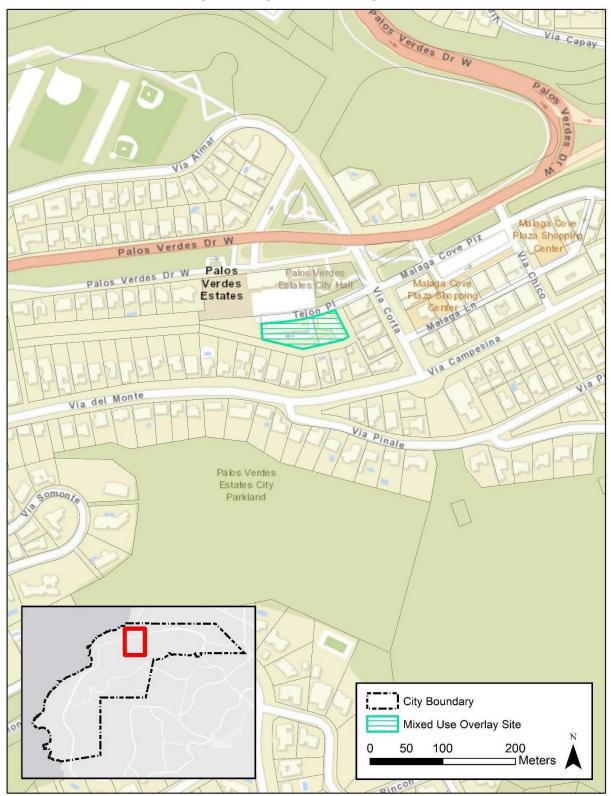
## **APPENDIX A**

### AQ, Energy, and GHG Impact Analysis

# E P D SOLUTIONS, INC


| То:   | Liza Debies, CSG Consultants, Inc.                                                                                                     |
|-------|----------------------------------------------------------------------------------------------------------------------------------------|
| From: | Elaina Chambers, Alex J. Garber, EPD Solutions, Inc.                                                                                   |
| Date: | 12/19/2024                                                                                                                             |
| Re:   | Air Quality, Energy, and Greenhouse Gas Impact Analysis for Palos Verdes Estates Housing<br>Element Project, EPD Project Number 24-103 |

This technical memorandum presents an analysis of the air quality, energy, and greenhouse gas (GHG) impacts for the Palos Verdes Estates Housing Element (proposed Project). The Project includes three sites: Malaga Cove (Project Site 1), Lunada Bay (Project Site 2), and First Church of Christ, Scientist (Project Site 3). The three Project sites are located at 316 and 304 Tejon Place (Project Site 1), 2325 Palos Verdes Drive West (Project Site 2), and 4010 Palos Verdes Drive North (Project Site 3), in the City of Palos Verdes Estates (City). The Project sites encompass five parcels identified as Assessor's Parcel Numbers (APNs) 7539-016-018 and 7539-016-018 totaling 0.68 acres for Project Site 1, APN 7542-015-025 totaling 0.68 acres for Project Site 2, and APNs 7538-027-010 and 7538-027-009 totaling 4.63 acres for Project Site 3, for a total of 5.99 acres between all three sites. The proposed Project sites are shown in Figure 1, 2, and 3, for Project Site 1, 2, and 3, respectively.

On Project Site 1 and 2 there is existing operations including 15,450 square foot (SF) of offices and 36,478 SF of commercial shops and offices respectively. For a conservative analysis, these existing buildings on Sites 1 and 2 were analyzed to be demolished, without taking any credit for existing operational emissions. The building on Project Site 3 totaling 12,082 SF would not be demolished and would remain on-site during construction. The Project analyzes the development of the three sites with three residential multi-family buildings.

The Project analyzes a total of 156 dwelling units (DU), with 74 moderate and above moderate (M/AM) income level DUs, and 82 low and very low (L/VL) income level DUs across all three Project sites. The proposed Project site locations are shown in Figures 1, 2, and 3 for Project Sites 1, 2, and 3, respectively, included at the end of this document.

To support the CEQA document, this report analyzes the proposed Project's construction and operational impacts to air quality (emission of criteria pollutants), energy usage, and GHGs using the California Emissions Estimator Model (CalEEMod Version 2022.1) land use emission model and Emission Factor (EMFAC Version 2021) model.



#### Figure 1: Project Site 1 – Malaga Cove



#### Figure 2: Project Site 2 – Lunada Bay

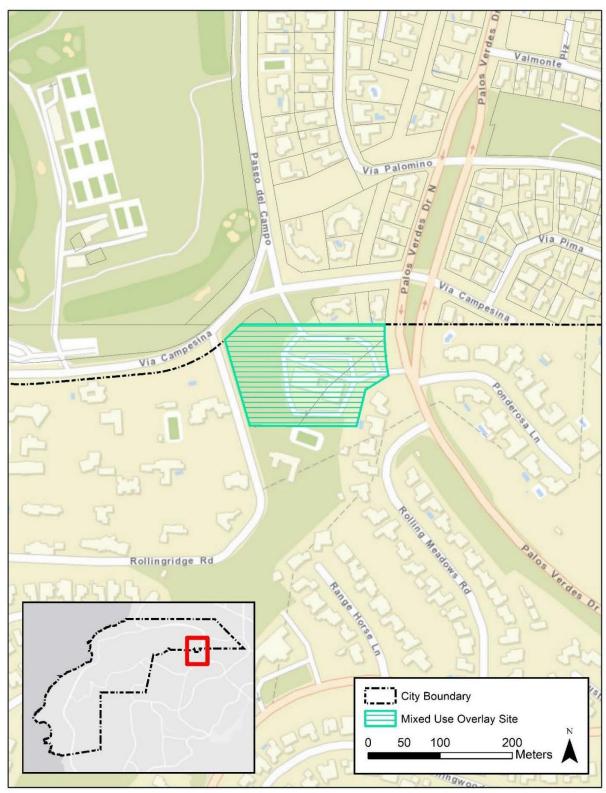



Figure 3: Project Site 3 - First Church of Christ, Scientist

#### Summary of Air Quality, Energy, and GHG Impacts

#### Air Quality

The proposed Project's maximum daily emissions (regional and local) for construction and operation would not exceed the South Coast Air Quality Management District's (SCAQMD) regional thresholds of significance. In addition, all construction activities would comply with applicable SCAQMD rules and regulations, including Rule 402, Rule 403, Rule 445, and Rule 1113:

- Rule 402, *Public Nuisance*: Prohibits the discharge of air contaminants that cause injury, nuisance, or annoyance to the public or damage to property.
- Rule 403, Fugitive Dust: Aims to minimize fugitive particulate matter dust emissions during construction activities.
- Rule 445, Wood Burning Devices: Reduce emission production of particulate matter and volatile organic compounds from wood burning devices.
- Rule 1113, Architectural Coatings: Allows only low-volatile organic compounds (VOC) paints to be used.

The individual construction activities, as well as the individual and combined site operational activities of the proposed development would also comply with applicable SCAQMD rules and regulations and not exceed any criteria pollutant thresholds. Additionally, all three of the proposed Project sites would be consistent with SCAQMD'S 2022 AQMP, reflecting adherence to regional air quality management goals and standards. Finally, odors produced during construction would be temporary and not significantly objectionable, and during operation, the proposed Project involves land uses that typically do not generate significant odor complaints and would comply with SCAQMD Rule 402. Therefore, the proposed Project would result in less-than-significant air quality impacts.

#### Energy

The proposed Project's energy consumption for construction activities related to redevelopment of the site for the new residential uses would be conditioned to require compliance with existing fuel standards, machinery efficiency standards, and California Air Resources Board (CARB) requirements that limit idling of trucks. The Project would comply with the State CEQA Guidelines for energy consumption thresholds (a) concerning wasteful, inefficient and overconsumption of energy in projects, and (b) project design impeding renewable energy development growth, respectively:

- (a) Construction activities related to the proposed Project and the associated infrastructure are not expected to result in demand for fuel greater on a per-unit-of-development basis than any other development projects in Southern California
- (b) The proposed Project would be required to meet the CCR Title 24 energy efficiency standards, comply with all applicable City energy codes and the Project buildings would install photovoltaic solar panels on all proposed multi-family residences in compliance with current Title 24 requirements. Therefore, the Project would not inhibit the use of and would allow for future flexibility relating to renewable energy.

The operation of the Project would also be similar to other residential projects within the City and would comply with Title 24 and all applicable City business and energy codes and ordinances. The Project's energy consumption for construction activities related to redevelopment of the sites for the new residential elements would be permitted to require compliance with existing fuel standards, machinery efficiency standards, and CARB requirements that limit idling of trucks. Through compliance with existing standards, the Project would not result in a fuel demand on a per-development basis that is greater than other development projects in Southern California. There are no unusual Project characteristics that would cause the use of construction equipment that would be less energy efficient compared with other similar construction sites in other parts of the state. Therefore, the construction and operation of the Project sites would result in a less-than-significant impact related to inefficient, wasteful, or unnecessary energy use, and no mitigation would be required.

#### **GHG Emissions**

The proposed Project's total construction and operational GHG emissions for Project Sites 1, 2, and 3 would total 1,146 metric tons of carbon dioxide equivalent (MTCO<sub>2</sub>e), which is below the SCAQMD's significance threshold of 3,000 MTCO<sub>2</sub>e per year. Additionally, the proposed Project would be consistent with the City's GHG reduction plans and policies within the General Plan and the 2022 Scoping Plan. Therefore, the Project would have a less-than-significant impact on GHG emissions.

#### Project Site 1: Malaga Cove

Project Site 1, Malaga Cove, is located at 316 and 304 Tejon Place in Palos Verdes Estates. The site is 0.68 acres and is made up of 2 parcels, identified as APN 7539-016-018 and APN 7539-016-018. Project Site 1 is the northernmost site within the Project, and it contains two 1 and 2 -story office buildings totaling 15,450 square feet for an FAR of 0.52. This site is the westernmost portion of the Malaga Cove area. Table 1, *Project Site 1 Construction Schedule*, shows an estimated construction schedule, assuming a Project specific development would be ready for construction by the fourth quarter of 2025. Construction would be expected to last approximately 6 months.

| Activity              | Start Date | End Date   | Total Working Days |
|-----------------------|------------|------------|--------------------|
| Demolition            | 12/1/2025  | 12/15/2025 | 10                 |
| Site Preparation      | 12/16/2025 | 12/17/2025 | 1                  |
| Grading               | 12/18/2025 | 12/20/2025 | 2                  |
| Building Construction | 12/21/2025 | 5/10/2026  | 100                |
| Paving                | 5/11/2026  | 5/18/2026  | 5                  |
| Architectural Coating | 5/19/2026  | 5/26/2026  | 5                  |

#### Table 1: Project Site 1 Construction Schedule

Source: CalEEMod Output Sheets (see Attachment A).

#### Air Quality

#### Methodology and Model Inputs

The following non-default assumptions and adjustments were used in the CalEEMod emission model for this analysis:

- Land Use: The lot acreage was adjusted to match the Project site acreage.
- Construction: It was assumed that all equipment would be used for 8 hours per workday. Tractors/loaders/backhoes were replaced with crawler tractors in the site preparation and grading phases.
- Demolition: The demolition of the existing buildings and hardscape is anticipated to amount to 2,554 tons of debris. See Attachment E for demolition calculations.
- Operations: Trip rates for Apartments Mid Rise were adjusted to match the ITE *Trip Generation Manual* 11th Edition rates for Affordable Housing and Multifamily Housing (Mid-Rise).
- Hearths, wood stoves, and wood fireplaces were removed in accordance with SCAQMD Rule 445, which prohibits the installation of wood-burning devices in effort to reduce particulate matter and reduce production of VOCs. Gas and propane fireplaces were removed as neither are anticipated for the future residential developments.

To calculate the operational impacts, the air quality emissions were estimated using CalEEMod. The passenger vehicles were analyzed using the CalEEMod default trip distance information.

#### **Regional Emissions**

The SCAQMD has adopted maximum daily emission thresholds (pounds/day) for criteria pollutants during construction and operation of a project.<sup>1</sup> While incremental regional air quality impacts of an individual project are generally very small and difficult to measure, SCAQMD's regional maximum emission thresholds set standards to reduce the burden of SCAQMD to attain and maintain ambient air quality standards. These emission thresholds apply to emissions generated both from on-site sources (such as off-road construction equipment and fugitive dust) and off-site sources (vehicle travel arriving to and leaving from the site). The regional thresholds for criteria pollutants are listed in Tables 2, 3, and 5 along with the CalEEMod estimated Project Site 1 emissions. To calculate the operational impacts, the air quality emissions for the land use were estimated using CalEEMod and no credit was taken for the existing office or commercial buildings on the site. As shown in Table 2 and 3, Project Site 1 would generate emissions below the SCAQMD construction and operational thresholds, and therefore result in less-than-significant regional construction and operational air quality impacts.

| Construction Activity               | Maximum Daily Regional Emissions<br>(pounds/day) |      |      |                 |              |       |  |  |
|-------------------------------------|--------------------------------------------------|------|------|-----------------|--------------|-------|--|--|
|                                     | ROG                                              | NOx  | со   | SO <sub>2</sub> | <b>PM</b> 10 | PM2.5 |  |  |
|                                     |                                                  | 202  | 5    | ·               |              |       |  |  |
| Demolition                          | 1.5                                              | 18.5 | 15.9 | 0.1             | 5.5          | 1.4   |  |  |
| Site Preparation                    | 0.7                                              | 5.6  | 6.4  | <0.1            | 0.7          | 0.4   |  |  |
| Grading                             | 1.6                                              | 14.7 | 14.1 | <0.1            | 2.8          | 1.6   |  |  |
| Building Construction               | 0.8                                              | 7.6  | 10.1 | <0.1            | 0.6          | 0.4   |  |  |
| Maximum Daily<br>Emissions 2025     | 1.6                                              | 18.5 | 15.9 | 0.1             | 5.5          | 1.6   |  |  |
| ·                                   |                                                  | 202  | 6    |                 |              |       |  |  |
| Building Construction               | 0.8                                              | 7.1  | 10.2 | <0.1            | 0.5          | 0.3   |  |  |
| Paving                              | 0.7                                              | 5.2  | 7.4  | <0.1            | 0.4          | 0.3   |  |  |
| Architectural Coating               | 24.4                                             | 1.2  | 1.7  | <0.1            | 0.1          | <0.1  |  |  |
| Maximum Daily<br>Emissions 2026     | 24.4                                             | 18.5 | 15.9 | <0.1            | 5.5          | 1.6   |  |  |
| Maximum Daily<br>Emission 2025-2026 | 24.4                                             | 18.5 | 15.9 | 0.1             | 5.5          | 1.6   |  |  |
| SCAQMD Significance<br>Thresholds   | 75                                               | 100  | 550  | 150             | 150          | 55    |  |  |
| Threshold Exceeded?                 | Νο                                               | No   | No   | No              | No           | No    |  |  |

#### **Table 2: Project Site 1 Regional Construction Emission Estimates**

Notes: ROG = reactive organic gases,  $NO_X$  = nitrogen oxides, CO = carbon monoxide,  $SO_2$  = sulfur dioxide,  $PM_{10}$  = particulate matter 10 microns in diameter,  $PM_{2.5}$  = particulate matter 2.5 microns in diameter Source: Site 1 Malaga Cove CalEEMod Output Sheets (see Attachment A).

<sup>&</sup>lt;sup>1</sup> SCAQMD. (March 2023). South Coast AQMD Air Quality Significance Thresholds. <u>https://www.aqmd.gov/docs/default-source/ceqa/handbook/south-coast-aqmd-air-quality-significance-thresholds.pdf?sfvrsn=25.</u>

| Operational Activity                   | Maximum Daily Regional Emissions<br>(pounds/day) |      |      |                 |              |       |  |  |  |
|----------------------------------------|--------------------------------------------------|------|------|-----------------|--------------|-------|--|--|--|
|                                        | ROG                                              | NOx  | со   | SO <sub>2</sub> | <b>PM</b> 10 | PM2.5 |  |  |  |
| Mobile                                 | 0.3                                              | 0.3  | 3.0  | <0.1            | 0.7          | 0.2   |  |  |  |
| Area                                   | 0.6                                              | <0.1 | 1.5  | <0.1            | <0.1         | <0.1  |  |  |  |
| Energy                                 | <0.1                                             | 0.1  | <0.1 | <0.1            | <0.1         | <0.1  |  |  |  |
| Total Project<br>Operational Emissions | 0.9                                              | 0.3  | 4.5  | <0.1            | 0.7          | 0.2   |  |  |  |
| SCAQMD Significance<br>Thresholds      | 55                                               | 55   | 550  | 150             | 150          | 55    |  |  |  |
| Threshold Exceeded?                    | Νο                                               | No   | No   | No              | No           | No    |  |  |  |

#### Table 3: Project Site 1 Regional Operational Emission Estimates

Notes: ROG = reactive organic gases,  $NO_X = nitrogen oxides$ , CO = carbon monoxide,  $SO_2 = sulfur dioxide$ ,

 $PM_{10} = particulate matter 10$  microns in diameter, PM2.5 = particulate matter 2.5 microns in diameter

Source: Site 1 Malaga Cove CalEEMod Output Sheets (see Attachment A).

#### Local Emissions

Localized significance thresholds (LSTs) were also adopted by the SCAQMD due to project-related construction or operational air emissions having the potential to exceed the State and national air quality standards in the project vicinity, while not exceeding the regional emission significance thresholds adopted by the SCAQMD. These thresholds set the maximum rates of daily construction or operational emissions from a project site that would not exceed a national or State ambient air quality standard.<sup>2</sup> The differences between regional thresholds and LSTs are as follows:

- 1. Regional thresholds include all sources of project construction and operational emissions generated from on-site and off-site emission sources whereas the LSTs only consider the emissions generated from on-site emission sources.
- 2. LSTs only apply to carbon monoxide (CO), nitrogen oxides (NO<sub>x</sub>), and particulate matter (PM<sub>10</sub> and PM<sub>2.5</sub>), while regional thresholds include both reactive organic gases (ROG) and sulfur dioxide (SO<sub>2</sub>).
- 3. Regional thresholds apply to emission sources located anywhere within the SCAQMD whereas the LSTs are location dependent and rely on the size of the project and emission location relative to the nearest sensitive receptor.

SCAQMD provides screening tables (Appendix A of the SCAQMD 2008 Final Localized Significance Threshold Methodology) for projects that disturb less than or equal to 5 acres in a day.<sup>3</sup> These tables were created to easily determine if the daily emissions of NO<sub>X</sub>, CO,  $PM_{10}$ , and  $PM_{2.5}$  from a project could result in a significant impact to the local air quality. The thresholds are determined by:

• Source receptor area (SRA), which is the geographic area within the SCAQMD that can act as both a source of emissions and a receptor of emission impacts (all three Project sites are located within SRA 3, Southwest Los Angeles County Coastal);

<sup>&</sup>lt;sup>2</sup> SCAQMD. (2008). Final Localized Significance Threshold Methodology.

http://www.aqmd.gov/docs/defaultsource/ceqa/handbook/localized-significance-thresholds/final-lst-methodologydocument.pdf.

<sup>&</sup>lt;sup>3</sup> SCAQMD. (2008). Final Localized Significance Threshold Methodology Appendix C. <u>http://www.aqmd.gov/docs/default-source/ceqa/handbook/localized-significance-thresholds/appendix-c-mass-rate-lst-look-up-tables.pdf?sfvrsn=2.</u>

- Size of grading disturbance (construction)/size of the project (operation); and
- Distance to the nearest sensitive receptor, which is defined as an individual who is most susceptible to negative health effects when exposed to air pollutants and includes children, the elderly, and adults with chronic health issues. Locations for such receptors include residences, schools, elderly care centers, and hospitals.

Table 4 shows the amount of ground disturbance that would occur during the demolition, site preparation, and grading phases for construction of Project Site 1. Table 5 shows the estimated maximum daily construction emissions and thresholds for the proposed Project Site 1.

As can be seen in Table 4, the phase with the most ground disturbance for Project Site 1 would be the grading phase, with a maximum of 1.5 acres of ground disturbance per day. However, as the site is confined to 0.68 acres, no more than 1 acre would be disturbed on any one day during construction. Thus, the 1-acre LSTs have been used for construction emissions as the lowest threshold provided by SCAQMD for the size of Project Site 1.<sup>4</sup> Distance to the nearest sensitive receptor also determines the emission thresholds. The sensitive receptors closest to Project Site 1 includes residential homes about 10.5 meters (34 feet) south of the site's boundary; therefore, the construction emission threshold for 25 meters was used, as the lowest threshold provided. As shown in Table 5, Project Site 1 would not exceed the SCAQMD LST construction emission thresholds and would therefore have a less-than-significant localized construction air quality impact.

| Activity         | Equipment Type                    | Equipment<br>Quantity | Operating<br>Hours per<br>Day | Acres Disturbed<br>per piece of<br>Equipment per Day | Acres<br>Disturbed<br>per Day |  |  |
|------------------|-----------------------------------|-----------------------|-------------------------------|------------------------------------------------------|-------------------------------|--|--|
|                  | Rubber Tired Dozers               | 1                     | 8                             | 0.5                                                  | 0.5                           |  |  |
| Demolition       | Concrete/Industrial Saws          | 1                     | 8                             | 0                                                    | 0                             |  |  |
| Demolition       | Tractors/Loaders/Backhoes         | 2                     | 8                             | 0                                                    | 0                             |  |  |
|                  |                                   |                       | Total Ac                      | cres Disturbed Per Day                               | 0.5                           |  |  |
|                  | Graders                           | 1                     | 8                             | 0.5                                                  | 0.5                           |  |  |
| Site Preparation | Tractors/Loaders/Backhoes         | 0                     | 8                             | 0                                                    | 0                             |  |  |
|                  | Crawler Tractors                  | 1                     | 8                             | 0.5                                                  | 0.5                           |  |  |
|                  | Total Acres Disturbed Per Day 1.0 |                       |                               |                                                      |                               |  |  |
|                  | Graders                           | 1                     | 8                             | 0.5                                                  | 0.5                           |  |  |
|                  | Rubber Tired Dozers               | 1                     | 8                             | 0.5                                                  | 0.5                           |  |  |
| Grading          | Crawler Tractors                  | 1                     | 8                             | 0.5                                                  | 0.5                           |  |  |
|                  | Tractors/Loaders/Backhoes         | 0                     | 8                             | 0                                                    | 0                             |  |  |
|                  |                                   | •                     | Total Ac                      | res Disturbed Per Day                                | 1.5                           |  |  |
|                  |                                   |                       | Maximum Ac                    | res Disturbed Per Day                                | 1.5                           |  |  |

Source: Site 1 Malaga Cove CalEEMod Output Sheets (see Attachment A).

<sup>&</sup>lt;sup>4</sup> SCAQMD. (2011) Fact Sheet for Applying CalEEMod to Localized Significance Thresholds. https://www.aqmd.gov/docs/default-source/ceqa/handbook/localized-significance-thresholds/caleemodguidance.pdf

|                                  | Maximum Daily Localized Emissions |      |              |       |  |  |  |
|----------------------------------|-----------------------------------|------|--------------|-------|--|--|--|
| Construction Activity            | (pounds/day)                      |      |              |       |  |  |  |
|                                  | NOx                               | со   | <b>PM</b> 10 | PM2.5 |  |  |  |
|                                  | 202                               | 5    |              |       |  |  |  |
| Demolition                       | 12.8                              | 13.2 | 4.2          | 1.0   |  |  |  |
| Site Preparation                 | 5.6                               | 6.1  | 0.6          | 0.4   |  |  |  |
| Grading                          | 14.7                              | 13.6 | 2.7          | 1.6   |  |  |  |
| Building Construction            | 7.3                               | 9.0  | 0.3          | 0.3   |  |  |  |
| Maximum Daily Emissions 2025     | 14.7                              | 13.6 | 4.2          | 1.6   |  |  |  |
|                                  | 202                               | 6    |              |       |  |  |  |
| Building Construction            | 6.9                               | 9.0  | <0.1         | 0.3   |  |  |  |
| Paving                           | 5.1                               | 6.2  | 0.2          | 0.2   |  |  |  |
| Architectural Coating            | 1.1                               | 1.5  | <0.1         | <0.1  |  |  |  |
| Maximum Daily Emissions 2026     | 6.9                               | 9.0  | 0.2          | 0.3   |  |  |  |
| Maximum Daily Emission 2025-2026 | 14.7                              | 13.6 | 4.2          | 1.6   |  |  |  |
| SCAQMD Significance Thresholds   | 91                                | 664  | 5            | 3     |  |  |  |
| Threshold Exceeded?              | No                                | No   | No           | No    |  |  |  |

#### Table 5: Localized Construction Emission Estimates for Project Site 1

Notes:  $NO_x$  = nitrogen oxides, CO = carbon monoxide,  $PM_{10}$  = particulate matter 10 microns in diameter,  $PM_{2.5}$  = particulate matter 2.5 microns in diameter.

Source: Site 1 Malaga Cove CalEEMod Output Sheets (see Attachment A).

According to the SCAQMD LST methodology, LSTs apply to a project's stationary sources and onsite mobile emissions.<sup>5</sup> Projects that involve mobile sources that spend long periods queuing and idling at a site, such as transfer facilities or warehousing and distribution buildings, have the potential to exceed the operational localized significance thresholds. The potential land use at Project Site 1 is anticipated to not involve vehicles idling or queueing for long periods of time. Therefore, due to the lack of significant stationary source emissions, impacts related to operational localized significance thresholds are presumed to be less than significant and an operational LST analysis was dismissed for the site.

<sup>&</sup>lt;sup>5</sup> SCAQMD. (2008). Final Localized Significance Threshold Methodology Appendix C. <u>http://www.aqmd.gov/docs/default-source/ceqa/handbook/localized-significance-thresholds/appendix-c-mass-rate-lst-look-up-tables.pdf?sfvrsn=2.</u>

#### <u>Energy</u>

#### Thresholds

The State CEQA Guidelines do not have specific thresholds for energy consumption. Rather, the question in Appendix G: VI Energy (a) asks, "[Would the proposed Project] Result in potentially significant environmental impact due to wasteful, inefficient, or unnecessary consumption of energy resources during project construction or operation?" and in (b) asks "[Would the project] Conflict with or obstruct a state or local plan for renewable energy or energy efficiency?"<sup>6</sup> Therefore, for the purpose of this analysis, a significant impact would occur if:

- (a) The project design and/or location encourages wasteful, inefficient, and unnecessary consumption of energy, especially fossil fuels such as coal, natural gas, and petroleum, as well as the use of fuel by vehicles anticipated to travel to and from the project.
- (b) The project design impedes the growth of future renewable energy developments.

Threshold (a) is analyzed in this analysis for each Project Site independently, and both thresholds are analyzed for the Project as a whole under the *Project Sites Total* section at the end of this report.

#### Methodology

Southern California Edison and Southern California Gas Company would provide electricity and natural gas respectively for construction and operation of the proposed Project Site 1. The following assumptions were used to calculate the energy (electricity, natural gas, and petroleum) consumption of Project Site 1:

- Construction equipment fuel consumption was derived from the CARB OffRoad2021 emission model.
- Fuel consumption from vehicle travel was derived from the CARB EMFAC2021 emission model.
- Electrical and natural gas usage was derived from CalEEMod Version 2022.1.

#### **Energy Consumption**

#### Construction

#### Electricity and Natural Gas Usage

Due to Project Site 1's size and the fact that construction is temporary, the electricity used during construction of Project Site 1 would be substantially less than that required for its operation and would have a negligible contribution to the Project's overall energy consumption. The electric power used would be for as-necessary lighting and electronic equipment such as computers inside temporary construction trailers. Natural gas is not anticipated to be needed for construction activities. Any consumption of natural gas would be minor and negligible in comparison to the usage during the operation of the site.

#### Petroleum Fuel Usage

The equipment associated with construction activities (off-road/heavy duty vehicles) would rely on diesel fuel as would vendor and haul trucks involved in delivering building materials and removing the demolition debris from Project Site 1. Construction workers would travel to and from the site throughout the duration of construction, and for a conservative analysis, it is assumed that construction workers would travel in gasoline-powered passenger vehicles. Table 6 lists the total fuel consumption and horsepower-hour data contained

California Energy Commission. (2023). CEQA Statutes and Guidelines Attachment 10 Appendix G: Environmental Checklist Form. https://www.energy.ca.gov/sites/default/files/2024-01/11\_Attachment\_10\_-\_Appendix\_G\_from\_CEQA\_Handbook\_ada.docx

within the CARB OffRoad2021 emission model for specific types of diesel construction equipment during the construction phase total. It should be noted that the total fuel consumption is a conservative analysis and would likely overstate the amount of fuel usage, as specific construction equipment is not expected to operate during the entire duration of the construction activity (i.e., crane). Table 7 summarizes Project Site 1's construction vehicle fuel usage based on vehicle miles traveled and fuel usage factors contained in the CARB EMFAC2021. The trips included are worker vehicles, vendor vehicles, and haul vehicles. Table 8, *Project Site 1 Construction Fuel Usage*, shows the overall fuel consumption for Project construction.

| Activity              | Equipment                 | Number<br>of<br>Equipment<br>Per Day | Hours<br>per<br>day | Horse-<br>power | Load<br>Factor | Days of<br>Construction | Total<br>Horsepower-<br>hours | Fuel Rate<br>(gal/hp-hr) | Fuel Use<br>(gallons) |
|-----------------------|---------------------------|--------------------------------------|---------------------|-----------------|----------------|-------------------------|-------------------------------|--------------------------|-----------------------|
|                       | Concrete/Industrial Saws  | 1                                    | 8                   | 33              | 0.73           | 10                      | 1,927                         | 0.04200992               | 81                    |
| Demolition            | Rubber Tired Dozers       | 1                                    | 8                   | 367             | 0.4            | 10                      | 11,744                        | 0.04745478               | 557                   |
| -                     | Tractors/Loaders/Backhoes | 2                                    | 8                   | 84              | 0.37           | 10                      | 4,973                         | 0.05312078               | 264                   |
|                       | Graders                   | 1                                    | 8                   | 367             | 0.4            | 1                       | 1,174                         | 0.051539291              | 61                    |
| Site Preparation      | Crawler Tractors          | 1                                    | 8                   | 84              | 0.37           | 1                       | 249                           | 0.05048826               | 13                    |
|                       | Graders                   | 1                                    | 8                   | 148             | 0.41           | 2                       | 971                           | 0.05153929               | 50                    |
| Grading               | Rubber Tired Dozers       | 1                                    | 8                   | 367             | 0.4            | 2                       | 2,349                         | 0.04745478               | 111                   |
| -                     | Crawler Tractors          | 1                                    | 8                   | 87              | 0.43           | 2                       | 599                           | 0.05048826               | 30                    |
|                       | Cranes                    | 1                                    | 8                   | 367             | 0.29           | 100                     | 26,240                        | 0.05301236               | 1,397                 |
| Building Construction | Forklifts                 | 2                                    | 8                   | 82              | 0.2            | 100                     | 49,728                        | 0.05325396               | 2,642                 |
| -                     | Tractors/Loaders/Backhoes | 2                                    | 8                   | 84              | 0.37           | 100                     | 1,361                         | 0.05312078               | 70                    |
|                       | Pavers                    | 1                                    | 8                   | 81              | 0.42           | 5                       | 1,361                         | 0.05151654               | 70                    |
| <b>.</b> .            | Cement and Mortar Mixers  | 4                                    | 8                   | 10              | 0.56           | 5                       | 896                           | 0.05312078               | 48                    |
| Paving                | Rollers                   | 1                                    | 8                   | 36              | 0.38           | 5                       | 547                           | 0.05259167               | 29                    |
|                       | Tractors/Loaders/Backhoes | 1                                    | 8                   | 84              | 0.37           | 5                       | 1,243                         | 0.05312078               | 66                    |
| Architectural Coating | Air Compressors           | 1                                    | 8                   | 37              | 0.48           | 5                       | 710                           | 0.030007254              | 21                    |
|                       |                           |                                      |                     |                 | 1              |                         |                               | Total                    | 9,954                 |

#### Table 6: Construction Equipment Fuel Usage for Project Site 1

Source: Site 1 Malaga Cove CalEEMod Output Sheets, Fuel Calculation Sheets (see Attachment A, D)

| Construction<br>Source | Total Number of<br>Trips | VMT    | Fuel Rate | Gallons of<br>Diesel Fuel | Gallons of<br>Gasoline Fuel |
|------------------------|--------------------------|--------|-----------|---------------------------|-----------------------------|
| Haul Trucks            | 114                      | 4,561  | 6.21      | 735                       | 0                           |
| Vendor Trucks          | 400                      | 8,160  | 8.98      | 909                       | 0                           |
| Worker Vehicles        | 2,031                    | 75,147 | 28.86     | 0                         | 2,604                       |
|                        |                          |        | Total     | 1,643                     | 2,604                       |

#### Table 7: Project Site 1 Estimated Construction Vehicle Fuel Usage

Source: Site 1 Malaga Cove CalEEMod Output Sheets, Fuel Calculation Sheets (see Attachment A, D).

#### Table 8: Project Site 1 Total Construction Fuel Usage

| Construction Source             | Gallons of Diesel Fuel | Gallons of Gasoline Fuel |
|---------------------------------|------------------------|--------------------------|
| Construction Vehicles           | 1,643                  | 2,604                    |
| Off-Road Construction Equipment | 9,954                  | 0                        |
| Total                           | 11,597                 | 2,604                    |

Source: Site 1 Malaga Cove CalEEMod Output Sheets, Fuel Calculation Sheets (see Attachment A, D).

#### Operation

The operation of Project Site 1 would consume electricity, natural gas, and petroleum. The energy consumption can be found in Table 9, *Project Site 1 Annual Operational Energy Requirements*, below. Electricity and natural gas consumption can be found in the CalEEMod Output Sheets attached (Attachment A). The gasoline consumption rates utilize the same assumptions that were used for the worker vehicles. The potential land use at Project Site 1 is anticipated to utilize energy consistent with other similarly sized projects and would thus not constitute an inefficient use of energy. Therefore, the proposed Project would result in less-than-significant energy impacts without requiring mitigation.

#### Table 9: Project Site 1 Annual Operational Energy Requirements

| Electricity (Kilowatt-Hours)                  |                |  |  |  |
|-----------------------------------------------|----------------|--|--|--|
| 75,98                                         | 38             |  |  |  |
| Natural Gas (Thousands British Thermal Units) |                |  |  |  |
| 222,1                                         | 37             |  |  |  |
| Petroleum (Gasolin                            | e) Consumption |  |  |  |
| Annual VMT Gallons of Gasoline Fuel           |                |  |  |  |
| 340,868 11,813                                |                |  |  |  |

Source: Site 1 Malaga Cove CalEEMod Output Sheets (see Attachment A).

Further, seen in EPD Solution's Palos Verdes Estates (PVE) Housing Element Vehicle Miles Traveled (VMT) Screening Analysis, Site 1 would include housing in close proximity to employment opportunity land uses, and result in a less than significant VMT impact.

#### Future Renewable Energy

Project Site 1 would be required to meet the CCR Title 24 energy efficiency standards in effect during permitting of proposed Project and comply with all applicable City energy codes. The City's administration

of the CCR Title 24 requirements includes review of design components and energy conservation measures that occurs during the permitting process, which ensures that all requirements are met. Project Site 1's residential building would require solar installation in compliance with the current Title 24 requirements for multi-family housing. In addition, Project Site 1 design and operation would comply with State Building Energy Efficiency Standards, appliance efficiency regulations, and green building standards. As such, Project Site 1 would not inhibit the use of and would allow for future flexibility relating to renewable energy.

#### Conclusion

Project Site 1's energy consumption for construction activities related to redevelopment of the site with mixeduse residential and commercial uses would be required to comply with existing fuel standards, machinery efficiency standards, and CARB requirements that limit idling of trucks. The Project would comply with the State CEQA Guidelines for energy consumption thresholds (a), concerning wasteful, inefficient and overconsumption of energy in project: Construction activities related to the Project Site 1 and the associated infrastructure are not expected to result in demand for fuel greater on a per-unit-of-development basis than any other development projects in Southern California. Also, CCR Title 13, Motor Vehicles, section 2449(d)(3) Idling, limits idling times of construction vehicles to no more than 5 minutes, thereby precluding unnecessary and wasteful consumption of fuel due to unproductive idling of construction equipment.

Through compliance with existing standards, Project Site 1 would not result in a demand for fuel greater on a per-development basis than other development projects in Southern California. There are no unusual site characteristics that would cause the use of construction equipment that would be less energy efficient compared with other similar construction sites in the state. The energy consumption for construction would also be temporary and localized. Energy consumption from the operation of the proposed Project is also similar to that of other mixed-use projects, and Project Site 1 would comply with Title 24 as well as all applicable City business and energy codes and ordinances. Further, seen in EPD Solution's Palos Verdes Estates (PVE) Housing Element Vehicle Miles Traveled (VMT) Screening Analysis, Site 1 would include housing in close proximity to employment opportunity land uses, and result in a less than significant VMT impact. Additionally, the development of the proposed project would comply with the Title 24 residential solar requirements and would also not interfere with the growth of future renewable energy infrastructure. Therefore, the construction and operation of Project Site 1 would result in a less-than-significant impact related to energy and no mitigation would be required.

#### Greenhouse Gas Emissions

#### **Regulatory Background and Thresholds**

California State Executive Order S-3-05, issued by Governor Arnold Schwarzenegger in June 2005, established comprehensive GHG reduction targets for the State.<sup>7</sup> It mandated reducing GHG emissions to 2000 levels by 2010, to 1990 levels by 2020, and to 80 percent below 1990 levels by 2050. This Executive Order laid the foundation for subsequent climate change mitigation efforts in California, including the development of various policies and programs aimed at reducing emissions across sectors such as transportation, energy, and industry. The objective of the Executive Order is to contribute to capping worldwide carbon dioxide (CO<sub>2</sub>) concentrations at 450 ppm, stabilizing global climate change.

SCAQMD convened a GHG Emissions CEQA Significance Threshold Working Group to help lead agencies determine significance thresholds for GHG emissions when SCAQMD is not the lead agency. The last working group was held in September 2010 (Meeting No. 15) and proposed a tiered approach (Tier 1 to Tier 5), equivalent to the existing consistency determination requirements in CEQA Guidelines Sections 15064(h)(3), 15125(d), or 15152(a).<sup>8</sup> This assessment will apply the Tier 3 (Numerical Screening Thresholds) approach. Tier 3 consists of screening values which the lead agency can choose from, but it must be consistent with all projects within its jurisdiction. A project's construction emissions are averaged over 30 years and are added to the project's operational emissions. If a project's emissions are below one of the following screening thresholds, then the project impact would be less than significant:

- Option 1, all land use types: 3,000 MTCO<sub>2</sub>e per year
- Option 2, based on land use type:
  - Residential: 3,500 MTCO<sub>2</sub>e per year
  - Commercial: 1,400 MTCO<sub>2</sub>e per year
  - Mixed-use: 3,000 MTCO<sub>2</sub>e per year

The City has not adopted an option for GHG emission thresholds. Therefore, the recommended SCAQMD threshold of 3,000 MTCO<sub>2</sub>e per year seen in Option 1, for all land use types, is used in this analysis for all three Project sites as a more conservative threshold compared to Option 2's residential threshold.

#### Project GHG Emissions

Project Site 1's construction GHG emissions are shown in Table 10, Project Site 1 Construction GHG Emissions, and the site's overall construction and operational emissions are shown in Table 11, Project Site 1 Total GHG Emissions, below. These emissions were calculated using the CalEEMod model. The construction emissions are amortized over 30 years and added to the operational GHG emissions.<sup>9</sup> As shown in Table 11, Project Site 1's construction GHG emissions would total 155 MTCO<sub>2</sub>e per year, which is below the SCAQMD significance threshold of 3,000 MTCO<sub>2</sub>e per year.

<sup>&</sup>lt;sup>7</sup> Executive Department State of California Executive Order S-3-05 <u>https://www.library.ca.gov/wp-content/uploads/GovernmentPublications/executive-order-proclamation/5129-5130.pdf</u>

<sup>&</sup>lt;sup>8</sup> SCAQMD. (2010). Minutes of the GHG CEQA Significance Threshold Stakeholder Working Group #15. <u>http://www.aqmd.gov/docs/default-source/ceqa/handbook/greenhouse-gases-(ghg)-ceqa-significance-thresholds/year-</u>2008-2009/ghg-meeting-15/ghg-meeting-15-minutes.pdf.

<sup>&</sup>lt;sup>9</sup> SCAQMD. (2008). Interim CEQA GHG Significance Threshold for Stationary Sources, Rules and Plans. <u>http://www.aqmd.gov/docs/default-source/ceqa/handbook/greenhouse-gases-(ghg)-ceqa-significance-thresholds/ghgboardsynopsis.pdf.</u>

| Activity                                | Annual GHG Emissions<br>(MTCO2e) |
|-----------------------------------------|----------------------------------|
| 2025                                    | 42                               |
| 2026                                    | 97                               |
| Total Emissions                         | 139                              |
| Total Emissions Amortized Over 30 Years | 5                                |

#### Table 10: Project Site 1 Construction GHG Emissions

Source: Site 1 Malaga Cove CalEEMod Output Sheets (see Attachment A).

| Activity                                         | Annual GHG Emissions<br>(MTCO2e) |
|--------------------------------------------------|----------------------------------|
| Mobile                                           | 119                              |
| Area                                             | 1                                |
| Energy                                           | 24                               |
| Water                                            | 2                                |
| Waste                                            | 5                                |
| Refrigerant                                      | 0                                |
| Total Project Site 1 Gross Operational Emissions | 150                              |
| Project Site 1 Construction Emissions            | 5                                |
| Total Project Site 1 Emissions                   | 155                              |
| Significance Threshold                           | 3,000                            |
| Threshold Exceeded?                              | Νο                               |

#### Table 11: Project Site 1 Total GHG Emissions

Source: Site 1 Malaga Cove CalEEMod Output Sheets (see Attachment A).

#### Conclusion

Project Site 1's construction and operational GHG emissions would total 155 MTCO<sub>2</sub>e per year, below the SCAQMD significance threshold of 3,000 MTCO<sub>2</sub>e per year. Therefore, Project Site 1 would have a less-than-significant impact on GHG emissions.

#### Project Site 2: Lunada Bay Patio

Project Site 2, the Lunada Bay Patio, is located at 2325 Palos Verdes Drive West within Palos Verdes Estates and consists of a single parcel, identified as APN 7542-015-025, totaling 0.68 acres. The site contains one building consisting of one story over one level of at-grade parking in a "podium" condition and two-story liner shops/offices. The building area is 36,478 square feet, which was analyzed to be demolished for a conservative analysis. Table 12, *Project Site 2 Construction Schedule*, shows an estimated construction schedule, assuming a Project specific development would be ready for construction by the fourth quarter of 2025. Construction would be expected to last approximately 6 months.

| Activity              | Start Date  | End Date   | Total Working Days |
|-----------------------|-------------|------------|--------------------|
| Demolition            | 12/1/2025   | 12/19/2025 | 15                 |
| Site Preparation      | 12/120/2025 | 12/22/2025 | 1                  |
| Grading               | 12/23/2025  | 12/24/2025 | 2                  |
| Building Construction | 12/25/2025  | 5/13/2026  | 100                |
| Paving                | 5/14/2026   | 5/20/2026  | 5                  |
| Architectural Coating | 5/21/2026   | 5/27/2026  | 5                  |

#### Table 12: Project Site 2 Construction Schedule

Source: Site 2 Lunada Bay CalEEMod Output Sheets (see Attachment B).

