PRELIMINARY HYDROLOGY REPORT

Orange County Youth Transition Center

Orange County, California

PREPARED BY:

Fuscoe Engineering, Inc. 15535 Sand Canyon Ave, Suite 100 Irvine, CA 92618 (949) 474-1960

Project Number:

XXX-XXX-XX

Date Prepared:

November 2024

Table of Contents

INTRODUCTION	NC	3
Geographic S	Setting	3
Purpose of thi	is Report	4
References		4
HYDROLOGY	•	5
Existing Cond	lition	5
Proposed Co	ndition	5
FEMA		6
RESULTS AND	CONCLUSIONS	6
APPENDICESS		7
Appendix A	Architect's Site Plan	
Appendix B	Existing Storm Drain Information	
Appendix C	Existing Hydrology	
Appendix D	Proposed Hydrology	
Appendix E	FEMA Map	
	Geographic S Purpose of the References HYDROLOGY Existing Conce Proposed Co FEMA RESULTS AND APPENDICESS Appendix A Appendix B Appendix C Appendix D	INTRODUCTION Geographic Setting

1.0 INTRODUCTION

1.1 Geographic Setting

The County of Orange (County) proposes to demolish and replace ten buildings and associated infrastructure within the existing Orange County Juvenile Hall Campus (campus) located in the City of Orange (City), California, which occupies an approximately 17-acre property located at 331 The City Drive South (project site). The study area is bounded by Justice Way to the south, Hospital Frontage Road to the west, Interstate 5 freeway and Santa Ana River to the east and Service Way to the north. A Vicinity Map is shown below.

VICINITY MAP

The proposed site improvements will be divided into three phases. The architect's Overall Site Plan is included in this report as Appendix 1. This portion of the site will focus on Phases 2A and 2B of the development. Phase 2A comprises of Long Term Housing and Classroom and Library

Building, located adjacent to the south of Phase 1. Phase 2B comprises of Independent Living, located near the southeast edged of the property.

1.2 Purpose of this Report

The purpose of this analysis is to identify and analyze the pre- and post-project drainage conditions in order to provide adequate drainage facilities for the proposed development located in the County of Orange, California.

This Drainage Study will analyze and compare the 2-, 10-, 25- and 100-year storm events for the existing and proposed conditions. Outcomes of the analysis will facilitate the conceptual layout of a drainage system to adequately convey storm runoff through the site without adversely impacting surrounding areas. The project is HCOC exempt and therefore Hydromodification requirements are not applicable.

The project is within Soil Type "A", based on the County of Orange Hydrology Manual.

All hydrology and hydrologic calculations would be performed and verified for protection in a 100-year storm event according to the Orange County Hydrology Manual (1986) and its Addendum (1996) during final design. All calculations will be based on AES Rational Method and will follow requirements per Orange County Hydrology Manual. Impervious rates will be calculated per existing and proposed plans. AES does now offer specific impervious rates but rather it utilizes pre-determined rates based on estimated land use. For these calculations, similar pre-determined rates were selected that conservatively follows the hand calculations.

1.3 References

The following references were used to evaluate hydrologic conditions and water quality requirements:

- Orange County Hydrology Manual (October 1986)
- Orange County Hydrology Manual Addendum No. 1 (1996)
- Orange County Local Drainage Manual (January 1996)
- AES (Advanced Engineering Software), Rational Method (July 2016)

2.0 HYDROLOGY

2.1 Existing Condition

The approximate overall 17-acre study area is a developed site that contains the Orange County Juvenile Hall Campus. The existing site generally slopes in a southerly direction to southerly area of the property.

An existing 33-inch RCP storm drain drains from the north to the south and bisects the project site, allowing for a collection point for on-site stormwater. This storm drain connects to an existing 42-inch RCP that is located offsite and adjacent to the south which runs south along The City Drive and discharges into the Santa Ana River Channel, and ultimately the Pacific Ocean.

Phases 2A and 2B will be analyzed for existing hydrological conditions using AES Rational Method to generate storm runoff rates using calculated existing impervious rates. Hydrology Calculations are located in Existing Hydrology (Appendix C).

2.2 Proposed Condition

The proposed project improvements will maintain the existing drainage patterns.

Phases 2A and 2B will be analyzed for proposed hydrological conditions using AES Rational Method to generate storm runoff rates using calculated proposed impervious rates based on the Overall Site Plan. Hydrology Calculations are located in Proposed Hydrology (Appendix D).

The overall drainage strategy is to convey onsite stormwater runoff into an onsite storm drain system that mitigates the proposed runoff's water quality, hydraulic and volumetric parameters per the regulating agencies (County of Orange) drainage codes. There will be several drainage management areas defined in the water quality analysis. The proposed project would provide a series of proposed bioretention with underdrain planter systems to capture and treat stormwater runoff.

As discussed in the existing condition, the drainage conveyance will similarly connect to the existing 33-inch RCP storm drain drains from the north to the south, ultimately connecting to an

existing 42-inch RCP location off-site to the south, that discharges into the Santa Ana River Channel, and ultimately the Pacific Ocean.

3.0 FEMA

The project site is located at FEMA flood zone 'X' per FEMA Flood Insurance Rate Map (FIRM) No. 06059C0142J, map revised December 3, 2021. The site is entirely within Zone X, which depicts area of reduced flood risk due to levee. A CLOMR or LOMR will not be required. A FEMA Map (Firmette) is included in this report as Appendix E.

4.0 RESULTS AND CONCLUSIONS

The results of the hydrologic analyses are shown on the following table.

Tabe A - Phase 2 Drainage Conditions

Subarea	Area (SF)	Area (AC)	Pervious Area (SF)	Impervious Rate (%)	Soil Type	Pervious Rate (AES)
Existing Phase 2A	61,381.78	1.41	15,644.66	74.51%	Α	25%
Proposed Phase 2A	61,381.78	1.41	22,140.30	63.93%	Α	35%
Existing Phase 2B	47,190.68	1.08	7,860.61	83.34%	А	20%
Proposed Phase 2B	47,190.68	1.08	12,299.84	73.94%	Α	25%
_						

Tabe B - Phase 2 Drainage Calculations

Subarea	Q2 (CFS)	TC (Min)	Q10 (CFS)	TC (Min)	Q25 (CFS)	TC (Min)	Q100 (CFS)	TC (Min)
Existing Phase 2A	1.88	9.32	3.48	9.32	4.18	9.32	5.37	9.32
Proposed Phase 2A	1.75	9.98	3.29	9.98	3.96	9.98	5.10	9.98
Change	-0.13	0.66	-0.19	0.66	-0.22	0.66	-0.27	0.66
Existing Phase 2B	1.65	7.60	3.03	7.60	3.62	7.60	4.65	7.60
Proposed Phase 2B	1.60	7.88	2.94	7.88	3.53	7.88	4.54	7.88
Change	-0.05	0.28	-0.09	0.28	-0.09	0.28	-0.11	0.28

When comparing the Q allowable to the proposed condition, the proposed condition discharges less than expected. This is mostly due to the increase in pervious areas when comparing pre vs. post-development. Based on the hydrologic analyses included in this report, the proposed project will not adversely impact the drainage systems.

