

October 2, 2024

Travis Cullen **Envicom Corporation** 4165 East Thousand Oaks Blvd, Suite 290 West Lake Village, California, 91362

Re: CITADEL Project No. 7109.1098.0 Limited Phase II Site Investigation Report 24460 Calabasas Road Calabasas, California, 91302

Dear Mr. Cullen:

Citadel EHS (Citadel) is pleased to provide you with this Limited Phase II Site Investigation Report for the above-referenced location.

The Limited Phase II Site Investigation was conducted in general accordance with Citadel's Proposal 7109.1098.P, dated August 21, 2024, and a mutually agreed upon scope of work.

If, after your review, you have any questions or require additional information, please do not hesitate to telephone me at (818) 246-2707.

Sincerely, CITADEL EHS

Mark Drollinger

Mark Drollinger, M. Eng., CSP Principal, Engineering and Environmental Sciences

Enclosure

Envicom Corporation 4165 East Thousand Oaks Blvd, Suite 290 West Lake Village, California, 91302

Limited Phase II Site Investigation Report

October 2, 2024

Citadel Project Number 7109.1098.0

24460 Calabasas Road Calabasas, California 91302

www.CitadelEHS.com

LIMITED PHASE II SITE INVESTIGATION REPORT ENVICOM CORPORATION 4165 EAST THOUSAND OAKS BLVD, SUITE 290 WESTLAKE VILLAGE, CALIFORNIA 91362 OCTOBER 2, 2024

Table of Contents

1.0	INTRODUCTION1	
2.0	BACKGROUND	
3.0	PHASE II INVESTIGATION ACTIVITIES	
4.0	INVESTIGATION RESULTS.24.1Soil Analytical Results.24.1.1Heavy Metals24.1.2Organochlorine Pesticides.34.1.3Chlorinated Herbicides34.2Data Quality Evaluation3	
5.0	CONCLUSIONS AND RECOMMENDATIONS4	
6.0	LIMITATIONS5	
7.0	REFERENCES CITED	
8.0	SIGNATURES7	

FIGURES

Figure 1	Site Location Map
Figure 2	Site Map

TABLES

Table 1	Summary of Soil Analytical Results – Metals
Table 2	Summary of Soil Analytical Results - Organochlorine Pesticides
Table 3	Summary of Soil Analytical Results – Chlorinated Herbicides

APPENDICES

- Appendix A Health and Safety Plan
- Appendix B DigAlert Ticket
- Appendix C Citadel Field Notes
- Appendix D Citadel Boring Logs
- Appendix E Laboratory Reports and Chain of Custody Documentation

1.0 INTRODUCTION

Citadel EHS (Citadel) has prepared this Limited Phase II Site Investigation Report (Report) for the property located at 24460 Calabasas Road in the City of Calabasas, California (Site). In June 2024, Citadel prepared a Phase I Environmental Site Assessment (Phase I) for the Site and recommended a Phase II Site Investigation (Phase II) be conducted to evaluate the shallow soil for the presence of pesticides and herbicides based on the historical operation of a nursery and landscaping business at the Site. The Assessor's Parcel Numbers (APNs) associated with the Site are 2069-009-008 and 2069-009-020. A Site Location Map is included as Figure 1.

2.0 BACKGROUND

2.1 Site Description

The Site was formerly occupied by Sperling Nursery and Landscaping from approximately 1975 to 2017. There are no records of Site occupancy or previous land-use prior to 1975. The Site is currently unoccupied and consists of vacant land, concrete pads and brick pathways, overgrown vegetation, shrubs, trees, and both paved and unpaved access roads. The Site is bounded by a Cadillac automobile dealership to the east, a BMW automobile dealership to the West, residential homes to the South, and Calabasas Road to the North.

3.0 PHASE II INVESTIGATION ACTIVITIES

The scope of work was implemented in general accordance with Citadel's Proposal 7109.1098.P, dated August 21, 2024. The scope of work included advancing ten borings in accessible areas of the Site where historical nursery and landscaping operations likely occurred and collecting soil samples.

3.1 **Pre-Field Activities**

The following pre-field activities were conducted in advance of starting field activities:

- Prepared a Site-specific Health and Safety Plan (HASP; Appendix A);
- Coordinated with the Client for scheduling and scope implementation; and
- Notified Dig Alert at least 48 hours prior to the start of field activities to mark the Site for underground utilities (Appendix B).

3.2 Boring Advancement

On September 9, 2024, Citadel advanced 10 borings (B1 through B10) each to a depth of 2 feet bgs using a hand auger. Soil was visually evaluated and described using the Unified Soil Classification System (USCS) and field screened for VOCs using a handheld photo-ionization detector (PID). Boring B4 was shifted approximately 15 feet to the northeast from the proposed location due to the presence of a concrete pad.

A Site Map showing the approximate boring locations is presented as Figure 2. Citadel's field notes and boring logs are presented in Appendix C and D, respectively.

3.3 Soil Sampling

Twenty soil samples were collected from boring locations B1 through B10 at approximately 0.5 foot and 2 feet bgs. The samples were collected into laboratory-provided glass jars. Soil samples were

stored on ice and transported under chain-of-custody procedures to Enthalpy Analytical (Enthalpy), of Orange, California, a State-certified fixed-based laboratory.

The soil samples collected from 0.5 foot bgs were analyzed for Title 22 metals by United States Environmental Protection Agency (USEPA) Methods 6010B/7471, organochlorine pesticides (OCPs) by USEPA Method 8081A, and chlorinated herbicides by USEPA Method 8151A.

The samples collected from 2 feet bgs were initially placed on hold at the laboratory pending results of the 0.5 foot bgs soil samples. Based on results of the 0.5 foot bgs samples, additional samples were analyzed as follows:

- The sample collected from boring B8 at 0.5 foot bgs reported an arsenic concentration of 14 milligrams per kilogram (mg/kg), which is above the background level of 12 mg/kg. To evaluate the vertical extent of arsenic in soil at this location, the sample collected from boring B8 at 2 feet bgs was analyzed for arsenic;
- The samples collected from borings B1, B4, B7, and B8 at 0.5 foot bgs reported chromium concentrations above the soluble threshold limit concentration (STLC) of 50 mg/kg for waste classification purposes. Additional waste extraction testing was conducted on each sample to determine waste classification; and
- The samples collected from borings B1, B4, and B10 at 0.5 foot bgs reported one or more OCP compounds above the laboratory reporting limit (RL). To evaluate the vertical extent of OCPs at these locations, the samples collected from 2 feet bgs were analyzed for OCPs.

3.4 Deviations from Scope

There were no deviations from scope that would significantly impact the findings of this subsurface investigation.

4.0 INVESTIGATION RESULTS

4.1 Soil Analytical Results

Soil analytical results were compared to the San Francisco Bay Regional Water Quality Control Board (SFBRWQCB) environmental screening levels for commercial land use (Commercial ESLs; SFBRWQCB, 2019). Metals results were also compared to the Southern California Background Metals Concentrations (Background Levels; Bradford, et al, 1996 and DTSC, 2018).

Tables 1, 2, and 3 summarize the soil analytical results. The laboratory analytical reports are provided in Appendix E.

4.1.1 Heavy Metals

<u>Arsenic</u>

Arsenic was detected above the Commercial ESL of 0.36 mg/kg in each of the 11 samples analyzed at concentrations ranging from 5.4 milligrams per kilogram (mg/kg) at boring B2 to 14.0 mg/kg at boring B8 (0.5 and 2 feet bgs). The Department of Toxic Substances Control (DTSC) has acknowledged that the strict use of established screening levels for arsenic is impractical due to naturally occurring background concentrations and has set the acceptable level of arsenic in soil (Background Level) at 12 mg/kg for sites in California (DTSC, 2018). Arsenic was detected above the Background Level in both the 0.5 and 2 feet bgs samples collected from boring B8.

<u>Chromium</u>

Chromium was detected above the laboratory reporting limit (RL), but below the Commercial ESL in each of the ten samples analyzed at concentrations ranging from 17 mg/kg at boring B2 to 64 mg/kg at boring B7. Chromium was detected above 50 mg/kg in four samples (B1, B4, B7, and B8), triggering additional STLC wet extraction test (WET) analysis required for waste classification purposes. The STLC results for each of the four chromium samples ranged from 18 micrograms per liter (μ g/L) at boring B8 to 120 μ g/L at boring B1, which is well below the non-hazardous classification limit of 5,000 μ g/L, indicating the soil will be classified as non-hazardous.

<u>Other Metals</u>

Additional metals were detected above the RL, but did not exceed the established Background Levels or Commercial ESLs.

A summary of the metals results is presented in Table 1.

4.1.2 Organochlorine Pesticides

At least one OCP was detected in four of the 13 samples analyzed. A summary of the OCP detections is as follows:

- 4,4-Dichlorodiphenyldichloroethylene (DDE) was detected above the RL in three of the 13 samples analyzed at concentrations ranging from 0.0099 mg/kg in boring B4 at 0.5 foot bgs to 0.1 mg/kg in boring B1 at 0.5 foot bgs. 4,4-DDE was not detected above the Commercial ESL of 8.3 mg/kg in any of the analyzed samples;
- 4,4-Dichlorodiphenyltrichloroethane (DDT) was detected above the RL in four of the 13 samples analyzed at concentrations ranging from 0.0035 mg/kg in boring B1 at 2 feet bgs to 0.039 mg/kg in boring B1 at 0.5 foot bgs. 4,4-DDT was not detected above the Commercial ESL of 8.5 mg/kg in any of the analyzed samples;
- Chlordane was detected above the RL in two of the 13 samples analyzed at concentrations ranging from 0.029 mg/kg in boring B4 at 0.5 foot bgs and 0.140 mg/kg in boring B1 at 0.5 foot bgs. Chlordane was not detected above the Commercial ESL of 2.2 mg/kg in any of the analyzed samples.

No other OCPs were detected above the RLs in the analyzed samples. A summary of the OCP results is presented in Table 2.

4.1.3 Chlorinated Herbicides

Pentachlorophenol was the only chlorinated herbicide detected above the RLs in the 10 sampled analyzed. Pentachlorophenol was detected at a concentration of 0.0146 mg/kg in boring B10 at 0.5 foot bgs, which is well below the Commercial ESL of 4.0 mg/kg.

No other chlorinated herbicides were detected above RL in any other samples. A summary of the chlorinated herbicide results is presented in Table 3.

4.2 Data Quality Evaluation

Level II QA/QC procedures were observed by the analytical laboratory, Enthalpy Analytical (Enthalpy) following receipt of samples at the laboratory. Enthalpy noted several data qualifiers in the final analytical reports, including the following:

- J = The reported value is an estimate; and
- # = CCV drift is outside limits; average CCV drift is within limits per method.

The laboratory analytical report is provided in Appendix E.

5.0 CONCLUSIONS AND RECOMMENDATIONS

The scope of work was limited to shallow soil sample collection in accessible areas of the Site to determine if impacts from historical use as a plant nursery and landscaping business would warrant further investigation and to assist with forecasting potential disposal and off-hauling costs associated with the planned redevelopment of the Site. Based on the completed scope of work and soil samples analyzed, a summary of findings is as follows:

- Multiple heavy metals were detected above RLs, but below their respective Commercial ESLs or Background Levels, except for at one location. At boring B8, located in the eastern portion of the Site, arsenic was detected at 14 mg/kg in both the 0.5 and 2 feet bgs samples, which is slightly above the Background Level of 12 mg/kg;
- Chromium was detected above the concentration to require additional STLC analysis at four locations (B1, B4, B7, and B8) in the northern and eastern portions of the Site. Results of the STLC analysis for each sample indicated the soil will be classified as non-hazardous;
- At least one OCP compound was detected above RLs in the 0.5 foot bgs sample collected at three locations (B1, B4, and B10) in the central portion of the Site. The 2 foot bgs samples collected and analyzed from each of these locations reported lower concentrations of OCPs when compared to the 0.5 foot samples. OCP concentrations were below Commercial ESLs in each of the analyzed samples; and
- Chlorinated herbicides were not detected above RLs in the 0.5 foot bgs samples collected, except for at one location. At boring B10, located in the southern portion of the investigation area, pentachlorophenol was detected at 0.0146 mg/kg, which is well below the Commercial ESL of 4.0 mg/kg.

Based on results of the analyzed soil samples, soil generated during grading for planned Site redevelopment activities should be classified as non-hazardous and the soil concentrations are below the established Commercial ESLs and/or Background Levels, except for arsenic at one location in the eastern portion of the Site. Citadel recommends no further investigation for the Site. However, Citadel does recommend a soil management plan be prepared if soil grading is planned in the eastern portion of the Site near boring B8 where arsenic concentrations in soil were reported above the Commercial ESL.

LIMITED PHASE II SITE INVESTIGATION REPORT ENVICOM CORPORATION 4165 EAST THOUSAND OAKS BLVD, SUITE 290 WESTLAKE VILLAGE, CALIFORNIA 91362 OCTOBER 2, 2024

6.0 LIMITATIONS

The services performed by Citadel Environmental Services, Inc. ("Citadel"), d.b.a. Citadel EHS, in connection with this Report were performed in accordance with generally and currently accepted engineering practices and principles; provided, however, Citadel completed such services as directed by the Client and the recommendations described in this Report are therefore limited in purpose and scope. The procedures and methodologies used by Citadel in its performance of services, and the recommendations contained herein, are not intended to meet the requirements under any specific laws or regulatory guidelines unless expressly set forth in the Proposal.

The recommendations and conclusions set forth in this Report are based on information and data available to Citadel during the course of its performance of the services. Citadel relied on the information and data provided by or on behalf of Client, including, if applicable, historical and present operations, conditions and test data, and Citadel assumed all such information and data was correct and complete. Citadel shall not be liable for any damages or losses resulting from inaccuracies of, or omissions from, information or data provided by or on behalf of the Client, any interested third-parties, or any federal, state, county, or local governmental authority, or otherwise available in the public domain.

The findings and recommendations presented in this Report are based upon observations of present conditions and may not necessarily indicate future conditions. No conclusions should be construed or inferred other than those expressly stated in this Report. EXCEPT FOR ANY WARRANTIES EXPRESSLY SET FORTH IN THE PROPOSAL OR OTHER WRITTEN AGREEMENT BETWEEN CITADEL AND CLIENT, CITADEL MAKES NO WARRANTIES HEREUNDER WITH RESPECT TO ANY INFORMATION CONTAINED IN THIS REPORT, EXPRESS OR IMPLIED, AND CITADEL HEREBY DISCLAIMS ALL OTHER WARRANTIES.

All testing and remediation methods have reliability limitations, and no method nor number of sampling locations can guarantee that a hazard will be discovered if contamination or other evidence of the hazard is not encountered within the performance of the services as authorized. Reliability of testing or remediation varies according to the sampling frequency and other service variables that were selected by Client. Citadel shall not be at fault or liable for any such limitations.

The information and opinions rendered in this report are exclusively for use and reliance by the Client. The information contained herein may not be used, disclosed, or copied without written permission of the Client and may not be relied upon without the written permission of Citadel.

LIMITED PHASE II SITE INVESTIGATION REPORT ENVICOM CORPORATION 4165 EAST THOUSAND OAKS BLVD, SUITE 290 WESTLAKE VILLAGE, CALIFORNIA 91362 OCTOBER 2, 2024

7.0 REFERENCES CITED

- Bradford, G.R., Chang, A.C., Page, A.L., Bakhtar, D., Frampton, J.A., and Wright, H., 1996, Background Concentrations of Trace and Major Elements in California Soils, Kearney Foundation of Soil Sciences Special Report, Division of Agriculture and Natural Resources, University of California.
- Department of Toxic Substances Control (DTSC), 2018. Determination of a Southern California Regional Background Arsenic Concentration in Soil.
- San Francisco Bay Regional Water Quality Control Board (SFBRWQCB), 2019. Direct Exposure Human Health Risk Levels for Commercial/Industrial Shallow Soil Exposure. August (Rev. 2).

CITADEL PROJECT NO. 7109.1098.0

LIMITED PHASE II SITE INVESTIGATION REPORT ENVICOM CORPORATION 4165 EAST THOUSAND OAKS BLVD, SUITE 290 WESTLAKE VILLAGE, CALIFORNIA 91362 OCTOBER 2, 2024

8.0 SIGNATURES

Report Prepared by:

Doug Whichard

Doug Whichard Senior Scientist, Engineering and Environmental Sciences

Reviewed by:

Mark Drollinger

Mark Drollinger, M. Eng, CSP Principal, Engineering and Environmental Sciences

Figures

Tables

Table 1Summary of Soil Analytical Results - Metals24460 Calabasas Road

Calabasas, California

Boring ID	Sample Depth	Date	Arsenic ^{Note 3}	Barium	Beryllium	Cadmium	Chromium ^{Note 4}	Chromium - STLC Extraction	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
	(feet bgs)		(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(µg/L)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
SFBRW	QCB Comm	ercial ESL Note 1	0.31	220,000	230	1,100	160		350	47,000	320	190	5,800	11,000	5,800	5,800	12	5,800	350,000
Southern Californi	a Background A	Aetals in Soil ^{Note 2}	12	509	1.28	0.36	122		15	28.7	24	0.3	1.3	57	0.06	0.8	0.56	112	149
Thresho	ld to Require	STLC Analysis	50	1,000	7.5	10	50		800	250	50	2	3,500	200	10	50	70	240	2,500
STLC/TCLP Non-H	lazardous Cla	ssification Limit						5,000											
B1	0.5	9/9/2024	7.4	250	0.56	4.9	57	120 J	6.3	38	14	<0.059	9.4	71	0.92 J	0.26 J	<0.92	110	120
B2	0.5	9/9/2024	5.4	86	0.33 J	0.91	17		5.2	21	9.8	0.073 J	2.0	15	<0.86	<0.17	<0.91	38	48
В3	0.5	9/9/2024	6.4	240	0.46 J	3.6	43		5.4	26	5.9	<0.056	7.7	48	<0.90	<0.17	<0.95	85	68
B4	0.5	9/9/2024	7.7	190	0.49	3.8	52	110 J	5.9	38	12	0.061 J	8.7	58	<0.86	0.22 J	<0.90	110	430
B5	0.5	9/9/2024	5.9	160	0.30 J	1.2	20		3.9	13	5.2	<0.056	3.3	22	<0.86	<0.17	<0.91	40	36
B6	0.5	9/9/2024	7.0	160	0.36 J	2.0	24		3.4	13	3.2	<0.061	3.5	22	<0.89	<0.17	<0.94	51	34
B7	0.5	9/9/2024	7.6	260	0.59	5.5	64	19 J	6.4	39	4.4	<0.059	11	77	<0.86	0.19 J	<0.91	140	88
DO	0.5	9/9/2024	14	400	0.49	7.6	55	18 J	3.4	47	3.8	0.095 J	9.9	98	<0.87	0.18 J	<0.92	150	100
B8	2	9/9/2024	14																
B9	0.5	9/9/2024	5.6	200	0.35 J	3.7	46		3.9	47	14	0.11 J	6.2	49	<0.86	0.50	<0.91	88	110
B10	0.5	9/9/2024	6.6	250	0.44 J	3.7	44		5.4	32	12	0.066 J	8.5	52	<0.90	0.18 J	<0.95	87	95

Notes:

Samples analyzed using USEPA Method 6010B and Method 7471A for Mercury.

Detections above the laboratory reporting limit are emboldened.

Yellow shaded values exceed the SFBRWQCB commercial ESL and/or the Southern California Background Level (Commercial ESL is excluded from consideration for arsenic; background level is used instead). Values shown in red font exceed the threshold which triggers STLC analysis for waste characterization.

Note 1 SFBRWQCB, Direct Exposure Human Health Risk Levels for Commercial/Industrial Shallow Soil Exposure, 2019 (Rev. 2).

Note 2 Bradford, G.R., Chang, A.C., Page, A.L., Bakhtar, D., Frampton, J.A., and Wright, H., 1996, Background Concentrations of Trace and Major Elements in California Soils,

Kearney Foundation of Soil Sciences Special Report, Division of Agriculture and Natural Resources, University of California.

Note 3 Department of Toxic Substances Control (DTSC). 2018. Determination of a Southern California Regional Background Arsenic Concentration in Soil.

Note 4 ESL value shown is the Tier 1 ESL for total chromium.

SFBRWQCB = San Francisco Bay Regional Water Quality Control Board.

bgs = Below ground surface.

mg/kg = Milligrams per kilogram.

 μ g/L = Micrograms per liter.

STLC = Soluble Threshold Limit Concentration.

ESL = Environmental Screening Level.

<0.010 = Not detected above the noted laboratory method detection limit.

J = The reported value is an estimate.

Table 2 Summary of Soil Analytical Results - Organochlorine Pesticides 24460 Calabasas Road Calabasas, California

Boring ID	Sample Depth	Date	4,4-DDE	4,4-DDT	Chlordane	Other Organochlorine Pesticides
	(feet bgs)		(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
	SFBRWQCB Com	mercial ESLs Note 1	8.3	8.5	2.2	Varies
R 1	0.5	9/9/2024	0.100	0.039	0.140	
Ы	2	9/9/2024	0.025	0.0035 #, J	<0.026	
B2	0.5	9/9/2024	<0.0032	<0.0027	<0.028	
B3	0.5	9/9/2024	<0.0032	<0.0027	<0.028	
R /	0.5	9/9/2024	0.0099	0.035	0.029 J	
D4	2	9/9/2024	<0.0032	<0.0027	<0.028	
В5	0.5	9/9/2024	<0.0032	<0.0027	<0.028	ND
B6	0.5	9/9/2024	<0.0031	<0.0026	<0.027	
B7	0.5	9/9/2024	<0.0031	<0.0027	<0.027	
B8	0.5	9/9/2024	<0.0031	<0.0026	<0.027	
В9	0.5	9/9/2024	<0.0031	<0.0026	<0.027	
R10	0.5	9/9/2024	<0.0031	0.0063	<0.027	
DIU	2	9/9/2024	<0.0032	<0.0027	<0.028	

Notes:

Samples analyzed using USEPA Method 8081A.

Detections above the laboratory reporting limit are emboldened.

Note 1 SFBRWQCB, Direct Exposure Human Health Risk Levels for Commercial/Industrial Shallow Soil Exposure, 2019 (Rev. 2).

SFBRWQCB = San Francisco Bay Regional Water Quality Control Board.

ESL = Environmental Screening Level.

DDE = Dichlorodiphenyldichloroethylene.

DDT = Dichlorodiphenyltrichloroethane.

-- = No value established.

<0.010 = Not detected above the noted laboratory reporting limit.

ND = Not detected above the laboratory reporting limit.

bgs = Below ground surface.

mg/kg = Milligrams per kilogram.

J = The reported value is an estimate.

= CCV drift outside limits; average CCV drift within limits per method.

Table 3Summary of Soil Analytical Results - Chlorinated Herbicides24460 Calabasas RoadCalabasas, California

Boring ID	Sample Depth	Date	Pentachlorophenol	Other Chlorinated Herbicides
	(feet bgs)		mg/kg	mg/kg
	SFBRWQCB C	Commercial ESLs Note 1	4.0	Varies
B1	0.5	9/9/2024	<0.00250	
B2	0.5	9/9/2024	<0.00250	
B3	0.5	9/9/2024	<0.00250	
B4	0.5	9/9/2024	<0.00250	
В5	0.5	9/9/2024	<0.00250	
B6	0.5	9/9/2024	<0.00250	
В7	0.5	9/9/2024	<0.00250	
B8	0.5	9/9/2024	<0.00250	
В9	0.5	9/9/2024	<0.00250	
B10	0.5	9/9/2024	0.0146	

Notes:

Samples analyzed using USEPA Method 8151A.

Detections above the laboratory reporting limit are emboldened.

Note 1 SFBRWQCB, Direct Exposure Human Health Risk Levels for Commercial/Industrial Shallow Soil Exposure, 2019 (Rev. 2).

SFBRWQCB = San Francisco Bay Regional Water Quality Control Board.

ESL = Environmental Screening Level.

<0.010 = Not detected above the noted laboratory reporting limit.

ND = Not detected above the laboratory reporting limit.

bgs = Below ground surface.

mg/kg = Milligrams per kilogram.

Appendix A Health and Safety Plan

Envicom Corporation 4165 East Thousand Oaks Boulevard, Suite 290 Westlake Village, California 91362

Health and Safety Plan

September 9, 2024

Citadel Project Number 7109.1098.0

24460 Calabasas Road Calabasas, California, 91302

www.CitadelEHS.com

1725 Victory Boulevard, Glendale, California 91201 / P 818 246-2707 / www.CitadelEHS.com

Table of Contents

1.0 SITE DESCRIPTION
2.0 BACKGROUND
3.0 SAFETY POLICY
4.0 WORK DESCRIPTION
5.0 KEY PROJECT PERSONNEL AND RESPONSIBILITIES2
PROJECT MANAGER2
SITE SAFETY OFFICER/PROJECT MONITOR2
CONTRACTOR AND SUBCONTRACTOR PERSONNEL
6.0 SITE CONTROL MEASURES
7.0 STANDARD OPERATING PROCEDURES
GENERAL SAFETY
COMMUNICATION PROCEDURES
FIELD VEHICLES
MANUAL LIFTING4
HEAT EXPOSURE4
COVID-19 FIELD WORK PREVENTION GUIDELINES5
DUST MONITORING
8.0 EXPOSURE MONITORING
ACTION LEVELS AND EXPOSURE LIMITS8
9.0 PERSONAL PROTECTIVE EQUIPMENT
10.0 DECONTAMINATION PROCEDURES9
11.0 EMERGENCY PROCEDURES
12.0 SIGNATURES
SIGNATURE PAGE

1.0 SITE DESCRIPTION

Citadel EHS (Citadel) has prepared this Health and Safety Plan (HASP) for Envicom Corporation (Client) for use during soil disturbing activities for the property located at 24460 Calabasas Road in the City of Calabasas, California (Site). Activities conducted under Citadel's direction at the Site will be compliant with applicable Occupational Safety and Health Administration (OSHA) regulations, particularly those in Title 8 California Code of Regulations (CCR) 5192, and other applicable federal, state, and local laws, regulations, and statutes. A copy of this HASP will be kept onsite during scheduled field activities.

2.0 BACKGROUND

In June 2024, Citadel submitted a Phase I Environmental Site Assessment (Phase I ESA) for the Site. Based on the findings, Citadel identified the following recognized environmental condition (REC).

• Historical sources indicate that the Site was previously developed as a nursery and landscaping business situated on sloped terrain. Historical use of landscaping materials on the Site represents a REC based on the potential use and storage of pesticides

Based on the REC, Citadel recommended conducting a Limited Phase II Site Investigation consisting of the collection of representative soil shallow samples to evaluate the near surface for the presence of organochlorine pesticides, chlorinated herbicides, and heavy metals.

3.0 SAFETY POLICY

Safety will be given primary importance in the planning and operation of this project. The safety policy shall strictly adhere to current EPA and OSHA standards, and local government agency requirements having authority over the project as regards to Client employees, as well as to public safety. Some of the applicable health and safety standards are listed below:

- 40 Code of Federal Regulations Part 261, Identification and Listing of Hazardous Waste;
- Health and Safety Code, Division 20, Chapter 6.5, California Hazardous Waste Control Act;
- Title 8, California Code of Regulations, Section 1510, Safety Instruction for Employees;
- Title 8, California Code of Regulations, Section 3380, Personal Protective Equipment;
- Title 8, California Code of Regulations, Section 5144, Respiratory Protection;
- Title 8, California Code of Regulations, Section 5194, Hazard Communication; and
- Title 22, California Code of Regulations, Division 4.5, Environmental Health Standards for the Management of Hazardous Waste.

Each subcontracting firm will assume primary responsibility for the safety of their own work with respect to their employees. Subcontractors will assume the duty to comply with OSHA, and all other federal, state and local regulations.

The subcontractors' work will be monitored by Citadel staff for implementation of this HASP, while adhering to their own safety program. The Client will retain the authority and power to enforce this HASP during the progress of the work. Any deficiencies in subcontractor safe work practices will be brought to the attention of the subcontractor firm's supervisor for immediate corrective

action. If the subcontractor fails or refuses to take corrective action promptly, a stop work order shall be issued and the subcontractor or the subcontractor employee may be removed from the Site.

4.0 WORK DESCRIPTION

Citadel will advance a total of 10 shallow borings across the sloped landscape of the Site to a depth of two feet below ground surface. Soil samples will be collected from six inches and two feet bgs from each shallow boring. The borings will be advanced using a hand auger. During hand auguring, soil will be visually evaluated and described using the Unified Soil Classification System and recorded in the field notes.

The soil samples will be labeled, placed in a chilled cooler, handled under Chain-of-Custody (COC) protocols, and transported to a State-certified laboratory for analysis. Soil samples collected at approximately six-inches will be analyzed for organochlorinated herbicides by United States Environmental Protection Agency (EPA) Method 8081A, organophosphorus pesticides by EPA Method 8141A, and Title 22 metals by EPA Methods 6010B/7471. The soil samples from two feet bgs will be placed on hold at the laboratory and will be considered for analysis only if warranted based on results of the shallow samples.

5.0 KEY PROJECT PERSONNEL AND RESPONSIBILITIES

Project Manager Site Safety Officer (SSO)/Project Monitor Doug Whichard (Citadel) Brendan Miller (Citadel) Quinn Elizondo (Citadel)

PROJECT MANAGER

The Project Manager has the ultimate responsibility for the health and safety of personnel at the Site. The Project Manager is responsible for:

- Ensuring that project personnel review and understand the requirements of this HASP;
- Keeping on-site personnel informed of the expected hazards and appropriate protective measures at the Site; and
- Providing resources necessary for maintaining a safe and healthy work environment.

SITE SAFETY OFFICER/PROJECT MONITOR

The SSO is responsible for enforcing the requirements of this HASP once site work begins. The SSO has the authority to immediately correct situations where noncompliance with this HASP is noted and to immediately stop work in cases where an immediate danger to site workers or the environment is perceived. Responsibilities of the SSO also include:

- Obtaining and distributing PPE and air monitoring equipment necessary for this project;
- Limiting access at the Site to authorized personnel;
- Communicating unusual or unforeseen conditions at the Site to the Project Manager;
- Supervising and monitoring the safety performance of site personnel to evaluate the effectiveness of health and safety procedures and correct deficiencies;
- Conducting daily tailgate safety meetings before each day's activities begin; and
- Conducting a site safety inspection prior to the commencement of each day's field activities.

CONTRACTOR AND SUBCONTRACTOR PERSONNEL

Subcontractor personnel are expected to comply with the minimum requirements specified in this HASP. Failure to do so may result in the dismissal of the subcontractor or any of the subcontractor's workers from the job site. Subcontractors may employ health and safety procedures that afford them a greater measure of personal protection than those specified in this plan as long as they do not pose additional hazards to themselves, the environment, or others working in the area.

6.0 SITE CONTROL MEASURES

The SSO or Project Manager has been designated to coordinate access and security on site. The Client is responsible for general Site safety and each on-Site contractor must comply with their site-specific safety plan.

7.0 STANDARD OPERATING PROCEDURES

GENERAL SAFETY

- Maintain good housekeeping at all times in all project work areas.
- Check the work area to determine what problems or hazards may exist.
- Designate specific areas for the proper storage of materials.
- Store tools, equipment, materials, and supplies in an orderly manner.
- Provide containers for collecting trash and other debris.
- Clean up all spills quickly.
- Report unsafe conditions or unsafe acts to your supervisor immediately.
- Report all occupational illnesses, injuries, and vehicle accidents.
- Do not wear loose clothing, wristwatches, and other loose accessories when within arm's reach of moving machinery.
- Emergency exits and evacuation areas should be clearly marked during work activities.
- Personnel fall protection is required when climbing to perform maintenance six feet or higher above ground.
- Inspect hand tools and use proper PPE.
- Ensure proper grounding and guarding of equipment.
- Keep hands and fingers out of pinch points.
- Use good ergonomic posturing when working with heavy items.

COMMUNICATION PROCEDURES

Due to the close proximity of all field crew members, the necessity for radio communication is not necessary.

The following standard hand signals will be used:

Hand drawn across throat	Cease operation immediately
Hand gripping throat	Out of air, cannot breathe
Grip partner's wrist or both hands around waist	Leave area immediately
Hands on top of head	Need assistance
Thumbs up	OK, I am alright, understood
Thumbs down	No, negative
Grip partner's wrist or both hands around waist Hands on top of head Thumbs up Thumbs down	Leave area immediately Need assistance OK, I am alright, understood No, negative

FIELD VEHICLES

- Equip vehicles with emergency supplies and equipment.
- Maintain both a first aid kit and fire extinguisher in the field vehicle at all times.
- Utilize a rotary beacon on vehicle if working adjacent to active roadway.
- Always wear seatbelt while operating vehicle.
- Tie down loose items.

