/12/24 12:42

07/31/24 12:04 08/12/24 12:42

07/31/24 12:04 08/12/24 12:42

07/31/24 12:04 08/12/24 12:42

07/31/24 12:04 08/12/24 12:42

07/31/24 12:04 08/12/24 12:42

07/31/24 12:04 08/12/24 12:42

07/31/24 12:04 08/12/24 12:42

07/31/24 12:04 08/12/24 12:42

07/31/24 12:04 08/12/24 12:42

07/31/24 12:04 08/12/24 12:42

07/31/24 12:04 08/12/24 12:42

07/31/24 12:04 08/12/24 12:42

07/31/24 12:04 08/12/24 12:42

07/31/24 12:04 08/12/24 12:42

07/31/24 12:04 08/12/24 12:42

07/31/24 12:04 08/12/24 12:42

RL

4.9

4.9

4.9

4.9

4.9

4.9

25

4.9

4.9

4.9

4.9

4.9

4.9

4.9

4.9

4.9

4.9

4.9

4.9

4.9

Client: Padre Associates, Inc. Project/Site: Hope Elementary School, Porterville, CA

Method: SW846 8081A - Organochlorine Pesticides (GC)

Result Qualifier

ND

Client Sample ID: IM-1 (0-6") Date Collected: 07/24/24 09:40 Date Received: 07/26/24 09:40

Analyte

4,4'-DDE

4,4'-DDT

alpha-BHC

beta-BHC

Chlordane

delta-BHC

Endosulfan I

Endosulfan II

Endosulfan sulfate

Endrin aldehyde

gamma-Chlordane

Heptachlor epoxide

Endrin ketone

gamma-BHC

Methoxychlor

Heptachlor

Dieldrin

Endrin

alpha-Chlordane

Aldrin

Job	ID:	570-	1931	09-1
000		0.0		

Lab Sample ID: 570-193109-5 Matrix: Solid

Analyzed

6

Dil Fac

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

	9	

Toxaphene	ND		25	15 ug/Kg	07/31/24 12:04	08/12/24 12:42	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene (Surr)	92		38 - 148		07/31/24 12:04	08/12/24 12:42	1
DCB Decachlorobiphenyl (Surr)	107		37 - 151		07/31/24 12:04	08/12/24 12:42	1

Method: SW846 6020 - Metals (ICP/MS)

Analyte Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony 1.13		0.481	0.194	mg/Kg		08/05/24 13:55	08/06/24 17:35	5
Arsenic 1.10	F2 F1	0.481	0.0758	mg/Kg		08/05/24 13:55	08/06/24 17:35	5
Barium 198	F1	0.481	0.266	mg/Kg		08/05/24 13:55	08/06/24 17:35	5
Beryllium NC	F2 F1	0.481	0.383	mg/Kg		08/05/24 13:55	08/06/24 17:35	5
Cadmium 0.0813	J F2 F1	0.481	0.0692	mg/Kg		08/05/24 13:55	08/06/24 17:35	5
Chromium 27.5	F2 F1	0.481	0.366	mg/Kg		08/05/24 13:55	08/06/24 17:35	5
Cobalt 12.5	F2 F1	0.481	0.0492	mg/Kg		08/05/24 13:55	08/06/24 17:35	5
Copper 22.8	F2 F1	0.481	0.0891	mg/Kg		08/05/24 13:55	08/06/24 17:35	5
Lead 1.49	F2 F1	0.481	0.266	mg/Kg		08/05/24 13:55	08/06/24 17:35	5
Molybdenum 5.20		0.481	0.237	mg/Kg		08/05/24 13:55	08/06/24 17:35	5
Nickel 15.8	F2 F1	0.481	0.326	mg/Kg		08/05/24 13:55	08/06/24 17:35	5
Selenium 1.00	F2 F1	0.481	0.366	mg/Kg		08/05/24 13:55	08/06/24 17:35	5
Silver NE	F2 F1	0.962	0.493	mg/Kg		08/05/24 13:55	08/06/24 17:35	5
Thallium 0.848	F2 F1	0.481	0.153	mg/Kg		08/05/24 13:55	08/06/24 17:35	5
Vanadium 75.5	F2 F1	0.481	0.180	mg/Kg		08/05/24 13:55	08/06/24 17:35	5
_Zinc 48.1	F2 F1	4.81	2.90	mg/Kg		08/05/24 13:55	08/06/24 17:35	5
_ Method: SW846 7471A - Mercury (CVAA)								
• • • •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury NE		0.0868	0.0229	mg/Kg		07/30/24 10:16	07/31/24 10:40	1

Client Sample ID: IM-2 (0-6") Date Collected: 07/24/24 09:32 Date Received: 07/26/24 09:40

Analyte	Result Qualifier			Unit	D	Prepared	Analyzed	Dil Fac
I,2,4-Trichlorobenzene	ND	0.50		mg/Kg		07/31/24 18:33		1
I,2-Dichlorobenzene	ND	0.50		mg/Kg		07/31/24 18:33		1
I,3-Dichlorobenzene	ND	0.50		mg/Kg		07/31/24 18:33		1
,4-Dichlorobenzene	ND	0.50		mg/Kg		07/31/24 18:33		1
-Methylnaphthalene	ND	0.50		mg/Kg		07/31/24 18:33		1
2,4,5-Trichlorophenol	ND	0.50		mg/Kg		07/31/24 18:33		1
2,4,6-Trichlorophenol	ND	0.50		mg/Kg		07/31/24 18:33		1
2,4-Dichlorophenol	ND	0.50		mg/Kg		07/31/24 18:33	08/04/24 05:11	1
2,4-Dimethylphenol	ND	0.50		mg/Kg		07/31/24 18:33	08/04/24 05:11	1
,4-Dinitrophenol	ND	2.0	0.90	mg/Kg		07/31/24 18:33	08/04/24 05:11	1
2,4-Dinitrotoluene	ND	0.50	0.081	mg/Kg		07/31/24 18:33	08/04/24 05:11	1
,6-Dichlorophenol	ND	0.50	0.11	mg/Kg		07/31/24 18:33	08/04/24 05:11	1
,6-Dinitrotoluene	ND	0.50	0.085	mg/Kg		07/31/24 18:33	08/04/24 05:11	1
-Chloronaphthalene	ND	0.50		mg/Kg		07/31/24 18:33	08/04/24 05:11	1
-Chlorophenol	ND	0.50	0.13	mg/Kg		07/31/24 18:33	08/04/24 05:11	1
-Methylnaphthalene	ND	0.50	0.099	mg/Kg		07/31/24 18:33	08/04/24 05:11	1
-Methylphenol	ND	0.50	0.096	mg/Kg		07/31/24 18:33	08/04/24 05:11	1
-Nitroaniline	ND	0.50	0.091	mg/Kg		07/31/24 18:33	08/04/24 05:11	1
-Nitrophenol	ND	0.50	0.14	mg/Kg		07/31/24 18:33	08/04/24 05:11	1
,3'-Dichlorobenzidine	ND	2.5		mg/Kg		07/31/24 18:33	08/04/24 05:11	1
/4-Methylphenol	ND	0.99		mg/Kg		07/31/24 18:33	08/04/24 05:11	1
Nitroaniline	ND	0.50		mg/Kg		07/31/24 18:33	08/04/24 05:11	1
,6-Dinitro-2-methylphenol	ND	2.5		mg/Kg		07/31/24 18:33	08/04/24 05:11	1
-Bromophenyl phenyl ether	ND	0.50		mg/Kg		07/31/24 18:33		1
-Chloro-3-methylphenol	ND	0.50		mg/Kg		07/31/24 18:33		
-Chloroaniline	ND	0.50		mg/Kg		07/31/24 18:33		1
-Chlorophenyl phenyl ether	ND	0.50		mg/Kg		07/31/24 18:33		1
-Nitroaniline	ND	0.50		mg/Kg		07/31/24 18:33		
-Nitrophenol	ND	0.50		mg/Kg		07/31/24 18:33		1
Acenaphthene	ND	0.50		mg/Kg		07/31/24 18:33		1
cenaphthylene	ND	0.50		mg/Kg		07/31/24 18:33		
niline	ND	0.50		mg/Kg		07/31/24 18:33		1
Inthracene	ND	0.50		mg/Kg		07/31/24 18:33		1
zobenzene	ND	0.50		mg/Kg		07/31/24 18:33		
Benzidine	ND	5.0		mg/Kg		07/31/24 18:33		1
enzo[a]anthracene	ND	0.50		mg/Kg		07/31/24 18:33		1
		0.50		mg/Kg		07/31/24 18:33		1
enzo[a]pyrene enzo[b]fluoranthene	ND ND	0.50		mg/Kg		07/31/24 18:33		1
	ND *1	0.50						
enzo[g,h,i]perylene				mg/Kg		07/31/24 18:33		1
enzo[k]fluoranthene	ND	0.50		mg/Kg		07/31/24 18:33		1
enzoic acid	ND	2.5		mg/Kg		07/31/24 18:33		1
enzyl alcohol	ND	0.50		mg/Kg		07/31/24 18:33		1
is(2-chloroethoxy)methane	ND	0.50		mg/Kg		07/31/24 18:33		1
is(2-chloroethyl)ether	ND	2.5		mg/Kg		07/31/24 18:33		1
s (2-Chloroisopropyl) ether	ND	0.50		mg/Kg		07/31/24 18:33		1
is(2-ethylhexyl) phthalate	ND	0.50		mg/Kg		07/31/24 18:33		1
utyl benzyl phthalate	ND	0.50		mg/Kg		07/31/24 18:33		1
Chrysene	ND	0.50	0.083	mg/Kg		07/31/24 18:33	08/04/24 05:11	1

Eurofins Calscience

Matrix: Solid

Lab Sample ID: 570-193109-6

34777of	66	

Client Sample Results	

Client Sample ID: IM-2 (0-6") Date Collected: 07/24/24 09:32 Date Received: 07/26/24 09:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dibenzofuran	ND		0.50	0.094	mg/Kg		07/31/24 18:33	08/04/24 05:11	1
Diethyl phthalate	ND		0.50	0.11	mg/Kg		07/31/24 18:33	08/04/24 05:11	1
Dimethyl phthalate	ND		0.50	0.098	mg/Kg		07/31/24 18:33	08/04/24 05:11	1
Di-n-butyl phthalate	ND		0.50	0.11	mg/Kg		07/31/24 18:33	08/04/24 05:11	1
Di-n-octyl phthalate	ND		0.50		mg/Kg		07/31/24 18:33	08/04/24 05:11	1
Fluoranthene	ND		0.50		mg/Kg		07/31/24 18:33	08/04/24 05:11	1
Fluorene	ND		0.50	0.093	mg/Kg		07/31/24 18:33	08/04/24 05:11	1
Hexachloro-1,3-butadiene	ND		0.50		mg/Kg		07/31/24 18:33	08/04/24 05:11	1
Hexachlorobenzene	ND		0.50	0.079	mg/Kg		07/31/24 18:33	08/04/24 05:11	1
Hexachlorocyclopentadiene	ND		1.5	0.086	mg/Kg		07/31/24 18:33	08/04/24 05:11	1
Hexachloroethane	ND		0.50		mg/Kg		07/31/24 18:33	08/04/24 05:11	1
Indeno[1,2,3-cd]pyrene	ND	*1	0.50		mg/Kg		07/31/24 18:33	08/04/24 05:11	1
Isophorone	ND		0.50		mg/Kg		07/31/24 18:33	08/04/24 05:11	1
Naphthalene	ND		0.50		mg/Kg		07/31/24 18:33	08/04/24 05:11	1
Nitrobenzene	ND		2.0		mg/Kg			08/04/24 05:11	
N-Nitrosodimethylamine	ND		0.50		mg/Kg			08/04/24 05:11	1
N-Nitrosodi-n-propylamine	ND		0.50		mg/Kg			08/04/24 05:11	1
n-Nitrosodiphenylamine(as diphenylamine)	ND		0.50		mg/Kg			08/04/24 05:11	1
Pentachlorophenol	ND		2.5	1.8	mg/Kg		07/31/24 18:33	08/04/24 05:11	1
Phenanthrene	ND		0.50	0.072	mg/Kg		07/31/24 18:33	08/04/24 05:11	1
Phenol	ND		0.50	0.097	mg/Kg		07/31/24 18:33	08/04/24 05:11	1
Pyrene	ND		0.50	0.10	mg/Kg		07/31/24 18:33	08/04/24 05:11	1
Pyridine	ND		0.50	0.23	mg/Kg		07/31/24 18:33	08/04/24 05:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	86		10 - 134				07/31/24 18:33		1
2-Fluorobiphenyl (Surr)	74		14 - 142				07/31/24 18:33	08/04/24 05:11	1
2-Fluorophenol (Surr)	75		10 - 123				07/31/24 18:33	08/04/24 05:11	1
Nitrobenzene-d5 (Surr)	77		10_129				07/31/24 18:33	08/04/24 05:11	1
p-Terphenyl-d14 (Surr)	83		31 - 139				07/31/24 18:33	08/04/24 05:11	1
Phenol-d6 (Surr)	80		10 - 120				07/31/24 18:33	08/04/24 05:11	1
Method: SW846 8015B - Gasc						_	_ .		
Analyte	·	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (C4-C12)	ND		0.097	0.043	mg/Kg		08/05/24 10:39	08/05/24 12:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101	Guunner	42 - 126				<u> </u>	08/05/24 12:56	1
			•						
Method: SW846 8015B - Dies	el Range Or	ganics (DF	RO) (GC)						
Analyte	-	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C13-C22	ND		5.0	4.5	mg/Kg		08/03/24 16:24	08/07/24 01:21	1
C23-C40	ND		5.0	4.5	mg/Kg		08/03/24 16:24	08/07/24 01:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
n-Octacosane (Surr)	97		60 - 138				08/03/24 16:24	08/07/24 01:21	1
Method: SW846 8081A - Orga	nochlorine	Pesticides	(GC)						
WELLIUU, SWOHD DUG IM - CITIA									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Job ID: 570-193109-1

Matrix: Solid

Lab Sample ID: 570-193109-6

8/13/2024

Client: Padre Associates, Inc. Project/Site: Hope Elementary School, Porterville, CA

Client Sample ID: IM-2 (0-6") Date Collected: 07/24/24 09:32 Date Received: 07/26/24 09:40

Job	ID:	570-193109-1	
000		010 100100 1	

Lab Sample ID: 570-193109-6 Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
4,4'-DDE	ND		5.0	0.68	ug/Kg		07/31/24 12:04	08/12/24 12:56	1	
4,4'-DDT	ND		5.0	1.2	ug/Kg		07/31/24 12:04	08/12/24 12:56	1	
Aldrin	ND		5.0	1.6	ug/Kg		07/31/24 12:04	08/12/24 12:56	1	5
alpha-BHC	ND		5.0	0.58	ug/Kg		07/31/24 12:04	08/12/24 12:56	1	
alpha-Chlordane	ND		5.0	0.56	ug/Kg		07/31/24 12:04	08/12/24 12:56	1	
beta-BHC	ND		5.0	0.89	ug/Kg		07/31/24 12:04	08/12/24 12:56	1	
Chlordane	ND		25	4.1	ug/Kg		07/31/24 12:04	08/12/24 12:56	1	
delta-BHC	ND		5.0	0.93	ug/Kg		07/31/24 12:04	08/12/24 12:56	1	
Dieldrin	ND		5.0	0.54	ug/Kg		07/31/24 12:04	08/12/24 12:56	1	
Endosulfan I	ND		5.0	1.1	ug/Kg		07/31/24 12:04	08/12/24 12:56	1	
Endosulfan II	ND		5.0	0.54	ug/Kg		07/31/24 12:04	08/12/24 12:56	1	
Endosulfan sulfate	ND		5.0	0.63	ug/Kg		07/31/24 12:04	08/12/24 12:56	1	
Endrin	ND		5.0	0.67	ug/Kg		07/31/24 12:04	08/12/24 12:56	1	
Endrin aldehyde	ND		5.0	3.3	ug/Kg		07/31/24 12:04	08/12/24 12:56	1	
Endrin ketone	ND		5.0	0.89	ug/Kg		07/31/24 12:04	08/12/24 12:56	1	
gamma-Chlordane	ND		5.0	3.3	ug/Kg		07/31/24 12:04	08/12/24 12:56	1	
gamma-BHC	ND		5.0	0.51	ug/Kg		07/31/24 12:04	08/12/24 12:56	1	1
Heptachlor	ND		5.0	0.60	ug/Kg		07/31/24 12:04	08/12/24 12:56	1	
Heptachlor epoxide	ND		5.0	0.53	ug/Kg		07/31/24 12:04	08/12/24 12:56	1	
Methoxychlor	ND		5.0	1.2	ug/Kg		07/31/24 12:04	08/12/24 12:56	1	
Toxaphene	ND		25	15	ug/Kg		07/31/24 12:04	08/12/24 12:56	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
Tetrachloro-m-xylene (Surr)	91		38 - 148				07/31/24 12:04	08/12/24 12:56	1	
DCB Decachlorobiphenyl (Surr)	116		37 - 151				07/31/24 12:04	08/12/24 12:56	1	

Method: SW846 6020 - Metals (ICP/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.324	J	0.532	0.215	mg/Kg		08/05/24 13:55	08/06/24 17:46	5
Arsenic	1.86		0.532	0.0838	mg/Kg		08/05/24 13:55	08/06/24 17:46	5
Barium	160		0.532	0.294	mg/Kg		08/05/24 13:55	08/06/24 17:46	5
Beryllium	ND		0.532	0.424	mg/Kg		08/05/24 13:55	08/06/24 17:46	5
Cadmium	ND		0.532	0.0766	mg/Kg		08/05/24 13:55	08/06/24 17:46	5
Chromium	23.2		0.532	0.405	mg/Kg		08/05/24 13:55	08/06/24 17:46	5
Cobalt	10.1		0.532	0.0545	mg/Kg		08/05/24 13:55	08/06/24 17:46	5
Copper	21.5		0.532	0.0986	mg/Kg		08/05/24 13:55	08/06/24 17:46	5
Lead	1.63		0.532	0.294	mg/Kg		08/05/24 13:55	08/06/24 17:46	5
Molybdenum	1.80		0.532	0.262	mg/Kg		08/05/24 13:55	08/06/24 17:46	5
Nickel	12.5		0.532	0.361	mg/Kg		08/05/24 13:55	08/06/24 17:46	5
Selenium	0.834		0.532	0.405	mg/Kg		08/05/24 13:55	08/06/24 17:46	5
Silver	ND		1.06	0.545	mg/Kg		08/05/24 13:55	08/06/24 17:46	5
Thallium	0.374	J	0.532	0.169	mg/Kg		08/05/24 13:55	08/06/24 17:46	5
Vanadium	66.3		0.532	0.199	mg/Kg		08/05/24 13:55	08/06/24 17:46	5
Zinc	40.5		5.32	3.21	mg/Kg		08/05/24 13:55	08/06/24 17:46	5
	ury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.0887	0.0234	mg/Kg		07/30/24 10:16	07/31/24 10:41	1

Client Sample ID: IM-3 (0-6") Date Collected: 07/24/24 09:16 Date Received: 07/26/24 09:40

Method: SW846 8270C - Semivolatile Organic Compounds (GC/MS)

Analyte	Result Qualifier	RL		Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	ND	0.50	0.12	mg/Kg		07/31/24 18:33	08/04/24 05:33	1
1,2-Dichlorobenzene	ND	0.50	0.084	mg/Kg		07/31/24 18:33	08/04/24 05:33	1
1,3-Dichlorobenzene	ND	0.50	0.10	mg/Kg		07/31/24 18:33	08/04/24 05:33	1
1,4-Dichlorobenzene	ND	0.50	0.095	mg/Kg		07/31/24 18:33	08/04/24 05:33	1
1-Methylnaphthalene	ND	0.50	0.10	mg/Kg		07/31/24 18:33	08/04/24 05:33	1
2,4,5-Trichlorophenol	ND	0.50	0.19	mg/Kg		07/31/24 18:33	08/04/24 05:33	1
2,4,6-Trichlorophenol	ND	0.50	0.12	mg/Kg		07/31/24 18:33	08/04/24 05:33	1
2,4-Dichlorophenol	ND	0.50	0.13	mg/Kg		07/31/24 18:33	08/04/24 05:33	1
2,4-Dimethylphenol	ND	0.50	0.13	mg/Kg		07/31/24 18:33	08/04/24 05:33	1
2,4-Dinitrophenol	ND	2.0	0.91	mg/Kg		07/31/24 18:33	08/04/24 05:33	1
2,4-Dinitrotoluene	ND	0.50	0.081	mg/Kg		07/31/24 18:33	08/04/24 05:33	1
2,6-Dichlorophenol	ND	0.50	0.11	mg/Kg		07/31/24 18:33	08/04/24 05:33	1
2,6-Dinitrotoluene	ND	0.50	0.086	mg/Kg		07/31/24 18:33	08/04/24 05:33	1
2-Chloronaphthalene	ND	0.50	0.086	mg/Kg		07/31/24 18:33	08/04/24 05:33	1
2-Chlorophenol	ND	0.50	0.13	mg/Kg		07/31/24 18:33	08/04/24 05:33	1
2-Methylnaphthalene	ND	0.50	0.099	mg/Kg		07/31/24 18:33	08/04/24 05:33	1
2-Methylphenol	ND	0.50	0.096	mg/Kg		07/31/24 18:33	08/04/24 05:33	1
2-Nitroaniline	ND	0.50	0.091	mg/Kg		07/31/24 18:33	08/04/24 05:33	1
2-Nitrophenol	ND	0.50	0.14	mg/Kg		07/31/24 18:33	08/04/24 05:33	1
3,3'-Dichlorobenzidine	ND	2.5	0.53	mg/Kg		07/31/24 18:33	08/04/24 05:33	1
3/4-Methylphenol	ND	0.99	0.10	mg/Kg		07/31/24 18:33	08/04/24 05:33	1
3-Nitroaniline	ND	0.50	0.083	mg/Kg		07/31/24 18:33	08/04/24 05:33	1
4,6-Dinitro-2-methylphenol	ND	2.5	0.94	mg/Kg		07/31/24 18:33	08/04/24 05:33	1
4-Bromophenyl phenyl ether	ND	0.50	0.073	mg/Kg		07/31/24 18:33	08/04/24 05:33	1
4-Chloro-3-methylphenol	ND	0.50	0.092	mg/Kg		07/31/24 18:33	08/04/24 05:33	1
4-Chloroaniline	ND	0.50	0.082	mg/Kg		07/31/24 18:33	08/04/24 05:33	1
4-Chlorophenyl phenyl ether	ND	0.50	0.10	mg/Kg		07/31/24 18:33	08/04/24 05:33	1
4-Nitroaniline	ND	0.50	0.10	mg/Kg		07/31/24 18:33	08/04/24 05:33	1
4-Nitrophenol	ND	0.50	0.31	mg/Kg		07/31/24 18:33	08/04/24 05:33	1
Acenaphthene	ND	0.50	0.079	mg/Kg		07/31/24 18:33	08/04/24 05:33	1
Acenaphthylene	ND	0.50	0.096	mg/Kg		07/31/24 18:33	08/04/24 05:33	1
Aniline	ND	0.50	0.095	mg/Kg		07/31/24 18:33	08/04/24 05:33	1
Anthracene	ND	0.50	0.077	mg/Kg		07/31/24 18:33	08/04/24 05:33	1
Azobenzene	ND	0.50	0.078	mg/Kg		07/31/24 18:33	08/04/24 05:33	1
Benzidine	ND	5.0	0.57	mg/Kg		07/31/24 18:33	08/04/24 05:33	1
Benzo[a]anthracene	ND	0.50	0.083	mg/Kg		07/31/24 18:33	08/04/24 05:33	1
Benzo[a]pyrene	ND	0.50	0.099	mg/Kg		07/31/24 18:33	08/04/24 05:33	1
Benzo[b]fluoranthene	ND	0.50	0.084	mg/Kg		07/31/24 18:33	08/04/24 05:33	1
Benzo[g,h,i]perylene	ND *1	0.50	0.089	mg/Kg		07/31/24 18:33	08/04/24 05:33	1
Benzo[k]fluoranthene	ND	0.50	0.094	mg/Kg		07/31/24 18:33	08/04/24 05:33	1
Benzoic acid	ND	2.5	0.67	mg/Kg		07/31/24 18:33	08/04/24 05:33	1
Benzyl alcohol	ND	0.50	0.17	mg/Kg		07/31/24 18:33	08/04/24 05:33	1
Bis(2-chloroethoxy)methane	ND	0.50	0.11	mg/Kg		07/31/24 18:33	08/04/24 05:33	1
Bis(2-chloroethyl)ether	ND	2.5	0.11	mg/Kg		07/31/24 18:33	08/04/24 05:33	1
bis (2-Chloroisopropyl) ether	ND	0.50	0.12	mg/Kg		07/31/24 18:33	08/04/24 05:33	1
Bis(2-ethylhexyl) phthalate	ND	0.50	0.22	mg/Kg		07/31/24 18:33	08/04/24 05:33	1
Butyl benzyl phthalate	ND	0.50	0.23	mg/Kg		07/31/24 18:33	08/04/24 05:33	1
Chrysene	ND	0.50	0.083	mg/Kg		07/31/24 18:33	08/04/24 05:33	1
Dibenz(a,h)anthracene	ND *1	0.50	0.079	mg/Kg		07/31/24 18:33	08/04/24 05:33	1

Eurofins Calscience

Matrix: Solid

5

6 7

Lab Sample ID: 570-193109-7

Page^G199 of 66

Client: Padre Associates, Inc. Project/Site: Hope Elementary School, Porterville, CA