#### <u>Air Quality</u>

#### Methodology and Model Inputs

The following non-default assumptions and adjustments were used in the CalEEMod emission model for this analysis:

- Land Use: The lot acreage was adjusted to match the Project site acreage.
- Construction: Demolition was changed from 10 days to 15 days based on amount of debris anticipated.
- Construction: It was assumed that all equipment would be used for 8 hours per workday. Tractors/loaders/backhoes were replaced with crawler tractors in the site preparation and grading phases.
- Demolition: The demolition of the existing buildings and hardscape is anticipated to amount to 3,447 tons of debris. See Attachment E for demolition calculations.
- Operations: Adjusted trip rate for Apartments Mid Rise to match ITE 11th edition trip rate to match ITE 11th Edition rates for Affordable Housing and Multifamily Housing (Mid-Rise).
- Hearths, wood stoves and wood fireplaces were removed in accordance with SCAQMD Rule 445, which prohibits the installation of wood-burning devices in effort to reduce particulate matter and reduce production of VOCs. Removed gas and propane fireplaces as neither are anticipated for the future residential developments.

The passenger vehicles were analyzed using the CalEEMod default trip distance information.

#### **Regional Emissions**

As mentioned previously, the SCAQMD has set maximum daily emission thresholds (pounds/day) for criteria pollutants during construction and operation phases of projects.<sup>10</sup> The Project's estimated emissions were calculated by using CalEEMod, and no credit was taken for the existing office or commercial buildings on the site. As shown in Table 13 and Table 14, Project Site 2 of the Project would generate emissions below the SCAQMD construction and operational regional thresholds, and therefore would result in less-than-significant regional construction and operational air quality impacts.

| Construction Activity               | Maximum Daily Regional Emissions<br>(pounds/day) |      |      |      |     |       |  |  |
|-------------------------------------|--------------------------------------------------|------|------|------|-----|-------|--|--|
| Construction Activity               | ROG NOX CO SO2 PM10                              |      |      |      |     |       |  |  |
|                                     |                                                  | 202  | 25   |      |     | PM2.5 |  |  |
| Demolition                          | 1.5                                              | 18.0 | 15.7 | <0.1 | 5.1 | 1.4   |  |  |
| Site Preparation                    | 0.7                                              | 5.6  | 6.4  | <0.1 | 0.7 | 0.4   |  |  |
| Grading                             | 1.6                                              | 14.7 | 14.1 | <0.1 | 2.8 | 1.6   |  |  |
| Building Construction               | 0.8                                              | 7.0  | 9.9  | <0.1 | 0.5 | 0.3   |  |  |
| Maximum Daily Emissions             | 1.6                                              | 18.0 | 15.7 | <0.1 | 5.1 | 1.6   |  |  |
|                                     |                                                  | 202  | 6    |      |     |       |  |  |
| Building Construction               | 0.8                                              | 7.0  | 9.9  | <0.1 | 0.5 | 0.3   |  |  |
| Paving                              | 0.7                                              | 5.2  | 7.4  | <0.1 | 0.4 | 0.3   |  |  |
| Architectural Coating               | 24.4                                             | 1.2  | 1.7  | <0.1 | 0.1 | <0.1  |  |  |
| Maximum Daily Emissions             | 24.4                                             | 7.0  | 9.9  | <0.1 | 0.5 | 0.3   |  |  |
| Maximum Daily<br>Emission 2025-2026 | 24.4                                             | 18.0 | 15.7 | <0.1 | 5.1 | 1.6   |  |  |
| SCAQMD Significance<br>Thresholds   | 75                                               | 100  | 550  | 150  | 150 | 55    |  |  |
| Threshold Exceeded?                 | No                                               | No   | No   | No   | No  | No    |  |  |

#### Table 13: Project Site 2 Regional Construction Emission Estimates

Notes: ROG = reactive organic gases,  $NO_X$  = nitrogen oxides, CO = carbon monoxide,  $SO_2$  = sulfur dioxide,  $PM_{10}$  = particulate matter 10 microns in diameter, PM2.5 = particulate matter 2.5 microns in diameter Source: Site 2 Lunada Bay CalEEMod Output Sheets (see Attachment B).

<sup>&</sup>lt;sup>10</sup> SCAQMD. (March 2023). South Coast AQMD Air Quality Significance Thresholds. <u>https://www.aqmd.gov/docs/default-source/ceqa/handbook/south-coast-aqmd-air-quality-significance-thresholds.pdf?sfvrsn=25.</u>

| Operational Activity                   | Maximum Daily Regional Emissions<br>(pounds/day) |      |      |                 |              |       |  |  |
|----------------------------------------|--------------------------------------------------|------|------|-----------------|--------------|-------|--|--|
|                                        | ROG                                              | NOx  | со   | SO <sub>2</sub> | <b>PM</b> 10 | PM2.5 |  |  |
| Mobile                                 | 0.3                                              | 0.3  | 3.0  | <0.1            | 0.7          | 0.2   |  |  |
| Area                                   | 0.5                                              | <0.1 | 1.1  | <0.1            | <0.1         | <0.1  |  |  |
| Energy                                 | <0.1                                             | 0.1  | <0.1 | <0.1            | <0.1         | <0.1  |  |  |
| Total Project<br>Operational Emissions | 0.9                                              | 0.3  | 4.1  | <0.1            | 0.7          | 0.2   |  |  |
| SCAQMD Significance<br>Thresholds      | 55                                               | 55   | 550  | 150             | 150          | 55    |  |  |
| Threshold Exceeded?                    | Νο                                               | No   | No   | No              | No           | No    |  |  |

#### Table 14: Project Site 2 Regional Operational Emission Estimates

Notes: ROG = reactive organic gases, NO<sub>x</sub> = nitrogen oxides, CO = carbon monoxide, SO<sub>2</sub> = sulfur dioxide, PM<sub>10</sub> = particulate matter 10 microns in diameter, PM2.5 = particulate matter 2.5 microns in diameter Source: Site 2 Lunada Bay CalEEMod Output Sheets (see Attachment B).

Local Emissions

As explained previously in Project Site 1's analysis, the SCAQMD has established localized significance thresholds (LSTs). Emissions for CalEEMod Project Site 2 were evaluated, accounting for both on-site and off-site sources, and compared with the LSTs.

Table 15 shows the amount of ground disturbance that would occur during the demolition, site preparation, and grading phases for the construction of Project Site 2. Table 16 shows the estimated maximum daily construction emissions and thresholds for Project Site 2.

Similar to Project Site 1, the phase with the most ground disturbance for Project Site 2 would be the grading phase, with a maximum of 1.5 acres of ground disturbance per day. However, as the site is confined to 0.68 acres, no more than 1 acre would be disturbed on any one day during construction. Thus, the 1-acre LSTs have been used for construction emissions as the lowest threshold provided by SCAQMD for the size of Project Site 2.<sup>11</sup> Distance to the nearest sensitive receptor also determines the emission thresholds. The sensitive receptors closest to Project Site 2 includes residential homes about 7.8 meters (29 feet) south of the site's boundary; therefore, the construction emission threshold for 25 meters was used, as the lowest threshold provided. As shown in Table 16, Project Site 2 would not exceed the SCAQMD LST construction emission thresholds and would therefore have a less-than-significant localized construction air quality impact.

<sup>&</sup>lt;sup>11</sup> SCAQMD. (2011) Fact Sheet for Applying CalEEMod to Localized Significance Thresholds. https://www.aqmd.gov/docs/default-source/ceqa/handbook/localized-significance-thresholds/caleemodguidance.pdf

| Activity                      | Equipment Type            | Equipment<br>Quantity | Operating<br>Hours per<br>Day | Acres Disturbed<br>per piece of<br>Equipment per Day | Acres<br>Disturbed<br>per Day |
|-------------------------------|---------------------------|-----------------------|-------------------------------|------------------------------------------------------|-------------------------------|
|                               | Rubber Tired Dozers       | 1                     | 8                             | 0.5                                                  | 0.5                           |
| Demolition                    | Concrete/Industrial Saws  | 1                     | 8                             | 0                                                    | 0                             |
|                               | Tractors/Loaders/Backhoes | 2                     | 8                             | 0                                                    | 0                             |
| Total Acres Disturbed Per Day |                           |                       |                               |                                                      |                               |
|                               | Graders                   | 1                     | 8                             | 0.5                                                  | 0.5                           |
| Site<br>Preparation           | Tractors/Loaders/Backhoes | 0                     | 8                             | 0                                                    | 0                             |
| rieparanon                    | Crawler Tractors          | 1                     | 8                             | 0.5                                                  | 0.5                           |
|                               |                           |                       | Total Ac                      | res Disturbed Per Day                                | 1.0                           |
|                               | Graders                   | 1                     | 8                             | 0.5                                                  | 0.5                           |
|                               | Rubber Tired Dozers       | 1                     | 8                             | 0.5                                                  | 0.5                           |
| Grading                       | Crawler Tractors          | 1                     | 8                             | 0.5                                                  | 0.5                           |
|                               | Tractors/Loaders/Backhoes | 0                     | 8                             | 0                                                    | 0                             |
| Total Acres Disturbed Per Day |                           |                       |                               |                                                      | 1.5                           |
|                               |                           |                       | Maximum Ac                    | res Disturbed Per Day                                | 1.5                           |

#### Table 15: Construction Equipment Acres Disturbed per Day for Project Site 2

Source: Site 2 Lunada Bay CalEEMod Output Sheets (see Attachment B).

#### Table 16: Localized Construction Emission Estimates for Project Site 2

| Construction Activity            | Maximum Daily Localized Emissions<br>(pounds/day) |      |              |       |  |  |
|----------------------------------|---------------------------------------------------|------|--------------|-------|--|--|
|                                  | ΝΟχ                                               | со   | <b>PM</b> 10 | PM2.5 |  |  |
|                                  | 2025                                              | 5    |              |       |  |  |
| Demolition                       | 12.8                                              | 13.2 | 3.8          | 1.0   |  |  |
| Site Preparation                 | 5.6                                               | 6.1  | 0.6          | 0.4   |  |  |
| Grading                          | 14.7                                              | 13.6 | 2.7          | 1.6   |  |  |
| Building Construction            | 6.9                                               | 17.9 | 0.6          | 0.5   |  |  |
| Maximum Daily Emissions          | 14.7                                              | 17.9 | 3.8          | 1.6   |  |  |
|                                  | 2020                                              | 5    |              |       |  |  |
| Building Construction            | 6.9                                               | 9.0  | <0.1         | 0.3   |  |  |
| Paving                           | 5.1                                               | 6.2  | 0.2          | 0.2   |  |  |
| Architectural Coating            | 1.1                                               | 1.5  | <0.1         | <0.1  |  |  |
| Maximum Daily Emissions          | 6.9                                               | 9.0  | 0.2          | 0.3   |  |  |
| Maximum Daily Emission 2025-2026 | 14.7                                              | 17.9 | 3.8          | 1.6   |  |  |
| SCAQMD Significance Thresholds   | 91                                                | 664  | 5            | 3     |  |  |
| Threshold Exceeded?              | No                                                | No   | No           | No    |  |  |

Notes:  $NO_x$  = nitrogen oxides, CO = carbon monoxide,  $PM_{10}$  = particulate matter 10 microns in diameter,  $PM_{2.5}$  = particulate matter 2.5 microns in diameter.

Source: Site 2 Lunada Bay CalEEMod Output Sheets (see Attachment B).

As described previously, LSTs apply to project stationary sources and onsite mobile emissions per SCAQMD LST methodology. Projects that involve mobile sources that spend long periods queuing and idling at a site, such as transfer facilities or warehousing and distribution buildings, have the potential to exceed the operational localized significance thresholds. The potential land use at Project Site 2 is anticipated to not involve vehicles idling or queueing for long periods of time. Therefore, due to the lack of significant stationary source emissions, impacts related to operational localized significance thresholds are presumed to be less than significant and an operational LST analysis was dismissed for the site.

#### Energy

#### **Energy Consumption**

#### Construction

#### Electricity and Natural Gas Usage

Due to Project Site 2's size and the fact that construction is temporary, the electricity used during construction of Project Site 2 would be substantially less than that required for its operation and would have a negligible contribution to the Project's overall energy consumption. The electric power used would be for as-necessary lighting and electronic equipment such as computers inside temporary construction trailers. Natural gas is not anticipated to be needed for construction activities. Any consumption of natural gas would be minor and negligible in comparison to the usage during the operation of the site.

#### Petroleum Fuel Usage

The equipment associated with construction activities (off-road/heavy duty vehicles) would rely on diesel fuel as would vendor and haul trucks involved in delivering building materials and removing the demolition debris from Project Site 2. Construction workers would travel to and from the site throughout the duration of construction, and for a conservative analysis, it is assumed that construction workers would travel in gasoline-powered passenger vehicles. Table 17 lists the total fuel consumption and horsepower-hour data contained within the CARB OffRoad2021 emission model for specific types of diesel construction equipment during the construction phase total. It should be noted that the total fuel consumption is a conservative analysis and would likely overstate the amount of fuel usage, as specific construction equipment is not expected to operate during the entire duration of the construction activity (i.e., crane). Table 18 summarizes Project Site 2's construction vehicle fuel usage based on vehicle miles traveled and fuel usage factors contained in the CARB EMFAC2021. The trips included are worker vehicles, vendor vehicles, and haul vehicles. Table 19, *Project Site 2 Construction Fuel Usage*, shows the overall fuel consumption for Project construction.

| Activity              | Equipment                 | Number<br>of<br>Equipment<br>Per Day | Hours<br>per<br>day | Horse-<br>power | Load<br>Factor | Days of<br>Construction | Total<br>Horsepower-<br>hours | Fuel Rate<br>(gal/hp-hr) | Fuel Use<br>(gallons) |
|-----------------------|---------------------------|--------------------------------------|---------------------|-----------------|----------------|-------------------------|-------------------------------|--------------------------|-----------------------|
|                       | Concrete/Industrial Saws  | 1                                    | 8                   | 33              | 0.73           | 15                      | 2,891                         | 0.04200992               | 121                   |
| Demolition            | Rubber Tired Dozers       | 1                                    | 8                   | 367             | 0.4            | 15                      | 17,616                        | 0.04745478               | 836                   |
|                       | Tractors/Loaders/Backhoes | 2                                    | 8                   | 84              | 0.37           | 15                      | 7,459                         | 0.05312078               | 396                   |
| City Days with a      | Graders                   | 1                                    | 8                   | 367             | 0.4            | 1                       | 1,174                         | 0.051539291              | 61                    |
| Site Preparation      | Crawler Tractors          | 1                                    | 8                   | 84              | 0.37           | 1                       | 249                           | 0.05048826               | 13                    |
|                       | Graders                   | 1                                    | 8                   | 148             | 0.41           | 2                       | 971                           | 0.05153929               | 50                    |
| Grading               | Rubber Tired Dozers       | 1                                    | 8                   | 367             | 0.4            | 2                       | 2,349                         | 0.04745478               | 111                   |
|                       | Crawler Tractors          | 1                                    | 8                   | 87              | 0.43           | 2                       | 599                           | 0.05048826               | 30                    |
|                       | Cranes                    | 1                                    | 8                   | 367             | 0.29           | 100                     | 26,240                        | 0.05301236               | 1,397                 |
| Building Construction | Forklifts                 | 2                                    | 8                   | 82              | 0.2            | 100                     | 49,728                        | 0.05325396               | 2,642                 |
|                       | Tractors/Loaders/Backhoes | 2                                    | 8                   | 84              | 0.37           | 100                     | 1,361                         | 0.05312078               | 70                    |
|                       | Pavers                    | 1                                    | 8                   | 81              | 0.42           | 5                       | 1,361                         | 0.05151654               | 70                    |
|                       | Cement and Mortar Mixers  | 4                                    | 8                   | 10              | 0.56           | 5                       | 896                           | 0.05312078               | 48                    |
| Paving                | Rollers                   | 1                                    | 8                   | 36              | 0.38           | 5                       | 547                           | 0.05259167               | 29                    |
|                       | Tractors/Loaders/Backhoes | 1                                    | 8                   | 84              | 0.37           | 5                       | 1,243                         | 0.05312078               | 66                    |
| Architectural Coating | Air Compressors           | 1                                    | 8                   | 37              | 0.48           | 5                       | 710                           | 0.030007254              | 21                    |
|                       |                           |                                      | •                   |                 |                | 1                       | 1                             | Total                    | 10,405                |

Table 17: Construction Equipment Fuel Usage for Project Site 2

Source: Site 2 Lunada Bay CalEEMod Output Sheets, Fuel Calculation Sheets(see Attachment B,D).

| Construction<br>Source | Total Number of<br>Trips | VMT    | Fuel Rate | Gallons of<br>Diesel Fuel | Gallons of<br>Gasoline Fuel |
|------------------------|--------------------------|--------|-----------|---------------------------|-----------------------------|
| Haul Trucks            | 154                      | 6,155  | 6.21      | 992                       | 0                           |
| Vendor Trucks          | 300                      | 6,120  | 8.98      | 681                       | 0                           |
| Worker Vehicles        | 1,726                    | 63,862 | 28.86     | 0                         | 2,213                       |
|                        |                          |        | Total     | 1,673                     | 2,213                       |

#### Table 18: Project Site 2 Estimated Construction Vehicle Fuel Usage

Source: Site 2 Lunada Bay CalEEMod Output Sheets, Fuel Calculation Sheets (see Attachment B,D).

#### Table 19: Project Site 2 Total Construction Fuel Usage

| Construction Source             | Gallons of Diesel Fuel | Gallons of Gasoline Fuel |
|---------------------------------|------------------------|--------------------------|
| Construction Vehicles           | 1,673                  | 2,213                    |
| Off-Road Construction Equipment | 10,405                 | 0                        |
| Total                           | 12,078                 | 2,213                    |

Source: Site 2 Lunada Bay CalEEMod Output Sheets, Fuel Calculation Sheets(see Attachment B,D).

#### Operation

The operation of the proposed Project would consume electricity, natural gas, and petroleum. The energy consumption can be found in Table 20, *Project Site 2 Annual Operational Energy Requirements*, below. Electricity and natural gas consumption can be found in the CalEEMod Output Sheets attached (Attachment B). The gasoline consumption rates utilize the same assumptions that were used for the worker vehicles. The potential land use at Project Site 2 is anticipated to utilize energy consistent with other similarly sized projects and would thus not constitute an inefficient use of energy. Therefore, the proposed Project would result in less-than-significant energy impacts without requiring mitigation.

#### Table 20: Project Site 2 Annual Operational Energy Requirements

| Electricity (Kilowatt-Hours)                  |                          |  |  |  |
|-----------------------------------------------|--------------------------|--|--|--|
| 75,988                                        |                          |  |  |  |
| Natural Gas (Thousands British Thermal Units) |                          |  |  |  |
| 222,137                                       |                          |  |  |  |
| Petroleum (Gasoline) Cons                     | umption                  |  |  |  |
| Annual VMT                                    | Gallons of Gasoline Fuel |  |  |  |
| 340,868                                       | 11,813                   |  |  |  |

Source: Site 2 Lunada Bay CalEEMod Output Sheets, Fuel Calculation Sheets(see Attachment B,D).

Further, seen in EPD Solution's Palos Verdes Estates (PVE) Housing Element Vehicle Miles Traveled (VMT) Screening Analysis, Site 2 would include housing in close proximity to employment opportunity land uses, and result in a less than significant VMT impact.

#### Future Renewable Energy

Similarly to Project Site 1, Project Site 2 would be required to meet the CCR Title 24 energy efficiency standards in effect during permitting of proposed Project and comply with all applicable City energy codes. The City's administration of the CCR Title 24 requirements includes review of design components and energy conservation measures that occurs during the permitting process, which ensures that all requirements are met. Project Site 2's residential building would require solar installation in compliance with the current Title 24 requirements for multi-family housing. In addition, Project Site 2 design and operation would comply with State Building Energy Efficiency Standards, appliance efficiency regulations, and green building standards. As such, Project Site 2 would not inhibit the use of and would allow for future flexibility relating to renewable energy.

#### Conclusion

Project Site 2's energy consumption for construction activities related to redevelopment of the site with mixeduse residential and commercial uses would be required to comply with existing fuel standards, machinery efficiency standards, and CARB requirements that limit idling of trucks. The Project would comply with the State CEQA Guidelines for energy consumption thresholds (a), concerning wasteful, inefficient and overconsumption of energy in project: Construction activities related to the Project Site 2 and the associated infrastructure are not expected to result in demand for fuel greater on a per-unit-of-development basis than any other development projects in Southern California. Also, CCR Title 13, Motor Vehicles, section 2449(d)(3) Idling, limits idling times of construction vehicles to no more than 5 minutes, thereby precluding unnecessary and wasteful consumption of fuel due to unproductive idling of construction equipment.

Through compliance with existing standards, Project Site 2 would not result in a demand for fuel greater on a per-development basis than other development projects in Southern California. There are no unusual site characteristics that would cause the use of construction equipment that would be less energy efficient compared with other similar construction sites in the state. The energy consumption for construction would also be temporary and localized. Energy consumption from the operation of the proposed Project is also similar to that of other mixed-use projects, and Project Site 2 would comply with Title 24 as well as all applicable City business and energy codes and ordinances. Further, seen in EPD Solution's *Palos Verdes Estates (PVE) Housing Element Vehicle Miles Traveled (VMT) Screening Analysis*, Site 2 would include housing in close proximity to employment opportunity land uses, and result in a less than significant VMT impact. Additionally, the development of the proposed project would comply with the Title 24 residential solar requirements by installing rooftop solar panels and would also not interfere with the growth of future renewable energy infrastructure. Therefore, the construction and operation of Project Site 2 would result in a less-than-significant impact related to energy and no mitigation would be required.

#### Greenhouse Gas Emissions

#### Project GHG Emissions

Project Site 2 construction GHG emissions are shown in Table 21, Project Site 2 Construction GHG Emissions, and the overall construction and operational emissions are shown in Table 22, Project Site 2 Total GHG Emissions, below. These emissions were calculated using the CalEEMod model. The construction emissions are amortized over 30 years and added to the operational GHG emissions.<sup>12</sup> As shown in Table 22, Project Site 2's construction and operation GHG emissions would total 155 MTCO<sub>2</sub>e per year, which is below the SCAQMD significance threshold of 3,000 MTCO<sub>2</sub>e per year.

| Activity                                | Annual GHG Emissions<br>(MTCO2e) |
|-----------------------------------------|----------------------------------|
| 2025                                    | 49                               |
| 2026                                    | 94                               |
| Total Emissions                         | 143                              |
| Total Emissions Amortized Over 30 Years | 5                                |

#### Table 21: Project Site 2 Construction GHG Emissions

Source: Site 2 Lunada Bay CalEEMod Output Sheets (see Attachment B).

| Activity                                       | Annual GHG Emissions<br>(MTCO2e) |  |  |  |  |
|------------------------------------------------|----------------------------------|--|--|--|--|
| Mobile                                         | 119                              |  |  |  |  |
| Area                                           | 0                                |  |  |  |  |
| Energy                                         | 24                               |  |  |  |  |
| Water                                          | 2                                |  |  |  |  |
| Waste                                          | 5                                |  |  |  |  |
| Refrigerant                                    | 0                                |  |  |  |  |
| Total Project Site 2 Gross Operation Emissions | 150                              |  |  |  |  |
| Project Site 2 Construction Emissions          | 5                                |  |  |  |  |
| Total Project Site 2 Emissions                 | 155                              |  |  |  |  |
| Significance Threshold                         | 3,000                            |  |  |  |  |
| Threshold Exceeded?                            | Νο                               |  |  |  |  |

#### Table 22: Project Site 2 Total GHG Emissions

Source: Site 2 Lunada Bay CalEEMod Output Sheets (see Attachment B)

#### Conclusion

Project Site 2's construction and operational GHG emissions would total 155 MTCO<sub>2</sub>e per year, below the SCAQMD significance threshold of 3,000 MTCO<sub>2</sub>e per year. Therefore, Project Site 2 of the Project would have a less-than-significant impact on GHG emissions.

<sup>&</sup>lt;sup>12</sup> SCAQMD. (2008). Interim CEQA GHG Significance Threshold for Stationary Sources, Rules and Plans. http://www.aqmd.gov/docs/default-source/ceqa/handbook/greenhouse-gases-(ghg)-ceqa-significance-thresholds/ghgboardsynopsis.pdf.

#### Project Site 3: First Church of Christ, Scientist

Project Site 3, First Church of Christ, Scientist, is located at 4010 Palos Verdes Drive North, within Palos Verdes Estates. The site is 4.63 acres and is comprised of 2 parcels, identified as APN 7538-027-010 (3.56 acres) and APN 7538-027-009 (1.07 acres). The site includes a 12,082 square foot church building with ample open parking, open areas, and landscaping, that would remain on-site during construction. Thus, a demolition phase is not included in the construction schedule seen in the table below. Table 23, *Project Site* 3 Construction Schedule, shows an estimated construction schedule, assuming a Project specific development would be ready for construction by the fourth quarter of 2025. Construction would be expected to last approximately 13 months.

| Activity              | Start Date | End Date   | Total Working Days |
|-----------------------|------------|------------|--------------------|
| Site Preparation      | 12/1/2025  | 12/5/2025  | 5                  |
| Grading               | 12/9/2024  | 12/18/2024 | 8                  |
| Building Construction | 12/19/2024 | 11/5/2025  | 230                |
| Paving                | 11/9/2026  | 12/2/2026  | 18                 |
| Architectural Coating | 12/3/2026  | 12/28/2026 | 18                 |

#### Table 23: Project Site 3 Construction Schedule

Source: Site 3 First Church of Christ CalEEMod Output Sheets (see Attachment C).

#### <u>Air Quality</u>

The following non-default assumptions and adjustments were used in the CalEEMod emission model for this analysis:

- Land Use: The lot acreage was adjusted to match the Project site acreage provided by the client.
- Construction: It was assumed that all equipment would be used for 8 hours per workday. Tractors/loaders/backhoes were replaced with crawler tractors in the site preparation and grading phases.
- Demolition: The demolition phase for Project Site 3 was removed, as the on-site Church would remain on the site during redevelopment.
- Operations: Adjusted trip rate for Apartments Mid Rise to match ITE 11th edition trip rate to match ITE 11th Edition rates for Affordable Housing and Multifamily Housing (Mid-Rise).
- Hearths, wood stoves and wood fireplaces were removed in accordance with SCAQMD Rule 445, which prohibits the installation of wood-burning devices in effort to reduce particulate matter and reduce production of VOCs. Removed gas and propane fireplaces as neither are anticipated for the future residential developments.

#### **Regional Emissions**

The SCAQMD has adopted maximum daily emission thresholds (pounds/day) for the criteria pollutants during construction and operation of a project.<sup>13</sup> While incremental regional air quality impacts of an individual project are generally very small and difficult to measure, SCAQMD's regional maximum emission thresholds set standards to reduce the burden of SCAQMD to attain and maintain ambient air quality

<sup>&</sup>lt;sup>13</sup> SCAQMD. (March 2023). South Coast AQMD Air Quality Significance Thresholds. Referenced at <u>https://www.aqmd.gov/docs/default-source/ceqa/handbook/south-coast-aqmd-air-quality-significance-thresholds.pdf?sfvrsn=25.</u>

standards. The regional thresholds apply to the criteria pollutants mentioned in Tables 24 through 27, along with the CalEEMod Project emissions. These emission thresholds include the emissions generated both from on-site sources (such as off-road construction equipment and fugitive dust) and off-site sources (vehicle travel arriving to and leaving from the site). To calculate the operational impacts, the air quality emissions for the land use were estimated using CalEEMod. No credit was taken from the on-site church as it would remain on-site during redevelopment and operation of Project Site 3. As shown in Table 24 and Table 25, Project Site 3 would generate emissions below the SCAQMD construction and operational thresholds, and therefore result in less-than-significant regional construction and operational air quality impacts.

| Construction Activity               | Maximum Daily Regional Emissions<br>(pounds/day) |      |      |                 |              |       |  |  |
|-------------------------------------|--------------------------------------------------|------|------|-----------------|--------------|-------|--|--|
|                                     | ROG                                              | NOx  | co   | SO <sub>2</sub> | <b>PM</b> 10 | PM2.5 |  |  |
|                                     |                                                  | 2025 | 5    |                 |              | l     |  |  |
| Site Preparation                    | 4.1                                              | 37.5 | 33.5 | <0.1            | 7.8          | 4.5   |  |  |
| Grading                             | 2.4                                              | 20.7 | 20.5 | <0.1            | 3.6          | 2.0   |  |  |
| Building Construction               | 1.6                                              | 12.2 | 19.3 | <0.1            | 1.7          | 0.7   |  |  |
| Maximum Daily Emissions             | 4.1                                              | 37.5 | 33.5 | <0.1            | 7.8          | 4.5   |  |  |
| ·                                   |                                                  | 2026 | 5    |                 |              |       |  |  |
| Building Construction               | 1.5                                              | 11.6 | 19.7 | <0.1            | 1.6          | 0.7   |  |  |
| Paving                              | 1.1                                              | 7.5  | 11.5 | <0.1            | 0.6          | 0.3   |  |  |
| Architectural Coating               | 39.7                                             | 1.2  | 2.4  | <0.1            | 0.2          | <0.1  |  |  |
| Maximum Daily Emissions             | 39.7                                             | 11.6 | 19.7 | <0.1            | 1.6          | 0.7   |  |  |
| Maximum Daily<br>Emission 2025-2026 | 39.7                                             | 37.5 | 33.5 | <0.1            | 7.8          | 4.5   |  |  |
| SCAQMD Significance<br>Thresholds   | 75                                               | 100  | 550  | 150             | 150          | 55    |  |  |
| Threshold Exceeded?                 | No                                               | No   | No   | No              | No           | No    |  |  |

#### Table 24: Project Site 3 Regional Construction Emission Estimates

Notes: ROG = reactive organic gases, NO<sub>X</sub> = nitrogen oxides, CO = carbon monoxide, SO<sub>2</sub> = sulfur dioxide,  $PM_{10}$  = particulate matter 10 microns in diameter, PM2.5 = particulate matter 2.5 microns in diameter Source: Site 3 First Church of Christ CalEEMod Output Sheets (see Attachment C).

| Operational Activity                   | Maximum Daily Regional Emissions<br>(pounds/day) |     |      |                 |              |       |  |  |
|----------------------------------------|--------------------------------------------------|-----|------|-----------------|--------------|-------|--|--|
|                                        | ROG                                              | NOx | со   | SO <sub>2</sub> | <b>PM</b> 10 | PM2.5 |  |  |
| Mobile                                 | 3.1                                              | 2.5 | 26.0 | <0.1            | 5.6          | 1.5   |  |  |
| Area                                   | 3.2                                              | 0.1 | 6.6  | <0.1            | <0.1         | <0.1  |  |  |
| Energy                                 | <0.1                                             | 0.3 | 0.1  | <0.1            | <0.1         | <0.1  |  |  |
| Total Project<br>Operational Emissions | 6.3                                              | 2.9 | 32.7 | <0.1            | 5.7          | 1.5   |  |  |
| SCAQMD Significance<br>Thresholds      | 55                                               | 55  | 550  | 150             | 150          | 55    |  |  |
| Threshold Exceeded?                    | No                                               | No  | No   | No              | No           | No    |  |  |

#### Table 25: Project Site 3 Regional Operational Emission Estimates

Notes: ROG = reactive organic gases, NO<sub>X</sub> = nitrogen oxides, CO = carbon monoxide, SO<sub>2</sub> = sulfur dioxide, PM<sub>10</sub> = particulate matter 10 microns in diameter, PM<sub>2.5</sub> = particulate matter 2.5 microns in diameter Source Site 2 First Church of Child Culture Sheets (car Attachment C)

Source: Site 3 First Church of Christ CalEEMod Output Sheets (see Attachment C).

#### **Local Emissions**

As explained previously in Project Site 1 and 2's analyses, the SCAQMD has established localized significance thresholds (LSTs). Emissions for CalEEMod Project Site 3 were evaluated, accounting for both onsite and off-site sources, and compared with the LSTs.

Table 26 shows the amount of ground disturbance that would occur during the demolition, site preparation, and grading phases for the construction of Project Site 3. Table 27 shows the estimated maximum daily construction emissions and thresholds for the proposed Project Site 3.

As shown in Table 26, the phase with the most ground disturbance for Project Site 3 would be the grading phase, with a maximum of 3.5 acres of ground disturbance per day. Thus, the localized construction threshold for Project Site 3 was interpolated between 2 acres and 5 acres, for 3.5 maximum acres disturbed per day during construction. Distance to the nearest sensitive receptor also determines the emission thresholds. The sensitive receptors closest to Project Site 3 includes residential homes about 15.9 meters (52 feet) south of the Project's boundary; therefore, the construction emission threshold for 25 meters was used, as the lowest threshold provided.

As shown in Table 27, Project Site 3 would not exceed the SCAQMD LST construction emission thresholds and would therefore have a less-than-significant localized construction air quality impact.

| Activity    | Equipment Type                                                                       | Equipment<br>Quantity | Operating<br>Hours per<br>Day | Acres Disturbed per piece<br>of Equipment per Day | Acres<br>Disturbed<br>per Day |  |
|-------------|--------------------------------------------------------------------------------------|-----------------------|-------------------------------|---------------------------------------------------|-------------------------------|--|
| Site        | Rubber Tired Dozers                                                                  | 3                     | 8                             | 0.5                                               | 1.5                           |  |
| Preparation | Crawler Tractors                                                                     | 4                     | 8                             | 0.5                                               | 2.0                           |  |
|             |                                                                                      |                       | T                             | otal Acres Disturbed Per Day                      | 3.5                           |  |
|             | Excavators                                                                           | 1                     | 8                             | 0                                                 | 0                             |  |
| Canadian    | Graders                                                                              | 1                     | 8                             | 0.5                                               | 0.5                           |  |
| Grading     | Site     Rubber Tired Dozers       Preparation     Crawler Tractors       Excavators | 1                     | 8 0.5                         |                                                   | 0.5                           |  |
|             |                                                                                      | 3                     | 8                             | 0.5                                               | 1.5                           |  |
|             | Total Acres Disturbed Per Day                                                        |                       |                               |                                                   |                               |  |
|             |                                                                                      |                       | Maxim                         | um Acres Disturbed Per Day                        | 3.5                           |  |

#### Table 26: Construction Equipment and Acres Disturbed per Day for Project Site 3

Source: Site 3 First Church of Christ CalEEMod Output Sheets (see Attachment C).

#### Table 27: Localized Construction Emission Estimates for Project Site 3

| Construction Activity            | Maximum Daily Regional Emissions<br>(pounds/day) |         |              |                   |  |  |  |
|----------------------------------|--------------------------------------------------|---------|--------------|-------------------|--|--|--|
|                                  | NOx                                              | СО      | <b>PM</b> 10 | PM <sub>2.5</sub> |  |  |  |
|                                  | 20                                               | 25      |              |                   |  |  |  |
| Demolition                       | 4.0                                              | 4.9     | 8.3          | 1.4               |  |  |  |
| Site Preparation                 | 37.5                                             | 32.4    | 7.6          | 4.5               |  |  |  |
| Grading                          | 20.6                                             | 19.6    | 3.4          | 2.0               |  |  |  |
| Building Construction            | 11.3                                             | 14.1    | 0.5          | 0.4               |  |  |  |
| Maximum Daily Emissions          | 37.5                                             | 32.4    | 8.3          | 4.5               |  |  |  |
|                                  | 20                                               | 26      |              |                   |  |  |  |
| Building Construction            | 10.7                                             | 14.1    | 0.4          | 0.4               |  |  |  |
| Paving                           | 7.1                                              | 9.9     | 0.3          | 0.3               |  |  |  |
| Architectural Coating            | 1.1                                              | 1.5     | <0.1         | <0.1              |  |  |  |
| Maximum Daily Emissions          | 10.7                                             | 14.1    | 0.4          | 0.4               |  |  |  |
| Maximum Daily Emission 2025-2026 | 37.5                                             | 32.4    | 8.3          | 4.5               |  |  |  |
| SCAQMD Significance Thresholds   | 164                                              | 1,381.5 | 11.5         | 6.5               |  |  |  |
| Threshold Exceeded?              | No                                               | No      | No           | No                |  |  |  |

Notes:  $NO_X$  = nitrogen oxides, CO = carbon monoxide,  $PM_{10}$  = particulate matter 10 microns in diameter,  $PM_{2.5}$  = particulate matter 2.5 microns in diameter.

Source: Site 3 First Church of Christ CalEEMod Output Sheets (see Attachment C).

As described previously, LSTs apply to project stationary sources and onsite mobile emissions per SCAQMD LST methodology. Projects that involve mobile sources that spend long periods queuing and idling at a site, such as transfer facilities or warehousing and distribution buildings, have the potential to exceed the operational localized significance thresholds. The potential land use at Project Site 3 is anticipated to not involve vehicles idling or queueing for long periods of time. Therefore, due to the lack of significant stationary

source emissions, impacts related to operational localized significance thresholds are presumed to be less than significant and an operational LST analysis was dismissed for the site.

#### Energy

#### **Energy Consumption**

#### Construction

#### Electricity and Natural Gas Usage

Due to Project Site 3's size and the fact that construction is temporary, the electricity used during construction of Project Site 3 would be substantially less than that required for its operation and would have a negligible contribution to the Project's overall energy consumption. The electric power used would be for as-necessary lighting and electronic equipment such as computers inside temporary construction trailers. Natural gas is not anticipated to be needed for construction activities. Any consumption of natural gas would be minor and negligible in comparison to the usage during the operation of the site.

#### Petroleum Fuel Usage

The equipment associated with construction activities (off-road/heavy duty vehicles) would rely on diesel fuel as would vendor and haul trucks involved in delivering building materials and removing the demolition debris from Project Site 3. Construction workers would travel to and from Project Site 3 throughout the duration of construction, and for a conservative analysis, it is assumed that construction workers would travel in gasoline-powered passenger vehicles. Table 28 lists the total fuel consumption, and horsepower-hour data contained within the CARB OffRoad2021 emission model for specific types of diesel construction equipment during the construction phase total. It should be noted that the total fuel consumption is a conservative analysis and would likely overstate the amount of fuel usage, as specific construction equipment is not expected to operate during the entire duration of the construction activity (i.e., crane). Table 29 summarizes Project Site 3's construction vehicle fuel usage based on vehicle miles traveled and fuel usage factors contained in the CARB EMFAC2021. The trips included are worker vehicles, vendor vehicles, and haul vehicles. Table 30, *Project Site 3 Construction Fuel Usage*, shows the overall fuel consumption for Project construction.

| Activity              | Equipment                 | Number of<br>Equipment<br>Per Day | Hours<br>per day | Horse-<br>power | Load<br>Factor | Days of<br>Construction | Total<br>Horsepower-<br>hours | Fuel Rate<br>(gal/hp-hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Fuel Use<br>(gallons) |
|-----------------------|---------------------------|-----------------------------------|------------------|-----------------|----------------|-------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|                       | Rubber Tired Dozers       | 3                                 | 8                | 367             | 0.4            | 5                       | 17,616                        | 0.051539291                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 908                   |
| Site Preparation      | Tractors/Loaders/Backhoes | 0                                 | 8                | 84              | 0.37           | 5                       | 0                             | 0.053120784                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                     |
|                       | Crawler Tractors          | 4                                 | 8                | 87              | 0.43           | 5                       | 5,986                         | (gal/hp-hr)<br>0.051539291                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 302                   |
|                       | Excavators                | 1                                 | 8                | 36              | 0.38           | 8                       | 876                           | 0.05153929                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 45                    |
|                       | Graders                   | 1                                 | 8                | 148             | 0.41           | 8                       | 3,884                         | 0.05153929                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 200                   |
| Grading               | Rubber Tired Dozers       | 1                                 | 8                | 367             | 0.4            | 8                       | 9,395                         | 0.04745478                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 446                   |
|                       | Crawler Tractors          | 3                                 | 8                | 87              | 0.43           | 8                       | 7,183                         | (gal/hp-hr)           0.051539291           0.053120784           0.053120784           0.05048826           0.05153929           0.05153929           0.05153929           0.05153929           0.05153929           0.05153929           0.05153929           0.05153929           0.05153929           0.05301236           0.05301236           0.05312078           0.05312078           0.05116533           0.05312078           0.05312078           0.05312078           0.05312078                                                                                                                                                                                                                      | 363                   |
|                       | Cranes                    | 1                                 | 8                | 367             | 0.29           | 230                     | 195,831                       | 0.05301236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10,381                |
|                       | Forklifts                 | 3                                 | 8                | 82              | 0.2            | 230                     | 90,528                        | 0.05325396                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4,821                 |
| Building Construction | Generator Sets            | 1                                 | 8                | 14              | 0.74           | 230                     | 19,062                        | 0.07797542                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,486                 |
|                       | Tractors/Loaders/Backhoes | 3                                 | 8                | 84              | 0.37           | 230                     | 171,562                       | Puer kare<br>(gal/hp-hr)           7,616         0.051539291           0         0.053120784           5,986         0.05048826           876         0.051539291           5,986         0.051539291           8,884         0.051539291           9,395         0.04745478           7,183         0.05048826           9,395         0.04745478           9,062         0.05312078           9,062         0.07797542           71,562         0.05312078           8,088         0.05312078           8,088         0.05312078           9,228         0.0511654           9,228         0.05312078           1,613         0.05259167           4,476         0.05312078           2,557         0.030007254 | 9,114                 |
|                       | Welders                   | 1                                 | 8                | 46              | 0.45           | 230                     | 38,088                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2,023                 |
|                       | Pavers                    | 1                                 | 8                | 81              | 0.42           | 18                      | 4,899                         | 0.05151654                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 252                   |
|                       | Paving Equipment          | 2                                 | 8                | 89              | 0.36           | 18                      | 9,228                         | 0.05116533                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 472                   |
| Paving                | Rollers                   | 2                                 | 8                | 36              | 0.38           | 18                      | 3,940                         | 0.05312078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 209                   |
|                       | Cement and Mortar Mixers  | 2                                 | 8                | 10              | 0.56           | 18                      | 1,613                         | 0.05259167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 85                    |
|                       | Tractors/Loaders/Backhoes | 1                                 | 8                | 84              | 0.37           | 18                      | 4,476                         | 0.05312078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 238                   |
| Architectural Coating | Air Compressors           | 1                                 | 8                | 37              | 0.48           | 18                      | 2557                          | 0.030007254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 77                    |
|                       | 1                         | 1                                 | 1                | 1               |                | 1                       | 1                             | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31,422                |

Table 28: Construction Equipment Fuel Usage for Project Site 3

Source: Site 3 First Church of Christ CalEEMod Output Sheets, Fuel Calculation Sheets (see Attachment C,D).

| Construction<br>Source | Total Number of<br>Trips | VMT     | Fuel Rate | Gallons of<br>Diesel Fuel | Gallons of<br>Gasoline Fuel |
|------------------------|--------------------------|---------|-----------|---------------------------|-----------------------------|
| Vendor Trucks          | 2,990                    | 60,996  | 8.98      | 6,792                     | 0                           |
| Worker Vehicles        | 20,196                   | 747,252 | 28.86     | 0                         | 25,896                      |
|                        |                          |         | Total     | 6,792                     | 25,896                      |

#### Table 29: Project Site 3 Estimated Construction Vehicle Fuel Usage

Source: Site 3 First Church of Christ CalEEMod Output Sheets, Fuel Calculation Sheets (see Attachment C,D).