MANUAL LIFTING

- Personnel shall seek assistance when performing manual lifting tasks that appear beyond their physical capabilities.
- Assess the situation before lifting, ensure good lifting and body positioning practices, and ensure good carrying and setting down practices.

HEAT EXPOSURE

- Limit exposure to the sun or take extra precautions when the UV index rating is high.
- Take lunch and breaks in shaded areas.
- Create shade by using umbrellas, tents, and canopies.
- Wear proper clothing: long sleeved shirts with collars, long pants, and UV-protective sunglasses or safety glasses.
- Apply sunscreen generously to all exposed skin surfaces at least 20 minutes before exposure.
 Re-apply sunscreen at least every 2 hours, and more frequently when sweating or performing activities where sunscreen may be wiped off.
- Communicate any concerns regarding heat stress to a supervisor.
- Keep hydrated throughout the day (about 4 cups per hour).
- OHSA's Heat Index:

CITADEL PROJECT NO. 7109.1098.0

HEALTH AND SAFETY PLAN 24460 CALABASAS ROAD CALABASAS, CALIFORNIA, 91302 SEPTEMBER 9, 2024

OHER HAZARDS

<u>Unknown Subsurface Structures.</u> Low to Medium Hazard. If any unknown subsurface structures such as USTs, clarifiers, vaults, conduit, Transite pipe, piping, or construction debris are encountered during excavation, all work will stop in the immediate vicinity of the encountered structure and the Contractor and SSO immediately notified.

<u>Utilities (Under Ground and Above Ground)</u>: Low Hazard. All boring locations will be hand drilled to approximately five feet bgs and stop work will be enforced if any utilities are encountered.

Biological Hazards: Low to Medium Hazard. Beware of spiders, insects and other possible animals.

<u>Site Instability:</u> Low to Medium Hazard. The Site will be inspected prior to equipment placement and closely monitored. Any settling of the equipment will cause the work to stop immediately.

Equipment Refueling: Low Hazard. Equipment shall not be refueled with the engine running. Cigarettes, open flames, or other ignition sources are not allowed within 50 feet of the fueling location.

Personnel Injury: Upon notification of an injury, the Project Field Leader should evaluate the nature of the injury, and the affected person should be decontaminated to the extent possible prior to movement. The Project Field Leader shall initiate the appropriate first aid, and contact should be made for an ambulance and with the designated medical facility (if required).

<u>Fire/Explosion</u>: The fire department shall be alerted, and all personnel moved to a safe distance from the involved area.

Other Equipment Failure: If any other equipment on site fails to operate properly, the Project Team Leader shall be notified and then determine the effect of this failure on continuing operations on site. If the failure affects the safety of personnel or prevents completion of the Work Plan tasks, work will cease until the situation is evaluated and appropriate actions taken.

COVID-19 FIELD WORK PREVENTION GUIDELINES

The following guidelines were prepared to prevent COVID-19 transmission while performing essential field work activities at the Site.

- Stay at least six feet from others whenever possible. Avoid, or at least minimize close contact with others. Close contact means being within six feet of someone else for more than 15 minutes. By CDC guidelines, being in close contact for extended periods of time can greatly increase your risk of exposure even with face covering. Keep your distance even when wearing face covering or PPE.
- 2. Wear face covering in public and anytime you will interface with others, regardless of time. Distance and face covering are likely the two best methods available to minimize exposures.
- 3. Wash your hands frequently and avoid touching your face, nose and mouth with unwashed hands. The wearing of gloves will not fully protect you from COVID-19. Even when you wear gloves for protection against chemicals, wash hands frequently to minimize exposure. Be careful when putting on and taking off PPE to avoid contamination of hands in the process and then touching face, nose or mouth with unwashed hands. Do not rely on hand sanitizers choose to use soap and water as much as possible.

- 4. Clean and disinfect surfaces you come into contact and minimize touching commonly used surfaces whenever possible. Cleaning and disinfecting surfaces would not be as important if everyone were wearing face covering and washing their hands more regularly. But because individual behaviors vary quite a bit, we need to do what we can to protect ourselves and others by routinely cleaning and disinfecting the things we touch. How often will depend on how often you touch a surface or object and whether others are likely to come into contact with it as well. Cleaning and disinfecting helps reduce exposure, but don't rely on it as a replacement for distancing, face covering and hand washing.
- 5. Monitor your own health for COVID-19 symptoms and stay at home, away from others, if symptoms develop. The sooner you self-isolate, the more you lessen the chance of spreading it to others, regardless of whether it is COVID-19, the flu or some other contagion.

DUST MONITORING

SCAQMD requires that Rule 403 for Fugitive Dust be followed to reduce the amount of particulate matter entrained into ambient air as a result of normal construction activities. This rule is intended to limit the emissions of fugitive dust or particulate matter from a variety of activities and sources such as construction sites, bulk material hauling, unpaved parking lots, and disturbed soil in open areas and vacant lots; this rule applies to any activity or man-made condition capable of generating fugitive dust.

Rule 403 requires that fugitive dust generated during any activity or man-made condition such as excavation, drilling, demolition, construction, and soil disturbance, shall be prevented, reduced or mitigated.

- As part of all earth moving and construction/demolition activities, disturbed surface area, or heavy and light duty vehicular movement, no person shall cause or allow the emissions of fugitive dust from any active operation, open storage pile, or disturbed surface area such that:
 - The dust remains visible in the atmosphere beyond the property line of the emission source; or
 - The dust emission exceeds 20 percent opacity (as determined by the appropriate test method included in the Rule 403 Implementation Handbook) if the dust emission is the result of movement of a motorized vehicle.
- All onsite activities shall be conducted utilizing the best available control measures included in Table 1 of the Rule, to minimize fugitive dust emissions from each dust source type, such as high-pressure water sprayers, fire hoses, and water trucks where applicable.
- DustTrak monitors may be used to determine fugitive dust emissions in the ambient air at the Site. Per Rule 403, no person shall cause or allow PM₁₀¹ levels to exceed 50 micrograms per cubic meter (µg/m³) when determined, by simultaneous sampling, as the difference between upwind and downwind samples collected on high-volume particulate matter samplers or other U.S. EPA-approved equivalent method for PM₁₀ monitoring.

¹ PM₁₀ means particulate matter with an aerodynamic diameter smaller than or equal to 10 microns as measured by the applicable State and Federal reference test methods.

- Track-out shall not extend to 25 feet or more in cumulative length from the point of origin of an active operation. Notwithstanding this, all track-out shall be removed at the conclusion of each workday or evening shift.
- No person shall conduct an active operation with a disturbed surface area of five or more acres, or with a daily import or export of 100 cubic yards or more of bulk material without utilizing at least one of the five measures listed in the rule at each vehicle egress from the Site to a public paved road.

8.0 EXPOSURE MONITORING

Based on previous investigations, the chemicals of potential concern (COPC) for the Site have been determined to be Organochlorine Pesticides and heavy metals. The SSO will monitor on-site worker exposure to airborne contaminants during Site activities. Measurements should be taken within the breathing zones of workers. A PID will be used to monitor changes in exposure. The PID shall be calibrated daily in the field and undergo annual maintenance including calibration by a certified provider. If stained or odorous soil or fumes are discovered during excavation, work should stop in that area, and an environmental consultant be notified.

The following substances will likely be encountered on Site; the primary hazards of each are identified.

<u>Substances</u>	<u>Concentration</u>	Primary Hazards
Heavy Metals	Various	Ingestion, inhalation, skin, eye contact
Organochlorine Pesticides:	Various	Ingestion, inhalation

Heavy Metals: Typically, the main threats to human health from heavy metals are associated with exposure to lead, cadmium, mercury and arsenic. Cadmium compounds are currently mainly used in re-chargeable nickel-cadmium batteries. Recent data indicate that adverse health effects of cadmium exposure is primarily in the form of kidney damage but possibly also bone effects and fractures. The general population is primarily exposed to mercury via food, fish being a major source of methyl mercury exposure, and dental amalgam. The general population does not face a significant health risk from methyl mercury, although certain groups with high fish consumption may attain blood levels associated with a low risk of neurological damage to adults and a risk to the fetus in pregnant women The general population is exposed to lead from air and food in roughly equal proportions. Children are particularly susceptible to lead exposure due to high gastrointestinal uptake and the permeable blood-brain barrier. Recent data indicating that there may be neurotoxic effects of lead at lower levels of exposure than previously anticipated. Exposure to arsenic is mainly via intake of food and drinking water, food being the most important source in most populations. Long-term exposure to arsenic in drinking-water is mainly related to increased risks of skin cancer, but also some other cancers, as well as other skin lesions such as hyperkeratosis and pigmentation changes. Occupational exposure to arsenic, primarily by inhalation, is causally associated with lung cancer.

<u>Organochlorine Pesticides:</u> OCPs are pesticides composed of chlorinated hydrocarbons used extensively from the 1940s through the 1960s in agriculture and mosquito control. Representative compounds in this group include chlordane, DDT, heptachlor, dieldrin, toxaphene, mirex, kepone, lindane, and benzene hexachloride. As neurotoxicants, many organochlorine pesticides were banned in the United States, although a few are still registered for use in this country. OCPs accumulate in the environment. They are very persistent and move long distances in surface runoff or groundwater. Prior to the mid-1970s, organochlorines resulted in widespread reproductive failure among birds because birds laid eggs with thin shells that cracked before hatching. People can be

exposed to organochlorine pesticides through accidental inhalation exposure if in area where they were recently applied. The chemicals can also be ingested in fish, dairy products, and other fatty foods that are contaminated. Exposure to OCPs over a short period may produce convulsions, headache, dizziness, nausea, vomiting, tremors, confusion, muscle weakness, slurred speech, salivation and sweating. Long-term exposure to OCPs may damage the liver, kidney, central nervous system, thyroid and bladder. Many of these pesticides have been linked to elevated rates of liver or kidney cancer in animals. There is some evidence indicating that organochlorine pesticides may also cause cancer in humans.

ACTION LEVELS AND EXPOSURE LIMITS

If strong odor is encountered during excavation, work in the area should stop and the Environmental Consultant contacted immediately to assess the area for the potential presence of COPCs and initiate a response. Appropriate responses may include upgrading PPE requirements, additional testing, or continuous air monitoring.

Other Heavy Metals

The required OSHA PEL for cobalt and copper is no greater than an 8-hour TWA of 0.2 and 1 mg/m3, respectively. Using the maximum cobalt and copper concentrations from B.L.'s stockpile sampling of 12.2 and 737 mg/kg, respectively, and a safety factor of 2 times (200%) results in a TDAL for cobalt and copper of 8,197 and 678 mg/m³, respectively. Based on the TDALs, dust mitigation measures or work stoppage will occur for PM₁₀ concentrations exceeding 0.05 mg/m³ prior to exceeding the TDAL's for cobalt or copper.

9.0 PERSONAL PROTECTIVE EQUIPMENT

The purpose of PPE is to protect employees from hazards and potential hazards they are likely to encounter during site activities. The amount and type of PPE used will be based on the nature of the hazard encountered or anticipated. Respiratory protection will be utilized when an airborne hazard has been identified using real-time air monitoring devices, or as a precautionary measure in areas designated by the SSO, elevating to level C. If this occurs, contractor personnel shall be respirator-approved.

Dermal protection, primarily in the form of chemical-resistant gloves and coveralls, will be worn whenever contact with chemically affected materials is anticipated, without regard to the level of respiratory protection required.

Based on evaluation of potential hazards, the following levels of personal protection have been designated for the applicable work areas or tasks:

Location	Job Function	Leve	l of	Protectio	<u>on</u>
Controlled Area	All Workers	A E	В	с D	Other

Specific protective equipment for each level of protection is as follows:

Level A Fully-encapsulating suit SCBA Disposable coveralls Level C Splash gear Half-face canister respirator with H₂S/VOC cartridge Mouth/nose canister respirator Efficiency 100 (HEPA)

Level B Splash gear SCBA Level D

Hard hat Ear plugs Neoprene or leather gloves - nitrile gloves Safety vests and Glasses Hard toe boots

NO CHANGES TO THE SPECIFIED LEVELS OF PROTECTION SHALL BE MADE WITHOUT THE APPROVAL OF THE SSO OR PROJECT MANAGER.

10.0 DECONTAMINATION PROCEDURES

Despite protective procedures, personnel may come in contact with potentially hazardous compounds while performing work tasks. If so, decontamination needs to take place using an Alconox or tri-sodium phosphate (TSP), followed by a rinse with clean water. Standard decontamination procedure for levels C and D are as follows:

- Equipment drop
- Boot cover and outer glove wash and rinse
- Boot cover and out glove removal
- Suit wash and rinse
- Suit removal
- Safety boot wash and rinse
- Inner glove wash and rinse
- Respirator removal
- Inner glove removal
- Field wash of hands and face

Workers should employ only applicable steps in accordance with level of PPE worn and extent of contamination present. The SSO shall maintain adequate quantities of clean water to be used for personal decontamination (i.e. field wash of hands and face) whenever a suitable washing facility is not located in the immediate vicinity of the work area. Disposable items will be disposed of in an appropriate container. Wash and rinse water generated from decontamination activities will be handled and disposed of properly. Non-disposable items may need to be sanitized before reuse. Each site worker is responsible for the maintenance, decontamination, and sanitizing of his/her own PPE.

Used equipment may be decontaminated as follows:

- An Alconox or TSP and water solution will be used to wash the equipment.
- The equipment will then be rinsed with clean water.

Each person must follow these procedures to reduce the potential for transferring chemically affected materials offsite.

11.0 EMERGENCY PROCEDURES

In the event of an emergency, site personnel will signal distress with three blasts of a horn (a vehicle horn will be sufficient), or other predetermined signal. Communication signals, such as hand signals, must be established where communication equipment is not feasible or in areas of loud noise.

CITADEL PROJECT NO. 7109.1098.0

HEALTH AND SAFETY PLAN 24460 CALABASAS ROAD CALABASAS, CALIFORNIA, 91302 SEPTEMBER 9, 2024

The SSO will designate evacuation routes and refuge areas to be used in the event of an emergency. Site personnel will stay upwind from vapors or smoke and upgradient from spills. Workers should exit through the established decontamination areas wherever possible. If evacuation cannot be done through an established decontamination area, site personnel will go to the nearest safe location and remove contaminated clothing there. Personnel will assemble at the predetermined refuge following evacuation and decontamination. The SSO will count and identify site personnel to verify that all personnel have been evacuated safely. Please refer to Figure 1.0 for the evacuation route and refuge location and Figure 2.0 for directions to the designated medical facility.

FIGURE 1.0 - EVACUATION ROUTE AND REFUGE AREA

= Approximate Project Boundaries

= Refuge Area

Excavation Route

Evacuation routes and refuge areas may change during the course of the project.

FIGURE 2.0 – DESIGNATED MEDICAL FACILITY

The designated medical facility is:

Exer Urgent Care – Calabasas – Mulholland Dr 23341 Mulholland Dr, Woodland Hills, CA 91364 (818) 637-0048

Directions:

Turn right onto Calabasas Rd Turn right onto Mulholland Dr Destination will be on the left 1.4 mi 0.2 mi

Local ambulance service is available from: Name: Local Paramedics Phone: 911

First-aid equipment is available in the SSO's vehicle.

List of emergency phone numbers:

<u>Agency/Facility</u>	<u>Phone</u>
Police/Fire	911
Hospital	(818) 880 - 3755

CITADEL PROJECT NO. 7109.1098.0

HEALTH AND SAFETY PLAN 24460 CALABASAS ROAD CALABASAS, CALIFORNIA, 91302 SEPTEMBER 9, 2024

12.0 SIGNATURES

This HASP has been prepared by:

Quinn Elizondo

Quinn Elizondo Staff Geologist, Engineering and Environmental Sciences

This HASP has been reviewed by:

Doug Whichard

Doug Whichard Senior Scientist, Engineering and Environmental Sciences

SIGNATURE PAGE

The following signatures indicate that this Health and Safety Plan (HASP) has been read and accepted by all site personnel.

NAME	COMPANY	SIGNATURE	DATE
-			

Appendix B Dig Alert Ticket This document is not a certified record of Underground Service Alert

MBRCOD 00000 USAS 09/03/24 10:28 B242470454-00B NORM NEW POLY

Ticket : B242470454 Rev: 00B Created: 09/03/24 10:28 User: DWHICHARD Chan: WEB Work Start: 09/09/24 07:01 Legal Start: 09/09/24 07:01 Expires: 10/01/24 23:59 Response Required: Y Priority: NORM

Excavator Information Company: CITADEL ENVIRONMENTAL SERVICES, INC. Co Addr: 1725 VICTORY BLVD City : GLENDALE State: CA Zip: 91201 Created By: DOUG WHICHARD Language: ENGLISH Office Phone: 818-246-2707 SMS/Cell: 925-784-1541 Office Email: DWHICHARD@CITADELEHS.COM

Site Contact: DOUG WHICHARD Site Phone: SMS/Cell: 925-784-1541 Site Email: DWHICHARD@CITADELEHS.COM

Excavation Area State: CA County: LOS ANGELES Place: CALABASAS/HIDDEN HILLS Zip: 91302 Location: FRONT OF ADDRESS; Address/Street: 24460 CALABASAS RD : X/ST 1 : MUREAU RD : X/ST 2 : : FRONT OF ADDRESS; **Delineated Method: NONE** Work Type: HAND AUGERING Work For : ENVICOM CORPORATION Hash Tags: Members: ATTDSOUTH EMERGENCY AT&T DIST. DAMAGE PREVENTION 888-290-3111 G00559@ATT.COM

VACUUM AT&T DIST. DAMAGE PREVENTION 888-290-3111 G00559@ATT.COM

NO RESPONSE AT&T DIST. DAMAGE PREVENTION 888-290-3111
G00559@ATT.COM

CALB01 EMERGENCY LUIS HERNANDEZ CALABASAS, CA 91302 818-515-5692 JHERNANDEZ@CITYOFCALABASAS.COM

VACUUM LUIS HERNANDEZ CALABASAS, CA 91302 818-224-1684 JHERNANDEZ@CITYOFCALABASAS.COM

NO RESPONSE LUIS HERNANDEZ CALABASAS, CA 91302 818-224-1684 JHERNANDEZ@CITYOFCALABASAS.COM

CRMSNPIP EMERGENCY CONTROL CENTER LONG BEACH, CA 90806 866-351-7473 CCENTER@CRIMSONPL.COM

VACUUM SHENAN DEAN LOVRIEN SIGNAL HILL, CA 90755 562-285-4107 SDLOVRIEN@CRIMSONPL.COM

NO RESPONSE SHENANDEAN LOVRIEN SIGNAL HILL, CA 90755 562-285-4107 SDLOVRIEN@CRIMSONPL.COM

LVW23 EMERGENCY DUANE BOCKELMAN 818-251-2256

VACUUM MIKE HAND CALABASAS, CA 91302 818-251-2260

MHAND@LVMWD.COM

NO RESPONSE DUANE BOCKELMAN 818-251-2256

MCISOCAL EMERGENCY FIBER SECURITY DEPT 800-624-9675

VACUUM MCI OPERATOR 800-289-3427

NO RESPONSE MANAGER FIBER SECURITY 800-289-3427

SCG45T EMERGENCY JOHN CARDILINO 805-681-7968 JCARDILINO@SOCALGAS.COM

VACUUM ALLOWED BUT CAN BE REFUSED

NO RESPONSE JOHN CARDILINO 805-681-7968 JCARDILINO@SOCALGAS.COM

SCG4U2 EMERGENCY GAS CO CALL CENTER 800-427-2200

VACUUM ALLOWED BUT CAN BE REFUSED

NO RESPONSE JULIAN FLORES 310-912-8538 JFLORES6@SOCALGAS.COM

UCHTRW_N3 EMERGENCY SPECTRUM EMERGENCY ONLY 844-780-6054

VACUUM NATASCHA FUCSIK LOS ANGELES, CA 90045 310-216-3545 NATASCHA.FUCSIK@CHARTER.COM

NO RESPONSE NATASCHA FUCSIK LOS ANGELES, CA 90045 310-216-3545 NATASCHA.FUCSIK@CHARTER.COM

USCENC EMERGENCY SC EDISON PERSONNEL 800-611-1911

VACUUM GILBERT ACEVES CHINO, CA 91710 909-548-7249 GILBERT.ACEVES@SCE.COM

NO RESPONSE UTILIQUEST 678-831-2444

UTFTRCA01 EMERGENCY FRONTIER CALL CENTER 800-921-8106

VACUUM UTILIQUEST FOR FRONTIER COMMUN 323-342-5552

NO RESPONSE UTILIQUEST FOR FRONTIER 323-342-5552

> © Copyright 2023 Underground Service Alert of Southern California All rights reserved

Appendix C Citadel Field Notes

CITADEL EHS PROJECT DOCUMENTATION

LIENT	Envicom Corporation	PAGE	OF 2
PROJECT NUMBER	7109.1098.0	CITADEL REPRESENTATIVE	Brendan Miller, Quinn Elizondo
PROJECT NAME	Limited Phase II Site Investigation	CONTRACTOR	
PROJECT WORK AREA PROJECT	24460 Calabasas Road, Calabasas, CA	SUPERVISOR	Doug Whichard
LOCATION			
TIME		FIELD NOTES	
0700	Citadel arrives on site (Brendan + Quin	
0710	Tum arrives to se drop	off PID	
0120	Start of hand angering to to manitor breathing zone used to clean anger bet 2' bas with samples call	for vocs. Decar for vocs. Decar ween barings. B.	through 5-10. PID used station set up and orings hand augered to and 2' bas.
0845	concrete identified at the ,	aropased location	on of B4. B4 relocated
1330	Finished hand augering B 2'soil samples put on Hol observed in the soil Beain	1) through BIO to	o 2' bas. Samples collected.
1350	Finished paperwork. Clear	ue conjoment.	
1400	Citadel offsite.		1
ADEL REPRESENTA Bre SIGNATURE:	Miller, Quin Elizon	ndu	DAY: Manday DATE: 9.9.24

CITADEL EHS PROJECT DOCUMENTATION

CLIENT	Envicom Corporation	PAGE	2 OF 2
PROJECT NUMBER	7109.1098.0	CITADEL REPRESENTATIVE	Brendan Miller, Quinn Elizondo
PROJECT NAME	Limited Phase II Site Investigation	CONTRACTOR	
PROJECT WORK AREA			
PROJECT LOCATION	24460 Calabasas Road, Calabasas, CA	SUPERVISOR	Doug Whichard

CITADEL PROJECT NO. 7109.1098.0

HEALTH AND SAFETY PLAN 24460 CALABASAS ROAD CALABASAS, CALIFORNIA, 91302 SEPTEMBER 9, 2024

14

SIGNATURE PAGE

The following signatures indicate that this Health and Safety Plan (HASP) has been read and accepted by all site personnel.

IAME	COMPANY	SIGNATURE	DATE
Brendan Miller	Citadel EHS	Brenden Milles	9924
Quinn Elizendo	Citadel Etts	gun Caz	7-9-24

Appendix D Citadel Boring Logs

RING L JNTRAC SOIL SAM MONITOR	OCATIC TOR AN PLING E ING DE\ TER (FT	N (AT D DRI QUIPI /ICE: BGS)	SITE): LL RIG	: : AETHOD:	ed Pha	and	avg	tigation / 24460 Calabasas Road, Calabasas, CA PROJECT NO.: 710 LOGGED BY: Bre DATE/TIME (STAR: DATE/TIME (FINISH DATE/TIME (FINISH BORING DIAMETEL PROBE/SCREEN INVERVAL (FT BGS): TOTAL BORING DIA	9.1098.0 hdan Miller, C): 999): 999 R (IN): PTH (FT):	24 24 24	zondo 110 110 21	7 3	5	
STABILIZE	D WAT	ER (FT	BGS)/	TIME:	-	_	BORIN	SCREEN SLOT SIZE(IN): CONCRETE/ASPH/	LT THICKN HICKNESS	ESS ((IN):	N):			_
Q B				iton		98				Dist	ibution		Ot	ther
Time/Sample Sample Inten	PID Reading (ppm)	Water Level	Recovery	Well Construc Diagram	Depth (ft.)	Stratum Chan (ft.)	USCS Symbo	LITHOLOGIC DESCRIPTION (USCS Group Name, color, odor, moisture, grain size/plasticity, optional description	% Gravet	# Sand	% Sitt	% Clay	Plasticity H / M / L / N	Consistency*
0735					0.5	111	mL	At Silt, NO ODOR, dry, fine	5	1	\$ 9	同時間	N	
745					- 2'-		ML	Sitty day of sitt, no odde , dry			70	30	N	
		T			- 3 -									
					- 4 -							読をあ		
					- 6 -									
-	_		_		- 7 -	_	1							
	-				- 8 -									
		11			- 10 -									
					- 11 -							1.5		
			-		- 13 -					1	the second	A MAN		
					- 14 -		-700					がたな		
		TT			- 15 -	1								
	-		-		- 17 -				0.					
					- 18 -									
			-		- 19 -					10				
Plas	ticity		Cons	Istency		Reco	very	Wetl Diagram Minor Components Additional Notes:			-			

an		'Al	DE	LE!	HS	5			BORING/WELL IE);			Page	2 1 c	a F
PROJECT RING I JNTRAG SOIL SAM MONITOF FIRST W/ STABILIZ EVIDENC	I NAME I LOCATIO CTOR AI IPLING I RING DE ATER (FI ED WAT E OF N(AND A DN (AT ND DR EQUIP VICE: T BGS IER (F DN-NA	IDDRES	35: <u>Limit</u> 3: METHOD: /TIME: ILL: Y / N	ed Pha	ise II Sit		Higation / 24460 Calabasas Road, Calabasas, CA PRO. LOGG DATE - Hand avgvrrag DATE PROBE/SCREEN INVERVAL (FT BGS): TOTA SCREEN SLOT SIZE(IN): CON NG CLEARED TO 5 FT BGS (MIN.) WITH HAND AUGER: Y / N BASI	JECT NO.: 7109.109 GED BY: Brendan E/TIME (START): 4 E/TIME (FINISH): 6 ING DIAMETER (IN) AL BORING DEPTH CRETE/ASPHALT T E MATERIAL THICK	8.0 Miller, Qu 9 2 7 9 2 9 1 7 9 2 9 1 7 9 1 9 1 7 9 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	uinn Eliz 4 // 4 // 24 // ESS (II IN):	v):	158	}	
Time/Sample ID	PID Reading	Vater Level	lecovery	ell Construciton lagram	epth (ft.)	tratum Change	SCS Symbol	LITHOLOGIC DESCRIPTION (USCS Group Name, color, odor, moisture, grain size/plasticity_optic	onal descriptions)	Gravel	Distri	bution His	Clay	asticity / M / L / N	ther "
0 805			Ľ	<u>šö</u>	0 0.5	がモ	ML	Sitt with gravel. No odor , dry		20		* 80		а́т N	ŏ
୦୫୲ଽ					- 1 -		ML	clayey Silt, NO odor, dry, Fire grain	red		5	65	30	L	
	,				- 4 -							新福祉			
					- 8 -						の正式	「「「「		1 1 1 1	
D					- 8 -							市大学生			
					- 10 -									S HIGH	
					- 12 -		144				新市地理が				
					- 14 -										
					- 16 -					加井上市					
					- 18 - - 19 -							「「「「		T TTYY	
Pla	sticity	4	Con	sistency	20_	Reco	ivery	Well Diagram Minor Components Additional Notes:		4.94	<u>Curva</u>	1 - 1943			-
N - Non L - Low I - Med Wate Wate Firs	plastic (M / (C fium (C) <u>(C</u> ar Level at Encoun	ル) ・L) ・L) ・L) ・L) ・H) itered	*Use on silts/clay So - So M - N St - Si H - H	ly for rs. oft ledium Stiff tilf lard	Run		Recover No Reco	Casing/Tubing < 5%							

PROJEC		AND (LE then	HS	5	ite Invos	tigstion / 24460 Calabaras Road, Calabaras, CA	BORING/WELL II):		4	Page	1 of	f 1
PRING JNTRA SOIL SAI MONITOI FIRST W. STABILLI EVIDEN(LOCATIC CTOR A MPLING I RING DE ATER (F ZED WAT	DN (A1 ND DR EQUIP VICE: T BGS FER (F ON-NA	r SITE): tILL RIG 'MENT/I i): T BGS) tTVE FI	X: <u>Limi</u> X: METHOD: /TIME: /LL: Y/N	ed Pris	and	AV4 BORIN	In the second se	LOGGED BY: Brendan DATE/TIME (START): DATE/TIME (FINISH): BORING DIAMETER (IN) TOTAL BORING DEPTH CONCRETE/ASPHALT 1 BASE MATERIAL THICK	8.0 9 9 9 9 19 19 19 19 19 19 19 19 19 19 19 19 19	inn Eliz 24 24 24 25 25 10):	20ndo // 0 // C	824	0	
ime/Sample ID ample Interval	(ID Reading ppm)	Vater Level	ecovery	ell Construction agram	pth (ft.)	atum Change	SCS Symbol	LITHOLOGIC DESCRIPTION (USCS Group Name, color, odor, moisture, grain size/plastic	ity, optional descriptions)	Gravel	Distri	bution	Clary	sticity M/L/N	nsistency*
r 3 0926	1.5	>	æ	ŇÖ	05	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	mL	sut wigrarce, no odor. dry		<i>*</i> 20	*	80	*	N	3
०ष्ठुआ					2 -		ml	SHU day cy Sut, No odor, dry				15	25	6	
					- 3 -								が見た		
					- 5 -										+ ~~
					- 7 -					方が花が					
0					- 9 -						地理				
					- 10 -										
					- 12 -					のないである					
					- 13 -					調整に発					
					- 15 -					the report					
					- 17 -										
					- 19 -										
Pla	asticity		Cons	sistency		Reco	very	Well Diagram Minor Components Additional No	tes:	- 50.5-	412359	- NO-ER	204-2		<u> </u>
L - Low M - Mer A - High Wat	dium (C dium (C 1 (C er Level al Encount	L) t ,L) :H) tered	So-So M - M St-Sti H - Hr	s s edium Stiff iff ard	Run		Recovery No Recov	y Casing/Tubling <5% Trace Screen/Probe Tip 5-10% Few Filter Sand 15-25% Little Dry Bentonite 30-45% Some 50-100% Mostly Grout							

PROJECT	NAME	AND A	strengt ODRES	ihen iS: <u>Limit</u>	ed Pha	ise li Sil	e Inves	stigation / 24460 Calabasas Road, Calabasas, CA	PROJECT NO.: 7109 109	8.0	_	_	Page	1 0	<u>a 1</u>
SOIL SAM	LOCATION CTOR AI	on (at ND Dr Equip	SITE): ILL RIG MENT/I	: METHOD:	tte	and	Ave	aveing	LOGGED BY: Brendan DATE/TIME (START): DATE/TIME (FINISH):		inn Eli 24		08	45	,
MONITOR	ING DE					_		PROBE/SCREEN INVERVAL (FT BGS):	BORING DIAMETER (IN)	: (ET):	- 20	01	-		
STABILIZI	ED WAT	ER (FI	BGSV				0.000	SCREEN SLOT SIZE(IN):	CONCRETE/ASPHALT	HICKN	ESS (II	v):	_	-	
		IN-NA	IVE FIL	L: Y/N		0	BORIN	IG CLEARED TO 5 FT BGS (MIN.) WITH HAND AUGER: Y/N	BASE MATERIAL THICK	NESS (N):	bution			thor
Time/Sample I Sample Interva	PID Reading (ppm)	Water Level	Recovery	Well Constructs Diagram	Depth (ft.)	Stratum Change (ft.)	USCS Symbol	LITHOLOGIC DESCRIPTION (USCS Group Name, color, odor, moisture, grain size/plastic	city, optional descriptions)	6 Gravel	6 Sand	R Sitt	6 Clary	Plasticity H / M / L / N	
0860					0.5			Sitt, NO ODOR, dry		Щ		85	15	N	
0855			_		- 2 -			Silt, NO odor, dry				85	16	N	
		-	_		- 3 -						新福水市				1 1 1
	-				- 4 -					A State					-
					- 6 -						新院			-	
1					- 7 -	-				「「「「「「」」	日本国辺				
2		1			- 9 -										
					- 10 -						ない	3 10 10	調整		
					- 11 -								記録		
					- 13 -								認知が		
			_		- 14 -							100			-
			_		- 16 -					alles.					
	-				- 17 -										
					- 18 - - 19 -										
Plas	ticity		Cons	istency	20	Recov	rery	Well Diagram Minor Components Additional N	Mes:	学習		大学	単同語		-
N - Nonp L - Low M - Medi H- High Water	vlastic (Mi (Cl ium (Cl (Cl r Level	L) * L) s L) H)	Use only ilts/clays So - Sol M - Me	y for s. It adium Stiff	Run-	 -,	Recover	Casing/Tubing < 5% Trace Screen/Probe Tip 5 - 10% Few Y							