5.0 APPENDICESS

Appendix 1 Architect's Site Plan

Appendix 2 Existing Storm Drain Information

Appendix 3 Existing Hydrology

Appendix 4 Proposed Hydrology

Appendix 5 FEMA Map

APPENDIX A

Architect's Site Plan

LSA

LEGEND

Youth Transition Boundary

NO SCALE

SOURCE: DLR Group, Balfour Beatty, OC Dept of Public Works

FIGURE 2-6

APPENDIX B

Existing Storm Drain Information

OC - YTC Storm Drain Layout

11/4/2024

Inlets

Local Drainage

Closed Conveyance

Regional Channels

Open Conveyance

Esri Community Maps Contributors, County of Los Angeles, California State Parks, © OpenStreetMap, Microsoft, Esri, TomTom, Garmin, SafeGraph, GeoTechnologies, Inc, METI/NASA, USGS, Bureau of Land Management, EPA, NPS, US Census Bureau, USDA, USFWS, Maxar

APPENDIX C

Existing Hydrology

Phase 2A

Existing Conditions

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1355

Analysis prepared by:

Fuscoe Engineering, Inc. 15535 Sand Canyon Ave Suite 100 Irvine, CA 92618

```
* ORANGE COUNTY YOUTH TRANSITION CENTER
* PHASE 2A
* EXISTING 2-YEAR STORM
********************
 FILE NAME: YTC2A.DAT
 TIME/DATE OF STUDY: 17:45 11/12/2024
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
_____
               --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT (YEAR) =
                              2.00
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 4.00
 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) I ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
   WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (n)
NO
    30.0
          20.0 0.018/0.018/0.020
                                0.67 2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth) * (Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
**************
 FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 423.27
 ELEVATION DATA: UPSTREAM(FEET) = 131.50 DOWNSTREAM(FEET) = 126.88
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc (MIN.) = 9.319
    2 YEAR RAINFALL INTENSITY (INCH/HR) = 1.583
 SUBAREA To AND LOSS RATE DATA(AMC I):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                   Fp
                                           Ap SCS Tc
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
```

```
0.97 0.40 0.250 17 9.32
 MOBILE HOME PARK
                    A
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.250
 SUBAREA RUNOFF (CFS) = 1.30
 TOTAL AREA(ACRES) =
                  0.97 PEAK FLOW RATE(CFS) =
*************************
 FLOW PROCESS FROM NODE 2.00 TO NODE 2.00 IS CODE =
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<-<-
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION (MIN.) = 9.32
 RAINFALL INTENSITY (INCH/HR) = 1.58
 AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.40
 AREA-AVERAGED Ap = 0.25
 EFFECTIVE STREAM AREA(ACRES) = 0.97
TOTAL STREAM AREA(ACRES) = 0.97
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
******************
 FLOW PROCESS FROM NODE 1.10 TO NODE 2.00 IS CODE = 21
._____
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
_____
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 302.28
 ELEVATION DATA: UPSTREAM(FEET) = 131.50 DOWNSTREAM(FEET) = 126.88
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.615
 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.778
 SUBAREA To AND LOSS RATE DATA(AMC I ):
 DEVELOPMENT TYPE/ SCS SOIL AREA
                                 Fρ
                                         Ap SCS
             GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
    LAND USE
 MOBILE HOME PARK
                          0.44 0.40 0.250 17
                   A
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.250
 SUBAREA RUNOFF (CFS) = 0.66
 TOTAL AREA(ACRES) = 0.44 PEAK FLOW RATE(CFS) =
*******************
 FLOW PROCESS FROM NODE 2.00 TO NODE 2.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<-<-
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES
_____
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.61
RAINFALL INTENSITY(INCH/HR) = 1.78
 AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.40
 AREA-AVERAGED Ap = 0.25
 EFFECTIVE STREAM AREA(ACRES) = 0.44
 TOTAL STREAM AREA (ACRES) = 0.44
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
  STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER
  NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR)
                                        (ACRES) NODE
```

				0.40(0.10) 0.40(0.10)			
RAINFALL IN				ENTRATION RAT	ΓΙΟ		
NUMBER 1	Q (CFS) 1.86	Tc (MIN.) 7.61	(INCH/HR) 1.778	Fp(Fm) (INCH/HR) 0.40(0.10) 0.40(0.10)	0.25	(ACRES) 1.2	NODE 1.10
EFFECTIVE A AREA-AVERAG TOTAL AREA(. LONGEST FLO	ATE (CFS) REA (ACRE ED Fp(IN ACRES) = WPATH FF	= ES) = NCH/HR) = ROM NODE	1.88 1.41 = 0.40 1.4	S FOLLOWS: Tc(MIN.) = AREA-AVERAGE AREA-AVERAGEI 0 TO NODE	GED Fm O Ap =	(INCH/HR) 0.25 $0 = 42$	23.27 FEET.
END OF STUD TOTAL AREA(A EFFECTIVE A	Y SUMMAF ACRES) REA(ACRE ED Fp(IN	RY: = ES) = NCH/HR)	1.4 1.41 = 0.40	TC (MIN.) = AREA-AVERAGEI AREA-AVERAGEI	9. D Fm(IN	.32 NCH/HR)=	
NUMBER 1 2	Q (CFS) 1.86 1.88	Tc (MIN.) 7.61 9.32	(INCH/HR) 1.778 1.583	Fp(Fm) (INCH/HR) 0.40(0.10) 0.40(0.10)	0.25 0.25	(ACRES) 1.2 1.4	NODE 1.10 1.00

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1355

Analysis prepared by:

Fuscoe Engineering, Inc. 15535 Sand Canyon Ave Suite 100

```
Irvine, CA 92618
* ORANGE COUNTY YOUTH TRANSITION CENTER
* PHASE 2A
* EXISTING 10-YEAR STORM
********************
 FILE NAME: YTC2A10.DAT
 TIME/DATE OF STUDY: 17:47 11/12/2024
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
_____
               --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT (YEAR) = 10.00
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 4.00
 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
   WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (n)
NO
    30.0
          20.0 0.018/0.018/0.020
                                0.67 2.00 0.0312 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth) * (Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
**************
 FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 423.27
 ELEVATION DATA: UPSTREAM(FEET) = 131.50 DOWNSTREAM(FEET) = 126.88
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc (MIN.) = 9.319
 * 10 YEAR RAINFALL INTENSITY (INCH/HR) = 2.841
 SUBAREA To AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                   Fp
                                           Ap SCS Tc
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
```

```
0.97 0.40 0.250 32 9.32
 MOBILE HOME PARK
                    A
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.250
 SUBAREA RUNOFF (CFS) = 2.39
                  0.97 PEAK FLOW RATE(CFS) =
 TOTAL AREA (ACRES) =
*************************
 FLOW PROCESS FROM NODE 2.00 TO NODE 2.00 IS CODE =
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<-<-
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION (MIN.) = 9.32
 RAINFALL INTENSITY (INCH/HR) = 2.84
 AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.40
 AREA-AVERAGED Ap = 0.25
 EFFECTIVE STREAM AREA(ACRES) = 0.97
TOTAL STREAM AREA(ACRES) = 0.97
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
******************
 FLOW PROCESS FROM NODE 1.10 TO NODE 2.00 IS CODE = 21
._____
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
_____
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 302.28
 ELEVATION DATA: UPSTREAM(FEET) = 131.50 DOWNSTREAM(FEET) = 126.88
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.615
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.190
 SUBAREA To AND LOSS RATE DATA (AMC II):
 DEVELOPMENT TYPE/ SCS SOIL AREA
                                 Fρ
                                         Ap SCS
             GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
    LAND USE
 MOBILE HOME PARK
                          0.44 0.40 0.250 32 7.61
                   A
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.250
 SUBAREA RUNOFF (CFS) = 1.22
 TOTAL AREA(ACRES) = 0.44 PEAK FLOW RATE(CFS) =
*******************
 FLOW PROCESS FROM NODE 2.00 TO NODE 2.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<-<-
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES
_____
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.61
RAINFALL INTENSITY(INCH/HR) = 3.19
 AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.40
 AREA-AVERAGED Ap = 0.25
 EFFECTIVE STREAM AREA(ACRES) = 0.44
 TOTAL STREAM AREA(ACRES) = 0.44
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
  STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER
  NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR)
                                        (ACRES) NODE
```