Client Sample ID: IM-3 (0-6") Date Collected: 07/24/24 09:16 Date Received: 07/26/24 09:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dibenzofuran	ND		0.50	0.094	mg/Kg		07/31/24 18:33	08/04/24 05:33	1
Diethyl phthalate	ND		0.50	0.11	mg/Kg		07/31/24 18:33	08/04/24 05:33	1
Dimethyl phthalate	ND		0.50	0.098	mg/Kg		07/31/24 18:33	08/04/24 05:33	1
Di-n-butyl phthalate	ND		0.50		mg/Kg		07/31/24 18:33	08/04/24 05:33	1
Di-n-octyl phthalate	ND		0.50		mg/Kg		07/31/24 18:33	08/04/24 05:33	1
Fluoranthene	ND		0.50		mg/Kg		07/31/24 18:33	08/04/24 05:33	1
Fluorene	ND		0.50		mg/Kg			08/04/24 05:33	1
Hexachloro-1,3-butadiene	ND		0.50		mg/Kg			08/04/24 05:33	1
Hexachlorobenzene	ND		0.50		mg/Kg			08/04/24 05:33	1
Hexachlorocyclopentadiene	ND		1.5		mg/Kg			08/04/24 05:33	1
Hexachloroethane	ND		0.50		mg/Kg			08/04/24 05:33	1
Indeno[1,2,3-cd]pyrene	ND	*1	0.50		mg/Kg			08/04/24 05:33	1
Isophorone	ND		0.50		mg/Kg			08/04/24 05:33	1
Naphthalene	ND		0.50		mg/Kg			08/04/24 05:33	1
Nitrobenzene	ND		2.0		mg/Kg			08/04/24 05:33	1
N-Nitrosodimethylamine	ND		0.50		mg/Kg			08/04/24 05:33	1
N-Nitrosodi-n-propylamine	ND		0.50		mg/Kg			08/04/24 05:33	1
n-Nitrosodiphenylamine(as	ND		0.50		mg/Kg			08/04/24 05:33	י 1
diphenylamine)	ND		0.50	0.005	mg/rtg		07/31/24 10:33	00/04/24 05.55	I
Pentachlorophenol	ND		2.5	1.8	mg/Kg		07/31/24 18:33	08/04/24 05:33	1
Phenanthrene	ND		0.50		mg/Kg			08/04/24 05:33	1
Phenol	ND		0.50		mg/Kg			08/04/24 05:33	
Pyrene	ND		0.50		mg/Kg			08/04/24 05:33	1
Pyridine	ND		0.50		mg/Kg			08/04/24 05:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	81		10 - 134				07/31/24 18:33	08/04/24 05:33	1
2-Fluorobiphenyl (Surr)	68		14 - 142				07/31/24 18:33	08/04/24 05:33	1
2-Fluorophenol (Surr)	75		10 - 123				07/31/24 18:33	08/04/24 05:33	1
Nitrobenzene-d5 (Surr)	75		10 - 129				07/31/24 18:33	08/04/24 05:33	1
p-Terphenyl-d14 (Surr)	75		31 - 139				07/31/24 18:33	08/04/24 05:33	1
Phenol-d6 (Surr)	70		10 - 120				07/31/24 18:33	08/04/24 05:33	1
Method: SW846 8015B - Gaso	oline Range	Organics -	(GC)						
Analyte	-	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (C4-C12)	ND		0.097	0.043	mg/Kg		08/05/24 10:39	08/05/24 13:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		42 - 126				08/05/24 10:39	08/05/24 13:16	1
Method: SW846 8015B - Dies	el Range Or	ganics (DF	RO) (GC)						
Analyte	-	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C13-C22	ND		5.0	4.5	mg/Kg		08/03/24 16:24	08/07/24 01:46	1
C23-C40	ND		5.0		mg/Kg		08/03/24 16:24	08/07/24 01:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
n-Octacosane (Surr)	95		60 - 138				08/03/24 16:24	08/07/24 01:46	
Method: SW846 8081A - Orga	nochlorine	Pesticides	(GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Job ID: 570-193109-1

5

6

Matrix: Solid

Client: Padre Associates, Inc. Project/Site: Hope Elementary School, Porterville, CA

Client Sample ID: IM-3 (0-6") Date Collected: 07/24/24 09:16 Date Received: 07/26/24 09:40

Job ID: 570-193109-1	
----------------------	--

Lab Sample ID: 570-193109-7 Matrix: Solid

Method: SW846 8081A - Orç Analyte	Result (RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	5
4,4'-DDE			5.0	0.68	ug/Kg		07/31/24 12:04	08/12/24 13:10	1	
4,4'-DDT	ND		5.0		ug/Kg		07/31/24 12:04	08/12/24 13:10	1	6
Aldrin	ND		5.0		ug/Kg		07/31/24 12:04	08/12/24 13:10	1	
alpha-BHC	ND		5.0	0.59	ug/Kg		07/31/24 12:04	08/12/24 13:10	1	
alpha-Chlordane	ND		5.0	0.56	ug/Kg		07/31/24 12:04	08/12/24 13:10	1	
beta-BHC	ND		5.0	0.90	ug/Kg		07/31/24 12:04	08/12/24 13:10	1	Q
Chlordane	ND		25	4.1	ug/Kg		07/31/24 12:04	08/12/24 13:10	1	0
delta-BHC	ND		5.0	0.93	ug/Kg		07/31/24 12:04	08/12/24 13:10	1	6
Dieldrin	ND		5.0	0.55	ug/Kg		07/31/24 12:04	08/12/24 13:10	1	3
Endosulfan I	ND		5.0	1.1	ug/Kg		07/31/24 12:04	08/12/24 13:10	1	
Endosulfan II	ND		5.0	0.54	ug/Kg		07/31/24 12:04	08/12/24 13:10	1	
Endosulfan sulfate	ND		5.0	0.63	ug/Kg		07/31/24 12:04	08/12/24 13:10	1	
Endrin	ND		5.0	0.67	ug/Kg		07/31/24 12:04	08/12/24 13:10	1	
Endrin aldehyde	ND		5.0	3.3	ug/Kg		07/31/24 12:04	08/12/24 13:10	1	
Endrin ketone	ND		5.0	0.90	ug/Kg		07/31/24 12:04	08/12/24 13:10	1	
gamma-Chlordane	ND		5.0	3.4	ug/Kg		07/31/24 12:04	08/12/24 13:10	1	
gamma-BHC	ND		5.0	0.51	ug/Kg		07/31/24 12:04	08/12/24 13:10	1	
Heptachlor	ND		5.0	0.60	ug/Kg		07/31/24 12:04	08/12/24 13:10	1	
Heptachlor epoxide	ND		5.0	0.54	ug/Kg		07/31/24 12:04	08/12/24 13:10	1	
Methoxychlor	ND		5.0	1.2	ug/Kg		07/31/24 12:04	08/12/24 13:10	1	
Toxaphene	ND		25	15	ug/Kg		07/31/24 12:04	08/12/24 13:10	1	
Surrogate	%Recovery	Qualifier Lin	nits				Prepared	Analyzed	Dil Fac	
Tetrachloro-m-xylene (Surr)	97	38	. 148				07/31/24 12:04	08/12/24 13:10	1	
DCB Decachlorobiphenyl (Surr)	122	37	. 151				07/31/24 12:04	08/12/24 13:10	1	

Method: SW846 6020 - Metals (ICP/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.481	0.194	mg/Kg		08/05/24 13:55	08/06/24 17:48	5
Arsenic	0.810		0.481	0.0758	mg/Kg		08/05/24 13:55	08/06/24 17:48	5
Barium	171		0.481	0.266	mg/Kg		08/05/24 13:55	08/06/24 17:48	5
Beryllium	ND		0.481	0.383	mg/Kg		08/05/24 13:55	08/06/24 17:48	5
Cadmium	ND		0.481	0.0692	mg/Kg		08/05/24 13:55	08/06/24 17:48	5
Chromium	26.1		0.481	0.366	mg/Kg		08/05/24 13:55	08/06/24 17:48	5
Cobalt	11.1		0.481	0.0492	mg/Kg		08/05/24 13:55	08/06/24 17:48	5
Copper	20.2		0.481	0.0891	mg/Kg		08/05/24 13:55	08/06/24 17:48	5
Lead	1.60		0.481	0.266	mg/Kg		08/05/24 13:55	08/06/24 17:48	5
Molybdenum	0.353	J	0.481	0.237	mg/Kg		08/05/24 13:55	08/06/24 17:48	5
Nickel	14.0		0.481	0.326	mg/Kg		08/05/24 13:55	08/06/24 17:48	5
Selenium	0.642		0.481	0.366	mg/Kg		08/05/24 13:55	08/06/24 17:48	5
Silver	ND		0.962	0.493	mg/Kg		08/05/24 13:55	08/06/24 17:48	5
Thallium	0.342	J	0.481	0.153	mg/Kg		08/05/24 13:55	08/06/24 17:48	5
Vanadium	67.1		0.481	0.180	mg/Kg		08/05/24 13:55	08/06/24 17:48	5
Zinc	42.1		4.81	2.90	mg/Kg		08/05/24 13:55	08/06/24 17:48	5
_ Method: SW846 7471A - M	Aercury (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.0887	0.0234	mg/Kg		07/30/24 10:16	07/31/24 10:43	1

Client Sample ID: IM-4 (0-6") Date Collected: 07/24/24 09:10 Date Received: 07/26/24 09:40

Method: SW846 8270C - Semivolatile Organic Compounds (GC/MS)

Analyte	Result Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	ND	0.49		mg/Kg		07/31/24 18:33	08/04/24 05:56	1
1,2-Dichlorobenzene	ND	0.49		mg/Kg		07/31/24 18:33	08/04/24 05:56	1
1,3-Dichlorobenzene	ND	0.49	0.10	mg/Kg		07/31/24 18:33	08/04/24 05:56	1
1,4-Dichlorobenzene	ND	0.49		mg/Kg		07/31/24 18:33	08/04/24 05:56	1
1-Methylnaphthalene	ND	0.49	0.10	mg/Kg		07/31/24 18:33	08/04/24 05:56	1
2,4,5-Trichlorophenol	ND	0.49	0.19	mg/Kg		07/31/24 18:33	08/04/24 05:56	1
2,4,6-Trichlorophenol	ND	0.49	0.12	mg/Kg		07/31/24 18:33	08/04/24 05:56	1
2,4-Dichlorophenol	ND	0.49	0.13	mg/Kg		07/31/24 18:33	08/04/24 05:56	1
2,4-Dimethylphenol	ND	0.49	0.13	mg/Kg		07/31/24 18:33	08/04/24 05:56	1
2,4-Dinitrophenol	ND	2.0	0.90	mg/Kg		07/31/24 18:33	08/04/24 05:56	1
2,4-Dinitrotoluene	ND	0.49	0.080	mg/Kg		07/31/24 18:33	08/04/24 05:56	1
2,6-Dichlorophenol	ND	0.49	0.11	mg/Kg		07/31/24 18:33	08/04/24 05:56	1
2,6-Dinitrotoluene	ND	0.49	0.085	mg/Kg		07/31/24 18:33	08/04/24 05:56	1
2-Chloronaphthalene	ND	0.49	0.086	mg/Kg		07/31/24 18:33	08/04/24 05:56	1
2-Chlorophenol	ND	0.49		mg/Kg		07/31/24 18:33	08/04/24 05:56	1
2-Methylnaphthalene	ND	0.49	0.099	mg/Kg		07/31/24 18:33	08/04/24 05:56	1
2-Methylphenol	ND	0.49		mg/Kg		07/31/24 18:33	08/04/24 05:56	1
2-Nitroaniline	ND	0.49	0.090	mg/Kg		07/31/24 18:33	08/04/24 05:56	1
2-Nitrophenol	ND	0.49	0.14	mg/Kg		07/31/24 18:33	08/04/24 05:56	1
3,3'-Dichlorobenzidine	ND	2.5	0.53	mg/Kg		07/31/24 18:33	08/04/24 05:56	1
3/4-Methylphenol	ND	0.99		mg/Kg		07/31/24 18:33	08/04/24 05:56	1
3-Nitroaniline	ND	0.49		mg/Kg		07/31/24 18:33	08/04/24 05:56	1
4,6-Dinitro-2-methylphenol	ND	2.5		mg/Kg		07/31/24 18:33	08/04/24 05:56	1
4-Bromophenyl phenyl ether	ND	0.49		mg/Kg		07/31/24 18:33	08/04/24 05:56	1
4-Chloro-3-methylphenol	ND	0.49	0.092	mg/Kg		07/31/24 18:33	08/04/24 05:56	1
4-Chloroaniline	ND	0.49		mg/Kg		07/31/24 18:33	08/04/24 05:56	1
4-Chlorophenyl phenyl ether	ND	0.49	0.10	mg/Kg		07/31/24 18:33	08/04/24 05:56	1
4-Nitroaniline	ND	0.49		mg/Kg		07/31/24 18:33	08/04/24 05:56	1
4-Nitrophenol	ND	0.49		mg/Kg		07/31/24 18:33	08/04/24 05:56	1
Acenaphthene	ND	0.49		mg/Kg		07/31/24 18:33	08/04/24 05:56	1
Acenaphthylene	ND	0.49		mg/Kg		07/31/24 18:33	08/04/24 05:56	1
Aniline	ND	0.49		mg/Kg		07/31/24 18:33	08/04/24 05:56	1
Anthracene	ND	0.49		mg/Kg		07/31/24 18:33	08/04/24 05:56	1
Azobenzene	ND	0.49	0.078	mg/Kg		07/31/24 18:33	08/04/24 05:56	1
Benzidine	ND	4.9		mg/Kg		07/31/24 18:33	08/04/24 05:56	1
Benzo[a]anthracene	ND	0.49		mg/Kg		07/31/24 18:33	08/04/24 05:56	1
Benzo[a]pyrene	ND	0.49	0.098	mg/Kg		07/31/24 18:33	08/04/24 05:56	1
Benzo[b]fluoranthene	ND	0.49		mg/Kg			08/04/24 05:56	1
Benzo[g,h,i]perylene	ND *1	0.49		mg/Kg		07/31/24 18:33	08/04/24 05:56	1
Benzo[k]fluoranthene	ND	0.49		mg/Kg		07/31/24 18:33	08/04/24 05:56	1
Benzoic acid	ND	2.5		mg/Kg		07/31/24 18:33	08/04/24 05:56	1
Benzyl alcohol	ND	0.49		mg/Kg			08/04/24 05:56	1
Bis(2-chloroethoxy)methane	ND	0.49		mg/Kg			08/04/24 05:56	1
Bis(2-chloroethyl)ether	ND	2.5		mg/Kg			08/04/24 05:56	1
bis (2-Chloroisopropyl) ether	ND	0.49		mg/Kg			08/04/24 05:56	1
Bis(2-ethylhexyl) phthalate	ND	0.49		mg/Kg			08/04/24 05:56	1
Butyl benzyl phthalate	ND	0.49		mg/Kg			08/04/24 05:56	1
Chrysene	ND	0.49		mg/Kg			08/04/24 05:56	1
Dibenz(a,h)anthracene	ND *1	0.49		mg/Kg		07/31/24 18:33		· · · · · · · · · · · · · · · · · · ·

Eurofins Calscience

Job ID: 570-193109-1

Matrix: Solid

Lab Sample ID: 570-193109-8

13

Client: Padre Associates, Inc. Project/Site: Hope Elementary School, Porterville, CA

Method: SW846 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Client Sample ID: IM-4 (0-6") Date Collected: 07/24/24 09:10 Date Received: 07/26/24 09:40

Analyte	Result	Qualifier	RL	MDL		D Prepared	Analyzed	Dil Fac
Dibenzofuran	ND		0.49	0.094	mg/Kg	07/31/24 18:33	08/04/24 05:56	1
Diethyl phthalate	ND		0.49	0.11	mg/Kg	07/31/24 18:33	08/04/24 05:56	1
Dimethyl phthalate	ND		0.49	0.097	mg/Kg	07/31/24 18:33	08/04/24 05:56	1
Di-n-butyl phthalate	ND		0.49	0.11	mg/Kg	07/31/24 18:33	08/04/24 05:56	1
Di-n-octyl phthalate	ND		0.49	0.23	mg/Kg	07/31/24 18:33	08/04/24 05:56	1
Fluoranthene	ND		0.49	0.094	mg/Kg	07/31/24 18:33	08/04/24 05:56	1
Fluorene	ND		0.49	0.093	mg/Kg	07/31/24 18:33	08/04/24 05:56	1
Hexachloro-1,3-butadiene	ND		0.49	0.12	mg/Kg	07/31/24 18:33	08/04/24 05:56	1
Hexachlorobenzene	ND		0.49	0.079	mg/Kg	07/31/24 18:33	08/04/24 05:56	1
Hexachlorocyclopentadiene	ND		1.5	0.086	mg/Kg	07/31/24 18:33	08/04/24 05:56	1
Hexachloroethane	ND		0.49	0.091	mg/Kg	07/31/24 18:33	08/04/24 05:56	1
Indeno[1,2,3-cd]pyrene	ND	*1	0.49	0.12	mg/Kg	07/31/24 18:33	08/04/24 05:56	1
Isophorone	ND		0.49	0.079	mg/Kg	07/31/24 18:33	08/04/24 05:56	1
Naphthalene	ND		0.49	0.14	mg/Kg	07/31/24 18:33	08/04/24 05:56	1
Nitrobenzene	ND		2.0	0.13	mg/Kg	07/31/24 18:33	08/04/24 05:56	1
N-Nitrosodimethylamine	ND		0.49		mg/Kg	07/31/24 18:33	08/04/24 05:56	1
N-Nitrosodi-n-propylamine	ND		0.49	0.085	mg/Kg	07/31/24 18:33	08/04/24 05:56	1
n-Nitrosodiphenylamine(as	ND		0.49	0.084	mg/Kg	07/31/24 18:33	08/04/24 05:56	1
diphenylamine)								
Pentachlorophenol	ND		2.5	1.8	mg/Kg	07/31/24 18:33	08/04/24 05:56	1
Phenanthrene	ND		0.49	0.071	mg/Kg	07/31/24 18:33	08/04/24 05:56	1
Phenol	ND		0.49	0.096	mg/Kg	07/31/24 18:33	08/04/24 05:56	1
Pyrene	ND		0.49	0.10	mg/Kg	07/31/24 18:33	08/04/24 05:56	1
Pyridine	ND		0.49	0.23	mg/Kg	07/31/24 18:33	08/04/24 05:56	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	95		10 - 134			07/31/24 18:33	08/04/24 05:56	1
2-Fluorobiphenyl (Surr)	65		14 - 142			07/31/24 18:33	08/04/24 05:56	1
2-Fluorophenol (Surr)	82		10 - 123			07/31/24 18:33	08/04/24 05:56	1
Nitrobenzene-d5 (Surr)	77		10 - 129			07/31/24 18:33	08/04/24 05:56	1
p-Terphenyl-d14 (Surr)	80		31 - 139			07/31/24 18:33	08/04/24 05:56	1
Phenol-d6 (Surr)	77					07/04/04 40.00		
	77		10 - 120			07/31/24 18:33	08/04/24 05:56	1
Method: SW846 8015B - Gas		Organics -				07/31/24 18:33	08/04/24 05:56	1
Method: SW846 8015B - Gase Analyte	oline Range Result	Organics Qualifier	- (GC) RL	MDL		D Prepared	Analyzed	1 Dil Fac
Method: SW846 8015B - Gas	oline Range	-	- (GC)		Unit mg/Kg		Analyzed	
Method: SW846 8015B - Gase Analyte	oline Range Result	Qualifier	- (GC) RL			D Prepared	Analyzed	Dil Fac
Method: SW846 8015B - Gase Analyte Gasoline Range Organics (C4-C12)	oline Range Result	Qualifier	- (GC) <u>RL</u> 0.097			D Prepared 08/05/24 10:39 Prepared	Analyzed 08/05/24 13:36	Dil Fac
Method: SW846 8015B - Gaso Analyte Gasoline Range Organics (C4-C12) Surrogate 4-Bromofluorobenzene (Surr)	oline Range Result ND %Recovery 79	Qualifier Qualifier	- (GC) <u>RL</u> 0.097 <u>Limits</u> 42 - 126			D Prepared 08/05/24 10:39 Prepared	Analyzed 08/05/24 13:36 Analyzed	Dil Fac 1 Dil Fac
Method: SW846 8015B - Gase Analyte Gasoline Range Organics (C4-C12) Surrogate 4-Bromofluorobenzene (Surr) Method: SW846 8015B - Dies	oline Range Result ND %Recovery 79 eel Range Or	Qualifier Qualifier ganics (DF	- (GC) <u>RL</u> 0.097 <u>Limits</u> 42 - 126	0.043	mg/Kg	D Prepared 08/05/24 10:39 Prepared 08/05/24 08/05/24 10:39	Analyzed 08/05/24 13:36 Analyzed 08/05/24 13:36	Dil Fac 1 Dil Fac 1
Method: SW846 8015B - Gase Analyte Gasoline Range Organics (C4-C12) Surrogate 4-Bromofluorobenzene (Surr) Method: SW846 8015B - Dies Analyte	oline Range Result ND %Recovery 79 el Range Or Result	Qualifier Qualifier	- (GC) <u>RL</u> 0.097 <u>Limits</u> 42 - 126 RO) (GC) <u>RL</u>	0.043	mg/Kg Unit	D Prepared 08/05/24 10:39 Prepared 08/05/24 08/05/24 10:39 D Prepared	Analyzed 08/05/24 13:36 Analyzed 08/05/24 13:36 Analyzed	Dil Fac 1 Dil Fac
Method: SW846 8015B - Gase Analyte Gasoline Range Organics (C4-C12) Surrogate 4-Bromofluorobenzene (Surr) Method: SW846 8015B - Dies	oline Range Result ND %Recovery 79 eel Range Or	Qualifier Qualifier ganics (DF	- (GC) <u>RL</u> 0.097 <u>Limits</u> 42 - 126 RO) (GC)	0.043 MDL 4.6	mg/Kg	D Prepared 08/05/24 10:39 Prepared 08/05/24 10:39 Prepared 08/05/24 10:39 D Prepared 08/03/24 16:24	Analyzed 08/05/24 13:36 Analyzed 08/05/24 13:36 Analyzed	Dil Fac 1 Dil Fac 1
Method: SW846 8015B - Gase Analyte Gasoline Range Organics (C4-C12) Surrogate 4-Bromofluorobenzene (Surr) Method: SW846 8015B - Dies Analyte C13-C22 C23-C40	oline Range Result ND %Recovery 79 el Range Or Result ND ND	Qualifier Qualifier ganics (DF Qualifier	- (GC) <u>RL</u> 0.097 <u>Limits</u> 42 - 126 RO) (GC) <u>RL</u> 5.0 5.0	0.043 MDL 4.6	mg/Kg Unit mg/Kg	D Prepared 08/05/24 10:39 Prepared 08/05/24 08/05/24 10:39 Prepared 08/05/24 08/03/24 16:24 08/03/24 16:24	Analyzed 08/05/24 13:36 Analyzed 08/05/24 13:36 Analyzed 08/07/24 02:11 08/07/24 02:11	Dil Fac 1 Dil Fac 1 Dil Fac 1 1
Method: SW846 8015B - Gase Analyte Gasoline Range Organics (C4-C12) Surrogate 4-Bromofluorobenzene (Surr) Method: SW846 8015B - Dies Analyte C13-C22	oline Range Result ND %Recovery 79 el Range Or Result ND	Qualifier Qualifier ganics (DF Qualifier	- (GC) <u>RL</u> 0.097 <u>Limits</u> 42 - 126 RO) (GC) <u>RL</u> 5.0	0.043 MDL 4.6	mg/Kg Unit mg/Kg	D Prepared 08/05/24 10:39 Prepared 08/05/24 08/05/24 10:39 Prepared 08/03/24 08/03/24 16:24 08/03/24 16:24 Prepared Prepared	Analyzed 08/05/24 13:36 Analyzed 08/05/24 13:36 Analyzed 08/07/24 02:11	Dil Fac 1 Dil Fac 1 Dil Fac 1
Method: SW846 8015B - Gase Analyte Gasoline Range Organics (C4-C12) Surrogate 4-Bromofluorobenzene (Surr) Method: SW846 8015B - Dies Analyte C13-C22 C23-C40 Surrogate n-Octacosane (Surr)	oline Range Result ND %Recovery 79 eel Range Or Result ND ND %Recovery 100	Qualifier Qualifier ganics (DF Qualifier Qualifier	- (GC) RL 0.097 Limits 42 - 126 RO) (GC) RL 5.0 5.0 Limits 60 - 138	0.043 MDL 4.6	mg/Kg Unit mg/Kg	D Prepared 08/05/24 10:39 Prepared 08/05/24 08/05/24 10:39 Prepared 08/03/24 08/03/24 16:24 08/03/24 16:24 Prepared Prepared	Analyzed 08/05/24 13:36 Analyzed 08/05/24 13:36 Analyzed 08/07/24 02:11 08/07/24 02:11 Analyzed	Dil Fac 1 Dil Fac 1 Dil Fac 1 1 Dil Fac
Method: SW846 8015B - Gase Analyte Gasoline Range Organics (C4-C12) Surrogate 4-Bromofluorobenzene (Surr) Method: SW846 8015B - Dies Analyte C13-C22 C23-C40 Surrogate n-Octacosane (Surr) Method: SW846 8081A - Orga	oline Range Result ND %Recovery 79 eel Range Or Result ND ND %Recovery 100 anochlorine	Qualifier Qualifier ganics (DF Qualifier Qualifier Pesticides	- (GC) <u>RL</u> 0.097 <u>Limits</u> 42 - 126 RO) (GC) <u>RL</u> 5.0 <u>Limits</u> 60 - 138 (GC)	0.043 MDL 4.6 4.6	mg/Kg mg/Kg mg/Kg	D Prepared 08/05/24 10:39 Prepared 08/05/24 08/05/24 10:39 D Prepared 08/03/24 16:24 08/03/24 16:24 Prepared 08/03/24 08/03/24 16:24 08/03/24 16:24	Analyzed 08/05/24 13:36 Analyzed 08/05/24 13:36 Analyzed 08/07/24 02:11 08/07/24 02:11 Analyzed 08/07/24 02:11	Dil Fac 1 Dil Fac 1 Dil Fac 1 1 Dil Fac 1
Method: SW846 8015B - Gase Analyte Gasoline Range Organics (C4-C12) Surrogate 4-Bromofluorobenzene (Surr) Method: SW846 8015B - Dies Analyte C13-C22 C23-C40 Surrogate n-Octacosane (Surr)	oline Range Result ND %Recovery 79 eel Range Or Result ND ND %Recovery 100 anochlorine	Qualifier Qualifier ganics (DF Qualifier Qualifier	- (GC) RL 0.097 Limits 42 - 126 RO) (GC) RL 5.0 5.0 Limits 60 - 138	0.043 MDL 4.6 4.6 MDL	mg/Kg mg/Kg mg/Kg	D Prepared 08/05/24 10:39 Prepared 08/05/24 08/05/24 10:39 Prepared 08/03/24 08/03/24 16:24 08/03/24 16:24 Prepared Prepared	Analyzed 08/05/24 13:36 Analyzed 08/05/24 13:36 Analyzed 08/07/24 02:11 08/07/24 02:11 08/07/24 02:11 08/07/24 02:11 08/07/24 02:11 Analyzed 08/07/24 02:11 Analyzed 08/07/24 02:11	Dil Fac 1 Dil Fac 1 Dil Fac 1 1 Dil Fac