PROJECT PRING JNTRA SOIL SAM MONITOF FIRST WA STABILIZ EVIDENC	NAME / LOCATIC CTOR AN IPLING E NING DEN ATER (F) ED WAT E OF NO	AND A ON (AT ND DR EQUIP VICE: T BGS) ER (FT	strengt DORES SITE): SILL RIG MENT/M	L C hes S: <u>Limit</u> : ' AETHOD: TIME: .L: Y/N		nse II Si	a vg Borin	tigation / 24460 Catabasas Road, Catabasas, CA	PROJECT NU LOGGED BY DATE/TIME (DATE/TIME (BORING DIA TOTAL BOR CONCRETE/ BASE MATE	0.: <u>7109.109</u> : <u>Brendan</u> START): <u>(</u> FINISH): METER (IN) ING DEPTH ASPHALT T RIAL THICK	8.0 Miller, Qu 9 9 9 ; (FT): HICKNE NESS (1	inn Eli 24 255 (II N):	zondo C C N):	Page	5 5	
Time/Sample ID Sample Interval	PID Reading (ppm)	Water Level	Recovery	Well Construction Diagram	Depth (ft.)	Stratum Change (ft.)	USCS Symbol	LITHOLOGIC DESCRIPTION (USCS Group Name, color, odor, moisture, grain size/plastic	city. optional des	criptions)	% Gravel	Distri	ibution HIS &	% Clary	Plasticity H / M / L / N	Consistency [*]
428					05		me	Silt with gravel, a no odore, drey			20		80		N	
1936					- 2 -		mL	clayey sut, no odor, dry					70	30	L	
					- 3 -									調整に		
					- 5 -								言語で			
		12	-		- 6 -									大学に		
					- 7 -									「「「「「		
2 -					- 8 -									おけたの		
					- 10 -								時間を			
		1.1.1			- 11 -											
					- 12 -									報告		
		1.1			- 14 -											
					- 15 -	•								学を行う		
					- 16 -		-					経営				
					- 17 -											
	-		-		- 19 -						alter alter			業に		
_			_	-	20									11-	-	

PROJEC RING JNTRA SOIL SAI	T NAME	AND A DN (AT ND DR EQUIPI	DDRES SITE): ILL RIG MENT/A	S: <u>Limit</u> : METHOD:	ed Pha	ind	te Inves AV9	tigation / 24460 Calabasas Road, Calabasas, CA	PROJECT NO.: 7109 109 LOGGED BY: Brendan DATE/TIME (START): 9 DATE/TIME (FINISH):	18.0 Miller, Qu	ainn Eli 4	09	40		
IRST W	RING DE ATER (F1 ED WAT E OF NO	VICE: BGS) ER (FT N-NA1	: BGS)/ TIVE Fill	TIME:			BORIN	PROBE/SCREEN INVERVAL (FT BGS): SCREEN SLOT SIZE(IN): G CLEARED TO 5 FT BGS (MIN.) WITH HAND AUGER: Y / N	BORING DIAMETER (IN) TOTAL BORING DEPTH CONCRETE/ASPHALT 1 BASE MATERIAL THICK): (FT): THICKNE (NESS (I	2 ESS (II N):	N):			
Time/Sample ID Sample Interval	PID Reading (ppm)	Water Level	Recovery	Vell Construction)epth (ft.)	tratum Change ft.)	ISCS Symbol	LITHOLOGIC DESCRIPTION (USCS Group Name, color, odor, moisture, grain size/plastic	xity, optional descriptions)	6 Gravel	Distr	ibution	b Clay	Iasticity / M / L / N	onsistency*
944			_	>0	0.5	U.S.	m	Silt wigrarel, no odore, dry		20	*	80	*	N	0
950		11			- 2 -		m	clayey Silt, NO odor, dry, Fine-	grained		5	65	30	L	
			-		- 3 -										
					- 5 -										
					- 6 -					が正常	です。				
5					- 7 -										
-					- 9 -										
		_			- 10 -										
		-			- 12 -										
					- 13 -		-					が出め			
					- 14 - - 15 -										
		_			- 16 -					0.413					
					- 17 -										
			-		- 19 -										
Pla	sticity	_	Cons	istericy	20	Reco	Verv	Well Discrem Minor Components Additional N		约				-	-

		'A	DE	LE then	HS	5		-111	10			BORING/WELL I);			Page	910	et 1
PROJECT PRING I JNTRAI SOIL SAM MONITOF FIRST W/	I NAME A LOCATIC CTOR AI APLING I RING DE ATER (F	AND A DN (AT ND DR EQUIP VICE: T BGS	IDDRES (SITE): ULL RIG IMENT/I	S: Limite	ed Pha	ise II Sin	augu	tigation / 24460	Calabasas R	pad, Calabasas, C.	A	PROJECT NO.: 7109.109 LOGGED BY: Brendan DATE/TIME (START): 0 DATE/TIME (FINISH): BORING DIAMETER (IN) TOTAL BORING DEPTH	8.0 Miller, Qa 19 19 1: (FT):	24	zondo 119 119	55	101	5
EVIDENC	E OF NC	DN-NA	TIVE FI	LL:Y/N			BORIN	G CLEARED TO	0 5 FT BGS (M	IIN.) WITH HAND	AUGER: Y/N	BASE MATERIAL THICK	NESS (ESS (II IN):	4): 			
ie D rval	9			rciton		age	Q							Distri	ibution		0	ther
Time/Samp Sample Inte	PID Readin (ppm)	Water Leve	Recovery	Well Constru Diagram	Depth (ft.)	Stratum Cha (ft.)	USCS Symb	(USCS G	roup Name, co	LITHOLOGIC D lor, odor, moisture,	ESCRIPTION grain size/plastic	ity, optional descriptions)	% Gravel	% Sand	% Silt	% Clay	Plasticity H / M / L / N	Consistency*
0955					6-5		mi	clayey	sult,	No odore,	dry				80	20	L	
1000					- 2 -		mL	Silt, NO) octore,	, dry					100	な構成した	N	
					- 4 -									ながない	教育権の			
					- 5 -													
)					- 7 -								an and a second					
					- 9 -										教授の学			
					- 11 -													
					- 13 -										の物理と言う	御祭がらび		
					- 14 -									ないないたち	TANK AND	一般語		-
					- 16 -													
					- 18 - - 19 -									「「「「「」」」」				
					_ 20 _													
Plas N - Nonj L - Low A - Med H - High Wate	sticity plastic (Mi (C) lium (C) ir (C) ir Level t Encount	L) (L) (L) (H) tered	Cons 'Use only silts/clay So - So M - M St - St H - H	Istency y for s st ledium Stiff iff ard	Run		very Recover No Reco	y very	Diagram :asing/Tubing :creen/Probe Tip :iter Sand Xry Bentonite lentonite Seal Grout	Minor Component < 5%	ts Additional No e ty	tes:						

		A	DE	LE	HS	5			BORING/WELL II):			Page	1 0	r 1
PROJECT RING I JNTRAG	OCATIC CTOR AI	and A DN (A ¹ ND DF Equip	DDRES SITE): ULL RIG MENT/	5S: <u>Limit</u> 5: METHOD	ed Pha	and	avq(ligation / 24460 Calabasas Road, Calabasas, CA	PROJECT NO.: 7109.103 LOGGED BY: Brendan DATE/TIME (START): 0 DATE/TIME (FINISH):	18.0 Miller, Qu 9 9 1	iinn Eli: 24	zondo 11 1 1	120	>	
MONITOF FIRST WA STABILIZ	UNG DE TER (F1 ED WAT E OF NC	VICE: FBGS ER (F N-NA): T BGS) TIVE FI	/TIME:			BORIN	PROBE/SCREEN INVERVAL (FT BGS): SCREEN SLOT SIZE(IN): G CLEARED TO 5 FT BGS (MIN) WITH HAND AUGER: Y / N	BORING DIAMETER (IN) TOTAL BORING DEPTH CONCRETE/ASPHALT 1 BASE MATERIAL THICK	/: (FT): [HICKNE (NESS ()	SS (II	1			
9 10				ton	1	e					Distri	bution	110	0	ther
Time/Sample Sample Inten	PID Reading (ppm)	Water Level	Recovery	Well Construc Diagram	Depth (ft.)	Stratum Chan (ft.)	USCS Symbo	LITHOLOGIC DESCRIPTION (USCS Group Name, color, odor, moisture, grain size/plastic	ity, optional descriptions)	% Gravel	% Sand	% Silt	% Clay	Plasticity H / M / L / N	Consistency*
1125					05		mL	silt migrarel, no odore, dry		10		90	第二十二	N	
1145					- 2 -		mL	Sut maranee, No dor, dry		10		90		N	
			_		- 3 -										
					- 5 -						の時代である				
					- 6 -						子方公				
0					- 7 -									-	
					- 9 -						の時間で				_
					- 10 -						になって	教育工具			
					- 11 -						通知的				
					- 13 -					out of the					
					- 14 -					and the second				_	
		T			- 15 -								調査	-	
					- 17 -						のない				
					- 18 -										
		-			20								では		
Plat N - Nony L - Low - High Wate Vate Vate Stat	iticity olastic (M (C ium (C (C r Level Encounte bilized	L) L) H) ared	Cons "Use onl silts/clay So - So M - M St - Sti H - Ha	Histency y for s. Aft edium Stiff aff ard	Run		very Recovery Io Recov	Well Diagram Minor Componenta Additional No Casing/Tubing Screen/Probe Tip < 5%	tes:						

		'A	DE	LE	HS	5			BORING/WELL IE):	_	*	Page	1 0	
PROJECT			DDRES	5S: I limit	ed Pha	aa II Sii	e Invest	tigation / 24460 Calabasas Boad Calabasas Ca	PROJECT NO.: 7109 100	• •	-		1.484		-
RING	LOCATIO	ON (A1	SITE):	<u>Cuita</u>			e niveai	agauon / 24400 Galabasas Roau, Calabasas, CR	LOGGED BY: Brendan	o.u Miller, Qi	uinn Elia	zondo			
INTRA	CTOR A	ND DR	ILL RIG	3:	- 11				DATE/TIME (START):	1912	4	1210	>	-	_
SOIL SAN	APLING 1	EQUIP VICE	MENTA	METHOD		ara	Avo	juring	DATE/TIME (FINISH):		-	123	5	-	
FIRST WA	ATER (FI	T BGS):					PROBE/SCREEN INVERVAL (FT BGS):	TOTAL BORING DEPTH	(FT):		2			
STABILIZ	ED WAT	ER (F	T BGS)	TIME:				SCREEN SLOT SIZE(IN):	CONCRETE/ASPHALT T	HICKNI	ESS (II	√}:	-		
EVIDENC	E OF NC	N-NA	TIVE FI	LL: Y/N	-		BORIN	G CLEARED TO 5 FT BGS (MIN.) WITH HAND AUGER: Y / N	BASE MATERIAL THICK	NESS (N):	-	_		
Zal D				citon		be	5				Distri	bution		0	ther
Time/Samp Sample Inte	PID Readin (ppm)	Water Leve	Recovery	Well Constru Diagram	Oepth (ft.)	Stratum Cha (ft.)	USCS Symb	LITHOLOGIC DESCRIPTION (USCS Group Name, color, odor, moisture, grain size/plastic	ity, optional descriptions)	% Gravel	% Sand	% Silt	% Clay	Plasticity H / M / L / N	Consistency
1218		-	-		- 0 -		m	CLANEN CITY NO Odue day		1		01	10		
1615					05		me	Under star , no oauk, aky				80	20		
1235		-			- 2 -		ML	clayey sut, no odore, drey				80	26	N	-
				-	- 3 -	-				E allo					_
					- 4 -									_	
			-		- 5 -						4.3				
	12		-		- 6 -										
					- 7 -										
2				_	- 8 -					in the second					
				1.2	- 9 -										
					- 10 -		11			が見			日本		
					- 11 -									-	
					- 12 -					中市		なる			_
				-	- 13 -					all	時間				
					14 -	-	-								
	-				- 18 -										
					- 17 -						新聞				
		_			- 18 -					A COLOR					
					- 19 -										
		-			20		-					ALC: NO.			
Plas	ticity		Cone	Istency		Recov	rery	Well Diagram Minor Components Additional No	les:	2510	利要	Silling and the	and the second	-	
N - Non	plastic (Mi	L) 1	Use only	y for	ſ	וח		Casing/Tubing				-	-		
M - Med H - High Wate	ium (Cl (Cl r Level t Encounte	L) H) ared	So-So M-Mo St-St H-Ha	ə. edium Stiff ff ırd	Run-		Recovery Io Recovi	Creen/Probe Tip Screen/Probe Tip Screen/Probe Tip S-10% Few S-10% Few S-10% Few S-10% Little 30.45% Some Some S0-100% Mostly Grout							

RING I NTRAC SOIL SAN MONITOF FIRST WA STABILIZ	LOCATIK CTOR AI MPLING I RING DE ATER (FI ED WAT	ON (A1 ND DR EQUIP VICE: BGS ER (F1	SITE): ILL RIG MENT/N : BGS)/	: AETHOD: TIME:		Hand	BORIN	PROBE/SCF SCREEN SL	Calabasas i REEN INVERV	Road, Cali	S):		PROJECT NO.: 7109-10 LOGGED BY: Brendan DATE/TIME (START): DATE/TIME (FINISH): BORING DIAMETER (IN TOTAL BORING DEPTH CONCRETE/ASPHALT	Miller, Q 9/9/9): (FT): THICKNI (NESS (Miller, Quinn Elizondo 9/9/2/4 // /2 (2 // /2 (1):				
me/Sample ID mple Interval	D Reading	ater Level	covery	I Construction	th (ft)	tum Change	CS Symbol	(USCS	Group Name, c	LITHC color, odor,	DLOGIC DE moisture, g	SCRIPTION ain size/plastic	lavel	Distr	ibution	lay	tioity M / L / N	sistency.	
≓ 8 300	Id (d)	W	å	Dia	0 Dep	Stra (ft.)	m	CLAYEY	I SUt,	dry	, NO	odox		*	s *	80 80	» 20	Plas H / H	Co
1320					- 1 -		mi	CLAYEN	sut	, d rey	, NO 0 0	ione			「東京市	20	30	L	
					- 3 -														
	111				- 5 -										大学学校				
					- 6 -										がたの		調査者)
)					- 6 -											The second			-
					- 10 -			1								の方法			
					- 11 - - 12 -												「「「「」		
					- 13 -											世界の		_	
					- 15 -														
					- 16 - - 17 -												建算法		
			114		- 18 -									「「「「「	に見続い		の方面		
	aticity		Con=	stancy	- 19 - - ²⁰ -				(8 P)	Minor									

Appendix E Laboratory Reports and Chain of Custody Documentation

Enthalpy Analytical 931 West Barkley Ave Orange, CA 92868 (714) 771-6900

enthalpy.com

Lab Job Number	:	515740
Report Level	:	II
Report Date	:	09/27/2024

Analytical Report prepared for:

Doug Whichard Citadel EHS 1725 Victory Blvd Glendale, CA 91201

Location: Limited Phase II, 24460 Calabasas Road, Calabasas, CA

Authorized for release by:

Jim Lin, Service Center Manager 818-319-2359 Jim.lin@enthalpy.com

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the above signature which applies to this PDF file as well as any associated electronic data deliverable files. The results contained in this report meet all requirements of NELAP and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

CA ELAP# 1338, NELAP# 4038, SCAQMD LAP# 18LA0518, LACSD ID# 10105

Doug Whichard Citadel EHS		Lab Job #: Location:	515740 Limited Phase II, 2440	60 Calabasas
Glendale, CA 91201		Date Received:	Road, Calabasas, CA 09/10/24	
Sample ID	Lab ID	Collec	ted	Matrix
B1-0.5	515740-001	09/09/2	24 07:35	Soil
B1-2	515740-002	09/09/2	24 07:45	Soil
B2-0.5	515740-003	09/09/2	24 08:05	Soil
B2-2	515740-004	09/09/2	24 08:15	Soil
B3-0.5	515740-005	09/09/2	24 08:26	Soil
B3-2	515740-006	09/09/2	24 08:37	Soil
B4-0.5	515740-007	09/09/2	24 08:50	Soil
B4-2	515740-008	09/09/2	24 08:55	Soil
B5-0.5	515740-009	09/09/2	24 09:28	Soil
B5-2	515740-010	09/09/2	24 09:35	Soil
B6-0.5	515740-011	09/09/2	24 09:44	Soil
B6-2	515740-012	09/09/2	24 09:50	Soil
B7-0.5	515740-013	09/09/2	24 09:55	Soil
B7-2	515740-014	09/09/2	24 10:00	Soil
B8-0.5	515740-015	09/09/2	24 11:25	Soil
B8-2	515740-016	09/09/2	24 11:45	Soil
B9-0.5	515740-017	09/09/2	24 12:15	Soil
B9-2	515740-018	09/09/2	24 12:35	Soil
B10-0.5	515740-019	09/09/2	24 13:00	Soil
B10-2	515740-020	09/09/2	24 13:20	Soil

Sample Summary

		Case Narrative
Citadel EHS	Lab Job	515740
1725 Victory Blvd	Number:	
Glendale, CA 91201	Location:	Limited Phase II, 24460 Calabasas Road, Calabasas,
Doug whichard		CA
	Date Received:	09/10/24

- This data package contains sample and QC results for fourteen soil samples, requested for the above referenced project on 09/10/24. The samples were received cold and intact.
- First Additional request.

Pesticides (EPA 8081A):

- High recoveries were observed for 4,4'-DDE and endosulfan II in the MS/MSD of B1-0.5 (lab # 515740-001); the LCS was within limits.
- Response exceeding the instrument's linear range was observed for 4,4'-DDE in the MS of B1-0.5 (lab # 515740-001); affected data was qualified with "E".
- No other analytical problems were encountered.

Metals (EPA 6010B and EPA 7471A) Soil:

- Low recoveries were observed for antimony in the MS/MSD for batch 350030; the parent sample was not a project sample, the LCS was within limits, and the associated RPD was within limits. High recovery was observed for barium in the MS for batch 350030; the LCS was within limits, and the associated RPD was within limits.
- No other analytical problems were encountered.

Metals (EPA 6010B) WET Leachate:

No analytical problems were encountered.

8151A Chlorinated Herbicides (EPA 8151A):

American Environmental Testing in Burbank, CA performed the analysis (see sublab report section for certifications). Please see the American Environmental Testing case narrative.

							Chain	~	a du Da		1		Turn	Around	Time	uch hu oduo		enhu)
			HA		V					corc	1	ŀ	Turn	Arounu	nme (r	ush by adva		
		NIA I	JALAL V T		 }_T		o: _⊃t	347						<u> </u>	Da	y:	3 Day:	
	<u> </u>		. 1 1		~~ SL.	Page:		1			6	4	2 Day:		Procorv		Sample P	<u>.' </u>
	Enthal	py Analytica	I - Orang	2		w:	- Water	DW = D	rinking	wate	SD	nu = Se	diment	1 = Na ₂ S	$_{2}O_{3} 2 =$	HCl 3 = HNO;		sceipt remp.
	931 W. Bar	kley Avenue, Ora	ange, Ca. 928	368			PP =	Pure Pro	duct S	EA = 9	Sea W	/atei	r	$4 = H_2SC$	4 5 = Na	OH 6 = Othe	r	
		Phone 714-771-6	5900	1		SM	/ = Swab	T = Ti:	ssue W	P = V	Vipe	0=	= Other				(lab (use only)
CL	ISTOMER IN	IFORMATION		F	ROJE	CT INFO	DRMAT			ļ	·····		Analysis I	Request	<u> </u>	Test Ins	structions / C	Comments
Company:	Citadel EHS			Name:	Lin	nited Pha	se II Site	Investig	ation							(20)	2	
Report To:	Doug Whicha	ard		Number:	710	09.1098.)									1.7	. 6	, C
Email:	<u>dwhichard@</u>	citadelehs.com		P.O. #:	710	09.1098.)				۲.						17.0	
Address:	1371 Oakian	d Blvd, Suite 100)	Address:	244 CA	460 Calal	basas Ro	ad, Calak	oasas,		8151							
	Walnut Cree	k, CA 94596			Cal	labasas, (CA				cides	108						
Phone:	925-784-154	1		Global ID:							lerbi	ls 60						
Fax:				Sampled By:	Ø	iiinn	Elizo	nd »		31A	ed H	Aeta						
	Sample ID Sampling Date			g Samp Tin	ling ne	Matrix	Con ^t No.	Container No. / Size		OCPs 808	Chlorinat	Title 22 N				H01D		
1 01-0-F	5	·····	9/9/22	073	5	Ŝ	90z	Jar		X	Хì	X						
2 B1 - 2 '				074	5	1		I								X		
3 32 - 6-5	5			090	5					X	Х	X						
4 132-142	/			0814	5											X		
5 3-0-5	1			082	6					X	X	X						
6 83-2-				082	57											×		
7 34 - 0-5				084	50					Х	Х	X						
8 134 - 2'				085	55											X		
9 BF - 0-5	5			092	28					Х	X	X						
10 85 - 2-			<u> </u>	093	35	1	-	+								×		
		S	ignature			Pi	rint Na	me .				Сс	ompany ,	/ Title		D	ate / Time	1
¹ Relinquishe	ed By:	& quert	X		qui	inn a	FLIZON	ndo		10	tac	lel	ETHS /	Geologi	jt	9/10/2	4 (0	15
¹ Received B	y:	· h	n -		Sa	1915	Pire	2,6		E	A			-0-		9/10/2	<i>.4</i> (0	15
² Relinquishe	ed By:	d	2		Sau	19/6	Five	h		して	A					9/10/2	4 1	Sen
² Received B	y:	V	m			JETH	60				e	TU	HALPY			a/10/24 1500		
³ Relinquishe	ed By:																	
³ Received B	y:																	

			TT TA			7	Cha	in Just	ody Re	core	1		Turn	Around	Time	e (rus	h by advar	nced nc	only)
			<u>n</u>	LL Ľ	ľ	Lab	No:	5157	40				Standard:	X	5	5 Day:		3 Day:	
	A	NAI	. Y T	ICA	A I	Page	:	2	of		2	_	2 Day:	-	1	Day:		Custom TAT	
	Entha	lpy Analytica	l - Orango	e				Matrix: A	A = Air	5 = Sc	oil/So	lid			Pres	ervativ	/es:	Sample Re	ceipt Temp:
	931 W. Ba	rkley Avenue, Ora	ange, Ca. 928	368		v	V = Wa	iter DW = I	Drinking	Wate	SD	= \$e	ediment	1 = Na ₂	5 ₂ O ₃	2 = HC	1 3 = HNO ₃		
		Phone 714-771-6	5900			s	۲ W = S۱	wab T=Ti	ssu e W	:A = . 'P = \	sea v Vipe	vate 0 :	er = Other	$4 = H_2SC$) ₄ 5 =	= NaOH	b = Other	(lab us	se only}
CL	ISTOMER II	NFORMATION			PROJE	ECT IN	Forn	ATION	•				Analysis f	Request			Test Inst	ructions / Co	omments
Company:	Citadel EHS			Name:	Lir	nited Pl	hase II	Site Investig	ation								1703		
Report To:	Doug Which	nard		Number:	71	09.109	8.0			1								. 417	_ ,<
Email:	dwhichard@	citadelehs.com		P.O. #:	71	.09.109	8.0		, .	1	_						7,	<pre>/ 1</pre>	· 7
Address:	1371 Oaklar	nd Blvd, Suite 100)	Address:	24460 Calabasas Road, Calabas CA			oasas,	1	8151/									
	Walnut Cree	ek, CA 94596			Ca	Calabasas, CA			1	cides	108								
Phone:	925-784-154	41		Global ID:					_		erbic	s 60							
Fax:				Sampled By:	0) wins	r El	1zendo		TA SI	ed H	Aetal							
	Sample ID Sampling Samplin Date Time				oling ne	Matr	ix (Container No. / Size	Pres.	OCPs 808	Chlorinat	Title 22 N				Hord			
1 36-0.	B6-0.5 9/9/24 094				4	5	80	oz Jar		X	Х	X							
2 86-2		· · · · · · · · · · · · · · · · · · ·		095	i0			_(X			
3 87-0.9	5			095	55		_			X	Х	X							
4 87-2				100	0											X			·
5 B9 - 0.	5			12	5					X	Х	X							
6 89 - 2				11 4	5											X			
7 B9 - 0.	5			121	5					X	X	X							
8 89 - 2				123	5														
9 B10 - 0	6			130	0					X	X	X							
10 1B10 - 2	2		<u> </u>	132	20	<u> </u>			1							У			
		S	ignature				Print	Name				C	ompany /	Title			Da	te / Time	
¹ Relinquishe	ed By:	quint	£3_		کے _	Pun	n	ELizon	du	4	ta	d	el EHS	8 600	2915	+ 9	(10/2)	4 ia	15
¹ Received B	y:		n_		Ś	avg	is.	Rixel		E	A				J	9	110/2	4 (6	215
² Relinquishe	Relinquished By:			Say	rgi s	Pik	eh		5	Ť					<u> </u> ¶//	10/24	1500		
² Received B	y:		\sim			JETH		-0		<u> </u>	E	Mr	1ALPY			٩	(10/24	1500	i
³ Relinquishe	ed By:																		
³ Received B	y:																		

•

SAMPLE RECEIPT CHECKLIST		
Section 1: General Info		
Date Received: 9110121 WO# 515740 Client: Capabel	ENT	HALPY
Section 2: Shipping / Custody Are custody s	seals present? 🗔 Y	es Z No
Custody seals intact on arrival? \square N/A \square Yes \square No \square On cooler / box \square On samples		C
Shipping Info:		
Section 3a: Condition / Packaging 🛛 Outside 0.0 - 6.0°C (0.0 - 10.0°C for t	microbiology) (PM	notified)
Date Opened 9 (10/24 By (initials) JKC Type of ice used: Wet Blue/Ge	el 🗆 None	
Samples received on ice directly from the field; cooling process had begun. (if checked, skip temperatu	res)	
Sample matrix doesn't require cooling (e.g. air, bulk PCB). (if checked, skip temperatures)		
If no cooler: Observed/Adjusted Temp (°C):/ Thermometer/IR Gun: \@	202 CF: 10	.2
Cooler Temp (°C) #1: <u>6 / / 5 / </u> #2:/ #3:/ #4:/ #5:/ #6:	/	
Section 3b: Microbiology Samples	amples submitted	(skip 3b)
□ Within temp range 0.0 - 10.0°C or received on ice directly from field.		
L Adequate headspace for microbiology analysis.		
Section 3c: Air Samples	amples submitted	(skip 3c)
L.L.4L Canisters L. 6L Canisters L. Tediar Bags MCE Cassettes Sorbent Tubes Continued and Control of Control o	Other	
Section 4: Containers / Labels / Samples	YES NO	N/A
1) Were custody papers present, filled properly, and legible?		
2) is the sampler's name present on the CoC?		
3) Were containers received in good condition (unbroken / unopened / uncompromised)?		
4) Were the samples bagged? (required for microbiology samples; recommended for soil samples)		
5) Were all of, and only, the correct samples received?		
6) Are sample labels present, legible, and in agreement with the CoC?	7./	
7) Does the container count match the CoC?		
8) Was sufficient sample volume / mass received for the analyses requested?		
9) Were samples received in proper containers for the analyses requested?		
10) Were samples received with > 1/2 holding time remaining?		
11) Are samples properly preserved as indicated by CoC / labels?		
12) Unpreserved VOAs received - If necessary, was the hold time changed in LIMS?		
13) Are VOA vials free from headspace/bubbles > 6mm?		
Section 5: Explanations / Comments	PM notified	<u>r</u>
4.0: SAMPLES 015,010,019,020 ARE MISSING TIMES WRITTEN ON THE LABEL	L	Í
		[
		—
Date Logged 9110124 By (print)	/	
Date Labeled <u>4110(24</u> By (print) JETH CO (sign)		-
	<u> </u>	-

Enthalpy Analytical

[External] - RE: Limited Phase II, 24460 Calabasas Road, Calabasas, CA - Enthalpy Data (515740)

From Doug Whichard <dwhichard@citadelehs.com>

Date Thu 9/19/2024 5:00 PM

- To Jim Lin <Jim.lin@enthalpy.com>
- Cc Brendan Englert <benglert@citadelehs.com>

2 attachments (2 MB)
 515740_level2.pdf; 515740_standard_excel_pivot.zip;

Hi Jim,

Please run the following additional analyses:

- 8081A B1-2, B4-2, B10-2
- 6010B B8-2 (Arsenic only)
- STLC for chromium B1-0.5, B4-0.5, B7-0.5, B8-0.5

Will these take another 5-7 business days?

Thanks

Doug Whichard

Senior Scientist, Engineering & Environmental Sciences

Walnut Creek Office

1371 Oakland Blvd., Suite 100 GSA Advantage' Walnut Creek, CA 94596 O:818.246.2707 | C: 925.784.1541 www.CitadelEHS.com

Glendale | Irvine | Valencia | Long Beach | San Diego | Walnut Creek | Grass Valley | Seattle | Charlotte The information in this email message may be privileged, confidential, and protected from disclosure or use, dissemination, distribution, or copying of the message or any attachment is strictly prohibited. If you think that you have received this email in error, please notify the sender.

From: Jim Lin <Jim.lin@enthalpy.com>
Sent: Thursday, September 19, 2024 4:24 PM
To: Doug Whichard <dwhichard@citadelehs.com>
Subject: Limited Phase II, 24460 Calabasas Road, Calabasas, CA - Enthalpy Data (515740)

CAUTION: This email originated from outside of the organization! Do not click links, open attachments or reply, unless you recognize the sender's email address and know the content is safe!

Hi Doug,

Please let us know if you will need additional analysis.

Data qualifiers and additional information necessary for the interpretation of the test results are contained in the PDF file and may not be included in the EDD.

Please find attached the following files:

- PDF Deliverable
- Standard Pivot Table EDD (515740_standard_excel_pivot.zip)

You may also access this data at https://labline-orange.enthalpy.com/

Jim Lin Service Center Manager

931 W. Barkley Ave., Orange, CA 92868 O: 714-771-6900 M: 818-319-2359 Jim.Lin@enthalpy.com

To help protect the air we breathe, the water we drink, and the soil that feeds us.

Please take a m oment to provide <u>customer feedback</u> <u>Terms and Conditions & Enthalpy Sample Acceptance Policy</u> <u>https://enthalpy.com/news-events/</u>

CONFIDENTIALITY NOTICE: The contents of this email message and any attachments are intended solely for the addressee(s) and may contain confidential, proprietary and/or privileged information and may be legally protected from disclosure. If you are not the intended recipient of this message or their agent, or if this message has been addressed to you in error, please immediately alert the sender by reply email and then delete this message and any attachments and the reply from your system. If you are not the intended recipient, you are hereby notified that any disclosure, use, dissemination, copying, or storage of this message or its attachments is strictly prohibited.