2	1.22	7.61	3.190	0.40(0.10)	0.25	0.4	1.10
RAINFALL IN	_			ENTRATION RAT	ΓΙΟ		
NUMBER	Q (CFS)	Tc (MIN.)	(INCH/HR)	Fp(Fm) (INCH/HR) 0.40(0.10) 0.40(0.10)		(ACRES)	NODE
EFFECTIVE A AREA-AVERAG TOTAL AREA(LONGEST FLC	RATE (CFS REA (ACRI SED FP (II ACRES) = WPATH FI) = ES) = NCH/HR) = = ROM NODE	3.48 1.41 = 0.40 1.4	S FOLLOWS: Tc(MIN.) = AREA-AVERAGE AREA-AVERAGEI 0 TO NODE	GED Fm $Ap = 2.00$	(INCH/HR) 0.25 $0 = 42$	23.27 FEET.
END OF STUD TOTAL AREA(EFFECTIVE A	Y SUMMA (ACRES) AREA(ACRI GED FP(II	RY: = ES) = NCH/HR) =	1.4 1.41 = 0.40	TC (MIN.) = AREA-AVERAGEI AREA-AVERAGEI	9. Fm(II	.32 NCH/HR)=	
NUMBER 1 2	Q (CFS) 3.43 3.48	Tc (MIN.) 7.61	(INCH/HR) 3.190	Fp(Fm) (INCH/HR) 0.40(0.10) 0.40(0.10)	0.25	(ACRES) 1.2	NODE 1.10

1 2.39 9.32 2.841 0.40(0.10) 0.25 1.0 1.00

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1355

Analysis prepared by:

Fuscoe Engineering, Inc. 15535 Sand Canyon Ave Suite 100 Irvine, CA 92618

```
* ORANGE COUNTY YOUTH TRANSITION CENTER
* PHASE 2B
* EXISTING 25-YEAR STORM
********************
 FILE NAME: YTC2A25.DAT
 TIME/DATE OF STUDY: 17:48 11/12/2024
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
_____
               --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT (YEAR) = 25.00
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 4.00
 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
   WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (n)
NO
    30.0
          20.0 0.018/0.018/0.020
                                0.67 2.00 0.0312 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth) * (Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
**************
 FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 423.27
 ELEVATION DATA: UPSTREAM(FEET) = 131.50 DOWNSTREAM(FEET) = 126.88
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc (MIN.) = 9.319
 * 25 YEAR RAINFALL INTENSITY (INCH/HR) = 3.391
 SUBAREA To AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                   Fp
                                           Ap SCS Tc
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
```

```
0.97 0.40 0.250 32 9.32
 MOBILE HOME PARK
                    A
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.250
 SUBAREA RUNOFF (CFS) = 2.87
                  0.97 PEAK FLOW RATE(CFS) =
 TOTAL AREA (ACRES) =
*************************
 FLOW PROCESS FROM NODE 2.00 TO NODE 2.00 IS CODE =
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<-<-
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION (MIN.) = 9.32
 RAINFALL INTENSITY (INCH/HR) = 3.39
 AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.40
 AREA-AVERAGED Ap = 0.25
 EFFECTIVE STREAM AREA(ACRES) = 0.97
TOTAL STREAM AREA(ACRES) = 0.97
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
******************
 FLOW PROCESS FROM NODE 1.10 TO NODE 2.00 IS CODE = 21
._____
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
_____
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 302.28
 ELEVATION DATA: UPSTREAM(FEET) = 131.50 DOWNSTREAM(FEET) = 126.88
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.615
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.802
 SUBAREA To AND LOSS RATE DATA (AMC II):
 DEVELOPMENT TYPE/ SCS SOIL AREA
                                 Fρ
                                         Ap SCS
             GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
    LAND USE
 MOBILE HOME PARK
                          0.44 0.40 0.250 32 7.61
                   A
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.250
 SUBAREA RUNOFF (CFS) = 1.47
 TOTAL AREA(ACRES) = 0.44 PEAK FLOW RATE(CFS) =
*******************
 FLOW PROCESS FROM NODE 2.00 TO NODE 2.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<-<-
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES
_____
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.61
RAINFALL INTENSITY(INCH/HR) = 3.80
 AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.40
 AREA-AVERAGED Ap = 0.25
 EFFECTIVE STREAM AREA(ACRES) = 0.44
 TOTAL STREAM AREA(ACRES) = 0.44
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
  STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER
  NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR)
                                        (ACRES) NODE
```

2	1.47	7.61	3.802	0.40(0.10)	0.25	0.4	1.10
RAINFALL IN	_			ENTRATION RAT	rio		
NUMBER 1	Q (CFS) 4.11	Tc (MIN.) 7.61	(INCH/HR) 3.802	Fp(Fm) (INCH/HR) 0.40(0.10) 0.40(0.10)	0.25	(ACRES) 1.2	NODE 1.10
EFFECTIVE AREA-AVERAC TOTAL AREA LONGEST FLO	RATE (CFS AREA (ACR GED Fp(I (ACRES) = OWPATH F) = ES) = NCH/HR) : = ROM NODE	4.18 1.41 = 0.40 1.4	S FOLLOWS: Tc(MIN.) = AREA-AVERAGE AREA-AVERAGEI O TO NODE	GED Fm O Ap =	(INCH/HR) 0.25 $0 = 42$	23.27 FEET.
END OF STUI TOTAL AREA EFFECTIVE A	OY SUMMA (ACRES) AREA(ACR GED Fp(II	RY: = ES) = NCH/HR) :	1.4 1.41 = 0.40	TC (MIN.) = AREA-AVERAGEI AREA-AVERAGEI	9. Fm(II	.32 NCH/HR)=	
NUMBER 1	Q (CFS) 4.11 4.18	Tc (MIN.) 7.61 9.32	(INCH/HR) 3.802 3.391	Fp(Fm) (INCH/HR) 0.40(0.10) 0.40(0.10)	0.25	(ACRES) 1.2 1.4	NODE 1.10 1.00

1 2.87 9.32 3.391 0.40(0.10) 0.25 1.0 1.00

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1355

Analysis prepared by:

Fuscoe Engineering, Inc. 15535 Sand Canyon Ave Suite 100 Irvine, CA 92618

```
Irvine, CA 92618
* ORANGE COUNTY YOUTH TRANSITION CENTER
* PHASE 2A
* EXISTING 100-YEAR STORM
********************
 FILE NAME: YTC2A100.DAT
 TIME/DATE OF STUDY: 17:50 11/12/2024
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
_____
               --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT (YEAR) = 100.00
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 4.00
 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
   WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (n)
   30.0
          20.0 0.018/0.018/0.020
                                0.67
                                      2.00 0.0312 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
  1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth) * (Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
**************
 FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 423.27
 ELEVATION DATA: UPSTREAM(FEET) = 131.50 DOWNSTREAM(FEET) = 126.88
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc (MIN.) = 9.319
 * 100 YEAR RAINFALL INTENSITY (INCH/HR) = 4.331
 SUBAREA To AND LOSS RATE DATA (AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                   Fp
                                           Ap SCS Tc
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
```

```
0.97 0.40 0.250 52 9.32
 MOBILE HOME PARK
                    A
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.250
 SUBAREA RUNOFF (CFS) = 3.69
 TOTAL AREA(ACRES) =
                  0.97 PEAK FLOW RATE(CFS) =
*************************
 FLOW PROCESS FROM NODE 2.00 TO NODE 2.00 IS CODE =
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<-<-
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION (MIN.) = 9.32
 RAINFALL INTENSITY (INCH/HR) = 4.33
 AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.40
 AREA-AVERAGED Ap = 0.25
 EFFECTIVE STREAM AREA(ACRES) = 0.97
TOTAL STREAM AREA(ACRES) = 0.97
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
******************
 FLOW PROCESS FROM NODE 1.10 TO NODE 2.00 IS CODE = 21
._____
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
_____
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 302.28
 ELEVATION DATA: UPSTREAM(FEET) = 131.50 DOWNSTREAM(FEET) = 126.88
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.615
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.862
 SUBAREA To AND LOSS RATE DATA (AMC III):
 DEVELOPMENT TYPE/ SCS SOIL AREA
                                 Fρ
                                         Ap SCS
             GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
    LAND USE
 MOBILE HOME PARK
                          0.44 0.40 0.250 52 7.61
                   A
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.250
 SUBAREA RUNOFF (CFS) = 1.89
 TOTAL AREA(ACRES) = 0.44 PEAK FLOW RATE(CFS) =
*******************
 FLOW PROCESS FROM NODE 2.00 TO NODE 2.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<-<-
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES
_____
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.61
RAINFALL INTENSITY(INCH/HR) = 4.86
 AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.40
 AREA-AVERAGED Ap = 0.25
 EFFECTIVE STREAM AREA(ACRES) = 0.44
 TOTAL STREAM AREA(ACRES) = 0.44
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
  STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER
  NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR)
                                        (ACRES) NODE
```