Job ID: 570-193109-1

Matrix: Solid

Lab Sample ID: 570-193109-8

8/13/2024

Client: Padre Associates, Inc. Project/Site: Hope Elementary School, Porterville, CA

Client Sample ID: IM-4 (0-6") Date Collected: 07/24/24 09:10 Date Received: 07/26/24 09:40

Lab Sample ID: 570-193109-8 Matrix: Solid

Method: SW846 8081A - Orç Analyte	•	Qualifier	(Cont RL		Unit	D	Prepared	Analyzed	Dil Fac	
4.4'-DDE			5.0	0.68	ug/Kg		07/31/24 12:04	08/11/24 21:46	1	
4.4'-DDT	ND		5.0		ug/Kg		07/31/24 12:04	08/11/24 21:46	1	
Aldrin	ND		5.0		ug/Kg		07/31/24 12:04	08/11/24 21:46		
alpha-BHC	ND		5.0	0.59	0 0		07/31/24 12:04	08/11/24 21:46	1	
alpha-Chlordane	ND		5.0		ug/Kg		07/31/24 12:04	08/11/24 21:46	1	
beta-BHC	ND		5.0		ug/Kg		07/31/24 12:04	08/11/24 21:46		
Chlordane	ND		25	4.1	ug/Kg		07/31/24 12:04	08/11/24 21:46	1	
delta-BHC	ND		5.0		ug/Kg		07/31/24 12:04	08/11/24 21:46	1	
Dieldrin	ND		5.0		ug/Kg		07/31/24 12:04	08/11/24 21:46		
Endosulfan I	ND		5.0	1.1	ug/Kg		07/31/24 12:04	08/11/24 21:46	1	
Endosulfan II	ND		5.0	0.54	ug/Kg		07/31/24 12:04	08/11/24 21:46	1	
Endosulfan sulfate	ND		5.0		ug/Kg		07/31/24 12:04	08/11/24 21:46	1	
Endrin	ND		5.0	0.67	ug/Kg		07/31/24 12:04	08/11/24 21:46	1	
Endrin aldehyde	ND		5.0	3.3	ug/Kg		07/31/24 12:04	08/11/24 21:46	1	
Endrin ketone	ND		5.0		ug/Kg		07/31/24 12:04	08/11/24 21:46	1	
gamma-Chlordane	ND		5.0		ug/Kg		07/31/24 12:04	08/11/24 21:46	1	÷
gamma-BHC	ND		5.0	0.51			07/31/24 12:04	08/11/24 21:46	1	
Heptachlor	ND		5.0	0.60	ug/Kg		07/31/24 12:04	08/11/24 21:46	1	2
Heptachlor epoxide	ND		5.0	0.54	ug/Kg		07/31/24 12:04	08/11/24 21:46	1	
Methoxychlor	ND		5.0	1.2	ug/Kg		07/31/24 12:04	08/11/24 21:46	1	
Toxaphene	ND		25	15	ug/Kg		07/31/24 12:04	08/11/24 21:46	1	
Surrogate	%Recovery	Qualifier Lir	nits				Prepared	Analyzed	Dil Fac	
Tetrachloro-m-xylene (Surr)	83	38	- 148				07/31/24 12:04	08/11/24 21:46	1	
DCB Decachlorobiphenyl (Surr)	105	37	- 151				07/31/24 12:04	08/11/24 21:46	1	

Method: SW846 6020 - Metals (ICP/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.490	0.198	mg/Kg		08/05/24 13:55	08/06/24 17:56	5
Arsenic	0.866		0.490	0.0773	mg/Kg		08/05/24 13:55	08/06/24 17:56	5
Barium	187		0.490	0.271	mg/Kg		08/05/24 13:55	08/06/24 17:56	5
Beryllium	ND		0.490	0.391	mg/Kg		08/05/24 13:55	08/06/24 17:56	5
Cadmium	ND		0.490	0.0706	mg/Kg		08/05/24 13:55	08/06/24 17:56	5
Chromium	27.0		0.490	0.374	mg/Kg		08/05/24 13:55	08/06/24 17:56	5
Cobalt	12.1		0.490	0.0502	mg/Kg		08/05/24 13:55	08/06/24 17:56	5
Copper	22.4		0.490	0.0909	mg/Kg		08/05/24 13:55	08/06/24 17:56	5
Lead	1.11		0.490	0.271	mg/Kg		08/05/24 13:55	08/06/24 17:56	5
Molybdenum	5.00		0.490	0.241	mg/Kg		08/05/24 13:55	08/06/24 17:56	5
Nickel	15.1		0.490	0.333	mg/Kg		08/05/24 13:55	08/06/24 17:56	5
Selenium	0.724		0.490	0.373	mg/Kg		08/05/24 13:55	08/06/24 17:56	5
Silver	ND		0.980	0.502	mg/Kg		08/05/24 13:55	08/06/24 17:56	5
Thallium	0.419	J	0.490	0.156	mg/Kg		08/05/24 13:55	08/06/24 17:56	5
Vanadium	73.7		0.490	0.184	mg/Kg		08/05/24 13:55	08/06/24 17:56	5
Zinc	47.9		4.90	2.96	mg/Kg		08/05/24 13:55	08/06/24 17:56	5
- Method: SW846 7471A -	Mercury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.0868	0.0229	mg/Kg		07/30/24 10:16	07/31/24 10:49	1

Client: Padre Associates, Inc. Project/Site: Hope Elementary School, Porterville, CA

Job ID: 570-193109-1

Matrix: Solid

5

6

Lab Sample ID: 570-193109-9

Client Sample ID: BB-1 (1-1.5") Date Collected: 07/24/24 09:57 Date Received: 07/26/24 09:40

Analyte Gasoline Range Organics (C4-C12) Surrogate 4-Bromofluorobenzene (Surr) Method: SW846 8015B - Diese	ND %Recovery 97	Qualifier Qualifier	RL 0.097	MDL 0.043	mg/Kg	<u>D</u>	Prepared 08/05/24 10:39	Analyzed 08/05/24 13:55	Dil Fac
Surrogate 4-Bromofluorobenzene (Surr)	%Recovery 97	Qualifier							
4-Bromofluorobenzene (Surr)	97	Qualifier	l imits				00,00,21 10,000	00,00,21 10100	
	•						Prepared	Analyzed	Dil Fac
Vethod: SW846 8015B - Diese			42 - 126				08/05/24 10:39	08/05/24 13:55	1
	I Range Or	ganics (DF	RO) (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C13-C22	ND		5.0	4.6	mg/Kg		08/03/24 16:35	08/06/24 07:15	1
C23-C40	ND		5.0	4.6	mg/Kg		08/03/24 16:35	08/06/24 07:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
n-Octacosane (Surr)	96		60 - 138				08/03/24 16:35	08/06/24 07:15	1
Method: SW846 6020 - Metals	(ICP/MS)								
Analyte	· ·	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.295	J	0.472	0.190	mg/Kg		08/05/24 13:55	08/06/24 17:58	5
Arsenic	5.54		0.472	0.0743	mg/Kg		08/05/24 13:55	08/06/24 17:58	Ę
Barium	142		0.472	0.261	mg/Kg		08/05/24 13:55	08/06/24 17:58	Ę
Beryllium	0.622		0.472	0.376	mg/Kg		08/05/24 13:55	08/06/24 17:58	Ę
Cadmium	0.101	J	0.472	0.0679	mg/Kg		08/05/24 13:55	08/06/24 17:58	Ę
Chromium	27.7		0.472	0.359	mg/Kg		08/05/24 13:55	08/06/24 17:58	Ę
Cobalt	8.45		0.472	0.0483	mg/Kg		08/05/24 13:55	08/06/24 17:58	5
Copper	13.4		0.472	0.0875	mg/Kg		08/05/24 13:55	08/06/24 17:58	5
_ead	6.49		0.472	0.261	mg/Kg		08/05/24 13:55	08/06/24 17:58	5
Molybdenum	0.652		0.472	0.232	mg/Kg		08/05/24 13:55	08/06/24 17:58	5
Nickel	15.1		0.472	0.320	mg/Kg		08/05/24 13:55	08/06/24 17:58	5
Selenium	1.52		0.472	0.359	mg/Kg		08/05/24 13:55	08/06/24 17:58	5
Silver	ND		0.943	0.483	mg/Kg		08/05/24 13:55	08/06/24 17:58	5
Fhallium	0.274	J	0.472	0.150	mg/Kg		08/05/24 13:55	08/06/24 17:58	5
Vanadium	51.4		0.472	0.177	mg/Kg		08/05/24 13:55	08/06/24 17:58	5
Zinc	43.2		4.72	2.85	mg/Kg		08/05/24 13:55	08/06/24 17:58	5
Method: SW846 7471A - Mercu	iry (CVAA)								
Analyte	· · · · · · · · · · · · · · · · · · ·	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Client: Padre Associates, Inc. Project/Site: Hope Elementary School, Porterville, CA

Client Sample ID: BB-2 (1-1.5")

Date Collected: 07/24/24 10:07

Date Received: 07/26/24 09:40

Job ID: 570-193109-1

Matrix: Solid

5

6 7

Lab Sample ID: 570-193109-10

intervine, CA	
	_

Method: SW846 8015B - Gaso	line Range	Organics -	· (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (C4-C12)	ND		0.10	0.044	mg/Kg		08/05/24 10:39	08/05/24 14:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91		42 - 126				08/05/24 10:39	08/05/24 14:14	1
Method: SW846 8015B - Diese	el Range Or	ganics (DF	RO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C13-C22	ND		5.0	4.5	mg/Kg		08/03/24 16:35	08/06/24 07:40	1
C23-C40	ND		5.0	4.5	mg/Kg		08/03/24 16:35	08/06/24 07:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
n-Octacosane (Surr)	102		60 - 138				08/03/24 16:35	08/06/24 07:40	1
Method: SW846 6020 - Metals	(ICP/MS)								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.472	0.190	mg/Kg		08/05/24 13:55	08/06/24 18:00	5
Arsenic	2.71		0.472	0.0743	mg/Kg		08/05/24 13:55	08/06/24 18:00	5
Barium	71.4		0.472	0.261	mg/Kg		08/05/24 13:55	08/06/24 18:00	5
Beryllium	ND		0.472	0.376	mg/Kg		08/05/24 13:55	08/06/24 18:00	5
Cadmium	ND		0.472	0.0679	mg/Kg		08/05/24 13:55	08/06/24 18:00	5
Chromium	14.3		0.472	0.359	mg/Kg		08/05/24 13:55	08/06/24 18:00	5
Cobalt	4.50		0.472	0.0483	mg/Kg		08/05/24 13:55	08/06/24 18:00	5
Copper	7.95		0.472	0.0875	mg/Kg		08/05/24 13:55	08/06/24 18:00	5
Lead	3.34		0.472	0.261	mg/Kg		08/05/24 13:55	08/06/24 18:00	5
Molybdenum	0.467	J	0.472	0.232	mg/Kg		08/05/24 13:55	08/06/24 18:00	5
Nickel	8.00		0.472	0.320	mg/Kg		08/05/24 13:55	08/06/24 18:00	5
Selenium	1.07		0.472	0.359	mg/Kg		08/05/24 13:55	08/06/24 18:00	5
Silver	ND		0.943	0.483	mg/Kg		08/05/24 13:55	08/06/24 18:00	5
Thallium	ND		0.472	0.150	mg/Kg		08/05/24 13:55	08/06/24 18:00	5
Vanadium	28.3		0.472	0.177	mg/Kg		08/05/24 13:55	08/06/24 18:00	5
Zinc	22.3		4.72	2.85	mg/Kg		08/05/24 13:55	08/06/24 18:00	5
Method: SW846 7471A - Merc	ury (CVAA)								
Analyte	· · · · · · · · · · · · · · · · · · ·	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.0833	0.0220	mg/Kg		07/30/24 10:16	07/31/24 10:53	1

Client: Padre Associates, Inc. Project/Site: Hope Elementary School, Porterville, CA

Client Sample ID: FB#1 Date Collected: 07/24/24 10:15 Date Received: 07/26/24 09:40

Method: EPA 200.8 - Metals (ICP/MS) - Total Recoverable									
Analyte	Result Q	ualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		1.00	0.159	ug/L		07/31/24 07:16	08/01/24 14:15	1
Lead	ND		1.00	0.118	ug/L		07/31/24 07:16	08/01/24 14:15	1

Job ID: 570-193109-1

Matrix: Water

Lab Sample ID: 570-193109-11

Client: Padre Associates, Inc. Project/Site: Hope Elementary School, Porterville, CA

Client Sample ID: EB#1 Date Collected: 07/24/24 10:20 Date Received: 07/26/24 09:40

Method: EPA 200.8 - Metals (ICP/MS) - Total Recoverable								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND ND	1.00	0.159	ug/L		07/31/24 07:16	08/01/24 14:18	1
Lead	ND	1.00	0.118	ug/L		07/31/24 07:16	08/01/24 14:18	1

Job ID: 570-193109-1

Matrix: Water

Lab Sample ID: 570-193109-12

Job ID: 570-193109-1

Matrix: Solid

5 6 7

Lab Sample ID: 570-193109-13

Client: Padre Associates, Inc.
Project/Site: Hope Elementary School, Porterville, CA

Client Sample ID: AG-1 (SURF) DUP Date Collected: 07/24/24 08:50 Date Received: 07/26/24 09:40

Method: SW846 6020 - Metals (ICP/MS)										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Lead	6.19		0.508	0.0664	mg/Kg		08/04/24 12:00	08/05/24 13:23	20

Job ID: 570-193109-1

Matrix: Solid

Lab Sample ID: 570-193109-14

Client: Padre Associates, Inc.	
Project/Site: Hope Elementary School, Porterville, C/	A

Client Sample ID: AG-2 (SURF) DUP Date Collected: 07/24/24 08:54 Date Received: 07/26/24 09:40

Method: SW846 6020 - Metals (I	CP/MS)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	3.35		0.490	0.0896	mg/Kg		08/04/24 12:00	08/05/24 13:45	20

Eurofins Calscience

Client: Padre Associates, Inc. Project/Site: Hope Elementary School, Porterville, CA

Client Sample ID: AG-3 (SURF) DUP Date Collected: 07/24/24 08:57 Date Received: 07/26/24 09:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
4,4'-DDD	ND		5.0	0.71	ug/Kg		08/01/24 12:35	08/07/24 14:11	1	
4,4'-DDE	ND		5.0	0.68	ug/Kg		08/01/24 12:35	08/07/24 14:11	1	6
4,4'-DDT	ND		5.0	1.2	ug/Kg		08/01/24 12:35	08/07/24 14:11	1	
Aldrin	ND		5.0	1.6	ug/Kg		08/01/24 12:35	08/07/24 14:11	1	
alpha-BHC	ND		5.0	0.59	ug/Kg		08/01/24 12:35	08/07/24 14:11	1	
alpha-Chlordane	ND		5.0	0.56	ug/Kg		08/01/24 12:35	08/07/24 14:11	1	5
beta-BHC	ND		5.0	0.89	ug/Kg		08/01/24 12:35	08/07/24 14:11	1	
Chlordane	ND		25	4.1	ug/Kg		08/01/24 12:35	08/07/24 14:11	1	C
delta-BHC	ND		5.0	0.93	ug/Kg		08/01/24 12:35	08/07/24 14:11	1	Ň
Dieldrin	ND		5.0	0.54	ug/Kg		08/01/24 12:35	08/07/24 14:11	1	
Endosulfan I	ND		5.0	1.1	ug/Kg		08/01/24 12:35	08/07/24 14:11	1	
Endosulfan II	ND		5.0	0.54	ug/Kg		08/01/24 12:35	08/07/24 14:11	1	
Endosulfan sulfate	ND		5.0	0.63	ug/Kg		08/01/24 12:35	08/07/24 14:11	1	
Endrin	ND		5.0	0.67	ug/Kg		08/01/24 12:35	08/07/24 14:11	1	
Endrin aldehyde	ND		5.0	3.3	ug/Kg		08/01/24 12:35	08/07/24 14:11	1	
Endrin ketone	ND		5.0	0.89	ug/Kg		08/01/24 12:35	08/07/24 14:11	1	
gamma-Chlordane	ND		5.0	3.3	ug/Kg		08/01/24 12:35	08/07/24 14:11	1	
gamma-BHC	ND		5.0	0.51	ug/Kg		08/01/24 12:35	08/07/24 14:11	1	
Heptachlor	ND		5.0	0.60	ug/Kg		08/01/24 12:35	08/07/24 14:11	1	
Heptachlor epoxide	ND		5.0	0.54	ug/Kg		08/01/24 12:35	08/07/24 14:11	1	
Methoxychlor	ND		5.0	1.2	ug/Kg		08/01/24 12:35	08/07/24 14:11	1	
Toxaphene	ND		25	15	ug/Kg		08/01/24 12:35	08/07/24 14:11	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
Tetrachloro-m-xylene (Surr)	62		38 - 148				08/01/24 12:35	08/07/24 14:11	1	
DCB Decachlorobiphenyl (Surr)	68		37 - 151				08/01/24 12:35	08/07/24 14:11	1	

Job ID: 570-193109-1

Matrix: Solid

Lab Sample ID: 570-193109-15

Surrogate Summary

Client: Padre Associates, Inc. Project/Site: Hope Elementary School, Porterville, CA

Method: 8270C - Semivolatile Organic Compounds (GC/MS) Matrix: Solid

			P€	ercent Surro	ogate Reco	very (Accep	otance Lin
		TBP	FBP	2FP	NBZ	TPHd14	PHL6
_ab Sample ID	Client Sample ID	(10-134)	(14-142)	(10-123)	(10-129)	(31-139)	(10-120)
570-193109-5	IM-1 (0-6")	85	68	76	70	84	75
570-193109-6	IM-2 (0-6")	86	74	75	77	83	80
570-193109-7	IM-3 (0-6")	81	68	75	75	75	70
570-193109-8	IM-4 (0-6")	95	65	82	77	80	77
_CS 570-466094/2-A	Lab Control Sample	77	73	95	69	72	102
_CSD 570-466094/3-A	Lab Control Sample Dup	77	64	92	64	68	91
MB 570-466094/1-A	Method Blank	77	72	89	70	61	92

TBP = 2,4,6-Tribromophenol (Surr) FBP = 2-Fluorobiphenyl (Surr) 2FP = 2-Fluorophenol (Surr)

NBZ = Nitrobenzene-d5 (Surr) TPHd14 = p-Terphenyl-d14 (Surr)

PHL6 = Phenol-d6 (Surr)

Method: 8015B - Gasoline Range Organics - (GC) Matrix: Solid

			Percent Surrogate Recovery (Acceptance Limits)
		BFB1	
Lab Sample ID	Client Sample ID	(42-126)	
570-193109-5	IM-1 (0-6")	99	
570-193109-6	IM-2 (0-6")	101	
570-193109-7	IM-3 (0-6")	104	
570-193109-8	IM-4 (0-6")	79	
570-193109-9	BB-1 (1-1.5")	97	
570-193109-9 MS	BB-1 (1-1.5")	97	
570-193109-9 MSD	BB-1 (1-1.5")	98	
570-193109-10	BB-2 (1-1.5")	91	
_CS 570-467477/1-A	Lab Control Sample	101	
_CSD 570-467477/2-A	Lab Control Sample Dup	104	
MB 570-467477/3-A	Method Blank	94	

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

Method: 8015B - Diesel Range Organics (DRO) (GC) Matrix: Solid

Percent Surrogate Recovery (Acceptance Limits)

		OTCSN1
Lab Sample ID	Client Sample ID	(60-138)
570-193109-5	IM-1 (0-6")	103
570-193109-6	IM-2 (0-6")	97
570-193109-7	IM-3 (0-6")	95
570-193109-8	IM-4 (0-6")	100
570-193109-9	BB-1 (1-1.5")	96
570-193109-10	BB-2 (1-1.5")	102
LCS 570-466997/2-A	Lab Control Sample	110
LCS 570-467191/2-A	Lab Control Sample	98

Eurofins Calscience

Prep Type: Total/NA

Job ID: 570-193109-1

Prep Type: Total/NA

8/13/2024

Surrogate Summary

Job ID: 570-193109-1

Client: Padre Associates, Inc. Project/Site: Hope Elementary School, Porterville, CA

Method: 8015B - Diesel Range Organics (DRO) (GC) (Continued)

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)	4
		OTCSN1		
Lab Sample ID	Client Sample ID	(60-138)		5
LCSD 570-466997/3-A	Lab Control Sample Dup	105		
LCSD 570-467191/3-A	Lab Control Sample Dup	101		6
MB 570-466997/1-A	Method Blank	100		0
MB 570-467191/1-A	Method Blank	100		
Surrogate Legend				

OTCSN = n-Octacosane (Surr)

Matrix: Solid

Method: 8081A - Organochlorine Pesticides (GC) Matrix: Solid

Method: 8081A - Organochlorine Pesticides (GC) Matrix: Solid

_			Pei
		TCX2	DCB2
Lab Sample ID	Client Sample ID	(38-148)	(37-151)
570-193109-2	AG-2 (SURF)	78	98
570-193109-3	AG-3 (SURF)	65	78
570-193109-4	AG-4 (SURF)	85	103
570-193109-5	IM-1 (0-6")	92	107
570-193109-6	IM-2 (0-6")	91	116
570-193109-7	IM-3 (0-6")	97	122
570-193109-8	IM-4 (0-6")	83	105
570-193109-15	AG-3 (SURF) DUP	62	68
LCS 570-465949/2-A	Lab Control Sample	79	75
LCS 570-466360/2-A	Lab Control Sample	125	127
LCSD 570-465949/3-A	Lab Control Sample Dup	70	66
LCSD 570-466360/3-A	Lab Control Sample Dup	122	124
MB 570-465949/1-A	Method Blank	59	54
MB 570-466360/1-A	Method Blank	101	110

Surrogate Legend

TCX = Tetrachloro-m-xylene (Surr)

DCB = DCB Decachlorobiphenyl (Surr)

Method: 8270C - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 570-466094/1-A Matrix: Solid Analysis Batch: 466727

	MB	МВ						Top Daton.	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	ND		0.50	0.12	mg/Kg		07/31/24 18:33	08/02/24 16:03	1
1,2-Dichlorobenzene	ND		0.50	0.084	mg/Kg		07/31/24 18:33	08/02/24 16:03	1
1,3-Dichlorobenzene	ND		0.50	0.11	mg/Kg		07/31/24 18:33	08/02/24 16:03	1
1,4-Dichlorobenzene	ND		0.50	0.096	mg/Kg		07/31/24 18:33	08/02/24 16:03	1
1-Methylnaphthalene	ND		0.50	0.10	mg/Kg		07/31/24 18:33	08/02/24 16:03	1
2,4,5-Trichlorophenol	ND		0.50	0.20	mg/Kg		07/31/24 18:33	08/02/24 16:03	1
2,4,6-Trichlorophenol	ND		0.50	0.12	mg/Kg		07/31/24 18:33	08/02/24 16:03	1
2,4-Dichlorophenol	ND		0.50	0.13	mg/Kg		07/31/24 18:33	08/02/24 16:03	1
2,4-Dimethylphenol	ND		0.50	0.13	mg/Kg		07/31/24 18:33	08/02/24 16:03	1
2,4-Dinitrophenol	ND		2.0	0.91	mg/Kg		07/31/24 18:33	08/02/24 16:03	1
2,4-Dinitrotoluene	ND		0.50	0.081	mg/Kg		07/31/24 18:33	08/02/24 16:03	1
2,6-Dichlorophenol	ND		0.50	0.11	mg/Kg		07/31/24 18:33	08/02/24 16:03	1
2,6-Dinitrotoluene	ND		0.50	0.086	mg/Kg		07/31/24 18:33	08/02/24 16:03	1
2-Chloronaphthalene	ND		0.50		mg/Kg		07/31/24 18:33	08/02/24 16:03	1
2-Chlorophenol	ND		0.50	0.13	mg/Kg		07/31/24 18:33	08/02/24 16:03	1
2-Methylnaphthalene	ND		0.50		mg/Kg		07/31/24 18:33	08/02/24 16:03	1
2-Methylphenol	ND		0.50		mg/Kg		07/31/24 18:33	08/02/24 16:03	1
2-Nitroaniline	ND		0.50		mg/Kg		07/31/24 18:33	08/02/24 16:03	1
2-Nitrophenol	ND		0.50		mg/Kg		07/31/24 18:33	08/02/24 16:03	1
3,3'-Dichlorobenzidine	ND		2.5	0.54	mg/Kg		07/31/24 18:33	08/02/24 16:03	1
3/4-Methylphenol	ND		1.0	0.11	mg/Kg		07/31/24 18:33	08/02/24 16:03	1
3-Nitroaniline	ND		0.50	0.084	mg/Kg		07/31/24 18:33	08/02/24 16:03	1
4,6-Dinitro-2-methylphenol	ND		2.5	0.95	mg/Kg		07/31/24 18:33	08/02/24 16:03	1
4-Bromophenyl phenyl ether	ND		0.50		mg/Kg		07/31/24 18:33	08/02/24 16:03	1
4-Chloro-3-methylphenol	ND		0.50		mg/Kg		07/31/24 18:33	08/02/24 16:03	1
4-Chloroaniline	ND		0.50		mg/Kg		07/31/24 18:33	08/02/24 16:03	1
4-Chlorophenyl phenyl ether	ND		0.50	0.10	mg/Kg		07/31/24 18:33	08/02/24 16:03	1
4-Nitroaniline	ND		0.50		mg/Kg		07/31/24 18:33	08/02/24 16:03	1
4-Nitrophenol	ND		0.50	0.32	mg/Kg		07/31/24 18:33	08/02/24 16:03	1
Acenaphthene	ND		0.50	0.079	mg/Kg		07/31/24 18:33	08/02/24 16:03	1
Acenaphthylene	ND		0.50		mg/Kg			08/02/24 16:03	1
Aniline	ND		0.50		mg/Kg			08/02/24 16:03	1
Anthracene	ND		0.50		mg/Kg			08/02/24 16:03	1
Azobenzene	ND		0.50		mg/Kg		07/31/24 18:33	08/02/24 16:03	1
Benzidine	ND		5.0	0.58	mg/Kg		07/31/24 18:33	08/02/24 16:03	1
Benzo[a]anthracene	ND		0.50		mg/Kg		07/31/24 18:33	08/02/24 16:03	1
Benzo[a]pyrene	ND		0.50		mg/Kg		07/31/24 18:33	08/02/24 16:03	1
Benzo[b]fluoranthene	ND		0.50	0.085	mg/Kg			08/02/24 16:03	1
Benzo[g,h,i]perylene	ND		0.50		mg/Kg			08/02/24 16:03	1
Benzo[k]fluoranthene	ND		0.50	0.095	mg/Kg		07/31/24 18:33	08/02/24 16:03	1
Benzoic acid	ND		2.5		mg/Kg			08/02/24 16:03	1
Benzyl alcohol	ND		0.50		mg/Kg			08/02/24 16:03	1
Bis(2-chloroethoxy)methane	ND		0.50		mg/Kg			08/02/24 16:03	1
Bis(2-chloroethyl)ether	ND		2.5		mg/Kg			08/02/24 16:03	1
bis (2-Chloroisopropyl) ether	ND		0.50		mg/Kg			08/02/24 16:03	1
Bis(2-ethylhexyl) phthalate	ND		0.50		mg/Kg			08/02/24 16:03	1
Butyl benzyl phthalate	ND		0.50		mg/Kg			08/02/24 16:03	1
Chrysene	ND		0.50	0.083	mg/Kg		07/31/24 18:33	08/02/24 16:03	1