Doug Whichard Citadel EHS 1725 Victory Blvd Glendale, CA 91201 Lab Job #: 515740 Location: Limited Phase II, 24460 Calabasas Road, Calabasas, CA Date Received: 09/10/24

Sample ID:	B1-0.5	6	Lá	ab ID: १	515740-0	001		Collecte	ed: 09/09/2	24 07:35	
515740-001 Analyte	Result	Qual	Units	RL	MDL	Matrix	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B Prep Method: EPA 3050	B										
Antimony	ND		mg/Kg	2.9	1.2	Soil	0.97	350030	09/12/24	09/13/24	SBW
Arsenic	7.4		mg/Kg	0.97	0.53	Soil	0.97	350030	09/12/24	09/13/24	SBW
Barium	250		mg/Kg	0.97	0.38	Soil	0.97	350030	09/12/24	09/13/24	SBW
Beryllium	0.56		mg/Kg	0.49	0.021	Soil	0.97	350030	09/12/24	09/13/24	SBW
Cadmium	4.9		mg/Kg	0.49	0.051	Soil	0.97	350030	09/12/24	09/13/24	SBW
Chromium	57		mg/Kg	0.97	0.22	Soil	0.97	350030	09/12/24	09/13/24	SBW
Cobalt	6.3		mg/Kg	0.49	0.22	Soil	0.97	350030	09/12/24	09/13/24	SBW
Copper	38		mg/Kg	0.97	0.63	Soil	0.97	350030	09/12/24	09/13/24	SBW
Lead	14		mg/Kg	0.97	0.73	Soil	0.97	350030	09/12/24	09/13/24	SBW
Molybdenum	9.4		mg/Kg	0.97	0.53	Soil	0.97	350030	09/12/24	09/13/24	SBW
Nickel	71		mg/Kg	0.97	0.44	Soil	0.97	350030	09/12/24	09/13/24	SBW
Selenium	0.92	J	mg/Kg	2.9	0.87	Soil	0.97	350030	09/12/24	09/13/24	SBW
Silver	0.26	J	mg/Kg	0.49	0.17	Soil	0.97	350030	09/12/24	09/13/24	SBW
Thallium	ND		mg/Kg	2.9	0.92	Soil	0.97	350030	09/12/24	09/13/24	SBW
Vanadium	110		mg/Kg	0.97	0.16	Soil	0.97	350030	09/12/24	09/13/24	SBW
Zinc	120		mg/Kg	4.9	1.5	Soil	0.97	350030	09/12/24	09/13/24	SBW
Method: EPA 6010B Prep Method: METHOD											
Chromium	0.12	J	mg/L	0.30	0.0074	WET Leachate	10	350871	09/23/24	09/23/24	SBW
Method: EPA 7471A Prep Method: METHOD											
Mercury	ND		mg/Kg	0.16	0.059	Soil	1.2	350018	09/12/24	09/13/24	MLL
Method: EPA 8081A Prep Method: EPA 3546	;										
 alpha-BHC	ND		ug/Kg	5.0	2.3	Soil	1	349964	09/12/24	09/13/24	MES
beta-BHC	ND		ug/Kg	5.0	2.6	Soil	1	349964	09/12/24	09/13/24	MES
gamma-BHC	ND		ug/Kg	5.0	2.5	Soil	1	349964	09/12/24	09/13/24	MES
delta-BHC	ND		ug/Kg	5.0	2.0	Soil	1	349964	09/12/24	09/13/24	MES
Heptachlor	ND		ug/Kg	5.0	2.3	Soil	1	349964	09/12/24	09/13/24	MES
Aldrin	ND		ug/Kg	5.0	2.5	Soil	1	349964	09/12/24	09/13/24	MES
Heptachlor epoxide	ND		ug/Kg	5.0	2.5	Soil	1	349964	09/12/24	09/13/24	MES
Endosulfan I	ND		ug/Kg	5.0	2.6	Soil	1	349964	09/12/24	09/13/24	MES
Dieldrin	ND		ug/Kg	5.0	2.5	Soil	1	349964	09/12/24	09/13/24	MES
4,4'-DDE	100		ug/Kg	5.0	3.1	Soil	1	349964	09/12/24	09/13/24	MES
Endrin	ND		ug/Kg	5.0	2.4	Soil	1	349964	09/12/24	09/13/24	MES
Endosulfan II	ND		ug/Kg	5.0	2.5	Soil	1	349964	09/12/24	09/13/24	MES
Endosulfan sulfate	ND		ug/Kg	5.0	2.2	Soil	1	349964	09/12/24	09/13/24	MES
4,4'-DDD	ND		ug/Kg	5.0	2.0	Soil	1	349964	09/12/24	09/13/24	MES
Endrin aldehyde	ND		ug/Kg	5.0	4.8	Soil	1	349964	09/12/24	09/13/24	MES
Endrin ketone	ND		ug/Kg	5.0	2.6	Soil	1	349964	09/12/24	09/13/24	MES
4,4'-DDT	39		ug/Kg	5.0	2.7	Soil	1	349964	09/12/24	09/13/24	MES
Methoxychlor	ND		ug/Kg	10	4.4	Soil	1	349964	09/12/24	09/13/24	MES

Results for any subcontracted analyses are not included in this section.

515740-001 Analyte	Result	Qual	Units	RL	MDL	Matrix	DF	Batch	Prepared	Analyzed	Chemist
Toxaphene	ND		ug/Kg	100	65	Soil	1	349964	09/12/24	09/13/24	MES
Chlordane (Technical)	140		ug/Kg	50	27	Soil	1	349964	09/12/24	09/13/24	MES
Surrogates				Limits							
TCMX	85%		%REC	23-120		Soil	1	349964	09/12/24	09/13/24	MES
Decachlorobiphenyl	105%		%REC	24-120		Soil	1	349964	09/12/24	09/13/24	MES

Sample ID: B1	L	ab ID: 5	15740-002		Collected: 09/09/24 07:45						
		N	latrix: S	oil							
515740-002 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist	
Method: EPA 8081A											
Prep Method: EPA 3546											
alpha-BHC	ND		ug/Kg	5.0	2.3	0.99	350787	09/21/24	09/21/24	MES	
beta-BHC	ND		ug/Kg	5.0	2.6	0.99	350787	09/21/24	09/21/24	MES	
gamma-BHC	ND		ug/Kg	5.0	2.5	0.99	350787	09/21/24	09/21/24	MES	
delta-BHC	ND		ug/Kg	5.0	2.0	0.99	350787	09/21/24	09/21/24	MES	
Heptachlor	ND		ug/Kg	5.0	2.3	0.99	350787	09/21/24	09/21/24	MES	
Aldrin	ND		ug/Kg	5.0	2.4	0.99	350787	09/21/24	09/21/24	MES	
Heptachlor epoxide	ND		ug/Kg	5.0	2.5	0.99	350787	09/21/24	09/21/24	MES	
Endosulfan I	ND		ug/Kg	5.0	2.6	0.99	350787	09/21/24	09/21/24	MES	
Dieldrin	ND		ug/Kg	5.0	2.5	0.99	350787	09/21/24	09/21/24	MES	
4,4'-DDE	25		ug/Kg	5.0	3.1	0.99	350787	09/21/24	09/21/24	MES	
Endrin	ND		ug/Kg	5.0	2.4	0.99	350787	09/21/24	09/21/24	MES	
Endosulfan II	ND		ug/Kg	5.0	2.5	0.99	350787	09/21/24	09/21/24	MES	
Endosulfan sulfate	ND		ug/Kg	5.0	2.1	0.99	350787	09/21/24	09/21/24	MES	
4,4'-DDD	ND		ug/Kg	5.0	1.9	0.99	350787	09/21/24	09/21/24	MES	
Endrin aldehyde	ND		ug/Kg	5.0	4.7	0.99	350787	09/21/24	09/21/24	MES	
Endrin ketone	ND		ug/Kg	5.0	2.5	0.99	350787	09/21/24	09/21/24	MES	
4,4'-DDT	3.5	#,J	ug/Kg	5.0	2.6	0.99	350787	09/21/24	09/21/24	MES	
Methoxychlor	ND		ug/Kg	9.9	4.4	0.99	350787	09/21/24	09/21/24	MES	
Toxaphene	ND		ug/Kg	99	65	0.99	350787	09/21/24	09/21/24	MES	
Chlordane (Technical)	ND		ug/Kg	50	26	0.99	350787	09/21/24	09/21/24	MES	
Surrogates				Limits							
TCMX	70%		%REC	23-120		0.99	350787	09/21/24	09/21/24	MES	
Decachlorobiphenyl	61%		%REC	24-120		0.99	350787	09/21/24	09/21/24	MES	

2 of 20

Sample ID: B2		Lab ID:	515740-0	03		Со	llected: 09/	09/24 08:05		
			Matrix:	Soil						
								_		
515740-003 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Prep Method: EPA 6010B										
Antimony	ND		mg/Kg	2.9	1.2	0.96	350030	09/12/24	09/13/24	SBW
Arsenic	5.4		mg/Kg	0.96	0.52	0.96	350030	09/12/24	09/13/24	SBW
Barium	86		mg/Kg	0.96	0.38	0.96	350030	09/12/24	09/13/24	SBW
Beryllium	0.33	J	mg/Kg	0.48	0.021	0.96	350030	09/12/24	09/13/24	SBW
Cadmium	0.91		mg/Kg	0.48	0.051	0.96	350030	09/12/24	09/13/24	SBW
Chromium	17		mg/Kg	0.96	0.22	0.96	350030	09/12/24	09/13/24	SBW
Cobalt	5.2		mg/Kg	0.48	0.21	0.96	350030	09/12/24	09/13/24	SBW
Copper	21		mg/Kg	0.96	0.62	0.96	350030	09/12/24	09/13/24	SBW
Lead	9.8		mg/Kg	0.96	0.72	0.96	350030	09/12/24	09/13/24	SBW
Molybdenum	2.0		mg/Kg	0.96	0.52	0.96	350030	09/12/24	09/13/24	SBW
Nickel	15		mg/Kg	0.96	0.44	0.96	350030	09/12/24	09/13/24	SBW
Selenium	ND		mg/Kg	2.9	0.86	0.96	350030	09/12/24	09/13/24	SBW
Silver	ND		mg/Kg	0.48	0.17	0.96	350030	09/12/24	09/13/24	SBW
Thallium	ND		mg/Kg	2.9	0.91	0.96	350030	09/12/24	09/13/24	SBW
Vanadium	38		mg/Kg	0.96	0.15	0.96	350030	09/12/24	09/13/24	SBW
Zinc	48		mg/Kg	4.8	1.5	0.96	350030	09/12/24	09/13/24	SBW
Method: EPA 7471A Prep Method: METHOD										
Mercury	0.073	J	mg/Kg	0.15	0.056	1.1	350018	09/12/24	09/13/24	MLL
Method: EPA 8081A Prep Method: EPA 3546										
alpha-BHC	ND		ug/Kg	5.1	2.4	1	349964	09/12/24	09/13/24	MES
beta-BHC	ND		ug/Kg	5.1	2.6	1	349964	09/12/24	09/13/24	MES
gamma-BHC	ND		ug/Kg	5.1	2.6	1	349964	09/12/24	09/13/24	MES
delta-BHC	ND		ug/Kg	5.1	2.1	1	349964	09/12/24	09/13/24	MES
Heptachlor	ND		ug/Kg	5.1	2.4	1	349964	09/12/24	09/13/24	MES
Aldrin	ND		ug/Kg	5.1	2.5	1	349964	09/12/24	09/13/24	MES
Heptachlor epoxide	ND		ug/Kg	5.1	2.6	1	349964	09/12/24	09/13/24	MES
Endosulfan I	ND		ug/Kg	5.1	2.6	1	349964	09/12/24	09/13/24	MES
Dieldrin	ND		ug/Kg	5.1	2.6	1	349964	09/12/24	09/13/24	MES
4,4'-DDE	ND		ug/Kg	5.1	3.2	1	349964	09/12/24	09/13/24	MES
Endrin	ND		ug/Kg	5.1	2.4	1	349964	09/12/24	09/13/24	MES
Endosulfan II	ND		ug/Kg	5.1	2.6	1	349964	09/12/24	09/13/24	MES
Endosulfan sulfate	ND		ug/Kg	5.1	2.2	1	349964	09/12/24	09/13/24	MES
4,4'-DDD	ND		ug/Kg	5.1	2.0	1	349964	09/12/24	09/13/24	MES
Endrin aldehyde	ND		ug/Kg	5.1	4.9	1	349964	09/12/24	09/13/24	MES
Endrin ketone	ND		ug/Kg	5.1	2.6	1	349964	09/12/24	09/13/24	MES
4,4'-DDT	ND		ug/Kg	5.1	2.7	1	349964	09/12/24	09/13/24	MES
Methoxychlor	ND		ug/Kg	10	4.5	1	349964	09/12/24	09/13/24	MES
Toxaphene	ND		ug/Kg	100	67	1	349964	09/12/24	09/13/24	MES
Chlordane (Technical)	ND		ug/Kg	51	28	1	349964	09/12/24	09/13/24	MES
Surrogates				Limits						
TCMX	85%		%REC	23-120		1	349964	09/12/24	09/13/24	MES
Decachlorobiphenyl	106%		%REC	24-120		1	349964	09/12/24	09/13/24	MES

Sample ID: B3		Lab ID:	515740-00)5		Со	llected: 09/	09/24 08:26		
			Matrix:	Soil						
515740-005 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B										
Antimony	ND		ma/Ka	3.0	12	1	350030	09/12/24	09/13/24	SBW
Arsenic	6.4		ma/Ka	1.0	0.54	1	350030	09/12/24	09/13/24	SBW
Barium	240		ma/Ka	1.0	0.40	1	350030	09/12/24	09/13/24	SBW
Beryllium	0.46	J	mg/Kg	0.50	0.022	1	350030	09/12/24	09/13/24	SBW
Cadmium	3.6		mg/Kg	0.50	0.053	1	350030	09/12/24	09/13/24	SBW
Chromium	43		mg/Kg	1.0	0.23	1	350030	09/12/24	09/13/24	SBW
Cobalt	5.4		mg/Kg	0.50	0.22	1	350030	09/12/24	09/13/24	SBW
Copper	26		mg/Kg	1.0	0.65	1	350030	09/12/24	09/13/24	SBW
Lead	5.9		mg/Kg	1.0	0.75	1	350030	09/12/24	09/13/24	SBW
Molybdenum	7.7		mg/Kg	1.0	0.55	1	350030	09/12/24	09/13/24	SBW
Nickel	48		mg/Kg	1.0	0.45	1	350030	09/12/24	09/13/24	SBW
Selenium	ND		mg/Kg	3.0	0.90	1	350030	09/12/24	09/13/24	SBW
Silver	ND		mg/Kg	0.50	0.17	1	350030	09/12/24	09/13/24	SBW
Thallium	ND		mg/Kg	3.0	0.95	1	350030	09/12/24	09/13/24	SBW
Vanadium	85		mg/Kg	1.0	0.16	1	350030	09/12/24	09/13/24	SBW
Zinc	68		mg/Kg	5.0	1.6	1	350030	09/12/24	09/13/24	SBW
Method: EPA 7471A Prep Method: METHOD										
Mercury	ND		mg/Kg	0.15	0.056	1.1	350018	09/12/24	09/13/24	MLL
Method: EPA 8081A Prep Method: EPA 3546										
alpha-BHC	ND		ug/Kg	5.1	2.4	1	349964	09/12/24	09/13/24	MES
beta-BHC	ND		ug/Kg	5.1	2.6	1	349964	09/12/24	09/13/24	MES
gamma-BHC	ND		ug/Kg	5.1	2.6	1	349964	09/12/24	09/13/24	MES
delta-BHC	ND		ug/Kg	5.1	2.1	1	349964	09/12/24	09/13/24	MES
Heptachlor	ND		ug/Kg	5.1	2.3	1	349964	09/12/24	09/13/24	MES
Aldrin	ND		ug/Kg	5.1	2.5	1	349964	09/12/24	09/13/24	MES
Heptachlor epoxide	ND		ug/Kg	5.1	2.5	1	349964	09/12/24	09/13/24	MES
Endosulfan I	ND		ug/Kg	5.1	2.6	1	349964	09/12/24	09/13/24	MES
Dieldrin	ND		ug/Kg	5.1	2.5	1	349964	09/12/24	09/13/24	MES
4,4'-DDE	ND		ug/Kg	5.1	3.2	1	349964	09/12/24	09/13/24	MES
Endrin			ug/Kg	5.1	2.4	1	349964	09/12/24	09/13/24	MES
Endosultan II	ND		ug/Kg	5.1	2.6	1	349964	09/12/24	09/13/24	MES
Endosultan sultate			ug/Kg	5.1	2.2	1	349964	09/12/24	09/13/24	MES
4,4 -DDD			ug/Kg	5.1	2.0	1	349964	09/12/24	09/13/24	IVIES
Endrin aldenyde			ug/Kg	5.1	4.8	1	349964	09/12/24	09/13/24	IVIES
			ug/Kg	5.1	2.0	1	349904	09/12/24	09/13/24	MES
4,4-DD1			ug/Kg	5.1 10	2.7	1	349904	09/12/24	09/13/24	MES
			ug/Kg	100	4.5	1	349904	09/12/24	09/13/24	IVIES
Chlordane (Technical)				51	20	1	343304	09/12/24	09/13/24	MEQ
Surrogates	UN		uy/ny	ان I imite	20	I	343304	03/12/24	03/13/24	IVIEO
ТСМУ	81%		%RFC	23-120		1	349961	09/12/24	09/13/24	MES
Decachlorobinhenvl	102%		%REC	24-120		1	349961	09/12/24	09/13/24	MES
Beedeniorooipriettyr	102/0			Er 120			0,0004		00,10/24	

Results for any subcontracted analyses are not included in this section.

Sample ID: B4-0.5			Lab ID: 515740-007					Collected: 09/09/24 08:50				
515740-007 Analyte	Result	Qual	Units	RL	MDL	Matrix	DF	Batch	Prepared	Analyzed	Chemist	
Method: EPA 6010B												
Prep Method: EPA 3050	B			0.0		0!!	0.05	050000	00/10/04	00/10/04		
Antimony			mg/Kg	2.9	1.1	Soll	0.95	350030	09/12/24	09/13/24	SBW	
Arsenic	1.1		mg/Kg	0.95	0.52	Soll	0.95	350030	09/12/24	09/13/24	SBW	
Barium	190		mg/Kg	0.95	0.38	Soll	0.95	350030	09/12/24	09/13/24	SBW	
Beryllium	0.49		mg/Kg	0.48	0.021	Soll	0.95	350030	09/12/24	09/13/24	SBW	
Cadmium	3.8		mg/Kg	0.48	0.050	Soll	0.95	350030	09/12/24	09/13/24	SBW	
Chromium	52		mg/Kg	0.95	0.22	Soll	0.95	350030	09/12/24	09/13/24	SBW	
Cobalt	5.9		mg/Kg	0.48	0.21	Soll	0.95	350030	09/12/24	09/13/24	SBW	
Copper	38		mg/Kg	0.95	0.62	Soil	0.95	350030	09/12/24	09/13/24	SBW	
Lead	12		mg/Kg	0.95	0.71	Soil	0.95	350030	09/12/24	09/13/24	SBW	
Molybdenum	8.7		mg/Kg	0.95	0.52	Soil	0.95	350030	09/12/24	09/13/24	SBW	
Nickel	58		mg/Kg	0.95	0.43	Soil	0.95	350030	09/12/24	09/13/24	SBW	
Selenium	ND		mg/Kg	2.9	0.86	Soil	0.95	350030	09/12/24	09/13/24	SBW	
Silver	0.22	J	mg/Kg	0.48	0.17	Soil	0.95	350030	09/12/24	09/13/24	SBW	
Thallium	ND		mg/Kg	2.9	0.90	Soil	0.95	350030	09/12/24	09/13/24	SBW	
Vanadium	110		mg/Kg	0.95	0.15	Soil	0.95	350030	09/12/24	09/13/24	SBW	
Zinc	430		mg/Kg	4.8	1.5	Soil	0.95	350030	09/12/24	09/13/24	SBW	
Method: EPA 6010B Prep Method: METHOD												
Chromium	0.11	J	mg/L	0.30	0.0074	WET Leachate	10	350871	09/23/24	09/23/24	SBW	
Method: EPA 7471A Prep Method: METHOD												
Mercury	0.061	J	mg/Kg	0.15	0.056	Soil	1.1	350018	09/12/24	09/13/24	MLL	
Method: EPA 8081A Prep Method: EPA 3546												
alpha-BHC	ND		ug/Kg	5.0	2.3	Soil	1	349964	09/12/24	09/13/24	MES	
beta-BHC	ND		ug/Kg	5.0	2.6	Soil	1	349964	09/12/24	09/13/24	MES	
gamma-BHC	ND		ug/Kg	5.0	2.5	Soil	1	349964	09/12/24	09/13/24	MES	
delta-BHC	ND		ug/Kg	5.0	2.0	Soil	1	349964	09/12/24	09/13/24	MES	
Heptachlor	ND		ug/Kg	5.0	2.3	Soil	1	349964	09/12/24	09/13/24	MES	
Aldrin	ND		ug/Kg	5.0	2.5	Soil	1	349964	09/12/24	09/13/24	MES	
Heptachlor epoxide	ND		ug/Kg	5.0	2.5	Soil	1	349964	09/12/24	09/13/24	MES	
Endosulfan I	ND		ug/Kg	5.0	2.6	Soil	1	349964	09/12/24	09/13/24	MES	
Dieldrin	ND		ua/Ka	5.0	2.5	Soil	1	349964	09/12/24	09/13/24	MES	
4.4'-DDE	9.9		ua/Ka	5.0	3.1	Soil	1	349964	09/12/24	09/13/24	MES	
Endrin	ND		ua/Ka	5.0	2.4	Soil	1	349964	09/12/24	09/13/24	MES	
Endosulfan II	ND		ua/Ka	5.0	2.5	Soil	1	349964	09/12/24	09/13/24	MES	
Endosulfan sulfate	ND		ua/Ka	5.0	2.2	Soil	1	349964	09/12/24	09/13/24	MES	
4 4'-DDD	ND			5.0	2.0	Soil	1	349964	09/12/24	09/13/24	MES	
Endrin aldehvde	ND			5.0	4.8	Soil	. 1	349964	09/12/24	09/13/24	MES	
Endrin ketone				5.0	2.6	Soil	1	349964	09/12/24	09/13/24	MES	
	25			5.0	2.0	Soil	1	349964	09/12/24	09/13/24	MES	
Methovychlor				10	<u> </u>	Soil	1	34996/	09/12/24	09/13/24	MES	
Tovanheno				100	4.4	Soil	1	3/006/	00/12/24	00/12/24	MES	
Chlordane (Technical)	20	1		50	20	Soil	1	3/006/	00/12/24	00/10/24	MEQ	
Surrogates	23	U	uy/ity	l imite	20	501	I	0-00+	03/12/24	03/13/24		
TCMX	90%		%REC	23-120		Soil	1	349964	09/12/24	09/13/24	MES	

Results for any subcontracted analyses are not included in this section.

Analysis Results for 515740												
515740-007 Analyte	Result	Qual	Units	R	L MDL	Matr	ʻix	DF	Batch	Prepared	Analyzed	Chemist
Decachlorobiphenyl	116%		%REC	24-12	0	So	il	1	349964	09/12/24	09/13/24	MES
Sample ID:	B4-2		Lat	DID:	515740-008				Collecter	d: 09/09/2	4 08:55	
Mat					Soil							
515740-008 Analyte	R	esult	Qual	Units	RL	MDL	DF	Batch	Pre	pared A	nalyzed	Chemist
Method: EPA 8081A												
Prep Method: EPA 3546												
alpha-B	HC	ND		ug/Kg	5.1	2.4	1	350787	7 09/2	21/24 ()9/21/24	MES
beta-B	HC	ND		ug/Kg	5.1	2.6	1	350787	7 09/2	21/24 ()9/21/24	MES
gamma-B	HC	ND		ug/Kg	5.1	2.6	1	350787	7 09/2	21/24 ()9/21/24	MES
delta-B	HC	ND		ug/Kg	5.1	2.1	1	350787	7 09/2	21/24 ()9/21/24	MES
Heptach	nlor	ND		ug/Kg	5.1	2.3	1	350787	7 09/2	21/24 ()9/21/24	MES
Alc	drin	ND		ug/Kg	5.1	2.5	1	350787	7 09/2	21/24 ()9/21/24	MES
Heptachlor epox	ide	ND		ug/Kg	5.1	2.5	1	350787	7 09/2	21/24 ()9/21/24	MES
Endosulfa	an I	ND		ug/Kg	5.1	2.6	1	350787	7 09/2	21/24 ()9/21/24	MES
Dielo	drin	ND		ug/Kg	5.1	2.5	1	350787	7 09/2	21/24 ()9/21/24	MES
4,4'-D	DE	ND		ug/Kg	5.1	3.2	1	350787	7 09/2	21/24 ()9/21/24	MES
Enc	drin	ND		ug/Kg	5.1	2.4	1	350787	7 09/2	21/24 ()9/21/24	MES
Endosulfa	n II	ND		ug/Kg	5.1	2.6	1	350787	7 09/2	21/24 ()9/21/24	MES
Endosulfan sulf	fate	ND		ug/Kg	5.1	2.2	1	350787	7 09/2	21/24 ()9/21/24	MES
4,4'-D	DD	ND		ug/Kg	5.1	2.0	1	350787	7 09/2	21/24 ()9/21/24	MES
Endrin aldehy	/de	ND		ug/Kg	5.1	4.8	1	350787	7 09/2	21/24 ()9/21/24	MES
Endrin keto	one	ND		ug/Kg	5.1	2.6	1	350787	7 09/2	21/24 ()9/21/24	MES
4,4'-D	DT	ND		ug/Kg	5.1	2.7	1	350787	7 09/2	21/24 ()9/21/24	MES
Methoxycl	nlor	ND		ug/Kg	10	4.5	1	350787	7 09/2	21/24 ()9/21/24	MES
Toxaphe	ene	ND		ug/Kg	100	66	1	350787	7 09/2	21/24 ()9/21/24	MES
Chlordane (Techni	cal)	ND		ug/Kg	51	28	1	350787	7 09/2	21/24 ()9/21/24	MES
Surrogates					Limits							
TC	MX	64%		%REC	23-120		1	350787	7 09/2	21/24 ()9/21/24	MES
Decachlorobiphe	enyl	57%		%REC	24-120		1	350787	7 09/2	21/24 ()9/21/24	MES

Sample ID: B5	Lab ID:	515740-0	09	Collected: 09/09/24 09:28						
			Matrix:	Soil						
515740-009 Analyte	Recult	Qual	Unite	BI	МП	DE	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B	nesun	Quai	Onits	n L	MDL		Datch	Fiepaleu	Analyzeu	Gliennist
Prep Method: EPA 3050B										
Antimony	ND		mg/Kg	2.9	1.2	0.96	350030	09/12/24	09/13/24	SBW
Arsenic	5.9		mg/Kg	0.96	0.52	0.96	350030	09/12/24	09/13/24	SBW
Barium	160		mg/Kg	0.96	0.38	0.96	350030	09/12/24	09/13/24	SBW
Beryllium	0.30	J	mg/Kg	0.48	0.021	0.96	350030	09/12/24	09/13/24	SBW
Cadmium	1.2		mg/Kg	0.48	0.051	0.96	350030	09/12/24	09/13/24	SBW
Chromium	20		mg/Kg	0.96	0.22	0.96	350030	09/12/24	09/13/24	SBW
Cobalt	3.9		mg/Kg	0.48	0.21	0.96	350030	09/12/24	09/13/24	SBW
Copper	13		mg/Kg	0.96	0.62	0.96	350030	09/12/24	09/13/24	SBW
Lead	5.2		mg/Kg	0.96	0.72	0.96	350030	09/12/24	09/13/24	SBW
Molybdenum	3.3		mg/Kg	0.96	0.52	0.96	350030	09/12/24	09/13/24	SBW
Nickel	22		mg/Kg	0.96	0.44	0.96	350030	09/12/24	09/13/24	SBW
Selenium	ND		mg/Kg	2.9	0.86	0.96	350030	09/12/24	09/13/24	SBW
Silver	ND		mg/Kg	0.48	0.17	0.96	350030	09/12/24	09/13/24	SBW
Thallium	ND		mg/Kg	2.9	0.91	0.96	350030	09/12/24	09/13/24	SBW
Vanadium	40		mg/Kg	0.96	0.15	0.96	350030	09/12/24	09/13/24	SBW
Zinc	36		mg/Kg	4.8	1.5	0.96	350030	09/12/24	09/13/24	SBW
Method: EPA 7471A Prep Method: METHOD										
Mercury	ND		mg/Kg	0.15	0.056	1.1	350018	09/12/24	09/13/24	MLL
Method: EPA 8081A Prep Method: EPA 3546										
alpha-BHC	ND		ug/Kg	5.1	2.4	1	349964	09/12/24	09/13/24	MES
beta-BHC	ND		ug/Kg	5.1	2.6	1	349964	09/12/24	09/13/24	MES
gamma-BHC	ND		ug/Kg	5.1	2.6	1	349964	09/12/24	09/13/24	MES
delta-BHC	ND		ug/Kg	5.1	2.1	1	349964	09/12/24	09/13/24	MES
Heptachlor	ND		ug/Kg	5.1	2.3	1	349964	09/12/24	09/13/24	MES
Aldrin	ND		ug/Kg	5.1	2.5	1	349964	09/12/24	09/13/24	MES
Heptachlor epoxide	ND		ug/Kg	5.1	2.5	1	349964	09/12/24	09/13/24	MES
Endosulfan I	ND		ug/Kg	5.1	2.6	1	349964	09/12/24	09/13/24	MES
Dieldrin	ND		ug/Kg	5.1	2.5	1	349964	09/12/24	09/13/24	MES
4,4'-DDE	ND		ug/Kg	5.1	3.2	1	349964	09/12/24	09/13/24	MES
Endrin	ND		ug/Kg	5.1	2.4	1	349964	09/12/24	09/13/24	MES
Endosulfan II	ND		ug/Kg	5.1	2.6	1	349964	09/12/24	09/13/24	MES
Endosulfan sulfate	ND		ug/Kg	5.1	2.2	1	349964	09/12/24	09/13/24	MES
4,4'-DDD	ND		ug/Kg	5.1	2.0	1	349964	09/12/24	09/13/24	MES
Endrin aldehyde	ND		ug/Kg	5.1	4.8	1	349964	09/12/24	09/13/24	MES
Endrin ketone	ND		ug/Kg	5.1	2.6	1	349964	09/12/24	09/13/24	MES
4,4'-DDT	ND		ug/Kg	5.1	2.7	1	349964	09/12/24	09/13/24	MES
Methoxychlor	ND		ug/Kg	10	4.5	1	349964	09/12/24	09/13/24	MES
Toxaphene	ND		ug/Kg	100	66	1	349964	09/12/24	09/13/24	MES
Chlordane (Technical)	ND		ug/Kg	51	28	1	349964	09/12/24	09/13/24	MES
Surrogates				Limits						
TCMX	81%		%REC	23-120		1	349964	09/12/24	09/13/24	MES
Decachlorobiphenyl	83%		%REC	24-120		1	349964	09/12/24	09/13/24	MES

Sample ID: B6	6-0.5		Lab ID:	515740-0	11		Со	llected: 09/	09/24 09:44	
			Matrix:	Soil						
515740-011 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B								-		
Prep Method: EPA 3050B										
Antimony	ND		mg/Kg	3.0	1.2	0.99	350030	09/12/24	09/13/24	SBW
Arsenic	7.0		mg/Kg	0.99	0.54	0.99	350030	09/12/24	09/13/24	SBW
Barium	160		mg/Kg	0.99	0.39	0.99	350030	09/12/24	09/13/24	SBW
Beryllium	0.36	J	mg/Kg	0.50	0.021	0.99	350030	09/12/24	09/13/24	SBW
Cadmium	2.0		mg/Kg	0.50	0.052	0.99	350030	09/12/24	09/13/24	SBW
Chromium	24		mg/Kg	0.99	0.23	0.99	350030	09/12/24	09/13/24	SBW
Cobalt	3.4		mg/Kg	0.50	0.22	0.99	350030	09/12/24	09/13/24	SBW
Copper	13		mg/Kg	0.99	0.64	0.99	350030	09/12/24	09/13/24	SBW
Mahyhdanum	3.2		mg/Kg	0.99	0.74	0.99	350030	09/12/24	09/13/24	
Molybderium	3.0		mg/Kg	0.99	0.54	0.99	350030	09/12/24	09/13/24	
			mg/Kg	0.99	0.45	0.99	350030	09/12/24	09/13/24	
Seleriluiti			mg/Kg	0.50	0.09	0.99	350030	09/12/24	09/13/24	
Thallium			mg/Kg	0.50	0.17	0.99	350030	09/12/24	09/13/24	SBW
Vanadium	51		mg/Kg	0.00	0.34	0.33	350030	09/12/24	09/13/24	SBW
Zinc	31		ma/Ka	5.0	1.6	0.00	350030	09/12/24	09/13/24	SBW
	04		iiig/itg	0.0	1.0	0.00	000000	00/12/24	00/10/24	0.0011
Prep Method: METHOD										
Mercury	ND		ma/Ka	0.17	0.061	12	350018	09/12/24	09/13/24	MLI
Method: EPA 8081A Prep Method: EPA 3546										
alpha-BHC	ND		ua/Ka	4.9	2.3	0.98	349964	09/12/24	09/13/24	MES
beta-BHC	ND		ua/Ka	4.9	2.5	0.98	349964	09/12/24	09/13/24	MES
gamma-BHC	ND		ua/Ka	4.9	2.5	0.98	349964	09/12/24	09/13/24	MES
delta-BHC	ND		ug/Kg	4.9	2.0	0.98	349964	09/12/24	09/13/24	MES
Heptachlor	ND		ug/Kg	4.9	2.3	0.98	349964	09/12/24	09/13/24	MES
Aldrin	ND		ug/Kg	4.9	2.4	0.98	349964	09/12/24	09/13/24	MES
Heptachlor epoxide	ND		ug/Kg	4.9	2.5	0.98	349964	09/12/24	09/13/24	MES
Endosulfan I	ND		ug/Kg	4.9	2.5	0.98	349964	09/12/24	09/13/24	MES
Dieldrin	ND		ug/Kg	4.9	2.5	0.98	349964	09/12/24	09/13/24	MES
4,4'-DDE	ND		ug/Kg	4.9	3.1	0.98	349964	09/12/24	09/13/24	MES
Endrin	ND		ug/Kg	4.9	2.3	0.98	349964	09/12/24	09/13/24	MES
Endosulfan II	ND		ug/Kg	4.9	2.5	0.98	349964	09/12/24	09/13/24	MES
Endosulfan sulfate	ND		ug/Kg	4.9	2.1	0.98	349964	09/12/24	09/13/24	MES
4,4'-DDD	ND		ug/Kg	4.9	1.9	0.98	349964	09/12/24	09/13/24	MES
Endrin aldehyde	ND		ug/Kg	4.9	4.7	0.98	349964	09/12/24	09/13/24	MES
Endrin ketone	ND		ug/Kg	4.9	2.5	0.98	349964	09/12/24	09/13/24	MES
4,4'-DDT	ND		ug/Kg	4.9	2.6	0.98	349964	09/12/24	09/13/24	MES
Methoxychlor	ND		ug/Kg	9.8	4.4	0.98	349964	09/12/24	09/13/24	MES
Toxaphene	ND		ug/Kg	98	64	0.98	349964	09/12/24	09/13/24	MES
Chlordane (Technical)	ND		ug/Kg	49	27	0.98	349964	09/12/24	09/13/24	MES
Surrogates				Limits						
TCMX	75%		%REC	23-120		0.98	349964	09/12/24	09/13/24	MES
Decachlorobiphenyl	90%		%REC	24-120		0.98	349964	09/12/24	09/13/24	MES

Results for any subcontracted analyses are not included in this section.