2	1.89	7.61	4.862	0.40(0.10)	0.25	0.4	1.10
RAINFALL IN	_			ENTRATION RA	ΓΙΟ		
NUMBER 1	Q (CFS) 5.28	Tc (MIN.)	(INCH/HR) 4.862	Fp(Fm) (INCH/HR) 0.40(0.10) 0.40(0.10)	0.25	(ACRES) 1.2	NODE 1.10
EFFECTIVE AREA-AVERAGE TOTAL AREA LONGEST FLC	RATE (CFS AREA (ACR GED Fp (I (ACRES) OWPATH F) = ES) = NCH/HR) = = ROM NODE	5.37 1.41 = 0.40 1.4	S FOLLOWS: Tc(MIN.) = AREA-AVERAGE AREA-AVERAGE 0 TO NODE	GED Fm $O Ap = 0$ 2.00	(INCH/HR) 0.25 $0 = 42$	23.27 FEET.
END OF STUDE TOTAL AREA OF FECTIVE F	OY SUMMA (ACRES) AREA(ACRI GED Fp(II	RY: = ES) = NCH/HR) =	1.4 1.41 = 0.40	TC(MIN.) = AREA-AVERAGE AREA-AVERAGE	9 D Fm(II	.32 NCH/HR)=	
NUMBER 1	Q (CFS) 5.28 5.37	Tc (MIN.) 7.61 9.32	(INCH/HR) 4.862 4.331	Fp(Fm) (INCH/HR) 0.40(0.10) 0.40(0.10)	0.25	(ACRES) 1.2	NODE 1.10

1 3.69 9.32 4.331 0.40(0.10) 0.25 1.0 1.00

Phase 2B

Existing Conditions

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1355

Analysis prepared by:

Fuscoe Engineering, Inc. 15535 Sand Canyon Ave Suite 100

```
Irvine, CA 92618
* ORANGE COUNTY YOUTH TRANSITION CENTER
* PHASE 2B
* EXISTING 2-YEAR STORM
********************
 FILE NAME: YTC2B.DAT
 TIME/DATE OF STUDY: 17:22 11/11/2024
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
_____
               --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT (YEAR) =
                              2.00
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 4.00
 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) I ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
   WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (n)
NO
    30.0
          20.0 0.018/0.018/0.020
                                0.67 2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth) * (Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
**************
 FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 300.00
 ELEVATION DATA: UPSTREAM(FEET) = 131.80 DOWNSTREAM(FEET) = 128.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc (MIN.) = 7.601
    2 YEAR RAINFALL INTENSITY (INCH/HR) = 1.780
 SUBAREA To AND LOSS RATE DATA(AMC I):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                   Fр
                                           Ap SCS Tc
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
```

APARTMENTS

A 1.08 0.40 0.200 17 7.60

SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40

SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200

SUBAREA RUNOFF(CFS) = 1.65

TOTAL AREA(ACRES) = 1.08 PEAK FLOW RATE(CFS) = 1.65

END OF STUDY SUMMARY:

TOTAL AREA(ACRES) = 1.1 TC(MIN.) = 7.60

EFFECTIVE AREA(ACRES) = 1.08 AREA-AVERAGED Fm(INCH/HR) = 0.08

AREA-AVERAGED Fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.200

PEAK FLOW RATE(CFS) = 1.65

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1355

Analysis prepared by:

Fuscoe Engineering, Inc. 15535 Sand Canyon Ave Suite 100

```
Irvine, CA 92618
* ORANGE COUNTY YOUTH TRANSITION CENTER
* PHASE 2B
* EXISTING 10-YEAR STORM
********************
 FILE NAME: YTC2B10.DAT
 TIME/DATE OF STUDY: 17:28 11/11/2024
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
_____
               --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT (YEAR) = 10.00
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 4.00
 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
   WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (n)
NO
    30.0
          20.0 0.018/0.018/0.020
                                0.67 2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth) * (Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
**************
 FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 300.00
 ELEVATION DATA: UPSTREAM(FEET) = 131.80 DOWNSTREAM(FEET) = 128.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc (MIN.) = 7.601
 * 10 YEAR RAINFALL INTENSITY (INCH/HR) = 3.193
 SUBAREA To AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                   Fp
                                           Ap SCS Tc
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
```

APARTMENTS

A 1.08 0.40 0.200 32 7.60 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200 SUBAREA RUNOFF(CFS) = 3.03 TOTAL AREA(ACRES) = 1.08 PEAK FLOW RATE(CFS) = 3.03

END OF STUDY SUMMARY:
TOTAL AREA(ACRES) = 1.1 TC(MIN.) = 7.60 EFFECTIVE AREA(ACRES) = 1.08 AREA-AVERAGED Fm(INCH/HR) = 0.08 AREA-AVERAGED Fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.200 PEAK FLOW RATE(CFS) = 3.03

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1355

Analysis prepared by:

Fuscoe Engineering, Inc. 15535 Sand Canyon Ave Suite 100

```
Irvine, CA 92618
* ORANGE COUNTY YOUTH TRANSITION CENTER
* PHASE 2B
* EXISTING 25-YEAR STORM
********************
 FILE NAME: YTC2B25.DAT
 TIME/DATE OF STUDY: 17:37 11/11/2024
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
_____
               --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT (YEAR) = 25.00
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 4.00
 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
   WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (n)
NO
    30.0
          20.0 0.018/0.018/0.020
                                0.67 2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth) * (Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
****************
 FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 300.00
 ELEVATION DATA: UPSTREAM(FEET) = 131.80 DOWNSTREAM(FEET) = 128.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc (MIN.) = 7.601
 * 25 YEAR RAINFALL INTENSITY (INCH/HR) = 3.806
 SUBAREA To AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                   Fp
                                           Ap SCS Tc
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
```

APARTMENTS
A 1.08 0.40 0.200 32 7.60
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
SUBAREA RUNOFF(CFS) = 3.62
TOTAL AREA(ACRES) = 1.08 PEAK FLOW RATE(CFS) = 3.62

END OF STUDY SUMMARY:
TOTAL AREA(ACRES) = 1.1 TC(MIN.) = 7.60
EFFECTIVE AREA(ACRES) = 1.08 AREA-AVERAGED Fm(INCH/HR) = 0.08
AREA-AVERAGED Fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.200
PEAK FLOW RATE(CFS) = 3.62

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1355

Analysis prepared by:

Fuscoe Engineering, Inc. 15535 Sand Canyon Ave Suite 100 Irvine, CA 92618

```
* ORANGE COUNTY YOUTH TRANSITION CENTER
* PHASE 2B
* EXISTING 100-YEAR STORM
********************
 FILE NAME: YTC2B100.DAT
 TIME/DATE OF STUDY: 17:42 11/11/2024
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
_____
               --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT (YEAR) = 100.00
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 4.00
 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
   WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (n)
   30.0
          20.0 0.018/0.018/0.020
                                0.67
                                      2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
  1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth) * (Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
****************
 FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 300.00
 ELEVATION DATA: UPSTREAM(FEET) = 131.80 DOWNSTREAM(FEET) = 128.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc (MIN.) = 7.601
 * 100 YEAR RAINFALL INTENSITY (INCH/HR) = 4.867
 SUBAREA To AND LOSS RATE DATA (AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                   Fр
                                           Ap SCS Tc
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
```