Eurofins Calscience

Prep Type: Total/NA

Prep Batch: 466094

Client Sample ID: Method Blank

13

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 570-466094/1-A Matrix: Solid Analysis Batch: 466727

	МВ	мв						p =utott	
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dibenz(a,h)anthracene	ND		0.50	0.080	mg/Kg		07/31/24 18:33	08/02/24 16:03	1
Dibenzofuran	ND		0.50	0.095	mg/Kg		07/31/24 18:33	08/02/24 16:03	1
Diethyl phthalate	ND		0.50		mg/Kg		07/31/24 18:33	08/02/24 16:03	1
Dimethyl phthalate	ND		0.50	0.098	mg/Kg		07/31/24 18:33	08/02/24 16:03	1
Di-n-butyl phthalate	ND		0.50	0.11	mg/Kg		07/31/24 18:33	08/02/24 16:03	1
Di-n-octyl phthalate	ND		0.50	0.23	mg/Kg		07/31/24 18:33	08/02/24 16:03	1
Fluoranthene	ND		0.50	0.095	mg/Kg		07/31/24 18:33	08/02/24 16:03	1
Fluorene	ND		0.50	0.094	mg/Kg		07/31/24 18:33	08/02/24 16:03	1
Hexachloro-1,3-butadiene	ND		0.50	0.13	mg/Kg		07/31/24 18:33	08/02/24 16:03	1
Hexachlorobenzene	ND		0.50	0.080	mg/Kg		07/31/24 18:33	08/02/24 16:03	1
Hexachlorocyclopentadiene	ND		1.5	0.087	mg/Kg		07/31/24 18:33	08/02/24 16:03	1
Hexachloroethane	ND		0.50	0.092	mg/Kg		07/31/24 18:33	08/02/24 16:03	1
Indeno[1,2,3-cd]pyrene	ND		0.50	0.12	mg/Kg		07/31/24 18:33	08/02/24 16:03	1
Isophorone	ND		0.50	0.080	mg/Kg		07/31/24 18:33	08/02/24 16:03	1
Naphthalene	ND		0.50	0.14	mg/Kg		07/31/24 18:33	08/02/24 16:03	1
Nitrobenzene	ND		2.0	0.14	mg/Kg		07/31/24 18:33	08/02/24 16:03	1
N-Nitrosodimethylamine	ND		0.50	0.089	mg/Kg		07/31/24 18:33	08/02/24 16:03	1
N-Nitrosodi-n-propylamine	ND		0.50	0.086	mg/Kg		07/31/24 18:33	08/02/24 16:03	1
n-Nitrosodiphenylamine(as	ND		0.50	0.085	mg/Kg		07/31/24 18:33	08/02/24 16:03	1
diphenylamine)									
Pentachlorophenol	ND		2.5		mg/Kg		07/31/24 18:33		1
Phenanthrene	ND		0.50		mg/Kg			08/02/24 16:03	1
Phenol	ND		0.50		mg/Kg		07/31/24 18:33	08/02/24 16:03	1
Pyrene	ND		0.50		mg/Kg			08/02/24 16:03	1
Pyridine	ND		0.50	0.24	mg/Kg		07/31/24 18:33	08/02/24 16:03	1
	МВ	МВ							

Surrogate	%Recovery (Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	77		10 - 134	07/31/24 18:33 08	/02/24 16:03	1
2-Fluorobiphenyl (Surr)	72		14 - 142	07/31/24 18:33 08	/02/24 16:03	1
2-Fluorophenol (Surr)	89		10_123	07/31/24 18:33 08	/02/24 16:03	1
Nitrobenzene-d5 (Surr)	70		10 - 129	07/31/24 18:33 08	/02/24 16:03	1
p-Terphenyl-d14 (Surr)	61		31 - 139	07/31/24 18:33 08	/02/24 16:03	1
Phenol-d6 (Surr)	92		10 - 120	07/31/24 18:33 08	/02/24 16:03	1

Lab Sample ID: LCS 570-466094/2-A Matrix: Solid Analysis Batch: 466727

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 466094

Analysis Batch. 400121							
	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,2,4-Trichlorobenzene	5.00	3.486		mg/Kg		70	24 - 137
1,2-Dichlorobenzene	5.00	3.898		mg/Kg		78	24 - 148
1,3-Dichlorobenzene	5.00	3.806		mg/Kg		76	22 - 144
1,4-Dichlorobenzene	5.00	4.041		mg/Kg		81	24 - 143
1-Methylnaphthalene	5.00	4.158		mg/Kg		83	26 - 143
2,4,5-Trichlorophenol	5.00	4.761		mg/Kg		95	24 - 139
2,4,6-Trichlorophenol	5.00	4.515		mg/Kg		90	26 - 140
2,4-Dichlorophenol	5.00	4.357		mg/Kg		87	24 - 139
2,4-Dimethylphenol	5.00	5.359		mg/Kg		107	23 - 136
2,4-Dinitrophenol	5.00	3.983		mg/Kg		80	10 - 174

Eurofins Calscience

5

8

9

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 570-466094/2-A Matrix: Solid Analysis Batch: 466727			Clier	nt Sample	e ID: Lab Control Samp Prep Type: Total/N Prep Batch: 4660
	Spike	LCS LC	s		%Rec
Analyte	Added	Result Qu	alifier Unit	D %R	ec Limits
2,4-Dinitrotoluene	5.00	4.881	mg/Kg		98 28 - 166
2,6-Dichlorophenol	5.00	4.535	mg/Kg	1	91 23 - 134
2,6-Dinitrotoluene	5.00	4.551	mg/Kg		91 30 - 157
2-Chloronaphthalene	5.00	4.144	mg/Kg		83 30 - 144
2-Chlorophenol	5.00	4.862	mg/Kg	1	97 26 - 157
2-Methylnaphthalene	5.00	4.138	mg/Kg		83 23 - 134
2-Methylphenol	5.00	5.525	mg/Kg	1	10 30 - 161
2-Nitroaniline	5.00	4.704	mg/Kg		94 16 - 142
2-Nitrophenol	5.00	3.999	mg/Kg		80 23 - 142
3,3'-Dichlorobenzidine	5.00	4.723	mg/Kg	1	94 28 - 143
3/4-Methylphenol	10.0	11.09	mg/Kg	1	11 10 - 120
3-Nitroaniline	5.00	4.630	mg/Kg		93 25 - 138
4,6-Dinitro-2-methylphenol	5.00	3.822	mg/Kg		76 10-144
4-Bromophenyl phenyl ether	5.00	3.717	mg/Kg		74 33 - 150
4-Chloro-3-methylphenol	5.00	4.860	mg/Kg		97 23 - 142
4-Chloroaniline	5.00	4.497	mg/Kg		90 12-120
4-Chlorophenyl phenyl ether	5.00	4.442	mg/Kg		89 29-143
4-Nitroaniline	5.00	5.211	mg/Kg		04 26-147
4-Nitrophenol	5.00	5.223	mg/Kg		04 10-145
Acenaphthene	5.00	4.126	mg/Kg		83 30 - 144
Acenaphthylene	5.00	4.282	mg/Kg		86 28 - 148
Aniline	5.00	4.665	mg/Kg		93 10 - 120
Anthracene	5.00	4.511	mg/Kg		90 30 - 149
Azobenzene	5.00	3.099	mg/Kg		62 14 - 147
Benzidine	5.00	3.243 J	mg/Kg		65 10 - 120
Benzo[a]anthracene	5.00	4.407	mg/Kg		88 27 - 156
Benzo[a]pyrene	5.00	5.320	mg/Kg		06 36 - 157
Benzo[b]fluoranthene	5.00	4.901	mg/Kg		98 35 - 159
Benzo[g,h,i]perylene	5.00	4.539	mg/Kg		90 30 - 156 91 30 - 156
Benzo[k]fluoranthene Benzoic acid	5.00	4.651	mg/Kg		
	5.00	3.405	mg/Kg		
Benzyl alcohol	5.00	4.901	mg/Kg		98 18-154
Bis(2-chloroethoxy)methane	5.00	3.935	mg/Kg		79 21-140
Bis(2-chloroethyl)ether	5.00	4.234	mg/Kg		85 22-151
bis (2-Chloroisopropyl) ether	5.00	4.194	mg/Kg		84 10 - 179
Bis(2-ethylhexyl) phthalate	5.00	3.959	mg/Kg		79 23 - 166
Butyl benzyl phthalate	5.00	4.107	mg/Kg		82 18 - 170
Chrysene	5.00	4.537	mg/Kg		91 28-145
Dibenz(a,h)anthracene	5.00	5.065	mg/Kg		01 32-149
Dibenzofuran	5.00	4.113	mg/Kg		82 29 - 143
Diethyl phthalate	5.00	4.415	mg/Kg		88 26-151
Dimethyl phthalate	5.00	4.810	mg/Kg	1	96 27 - 150
Di-n-butyl phthalate	5.00	4.514	mg/Kg		90 27 - 152
Di-n-octyl phthalate	5.00	4.651	mg/Kg		93 40 - 178
Fluoranthene	5.00	4.957	mg/Kg		99 33 - 156
Fluorene	5.00	4.480	mg/Kg	1	90 27 - 146
Hexachloro-1,3-butadiene	5.00	3.561	mg/Kg		71 22 - 140
Hexachlorobenzene	5.00	3.634	mg/Kg		73 20 - 143
Hexachlorocyclopentadiene	5.00	4.711	mg/Kg	1	94 10_172

Eurofins Calscience

13

Job ID: 570-193109-1

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 570 Matrix: Solid Analysis Batch: 466727	-466094/2-A					Clier	nt Sar	nple ID	: Lab Control Sample Prep Type: Total/NA Prep Batch: 466094
			Spike	LCS	LCS				%Rec
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits
Hexachloroethane			5.00	3.389		mg/Kg		68	22 - 144
Indeno[1,2,3-cd]pyrene			5.00	5.146		mg/Kg		103	38 - 157
Isophorone			5.00	3.775		mg/Kg		76	15 - 165
Naphthalene			5.00	4.125		mg/Kg		82	25 - 140
Nitrobenzene			5.00	3.741		mg/Kg		75	17 - 136
N-Nitrosodimethylamine			5.00	2.764		mg/Kg		55	10 - 134
N-Nitrosodi-n-propylamine			5.00	4.812		mg/Kg		96	16 - 158
n-Nitrosodiphenylamine(as diphenylamine)			5.00	4.474		mg/Kg		89	33 - 166
Pentachlorophenol			5.00	4.603		mg/Kg		92	10 - 141
Phenanthrene			5.00	4.175		mg/Kg		84	29 - 144
Phenol			5.00	5.064		mg/Kg		101	19 - 164
Pyrene			5.00	4.015		mg/Kg		80	17 - 156
Pyridine			5.00	2.309		mg/Kg		46	10 - 120
	LCS	LCS							
Surrogate	%Recovery	Qualifier	Limits						
2,4,6-Tribromophenol (Surr)	77		10 - 134						
2-Fluorobiphenyl (Surr)	73		14 - 142						
2-Fluorophenol (Surr)	95		10 - 123						
Nitrobenzene-d5 (Surr)	69		10 - 129						

31 - 139

10_120

72

102

Lab Sample ID: LCSD 570-466094/3-A Matrix: Solid Analysis Batch: 466727

p-Terphenyl-d14 (Surr)

Phenol-d6 (Surr)

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA Prep Batch: 466094

	Spike	LCSD	LCSD			%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D %Rec	Limits	RPD	Limit
1,2,4-Trichlorobenzene	5.00	3.419		mg/Kg	68	24 - 137	2	30
1,2-Dichlorobenzene	5.00	3.708		mg/Kg	74	24 - 148	5	30
1,3-Dichlorobenzene	5.00	3.620		mg/Kg	72	22 - 144	5	30
1,4-Dichlorobenzene	5.00	3.627		mg/Kg	73	24 - 143	11	30
1-Methylnaphthalene	5.00	3.658		mg/Kg	73	26 - 143	13	24
2,4,5-Trichlorophenol	5.00	3.961		mg/Kg	79	24 - 139	18	21
2,4,6-Trichlorophenol	5.00	3.693		mg/Kg	74	26 - 140	20	23
2,4-Dichlorophenol	5.00	4.261		mg/Kg	85	24 - 139	2	27
2,4-Dimethylphenol	5.00	5.018		mg/Kg	100	23 - 136	7	27
2,4-Dinitrophenol	5.00	3.457		mg/Kg	69	10_174	14	27
2,4-Dinitrotoluene	5.00	4.403		mg/Kg	88	28 - 166	10	27
2,6-Dichlorophenol	5.00	3.880		mg/Kg	78	23 - 134	16	25
2,6-Dinitrotoluene	5.00	3.898		mg/Kg	78	30 - 157	15	25
2-Chloronaphthalene	5.00	3.645		mg/Kg	73	30 - 144	13	22
2-Chlorophenol	5.00	4.646		mg/Kg	93	26 - 157	5	30
2-Methylnaphthalene	5.00	3.787		mg/Kg	76	23 - 134	9	27
2-Methylphenol	5.00	4.708		mg/Kg	94	30 - 161	16	28
2-Nitroaniline	5.00	3.704		mg/Kg	74	16 - 142	24	30
2-Nitrophenol	5.00	3.735		mg/Kg	75	23 - 142	7	30
3,3'-Dichlorobenzidine	5.00	4.165		mg/Kg	83	28 - 143	13	23
3/4-Methylphenol	10.0	10.52		mg/Kg	105	10 - 120	5	30

Job ID: 570-193109-1

5

8 9

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 570-466094/3-A Matrix: Solid				Client Sa	mple	ID: Lab	Control Prep Ty	pe: Tot	al/NA
Analysis Batch: 466727	Spike		LCSD				Prep Ba %Rec	atch: 40	RPD
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
3-Nitroaniline		4.043		mg/Kg		81	25 - 138	14	27
4,6-Dinitro-2-methylphenol	5.00	3.915		mg/Kg		78	10 - 144	2	23
4-Bromophenyl phenyl ether	5.00	3.621		mg/Kg		72	33 - 150	3	22
4-Chloro-3-methylphenol	5.00	4.373		mg/Kg		87	23 - 142	11	30
4-Chloroaniline	5.00	3.633		mg/Kg		73	12 - 120	21	29
4-Chlorophenyl phenyl ether	5.00	4.109		mg/Kg		82	29 - 143	8	23
4-Nitroaniline	5.00	4.626		mg/Kg		93	26 - 147	12	29
4-Nitrophenol	5.00	4.830		mg/Kg		97	10 - 145	8	30
Acenaphthene	5.00	3.706		mg/Kg		74	30 - 144	11	22
Acenaphthylene	5.00	3.756		mg/Kg		75	28 - 148	13	25
Aniline	5.00	4.457		mg/Kg		89	10 - 120	5	30
Anthracene	5.00	3.922		mg/Kg		78	30 - 149	14	24
Azobenzene	5.00	3.405		mg/Kg		68	14 - 147	9	30
Benzidine	5.00	3.411	J	mg/Kg		68	10 - 120	5	30
Benzo[a]anthracene	5.00	3.949		mg/Kg		79	27 - 156	11	24
Benzo[a]pyrene	5.00	5.112		mg/Kg		102	36 - 157	4	21
Benzo[b]fluoranthene	5.00	4.628		mg/Kg		93	35 - 159	6	21
Benzo[g,h,i]perylene	5.00	3.352	*1	mg/Kg		67	30 - 156	30	25
Benzo[k]fluoranthene	5.00	4.570		mg/Kg		91	35 - 159	2	22
Benzoic acid	5.00	3.335		mg/Kg		67	10 - 136	2	20
Benzyl alcohol	5.00	4.511		mg/Kg		90	18 - 154	8	30
Bis(2-chloroethoxy)methane	5.00	3.457		mg/Kg		69	21 - 140	13	29
Bis(2-chloroethyl)ether	5.00	3.994		mg/Kg		80	22 - 151	6	30
bis (2-Chloroisopropyl) ether	5.00	4.000		mg/Kg		80	10_179	5	30
Bis(2-ethylhexyl) phthalate	5.00	3.637		mg/Kg		73	23 - 166	8	27
Butyl benzyl phthalate	5.00	3.555		mg/Kg		71	18 - 170	14	29
Chrysene	5.00	3.758		mg/Kg		75	28 - 145	19	21
Dibenz(a,h)anthracene	5.00	3.611	*1	mg/Kg		72	32 - 149	34	25
Dibenzofuran	5.00	3.752		mg/Kg		75	29 - 143	9	24
Diethyl phthalate	5.00	4.043		mg/Kg		81	26 - 151	9	26
Dimethyl phthalate	5.00	4.196		mg/Kg		84	27 - 150	14	24
Di-n-butyl phthalate	5.00	3.927		mg/Kg		79	27 - 152	14	27
Di-n-octyl phthalate	5.00	4.103		mg/Kg		82	40 - 178	13	21
Fluoranthene	5.00	4.685		mg/Kg		94	33 - 156	6	26
Fluorene	5.00	3.961		mg/Kg		79	27 - 146	12	26
Hexachloro-1,3-butadiene	5.00	3.627		mg/Kg		73	22 - 140	2	30
Hexachlorobenzene	5.00	3.454		mg/Kg		69	20 - 143	5	25
Hexachlorocyclopentadiene	5.00	4.419		mg/Kg		88	10 - 172	6	27
Hexachloroethane	5.00	3.316		mg/Kg		66	22 - 144	2	30
Indeno[1,2,3-cd]pyrene	5.00	3.495	*1	mg/Kg		70	38 - 157	38	25
Isophorone	5.00	3.525		mg/Kg		71	15 - 165	7	30
Naphthalene	5.00	3.710		mg/Kg		74	25 - 140	11	28
Nitrobenzene	5.00	3.541		mg/Kg		71	17 - 136	5	30
N-Nitrosodimethylamine	5.00	2.907		mg/Kg		58	10 - 134	5	30
N-Nitrosodi-n-propylamine	5.00	4.557		mg/Kg		91	16 - 158	5	30
n-Nitrosodiphenylamine(as	5.00	4.652		mg/Kg		93	33 - 166	4	23
diphenylamine) Pentachlorophenol	5.00	4.168		mg/Kg		83	10_141	10	25
Phenanthrene	5.00	3.797		mg/Kg		76	29 - 144	9	23

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 570-4 Matrix: Solid Analysis Batch: 466727	466094/3-A						C	Client Sa	am	ple	ID: Lab	Control Prep Ty Prep Ba	pe: To	tal/NA
Analysis Balch: 400/2/				Spike	LCSD	109	.n					Preр Ба %Rec	atch: 4	RPE
Analyte				Added	Result			Unit		D	%Rec	Limits	RPD	Limi
Phenol				5.00	4.744	Qua	inner	mg/Kg		_		19 - 164	7	
Pyrene				5.00	3.946						93 79	19 - 104 17 - 156	2	
Pyridine				5.00	2.719			mg/Kg mg/Kg			79 54	10 - 120	16	
Fyndine				5.00	2.719			mg/rtg			54	10 - 120	10	50
	LCSD	LCS	D											
Surrogate	%Recovery	Qua	lifier	Limits										
2,4,6-Tribromophenol (Surr)	77			10 - 134										
2-Fluorobiphenyl (Surr)	64			14 - 142										
2-Fluorophenol (Surr)	92			10 - 123										
Nitrobenzene-d5 (Surr)	64			10 - 129										
p-Terphenyl-d14 (Surr)	68			31 - 139										
Phenol-d6 (Surr)	91			10 - 120										
, <i>,</i>														
lethod: 8015B - Gasoli	ne Range	e Or	ganics	5 - (GC)										
Lab Sample ID: MB 570-467	7477/3-A									Clie	nt Sam	ole ID: M		
Matrix: Solid												Prep Ty	-	
Analysis Batch: 467420												Prep Ba	atch: 4	6747
		MB	MB											
Analyte	Re	sult	Qualifier	RL	I	MDL	Unit	ļ	D	Р	repared	Analy	zed	Dil Fa
Gasoline Range Organics (C4-C12)		ND		0.099	0	.044	mg/K	g		08/0	5/24 10:39	08/05/24	11:42	
		ΜВ	MB											
Sumerate	% Dece		Qualifier	Limits							d	Analy		Dil Fa
Surrogate 4-Bromofluorobenzene (Surr)	%Recov	94	Quaimer	42 - 126							repared 5/24 10:39	Analy 08/05/24		DIIFa
		94		42 - 120						00/0	5/24 10.39	00/03/24	11.42	
Lab Sample ID: LCS 570-46	7477/1-A							Clie	nt	Sar	nple ID:	Lab Cor		
Matrix: Solid												Prep Ty	-	
Analysis Batch: 467420												Prep Ba	atch: 4	67477
				Spike	LCS	LCS	;					%Rec		
Analyte				Added	Result	Qua	lifier	Unit		D	%Rec	Limits		
Gasoline Range Organics				2.00	1.921			mg/Kg	_	_	96	70 - 124		
(C4-C13)														
	LCS	ICS												
Surrogate	%Recovery			Limits										
4-Bromofluorobenzene (Surr)	101	Sud		42 - 126										
	101			0										
Lab Sample ID: LCSD 570-4	467477/2-A						C	Client Sa	m	ple	ID: Lab	Control		
Matrix: Solid												Prep Ty	-	
Analysis Batch: 467420				Calles		1.00						Prep Ba	atch: 4	
Analyta				Spike Addod	LCSD			Unit		Р	% Bee	%Rec	DDD	RPE
Analyte				Added	Result	ua	mer	Unit		<u> </u>	%Rec 95	Limits 70 - 124	RPD	Limi
Gasoline Range Organics (C4-C13)				2.00	1.897			mg/Kg			90	10-124	1	18
· · ·														
	LCSD	LCS	D											
Surrogate	LCSD %Recovery			Limits										

Eurofins Calscience

Job ID: 570-193109-1

MS MS

1.787

Result Qualifier Unit

mg/Kg

Spike

Added

Limits

42 - 126

1.93

Client: Padre Associates, Inc.