#### Table 30: Project Site 3 Total Construction Fuel Usage

| Construction Source             | Gallons of Diesel Fuel | Gallons of Gasoline Fuel |
|---------------------------------|------------------------|--------------------------|
| Construction Vehicles           | 6,792                  | 25,896                   |
| Off-Road Construction Equipment | 31,422                 | 0                        |
| Total                           | 38,214                 | 25,896                   |

Source: Site 3 First Church of Christ CalEEMod Output Sheets, Fuel Calculation Sheets (see Attachment C,D).

#### Operation

The operation of the proposed Project would consume electricity, natural gas, and petroleum. The energy consumption can be found in Table 31, *Project Site 3 Annual Operational Energy Requirements*, below. Electricity and natural gas consumption can be found in the CalEEMod Output Sheets attached (Attachment C). The gasoline consumption rates utilize the same assumptions that were used for the worker vehicles. The potential land use at Project Site 3 is anticipated to utilize energy consistent with other similarly sized projects and would thus not constitute an inefficient use of energy. Therefore, the proposed Project would result in less-than-significant energy impacts without requiring mitigation.

#### Table 31: Project Site 3 Annual Operational Energy Requirements

| Electricity (Kilowatt-Hours)                  |        |  |
|-----------------------------------------------|--------|--|
| 467,974                                       |        |  |
| Natural Gas (Thousands British Thermal Units) |        |  |
| 1,288,394                                     |        |  |
| Petroleum (Gasoline) Consumption              |        |  |
| Annual VMT Gallons of Gasoline Fuel           |        |  |
| 1,882,414                                     | 65,236 |  |

Source: Site 3 First Church of Christ CalEEMod Output Sheets, Fuel Calculation Sheets (see Attachment C,D).

Further, seen in EPD Solution's PVE Housing Element VMT Screening Analysis, Site 3 would include housing in close proximity to employment opportunity land uses, resulting in a VMT/capita 9.37%, below the City's surrounding land uses.

#### Future Renewable Energy

Similarly to Project Site 1 and 2, Project Site 3 would be required to meet the CCR Title 24 energy efficiency standards in effect during permitting of proposed Project and comply with all applicable City energy codes. The City's administration of the CCR Title 24 requirements includes review of design components and energy conservation measures that occurs during the permitting process, which ensures that all requirements are met. Project Site 3's residential building would require solar installation in compliance with the current Title 24

requirements for multi-family housing. In addition, Project Site 3 design and operation would comply with State Building Energy Efficiency Standards, appliance efficiency regulations, and green building standards. As such, Project Site 3 would not inhibit the use of and would allow for future flexibility relating to renewable energy.

#### Conclusion

Project Site 3's energy consumption for construction activities related to redevelopment of the site with mixeduse residential and commercial uses would be required to comply with existing fuel standards, machinery efficiency standards, and CARB requirements that limit idling of trucks. The Project would comply with the State CEQA Guidelines for energy consumption thresholds (a), concerning wasteful, inefficient and overconsumption of energy in project: Construction activities related to the Project Site 3 and the associated infrastructure are not expected to result in demand for fuel greater on a per-unit-of-development basis than any other development projects in Southern California. Also, CCR Title 13, Motor Vehicles, section 2449(d)(3) Idling, limits idling times of construction vehicles to no more than 5 minutes, thereby precluding unnecessary and wasteful consumption of fuel due to unproductive idling of construction equipment.

Through compliance with existing standards, Project Site 3 would not result in a demand for fuel greater on a per-development basis than other development projects in Southern California. There are no unusual site characteristics that would cause the use of construction equipment that would be less energy efficient compared with other similar construction sites in the state. The energy consumption for construction would also be temporary and localized. Energy consumption from the operation of the proposed Project is also similar to that of other mixed-use projects, and Project Site 3 would comply with Title 24 as well as all applicable City business and energy codes and ordinances. Further, seen in EPD Solution's PVE Housing Element VMT Screening Analysis, Site 3 would include housing in close proximity to employment opportunity land uses, resulting in a VMT/capita 9.37%, below the City's surrounding land uses. Additionally, the development of the proposed project would comply with the Title 24 residential solar requirements by installing rooftop solar panels and would also not interfere with the growth of future renewable energy infrastructure. Therefore, the construction and operation of Project Site 3 would result in a less-than-significant impact related to energy and no mitigation would be required.

## Greenhouse Gas Emissions

#### **Project GHG Emissions**

Project Site 3's construction GHG emissions are shown in Table 32, Project Site 3 Construction GHG Emissions, and the overall construction and operational emissions are shown in Table 33, Project Site 3 Total GHG Emissions, below. These emissions were calculated using the CalEEMod model. The construction emissions are amortized over 30 years and added to the operational GHG emissions.<sup>14</sup> As shown in Table 33, Project Site 3's construction and operation GHG emissions would total 861 MTCO<sub>2</sub>e per year, which is below the SCAQMD significance threshold of 3,000 MTCO<sub>2</sub>e per year.

| Activity                                | Annual GHG Emissions<br>(MTCO2e) |
|-----------------------------------------|----------------------------------|
| 2025                                    | 43                               |
| 2026                                    | 434                              |
| Total Emissions                         | 476                              |
| Total Emissions Amortized Over 30 Years | 16                               |
|                                         |                                  |

| Table 32: Project Site 3 | Construction | <b>GHG Emissions</b> |
|--------------------------|--------------|----------------------|
|--------------------------|--------------|----------------------|

Source: Site 3 First Church of Christ CalEEMod Output Sheets (see Attachment C).

#### Table 33: Project Site 3 Total GHG Emissions

| Activity                                   | Annual GHG Emissions<br>(MTCO2e) |  |
|--------------------------------------------|----------------------------------|--|
| Mobile                                     | 663                              |  |
| Area                                       | 2                                |  |
| Energy                                     | 142                              |  |
| Water                                      | 11                               |  |
| Waste                                      | 27                               |  |
| Refrigerant                                | 0                                |  |
| Total Project Site 3 Operational Emissions | 846                              |  |
| Project Site 3 Construction Emissions      | 16                               |  |
| <b>Total Project Site 3 Emissions</b>      | 861                              |  |
| Significance Threshold                     | 3,000                            |  |
| Threshold Exceeded?                        | Νο                               |  |

Source: Site 3 First Church of Christ CalEEMod Output Sheets (see Attachment C).

#### Conclusion

Project Site 3's construction and operational GHG emissions would total 861 MTCO<sub>2</sub>e per year, below the SCAQMD significance threshold of 3,000 MTCO<sub>2</sub>e per year. Therefore, Site 3 of the Project would have a less-than-significant impact on GHG emissions.

<sup>&</sup>lt;sup>14</sup> SCAQMD. (2008). Interim CEQA GHG Significance Threshold for Stationary Sources, Rules and Plans. http://www.aqmd.gov/docs/default-source/ceqa/handbook/greenhouse-gases-(ghg)-ceqa-significance-thresholds/ghgboardsynopsis.pdf.

## **Project Sites Total**

This section summarizes the total regional air quality, energy consumption, and GHG emission inventory impacts from all three Project sites combined. As stated in the previous three sections, all three project sites would have a less than significant air quality, energy, and GHG impact for construction and operation. As the three sites are not anticipated to be constructed concurrently and would not have the same construction schedules, a combined analysis would not be appropriate and would remain less than significant.

## <u>Air Quality</u>

### **Regional Emissions**

The SCAQMD daily regional emission thresholds mentioned in the previous site assessments were utilized to evaluate the maximum criteria pollutant concentration for the total operation across all three sites. As seen in Table 34, the Project Sites' total operational daily emissions for pollutants would be below the SCAQMD regional thresholds, and therefore result in less-than-significant regional air quality impacts.

| Operational Emissions                  | Maximum Daily Regional Emissions<br>(pounds/day) |     |      |                 |              |       |
|----------------------------------------|--------------------------------------------------|-----|------|-----------------|--------------|-------|
|                                        | ROG                                              | NOx | со   | SO <sub>2</sub> | <b>PM</b> 10 | PM2.5 |
| Project Site 1                         | 0.9                                              | 0.3 | 4.5  | <0.1            | 0.7          | 0.2   |
| Project Site 2                         | 0.9                                              | 0.3 | 4.1  | <0.1            | 0.7          | 0.2   |
| Project Site 3                         | 6.3                                              | 2.9 | 32.7 | <0.1            | 5.7          | 1.5   |
| Total Project<br>Operational Emissions | 8.1                                              | 3.5 | 41.3 | <0.1            | 7.1          | 1.9   |
| SCAQMD Significance<br>Thresholds      | 55                                               | 55  | 550  | 150             | 150          | 55    |
| Threshold Exceeded?                    | No                                               | No  | No   | No              | No           | No    |

Notes: ROG = reactive organic gases, NOx = nitrogen oxides, CO = carbon monoxide, SO<sub>2</sub> = sulfur dioxide, PM<sub>10</sub> = particulate matter 10 microns in diameter, PM2.5 = particulate matter 2.5 microns in diameter Source: CalEEMod Output Sheets (see Attachment A, B, C).

Air Quality Management Plan Consistency

SCAQMD's CEQA Handbook provides the following two criteria to determine whether a project would be consistent or in conflict with the AQMP:

- 1. The Project would not generate population and employment growth that would be inconsistent with Southern California Association of Governments (SCAG)'s growth forecasts.
- 2. The Project would not result in an increase in the frequency or severity of existing air quality violations or cause or contribute to new violations or delay the timely attainment of air quality standards or the interim emissions reductions specified in the AQMP.

Consistency Criterion No. 1 refers to the SCAG's growth forecasts, and associated assumptions included in the AQMP. The future air quality levels projected in the AQMP are based on SCAG's growth projections, which are based, in part, on the general plans of cities located within the SCAG region. Therefore, if the level of housing and employment growth related to the proposed Project is consistent with the applicable assumptions used in the development of the AQMP, the Project would not jeopardize attainment of the air quality levels identified in the AQMP.

Project Site 1 and Project Site 2 of the Project both have a General Plan land use designation of Commercial Centers (C) and are zoned as Commercial (C), which allows residential development at a density of up to 34.0 dwelling units per acre. The Project proposes a zoning change from Commercial to Commercial/Mixed-Use Overlay zoning for Project Sites 1 and 2. This would allow for the existing uses to continue operating on the ground floor of any future development in a vertically mixed configuration. The Palos Verdes Estates 2021-2029 Housing Element identifies Project Site 1 and Project Site 2 would each have a capacity of 20 housing units, including 11 L/VL units and 9 M/AM income units each.

Project Site 3 of the Project currently has a General Plan land use designation of Residential Single Family (R-1) and is zoned as Residential Single Family (R-1), which would allow residential development at a density of up to 34.0 dwelling units per acre. The Project proposes a zoning change from Residential Single Family to Residential Multiple-Family with Housing Opportunity Overlay zoning for Project Site 3; this would allow for the existing uses to continue operating on the ground floor of any future development in a vertically mixed configuration. Project Site 3 would have a capacity for up to 116 housing units, including 60 L/VL units and 56 M/AM income units each.

These housing units would contribute to fulfilling the City's housing needs established by SCAG in the Regional Housing Needs Assessment (RHNA). The RHNA is based on the growth forecasts as prepared in the Connect SoCal which is based on local input. Any indirect population growth associated with the proposed Project (i.e. jobs associated with the construction of the housing) is already assumed and consistent with the growth projected in Connect SoCal. Therefore, implementation of the Project would not exceed the growth assumptions for the Project site. As a result, the proposed Project Sites 1, 2, and 3 would all be consistent with Criterion 1.

Consistency Criterion No. 2 refers to the California Ambient Air Quality Standards. An impact would occur if the long-term emissions associated with the proposed Project sites would exceed SCAQMD's regional significance thresholds for operation-phase emissions. As presented in Table 34, operation of the proposed Project, inclusive of all three sites, would result in emissions that do not exceed any SCAQMD thresholds. Therefore, the proposed Project would be consistent with Criterion No. 2.

#### Odors

Odors would be produced during the construction of the proposed Project due to the operation of heavyduty off-road equipment. The primary odor emitted would be diesel particulate matter (DPM) from the vendor trucks and heavy-duty off-road equipment. This odor may be noticeable by nearby residents; however, these odors would be expected and not necessarily objectionable. These odors would also dissipate quickly and would be temporary. Therefore, due to the nature of the odor produced during construction as temporary and non-objectionable to a substantial number of people, the odor impact from construction of the proposed Project would be less than significant.

For operational odor emissions, SCAQMD's CEQA Air Quality Handbook describes odor complaints associated with the following land uses:

- Agricultural uses
- Chemical plants
- Composting activities
- Dairies
- Fiberglass molding
- Food processing plants
- Landfills
- Refineries

#### • Wastewater treatment plants

The Project does not propose any of the above land uses and is required to comply with SCAQMD Rule 402, *Nuisance*, which states:

A person shall not discharge from any source whatsoever such quantities of air contaminants or other material which cause injury, detriment, nuisance, or annoyance to any considerable number of persons or to the public, or which endanger the comfort, repose, health, or safety of any such persons or the public, or which cause, or have a natural tendency to cause, injury or damage to business or property. The provisions of this rule shall not apply to odors emanating from agricultural operations necessary for the growing of crops or the raising of fowl or animals.

Thus, impacts associated with odor produced by operation of the proposed Project would be less than significant.

#### Conclusion

The operational activities of the proposed development would also comply with applicable SCAQMD rules and regulations and not exceed any criteria pollutant thresholds. Additionally, all three of the proposed Project sites would be consistent with SCAQMD'S 2022 AQMP, reflecting adherence to regional air quality management goals and standards. Finally, the operation of the proposed Project involves land uses that typically do not generate significant odor complaints and would comply with SCAQMD Rule 402. Therefore, the proposed Project would result in less-than-significant air quality impacts without the implementation of mitigation.

### Energy

### Operation

The operation of the proposed Project would consume electricity, natural gas, and petroleum. The energy consumption of each individual site, as well as all three sites combined, can be found in Table 35, *Total Project Annual Operational Energy Requirements*, below. Electricity and natural gas consumption for the sites can be found in the CalEEMod Output Sheets attached (Attachment A, B, and C). The gasoline consumption rates utilize the same assumptions that were used for the worker vehicles. All three Project sites would utilize energy consistent with that of similar sized projects and would thus not constitute an inefficient use of energy. Therefore, with respect to CEQA Guidelines thresholds (a), the proposed Project would result in less-than-significant energy impacts without requiring mitigation.

|                | Electricity (Kilowatt-Hours)        |                          |
|----------------|-------------------------------------|--------------------------|
| Project Site 1 | 75,988                              |                          |
| Project Site 2 | 75                                  | ,988                     |
| Project Site 3 | 467                                 | 7,974                    |
| Project Total  | 619                                 | 9,950                    |
| Natura         | l Gas (Thousands British Thermal Ur | lits)                    |
| Project Site 1 | 222                                 | 2,137                    |
| Project Site 2 | 222,137                             |                          |
| Project Site 3 | 1,288,394                           |                          |
| Project Total  | 1,732,668                           |                          |
| P              | etroleum (Gasoline) Consumption     |                          |
|                | Annual VMT                          | Gallons of Gasoline Fuel |
| Project Site 1 | 340,868                             | 11,813                   |
| Project Site 2 | 340,868                             | 11,813                   |
| Project Site 3 | 1,882,414                           | 65,236                   |
| Project Total  | 2,564,150                           | 88,862                   |

#### **Table 35: Total Project Annual Operational Energy Requirements**

Source: CalEEMod Output Sheets (see Attachment A, B, C)

#### **Future Renewable Energy Developments**

As mentioned in the previous Project sites' analyses, all Project sites would be required to meet the CCR Title 24 energy efficiency standards in effect during permitting of proposed Project and comply with all applicable City energy codes. The City's administration of the CCR Title 24 requirements includes review of design components and energy conservation measures that occurs during the permitting process, which ensures that all requirements are met. In addition, design and operation of the Project sites would comply with State Building Energy Efficiency Standards, appliance efficiency regulations, and green building standards. The Project buildings would require installation of rooftop solar panels in compliance with current

Title 24 requirements. As such, the Project would not inhibit the use of and would allow for future flexibility relating to renewable energy.

#### Conclusion

The Project would comply with the State CEQA Guidelines for energy consumption thresholds (a), concerning wasteful, inefficient and overconsumption of energy in projects, and (b), project design impeding renewable energy development growth, respectively:

- (a) Operation would comply with Title 24 and all applicable City business and energy codes and ordinances. Through compliance with existing standards, the Project would not result in a fuel demand on a per-development basis that is greater than other development projects in Southern California. Therefore, the operation of the Project sites would result in a less-than-significant impact related to inefficient, wasteful, or unnecessary energy use, and no mitigation would be required.
- (b) The proposed Project sites would be required to meet the CCR Title 24 energy efficiency standards, comply with all applicable City energy codes and the Project buildings would be solar compliant with current Title 24 requirements. Therefore, the Project would not impede the growth of future renewable energy developments and would allow for future flexibility relating to renewable energy on-site.

## Greenhouse Gas Emissions

### **Project Total GHG Emissions**

The Project's total operational GHG emissions for all three sites are shown in Table 36, Total Project GHG *Emissions*. As shown below in Table 36, the Project's operational GHG emissions for all three sites would total 1,146 MTCO<sub>2</sub>e. The Project site's total GHG emission results are below the SCAQMD significance threshold of 3,000 MTCO<sub>2</sub>e per year. Therefore, the Project would have a less-than-significant impact on GHG emissions.

| Activity                  | Annual GHG Emissions<br>(MTCO2e) |  |
|---------------------------|----------------------------------|--|
| Opera                     | tional                           |  |
| Project Site 1            | 1 <i>5</i> 0                     |  |
| Project Site 2            | 150                              |  |
| Project Site 3            | 846                              |  |
| Project Operational Total | 1,146                            |  |
| Significance Threshold    | 3,000                            |  |
| Threshold Exceeded?       | Νο                               |  |

#### **Table 36: Total Project GHG Emissions**

Source: CalEEMod Output Sheets (see Attachment A, B, C).

#### Project Consistency with the 2022 CARB Scoping Plan

The 2022 CARB Scoping Plan Update sets the GHG emission reduction target for 2045 at 85% below 1990 levels, which was codified by SB 32. Table 37 shows consistency with CARB's 2022 Scoping Plan. As seen in Table 37, the Project would be consistent with the 2022 Scoping Plan. The proposed Project would not conflict with any plan, policy, or regulation adopted for the purpose of reducing the emissions of GHGs within the 2022 CARB Scoping Plan.

| Action                                                                                   | Consistency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| GHG Emissions Reductions Relative to the SB 32 Target                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| 40% Below 1990 levels by 2030.                                                           | <b>Consistent.</b> The 2022 Title 24 Building Codes, Part 6<br>Energy and Part 11 CalGreen sets requirements to meet<br>the goal of 40% below 1990 levels by 2023.<br>Additionally, the State Senate past Senate Bill (SB) 743 to<br>achieve GHG goals by reducing VMT. Project would<br>comply with the 2022 Title 24, Part 6 and Part 11 along<br>with reducing VMT in the City. Therefore, the Project is<br>consistent with the programs created to meet the 40%<br>below 1990 levels by 2030 goal. |  |  |  |
| Smart Growth/Vehicle Miles Traveled VMT                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| VMT per capita reduced 25% below 2019 levels by 2030, and 30% below 2019 levels by 2045. | <b>Consistent.</b> The proposed Project reduces VMT by proposing residential and potential mixed-use                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |

#### Table 37: 2022 Scoping Plan Consistency Summary

| Action                                                                                                                                                                                                                                               | Consistency                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                                                                                                                                                                                                                      | development in close proximity to each other, as well as<br>proposing residential development in a Low VMT area in<br>the city. Additionally, the Project is consistent with the<br>growth and land use assumptions in the 2022 Connect<br>SoCal (SCAG, 2020), which creates policies that aim to<br>reduce VMT to meet State reduction goals. Therefore, the<br>Project would be consistent with contributing to the states<br>goals of VMT reduction targets and measures. |  |  |  |
| Light-Duty Vehicle (LDV) Z                                                                                                                                                                                                                           | ero-Emission Vehicles (ZEVs)                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| 100% of LDV sales are ZEV by 2035.                                                                                                                                                                                                                   | <b>Consistent.</b> The proposed Project would be designed and constructed in accordance with the 2022 Title 24 Part 6 and Part 11 requirements, which includes constructing homes to allow for electric vehicle charging.                                                                                                                                                                                                                                                    |  |  |  |
| Тгис                                                                                                                                                                                                                                                 | k ZEVs                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| 100% of medium-duty (MDV)/HDC sales are ZEV by<br>2040 (AB 74 University of California Institute of<br>Transportation Studies [ITS] report).                                                                                                         | <b>Not Applicable.</b> The Project proposes residential or potential commercial use that would not be associated with significant truck sales or use.                                                                                                                                                                                                                                                                                                                        |  |  |  |
| ۸v                                                                                                                                                                                                                                                   | iation                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| 20% of aviation fuel demand is met by electricity<br>(batteries) or hydrogen (fuel cells) in 2045. Sustainable<br>aviation fuel meets most or the rest of the aviation fuel<br>demand that has not already transitioned to hydrogen<br>or batteries. | <b>Not Applicable.</b> The proposed Project would not utilize aviation fuel.                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| Ocean-Going                                                                                                                                                                                                                                          | Vessels (OGV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 2020 OGV At-Berth regulation fully implemented, with most OGVs utilizing shore power by 2027.                                                                                                                                                        | <b>Not Applicable.</b> The proposed Project would not utilize any OGVs.                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| 25% of OGVs utilize hydrogen fuel cell electric technology by 2045.                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| Port O                                                                                                                                                                                                                                               | perations                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| 100% of cargo handling equipment is zero-emission by 2037.                                                                                                                                                                                           | <b>Not Applicable.</b> The proposed Project would not impact any operations at any ports.                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| 100% of drayage trucks are zero emission by 2035.                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| Freight and                                                                                                                                                                                                                                          | Passenger Rail                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| 100% of passenger and other locomotive sales are ZEV by 2030.                                                                                                                                                                                        | <b>Not Applicable.</b> The proposed Project would not involve any freight or passenger rail operations.                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| 100% of line haul locomotive sales are ZEV by 2035.                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| Line haul and passenger rail rely primarily on hydrogen<br>fuel cell technology, and others primarily utilize<br>electricity.                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| Oil and Gas Extraction                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| Reduce oil and gas extraction operations in line with petroleum demand by 2045.                                                                                                                                                                      | <b>Not Applicable.</b> The proposed Project would not involve oil or gas extraction operations.                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |

| Action                                                                                                                                                                                                                                                                                       | Consistency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Petroleum Refining                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |
| CCS on majority of operations by 2030, beginning in 2028. Production reduced in line with petroleum demand.                                                                                                                                                                                  | <b>Not Applicable.</b> The proposed Project would not involve any petroleum refining.                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |
| Electricity                                                                                                                                                                                                                                                                                  | Generation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |
| Sector GHG target of 38 million metric tons of carbon<br>dioxide equivalent (MMTCO2e) in 2030 and 30<br>MMTCO2e in 2035.<br>Retail sales load coverage13420 gigawatts (GW) of<br>offshore wind by 2045. Meet increased demand for<br>electrification without new fossil gas-fired resources. | <b>Consistent.</b> The Project would be required to provide PV solar panels on the rooftops of the multi-family residence building(s) and meet all other requirements related to energy efficiency standards, as well as improved insulation reducing energy consumption, in compliance with the 2022 Title 24, Part 6 energy code.                                                                                                                                                               |  |  |  |  |  |  |  |  |
| New Residential and                                                                                                                                                                                                                                                                          | l Commercial Buildings                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |
| All electric appliances beginning 2026 (residential) and 2029 (commercial), contributing to 6 million heat pumps installed statewide by 2030.                                                                                                                                                | <b>Consistent.</b> The Project would comply with the 2022 Title 24, Part 6 building energy requirements, which would require all in-unit appliances for residential projects to be all-electric and Energy Star certified.                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |
| Existing Resid                                                                                                                                                                                                                                                                               | lential Buildings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |
| 80% of appliance sales are electric by 2030 and 100% of appliance sales are electric by 2035.                                                                                                                                                                                                | <b>Not Applicable.</b> The proposed Project would not involve any existing residential buildings.                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |
| Appliances are replaced at end of life such that by 2030 there are 3 million all-electric and electric-ready homes—and by 2035, 7 million homes—as well as contributing to 6 million heat pumps installed statewide by 2030.                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |
| Existing Com                                                                                                                                                                                                                                                                                 | nercial Buildings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |
| 80% of appliance sales are electric by 2030, and<br>100% of appliance sales are electric by 2045.<br>Appliances are replaced at end of life, contributing to<br>6 million heat pumps installed statewide by 2030.                                                                            | <b>Consistent.</b> The three Project Sites have existing commercial/public facility buildings currently active. The redevelopment of these sites could involve appliance sales that would require consistency with the Title 24 Part 6 and Part 11 requirements for proposed development as well as upgrading existing facilities. Therefore, the proposed Project would be consistent with the goal of 80% of appliance sales being electric and 100% of appliance sales being electric by 2045. |  |  |  |  |  |  |  |  |
| Food                                                                                                                                                                                                                                                                                         | Products                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |
| 7.5% of energy demand electrified directly and/or indirectly by 2030; 75% by 2045.                                                                                                                                                                                                           | <b>Not Applicable.</b> The Project does not propose cold storage and would not involve mass food production.                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |
| Constructio                                                                                                                                                                                                                                                                                  | on Equipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |
| 25% of energy demand electrified by 2030 and 75% electrified by 2045.                                                                                                                                                                                                                        | Consistent. The proposed Project would be required to u construction equipment that is registered by CARB an meet CARB's standards. CARB sets its standards to be line with the goal of reducing energy demand by 25% 2030 and 75% in 2045.                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |

| Action                                                                                                                                                       | Consistency                                                                                                       |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Chemicals and Allied                                                                                                                                         | Products; Pulp and Paper                                                                                          |  |  |  |  |  |  |  |
| Electrify 0% of boilers by 2030 and 100% of boilers by 2045.                                                                                                 | <b>Not Applicable.</b> The proposed Project would not be utilized for pulp and/or paper products.                 |  |  |  |  |  |  |  |
| Hydrogen for 25% of process heat by 2035 and 100% by 2045.                                                                                                   |                                                                                                                   |  |  |  |  |  |  |  |
| Electrify 100% of other energy demand by 2045.                                                                                                               |                                                                                                                   |  |  |  |  |  |  |  |
| Stone, Clay, G                                                                                                                                               | lass, and Cement                                                                                                  |  |  |  |  |  |  |  |
| CCS on 40% of operations by 2035 and on all facilities by 2045.                                                                                              | <b>Not Applicable</b> . The proposed Project would not be utilized for stone, clay, glass, and/or cement storage. |  |  |  |  |  |  |  |
| Process emissions reduced through alternative materials and CCS.                                                                                             |                                                                                                                   |  |  |  |  |  |  |  |
| Other Industrie                                                                                                                                              | al Manufacturing                                                                                                  |  |  |  |  |  |  |  |
| 0% energy demand electrified by 2030 and 50% by 2045.                                                                                                        | <b>Not Applicable.</b> The Project site does not involve manufacturing operations.                                |  |  |  |  |  |  |  |
| Combined Heat and Power                                                                                                                                      |                                                                                                                   |  |  |  |  |  |  |  |
| Facilities retire by 2040.                                                                                                                                   | <b>Not Applicable.</b> The proposed Project would not involve any existing combined heat and power facilities.    |  |  |  |  |  |  |  |
| Agricultur                                                                                                                                                   | e Energy Use                                                                                                      |  |  |  |  |  |  |  |
| 25% energy demand electrified by 2030 and 75% by 2045.                                                                                                       | <b>Not Applicable.</b> The proposed Project would not involve any agricultural uses.                              |  |  |  |  |  |  |  |
| Low Carbon Fuel                                                                                                                                              | s for Transportation                                                                                              |  |  |  |  |  |  |  |
| Biomass supply is used to produce conventional and advanced biofuels, as well as hydrogen.                                                                   | <b>Not Applicable.</b> The proposed Project would not involve any production of biofuels.                         |  |  |  |  |  |  |  |
| Low Carbon Fuels for                                                                                                                                         | r Buildings and Industry                                                                                          |  |  |  |  |  |  |  |
| In 2030s, biomethane135 blended in pipeline                                                                                                                  | Not Applicable. The proposed Project would not involve                                                            |  |  |  |  |  |  |  |
| Renewable hydrogen blended in fossil gas pipeline at 7% energy (~20% by volume), ramping up between 2030 and 2040.                                           | any production of fuels for buildings and industry.                                                               |  |  |  |  |  |  |  |
| In 2030s, dedicated hydrogen pipelines constructed to serve certain industrial clusters                                                                      |                                                                                                                   |  |  |  |  |  |  |  |
| Non-Combustion                                                                                                                                               | Methane Emissions                                                                                                 |  |  |  |  |  |  |  |
| Increase landfill and dairy digester methane capture.                                                                                                        | Not Applicable. The proposed Project would not involve                                                            |  |  |  |  |  |  |  |
| Some alternative manure management deployed for smaller dairies.                                                                                             | any landfill and/or dairy uses.                                                                                   |  |  |  |  |  |  |  |
| Moderate adoption of enteric strategies by 2030.                                                                                                             |                                                                                                                   |  |  |  |  |  |  |  |
| Divert 75% of organic waste from landfills by 2025.                                                                                                          |                                                                                                                   |  |  |  |  |  |  |  |
| Oil and gas fugitive methane emissions reduced 50% by 2030 and further reductions as infrastructure components retire in line with reduced fossil gas demand |                                                                                                                   |  |  |  |  |  |  |  |

| Action                                                                                                                                                                                                   | Consistency                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| High GWP Potential Emissions                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |
| Low GWP refrigerants introduced as building electrification increases, mitigating HFC emissions.                                                                                                         | <b>Not Applicable.</b> The proposed Project does not include large-scale refrigeration uses nor would the proposed operation include any manufacturing.                                                                                                                                                                                   |  |  |  |  |  |  |  |  |
| Transportati                                                                                                                                                                                             | on Electrification                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |
| Convert local government fleets to ZEV                                                                                                                                                                   | <b>Not Applicable.</b> The proposed Project would not involve government offices; therefore, this measure would not apply.                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
| Create a jurisdiction-specific ZEV ecosystem to support<br>deployment of ZEVs statewide (such as permit<br>streamlining, infrastructure siting, consumer education,<br>or preferential parking policies) | <b>Consistent.</b> The proposed Project would be designed and constructed in accordance with the 2022 Title 24 Part 6 and Part 11 requirements, which includes constructing homes to allow for electric vehicle charging. Therefore, the proposed Project would be consistent with the implementation of a ZEV ecosystem within the City. |  |  |  |  |  |  |  |  |
| VMT                                                                                                                                                                                                      | Reduction                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |
| Reduce or eliminate minimum parking standards in new developments                                                                                                                                        | <b>Consistent.</b> The proposed Project includes affordab housing incentives as well as flexible developme standards to allow for reduced parking requirement Therefore, the Project is consistent with this policy.                                                                                                                      |  |  |  |  |  |  |  |  |
| Adopt and implement Complete Streets policies and investments, consistent with general plan circulation element requirements                                                                             | Not Applicable. The adoption and implementation or<br>Complete Streets policies and investments are outside the<br>scope of the proposed Project.                                                                                                                                                                                         |  |  |  |  |  |  |  |  |
| Increase public access to shared clean mobility options<br>(such as planning for and investing in electric shuttles,<br>bike share, car share, transit)                                                  | <b>Not Applicable.</b> The increase in public access to shared clean mobility options are outside the scope of the proposed Project. The proposed Project would not impede the City with achieving this goal.                                                                                                                             |  |  |  |  |  |  |  |  |
| Implement parking pricing or transportation demand management pricing strategies                                                                                                                         | <b>Not Applicable</b> . The implementation of parking pricing or transportation demand management pricing strategies are outside the scope of the proposed Project.                                                                                                                                                                       |  |  |  |  |  |  |  |  |
| Amend zoning or development codes to enable mixed-<br>use, walkable, and compact infill development (such as<br>increasing allowable density of the neighborhood)                                        | <b>Consistent.</b> The Project proposes a housing overlay to allow for the development of both commercial and residential development. Therefore, the proposed project would be consistent with the goal of encouraging mixed-use development.                                                                                            |  |  |  |  |  |  |  |  |
| Preserve natural and working lands                                                                                                                                                                       | <b>Consistent.</b> The Project would not convert any natural and working lands to urban uses. The Project site is located within a predominantly residential area that is either being developed or being planned for development.                                                                                                        |  |  |  |  |  |  |  |  |
| Building D                                                                                                                                                                                               | ecarbonization                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |
| Adopt all-electric new construction reach codes                                                                                                                                                          | <b>Consistent.</b> The proposed Project would comply with 2022<br>Title 24 Parts 6 and 11, which includes electric heat pumps<br>installed during construction and electric hookups for all<br>appliances.                                                                                                                                |  |  |  |  |  |  |  |  |
| Adopt policies and incentive programs to implement<br>energy efficiency retrofits (such as weatherization,<br>lighting upgrades, replacing energy intensive                                              | <b>Consistent.</b> The proposed Project would be required to comply with the Title 24 Part 6 and Part 11 requirements for any future retrofits proposed for the existing                                                                                                                                                                  |  |  |  |  |  |  |  |  |

| Action                                                                                                                                                                                                                                                  | Consistency                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| appliances and equipment with more efficient systems, etc.)                                                                                                                                                                                             | commercial buildings on all three Project sites. Therefore,<br>the Project would be consistent with this policy.                                                                                                                                                                                                              |
| Adopt policies and incentive programs to electrify all appliances and equipment in existing buildings                                                                                                                                                   | <b>Not Applicable.</b> The adoption of policies and incentive programs are outside the scope of the proposed Project and would be done through the City's process of updating their municipal code and City lead programs.                                                                                                    |
| Adopt policies and incentive programs to reduce<br>electrical loads from equipment plugged into outlets<br>(such as purchasing Energy Star equipment for<br>municipal buildings, occupancy sensors, smart power<br>strips, equipment controllers, etc.) | <b>Consistent.</b> The proposed Project would be constructed in accordance with Title 24 "CALGreen" requirements, which includes installation of Energy Star equipment and appliances in new residential construction.                                                                                                        |
| Facilitate deployment of renewable energy production<br>and distribution and energy storage                                                                                                                                                             | <b>Consistent.</b> In compliance with the CALGreen Building<br>Energy Efficiency Standards Title 24 Part 6 for new<br>residential dwelling units, the Project would include<br>photovoltaic (PV) solar panels on the rooftops of each<br>residence and meet all other requirements related to<br>energy efficiency standards. |

Source: California's 2022 Climate Change Scoping Plan Table 2-1: Actions for the Scoping Plan Scenario: AB 32 GHG Inventory Sectors

#### Conclusion

All three Project site would be consistent with the 2022 CARB Scoping Plan and would not interfere with the policies and goals set within those plans. The proposed Project's total GHG emissions of 1,146 MTCO<sub>2</sub>e per year for all three sites is below the SCAQMD significance threshold of 3,000 MTCO<sub>2</sub>e per year. Therefore, the Project would have a less-than-significant impact related to GHG emissions.

ATTACHMENT A: SITE 1 MALAGA COVE CALEEMOD OUTPUT SHEETS

# 24-103 PVE Site 1 Malaga Detailed Report

## Table of Contents

- 1. Basic Project Information
  - 1.1. Basic Project Information
  - 1.2. Land Use Types
  - 1.3. User-Selected Emission Reduction Measures by Emissions Sector
- 2. Emissions Summary
  - 2.1. Construction Emissions Compared Against Thresholds
  - 2.2. Construction Emissions by Year, Unmitigated
  - 2.4. Operations Emissions Compared Against Thresholds
  - 2.5. Operations Emissions by Sector, Unmitigated
- 3. Construction Emissions Details
  - 3.1. Demolition (2025) Unmitigated
  - 3.3. Site Preparation (2025) Unmitigated
  - 3.5. Grading (2025) Unmitigated
  - 3.7. Building Construction (2025) Unmitigated
  - 3.9. Building Construction (2026) Unmitigated

- 3.11. Paving (2026) Unmitigated
- 3.13. Architectural Coating (2026) Unmitigated
- 4. Operations Emissions Details
  - 4.1. Mobile Emissions by Land Use
    - 4.1.1. Unmitigated
  - 4.2. Energy
    - 4.2.1. Electricity Emissions By Land Use Unmitigated
    - 4.2.3. Natural Gas Emissions By Land Use Unmitigated
  - 4.3. Area Emissions by Source
    - 4.3.1. Unmitigated
  - 4.4. Water Emissions by Land Use
    - 4.4.1. Unmitigated
  - 4.5. Waste Emissions by Land Use
    - 4.5.1. Unmitigated
  - 4.6. Refrigerant Emissions by Land Use
    - 4.6.1. Unmitigated
  - 4.7. Offroad Emissions By Equipment Type
    - 4.7.1. Unmitigated

### 4.8. Stationary Emissions By Equipment Type

### 4.8.1. Unmitigated

4.9. User Defined Emissions By Equipment Type

4.9.1. Unmitigated

- 4.10. Soil Carbon Accumulation By Vegetation Type
  - 4.10.1. Soil Carbon Accumulation By Vegetation Type Unmitigated
  - 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type Unmitigated
  - 4.10.3. Avoided and Sequestered Emissions by Species Unmitigated

### 5. Activity Data

- 5.1. Construction Schedule
- 5.2. Off-Road Equipment
  - 5.2.1. Unmitigated
- 5.3. Construction Vehicles
  - 5.3.1. Unmitigated
- 5.4. Vehicles
  - 5.4.1. Construction Vehicle Control Strategies
- 5.5. Architectural Coatings
- 5.6. Dust Mitigation

- 5.6.1. Construction Earthmoving Activities
- 5.6.2. Construction Earthmoving Control Strategies
- 5.7. Construction Paving
- 5.8. Construction Electricity Consumption and Emissions Factors
- 5.9. Operational Mobile Sources
  - 5.9.1. Unmitigated
- 5.10. Operational Area Sources
  - 5.10.1. Hearths
    - 5.10.1.1. Unmitigated
  - 5.10.2. Architectural Coatings
  - 5.10.3. Landscape Equipment
- 5.11. Operational Energy Consumption
  - 5.11.1. Unmitigated
- 5.12. Operational Water and Wastewater Consumption
  - 5.12.1. Unmitigated
- 5.13. Operational Waste Generation
  - 5.13.1. Unmitigated
- 5.14. Operational Refrigeration and Air Conditioning Equipment

### 5.14.1. Unmitigated

- 5.15. Operational Off-Road Equipment
  - 5.15.1. Unmitigated

### 5.16. Stationary Sources

- 5.16.1. Emergency Generators and Fire Pumps
- 5.16.2. Process Boilers

### 5.17. User Defined

### 5.18. Vegetation

5.18.1. Land Use Change

### 5.18.1.1. Unmitigated

5.18.1. Biomass Cover Type

### 5.18.1.1. Unmitigated

### 5.18.2. Sequestration

### 5.18.2.1. Unmitigated

### 6. Climate Risk Detailed Report

6.1. Climate Risk Summary

### 6.2. Initial Climate Risk Scores

6.3. Adjusted Climate Risk Scores

- 6.4. Climate Risk Reduction Measures
- 7. Health and Equity Details
  - 7.1. CalEnviroScreen 4.0 Scores
  - 7.2. Healthy Places Index Scores
  - 7.3. Overall Health & Equity Scores
  - 7.4. Health & Equity Measures
  - 7.5. Evaluation Scorecard
  - 7.6. Health & Equity Custom Measures
- 8. User Changes to Default Data

# 1. Basic Project Information

# 1.1. Basic Project Information

| Data Field                  | Value                                  |
|-----------------------------|----------------------------------------|
| Project Name                | 24-103 PVE Site 1 Malaga               |
| Construction Start Date     | 12/1/2025                              |
| Operational Year            | 2026                                   |
| Lead Agency                 |                                        |
| Land Use Scale              | Project/site                           |
| Analysis Level for Defaults | County                                 |
| Windspeed (m/s)             | 3.50                                   |
| Precipitation (days)        | 20.4                                   |
| Location                    | 33.78896150162436, -118.40474052320977 |
| County                      | Los Angeles-South Coast                |
| City                        | Palos Verdes Estates                   |
| Air District                | South Coast AQMD                       |
| Air Basin                   | South Coast                            |
| TAZ                         | 4652                                   |
| EDFZ                        | 7                                      |
| Electric Utility            | Southern California Edison             |
| Gas Utility                 | Southern California Gas                |
| App Version                 | 2022.1.1.28                            |

# 1.2. Land Use Types

| Land Use Subtype       | Size | Unit          | Lot Acreage | Building Area (sq ft) |       | Special Landscape<br>Area (sq ft) | Population | Description |
|------------------------|------|---------------|-------------|-----------------------|-------|-----------------------------------|------------|-------------|
| Apartments Mid<br>Rise | 20.0 | Dwelling Unit | 0.60        | 19,200                | 3,437 |                                   | 59.0       |             |

| Parking Lot 20.0 Space | 0.07 | 8,000 | 0.00 |  | — | — |
|------------------------|------|-------|------|--|---|---|
|------------------------|------|-------|------|--|---|---|

## 1.3. User-Selected Emission Reduction Measures by Emissions Sector

No measures selected

# 2. Emissions Summary

# 2.1. Construction Emissions Compared Against Thresholds

## Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

|                            | · · · | , , , | · · · | ,, ,    | /     |        |       |
|----------------------------|-------|-------|-------|---------|-------|--------|-------|
| Un/Mit.                    | ROG   | NOx   | со    | SO2     | PM10T | PM2.5T | CO2e  |
| Daily, Summer (Max)        | —     | —     | —     | —       | —     | —      | —     |
| Unmit.                     | 24.4  | 7.06  | 10.2  | 0.02    | 0.54  | 0.32   | 2,239 |
| Daily, Winter (Max)        | —     | —     | —     | —       | —     | —      | —     |
| Unmit.                     | 1.65  | 18.5  | 15.9  | 0.05    | 5.54  | 1.62   | 6,985 |
| Average Daily (Max)        | —     | —     | —     | —       | —     | —      | —     |
| Unmit.                     | 0.54  | 1.89  | 2.68  | < 0.005 | 0.18  | 0.08   | 587   |
| Annual (Max)               | _     | —     | —     | —       | —     |        | —     |
| Unmit.                     | 0.10  | 0.34  | 0.49  | < 0.005 | 0.03  | 0.02   | 97.1  |
| Exceeds (Daily Max)        | _     | —     | —     | —       | —     |        | —     |
| Threshold                  | 75.0  | 100   | 550   | 150     | 150   | 55.0   | —     |
| Unmit.                     | No    | No    | No    | No      | No    | No     | —     |
| Exceeds (Average<br>Daily) | -     |       |       |         |       |        |       |
| Threshold                  | 75.0  | 100   | 550   | 150     | 150   | 55.0   |       |
| Unmit.                     | No    | No    | No    | No      | No    | No     |       |