APARTMENTS A 1.08 0.40 0.200 52 7.60 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200 SUBAREA RUNOFF(CFS) = 4.65 TOTAL AREA(ACRES) = 1.08 PEAK FLOW RATE(CFS) = 4.65

END OF STUDY SUMMARY:
TOTAL AREA(ACRES) = 1.1 TC(MIN.) = 7.60 EFFECTIVE AREA(ACRES) = 1.08 AREA-AVERAGED Fm(INCH/HR) = 0.08 AREA-AVERAGED Fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.200 PEAK FLOW RATE(CFS) = 4.65

HYDROLOGY REPORT November 2024

APPENDIX D

Proposed Hydrology

OC YTC Orange County, CA

HYDROLOGY REPORT November 2024

Phase 2A

Proposed Conditions

OC YTC Orange County, CA

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1355

Analysis prepared by:

```
Irvine, CA 92618
* ORANGE COUNTY YOUTH TRANSITION CENTER
* PHASE 2A
* PROPOSED 2-YEAR STORM
*******************
 FILE NAME: YTC2AP.DAT
 TIME/DATE OF STUDY: 18:37 11/12/2024
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
_____
               --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT (YEAR) =
                              2.00
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 4.00
 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) I ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
   WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (n)
NO
    30.0
          20.0 0.018/0.018/0.020
                                0.67 2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth) * (Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
**************
 FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 423.27
 ELEVATION DATA: UPSTREAM(FEET) = 131.50 DOWNSTREAM(FEET) = 126.88
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.985
    2 YEAR RAINFALL INTENSITY (INCH/HR) = 1.522
 SUBAREA To AND LOSS RATE DATA (AMC I ):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                   Fp
                                           Ap SCS Tc
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
```

```
0.97 0.40 0.350 17 9.98
 CONDOMINIUMS
                    A
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.350
 SUBAREA RUNOFF (CFS) = 1.21
                  0.97 PEAK FLOW RATE(CFS) =
 TOTAL AREA (ACRES) =
*************************
 FLOW PROCESS FROM NODE 2.00 TO NODE 2.00 IS CODE =
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<-<-
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION (MIN.) = 9.98
 RAINFALL INTENSITY (INCH/HR) = 1.52
 AREA-AVERAGED Fm(INCH/HR) = 0.14
 AREA-AVERAGED Fp(INCH/HR) = 0.40
 AREA-AVERAGED Ap = 0.35
 EFFECTIVE STREAM AREA(ACRES) = 0.97
TOTAL STREAM AREA(ACRES) = 0.97
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
******************
 FLOW PROCESS FROM NODE 1.10 TO NODE 2.00 IS CODE = 21
._____
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
_____
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 302.28
 ELEVATION DATA: UPSTREAM(FEET) = 131.50 DOWNSTREAM(FEET) = 126.88
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.159
 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.709
 SUBAREA To AND LOSS RATE DATA (AMC I ):
 DEVELOPMENT TYPE/ SCS SOIL AREA
                                  Fρ
                                         Ap SCS
                  GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
    LAND USE
                          0.44 0.40 0.350 17
 CONDOMINIUMS
                    A
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.350
 SUBAREA RUNOFF (CFS) = 0.62
 TOTAL AREA(ACRES) = 0.44 PEAK FLOW RATE(CFS) =
*******************
 FLOW PROCESS FROM NODE 2.00 TO NODE 2.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<-<-
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES
_____
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 8.16
RAINFALL INTENSITY(INCH/HR) = 1.71
 AREA-AVERAGED Fm(INCH/HR) = 0.14
 AREA-AVERAGED Fp(INCH/HR) = 0.40
 AREA-AVERAGED Ap = 0.35
 EFFECTIVE STREAM AREA(ACRES) = 0.44
 TOTAL STREAM AREA(ACRES) = 0.44
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
  STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER
  NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR)
                                        (ACRES) NODE
```

2	0.62	8.16	1.709	0.40(0.14)	0.35	0.4	1.10
RAINFALL I	_			ENTRATION RAT	ΓΙΟ		
NUMBER	Q (CFS)	Tc (MIN.)	Intensity (INCH/HR)	Fp(Fm) (INCH/HR) 0.40(0.14) 0.40(0.14)		(ACRES)	NODE
EFFECTIVE AREA-AVERA TOTAL AREA LONGEST FL	RATE (CFS AREA (ACR GED Fp (I (ACRES) OWPATH F) = ES) = NCH/HR) = ROM NODE	1.75 1.41 = 0.40 1.4	Tc(MIN.) = AREA-AVERAGE AREA-AVERAGEI 0 TO NODE	GED Fm O Ap =	(INCH/HR) 0.35 0 = 42	23.27 FEET.
END OF STU TOTAL AREA EFFECTIVE	DY SUMMA (ACRES) AREA(ACR GED Fp(I	RY: = ES) = NCH/HR)	1.4 1.41 = 0.40	TC (MIN.) = AREA-AVERAGEI AREA-AVERAGEI	9 D Fm(II	.98 NCH/HR)=	
NUMBER 1	Q (CFS) 1.74	Tc (MIN.) 8.16	Intensity (INCH/HR) 1.709 1.522	Fp(Fm) (INCH/HR) 0.40(0.14) 0.40(0.14)	0.35 0.35	(ACRES) 1.2 1.4	NODE 1.10 1.00
	=====	=====					

1 1.21 9.98 1.522 0.40(0.14) 0.35 1.0 1.00

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1355

Analysis prepared by:

Fuscoe Engineering, Inc. 15535 Sand Canyon Ave Suite 100

```
Irvine, CA 92618
* ORANGE COUNTY YOUTH TRANSITION CENTER
* PHASE 2A
* PROPOSED 10-YEAR STORM
*******************
 FILE NAME: YTC2A10P.DAT
 TIME/DATE OF STUDY: 18:40 11/12/2024
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
_____
               --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT (YEAR) = 10.00
 SPECIFIED MINIMUM PIPE SIZE (INCH) = 4.00
 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
   WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (n)
NO
    30.0
          20.0 0.018/0.018/0.020
                                0.67
                                      2.00 0.0312 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth) * (Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
**************
 FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 423.27
 ELEVATION DATA: UPSTREAM(FEET) = 131.50 DOWNSTREAM(FEET) = 126.88
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc (MIN.) = 9.985
 * 10 YEAR RAINFALL INTENSITY (INCH/HR) = 2.731
 SUBAREA To AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                   Fp
                                           Ap SCS Tc
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
```

```
0.97 0.40 0.350 32 9.98
 CONDOMINIUMS
                    A
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.350
 SUBAREA RUNOFF (CFS) = 2.26
                  0.97 PEAK FLOW RATE(CFS) =
 TOTAL AREA (ACRES) =
************************
 FLOW PROCESS FROM NODE 2.00 TO NODE 2.00 IS CODE =
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<-<-
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 9.98
 RAINFALL INTENSITY (INCH/HR) = 2.73
 AREA-AVERAGED Fm(INCH/HR) = 0.14
 AREA-AVERAGED Fp(INCH/HR) = 0.40
 AREA-AVERAGED Ap = 0.35
 EFFECTIVE STREAM AREA(ACRES) = 0.97
TOTAL STREAM AREA(ACRES) = 0.97
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
*******************
 FLOW PROCESS FROM NODE 1.10 TO NODE 2.00 IS CODE = 21
._____
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
_____
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 302.28
 ELEVATION DATA: UPSTREAM(FEET) = 131.50 DOWNSTREAM(FEET) = 126.88
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.159
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.066
 SUBAREA To AND LOSS RATE DATA (AMC II):
 DEVELOPMENT TYPE/ SCS SOIL AREA
                                 Fρ
                                         Ap SCS
                 GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
    LAND USE
                          0.44 0.40 0.350 32 8.16
 CONDOMINIUMS
                    A
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.350
 SUBAREA RUNOFF (CFS) = 1.16
 TOTAL AREA(ACRES) = 0.44 PEAK FLOW RATE(CFS) =
************************
 FLOW PROCESS FROM NODE 2.00 TO NODE 2.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<-<-
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES
_____
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION (MIN.) = 8.16
 RAINFALL INTENSITY(INCH/HR) =
 AREA-AVERAGED Fm(INCH/HR) = 0.14
 AREA-AVERAGED Fp(INCH/HR) = 0.40
 AREA-AVERAGED Ap = 0.35
 EFFECTIVE STREAM AREA(ACRES) =
 TOTAL STREAM AREA(ACRES) = 0.44
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
  STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER
  NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR)
                                        (ACRES) NODE
```