Lab Sample ID: 570-193109-9 MS

Lab Sample ID: 570-193109-9 MSD

Analysis Batch: 467420

Gasoline Range Organics

4-Bromofluorobenzene (Surr)

Analysis Batch: 467420

Matrix: Solid

Analyte

(C4-C13)

Surrogate

Matrix: Solid

Job ID: 570-193109-1

Prep Type: Total/NA

Prep Batch: 467477

Prep Type: Total/NA

Prep Batch: 467477

Client Sample ID: BB-1 (1-1.5")

%Rec

Limits

48 - 114

Client Sample ID: BB-1 (1-1.5")

%Rec

Limits

48 - 114

D %Rec

93

8

13 14

RPD

23

RPD Limit

3

Method: 8015B - Diese	el Range Or	ganics	(DRO) (GC)										
Lab Sample ID: MB 570-4	66997/1-A								Clie	nt Samp	ole ID: Meth	od l	Blank
Matrix: Solid											Prep Type:	Tot	tal/NA
Analysis Batch: 467146											Prep Batch	n: 40	66997
	Ν	MB MB											
Analyte	Res	ult Qualif	ier RL			Unit		D	Pr	repared	Analyzed		Dil Fac
C13-C22	1	ND	5.0		4.6	mg/K	g		08/02	2/24 18:01	08/03/24 13:4	3	1
C23-C40	٦	ND	5.0		4.6	mg/K	g		08/02	2/24 18:01	08/03/24 13:4	3	1
	Л	MB MB											
Surrogate	%Recove	ery Qualif	fier Limits						Pi	repared	Analyzed		Dil Fac
n-Octacosane (Surr)	1	00	60 - 138						08/0	2/24 18:01	08/03/24 13:4	13	1
Analyte Diesel Range Organics [C10-C28]			Spike Added 400	Result 418.6	Qua	lifier	Unit mg/Kg		D	%Rec	Limits		
	LCS L	LCS											
Surrogate	%Recovery (Qualifier	Limits										
n-Octacosane (Surr)	110		60 - 138										
Lab Sample ID: LCSD 570 Matrix: Solid)-466997/3-A					C	lient S	am	ple	ID: Lab	Control Sar Prep Type:		
											Pren Ratel	ים יו	hhyy/
Analysis Batch: 467146			Spike	LCSD	LCS	D					Prep Batch %Rec	1:40	
			Spike Added	LCSD Result			Unit		D	%Rec	%Rec	1: 40 PD	RPD Limit

Eurofins Calscience

Project/Site: Hope Elementary School, Porterville, CA Method: 8015B - Gasoline Range Organics - (GC) (Continued)

Sample Sample

MS MS %Recovery Qualifier

ND

97

Result Qualifier

/ maryoro Batom 401420													
	Sample	San	nple	Spike		MSD	MSI	כ					
Analyte	Result	Qua	alifier	Added		Result	Qua	lifier	Unit		D	%Rec	
Gasoline Range Organics (C4-C13)	ND			1.91		1.850			mg/Kg			97	
	MSD	MS	D										
Surrogate	%Recovery	Qua	alifier	Limits									
4-Bromofluorobenzene (Surr)	98			42 - 126									
Method: 8015B - Diese	el Range C	rga	anics ([DRO) (0	GC)								
Lab Sample ID: MB 570-4	66997/1-A										Clie	ent San	np
Matrix: Solid													1
Analysis Batch: 467146													
-		MB	MB										
Analyte	Re	sult	Qualifier		RL	I	MDL	Unit		D	Р	repared	
C13-C22		ND			5.0		4.6	mg/K	g	_	08/0	2/24 18:0)1
C23-C40		ND			5.0		4.6	mg/K	g		08/0	2/24 18:0)1
		ΜВ	МВ										
Surrogate	%Reco	very	Qualifier	Lim	its						P	repared	
n-Octacosane (Surr)		100		60 -	138						08/0	2/24 18:0	01
Lab Sample ID: LCS 570-	466997/2-A								Cli	ent	Sar	nple IC):
Matrix: Solid													
Analysis Batch: 467146													
-				Spike		LCS	LCS	5					
Analyte				Added		Result	Qua	lifier	Unit		D	%Rec	
Diesel Range Organics				400		418.6			mg/Kg			105	
[C10-C28]													
	LCS	LCS	S										
Surrogate	%Recovery	Qua	alifier	Limits									
n-Octacosane (Surr)	110			60 - 138									
Lab Sample ID: LCSD 570)-466997/3-A							c	lient S	am	ple	ID: La	b (

Job ID: 570-193109-1

Lab Sample ID: LCSD 570 Matrix: Solid Analysis Batch: 467146	-466997/3-A							C	lient Sa	mp	le I	D: Lab	Control Sa Prep Type Prep Bato	: To	tal/NA
	LCSD	LCS	D												
Surrogate	%Recovery	Qual	lifier	Limits											
n-Octacosane (Surr)	105			60 - 138											
Lab Sample ID: MB 570-40	67191/1-A									С	lier	nt Sam	ole ID: Met	hod	Blank
Matrix: Solid													Prep Type		
Analysis Batch: 467681													Prep Bato		
		MB	MB												
Analyte	Re		Qualifier		RL			Unit		D		epared	Analyzed		Dil Fac
C13-C22		ND			5.0			mg/K	-			/24 16:35			1
C23-C40		ND			5.0		4.6	mg/K	9	08	8/03	/24 16:35	08/06/24 01	:48	1
		ΜВ	МВ												
Surrogate	%Recov	very	Qualifier	Limits	S						Pre	epared	Analyzed	1	Dil Fac
n-Octacosane (Surr)		100		60 - 13	38					0	8/03	/24 16:35	08/06/24 01	:48	1
Analysis Batch: 467681 Analyte Diesel Range Organics [C10-C28]	LCS	LCS		Spike Added 400		LCS Result 408.7	LCS Qua		Unit mg/Kg		<u>D</u>	%Rec	Prep Bato %Rec Limits 80 - 130		
Surrogate	%Recovery	Qual	lifier	Limits											
n-Octacosane (Surr)	98			60 - 138											
Lab Sample ID: LCSD 570 Matrix: Solid Analysis Batch: 467681	-467191/3-A			Spike		LCSD		D	lient Sa	mp			Control Sa Prep Type Prep Bato %Rec	: To h: 4	tal/NA
Analyte				Added		Result	Qua	lifier	Unit		D _	%Rec		RPD	Limi
Diesel Range Organics [C10-C28]				400		406.0			mg/Kg			102	80 - 130	1	20
	LCSD	LCS	D												
Surrogate	%Recovery	Qual	lifier	Limits											
n-Octacosane (Surr)	101			60 - 138											
/lethod: 8081A - Orgar	nochlorine	Pe	sticide	s (GC)											
Lab Sample ID: MB 570-40	65949/1-A									С	lier	nt Sam	ole ID: Met	hod	Blank
Matrix: Solid													Prep Type		
Analysis Batch: 469666													Prep Bato		

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND		5.0	0.72	ug/Kg		07/31/24 12:04	08/12/24 00:23	1
4,4'-DDE	ND		5.0	0.69	ug/Kg		07/31/24 12:04	08/12/24 00:23	1
4,4'-DDT	ND		5.0	1.2	ug/Kg		07/31/24 12:04	08/12/24 00:23	1
Aldrin	ND		5.0	1.6	ug/Kg		07/31/24 12:04	08/12/24 00:23	1
alpha-BHC	ND		5.0	0.59	ug/Kg		07/31/24 12:04	08/12/24 00:23	1
alpha-Chlordane	ND		5.0	0.56	ug/Kg		07/31/24 12:04	08/12/24 00:23	1

Method: 8081A - Organochlorine Pesticides (GC) (Continued)

59

54

Lab Sample ID: MB 570-465949/1-A Matrix: Solid Analysis Batch: 469666

MB	MB								
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
ND		5.0	0.90	ug/Kg		07/31/24 12:04	08/12/24 00:23	1	
ND		25	4.1	ug/Kg		07/31/24 12:04	08/12/24 00:23	1	
ND		5.0	0.93	ug/Kg		07/31/24 12:04	08/12/24 00:23	1	
ND		5.0	0.55	ug/Kg		07/31/24 12:04	08/12/24 00:23	1	
ND		5.0	1.1	ug/Kg		07/31/24 12:04	08/12/24 00:23	1	
ND		5.0	0.55	ug/Kg		07/31/24 12:04	08/12/24 00:23	1	
ND		5.0	0.63	ug/Kg		07/31/24 12:04	08/12/24 00:23	1	
ND		5.0	0.67	ug/Kg		07/31/24 12:04	08/12/24 00:23	1	
ND		5.0	3.3	ug/Kg		07/31/24 12:04	08/12/24 00:23	1	
ND		5.0	0.90	ug/Kg		07/31/24 12:04	08/12/24 00:23	1	
ND		5.0	3.4	ug/Kg		07/31/24 12:04	08/12/24 00:23	1	
ND		5.0	0.51	ug/Kg		07/31/24 12:04	08/12/24 00:23	1	
ND		5.0	0.60	ug/Kg		07/31/24 12:04	08/12/24 00:23	1	
ND		5.0	0.54	ug/Kg		07/31/24 12:04	08/12/24 00:23	1	
ND		5.0	1.2	ug/Kg		07/31/24 12:04	08/12/24 00:23	1	÷
ND		25	15	ug/Kg		07/31/24 12:04	08/12/24 00:23	1	
MR	MR								
		Limits				Prepared	Analyzed	Dil Fac	
	Result ND ND ND ND ND ND ND ND ND ND ND ND ND	ResultQualifierND	Result Qualifier RL ND 5.0 ND 25 ND 5.0 ND	Result Qualifier RL MDL ND 5.0 0.90 ND 25 4.1 ND 5.0 0.93 ND 5.0 0.93 ND 5.0 0.55 ND 5.0 0.11 ND 5.0 0.63 ND 5.0 0.63 ND 5.0 0.67 ND 5.0 0.90 ND 5.0 0.90 ND 5.0 0.90 ND 5.0 0.51 ND 5.0 0.51 ND 5.0 0.51 ND 5.0 0.54 ND 5.0 1.2 ND 25 15 MB MB MB	Result Qualifier RL MDL Unit ND 5.0 0.90 ug/Kg ND 25 4.1 ug/Kg ND 5.0 0.93 ug/Kg ND 5.0 0.93 ug/Kg ND 5.0 0.55 ug/Kg ND 5.0 0.55 ug/Kg ND 5.0 1.1 ug/Kg ND 5.0 0.63 ug/Kg ND 5.0 0.63 ug/Kg ND 5.0 0.67 ug/Kg ND 5.0 0.90 ug/Kg ND 5.0 0.90 ug/Kg ND 5.0 0.90 ug/Kg ND 5.0 0.51 ug/Kg ND 5.0 0.51 ug/Kg ND 5.0 0.54 ug/Kg ND 5.0 1.2 ug/Kg ND 5.0 1.2 ug/Kg ND <td>Result Qualifier RL MDL Unit D ND 5.0 0.90 ug/Kg Implementation Implementation</td> <td>Result Qualifier RL MDL Unit D Prepared ND 5.0 0.90 ug/Kg 07/31/24 12:04 ND 25 4.1 ug/Kg 07/31/24 12:04 ND 5.0 0.93 ug/Kg 07/31/24 12:04 ND 5.0 0.93 ug/Kg 07/31/24 12:04 ND 5.0 0.55 ug/Kg 07/31/24 12:04 ND 5.0 0.63 ug/Kg 07/31/24 12:04 ND 5.0 0.67 ug/Kg 07/31/24 12:04 ND 5.0 0.83 ug/Kg 07/31/24 12:04 ND 5.0 0.90 ug/Kg 07/31/24 12:04 ND 5.0 0.90 ug/Kg 07/31/24 12:04 ND 5.0 0.51 ug/</td> <td>Result NDQualifierRLMDLUnitDPreparedAnalyzedND5.00.90ug/Kg07/31/24 12:0408/12/24 00:23ND254.1ug/Kg07/31/24 12:0408/12/24 00:23ND5.00.93ug/Kg07/31/24 12:0408/12/24 00:23ND5.00.55ug/Kg07/31/24 12:0408/12/24 00:23ND5.00.55ug/Kg07/31/24 12:0408/12/24 00:23ND5.00.55ug/Kg07/31/24 12:0408/12/24 00:23ND5.00.55ug/Kg07/31/24 12:0408/12/24 00:23ND5.00.63ug/Kg07/31/24 12:0408/12/24 00:23ND5.00.67ug/Kg07/31/24 12:0408/12/24 00:23ND5.00.67ug/Kg07/31/24 12:0408/12/24 00:23ND5.00.67ug/Kg07/31/24 12:0408/12/24 00:23ND5.00.90ug/Kg07/31/24 12:0408/12/24 00:23ND5.00.90ug/Kg07/31/24 12:0408/12/24 00:23ND5.00.51ug/Kg07/31/24 12:0408/12/24 00:23ND5.00.51ug/Kg07/31/24 12:0408/12/24 00:23ND5.00.51ug/Kg07/31/24 12:0408/12/24 00:23ND5.00.54ug/Kg07/31/24 12:0408/12/24 00:23ND5.00.54ug/Kg07/31/24 12:0408/12/24 00:23ND5.</td> <td>Result NDQualifierRLMDLUnitDPreparedAnalyzedDil FacND5.00.90ug/Kg07/31/24 12:0408/12/24 00:231ND254.1ug/Kg07/31/24 12:0408/12/24 00:231ND5.00.93ug/Kg07/31/24 12:0408/12/24 00:231ND5.00.55ug/Kg07/31/24 12:0408/12/24 00:231ND5.00.55ug/Kg07/31/24 12:0408/12/24 00:231ND5.01.1ug/Kg07/31/24 12:0408/12/24 00:231ND5.00.65ug/Kg07/31/24 12:0408/12/24 00:231ND5.00.63ug/Kg07/31/24 12:0408/12/24 00:231ND5.00.67ug/Kg07/31/24 12:0408/12/24 00:231ND5.00.67ug/Kg07/31/24 12:0408/12/24 00:231ND5.00.90ug/Kg07/31/24 12:0408/12/24 00:231ND5.00.90ug/Kg07/31/24 12:0408/12/24 00:231ND5.00.90ug/Kg07/31/24 12:0408/12/24 00:231ND5.00.51ug/Kg07/31/24 12:0408/12/24 00:231ND5.00.54ug/Kg07/31/24 12:0408/12/24 00:231ND5.00.54ug/Kg07/31/24 12:0408/12/24 00:231ND5.00.54ug/Kg<t< td=""></t<></td>	Result Qualifier RL MDL Unit D ND 5.0 0.90 ug/Kg Implementation Implementation	Result Qualifier RL MDL Unit D Prepared ND 5.0 0.90 ug/Kg 07/31/24 12:04 ND 25 4.1 ug/Kg 07/31/24 12:04 ND 5.0 0.93 ug/Kg 07/31/24 12:04 ND 5.0 0.93 ug/Kg 07/31/24 12:04 ND 5.0 0.55 ug/Kg 07/31/24 12:04 ND 5.0 0.63 ug/Kg 07/31/24 12:04 ND 5.0 0.67 ug/Kg 07/31/24 12:04 ND 5.0 0.83 ug/Kg 07/31/24 12:04 ND 5.0 0.90 ug/Kg 07/31/24 12:04 ND 5.0 0.90 ug/Kg 07/31/24 12:04 ND 5.0 0.51 ug/	Result NDQualifierRLMDLUnitDPreparedAnalyzedND5.00.90ug/Kg07/31/24 12:0408/12/24 00:23ND254.1ug/Kg07/31/24 12:0408/12/24 00:23ND5.00.93ug/Kg07/31/24 12:0408/12/24 00:23ND5.00.55ug/Kg07/31/24 12:0408/12/24 00:23ND5.00.55ug/Kg07/31/24 12:0408/12/24 00:23ND5.00.55ug/Kg07/31/24 12:0408/12/24 00:23ND5.00.55ug/Kg07/31/24 12:0408/12/24 00:23ND5.00.63ug/Kg07/31/24 12:0408/12/24 00:23ND5.00.67ug/Kg07/31/24 12:0408/12/24 00:23ND5.00.67ug/Kg07/31/24 12:0408/12/24 00:23ND5.00.67ug/Kg07/31/24 12:0408/12/24 00:23ND5.00.90ug/Kg07/31/24 12:0408/12/24 00:23ND5.00.90ug/Kg07/31/24 12:0408/12/24 00:23ND5.00.51ug/Kg07/31/24 12:0408/12/24 00:23ND5.00.51ug/Kg07/31/24 12:0408/12/24 00:23ND5.00.51ug/Kg07/31/24 12:0408/12/24 00:23ND5.00.54ug/Kg07/31/24 12:0408/12/24 00:23ND5.00.54ug/Kg07/31/24 12:0408/12/24 00:23ND5.	Result NDQualifierRLMDLUnitDPreparedAnalyzedDil FacND5.00.90ug/Kg07/31/24 12:0408/12/24 00:231ND254.1ug/Kg07/31/24 12:0408/12/24 00:231ND5.00.93ug/Kg07/31/24 12:0408/12/24 00:231ND5.00.55ug/Kg07/31/24 12:0408/12/24 00:231ND5.00.55ug/Kg07/31/24 12:0408/12/24 00:231ND5.01.1ug/Kg07/31/24 12:0408/12/24 00:231ND5.00.65ug/Kg07/31/24 12:0408/12/24 00:231ND5.00.63ug/Kg07/31/24 12:0408/12/24 00:231ND5.00.67ug/Kg07/31/24 12:0408/12/24 00:231ND5.00.67ug/Kg07/31/24 12:0408/12/24 00:231ND5.00.90ug/Kg07/31/24 12:0408/12/24 00:231ND5.00.90ug/Kg07/31/24 12:0408/12/24 00:231ND5.00.90ug/Kg07/31/24 12:0408/12/24 00:231ND5.00.51ug/Kg07/31/24 12:0408/12/24 00:231ND5.00.54ug/Kg07/31/24 12:0408/12/24 00:231ND5.00.54ug/Kg07/31/24 12:0408/12/24 00:231ND5.00.54ug/Kg <t< td=""></t<>

38 - 148

37 - 151

Lab Sample ID: L	CS 570-465949/2-A
Matrix: Solid	

Analysis Batch: 469666

Tetrachloro-m-xylene (Surr)

DCB Decachlorobiphenyl (Surr)

Prep Batch: 465949 Spike LCS LCS %Rec Analyte Added **Result Qualifier** Unit D %Rec Limits 4,4'-DDD 25.0 54 - 154 24.86 ug/Kg 99 4,4'-DDE 25.0 24.67 99 51 - 149 ug/Kg 4,4'-DDT 25.0 24.29 97 ug/Kg 39 - 152 Aldrin 25.0 23.35 ug/Kg 93 52 - 138 alpha-BHC 25.0 24.44 98 ug/Kg 51 - 140 alpha-Chlordane 25.0 24.57 98 53 - 141 ug/Kg beta-BHC 25.0 22.85 ug/Kg 91 53 - 141 delta-BHC 25.0 21.30 85 20 - 132 ug/Kg Dieldrin 25.0 24.06 96 ug/Kg 52 - 144 Endosulfan I 25.0 23.59 ug/Kg 94 49 - 139 51 - 150 Endosulfan II 25.0 24.19 ug/Kg 97 Endosulfan sulfate 25.0 23.18 ug/Kg 93 45 - 139 Endrin 25.0 23.85 95 53 - 151 ug/Kg Endrin aldehyde 25.0 22.02 ug/Kg 88 31 - 146 Endrin ketone 25.0 23.78 ug/Kg 95 51 - 150 97 gamma-Chlordane 25.0 24.23 46 - 156 ug/Kg gamma-BHC 25.0 24.26 97 53 - 141 ug/Kg 25.0 Heptachlor 24.05 ug/Kg 96 52 - 144 Heptachlor epoxide 25.0 22.80 ug/Kg 91 54 - 141 47 - 148 Methoxychlor 25.0 23.08 92 ug/Kg

Eurofins Calscience

07/31/24 12:04 08/12/24 00:23

07/31/24 12:04 08/12/24 00:23

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 570-193109-1

Prep Batch: 465949

1

1

Method: 8081A - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: LCS 570-465949/2-A
Matrix: Solid
Analysis Batch: 469666

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene (Surr)	79		38 - 148
DCB Decachlorobiphenyl (Surr)	75		37 - 151

Lab Sample ID: LCSD 570-465949/3-A Matrix: Solid Analysis Batch: 469666

Analysis Batch: 469666							Prep Ba	-	
Anaiyoio Datch. 403000	Spike	LCSD	LCSD				%Rec	1.611. 40	RPD
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
4,4'-DDD	25.0	24.07		ug/Kg		96	54 - 154	3	30
4,4'-DDE	25.0	23.82		ug/Kg		95	51 - 149	4	28
4,4'-DDT	25.0	23.56		ug/Kg		94	39 - 152	3	31
Aldrin	25.0	22.41		ug/Kg		90	52 - 138	4	30
alpha-BHC	25.0	23.35		ug/Kg		93	51 - 140	5	29
alpha-Chlordane	25.0	23.60		ug/Kg		94	53 - 141	4	28
beta-BHC	25.0	21.84		ug/Kg		87	53 - 141	5	29
delta-BHC	25.0	20.39		ug/Kg		82	20 - 132	4	40
Dieldrin	25.0	23.17		ug/Kg		93	52 - 144	4	28
Endosulfan I	25.0	22.65		ug/Kg		91	49 - 139	4	28
Endosulfan II	25.0	23.40		ug/Kg		94	51 - 150	3	29
Endosulfan sulfate	25.0	22.52		ug/Kg		90	45 - 139	3	30
Endrin	25.0	22.97		ug/Kg		92	53 - 151	4	29
Endrin aldehyde	25.0	21.33		ug/Kg		85	31 - 146	3	40
Endrin ketone	25.0	23.17		ug/Kg		93	51 - 150	3	30
gamma-Chlordane	25.0	23.20		ug/Kg		93	46 - 156	4	39
gamma-BHC	25.0	23.05		ug/Kg		92	53 - 141	5	29
Heptachlor	25.0	23.00		ug/Kg		92	52 - 144	4	29
Heptachlor epoxide	25.0	21.74		ug/Kg		87	54 - 141	5	29
Methoxychlor	25.0	22.61		ug/Kg		90	47 - 148	2	29

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene (Surr)	70		38 - 148
DCB Decachlorobiphenyl (Surr)	66		37 - 151

Lab Sample ID: MB 570-466360/1-A Matrix: Solid Analysis Batch: 467732

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND		5.0	0.72	ug/Kg		08/01/24 12:32	08/06/24 16:34	1
4,4'-DDE	ND		5.0	0.69	ug/Kg		08/01/24 12:32	08/06/24 16:34	1
4,4'-DDT	ND		5.0	1.2	ug/Kg		08/01/24 12:32	08/06/24 16:34	1
Aldrin	ND		5.0	1.6	ug/Kg		08/01/24 12:32	08/06/24 16:34	1
alpha-BHC	ND		5.0	0.59	ug/Kg		08/01/24 12:32	08/06/24 16:34	1
alpha-Chlordane	ND		5.0	0.56	ug/Kg		08/01/24 12:32	08/06/24 16:34	1
beta-BHC	ND		5.0	0.90	ug/Kg		08/01/24 12:32	08/06/24 16:34	1
Chlordane	ND		25	4.1	ug/Kg		08/01/24 12:32	08/06/24 16:34	1
delta-BHC	ND		5.0	0.93	ug/Kg		08/01/24 12:32	08/06/24 16:34	1
Dieldrin	ND		5.0	0.55	ug/Kg		08/01/24 12:32	08/06/24 16:34	1

Eurofins Calscience

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 466360

RL

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

25

Limits

38 - 148

37 - 151

MDL Unit

1.1 ug/Kg

0.55 ug/Kg

0.63 ug/Kg

0.67 ug/Kg

3.3 ug/Kg

0.90 ug/Kg

3.4 ug/Kg

0.51 ug/Kg

0.60 ug/Kg

0.54 ug/Kg

1.2 ug/Kg

15 ug/Kg

Method: 8081A - Organochlorine Pesticides (GC) (Continued)

MB MB

Qualifier

Result

ND

101

110

%Recovery

MB MB

Qualifier

Lab Sample ID: MB 570-466360/1-A Matrix: Solid Analysis Batch: 467732

Analyte

Endrin

Endosulfan I

Endosulfan II

Endosulfan sulfate

Endrin aldehyde

gamma-Chlordane

Heptachlor epoxide

Tetrachloro-m-xylene (Surr)

DCB Decachlorobiphenyl (Surr)

Endrin ketone

gamma-BHC

Methoxychlor

Toxaphene

Surrogate

Heptachlor

Client Sample ID: Method Blank	
Prep Type: Total/NA	
Prep Batch: 466360	

Prepared

Prepared

08/01/24 12:32 08/06/24 16:34

08/01/24 12:32 08/06/24 16:34

Client Sample ID: Lab Control Sample

D

Dil Fac

1

1

Analyzed

Prep Type: Total/NA

Job ID: 570-193109-1

Lab Sample ID: LCS 570-466360/2-A Matrix: Solid Analysis Batch: 467732

Analysis Batch: 467732	Spike	LCS LCS				Prep Batch: 466360 %Rec
Analyte	Added	Result Qualifier	· Unit	D %	%Rec	Limits
4,4'-DDD	25.0	25.57	ug/Kg	/	102	54 - 154
4.4'-DDE	25.0	24.09	ug/Kg		96	51 - 149
4,4'-DDT	25.0	26.15	ug/Kg		105	39 - 152
Aldrin	25.0	21.79	ug/Kg		87	52 - 138
alpha-BHC	25.0	23.18	ug/Kg		93	51 - 140
alpha-Chlordane	25.0	24.06	ug/Kg		96	53 - 141
beta-BHC	25.0	20.55	ug/Kg		82	53 - 141
delta-BHC	25.0	20.54	ug/Kg		82	20 - 132
Dieldrin	25.0	23.67	ug/Kg		95	52 - 144
Endosulfan I	25.0	23.03	ug/Kg		92	49 - 139
Endosulfan II	25.0	23.89	ug/Kg		96	51 - 150
Endosulfan sulfate	25.0	23.22	ug/Kg		93	45 - 139
Endrin	25.0	24.18	ug/Kg		97	53 - 151
Endrin aldehyde	25.0	22.34	ug/Kg		89	31 - 146
Endrin ketone	25.0	23.19	ug/Kg		93	51 - 150
gamma-Chlordane	25.0	23.29	ug/Kg		93	46 - 156
gamma-BHC	25.0	23.31	ug/Kg		93	53 - 141
Heptachlor	25.0	23.77	ug/Kg		95	52 - 144
Heptachlor epoxide	25.0	23.74	ug/Kg		95	54 - 141
Methoxychlor	25.0	25.09	ug/Kg		100	47 - 148
LCS	LCS					

	203	LU3	
Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene (Surr)	125		38 - 148
DCB Decachlorobiphenyl (Surr)	127		37 - 151

5

8 9

Method: 8081A - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: LCSD 570-466360/3-A Matrix: Solid			C	Client Sa	mple	ID: Lat	Control Prep Ty	pe: Tot	al/NA
Analysis Batch: 467732							Prep Ba	atch: 40	
	Spike	-	LCSD				%Rec		RPD
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
4,4'-DDD	25.0	24.62		ug/Kg		98	54 - 154	4	30
4,4'-DDE	25.0	23.37		ug/Kg		93	51 - 149	3	28
4,4'-DDT	25.0	25.12		ug/Kg		100	39 - 152	4	31
Aldrin	25.0	20.68		ug/Kg		83	52 - 138	5	30
alpha-BHC	25.0	21.58		ug/Kg		86	51 - 140	7	29
alpha-Chlordane	25.0	23.19		ug/Kg		93	53 - 141	4	28
beta-BHC	25.0	19.83		ug/Kg		79	53 - 141	4	29
delta-BHC	25.0	19.47		ug/Kg		78	20 - 132	5	40
Dieldrin	25.0	22.83		ug/Kg		91	52 - 144	4	28
Endosulfan I	25.0	22.21		ug/Kg		89	49 - 139	4	28
Endosulfan II	25.0	22.72		ug/Kg		91	51 - 150	5	29
Endosulfan sulfate	25.0	22.13		ug/Kg		89	45 - 139	5	30
Endrin	25.0	23.18		ug/Kg		93	53 - 151	4	29
Endrin aldehyde	25.0	21.29		ug/Kg		85	31 - 146	5	40
Endrin ketone	25.0	22.02		ug/Kg		88	51 - 150	5	30
gamma-Chlordane	25.0	22.40		ug/Kg		90	46 - 156	4	39
gamma-BHC	25.0	21.77		ug/Kg		87	53 - 141	7	29
Heptachlor	25.0	22.25		ug/Kg		89	52 - 144	7	29
Heptachlor epoxide	25.0	22.79		ug/Kg		91	54 - 141	4	29
Methoxychlor	25.0	24.00		ug/Kg		96	47 - 148	4	29

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene (Surr)	122		38 - 148
DCB Decachlorobiphenyl (Surr)	124		37 - 151

Method: 200.8 - Metals (ICP/MS)

Lab Sample ID: MB 570-46580 Matrix: Water Analysis Batch: 466520	03/1-A MB	МВ							CI		ype: T	ID: Metho fotal Reco ep Batch:	ovei	rable
Analyte		Qualifier		RL		MDL	Unit		D	Prepare	d	Analyzed	D)il Fac
Arsenic	ND			1.00).159 i				/31/24 07		/01/24 16:51		1
Lead	ND			1.00		D.118 I	•		07/	/31/24 07	':16 08	/01/24 16:51		1
Lab Sample ID: LCS 570-4658 Matrix: Water Analysis Batch: 466520	303/2-A							Cli			ype: 1	b Control lotal Reco ep Batch:	ovei	rable
			Spike		LCS	LCS					%F	Rec		
Analyte			Added		Result	Quali	ifier	Unit	D	%Rec	: Lin	nits		
Arsenic			80.0		83.22			ug/L		104	85 -	- 115		
Lead			80.0		83.90			ug/L		105	85.	. 115		
Lab Sample ID: LCSD 570-46	5803/3-A						c	lient S				ntrol Sam		
Matrix: Water										Prep T		otal Reco		
Analysis Batch: 466520												ep Batch:	46	
			Spike		LCSD	LCSE)				%F	Rec		RPD
Analyte			Added		Result	Quali	ifier	Unit		%Rec	Lin	nits RP	_ םי	Limit
Arsenic			80.0		81.81			ug/L		102	85 -	- 115	2	20