## 2.2. Construction Emissions by Year, Unmitigated

| Year   | ROG | NOx | со | SO2 | PM10T | PM2.5T | CO2e |  |
|--------|-----|-----|----|-----|-------|--------|------|--|
| 8 / 40 |     |     |    |     |       |        |      |  |

| Daily - Summer (Max) | —    | —    | —     | —       | —    | —    | —     |
|----------------------|------|------|-------|---------|------|------|-------|
| 2026                 | 24.4 | 7.06 | 10.2  | 0.02    | 0.54 | 0.32 | 2,239 |
| Daily - Winter (Max) | —    | —    | —     | —       | —    | —    | —     |
| 2025                 | 1.65 | 18.5 | 15.9  | 0.05    | 5.54 | 1.62 | 6,985 |
| 2026                 | 0.78 | 7.07 | 10.00 | 0.02    | 0.54 | 0.32 | 2,225 |
| Average Daily        | —    | —    | —     | —       | —    | —    | —     |
| 2025                 | 0.07 | 0.77 | 0.75  | < 0.005 | 0.18 | 0.06 | 256   |
| 2026                 | 0.54 | 1.89 | 2.68  | < 0.005 | 0.14 | 0.08 | 587   |
| Annual               | —    | —    | —     | _       | —    | —    | _     |
| 2025                 | 0.01 | 0.14 | 0.14  | < 0.005 | 0.03 | 0.01 | 42.3  |
| 2026                 | 0.10 | 0.34 | 0.49  | < 0.005 | 0.03 | 0.02 | 97.1  |

# 2.4. Operations Emissions Compared Against Thresholds

| Un/Mit.                    | ROG  | NOx  | со   | SO2     | PM10T | PM2.5T | CO2e |
|----------------------------|------|------|------|---------|-------|--------|------|
| Daily, Summer (Max)        | —    | —    | —    | —       | —     | —      | —    |
| Unmit.                     | 0.92 | 0.32 | 4.47 | 0.01    | 0.67  | 0.18   | 932  |
| Daily, Winter (Max)        | —    | —    | —    | _       | —     | _      | _    |
| Unmit.                     | 0.76 | 0.33 | 2.73 | 0.01    | 0.67  | 0.18   | 895  |
| Average Daily (Max)        | —    | —    | —    | —       | —     | —      | —    |
| Unmit.                     | 0.87 | 0.35 | 3.82 | 0.01    | 0.66  | 0.18   | 907  |
| Annual (Max)               | —    | —    | —    | —       | —     | —      | —    |
| Unmit.                     | 0.16 | 0.06 | 0.70 | < 0.005 | 0.12  | 0.03   | 150  |
| Exceeds (Daily Max)        | —    | —    | —    | —       | —     | —      | —    |
| Threshold                  | 55.0 | 55.0 | 550  | 150     | 150   | 55.0   | —    |
| Unmit.                     | No   | No   | No   | No      | No    | No     |      |
| Exceeds (Average<br>Daily) | —    | _    | _    | _       | —     | _      |      |

| Threshold        | 55.0 | 55.0 | 550 | 150 | 150 | 55.0 |       |
|------------------|------|------|-----|-----|-----|------|-------|
| Unmit.           | No   | No   | No  | No  | No  | No   | _     |
| Exceeds (Annual) | —    | —    | —   | —   | —   | —    | —     |
| Threshold        | —    | —    | —   | —   | —   | —    | 3,000 |
| Unmit.           | _    | _    |     |     |     |      | No    |

# 2.5. Operations Emissions by Sector, Unmitigated

| Sector              | ROG     | NOx  | со   | SO2     | PM10T   | PM2.5T  | CO2e |
|---------------------|---------|------|------|---------|---------|---------|------|
| Daily, Summer (Max) | _       | _    | —    | —       | _       | —       | —    |
| Mobile              | 0.32    | 0.25 | 2.96 | 0.01    | 0.67    | 0.17    | 745  |
| Area                | 0.60    | 0.01 | 1.48 | < 0.005 | < 0.005 | < 0.005 | 4.48 |
| Energy              | < 0.005 | 0.06 | 0.02 | < 0.005 | < 0.005 | < 0.005 | 144  |
| Water               | —       | —    | —    | —       | —       | —       | 11.3 |
| Waste               | —       | —    | —    | —       | —       | —       | 27.8 |
| Refrig.             | —       | —    | —    | —       | —       | —       | 0.14 |
| Total               | 0.92    | 0.32 | 4.47 | 0.01    | 0.67    | 0.18    | 932  |
| Daily, Winter (Max) | —       | —    | —    | —       | —       | —       | —    |
| Mobile              | 0.31    | 0.28 | 2.71 | 0.01    | 0.67    | 0.17    | 712  |
| Area                | 0.44    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Energy              | < 0.005 | 0.06 | 0.02 | < 0.005 | < 0.005 | < 0.005 | 144  |
| Water               | _       | _    | —    | —       | _       | —       | 11.3 |
| Waste               | _       | _    | —    | —       | —       | —       | 27.8 |
| Refrig.             | _       | _    | —    | —       | —       | —       | 0.14 |
| Total               | 0.76    | 0.33 | 2.73 | 0.01    | 0.67    | 0.18    | 895  |
| Average Daily       | —       | _    | —    | —       | —       | —       | —    |
| Mobile              | 0.31    | 0.28 | 2.79 | 0.01    | 0.66    | 0.17    | 721  |
| Area                | 0.55    | 0.01 | 1.02 | < 0.005 | < 0.005 | < 0.005 | 3.07 |

| Energy  | < 0.005 | 0.06    | 0.02    | < 0.005 | < 0.005 | < 0.005 | 144  |
|---------|---------|---------|---------|---------|---------|---------|------|
| Water   | _       | —       | _       | —       | _       | _       | 11.3 |
| Waste   | —       | —       | —       | —       | _       | _       | 27.8 |
| Refrig. | —       | —       | _       | —       | _       | _       | 0.14 |
| Total   | 0.87    | 0.35    | 3.82    | 0.01    | 0.66    | 0.18    | 907  |
| Annual  | _       | —       | _       | —       | _       | _       | —    |
| Mobile  | 0.06    | 0.05    | 0.51    | < 0.005 | 0.12    | 0.03    | 119  |
| Area    | 0.10    | < 0.005 | 0.19    | < 0.005 | < 0.005 | < 0.005 | 0.51 |
| Energy  | < 0.005 | 0.01    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 23.8 |
| Water   | _       | —       | _       | _       | _       | _       | 1.87 |
| Waste   | _       | —       |         |         |         |         | 4.60 |
| Refrig. | _       | _       |         | _       |         |         | 0.02 |
| Total   | 0.16    | 0.06    | 0.70    | < 0.005 | 0.12    | 0.03    | 150  |
|         |         |         |         |         |         |         |      |

# 3. Construction Emissions Details

# 3.1. Demolition (2025) - Unmitigated

| Location            | ROG  | NOx  | СО   | SO2     | PM10T | PM2.5T | CO2e  |
|---------------------|------|------|------|---------|-------|--------|-------|
| Onsite              | _    | _    | —    | —       | —     | —      | —     |
| Daily, Summer (Max) | —    | —    | —    | —       | —     | —      | —     |
| Daily, Winter (Max) | —    | —    | —    | —       | —     | —      | —     |
| Off-Road Equipment  | 1.36 | 12.8 | 13.2 | 0.02    | 0.53  | 0.48   | 2,211 |
| Demolition          | —    | —    | —    | —       | 3.65  | 0.55   | —     |
| Onsite truck        | 0.00 | 0.00 | 0.00 | 0.00    | 0.00  | 0.00   | 0.00  |
| Average Daily       | _    | _    | —    | —       | —     | —      | —     |
| Off-Road Equipment  | 0.04 | 0.35 | 0.36 | < 0.005 | 0.01  | 0.01   | 60.6  |
| Demolition          | —    | _    | —    | —       | 0.10  | 0.02   | —     |

| Onsite truck        | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00  |
|---------------------|---------|---------|---------|---------|---------|---------|-------|
| Annual              | _       | —       | _       | _       | —       | _       | —     |
| Off-Road Equipment  | 0.01    | 0.06    | 0.07    | < 0.005 | < 0.005 | < 0.005 | 10.0  |
| Demolition          | _       | —       | _       | _       | 0.02    | < 0.005 | —     |
| Onsite truck        | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00  |
| Offsite             | —       | —       | _       | —       | —       | —       | —     |
| Daily, Summer (Max) | —       | —       | _       | —       | —       | —       | —     |
| Daily, Winter (Max) | —       | -       | _       | _       | —       | _       | —     |
| Worker              | 0.04    | 0.05    | 0.59    | 0.00    | 0.13    | 0.03    | 133   |
| Vendor              | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00  |
| Hauling             | 0.06    | 5.64    | 2.14    | 0.03    | 1.24    | 0.38    | 4,642 |
| Average Daily       | —       | -       | _       | _       | —       | _       | —     |
| Worker              | < 0.005 | < 0.005 | 0.02    | 0.00    | < 0.005 | < 0.005 | 3.69  |
| Vendor              | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00  |
| Hauling             | < 0.005 | 0.16    | 0.06    | < 0.005 | 0.03    | 0.01    | 127   |
| Annual              | _       | _       | _       | _       | _       | _       | _     |
| Worker              | < 0.005 | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | 0.61  |
| Vendor              | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00  |
| Hauling             | < 0.005 | 0.03    | 0.01    | < 0.005 | 0.01    | < 0.005 | 21.1  |

# 3.3. Site Preparation (2025) - Unmitigated

| Location            | ROG  | NOx  | со   | SO2  | PM10T | PM2.5T | CO2e |
|---------------------|------|------|------|------|-------|--------|------|
| Onsite              | _    | _    | —    | _    | _     | —      | —    |
| Daily, Summer (Max) | —    | _    | —    | _    | _     | —      | —    |
| Daily, Winter (Max) | —    | —    | —    | —    | —     | —      | —    |
| Off-Road Equipment  | 0.66 | 5.62 | 6.13 | 0.01 | 0.35  | 0.33   | 920  |

| Dust From Material<br>Movement | -       | _       | _       | _       | 0.28    | 0.03    | -    |
|--------------------------------|---------|---------|---------|---------|---------|---------|------|
| Onsite truck                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Average Daily                  |         | —       | —       | —       | —       | —       | —    |
| Off-Road Equipment             | < 0.005 | 0.02    | 0.02    | < 0.005 | < 0.005 | < 0.005 | 2.52 |
| Dust From Material<br>Movement | _       | _       | —       | —       | < 0.005 | < 0.005 | —    |
| Onsite truck                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Annual                         | —       | —       | —       | —       | —       | —       | —    |
| Off-Road Equipment             | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 0.42 |
| Dust From Material<br>Movement | -       | _       | —       | —       | < 0.005 | < 0.005 | —    |
| Onsite truck                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Offsite                        | —       | —       | —       | —       | —       | —       | —    |
| Daily, Summer (Max)            | —       | —       | —       | —       | —       | —       | —    |
| Daily, Winter (Max)            | —       | —       | —       | —       | —       | —       | —    |
| Worker                         | 0.02    | 0.02    | 0.29    | 0.00    | 0.07    | 0.02    | 66.4 |
| Vendor                         | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                        | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Average Daily                  | —       | —       | —       | —       | —       | —       | —    |
| Worker                         | < 0.005 | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | 0.18 |
| Vendor                         | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                        | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Annual                         | _       | —       | —       | —       | —       | —       | —    |
| Worker                         | < 0.005 | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | 0.03 |
| Vendor                         | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                        | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |

3.5. Grading (2025) - Unmitigated

| Location                       | ROG     | NOx     | со      | SO2     | PM10T   | PM2.5T  | CO2e  |
|--------------------------------|---------|---------|---------|---------|---------|---------|-------|
| Onsite                         | _       | _       | _       | _       | _       | -       | —     |
| Daily, Summer (Max)            | _       | _       | _       | _       | _       | —       | —     |
| Daily, Winter (Max)            | _       | _       | _       | _       | —       | _       | —     |
| Off-Road Equipment             | 1.62    | 14.7    | 13.6    | 0.02    | 0.75    | 0.69    | 2,303 |
| Dust From Material<br>Movement | _       | _       | _       | _       | 1.98    | 0.91    | —     |
| Onsite truck                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00  |
| Average Daily                  | _       | _       | _       | —       | —       | —       | —     |
| Off-Road Equipment             | 0.01    | 0.08    | 0.07    | < 0.005 | < 0.005 | < 0.005 | 12.6  |
| Dust From Material<br>Movement | -       | -       | -       | —       | 0.01    | < 0.005 | —     |
| Onsite truck                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00  |
| Annual                         | _       | _       | _       | —       | —       | —       | —     |
| Off-Road Equipment             | < 0.005 | 0.01    | 0.01    | < 0.005 | < 0.005 | < 0.005 | 2.09  |
| Dust From Material<br>Movement | -       | -       | -       | _       | < 0.005 | < 0.005 | _     |
| Onsite truck                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00  |
| Offsite                        | _       | _       | _       | —       | —       | —       | —     |
| Daily, Summer (Max)            | _       | _       | _       | —       | —       | —       | —     |
| Daily, Winter (Max)            | _       | _       | _       | —       | —       | —       | —     |
| Worker                         | 0.03    | 0.04    | 0.44    | 0.00    | 0.10    | 0.02    | 99.5  |
| Vendor                         | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00  |
| Hauling                        | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00  |
| Average Daily                  | _       | _       | _       | —       | —       | —       | —     |
| Worker                         | < 0.005 | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | 0.55  |
| Vendor                         | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00  |
| Hauling                        | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00  |
| Annual                         | _       | _       | _       | _       | _       | _       | _     |

| Worker  | < 0.005 | < 0.005 | < 0.005 | 0.00 | < 0.005 | < 0.005 | 0.09 |
|---------|---------|---------|---------|------|---------|---------|------|
| Vendor  | 0.00    | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 |
| Hauling | 0.00    | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 |

# 3.7. Building Construction (2025) - Unmitigated

|                     | (       | • •     |          | <u> </u> | ,       |          |       |
|---------------------|---------|---------|----------|----------|---------|----------|-------|
| Location            | ROG     | NOx     | со       | SO2      | PM10T   | PM2.5T   | CO2e  |
| Onsite              | —       | —       | —        | —        | —       | —        | —     |
| Daily, Summer (Max) | —       | —       | _        | -        | —       | —        | _     |
| Daily, Winter (Max) | —       | —       | _        | —        | —       | —        | —     |
| Off-Road Equipment  | 0.75    | 7.34    | 9.02     | 0.02     | 0.31    | 0.29     | 1,883 |
| Onsite truck        | 0.00    | 0.00    | 0.00     | 0.00     | 0.00    | 0.00     | 0.00  |
| Average Daily       | —       | —       | —        | —        | —       | —        | —     |
| Off-Road Equipment  | 0.02    | 0.16    | 0.19     | < 0.005  | 0.01    | 0.01     | 40.5  |
| Onsite truck        | 0.00    | 0.00    | 0.00     | 0.00     | 0.00    | 0.00     | 0.00  |
| Annual              | —       | —       | —        | —        | —       | —        | —     |
| Off-Road Equipment  | < 0.005 | 0.03    | 0.04     | < 0.005  | < 0.005 | < 0.005  | 6.71  |
| Onsite truck        | 0.00    | 0.00    | 0.00     | 0.00     | 0.00    | 0.00     | 0.00  |
| Offsite             | —       | —       | —        | —        | —       | —        | —     |
| Daily, Summer (Max) | —       | —       | —        | —        | —       | —        | —     |
| Daily, Winter (Max) | —       | —       | —        | —        | —       | —        | —     |
| Worker              | 0.08    | 0.09    | 1.05     | 0.00     | 0.23    | 0.05     | 236   |
| Vendor              | < 0.005 | 0.13    | 0.06     | < 0.005  | 0.03    | 0.01     | 114   |
| Hauling             | 0.00    | 0.00    | 0.00     | 0.00     | 0.00    | 0.00     | 0.00  |
| Average Daily       |         |         | <u> </u> | —        |         | <u> </u> | —     |
| Worker              | < 0.005 | < 0.005 | 0.02     | 0.00     | < 0.005 | < 0.005  | 5.15  |
| Vendor              | < 0.005 | < 0.005 | < 0.005  | < 0.005  | < 0.005 | < 0.005  | 2.46  |
| Hauling             | 0.00    | 0.00    | 0.00     | 0.00     | 0.00    | 0.00     | 0.00  |

| Annual  | —       | _       | —       | —       | _       | _       | _    |
|---------|---------|---------|---------|---------|---------|---------|------|
| Worker  | < 0.005 | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | 0.85 |
| Vendor  | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 0.41 |
| Hauling | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |

# 3.9. Building Construction (2026) - Unmitigated

| Location            | ROG     | NOx  | со   | SO2     | PM10T | PM2.5T | CO2e  |
|---------------------|---------|------|------|---------|-------|--------|-------|
| Onsite              | _       | _    | _    | _       | _     | _      | _     |
| Daily, Summer (Max) | _       | _    | -    | _       | _     | _      | -     |
| Off-Road Equipment  | 0.71    | 6.87 | 8.96 | 0.02    | 0.28  | 0.25   | 1,882 |
| Onsite truck        | 0.00    | 0.00 | 0.00 | 0.00    | 0.00  | 0.00   | 0.00  |
| Daily, Winter (Max) | _       | _    | —    | —       | —     | —      | —     |
| Off-Road Equipment  | 0.71    | 6.87 | 8.96 | 0.02    | 0.28  | 0.25   | 1,882 |
| Onsite truck        | 0.00    | 0.00 | 0.00 | 0.00    | 0.00  | 0.00   | 0.00  |
| Average Daily       | _       | _    | —    | _       | _     | —      | —     |
| Off-Road Equipment  | 0.18    | 1.75 | 2.28 | < 0.005 | 0.07  | 0.06   | 479   |
| Onsite truck        | 0.00    | 0.00 | 0.00 | 0.00    | 0.00  | 0.00   | 0.00  |
| Annual              | _       | _    | —    | —       | _     | —      | —     |
| Off-Road Equipment  | 0.03    | 0.32 | 0.42 | < 0.005 | 0.01  | 0.01   | 79.3  |
| Onsite truck        | 0.00    | 0.00 | 0.00 | 0.00    | 0.00  | 0.00   | 0.00  |
| Offsite             | —       | _    | —    | —       | _     | —      | —     |
| Daily, Summer (Max) | _       | _    | —    | —       | _     | —      | —     |
| Worker              | 0.07    | 0.07 | 1.15 | 0.00    | 0.23  | 0.05   | 244   |
| Vendor              | < 0.005 | 0.12 | 0.06 | < 0.005 | 0.03  | 0.01   | 113   |
| Hauling             | 0.00    | 0.00 | 0.00 | 0.00    | 0.00  | 0.00   | 0.00  |
| Daily, Winter (Max) | _       |      | _    | _       |       | _      | -     |
| Worker              | 0.06    | 0.08 | 0.98 | 0.00    | 0.23  | 0.05   | 231   |

| Vendor        | < 0.005 | 0.12    | 0.06    | < 0.005 | 0.03    | 0.01    | 112  |
|---------------|---------|---------|---------|---------|---------|---------|------|
| Hauling       | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Average Daily | _       | —       | _       | —       | —       | —       | —    |
| Worker        | 0.02    | 0.02    | 0.26    | 0.00    | 0.06    | 0.01    | 59.7 |
| Vendor        | < 0.005 | 0.03    | 0.01    | < 0.005 | 0.01    | < 0.005 | 28.6 |
| Hauling       | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Annual        | _       | —       | _       | _       | _       | _       | —    |
| Worker        | < 0.005 | < 0.005 | 0.05    | 0.00    | 0.01    | < 0.005 | 9.88 |
| Vendor        | < 0.005 | 0.01    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 4.73 |
| Hauling       | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |

# 3.11. Paving (2026) - Unmitigated

| Location            | ROG     | NOx  | со   | SO2     | PM10T   | PM2.5T  | CO2e |
|---------------------|---------|------|------|---------|---------|---------|------|
| Onsite              | —       | —    | —    | —       | —       | —       | —    |
| Daily, Summer (Max) | —       | —    | _    | —       | —       | _       | _    |
| Off-Road Equipment  | 0.59    | 5.08 | 6.24 | 0.01    | 0.21    | 0.20    | 976  |
| Paving              | 0.04    | —    | _    | —       | —       | _       | _    |
| Onsite truck        | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Daily, Winter (Max) | —       | —    | —    | —       | —       | _       | —    |
| Average Daily       | _       | —    | —    | —       | —       | _       | _    |
| Off-Road Equipment  | 0.01    | 0.07 | 0.09 | < 0.005 | < 0.005 | < 0.005 | 13.4 |
| Paving              | < 0.005 | —    | —    | —       | —       | _       |      |
| Onsite truck        | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Annual              | _       | —    | —    | —       | —       | _       | _    |
| Off-Road Equipment  | < 0.005 | 0.01 | 0.02 | < 0.005 | < 0.005 | < 0.005 | 2.21 |
| Paving              | < 0.005 | —    | _    | —       | —       |         | _    |
| Onsite truck        | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |

| Offsite             |         | _       | _       | _    | _       | _       | _    |
|---------------------|---------|---------|---------|------|---------|---------|------|
| Daily, Summer (Max) | —       | —       | —       | —    | —       | —       | —    |
| Worker              | 0.06    | 0.07    | 1.13    | 0.00 | 0.23    | 0.05    | 241  |
| Vendor              | 0.00    | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 |
| Hauling             | 0.00    | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 |
| Daily, Winter (Max) | —       | —       | —       | —    | —       | —       | —    |
| Average Daily       | —       | —       | —       | —    | —       | —       | —    |
| Worker              | < 0.005 | < 0.005 | 0.01    | 0.00 | < 0.005 | < 0.005 | 3.17 |
| Vendor              | 0.00    | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 |
| Hauling             | 0.00    | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 |
| Annual              | —       | —       | —       | —    | —       | —       | —    |
| Worker              | < 0.005 | < 0.005 | < 0.005 | 0.00 | < 0.005 | < 0.005 | 0.52 |
| Vendor              | 0.00    | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 |
| Hauling             | 0.00    | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 |

# 3.13. Architectural Coating (2026) - Unmitigated

| Location               | ROG     | NOx  | со   | SO2     | PM10T   | PM2.5T  | CO2e |
|------------------------|---------|------|------|---------|---------|---------|------|
| Onsite                 | —       | —    | —    | —       | —       | _       | —    |
| Daily, Summer (Max)    | —       | —    | —    | —       | —       | —       | —    |
| Off-Road Equipment     | 0.16    | 1.14 | 1.51 | < 0.005 | 0.03    | 0.03    | 179  |
| Architectural Coatings | 24.2    | —    | —    | —       | —       | _       | _    |
| Onsite truck           | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Daily, Winter (Max)    | —       | —    | —    | —       | —       | _       |      |
| Average Daily          | —       | —    | —    | —       | —       | _       |      |
| Off-Road Equipment     | < 0.005 | 0.02 | 0.02 | < 0.005 | < 0.005 | < 0.005 | 2.45 |
| Architectural Coatings | 0.33    | —    | —    | —       | —       | _       | _    |
| Onsite truck           | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |

| Annual                 | —       | _       | —       | _       | _       | —       | —    |
|------------------------|---------|---------|---------|---------|---------|---------|------|
| Off-Road Equipment     | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 0.41 |
| Architectural Coatings | 0.06    | _       | —       | _       | _       | —       | —    |
| Onsite truck           | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Offsite                | —       | —       | _       | —       | _       | —       | —    |
| Daily, Summer (Max)    | —       | —       | _       | —       | _       | —       | —    |
| Worker                 | 0.01    | 0.01    | 0.23    | 0.00    | 0.05    | 0.01    | 48.8 |
| Vendor                 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Daily, Winter (Max)    | —       | _       | _       | _       | —       | —       | —    |
| Average Daily          | —       | _       | _       | _       | —       | —       | —    |
| Worker                 | < 0.005 | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | 0.64 |
| Vendor                 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Annual                 | —       | _       | _       | _       | _       | —       | —    |
| Worker                 | < 0.005 | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | 0.11 |
| Vendor                 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
|                        |         |         |         |         |         |         | 1    |

# 4. Operations Emissions Details

# 4.1. Mobile Emissions by Land Use

4.1.1. Unmitigated

| Land Use            | ROG  | NOx  | со   | SO2  | PM10T | PM2.5T | CO2e |
|---------------------|------|------|------|------|-------|--------|------|
| Daily, Summer (Max) | —    | —    | —    | —    | —     | —      | —    |
| Apartments Mid Rise | 0.32 | 0.25 | 2.96 | 0.01 | 0.67  | 0.17   | 745  |

| Parking Lot         | 0.00 | 0.00 | 0.00 | 0.00    | 0.00 | 0.00 | 0.00 |
|---------------------|------|------|------|---------|------|------|------|
| Total               | 0.32 | 0.25 | 2.96 | 0.01    | 0.67 | 0.17 | 745  |
| Daily, Winter (Max) | —    | —    | —    | —       | —    | —    | —    |
| Apartments Mid Rise | 0.31 | 0.28 | 2.71 | 0.01    | 0.67 | 0.17 | 712  |
| Parking Lot         | 0.00 | 0.00 | 0.00 | 0.00    | 0.00 | 0.00 | 0.00 |
| Total               | 0.31 | 0.28 | 2.71 | 0.01    | 0.67 | 0.17 | 712  |
| Annual              | —    | _    | _    | —       | —    | —    | —    |
| Apartments Mid Rise | 0.06 | 0.05 | 0.51 | < 0.005 | 0.12 | 0.03 | 119  |
| Parking Lot         | 0.00 | 0.00 | 0.00 | 0.00    | 0.00 | 0.00 | 0.00 |
| Total               | 0.06 | 0.05 | 0.51 | < 0.005 | 0.12 | 0.03 | 119  |

# 4.2. Energy

## 4.2.1. Electricity Emissions By Land Use - Unmitigated

| Land Use            | ROG | NOx | со | SO2 | PM10T | PM2.5T | CO2e |
|---------------------|-----|-----|----|-----|-------|--------|------|
| Daily, Summer (Max) | —   | —   | —  | —   | —     | —      | —    |
| Apartments Mid Rise | —   | —   | —  | —   | —     | —      | 69.9 |
| Parking Lot         | —   | —   | —  | —   | —     | —      | 2.55 |
| Total               | —   | —   | —  | —   | —     | —      | 72.5 |
| Daily, Winter (Max) | —   | —   | —  | —   | —     | —      | —    |
| Apartments Mid Rise | —   | —   | —  | —   | —     | —      | 69.9 |
| Parking Lot         | —   | —   | —  | —   | —     | —      | 2.55 |
| Total               | —   | —   | —  | —   | —     | —      | 72.5 |
| Annual              | —   | —   | —  | —   | —     | —      | —    |
| Apartments Mid Rise | —   | —   | —  | —   | —     | —      | 11.6 |
| Parking Lot         | —   | —   | —  | —   | —     | —      | 0.42 |
| Total               | _   | —   | —  | —   | —     | —      | 12.0 |

## 4.2.3. Natural Gas Emissions By Land Use - Unmitigated

| Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr fo |
|------------------------------------------------------------------------------------------------|
|------------------------------------------------------------------------------------------------|

|                     | , , , , , , , , , , , , , , , , , , , |      |         |         |         |         |      |
|---------------------|---------------------------------------|------|---------|---------|---------|---------|------|
| Land Use            | ROG                                   | NOx  | со      | SO2     | PM10T   | PM2.5T  | CO2e |
| Daily, Summer (Max) | —                                     | —    | —       | —       | —       | —       |      |
| Apartments Mid Rise | < 0.005                               | 0.06 | 0.02    | < 0.005 | < 0.005 | < 0.005 | 71.4 |
| Parking Lot         | 0.00                                  | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Total               | < 0.005                               | 0.06 | 0.02    | < 0.005 | < 0.005 | < 0.005 | 71.4 |
| Daily, Winter (Max) | —                                     | —    | —       | —       | —       | —       |      |
| Apartments Mid Rise | < 0.005                               | 0.06 | 0.02    | < 0.005 | < 0.005 | < 0.005 | 71.4 |
| Parking Lot         | 0.00                                  | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Total               | < 0.005                               | 0.06 | 0.02    | < 0.005 | < 0.005 | < 0.005 | 71.4 |
| Annual              | —                                     | —    | —       | —       | —       | —       |      |
| Apartments Mid Rise | < 0.005                               | 0.01 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 11.8 |
| Parking Lot         | 0.00                                  | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Total               | < 0.005                               | 0.01 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 11.8 |

# 4.3. Area Emissions by Source

# 4.3.1. Unmitigated

| Source                 | ROG  | NOx  | со   | SO2     | PM10T   | PM2.5T  | CO2e |
|------------------------|------|------|------|---------|---------|---------|------|
| Daily, Summer (Max)    | —    | _    | _    | _       | _       | —       | —    |
| Hearths                | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Consumer Products      | 0.41 | _    | _    | _       | _       | —       | —    |
| Architectural Coatings | 0.03 | _    | _    | _       | _       | —       | —    |
| Landscape Equipment    | 0.16 | 0.01 | 1.48 | < 0.005 | < 0.005 | < 0.005 | 4.48 |
| Total                  | 0.60 | 0.01 | 1.48 | < 0.005 | < 0.005 | < 0.005 | 4.48 |
| Daily, Winter (Max)    | —    | _    | _    | _       | _       | —       | —    |

| Hearths                | 0.00 | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
|------------------------|------|---------|------|---------|---------|---------|------|
| Consumer Products      | 0.41 | —       | _    | _       | —       | —       | —    |
| Architectural Coatings | 0.03 | —       | —    | —       | —       | —       | —    |
| Total                  | 0.44 | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Annual                 | —    | —       | —    | —       | —       | —       | —    |
| Hearths                | 0.00 | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Consumer Products      | 0.08 | _       | _    | _       | _       | _       | _    |
| Architectural Coatings | 0.01 | _       | —    | —       | _       | _       | _    |
| Landscape Equipment    | 0.02 | < 0.005 | 0.19 | < 0.005 | < 0.005 | < 0.005 | 0.51 |
| Total                  | 0.10 | < 0.005 | 0.19 | < 0.005 | < 0.005 | < 0.005 | 0.51 |

# 4.4. Water Emissions by Land Use

#### 4.4.1. Unmitigated

| Land Use            | ROG | NOx | co | SO2 | PM10T | PM2.5T | CO2e |
|---------------------|-----|-----|----|-----|-------|--------|------|
| Daily, Summer (Max) | _   | _   | _  | _   | _     | _      | _    |
| Apartments Mid Rise | -   | —   | —  | —   | —     | —      | 11.3 |
| Parking Lot         | _   | —   | _  | —   | _     | —      | 0.00 |
| Total               | _   | —   | —  | —   | —     | —      | 11.3 |
| Daily, Winter (Max) | _   | —   | —  | —   | —     | —      | —    |
| Apartments Mid Rise | _   | _   | _  | _   | _     | _      | 11.3 |
| Parking Lot         | _   | -   | _  | -   | _     | -      | 0.00 |
| Total               | _   | -   | _  | -   | _     | -      | 11.3 |
| Annual              | _   | -   | _  | -   | _     | -      | —    |
| Apartments Mid Rise | _   | _   | _  | _   | _     | _      | 1.87 |
| Parking Lot         | _   | _   | _  | _   | _     | _      | 0.00 |
| Total               | —   | —   | —  | _   | —     | —      | 1.87 |

## 4.5. Waste Emissions by Land Use

#### 4.5.1. Unmitigated

#### Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

| Land Use            | ROG | NOx | со | SO2 | PM10T | PM2.5T | CO2e |
|---------------------|-----|-----|----|-----|-------|--------|------|
| Daily, Summer (Max) | —   | —   |    | —   | —     | —      | —    |
| Apartments Mid Rise | —   | —   | —  | —   | —     | —      | 27.8 |
| Parking Lot         | —   | —   | —  | —   | —     | —      | 0.00 |
| Total               | —   | —   | —  | —   | —     | —      | 27.8 |
| Daily, Winter (Max) | —   | —   | —  | —   | —     | —      | —    |
| Apartments Mid Rise | —   | —   | —  | —   | —     | —      | 27.8 |
| Parking Lot         | —   | —   | _  | —   | —     | —      | 0.00 |
| Total               | —   | —   | _  | —   | —     | —      | 27.8 |
| Annual              | —   | —   | _  | —   | —     | —      | —    |
| Apartments Mid Rise | —   | —   | _  | —   | —     | —      | 4.60 |
| Parking Lot         | —   | —   |    | —   | —     | —      | 0.00 |
| Total               | —   | —   |    | —   | —     | —      | 4.60 |

## 4.6. Refrigerant Emissions by Land Use

#### 4.6.1. Unmitigated

| Land Use            | ROG | NOx | со | SO2 | PM10T | PM2.5T | CO2e |
|---------------------|-----|-----|----|-----|-------|--------|------|
| Daily, Summer (Max) | —   | —   | —  | —   | —     | —      | —    |
| Apartments Mid Rise | —   | —   | —  | —   | —     | —      | 0.14 |
| Total               | —   | —   | —  | —   | —     | —      | 0.14 |
| Daily, Winter (Max) | —   | —   | _  | —   | —     | —      | —    |
| Apartments Mid Rise | —   | _   | _  | _   | _     | _      | 0.14 |

| Total               | — | — | — | — | — | — | 0.14 |
|---------------------|---|---|---|---|---|---|------|
| Annual              | — | — | — | — | — | — | —    |
| Apartments Mid Rise | — | — | — | — | — | — | 0.02 |
| Total               | — | — | — | — | — | — | 0.02 |

## 4.7. Offroad Emissions By Equipment Type

#### 4.7.1. Unmitigated

#### Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

| Equipment Type      | ROG | NOx | со | SO2 | PM10T | PM2.5T | CO2e |
|---------------------|-----|-----|----|-----|-------|--------|------|
| Daily, Summer (Max) | —   | —   | —  | —   | —     | —      | —    |
| Total               | —   | _   | _  | _   | —     | _      |      |
| Daily, Winter (Max) | —   | —   | —  | —   | —     | —      |      |
| Total               | —   | —   | —  | —   | —     | —      |      |
| Annual              | —   | —   | —  | —   | —     | —      |      |
| Total               | —   | —   | —  | —   | —     | —      | _    |

# 4.8. Stationary Emissions By Equipment Type

#### 4.8.1. Unmitigated

| Equipment Type      | ROG | NOx | со | SO2 | PM10T | PM2.5T | CO2e |
|---------------------|-----|-----|----|-----|-------|--------|------|
| Daily, Summer (Max) | —   | —   | —  | —   | —     | _      | —    |
| Total               | —   | —   | —  | —   | —     | —      | —    |
| Daily, Winter (Max) | —   | —   | —  | —   | —     | —      | —    |
| Total               | —   | —   | —  | —   | —     | —      | —    |
| Annual              | —   |     |    |     | —     |        |      |
| Total               | —   | —   | —  | —   | —     | —      | —    |

## 4.9. User Defined Emissions By Equipment Type

#### 4.9.1. Unmitigated

#### Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

| Equipment Type      | ROG | NOx | со | SO2 | PM10T | PM2.5T | CO2e |
|---------------------|-----|-----|----|-----|-------|--------|------|
| Daily, Summer (Max) | —   | —   | —  | _   | —     | —      | —    |
| Total               | —   | —   | —  | —   | —     | —      | —    |
| Daily, Winter (Max) | —   | —   | —  | —   | —     | —      | —    |
| Total               | —   | —   | —  | —   | —     | —      | —    |
| Annual              | —   | —   | —  | —   | —     | —      | —    |
| Total               | —   | —   | —  | —   | —     | —      | —    |

### 4.10. Soil Carbon Accumulation By Vegetation Type

#### 4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated

#### Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

| Vegetation          | ROG | NOx | со | SO2 | PM10T | PM2.5T | CO2e |
|---------------------|-----|-----|----|-----|-------|--------|------|
| Daily, Summer (Max) | —   | —   | —  | —   | —     | —      | —    |
| Total               | —   | —   | —  | —   | —     | —      |      |
| Daily, Winter (Max) | —   | —   | —  | —   | —     | —      | —    |
| Total               | —   | —   | —  | —   | —     | —      | —    |
| Annual              | —   | —   | —  | —   | —     | —      |      |
| Total               | —   | —   | —  | —   | —     | —      | —    |

#### 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated

| Land Use            | ROG | NOx | со | SO2 | PM10T | PM2.5T | CO2e |
|---------------------|-----|-----|----|-----|-------|--------|------|
| Daily, Summer (Max) | —   | _   | _  | —   | —     | —      | —    |

| Total               |   | — | — |   |   | — | — |
|---------------------|---|---|---|---|---|---|---|
| Daily, Winter (Max) | _ | — | — | _ | _ | — | — |
| Total               | — | — | — | _ | — | — | — |
| Annual              | — | — | — | _ | — | — | — |
| Total               | _ | — | — | _ | _ | — | _ |

4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated

| Species             | ROG | NOx | СО | SO2 | PM10T | PM2.5T | CO2e |
|---------------------|-----|-----|----|-----|-------|--------|------|
| Daily, Summer (Max) | —   | —   | —  | _   | —     | —      | —    |
| Avoided             | —   | —   | —  | —   | —     | —      | —    |
| Subtotal            | —   | —   | —  | —   | —     | —      | _    |
| Sequestered         | —   | —   | —  | —   | —     | —      | —    |
| Subtotal            | —   | —   | —  | —   | —     | —      | _    |
| Removed             | —   | —   | —  | —   | —     | —      | —    |
| Subtotal            | —   | —   | —  | —   | —     | —      | —    |
| —                   | —   | —   | —  | _   | —     | —      | _    |
| Daily, Winter (Max) | —   | —   | —  | _   | —     | —      | _    |
| Avoided             | —   | —   | —  | _   | —     | —      | _    |
| Subtotal            | —   | —   | —  | —   | —     | —      | _    |
| Sequestered         | —   | —   | —  | _   | —     | —      | —    |
| Subtotal            | —   | —   | —  | _   | —     | —      | —    |
| Removed             | —   | —   | —  | —   | —     | —      | —    |
| Subtotal            | —   | —   | —  | —   | —     | —      | _    |
| —                   | —   | —   | —  | —   | —     | —      | —    |
| Annual              | —   | —   | —  | _   | —     | —      | —    |
| Avoided             | —   | —   | —  | _   | —     | —      | _    |
| Subtotal            | —   | —   | —  | —   | —     | —      | —    |

| Sequestered | — | _ |   |   |   |   |   |
|-------------|---|---|---|---|---|---|---|
| Subtotal    | — | — | — | — | — | — | — |
| Removed     | — | — | — | _ | — | — | — |
| Subtotal    | — | — | — | _ | — | — | — |
|             | — |   |   |   |   |   |   |

# 5. Activity Data

# 5.1. Construction Schedule

| Phase Name            | Phase Type            | Start Date | End Date   | Days Per Week | Work Days per Phase | Phase Description |
|-----------------------|-----------------------|------------|------------|---------------|---------------------|-------------------|
| Demolition            | Demolition            | 12/1/2025  | 12/15/2025 | 5.00          | 10.0                | —                 |
| Site Preparation      | Site Preparation      | 12/16/2025 | 12/17/2025 | 5.00          | 1.00                | —                 |
| Grading               | Grading               | 12/18/2025 | 12/20/2025 | 5.00          | 2.00                | —                 |
| Building Construction | Building Construction | 12/21/2025 | 5/10/2026  | 5.00          | 100                 | —                 |
| Paving                | Paving                | 5/11/2026  | 5/18/2026  | 5.00          | 5.00                | —                 |
| Architectural Coating | Architectural Coating | 5/19/2026  | 5/26/2026  | 5.00          | 5.00                | _                 |

# 5.2. Off-Road Equipment

## 5.2.1. Unmitigated

| Phase Name       | Equipment Type              | Fuel Type | Engine Tier | Number per Day | Hours Per Day | Horsepower | Load Factor |
|------------------|-----------------------------|-----------|-------------|----------------|---------------|------------|-------------|
| Demolition       | Concrete/Industrial<br>Saws | Diesel    | Average     | 1.00           | 8.00          | 33.0       | 0.73        |
| Demolition       | Rubber Tired Dozers         | Diesel    | Average     | 1.00           | 8.00          | 367        | 0.40        |
| Demolition       | Tractors/Loaders/Back hoes  | Diesel    | Average     | 2.00           | 8.00          | 84.0       | 0.37        |
| Site Preparation | Graders                     | Diesel    | Average     | 1.00           | 8.00          | 148        | 0.41        |
| Site Preparation | Tractors/Loaders/Back hoes  | Diesel    | Average     | 0.00           | 8.00          | 84.0       | 0.37        |

| Site Preparation      | Crawler Tractors            | Diesel | Average | 1.00 | 8.00 | 87.0 | 0.43 |
|-----------------------|-----------------------------|--------|---------|------|------|------|------|
| Grading               | Graders                     | Diesel | Average | 1.00 | 8.00 | 148  | 0.41 |
| Grading               | Rubber Tired Dozers         | Diesel | Average | 1.00 | 8.00 | 367  | 0.40 |
| Grading               | Tractors/Loaders/Back hoes  | Diesel | Average | 0.00 | 8.00 | 84.0 | 0.37 |
| Grading               | Crawler Tractors            | Diesel | Average | 1.00 | 8.00 | 87.0 | 0.43 |
| Building Construction | Cranes                      | Diesel | Average | 1.00 | 8.00 | 367  | 0.29 |
| Building Construction | Forklifts                   | Diesel | Average | 2.00 | 8.00 | 82.0 | 0.20 |
| Building Construction | Tractors/Loaders/Back hoes  | Diesel | Average | 2.00 | 8.00 | 84.0 | 0.37 |
| Paving                | Cement and Mortar<br>Mixers | Diesel | Average | 4.00 | 8.00 | 10.0 | 0.56 |
| Paving                | Pavers                      | Diesel | Average | 1.00 | 8.00 | 81.0 | 0.42 |
| Paving                | Rollers                     | Diesel | Average | 1.00 | 8.00 | 36.0 | 0.38 |
| Paving                | Tractors/Loaders/Back hoes  | Diesel | Average | 1.00 | 8.00 | 84.0 | 0.37 |
| Architectural Coating | Air Compressors             | Diesel | Average | 1.00 | 8.00 | 37.0 | 0.48 |

# 5.3. Construction Vehicles

# 5.3.1. Unmitigated

| Phase Name       | Тгір Туре    | One-Way Trips per Day | Miles per Trip | Vehicle Mix   |
|------------------|--------------|-----------------------|----------------|---------------|
| Demolition       | —            | —                     |                |               |
| Demolition       | Worker       | 10.0                  | 18.5           | LDA,LDT1,LDT2 |
| Demolition       | Vendor       | —                     | 10.2           | HHDT,MHDT     |
| Demolition       | Hauling      | 63.9                  | 20.0           | HHDT          |
| Demolition       | Onsite truck | —                     | _              | HHDT          |
| Site Preparation | —            | —                     | _              | —             |
| Site Preparation | Worker       | 5.00                  | 18.5           | LDA,LDT1,LDT2 |
| Site Preparation | Vendor       | —                     | 10.2           | HHDT,MHDT     |

| Site Preparation      | Hauling      | 0.00 | 20.0 | HHDT          |
|-----------------------|--------------|------|------|---------------|
| Site Preparation      | Onsite truck | —    | —    | HHDT          |
| Grading               | _            | —    | —    | —             |
| Grading               | Worker       | 7.50 | 18.5 | LDA,LDT1,LDT2 |
| Grading               | Vendor       | —    | 10.2 | HHDT,MHDT     |
| Grading               | Hauling      | 0.00 | 20.0 | HHDT          |
| Grading               | Onsite truck | —    | —    | HHDT          |
| Building Construction |              | —    | —    | _             |
| Building Construction | Worker       | 17.8 | 18.5 | LDA,LDT1,LDT2 |
| Building Construction | Vendor       | 3.45 | 10.2 | HHDT,MHDT     |
| Building Construction | Hauling      | 0.00 | 20.0 | HHDT          |
| Building Construction | Onsite truck | _    | —    | HHDT          |
| Paving                |              | _    | —    | _             |
| Paving                | Worker       | 17.5 | 18.5 | LDA,LDT1,LDT2 |
| Paving                | Vendor       | _    | 10.2 | HHDT,MHDT     |
| Paving                | Hauling      | 0.00 | 20.0 | HHDT          |
| Paving                | Onsite truck | _    | —    | HHDT          |
| Architectural Coating |              | _    | —    |               |
| Architectural Coating | Worker       | 3.55 | 18.5 | LDA,LDT1,LDT2 |
| Architectural Coating | Vendor       |      | 10.2 | HHDT,MHDT     |
| Architectural Coating | Hauling      | 0.00 | 20.0 | HHDT          |
| Architectural Coating | Onsite truck |      | —    | HHDT          |