2	1.16	8.16	3.066	0.40(0.14)	0.35	0.4	1.10
RAINFALL IN	_			ENTRATION RAT	ΓΙΟ		
NUMBER	Q (CFS)	Tc (MIN.)	(INCH/HR)	Fp(Fm) (INCH/HR) 0.40(0.14) 0.40(0.14)		(ACRES)	NODE
EFFECTIVE AREA-AVERACTOTAL AREA LONGEST FLC	RATE (CFS AREA (ACRI GED Fp (II (ACRES) = OWPATH FI) = ES) = NCH/HR) : = ROM NODE	3.29 1.41 = 0.40 1.4	S FOLLOWS: Tc(MIN.) = AREA-AVERAGE AREA-AVERAGEI 0 TO NODE	GED Fm $O Ap = 0$ 2.0	(INCH/HR) 0.35 $0 = 42$	23.27 FEET.
END OF STUDE TOTAL AREA EFFECTIVE A	OY SUMMA (ACRES) AREA(ACRI GED Fp(II	RY: = ES) = NCH/HR) :	1.4 1.41 = 0.40	TC (MIN.) = AREA-AVERAGEI AREA-AVERAGEI	9 D Fm(II	.98 NCH/HR)=	
NUMBER 1	Q (CFS) 3.25 3.29	Tc (MIN.) 8.16 9.98	Intensity (INCH/HR) 3.066 2.731	Fp(Fm) (INCH/HR) 0.40(0.14) 0.40(0.14)	0.35	(ACRES) 1.2 1.4	NODE 1.10 1.00

1 2.26 9.98 2.731 0.40(0.14) 0.35 1.0 1.00

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1355

Analysis prepared by:

```
Irvine, CA 92618
* ORANGE COUNTY YOUTH TRANSITION CENTER
* PHASE 2A
* PROPOSED 25-YEAR STORM
*******************
 FILE NAME: YTC2A25P.DAT
 TIME/DATE OF STUDY: 18:41 11/12/2024
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
_____
               --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT (YEAR) = 25.00
 SPECIFIED MINIMUM PIPE SIZE (INCH) = 4.00
 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
   WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (n)
NO
    30.0
          20.0 0.018/0.018/0.020
                                0.67 2.00 0.0312 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth) * (Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
**************
 FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 423.27
 ELEVATION DATA: UPSTREAM(FEET) = 131.50 DOWNSTREAM(FEET) = 126.88
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.985
 * 25 YEAR RAINFALL INTENSITY (INCH/HR) = 3.261
 SUBAREA To AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                   Fp
                                           Ap SCS Tc
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
```

```
0.97 0.40 0.350 32 9.98
 CONDOMINIUMS
                    A
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.350
 SUBAREA RUNOFF (CFS) = 2.72
                  0.97 PEAK FLOW RATE(CFS) =
 TOTAL AREA (ACRES) =
*************************
 FLOW PROCESS FROM NODE 2.00 TO NODE 2.00 IS CODE =
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<-<-
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 9.98
 RAINFALL INTENSITY (INCH/HR) = 3.26
 AREA-AVERAGED Fm(INCH/HR) = 0.14
 AREA-AVERAGED Fp(INCH/HR) = 0.40
 AREA-AVERAGED Ap = 0.35
 EFFECTIVE STREAM AREA(ACRES) = 0.97
TOTAL STREAM AREA(ACRES) = 0.97
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
*******************
 FLOW PROCESS FROM NODE 1.10 TO NODE 2.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
_____
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 302.28
 ELEVATION DATA: UPSTREAM(FEET) = 131.50 DOWNSTREAM(FEET) = 126.88
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.159
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.656
 SUBAREA To AND LOSS RATE DATA (AMC II):
 DEVELOPMENT TYPE/ SCS SOIL AREA
                                  Fρ
                                          Ap SCS
                  GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
    LAND USE
                          0.44 0.40 0.350 32 8.16
 CONDOMINIUMS
                    A
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.350
 SUBAREA RUNOFF (CFS) = 1.39
                0.44 PEAK FLOW RATE(CFS) =
 TOTAL AREA (ACRES) =
*******************
 FLOW PROCESS FROM NODE 2.00 TO NODE 2.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<-<-
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES
_____
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 8.16
RAINFALL INTENSITY(INCH/HR) = 3.66
 AREA-AVERAGED Fm(INCH/HR) = 0.14
 AREA-AVERAGED Fp(INCH/HR) = 0.40
 AREA-AVERAGED Ap = 0.35
 EFFECTIVE STREAM AREA(ACRES) =
 TOTAL STREAM AREA(ACRES) = 0.44
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
  STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER
  NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR)
                                        (ACRES) NODE
```