Client: Padre Associates, Inc. Project/Site: Hope Elementary School, Porterville, CA

Arsenic

Job ID: 570-193109-1

8

Method: 200.8 - Metals (ICP/MS) (Continued) Lab Sample ID: LCSD 570-465803/3-A **Client Sample ID: Lab Control Sample Dup** Matrix: Water **Prep Type: Total Recoverable** Analysis Batch: 466520 **Prep Batch: 465803** LCSD LCSD %Rec RPD Spike Analyte Added **Result Qualifier** Unit D %Rec Limits RPD Limit Lead 80.0 84 45 ug/L 106 85 - 115 20 1 Method: 6020 - Metals (ICP/MS) Lab Sample ID: MB 570-466835/1-A ^20 **Client Sample ID: Method Blank** Matrix: Solid Prep Type: Total/NA Analysis Batch: 467617 **Prep Batch: 466835** MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Arsenic ND 0.500 0.0914 mg/Kg 08/04/24 12:00 08/05/24 13:04 20 Lead ND 0.500 0.0654 mg/Kg 08/04/24 12:00 08/05/24 13:04 20 Lab Sample ID: LCS 570-466835/2-A ^20 **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA Analysis Batch: 467617 **Prep Batch: 466835** LCS LCS Spike %Rec Added Analyte **Result Qualifier** Unit D %Rec Limits Arsenic 50.0 80 - 120 46.03 mg/Kg 92 50.0 93 Lead 46.67 mg/Kg 80 - 120 Lab Sample ID: LCSD 570-466835/3-A ^20 Client Sample ID: Lab Control Sample Dup Matrix: Solid **Prep Type: Total/NA** Analysis Batch: 467617 **Prep Batch: 466835** Spike LCSD LCSD %Rec RPD Added Limits RPD Limit **Result Qualifier** Unit D %Rec Analyte 50.0 43.60 mg/Kg 87 80 - 120 20 Arsenic 5 Lead 50.0 44.82 mg/Kg 90 80 - 120 20 4 Lab Sample ID: MB 570-467482/1-A ^20 **Client Sample ID: Method Blank** Matrix: Solid Prep Type: Total/NA Analysis Batch: 468126 **Prep Batch: 467482** MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Arsenic ND 0.505 0.0923 mg/Kg 08/05/24 10:42 08/06/24 17:05 20 Lead ND 0.505 0.0661 mg/Kg 08/05/24 10:42 08/06/24 17:05 20 Lab Sample ID: LCS 570-467482/2-A ^20 **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA Analysis Batch: 468126 **Prep Batch: 467482** Spike LCS LCS %Rec Added Analyte Result Qualifier Unit D %Rec Limits Arsenic 50.5 46.76 93 80 - 120 mg/Kg 98 Lead 50.5 49.67 mg/Kg 80 - 120 Lab Sample ID: LCSD 570-467482/3-A ^20 Client Sample ID: Lab Control Sample Dup Matrix: Solid Prep Type: Total/NA Prep Batch: 467482 Analysis Batch: 468126 Spike LCSD LCSD %Rec RPD Analvte Added **Result Qualifier** Unit п %Rec Limits RPD Limit 49.8 105 52.16 mg/Kg 80 - 120 20

Eurofins Calscience

11

QC Sample Results

Client: Padre Associates, Inc. Project/Site: Hope Elementary School, Porterville, CA

Job ID: 570-193109-1

Method: 6020 - Metals (ICP/MS) (Continued)

Lab Sample ID: LCSD 570-4674 Matrix: Solid Analysis Batch: 468126	482/3-A ^20)				C	lient Sa	mpl	e ID: Lab	Control Sar Prep Type: Prep Batcl	Total/NA
			Spike	LCSD	LCS	5D				%Rec	RPD
Analyte			Added	Result	Qua	lifier	Unit	0) %Rec	Limits F	PD Limit
Lead			49.8	54.96			mg/Kg		110	80 - 120	10 20
Lab Sample ID: MB 570-467599	9/1-A ^5							CI	ient Samp	ole ID: Meth	od Blank
Matrix: Solid										Prep Type:	Total/NA
Analysis Batch: 468126										Prep Batch	
-	MB	MB									
Analyte	Result	Qualifier	RL	r.	MDL	Unit		D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.521	0	.210	mg/K	g .	08	/05/24 13:55	08/06/24 17:2	29 5
Arsenic	ND		0.521	0.0)821	mg/K	g	08	/05/24 13:55	08/06/24 17:2	29 5
Barium	ND		0.521	0	.288	mg/K	g	08	/05/24 13:55	08/06/24 17:2	29 5
Beryllium	ND		0.521	0	.415	mg/K	g	08	/05/24 13:55	08/06/24 17:2	29 5
Cadmium	ND		0.521	0.0	0750	mg/K	g	08	/05/24 13:55	08/06/24 17:2	29 5
Chromium	ND		0.521	0	.397	mg/K	g	08	/05/24 13:55	08/06/24 17:2	29 5
Cobalt	ND		0.521	0.0)533	mg/K	g	08	/05/24 13:55	08/06/24 17:2	29 5
Copper	ND		0.521	0.0	966	mg/K	g	08	/05/24 13:55	08/06/24 17:2	29 5
Lead	ND		0.521	0	.288	mg/K	g	08	/05/24 13:55	08/06/24 17:2	29 5
Molybdenum	ND		0.521	0	.256	mg/K	g	08	/05/24 13:55	08/06/24 17:2	29 5
Nickel	ND		0.521	0	.354	mg/K	g	08	/05/24 13:55	08/06/24 17:2	29 5
Selenium	ND		0.521	0	.396	mg/K	g	08	/05/24 13:55	08/06/24 17:2	9 5
Silver	ND		1.04	0	.534	mg/K	g	08	/05/24 13:55	08/06/24 17:2	29 5
Thallium	ND		0.521	0	.166	mg/K	g	08	/05/24 13:55	08/06/24 17:2	9 5
Vanadium	ND		0.521	0	.195	mg/K	g	08	/05/24 13:55	08/06/24 17:2	9 5
Zinc	ND		5.21		3.14	mg/K	g	08	/05/24 13:55	08/06/24 17:2	29 5

Lab Sample ID: LCS 570-467599/2-A ^5 Matrix: Solid Analysis Batch: 468126

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 467599

······ ,	Spike	LCS	LCS			%Rec
Analyte	Added	Result	Qualifier	Unit	D %Rec	Limits
Antimony	208	219.0		mg/Kg	105	80 - 120
Arsenic	208	202.0		mg/Kg	97	80 - 120
Barium	208	217.6		mg/Kg	104	80 - 120
Beryllium	208	224.3		mg/Kg	108	80 - 120
Cadmium	208	209.3		mg/Kg	100	80 - 120
Chromium	208	217.6		mg/Kg	104	80 - 120
Cobalt	208	220.9		mg/Kg	106	80 - 120
Copper	208	210.8		mg/Kg	101	80 - 120
Lead	208	226.4		mg/Kg	109	80 - 120
Molybdenum	208	214.6		mg/Kg	103	80 - 120
Nickel	208	214.1		mg/Kg	103	80 - 120
Selenium	208	195.7		mg/Kg	94	80 - 120
Silver	104	111.9		mg/Kg	107	80 - 120
Thallium	208	214.0		mg/Kg	103	80 - 120
Vanadium	208	222.2		mg/Kg	107	80 - 120
Zinc	208	196.3		mg/Kg	94	80 - 120

Eurofins Calscience

8 9

QC Sample Results

Client: Padre Associates, Inc. Project/Site: Hope Elementary School, Porterville, CA

Method: 6020 - Metals (ICP/MS) (Continued)

Lab Sample ID: LCSD 570-467599/3-A ^5			C	Client Sa	mple	ID: Lat	Control	Sample	e Dup
Matrix: Solid Analysis Batch: 468126							Prep Ty Prep Ba	-	
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Antimony	208	221.8		mg/Kg		106	80 - 120	1	20
Arsenic	208	202.4		mg/Kg		97	80 - 120	0	20
Barium	208	219.1		mg/Kg		105	80 - 120	1	20
Beryllium	208	225.5		mg/Kg		108	80 - 120	1	20
Cadmium	208	210.2		mg/Kg		101	80 - 120	0	20
Chromium	208	214.7		mg/Kg		103	80 - 120	1	20
Cobalt	208	222.1		mg/Kg		107	80 - 120	1	20
Copper	208	213.8		mg/Kg		103	80 - 120	1	20
Lead	208	223.7		mg/Kg		107	80 - 120	1	20
Molybdenum	208	215.9		mg/Kg		104	80 - 120	1	20
Nickel	208	215.5		mg/Kg		103	80 - 120	1	20
Selenium	208	195.4		mg/Kg		94	80 - 120	0	20
Silver	104	113.2		mg/Kg		109	80 - 120	1	20
Thallium	208	212.7		mg/Kg		102	80 - 120	1	20
Vanadium	208	215.2		mg/Kg		103	80 - 120	3	20
Zinc	208	195.8		mg/Kg		94	80 - 120	0	20
_ Lab Sample ID: 570-193109-5 MS						Client	Sample ID	• IM-1	(0-6")

Lab Sample ID: 570-193109-5 MS Matrix: Solid Analysis Batch: 468126

Analysis Batch: 468126	Sample	Sample	Spike	MS	MS				Prep Batch: 467599 %Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Antimony	1.13		189	181.2		mg/Kg		95	75 - 125
Arsenic	1.10	F2 F1	189	181.1		mg/Kg		95	75 - 125
Barium	198	F1	189	415.1		mg/Kg		115	75 - 125
Beryllium	ND	F2 F1	189	190.5		mg/Kg		101	75 - 125
Cadmium	0.0813	J F2 F1	189	188.0		mg/Kg		100	75 - 125
Chromium	27.5	F2 F1	189	208.1		mg/Kg		96	75 - 125
Cobalt	12.5	F2 F1	189	191.8		mg/Kg		95	75 - 125
Copper	22.8	F2 F1	189	201.2		mg/Kg		95	75 - 125
Lead	1.49	F2 F1	189	198.5		mg/Kg		104	75 - 125
Molybdenum	5.20		189	197.8		mg/Kg		102	75 - 125
Nickel	15.8	F2 F1	189	193.2		mg/Kg		94	75 - 125
Selenium	1.00	F2 F1	189	172.7		mg/Kg		91	75 - 125
Silver	ND	F2 F1	94.3	99.81		mg/Kg		106	75 - 125
Thallium	0.848	F2 F1	189	178.9		mg/Kg		94	75 - 125
Vanadium	75.5	F2 F1	189	266.3		mg/Kg		101	75 - 125
Zinc	48.1	F2 F1	189	222.7		mg/Kg		93	75 - 125

Lab Sample ID: 570-193109-5 MSD Matrix: Solid Analysis Batch: 468126

Analysis Batch: 468126									Prep Ba		67599
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Antimony	1.13		189	169.5		mg/Kg		89	75 - 125	7	20
Arsenic	1.10	F2 F1	189	264.6	F1 F2	mg/Kg		140	75 - 125	37	20
Barium	198	F1	189	471.1	F1	mg/Kg		145	75 - 125	13	20
Beryllium	ND	F2 F1	189	284.8	F1 F2	mg/Kg		151	75 - 125	40	20
Cadmium	0.0813	J F2 F1	189	277.1	F1 F2	mg/Kg		147	75 - 125	38	20

Eurofins Calscience

Client Sample ID: IM-1 (0-6")

Prep Type: Total/NA

Client Sample ID: IM-1 (0-6") Prep Type: Total/NA

Method: 6020 - Metals (ICP/MS) (Continued)

Lab Sample ID: 570-193109	-5 MSD							Client \$	Sample ID		
Matrix: Solid									Prep Ty	-	
Analysis Batch: 468126									Prep Ba	itch: 46	37599
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chromium	27.5	F2 F1	189	292.7	F1 F2	mg/Kg		141	75 - 125	34	20
Cobalt	12.5	F2 F1	189	278.8	F1 F2	mg/Kg		141	75 - 125	37	20
Copper	22.8	F2 F1	189	285.4	F1 F2	mg/Kg		139	75 - 125	35	20
Lead	1.49	F2 F1	189	292.2	F1 F2	mg/Kg		154	75 - 125	38	20
Molybdenum	5.20		189	196.1		mg/Kg		101	75 - 125	1	20
Nickel	15.8	F2 F1	189	287.1	F1 F2	mg/Kg		144	75 - 125	39	20
Selenium	1.00	F2 F1	189	254.3	F1 F2	mg/Kg		134	75 - 125	38	20
Silver	ND	F2 F1	94.3	142.8	F1 F2	mg/Kg		151	75 - 125	35	20
Thallium	0.848	F2 F1	189	258.3	F1 F2	mg/Kg		136	75 - 125	36	20
Vanadium	75.5	F2 F1	189	338.1	F1 F2	mg/Kg		139	75 - 125	24	20
Zinc	48.1	F2 F1	189	293.9	F1 F2	mg/Kg		130	75 - 125	28	20
Method: 7471A - Mercu	ry (CVAA)									
Lab Sample ID: MB 570-46	5395/1-A						Clie	ent Sam	nple ID: M	ethod	Blank
Matrix: Solid									Prep Ty		
Analysis Batch: 465825									Pren Ba	atch: 46	35395

Analysis Batch: 465825									Prep Batch:	465395
	MB	MB								
Analyte	Result	Qualifier	RL	М	DL Unit		C	Prepared	Analyzed	Dil Fac
Mercury	ND		0.0887	0.02	234 mg/K	(g	0	7/30/24 10:16	07/31/24 10:13	1
Lab Sample ID: LCS 570-465395/2 Matrix: Solid	- A					Clier	nt S		Lab Control S Prep Type: To	
Analysis Batch: 465825									Prep Batch:	465395
-			Spike	LCS	LCS				%Rec	
Analyte			Added	Result	Qualifier	Unit		D %Rec	Limits	
Mercury			0.408	0.3692		mg/Kg		90	80 - 120	
Lab Sample ID: LCSD 570-465395 Matrix: Solid	/ 3-A				C	Client Sa	mp		Control Samp Prep Type: To	

Matrix. Soliu							гіер іу	pe. 101	ai/INA
Analysis Batch: 465825							Prep Ba	atch: 40	65395
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Mercury	0.400	0.3687		mg/Kg	_	92	80 - 120	0	10

Eurofins Calscience

•
2
a
ž
F
_
ភ
0,
2
<u>.</u>
Ŧ
g
5
ğ
Ο
S
٥
Ä
-
()
\varkappa
O

Client: Padre Associates, Inc. Project/Site: Hope Elementary School, Porterville, CA

GC/MS Semi VOA

Prep Batch: 466094

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-193109-5	IM-1 (0-6")	Total/NA	Solid	3546	
570-193109-6	IM-2 (0-6")	Total/NA	Solid	3546	
570-193109-7	IM-3 (0-6")	Total/NA	Solid	3546	
570-193109-8	IM-4 (0-6")	Total/NA	Solid	3546	
MB 570-466094/1-A	Method Blank	Total/NA	Solid	3546	
LCS 570-466094/2-A	Lab Control Sample	Total/NA	Solid	3546	
LCSD 570-466094/3-A	Lab Control Sample Dup	Total/NA	Solid	3546	

Allalysis Batcili. 400/2/	L.				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 570-466094/1-A	Method Blank	Total/NA	Solid	8270C	466094
LCS 570-466094/2-A	Lab Control Sample	Total/NA	Solid	8270C	466094
LCSD 570-466094/3-A	Lab Control Sample Dup	Total/NA	Solid	8270C	466094
J					

ດ

Analysis Batch: 467213

IM-1 (0-6") Total/NA Solid 8 IM-2 (0-6") Total/NA Solid 8 IM-3 (0-6") Total/NA Solid 8 IM-4 (0-6") Total/NA Solid 8	Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
IM-2 (0-6") Total/NA Solid 8270C IM-3 (0-6") Total/NA Solid 8270C IM-4 (0-6") Total/NA Solid 8270C	570-193109-5	IM-1 (0-6")	Total/NA	Solid	8270C	466094	
IM-3 (0-6") Total/NA Solid 8270C IM-4 (0-6") Total/NA Solid 8270C	570-193109-6	IM-2 (0-6")	Total/NA	Solid	8270C	466094	
IM-4 (0-6") Total/NA Solid 8270C	570-193109-7	IM-3 (0-6")	Total/NA	Solid	8270C	466094	
	570-193109-8	IM-4 (0-6")	Total/NA	Solid	8270C	466094	

1

GC VOA

Analysis Batch: 467420

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-193109-5	IM-1 (0-6")	Total/NA	Solid	8015B	467477
570-193109-6	IM-2 (0-6")	Total/NA	Solid	8015B	467477
570-193109-7	IM-3 (0-6")	Total/NA	Solid	8015B	467477
570-193109-8	IM-4 (0-6")	Total/NA	Solid	8015B	467477
570-193109-9	BB-1 (1-1.5")	Total/NA	Solid	8015B	467477
570-193109-10	BB-2 (1-1.5")	Total/NA	Solid	8015B	467477
MB 570-467477/3-A	Method Blank	Total/NA	Solid	8015B	467477
LCS 570-467477/1-A	Lab Control Sample	Total/NA	Solid	8015B	467477
LCSD 570-467477/2-A	Lab Control Sample Dup	Total/NA	Solid	8015B	467477
570-193109-9 MS	BB-1 (1-1.5")	Total/NA	Solid	8015B	467477
570-193109-9 MSD	BB-1 (1-1.5")	Total/NA	Solid	8015B	467477
Prep Batch: 467477					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-193109-5	IM-1 (0-6")	Total/NA	Solid	5030C	
570-193109-6	IM-2 (0-6")	Total/NA	Solid	5030C	
570-193109-7	IM-3 (0-6")	Total/NA	Solid	5030C	
570-193109-8	IM-4 (0-6")	Total/NA	Solid	5030C	
570-193109-9	BB-1 (1-1.5")	Total/NA	Solid	5030C	

Prep Batch: 467477					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-193109-5	IM-1 (0-6")	Total/NA	Solid	5030C	
570-193109-6	IM-2 (0-6")	Total/NA	Solid	5030C	
570-193109-7	IM-3 (0-6")	Total/NA	Solid	5030C	
570-193109-8	IM-4 (0-6")	Total/NA	Solid	5030C	
570-193109-9	BB-1 (1-1.5")	Total/NA	Solid	5030C	
570-193109-10	BB-2 (1-1.5")	Total/NA	Solid	5030C	
MB 570-467477/3-A	Method Blank	Total/NA	Solid	5030C	
LCS 570-467477/1-A	Lab Control Sample	Total/NA	Solid	5030C	
LCSD 570-467477/2-A	Lab Control Sample Dup	Total/NA	Solid	5030C	
570-193109-9 MS	BB-1 (1-1.5")	Total/NA	Solid	5030C	
570-193109-9 MSD	BB-1 (1-1.5")	Total/NA	Solid	5030C	

8/13/2024

Eurofins Calscience

Pag&30\0f 66

QC Association Summary		
QC Associa	Client: Padre Associates, Inc.	Project/Site: Hope Elementary School, Porterville, CA

IJ

0 N **0**

ດ

GC Semi VOA

Prep Batch: 465949

Prep Batch													Prep Batch						Prep Batch					
Method 3546	0400	3546	3546	3546	3546	3546	3546	3546	3546	3546	3546		Method	3546	3546	3546	3546		Method	3550C	3550C	3550C	3550C	
Matrix Solid		Solid	Solid	Solid		Matrix	Solid	Solid	Solid	Solid		Matrix	Solid	Solid	Solid	Solid								
Prep Type	I OLANINA	Total/NA	Total/NA	Total/NA		Prep Type	Total/NA	Total/NA	Total/NA	Total/NA		Prep Type	Total/NA	Total/NA	Total/NA	Total/NA								
Client Sample ID		AG-2 (SURF)	AG-3 (SURF)	AG-4 (SURF)	IM-1 (0-6")	IM-2 (0-6")	IM-3 (0-6")	IM-4 (0-6")	Method Blank	Lab Control Sample	Lab Control Sample Dup		Client Sample ID	AG-3 (SURF) DUP	Method Blank	Lab Control Sample	Lab Control Sample Dup		Client Sample ID	IM-1 (0-6")	IM-2 (0-6")	IM-3 (0-6")	IM-4 (0-6")	
Lab Sample ID	1-901-931-04-1	570-193109-2	570-193109-3	570-193109-4	570-193109-5	570-193109-6	570-193109-7	570-193109-8	MB 570-465949/1-A	LCS 570-465949/2-A	LCSD 570-465949/3-A	Prep Batch: 466360	Lab Sample ID	570-193109-15	MB 570-466360/1-A	LCS 570-466360/2-A	LCSD 570-466360/3-A	Prep Batch: 466997	Lab Sample ID	570-193109-5	570-193109-6	570-193109-7	570-193109-8	

LCSD 570-466997/3-A MB 570-466997/1-A LCS 570-466997/2-A

3550C 3550C 3550C

Solid Solid Solid

Total/NA Total/NA

Total/NA

Lab Control Sample Dup

Method Blank Lab Control Sample

Analysis Batch: 467146	9				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 570-466997/1-A	Method Blank	Total/NA	Solid	8015B	466997
LCS 570-466997/2-A	Lab Control Sample	Total/NA	Solid	8015B	466997
LCSD 570-466997/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B	466997
Prep Batch: 467191					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-193109-9	BB-1 (1-1.5")	Total/NA	Solid	3550C	
570-193109-10	BB-2 (1-1.5")	Total/NA	Solid	3550C	
MB 570-467191/1-A	Method Blank	Total/NA	Solid	3550C	
LCS 570-467191/2-A	Lab Control Sample	Total/NA	Solid	3550C	
LCSD 570-467191/3-A	Lab Control Sample Dup	Total/NA	Solid	3550C	

5 Datch -2

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-193109-9	BB-1 (1-1.5")	Total/NA	Solid	8015B	467191
570-193109-10	BB-2 (1-1.5")	Total/NA	Solid	8015B	467191
MB 570-467191/1-A	Method Blank	Total/NA	Solid	8015B	467191
LCS 570-467191/2-A	Lab Control Sample	Total/NA	Solid	8015B	467191
LCSD 570-467191/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B	467191

8/13/2024

Eurofins Calscience

Pag@31 10f 66

QC Association Summary

Client: Padre Associates, Inc. Project/Site: Hope Elementary School, Porterville, CA

GC Semi VOA

	Prep Batch	466360	466360	466360		Prep Batch	466997	466997	466997	466997		Prep Batch	466360		Prep Batch	465949
	Method	8081A	8081A	8081A		Method	8015B	8015B	8015B	8015B		Method	8081A		Method	8081A
	Matrix	Solid	Solid	Solid		Matrix	Solid	Solid	Solid	Solid		Matrix	Solid		Matrix	Solid
	Prep Type	Total/NA	Total/NA	Total/NA		Prep Type	Total/NA	Total/NA	Total/NA	Total/NA		Prep Type	Total/NA		Prep Type	Total/NA
32	Client Sample ID	Method Blank	Lab Control Sample	Lab Control Sample Dup	36	Client Sample ID	IM-1 (0-6")	IM-2 (0-6")	IM-3 (0-6")	IM-4 (0-6")	93	Client Sample ID	AG-3 (SURF) DUP	99	Client Sample ID	AG-1 (SURF)
Analysis Batch: 467732	Lab Sample ID	MB 570-466360/1-A	LCS 570-466360/2-A	LCSD 570-466360/3-A	Analysis Batch: 468136	Lab Sample ID	570-193109-5	570-193109-6	570-193109-7	570-193109-8	Analysis Batch: 468193	Lab Sample ID	570-193109-15	Analysis Batch: 469666	Lab Sample ID	570-193109-1

ၵ

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
570-193109-15	AG-3 (SURF) DUP	Total/NA	Solid	8081A	46636
Analvsis Batch: 4696	66				

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
570-193109-1	AG-1 (SURF)	Total/NA	Solid	8081A	465949	
570-193109-2	AG-2 (SURF)	Total/NA	Solid	8081A	465949	
570-193109-3	AG-3 (SURF)	Total/NA	Solid	8081A	465949	
570-193109-4	AG-4 (SURF)	Total/NA	Solid	8081A	465949	
570-193109-8	IM-4 (0-6")	Total/NA	Solid	8081A	465949	
MB 570-465949/1-A	Method Blank	Total/NA	Solid	8081A	465949	
LCS 570-465949/2-A	Lab Control Sample	Total/NA	Solid	8081A	465949	
LCSD 570-465949/3-A	Lab Control Sample Dup	Total/NA	Solid	8081A	465949	
Analysis Batch: 469703	03					

3

Analysis Batch: 469703	9703				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-193109-5	IM-1 (0-6")	Total/NA	Solid	8081A	465949
570-193109-6	IM-2 (0-6")	Total/NA	Solid	8081A	465949
570-193109-7	IM-3 (0-6")	Total/NA	Solid	8081A	465949

Prep Batch: 465395 Metals

Lab Sample ID	Client Sample ID	Prep Type	Matrix
570-193109-5	IM-1 (0-6")	Total/NA	Solid
570-193109-6	IM-2 (0-6")	Total/NA	Solid
570-193109-7	IM-3 (0-6")	Total/NA	Solid
570-193109-8	IM-4 (0-6")	Total/NA	Solid
570-193109-9	BB-1 (1-1.5")	Total/NA	Solid
570-193109-10	BB-2 (1-1.5")	Total/NA	Solid
MB 570-465395/1-A	Method Blank	Total/NA	Solid
LCS 570-465395/2-A	Lab Control Sample	Total/NA	Solid
LCSD 570-465395/3-A	Lab Control Sample Dup	Total/NA	Solid

Prep Batch

Method 7471A 7471A

7471A 7471A 7471A 7471A

7471A 7471A 7471A

Prep Batch: 465803

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-193109-11	FB#1	Total Recoverable	Water	200.8	
570-193109-12	EB#1	Total Recoverable	Water	200.8	
MB 570-465803/1-A	IB 570-465803/1-A Method Blank Total Recoverable Water 200.8	Total Recoverable Water	Water	200.8	

Pag&52&f 66

8/13/2024

Eurofins Calscience

QC Association Summary

Client: Padre Associates, Inc. Project/Site: Hope Elementary School, Porterville, CA