## 5.4. Vehicles

## 5.4.1. Construction Vehicle Control Strategies

Non-applicable. No control strategies activated by user. 5.5. Architectural Coatings

#### 24-103 PVE Site 1 Malaga Detailed Report, 11/7/2024

| Phase Name            | Residential Interior Area<br>Coated (sq ft) | Residential Exterior Area<br>Coated (sq ft) | Non-Residential Interior Area<br>Coated (sq ft) | Non-Residential Exterior Area<br>Coated (sq ft) | Parking Area Coated (sq ft) |
|-----------------------|---------------------------------------------|---------------------------------------------|-------------------------------------------------|-------------------------------------------------|-----------------------------|
| Architectural Coating | 38,880                                      | 12,960                                      | 0.00                                            | 0.00                                            | 183                         |

# 5.6. Dust Mitigation

#### 5.6.1. Construction Earthmoving Activities

| Phase Name       | Material Imported (cy) | Material Exported (cy) | Acres Graded (acres) | Material Demolished (Ton of Debris) | Acres Paved (acres) |
|------------------|------------------------|------------------------|----------------------|-------------------------------------|---------------------|
| Demolition       | 0.00                   | 0.00                   | 0.00                 | 2,554                               |                     |
| Site Preparation | —                      |                        | 1.00                 | 0.00                                | _                   |
| Grading          |                        |                        | 3.00                 | 0.00                                | _                   |
| Paving           | 0.00                   | 0.00                   | 0.00                 | 0.00                                | 0.07                |

## 5.6.2. Construction Earthmoving Control Strategies

| Control Strategies Applied | Frequency (per day) | PM10 Reduction | PM2.5 Reduction |
|----------------------------|---------------------|----------------|-----------------|
| Water Exposed Area         | 3                   | 74%            | 74%             |
| Water Demolished Area      | 2                   | 36%            | 36%             |

# 5.7. Construction Paving

| Land Use            | Area Paved (acres) | % Asphalt |
|---------------------|--------------------|-----------|
| Apartments Mid Rise |                    | 0%        |
| Parking Lot         | 0.07               | 100%      |

# 5.8. Construction Electricity Consumption and Emissions Factors

#### kWh per Year and Emission Factor (lb/MWh)

| Year | kWh per Year | CO2 | CH4  | N2O     |
|------|--------------|-----|------|---------|
| 2025 | 0.00         | 349 | 0.03 | < 0.005 |

| 2026 0.00 | 346 | 0.03 | < 0.005 |
|-----------|-----|------|---------|
|-----------|-----|------|---------|

# 5.9. Operational Mobile Sources

#### 5.9.1. Unmitigated

| Land Use Type          | Trips/Weekday | Trips/Saturday | Trips/Sunday | Trips/Year | VMT/Weekday | VMT/Saturday | VMT/Sunday | VMT/Year |
|------------------------|---------------|----------------|--------------|------------|-------------|--------------|------------|----------|
| Apartments Mid<br>Rise | 94.0          | 94.0           | 94.0         | 34,310     | 934         | 934          | 934        | 340,868  |
| Parking Lot            | 0.00          | 0.00           | 0.00         | 0.00       | 0.00        | 0.00         | 0.00       | 0.00     |

# 5.10. Operational Area Sources

#### 5.10.1. Hearths

#### 5.10.1.1. Unmitigated

| Hearth Type               | Unmitigated (number) |
|---------------------------|----------------------|
| Apartments Mid Rise       | <u> </u>             |
| Wood Fireplaces           | 0                    |
| Gas Fireplaces            | 0                    |
| Propane Fireplaces        | 0                    |
| Electric Fireplaces       | 0                    |
| No Fireplaces             | 20                   |
| Conventional Wood Stoves  | 0                    |
| Catalytic Wood Stoves     | 0                    |
| Non-Catalytic Wood Stoves | 0                    |
| Pellet Wood Stoves        | 0                    |

#### 5.10.2. Architectural Coatings

#### 24-103 PVE Site 1 Malaga Detailed Report, 11/7/2024

| Residential Interior Area Coated (sq<br>ft) | Residential Exterior Area Coated (sq<br>ft) | Non-Residential Interior Area Coated (sq ft) | Non-Residential Exterior Area<br>Coated (sq ft) | Parking Area Coated (sq ft) |
|---------------------------------------------|---------------------------------------------|----------------------------------------------|-------------------------------------------------|-----------------------------|
| 38880                                       | 12,960                                      | 0.00                                         | 0.00                                            | 183                         |

#### 5.10.3. Landscape Equipment

| Season      | Unit   | Value |
|-------------|--------|-------|
| Snow Days   | day/yr | 0.00  |
| Summer Days | day/yr | 250   |

## 5.11. Operational Energy Consumption

#### 5.11.1. Unmitigated

#### Electricity (kWh/yr) and CO2 and CH4 and N2O and Natural Gas (kBTU/yr)

| Land Use            | Electricity (kWh/yr) | CO2 | CH4    | N2O    | Natural Gas (kBTU/yr) |
|---------------------|----------------------|-----|--------|--------|-----------------------|
| Apartments Mid Rise | 73,317               | 346 | 0.0330 | 0.0040 | 222,137               |
| Parking Lot         | 2,671                | 346 | 0.0330 | 0.0040 | 0.00                  |

## 5.12. Operational Water and Wastewater Consumption

#### 5.12.1. Unmitigated

| Land Use            | Indoor Water (gal/year) | Outdoor Water (gal/year) |
|---------------------|-------------------------|--------------------------|
| Apartments Mid Rise | 745,476                 | 58,914                   |
| Parking Lot         | 0.00                    | 0.00                     |

# 5.13. Operational Waste Generation

#### 5.13.1. Unmitigated

| Land Use | Waste (ton/year) | Cogeneration (kWh/year) |
|----------|------------------|-------------------------|
|          |                  |                         |

| Apartments Mid Rise | 14.7 |  |
|---------------------|------|--|
| Parking Lot         | 0.00 |  |

## 5.14. Operational Refrigeration and Air Conditioning Equipment

#### 5.14.1. Unmitigated

| Land Use Type       | Equipment Type                                                | Refrigerant | GWP   | Quantity (kg) | Operations Leak Rate | Service Leak Rate | Times Serviced |
|---------------------|---------------------------------------------------------------|-------------|-------|---------------|----------------------|-------------------|----------------|
| Apartments Mid Rise | Average room A/C &<br>Other residential A/C<br>and heat pumps | R-410A      | 2,088 | < 0.005       | 2.50                 | 2.50              | 10.0           |
| Apartments Mid Rise | Household<br>refrigerators and/or<br>freezers                 | R-134a      | 1,430 | 0.12          | 0.60                 | 0.00              | 1.00           |

# 5.15. Operational Off-Road Equipment

#### 5.15.1. Unmitigated

|  | Equipment T | ӯре | Fuel Type | Engine Tier | Number per Day | Hours Per Day | Horsepower | Load Factor |
|--|-------------|-----|-----------|-------------|----------------|---------------|------------|-------------|
|--|-------------|-----|-----------|-------------|----------------|---------------|------------|-------------|

## 5.16. Stationary Sources

### 5.16.1. Emergency Generators and Fire Pumps

| Equipment Type | Fuel Type | Number per Day | Hours per Day | Hours per Year | Horsepower | Load Factor |
|----------------|-----------|----------------|---------------|----------------|------------|-------------|
|                |           |                |               |                |            |             |

### 5.16.2. Process Boilers

| Equipment Type | Fuel Type | Number | Boiler Rating (MMBtu/hr) | Daily Heat Input (MMBtu/day) | Annual Heat Input (MMBtu/yr) |
|----------------|-----------|--------|--------------------------|------------------------------|------------------------------|
|----------------|-----------|--------|--------------------------|------------------------------|------------------------------|

## 5.17. User Defined

| Equipment Type | Fuel Type |
|----------------|-----------|
|                |           |

#### 5.18. Vegetation

#### 5.18.1. Land Use Change

#### 5.18.1.1. Unmitigated

| Vegetation Land Use Type   | Vegetation Soil Type | Initial Acres                | Final Acres                  |
|----------------------------|----------------------|------------------------------|------------------------------|
|                            |                      |                              |                              |
| 5.18.1. Biomass Cover Type |                      |                              | ,                            |
| 5.18.1.1. Unmitigated      |                      |                              |                              |
|                            |                      |                              |                              |
| Biomass Cover Type         | Initial Acres        | Final Acres                  |                              |
| 5.18.2. Sequestration      |                      |                              |                              |
|                            |                      |                              |                              |
| 5.18.2.1. Unmitigated      |                      |                              |                              |
| Тгее Туре                  | Number               | Electricity Saved (kWh/year) | Natural Gas Saved (btu/year) |

# 6. Climate Risk Detailed Report

# 6.1. Climate Risk Summary

Cal-Adapt midcentury 2040–2059 average projections for four hazards are reported below for your project location. These are under Representation Concentration Pathway (RCP) 8.5 which assumes GHG emissions will continue to rise strongly through 2050 and then plateau around 2100.

| Climate Hazard               | Result for Project Location | Unit                                       |
|------------------------------|-----------------------------|--------------------------------------------|
| Temperature and Extreme Heat | 5.08                        | annual days of extreme heat                |
| Extreme Precipitation        | 3.85                        | annual days with precipitation above 20 mm |
| Sea Level Rise               |                             | meters of inundation depth                 |
| Wildfire                     | 0.00                        | annual hectares burned                     |

Temperature and Extreme Heat data are for grid cell in which your project are located. The projection is based on the 98th historical percentile of daily maximum/minimum temperatures from observed historical data (32 climate model ensemble from Cal-Adapt, 2040–2059 average under RCP 8.5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. Extreme Precipitation data are for the grid cell in which your project are located. The threshold of 20 mm is equivalent to about ¾ an inch of rain, which would be light to moderate rainfall if received over a full day or heavy rain if received over a period of 2 to 4 hours. Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

Sea Level Rise data are for the grid cell in which your project are located. The projections are from Radke et al. (2017), as reported in Cal-Adapt (Radke et al., 2017, CEC-500-2017-008), and consider inundation location and depth for the San Francisco Bay, the Sacramento-San Joaquin River Delta and California coast resulting different increments of sea level rise coupled with extreme storm events. Users may select from four scenarios to view the range in potential inundation depth for the grid cell. The four scenarios are: No rise, 0.5 meter, 1.0 meter, 1.41 meters Wildfire data are for the grid cell in which your project are located. The projections are from UC Davis, as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider historical data of climate, vegetation, population density, and large (> 400 ha) fire history. Users may select from four model simulations to view the range in potential wildfire probabilities for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

## 6.2. Initial Climate Risk Scores

| Climate Hazard               | Exposure Score | Sensitivity Score | Adaptive Capacity Score | Vulnerability Score |
|------------------------------|----------------|-------------------|-------------------------|---------------------|
| Temperature and Extreme Heat | 0              | 0                 | 0                       | N/A                 |
| Extreme Precipitation        | N/A            | N/A               | N/A                     | N/A                 |
| Sea Level Rise               | 0              | 0                 | 0                       | N/A                 |
| Wildfire                     | 0              | 0                 | 0                       | N/A                 |
| Flooding                     | N/A            | N/A               | N/A                     | N/A                 |
| Drought                      | N/A            | N/A               | N/A                     | N/A                 |
| Snowpack Reduction           | N/A            | N/A               | N/A                     | N/A                 |
| Air Quality Degradation      | 0              | 0                 | 0                       | N/A                 |

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores do not include implementation of climate risk reduction measures.

#### 6.3. Adjusted Climate Risk Scores

| Climate Hazard               | Exposure Score | Sensitivity Score | Adaptive Capacity Score | Vulnerability Score |
|------------------------------|----------------|-------------------|-------------------------|---------------------|
| Temperature and Extreme Heat | 1              | 1                 | 1                       | 2                   |
| Extreme Precipitation        | N/A            | N/A               | N/A                     | N/A                 |
| Sea Level Rise               | 1              | 1                 | 1                       | 2                   |

| Wildfire                | 1   | 1   | 1   | 2   |
|-------------------------|-----|-----|-----|-----|
| Flooding                | N/A | N/A | N/A | N/A |
| Drought                 | N/A | N/A | N/A | N/A |
| Snowpack Reduction      | N/A | N/A | N/A | N/A |
| Air Quality Degradation | 1   | 1   | 1   | 2   |

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores include implementation of climate risk reduction measures.

## 6.4. Climate Risk Reduction Measures

# 7. Health and Equity Details

# 7.1. CalEnviroScreen 4.0 Scores

The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

| Indicator           | Result for Project Census Tract |
|---------------------|---------------------------------|
| Exposure Indicators |                                 |
| AQ-Ozone            | 26.7                            |
| AQ-PM               | 62.0                            |
| AQ-DPM              | 6.50                            |
| Drinking Water      | 11.3                            |
| Lead Risk Housing   | 30.8                            |
| Pesticides          | 0.00                            |
| Toxic Releases      | 90.5                            |
| Traffic             | 54.4                            |
| Effect Indicators   | _                               |
| CleanUp Sites       | 37.6                            |
| Groundwater         | 0.00                            |

| Haz Waste Facilities/Generators | 0.00 |
|---------------------------------|------|
| Impaired Water Bodies           | 72.2 |
| Solid Waste                     | 23.0 |
| Sensitive Population            | —    |
| Asthma                          | 1.92 |
| Cardio-vascular                 | 6.75 |
| Low Birth Weights               | 29.5 |
| Socioeconomic Factor Indicators | _    |
| Education                       | 1.77 |
| Housing                         | 9.53 |
| Linguistic                      | 52.5 |
| Poverty                         | 12.8 |
| Unemployment                    | 7.77 |

# 7.2. Healthy Places Index Scores

The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

| Indicator              | Result for Project Census Tract |
|------------------------|---------------------------------|
| Economic               |                                 |
| Above Poverty          | 99.8203516                      |
| Employed               | 62.37649172                     |
| Median HI              | 99.1530861                      |
| Education              |                                 |
| Bachelor's or higher   | 97.99820352                     |
| High school enrollment | 100                             |
| Preschool enrollment   | 70.80713461                     |
| Transportation         |                                 |
| Auto Access            | 94.58488387                     |
| Active commuting       | 6.775311177                     |

| Social                                       |             |
|----------------------------------------------|-------------|
| 2-parent households                          | 87.15513923 |
| Voting                                       | 80.17451559 |
| Neighborhood                                 | _           |
| Alcohol availability                         | 87.501604   |
| Park access                                  | 81.35506224 |
| Retail density                               | 41.6527653  |
| Supermarket access                           | 19.45335558 |
| Tree canopy                                  | 49.05684589 |
| Housing                                      |             |
| Homeownership                                | 99.44822276 |
| Housing habitability                         | 98.65263698 |
| Low-inc homeowner severe housing cost burden | 90.11933787 |
| Low-inc renter severe housing cost burden    | 99.08892596 |
| Uncrowded housing                            | 81.14974978 |
| Health Outcomes                              |             |
| Insured adults                               | 99.75619145 |
| Arthritis                                    | 0.0         |
| Asthma ER Admissions                         | 90.5        |
| High Blood Pressure                          | 0.0         |
| Cancer (excluding skin)                      | 0.0         |
| Asthma                                       | 0.0         |
| Coronary Heart Disease                       | 0.0         |
| Chronic Obstructive Pulmonary Disease        | 0.0         |
| Diagnosed Diabetes                           | 0.0         |
| Life Expectancy at Birth                     | 90.6        |
|                                              |             |
| Cognitively Disabled                         | 90.0        |

| Heart Attack ER Admissions            | 73.1     |
|---------------------------------------|----------|
| Mental Health Not Good                | 0.0      |
| Chronic Kidney Disease                | 0.0      |
| Obesity                               | 0.0      |
| Pedestrian Injuries                   | 19.6     |
| Physical Health Not Good              | 0.0      |
| Stroke                                | 0.0      |
| Health Risk Behaviors                 | <u> </u> |
| Binge Drinking                        | 0.0      |
| Current Smoker                        | 0.0      |
| No Leisure Time for Physical Activity | 0.0      |
| Climate Change Exposures              | _        |
| Wildfire Risk                         | 100.0    |
| SLR Inundation Area                   | 0.0      |
| Children                              | 92.8     |
| Elderly                               | 2.9      |
| English Speaking                      | 70.6     |
| Foreign-born                          | 39.3     |
| Outdoor Workers                       | 98.2     |
| Climate Change Adaptive Capacity      | _        |
| Impervious Surface Cover              | 91.8     |
| Traffic Density                       | 12.7     |
| Traffic Access                        | 23.0     |
| Other Indices                         | _        |
| Hardship                              | 1.1      |
| Other Decision Support                | _        |
| 2016 Voting                           | 62.1     |

## 7.3. Overall Health & Equity Scores

| Metric                                                                              | Result for Project Census Tract |
|-------------------------------------------------------------------------------------|---------------------------------|
| CalEnviroScreen 4.0 Score for Project Location (a)                                  | 5.00                            |
| Healthy Places Index Score for Project Location (b)                                 | 98.0                            |
| Project Located in a Designated Disadvantaged Community (Senate Bill 535)           | No                              |
| Project Located in a Low-Income Community (Assembly Bill 1550)                      | No                              |
| Project Located in a Community Air Protection Program Community (Assembly Bill 617) | No                              |

a: The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state. b: The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

### 7.4. Health & Equity Measures

No Health & Equity Measures selected. 7.5. Evaluation Scorecard

Health & Equity Evaluation Scorecard not completed. 7.6. Health & Equity Custom Measures

No Health & Equity Custom Measures created.

# 8. User Changes to Default Data

| Screen                           | Justification                                                                                                                                                                                        |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Land Use                         | The lot acreage was adjusted to match the site plan provided by the client.                                                                                                                          |
| Construction: Off-Road Equipment | Assumed all construction equipment will be utilized 8 hours per work day. Replaced<br>Tractors/Loaders/Backhoes with Crawler Tractors in the Site Preparation and Grading Phases.                    |
| Operations: Vehicle Data         | Adjusted trip rate for Apartments Mid Rise to match ITE 11th edition trip rate to match ITE 11th Edition rates for Affordable Housing and Multifamily Housing (Mid-Rise) as a conservative analysis. |
| Operations: Hearths              | Removed wood burning stoves and fireplaces in accordance with SCAQMD Rule 445.<br>Removed gas and propane fireplaces as neither are proposed for the Project.                                        |



ATTACHMENT B: SITE 2 LUNADA BAY CALEEMOD OUTPUT SHEETS

# 24-103 PVE Site 2 Lunada Detailed Report

## Table of Contents

- 1. Basic Project Information
  - 1.1. Basic Project Information
  - 1.2. Land Use Types
  - 1.3. User-Selected Emission Reduction Measures by Emissions Sector
- 2. Emissions Summary
  - 2.1. Construction Emissions Compared Against Thresholds
  - 2.2. Construction Emissions by Year, Unmitigated
  - 2.4. Operations Emissions Compared Against Thresholds
  - 2.5. Operations Emissions by Sector, Unmitigated
- 3. Construction Emissions Details
  - 3.1. Demolition (2025) Unmitigated
  - 3.3. Site Preparation (2025) Unmitigated
  - 3.5. Grading (2025) Unmitigated
  - 3.7. Building Construction (2025) Unmitigated
  - 3.9. Building Construction (2026) Unmitigated

- 3.11. Paving (2026) Unmitigated
- 3.13. Architectural Coating (2026) Unmitigated
- 4. Operations Emissions Details
  - 4.1. Mobile Emissions by Land Use
    - 4.1.1. Unmitigated
  - 4.2. Energy
    - 4.2.1. Electricity Emissions By Land Use Unmitigated
    - 4.2.3. Natural Gas Emissions By Land Use Unmitigated
  - 4.3. Area Emissions by Source
    - 4.3.1. Unmitigated
  - 4.4. Water Emissions by Land Use
    - 4.4.1. Unmitigated
  - 4.5. Waste Emissions by Land Use
    - 4.5.1. Unmitigated
  - 4.6. Refrigerant Emissions by Land Use
    - 4.6.1. Unmitigated
  - 4.7. Offroad Emissions By Equipment Type
    - 4.7.1. Unmitigated

#### 4.8. Stationary Emissions By Equipment Type

#### 4.8.1. Unmitigated

4.9. User Defined Emissions By Equipment Type

4.9.1. Unmitigated

- 4.10. Soil Carbon Accumulation By Vegetation Type
  - 4.10.1. Soil Carbon Accumulation By Vegetation Type Unmitigated
  - 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type Unmitigated
  - 4.10.3. Avoided and Sequestered Emissions by Species Unmitigated

#### 5. Activity Data

- 5.1. Construction Schedule
- 5.2. Off-Road Equipment
  - 5.2.1. Unmitigated
- 5.3. Construction Vehicles
  - 5.3.1. Unmitigated
- 5.4. Vehicles
  - 5.4.1. Construction Vehicle Control Strategies
- 5.5. Architectural Coatings
- 5.6. Dust Mitigation

- 5.6.1. Construction Earthmoving Activities
- 5.6.2. Construction Earthmoving Control Strategies
- 5.7. Construction Paving
- 5.8. Construction Electricity Consumption and Emissions Factors
- 5.9. Operational Mobile Sources
  - 5.9.1. Unmitigated
- 5.10. Operational Area Sources
  - 5.10.1. Hearths
    - 5.10.1.1. Unmitigated
  - 5.10.2. Architectural Coatings
  - 5.10.3. Landscape Equipment
- 5.11. Operational Energy Consumption
  - 5.11.1. Unmitigated
- 5.12. Operational Water and Wastewater Consumption
  - 5.12.1. Unmitigated
- 5.13. Operational Waste Generation
  - 5.13.1. Unmitigated
- 5.14. Operational Refrigeration and Air Conditioning Equipment

#### 5.14.1. Unmitigated

- 5.15. Operational Off-Road Equipment
  - 5.15.1. Unmitigated

#### 5.16. Stationary Sources

- 5.16.1. Emergency Generators and Fire Pumps
- 5.16.2. Process Boilers

#### 5.17. User Defined

#### 5.18. Vegetation

5.18.1. Land Use Change

#### 5.18.1.1. Unmitigated

5.18.1. Biomass Cover Type

#### 5.18.1.1. Unmitigated

#### 5.18.2. Sequestration

#### 5.18.2.1. Unmitigated

#### 6. Climate Risk Detailed Report

6.1. Climate Risk Summary

#### 6.2. Initial Climate Risk Scores

6.3. Adjusted Climate Risk Scores

- 6.4. Climate Risk Reduction Measures
- 7. Health and Equity Details
  - 7.1. CalEnviroScreen 4.0 Scores
  - 7.2. Healthy Places Index Scores
  - 7.3. Overall Health & Equity Scores
  - 7.4. Health & Equity Measures
  - 7.5. Evaluation Scorecard
  - 7.6. Health & Equity Custom Measures
- 8. User Changes to Default Data

# 1. Basic Project Information

# 1.1. Basic Project Information

| Data Field                  | Value                                                       |
|-----------------------------|-------------------------------------------------------------|
| Project Name                | 24-103 PVE Site 2 Lunada                                    |
| Construction Start Date     | 12/1/2025                                                   |
| Operational Year            | 2026                                                        |
| Lead Agency                 | _                                                           |
| Land Use Scale              | Project/site                                                |
| Analysis Level for Defaults | County                                                      |
| Windspeed (m/s)             | 3.50                                                        |
| Precipitation (days)        | 20.4                                                        |
| Location                    | 2325 Palos Verdes Dr W, Palos Verdes Estates, CA 90274, USA |
| County                      | Los Angeles-South Coast                                     |
| City                        | Palos Verdes Estates                                        |
| Air District                | South Coast AQMD                                            |
| Air Basin                   | South Coast                                                 |
| TAZ                         | 4646                                                        |
| EDFZ                        | 7                                                           |
| Electric Utility            | Southern California Edison                                  |
| Gas Utility                 | Southern California Gas                                     |
| App Version                 | 2022.1.1.29                                                 |

# 1.2. Land Use Types

| Land Use Subtype       | Size | Unit          | Lot Acreage | Building Area (sq ft) |       | Special Landscape<br>Area (sq ft) | Population | Description |
|------------------------|------|---------------|-------------|-----------------------|-------|-----------------------------------|------------|-------------|
| Apartments Mid<br>Rise | 20.0 | Dwelling Unit | 0.60        | 19,200                | 3,437 |                                   | 59.0       |             |

| Parking Lot 2 | 20.0 | Space | 0.07 | 0.00 | 0.00 |  |  |  |
|---------------|------|-------|------|------|------|--|--|--|
|---------------|------|-------|------|------|------|--|--|--|

## 1.3. User-Selected Emission Reduction Measures by Emissions Sector

No measures selected

# 2. Emissions Summary

## 2.1. Construction Emissions Compared Against Thresholds

#### Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

|                            | <b>, , , , , , , , , , , , , , , , , , , </b> | , , , , , , , , , , , , , , , , , , , | , j  |         | , ·   |        |       |
|----------------------------|-----------------------------------------------|---------------------------------------|------|---------|-------|--------|-------|
| Un/Mit.                    | ROG                                           | NOx                                   | СО   | SO2     | PM10T | PM2.5T | CO2e  |
| Daily, Summer (Max)        | —                                             | _                                     | _    | —       | —     | —      | _     |
| Unmit.                     | 24.4                                          | 7.00                                  | 9.93 | 0.02    | 0.48  | 0.30   | 2,150 |
| Daily, Winter (Max)        | —                                             | —                                     | —    | —       | —     | —      |       |
| Unmit.                     | 1.65                                          | 18.0                                  | 15.7 | 0.05    | 5.05  | 1.62   | 6,518 |
| Average Daily (Max)        | —                                             |                                       |      | _       | —     |        |       |
| Unmit.                     | 0.54                                          | 1.91                                  | 2.68 | < 0.005 | 0.23  | 0.08   | 577   |
| Annual (Max)               | —                                             | —                                     | —    | —       | —     | —      | _     |
| Unmit.                     | 0.10                                          | 0.35                                  | 0.49 | < 0.005 | 0.04  | 0.02   | 95.5  |
| Exceeds (Daily Max)        | —                                             | —                                     | —    | —       | —     | —      | _     |
| Threshold                  | 75.0                                          | 100                                   | 550  | 150     | 150   | 55.0   | _     |
| Unmit.                     | No                                            | No                                    | No   | No      | No    | No     | _     |
| Exceeds (Average<br>Daily) |                                               |                                       |      |         |       |        |       |
| Threshold                  | 75.0                                          | 100                                   | 550  | 150     | 150   | 55.0   |       |
| Unmit.                     | No                                            | No                                    | No   | No      | No    | No     |       |

## 2.2. Construction Emissions by Year, Unmitigated

| Year | ROG | NOx | со  | SO2 | PM10T | PM2.5T | CO2e |
|------|-----|-----|-----|-----|-------|--------|------|
|      |     |     | 8 / | 40  |       |        |      |

| Daily - Summer (Max) | —    | —    | —    | —       | —    | —    | —     |
|----------------------|------|------|------|---------|------|------|-------|
| 2026                 | 24.4 | 7.00 | 9.93 | 0.02    | 0.48 | 0.30 | 2,150 |
| Daily - Winter (Max) | —    | —    | —    | —       | —    | —    | —     |
| 2025                 | 1.65 | 18.0 | 15.7 | 0.05    | 5.05 | 1.62 | 6,518 |
| 2026                 | 0.77 | 7.01 | 9.79 | 0.02    | 0.48 | 0.30 | 2,139 |
| Average Daily        | —    | —    | —    | —       | —    | —    | —     |
| 2025                 | 0.08 | 0.94 | 0.88 | < 0.005 | 0.23 | 0.07 | 313   |
| 2026                 | 0.54 | 1.91 | 2.68 | < 0.005 | 0.13 | 0.08 | 577   |
| Annual               | —    | —    | —    | _       | —    | —    | —     |
| 2025                 | 0.01 | 0.17 | 0.16 | < 0.005 | 0.04 | 0.01 | 51.9  |
| 2026                 | 0.10 | 0.35 | 0.49 | < 0.005 | 0.02 | 0.02 | 95.5  |

# 2.4. Operations Emissions Compared Against Thresholds

| Un/Mit.                    | ROG  | NOx  | со   | SO2     | PM10T | PM2.5T | CO2e  |
|----------------------------|------|------|------|---------|-------|--------|-------|
| Daily, Summer (Max)        | —    | —    | —    | —       | —     | —      | —     |
| Unmit.                     | 1.14 | 0.54 | 6.64 | 0.01    | 1.24  | 0.32   | 1,565 |
| Daily, Winter (Max)        | —    | —    | —    | —       | —     | —      |       |
| Unmit.                     | 1.03 | 0.57 | 5.04 | 0.01    | 1.24  | 0.32   | 1,501 |
| Average Daily (Max)        | _    | —    | —    | —       | —     | —      | —     |
| Unmit.                     | 0.89 | 0.40 | 4.11 | 0.01    | 0.79  | 0.21   | 1,042 |
| Annual (Max)               | —    | —    | —    | —       | —     | —      | —     |
| Unmit.                     | 0.16 | 0.07 | 0.75 | < 0.005 | 0.14  | 0.04   | 173   |
| Exceeds (Daily Max)        | —    | —    | —    | —       | —     | —      | —     |
| Threshold                  | 55.0 | 55.0 | 550  | 150     | 150   | 55.0   | —     |
| Unmit.                     | No   | No   | No   | No      | No    | No     |       |
| Exceeds (Average<br>Daily) | _    | _    |      |         |       |        |       |

| Threshold        | 55.0 | 55.0 | 550 | 150 | 150 | 55.0 | _     |
|------------------|------|------|-----|-----|-----|------|-------|
| Unmit.           | No   | No   | No  | No  | No  | No   | _     |
| Exceeds (Annual) | —    | —    | —   | —   | —   | —    | —     |
| Threshold        | —    | —    | —   | —   | —   | —    | 3,000 |
| Unmit.           | —    | —    | —   | _   | _   | _    | No    |

# 2.5. Operations Emissions by Sector, Unmitigated

| Sector              | ROG      | NOx  | со   | SO2     | PM10T   | PM2.5T  | CO2e     |
|---------------------|----------|------|------|---------|---------|---------|----------|
| Daily, Summer (Max) | _        | _    | —    | —       | _       | _       | —        |
| Mobile              | 0.59     | 0.47 | 5.49 | 0.01    | 1.23    | 0.32    | 1,379    |
| Area                | 0.54     | 0.01 | 1.13 | < 0.005 | < 0.005 | < 0.005 | 3.04     |
| Energy              | < 0.005  | 0.06 | 0.02 | < 0.005 | < 0.005 | < 0.005 | 144      |
| Water               | —        | —    | —    | —       | —       | —       | 11.3     |
| Waste               | —        | —    | —    | —       | —       | —       | 27.8     |
| Refrig.             | _        | _    | _    | —       | _       | _       | 0.14     |
| Total               | 1.14     | 0.54 | 6.64 | 0.01    | 1.24    | 0.32    | 1,565    |
| Daily, Winter (Max) | —        | —    | —    | —       | —       | —       | —        |
| Mobile              | 0.58     | 0.51 | 5.01 | 0.01    | 1.23    | 0.32    | 1,318    |
| Area                | 0.44     | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00     |
| Energy              | < 0.005  | 0.06 | 0.02 | < 0.005 | < 0.005 | < 0.005 | 144      |
| Water               | —        | —    | —    | —       | —       | —       | 11.3     |
| Waste               | —        | —    | —    | —       | —       | —       | 27.8     |
| Refrig.             | —        | —    | —    | —       | —       | —       | 0.14     |
| Total               | 1.03     | 0.57 | 5.04 | 0.01    | 1.24    | 0.32    | 1,501    |
| Average Daily       | <u> </u> | _    | —    | —       |         | _       | <u> </u> |
| Mobile              | 0.37     | 0.33 | 3.31 | 0.01    | 0.78    | 0.20    | 857      |
| Area                | 0.51     | 0.01 | 0.78 | < 0.005 | < 0.005 | < 0.005 | 2.09     |

| Energy  | < 0.005 | 0.06    | 0.02    | < 0.005 | < 0.005 | < 0.005 | 144   |
|---------|---------|---------|---------|---------|---------|---------|-------|
| Water   | —       | _       | —       | —       | —       | —       | 11.3  |
| Waste   | —       | —       | —       | —       | —       | —       | 27.8  |
| Refrig. | —       | —       | —       | —       | —       | —       | 0.14  |
| Total   | 0.89    | 0.40    | 4.11    | 0.01    | 0.79    | 0.21    | 1,042 |
| Annual  | —       | _       | —       | —       | —       | —       | —     |
| Mobile  | 0.07    | 0.06    | 0.60    | < 0.005 | 0.14    | 0.04    | 142   |
| Area    | 0.09    | < 0.005 | 0.14    | < 0.005 | < 0.005 | < 0.005 | 0.35  |
| Energy  | < 0.005 | 0.01    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 23.8  |
| Water   | —       | _       | —       | —       | —       | —       | 1.87  |
| Waste   | —       |         | —       | —       | —       | —       | 4.60  |
| Refrig. | —       | _       | —       | —       | —       | —       | 0.02  |
| Total   | 0.16    | 0.07    | 0.75    | < 0.005 | 0.14    | 0.04    | 173   |

# 3. Construction Emissions Details

# 3.1. Demolition (2025) - Unmitigated

| Location            | ROG  | NOx  | СО   | SO2     | PM10T | PM2.5T | CO2e  |
|---------------------|------|------|------|---------|-------|--------|-------|
| Onsite              | _    | _    | —    | —       | —     | —      | —     |
| Daily, Summer (Max) | —    | —    | —    | —       | —     | —      | —     |
| Daily, Winter (Max) | —    | —    | —    | —       | —     | —      | —     |
| Off-Road Equipment  | 1.36 | 12.8 | 13.2 | 0.02    | 0.53  | 0.48   | 2,211 |
| Demolition          | _    | _    | —    | —       | 3.28  | 0.50   | —     |
| Onsite truck        | 0.00 | 0.00 | 0.00 | 0.00    | 0.00  | 0.00   | 0.00  |
| Average Daily       | _    | _    | —    | —       | —     | —      | —     |
| Off-Road Equipment  | 0.06 | 0.53 | 0.54 | < 0.005 | 0.02  | 0.02   | 90.8  |
| Demolition          | —    | —    | —    | —       | 0.13  | 0.02   | —     |

| Onsite truck        | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00  |
|---------------------|---------|---------|---------|---------|---------|---------|-------|
| Annual              | -       | _       | _       | —       | —       | _       | —     |
| Off-Road Equipment  | 0.01    | 0.10    | 0.10    | < 0.005 | < 0.005 | < 0.005 | 15.0  |
| Demolition          | -       | —       | _       | —       | 0.02    | < 0.005 | —     |
| Onsite truck        | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00  |
| Offsite             | —       | _       | _       | _       | —       | _       | —     |
| Daily, Summer (Max) | —       | _       | _       | _       | —       | _       | —     |
| Daily, Winter (Max) | _       |         |         | —       | —       | _       | —     |
| Worker              | 0.04    | 0.05    | 0.59    | 0.00    | 0.13    | 0.03    | 133   |
| Vendor              | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00  |
| Hauling             | 0.06    | 5.08    | 1.92    | 0.03    | 1.12    | 0.34    | 4,174 |
| Average Daily       | —       | —       | _       | _       | —       | —       | —     |
| Worker              | < 0.005 | < 0.005 | 0.03    | 0.00    | 0.01    | < 0.005 | 5.54  |
| Vendor              | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00  |
| Hauling             | < 0.005 | 0.21    | 0.08    | < 0.005 | 0.05    | 0.01    | 172   |
| Annual              | _       |         |         |         |         |         | —     |
| Worker              | < 0.005 | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | 0.92  |
| Vendor              | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00  |
| Hauling             | < 0.005 | 0.04    | 0.01    | < 0.005 | 0.01    | < 0.005 | 28.4  |

# 3.3. Site Preparation (2025) - Unmitigated

| Location            | ROG  | NOx  | со   | SO2  | PM10T | PM2.5T | CO2e |
|---------------------|------|------|------|------|-------|--------|------|
| Onsite              | —    | —    | —    | —    | —     | —      | —    |
| Daily, Summer (Max) | —    | —    | —    | —    | —     | —      | —    |
| Daily, Winter (Max) | —    | —    | —    | —    | —     | —      | —    |
| Off-Road Equipment  | 0.66 | 5.62 | 6.13 | 0.01 | 0.35  | 0.33   | 920  |

| Dust From Material<br>Movement | -       | -       | _       | _       | 0.28    | 0.03    | -    |
|--------------------------------|---------|---------|---------|---------|---------|---------|------|
| Onsite truck                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Average Daily                  |         | —       | —       | —       | —       | —       | —    |
| Off-Road Equipment             | < 0.005 | 0.02    | 0.02    | < 0.005 | < 0.005 | < 0.005 | 2.52 |
| Dust From Material<br>Movement | _       | _       | —       | _       | < 0.005 | < 0.005 | —    |
| Onsite truck                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Annual                         | —       | —       | —       | —       | —       | —       | —    |
| Off-Road Equipment             | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 0.42 |
| Dust From Material<br>Movement | -       | -       | —       | _       | < 0.005 | < 0.005 | —    |
| Onsite truck                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Offsite                        | —       | —       | —       | —       | _       | —       | —    |
| Daily, Summer (Max)            | —       | —       | —       | —       | —       | —       | —    |
| Daily, Winter (Max)            | —       | —       | —       | —       | —       | —       | —    |
| Worker                         | 0.02    | 0.02    | 0.29    | 0.00    | 0.07    | 0.02    | 66.4 |
| Vendor                         | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                        | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Average Daily                  | _       | —       | —       | —       | —       | —       | —    |
| Worker                         | < 0.005 | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | 0.18 |
| Vendor                         | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                        | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Annual                         | _       | —       | —       | _       | —       | —       | —    |
| Worker                         | < 0.005 | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | 0.03 |
| Vendor                         | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                        | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |

3.5. Grading (2025) - Unmitigated

| Location                       | ROG     | NOx     | со      | SO2     | PM10T   | PM2.5T  | CO2e  |
|--------------------------------|---------|---------|---------|---------|---------|---------|-------|
| Onsite                         | _       | -       | _       | _       | _       | -       | —     |
| Daily, Summer (Max)            | _       | —       | _       | -       | _       | —       | —     |
| Daily, Winter (Max)            | —       | —       | _       | _       | —       | —       | —     |
| Off-Road Equipment             | 1.62    | 14.7    | 13.6    | 0.02    | 0.75    | 0.69    | 2,303 |
| Dust From Material<br>Movement | _       | _       | _       | _       | 1.98    | 0.91    | —     |
| Onsite truck                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00  |
| Average Daily                  | —       | —       | —       | —       | _       | —       | —     |
| Off-Road Equipment             | 0.01    | 0.08    | 0.07    | < 0.005 | < 0.005 | < 0.005 | 12.6  |
| Dust From Material<br>Movement | _       | _       | _       | _       | 0.01    | < 0.005 | —     |
| Onsite truck                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00  |
| Annual                         | —       | —       | —       | —       | _       | —       | —     |
| Off-Road Equipment             | < 0.005 | 0.01    | 0.01    | < 0.005 | < 0.005 | < 0.005 | 2.09  |
| Dust From Material<br>Movement | _       | —       | _       | _       | < 0.005 | < 0.005 | —     |
| Onsite truck                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00  |
| Offsite                        | —       | —       | —       | —       | _       | —       | —     |
| Daily, Summer (Max)            | —       | —       | —       | —       | _       | —       | —     |
| Daily, Winter (Max)            | —       | —       | _       | —       | _       | —       | —     |
| Worker                         | 0.03    | 0.04    | 0.44    | 0.00    | 0.10    | 0.02    | 99.5  |
| Vendor                         | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00  |
| Hauling                        | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00  |
| Average Daily                  | —       | —       | _       | _       | —       | _       | —     |
| Worker                         | < 0.005 | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | 0.55  |
| Vendor                         | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00  |
| Hauling                        | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00  |
| Annual                         | _       | _       | _       | _       |         | _       | _     |

| Worker  | < 0.005 | < 0.005 | < 0.005 | 0.00 | < 0.005 | < 0.005 | 0.09 |
|---------|---------|---------|---------|------|---------|---------|------|
| Vendor  | 0.00    | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 |
| Hauling | 0.00    | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 |

# 3.7. Building Construction (2025) - Unmitigated

|                     | (       |         |         | <u> </u> |         |         |       |
|---------------------|---------|---------|---------|----------|---------|---------|-------|
| Location            | ROG     | NOx     | СО      | SO2      | PM10T   | PM2.5T  | CO2e  |
| Onsite              | —       | —       | —       | —        | —       | —       | —     |
| Daily, Summer (Max) | —       | —       | —       | -        | —       | _       | —     |
| Daily, Winter (Max) | —       | —       | —       | -        | —       | _       | —     |
| Off-Road Equipment  | 0.75    | 7.34    | 9.02    | 0.02     | 0.31    | 0.29    | 1,883 |
| Onsite truck        | 0.00    | 0.00    | 0.00    | 0.00     | 0.00    | 0.00    | 0.00  |
| Average Daily       | —       | —       | —       | —        | —       | —       | —     |
| Off-Road Equipment  | 0.01    | 0.10    | 0.12    | < 0.005  | < 0.005 | < 0.005 | 25.8  |
| Onsite truck        | 0.00    | 0.00    | 0.00    | 0.00     | 0.00    | 0.00    | 0.00  |
| Annual              | —       | —       | —       | —        | —       | _       | _     |
| Off-Road Equipment  | < 0.005 | 0.02    | 0.02    | < 0.005  | < 0.005 | < 0.005 | 4.27  |
| Onsite truck        | 0.00    | 0.00    | 0.00    | 0.00     | 0.00    | 0.00    | 0.00  |
| Offsite             | —       | —       | —       | —        | —       | _       | _     |
| Daily, Summer (Max) | —       | —       | —       | —        | —       | _       | _     |
| Daily, Winter (Max) | —       | —       | —       | —        | —       | _       | —     |
| Worker              | 0.06    | 0.07    | 0.85    | 0.00     | 0.19    | 0.04    | 191   |
| Vendor              | < 0.005 | 0.08    | 0.04    | < 0.005  | 0.02    | 0.01    | 70.8  |
| Hauling             | 0.00    | 0.00    | 0.00    | 0.00     | 0.00    | 0.00    | 0.00  |
| Average Daily       |         |         |         | —        |         | _       | _     |
| Worker              | < 0.005 | < 0.005 | 0.01    | 0.00     | < 0.005 | < 0.005 | 2.66  |
| Vendor              | < 0.005 | < 0.005 | < 0.005 | < 0.005  | < 0.005 | < 0.005 | 0.97  |
| Hauling             | 0.00    | 0.00    | 0.00    | 0.00     | 0.00    | 0.00    | 0.00  |

| Annual  |         | _       | —       | _       | _       |         | —    |
|---------|---------|---------|---------|---------|---------|---------|------|
| Worker  | < 0.005 | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | 0.44 |
| Vendor  | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 0.16 |
| Hauling | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |

# 3.9. Building Construction (2026) - Unmitigated

|                     | is (is/adj for daily, toly) for all daily and of foo (is/adj for daily, why) for all daily |      |      |         |       |        |       |  |  |
|---------------------|--------------------------------------------------------------------------------------------|------|------|---------|-------|--------|-------|--|--|
| Location            | ROG                                                                                        | NOx  | со   | SO2     | PM10T | PM2.5T | CO2e  |  |  |
| Onsite              | —                                                                                          | _    | _    | _       | _     | _      | _     |  |  |
| Daily, Summer (Max) | _                                                                                          | _    | _    | _       | _     | _      | _     |  |  |
| Off-Road Equipment  | 0.71                                                                                       | 6.87 | 8.96 | 0.02    | 0.28  | 0.25   | 1,882 |  |  |
| Onsite truck        | 0.00                                                                                       | 0.00 | 0.00 | 0.00    | 0.00  | 0.00   | 0.00  |  |  |
| Daily, Winter (Max) | _                                                                                          | _    | —    | —       | _     | _      | _     |  |  |
| Off-Road Equipment  | 0.71                                                                                       | 6.87 | 8.96 | 0.02    | 0.28  | 0.25   | 1,882 |  |  |
| Onsite truck        | 0.00                                                                                       | 0.00 | 0.00 | 0.00    | 0.00  | 0.00   | 0.00  |  |  |
| Average Daily       | _                                                                                          | _    | —    | —       | —     | _      | —     |  |  |
| Off-Road Equipment  | 0.19                                                                                       | 1.79 | 2.33 | < 0.005 | 0.07  | 0.07   | 490   |  |  |
| Onsite truck        | 0.00                                                                                       | 0.00 | 0.00 | 0.00    | 0.00  | 0.00   | 0.00  |  |  |
| Annual              | —                                                                                          | _    | —    | _       | —     | _      | —     |  |  |
| Off-Road Equipment  | 0.03                                                                                       | 0.33 | 0.43 | < 0.005 | 0.01  | 0.01   | 81.1  |  |  |
| Onsite truck        | 0.00                                                                                       | 0.00 | 0.00 | 0.00    | 0.00  | 0.00   | 0.00  |  |  |
| Offsite             | _                                                                                          | _    | _    | _       | _     | _      | _     |  |  |
| Daily, Summer (Max) | —                                                                                          | _    | —    | —       | _     | _      | _     |  |  |
| Worker              | 0.05                                                                                       | 0.06 | 0.93 | 0.00    | 0.19  | 0.04   | 198   |  |  |
| Vendor              | < 0.005                                                                                    | 0.07 | 0.04 | < 0.005 | 0.02  | 0.01   | 69.7  |  |  |
| Hauling             | 0.00                                                                                       | 0.00 | 0.00 | 0.00    | 0.00  | 0.00   | 0.00  |  |  |
| Daily, Winter (Max) | _                                                                                          |      | _    | _       | _     |        | _     |  |  |
| Worker              | 0.05                                                                                       | 0.06 | 0.79 | 0.00    | 0.19  | 0.04   | 187   |  |  |

| Vendor        | < 0.005 | 0.08    | 0.04    | < 0.005 | 0.02    | 0.01    | 69.6 |
|---------------|---------|---------|---------|---------|---------|---------|------|
| Hauling       | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Average Daily | _       | —       | —       | —       | —       | —       | —    |
| Worker        | 0.01    | 0.02    | 0.22    | 0.00    | 0.05    | 0.01    | 49.5 |
| Vendor        | < 0.005 | 0.02    | 0.01    | < 0.005 | < 0.005 | < 0.005 | 18.1 |
| Hauling       | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Annual        | _       | —       | —       | —       | —       | —       | _    |
| Worker        | < 0.005 | < 0.005 | 0.04    | 0.00    | 0.01    | < 0.005 | 8.20 |
| Vendor        | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 3.00 |
| Hauling       | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |

# 3.11. Paving (2026) - Unmitigated

| Location            | ROG     | NOx  | со   | SO2     | PM10T   | PM2.5T  | CO2e |
|---------------------|---------|------|------|---------|---------|---------|------|
| Onsite              | —       | —    | —    | —       | —       | —       | —    |
| Daily, Summer (Max) | —       | —    | —    | —       | —       | —       | —    |
| Off-Road Equipment  | 0.59    | 5.08 | 6.24 | 0.01    | 0.21    | 0.20    | 976  |
| Paving              | 0.04    | —    | —    | —       | —       | —       | —    |
| Onsite truck        | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Daily, Winter (Max) | —       | —    | —    | —       | —       | —       | —    |
| Average Daily       | —       | —    | —    | —       | —       | —       | —    |
| Off-Road Equipment  | 0.01    | 0.07 | 0.09 | < 0.005 | < 0.005 | < 0.005 | 13.4 |
| Paving              | < 0.005 | —    | —    | —       | —       | —       | _    |
| Onsite truck        | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Annual              | —       | —    | —    | —       | —       | —       | _    |
| Off-Road Equipment  | < 0.005 | 0.01 | 0.02 | < 0.005 | < 0.005 | < 0.005 | 2.21 |
| Paving              | < 0.005 | —    | —    | —       | —       | —       |      |
| Onsite truck        | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |

| Offsite             | _       | —       | _       | _    | —       | -       |      |
|---------------------|---------|---------|---------|------|---------|---------|------|
| Daily, Summer (Max) | —       | —       | —       | —    | —       | —       | —    |
| Worker              | 0.06    | 0.07    | 1.13    | 0.00 | 0.23    | 0.05    | 241  |
| Vendor              | 0.00    | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 |
| Hauling             | 0.00    | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 |
| Daily, Winter (Max) | —       | —       | —       | —    | —       | —       | —    |
| Average Daily       | —       | —       | —       | —    | —       | —       | —    |
| Worker              | < 0.005 | < 0.005 | 0.01    | 0.00 | < 0.005 | < 0.005 | 3.17 |
| Vendor              | 0.00    | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 |
| Hauling             | 0.00    | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 |
| Annual              | _       | —       | —       | —    | —       | —       | —    |
| Worker              | < 0.005 | < 0.005 | < 0.005 | 0.00 | < 0.005 | < 0.005 | 0.52 |
| Vendor              | 0.00    | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 |
| Hauling             | 0.00    | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 |

# 3.13. Architectural Coating (2026) - Unmitigated

| Location               | ROG     | NOx  | со   | SO2     | PM10T   | PM2.5T  | CO2e |
|------------------------|---------|------|------|---------|---------|---------|------|
| Onsite                 | _       | _    | _    | _       | _       | _       | _    |
| Daily, Summer (Max)    | _       | _    | —    | _       | _       | —       | _    |
| Off-Road Equipment     | 0.16    | 1.14 | 1.51 | < 0.005 | 0.03    | 0.03    | 179  |
| Architectural Coatings | 24.2    | —    | —    | —       | _       | —       | —    |
| Onsite truck           | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Daily, Winter (Max)    | —       | —    | —    | —       | —       | —       | —    |
| Average Daily          | —       | —    | -    | —       | -       | —       | —    |
| Off-Road Equipment     | < 0.005 | 0.02 | 0.02 | < 0.005 | < 0.005 | < 0.005 | 2.45 |
| Architectural Coatings | 0.33    | —    | _    | —       | _       | —       |      |
| Onsite truck           | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |

| Annual                 | —       | _       | —       | _       | —       | —       | —    |
|------------------------|---------|---------|---------|---------|---------|---------|------|
| Off-Road Equipment     | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 0.41 |
| Architectural Coatings | 0.06    | —       | —       | _       | —       | —       | —    |
| Onsite truck           | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Offsite                | —       | —       | —       | _       | —       | —       | _    |
| Daily, Summer (Max)    | —       | —       | —       | _       | —       | —       | _    |
| Worker                 | 0.01    | 0.01    | 0.19    | 0.00    | 0.04    | 0.01    | 39.6 |
| Vendor                 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Daily, Winter (Max)    | —       | —       | —       | —       | —       | —       | _    |
| Average Daily          | —       | —       | —       | —       | —       | —       | _    |
| Worker                 | < 0.005 | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | 0.52 |
| Vendor                 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Annual                 | —       | —       | —       | —       | —       | —       | —    |
| Worker                 | < 0.005 | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | 0.09 |
| Vendor                 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |

# 4. Operations Emissions Details

# 4.1. Mobile Emissions by Land Use

4.1.1. Unmitigated

| Land Use            | ROG  | NOx  | со   | SO2  | PM10T | PM2.5T | CO2e  |
|---------------------|------|------|------|------|-------|--------|-------|
| Daily, Summer (Max) | —    | —    | —    | —    | —     | —      | —     |
| Apartments Mid Rise | 0.59 | 0.47 | 5.49 | 0.01 | 1.23  | 0.32   | 1,379 |

| Parking Lot         | 0.00 | 0.00 | 0.00 | 0.00    | 0.00 | 0.00 | 0.00  |
|---------------------|------|------|------|---------|------|------|-------|
| Total               | 0.59 | 0.47 | 5.49 | 0.01    | 1.23 | 0.32 | 1,379 |
| Daily, Winter (Max) | —    | —    | —    | —       | —    | —    |       |
| Apartments Mid Rise | 0.58 | 0.51 | 5.01 | 0.01    | 1.23 | 0.32 | 1,318 |
| Parking Lot         | 0.00 | 0.00 | 0.00 | 0.00    | 0.00 | 0.00 | 0.00  |
| Total               | 0.58 | 0.51 | 5.01 | 0.01    | 1.23 | 0.32 | 1,318 |
| Annual              | —    | —    | —    | —       | —    | _    |       |
| Apartments Mid Rise | 0.07 | 0.06 | 0.60 | < 0.005 | 0.14 | 0.04 | 142   |
| Parking Lot         | 0.00 | 0.00 | 0.00 | 0.00    | 0.00 | 0.00 | 0.00  |
| Total               | 0.07 | 0.06 | 0.60 | < 0.005 | 0.14 | 0.04 | 142   |

# 4.2. Energy

## 4.2.1. Electricity Emissions By Land Use - Unmitigated

| Land Use            | ROG | NOx | со | SO2 | PM10T | PM2.5T | CO2e |
|---------------------|-----|-----|----|-----|-------|--------|------|
| Daily, Summer (Max) | —   | —   | —  | —   | —     | —      | —    |
| Apartments Mid Rise | —   | —   | —  | —   | —     | —      | 69.9 |
| Parking Lot         | —   | —   | —  | —   | —     | —      | 2.55 |
| Total               | —   | —   | —  | —   | —     | —      | 72.5 |
| Daily, Winter (Max) | —   | —   | —  | —   | —     | —      | —    |
| Apartments Mid Rise | —   | —   | —  | —   | —     | —      | 69.9 |
| Parking Lot         | —   | —   | —  | —   | —     | —      | 2.55 |
| Total               | —   | —   | —  | —   | —     | —      | 72.5 |
| Annual              | —   | —   | —  | —   | —     | —      | —    |
| Apartments Mid Rise | —   | —   | —  | —   | —     | —      | 11.6 |
| Parking Lot         | —   | —   | —  | —   | —     | —      | 0.42 |
| Total               | —   | —   | —  | —   | —     | —      | 12.0 |

### 4.2.3. Natural Gas Emissions By Land Use - Unmitigated

|                     | · · · · | . ,  | · · · · |         | ,       |         |      |
|---------------------|---------|------|---------|---------|---------|---------|------|
| Land Use            | ROG     | NOx  | со      | SO2     | PM10T   | PM2.5T  | CO2e |
| Daily, Summer (Max) | —       | —    | —       | —       | —       | —       | —    |
| Apartments Mid Rise | < 0.005 | 0.06 | 0.02    | < 0.005 | < 0.005 | < 0.005 | 71.4 |
| Parking Lot         | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Total               | < 0.005 | 0.06 | 0.02    | < 0.005 | < 0.005 | < 0.005 | 71.4 |
| Daily, Winter (Max) | —       | —    | —       | —       | —       | —       | —    |
| Apartments Mid Rise | < 0.005 | 0.06 | 0.02    | < 0.005 | < 0.005 | < 0.005 | 71.4 |
| Parking Lot         | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Total               | < 0.005 | 0.06 | 0.02    | < 0.005 | < 0.005 | < 0.005 | 71.4 |
| Annual              | —       | —    | —       | —       | _       | —       | —    |
| Apartments Mid Rise | < 0.005 | 0.01 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 11.8 |
| Parking Lot         | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Total               | < 0.005 | 0.01 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 11.8 |

# 4.3. Area Emissions by Source

# 4.3.1. Unmitigated

| Source                 | ROG  | NOx  | со   | SO2     | PM10T   | PM2.5T  | CO2e |
|------------------------|------|------|------|---------|---------|---------|------|
| Daily, Summer (Max)    | —    | —    | —    | —       | —       | —       | —    |
| Hearths                | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Consumer Products      | 0.41 | —    | —    | —       | —       | _       | —    |
| Architectural Coatings | 0.03 |      |      | —       | —       | —       | —    |
| Landscape Equipment    | 0.10 | 0.01 | 1.13 | < 0.005 | < 0.005 | < 0.005 | 3.04 |
| Total                  | 0.54 | 0.01 | 1.13 | < 0.005 | < 0.005 | < 0.005 | 3.04 |
| Daily, Winter (Max)    | —    | —    | —    | —       | —       | —       | —    |

| Hearths                | 0.00 | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
|------------------------|------|---------|------|---------|---------|---------|------|
| Consumer Products      | 0.41 | _       | _    | _       | _       | _       | —    |
| Architectural Coatings | 0.03 | _       | —    | —       | —       | —       | —    |
| Total                  | 0.44 | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Annual                 | —    | _       | —    | —       | —       | —       | —    |
| Hearths                | 0.00 | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Consumer Products      | 0.08 | _       | —    | —       | —       | —       | —    |
| Architectural Coatings | 0.01 | _       | —    | —       | —       | —       | —    |
| Landscape Equipment    | 0.01 | < 0.005 | 0.14 | < 0.005 | < 0.005 | < 0.005 | 0.35 |
| Total                  | 0.09 | < 0.005 | 0.14 | < 0.005 | < 0.005 | < 0.005 | 0.35 |

# 4.4. Water Emissions by Land Use

### 4.4.1. Unmitigated

| Land Use            | ROG | NOx | со | SO2 |   | PM2.5T | CO2e |
|---------------------|-----|-----|----|-----|---|--------|------|
| Daily, Summer (Max) | —   | —   | —  | —   | — | —      | —    |
| Apartments Mid Rise | —   | —   | —  | —   | — | —      | 11.3 |
| Parking Lot         | —   | -   | —  | -   | — | —      | 0.00 |
| Total               | -   | —   | -  | _   | - | —      | 11.3 |
| Daily, Winter (Max) | -   | -   | -  | _   | - | —      | —    |
| Apartments Mid Rise | —   | —   | —  | _   | — | —      | 11.3 |
| Parking Lot         | —   | —   | —  | _   | — | —      | 0.00 |
| Total               | —   | —   | —  | —   | — | —      | 11.3 |
| Annual              | —   | —   | —  | —   | — | —      | —    |
| Apartments Mid Rise | —   | —   | —  | —   | — | —      | 1.87 |
| Parking Lot         | —   | —   | —  | —   | — | —      | 0.00 |
| Total               | —   | —   | —  | —   | — | _      | 1.87 |

# 4.5. Waste Emissions by Land Use

#### 4.5.1. Unmitigated

#### Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

|                     | <b>, , ,</b> | ,   | <b>X</b> | <b>,</b> | /     |        |      |
|---------------------|--------------|-----|----------|----------|-------|--------|------|
| Land Use            | ROG          | NOx | СО       | SO2      | PM10T | PM2.5T | CO2e |
| Daily, Summer (Max) | —            | —   | _        | —        | —     | —      | _    |
| Apartments Mid Rise | —            | —   | _        | —        | —     | —      | 27.8 |
| Parking Lot         | —            | —   | —        | —        | —     | —      | 0.00 |
| Total               | —            | —   | —        | —        | —     | —      | 27.8 |
| Daily, Winter (Max) | —            | —   | —        | —        | —     | —      | —    |
| Apartments Mid Rise | —            | —   | —        | —        | —     | —      | 27.8 |
| Parking Lot         | —            | —   | —        | —        | —     | —      | 0.00 |
| Total               | —            | —   | —        | —        | —     | —      | 27.8 |
| Annual              | —            | —   | —        | —        | —     | —      |      |
| Apartments Mid Rise | —            |     |          |          | —     |        | 4.60 |
| Parking Lot         | —            |     |          |          | —     |        | 0.00 |
| Total               | —            | —   |          | —        | —     |        | 4.60 |

# 4.6. Refrigerant Emissions by Land Use

#### 4.6.1. Unmitigated

| Land Use            | ROG | NOx | со | SO2 | PM10T | PM2.5T | CO2e |
|---------------------|-----|-----|----|-----|-------|--------|------|
| Daily, Summer (Max) | —   | _   | —  | —   | _     | _      |      |
| Apartments Mid Rise | —   | —   | —  | —   | —     | _      | 0.14 |
| Total               | —   | —   | —  | —   | —     | _      | 0.14 |
| Daily, Winter (Max) | —   | —   |    | —   | _     |        |      |
| Apartments Mid Rise | —   | —   |    | —   | —     | —      | 0.14 |

| Total               | — | — | — |   |   |   | 0.14 |
|---------------------|---|---|---|---|---|---|------|
| Annual              | — | — | — | — | — | — | —    |
| Apartments Mid Rise | — | — | — | — | — | — | 0.02 |
| Total               | — | — | — |   | _ | _ | 0.02 |

# 4.7. Offroad Emissions By Equipment Type

#### 4.7.1. Unmitigated

### Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

| Equipment Type      | ROG | NOx | со | SO2 | PM10T | PM2.5T | CO2e |
|---------------------|-----|-----|----|-----|-------|--------|------|
| Daily, Summer (Max) | —   | —   | —  | —   | —     | —      | —    |
| Total               | —   | _   | _  | _   | —     | _      | —    |
| Daily, Winter (Max) | —   | —   | —  | —   | —     | —      | _    |
| Total               | —   | —   | —  | —   | —     | —      | _    |
| Annual              | —   | —   | —  | —   | —     | —      |      |
| Total               | —   | —   | —  | —   | —     | —      | _    |

# 4.8. Stationary Emissions By Equipment Type

#### 4.8.1. Unmitigated

| Equipment Type      | ROG | NOx | со | SO2 | PM10T | PM2.5T | CO2e |
|---------------------|-----|-----|----|-----|-------|--------|------|
| Daily, Summer (Max) | —   | —   | —  | —   | —     | _      | —    |
| Total               | —   | —   | —  | —   | —     | —      | —    |
| Daily, Winter (Max) | —   | —   | —  | —   | —     | —      | —    |
| Total               | —   | —   | —  | —   | —     | _      | —    |
| Annual              | —   |     |    |     | —     |        |      |
| Total               | —   | —   | —  | —   | —     | —      | —    |

# 4.9. User Defined Emissions By Equipment Type

#### 4.9.1. Unmitigated

#### Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

| Equipment Type      | ROG | NOx | со | SO2 | PM10T | PM2.5T | CO2e |
|---------------------|-----|-----|----|-----|-------|--------|------|
| Daily, Summer (Max) | —   | _   | —  | _   | —     | —      | —    |
| Total               | —   | —   | —  | —   | —     | _      | —    |
| Daily, Winter (Max) | —   | —   | —  | —   | —     | —      | —    |
| Total               | —   | —   | —  | —   | —     | —      | —    |
| Annual              | —   | —   | _  | —   |       |        | _    |
| Total               |     |     | _  |     | _     |        |      |

## 4.10. Soil Carbon Accumulation By Vegetation Type

#### 4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated

#### Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

| Vegetation          | ROG | NOx | со | SO2 | PM10T | PM2.5T | CO2e |
|---------------------|-----|-----|----|-----|-------|--------|------|
| Daily, Summer (Max) | —   | —   | —  | —   | —     | —      | —    |
| Total               | —   | —   | —  | —   | —     | —      |      |
| Daily, Winter (Max) | —   | —   | —  | —   | —     | —      | —    |
| Total               | —   | —   | —  | —   | —     | —      | —    |
| Annual              | —   | —   | —  | —   | —     | —      |      |
| Total               | —   | —   | —  | —   | _     | _      |      |

#### 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated

| Land Use            | ROG | NOx | со | SO2 | PM10T | PM2.5T | CO2e |
|---------------------|-----|-----|----|-----|-------|--------|------|
| Daily, Summer (Max) | _   | _   | _  | _   | —     | _      | —    |

| Total               |   | — | _ |   |   | — | _ |
|---------------------|---|---|---|---|---|---|---|
| Daily, Winter (Max) | — | — | — | _ | — | — | — |
| Total               | — | — | — | _ | _ | — | — |
| Annual              | — | — | — | _ | _ | — | — |
| Total               | _ | — | _ | _ | _ | — | _ |

4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated

| Species             | ROG | NOx | со | SO2 | PM10T | PM2.5T | CO2e |
|---------------------|-----|-----|----|-----|-------|--------|------|
| Daily, Summer (Max) | —   | —   | —  | —   | —     | —      | —    |
| Avoided             | —   | —   | —  | —   | —     | —      | —    |
| Subtotal            | —   | —   | —  | —   | —     | —      | —    |
| Sequestered         | —   | —   | —  | —   | —     | —      | —    |
| Subtotal            | —   | —   | —  | —   | —     | —      | —    |
| Removed             | —   | —   | —  | —   | —     | —      | —    |
| Subtotal            | —   |     |    | —   | —     | —      | —    |
| —                   | —   | _   | _  | _   | —     | —      | —    |
| Daily, Winter (Max) | —   | _   | _  | _   | —     | —      | —    |
| Avoided             | —   | _   | _  | _   | —     | —      | —    |
| Subtotal            | —   | _   | _  | _   | —     | —      | —    |
| Sequestered         | —   | _   | _  | —   | —     | —      | _    |
| Subtotal            | —   | _   | _  | _   | —     | —      | _    |
| Removed             | —   | —   | —  | —   | —     | —      | —    |
| Subtotal            | —   | —   | —  | —   | —     | —      | —    |
| —                   | —   | _   | _  | —   | —     | —      | _    |
| Annual              | —   | _   | _  |     | —     | —      | —    |
| Avoided             | —   | _   | _  | _   | —     | —      | —    |
| Subtotal            | —   | —   | —  | —   | —     | —      | _    |

# 24-103 PVE Site 2 Lunada Detailed Report, 12/18/2024

| Sequestered | — | — | — |   | — | — | _ |
|-------------|---|---|---|---|---|---|---|
| Subtotal    | — | — | — | — | — | — | — |
| Removed     | — | — | — | — | — | — | — |
| Subtotal    | — | — | — | — | — | — | — |
| _           | — | — | _ |   | — | _ | — |

# 5. Activity Data

# 5.1. Construction Schedule

| Phase Name            | Phase Type            | Start Date | End Date   | Days Per Week | Work Days per Phase | Phase Description |
|-----------------------|-----------------------|------------|------------|---------------|---------------------|-------------------|
| Demolition            | Demolition            | 12/1/2025  | 12/19/2025 | 5.00          | 15.0                | —                 |
| Site Preparation      | Site Preparation      | 12/20/2025 | 12/22/2025 | 5.00          | 1.00                | —                 |
| Grading               | Grading               | 12/23/2025 | 12/24/2025 | 5.00          | 2.00                | —                 |
| Building Construction | Building Construction | 12/25/2025 | 5/13/2026  | 5.00          | 100                 | —                 |
| Paving                | Paving                | 5/14/2026  | 5/20/2026  | 5.00          | 5.00                | —                 |
| Architectural Coating | Architectural Coating | 5/21/2026  | 5/27/2026  | 5.00          | 5.00                | —                 |

# 5.2. Off-Road Equipment

# 5.2.1. Unmitigated

| Phase Name       | Equipment Type              | Fuel Type | Engine Tier | Number per Day | Hours Per Day | Horsepower | Load Factor |
|------------------|-----------------------------|-----------|-------------|----------------|---------------|------------|-------------|
| Demolition       | Concrete/Industrial<br>Saws | Diesel    | Average     | 1.00           | 8.00          | 33.0       | 0.73        |
| Demolition       | Rubber Tired Dozers         | Diesel    | Average     | 1.00           | 8.00          | 367        | 0.40        |
| Demolition       | Tractors/Loaders/Back hoes  | Diesel    | Average     | 2.00           | 8.00          | 84.0       | 0.37        |
| Site Preparation | Graders                     | Diesel    | Average     | 1.00           | 8.00          | 148        | 0.41        |
| Site Preparation | Tractors/Loaders/Back hoes  | Diesel    | Average     | 0.00           | 8.00          | 84.0       | 0.37        |

| Site Preparation      | Crawler Tractors            | Diesel | Average | 1.00 | 8.00 | 87.0 | 0.43 |
|-----------------------|-----------------------------|--------|---------|------|------|------|------|
| Grading               | Graders                     | Diesel | Average | 1.00 | 8.00 | 148  | 0.41 |
| Grading               | Rubber Tired Dozers         | Diesel | Average | 1.00 | 8.00 | 367  | 0.40 |
| Grading               | Tractors/Loaders/Back hoes  | Diesel | Average | 0.00 | 8.00 | 84.0 | 0.37 |
| Grading               | Crawler Tractors            | Diesel | Average | 1.00 | 8.00 | 87.0 | 0.43 |
| Building Construction | Cranes                      | Diesel | Average | 1.00 | 8.00 | 367  | 0.29 |
| Building Construction | Forklifts                   | Diesel | Average | 2.00 | 8.00 | 82.0 | 0.20 |
| Building Construction | Tractors/Loaders/Back hoes  | Diesel | Average | 2.00 | 8.00 | 84.0 | 0.37 |
| Paving                | Cement and Mortar<br>Mixers | Diesel | Average | 4.00 | 8.00 | 10.0 | 0.56 |
| Paving                | Pavers                      | Diesel | Average | 1.00 | 8.00 | 81.0 | 0.42 |
| Paving                | Rollers                     | Diesel | Average | 1.00 | 8.00 | 36.0 | 0.38 |
| Paving                | Tractors/Loaders/Back hoes  | Diesel | Average | 1.00 | 8.00 | 84.0 | 0.37 |
| Architectural Coating | Air Compressors             | Diesel | Average | 1.00 | 8.00 | 37.0 | 0.48 |

# 5.3. Construction Vehicles

# 5.3.1. Unmitigated

| Phase Name       | Тгір Туре    | One-Way Trips per Day | Miles per Trip | Vehicle Mix   |
|------------------|--------------|-----------------------|----------------|---------------|
| Demolition       | —            | _                     |                | _             |
| Demolition       | Worker       | 10.0                  | 18.5           | LDA,LDT1,LDT2 |
| Demolition       | Vendor       | —                     | 10.2           | HHDT,MHDT     |
| Demolition       | Hauling      | 57.5                  | 20.0           | HHDT          |
| Demolition       | Onsite truck | —                     | —              | HHDT          |
| Site Preparation | —            | —                     | _              | _             |
| Site Preparation | Worker       | 5.00                  | 18.5           | LDA,LDT1,LDT2 |
| Site Preparation | Vendor       |                       | 10.2           | HHDT,MHDT     |

| Site Preparation      | Hauling      | 0.00 | 20.0 | HHDT          |
|-----------------------|--------------|------|------|---------------|
| Site Preparation      | Onsite truck | _    | —    | HHDT          |
| Grading               | _            | _    | —    | _             |
| Grading               | Worker       | 7.50 | 18.5 | LDA,LDT1,LDT2 |
| Grading               | Vendor       | _    | 10.2 | HHDT,MHDT     |
| Grading               | Hauling      | 0.00 | 20.0 | HHDT          |
| Grading               | Onsite truck | _    |      | HHDT          |
| Building Construction |              | _    | —    | _             |
| Building Construction | Worker       | 14.4 | 18.5 | LDA,LDT1,LDT2 |
| Building Construction | Vendor       | 2.14 | 10.2 | HHDT,MHDT     |
| Building Construction | Hauling      | 0.00 | 20.0 | HHDT          |
| Building Construction | Onsite truck | _    | _    | HHDT          |
| Paving                |              |      | _    | _             |
| Paving                | Worker       | 17.5 | 18.5 | LDA,LDT1,LDT2 |
| Paving                | Vendor       |      | 10.2 | HHDT,MHDT     |
| Paving                | Hauling      | 0.00 | 20.0 | HHDT          |
| Paving                | Onsite truck | _    | —    | HHDT          |
| Architectural Coating |              | _    | —    |               |
| Architectural Coating | Worker       | 2.88 | 18.5 | LDA,LDT1,LDT2 |
| Architectural Coating | Vendor       |      | 10.2 | HHDT,MHDT     |
| Architectural Coating | Hauling      | 0.00 | 20.0 | HHDT          |
| Architectural Coating | Onsite truck | _    |      | HHDT          |

# 5.4. Vehicles

# 5.4.1. Construction Vehicle Control Strategies

Non-applicable. No control strategies activated by user. 5.5. Architectural Coatings

### 24-103 PVE Site 2 Lunada Detailed Report, 12/18/2024

| Phase Name            | Residential Interior Area<br>Coated (sq ft) | Residential Exterior Area<br>Coated (sq ft) | Non-Residential Interior Area<br>Coated (sq ft) | Non-Residential Exterior Area<br>Coated (sq ft) | Parking Area Coated (sq ft) |
|-----------------------|---------------------------------------------|---------------------------------------------|-------------------------------------------------|-------------------------------------------------|-----------------------------|
| Architectural Coating | 38,880                                      | 12,960                                      | 0.00                                            | 0.00                                            | 183                         |

# 5.6. Dust Mitigation

### 5.6.1. Construction Earthmoving Activities

| Phase Name       | Material Imported (cy) | Material Exported (cy) | Acres Graded (acres) | Material Demolished (Ton of Debris) | Acres Paved (acres) |
|------------------|------------------------|------------------------|----------------------|-------------------------------------|---------------------|
| Demolition       | 0.00                   | 0.00                   | 0.00                 | 3,447                               | _                   |
| Site Preparation | —                      | _                      | 1.00                 | 0.00                                | _                   |
| Grading          | —                      |                        | 3.00                 | 0.00                                | _                   |
| Paving           | 0.00                   | 0.00                   | 0.00                 | 0.00                                | 0.07                |

# 5.6.2. Construction Earthmoving Control Strategies

| Control Strategies Applied | Frequency (per day) | PM10 Reduction | PM2.5 Reduction |
|----------------------------|---------------------|----------------|-----------------|
| Water Exposed Area         | 3                   | 74%            | 74%             |
| Water Demolished Area      | 2                   | 36%            | 36%             |

# 5.7. Construction Paving

| Land Use            | Area Paved (acres) | % Asphalt |
|---------------------|--------------------|-----------|
| Apartments Mid Rise |                    | 0%        |
| Parking Lot         | 0.07               | 100%      |

# 5.8. Construction Electricity Consumption and Emissions Factors

#### kWh per Year and Emission Factor (lb/MWh)

| Year | kWh per Year | CO2 | CH4  | N2O     |
|------|--------------|-----|------|---------|
| 2025 | 0.00         | 349 | 0.03 | < 0.005 |

| 0.00 | 346 | 0.03 | < 0.005 |
|------|-----|------|---------|
|------|-----|------|---------|

# 5.9. Operational Mobile Sources

### 5.9.1. Unmitigated

| Land Use Type          | Trips/Weekday | Trips/Saturday | Trips/Sunday | Trips/Year | VMT/Weekday | VMT/Saturday | VMT/Sunday | VMT/Year |
|------------------------|---------------|----------------|--------------|------------|-------------|--------------|------------|----------|
| Apartments Mid<br>Rise | 94.0          | 174            | 138          | 40,776     | 934         | 1,729        | 1,371      | 405,105  |
| Parking Lot            | 0.00          | 0.00           | 0.00         | 0.00       | 0.00        | 0.00         | 0.00       | 0.00     |

# 5.10. Operational Area Sources

## 5.10.1. Hearths

#### 5.10.1.1. Unmitigated

| Hearth Type               | Unmitigated (number) |
|---------------------------|----------------------|
| Apartments Mid Rise       | —                    |
| Wood Fireplaces           | 0                    |
| Gas Fireplaces            | 0                    |
| Propane Fireplaces        | 0                    |
| Electric Fireplaces       | 0                    |
| No Fireplaces             | 20                   |
| Conventional Wood Stoves  | 0                    |
| Catalytic Wood Stoves     | 0                    |
| Non-Catalytic Wood Stoves | 0                    |
| Pellet Wood Stoves        | 0                    |

## 5.10.2. Architectural Coatings

#### 24-103 PVE Site 2 Lunada Detailed Report, 12/18/2024

| Residential Interior Area Coated (sq<br>ft) | Residential Exterior Area Coated (sq<br>ft) | Non-Residential Interior Area Coated (sq ft) | Non-Residential Exterior Area<br>Coated (sq ft) | Parking Area Coated (sq ft) |
|---------------------------------------------|---------------------------------------------|----------------------------------------------|-------------------------------------------------|-----------------------------|
| 38880                                       | 12,960                                      | 0.00                                         | 0.00                                            | 183                         |

### 5.10.3. Landscape Equipment

| Season      | Unit   | Value |
|-------------|--------|-------|
| Snow Days   | day/yr | 0.00  |
| Summer Days | day/yr | 250   |

## 5.11. Operational Energy Consumption

### 5.11.1. Unmitigated

#### Electricity (kWh/yr) and CO2 and CH4 and N2O and Natural Gas (kBTU/yr)

| Land Use            | Electricity (kWh/yr) | CO2 | CH4    | N2O    | Natural Gas (kBTU/yr) |
|---------------------|----------------------|-----|--------|--------|-----------------------|
| Apartments Mid Rise | 73,317               | 346 | 0.0330 | 0.0040 | 222,137               |
| Parking Lot         | 2,671                | 346 | 0.0330 | 0.0040 | 0.00                  |

# 5.12. Operational Water and Wastewater Consumption

#### 5.12.1. Unmitigated

| Land Use            | Indoor Water (gal/year) | Outdoor Water (gal/year) |
|---------------------|-------------------------|--------------------------|
| Apartments Mid Rise | 745,476                 | 58,914                   |
| Parking Lot         | 0.00                    | 0.00                     |

# 5.13. Operational Waste Generation

#### 5.13.1. Unmitigated

| Land Use | Waste (ton/year) | Cogeneration (kWh/year) |
|----------|------------------|-------------------------|
|          |                  |                         |

| Apartments Mid Rise | 14.7 |  |
|---------------------|------|--|
| Parking Lot         | 0.00 |  |

# 5.14. Operational Refrigeration and Air Conditioning Equipment

### 5.14.1. Unmitigated

| Land Use Type       | Equipment Type                                                | Refrigerant | GWP   | Quantity (kg) | Operations Leak Rate | Service Leak Rate | Times Serviced |
|---------------------|---------------------------------------------------------------|-------------|-------|---------------|----------------------|-------------------|----------------|
| Apartments Mid Rise | Average room A/C &<br>Other residential A/C<br>and heat pumps | R-410A      | 2,088 | < 0.005       | 2.50                 | 2.50              | 10.0           |
| Apartments Mid Rise | Household<br>refrigerators and/or<br>freezers                 | R-134a      | 1,430 | 0.12          | 0.60                 | 0.00              | 1.00           |

# 5.15. Operational Off-Road Equipment

### 5.15.1. Unmitigated

|  | Equipment T | ӯре | Fuel Type | Engine Tier | Number per Day | Hours Per Day | Horsepower | Load Factor |
|--|-------------|-----|-----------|-------------|----------------|---------------|------------|-------------|
|--|-------------|-----|-----------|-------------|----------------|---------------|------------|-------------|

# 5.16. Stationary Sources

## 5.16.1. Emergency Generators and Fire Pumps

| Equipment Type | Fuel Type | Number per Day | Hours per Day | Hours per Year | Horsepower | Load Factor |
|----------------|-----------|----------------|---------------|----------------|------------|-------------|
|                |           |                |               |                |            |             |

## 5.16.2. Process Boilers

| Equipment Type | Fuel Type | Number | Boiler Rating (MMBtu/hr) | Daily Heat Input (MMBtu/day) | Annual Heat Input (MMBtu/yr) |
|----------------|-----------|--------|--------------------------|------------------------------|------------------------------|
|----------------|-----------|--------|--------------------------|------------------------------|------------------------------|

# 5.17. User Defined

| Equipment Type | Fuel Type |
|----------------|-----------|
|                |           |

### 5.18. Vegetation

#### 5.18.1. Land Use Change

#### 5.18.1.1. Unmitigated

| Vegetation Land Use Type   | Vegetation Soil Type | Initial Acres                | Final Acres                  |
|----------------------------|----------------------|------------------------------|------------------------------|
| 5.18.1. Biomass Cover Type |                      |                              |                              |
| 5.18.1.1. Unmitigated      |                      |                              |                              |
| Biomass Cover Type         | Initial Acres        | Final Acres                  |                              |
| 5.18.2. Sequestration      |                      |                              |                              |
| 5.18.2.1. Unmitigated      |                      |                              |                              |
| Тгее Туре                  | Number               | Electricity Saved (kWh/year) | Natural Gas Saved (btu/year) |

# 6. Climate Risk Detailed Report

# 6.1. Climate Risk Summary

Cal-Adapt midcentury 2040–2059 average projections for four hazards are reported below for your project location. These are under Representation Concentration Pathway (RCP) 8.5 which assumes GHG emissions will continue to rise strongly through 2050 and then plateau around 2100.

| Climate Hazard               | Result for Project Location | Unit                                       |
|------------------------------|-----------------------------|--------------------------------------------|
| Temperature and Extreme Heat | 5.08                        | annual days of extreme heat                |
| Extreme Precipitation        | 3.85                        | annual days with precipitation above 20 mm |
| Sea Level Rise               |                             | meters of inundation depth                 |
| Wildfire                     | 0.00                        | annual hectares burned                     |

Temperature and Extreme Heat data are for grid cell in which your project are located. The projection is based on the 98th historical percentile of daily maximum/minimum temperatures from observed historical data (32 climate model ensemble from Cal-Adapt, 2040–2059 average under RCP 8.5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. Extreme Precipitation data are for the grid cell in which your project are located. The threshold of 20 mm is equivalent to about ¾ an inch of rain, which would be light to moderate rainfall if received over a full day or heavy rain if received over a period of 2 to 4 hours. Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

Sea Level Rise data are for the grid cell in which your project are located. The projections are from Radke et al. (2017), as reported in Cal-Adapt (Radke et al., 2017, CEC-500-2017-008), and consider inundation location and depth for the San Francisco Bay, the Sacramento-San Joaquin River Delta and California coast resulting different increments of sea level rise coupled with extreme storm events. Users may select from four scenarios to view the range in potential inundation depth for the grid cell. The four scenarios are: No rise, 0.5 meter, 1.0 meter, 1.41 meters Wildfire data are for the grid cell in which your project are located. The projections are from UC Davis, as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider historical data of climate, vegetation, population density, and large (> 400 ha) fire history. Users may select from four model simulations to view the range in potential wildfire probabilities for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

# 6.2. Initial Climate Risk Scores

| Climate Hazard               | Exposure Score | Sensitivity Score | Adaptive Capacity Score | Vulnerability Score |
|------------------------------|----------------|-------------------|-------------------------|---------------------|
| Temperature and Extreme Heat | 0              | 0                 | 0                       | N/A                 |
| Extreme Precipitation        | N/A            | N/A               | N/A                     | N/A                 |
| Sea Level Rise               | 0              | 0                 | 0                       | N/A                 |
| Wildfire                     | 0              | 0                 | 0                       | N/A                 |
| Flooding                     | N/A            | N/A               | N/A                     | N/A                 |
| Drought                      | N/A            | N/A               | N/A                     | N/A                 |
| Snowpack Reduction           | N/A            | N/A               | N/A                     | N/A                 |
| Air Quality Degradation      | 0              | 0                 | 0                       | N/A                 |

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores do not include implementation of climate risk reduction measures.

## 6.3. Adjusted Climate Risk Scores

| Climate Hazard               | Exposure Score | Sensitivity Score | Adaptive Capacity Score | Vulnerability Score |
|------------------------------|----------------|-------------------|-------------------------|---------------------|
| Temperature and Extreme Heat | 1              | 1                 | 1                       | 2                   |
| Extreme Precipitation        | N/A            | N/A               | N/A                     | N/A                 |
| Sea Level Rise               | 1              | 1                 | 1                       | 2                   |

| Wildfire                | 1   | 1   | 1   | 2   |
|-------------------------|-----|-----|-----|-----|
| Flooding                | N/A | N/A | N/A | N/A |
| Drought                 | N/A | N/A | N/A | N/A |
| Snowpack Reduction      | N/A | N/A | N/A | N/A |
| Air Quality Degradation | 1   | 1   | 1   | 2   |

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores include implementation of climate risk reduction measures.