				0.40 (0.14) 0.40 (0.14)			
RAINFALL I CONFLUENCE				ENTRATION RA AMS.	TIO		
** PEAK FL	OW RATE	TABLE **	r				
STREAM	Q	Tc	Intensity	Fp(Fm)	Аp	Ae	HEADWATER
NUMBER	(CFS)	(MIN.)	(INCH/HR)	(INCH/HR)		(ACRES)	NODE
				0.40(0.14)			
2	3.96	9.98	3.261	0.40(0.14)	0.35	1.4	1.0
EFFECTIVE	RATE (CFS AREA (ACRI GED Fp (II) = ES) = NCH/HR)	3.96 1.41 = 0.40	Tc(MIN.) = AREA-AVERA AREA-AVERAGE	GED Fm	(INCH/HR)	= 0.14
PEAK FLOW EFFECTIVE AREA-AVERA TOTAL AREA LONGEST FL	RATE (CFS AREA (ACRI GED Fp (II (ACRES) = OWPATH FI) = ES) = NCH/HR) = ROM NODE	3.96 1.41 = 0.40 1.4	Tc (MIN.) = AREA-AVERA	GED Fm D Ap =	(INCH/HR) 0.35 0 = 4:	23.27 FEET
PEAK FLOW EFFECTIVE AREA-AVERA TOTAL AREA LONGEST FL	RATE (CFS AREA (ACRI GED FP (II (ACRES) = OWPATH F) ====================================) = ES) = NCH/HR) = ROM NODE ====================================	3.96 1.41 = 0.40 1.4 E 1.0	Tc (MIN.) = AREA-AVERA AREA-AVERAGE 0 TO NODE ========	GED Fm D Ap = 2.0 =====	(INCH/HR) 0.35 0 = 4.	23.27 FEET
PEAK FLOW EFFECTIVE AREA-AVERA TOTAL AREA LONGEST FL END OF STU TOTAL AREA	RATE (CFS AREA (ACRI GED FP (II (ACRES) = OWPATH FI ====================================) = ES) = NCH/HR) = ROM NODE ====================================	3.96 1.41 = 0.40 1.4 2 1.0	Tc(MIN.) = AREA-AVERA AREA-AVERAGE 0 TO NODE ====================================	GED Fm D Ap = 2.0 =====	(INCH/HR) 0.35 0 = 4:	23.27 FEET
PEAK FLOW EFFECTIVE AREA-AVERA TOTAL AREA LONGEST FL END OF STU TOTAL AREA EFFECTIVE	RATE (CFS AREA (ACRI GED FP (II (ACRES) = OWPATH FI E====================================) = ES) = NCH/HR) = ROM NODE RY: = ES) =	3.96 1.41 = 0.40 1.4 2. 1.0 	Tc (MIN.) = AREA-AVERA AREA-AVERAGE 0 TO NODE ====================================	GED Fm D Ap = 2.0 ====== 9 D Fm(I	(INCH/HR) 0.35 0 = 4: ==================================	23.27 FEET
PEAK FLOW EFFECTIVE AREA-AVERA TOTAL AREA LONGEST FL END OF STU TOTAL AREA EFFECTIVE	RATE (CFS AREA (ACRI GED FP (II (ACRES) = OWPATH FI E====================================) = ES) = NCH/HR) = ROM NODE RY: = ES) = NCH/HR)	3.96 1.41 = 0.40 1.4 1.4 1.4 1.41 = 0.40	Tc(MIN.) = AREA-AVERA AREA-AVERAGE 0 TO NODE ====================================	GED Fm D Ap = 2.0 ====== 9 D Fm(I	(INCH/HR) 0.35 0 = 4: ==================================	23.27 FEET
PEAK FLOW EFFECTIVE AREA-AVERA TOTAL AREA LONGEST FL END OF STU TOTAL AREA EFFECTIVE AREA-AVERA	RATE (CFS AREA (ACRI GED Fp(II (ACRES) = OWPATH FI ====================================) = ES) = NCH/HR) = ROM NODE ====================================	3.96 1.41 = 0.40 1.4 1.4 1.41 = 0.40 3.96	Tc (MIN.) = AREA-AVERA AREA-AVERAGE 0 TO NODE ====================================	GED Fm D Ap = 2.0 ====== 9 D Fm(I	(INCH/HR) 0.35 0 = 4: ==================================	23.27 FEET
PEAK FLOW EFFECTIVE AREA-AVERA TOTAL AREA LONGEST FL END OF STU TOTAL AREA EFFECTIVE AREA-AVERA PEAK FLOW ** PEAK FL	RATE (CFS AREA (ACRI GED FP (II (ACRES) = OWPATH FI ====================================) = ES) = NCH/HR) = ROM NODE ======== RY:	3.96 1.41 = 0.40 1.4 2 1.0 	Tc (MIN.) = AREA-AVERA AREA-AVERAGE 0 TO NODE ====================================	GED Fm D Ap = 2.0 ====== 9 D Fm(I D Ap =	(INCH/HR) 0.35 0 = 4: ==================================	23.27 FEET 0.14
PEAK FLOW EFFECTIVE AREA-AVERA TOTAL AREA LONGEST FL END OF STU TOTAL AREA EFFECTIVE AREA-AVERA PEAK FLOW ** PEAK FL STREAM NUMBER	RATE (CFS AREA (ACRI GED FP(I) (ACRES) = OWPATH F) ====================================) = ES) = NCH/HR) = ROM NODE ======== RY:	3.96 1.41 = 0.40 1.4 1.4 1.41 = 0.40 3.96 Intensity (INCH/HR)	Tc(MIN.) = AREA-AVERA AREA-AVERAGE 0 TO NODE ====================================	GED Fm D Ap = 2.0 ====== 9 D Fm(I D Ap =	(INCH/HR) 0.35 0 = 4: ==================================	23.27 FEET ====== 0.14 HEADWATER NODE
PEAK FLOW EFFECTIVE AREA-AVERA TOTAL AREA LONGEST FL END OF STU TOTAL AREA EFFECTIVE AREA-AVERA PEAK FLOW ** PEAK FL STREAM NUMBER	RATE (CFS AREA (ACRI GED FP(I) (ACRES) = OWPATH F) ====================================) = ES) = NCH/HR) = ROM NODE ======== RY:	3.96 1.41 = 0.40 1.4 1.4 1.41 = 0.40 3.96 Intensity (INCH/HR) 3.656	Tc(MIN.) = AREA-AVERA AREA-AVERAGE 0 TO NODE = TC(MIN.) = AREA-AVERAGE AREA-AVERAGE Fp(Fm)	GED Fm D Ap = 2.0 ====== 9 D Fm(I D Ap = Ap 0.35	(INCH/HR) 0.35 0 = 4: 	23.27 FEET ====== 0.14 HEADWATER NODE

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1355

Analysis prepared by:

```
Irvine, CA 92618
* ORANGE COUNTY YOUTH TRANSITION CENTER
* PHASE 2A
* PROPOSED 100-YEAR STORM
*******************
 FILE NAME: YT2A100P.DAT
 TIME/DATE OF STUDY: 18:44 11/12/2024
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
_____
               --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT (YEAR) = 100.00
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 4.00
 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
   WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (n)
   30.0
          20.0 0.018/0.018/0.020
                                0.67
                                      2.00 0.0312 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
  1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth) * (Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
**************
 FLOW PROCESS FROM NODE 1.00 TO NODE
                                     2.00 \text{ TS CODE} = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 423.27
 ELEVATION DATA: UPSTREAM(FEET) = 131.50 DOWNSTREAM(FEET) = 126.88
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.985
 * 100 YEAR RAINFALL INTENSITY (INCH/HR) = 4.163
 SUBAREA To AND LOSS RATE DATA (AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                   Fp
                                            Ap SCS Tc
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
```

```
0.97 0.40 0.350 52 9.98
 CONDOMINIUMS
                    Α
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.350
 SUBAREA RUNOFF (CFS) = 3.51
                  0.97 PEAK FLOW RATE(CFS) =
 TOTAL AREA (ACRES) =
                                            3.51
*************************
 FLOW PROCESS FROM NODE 2.00 TO NODE 2.00 IS CODE =
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<-<-
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 9.98
 RAINFALL INTENSITY (INCH/HR) = 4.16
 AREA-AVERAGED Fm(INCH/HR) = 0.14
 AREA-AVERAGED Fp(INCH/HR) = 0.40
 AREA-AVERAGED Ap = 0.35
 EFFECTIVE STREAM AREA(ACRES) = 0.97
TOTAL STREAM AREA(ACRES) = 0.97
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
*******************
 FLOW PROCESS FROM NODE 1.10 TO NODE 2.00 IS CODE = 21
._____
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
_____
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 302.28
 ELEVATION DATA: UPSTREAM(FEET) = 131.50 DOWNSTREAM(FEET) = 126.88
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.159
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.674
 SUBAREA To AND LOSS RATE DATA (AMC III):
 DEVELOPMENT TYPE/ SCS SOIL AREA
                                 Fρ
                                         Ap SCS
                 GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
    LAND USE
                          0.44 0.40 0.350 52 8.16
 CONDOMINIUMS
                    A
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.350
 SUBAREA RUNOFF (CFS) = 1.80
                0.44 PEAK FLOW RATE(CFS) =
 TOTAL AREA (ACRES) =
************************
 FLOW PROCESS FROM NODE 2.00 TO NODE 2.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<-<-
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES
_____
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION (MIN.) = 8.16
 RAINFALL INTENSITY(INCH/HR) =
 AREA-AVERAGED Fm(INCH/HR) = 0.14
 AREA-AVERAGED Fp(INCH/HR) = 0.40
 AREA-AVERAGED Ap = 0.35
 EFFECTIVE STREAM AREA(ACRES) =
 TOTAL STREAM AREA(ACRES) = 0.44
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
  STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER
  NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR)
                                        (ACRES) NODE
```