Sample ID:	B7-0.5		L	.ab ID: 🕴	515740-0)13	Collected: 09/09/24 09:55				
515740-013 Analyte	Result	Qual	Units	RL	MDL	Matrix	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B	D										
Prep Method: EPA 3050	B			0.0	1.0	Cail	0.00	050000	00/10/04	00/10/04	
Anumony			mg/Kg	2.9	1.2	Soll	0.96	350030	09/12/24	09/13/24	SBM
Arsenic	7.0		mg/Kg	0.96	0.52	Soll	0.96	350030	09/12/24	09/13/24	SBM
Banum	200		mg/Kg	0.96	0.30	Soll	0.96	350030	09/12/24	09/13/24	
Codmium	0.59		mg/Kg	0.40	0.021	Soil	0.90	250030	09/12/24	09/13/24	
Caumium	5.5		mg/Kg	0.40	0.001	Soil	0.90	350030	09/12/24	09/13/24	
	6.4		mg/Kg	0.90	0.22	Soil	0.90	350030	09/12/24	09/13/24	SBW
Copper	20		mg/Kg	0.40	0.21	Soil	0.30	350030	09/12/24	00/13/24	SBW
	<u> </u>		mg/Kg	0.30	0.02	Soil	0.30	350030	09/12/24	00/13/24	SBW
Molybdenum	11		mg/Kg	0.00	0.72	Soil	0.00	350030	09/12/24	09/13/24	SBW
Nickel	77		mg/Kg	0.00	0.52	Soil	0.00	350030	09/12/24	09/13/24	SBW
Selenium			mg/Kg	2.9	0.86	Soil	0.00	350030	09/12/24	09/13/24	SBW
Silver	0.10	-	mg/Kg	0.48	0.00	Soil	0.00	350030	09/12/24	09/13/24	SBW
Thallium		0	mg/Kg	2 9	0.17	Soil	0.00	350030	09/12/24	09/13/24	SBW
Vanadium	140		ma/Ka	0.96	0.01	Soil	0.00	350030	09/12/24	09/13/24	SBW
Zinc	88		ma/Ka	4.8	1.5	Soil	0.00	350030	09/12/24	09/13/24	SBW
	00		iiig/itg	4.0	1.0	001	0.00	000000	00/12/24	00/10/24	
Prep Method: METHOD											
Chromium	0.019	J	mg/L	0.30	0.0074	WET Leachate	10	350871	09/23/24	09/23/24	SBW
Method: EPA 7471A Prep Method: METHOD											
Mercury	ND		mg/Kg	0.16	0.059	Soil	1.2	350018	09/12/24	09/13/24	MLL
Method: EPA 8081A Prep Method: EPA 3546											
alpha-BHC	ND		ug/Kg	5.0	2.3	Soil	1	349964	09/12/24	09/13/24	MES
beta-BHC	ND		ug/Kg	5.0	2.6	Soil	1	349964	09/12/24	09/13/24	MES
gamma-BHC	ND		ug/Kg	5.0	2.5	Soil	1	349964	09/12/24	09/13/24	MES
delta-BHC	ND		ug/Kg	5.0	2.0	Soil	1	349964	09/12/24	09/13/24	MES
Heptachlor	ND		ug/Kg	5.0	2.3	Soil	1	349964	09/12/24	09/13/24	MES
Aldrin	ND		ug/Kg	5.0	2.5	Soil	1	349964	09/12/24	09/13/24	MES
Heptachlor epoxide	ND		ug/Kg	5.0	2.5	Soil	1	349964	09/12/24	09/13/24	MES
Endosulfan I	ND		ug/Kg	5.0	2.6	Soil	1	349964	09/12/24	09/13/24	MES
Dieldrin	ND		ug/Kg	5.0	2.5	Soil	1	349964	09/12/24	09/13/24	MES
4,4'-DDE	ND		ug/Kg	5.0	3.1	Soil	1	349964	09/12/24	09/13/24	MES
Endrin	ND		ug/Kg	5.0	2.4	Soil	1	349964	09/12/24	09/13/24	MES
Endosulfan II	ND		ug/Kg	5.0	2.5	Soil	1	349964	09/12/24	09/13/24	MES
Endosulfan sulfate	ND		ug/Kg	5.0	2.2	Soil	1	349964	09/12/24	09/13/24	MES
4,4'-DDD	ND		ug/Kg	5.0	2.0	Soil	1	349964	09/12/24	09/13/24	MES
Endrin aldehyde	ND		ug/Kg	5.0	4.8	Soil	1	349964	09/12/24	09/13/24	MES
Endrin ketone	ND		ug/Kg	5.0	2.6	Soil	1	349964	09/12/24	09/13/24	MES
4,4'-DDT	ND		ug/Kg	5.0	2.7	Soil	1	349964	09/12/24	09/13/24	MES
Methoxychlor	ND		ug/Kg	10	4.4	Soil	1	349964	09/12/24	09/13/24	MES
Toxaphene	ND		ug/Kg	100	65	Soil	1	349964	09/12/24	09/13/24	MES
Chlordane (Technical)	ND		ug/Kg	50	27	Soil	1	349964	09/12/24	09/13/24	MES
Surrogates				Limits							
TCMX	75%		%REC	23-120		Soil	1	349964	09/12/24	09/13/24	MES

Results for any subcontracted analyses are not included in this section.

515740-013 Analyte	Result	Qual	Units	RL	MDL	Matrix	DF	Batch	Prepared	Analyzed	Chemist
Decachlorobiphenyl	93%		%REC	24-120		Soil	1	349964	09/12/24	09/13/24	MES

Sample ID:	B8-0.5		L	ab ID:	515740-0)15	Collected: 09/09/24 11:25				
515740-015 Analyte	Result	Qual	Units	RL	MDL	Matrix	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B	_										
Prep Method: EPA 3050	B				1.0	0.1	0.07	050000	00/10/01	00/10/01	0.014
Antimony	ND		mg/Kg	2.9	1.2	Soil	0.97	350030	09/12/24	09/13/24	SBW
Arsenic	14		mg/Kg	0.97	0.53	Soil	0.97	350030	09/12/24	09/13/24	SBW
Barium	400		mg/Kg	0.97	0.38	Soil	0.97	350030	09/12/24	09/13/24	SBW
Beryllium	0.49		mg/Kg	0.49	0.021	Soil	0.97	350030	09/12/24	09/13/24	SBW
Cadmium	7.6		mg/Kg	0.49	0.051	Soil	0.97	350030	09/12/24	09/13/24	SBW
Chromium	55		mg/Kg	0.97	0.22	Soil	0.97	350030	09/12/24	09/13/24	SBW
Cobalt	3.4		mg/Kg	0.49	0.22	Soil	0.97	350030	09/12/24	09/13/24	SBW
Copper	47		mg/Kg	0.97	0.63	Soil	0.97	350030	09/12/24	09/13/24	SBW
Lead	3.8		mg/Kg	0.97	0.73	Soil	0.97	350030	09/12/24	09/13/24	SBW
Molybdenum	9.9		mg/Kg	0.97	0.53	Soil	0.97	350030	09/12/24	09/13/24	SBW
Nickel	98		mg/Kg	0.97	0.44	Soil	0.97	350030	09/12/24	09/13/24	SBW
Selenium	ND		mg/Kg	2.9	0.87	Soil	0.97	350030	09/12/24	09/13/24	SBW
Silver	0.18	J	mg/Kg	0.49	0.17	Soil	0.97	350030	09/12/24	09/13/24	SBW
Thallium	ND		mg/Kg	2.9	0.92	Soil	0.97	350030	09/12/24	09/13/24	SBW
Vanadium	150		mg/Kg	0.97	0.16	Soil	0.97	350030	09/12/24	09/13/24	SBW
Zinc	100		mg/Kg	4.9	1.5	Soil	0.97	350030	09/12/24	09/13/24	SBW
Method: EPA 6010B Prep Method: METHOD											
Chromium	0.018	J	mg/L	0.30	0.0074	WET Leachate	10	350871	09/23/24	09/23/24	SBW
Method: EPA 7471A Prep Method: METHOD											
Mercury	0.095	J	mg/Kg	0.16	0.058	Soil	1.1	350364	09/17/24	09/17/24	MLL
Method: EPA 8081A Prep Method: EPA 3546											
alpha-BHC	ND		ua/Ka	5.0	2.3	Soil	0.99	349964	09/12/24	09/13/24	MES
beta-BHC	ND		ua/Ka	5.0	2.6	Soil	0.99	349964	09/12/24	09/13/24	MES
gamma-BHC	ND		ua/Ka	5.0	2.5	Soil	0.99	349964	09/12/24	09/13/24	MES
delta-BHC	ND		ua/Ka	5.0	2.0	Soil	0.99	349964	09/12/24	09/13/24	MES
Heptachlor	ND		ua/Ka	5.0	2.3	Soil	0.99	349964	09/12/24	09/13/24	MES
Aldrin	ND		ua/Ka	5.0	2.4	Soil	0.99	349964	09/12/24	09/13/24	MES
Heptachlor epoxide	ND		ua/Ka	5.0	2.5	Soil	0.99	349964	09/12/24	09/13/24	MES
Endosulfan I	ND		ua/Ka	5.0	2.6	Soil	0.99	349964	09/12/24	09/13/24	MES
Dieldrin	ND		ua/Ka	5.0	2.5	Soil	0.99	349964	09/12/24	09/13/24	MES
4.4'-DDF	ND		ua/Ka	5.0	3.1	Soil	0.99	349964	09/12/24	09/13/24	MES
Endrin	ND		ua/Ka	5.0	2.4	Soil	0.99	349964	09/12/24	09/13/24	MES
Endosulfan II	ND		ua/Ka	5.0	2.5	Soil	0.99	349964	09/12/24	09/13/24	MES
Endosulfan sulfate	ND		ua/Ka	5.0	2.1	Soil	0.99	349964	09/12/24	09/13/24	MES
4 4'-DDD	ND			5.0	1.9	Soil	0.99	349964	09/12/24	09/13/24	MES
Endrin aldehvde	ND			5.0	4 7	Soil	0.00	349964	09/12/24	09/13/24	MES
Endrin ketone	ND			5.0	2.5	Soil	0.99	349964	09/12/24	09/13/24	MES
				5.0	2.5	Soil	0.00	349964	09/12/24	09/13/24	MES
Methovychlor				<u> </u>	<u>2.0</u>	Soil	0.00	349964	09/12/24	09/13/24	MES
Tovenhene				0.0 00	 65	Soil	0.00	349964	09/12/24	09/13/24	MES
Chlordane (Technical)				50	27	Soil	0.00	349964	09/12/24	09/13/24	MES
Surrogates			ug/ing	Limits	<i>L1</i>	001	0.00	010004	00,12,24	00,10,24	
TCMX	36%		%REC	23-120		Soil	0.99	349964	09/12/24	09/13/24	MES

Results for any subcontracted analyses are not included in this section.

Arsenic

14

mg/Kg

0.95

Analysis Results for 515740												
515740-015 Analyte	Result	Qual	Units	RL	MDL	. N	latrix	DF	Batch	Prepared	Analyzed	Chemist
Decachlorobiphenyl	49%		%REC	24-120			Soil	0.99	349964	09/12/24	09/13/24	MES
Sample ID:	B8-2		La	b ID: 5	15740-0 ⁻	16			Collecte	d: 09/09/2	4 11:45	
			Ма	trix: S	oil							
515740-016 Analyte	Re	sult	Qual	Units	RL	MDL	DF	Batch	Prep	ared A	nalyzed	Chemist
Method: EPA 6010B Prep Method: EPA 3050	В											

0.68

0.95

350874

09/23/24

09/23/24

SBW

16 of 20

Sample ID: B9	9-0.5		Lab ID:	515740-0	17		Со	llected: 09/	09/24 12:15	
			Matrix:	Soil						
515740-017 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B										
Antimony	ND		ma/Ka	29	12	0.96	350030	09/12/24	09/13/24	SBW
Arsenic	56		ma/Ka	0.96	0.52	0.00	350030	09/12/24	09/13/24	SBW
Barium	200		ma/Ka	0.00	0.38	0.96	350030	09/12/24	09/13/24	SBW
Bervllium	0.35	J	ma/Ka	0.48	0.021	0.96	350030	09/12/24	09/13/24	SBW
Cadmium	3.7		ma/Ka	0.48	0.051	0.96	350030	09/12/24	09/13/24	SBW
Chromium	46		ma/Ka	0.96	0.22	0.96	350030	09/12/24	09/13/24	SBW
Cobalt	3.9		ma/Ka	0.48	0.21	0.96	350030	09/12/24	09/13/24	SBW
Copper	47		mg/Kg	0.96	0.62	0.96	350030	09/12/24	09/13/24	SBW
Lead	14		mg/Kg	0.96	0.72	0.96	350030	09/12/24	09/13/24	SBW
Molybdenum	6.2		mg/Kg	0.96	0.52	0.96	350030	09/12/24	09/13/24	SBW
Nickel	49		mg/Kg	0.96	0.44	0.96	350030	09/12/24	09/13/24	SBW
Selenium	ND		mg/Kg	2.9	0.86	0.96	350030	09/12/24	09/13/24	SBW
Silver	0.50		mg/Kg	0.48	0.17	0.96	350030	09/12/24	09/13/24	SBW
Thallium	ND		mg/Kg	2.9	0.91	0.96	350030	09/12/24	09/13/24	SBW
Vanadium	88		mg/Kg	0.96	0.15	0.96	350030	09/12/24	09/13/24	SBW
Zinc	110		mg/Kg	4.8	1.5	0.96	350030	09/12/24	09/13/24	SBW
Method: EPA 7471A Prep Method: METHOD										
Mercury	0.11	J	mg/Kg	0.16	0.057	1.1	350364	09/17/24	09/17/24	MLL
Method: EPA 8081A Prep Method: EPA 3546										
alpha-BHC	ND		ug/Kg	4.9	2.3	0.98	349964	09/12/24	09/13/24	MES
beta-BHC	ND		ug/Kg	4.9	2.5	0.98	349964	09/12/24	09/13/24	MES
gamma-BHC	ND		ug/Kg	4.9	2.5	0.98	349964	09/12/24	09/13/24	MES
delta-BHC	ND		ug/Kg	4.9	2.0	0.98	349964	09/12/24	09/13/24	MES
Heptachlor	ND		ug/Kg	4.9	2.3	0.98	349964	09/12/24	09/13/24	MES
Aldrin	ND		ug/Kg	4.9	2.4	0.98	349964	09/12/24	09/13/24	MES
Heptachlor epoxide	ND		ug/Kg	4.9	2.5	0.98	349964	09/12/24	09/13/24	MES
Endosulfan I	ND		ug/Kg	4.9	2.5	0.98	349964	09/12/24	09/13/24	MES
Dieldrin	ND		ug/Kg	4.9	2.5	0.98	349964	09/12/24	09/13/24	MES
4,4'-DDE	ND		ug/Kg	4.9	3.1	0.98	349964	09/12/24	09/13/24	MES
Endrin	ND		ug/Kg	4.9	2.3	0.98	349964	09/12/24	09/13/24	MES
Endosulfan II	ND		ug/Kg	4.9	2.5	0.98	349964	09/12/24	09/13/24	MES
Endosulfan sulfate	ND		ug/Kg	4.9	2.1	0.98	349964	09/12/24	09/13/24	MES
4,4'-DDD	ND		ug/Kg	4.9	1.9	0.98	349964	09/12/24	09/13/24	MES
Endrin aldehyde	ND		ug/Kg	4.9	4.7	0.98	349964	09/12/24	09/13/24	MES
Endrin ketone	ND		ug/Kg	4.9	2.5	0.98	349964	09/12/24	09/13/24	MES
4,4'-DDT	ND		ug/Kg	4.9	2.6	0.98	349964	09/12/24	09/13/24	MES
Methoxychlor	ND		ug/Kg	9.8	4.4	0.98	349964	09/12/24	09/13/24	MES
Toxaphene	ND		ug/Kg	98	64	0.98	349964	09/12/24	09/13/24	MES
Chlordane (Technical)	ND		ug/Kg	49	27	0.98	349964	09/12/24	09/13/24	MES
Surrogates				Limits						
TCMX	75%		%REC	23-120		0.98	349964	09/12/24	09/13/24	MES
Decachlorobiphenyl	89%		%REC	24-120		0.98	349964	09/12/24	09/13/24	MES

Results for any subcontracted analyses are not included in this section.

Sample ID: B1	0-0.5		Lab ID:	515740-	019	9 Collected: 09/09/24 13:00				
			Matrix:	Soil						
515740-019 Analyte	Result	Qual	Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 6010B Prep Method: EPA 3050B										
Antimony	ND		mg/Kg	3.0	1.2	1	350030	09/12/24	09/13/24	SBW
Arsenic	6.6		mg/Kg	1.0	0.54	1	350030	09/12/24	09/13/24	SBW
Barium	250		mg/Kg	1.0	0.40	1	350030	09/12/24	09/13/24	SBW
Beryllium	0.44	J	mg/Kg	0.50	0.022	1	350030	09/12/24	09/13/24	SBW
Cadmium	3.7		mg/Kg	0.50	0.053	1	350030	09/12/24	09/13/24	SBW
Chromium	44		mg/Kg	1.0	0.23	1	350030	09/12/24	09/13/24	SBW
Cobalt	5.4		mg/Kg	0.50	0.22	1	350030	09/12/24	09/13/24	SBW
Copper	32		mg/Kg	1.0	0.65	1	350030	09/12/24	09/13/24	SBW
Lead	12		mg/Kg	1.0	0.75	1	350030	09/12/24	09/13/24	SBW
Molybdenum	8.5		mg/Kg	1.0	0.55	1	350030	09/12/24	09/13/24	SBW
Nickel	52		mg/Kg	1.0	0.45	1	350030	09/12/24	09/13/24	SBW
Selenium	ND		mg/Kg	3.0	0.90	1	350030	09/12/24	09/13/24	SBW
Silver	0.18	J	mg/Kg	0.50	0.17	1	350030	09/12/24	09/13/24	SBW
I hallium	ND		mg/Kg	3.0	0.95	1	350030	09/12/24	09/13/24	SBW
Vanadium	87		mg/Kg	1.0	0.16	1	350030	09/12/24	09/13/24	SBW
Zinc	95		mg/Kg	5.0	1.6	1	350030	09/12/24	09/13/24	SBW
Method: EPA 7471A Prep Method: METHOD										
Mercury	0.066	J	mg/Kg	0.16	0.057	1.1	350118	09/13/24	09/16/24	MLL
Method: EPA 8081A Prep Method: EPA 3546										
alpha-BHC	ND		ug/Kg	5.0	2.3	0.99	349964	09/12/24	09/13/24	MES
beta-BHC	ND		ug/Kg	5.0	2.6	0.99	349964	09/12/24	09/13/24	MES
gamma-BHC	ND		ug/Kg	5.0	2.5	0.99	349964	09/12/24	09/13/24	MES
delta-BHC	ND		ug/Kg	5.0	2.0	0.99	349964	09/12/24	09/13/24	MES
Heptachlor	ND		ug/Kg	5.0	2.3	0.99	349964	09/12/24	09/13/24	MES
Aldrin	ND		ug/Kg	5.0	2.4	0.99	349964	09/12/24	09/13/24	MES
Heptachlor epoxide	ND		ug/Kg	5.0	2.5	0.99	349964	09/12/24	09/13/24	MES
Endosulfan I	ND		ug/Kg	5.0	2.6	0.99	349964	09/12/24	09/13/24	MES
Dieldrin	ND		ug/Kg	5.0	2.5	0.99	349964	09/12/24	09/13/24	MES
4,4'-DDE	ND		ug/Kg	5.0	3.1	0.99	349964	09/12/24	09/13/24	MES
Endrin	ND		ug/Kg	5.0	2.4	0.99	349964	09/12/24	09/13/24	MES
Endosulfan II	ND		ug/Kg	5.0	2.5	0.99	349964	09/12/24	09/13/24	MES
Endosulfan sulfate	ND		ug/Kg	5.2	5.2	0.99	349964	09/12/24	09/13/24	MES
4,4'-DDD	ND		ug/Kg	5.0	1.9	0.99	349964	09/12/24	09/13/24	MES
Endrin aldehyde	ND		ug/Kg	5.0	4.7	0.99	349964	09/12/24	09/13/24	MES
Endrin ketone	ND		ug/Kg	5.0	2.5	0.99	349964	09/12/24	09/13/24	MES
4,4'-DDT	6.3		ug/Kg	5.0	2.6	0.99	349964	09/12/24	09/13/24	MES
Methoxychlor	ND		ug/Kg	9.9	4.4	0.99	349964	09/12/24	09/13/24	MES
Toxaphene	ND		ug/Kg	99	65	0.99	349964	09/12/24	09/13/24	MES
Chlordane (Technical)	NĎ		ug/Kg	50	27	0.99	349964	09/12/24	09/13/24	MES
Surrogates	050/			Limits		0.00	0.40000.4	00/10/21	00/10/01	1450
	85%		%REC	23-120		0.99	349964	09/12/24	09/13/24	MES
Decachlorobiphenyl	116%		%REC	24-120		0.99	349964	09/12/24	09/13/24	MES

Results for any subcontracted analyses are not included in this section.

Sample ID: B1	0-2	Lab ID: 5	515740-020)	Collected: 09/09/24 13:20				
		Matrix: S	Soil						
515740-020 Analyte	Result	Qual Units	RL	MDL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA 8081A									
Prep Method: EPA 3546									
alpha-BHC	ND	ug/Kg	5.1	2.4	1	350787	09/21/24	09/21/24	MES
beta-BHC	ND	ug/Kg	5.1	2.6	1	350787	09/21/24	09/21/24	MES
gamma-BHC	ND	ug/Kg	5.1	2.6	1	350787	09/21/24	09/21/24	MES
delta-BHC	ND	ug/Kg	5.1	2.1	1	350787	09/21/24	09/21/24	MES
Heptachlor	ND	ug/Kg	5.1	2.3	1	350787	09/21/24	09/21/24	MES
Aldrin	ND	ug/Kg	5.1	2.5	1	350787	09/21/24	09/21/24	MES
Heptachlor epoxide	ND	ug/Kg	5.1	2.5	1	350787	09/21/24	09/21/24	MES
Endosulfan I	ND	ug/Kg	5.1	2.6	1	350787	09/21/24	09/21/24	MES
Dieldrin	ND	ug/Kg	5.1	2.5	1	350787	09/21/24	09/21/24	MES
4,4'-DDE	ND	ug/Kg	5.1	3.2	1	350787	09/21/24	09/21/24	MES
Endrin	ND	ug/Kg	5.1	2.4	1	350787	09/21/24	09/21/24	MES
Endosulfan II	ND	ug/Kg	5.1	2.6	1	350787	09/21/24	09/21/24	MES
Endosulfan sulfate	ND	ug/Kg	5.1	2.2	1	350787	09/21/24	09/21/24	MES
4,4'-DDD	ND	ug/Kg	5.1	2.0	1	350787	09/21/24	09/21/24	MES
Endrin aldehyde	ND	ug/Kg	5.1	4.8	1	350787	09/21/24	09/21/24	MES
Endrin ketone	ND	ug/Kg	5.1	2.6	1	350787	09/21/24	09/21/24	MES
4,4'-DDT	ND	ug/Kg	5.1	2.7	1	350787	09/21/24	09/21/24	MES
Methoxychlor	ND	ug/Kg	10	4.5	1	350787	09/21/24	09/21/24	MES
Toxaphene	ND	ug/Kg	100	66	1	350787	09/21/24	09/21/24	MES
Chlordane (Technical)	ND	ug/Kg	51	28	1	350787	09/21/24	09/21/24	MES
Surrogates			Limits						
TCMX	52%	%REC	23-120		1	350787	09/21/24	09/21/24	MES
Decachlorobiphenyl	48%	%REC	24-120		1	350787	09/21/24	09/21/24	MES

CCV drift outside limits; average CCV drift within limits per method

requirements

J Estimated value

ND Not Detected

Type: Bla	nk		Lab ID:	QC11886	88	_	Batch:	350871	
Matrix: WE	T Leachate		Method:	EPA 601	0B	Р	rep Method:	METHOD	
QC1188688 Analyte		Result	Qual	Units	RL	MDL	Prepared	Analyz	zed
Chromium		ND		mg/L	0.30	0.0074	09/23/24	09/23/	24
Type: Bla	nk		Lab ID:	QC11886	89	_	Batch:	350871	
Matrix: WE	T Leachate		Method:	EPA 601	0B	Р	rep Method:	METHOD	
QC1188689 Analyte		Result	Qual	Units	RL	MDL	Prepared	Analyz	zed
Chromium		ND		mg/L	0.30	0.0074	09/23/24	09/23/	24
Type: Lab	Control Samp	le	Lab	ID: QC1	188691		Batch	: 350871	
Matrix: WET	Leachate		Meth	od: EPA	6010B		Prep Method	: METHOD	
QC1188691 Analyte		Res	ult	Spiked	Units	Red	coverv Qu	ial Lim	nits
Chromium		4.2	244	4.000	mg/L		106%	80-	120
Type: Lab C	ontrol Sample	Duplicate		Lab ID	: QC1188692	2	Bate	ch: 350871	
Matrix: WET I	Leachate			Method	EPA 6010B		Prep Metho	od: METHO	D
004400000 0		Desult	Chilcod	11	D		Limito		RPD
QC1188692 Analyte		Result	эрікей	Units	Recover	y Quai	Limits	RPU	Lim
Chromium		4.283	4.000	mg/L	107%	y Quai %	80-120	1	Lim 20
Chromium		4.283	4.000	mg/L	107%	y Quai	80-120	1	20
Chromium Type: Bl	lank	4.283	4.000 QC11887	mg/L 01	1079	y Quai	80-120 Batch: 3508	874	20
Chromium Type: Bl Matrix: So	lank oil	4.283 Lab ID: Method:	4.000 QC11887 EPA 6010	mg/L 01 DB	1079	y Quar % Prep M	Batch: 3508 lethod: EPA	1 874 3050B	20
Chromium Type: Bl Matrix: So QC1188701 Analyte	lank oil	4.283 Lab ID: Method: Result	4.000 QC11887 EPA 6010 Qual	01 DB Units	1079 RL	y Quar % Prep M MDL	Batch: 3508 lethod: EPA	1 874 A 3050B Analyz	20 20
Chromium Chromium Type: Bl Matrix: Se QC1188701 Analyte Arsenic	lank oil	4.283 Lab ID: Method: Result	4.000 QC11887 EPA 6010 Qual	Units mg/L 01 DB Units mg/Kg	Recover 1079 RL 1.0	y Quar % Prep M MDL 0.72	Batch: 3508 lethod: EPA Prepared 09/23/24	1 874 3050B Analyz 09/23/	20 20 2ed 24
Chromium Type: Bl Matrix: So QC1188701 Analyte Arsenic	lank oil	4.283 Lab ID: Method: Result	4.000 QC11887 EPA 6010 Qual	Units mg/L 01 0B Units mg/Kg	RECOVER 1079 RL 1.0	Prep M MDL 0.72	Batch: 3508 lethod: EPA Prepared 09/23/24	1 874 3050B Analyz 09/23/	20 20 24
Chromium Chromium Type: Bl Matrix: Se QC1188701 Analyte Arsenic Type: Lab	lank oil Control Samp	4.283 Lab ID: Method: Result ND	4.000 QC11887 EPA 6010 Qual	Units mg/L 01 DB Units mg/Kg D: QC1118	RL 1.0 88702	y Quar 6 Prep M MDL 0.72	Batch: 3508 lethod: EPA Prepared 09/23/24	1 874 3050B Analyz 09/23/ 350874	20 20 2eed 24
QC1188692 Analyte Chromium Type: Bit Matrix: Science Type: Labor Matrix: Science Type: Labor Matrix: Science	lank oil Control Samp	4.283 Lab ID: Method: Result ND	4.000 QC11887 EPA 6010 Qual Lab I Metho	01 01 08 Units mg/Kg D: QC118 d: EPA 6	RECOVER 1079 RL 1.0 88702 6010B	y Quar 6 Prep M MDL 0.72 Pre	Batch: 3508 lethod: EPA Prepared 09/23/24 Batch: Sep Method:	1 874 3050B Analyz 09/23/ 350874 EPA 3050B	20 20 24
QC1188692 Analyte Chromium Type: Bit Matrix: Science Type: Lab Matrix: Science QC1188701 Analyte Arsenic Type: Lab Matrix: Soil QC1188702 Analyte	lank oil Control Sampl	4.283 Lab ID: Method: Result ND	4.000 QC11887 EPA 6010 Qual Lab I Metho	Units mg/L 01 DB Units mg/Kg D: QC118 d: EPA 6 Spiked	RL 1.0 88702 010B Units	y Quar % Prep M MDL 0.72 Pre Re	Batch: 3508 lethod: EPA Prepared 09/23/24 Batch: 3 ep Method: 2007 2007 2007 2007 2007 2007 2007 2007	1 874 3050B Analyz 09/23/ 350874 EPA 3050B Jal Lin	Lim 20 zed 24
QC1188692 Analyte Chromium Type: Bl Matrix: Science Type: Lab Matrix: Science QC1188701 Analyte Arsenic QC1188702 Analyte Arsenic	lank oil Control Sampl	Aesult 4.283 Lab ID: Method: Result ND le Result 110	AC11887 EPA 6010 Qual Lab I Metho	01 01 08 Units mg/Kg D: QC118 d: EPA 6 Spiked 100.0	RL 1079 RL 1.0 38702 5010B Units mg/Kg	y Quar 6 Prep M MDL 0.72 Pre Re	Batch: 3508 lethod: EPA Prepared 09/23/24 Batch: 3508 09/23/24 Batch: 3508 09/23/24 URL 10%	1 874 3050B Analyz 09/23/ 350874 EPA 3050B Jal Lin 80-	Lim 20 zed 24 nits 120
QC1188692 Analyte Chromium Type: Bi Matrix: Science Type: Lab Matrix: Science QC1188701 Analyte Arsenic QC1188702 Analyte Arsenic	lank oil Control Sampl	Aesult 4.283 Lab ID: Method: Result ND	4.000 QC11887 EPA 6010 Qual Lab I Metho	Units mg/L 01 DB Units mg/Kg D: QC1118 d: EPA 6 Spiked 100.0	Recover 1079 RL 1.0 88702 0010B Units mg/Kg	y Quar 6 Prep M MDL 0.72 Pre Re	Batch: 3508 lethod: EPA Prepared 09/23/24 Batch: 5 ep Method: covery Qu 110%	1 874 3050B Analyz 09/23/ 350874 EPA 3050B Jal Lin 80-	20 20 24 24 120
QC1188692 Analyte Chromium Type: Bi Matrix: So QC1188701 Analyte Arsenic Type: Lab Matrix: Soil QC1188702 Analyte Arsenic	lank oil Control Samp Type: Matr	4.283 Lab ID: Method: Result ND le Result 110 ix Spike	AC11887 EPA 6010 Qual Lab I Metho	01 01 08 Units mg/Kg D: QC118 d: EPA 6 Spiked 100.0 Lab ID:	RL 1.079 88702 6010B Units mg/Kg QC1188704	y Quar 6 Prep M MDL 0.72 Pre Re	Batch: 3508 lethod: EPA Prepared 09/23/24 Batch: 3508 09/23/24 Batch: 3508 09/23/24 Batch: 3508 09/23/24	1 874 3050B Analyz 09/23/ 350874 EPA 3050B Jal Lin 80- : 350874	Lim 20 20 20 24 24 24
QC1188692 Analyte Chromium Type: Bi Matrix: Science Type: Lab Matrix: Science QC1188701 Analyte Arsenic QC1188702 Analyte Arsenic Matrix: Science Matrix (Souther Science)	lank oil Control Samp Type: Matr urce ID): Soil	Result 4.283 Lab ID: Method: Result ND le Result 110 ix Spike (516633-001)	QC11887 EPA 6010 Qual Lab I Metho ult	Units mg/L 01 DB Units mg/Kg D: QC118 d: EPA 6 Spiked 100.0 Lab ID: Method:	RL 1.07% 88702 0010B Units mg/Kg QC1188704 EPA 6010B	y Quar 6 Prep M MDL 0.72 Pre Re	Batch: 3508 Batch: 3508 lethod: EPA Prepared 09/23/24 Batch: 5 ep Method: 110% Batch: Prep Method:	1 374 3050B Analyz 09/23/ 350874 EPA 3050B Jal Lin 80- 350874 EPA 3050E	Lim 20 24 24 120 3
QC1188692 Analyte Chromium Type: Bl Matrix: So QC1188701 Analyte Arsenic Type: Lab Matrix: Soil QC1188702 Analyte Arsenic Matrix: Soil QC1188702 Analyte Arsenic Matrix (Sould Contemport	lank oil Control Samp Type: Matr urce ID): Soil	Result 4.283 Lab ID: Method: Result ND Ie Result 110 ix Spike (516633-001)	ACC11887 EPA 6010 Qual Lab I Metho	Units mg/L 01 DB Units mg/Kg D: QC118 d: EPA 6 Spiked 100.0 Lab ID: Method:	RL 1.079 88702 6010B Units mg/Kg QC1188704 EPA 6010B	y Quar 6 Prep M MDL 0.72 Pre Re	Batch: 3508 lethod: EPA Prepared 09/23/24 Batch: 3508 09/23/24 Batch: 3508 Covery Qu 110% Batch: 3508 Covery Qu 110%	1 874 3050B Analyz 09/23/ 350874 EPA 3050B Jal Lin 80- : 350874 EPA 3050E	Lim 20 20 20 24 24 24 120 3
QC1188692 Analyte Chromium Type: Bi Matrix: Science QC1188701 Analyte Arsenic QC1188702 Analyte Arsenic QC1188702 Analyte Arsenic Matrix: Soil QC1188702 Analyte Arsenic	lank oil Control Samp Type: Matr urce ID): Soil	Hesult 4.283 Lab ID: Method: Result ND Ie Result 110 ix Spike (516633-001)	AC11887 EPA 6010 Qual Lab I Metho ult 0.4	Units mg/L 01 DB Units mg/Kg D: QC1118 d: EPA 6 Spiked 100.0 Lab ID: Method:	RL 1.07% 88702 0010B Units mg/Kg QC1188704 EPA 6010B	y Quar 6 Prep M MDL 0.72 Pre Re	Batch: 3508 lethod: EPA Prepared 09/23/24 Batch: 3508 09/23/24 Batch: 3508 Covery Qu 110% Batch: 3508 Covery Qu 110%	1 874 3050B Analyz 09/23/ 350874 EPA 3050B Ial Lin 80- : 350874 EPA 3050E	Lim 20 20 224 24 120 3
QC1188692 Analyte Chromium Type: Bi Matrix: So QC1188701 Analyte Arsenic Type: Lab Matrix: Soil QC1188702 Analyte Arsenic Matrix: Soil QC1188702 Analyte Arsenic Matrix (Sou QC1188704 Analyte	lank oil Control Samp Type: Matr urce ID): Soil	Result 4.283 Lab ID: Method: Result ND le Result 110 ix Spike (516633-001) Sesult Result	AC11887 EPA 6010 Qual Lab I Metho ult 0.4	Units mg/L 01 DB Units mg/Kg D: QC118 d: EPA 6 Spiked 100.0 Lab ID: Method:	RL 1.07% 88702 0010B Units mg/Kg QC1188704 EPA 6010B Units	y Quar 6 Prep M MDL 0.72 Pre Re F Recover	Batch: 3508 lethod: EPA Prepared 09/23/24 Batch: 3508 09/23/24 Batch: 3508 Sep Method: 3508 Covery Qu 110% Batch: 3508 Sep Method: 3508 Prep Method: 3508 Prep Method: 3508 Prep Method: 3508 Sep	1 874 3050B Analyz 09/23/ 350874 EPA 3050B Jal Lin 80- : 350874 EPA 3050E Limits	Lim 20 20 24 24 24 120 3 B