Metals (Continued)

Prep Batch: 465803 (Continued)

Metals (Continued	d)				
Prep Batch: 465803 (Continued)				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 570-465803/2-A	Lab Control Sample	Total Recoverable	Water	200.8	
LCSD 570-465803/3-A	Lab Control Sample Dup	Total Recoverable	Water	200.8	
Analysis Batch: 4658	25				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-193109-5	IM-1 (0-6")	Total/NA	Solid	7471A	465395
570-193109-6	IM-2 (0-6")	Total/NA	Solid	7471A	465395
570-193109-7	IM-3 (0-6")	Total/NA	Solid	7471A	465395
570-193109-8	IM-4 (0-6")	Total/NA	Solid	7471A	465395
570-193109-9	BB-1 (1-1.5")	Total/NA	Solid	7471A	465395
570-193109-10	BB-2 (1-1.5")	Total/NA	Solid	7471A	465395
MB 570-465395/1-A	Method Blank	Total/NA	Solid	7471A	465395
LCS 570-465395/2-A	Lab Control Sample	Total/NA	Solid	7471A	465395
LCSD 570-465395/3-A	Lab Control Sample Dup	Total/NA	Solid	7471A	465395
Analysis Batch: 4665	320				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 570-465803/1-A	Method Blank	Total Recoverable	Water	200.8	465803
LCS 570-465803/2-A	Lab Control Sample	Total Recoverable	Water	200.8	465803
LCSD 570-465803/3-A	Lab Control Sample Dup	Total Recoverable	Water	200.8	465803
Analysis Batch: 4665	327				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-193109-11	FB#1	Total Recoverable	Water	200.8	465803
570-193109-12	EB#1	Total Recoverable	Water	200.8	465803
Prep Batch: 466835					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
570-193109-1	AG-1 (SURF)	Total/NA	Solid	3050B	

570-193109-1	AG-1 (SURF)	Total/NA	Solid	3050B
570-193109-2	AG-2 (SURF)	Total/NA	Solid	3050B
570-193109-4	AG-4 (SURF)	Total/NA	Solid	3050B
570-193109-13	AG-1 (SURF) DUP	Total/NA	Solid	3050B
570-193109-14	AG-2 (SURF) DUP	Total/NA	Solid	3050B
MB 570-466835/1-A ^20	Method Blank	Total/NA	Solid	3050B
LCS 570-466835/2-A ^20	Lab Control Sample	Total/NA	Solid	3050B
LCSD 570-466835/3-A ^20	Lab Control Sample Dup	Total/NA	Solid	3050B

Prep Batch: 467482

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
570-193109-3	AG-3 (SURF)	Total/NA	Solid	3050B
MB 570-467482/1-A ^20	Method Blank	Total/NA	Solid	3050B
LCS 570-467482/2-A ^20	Lab Control Sample	Total/NA	Solid	3050B
LCSD 570-467482/3-A ^20	Lab Control Sample Dup	Total/NA	Solid	3050B

Prep Batch: 467599

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
570-193109-5	IM-1 (0-6")	Total/NA	Solid	3051A	
570-193109-6	IM-2 (0-6")	Total/NA	Solid	3051A	
570-193109-7	IM-3 (0-6")	Total/NA	Solid	3051A	
570-193109-8	IM-4 (0-6")	Total/NA	Solid	3051A	
570-193109-9	BB-1 (1-1.5")	Total/NA	Solid	3051A	

Job ID: 570-193109-1

Eurofins Calscience

QC Association Summary

Client: Padre Associates, Inc. Project/Site: Hope Elementary School, Porterville, CA

Metals (Continued)

Prep Batch: 467599 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-193109-10	BB-2 (1-1.5")	Total/NA	Solid	3051A	
MB 570-467599/1-A ^5	Method Blank	Total/NA	Solid	3051A	
LCS 570-467599/2-A ^5	Lab Control Sample	Total/NA	Solid	3051A	
LCSD 570-467599/3-A ^5	Lab Control Sample Dup	Total/NA	Solid	3051A	
570-193109-5 MS	IM-1 (0-6")	Total/NA	Solid	3051A	
570-193109-5 MSD	IM-1 (0-6")	Total/NA	Solid	3051A	

Analysis Batch: 467617

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-193109-1	AG-1 (SURF)	Total/NA	Solid	6020	466835
570-193109-2	AG-2 (SURF)	Total/NA	Solid	6020	466835
570-193109-4	AG-4 (SURF)	Total/NA	Solid	6020	466835
570-193109-13	AG-1 (SURF) DUP	Total/NA	Solid	6020	466835
570-193109-14	AG-2 (SURF) DUP	Total/NA	Solid	6020	466835
MB 570-466835/1-A ^20	Method Blank	Total/NA	Solid	6020	466835
LCS 570-466835/2-A ^20	Lab Control Sample	Total/NA	Solid	6020	466835
LCSD 570-466835/3-A ^20	Lab Control Sample Dup	Total/NA	Solid	6020	466835

Analysis Batch: 468126

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-193109-3	AG-3 (SURF)	Total/NA	Solid	6020	467482
570-193109-5	IM-1 (0-6")	Total/NA	Solid	6020	467599
570-193109-6	IM-2 (0-6")	Total/NA	Solid	6020	467599
570-193109-7	IM-3 (0-6")	Total/NA	Solid	6020	467599
570-193109-8	IM-4 (0-6")	Total/NA	Solid	6020	467599
570-193109-9	BB-1 (1-1.5")	Total/NA	Solid	6020	467599
570-193109-10	BB-2 (1-1.5")	Total/NA	Solid	6020	467599
MB 570-467482/1-A ^20	Method Blank	Total/NA	Solid	6020	467482
MB 570-467599/1-A ^5	Method Blank	Total/NA	Solid	6020	467599
LCS 570-467482/2-A ^20	Lab Control Sample	Total/NA	Solid	6020	467482
LCS 570-467599/2-A ^5	Lab Control Sample	Total/NA	Solid	6020	467599
LCSD 570-467482/3-A ^20	Lab Control Sample Dup	Total/NA	Solid	6020	467482
LCSD 570-467599/3-A ^5	Lab Control Sample Dup	Total/NA	Solid	6020	467599
570-193109-5 MS	IM-1 (0-6")	Total/NA	Solid	6020	467599
570-193109-5 MSD	IM-1 (0-6")	Total/NA	Solid	6020	467599

Client: Padre Associates, Inc. Project/Site: Hope Elementary School, Porterville, CA

Client Sample ID: AG-1 (SURF) Date Collected: 07/24/24 08:50 Date Received: 07/26/24 09:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			20.33 g	10 mL	465949	07/31/24 12:04	S7HP	EET CAL 4
Total/NA	Analysis Instrumer	8081A at ID: GC52A		1	1 mL	1 mL	469666	08/11/24 15:11	N5Y3	EET CAL 4
Total/NA	Prep	3050B			1.95 g	50 mL	466835	08/04/24 12:00	U4XW	EET CAL 4
Total/NA	Analysis	6020		20			467617	08/05/24 13:21	P1R	EET CAL 4
	Instrumer	t ID: ICPMS10								

Client Sample ID: AG-2 (SURF) Date Collected: 07/24/24 08:54 Date Received: 07/26/24 09:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			20.30 g	10 mL	465949	07/31/24 12:04	S7HP	EET CAL 4
Total/NA	Analysis Instrumen	8081A t ID: GC52A		1	1 mL	1 mL	469666	08/11/24 15:25	N5Y3	EET CAL 4
Total/NA	Prep	3050B			1.98 g	50 mL	466835	08/04/24 12:00	U4XW	EET CAL
Total/NA	Analysis	6020		20			467617	08/05/24 13:42	P1R	EET CAL
	Instrumen	t ID: ICPMS10								

Client Sample ID: AG-3 (SURF) Date Collected: 07/24/24 08:57 Date Received: 07/26/24 09:40

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			20.03 g	10 mL	465949	07/31/24 12:04	S7HP	EET CAL 4
Total/NA	Analysis Instrumer	8081A at ID: GC52A		1	1 mL	1 mL	469666	08/11/24 15:39	N5Y3	EET CAL 4
Total/NA	Prep	3050B			2.02 g	50 mL	467482	08/05/24 10:42	RF8W	EET CAL 4
Total/NA	Analysis	6020		20			468126	08/06/24 17:23	P1R	EET CAL 4
	Instrumer	t ID: ICPMS10								

Client Sample ID: AG-4 (SURF) Date Collected: 07/24/24 09:02 Date Received: 07/26/24 09:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			20.16 g	10 mL	465949	07/31/24 12:04	S7HP	EET CAL 4
Total/NA	Analysis	8081A		1	1 mL	1 mL	469666	08/11/24 15:53	N5Y3	EET CAL 4
	Instrumer	t ID: GC52A								
Total/NA	Prep	3050B			1.97 g	50 mL	466835	08/04/24 12:00	U4XW	EET CAL 4
Total/NA	Analysis	6020		20			467617	08/05/24 13:47	P1R	EET CAL 4
	Instrumer	t ID: ICPMS10								

Matrix: Solid

Lab Sample ID: 570-193109-1 Matrix: Solid

5 6 10

12 13

Lab Sample ID: 570-193109-3 Matrix: Solid

Lab Sample ID: 570-193109-4

Lab Sample ID: 570-193109-2

Eurofins Calscience

Matrix: Solid

Client: Padre Associates, Inc. Project/Site: Hope Elementary School, Porterville, CA Job ID: 570-193109-1

Matrix: Solid

Lab Sample ID: 570-193109-5

Client Sample ID: IM-1 (0-6") Date Collected: 07/24/24 09:40 Date Received: 07/26/24 09:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			20.30 g	2 mL	466094	07/31/24 18:33	S7HP	EET CAL 4
Total/NA	Analysis	8270C		1	1 mL	1 mL	467213	08/04/24 04:48	CG	EET CAL 4
	Instrumer	nt ID: GCMSCCC								
Total/NA	Prep	5030C			5.12 g	5 mL	467477	08/05/24 10:39	A9VE	EET CAL 4
Total/NA	Analysis	8015B		1	5 g	5 mL	467420	08/05/24 12:37	A9VE	EET CAL 4
	Instrumer	nt ID: GC73								
Total/NA	Prep	3550C			10.03 g	10 mL	466997	08/03/24 16:24	NV8K	EET CAL 4
Total/NA	Analysis	8015B		1	10 mL	10 mL	468136	08/07/24 00:56	SP9M	EET CAL 4
	Instrumer	nt ID: GC100								
Total/NA	Prep	3546			20.23 g	10 mL	465949	07/31/24 12:04	S7HP	EET CAL 4
Total/NA	Analysis	8081A		1	1 mL	1 mL	469703	08/12/24 12:42	N5Y3	EET CAL 4
	Instrumer	nt ID: GC52A								
Total/NA	Prep	3051A			0.52 g	50 mL	467599	08/05/24 13:55	RF8W	EET CAL 4
Total/NA	Analysis	6020		5			468126	08/06/24 17:35	P1R	EET CAL 4
	Instrumer	nt ID: ICPMS10								
Total/NA	Prep	7471A			0.48 g	50 mL	465395	07/30/24 10:16	RL6Q	EET CAL 4
Total/NA	Analysis	7471A		1			465825	07/31/24 10:40	ECX6	EET CAL 4
	Instrumer	nt ID: HG7								

Client Sample ID: IM-2 (0-6") Date Collected: 07/24/24 09:32 Date Received: 07/26/24 09:40

Lab Sample ID: 570-193109-6 Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			20.14 g	2 mL	466094	07/31/24 18:33	S7HP	EET CAL 4
Total/NA	Analysis Instrumer	8270C at ID: GCMSCCC		1	1 mL	1 mL	467213	08/04/24 05:11	CG	EET CAL 4
Total/NA	Prep	5030C			5.13 g	5 mL	467477	08/05/24 10:39	A9VE	EET CAL 4
Total/NA	Analysis Instrumer	8015B at ID: GC73		1	5 g	5 mL	467420	08/05/24 12:56	A9VE	EET CAL 4
Total/NA	Prep	3550C			10.09 g	10 mL	466997	08/03/24 16:24	NV8K	EET CAL 4
Total/NA	Analysis Instrumer	8015B at ID: GC100		1	10 mL	10 mL	468136	08/07/24 01:21	SP9M	EET CAL 4
Total/NA	Prep	3546			20.17 g	10 mL	465949	07/31/24 12:04	S7HP	EET CAL 4
Total/NA	Analysis Instrumer	8081A at ID: GC52A		1	1 mL	1 mL	469703	08/12/24 12:56	N5Y3	EET CAL 4
Total/NA	Prep	3051A			0.47 g	50 mL	467599	08/05/24 13:55	RF8W	EET CAL 4
Total/NA	Analysis Instrumer	6020 nt ID: ICPMS10		5			468126	08/06/24 17:46	P1R	EET CAL 4
Total/NA	Prep	7471A			0.47 g	50 mL	465395	07/30/24 10:16	RL6Q	EET CAL 4
Total/NA	Analysis Instrumer	7471A at ID: HG7		1			465825	07/31/24 10:41	ECX6	EET CAL 4

Eurofins Calscience

10

12 13

1

Client: Padre Associates, Inc. Project/Site: Hope Elementary School, Porterville, CA Job ID: 570-193109-1

Matrix: Solid

Lab Sample ID: 570-193109-7

Client Sample ID: IM-3 (0-6") Date Collected: 07/24/24 09:16 Date Received: 07/26/24 09:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			20.11 g	2 mL	466094	07/31/24 18:33	S7HP	EET CAL 4
Total/NA	Analysis	8270C		1	1 mL	1 mL	467213	08/04/24 05:33	CG	EET CAL 4
	Instrumer	nt ID: GCMSCCC								
Total/NA	Prep	5030C			5.15 g	5 mL	467477	08/05/24 10:39	A9VE	EET CAL 4
Total/NA	Analysis	8015B		1	5 g	5 mL	467420	08/05/24 13:16	A9VE	EET CAL 4
	Instrumer	nt ID: GC73								
Total/NA	Prep	3550C			10.06 g	10 mL	466997	08/03/24 16:24	NV8K	EET CAL 4
Total/NA	Analysis	8015B		1	10 mL	10 mL	468136	08/07/24 01:46	SP9M	EET CAL 4
	Instrumer	nt ID: GC100								
Total/NA	Prep	3546			20.03 g	10 mL	465949	07/31/24 12:04	S7HP	EET CAL 4
Total/NA	Analysis	8081A		1	1 mL	1 mL	469703	08/12/24 13:10	N5Y3	EET CAL 4
	Instrumer	nt ID: GC52A								
Total/NA	Prep	3051A			0.52 g	50 mL	467599	08/05/24 13:55	RF8W	EET CAL 4
Total/NA	Analysis	6020		5			468126	08/06/24 17:48	P1R	EET CAL 4
	Instrumer	nt ID: ICPMS10								
Total/NA	Prep	7471A			0.47 g	50 mL	465395	07/30/24 10:16	RL6Q	EET CAL 4
Total/NA	Analysis	7471A		1			465825	07/31/24 10:43	ECX6	EET CAL 4
	Instrumer	nt ID: HG7								

Client Sample ID: IM-4 (0-6") Date Collected: 07/24/24 09:10 Date Received: 07/26/24 09:40

Lab Sample ID: 570-193109-8 Matrix: Solid

Prep Type Total/NA Total/NA	Batch Type Prep Analysis	Batch Method 3546 8270C t ID: GCMSCCC	Run	Dil Factor	Initial Amount 20.23 g 1 mL	Final Amount 2 mL 1 mL	Batch Number 466094 467213	Prepared or Analyzed 07/31/24 18:33 08/04/24 05:56	Lab EET CAL 4 EET CAL 4
Total/NA Total/NA	Prep Analysis	5030C 8015B t ID: GC73		1	5.15 g 5 g	5 mL 5 mL	467477 467420	08/05/24 10:39 08/05/24 13:36	EET CAL 4 EET CAL 4
Total/NA Total/NA	Prep Analysis Instrumen	3550C 8015B t ID: GC100		1	10.00 g 10 mL	10 mL 10 mL	466997 468136	08/03/24 16:24 08/07/24 02:11	EET CAL 4 EET CAL 4
Total/NA Total/NA	Prep Analysis Instrumen	3546 8081A tt ID: GC52A		1	20.03 g 1 mL	10 mL 1 mL	465949 469666	07/31/24 12:04 08/11/24 21:46	EET CAL 4 EET CAL 4
Total/NA Total/NA	Prep Analysis Instrumen	3051A 6020 t ID: ICPMS10		5	0.51 g	50 mL	467599 468126	08/05/24 13:55 08/06/24 17:56	EET CAL 4 EET CAL 4
Total/NA Total/NA	Prep Analysis Instrumen	7471A 7471A tlD: HG7		1	0.48 g	50 mL	465395 465825	07/30/24 10:16 07/31/24 10:49	 EET CAL 4 EET CAL 4

Eurofins Calscience

5 6 7

10

12 13

Client: Padre Associates, Inc. Project/Site: Hope Elementary School, Porterville, CA Job ID: 570-193109-1

5 6

10

12 13

Client Sample ID: BB-1 (1-1.5") Date Collected: 07/24/24 09:57 Date Received: 07/26/24 09:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5030C			5.14 g	5 mL	467477	08/05/24 10:39	A9VE	EET CAL 4
Total/NA	Analysis Instrumen	8015B nt ID: GC73		1	5 g	5 mL	467420	08/05/24 13:55	A9VE	EET CAL 4
Total/NA	Prep	3550C			10.01 g	10 mL	467191	08/03/24 16:35	NV8K	EET CAL 4
Total/NA	Analysis Instrumen	8015B nt ID: GC100		1	10 mL	10 mL	467681	08/06/24 07:15	SP9M	EET CAL 4
Total/NA	Prep	3051A			0.53 g	50 mL	467599	08/05/24 13:55	RF8W	EET CAL 4
Total/NA	Analysis Instrumen	6020 nt ID: ICPMS10		5	-		468126	08/06/24 17:58	P1R	EET CAL 4
Total/NA	Prep	7471A			0.51 g	50 mL	465395	07/30/24 10:16	RL6Q	EET CAL 4
Total/NA	Analysis Instrumen	7471A nt ID: HG7		1			465825	07/31/24 10:51	ECX6	EET CAL 4

Client Sample ID: BB-2 (1-1.5") Date Collected: 07/24/24 10:07 Date Received: 07/26/24 09:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5030C			5.00 g	5 mL	467477	08/05/24 10:39	A9VE	EET CAL 4
Total/NA	Analysis	8015B		1	5 g	5 mL	467420	08/05/24 14:14	A9VE	EET CAL 4
	Instrumen	t ID: GC73								
Total/NA	Prep	3550C			10.07 g	10 mL	467191	08/03/24 16:35	NV8K	EET CAL 4
Total/NA	Analysis	8015B		1	10 mL	10 mL	467681	08/06/24 07:40	SP9M	EET CAL 4
	Instrumen	t ID: GC100								
Total/NA	Prep	3051A			0.53 g	50 mL	467599	08/05/24 13:55	RF8W	EET CAL 4
Total/NA	Analysis	6020		5			468126	08/06/24 18:00	P1R	EET CAL 4
	Instrumen	t ID: ICPMS10								
Total/NA	Prep	7471A			0.500 g	50 mL	465395	07/30/24 10:16	RL6Q	EET CAL 4
Total/NA	Analysis	7471A		1			465825	07/31/24 10:53	ECX6	EET CAL 4
	Instrumen	t ID: HG7								

Client Sample ID: FB#1 Date Collected: 07/24/24 10:15 Date Received: 07/26/24 09:40

Lab Sample	D:	57	0-1	9	31	09 -	-11

Lab Sample ID: 570-193109-10

Matrix: Water

Matrix: Solid

Ргер Туре	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total Recoverable	Prep	200.8			50 mL	50 mL	465803	07/31/24 07:16	JP8N	EET CAL 4
Total Recoverable	Analysis	200.8		1			466527	08/01/24 14:15	P1R	EET CAL 4
	Instrumer	nt ID: ICPMS09								

Eurofins Calscience

Lab Sample ID: 570-193109-9 Matrix: Solid

Client: Padre Associates, Inc. Project/Site: Hope Elementary School, Porterville, CA

Job ID: 570-193109-1

Matrix: Water

Matrix: Solid

Matrix: Solid

Lab Sample ID: 570-193109-12

Client Sample ID: EB#1 Date Collected: 07/24/24 10:20 Date Received: 07/26/24 09:40

Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Prep	200.8			50 mL	50 mL	465803	07/31/24 07:16	JP8N	EET CAL 4
Analysis	200.8		1			466527	08/01/24 14:18	P1R	EET CAL 4
Instrumen	t ID: ICPMS09								
							<u> </u>	530.4	
	Type Prep Analysis Instrumen	TypeMethodPrep200.8Analysis200.8Instrument ID:ICPMS09	TypeMethodRunPrep200.8Analysis200.8Instrument ID:ICPMS09	TypeMethodRunFactorPrep200.81	TypeMethodRunFactorAmountPrep200.850 mLAnalysis200.81Instrument ID:ICPMS09	TypeMethodRunFactorAmountAmountPrep200.850 mL50 mL50 mLAnalysis200.81Instrument ID:ICPMS09	TypeMethodRunFactorAmountAmountNumberPrep200.850 mL50 mL50 mL465803Analysis200.81466527Instrument ID:ICPMS09	TypeMethodRunFactorAmountAmountNumberor AnalyzedPrep200.850 mL50 mL50 mL46580307/31/24 07:16Analysis200.8146652708/01/24 14:18Instrument ID:ICPMS09	TypeMethodRunFactorAmountAmountMumberor AnalyzedAnalystPrep200.850 mL50 mL50 mL50 mL6580307/31/24 07:16JP8NAnalysis200.8146652708/01/24 14:18P1RInstrument ID:ICPMS09

Client Sample ID: AG-1 (SURF) DUP Date Collected: 07/24/24 08:50 Date Received: 07/26/24 09:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			1.97 g	50 mL	466835	08/04/24 12:00	U4XW	EET CAL 4
Total/NA	Analysis	6020		20			467617	08/05/24 13:23	P1R	EET CAL 4
	Instrumer	nt ID: ICPMS10								

Client Sample ID: AG-2 (SURF) DUP Date Collected: 07/24/24 08:54 Date Received: 07/26/24 09:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			2.04 g	50 mL	466835	08/04/24 12:00	U4XW	EET CAL 4
Total/NA	Analysis	6020		20			467617	08/05/24 13:45	P1R	EET CAL 4

Client Sample ID: AG-3 (SURF) DUP Date Collected: 07/24/24 08:57 Date Received: 07/26/24 09:40

Lab Sample ID: 570-193109-15 Matrix: Solid

Lab Sample ID: 570-193109-14

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3546			20.14 g	10 mL	466360	08/01/24 12:35	UGM4	EET CAL 4
Total/NA	Analysis	8081A		1	1 mL	1 mL	468193	08/07/24 14:11	N5Y3	EET CAL 4
	Instrumer	nt ID: GC54A								

Laboratory References:

EET CAL 4 = Eurofins Calscience Tustin, 2841 Dow Avenue, Tustin, CA 92780, TEL (714)895-5494

Accreditation/Certification Summary

Client: Padre Associates, Inc. Project/Site: Hope Elementary School, Porterville, CA

Job ID: 570-193109-1

Laboratory: Eurofins Calscience

Authority	Prog	am	Identification Number	Expiration Date
California	State		3082	07-31-26
The following analyte	s are included in this repo	ort, but the laboratory is r	not certified by the governing authori	ity. This list may include analytes
0,	does not offer certification			
Analysis Method	Prep Method	Matrix	Analyte	
200.8	200.8	Water	Arsenic	
200.8	200.8	Water	Lead	
8081A	3546	Solid	alpha-Chlordane	
8081A	3546	Solid	gamma-Chlordane	
8270C	3546	Solid	1,2,4-Trichlorobenzene	
8270C	3546	Solid	1-Methylnaphthalene	
8270C	3546	Solid	2,4,5-Trichlorophenol	
8270C	3546	Solid	2,4,6-Trichlorophenol	
8270C	3546	Solid	2-Methylphenol	
8270C	3546	Solid	3/4-Methylphenol	
8270C	3546	Solid	4,6-Dinitro-2-methylphene	ol
8270C	3546	Solid	Azobenzene	
8270C	3546	Solid	bis (2-Chloroisopropyl) et	her
8270C	3546	Solid	Hexachloro-1,3-butadiene	e
8270C	3546	Solid	Hexachlorobenzene	
8270C	3546	Solid	Hexachlorocyclopentadie	ne
8270C	3546	Solid	Hexachloroethane	
8270C	3546	Solid	Phenol	
8270C	3546	Solid	Pyrene	
8270C	3546	Solid	Pyridine	
Dregon	NELA	Р	4175	02-02-25

Method Summary

Client: Padre Associates, Inc. Project/Site: Hope Elementary School, Porterville, CA

Method	Method Description	Protocol	Laboratory
3270C	Semivolatile Organic Compounds (GC/MS)	SW846	EET CAL 4
3015B	Gasoline Range Organics - (GC)	SW846	EET CAL 4
3015B	Diesel Range Organics (DRO) (GC)	SW846	EET CAL 4
3081A	Organochlorine Pesticides (GC)	SW846	EET CAL 4
200.8	Metals (ICP/MS)	EPA	EET CAL 4
6020	Metals (ICP/MS)	SW846	EET CAL 4
7471A	Mercury (CVAA)	SW846	EET CAL 4
200.8	Preparation, Total Recoverable Metals	EPA	EET CAL 4
3050B	Preparation, Metals	SW846	EET CAL 4
3051A	Preparation, Metals, Microwave Assisted	SW846	EET CAL 4
3546	Microwave Extraction	SW846	EET CAL 4
3550C	Ultrasonic Extraction	SW846	EET CAL 4
5030C	Purge and Trap	SW846	EET CAL 4
7471A	Preparation, Mercury	SW846	EET CAL 4

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CAL 4 = Eurofins Calscience Tustin, 2841 Dow Avenue, Tustin, CA 92780, TEL (714)895-5494