				0.40(0.14) 0.40(0.14)			
RAINFALL IN				ENTRATION RAT	ΓΙΟ		
NUMBER 1	Q (CFS) 5.03	Tc (MIN.) 8.16	(INCH/HR) 4.674	Fp(Fm) (INCH/HR) 0.40(0.14) 0.40(0.14)	0.35	(ACRES) 1.2	NODE 1.10
EFFECTIVE A AREA-AVERAG TOTAL AREA(LONGEST FLO	RATE (CFS) AREA (ACRE GED Fp (IN ACRES) = OWPATH FR	= SS) = ICH/HR) = COM NODE	5.10 1.41 = 0.40 1.4	S FOLLOWS: Tc(MIN.) = AREA-AVERAGE AREA-AVERAGEI 0 TO NODE	GED Fm $=$ 2.00	(INCH/HR) 0.35 (INCH/HR)	23.27 FEET.
END OF STUD TOTAL AREA(EFFECTIVE A	Y SUMMAR ACRES) AREA(ACRE GED Fp(IN	XY: = SS) = ICH/HR) =	1.4 1.41 = 0.40	TC (MIN.) = AREA-AVERAGEI AREA-AVERAGEI	9. Fm(IN	.98 ICH/HR)=	
NUMBER 1	Q (CFS) 5.03	Tc (MIN.) 8.16	(INCH/HR) 4.674	Fp(Fm) (INCH/HR) 0.40(0.14) 0.40(0.14)	0.35	(ACRES) 1.2	NODE 1.10

HYDROLOGY REPORT November 2024

Phase 2B

Proposed Conditions

OC YTC Orange County, CA

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1355

Analysis prepared by:

```
* ORANGE COUNTY YOUTH TRANSITION CENTER
* PHASE 2B
* PROPOSED 2-YEAR STORM
*******************
 FILE NAME: YTC2BP.DAT
 TIME/DATE OF STUDY: 17:24 11/11/2024
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
_____
               --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT (YEAR) =
                              2.00
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 4.00
 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) I ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
   WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (n)
NO
    30.0
          20.0 0.018/0.018/0.020
                                0.67
                                      2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth) * (Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
**************
 FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 300.00
 ELEVATION DATA: UPSTREAM(FEET) = 131.80 DOWNSTREAM(FEET) = 128.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.882
    2 YEAR RAINFALL INTENSITY (INCH/HR) = 1.743
 SUBAREA To AND LOSS RATE DATA (AMC I ):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                   Fр
                                           Ap SCS Tc
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
```

MOBILE HOME PARK

A 1.08 0.40 0.250 17 7.88

SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40

SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.250

SUBAREA RUNOFF(CFS) = 1.60

TOTAL AREA(ACRES) = 1.08 PEAK FLOW RATE(CFS) = 1.60

END OF STUDY SUMMARY:

TOTAL AREA(ACRES) = 1.1 TC(MIN.) = 7.88

EFFECTIVE AREA(ACRES) = 1.08 AREA-AVERAGED Fm(INCH/HR) = 0.10

AREA-AVERAGED Fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.250

PEAK FLOW RATE(CFS) = 1.60

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1355

Analysis prepared by:

```
Irvine, CA 92618
* ORANGE COUNTY YOUTH TRANSITION CENTER
* PHASE 2B
* PROPOSED 10-YEAR STORM
*******************
 FILE NAME: YTC2B10P.DAT
 TIME/DATE OF STUDY: 17:30 11/11/2024
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
_____
               --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT (YEAR) = 10.00
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 4.00
 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
   WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (n)
NO
    30.0
          20.0 0.018/0.018/0.020
                                0.67
                                      2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth) * (Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
**************
 FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 300.00
 ELEVATION DATA: UPSTREAM(FEET) = 131.80 DOWNSTREAM(FEET) = 128.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.882
 * 10 YEAR RAINFALL INTENSITY (INCH/HR) = 3.128
 SUBAREA To AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                   Fp
                                           Ap SCS Tc
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
```

MOBILE HOME PARK A 1.08 0.40 0.250 32 7.88 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.250 SUBAREA RUNOFF(CFS) = 2.94 TOTAL AREA(ACRES) = 1.08 PEAK FLOW RATE(CFS) = 2.94

END OF STUDY SUMMARY:
TOTAL AREA(ACRES) = 1.1 TC(MIN.) = 7.88 EFFECTIVE AREA(ACRES) = 1.08 AREA-AVERAGED Fm(INCH/HR) = 0.10 AREA-AVERAGED Fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.250 PEAK FLOW RATE(CFS) = 2.94

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1355

Analysis prepared by:

Fuscoe Engineering, Inc. 15535 Sand Canyon Ave Suite 100

```
Irvine, CA 92618
* ORANGE COUNTY YOUTH TRANSITION CENTER
* PHASE 2B
* PROPOSED 25-YEAR STORM
*******************
 FILE NAME: YTC2B25P.DAT
 TIME/DATE OF STUDY: 17:37 11/11/2024
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
_____
               --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT (YEAR) = 25.00
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 4.00
 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
   WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (n)
NO
    30.0
          20.0 0.018/0.018/0.020
                                0.67
                                      2.00 0.0312 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth) * (Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
**************
 FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 300.00
 ELEVATION DATA: UPSTREAM(FEET) = 131.80 DOWNSTREAM(FEET) = 128.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.882
 * 25 YEAR RAINFALL INTENSITY (INCH/HR) = 3.728
 SUBAREA To AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                   Fp
                                           Ap SCS Tc
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
```

MOBILE HOME PARK A 1.08 0.40 0.250 32 7.88
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.250
SUBAREA RUNOFF(CFS) = 3.53
TOTAL AREA(ACRES) = 1.08 PEAK FLOW RATE(CFS) = 3.53

END OF STUDY SUMMARY:
TOTAL AREA(ACRES) = 1.1 TC(MIN.) = 7.88
EFFECTIVE AREA(ACRES) = 1.08 AREA-AVERAGED Fm(INCH/HR) = 0.10
AREA-AVERAGED Fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.250
PEAK FLOW RATE(CFS) = 3.53

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1355

Analysis prepared by:

```
* ORANGE COUNTY YOUTH TRANSITION CENTER
* PHASE 2B
* PROPOSED 100-YEAR STORM
*******************
 FILE NAME: YT2B100P.DAT
 TIME/DATE OF STUDY: 17:44 11/11/2024
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
_____
               --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT (YEAR) = 100.00
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 4.00
 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
   WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (n)
   30.0
          20.0 0.018/0.018/0.020
                                0.67
                                      2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
  1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth) * (Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
**************
 FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 300.00
 ELEVATION DATA: UPSTREAM(FEET) = 131.80 DOWNSTREAM(FEET) = 128.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.882
 * 100 YEAR RAINFALL INTENSITY (INCH/HR) = 4.767
 SUBAREA To AND LOSS RATE DATA (AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                   Fр
                                           Ap SCS Tc
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
```

MOBILE HOME PARK A 1.08 0.40 0.250 52 7.88

SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40

SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.250

SUBAREA RUNOFF(CFS) = 4.54

TOTAL AREA(ACRES) = 1.08 PEAK FLOW RATE(CFS) = 4.54

END OF STUDY SUMMARY:

TOTAL AREA(ACRES) = 1.1 TC(MIN.) = 7.88

EFFECTIVE AREA(ACRES) = 1.08 AREA-AVERAGED Fm(INCH/HR) = 0.10

AREA-AVERAGED Fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.250

PEAK FLOW RATE(CFS) = 4.54

HYDROLOGY REPORT November 2024

APPENDIX E

FEMA Map

OC YTC Orange County, CA

National Flood Hazard Layer FIRMette

Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards

point selected by the user and does not represent

an authoritative property location.

The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 11/14/2024 at 1:03 AM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.