Туре:	Matrix Spike	Duplica	ate	Lab ID): QC1188705		Batch:	350874	
Matrix (Source ID):	Soil (516633-	001)		Method	I: EPA 6010B	Pre	p Method:	EPA 3050	в
QC1188705 Analyte Arsenic	S S Result I 102.6	Source ample Result 3.990	Spiked 98.04	Units mg/Kg	Recovery 101%	Qual Lin 75	mits R -125	RPD PD Lim 9 35	DF 0.98
Type: Matrix (Source ID):	Post Digest Soil (516633	Spike 8-001)		Lab ID: Method:	QC1188706 EPA 6010B	Prep	Batch: Method:	350874 EPA 3050B	6
QC1188706 Analyte	Result	S	Source Sample Result	Spiked	Units	Recovery	Qual	Limits	DF
Arsenic	114.7		3.990	100.0	ilig/Kg	11170		70-120	- 1
Type: Matrix (Source ID):	Matrix Spike Miscell. (515	823-001)	Lab ID: Method:	QC1185675 EPA 6010B	Prep	Batch: Method:	350030 EPA 3050E	3
QC1185675 Analyte	Result	Se Sa F	ource ample Result	Spiked	Units	Becoverv	Qual	Limits	DF
Antimony	36.30	•	ND	96.15	ma/Ka	38%	*	75-125	0.96
Arsenic	109.2		18.35	96.15	mg/Kg	95%		75-125	0.96
Barium	236.2		105.8	96.15	mg/Kg	136%	*	75-125	0.96
Beryllium	94.15	0	.2128	96.15	mg/Kg	98%		75-125	0.96
Cadmium	89.19	0	.6983	96.15	mg/Kg	92%		75-125	0.96
Chromium	116.9		18.81	96.15	mg/Kg	102%		75-125	0.96
Cobalt	100.4		4.977	96.15	mg/Kg	99%		75-125	0.96
Copper	147.8		30.98	96.15	mg/Kg	121%		75-125	0.96
Lead	108.7		14.30	96.15	mg/Kg	98%		75-125	0.96
Molybdenum	94.01		2.852	96.15	mg/Kg	95%		75-125	0.96
Nickel	115.2		17.56	96.15	mg/Kg	102%		75-125	0.96
Selenium	89.83		ND	96.15	mg/Kg	93%		75-125	0.96
Silver	48.37		ND	48.08	mg/Kg	101%		75-125	0.96
Thallium									0.00
	91.63		ND	96.15	mg/Kg	95%		75-125	0.96
Vanadium	91.63 142.1		ND 38.26	96.15 96.15	mg/Kg mg/Kg	95% 108%		75-125 75-125	0.96

Туре:	Type: Matrix Spike Duplicate			Lab ID: QC1185676			Batch: 350030			
Matrix (Source ID):	Miscell. (515823-001)	1	Method:	EPA 6010B		Prep Meth	od: El	PA 3050B	
QC1185676 Analyte	Result	Source Sample Result	Spiked	Units	Recovery	Qual	Limits	RPD	RPD Lim	DF
Antimony	41.80	ND	99.01	mg/Kg	42%	*	75-125	11	41	0.99
Arsenic	108.8	18.35	99.01	mg/Kg	91%		75-125	3	35	0.99
Barium	226.4	105.8	99.01	mg/Kg	122%		75-125	6	20	0.99
Beryllium	95.57	0.2128	99.01	mg/Kg	96%		75-125	1	20	0.99
Cadmium	91.15	0.6983	99.01	mg/Kg	91%		75-125	1	20	0.99
Chromium	114.7	18.81	99.01	mg/Kg	97%		75-125	4	20	0.99
Cobalt	100.7	4.977	99.01	mg/Kg	97%		75-125	2	20	0.99
Copper	140.3	30.98	99.01	mg/Kg	110%		75-125	7	20	0.99
Lead	108.2	14.30	99.01	mg/Kg	95%		75-125	3	20	0.99
Molybdenum	94.89	2.852	99.01	mg/Kg	93%		75-125	2	20	0.99
Nickel	113.5	17.56	99.01	mg/Kg	97%		75-125	4	20	0.99
Selenium	92.66	ND	99.01	mg/Kg	94%		75-125	0	20	0.99
Silver	48.83	ND	49.50	mg/Kg	99%		75-125	2	20	0.99
Thallium	94.05	ND	99.01	mg/Kg	95%		75-125	0	20	0.99
Vanadium	137.9	38.26	99.01	mg/Kg	101%		75-125	5	20	0.99
Zinc	912.6	749.2	99.01	mg/Kg	165%	NM	75-125	17	20	0.99

Туре:	Blank	Lab ID:	QC11856	79			Batch: 35003	0
Matrix:	Soil	Method:	EPA 6010	B		Prep M	lethod: EPA 3	050B
QC1185679 Analy	yte	Result	Qual	Units	RL	MDL	Prepared	Analyzed
Antimony		ND		mg/Kg	3.0	1.2	09/12/24	09/13/24
Arsenic		ND		mg/Kg	1.0	0.54	09/12/24	09/13/24
Barium		ND		mg/Kg	1.0	0.40	09/12/24	09/13/24
Beryllium		ND		mg/Kg	0.50	0.022	09/12/24	09/13/24
Cadmium		ND		mg/Kg	0.50	0.053	09/12/24	09/13/24
Chromium		ND		mg/Kg	1.0	0.23	09/12/24	09/13/24
Cobalt		ND		mg/Kg	0.50	0.22	09/12/24	09/13/24
Copper		ND		mg/Kg	1.0	0.65	09/12/24	09/13/24
Lead		ND		mg/Kg	1.0	0.75	09/12/24	09/13/24
Molybdenum		ND		mg/Kg	1.0	0.55	09/12/24	09/13/24
Nickel		ND		mg/Kg	1.0	0.45	09/12/24	09/13/24
Selenium		ND		mg/Kg	3.0	0.90	09/12/24	09/13/24
Silver		ND		mg/Kg	0.50	0.17	09/12/24	09/13/24
Thallium		ND		mg/Kg	3.0	0.95	09/12/24	09/13/24
Vanadium		ND		mg/Kg	1.0	0.16	09/12/24	09/13/24
Zinc		ND		mg/Kg	5.0	1.6	09/12/24	09/13/24

Type: Lab Control Sample Matrix: Soil	Lab ID: QC1185680 Method: EPA 6010B		Batch: 350030 Prep Method: EPA 3050B		
				1. A 0000B	
QC1185680 Analyte	Result	Spiked	Units	Recovery 0	Qual Limits
Antimony	99.69	100.0	mg/Kg	100%	80-120
Arsenic	100.3	100.0	mg/Kg	100%	80-120
Barium	103.3	100.0	mg/Kg	103%	80-120
Beryllium	101.5	100.0	mg/Kg	102%	80-120
Cadmium	101.9	100.0	mg/Kg	102%	80-120
Chromium	101.2	100.0	mg/Kg	101%	80-120
Cobalt	108.3	100.0	mg/Kg	108%	80-120
Copper	103.1	100.0	mg/Kg	103%	80-120
Lead	107.0	100.0	mg/Kg	107%	80-120
Molybdenum	100.4	100.0	mg/Kg	100%	80-120
Nickel	107.3	100.0	mg/Kg	107%	80-120
Selenium	95.84	100.0	mg/Kg	96%	80-120
Silver	50.42	50.00	mg/Kg	101%	80-120
Thallium	109.9	100.0	mg/Kg	110%	80-120
Vanadium	102.0	100.0	mg/Kg	102%	80-120
Zinc	101.1	100.0	mg/Kg	101%	80-120

Туре:	Post Digest Spike	Lab ID:	QC1185683	Batch:	350030	
Matrix (Source ID):	Miscell. (515823-001)	Method:	EPA 6010B	Prep Method:	EPA 3050B	

		Source Sample						
QC1185683 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits	DF
Antimony	97.60	ND	95.24	mg/Kg	102%		75-125	0.95
Arsenic	117.1	18.35	95.24	mg/Kg	104%		75-125	0.95
Barium	199.5	105.8	95.24	mg/Kg	98%		75-125	0.95
Beryllium	97.43	0.2128	95.24	mg/Kg	102%		75-125	0.95
Cadmium	92.19	0.6983	95.24	mg/Kg	96%		75-125	0.95
Chromium	112.6	18.81	95.24	mg/Kg	98%		75-125	0.95
Cobalt	102.2	4.977	95.24	mg/Kg	102%		75-125	0.95
Copper	136.2	30.98	95.24	mg/Kg	110%		75-125	0.95
Lead	109.8	14.30	95.24	mg/Kg	100%		75-125	0.95
Molybdenum	99.64	2.852	95.24	mg/Kg	102%		75-125	0.95
Nickel	112.4	17.56	95.24	mg/Kg	100%		75-125	0.95
Selenium	95.59	ND	95.24	mg/Kg	100%		75-125	0.95
Silver	51.07	ND	47.62	mg/Kg	107%		75-125	0.95
Thallium	98.50	ND	95.24	mg/Kg	103%		75-125	0.95
Vanadium	135.8	38.26	95.24	mg/Kg	102%		75-125	0.95
Zinc	820.2	749.2	95.24	mg/Kg	75%	NM	75-125	0.95

Type: Blank Matrix: Soil	Lab ID: QC1186893 Method: EPA 7471A				Batch: 350364 Prep Method: METHOD				
QC1186893 Analyte	Result	Qual	Units	RL	MDL	Prepared	Analyzed		
Mercury	ND		mg/Kg	0.14	0.051	09/17/24	09/17/24		

Type: Lab Con	trol Sample	Lab	ID: QC11	86894		Batch: 3	50364
Matrix: Soil		Meth	od: EPA	7471A	Prep M	lethod: N	IETHOD
OC1196904 Apolyto		Booult	Spikod	Unito	Bacavara	Qual	Limito
Mercury		0.7672	0.8333	ma/Ka	92%	Quai	80-120
moroary		0.1012	0.0000		0270		00 120
Т	ype: Matrix Spike		Lab ID:	QC1186895		Batch:	350364
Matrix (Source	e ID): Soil (516072	-013)	Method:	EPA 7471A	Prep	Method:	METHOD
		Source Sample					
QC1186895 Analyte	Result	Result	Spiked	Units	Recovery	Qual	Limits DF
Mercury	0.8310	ND	0.8621	mg/Kg	96%		75-125 1
Ту	pe: Matrix Spike D	Ouplicate	Lab I	D: QC1186896	5	Batch:	350364
Matrix (Source I	D): Soil (516072-0	13)	Metho	d: EPA 7471A	Prep	o Method:	METHOD
	5						
	Sa	mple					RPD
QC1186896 Analyte	Result R	esult Spiked	d Units	Recovery	Qual Lim	its RP	D Lim DF
Mercury	0.8084	ND 0.8621	l mg/Kg	94%	75-1	25	3 20 1
Type: Blank	(Li Ma	ab ID: QC1185	0632 71 A		Bran Math	tch: 3500	
Matrix: 501	IVIE	11100: EFA /4	/18				
QC1185632 Analyte	Res	ult Qual	Units	RL	MDL Prep	ared	Analyzed
Mercury		ND	mg/Kg	0.14 ().051 09/1	2/24	09/13/24
Type: Lab Con	trol Sample	Lab	ID: QC11	85633		Batch: 3	50018
Type: Lab Con Matrix: Soil	trol Sample	Lab Meth	ID: QC11 od: EPA	85633 7471A	Prep M	Batch: 3 lethod: M	50018 METHOD
Type: Lab Con Matrix: Soil	trol Sample	Lab Meth	ID: QC11 od: EPA	85633 7471A	Prep M	Batch: 3 lethod: M	50018 NETHOD
Type: Lab Con Matrix: Soil QC1185633 Analyte Mercury	trol Sample	Lab Meth Result	ID: QC11 od: EPA Spiked 0.8333	85633 7471A Units mg/Kg	Prep M Recovery 93%	Batch: 3 lethod: M Qual	50018 METHOD Limits 80-120
Type: Lab Con Matrix: Soil QC1185633 Analyte Mercury	trol Sample	Lab Meth Result 0.7711	ID: QC11 od: EPA Spiked 0.8333	85633 7471A Units mg/Kg	Prep M Recovery 93%	Batch: 3 lethod: M Qual	50018 //ETHOD Limits 80-120
Type: Lab Con Matrix: Soil QC1185633 Analyte Mercury Ty	trol Sample	Lab Meth Result 0.7711	ID: QC11 od: EPA Spiked 0.8333 Lab ID	85633 7471A Units mg/Kg D: QC1185634	Prep M Recovery 93%	Batch: 3 lethod: M Qual Batch:	50018 METHOD Limits 80-120 350018
Type: Lab Con Matrix: Soil QC1185633 Analyte Mercury Ty Matrix (Source	trol Sample vpe: Matrix Spike ID): Miscell. (5153	Lab Meth Result 0.7711 24-001)	ID: QC11 od: EPA Spiked 0.8333 Lab ID Method	85633 7471A Units mg/Kg D: QC1185634 I: EPA 7471A	Prep M Recovery 93% Prep	Batch: 3 lethod: M Qual Batch: Method:	250018 METHOD Limits 80-120 350018 METHOD
Type: Lab Con Matrix: Soil QC1185633 Analyte Mercury Ty Matrix (Source	trol Sample vpe: Matrix Spike ID): Miscell. (5153	Lab Meth 0.7711 24-001)	ID: QC11 od: EPA Spiked 0.8333 Lab IE Method	85633 7471A Units mg/Kg D: QC1185634 I: EPA 7471A	Prep M Recovery 93% Prep	Batch: 3 lethod: M Qual Batch: Method:	350018 METHOD Limits 80-120 350018 METHOD
Type: Lab Con Matrix: Soil QC1185633 Analyte Mercury Ty Matrix (Source	trol Sample vpe: Matrix Spike ID): Miscell. (5153	Lab Meth Result 0.7711 24-001) Source	ID: QC11 od: EPA Spiked 0.8333 Lab ID Method	85633 7471A Units mg/Kg D: QC1185634 I: EPA 7471A	Prep M Recovery 93% Prep	Batch: 3 lethod: M Qual Batch: Method:	250018 METHOD Limits 80-120 350018 METHOD
Type: Lab Con Matrix: Soil QC1185633 Analyte Mercury Ty Matrix (Source	trol Sample vpe: Matrix Spike ID): Miscell. (5153 Result	Lab Meth Result 0.7711 24-001) Source Sample Result	ID: QC11 od: EPA Spiked 0.8333 Lab ID Methoo Spiked	85633 7471A Units mg/Kg D: QC1185634 I: EPA 7471A Units	Prep M Recovery 93% Prep Recovery	Batch: 3 lethod: M Qual Batch: Method: Qual	50018 METHOD Limits 80-120 350018 METHOD
Type: Lab Con Matrix: Soil QC1185633 Analyte Mercury Ty Matrix (Source QC1185634 Analyte Mercury	vpe: Matrix Spike ID): Miscell. (5153 Result 0.8287	Lab Meth Result 0.7711 24-001) Source Sample Result ND	ID: QC11 od: EPA Spiked 0.8333 Lab IE Method Spiked 0.9259	85633 7471A Units mg/Kg D: QC1185634 I: EPA 7471A Units mg/Kg	Prep M Recovery 93% Prep Recovery 89%	Batch: 3 lethod: M Qual Batch: Method: Qual	S50018 METHOD Limits 80-120 350018 METHOD Limits DF 75-125 1.1
Type: Lab Con Matrix: Soil QC1185633 Analyte Mercury Ty Matrix (Source QC1185634 Analyte Mercury	rpe: Matrix Spike ID): Miscell. (5153 Result 0.8287	Lab Meth 0.7711 24-001) Source Sample Result ND	ID: QC11 od: EPA Spiked 0.8333 Lab ID Method 0.9259	85633 7471A Units mg/Kg D: QC1185634 I: EPA 7471A Units mg/Kg	Prep M Recovery 93% Prep Recovery 89%	Batch: 3 lethod: M Qual Batch: Method: Qual	50018 AETHOD Limits 80-120 350018 METHOD Limits DF 75-125 1.1
Type: Lab Con Matrix: Soil QC1185633 Analyte Mercury Ty Matrix (Source QC1185634 Analyte Mercury Ty	rpe: Matrix Spike ID): Miscell. (5153 Result 0.8287 pe: Matrix Spike D	Lab Meth Result 0.7711 24-001) 24-001) Source Sample Result ND	ID: QC11 od: EPA Spiked 0.8333 Lab ID Method 0.9259 Lab I	85633 7471A Units mg/Kg D: QC1185634 I: EPA 7471A Units mg/Kg D: QC1185635	Prep M Recovery 93% Prep Recovery 89%	Batch: 3 lethod: M Qual Batch: Method: Qual Batch:	Soo18 AETHOD Limits 80-120 350018 METHOD Limits DF 75-125 1.1 350018
Type: Lab Con Matrix: Soil QC1185633 Analyte Mercury Ty Matrix (Source QC1185634 Analyte Mercury Ty Matrix (Source I	vpe: Matrix Spike ID): Miscell. (5153 Result 0.8287 pe: Matrix Spike I D): Miscell. (5153)	Lab Meth Result 0.7711 24-001) 24-001) Source Sample Result ND Duplicate 24-001)	ID: QC11 od: EPA Spiked 0.8333 Lab ID Method 0.9259 Lab I Metho	85633 7471A Units mg/Kg D: QC1185634 I: EPA 7471A Units mg/Kg D: QC1185635 d: EPA 7471A	Prep M Recovery 93% Prep Recovery 89%	Batch: 3 lethod: M Qual Batch: Method: Qual Batch: o Method:	550018 AETHOD Limits 80-120 350018 METHOD Limits 75-125 1.1 350018 METHOD
Type: Lab Con Matrix: Soil QC1185633 Analyte Mercury Ty Matrix (Source QC1185634 Analyte Mercury Ty Matrix (Source I	vpe: Matrix Spike ID): Miscell. (5153 Result 0.8287 pe: Matrix Spike I D): Miscell. (5153	Lab Meth Result 0.7711 24-001) Source Sample Result ND Duplicate 24-001)	ID: QC11 od: EPA Spiked 0.8333 Lab IE Method 0.9259 Lab I Metho	85633 7471A Units mg/Kg D: QC1185634 I: EPA 7471A Units mg/Kg D: QC1185635 d: EPA 7471A	Prep M Recovery 93% Prep Recovery 89%	Batch: 3 lethod: M Qual Batch: Method: Qual Batch: o Method:	S50018 AETHOD Limits 80-120 350018 METHOD Limits DF 75-125 1.1 350018 METHOD
Type: Lab Con Matrix: Soil QC1185633 Analyte Mercury Mercury Ty Matrix (Source Mercury QC1185634 Analyte Mercury Mercury Ty Matrix (Source Ty Matrix (Source Ty Matrix (Source I Ty	vpe: Matrix Spike ID): Miscell. (5153 Result 0.8287 pe: Matrix Spike I D): Miscell. (5153 So	Lab Meth Result 0.7711 24-001) 24-001) Source Result ND Duplicate 24-001)	ID: QC11 od: EPA Spiked 0.8333 Lab IE Method 0.9259 Lab I Metho	85633 7471A Units mg/Kg D: QC1185634 I: EPA 7471A Units mg/Kg D: QC1185635 d: EPA 7471A	Prep M Recovery 93% Prep Recovery 89%	Batch: 3 lethod: M Qual Batch: Method: Qual Batch: o Method:	550018 AETHOD Limits 80-120 350018 METHOD Limits DF 75-125 1.1 350018 METHOD
Type: Lab Con Matrix: Soil QC1185633 Analyte Mercury Mercury Ty QC1185634 Analyte Mercury QC1185634 Analyte Mercury QC1185635 Analyte Ty QC1185635 Analyte Mercury	rpe: Matrix Spike ID): Miscell. (5153 Result 0.8287 pe: Matrix Spike I D): Miscell. (5153 So Sa Result R	Lab Meth Result 0.7711 24-001) 24-001) Source Sample Result ND Duplicate 24-001) Duplicate 24-001)	ID: QC11 od: EPA Spiked 0.8333 Lab ID Method 0.9259 Lab I Metho	85633 7471A Units mg/Kg D: QC1185634 I: EPA 7471A Units mg/Kg D: QC1185635 d: EPA 7471A Recovery	Prep M Recovery 93% Prep Recovery 89% Prep	Batch: 3 lethod: M Qual Batch: Method: Qual Batch: o Method:	Soon 18 METHOD Limits 80-120 350018 METHOD Jason 18 METHOD 350018 METHOD Jason 18 METHOD

Туре:	Blank		Lab ID:	: QC118	5941			Batc	h: 350	118	
Matrix:	Soil		Method:	: EPA 74	71A		Pro	ep Methoo	d: ME	THOD	
QC1185941 Analy	te	F	Result	Qual	Units	RL	MDL	Prepar	ed	Analyz	ed
Mercury			ND		mg/Kg	0.14	0.051	09/13/2	24	09/13/2	24
Type: La	b Control	Sample		Lab	DID: QC	1185942		В	atch:	350118	
Matrix: So	bil			Meth	od: EP	A 7471A		Prep Met	thod:	METHOD	
QC1185942 Analy	te		Resu	llt	Spiked	Units	R	ecovery	Qual	Lim	its
Mercury			0.800)6	0.8333	mg/Kg		96%		80-1	20
	Type:	Matrix Spik	(e		Lab	ID: QC118	5943		Batch	: 350118	
Matrix (So	ource ID):	Miscell. (51	5752-00	01)	Metho	od: EPA 74	171A	Prep N	lethod	: METHO	D
QC1185943 Analy	te	Resul	s S	Source Sample Result	Spiked	Units	Reco	overy Q	ual	Limits	DF
Mercury		0.911	1	ND	0.9804	mg/Kg		93%		75-125	1.2
	Turner	Matrix Call	o Dunlio		l ak		05044		Datak	. 050110	
Matrix (So	iype: ource ID):	Matrix Spike	e Duplic 5752-00	ate 1)	Lac Meth	od: EPA 7	65944 /471Δ	Prep I	Batch Method	: 350118 : METHO	D
			0102.00	•/	moti			11001			
			Source Sample							RPD	
QC1185944 Analy	te	Result	Result	Spike	d Units	Reco	very Qual	Limits	s R	PD Lim	DF
Mercury		0.7786	ND	0.862	1 mg/Kg		90%	75-125	5	3 20	1

Type: Blank	Lab ID: QC11	64				
Matrix: Soil	Method: EPA	8081A		Prep	Method: EPA	3546
QC1185429 Analyte	Result Qual	Units	RL	MDL	Prepared	Analyzed
alpha-BHC	ND	ug/Kg	5.0	2.3	09/12/24	09/13/24
beta-BHC	ND	ug/Kg	5.0	2.6	09/12/24	09/13/24
gamma-BHC	ND	ug/Kg	5.0	2.5	09/12/24	09/13/24
delta-BHC	ND	ug/Kg	5.0	2.0	09/12/24	09/13/24
Heptachlor	ND	ug/Kg	5.0	2.3	09/12/24	09/13/24
Aldrin	ND	ug/Kg	5.0	2.5	09/12/24	09/13/24
Heptachlor epoxide	ND	ug/Kg	5.0	2.5	09/12/24	09/13/24
Endosulfan I	ND	ug/Kg	5.0	2.6	09/12/24	09/13/24
Dieldrin	ND	ug/Kg	5.0	2.5	09/12/24	09/13/24
4,4'-DDE	ND	ug/Kg	5.0	3.1	09/12/24	09/13/24
Endrin	ND	ug/Kg	5.0	2.4	09/12/24	09/13/24
Endosulfan II	ND	ug/Kg	5.0	2.5	09/12/24	09/13/24
Endosulfan sulfate	ND	ug/Kg	5.0	2.2	09/12/24	09/13/24
4,4'-DDD	ND	ug/Kg	5.0	2.0	09/12/24	09/13/24
Endrin aldehyde	ND	ug/Kg	5.0	4.8	09/12/24	09/13/24
Endrin ketone	ND	ug/Kg	5.0	2.6	09/12/24	09/13/24
4,4'-DDT	ND	ug/Kg	5.0	2.7	09/12/24	09/13/24
Methoxychlor	ND	ug/Kg	10	4.4	09/12/24	09/13/24
Toxaphene	ND	ug/Kg	100	65	09/12/24	09/13/24
Chlordane (Technical)	ND	ug/Kg	50	27	09/12/24	09/13/24
Surrogates			Limits			
ТСМХ	94%	%REC	23-120		09/12/24	09/13/24
Decachlorobiphenyl	101%	%REC	24-120		09/12/24	09/13/24

Type: Lab Control Sample		Lab ID: QC1	185430	Batch: 349964			
Matrix: Soil	N	lethod: EPA	8081A	Prep Met	hod: EPA	3546	
QC1185430 Analyte	Result	Spiked	Units	Recovery	Qual	Limits	
alpha-BHC	49.92	49.02	ug/Kg	102%		22-129	
beta-BHC	51.04	49.02	ug/Kg	104%		28-125	
gamma-BHC	49.37	49.02	ug/Kg	101%		22-128	
delta-BHC	49.45	49.02	ug/Kg	101%		24-131	
Heptachlor	49.21	49.02	ug/Kg	100%		18-124	
Aldrin	45.99	49.02	ug/Kg	94%		23-120	
Heptachlor epoxide	50.50	49.02	ug/Kg	103%		26-120	
Endosulfan I	54.14	49.02	ug/Kg	110%		25-126	
Dieldrin	57.13	49.02	ug/Kg	117%		23-124	
4,4'-DDE	57.37	49.02	ug/Kg	117%		28-121	
Endrin	56.16	49.02	ug/Kg	115%		25-127	
Endosulfan II	53.78	49.02	ug/Kg	110%		29-121	
Endosulfan sulfate	51.15	49.02	ug/Kg	104%		30-121	
4,4'-DDD	50.85	49.02	ug/Kg	104%		26-120	
Endrin aldehyde	35.35	49.02	ug/Kg	72%		10-120	
Endrin ketone	54.11	49.02	ug/Kg	110%		28-125	
4,4'-DDT	54.09	49.02	ug/Kg	110%		22-125	
Methoxychlor	53.00	49.02	ug/Kg	108%		28-130	
Surrogates							
TCMX	43.12	49.02	ug/Kg	88%		23-120	
Decachlorobiphenyl	51.40	49.02	ug/Kg	105%		24-120	

Type: Matrix Spike			Lab ID:	QC1185454		Batch:	349964	
Matrix (Source ID):	Soil (515740-0	01)	Method:	EPA 8081A	Pre	ep Method:	EPA 354	6
QC1185454 Analyte	Result	Source Sample Result	Spiked	Units	Recovery	Qual	Limits	DF
alpha-BHC	45.35	ND	49.50	ug/Kg	92%		46-120	0.99
beta-BHC	53.27	ND	49.50	ug/Kg	108%		41-120	0.99
gamma-BHC	47.15	ND	49.50	ug/Kg	95%		41-120	0.99
delta-BHC	58.57	ND	49.50	ug/Kg	118%		38-123	0.99
Heptachlor	47.44	ND	49.50	ug/Kg	96%		39-120	0.99
Aldrin	47.41	ND	49.50	ug/Kg	96%		34-120	0.99
Heptachlor epoxide	48.36	ND	49.50	ug/Kg	98%		43-120	0.99
Endosulfan I	49.28	ND	49.50	ug/Kg	100%		45-120	0.99
Dieldrin	51.26	ND	49.50	ug/Kg	104%		45-120	0.99
4,4'-DDE	336.3	100.5	49.50	ug/Kg	476%	E,*	34-120	0.99
Endrin	51.13	ND	49.50	ug/Kg	103%		40-120	0.99
Endosulfan II	61.71	ND	49.50	ug/Kg	125%	*	41-120	0.99
Endosulfan sulfate	45.96	ND	49.50	ug/Kg	93%		42-120	0.99
4,4'-DDD	49.35	ND	49.50	ug/Kg	100%		41-120	0.99
Endrin aldehyde	47.99	ND	49.50	ug/Kg	97%		30-120	0.99
Endrin ketone	48.64	ND	49.50	ug/Kg	98%		45-120	0.99
4,4'-DDT	86.40	38.66	49.50	ug/Kg	96%		35-127	0.99
Methoxychlor	59.13	ND	49.50	ug/Kg	119%		42-136	0.99
Surrogates								
TCMX	42.78		49.50	ug/Kg	86%		23-120	0.99
Decachlorobiphenyl	54.08		49.50	ug/Kg	109%		24-120	0.99