## 6.4. Climate Risk Reduction Measures

# 7. Health and Equity Details

# 7.1. CalEnviroScreen 4.0 Scores

The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

| Indicator           | Result for Project Census Tract |
|---------------------|---------------------------------|
| Exposure Indicators |                                 |
| AQ-Ozone            | 26.7                            |
| AQ-PM               | 61.3                            |
| AQ-DPM              | 4.94                            |
| Drinking Water      | 11.3                            |
| Lead Risk Housing   | 33.5                            |
| Pesticides          | 0.00                            |
| Toxic Releases      | 87.8                            |
| Traffic             | 43.6                            |
| Effect Indicators   |                                 |
| CleanUp Sites       | 0.00                            |
| Groundwater         | 0.00                            |

| Haz Waste Facilities/Generators | 1.80 |
|---------------------------------|------|
| Impaired Water Bodies           | 58.7 |
| Solid Waste                     | 35.7 |
| Sensitive Population            | —    |
| Asthma                          | 1.50 |
| Cardio-vascular                 | 5.21 |
| Low Birth Weights               | 65.8 |
| Socioeconomic Factor Indicators | —    |
| Education                       | 0.42 |
| Housing                         | 6.10 |
| Linguistic                      | 42.8 |
| Poverty                         | 4.91 |
| Unemployment                    | 1.90 |

# 7.2. Healthy Places Index Scores

The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

| Indicator              | Result for Project Census Tract |
|------------------------|---------------------------------|
| Economic               | -                               |
| Above Poverty          | 96.13755935                     |
| Employed               | 48.77454125                     |
| Median HI              | 99.61503914                     |
| Education              | —                               |
| Bachelor's or higher   | 97.27960991                     |
| High school enrollment | 15.50109072                     |
| Preschool enrollment   | 90.23482613                     |
| Transportation         | —                               |
| Auto Access            | 73.42486847                     |
| Active commuting       | 9.046580264                     |

| Social                                       |             |
|----------------------------------------------|-------------|
| 2-parent households                          | 97.12562556 |
| Voting                                       | 80.40549211 |
| Neighborhood                                 | _           |
| Alcohol availability                         | 60.87514436 |
| Park access                                  | 38.29077377 |
| Retail density                               | 89.0157834  |
| Supermarket access                           | 58.7963557  |
| Tree canopy                                  | 81.63736687 |
| Housing                                      | _           |
| Homeownership                                | 87.93789298 |
| Housing habitability                         | 97.39509817 |
| Low-inc homeowner severe housing cost burden | 82.77941743 |
| Low-inc renter severe housing cost burden    | 93.77646606 |
| Uncrowded housing                            | 91.95431798 |
| Health Outcomes                              | _           |
| Insured adults                               | 88.86179905 |
| Arthritis                                    | 0.0         |
| Asthma ER Admissions                         | 92.9        |
| High Blood Pressure                          | 0.0         |
| Cancer (excluding skin)                      | 0.0         |
| Asthma                                       | 0.0         |
| Coronary Heart Disease                       | 0.0         |
| Chronic Obstructive Pulmonary Disease        | 0.0         |
| Diagnosed Diabetes                           | 0.0         |
| Life Expectancy at Birth                     | 90.1        |
| Cognitively Disabled                         | 92.5        |
| Physically Disabled                          | 84.3        |

| Heart Attack ER Admissions            | 80.4 |
|---------------------------------------|------|
| Mental Health Not Good                | 0.0  |
| Chronic Kidney Disease                | 0.0  |
| Obesity                               | 0.0  |
| Pedestrian Injuries                   | 19.6 |
| Physical Health Not Good              | 0.0  |
| Stroke                                | 0.0  |
| Health Risk Behaviors                 | _    |
| Binge Drinking                        | 0.0  |
| Current Smoker                        | 0.0  |
| No Leisure Time for Physical Activity | 0.0  |
| Climate Change Exposures              | _    |
| Wildfire Risk                         | 99.9 |
| SLR Inundation Area                   | 78.1 |
| Children                              | 86.0 |
| Elderly                               | 7.1  |
| English Speaking                      | 75.5 |
| Foreign-born                          | 34.8 |
| Outdoor Workers                       | 98.2 |
| Climate Change Adaptive Capacity      | _    |
| Impervious Surface Cover              | 88.6 |
| Traffic Density                       | 7.4  |
| Traffic Access                        | 23.0 |
| Other Indices                         | -    |
| Hardship                              | 1.6  |
| Other Decision Support                | -    |
| 2016 Voting                           | 71.6 |

# 7.3. Overall Health & Equity Scores

| Metric                                                                              | Result for Project Census Tract |
|-------------------------------------------------------------------------------------|---------------------------------|
| CalEnviroScreen 4.0 Score for Project Location (a)                                  | 6.00                            |
| Healthy Places Index Score for Project Location (b)                                 | 98.0                            |
| Project Located in a Designated Disadvantaged Community (Senate Bill 535)           | No                              |
| Project Located in a Low-Income Community (Assembly Bill 1550)                      | No                              |
| Project Located in a Community Air Protection Program Community (Assembly Bill 617) | No                              |

a: The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state. b: The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

## 7.4. Health & Equity Measures

No Health & Equity Measures selected. 7.5. Evaluation Scorecard

Health & Equity Evaluation Scorecard not completed. 7.6. Health & Equity Custom Measures

No Health & Equity Custom Measures created.

# 8. User Changes to Default Data

| Screen                            | Justification                                                                                                                                                                                        |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Land Use                          | The lot acreage was adjusted to match the site plan provided by the client.                                                                                                                          |
| Construction: Off-Road Equipment  | Assumed all construction equipment will be utilized 8 hours per work day. Replaced<br>Tractors/Loaders/Backhoes with Crawler Tractors in the Site Preparation and Grading Phases.                    |
| Operations: Vehicle Data          | Adjusted trip rate for Apartments Mid Rise to match ITE 11th edition trip rate to match ITE 11th Edition rates for Affordable Housing and Multifamily Housing (Mid-Rise) as a conservative analysis. |
| Operations: Hearths               | Removed wood burning stoves and fireplaces in accordance with SCAQMD Rule 445.<br>Removed gas and propane fireplaces as neither are proposed for the Project.                                        |
| Construction: Construction Phases | Demolition timeframe adjusted from 10 days to 15 days to account for the amount of demolition onsite.                                                                                                |

ATTACHMENT C: SITE 3 FIRST CHURCH OF CHRIST CALEEMOD OUTPUT SHEETS

# 24-103 PVE Site 3 Detailed Report

# Table of Contents

- 1. Basic Project Information
  - 1.1. Basic Project Information
  - 1.2. Land Use Types
  - 1.3. User-Selected Emission Reduction Measures by Emissions Sector
- 2. Emissions Summary
  - 2.1. Construction Emissions Compared Against Thresholds
  - 2.2. Construction Emissions by Year, Unmitigated
  - 2.4. Operations Emissions Compared Against Thresholds
  - 2.5. Operations Emissions by Sector, Unmitigated
- 3. Construction Emissions Details
  - 3.1. Site Preparation (2025) Unmitigated
  - 3.3. Grading (2025) Unmitigated
  - 3.5. Building Construction (2025) Unmitigated
  - 3.7. Building Construction (2026) Unmitigated
  - 3.9. Paving (2026) Unmitigated

- 3.11. Architectural Coating (2026) Unmitigated
- 4. Operations Emissions Details
  - 4.1. Mobile Emissions by Land Use
    - 4.1.1. Unmitigated
  - 4.2. Energy
    - 4.2.1. Electricity Emissions By Land Use Unmitigated
    - 4.2.3. Natural Gas Emissions By Land Use Unmitigated
  - 4.3. Area Emissions by Source
    - 4.3.1. Unmitigated
  - 4.4. Water Emissions by Land Use
    - 4.4.1. Unmitigated
  - 4.5. Waste Emissions by Land Use
    - 4.5.1. Unmitigated
  - 4.6. Refrigerant Emissions by Land Use
    - 4.6.1. Unmitigated
  - 4.7. Offroad Emissions By Equipment Type
    - 4.7.1. Unmitigated
  - 4.8. Stationary Emissions By Equipment Type

4.8.1. Unmitigated

- 4.9. User Defined Emissions By Equipment Type
  - 4.9.1. Unmitigated
- 4.10. Soil Carbon Accumulation By Vegetation Type
  - 4.10.1. Soil Carbon Accumulation By Vegetation Type Unmitigated
  - 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type Unmitigated
  - 4.10.3. Avoided and Sequestered Emissions by Species Unmitigated
- 5. Activity Data
  - 5.1. Construction Schedule
  - 5.2. Off-Road Equipment
    - 5.2.1. Unmitigated
  - 5.3. Construction Vehicles
    - 5.3.1. Unmitigated
  - 5.4. Vehicles
    - 5.4.1. Construction Vehicle Control Strategies
  - 5.5. Architectural Coatings
  - 5.6. Dust Mitigation
    - 5.6.1. Construction Earthmoving Activities

#### 5.6.2. Construction Earthmoving Control Strategies

- 5.7. Construction Paving
- 5.8. Construction Electricity Consumption and Emissions Factors
- 5.9. Operational Mobile Sources
  - 5.9.1. Unmitigated
- 5.10. Operational Area Sources
  - 5.10.1. Hearths
    - 5.10.1.1. Unmitigated
  - 5.10.2. Architectural Coatings
  - 5.10.3. Landscape Equipment
- 5.11. Operational Energy Consumption
  - 5.11.1. Unmitigated
- 5.12. Operational Water and Wastewater Consumption
  - 5.12.1. Unmitigated
- 5.13. Operational Waste Generation
  - 5.13.1. Unmitigated
- 5.14. Operational Refrigeration and Air Conditioning Equipment
  - 5.14.1. Unmitigated

#### 5.15. Operational Off-Road Equipment

5.15.1. Unmitigated

#### 5.16. Stationary Sources

- 5.16.1. Emergency Generators and Fire Pumps
- 5.16.2. Process Boilers

#### 5.17. User Defined

#### 5.18. Vegetation

- 5.18.1. Land Use Change
  - 5.18.1.1. Unmitigated

#### 5.18.1. Biomass Cover Type

5.18.1.1. Unmitigated

#### 5.18.2. Sequestration

#### 5.18.2.1. Unmitigated

#### 6. Climate Risk Detailed Report

- 6.1. Climate Risk Summary
- 6.2. Initial Climate Risk Scores
- 6.3. Adjusted Climate Risk Scores
- 6.4. Climate Risk Reduction Measures

#### 7. Health and Equity Details

- 7.1. CalEnviroScreen 4.0 Scores
- 7.2. Healthy Places Index Scores
- 7.3. Overall Health & Equity Scores
- 7.4. Health & Equity Measures
- 7.5. Evaluation Scorecard
- 7.6. Health & Equity Custom Measures
- 8. User Changes to Default Data

# 1. Basic Project Information

# 1.1. Basic Project Information

| Data Field                  | Value                                  |
|-----------------------------|----------------------------------------|
| Project Name                | 24-103 PVE Site 3                      |
| Construction Start Date     | 12/2/2024                              |
| Operational Year            | 2026                                   |
| Lead Agency                 |                                        |
| Land Use Scale              | Project/site                           |
| Analysis Level for Defaults | County                                 |
| Windspeed (m/s)             | 3.50                                   |
| Precipitation (days)        | 20.4                                   |
| Location                    | 33.79502756086427, -118.36863821152097 |
| County                      | Los Angeles-South Coast                |
| City                        | Palos Verdes Estates                   |
| Air District                | South Coast AQMD                       |
| Air Basin                   | South Coast                            |
| TAZ                         | 4652                                   |
| EDFZ                        | 7                                      |
| Electric Utility            | Southern California Edison             |
| Gas Utility                 | Southern California Gas                |
| App Version                 | 2022.1.1.28                            |

# 1.2. Land Use Types

| Land Use Subtype       | Size | Unit          | Lot Acreage | Building Area (sq ft) |        | Special Landscape<br>Area (sq ft) | Population | Description |
|------------------------|------|---------------|-------------|-----------------------|--------|-----------------------------------|------------|-------------|
| Apartments Mid<br>Rise | 116  | Dwelling Unit | 3.51        | 111,360               | 19,928 |                                   | 343        |             |

| Parking Lot 116 | 6 Space | 1.12 | 0.00 | 0.00 |  | — | — |
|-----------------|---------|------|------|------|--|---|---|
|-----------------|---------|------|------|------|--|---|---|

## 1.3. User-Selected Emission Reduction Measures by Emissions Sector

No measures selected

# 2. Emissions Summary

# 2.1. Construction Emissions Compared Against Thresholds

#### Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

|                            | · · · |      | · · · | ,,,,,   | /     |        |       |
|----------------------------|-------|------|-------|---------|-------|--------|-------|
| Un/Mit.                    | ROG   | NOx  | со    | SO2     | PM10T | PM2.5T | CO2e  |
| Daily, Summer (Max)        | —     | —    |       | —       | —     | —      |       |
| Unmit.                     | 1.47  | 11.4 | 19.7  | 0.03    | 1.61  | 0.66   | 4,192 |
| Daily, Winter (Max)        | —     | —    | —     | —       | —     | —      | —     |
| Unmit.                     | 39.7  | 37.5 | 33.5  | 0.05    | 7.82  | 4.52   | 5,779 |
| Average Daily (Max)        | —     |      | —     | —       | —     | —      | —     |
| Unmit.                     | 2.90  | 7.40 | 12.2  | 0.02    | 1.01  | 0.42   | 2,619 |
| Annual (Max)               | —     |      | —     | —       | —     | —      | —     |
| Unmit.                     | 0.53  | 1.35 | 2.23  | < 0.005 | 0.18  | 0.08   | 434   |
| Exceeds (Daily Max)        | —     |      | —     | —       | —     | —      | —     |
| Threshold                  | 75.0  | 100  | 550   | 150     | 150   | 55.0   | —     |
| Unmit.                     | No    | No   | No    | No      | No    | No     | _     |
| Exceeds (Average<br>Daily) |       |      |       |         |       |        |       |
| Threshold                  | 75.0  | 100  | 550   | 150     | 150   | 55.0   |       |
| Unmit.                     | No    | No   | No    | No      | No    | No     |       |

# 2.2. Construction Emissions by Year, Unmitigated

| Year | ROG | NOx | со  | SO2 | PM10T | PM2.5T | CO2e |
|------|-----|-----|-----|-----|-------|--------|------|
|      |     |     | 8 / | 39  |       |        |      |

| Daily - Summer (Max) | -    | -    |      |         | _    | -    |       |
|----------------------|------|------|------|---------|------|------|-------|
| 2026                 | 1.47 | 11.4 | 19.7 | 0.03    | 1.61 | 0.66 | 4,192 |
| Daily - Winter (Max) | —    | —    | —    | —       | —    | —    | —     |
| 2025                 | 4.12 | 37.5 | 33.5 | 0.05    | 7.82 | 4.52 | 5,779 |
| 2026                 | 39.7 | 11.5 | 18.9 | 0.03    | 1.61 | 0.66 | 4,128 |
| Average Daily        | —    | —    | —    | —       | —    | —    | —     |
| 2025                 | 0.15 | 1.28 | 1.41 | < 0.005 | 0.23 | 0.12 | 259   |
| 2026                 | 2.90 | 7.40 | 12.2 | 0.02    | 1.01 | 0.42 | 2,619 |
| Annual               | —    | —    | —    | —       | —    | —    | _     |
| 2025                 | 0.03 | 0.23 | 0.26 | < 0.005 | 0.04 | 0.02 | 42.9  |
| 2026                 | 0.53 | 1.35 | 2.23 | < 0.005 | 0.18 | 0.08 | 434   |

# 2.4. Operations Emissions Compared Against Thresholds

| Un/Mit.                    | ROG  | NOx  | со   | SO2  | PM10T | PM2.5T | CO2e  |
|----------------------------|------|------|------|------|-------|--------|-------|
| Daily, Summer (Max)        | —    | —    | —    | —    | —     | —      | —     |
| Unmit.                     | 6.33 | 2.66 | 32.7 | 0.06 | 5.65  | 1.48   | 7,423 |
| Daily, Winter (Max)        | —    | —    | —    | —    | —     | —      | _     |
| Unmit.                     | 5.71 | 2.81 | 24.2 | 0.06 | 5.65  | 1.48   | 7,130 |
| Average Daily (Max)        | —    | —    | —    | —    | —     | —      | —     |
| Unmit.                     | 5.02 | 2.01 | 20.8 | 0.04 | 3.66  | 0.97   | 5,107 |
| Annual (Max)               | —    | —    | —    | —    | —     | —      | —     |
| Unmit.                     | 0.92 | 0.37 | 3.79 | 0.01 | 0.67  | 0.18   | 846   |
| Exceeds (Daily Max)        | —    | —    | —    | —    | —     | —      | —     |
| Threshold                  | 55.0 | 55.0 | 550  | 150  | 150   | 55.0   | —     |
| Unmit.                     | No   | No   | No   | No   | No    | No     |       |
| Exceeds (Average<br>Daily) | —    |      |      |      | —     |        |       |

| Threshold        | 55.0 | 55.0 | 550 | 150 | 150 | 55.0 | _     |
|------------------|------|------|-----|-----|-----|------|-------|
| Unmit.           | No   | No   | No  | No  | No  | No   | _     |
| Exceeds (Annual) | —    | —    | —   | —   | —   | —    | —     |
| Threshold        | —    | —    | —   | —   | —   | —    | 3,000 |
| Unmit.           | —    | —    | —   | —   | —   | _    | No    |

# 2.5. Operations Emissions by Sector, Unmitigated

|                     | (    | · · <b>,</b> · · · · · · , · · |      | , <b>,</b> , . <b>,</b> |         |         |       |
|---------------------|------|--------------------------------|------|-------------------------|---------|---------|-------|
| Sector              | ROG  | NOx                            | СО   | SO2                     | PM10T   | PM2.5T  | CO2e  |
| Daily, Summer (Max) | —    | —                              | —    | —                       | —       | —       | —     |
| Mobile              | 3.15 | 2.27                           | 26.0 | 0.06                    | 5.62    | 1.46    | 6,317 |
| Area                | 3.16 | 0.06                           | 6.58 | < 0.005                 | < 0.005 | < 0.005 | 17.7  |
| Energy              | 0.02 | 0.33                           | 0.14 | < 0.005                 | 0.03    | 0.03    | 861   |
| Water               | —    | —                              | —    | —                       | —       | —       | 65.3  |
| Waste               | -    | —                              | —    | -                       | _       | _       | 162   |
| Refrig.             | -    | —                              | —    | -                       | -       | _       | 0.80  |
| Total               | 6.33 | 2.66                           | 32.7 | 0.06                    | 5.65    | 1.48    | 7,423 |
| Daily, Winter (Max) | _    | —                              | —    | _                       | _       | —       | —     |
| Mobile              | 3.11 | 2.48                           | 24.1 | 0.06                    | 5.62    | 1.46    | 6,042 |
| Area                | 2.58 | 0.00                           | 0.00 | 0.00                    | 0.00    | 0.00    | 0.00  |
| Energy              | 0.02 | 0.33                           | 0.14 | < 0.005                 | 0.03    | 0.03    | 861   |
| Water               | —    | —                              | —    | —                       | —       | —       | 65.3  |
| Waste               | —    | —                              | —    | —                       | —       | —       | 162   |
| Refrig.             | _    | —                              | —    | _                       | _       | -       | 0.80  |
| Total               | 5.71 | 2.81                           | 24.2 | 0.06                    | 5.65    | 1.48    | 7,130 |
| Average Daily       | _    | _                              | _    | _                       | _       | _       | —     |
| Mobile              | 2.02 | 1.64                           | 16.1 | 0.04                    | 3.63    | 0.94    | 4,007 |
| Area                | 2.98 | 0.04                           | 4.50 | < 0.005                 | < 0.005 | < 0.005 | 12.1  |

| Energy  | 0.02    | 0.33 | 0.14 | < 0.005 | 0.03    | 0.03    | 861   |
|---------|---------|------|------|---------|---------|---------|-------|
| Water   | _       | _    | _    | _       | _       | _       | 65.3  |
| Waste   | —       | —    | _    | —       | —       | —       | 162   |
| Refrig. | —       | —    | —    | —       | —       | —       | 0.80  |
| Total   | 5.02    | 2.01 | 20.8 | 0.04    | 3.66    | 0.97    | 5,107 |
| Annual  | —       | _    | —    | _       | —       | —       | —     |
| Mobile  | 0.37    | 0.30 | 2.95 | 0.01    | 0.66    | 0.17    | 663   |
| Area    | 0.54    | 0.01 | 0.82 | < 0.005 | < 0.005 | < 0.005 | 2.00  |
| Energy  | < 0.005 | 0.06 | 0.03 | < 0.005 | < 0.005 | < 0.005 | 142   |
| Water   | —       | _    | —    | _       | _       | _       | 10.8  |
| Waste   | —       | _    | —    | _       | _       | _       | 26.7  |
| Refrig. | —       | _    | _    | _       | _       | _       | 0.13  |
| Total   | 0.92    | 0.37 | 3.79 | 0.01    | 0.67    | 0.18    | 846   |

# 3. Construction Emissions Details

# 3.1. Site Preparation (2025) - Unmitigated

| Location                       | ROG  | NOx  | со   | SO2     | PM10T | PM2.5T | CO2e  |
|--------------------------------|------|------|------|---------|-------|--------|-------|
| Onsite                         | _    | —    | —    | —       | —     | —      | —     |
| Daily, Summer (Max)            |      | —    | —    | —       | —     | —      | —     |
| Daily, Winter (Max)            |      | —    | —    | —       | —     | —      | —     |
| Off-Road Equipment             | 4.05 | 37.5 | 32.4 | 0.05    | 1.93  | 1.78   | 5,547 |
| Dust From Material<br>Movement | _    | —    | —    | _       | 5.66  | 2.69   | —     |
| Onsite truck                   | 0.00 | 0.00 | 0.00 | 0.00    | 0.00  | 0.00   | 0.00  |
| Average Daily                  | _    | —    | —    | —       | —     | —      | —     |
| Off-Road Equipment             | 0.06 | 0.51 | 0.44 | < 0.005 | 0.03  | 0.02   | 76.0  |

| Dust From Material<br>Movement | _       | _       | _       | _       | 0.08    | 0.04    | —    |
|--------------------------------|---------|---------|---------|---------|---------|---------|------|
| Onsite truck                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Annual                         | —       | —       | —       | —       | —       | —       | —    |
| Off-Road Equipment             | 0.01    | 0.09    | 0.08    | < 0.005 | < 0.005 | < 0.005 | 12.6 |
| Dust From Material<br>Movement | -       | -       | -       | -       | 0.01    | 0.01    | -    |
| Onsite truck                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Offsite                        | —       | —       | —       | —       | _       | _       | —    |
| Daily, Summer (Max)            | —       | —       | —       | —       | _       | _       | —    |
| Daily, Winter (Max)            | —       | —       | —       | —       | —       | —       | —    |
| Worker                         | 0.07    | 0.08    | 1.03    | 0.00    | 0.23    | 0.05    | 232  |
| Vendor                         | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                        | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Average Daily                  | —       | —       | —       | —       | —       | —       | —    |
| Worker                         | < 0.005 | < 0.005 | 0.01    | 0.00    | < 0.005 | < 0.005 | 3.23 |
| Vendor                         | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                        | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Annual                         | —       | —       | —       | —       | —       | —       | —    |
| Worker                         | < 0.005 | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | 0.53 |
| Vendor                         | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                        | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 |

## 3.3. Grading (2025) - Unmitigated

| Location            | ROG | NOx | со | SO2 | PM10T | PM2.5T | CO2e |
|---------------------|-----|-----|----|-----|-------|--------|------|
| Onsite              |     |     | _  |     | —     | —      | _    |
| Daily, Summer (Max) | —   | —   | —  | —   | —     | —      | —    |
| Daily, Winter (Max) | —   |     | _  |     | _     | —      | _    |

| Off-Road Equipment             | 2.30    | 20.6    | 19.6    | 0.03     | 1.15     | 1.05    | 3,145 |
|--------------------------------|---------|---------|---------|----------|----------|---------|-------|
| Dust From Material<br>Movement | _       | _       | _       | _        | 2.26     | 0.94    | —     |
| Onsite truck                   | 0.00    | 0.00    | 0.00    | 0.00     | 0.00     | 0.00    | 0.00  |
| Average Daily                  | —       | _       | —       | —        | —        | —       | —     |
| Off-Road Equipment             | 0.05    | 0.45    | 0.43    | < 0.005  | 0.03     | 0.02    | 68.9  |
| Dust From Material<br>Movement | -       | -       | -       | -        | 0.05     | 0.02    | —     |
| Onsite truck                   | 0.00    | 0.00    | 0.00    | 0.00     | 0.00     | 0.00    | 0.00  |
| Annual                         | _       | _       | _       | _        | _        | -       | —     |
| Off-Road Equipment             | 0.01    | 0.08    | 0.08    | < 0.005  | < 0.005  | < 0.005 | 11.4  |
| Dust From Material<br>Movement | -       | -       | -       | -        | 0.01     | < 0.005 | —     |
| Onsite truck                   | 0.00    | 0.00    | 0.00    | 0.00     | 0.00     | 0.00    | 0.00  |
| Offsite                        | _       | _       | _       | _        | _        | -       | —     |
| Daily, Summer (Max)            | —       | —       | _       | _        | _        | —       | —     |
| Daily, Winter (Max)            | —       | _       | —       | —        | —        | —       | —     |
| Worker                         | 0.06    | 0.07    | 0.88    | 0.00     | 0.20     | 0.05    | 199   |
| Vendor                         | 0.00    | 0.00    | 0.00    | 0.00     | 0.00     | 0.00    | 0.00  |
| Hauling                        | 0.00    | 0.00    | 0.00    | 0.00     | 0.00     | 0.00    | 0.00  |
| Average Daily                  | _       | _       | —       | —        | _        | —       | —     |
| Worker                         | < 0.005 | < 0.005 | 0.02    | 0.00     | < 0.005  | < 0.005 | 4.43  |
| Vendor                         | 0.00    | 0.00    | 0.00    | 0.00     | 0.00     | 0.00    | 0.00  |
| Hauling                        | 0.00    | 0.00    | 0.00    | 0.00     | 0.00     | 0.00    | 0.00  |
| Annual                         | _       | _       | _       | <u> </u> | <u> </u> | —       | —     |
| Worker                         | < 0.005 | < 0.005 | < 0.005 | 0.00     | < 0.005  | < 0.005 | 0.73  |
| Vendor                         | 0.00    | 0.00    | 0.00    | 0.00     | 0.00     | 0.00    | 0.00  |
| Hauling                        | 0.00    | 0.00    | 0.00    | 0.00     | 0.00     | 0.00    | 0.00  |

## 3.5. Building Construction (2025) - Unmitigated

| Location            | ROG     | NOx     | со      | SO2     | PM10T   | PM2.5T  | CO2e  |
|---------------------|---------|---------|---------|---------|---------|---------|-------|
| Onsite              | _       | —       | _       | _       | _       | —       | —     |
| Daily, Summer (Max) | _       | _       | _       | _       | _       | _       | —     |
| Daily, Winter (Max) | _       | _       | _       | _       | _       | _       | —     |
| Off-Road Equipment  | 1.21    | 11.3    | 14.1    | 0.03    | 0.47    | 0.43    | 2,639 |
| Onsite truck        | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00  |
| Average Daily       | —       | —       | —       | _       | _       | _       | —     |
| Off-Road Equipment  | 0.03    | 0.29    | 0.36    | < 0.005 | 0.01    | 0.01    | 67.1  |
| Onsite truck        | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00  |
| Annual              | _       | —       | —       | _       | _       | _       | —     |
| Off-Road Equipment  | 0.01    | 0.05    | 0.07    | < 0.005 | < 0.005 | < 0.005 | 11.1  |
| Onsite truck        | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00  |
| Offsite             | _       | _       | _       | _       | _       | _       | —     |
| Daily, Summer (Max) | _       | _       | _       | _       | _       | _       | —     |
| Daily, Winter (Max) | _       | _       | _       | _       | _       | _       | —     |
| Worker              | 0.35    | 0.40    | 4.93    | 0.00    | 1.09    | 0.26    | 1,108 |
| Vendor              | 0.01    | 0.47    | 0.22    | < 0.005 | 0.11    | 0.03    | 410   |
| Hauling             | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00  |
| Average Daily       | _       | _       | _       | _       | _       | _       | _     |
| Worker              | 0.01    | 0.01    | 0.13    | 0.00    | 0.03    | 0.01    | 28.6  |
| Vendor              | < 0.005 | 0.01    | 0.01    | < 0.005 | < 0.005 | < 0.005 | 10.5  |
| Hauling             | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00  |
| Annual              | _       | -       | _       | _       | _       | —       | —     |
| Worker              | < 0.005 | < 0.005 | 0.02    | 0.00    | 0.01    | < 0.005 | 4.74  |
| Vendor              | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 1.73  |
| Hauling             | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00  |

## 3.7. Building Construction (2026) - Unmitigated

| Location            | ROG  | NOx  | со   | SO2     | PM10T | PM2.5T | CO2e  |
|---------------------|------|------|------|---------|-------|--------|-------|
| Onsite              | _    | _    | _    | —       |       | _      | —     |
| Daily, Summer (Max) | _    | _    | _    | _       | _     | _      | _     |
| Off-Road Equipment  | 1.16 | 10.7 | 14.1 | 0.03    | 0.41  | 0.38   | 2,639 |
| Onsite truck        | 0.00 | 0.00 | 0.00 | 0.00    | 0.00  | 0.00   | 0.00  |
| Daily, Winter (Max) | _    | _    | _    | _       | _     | _      | —     |
| Off-Road Equipment  | 1.16 | 10.7 | 14.1 | 0.03    | 0.41  | 0.38   | 2,639 |
| Onsite truck        | 0.00 | 0.00 | 0.00 | 0.00    | 0.00  | 0.00   | 0.00  |
| Average Daily       | _    | _    | —    | —       | _     | —      | —     |
| Off-Road Equipment  | 0.70 | 6.45 | 8.51 | 0.02    | 0.25  | 0.23   | 1,596 |
| Onsite truck        | 0.00 | 0.00 | 0.00 | 0.00    | 0.00  | 0.00   | 0.00  |
| Annual              | _    | _    | _    | —       | —     | _      | —     |
| Off-Road Equipment  | 0.13 | 1.18 | 1.55 | < 0.005 | 0.05  | 0.04   | 264   |
| Onsite truck        | 0.00 | 0.00 | 0.00 | 0.00    | 0.00  | 0.00   | 0.00  |
| Offsite             | _    | _    | -    | —       | —     | -      | —     |
| Daily, Summer (Max) | _    | _    | _    | —       | —     | -      | —     |
| Worker              | 0.31 | 0.32 | 5.39 | 0.00    | 1.09  | 0.26   | 1,148 |
| Vendor              | 0.01 | 0.43 | 0.21 | < 0.005 | 0.11  | 0.03   | 404   |
| Hauling             | 0.00 | 0.00 | 0.00 | 0.00    | 0.00  | 0.00   | 0.00  |
| Daily, Winter (Max) | _    | _    | —    | —       | _     | —      | —     |
| Worker              | 0.31 | 0.36 | 4.60 | 0.00    | 1.09  | 0.26   | 1,086 |
| Vendor              | 0.01 | 0.45 | 0.21 | < 0.005 | 0.11  | 0.03   | 404   |
| Hauling             | 0.00 | 0.00 | 0.00 | 0.00    | 0.00  | 0.00   | 0.00  |
| Average Daily       | _    | _    | _    | —       | _     | _      | —     |
| Worker              | 0.18 | 0.24 | 2.91 | 0.00    | 0.65  | 0.15   | 667   |
| Vendor              | 0.01 | 0.27 | 0.13 | < 0.005 | 0.07  | 0.02   | 244   |

| Hauling | 0.00    | 0.00 | 0.00 | 0.00    | 0.00 | 0.00    | 0.00 |
|---------|---------|------|------|---------|------|---------|------|
| Annual  | —       | —    | —    | —       | —    | _       | _    |
| Worker  | 0.03    | 0.04 | 0.53 | 0.00    | 0.12 | 0.03    | 110  |
| Vendor  | < 0.005 | 0.05 | 0.02 | < 0.005 | 0.01 | < 0.005 | 40.4 |
| Hauling | 0.00    | 0.00 | 0.00 | 0.00    | 0.00 | 0.00    | 0.00 |

## 3.9. Paving (2026) - Unmitigated

|                     |         |      | (    | , . <b>,</b> . <b>,</b> | ,       |         |       |
|---------------------|---------|------|------|-------------------------|---------|---------|-------|
| Location            | ROG     | NOx  | со   | SO2                     | PM10T   | PM2.5T  | CO2e  |
| Onsite              | _       | _    | —    | —                       | _       | —       | —     |
| Daily, Summer (Max) | —       | —    | —    | —                       | —       | —       | —     |
| Daily, Winter (Max) | —       | _    | —    | —                       | —       | —       | —     |
| Off-Road Equipment  | 0.83    | 7.46 | 10.4 | 0.02                    | 0.31    | 0.28    | 1,604 |
| Paving              | 0.16    | —    | —    | —                       | —       | —       | —     |
| Onsite truck        | 0.00    | 0.00 | 0.00 | 0.00                    | 0.00    | 0.00    | 0.00  |
| Average Daily       | —       | —    | —    | —                       | —       | —       | —     |
| Off-Road Equipment  | 0.04    | 0.37 | 0.51 | < 0.005                 | 0.02    | 0.01    | 79.1  |
| Paving              | 0.01    | _    | —    | —                       | _       | —       | —     |
| Onsite truck        | 0.00    | 0.00 | 0.00 | 0.00                    | 0.00    | 0.00    | 0.00  |
| Annual              | —       | _    | —    | —                       | _       | —       | —     |
| Off-Road Equipment  | 0.01    | 0.07 | 0.09 | < 0.005                 | < 0.005 | < 0.005 | 13.1  |
| Paving              | < 0.005 | —    | —    | —                       | —       | —       | —     |
| Onsite truck        | 0.00    | 0.00 | 0.00 | 0.00                    | 0.00    | 0.00    | 0.00  |
| Offsite             | —       | _    | —    | —                       | —       | —       | —     |
| Daily, Summer (Max) | —       | _    | _    | _                       | _       | —       | —     |
| Daily, Winter (Max) | —       | _    | _    | _                       | _       | —       | —     |
| Worker              | 0.07    | 0.09 | 1.10 | 0.00                    | 0.26    | 0.06    | 260   |
| Vendor              | 0.00    | 0.00 | 0.00 | 0.00                    | 0.00    | 0.00    | 0.00  |

| Hauling       | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 |
|---------------|---------|---------|------|------|---------|---------|------|
| Average Daily | _       | —       | _    | —    | —       | —       | _    |
| Worker        | < 0.005 | < 0.005 | 0.06 | 0.00 | 0.01    | < 0.005 | 13.0 |
| Vendor        | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 |
| Hauling       | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 |
| Annual        | —       | —       | —    | —    | —       | —       | —    |
| Worker        | < 0.005 | < 0.005 | 0.01 | 0.00 | < 0.005 | < 0.005 | 2.16 |
| Vendor        | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 |
| Hauling       | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 |

## 3.11. Architectural Coating (2026) - Unmitigated

| Location               | ROG     | NOx  | со   | SO2     | PM10T   | PM2.5T  | CO2e |
|------------------------|---------|------|------|---------|---------|---------|------|
| Onsite                 | —       | —    | —    | —       | —       | —       | —    |
| Daily, Summer (Max)    | —       | —    | —    | —       | —       | —       | —    |
| Daily, Winter (Max)    | —       | —    | —    | —       | —       | —       | —    |
| Off-Road Equipment     | 0.16    | 1.14 | 1.51 | < 0.005 | 0.03    | 0.03    | 179  |
| Architectural Coatings | 39.5    | —    | —    | —       | —       | —       | —    |
| Onsite truck           | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Average Daily          | —       | —    | —    | —       | —       | —       | —    |
| Off-Road Equipment     | 0.01    | 0.06 | 0.07 | < 0.005 | < 0.005 | < 0.005 | 8.81 |
| Architectural Coatings | 1.95    | —    | —    | —       | —       | —       | _    |
| Onsite truck           | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Annual                 | —       | —    | —    | —       | —       | —       | _    |
| Off-Road Equipment     | < 0.005 | 0.01 | 0.01 | < 0.005 | < 0.005 | < 0.005 | 1.46 |
| Architectural Coatings | 0.36    | —    | —    | —       | —       | —       | —    |
| Onsite truck           | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Offsite                | —       | —    | —    | —       | —       | —       | _    |

| Daily, Summer (Max) | _       | _       | -    | _    | _       | -       | -    |
|---------------------|---------|---------|------|------|---------|---------|------|
| Daily, Winter (Max) | —       | —       | —    | —    | —       | —       | —    |
| Worker              | 0.06    | 0.07    | 0.92 | 0.00 | 0.22    | 0.05    | 217  |
| Vendor              | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 |
| Hauling             | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 |
| Average Daily       | —       | —       | —    | —    | —       | —       | —    |
| Worker              | < 0.005 | < 0.005 | 0.05 | 0.00 | 0.01    | < 0.005 | 10.9 |
| Vendor              | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 |
| Hauling             | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 |
| Annual              | —       | —       | —    | —    | —       | —       | —    |
| Worker              | < 0.005 | < 0.005 | 0.01 | 0.00 | < 0.005 | < 0.005 | 1.80 |
| Vendor              | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 |
| Hauling             | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 |

# 4. Operations Emissions Details

## 4.1. Mobile Emissions by Land Use

### 4.1.1. Unmitigated

| Land Use            | ROG  | NOx  | со   | SO2  | PM10T | PM2.5T | CO2e  |
|---------------------|------|------|------|------|-------|--------|-------|
| Daily, Summer (Max) | —    | —    | —    | —    | —     | —      | —     |
| Apartments Mid Rise | 3.15 | 2.27 | 26.0 | 0.06 | 5.62  | 1.46   | 6,317 |
| Parking Lot         | 0.00 | 0.00 | 0.00 | 0.00 | 0.00  | 0.00   | 0.00  |
| Total               | 3.15 | 2.27 | 26.0 | 0.06 | 5.62  | 1.46   | 6,317 |
| Daily, Winter (Max) | —    | —    | —    | —    | —     | —      | —     |
| Apartments Mid Rise | 3.11 | 2.48 | 24.1 | 0.06 | 5.62  | 1.46   | 6,042 |
| Parking Lot         | 0.00 | 0.00 | 0.00 | 0.00 | 0.00  | 0.00   | 0.00  |

| Total               | 3.11 | 2.48 | 24.1 | 0.06 | 5.62 | 1.46 | 6,042 |
|---------------------|------|------|------|------|------|------|-------|
| Annual              | —    | —    | —    | —    | —    | —    | —     |
| Apartments Mid Rise | 0.37 | 0.30 | 2.95 | 0.01 | 0.66 | 0.17 | 663   |
| Parking Lot         | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00  |
| Total               | 0.37 | 0.30 | 2.95 | 0.01 | 0.66 | 0.17 | 663   |

## 4.2. Energy

### 4.2.1. Electricity Emissions By Land Use - Unmitigated

#### Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

|                     | <u>,                                     </u> |     | · · · · | <u>, , ,</u> | /     |        |      |
|---------------------|-----------------------------------------------|-----|---------|--------------|-------|--------|------|
| Land Use            | ROG                                           | NOx | со      | SO2          | PM10T | PM2.5T | CO2e |
| Daily, Summer (Max) | —                                             | —   | —       | —            | —     | —      | —    |
| Apartments Mid Rise | —                                             | —   | —       | —            | —     | —      | 406  |
| Parking Lot         | —                                             | —   | —       | —            | —     | —      | 40.8 |
| Total               | —                                             | —   | —       | —            | —     | —      | 446  |
| Daily, Winter (Max) | —                                             | —   | —       | —            | —     | —      | —    |
| Apartments Mid Rise | —                                             | —   | —       | —            | —     | —      | 406  |
| Parking Lot         | —                                             | —   | —       | —            | —     | —      | 40.8 |
| Total               | —                                             | —   | —       | —            | —     | —      | 446  |
| Annual              | —                                             | —   | —       | —            | —     | —      | —    |
| Apartments Mid Rise | —                                             | —   | —       | —            | —     | —      | 67.2 |
| Parking Lot         | —                                             | _   |         | _            | _     | _      | 6.75 |
| Total               | —                                             | —   |         | _            | —     | —      | 73.9 |

### 4.2.3. Natural Gas Emissions By Land Use - Unmitigated

| Land Use            | ROG | NOx | со | SO2 | PM10T | PM2.5T | CO2e |
|---------------------|-----|-----|----|-----|-------|--------|------|
| Daily, Summer (Max) | —   |     | _  | _   | —     | _      | —    |

| Apartments Mid Rise | 0.02    | 0.33 | 0.14 | < 0.005 | 0.03    | 0.03    | 414  |
|---------------------|---------|------|------|---------|---------|---------|------|
| Parking Lot         | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Total               | 0.02    | 0.33 | 0.14 | < 0.005 | 0.03    | 0.03    | 414  |
| Daily, Winter (Max) | —       | —    | —    | —       | —       | —       | —    |
| Apartments Mid Rise | 0.02    | 0.33 | 0.14 | < 0.005 | 0.03    | 0.03    | 414  |
| Parking Lot         | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Total               | 0.02    | 0.33 | 0.14 | < 0.005 | 0.03    | 0.03    | 414  |
| Annual              | _       | —    | —    | —       | —       | —       | —    |
| Apartments Mid Rise | < 0.005 | 0.06 | 0.03 | < 0.005 | < 0.005 | < 0.005 | 68.6 |
| Parking Lot         | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Total               | < 0.005 | 0.06 | 0.03 | < 0.005 | < 0.005 | < 0.005 | 68.6 |

## 4.3. Area Emissions by Source

## 4.3.1. Unmitigated

| Source                 | ROG  | NOx  | со   | SO2     | PM10T   | PM2.5T  | CO2e |
|------------------------|------|------|------|---------|---------|---------|------|
| Daily, Summer (Max)    | —    | —    | —    | —       | —       | —       | —    |
| Hearths                | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Consumer Products      | 2.39 | —    | —    | —       | —       | _       | —    |
| Architectural Coatings | 0.19 | —    | —    | —       | —       | _       | —    |
| Landscape Equipment    | 0.58 | 0.06 | 6.58 | < 0.005 | < 0.005 | < 0.005 | 17.7 |
| Total                  | 3.16 | 0.06 | 6.58 | < 0.005 | < 0.005 | < 0.005 | 17.7 |
| Daily, Winter (Max)    | —    | —    | —    | —       | —       | _       | —    |
| Hearths                | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Consumer Products      | 2.39 | —    | —    | —       | —       | _       | —    |
| Architectural Coatings | 0.19 | —    | —    | —       | —       | —       | —    |
| Total                  | 2.58 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |

| Annual                 | —    | —    | —    | —       | —       | _       | _    |
|------------------------|------|------|------|---------|---------|---------|------|
| Hearths                | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Consumer Products      | 0.44 | —    | —    | —       | —       | —       | —    |
| Architectural Coatings | 0.04 | —    | —    | —       | —       | —       | —    |
| Landscape Equipment    | 0.07 | 0.01 | 0.82 | < 0.005 | < 0.005 | < 0.005 | 2.00 |
| Total                  | 0.54 | 0.01 | 0.82 | < 0.005 | < 0.005 | < 0.005 | 2.00 |

## 4.4. Water Emissions by Land Use

## 4.4.1. Unmitigated

## Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

|                     |     |     |    |     | /     |        |      |
|---------------------|-----|-----|----|-----|-------|--------|------|
| Land Use            | ROG | NOx | со | SO2 | PM10T | PM2.5T | CO2e |
| Daily, Summer (Max) | —   | —   | —  | —   | —     | —      | —    |
| Apartments Mid Rise | —   | —   | —  | —   | —     | —      | 65.3 |
| Parking Lot         | —   | —   | —  | —   | —     | —      | 0.00 |
| Total               | —   | —   | —  | —   | —     | —      | 65.3 |
| Daily, Winter (Max) | —   | —   | —  | —   | —     | —      | —    |
| Apartments Mid Rise | —   | —   | —  | —   | —     | —      | 65.3 |
| Parking Lot         | —   | —   | —  | —   | —     | —      | 0.00 |
| Total               | —   | —   | —  | —   | —     | —      | 65.3 |
| Annual              | —   | —   | —  | —   | —     | —      | —    |
| Apartments Mid Rise | —   | —   | —  | _   | —     | —      | 10.8 |
| Parking Lot         | _   | —   | —  | _   | —     | —      | 0.00 |
| Total               | _   | —   | _  | _   | _     | _      | 10.8 |

## 4.5. Waste Emissions by Land Use

#### 4.5.1. Unmitigated

|                     | ROG | NOx |   | SO2 | PM10T | PM2.5T | CO2e |
|---------------------|-----|-----|---|-----|-------|--------|------|
| Daily, Summer (Max) | —   | —   | — | —   | —     | —      | —    |
| Apartments Mid Rise | —   |     | — |     | —     | —      | 162  |
| Parking Lot         | —   |     | — |     | —     | —      | 0.00 |
| Total               | —   | _   | — | —   | —     | —      | 162  |
| Daily, Winter (Max) | —   | _   | — | _   | —     | —      | —    |
| Apartments Mid Rise | —   | _   | — | _   | —     | —      | 162  |
| Parking Lot         | —   | —   | — | —   | —     | —      | 0.00 |
| Total               | —   | —   | — | —   | —     | —      | 162  |
| Annual              | —   | —   | — | —   | —     | —      | —    |
| Apartments Mid Rise | —   |     |   |     | _     | _      | 26.7 |
| Parking Lot         | —   |     |   |     | —     | —      | 0.00 |
| Total               | —   | _   | — | _   | —     | —      | 26.7 |

### Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

## 4.6. Refrigerant Emissions by Land Use

### 4.6.1. Unmitigated

| Land Use            | ROG | NOx | со | SO2 | PM10T | PM2.5T | CO2e |
|---------------------|-----|-----|----|-----|-------|--------|------|
| Daily, Summer (Max) | —   | —   | —  | —   | —     | —      | —    |
| Apartments Mid Rise | —   | —   | —  | —   | —     | —      | 0.80 |
| Total               | —   | —   | —  | —   | —     | —      | 0.80 |
| Daily, Winter (Max) | —   | —   | —  | —   | —     | —      | —    |
| Apartments Mid Rise | —   | —   | —  | —   | —     | —      | 0.80 |
| Total               | —   | —   | —  | —   | —     |        | 0.80 |
| Annual              | _   | _   |    |     | —     |        |      |
| Apartments Mid Rise | —   | —   | —  | —   | —     |        | 0.13 |

| Total | _ | _ | _ | _ | _ | _ | 0.13 |
|-------|---|---|---|---|---|---|------|
|       |   |   |   |   |   |   |      |

## 4.7. Offroad Emissions By Equipment Type

### 4.7.1. Unmitigated

### Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

| Equipment Type      | ROG      | NOx | со | SO2 | PM10T | PM2.5T | CO2e |
|---------------------|----------|-----|----|-----|-------|--------|------|
| Daily, Summer (Max) | —        | _   | _  | _   | —     | —      | —    |
| Total               | —        | —   | —  | —   | —     | —      | —    |
| Daily, Winter (Max) | —        | —   | —  | —   | —     | —      | —    |
| Total               | —        | —   | —  | —   | —     | —      | —    |
| Annual              | —        | —   | —  | —   | —     | —      | —    |
| Total               | <u> </u> | _   | _  |     |       |        |      |

### 4.8. Stationary Emissions By Equipment Type

#### 4.8.1. Unmitigated

#### Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

| Equipment Type      | ROG | NOx | со | SO2 | PM10T | PM2.5T | CO2e |
|---------------------|-----|-----|----|-----|-------|--------|------|
| Daily, Summer (Max) | —   | —   | —  | _   | —     | _      | —    |
| Total               | —   | —   | —  | —   | —     | —      | —    |
| Daily, Winter (Max) | —   | —   | —  | —   | —     | —      | —    |
| Total               | —   | —   | —  | —   | —     | —      | —    |
| Annual              | —   | —   | —  | —   | —     | —      | —    |
| Total               | _   | —   | —  | —   | —     | _      | —    |

## 4.9. User Defined Emissions By Equipment Type

#### 4.9.1. Unmitigated

#### Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

| Equipment Type      | ROG | NOx      | со       | SO2 | PM10T    | PM2.5T | CO2e |
|---------------------|-----|----------|----------|-----|----------|--------|------|
| Daily, Summer (Max) | —   | —        | —        | —   | —        | _      | —    |
| Total               | —   | —        | —        | —   | —        | —      | —    |
| Daily, Winter (Max) | —   | —        | —        | —   | —        | —      | —    |
| Total               | —   | —        | —        | —   | —        | —      | —    |
| Annual              | —   | <u> </u> | <u> </u> |     | <u> </u> |        | —    |
| Total               | —   | _        | —        |     | —        | _      | —    |

## 4.10. Soil Carbon Accumulation By Vegetation Type

### 4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated

#### Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

| Vegetation          | ROG | NOx | со | SO2 | PM10T | PM2.5T | CO2e |
|---------------------|-----|-----|----|-----|-------|--------|------|
| Daily, Summer (Max) | —   | —   | —  | —   | —     | _      | —    |
| Total               | —   | —   | —  | —   | —     | —      | —    |
| Daily, Winter (Max) | —   | —   | —  | —   | —     | —      | —    |
| Total               | —   | —   | —  | —   | —     | —      | —    |
| Annual              | —   |     | _  | —   | —     |        |      |
| Total               | —   | —   | —  | —   | —     | —      | —    |

### 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated

| Land Use            | ROG | NOx | со | SO2 | PM10T | PM2.5T | CO2e |
|---------------------|-----|-----|----|-----|-------|--------|------|
| Daily, Summer (Max) | —   | —   | —  | —   | —     | —      | —    |
| Total               | —   | —   | —  | —   | —     | —      | —    |
| Daily, Winter (Max) | —   | —   | —  | —   | —     | —      | —    |
|                     |     |     |    |     |       |        |      |

| Total  | — | — | — | — | — | — | _ |
|--------|---|---|---|---|---|---|---|
| Annual | — | — | — | — | — | — | — |
| Total  | — | — | — | — | — | — | _ |

## 4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated

| Species             | ROG | NOx | со | SO2 | PM10T | PM2.5T | CO2e |
|---------------------|-----|-----|----|-----|-------|--------|------|
| Daily, Summer (Max) | —   | —   | —  | —   | —     | —      | —    |
| Avoided             | —   | —   | —  | —   | —     | —      | _    |
| Subtotal            | —   | —   | —  | —   | —     | —      | _    |
| Sequestered         | —   | —   | —  | —   | —     | —      | _    |
| Subtotal            | —   | —   | —  | —   | —     | —      |      |
| Removed             | —   | —   | —  | —   | —     | —      |      |
| Subtotal            | —   | —   | —  | —   | —     | —      |      |
| _                   | —   | —   | —  | —   | —     | —      |      |
| Daily, Winter (Max) | —   | —   | —  | —   | —     | —      |      |
| Avoided             | —   | —   | —  | —   | —     | —      |      |
| Subtotal            | —   | —   | —  | —   | —     | —      | _    |
| Sequestered         | -   | -   | —  | —   | -     | —      | —    |
| Subtotal            | —   | —   | —  | —   | —     | —      | _    |
| Removed             | —   | -   | —  | —   | -     | —      | —    |
| Subtotal            | —   | -   | —  | —   | -     | —      | —    |
| _                   | -   | -   | —  | —   | -     | —      | —    |
| Annual              | -   | -   | —  | —   | -     | —      | —    |
| Avoided             | -   | -   | -  | -   | -     | -      | —    |
| Subtotal            | -   | -   | -  | -   | -     | —      | —    |
| Sequestered         | —   | —   | —  | —   | —     | —      | —    |
| Subtotal            | —   | —   | —  | —   | —     | —      | _    |

| Removed  | _ | _ | — | _ | — | — | _ |
|----------|---|---|---|---|---|---|---|
| Subtotal | — | — | — | _ | — | — | _ |
| —        | — | — | — | _ | — | — | _ |

# 5. Activity Data

## 5.1. Construction Schedule

| Phase Name            | Phase Type            | Start Date | End Date   | Days Per Week | Work Days per Phase | Phase Description |
|-----------------------|-----------------------|------------|------------|---------------|---------------------|-------------------|
| Site Preparation      | Site Preparation      | 12/1/2025  | 12/5/2025  | 5.00          | 5.00                | —                 |
| Grading               | Grading               | 12/9/2025  | 12/18/2025 | 5.00          | 8.00                | —                 |
| Building Construction | Building Construction | 12/19/2025 | 11/5/2026  | 5.00          | 230                 | —                 |
| Paving                | Paving                | 11/9/2026  | 12/2/2026  | 5.00          | 18.0                | —                 |
| Architectural Coating | Architectural Coating | 12/3/2026  | 12/28/2026 | 5.00          | 18.0                | —                 |

# 5.2. Off-Road Equipment

## 5.2.1. Unmitigated

| Phase Name       | Equipment Type             | Fuel Type | Engine Tier | Number per Day | Hours Per Day | Horsepower | Load Factor |
|------------------|----------------------------|-----------|-------------|----------------|---------------|------------|-------------|
| Site Preparation | Rubber Tired Dozers        | Diesel    | Average     | 3.00           | 8.00          | 367        | 0.40        |
| Site Preparation | Tractors/Loaders/Back hoes | Diesel    | Average     | 0.00           | 8.00          | 84.0       | 0.37        |
| Site Preparation | Crawler Tractors           | Diesel    | Average     | 4.00           | 8.00          | 87.0       | 0.43        |
| Grading          | Excavators                 | Diesel    | Average     | 1.00           | 8.00          | 36.0       | 0.38        |
| Grading          | Graders                    | Diesel    | Average     | 1.00           | 8.00          | 148        | 0.41        |
| Grading          | Rubber Tired Dozers        | Diesel    | Average     | 1.00           | 8.00          | 367        | 0.40        |
| Grading          | Tractors/Loaders/Back hoes | Diesel    | Average     | 0.00           | 8.00          | 84.0       | 0.37        |
| Grading          | Crawler Tractors           | Diesel    | Average     | 3.00           | 8.00          | 87.0       | 0.43        |

| Building Construction | Cranes                      | Diesel | Average | 1.00 | 8.00 | 367  | 0.29 |
|-----------------------|-----------------------------|--------|---------|------|------|------|------|
| Building Construction | Forklifts                   | Diesel | Average | 3.00 | 8.00 | 82.0 | 0.20 |
| Building Construction | Generator Sets              | Diesel | Average | 1.00 | 8.00 | 14.0 | 0.74 |
| Building Construction | Tractors/Loaders/Back hoes  | Diesel | Average | 3.00 | 8.00 | 84.0 | 0.37 |
| Building Construction | Welders                     | Diesel | Average | 1.00 | 8.00 | 46.0 | 0.45 |
| Paving                | Pavers                      | Diesel | Average | 1.00 | 8.00 | 81.0 | 0.42 |
| Paving                | Paving Equipment            | Diesel | Average | 2.00 | 8.00 | 89.0 | 0.36 |
| Paving                | Rollers                     | Diesel | Average | 2.00 | 8.00 | 36.0 | 0.38 |
| Paving                | Cement and Mortar<br>Mixers | Diesel | Average | 2.00 | 8.00 | 10.0 | 0.56 |
| Paving                | Tractors/Loaders/Back hoes  | Diesel | Average | 1.00 | 8.00 | 84.0 | 0.37 |
| Architectural Coating | Air Compressors             | Diesel | Average | 1.00 | 8.00 | 37.0 | 0.48 |

## 5.3. Construction Vehicles

## 5.3.1. Unmitigated

| Phase Name       | Тгір Туре    | One-Way Trips per Day | Miles per Trip | Vehicle Mix   |
|------------------|--------------|-----------------------|----------------|---------------|
| Site Preparation | —            | _                     | —              | —             |
| Site Preparation | Worker       | 17.5                  | 18.5           | LDA,LDT1,LDT2 |
| Site Preparation | Vendor       | _                     | 10.2           | HHDT,MHDT     |
| Site Preparation | Hauling      | 0.00                  | 20.0           | HHDT          |
| Site Preparation | Onsite truck | —                     | —              | HHDT          |
| Grading          | —            | —                     | —              | —             |
| Grading          | Worker       | 15.0                  | 18.5           | LDA,LDT1,LDT2 |
| Grading          | Vendor       | —                     | 10.2           | HHDT,MHDT     |
| Grading          | Hauling      | 0.00                  | 20.0           | HHDT          |
| Grading          | Onsite truck |                       | —              | HHDT          |

| Building Construction | _            | _    | —    | _             |
|-----------------------|--------------|------|------|---------------|
| Building Construction | Worker       | 83.5 | 18.5 | LDA,LDT1,LDT2 |
| Building Construction | Vendor       | 12.4 | 10.2 | HHDT,MHDT     |
| Building Construction | Hauling      | 0.00 | 20.0 | HHDT          |
| Building Construction | Onsite truck | —    | —    | HHDT          |
| Paving                | —            | —    | —    | —             |
| Paving                | Worker       | 20.0 | 18.5 | LDA,LDT1,LDT2 |
| Paving                | Vendor       | —    | 10.2 | HHDT,MHDT     |
| Paving                | Hauling      | 0.00 | 20.0 | HHDT          |
| Paving                | Onsite truck | —    | —    | HHDT          |
| Architectural Coating | —            | —    | —    | —             |
| Architectural Coating | Worker       | 16.7 | 18.5 | LDA,LDT1,LDT2 |
| Architectural Coating | Vendor       | —    | 10.2 | HHDT,MHDT     |
| Architectural Coating | Hauling      | 0.00 | 20.0 | HHDT          |
| Architectural Coating | Onsite truck | —    | —    | HHDT          |

### 5.4. Vehicles

#### 5.4.1. Construction Vehicle Control Strategies

Non-applicable. No control strategies activated by user.

## 5.5. Architectural Coatings

| Phase Name            | Residential Interior Area<br>Coated (sq ft) | Residential Exterior Area<br>Coated (sq ft) | Non-Residential Interior Area<br>Coated (sq ft) | Non-Residential Exterior Area<br>Coated (sq ft) | Parking Area Coated (sq ft) |
|-----------------------|---------------------------------------------|---------------------------------------------|-------------------------------------------------|-------------------------------------------------|-----------------------------|
| Architectural Coating | 225,504                                     | 75,168                                      | 0.00                                            | 0.00                                            | 2,927                       |

## 5.6. Dust Mitigation

### 5.6.1. Construction Earthmoving Activities

## 24-103 PVE Site 3 Detailed Report, 11/12/2024

| Phase Name       | Material Imported (cy) | Material Exported (cy) | Acres Graded (acres) | Material Demolished (sq. ft.) | Acres Paved (acres) |
|------------------|------------------------|------------------------|----------------------|-------------------------------|---------------------|
| Site Preparation | —                      | —                      | 17.5                 | 0.00                          | —                   |
| Grading          | —                      | —                      | 20.0                 | 0.00                          | —                   |
| Paving           | 0.00                   | 0.00                   | 0.00                 | 0.00                          | 1.12                |

### 5.6.2. Construction Earthmoving Control Strategies

| Control Strategies Applied | Frequency (per day) | PM10 Reduction | PM2.5 Reduction |
|----------------------------|---------------------|----------------|-----------------|
| Water Exposed Area         | 3                   | 74%            | 74%             |

## 5.7. Construction Paving

| Land Use            | Area Paved (acres) | % Asphalt |
|---------------------|--------------------|-----------|
| Apartments Mid Rise |                    | 0%        |
| Parking Lot         | 1.12               | 100%      |

## 5.8. Construction Electricity Consumption and Emissions Factors

#### kWh per Year and Emission Factor (lb/MWh)

| Year | kWh per Year | CO2 | CH4  | N2O     |
|------|--------------|-----|------|---------|
| 2025 | 0.00         | 349 | 0.03 | < 0.005 |
| 2026 | 0.00         | 346 | 0.03 | < 0.005 |

## 5.9. Operational Mobile Sources

### 5.9.1. Unmitigated

| Land Use Type          | Trips/Weekday | Trips/Saturday | Trips/Sunday | Trips/Year | VMT/Weekday | VMT/Saturday | VMT/Sunday | VMT/Year  |
|------------------------|---------------|----------------|--------------|------------|-------------|--------------|------------|-----------|
| Apartments Mid<br>Rise | 543           | 974            | 777          | 232,870    | 4,388       | 7,877        | 6,283      | 1,882,414 |
| Parking Lot            | 0.00          | 0.00           | 0.00         | 0.00       | 0.00        | 0.00         | 0.00       | 0.00      |

## 5.10. Operational Area Sources

### 5.10.1. Hearths

### 5.10.1.1. Unmitigated

| Hearth Type               | Unmitigated (number) |
|---------------------------|----------------------|
| Apartments Mid Rise       | —                    |
| Wood Fireplaces           | 0                    |
| Gas Fireplaces            | 0                    |
| Propane Fireplaces        | 0                    |
| Electric Fireplaces       | 0                    |
| No Fireplaces             | 116                  |
| Conventional Wood Stoves  | 0                    |
| Catalytic Wood Stoves     | 0                    |
| Non-Catalytic Wood Stoves | 0                    |
| Pellet Wood Stoves        | 0                    |

## 5.10.2. Architectural Coatings

| Residential Interior Area Coated (sq ft) | Residential Exterior Area Coated (sq<br>ft) | Non-Residential Interior Area Coated (sq ft) | Non-Residential Exterior Area<br>Coated (sq ft) | Parking Area Coated (sq ft) |
|------------------------------------------|---------------------------------------------|----------------------------------------------|-------------------------------------------------|-----------------------------|
| 225504                                   | 75,168                                      | 0.00                                         | 0.00                                            | 2,927                       |

### 5.10.3. Landscape Equipment

| Season      | Unit   | Value |
|-------------|--------|-------|
| Snow Days   | day/yr | 0.00  |
| Summer Days | day/yr | 250   |

## 5.11. Operational Energy Consumption

### 5.11.1. Unmitigated

#### Electricity (kWh/yr) and CO2 and CH4 and N2O and Natural Gas (kBTU/yr)

| Land Use            | Electricity (kWh/yr) | CO2 | CH4    | N2O    | Natural Gas (kBTU/yr) |
|---------------------|----------------------|-----|--------|--------|-----------------------|
| Apartments Mid Rise | 425,237              | 346 | 0.0330 | 0.0040 | 1,288,394             |
| Parking Lot         | 42,738               | 346 | 0.0330 | 0.0040 | 0.00                  |

### 5.12. Operational Water and Wastewater Consumption

### 5.12.1. Unmitigated

| Land Use            | Indoor Water (gal/year) | Outdoor Water (gal/year) |
|---------------------|-------------------------|--------------------------|
| Apartments Mid Rise | 4,323,761               | 341,589                  |
| Parking Lot         | 0.00                    | 0.00                     |

### 5.13. Operational Waste Generation

#### 5.13.1. Unmitigated

| Land Use            | Waste (ton/year) | Cogeneration (kWh/year) |
|---------------------|------------------|-------------------------|
| Apartments Mid Rise | 85.7             | _                       |
| Parking Lot         | 0.00             | _                       |

### 5.14. Operational Refrigeration and Air Conditioning Equipment

### 5.14.1. Unmitigated

| Land Use Type | Equipment Type | Refrigerant | GWP | Quantity (kg) | Operations Leak Rate | Service Leak Rate | Times Serviced |
|---------------|----------------|-------------|-----|---------------|----------------------|-------------------|----------------|
|---------------|----------------|-------------|-----|---------------|----------------------|-------------------|----------------|

| Apartments Mid Rise | Average room A/C &<br>Other residential A/C<br>and heat pumps | R-410A | 2,088 | < 0.005 | 2.50 | 2.50 | 10.0 |
|---------------------|---------------------------------------------------------------|--------|-------|---------|------|------|------|
| Apartments Mid Rise | Household<br>refrigerators and/or<br>freezers                 | R-134a | 1,430 | 0.12    | 0.60 | 0.00 | 1.00 |

## 5.15. Operational Off-Road Equipment

## 5.15.1. Unmitigated

| Equipment Type | Fuel Type | Engine Tier | Number per Day | Hours Per Day | Horsepower | Load Factor |
|----------------|-----------|-------------|----------------|---------------|------------|-------------|
|----------------|-----------|-------------|----------------|---------------|------------|-------------|

## 5.16. Stationary Sources

## 5.16.1. Emergency Generators and Fire Pumps

| Equipment Type | Fuel Type | Number per Day | Hours per Day | Hours per Year | Horsepower | Load Factor |
|----------------|-----------|----------------|---------------|----------------|------------|-------------|
|                |           |                |               |                |            |             |

## 5.16.2. Process Boilers

| Equipment Type | Fuel Type | Number | Boiler Rating (MMBtu/hr) | Daily Heat Input (MMBtu/day) | Annual Heat Input (MMBtu/yr) |
|----------------|-----------|--------|--------------------------|------------------------------|------------------------------|
|----------------|-----------|--------|--------------------------|------------------------------|------------------------------|

## 5.17. User Defined

| Equipment Type          | Fuel Type |
|-------------------------|-----------|
| 5.18. Vegetation        |           |
| 5.18.1. Land Use Change |           |
| 5.18.1.1. Unmitigated   |           |

| Vegetation Land Use Type | Vegetation Soil Type | Initial Acres | Final Acres |
|--------------------------|----------------------|---------------|-------------|
|                          |                      |               |             |

#### 5.18.1. Biomass Cover Type

#### 5.18.1.1. Unmitigated

| Biomass Cover Type    | Initial Acres | Final Acres |
|-----------------------|---------------|-------------|
| 5.18.2. Sequestration |               |             |
| 5.18.2.1. Unmitigated |               |             |
|                       |               |             |

| Tree Type Number | Electricity Saved (kWh/year) | Natural Gas Saved (btu/year) |
|------------------|------------------------------|------------------------------|
|------------------|------------------------------|------------------------------|

# 6. Climate Risk Detailed Report

### 6.1. Climate Risk Summary

Cal-Adapt midcentury 2040–2059 average projections for four hazards are reported below for your project location. These are under Representation Concentration Pathway (RCP) 8.5 which assumes GHG emissions will continue to rise strongly through 2050 and then plateau around 2100.

| Climate Hazard               | Result for Project Location | Unit                                       |
|------------------------------|-----------------------------|--------------------------------------------|
| Temperature and Extreme Heat | 5.15                        | annual days of extreme heat                |
| Extreme Precipitation        | 4.70                        | annual days with precipitation above 20 mm |
| Sea Level Rise               | _                           | meters of inundation depth                 |
| Wildfire                     | 0.00                        | annual hectares burned                     |

Temperature and Extreme Heat data are for grid cell in which your project are located. The projection is based on the 98th historical percentile of daily maximum/minimum temperatures from observed historical data (32 climate model ensemble from Cal-Adapt, 2040–2059 average under RCP 8.5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. Extreme Precipitation data are for the grid cell in which your project are located. The threshold of 20 mm is equivalent to about ¾ an inch of rain, which would be light to moderate rainfall if received over a full day or heavy rain if received over a period of 2 to 4 hours. Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

Sea Level Rise data are for the grid cell in which your project are located. The projections are from Radke et al. (2017), as reported in Cal-Adapt (Radke et al., 2017, CEC-500-2017-008), and consider inundation location and depth for the San Francisco Bay, the Sacramento-San Joaquin River Delta and California coast resulting different increments of sea level rise coupled with extreme storm events. Users may select from four scenarios to view the range in potential inundation depth for the grid cell. The four scenarios are: No rise, 0.5 meter, 1.0 meter, 1.41 meters Wildfire data are for the grid cell in which your project are located. The projections are from UC Davis, as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider historical data of climate, vegetation, population density, and large (> 400 ha) fire history. Users may select from four model simulations to view the range in potential wildfire probabilities for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

## 6.2. Initial Climate Risk Scores

| Climate Hazard               | Exposure Score | Sensitivity Score | Adaptive Capacity Score | Vulnerability Score |
|------------------------------|----------------|-------------------|-------------------------|---------------------|
| Temperature and Extreme Heat | 1              | 0                 | 0                       | N/A                 |
| Extreme Precipitation        | N/A            | N/A               | N/A                     | N/A                 |
| Sea Level Rise               | 1              | 0                 | 0                       | N/A                 |
| Wildfire                     | 1              | 0                 | 0                       | N/A                 |
| Flooding                     | N/A            | N/A               | N/A                     | N/A                 |
| Drought                      | N/A            | N/A               | N/A                     | N/A                 |
| Snowpack Reduction           | N/A            | N/A               | N/A                     | N/A                 |
| Air Quality Degradation      | 0              | 0                 | 0                       | N/A                 |

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores do not include implementation of climate risk reduction measures.

### 6.3. Adjusted Climate Risk Scores

| Climate Hazard               | Exposure Score | Sensitivity Score | Adaptive Capacity Score | Vulnerability Score |
|------------------------------|----------------|-------------------|-------------------------|---------------------|
| Temperature and Extreme Heat | 1              | 1                 | 1                       | 2                   |
| Extreme Precipitation        | N/A            | N/A               | N/A                     | N/A                 |
| Sea Level Rise               | 1              | 1                 | 1                       | 2                   |
| Wildfire                     | 1              | 1                 | 1                       | 2                   |
| Flooding                     | N/A            | N/A               | N/A                     | N/A                 |
| Drought                      | N/A            | N/A               | N/A                     | N/A                 |
| Snowpack Reduction           | N/A            | N/A               | N/A                     | N/A                 |
| Air Quality Degradation      | 1              | 1                 | 1                       | 2                   |

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores include implementation of climate risk reduction measures.

### 6.4. Climate Risk Reduction Measures

# 7. Health and Equity Details

## 7.1. CalEnviroScreen 4.0 Scores

The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

| Indicator                       | Result for Project Census Tract |
|---------------------------------|---------------------------------|
| Exposure Indicators             | —                               |
| AQ-Ozone                        | 26.7                            |
| AQ-PM                           | 61.9                            |
| AQ-DPM                          | 11.9                            |
| Drinking Water                  | 10.7                            |
| Lead Risk Housing               | 68.3                            |
| Pesticides                      | 51.3                            |
| Toxic Releases                  | 92.8                            |
| Traffic                         | 47.8                            |
| Effect Indicators               | —                               |
| CleanUp Sites                   | 63.7                            |
| Groundwater                     | 0.00                            |
| Haz Waste Facilities/Generators | 40.9                            |
| Impaired Water Bodies           | 72.2                            |
| Solid Waste                     | 70.4                            |
| Sensitive Population            | —                               |
| Asthma                          | 1.69                            |
| Cardio-vascular                 | 5.50                            |
| Low Birth Weights               | 18.8                            |

| Socioeconomic Factor Indicators | —    |
|---------------------------------|------|
| Education                       | 1.15 |
| Housing                         | 36.7 |
| Linguistic                      | 16.4 |
| Poverty                         | 13.7 |
| Unemployment                    | 22.6 |

## 7.2. Healthy Places Index Scores

The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

| Indicator              | Result for Project Census Tract |
|------------------------|---------------------------------|
| Economic               |                                 |
| Above Poverty          | 89.73437701                     |
| Employed               | 27.51186963                     |
| Median HI              | 98.06236366                     |
| Education              |                                 |
| Bachelor's or higher   | 96.25304761                     |
| High school enrollment | 100                             |
| Preschool enrollment   | 95.7141024                      |
| Transportation         |                                 |
| Auto Access            | 92.6344155                      |
| Active commuting       | 6.03105351                      |
| Social                 |                                 |
| 2-parent households    | 73.42486847                     |
| Voting                 | 81.71435904                     |
| Neighborhood           |                                 |
| Alcohol availability   | 86.21840113                     |
| Park access            | 81.35506224                     |
| Retail density         | 18.54228153                     |

| Supermarket access                           | 21.68612858 |
|----------------------------------------------|-------------|
| Tree canopy                                  | 72.74477095 |
| Housing                                      |             |
| Homeownership                                | 94.45656358 |
| Housing habitability                         | 91.49236494 |
| Low-inc homeowner severe housing cost burden | 41.7425895  |
| Low-inc renter severe housing cost burden    | 86.71885025 |
| Uncrowded housing                            | 96.93314513 |
| Health Outcomes                              | _           |
| Insured adults                               | 93.18619274 |
| Arthritis                                    | 0.0         |
| Asthma ER Admissions                         | 93.4        |
| High Blood Pressure                          | 0.0         |
| Cancer (excluding skin)                      | 0.0         |
| Asthma                                       | 0.0         |
| Coronary Heart Disease                       | 0.0         |
| Chronic Obstructive Pulmonary Disease        | 0.0         |
| Diagnosed Diabetes                           | 0.0         |
| Life Expectancy at Birth                     | 94.9        |
| Cognitively Disabled                         | 98.4        |
| Physically Disabled                          | 71.5        |
| Heart Attack ER Admissions                   | 82.9        |
| Mental Health Not Good                       | 0.0         |
| Chronic Kidney Disease                       | 0.0         |
| Obesity                                      | 0.0         |
| Pedestrian Injuries                          | 48.6        |
| Physical Health Not Good                     | 0.0         |
| Stroke                                       | 0.0         |

| Health Risk Behaviors                 | —     |
|---------------------------------------|-------|
| Binge Drinking                        | 0.0   |
| Current Smoker                        | 0.0   |
| No Leisure Time for Physical Activity | 0.0   |
| Climate Change Exposures              | —     |
| Wildfire Risk                         | 100.0 |
| SLR Inundation Area                   | 88.7  |
| Children                              | 55.0  |
| Elderly                               | 5.7   |
| English Speaking                      | 93.1  |
| Foreign-born                          | 19.6  |
| Outdoor Workers                       | 87.9  |
| Climate Change Adaptive Capacity      | —     |
| Impervious Surface Cover              | 91.9  |
| Traffic Density                       | 16.9  |
| Traffic Access                        | 23.0  |
| Other Indices                         |       |
| Hardship                              | 3.2   |
| Other Decision Support                |       |
| 2016 Voting                           | 75.8  |
|                                       |       |

# 7.3. Overall Health & Equity Scores

| Metric                                                                              | Result for Project Census Tract |
|-------------------------------------------------------------------------------------|---------------------------------|
| CalEnviroScreen 4.0 Score for Project Location (a)                                  | 9.00                            |
| Healthy Places Index Score for Project Location (b)                                 | 95.0                            |
| Project Located in a Designated Disadvantaged Community (Senate Bill 535)           | No                              |
| Project Located in a Low-Income Community (Assembly Bill 1550)                      | No                              |
| Project Located in a Community Air Protection Program Community (Assembly Bill 617) | No                              |

#### 24-103 PVE Site 3 Detailed Report, 11/12/2024

a: The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state. b: The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

## 7.4. Health & Equity Measures

No Health & Equity Measures selected.

### 7.5. Evaluation Scorecard

Health & Equity Evaluation Scorecard not completed. 7.6. Health & Equity Custom Measures

No Health & Equity Custom Measures created.

# 8. User Changes to Default Data

| Screen                            | Justification                                                                                                                                                                                       |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Land Use                          | Adjusted lot acreage to match site plan provided by the client                                                                                                                                      |
| Construction: Construction Phases | Removed demolition phase as the onsite Church will remain during development.                                                                                                                       |
| Construction: Off-Road Equipment  | Assumed all construction equipment will be utilized 8 hours per work day. Replaced Tractors/Loaders/Backhoes with Crawler Tractors in the Site Preparation and Grading Phases.                      |
| Operations: Vehicle Data          | Adjusted trip rate for Apartments Mid Rise to match ITE 11th edition trip rate to match ITE 11th Edition rates for Affordable Housing and Multifamily Housing (Mid-Rise) as a conservative analysis |



ATTACHMENT D: FUEL CALCULATIONS

| Model Output: OFFROAD2021 (v1.0.7) Emissions Inventory |                     |                                                                       |           |           |        |                     |                           |  |  |  |  |
|--------------------------------------------------------|---------------------|-----------------------------------------------------------------------|-----------|-----------|--------|---------------------|---------------------------|--|--|--|--|
| Region Type: Sub-Area                                  |                     |                                                                       |           |           |        |                     |                           |  |  |  |  |
| Region: Los Angeles (SC)                               |                     |                                                                       |           |           |        |                     |                           |  |  |  |  |
| Calendar Year: 2025                                    |                     | <- Construction Start Year                                            |           |           |        |                     |                           |  |  |  |  |
| Scenario: All Adopted Rul                              | les - Exhaust       |                                                                       |           |           |        |                     |                           |  |  |  |  |
| Vehicle Classification: OF                             | FROAD2021 Equip     | ment Types                                                            |           |           |        |                     |                           |  |  |  |  |
| Units: tons/day for Emissi                             | sions, gallons/year | for Fuel, hours/year for Activity, Horsepower-hours/year for Horsepow | ver-hours |           |        |                     |                           |  |  |  |  |
| Region                                                 | Calendar Year       | VehClass                                                              | MdlYr     | HP_Bin    | Fuel   | Fuel Consumption Ho | orsepower Hours Fuel Rate |  |  |  |  |
| Los Angeles (SC)                                       |                     | 2025 Construction and Mining - Rubber Tired Dozers                    | Aggregate | Aggregate | Diesel | 200236.1302         | 4219514.168 0.047454783   |  |  |  |  |
| Los Angeles (SC)                                       |                     | 2025 Construction and Mining - Tractors/Loaders/Backhoes              | Aggregate | Aggregate | Diesel | 5359588.934         | 100894387 0.053120784     |  |  |  |  |
| Los Angeles (SC)                                       |                     | 2025 Construction and Mining - Graders                                | Aggregate | Aggregate | Diesel | 801808.3578         | 15557225.2 0.051539291    |  |  |  |  |
| Los Angeles (SC)                                       |                     | 2025 Construction and Mining - Excavators                             | Aggregate | Aggregate | Diesel | 5479149.856         | 106983113.7 0.051215091   |  |  |  |  |
| Los Angeles (SC)                                       |                     | 2025 Construction and Mining - Scrapers                               | Aggregate | Aggregate | Diesel | 2065209.339         | 42944091.37 0.048090652   |  |  |  |  |
| Los Angeles (SC)                                       |                     | 2025 Industrial - Forklifts                                           | Aggregate | Aggregate | Diesel | 3109302.057         | 58386309.29 0.053253958   |  |  |  |  |
| Los Angeles (SC)                                       |                     | 2025 Light Commercial - Misc - Generator Sets                         | Aggregate | Aggregate | Diesel | 1151795.618         | 14771265.3 0.07797542     |  |  |  |  |
| Los Angeles (SC)                                       |                     | 2025 Construction and Mining - Cranes                                 | Aggregate | Aggregate | Diesel | 611697.4797         | 11538770.14 0.053012364   |  |  |  |  |
| Los Angeles (SC)                                       |                     | 2025 Light Commercial - Misc - Welders                                | Aggregate | Aggregate | Diesel | 1279243.051         | 40333273.8 0.031716817    |  |  |  |  |
| Los Angeles (SC)                                       |                     | 2025 Construction and Mining - Pavers                                 | Aggregate | Aggregate | Diesel | 352726.9244         | 6846867.962 0.051516537   |  |  |  |  |
| Los Angeles (SC)                                       |                     | 2025 Construction and Mining - Paving Equipment                       | Aggregate | Aggregate | Diesel | 391254.724          | 7646871.175 0.051165335   |  |  |  |  |
| Los Angeles (SC)                                       |                     | 2025 Construction and Mining - Rollers                                | Aggregate | Aggregate | Diesel | 932502.9469         | 17731002.5 0.052591665    |  |  |  |  |
| Los Angeles (SC)                                       |                     | 2025 Light Commercial - Misc - Air Compressors                        | Aggregate | Aggregate | Diesel | 246897.3259         | 8227921.25 0.030007254    |  |  |  |  |
| Los Angeles (SC)                                       |                     | 2025 Construction and Mining - Misc - Concrete/Industrial Saws        | Aggregate | Aggregate | Diesel | 9290.335209         | 221146.2 0.042009925      |  |  |  |  |
| Los Angeles (SC)                                       |                     | 2025 Construction and Mining - Crawler Tractors                       | Aggregate | Aggregate | Diesel | 1719958.979         | 34066510.68 0.050488264   |  |  |  |  |
| Los Angeles (SC)                                       |                     | 2025 Construction and Mining - Off-Highway Trucks                     | Aggregate | Aggregate | Diesel | 2281997.015         | 46637030.7 0.04893101     |  |  |  |  |
|                                                        |                     |                                                                       |           |           |        |                     |                           |  |  |  |  |

| Source: EMFAC2021 (     | 1.0.2) Emissions Invent  | ory                         |                                      |                          |                  |          |             |                     |             |
|-------------------------|--------------------------|-----------------------------|--------------------------------------|--------------------------|------------------|----------|-------------|---------------------|-------------|
| Region Type: Sub-Are    | a                        |                             |                                      |                          |                  |          |             |                     |             |
| Region: Los Angeles (S  | 5C)                      |                             |                                      |                          |                  |          |             |                     |             |
| Season: Annual          |                          | 2026 Construction sta       | rt year                              |                          |                  |          |             |                     |             |
| Vehicle Classification: | EMFAC2007 Categories     |                             |                                      |                          |                  |          |             |                     |             |
| Units: miles/day for (  | VMT and EVMT, trips/d    | ay for Trips, kWh/day for E | Energy Consumption, tons/day for Emi | issions, 1000 gallons/da | ay for Fuel Cons | sumption |             |                     |             |
| Region                  | Calendar Year            | Vehicle Category            |                                      | Model Year               | Speed            | Fuel     | VMT         | Fuel Consumption Fi | uel Rate    |
| Los Angeles (SC)        | 2                        | 026 MHDT                    |                                      | Aggregate                | Aggregate        | Diesel   | 2536950.689 | 282.4978542         | 8.98        |
| Los Angeles (SC)        | 2                        | 026 HHDT                    |                                      | Aggregate                | Aggregate        | Diesel   | 6819808.694 | 1098.590287         | 6.21        |
| Los Angeles (SC)        | 2                        | 026 LHDT1                   |                                      | Aggregate                | Aggregate        | Diesel   | 2704306.099 | 130.8276817         | 20.67       |
| Los Angeles (SC)        | 2                        | 026 LHDT2                   |                                      | Aggregate                | Aggregate        | Diesel   | 1209848.539 | 69.10133677         | 17.51       |
|                         |                          |                             |                                      |                          |                  |          | Average MGP | From Vehicle Splits | 7.555146625 |
| Source: EMFAC2021 (     | (1.0.2) Emissions Invent | ory                         |                                      |                          |                  |          |             |                     |             |
| Region Type: Sub-Are    | a                        |                             |                                      |                          |                  |          |             |                     |             |
| Region: Los Angeles (S  | 5C)                      |                             |                                      |                          |                  |          |             |                     |             |
| Calendar Year: 2027     |                          |                             |                                      |                          |                  |          |             |                     |             |
| Season: Annual          |                          |                             |                                      |                          |                  |          |             |                     |             |
| Vehicle Classification: | EMFAC2007 Categories     |                             |                                      |                          |                  |          |             |                     |             |
|                         | •                        |                             | Energy Consumption, tons/day for Emi | issions. 1000 gallons/da | av for Fuel Cons | sumption |             |                     |             |
| Region                  | Calendar Year            | Vehicle Category            | - 0,                                 | Model Year               | Speed            | Fuel     | VMT         | Fuel Consumption    |             |
|                         |                          |                             |                                      |                          | -1               |          |             |                     |             |

| Los Angeles (SC) | 2026 LDA  | Aggregate | Aggregate | Gasoline | 125598332.2 |
|------------------|-----------|-----------|-----------|----------|-------------|
| Los Angeles (SC) | 2026 LDT1 | Aggregate | Aggregate | Gasoline | 10988219.26 |
| Los Angeles (SC) | 2026 LDT2 | Aggregate | Aggregate | Gasoline | 66847121.76 |
| Los Angeles (SC) | 2026 MCY  | Aggregate | Aggregate | Gasoline | 1005181.469 |

| 4156.999113 | 30.21 |
|-------------|-------|
| 436.9194811 | 25.15 |
| 2677.276355 | 24.97 |
| 24.23505076 | 41.48 |



ATTACHMENT E: DEMO CALCULATIONS

# **Palos Verdes Estates**

## **Estimates of Demolition Debris**

| SITE 1<br>Building D | emolition   |                  | 2 two story b  | uildings       |                                        |               |             |       | SITE 2<br>Building Der | molition   |              |                               |            |             |            |      |
|----------------------|-------------|------------------|----------------|----------------|----------------------------------------|---------------|-------------|-------|------------------------|------------|--------------|-------------------------------|------------|-------------|------------|------|
| Dunung D             |             |                  | 2 100 3101 y b | ununigs        | Demo Building                          |               |             |       | Building Dei           |            |              |                               |            | Demo Bui    | Iding      |      |
|                      | Building    | Height(ft)       | Area (ft2)     | Volume (ft3)   | Volume (cy)                            |               |             |       |                        | Building   | Height(f     | t) Area (ft2)                 | Volume (f  |             | -          |      |
|                      | 1           | 20               | 15450          | 309000         | 3777                                   |               |             |       |                        | 1          | 20           | 27609                         | 552180     | 6749        | ,,         |      |
|                      | 2           | 0                | 0              | 0              | 0                                      |               |             |       |                        | 2          | 0            | 0                             | 0          | 0           |            |      |
|                      | 3           | 0                | 0              | 0              | 0                                      |               |             |       |                        | 3          | 0            | 0                             | 0          | 0           |            |      |
|                      | 4           | 0                | 0              | 0              | 0                                      |               |             |       |                        | 4          | 0            | 0                             | 0          | 0           |            |      |
|                      | 5           | 0                | 0              | 0              | 0                                      |               |             |       |                        | 5          | 0            | 0                             | 0          | 0           |            |      |
|                      | •           | -                | -              | 0              | 0                                      |               |             |       |                        | C C        | ·            | · ·                           | 0          | 0           |            |      |
|                      | Total       |                  | 15450          | 309000         | 3777                                   |               |             |       |                        | Total      |              | 27609                         | 552180     | 6749        |            |      |
|                      | Weight of   | the Building D   | emolition Deb  | oris (ton/cy): |                                        | 0.5           |             |       |                        | Weight of  | f the Build  | ling Demolit                  | ion Debris | (ton/cy):   | 0.5        |      |
|                      | Total Weig  | ght of Building  | Debris         |                |                                        | 1888          | tons        |       |                        | Total We   | ight of Bu   | ilding Debri                  | 5          |             | 3374       | tons |
|                      |             | •                | -              | -              | ngs contained in 1<br>29. September 20 |               | ription     |       |                        |            |              | e footage of<br>ris Estimatin | -          |             | -          |      |
|                      | Note 3: Ca  | IEEMod User (    | Guide          |                | ·                                      |               |             | 21.63 |                        | Note 3: C  | alEEMod      | Jser Guide                    | -          |             |            |      |
|                      | Note 4: 0.5 | 5 ft for default | hardscape he   | eight          |                                        |               |             |       |                        | Note 4: 0. | .5 ft for de | efault hardso                 | ape height | :           |            |      |
|                      |             |                  | -              | -              |                                        |               | 22.25 acres |       |                        |            |              |                               |            |             |            | 0.   |
| Hardscape            | e Demolitio | 'n               |                |                |                                        |               |             |       | Hardscape [            | Demolitio  | n            |                               |            |             |            |      |
|                      | Weight of   | Hardscape        | 144            | 4 lb/ft3       |                                        |               |             |       |                        | Weight of  | f Hardscap   | be 144                        | lb/ft3     |             |            |      |
|                      | Area        | Height (ft)      | Area (ft2)     | Volume (cf)    | Weight (lbs)                           | Weight (tons) |             |       |                        | Area       | Height (f    | t) Area (ft2)                 | /olume (cf | Veight (lbs | /eight (tc | ons) |
|                      | 1           | 0.5              | 18485          | 9243           | 1330920                                | 665           |             |       |                        | 1          | 0.5          | 2011.918                      | 1006       | 144858      | 72         |      |
|                      | 2           | 0                | 0              | 0              | 0                                      | 0             |             |       |                        | 2          | 0            | 0                             | 0          | 0           | 0          |      |
|                      | 3           | 0                | 0              | 0              | 0                                      | 0             |             |       |                        | 3          | 0            | 0                             | 0          | 0           | 0          |      |
|                      | Total       |                  | 18485          | 9243           | 1330920                                | 665           | tons        |       |                        | Total      |              | 2011.918                      | 1006       | 144858      | 72         | tons |
| Total Dam            | olition M/o | iaht             | 255            | 1 tons         |                                        |               |             |       | Total Domo             | lition Wa  | iaht         | 2447                          | tons       |             |            |      |

**Total Demolition Weight** 

2554 tons

Total Demolition Weight

#### tons

in the p r 2010

0.68

3447 tons