Eurofins Calscience

Sample Summary

Client: Padre Associates, Inc. Project/Site: Hope Elementary School, Porterville, CA

loh	ID: 570-193109-1	
300	ID. 370-193109-1	

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
570-193109-1	AG-1 (SURF)	Solid	07/24/24 08:50	07/26/24 09:40
570-193109-2	AG-2 (SURF)	Solid	07/24/24 08:54	07/26/24 09:40
570-193109-3	AG-3 (SURF)	Solid	07/24/24 08:57	07/26/24 09:40
70-193109-4	AG-4 (SURF)	Solid	07/24/24 09:02	07/26/24 09:40
70-193109-5	IM-1 (0-6")	Solid	07/24/24 09:40	07/26/24 09:40
70-193109-6	IM-2 (0-6")	Solid	07/24/24 09:32	07/26/24 09:40
70-193109-7	IM-3 (0-6")	Solid	07/24/24 09:16	07/26/24 09:40
0-193109-8	IM-4 (0-6")	Solid	07/24/24 09:10	07/26/24 09:40
0-193109-9	BB-1 (1-1.5")	Solid	07/24/24 09:57	07/26/24 09:40
)-193109-10	BB-2 (1-1.5")	Solid	07/24/24 10:07	07/26/24 09:40
0-193109-11	FB#1	Water	07/24/24 10:15	07/26/24 09:40
0-193109-12	EB#1	Water	07/24/24 10:20	07/26/24 09:40
70-193109-13	AG-1 (SURF) DUP	Solid	07/24/24 08:50	07/26/24 09:40
0-193109-14	AG-2 (SURF) DUP	Solid	07/24/24 08:54	07/26/24 09:40
0-193109-15	AG-3 (SURF) DUP	Solid	07/24/24 08:57	07/26/24 09:40

LABORATO	ORATORY CLIENT: Padre Associtates, Inc.									CLIENT PROJECT NAME / NO.:										P.O. NO.:					
ADDRESS:	350 University Aven	ue. Suite 250			ene (64)/ (2 (44) You													_	2301-3641						
CITY:	cramento	075Î	STAT	E: CA	ZIP: 9582		12 - 13	-				ect Ma												048444 4	
TEL:	cramento			CA	85623	•			A Sterry	a second	essore se	ect mai	ager	1.10	0.000	_	2 23		100000	7000	and the second	and a start	10 5/1	019441-1)	
(91	6) 333-5920 X240	E-MAIL: akl	ein@padro	einc.com					GLOE	BAL ID:				100	G COD	E:					s): (PRIN				
	UND TIME (Rush surcharges m							-											A	_==/		CH	A	HILL	
EDD:	EDAY 24 HR	0 48 HR 0	3 72 HR	D 5 DAYS	STANDARD	-								RE	QUE	STE	DAN	AL	YSE	S					
														Please	check	box or	fill in b	lank a	s need	ied.				-	
			0.01/												9										
				1		ived	56	lered		OCPs by EPA Method 8081B	Arsenic by EPA Method 6020	by EPA Method 6020		-D, -MO by EPA Method 8015M by FPA Method 8270			Spiki / Run Duplicate for OCPs	Split / Run Duplicate for Arsenic	Split / Run Duplicate for Lead						
LAB UBE ONLY	SAMPLE ID	DATE	PLING	MATRIX	NO. OF CONT.	Unpreserved	Preserved	Field Filtered		CPs by	senic b	ead by I		SVOCs by	CAM 17		MI / Ru	lik / Ru	R / Ru						
	AG-1 (SURF)	7/24/2024	850	Soil	1	5	ice	E		ŏ X	X	N X	+		3	-	5	S.	S X	-		\vdash		-+-	
2	AG-2 (SURF)	7/24/2024	854	Soll	1	+	ice		-	x	x	x	-+	-	+		-	x	Ļ^	-		\vdash	-		
3	AG-3 (SURF)	7/24/2024	857	Soll	1	+	ice			x	x	x	-+	-	+		X	L^	-			\vdash	-		
H	AG-4 (SURF)	7/24/2024	902	Soll	1					x	x	x	-+	+	+	-	Ļ^	-	-	-		+	\rightarrow		
2	IM-1 (0 - 6")	7/24/2024	940	Soll	1	+	ice	<u> - 1</u>		x	<u> </u>	\uparrow	+	××	x		-			-		\vdash	-		
6	IM-2 (0 - 6")	7/24/2024	932	Soll	1		ice	-		x	-	+	-	$\frac{1}{x}$	-		-	-	ļ			<u> </u>	-+		
F	IM-3 (0 - 6")	7/24/2024	916	Soil	1	+	ice	- 1.50		×				x	-	+		+							
8	IM-4 (0 - 6")	7/24/2024	910	Soil	1	-	ice			x	-			x x	-	-	-	ł							
9	BB-1 (1 - 1.5')	7/24/2024	957	Soil	1		ice				-		-	x	X	-	-								
10	BB-2 (1-1.5')	7/24/2024	1007	Soll	1	-	ice							x	X			5/	0-193	5109 (Chain	of Cu	stody	ha or	
10 S 2	ed by: (Signature)			Date: 7-25.24	Time:	Rece	lived by:	(Sional	Ure/Affi	illation)				~]				Date		5/2	4	Time:	00		
Relinquish	ed by: (Signature)	50-	_	Date:	Time:	Rece	ived by:	(Signal	ture/Affi	illation)		-eil			-			Date		/	-	Time:	2		
	ed by: (Signature)	CB4	(75124	1630 Time:	0	lved by:	-		_		ECI	4	5	2000			-		10.00			0-7/228		

Loc: 570 193109

🔅 eurofins

Calscience 2841 Dow Avenue, Suite 100, Tustin, CA 92780 • (714) 895-5494

For courier service / sample drop off information, contact us26_sales@eurofinsus.com or call us.

CHAIN-OF-CUSTODY RECORD

DATE:

PAGE:

07/25/2024

OF

2

1

U 26P

Page 633 of 66

8/13/2024

	RY CLIENT:		-							E-TAIL FAIL	NAME / NO.					1.0	0. NO.:		_		
	Padre A	ssocitates, Inc.					_				ry Schoo						01-3641				
DORESS:	350 University Aver	nue, Suite 250							2010	CT CONTAG		IT EA				Contract -	AB CONTACT	ORQU	OTE NO).:	-
Sac	ramento	CONSTRUCTION OF STREET	STATE	CA	ZIP: 95825						ject Mana	ger			Rossina Tomova (Quote 57019441-						
EL: (91)	6) 333-5920 X240		ein@padre	inc.com		GLOBAL ID: LOG CODE:										SAMPLER(S): (PRINT) Alan Churchill					
	DAY 24 HR	ey apply to any TAT not		D 5 DAYS	DAYS STANDARD																
DD:				REQUES Please check bo											-	_					-
J COEL						-		-		-	TT	Pk	ase che	ck box or	THE IN DIE	Ink as ne	T	-	-	-	Distanti
	MPLES TO TUST	IN LABORAT				R		2		I Lead by EPA Method 200.8											
LAB	SAMPLE ID	SAMP	LING	MATRIX	NO. OF	Unpreserved	Preserved	d Fittered		nic and											
MILY		DATE	TIME		CONT.	dun	Prei	Field		Arsenic											
Ĩ	FB #1	7/24/2024	1015	Water	1		ce, HNO)3		X											
12	EB #1	7/24/2024	1020	Water	1.	,	ce, HNO	3		×				_				_			
-		-				_				-		_		_		_		-	-		_
	a da a ar	-						_		-		+						-	-		_
-		-		1.1		1						-		-			+-+	+	+		
-		-				-				-	++	-				+		-	+	-	-
-						-					+				++	+	+-+	-	+		-
-			1998.20 L					-			+	+	\vdash	+	++		+++	+	+		-
		-								-		-		-			++	+	+	-	
127	ed by: (Signature)			Date: 1-25-27			11	-	ture/Amili								924		Time:	v	
	ed by: (Signifiure)	- 0	ETS.	Date:	Time:	10		1	ture/Affilia		Fa	IEY				Date:			Time:		
telinquish	ed by: (Signature)) +	Feiler	Date:	Time:	Rece	ived by.	(Signa	ture/Affilia	niôn)	-					Date:	24/2	4	Time:	140	

PRMS1408 Ray. 1.2

Calscience 2841 Dow Avenue, Suite 100, Tustin, CA 92780 • (714) 895-5494

For courier service / sample drop off information, contact us26_sales@eurofinsus.com or call us.

Environment Testing

Т

2

DATE:

PAGE:

07/25/2024

OF

2

8/13/2024

14

Client: Padre Associates, Inc.

Login Number: 193109 List Number: 1 Creator: Patel, Jayesh

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 570-193109-1

List Source: Eurofins Calscience

Attention: Padre Associates, Inc. 1861 Knoll Drive Ventura, CA 93003

Phone:	(805) 786-2650
Fax:	
Received:	07/26/2024 10:45 AM
Analysis Date:	08/09/2024
Collected:	

Project: 2301-3641 - HOPE ELEMENTARY SCHOOL

Test Report: Asbestos Analysis of Soils via AHERA Method 40CFR 763 Subpart E Appendix E supplemented with EPA 600/R-93/116 using Polarized Light Microscopy with CARB 435 Prep (Milling) Level A for 0.25% Target Analytical Sensitivity

			Non-A	Asbestos	<u>Asbestos</u>
Sample	Description	Appearance	% Fibrous	% Non-Fibrous	% Туре
IM-1 (0 - 6")	IM-1 (0 - 6") / 7-24-24	Tan		100% Non-fibrous (Other)	None Detected
092413956-0001	(0944) - GRAB SOIL	Non-Fibrous			
	SAMPLE	Homogeneous			
IM-2 (0 - 6")	IM-2 (0 - 6") 7-24-24	Tan		100% Non-fibrous (Other)	None Detected
092413956-0002	(0933) - GRAB SOIL	Non-Fibrous			
	SAMPLE	Homogeneous			
IM-3 (0 - 6")	IM-3 (0 - 6") 7-24-24	Tan		100% Non-fibrous (Other)	None Detected
092413956-0003	(0916) - GRAB SOIL	Non-Fibrous			
	SAMPLE	Homogeneous			
IM-4 (0 - 6")	IM-4 (0 - 6") 7-24-24	Tan		100% Non-fibrous (Other)	None Detected
092413956-0004	(0910) - GRAB SOIL	Non-Fibrous			
	SAMPLE	Homogeneous			

Analyst(s)

David Nguyen (4)

Oscar Merino, Laboratory Manager or other approved signatory

EMSL maintains liability limited to cost of analysis . Interpretation and use of test results are the responsibility of the client. This report relates only to the samples reported above, and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations . The report reflects the samples as received. Results are generated from the field sampling data (sampling volumes and areas, locations, etc.) provided by the client on the Chain of Custody. Samples are within quality control criteria and met method specifications unless otherwise noted. Some samples may contain asbestos fibers present in dimensions below PLM resolution limits. EMSL suggests that samples reported as <0.25% or none detected undergo additional analysis via TEM.

Samples analyzed by EMSL Analytical, Inc San Leandro, CA

Initial report from: 08/09/2024 10:28:06

ASB_PLMPC_0006_0003 Printed 8/9/2024 10:28:07AM

EMSL Orden: 092413956 Customer ID: PADR42 Customer PC: 2301-3641 Project ID:	Phone: (805) 786-2650 Fax: N/A Collected: N/A Received: 07/26/24 10:45	Analyzed: 08/15/24	6) 5 Prep (Milling)	ss tt Comments	% %
EMSL Order: Customer ID: Customer PO: Project ID:	Phone: (805 Fax: N/A Collected: N/A Received: 07/2	Analyze	C(0.01% h CARB 43	Asbestos Weight	< 0.01% < 0.01% < 0.01%
			435 Level: (tion 2.5.5.2) with	Reporting Limit	0.01%
			M CARB	Structures	- 0 -
ndro, CA 94577 om		RY SCHOOL	SUMMARY REPORT : Modified TEM CARB 435 Level: C (0.01%) Analysis of Soil Material Utilizing Analytical Electron Microscopy (Section 2.5.5.2) with CARB 435 Prep (Milling)	Results	Regulated Asbestos Other Minerals Total
EMSL Analytical, Inc. 464 McCormick Street, San Leandro, CA 94577 Phome: (510) 895-3675 Fax: (510) 895-3680 Email: SanLeandroLab@emsl.com	Padre Associates, Inc. 1861 Knoll Drive Ventura, CA, 93003	Project: 2301-3641 - HOPE ELEMENTARY SCHOOL	SUMMAR ^N Analysis of Soil Material L	Minerals Present	Undetermined, Chrysotile
	Attn:	Project:	-	Sample ID	IM-2 (0 - 6") 092413956-0002 IM-2 (0 - 6") 7-2424 (0933) - Села соли салин с

Approved Signatory

J. Dang Analyst

ENSL. mainlains lability innecto cost of analysis. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by ENSL. ENSL is not responsible for sample collection activities or analytical method limitations. Interpretation and use of results are the responsibility of the client. Regulated aboves in courd types: chrysofte, arrivolds, and anthophyllite. Other minerals can include. Libby Amplibed, Erionite, and other mon-regulated minerals. A countable structure for this report would have substantially parallel sides, a length greater than or equal to 0.5 microns and meet the aspect at the defined above. The reported mass percent may be straticizely unrelable when the mass percent of the largest structure is high. Contact the laboratory for additional analytical options.

www.emsl.com

TEM CARB Spreadsheet Version: 11.0

This is the Last Page of the Report Page 1 of 1

Della

G-128

APPENDIX E ARSENIC BACKGROUND DATA SET

SOILS ENGINEERING, INC.

PRELIMINARY ENVIRONMENTAL ASSESSMENT REPORT

PROPOSED ELEMENTARY SCHOOL NW CORNER OF E. MORTON AVE. & HILLCREST ST. PORTERVILLE, CALIFORNIA

Prepared For:

Porterville Unified School District 600 West Grand Ave. Porterville, CA 93257 Attn: Owen Fish

File No. 05-11560

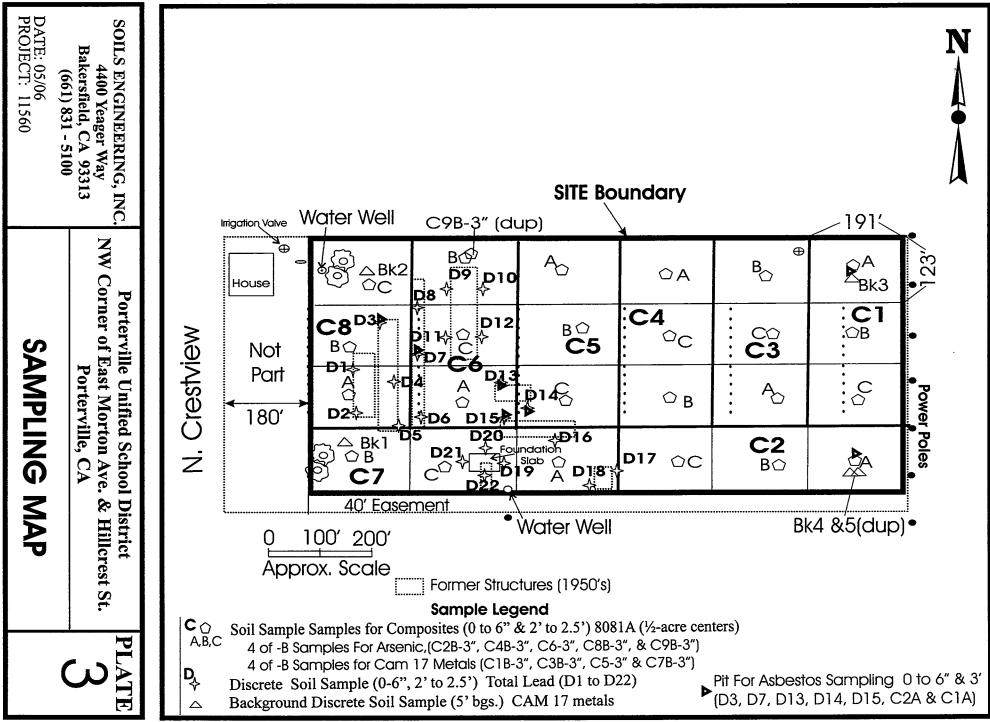
Prepared By:

Soils Engineering, Inc. 4400 Yeager Way Bakersfield, CA. 93313

June 2006

TABLE 2 left side

TABL Soil Sample Analytical Results Fo Porterville Unified NW Corner of E. Morton Ave. and


CAMI-Metails PQL (sp01/7471) C1B- (ppm) C2B- 3" C2B- 3" C3B- 3" C4B- 3" C5B- 3" C7B- 3" C7B- 3" C7B- 3" C7B- 3" C7B- 3" C7B- 3" C7B- 3" C4- 3" C4- 3" <thc4- 3" <thc4- 3" C4</thc4- </thc4- 		CONSTITUENTS (EPA Method)										DIS	CRET	E SO		SAMI	PLES (<u>0 to</u>	6"	d			
Artmony TU NA NA <t< th=""><th></th><th></th><th>C1A-3"</th><th></th><th>C2A-3"</th><th></th><th></th><th></th><th></th><th></th><th>(Dup. Of C6-</th><th></th><th></th><th></th><th></th><th>D3-3"</th><th></th><th>D5-3"</th><th>D6-3"</th><th>D7-3"</th><th></th><th></th><th>D</th></t<>			C1A-3"		C2A-3"						(Dup. Of C6-					D3-3"		D5-3"	D6-3"	D7-3"			D
Arsenic 1 NA 3.79 NA 2.99 3.00 3.19 1.02 2.35 2.10 1.45 3.41 NA N	Antimony	10	NA	ND	NA	NA	ND	NA	ND	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA		_	_
Battum 1 NA 351 NA NA 213 NA 72.2 NA NA 136 NA	and the second se	1				2.99	3.00	3.19	1.02	2.35	2.10	1.45	3.41	NA	NA					_			
Beryllium 1 NA ND NA ND NA <		1		351	NA	NA	213	NA	72.2	NA	NA							the second se			_		÷ • •
Cadmium 1 NA 1.37 NA NA 1.30 NA		1	NA	ND	NA	NA	ND	NA	ND			_						_					_
Chromum 1 NA NA NA NA Str.5 NA		1	NA	1.37	NA												_				_		_
Cobait 1 NA 16.2 NA NA 14.3 NA 0.7 NA 12.3 NA	Chromium	1	NA	55.6				the second s			_									the second s	_		
Copper 1 NA 19.8 NA NA 21.5 NA 11.8 NA NA 21.0 NA NA NA 11.8 NA NA 11.8 NA NA NA NA 11.8 NA NA <td>Cobalt</td> <td>1</td> <td>NA</td> <td>16.2</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td>	Cobalt	1	NA	16.2					_					_								_	
Lead 1 NA NA NA Stop NA NA Stop NA NA <td>Copper</td> <td>1</td> <td>NA</td> <td>19.8</td> <td>NA</td> <td>NA</td> <td>21.5</td> <td>NA</td> <td>11.6</td> <td>NA</td> <td>NA</td> <td>27.8</td> <td>NA</td> <td>NA</td> <td>NA.</td> <td>NA</td> <td>NA</td> <td></td> <td>NA</td> <td><u>NA</u></td> <td>NA</td> <td>NA</td> <td>Η.</td>	Copper	1	NA	19.8	NA	NA	21.5	NA	11.6	NA	NA	27.8	NA	NA	NA.	NA	NA		NA	<u>NA</u>	NA	NA	Η.
Mercury 0.1 NA ND NA NA ND NA <	Lead	1	NA	9.87	NA	NA	9.08	NA															<u> </u>
Motogodenum 3 NA 2.42 NA NA 1.01 NA 2.33 NA	Mercury	0.1	NA	ND	NA	NA	ND	NA	ND	NA	NA	ND	NA	NA	NA	NA	NA	NA_	NA	<u>NA</u>	NA	NA	4
Nickei 2 NA You NA NA <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td>the second se</td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td></th<>														_	the second se			_					
Selentum 1 NA ND NA NA <t< td=""><td>Nickel</td><td>2</td><td></td><td>the second s</td><td></td><td></td><td>_</td><td>_</td><td>_</td><td></td><td></td><td>the second s</td><td>_</td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td>_</td><td>_</td><td>_</td></t<>	Nickel	2		the second s			_	_	_			the second s	_		_						_	_	_
Silver 1 NA ND NA		1								_										_			-
Thailium 1 NA ND NA NA <t< td=""><td>Silver</td><td>1</td><td>NA</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Silver	1	NA																				
Vanadium 1 NA 53.9 NA NA 43.9 NA 21.0 NA	Thailium	1	NA	ND	NA	NA	ND	NA	ND	<u>NA</u>	NA		NA	NA					1			1	
Zinc 5 NA 52.3 NA NA 65.9 NA NA <t< td=""><td>Vanadium</td><td>1</td><td>NA</td><td>53.9</td><td>NA</td><td></td><td></td><td>_</td><td>_</td><td>_</td><td></td><td>_</td><td></td><td></td><td></td><td></td><td>and the owner where the party is not the</td><td>_</td><td></td><td>the second s</td><td>_</td><td></td><td>_</td></t<>	Vanadium	1	NA	53.9	NA			_	_	_		_					and the owner where the party is not the	_		the second s	_		_
ASDESTOS PLM U.25% ND NA ND NA	Zinc	5	NA	52.3	NA	NA	65.9	NA	29.9	NA	NA	78.1	NA	NA	<u>NA</u>	NA	NA	NA NA		NA	NA		μ.
	Asbestos PLM	0.25%	ND	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA	NA	NA	ND	NA	NA	\downarrow
	Asbestos TEM	0.0001%	0.0002%	NA	0.0009%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.0021%	NA	NA					

Note : Results in ppm unless otherwise noted, ppm = parts per million (mg/kg), ND = None concentration, PLM=Polarized Light Microscopy, TEM=Transmission Electron Microscopy

TABLEZ Right Side

FABLE 2Its For CAM-17 Metals and Asbestosnified School District. and N. Hillcrest St., Porterville, CA

.0	o 6" depth)												Ba	ckgr	round @ 5		-Site	COMPARISON OF ON- SITE & BACKGROUND METAL CONCENTRATIONS				
			D11- 3"	D12- 3"	D13-3"	D14-3"	D15-3"	D16- 3"	D17- 3"	D18- 3"	D19- 3"	D20- 3"	D21- 3"	D22- 3"	8K1- 5'	8K2- 5'	BK3- 5'	BK4- 5'	8K6-6' (Dup. Of 8K4 6')	On-Site Mean Concen- tration	0 to 6" Back- ground Concen- tration Range	Metai Eliminated As Chemicai Of Concern?
	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	<10	<10	Yes
਼ਮੁ	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.34	_	3.81	3.49	3,95	2.59	2.34 to 4.04	
H	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	107	159	238	293	365	193.55	107 to 293	Yes
يا ست	NA	NA	NA	NA	NA NA	NA	'NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	<1.0	<1	Yes
	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1.17		1.62			1.20	1.17 to 2.14	
	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	113		68,9			56.25	61.6 to 233	
	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	13.8		14.2			12.33	13.8 to 23.1	
7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	19.8	43.4	21.1	21.9	24.6	20.18	21.1 to 43.4	Yes
8		12.0	9.11	9.43	3.88	5.69	3.74	4.84	10.1	10.1	6.38	9.50	- in the second s		5.39		8.33		8.36	8.40		See Table 6
1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	<0.1	<0.1	Yes
Ţ	NA	NA	NA N																			
\overline{Q}	NA	NA	NA	NA							_				_			_		the second s		the second s
\overline{D}	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	<1	<1	Yes
L Ù	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	<1	<1	Yes
- 7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	<1	<1	Yes
ר, ו	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	49.2		60.2	_		38.90	49.2 to 88	Yes
, , , ,	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	40.7	117	57.6	51.2	59.4	58.55	40.7 to 117	Yes
۲ ۲	NA	NA		NA	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA			
, J	NA	NA	NA	NA		0.0008%			NA	NA	NA	NA	NA	NA	NA		NA	NA	NA			
			er billion.	. Metai	l eliminated						within I	backgro	und rar	nge, Bo	/d = El	evated						

APPENDIX F

LEADSPREAD RISK ASSESSMENT SPREADSHEET

LeadSpread 9- LEAD RISK ASSESSMENT SPREADSHEET CALIFORNIA DEPARTMENT OF TOXIC SUBSTANCES CONTROL

USERS GUIDE to Leadspread Version 9

INPUT	
MEDIUM	LEVEL
Lead in Soil/Dust (µg/g)	9
Respirable Dust (µg/cubic m)	1.5

<u>OUTPUT</u>							
ENDPOINT and RECEPTOR			95th Percentile Change in Blood Pb (μg/dl)	PRG-90 (µg/g)	PRG-95 (µg/g)		
BLOOD Pb, ADULT	0.0	0.0	0.0	356	301		
BLOOD Pb, CHILD	0.1	0.1	0.2	70	59		
BLOOD Pb, PICA CHILD	0.9	1.6	1.9	6	5		
BLOOD Pb, OCCUPATIONAL	0.0	0.0	0.0	499	421		

EXPOSURE PARAMETERS					
Parameter	units	adults	children		
Days per week	days/wk	7			
Days per week, occupational	-	5			
Geometric Standard Deviation	-	1.6			
Blood lead level of concern	(µg/dl)	1.1	1		
Skin area, residential	square cm	6032	2373		
Skin area occupational	square cm	6032			
Soil adherence	µg/square cm	70	200		
Dermal uptake constant	(µg/dl)/(µg/day)	0.00027	0.00048		
Soil ingestion	mg/day	30	80		
Soil ingestion, pica	mg/day		1000		
Ingestion constant	(µg/dl)/(µg/day)	0.09	0.16		
Bioavailability	unitless	0.6			
Breathing rate	cubic meter/day	20	10		
Inhalation constant	(µg/dl)/(µg/day)	0.082	0.192		
Click here for REFERENCES					

PATHWAYS						
	Residential	Residential	Residential	Occupational	Occupational	Occupational
ADULTS	Pathway	Pathway	Pathway	Pathway	Pathway	Pathway
	Contribution	Contribution	Contribution	contribution	contribution	contribution
Pathway	PEF*	µg/dl	percent	PEF	µg/dl	percent
Soil Contact	6.8E-5	0.00	4%	4.9E-5	0.00	4%
Soil Ingestion	1.6E-3	0.01	96%	1.2E-3	0.01	96%
Inhalation	2.5E-6	0.00	0.1%	1.8E-6	0.00	0.1%

CHILDREN	Typical Pathway contribution	Typical Pathway contribution	Typical Pathway contribution	with pica Pathway contribution	with pica Pathway contribution	with pica Pathway contribution
Pathway	PEF*	µg/dl	percent	PEF	µg/dl	percent
Soil Contact	1.4E-4	0.00	1.7%		0.00	0.1%
Soil Ingestion	7.7E-3	0.07	98%	9.6E-2	0.86	100%
Inhalation	2.9E-6	0.00	0.0%		0.00	0.0%

Click here for Equations

*Pathway Exposure Factor