Туре:	Matrix Sp	ike Duplica	ite	Lab ID:	: QC118545	5	E	Batch:	349964	
Matrix (Source ID):	Soil (5157	740-001)		Method:	EPA 8081	4	Prep Me	thod:	EPA 354	6
QC1185455 Analyte	Result	Source Sample Result	Spiked	Units	Recovery	Qual	Limits	RPD	RPD Lim	DF
alpha-BHC	47.69	ND	49.50	ug/Kg	96%		46-120	5	30	0.99
beta-BHC	57.39	ND	49.50	ug/Kg	116%		41-120	7	30	0.99
gamma-BHC	47.27	ND	49.50	ug/Kg	95%		41-120	0	30	0.99
delta-BHC	58.38	ND	49.50	ug/Kg	118%		38-123	0	30	0.99
Heptachlor	49.96	ND	49.50	ug/Kg	101%		39-120	5	30	0.99
Aldrin	48.58	ND	49.50	ug/Kg	98%		34-120	2	30	0.99
Heptachlor epoxide	48.73	ND	49.50	ug/Kg	98%		43-120	1	30	0.99
Endosulfan I	50.69	ND	49.50	ug/Kg	102%		45-120	3	30	0.99
Dieldrin	49.50	ND	49.50	ug/Kg	100%		45-120	4	30	0.99
4,4'-DDE	127.7	100.5	49.50	ug/Kg	55%		34-120		30	0.99
Endrin	49.63	ND	49.50	ug/Kg	100%		40-120	3	30	0.99
Endosulfan II	61.54	ND	49.50	ug/Kg	124%	*	41-120	0	30	0.99
Endosulfan sulfate	47.52	ND	49.50	ug/Kg	96%		42-120	3	30	0.99
4,4'-DDD	48.36	ND	49.50	ug/Kg	98%		41-120	2	30	0.99
Endrin aldehyde	43.42	ND	49.50	ug/Kg	88%		30-120	10	30	0.99
Endrin ketone	49.88	ND	49.50	ug/Kg	101%		45-120	3	30	0.99
4,4'-DDT	89.95	38.66	49.50	ug/Kg	104%		35-127	4	30	0.99
Methoxychlor	58.25	ND	49.50	ug/Kg	118%		42-136	1	30	0.99
Surrogates										
TCMX	44.53		49.50	ug/Kg	90%		23-120			0.99
Decachlorobiphenyl	51.53		49.50	ug/Kg	104%		24-120			0.99

Type: Blank	Lab ID: QC11	88354			Batch: 3507	87
Matrix: Soil	Method: EPA 8	3081A		Prep	Method: EPA	3546
QC1188354 Analyte	Result Qual	Units	RL	MDL	Prepared	Analyzed
alpha-BHC	ND	ug/Kg	5.1	2.4	09/21/24	09/21/24
beta-BHC	ND	ug/Kg	5.1	2.6	09/21/24	09/21/24
gamma-BHC	ND	ug/Kg	5.1	2.6	09/21/24	09/21/24
delta-BHC	ND	ug/Kg	5.1	2.1	09/21/24	09/21/24
Heptachlor	ND	ug/Kg	5.1	2.3	09/21/24	09/21/24
Aldrin	ND	ug/Kg	5.1	2.5	09/21/24	09/21/24
Heptachlor epoxide	ND	ug/Kg	5.1	2.5	09/21/24	09/21/24
Endosulfan I	ND	ug/Kg	5.1	2.6	09/21/24	09/21/24
Dieldrin	ND	ug/Kg	5.1	2.5	09/21/24	09/21/24
4,4'-DDE	ND	ug/Kg	5.1	3.2	09/21/24	09/21/24
Endrin	ND	ug/Kg	5.1	2.4	09/21/24	09/21/24
Endosulfan II	ND	ug/Kg	5.1	2.6	09/21/24	09/21/24
Endosulfan sulfate	ND	ug/Kg	5.1	2.2	09/21/24	09/21/24
4,4'-DDD	ND	ug/Kg	5.1	2.0	09/21/24	09/21/24
Endrin aldehyde	ND	ug/Kg	5.1	4.8	09/21/24	09/21/24
Endrin ketone	ND	ug/Kg	5.1	2.6	09/21/24	09/21/24
4,4'-DDT	ND	ug/Kg	5.1	2.7	09/21/24	09/21/24
Methoxychlor	ND	ug/Kg	10	4.5	09/21/24	09/21/24
Toxaphene	ND	ug/Kg	100	66	09/21/24	09/21/24
Chlordane (Technical)	ND	ug/Kg	51	28	09/21/24	09/21/24
Surrogates			Limits			
ТСМХ	84%	%REC	23-120		09/21/24	09/21/24
Decachlorobiphenyl	62%	%REC	24-120		09/21/24	09/21/24

Type: Lab Control Sample		Lab ID: QC1	188355	Batch: 350787			
Matrix: Soil	Μ	lethod: EPA	8081A	Prep Met	hod: EPA	3546	
QC1188355 Analyte	Result	Spiked	Units	Recovery	Qual	Limits	
alpha-BHC	48.39	50.51	ug/Kg	96%		22-129	
beta-BHC	48.20	50.51	ug/Kg	95%		28-125	
gamma-BHC	48.70	50.51	ug/Kg	96%		22-128	
delta-BHC	47.10	50.51	ug/Kg	93%		24-131	
Heptachlor	44.37	50.51	ug/Kg	88%		18-124	
Aldrin	42.08	50.51	ug/Kg	83%		23-120	
Heptachlor epoxide	46.74	50.51	ug/Kg	93%		26-120	
Endosulfan I	48.24	50.51	ug/Kg	96%		25-126	
Dieldrin	47.95	50.51	ug/Kg	95%		23-124	
4,4'-DDE	49.34	50.51	ug/Kg	98%		28-121	
Endrin	47.26	50.51	ug/Kg	94%		25-127	
Endosulfan II	44.35	50.51	ug/Kg	88%		29-121	
Endosulfan sulfate	38.28	50.51	ug/Kg	76%		30-121	
4,4'-DDD	43.99	50.51	ug/Kg	87%		26-120	
Endrin aldehyde	32.03	50.51	ug/Kg	63%		10-120	
Endrin ketone	37.06	50.51	ug/Kg	73%		28-125	
4,4'-DDT	39.06	50.51	ug/Kg	77%		22-125	
Methoxychlor	38.19	50.51	ug/Kg	76%		28-130	
Surrogates							
TCMX	44.85	50.51	ug/Kg	89%		23-120	
Decachlorobiphenyl	32.12	50.51	ug/Kg	64%		24-120	

Туре:	Matrix Spike		Lab ID:	QC1188356		Batch:	350787	
Matrix (Source ID):	Soil (516461-0	01)	Method:	EPA 8081A	Pre	ep Method:	EPA 3546	5
QC1188356 Analyte	Result	Source Sample Result	Spiked	Units	Recoverv	Qual	Limits	DF
alpha-BHC	39.52	ND	49.50	ug/Kg	80%		46-120	0.99
beta-BHC	43.13	ND	49.50	ug/Kg	87%		41-120	0.99
gamma-BHC	40.79	ND	49.50	ug/Kg	82%		41-120	0.99
delta-BHC	41.74	ND	49.50	ug/Kg	84%		38-123	0.99
Heptachlor	37.90	ND	49.50	ug/Kg	77%		39-120	0.99
Aldrin	36.58	ND	49.50	ug/Kg	74%		34-120	0.99
Heptachlor epoxide	40.73	ND	49.50	ug/Kg	82%		43-120	0.99
Endosulfan I	42.23	ND	49.50	ug/Kg	85%		45-120	0.99
Dieldrin	40.15	ND	49.50	ug/Kg	81%		45-120	0.99
4,4'-DDE	41.92	ND	49.50	ug/Kg	85%		34-120	0.99
Endrin	41.99	ND	49.50	ug/Kg	85%		40-120	0.99
Endosulfan II	40.59	ND	49.50	ug/Kg	82%		41-120	0.99
Endosulfan sulfate	34.07	ND	49.50	ug/Kg	69%		42-120	0.99
4,4'-DDD	39.50	ND	49.50	ug/Kg	80%		41-120	0.99
Endrin aldehyde	26.53	ND	49.50	ug/Kg	54%		30-120	0.99
Endrin ketone	33.32	ND	49.50	ug/Kg	67%		45-120	0.99
4,4'-DDT	34.58	ND	49.50	ug/Kg	70%		35-127	0.99
Methoxychlor	32.92	ND	49.50	ug/Kg	66%		42-136	0.99
Surrogates								
TCMX	37.69		49.50	ug/Kg	76%		23-120	0.99
Decachlorobiphenyl	29.03		49.50	ug/Kg	59%		24-120	0.99

Туре:	Matrix Sp	ike Duplica	te	Lab ID:	QC118835	7	E	Batch: 3	350787	
Matrix (Source ID):	Soil (5164	61-001)		Method:	EPA 8081	4	Prep Me	thod: I	EPA 354	6
QC1188357 Analyte	Result	Source Sample Result	Spiked	Units	Recovery	Qual	Limits	RPD	RPD Lim	DF
alpha-BHC	39.28	ND	49.50	ug/Kg	79%		46-120	1	30	0.99
beta-BHC	43.09	ND	49.50	ug/Kg	87%		41-120	0	30	0.99
gamma-BHC	40.66	ND	49.50	ug/Kg	82%		41-120	0	30	0.99
delta-BHC	40.64	ND	49.50	ug/Kg	82%		38-123	3	30	0.99
Heptachlor	36.52	ND	49.50	ug/Kg	74%		39-120	4	30	0.99
Aldrin	34.32	ND	49.50	ug/Kg	69%		34-120	6	30	0.99
Heptachlor epoxide	38.03	ND	49.50	ug/Kg	77%		43-120	7	30	0.99
Endosulfan I	38.75	ND	49.50	ug/Kg	78%		45-120	9	30	0.99
Dieldrin	36.53	ND	49.50	ug/Kg	74%		45-120	9	30	0.99
4,4'-DDE	37.99	ND	49.50	ug/Kg	77%		34-120	10	30	0.99
Endrin	38.27	ND	49.50	ug/Kg	77%		40-120	9	30	0.99
Endosulfan II	37.88	ND	49.50	ug/Kg	77%		41-120	7	30	0.99
Endosulfan sulfate	31.12	ND	49.50	ug/Kg	63%		42-120	9	30	0.99
4,4'-DDD	36.07	ND	49.50	ug/Kg	73%		41-120	9	30	0.99
Endrin aldehyde	23.14	ND	49.50	ug/Kg	47%		30-120	14	30	0.99
Endrin ketone	30.81	ND	49.50	ug/Kg	62%		45-120	8	30	0.99
4,4'-DDT	26.80	ND	49.50	ug/Kg	54%		35-127	25	30	0.99
Methoxychlor	26.34	ND	49.50	ug/Kg	53%		42-136	22	30	0.99
Surrogates										
TCMX	38.88		49.50	ug/Kg	79%		23-120			0.99
Decachlorobiphenyl	25.46		49.50	ug/Kg	51%		24-120			0.99

* Value is outside QC limits

E Response exceeds instrument's linear

E range

ND Not Detected

NM Not Meaningful

Laboratory Job Number 515740

Subcontracted Products

American Environmental Testing

2840 North Naomi Street, Burbank, CA 91504 • ELAP# 1541 • LACSD# 10181 Telephone (888) 288-AETL • (818) 845-8200 • www.aetlab.com

September 19, 2024

AETL Job No: BFI0098 Received Date: 09/12/2024 Project Number: EO-515740

Enthalpy Analytical 931 W. Barkley Ave. Orange, CA 92868

Telephone: (714)771-6900

Attention: Jim Lin

Project Name: EO-515740 Site:

Enclosed please find the results of analyses for samples which were analyzed as specified on the attached chain of custody. If you have any questions concerning this report, please do not hesitate to call.

Checked By:

Haelley Colonen

Hailley Coleman Project Manager

Approved By:

Daljit Khangura Laboratory Director

Table of Contents

Clier Worl	nt Project Name: < Order Number:	OPP & Herbicide BFI0098	Project Number: EO-515740	
1	Cover Letter			1
2	Sample Condition o	n Receipt		3
3	Chain of Custody			4
4	Cooler Receipt Forr	n		5
5	Case Narrative			6
6	Samples Received .			7
7	Positive Hits Summ	ary		10
8	Analytical Results			11
9	Quality Control Res	ults		21
10	Qualifiers and Defin	itions		25

2840 North Naomi Street, Burbank, CA 91504 • ELAP# 1541 • LACSD# 10181 Telephone (888) 288-AETL • (818) 845-8200 • www.aetlab.com

Enthalpy Analytical	AETL Job Number:	BF10098		
931 W. Barkley Ave.	Project Number:	EO-515740		
Orange, CA 92868	Attention:	Jim Lin		
	Project Name:	EO-515740	Reported:	09/19/2024 15:21

Sample Condition on Receipt

Cooler ID: Default Cooler		Temperature: 5.9 °C		
Are the COCs Correct	Y			
Labels Legible	Y	Containers In Good Condition	Y	
COC/Labels Agree	Y	Samples Preserved Properly	Y	
Sufficient Sample Volume	Y	Sufficient Holding Time for all Tests	Y	
Sample Labels intact	Y	Received on Ice	Y	
				·······

1

Subcontract Laboratory: American Environmental Testing 2840 N Naomi Street Burbank, CA 91504-2023 ATTN: Hailley Coleman PO #: Required, to be sent via email

Results Due: Standard TAT

Report Level: II

Report To: MDL

EDDs: Standard Excel Transfer File (3 tab xls: SAMPDATE, QCDATA, LNOTE)

Notes:

RETAC Sample ID Collected Lab ID # Cont. Matrix Analysis Requested Comment 09-SEP-2024 07:35 B1-0.5 515740-001 Soil EPA 8151A Chlorinated Herbicides B2-0.5 09-SEP-2024 08:05 515740-003 Soil EPA 8151A Chlorinated Herbicides B3-0.5 09-SEP-2024 08:26 515740-005 Soil EPA 8151A Chlorinated Herbicides 09-SEP-2024 08:50 B4-0.5 515740-007 Soil EPA 8151A Chlorinated Herbicides B5-0.5 09-SEP-2024 09:28 515740-009 Soil EPA 8151A Chlorinated Herbicides 09-SEP-2024 09:44 515740-011 Soil EPA 8151A Chlorinated Herbicides B6-0.5 09-SEP-2024 09:55 515740-013 Soil EPA 8151A Chlorinated Herbicides B7-0.5 1 B8-0.5 09-SEP-2024 11:25 515740-015 Soil EPA 8151A Chlorinated Herbicides B9-0.5 09-SEP-2024 12:15 515740-017 Soil EPA 8151A Chlorinated Herbicides 09-SEP-2024 13:00 B10-0.5 515740-019 Soil EPA 8151A Chlorinated Herbicides 1

Notes:	Belinguished By:	Received By:
	Au Davars View	Josefall 69-12_34 103
	Dateg/12/24 1030	Date: 6-reta Ginere Dosign
		. 0
	Date:	Date:
	Date:	Date:

Enthalpy Analytical - Orange Orange, CA 92868 (714) 771-6900 / Fax: (510) 486-0532

Enthalpy Order: EO-515740

PM: Jim Lin Email: Jim.lin@enthalpy.com CC: incomingreports@enthalpy.com Phone: 818-319-2359

Page 4 of 26

2840 North Naomi Street, Burbank, CA 91504 • ELAP# 1541 • LACSD# 10181 Telephone (888) 288-AETL • (818) 845-8200 • www.aetlab.com

COOLER RECEIPT FORM

Client Name: Enthalpy					
Project Name: OPP & Herbicide			Pro	ect No.: EO-515740	
AETL Job Number: BFI0098					
Date Received: 09/12/2024 Rec	eived	by: C	Greta	Giragoosian	
Carrier: Carrier Client		GSL		FedEx 🗆 UPS	
Others:					
Samples were received in: 🗹 Cooler (1)	□ Oth	ner (Spe	bify):	
Sample Container Temperature: <u>5.9</u> °C	IF	R Gun	S/N: !	51941911MV	
Type of sample containers: VOA, Glass b	oottles,	✔ Wid	le mou	th jars, HDPE bottles,	
Metal sleeves, Acetate sleeves, 5035 Kit	: AF	ETL or	Cli	ent, Tedlar Bags,	
Summa Canister: 6L, 3L, 1L, Others (sp	ecify):				
How are samples preserved: 🗆 None, 🗹 Ice,	\Box Bl	ue Ice,	\Box D1	ry Ice	
🖬 None, 🗆 HY	NO _{3,} [NaO	H, □	ZnOAc, \Box HCl, \Box Na ₂ S ₂ O _{3,}	
\Box MeOH, \Box Na	aHSO4				
\Box Other (Specify):					
	Yes	No*	N/A	Note or Comment	
1. Are the COCs Correct?	~				
2. Are Sample labels legible & indelible ink?	~				
3. Do samples match the COC?	~				
4. Are the required analyses clear?	~				
5. Is there enough samples for required analysis?	~				
6. Does cooler or samples have custody seal(s)?			~		
7. Are sample containers intact and in good	~				
condition?					
8. Are samples preserved?					
9. Are samples preserved properly for the					
intended analysis?					
10. Are the VOAs tree of headspace? See footnote.					
11. Are the jars tree of headspace?			~		
12. Are there any samples with short hold times?		-			
* = see note below. N/A = Not Applicable					

PLEASE NOTE ALL SAMPLES WILL BE DISPOSED OF 30 DAYS AFTER RECEIVING DATE. IF AETL IS INFORMED OTHERWISE, THERE WILL BE A STORAGE CHARGE PER SAMPLE PER MONTH FOR ANY SAMPLE HELD BEYOND 30 DAYS.

) Example maximum headspace bubble size; acceptance criteria not to exceed 5-6 mm in diameter.

For headspace bubbles exceeding 6 mm in diameter, sample receiving will tag the VOA and notify the Project Manager (PM). The PM will contact the client for Analyze or Resample instructions.

* For samples generating a "No" answer, the Project Manager is notified, and the PM will contact the client for Analyze or Resample instructions.

Cooler Receipt Form 20231009 Rev. 2.1

2840 North Naomi Street, Burbank, CA 91504 • ELAP# 1541 • LACSD# 10181 Telephone (888) 288-AETL • (818) 845-8200 • www.aetlab.com

31 W. Barkley Ave. Proj	ject Number:	EO-515740		
Orange, CA 92868 Atte	ention:	Jim Lin		
Proj	oject Name:	EO-515740	Reported:	09/19/2024 15:21

Case Narrative

The following "Sample Received" Section summarizes the samples received and associated analyses requested as specified on the enclosed chain of custody.

Results as reported by the laboratory apply only to 1) the items tested, 2) as the samples are received, and 3) the accuracy of information provided. Information supplied by the customer that may affect validity of results and may be contained in this report include Project Name/Number, Site Location, Sample Locations, Sampling Dates/Times, Sample ID, Sample Preservation, Sample Matrix, Sample Properties, Field Blanks, Field Duplicates, Field Spikes, and Site Historical Data.

Accreditation applies only to the test methods listed on each scope of accreditation held by the laboratory; certifications held by the laboratory may not apply to results supplied in this report.

Unless otherwise noted, all results of soil and solid samples are based on wet weight.

Qualifiers are noted in the report.

2840 North Naomi Street, Burbank, CA 91504 • ELAP# 1541 • LACSD# 10181 Telephone (888) 288-AETL • (818) 845-8200 • www.aetlab.com

Enthalpy Analytical	AETL Job Number:	BFI0098		
931 W. Barkley Ave.	Project Number:	EO-515740		
Orange, CA 92868	Attention:	Jim Lin		
	Project Name:	EO-515740	Reported:	09/19/2024 15:21

Samples Received

AETL received the following samples on 09/12/2024 with the following specifications

Client ID B1-0.5		Sample Date 09/9/2024 7:35
Lah ID	Matrix	Quantity of Containers
BF10098-01	Soil	quantity of containers
Analysis	Units	ТАТ
EPA 8151A	mg/kg	5
Client ID		Sample Date
B2-0.5		09/9/2024 8:05
Lab ID	Matrix	Quantity of Containers
BF10098-02	Soil	1
Analysis	Units	ТАТ
EPA 8151A	mg/kg	5
Client ID		Sample Date
33-0.5		09/9/2024 8:26
Lab ID	Matrix	Quantity of Containers
BF10098-03	Soil	1
Analysis	Units	ТАТ
EPA 8151A	mg/kg	5
Client ID		Sample Date
34-0.5		09/9/2024 8:50
Lab ID	Matrix	Quantity of Containers
BF10098-04	Soil	1
Analysis	Units	ТАТ
EPA 8151A	mg/kg	5

2840 North Naomi Street, Burbank, CA 91504 • ELAP# 1541 • LACSD# 10181 Telephone (888) 288-AETL • (818) 845-8200 • www.aetlab.com

Enthalpy Analytical 931 W. Barkley Ave.	AETL Job Number: Proiect Number:	BFI0098 EO-515740		
Orange, CA 92868	Attention:	Jim Lin		
	Project Name:	EO-515740	Reported:	09/19/2024 15:21

Samples Received

(Continued)

AETL received the following samples on 09/12/2024 with the following specifications

Client ID B5-0.5		Sample Date 09/9/2024 9:28
Lab ID	Matrix	Quantity of Containers
BF10098-05	Soil	1
Analysis	Units	ТАТ
EPA 8151A	mg/kg	5
Client ID 36-0.5		Sample Date 09/9/2024 9:44
Lab ID	Matrix	Quantity of Containers
BF10098-06	Soil	1
Analysis	Units	ТАТ
EPA 8151A	mg/kg	5
Client ID 37-0.5		Sample Date 09/9/2024 9:55
Lab ID	Matrix	Quantity of Containers
BF10098-07	Soil	1
Analysis	Units	ТАТ
EPA 8151A	mg/kg	5
Client ID 18-0.5		Sample Date 09/9/2024 11:25
Lab ID	Matrix	Quantity of Containers
BF10098-08	Soil	1
Analysis	Units	ТАТ
EPA 8151A	mg/kg	5

The contents of this report apply to the sample(s) analyzed in accordance with the chain of custody document. No duplication of this report is allowed, except in its entirety without written approval of the laboratory.

2840 North Naomi Street, Burbank, CA 91504 • ELAP# 1541 • LACSD# 10181 Telephone (888) 288-AETL • (818) 845-8200 • www.aetlab.com

Enthalpy Analytical	AETL Job Number:	BFI0098		
931 W. Barkley Ave.	Project Number:	EO-515740		
Orange, CA 92868	Attention:	Jim Lin		
	Project Name:	EO-515740	Reported:	09/19/2024 15:21

Samples Received

(Continued)

AETL received the following samples on 09/12/2024 with the following specifications

Client ID 39-0.5		Sample Date 09/9/2024 12:15
Lab ID	Matrix	Quantity of Containers
BF10098-09	Soil	1
Analysis	Units	ТАТ
EPA 8151A	mg/kg	5
Client ID		Sample Date
10-0.5		09/9/2024 13:00
Lab ID	Matrix	Quantity of Containers
3FI0098-10	Soil	1
Analysis	Units	ТАТ
EPA 8151A	ma/ka	5

Total Number of Samples received:

10

2840 North Naomi Street, Burbank, CA 91504 • ELAP# 1541 • LACSD# 10181 Telephone (888) 288-AETL • (818) 845-8200 • www.aetlab.com

Enthalpy Analytical	AETL Job Number:	BFI0098		
931 W. Barkley Ave.	Project Number:	EO-515740		
Orange, CA 92868	Attention:	Jim Lin		
	Project Name:	EO-515740	Reported:	09/19/2024 15:21

Positive Hits Summary

Lab ID	Client ID				Sampled
BF10098-10	B10-0.5				09/09/2024 13:00
Method	Analyte	Result	Qualifier	Unit	Analyzed
EPA 8151A	Pentachlorophenol (PCP)	0.0146		mg/kg	09/19/2024 05:34

2840 North Naomi Street, Burbank, CA 91504 • ELAP# 1541 • LACSD# 10181 Telephone (888) 288-AETL • (818) 845-8200 • www.aetlab.com

Enthalpy Analytical	AETL Job Number:	BFI0098		
931 W. Barkley Ave.	Project Number:	EO-515740		
Orange, CA 92868	Attention:	Jim Lin		
	Project Name:	EO-515740	Reported:	09/19/2024 15:21

Analytical Results

Client ID: B1-0.5

Lab ID: BFI0098-01	L (Soil)					Sa	mpled:	09/0	9/24 7	7:35	
Analyte	Result	Qualifier	Dilution	RL	Units	Prepared Date/Time	Analy Date/	zed Time	Batch	Analyst Initials	Prep. Method
Chlorinated Herbicides											
Method:	EPA 8151A										
Acifluorfen	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24	00:43	B4I0154	KF	3550B
Bentazon	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24	00:43	B4I0154	KF	3550B
Chloramben	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24	00:43	B4I0154	KF	3550B
2,4-D	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24	00:43	B4I0154	KF	3550B
2,4-DB	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24	00:43	B4I0154	KF	3550B
DCPA diacid	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24	00:43	B4I0154	KF	3550B
Dalapon	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24	00:43	B4I0154	KF	3550B
Dicamba	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24	00:43	B4I0154	KF	3550B
3,5-Dichlorobenzoic acid	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24	00:43	B4I0154	KF	3550B
Dichloroprop	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24	00:43	B4I0154	KF	3550B
Dinoseb	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24	00:43	B4I0154	KF	3550B
MCPA	ND		1	0.250	mg/kg	09/16/24 11:42	09/19/24	00:43	B4I0154	KF	3550B
МСРР	ND		1	0.250	mg/kg	09/16/24 11:42	09/19/24	00:43	B4I0154	KF	3550B
4-Nitrophenol	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24	00:43	B4I0154	KF	3550B
Pentachlorophenol (PCP)	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24	00:43	B4I0154	KF	3550B
Picloram	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24	00:43	B4I0154	KF	3550B
2,4,5-T (2,4,5-Trichlorophenoxyaceti acid)	c ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24	00:43	B4I0154	KF	3550B
2,4,5-TP	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24	00:43	B4I0154	KF	3550B
	Recovery			Acceptance	e Criteria						
Surrogate: DCAA	50.5%			25-140		09/16/24 11:42	09/19/24	4 00:43	B4I0154	KF	3550B

2840 North Naomi Street, Burbank, CA 91504 • ELAP# 1541 • LACSD# 10181 Telephone (888) 288-AETL • (818) 845-8200 • www.aetlab.com

Enthalpy Analytical 931 W. Barkley Ave.	AETL Job Number: Project Number:	BFI0098 EO-515740		
Orange, CA 92868	Attention:	Jim Lin		
	Project Name:	EO-515740	Reported:	09/19/2024 15:21

Analytical Results

Client ID: B2-0.5

Lab ID: BFI0098-02	2 (Soil)					San	pled: 0	9/09/24	8:05	
Analyte	Result	Qualifier	Dilution	RL	Units	Prepared Date/Time	Analyze Date/Tir	d ne Batch	Analyst n Initials	Prep. Method
Chlorinated Herbicides										
Method:	EPA 8151A									
Acifluorfen	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 0	01:12 B4I015	4 KF	3550B
Bentazon	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 0	1:12 B4I015	4 KF	3550B
Chloramben	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 0	01:12 B4I015	4 KF	3550B
2,4-D	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 0	01:12 B4I015	4 KF	3550B
2,4-DB	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 0	01:12 B4I015	4 KF	3550B
DCPA diacid	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 0	01:12 B4I015	4 KF	3550B
Dalapon	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 0	01:12 B4I015	4 KF	3550B
Dicamba	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 0	01:12 B4I015	4 KF	3550B
3,5-Dichlorobenzoic acid	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 0	01:12 B4I015	4 KF	3550B
Dichloroprop	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 0	01:12 B4I015	4 KF	3550B
Dinoseb	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 0	01:12 B4I015	4 KF	3550B
MCPA	ND		1	0.250	mg/kg	09/16/24 11:42	09/19/24 0	01:12 B4I015	4 KF	3550B
МСРР	ND		1	0.250	mg/kg	09/16/24 11:42	09/19/24 0	01:12 B4I015	4 KF	3550B
4-Nitrophenol	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 0	01:12 B4I015	4 KF	3550B
Pentachlorophenol (PCP)	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 0	01:12 B4I015	4 KF	3550B
Picloram	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 0	01:12 B4I015	4 KF	3550B
2,4,5-T (2,4,5-Trichlorophenoxyaceti acid)	c ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 0	01:12 B4I015	4 KF	3550B
2,4,5-TP	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 0	01:12 B4I015	i4 KF	3550B
	Recovery			Acceptance	e Criteria					
Surrogate: DCAA	33.1%			25-140		09/16/24 11:42	<i>09/19/24 (</i>	<i>01:12</i> B4I015	4 <i>KF</i>	3550B

2840 North Naomi Street, Burbank, CA 91504 • ELAP# 1541 • LACSD# 10181 Telephone (888) 288-AETL • (818) 845-8200 • www.aetlab.com

Enthalpy Analytical	AETL Job Number:	BFI0098		
931 W. Barkley Ave.	Project Number:	EO-515740		
Orange, CA 92868	Attention:	Jim Lin		
	Project Name:	EO-515740	Reported:	09/19/2024 15:21

Analytical Results

Client ID: B3-0.5

Lab ID: BFI0098-03	B (Soil)					Sam	pled: 09/0	9/24 8	8:26	
Analyte	Result	Qualifier	Dilution	RL	Units	Prepared Date/Time	Analyzed Date/Time	Batch	Analyst Initials	Prep. Method
Chlorinated Herbicides										
Method:	EPA 8151A									
Acifluorfen	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 02:10	B4I0154	KF	3550B
Bentazon	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 02:10	B4I0154	KF	3550B
Chloramben	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 02:10	B4I0154	KF	3550B
2,4-D	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 02:10	B4I0154	KF	3550B
2,4-DB	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 02:10	B4I0154	KF	3550B
DCPA diacid	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 02:10	B4I0154	KF	3550B
Dalapon	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 02:10	B4I0154	KF	3550B
Dicamba	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 02:10	B4I0154	KF	3550B
3,5-Dichlorobenzoic acid	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 02:10	B4I0154	KF	3550B
Dichloroprop	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 02:10	B4I0154	KF	3550B
Dinoseb	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 02:10	B4I0154	KF	3550B
MCPA	ND		1	0.250	mg/kg	09/16/24 11:42	09/19/24 02:10	B4I0154	KF	3550B
МСРР	ND		1	0.250	mg/kg	09/16/24 11:42	09/19/24 02:10	B4I0154	KF	3550B
4-Nitrophenol	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 02:10	B4I0154	KF	3550B
Pentachlorophenol (PCP)	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 02:10	B4I0154	KF	3550B
Picloram	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 02:10	B4I0154	KF	3550B
2,4,5-T (2,4,5-Trichlorophenoxyaceti acid)	c ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 02:10	B4I0154	KF	3550B
2,4,5-TP	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 02:10	B4I0154	KF	3550B
	Recovery			Acceptance	e Criteria					
Surrogate: DCAA	82.4%			25-140		09/16/24 11:42	09/19/24 02:10	B4I0154	KF	3550B

2840 North Naomi Street, Burbank, CA 91504 • ELAP# 1541 • LACSD# 10181 Telephone (888) 288-AETL • (818) 845-8200 • www.aetlab.com

Enthalpy Analytical 931 W. Barkley Ave.	AETL Job Number: Project Number:	BFI0098 EO-515740		
Orange, CA 92868	Attention:	Jim Lin		
	Project Name:	EO-515740	Reported:	09/19/2024 15:21

Analytical Results

Client ID: B4-0.5

Lab ID: BFI0098-04	4 (Soil)					Sar	npled: 09/	09/24	8:50	
Analyte	Result	Qualifier	Dilution	RL	Units	Prepared Date/Time	Analyzed Date/Time	Batch	Analyst Initials	Prep. Method
Chlorinated Herbicides										
Method:	EPA 8151A									
Acifluorfen	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 02:39	9 B4I0154	KF	3550B
Bentazon	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 02:39	9 B4I0154	KF	3550B
Chloramben	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 02:39	9 B4I0154	KF	3550B
2,4-D	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 02:39	9 B4I0154	KF	3550B
2,4-DB	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 02:39	9 B4I0154	KF	3550B
DCPA diacid	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 02:39	9 B4I0154	KF	3550B
Dalapon	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 02:39	9 B4I0154	KF	3550B
Dicamba	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 02:39	9 B4I0154	KF	3550B
3,5-Dichlorobenzoic acid	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 02:39	9 B4I0154	KF	3550B
Dichloroprop	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 02:39	9 B4I0154	KF	3550B
Dinoseb	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 02:39	9 B4I0154	KF	3550B
MCPA	ND		1	0.250	mg/kg	09/16/24 11:42	09/19/24 02:39	9 B4I0154	KF	3550B
МСРР	ND		1	0.250	mg/kg	09/16/24 11:42	09/19/24 02:39	9 B4I0154	KF	3550B
4-Nitrophenol	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 02:39	9 B4I0154	KF	3550B
Pentachlorophenol (PCP)	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 02:39	9 B4I0154	KF	3550B
Picloram	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 02:39	9 B4I0154	KF	3550B
2,4,5-T (2,4,5-Trichlorophenoxyaceti acid)	ic ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 02:39	9 B4I0154	KF	3550B
2,4,5-TP	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 02:39	9 B4I0154	KF	3550B
	Recovery			Acceptance	e Criteria					
Surrogate: DCAA	55.8%			25-140		09/16/24 11:42	09/19/24 02:3	9 B4I0154	KF	3550B

2840 North Naomi Street, Burbank, CA 91504 • ELAP# 1541 • LACSD# 10181 Telephone (888) 288-AETL • (818) 845-8200 • www.aetlab.com

Enthalpy Analytical	AETL Job Number:	BFI0098		
931 W. Barkley Ave.	Project Number:	EO-515740		
Orange, CA 92868	Attention:	Jim Lin		
	Project Name:	EO-515740	Reported:	09/19/2024 15:21

Analytical Results

Client ID: B5-0.5

Lab ID: BFI0098-05	5 (Soil)					Sam	pled: 09/0	9/24 9	9:28	
Analyte	Result (Qualifier	Dilution	RL	Units	Prepared Date/Time	Analyzed Date/Time	Batch	Analyst Initials	Prep. Method
Chlorinated Herbicides										
Method:	EPA 8151A									
Acifluorfen	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 03:09	B4I0154	KF	3550B
Bentazon	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 03:09	B4I0154	KF	3550B
Chloramben	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 03:09	B4I0154	KF	3550B
2,4-D	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 03:09	B4I0154	KF	3550B
2,4-DB	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 03:09	B4I0154	KF	3550B
DCPA diacid	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 03:09	B4I0154	KF	3550B
Dalapon	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 03:09	B4I0154	KF	3550B
Dicamba	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 03:09	B4I0154	KF	3550B
3,5-Dichlorobenzoic acid	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 03:09	B4I0154	KF	3550B
Dichloroprop	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 03:09	B4I0154	KF	3550B
Dinoseb	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 03:09	B4I0154	KF	3550B
МСРА	ND		1	0.250	mg/kg	09/16/24 11:42	09/19/24 03:09	B4I0154	KF	3550B
МСРР	ND		1	0.250	mg/kg	09/16/24 11:42	09/19/24 03:09	B4I0154	KF	3550B
4-Nitrophenol	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 03:09	B4I0154	KF	3550B
Pentachlorophenol (PCP)	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 03:09	B4I0154	KF	3550B
Picloram	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 03:09	B4I0154	KF	3550B
2,4,5-T (2,4,5-Trichlorophenoxyaceti acid)	c ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 03:09	B4I0154	KF	3550B
2,4,5-TP	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 03:09	B4I0154	KF	3550B
	Recovery			Acceptance	e Criteria					
Surrogate: DCAA	98.9%			25-140		09/16/24 11:42	09/19/24 03:09	B4I0154	KF	3550B

2840 North Naomi Street, Burbank, CA 91504 • ELAP# 1541 • LACSD# 10181 Telephone (888) 288-AETL • (818) 845-8200 • www.aetlab.com

Enthalpy Analytical 931 W. Barkley Ave.	AETL Job Number: Project Number:	BFI0098 EO-515740		
Orange, CA 92868	Attention:	Jim Lin		
	Project Name:	EO-515740	Reported:	09/19/2024 15:21

Analytical Results

Client ID: B6-0.5

Lab ID: BFI0098-06	5 (Soil)					Sar	npled: 0	9/09/24	9:44	
Analyte	Result	Qualifier	Dilution	RL	Units	Prepared Date/Time	Analyze Date/Tir	d ne Batch	Analyst Initials	Prep. Method
Chlorinated Herbicides										
Method:	EPA 8151A									
Acifluorfen	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 0	3:38 B4I015	4 KF	3550B
Bentazon	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 0	3:38 B4I015	4 KF	3550B
Chloramben	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 0	3:38 B4I015	4 KF	3550B
2,4-D	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 0	3:38 B4I015	4 KF	3550B
2,4-DB	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 0	3:38 B4I015	4 KF	3550B
DCPA diacid	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 0	3:38 B4I015	4 KF	3550B
Dalapon	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 0	3:38 B4I015	4 KF	3550B
Dicamba	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 0	3:38 B4I015	4 KF	3550B
3,5-Dichlorobenzoic acid	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 0	3:38 B4I015	4 KF	3550B
Dichloroprop	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 0	3:38 B4I015	4 KF	3550B
Dinoseb	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 0	3:38 B4I015	4 KF	3550B
MCPA	ND		1	0.250	mg/kg	09/16/24 11:42	09/19/24 0	3:38 B4I015	4 KF	3550B
МСРР	ND		1	0.250	mg/kg	09/16/24 11:42	09/19/24 0	3:38 B4I015	4 KF	3550B
4-Nitrophenol	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 0	3:38 B4I015	4 KF	3550B
Pentachlorophenol (PCP)	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 0	3:38 B4I015	4 KF	3550B
Picloram	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 0	3:38 B4I015	4 KF	3550B
2,4,5-T (2,4,5-Trichlorophenoxyaceti acid)	ic ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 0	3:38 B4I015	4 KF	3550B
2,4,5-TP	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 0	3:38 B4I015	4 KF	3550B
	Recovery			Acceptance	e Criteria					
Surrogate: DCAA	71.5%			25-140		09/16/24 11:42	09/19/24 0	<i>3:38</i> B4I015	4 <i>KF</i>	3550B

2840 North Naomi Street, Burbank, CA 91504 • ELAP# 1541 • LACSD# 10181 Telephone (888) 288-AETL • (818) 845-8200 • www.aetlab.com

Enthalpy Analytical 931 W. Barkley Ave.	AETL Job Number: Project Number:	BFI0098 EO-515740		
Orange, CA 92868	Attention:	Jim Lin		
	Project Name:	EO-515740	Reported:	09/19/2024 15:21

Analytical Results

Client ID: B7-0.5

Lab ID: BFI0098-07	7 (Soil)					San	pled: 09/	09/24	9:55	
Analyte	Result	Qualifier	Dilution	RL	Units	Prepared Date/Time	Analyzed Date/Time	Batch	Analyst Initials	Prep. Method
Chlorinated Herbicides										
Method:	EPA 8151A									
Acifluorfen	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 04:0	7 B4I0154	KF	3550B
Bentazon	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 04:0	7 B4I0154	KF	3550B
Chloramben	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 04:0	7 B4I0154	KF	3550B
2,4-D	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 04:0	7 B4I0154	KF	3550B
2,4-DB	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 04:0	7 B4I0154	KF	3550B
DCPA diacid	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 04:0	7 B4I0154	KF	3550B
Dalapon	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 04:0	7 B4I0154	KF	3550B
Dicamba	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 04:0	7 B4I0154	KF	3550B
3,5-Dichlorobenzoic acid	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 04:0	7 B4I0154	KF	3550B
Dichloroprop	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 04:0	7 B4I0154	KF	3550B
Dinoseb	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 04:0	7 B4I0154	KF	3550B
MCPA	ND		1	0.250	mg/kg	09/16/24 11:42	09/19/24 04:0	7 B4I0154	KF	3550B
MCPP	ND		1	0.250	mg/kg	09/16/24 11:42	09/19/24 04:0	7 B4I0154	KF	3550B
4-Nitrophenol	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 04:0	7 B4I0154	KF	3550B
Pentachlorophenol (PCP)	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 04:0	7 B4I0154	KF	3550B
Picloram	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 04:0	7 B4I0154	KF	3550B
2,4,5-T (2,4,5-Trichlorophenoxyaceti acid)	c ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 04:0	7 B4I0154	KF	3550B
2,4,5-TP	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 04:0	7 B4I0154	KF	3550B
	Recovery			Acceptance	e Criteria					
Surrogate: DCAA	26.5%			25-140		09/16/24 11:42	09/19/24 04:0	97 B4I0154	KF	3550B

2840 North Naomi Street, Burbank, CA 91504 • ELAP# 1541 • LACSD# 10181 Telephone (888) 288-AETL • (818) 845-8200 • www.aetlab.com

Enthalpy Analytical 931 W. Barkley Ave.	AETL Job Number: Project Number:	BFI0098 EO-515740		
Orange, CA 92868	Attention:	Jim Lin		
	Project Name:	EO-515740	Reported:	09/19/2024 15:21

Analytical Results

Client ID: B8-0.5

Lab ID: BFI0098-08	8 (Soil)					San	npled: 09	/09/24 1	1:25	
Analyte	Result	Qualifier	Dilution	RL	Units	Prepared Date/Time	Analyzed Date/Time	e Batch	Analyst Initials	Prep. Method
Chlorinated Herbicides										
Method:	EPA 8151A									
Acifluorfen	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 04:	36 B4I0154	KF	3550B
Bentazon	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 04:	36 B4I0154	KF	3550B
Chloramben	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 04:	36 B4I0154	KF	3550B
2,4-D	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 04:	36 B4I0154	KF	3550B
2,4-DB	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 04:	36 B4I0154	KF	3550B
DCPA diacid	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 04:	36 B4I0154	KF	3550B
Dalapon	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 04:	36 B4I0154	KF	3550B
Dicamba	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 04:	36 B4I0154	KF	3550B
3,5-Dichlorobenzoic acid	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 04:	36 B4I0154	KF	3550B
Dichloroprop	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 04:	36 B4I0154	KF	3550B
Dinoseb	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 04:	36 B4I0154	KF	3550B
МСРА	ND		1	0.250	mg/kg	09/16/24 11:42	09/19/24 04:	36 B4I0154	KF	3550B
МСРР	ND		1	0.250	mg/kg	09/16/24 11:42	09/19/24 04:	36 B4I0154	KF	3550B
4-Nitrophenol	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 04:	36 B4I0154	KF	3550B
Pentachlorophenol (PCP)	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 04:	36 B4I0154	KF	3550B
Picloram	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 04:	36 B4I0154	KF	3550B
2,4,5-T (2,4,5-Trichlorophenoxyaceti acid)	ic ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 04:	36 B4I0154	KF	3550B
2,4,5-TP	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 04:	36 B4I0154	KF	3550B
	Recovery			Acceptance	e Criteria					
Surrogate: DCAA	43.4%			25-140		09/16/24 11:42	09/19/24 04:	<i>36</i> B4I0154	KF	3550B

2840 North Naomi Street, Burbank, CA 91504 • ELAP# 1541 • LACSD# 10181 Telephone (888) 288-AETL • (818) 845-8200 • www.aetlab.com

Enthalpy Analytical 931 W. Barkley Ave.	AETL Job Number: Project Number:	BFI0098 EO-515740		
Orange, CA 92868	Attention:	Jim Lin		
	Project Name:	EO-515740	Reported:	09/19/2024 15:21

Analytical Results

Client ID: B9-0.5

Lab ID: BFI0098-09	9 (Soil)					Sam	pled: 09/0	9/24 1	2:15	
Analyte	Result (Qualifier	Dilution	RL	Units	Prepared Date/Time	Analyzed Date/Time	Batch	Analyst Initials	Prep. Method
Chlorinated Herbicides										
Method:	EPA 8151A									
Acifluorfen	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 05:05	B4I0154	KF	3550B
Bentazon	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 05:05	B4I0154	KF	3550B
Chloramben	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 05:05	B4I0154	KF	3550B
2,4-D	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 05:05	B4I0154	KF	3550B
2,4-DB	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 05:05	B4I0154	KF	3550B
DCPA diacid	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 05:05	B4I0154	KF	3550B
Dalapon	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 05:05	B4I0154	KF	3550B
Dicamba	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 05:05	B4I0154	KF	3550B
3,5-Dichlorobenzoic acid	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 05:05	B4I0154	KF	3550B
Dichloroprop	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 05:05	B4I0154	KF	3550B
Dinoseb	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 05:05	B4I0154	KF	3550B
МСРА	ND		1	0.250	mg/kg	09/16/24 11:42	09/19/24 05:05	B4I0154	KF	3550B
МСРР	ND		1	0.250	mg/kg	09/16/24 11:42	09/19/24 05:05	B4I0154	KF	3550B
4-Nitrophenol	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 05:05	B4I0154	KF	3550B
Pentachlorophenol (PCP)	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 05:05	B4I0154	KF	3550B
Picloram	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 05:05	B4I0154	KF	3550B
2,4,5-T (2,4,5-Trichlorophenoxyaceti acid)	c ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 05:05	B4I0154	KF	3550B
2,4,5-TP	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24 05:05	B4I0154	KF	3550B
	Recovery			Acceptance	e Criteria					
Surrogate: DCAA	41.4%			25-140		09/16/24 11:42	09/19/24 05:05	B4I0154	KF	3550B

2840 North Naomi Street, Burbank, CA 91504 • ELAP# 1541 • LACSD# 10181 Telephone (888) 288-AETL • (818) 845-8200 • www.aetlab.com

Enthalpy Analytical 931 W. Barkley Ave.	AETL Job Number: Proiect Number:	BFI0098 EO-515740		
Orange, CA 92868	Attention:	Jim Lin		
	Project Name:	EO-515740	Reported:	09/19/2024 15:21

Analytical Results

Client ID: B10-0.5

Lab ID: BFI0098-1	0 (Soil)					Sam	pled:	09/0	9/24 1	3:00	
Analyte	Result	Qualifier	Dilution	RL	Units	Prepared Date/Time	Analyz Date/T	ed ime	Batch	Analyst Initials	Prep. Method
Chlorinated Herbicides											
Method:	EPA 8151A										
Acifluorfen	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24	05:34	B4I0154	KF	3550B
Bentazon	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24	05:34	B4I0154	KF	3550B
Chloramben	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24	05:34	B4I0154	KF	3550B
2,4-D	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24	05:34	B4I0154	KF	3550B
2,4-DB	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24	05:34	B4I0154	KF	3550B
DCPA diacid	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24	05:34	B4I0154	KF	3550B
Dalapon	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24	05:34	B4I0154	KF	3550B
Dicamba	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24	05:34	B4I0154	KF	3550B
3,5-Dichlorobenzoic acid	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24	05:34	B4I0154	KF	3550B
Dichloroprop	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24	05:34	B4I0154	KF	3550B
Dinoseb	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24	05:34	B4I0154	KF	3550B
МСРА	ND		1	0.250	mg/kg	09/16/24 11:42	09/19/24	05:34	B4I0154	KF	3550B
МСРР	ND		1	0.250	mg/kg	09/16/24 11:42	09/19/24	05:34	B4I0154	KF	3550B
4-Nitrophenol	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24	05:34	B4I0154	KF	3550B
Pentachlorophenol (PCP)	0.0146		1	0.00250	mg/kg	09/16/24 11:42	09/19/24	05:34	B4I0154	KF	3550B
Picloram	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24	05:34	B4I0154	KF	3550B
2,4,5-T (2,4,5-Trichlorophenoxyacet acid)	ic ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24	05:34	B4I0154	KF	3550B
2,4,5-TP	ND		1	0.00250	mg/kg	09/16/24 11:42	09/19/24	05:34	B4I0154	KF	3550B
	Recovery			Acceptance	e Criteria						
Surrogate: DCAA	77.0%			25-140		09/16/24 11:42	09/19/24	05:34	B4I0154	KF	3550B

2840 North Naomi Street, Burbank, CA 91504 • ELAP# 1541 • LACSD# 10181 Telephone (888) 288-AETL • (818) 845-8200 • www.aetlab.com

Enthalpy Analytical	AETL Job Number:	BFI0098		
931 W. Barkley Ave.	Project Number:	EO-515740		
Orange, CA 92868	Attention:	Jim Lin		
	Project Name:	EO-515740	Reported:	09/19/2024 15:21

Quality Control Results

Chlorinated Herbicides (EPA 8151A)

Analyte	Pocult	Ы	Unite	Spike Level	Source	%PEC	%REC	חפפ	RPD Limit	Oualifier
Analyte	Kesuit		Units	Level	Kesuit	/UREC	Linits	RF D	Linit	
Batch: B4I0154 - 3550B				Prepared:	09/16/2	024 11:42				
Method Blank (B4I0154-BLK1)				Analyzed:	09/19/2	024 00:14				
Acifluorfen	ND	0.00250	mg/kg							
Bentazon	ND	0.00250	mg/kg							
Chloramben	ND	0.00250	mg/kg							
2,4-D	ND	0.00250	mg/kg							
2,4-DB	ND	0.00250	mg/kg							
DCPA diacid	ND	0.00250	mg/kg							
Dalapon	ND	0.00250	mg/kg							
Dicamba	ND	0.00250	mg/kg							
3,5-Dichlorobenzoic acid	ND	0.00250	mg/kg							
Dichloroprop	ND	0.00250	mg/kg							
Dinoseb	ND	0.00250	mg/kg							
MCPA	ND	0.250	mg/kg							
MCPP	ND	0.250	mg/kg							
4-Nitrophenol	ND	0.00250	mg/kg							
Pentachlorophenol (PCP)	ND	0.00250	mg/kg							
Picloram	ND	0.00250	mg/kg							
2,4,5-T	ND	0.00250	mg/kg							
(2,4,5-Trichlorophenoxyacetic acid)										
2,4,5-ТР	ND	0.00250	mg/kg							
Surrogate: DCAA	0.0454		mg/kg	0.0500		90.9	25-140			

2840 North Naomi Street, Burbank, CA 91504 • ELAP# 1541 • LACSD# 10181 Telephone (888) 288-AETL • (818) 845-8200 • www.aetlab.com

931 W. Barkley Ave Project Number: EQ-515740	
Tojee Hambel. EO 5157 10	
Orange, CA 92868 Attention: Jim Lin	
Project Name: EO-515740 Reported: 0	09/19/2024 15:21

Quality Control Results

Chlorinated Herbicides (EPA 8151A)

Analyte	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
Batch: B4I0154 - 3550B (Continued)				Prepared:	09/16/202	24 11:42				
LCS (B4I0154-BS1)				Analyzed:	09/18/202	24 22:18				
Acifluorfen	0.0336	0.00250	ma/ka	0.0250		134	40-140			
Bentazon	0.0332	0.00250	ma/ka	0.0250		133	40-140			
Chloramben	0.00784	0.00250	ma/ka	0.0250		31.4	20-150			
2.4-D	0.0226	0.00250	ma/ka	0.0250		90.5	40-140			
2.4-DB	0.0183	0.00250	ma/ka	0.0250		73.1	40-140			
DCPA diacid	0.0100	0.00250	ma/ka	0.0250		40.0	40-140			
Dalapon	0.0200	0.00250	ma/ka	0.0250		80.1	40-140			
Dicamba	0.0313	0.00250	ma/ka	0.0250		125	40-140			
3 5-Dichlorobenzoic acid	0.0266	0.00250	ma/ka	0.0250		106	40-140			
Dichloroprop	0.0253	0.00250	ma/ka	0.0250		101	40-140			
Dinoseb	0.0233	0.00250	ma/ka	0.0250		134	20-150			
MCPA	3 46	0.00250	ma/ka	2 50		138	40-140			
MCPP	2 75	0.250	ma/ka	2.50		110	40-140			
4-Nitronhenol	0.0135	0.250	ma/ka	0.0250		53.9	40-140			
Pentachloronhenol (PCP)	0.0133	0.00250	ma/ka	0.0250		137	40-140			
	0.0077	0.00250	ma/ka	0.0250		37.1	20-150			
2.4.5-T	0.00927	0.00250	mg/kg	0.0250		125	20-130			
(2.4.5-Trichlorophenovyacetic acid)	0.0511	0.00230	iiig/kg	0.0250		125	40-140			
2.4.5-TP	0.0318	0.00250	ma/ka	0.0250		127	40-140			
Surrogate: DCAA	0.0369		mg/kg	0.0500		73.7	25-140			
I CSD (B4I0154-BSD1)				Analvzed:	09/18/202	24 22:47				
Acifluorfen	0 0309	0 00250	ma/ka	0.0250		123	40-140	8 52	40	
Bentazon	0.0309	0.00250	ma/ka	0.0250		75 3	40-140	55.2	40	R
Chloramben	0.0100	0.00250	ma/ka	0.0250		30.1	20-150	4 15	40	K
2 4-D	0.00735	0.00250	ma/ka	0.0250		85.8	40-140	5 29	40	
2, -DB	0.0215	0.00250	ma/ka	0.0250		68.0	40-140	7 24	40	
DCPA diacid	0.0106	0.00250	ma/ka	0.0250		42.3	40-140	5 46	40	
Dalanon	0.0100	0.00250	ma/ka	0.0250		57.0	40-140	33.7	40	
Dicamba	0.0172	0.00250	ma/ka	0.0250		100	40-140	13.8	40	
3 5-Dichlorobonzoic acid	0.0272	0.00250	mg/kg	0.0250		105	40-140	5 20	40	
Dichloroprop	0.0232	0.00250	mg/kg	0.0250		120	40-140	25.0	40	
Dinosoh	0.0320	0.00250	mg/kg	0.0250		130	20-150	23.0	40	
MCDA	2 47	0.00250	mg/kg	2 50		124	20-130	/.11	40	
	3.47 2.77	0.250	mg/kg	2.50		111	40-140	<1.00	40	
	2.//	0.250	mg/kg	2.50		111	40-140	<1.00	40	
	0.0150	0.00250	mg/kg	0.0250		120	40-140	7 10	40 40	
	0.0320	0.00250	mg/kg	0.0250		120	40-140	/.10	4U 40	
	0.00883	0.00250	mg/Kg	0.0250		35.3 122	20-150	4.88	40	
2,4,5-1	0.0305	0.00250	mg/kg	0.0250		122	40-140	2.01	40	
(2,4,5-) richlorophenoxyacetic acid)	0 0210	0 00250	ma/ka	0.0250		177	40-140	<1.00	40	
2,7,3' Г	0.0318	0.00250	пу/ку	0.0230		12/		<1.00	40	
Surrogate: DCAA	0.0340		mg/kg	0.0500		67.9	25-140			

The contents of this report apply to the sample(s) analyzed in accordance with the chain of custody document. No duplication of this report is allowed, except in its entirety without written approval of the laboratory.

2840 North Naomi Street, Burbank, CA 91504 • ELAP# 1541 • LACSD# 10181 Telephone (888) 288-AETL • (818) 845-8200 • www.aetlab.com

Enthalpy Analytical	AETL Job Number:	BFI0098		
931 W. Barkley Ave.	Project Number:	EO-515740		
Orange, CA 92868	Attention:	Jim Lin		
	Project Name:	EO-515740	Reported:	09/19/2024 15:21

Quality Control Results

Chlorinated Herbicides (EPA 8151A)

Analyte	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
Batch: B4I0154 - 3550B (Continued)				Prepared:	09/16/20	024 11:42				
Matrix Spike (B4I0154-MS1)	Source: B	FI0098-03		Analyzed:	09/18/20	024 23:16				
Acifluorfen	0.0244	0.00250	ma/ka	0.0248	ND	98.6	30-140			
Bentazon	0.0318	0.00250	ma/ka	0.0248	ND	128	30-140			
Chloramben	0.00557	0.00250	ma/ka	0.0248	ND	22.5	30-140			м
2.4-D	0.0172	0.00250	ma/ka	0.0248	ND	69.2	30-140			
2 4-DB	0.0296	0.00250	ma/ka	0.0248	ND	119	30-140			
DCPA diacid	0.00135	0.00250	ma/ka	0.0248	ND	5 46	30-140			м
Dalanon	0.00103	0.00250	ma/ka	0.0248	ND	41.8	30-140			
Dicamba	0.0105	0.00250	ma/ka	0.0248	ND	105	30-140			
3 5-Dichlorobenzoic acid	0.0233	0.00250	ma/ka	0.0210	ND	77 5	30-140			
Dichloroprop	0.0192	0.00250	ma/ka	0.0240	ND	110	30-140			
Dinoseh	0.0272	0.00250	ma/ka	0.0240		121	30-140			
MCBA	1 21	0.00250	mg/kg	0.0240 2 49		52.0	30-140			
MCPD	1.51	0.250	mg/kg	2.70		52.9	20 140			
MCFF	0.0156	0.250	mg/kg	2.40		62.0	20 140			
4-Nicophenol Bentachlerenhenol (PCB)	0.0150	0.00250	mg/kg	0.0240		102.9	20 140			
	0.0255	0.00250	mg/kg	0.0248	ND	102	30-140			
	0.000/30	0.00250	mg/kg	0.0248	ND	2.95	30-140			M
2,4,5-1	0.0221	0.00250	mg/kg	0.0248	ND	89.2	30-140			
	0 0266	0 00250	ma/ka	0 0249		107	20 140			
2,4,5-11	0.0200	0.00250	iiig/kg	0.0246		107	50-140			
Surrogate: DCAA	0.0469		mg/kg	0.0496		94.7	25-140			
Matrix Spike Dup (B4I0154-MSD1)	Source: B	FI0098-03		Analyzed:	09/18/20	024 23:45				
Acifluorfen	0.0234	0.00250	mg/kg	0.0249	ND	93.9	30-140	4.51	40	
Bentazon	0.0325	0.00250	mg/kg	0.0249	ND	131	30-140	2.31	40	
Chloramben	0.0108	0.00250	mg/kg	0.0249	ND	43.5	30-140	64.0	40	R
2,4-D	0.0173	0.00250	mg/kg	0.0249	ND	69.5	30-140	<1.00	40	
2,4-DB	0.0243	0.00250	mg/kg	0.0249	ND	97.8	30-140	19.4	40	
DCPA diacid	0.00131	0.00250	mg/kg	0.0249	ND	5.27	30-140	3.27	40	М
Dalapon	0.0112	0.00250	mg/kg	0.0249	ND	45.2	30-140	8.31	40	
Dicamba	0.0261	0.00250	mg/kg	0.0249	ND	105	30-140	<1.00	40	
3,5-Dichlorobenzoic acid	0.0192	0.00250	mg/kg	0.0249	ND	77.2	30-140	<1.00	40	
Dichloroprop	0.0253	0.00250	mg/kg	0.0249	ND	102	30-140	7.16	40	
Dinoseb	0.0314	0.00250	mg/kg	0.0249	ND	126	30-140	4.78	40	
MCPA	1.25	0.250	mg/kg	2.49	ND	50.1	30-140	5.09	40	
МСРР	1.40	0.250	mg/kg	2.49	ND	56.4	30-140	7.91	40	
4-Nitrophenol	0.0160	0.00250	ma/ka	0.0249	ND	64.4	30-140	2.75	40	
Pentachlorophenol (PCP)	0.0252	0.00250	mg/kq	0.0249	ND	101	30-140	<1.00	40	
Picloram	0.00156	0.00250	mg/ka	0.0249	ND	6.28	30-140	72.5	40	M, R
2.4.5-T	0,0228	0.00250	ma/ka	0.0249	ND	91.5	30-140	3.01	40	.,
(2,4,5-Trichlorophenoxyacetic acid)	0.0110	100200		0.02.15		51.0		0.01		
2,4,5-TP	0.0267	0.00250	mg/kg	0.0249	ND	107	30-140	<1.00	40	
Surrogate: DCAA	0.0446		mą/ką	0.0498		89.6	25-140			
			5, 5							

The contents of this report apply to the sample(s) analyzed in accordance with the chain of custody document. No duplication of this report is allowed, except in its entirety without written approval of the laboratory.

2840 North Naomi Street, Burbank, CA 91504 • ELAP# 1541 • LACSD# 10181 Telephone (888) 288-AETL • (818) 845-8200 • www.aetlab.com

Enthalpy Analytical 931 W. Barkley Ave.	AETL Job Number: Project Number:	BFI0098 EO-515740		
Orange, CA 92868	Attention:	Jim Lin		
	Project Name:	EO-515740	Reported:	09/19/2024 15:21

Quality Control Results

Chlorinated Herbicides (EPA 8151A)

				Spike	Source		%REC		RPD	
Analyte	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

2840 North Naomi Street, Burbank, CA 91504 • ELAP# 1541 • LACSD# 10181 Telephone (888) 288-AETL • (818) 845-8200 • www.aetlab.com

Enthalpy Analytical	AETL Job Number:	BFI0098		
931 W. Barkley Ave.	Project Number:	EO-515740		
Orange, CA 92868	Attention:	Jim Lin		
	Project Name:	EO-515740	Reported:	09/19/2024 15:21

Qualifiers and Definitions

ITEM	Qualifiers
Μ	The spike recovery for this QC sample is outside of established control limits possibly due to sample matrix interference.
_	Laboratory Control Samples(LCS/LCSD) recovery were acceptable.
R	The RPD was outside of QC acceptance limits due to possible matrix interference.
ITEM	Definitions
% wt	Percent Weight
%REC	Percent Recovery
*	Value outside of control limits.
°F	Degrees Fahrenheit
AETL	American Environmental Testing Laboratory, LLC
С	Carbon
CARB	California Air Resources Board
COC	Chain of Custody
Cresols	3-methylphenol/4-methylphenol coelute and cannot be chromatographically separated. Due to this coeluting isomer pair phenomenon, the laboratory uses a single cresol (4-methylphenol) as calibration standard for 3-methylphenol/4-methylphenol.
CRM	Certified Reference Material
DI	Deionized Water
DPD	Department of Planning and Development
DRO	Diesel Range Organics
Dup	Duplicate
ELAP	Environmental Laboratory Accreditation Program
EPA	Environmental Protection Agency
GC/FID	Gas Chromatography Flame Ionization Detection
GRO	Gasoline Range Organics
HC	Hydrocarbon
HEM	Hexane Extractable Material
HMU	Hazardous Material Unit
ICP/MS	Inductively Coupled Plasma Mass Spectrometry
LACSD	Los Angeles County Sanitation Districts
LCS	Laboratory Control Sample - A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes.
LCSD	Laboratory Control Sample Duplicate - A replicate of Laboratory Control Sample.
LOQ	Limit of Quantitation
MDL	Method Detection Limit - The minimum measured concentration of a substance that can be reported with 99% confidence. MDL is statistically derived number which is specific for each instrument, each method and each compound.
mg/kg	Miligrams per Kilogram
mg/L	Miligrams per Liter
ml/L/hr	Milliliter per Liter per Hour

2840 North Naomi Street, Burbank, CA 91504 • ELAP# 1541 • LACSD# 10181 Telephone (888) 288-AETL • (818) 845-8200 • www.aetlab.com

Enthalpy Analytical 931 W. Barkley Ave. Orange, CA 92868		AETL Job Number: Project Number: Attention: Project Name:	BFI0098 EO-515740 Jim Lin EO-515740	Reported:	09/19/2024 15:21		
MRO	Motor oil Range Organics					•	
MS	Matrix Spike - A sample prepared, ta an independent test results.	ken through all sample prep	paration and analytical	steps of the procedure and	analyzed as		
MSD	Matrix Spike Duplicate - A replicate c	f Matrix Spike Sample.					
N	No						
ND	Analyte is not detected below Method Detection Limit.						
ng/m3	Nanograms per cubic meter						
NIOSH	National Institute for Occupational Sa	afety and Health					
nL/L	Nanoliters per Liter						
NTU	Nephelometric Turbidity Units						
Ohm-cm	Ohms per centimeter						
ORO	Oil Range Organics						
OSHA	Occupational Safety and Health Adm	inistration					
РСВ	Polychlorinated Biphenyl						
ppb v	Parts per billion by volume						
ppmC	Parts per million Carbon						
PSU	Practical Salinity Unit						
Q	Qualifier Column						
RL	Reporting Limit - The lowest concent reported with a specified degree of c	ample and its concentration AETL, RL is equivalant to LC	i can be IQ.				
SIM							
SIIVI	Selective Ion Monitoring						
SIVI SDI D	Standard Method	a du va					
SFLF	Synchetic Precipitation Leaching Proc	edure					
	Soluble Threshold Limit Concentratio	[]					
	Toxicity Characteristic Leaching Proc	edure					
		i					
ug/kg							
ug/L	Micrograms per Liter						
ug/IIIS WET	Micrograms per cubic meter						
	waste Extraction Test						
Y Zu IE	Yes						
ZHE	Zero Headspace Extraction						

