KIA OF CALABASAS CITY OF CALABASAS, CALIFORNIA

REVISED TRANSPORTATION ANALYSIS

April 12, 2024

ATE Project #23066

Prepared for:

Envicom Corporation 4165 E. Thousand Oaks, Suite #290 Westlake Village, CA 91362

ASSOCIATED TRANSPORTATION ENGINEERS

100 N. Hope Avenue, Suite 4, Santa Barbara, CA 93110-1686 ● (805) 687-4418 ● FAX (805) 682-8509

ASSOCIATED TRANSPORTATION ENGINEERS

100 N. Hope Avenue, Suite 4, Santa Barbara, CA 93110 • (805)687-4418 • FAX (805)682-8509 • main@atesb.com

Since 1978

Richard L. Pool, P.E. Scott A. Schell

April 12, 2024

23066R01

Travis Cullen
Envicom Corporation
4165 E. Thousand Oaks Boulevard, Suite #290
Westlake Village, CA 91362

REVISED TRANSPORTATION ANALYSIS FOR THE KIA OF CALABASAS - CITY OF CALABASAS

Associated Transportation Engineers (ATE) has prepared the following revised transportation analysis for the Kia of Calabasas, proposed in the City of Calabasas. The revised transportation analysis address comments provided by City staff on the March 13th traffic analysis prepared by ATE. The revised traffic analysis evaluates the Project's consistency with the policies outlined in the City's Local Transportation Study Guidelines.

We appreciate the opportunity to assist you with this Project.

ut A Se

Associated Transportation Engineers

Scott A. Schell

Principal Transportation Planner

CONTENTS

INTRODUCTION	1
PROJECT DESCRIPTION	1
TRAFFIC SCENARIOS AND SCOPE OF WORK	1
EXISTING CONDITIONS	4
Street Network	4
Existing Intersection Operations	5
PEDESTRIAN, BICYCLE AND TRANSIT FACILITIES	8
CITY OF CALABASAS INTERSECTION ADVERSE EFFECT POLICY	10
PLANNED IMPROVEMENTS	11
EXISTING + PROJECT ANALYSIS	11
Project Trip Generation	11
Project Trip Distribution	11
Existing + Project Intersection Levels of Service	13
CUMULATIVE ANALYSIS	15
Cumulative Traffic Forecasts	15
Cumulative Intersection Levels of Service	17
Cumulative + Project Intersection Levels of Service	17
SITE ACCESS AND CIRCULATION	19
Sight Distance	23
PARKING ANALYSIS	
Zoning Ordinance Parking Requirements	26
REFERENCES AND PERSONS CONTACTED	27
TECHNICAL APPENDIX	28

LIST OF TABLES

Table 1 - Existing Peak Hour Intersection Levels of Service	8
Table 2 - Project Trip Generation 1	11
Table 3 - Project Trip Distribution	13
Table 4 - Existing + Project AM Peak Hour Levels of Service	13
Table 5 - Existing + Project PM Peak Hour Levels of Service	13
Table 6 - Cumulative Projects Trip Generation 1	
Table 7 - Cumulative Peak Hour Intersection Levels of Service	
Table 8 - Cumulative + Project AM Peak Hour Level of Service	17
Table 9 - Cumulative + Project PM Peak Hour Level of Service	19
Table 10 - Zoning Ordinance Parking Requirements	
LIST OF FIGURES	
Figure 1 - Project Site Location	
Figure 2 - Project Site Plan	3
	3
Figure 2 - Project Site Plan	3 6
Figure 2 - Project Site Plan	3 6 7
Figure 2 - Project Site Plan	3 6 7 12 14
Figure 2 - Project Site Plan	3 6 7 12 14
Figure 2 - Project Site Plan	3 6 7 12 14
Figure 2 - Project Site Plan	3 6 7 12 14 16
Figure 2 - Project Site Plan	3 6 7 12 14 16 18
Figure 2 - Project Site Plan	3 7 12 14 16 18 20 21
Figure 2 - Project Site Plan	3 6 7 12 14 16 18 20 21

INTRODUCTION

The following study contains an analysis of the potential traffic and circulation effects associated with the Kia of Calabasas (the "Project"), located in the City of Calabasas. The study provides information regarding existing and future traffic conditions within the Project study-area and recommends improvements where necessary. The transportation analysis follows the procedures outlined in the City of Calabasas Local Transportation Study Guidelines and evaluates the Project's consistency with the City policies.

PROJECT DESCRIPTION

As illustrated on Figure 1, the Project site is located at 24460 Calabasas Road. The Project is proposing to construct a 47,944 square-foot new car sales dealership with a 2,117 square foot carwash on a site previously occupied by a retail nursery. The Project site plan is illustrated on Figure 2. As shown, site access will be provided via a driveway connection to Calabasas Road. A total of 79 parking spaces and 4 bicycle spaces will be provided on-site.

TRAFFIC SCENARIOS AND SCOPE OF WORK

The traffic study assesses potential traffic effects for the following scenarios.

Traffic Scenarios

- 1) Existing Conditions
- 2) Existing + Project Conditions
- 3) Cumulative (Existing+ Approved/Pending Projects) Conditions
- 3) Cumulative (Existing + Approved/Pending Projects) + Project Conditions

The traffic analysis evaluates the weekday AM and PM peak hour periods for 3 study-area intersections. The Cumulative scenario provides an analysis of the development of approved/pending projects. The Cumulative + Project assumes development of approved/pending projects and the Project.

The scope of work and traffic assessment methodologies presented in this study were developed based on the requirements outlined in the City of Calabasas Local Transportation Study Guidelines.

EXISTING CONDITIONS

Street Network

The Project site is served by a network of arterial roads and collector streets as illustrated in Figure 1. The following text provides a brief description of the major components of the study-area street network.

Calabasas Road, located adjacent to the Project site, is an east-west 2 to 4-lane undivided arterial roadway in the studyarea. The posted speed on Calabasas Road is 40 mph. The roadway extends east from Mureau Road to Mulholland Drive and serves primarily commercial uses in the study-area. The roadway is partially improved with curb, gutter and sidewalks from Mureau Road to Parkway Calabasas. No sidewalk is currently provided adjacent to the Project site. The existing on-street parking is used by the adjacent auto dealerships. Class II bike lanes are provided

along the roadway. The Project will improve Calabasas Road along its frontage. The intersections of Calabasas Road/Calabasas Parkway and U.S. Highway 101 southbound ramps/Calabasas Road are controlled by traffic signals.

Parkway Calabasas, located east of the Project site, is a north-south 2 to 4-lane divided arterial roadway in the studyarea. The posted speed on Parkway Calabasas is 40 mph. The roadway extends south from the Hidden Hills West Estates gated community to the Estates at the Oaks gated community. Parkway Calabasas serves primarily residential and commercial uses in the study-area. The roadway is fully improved with curb, gutter and sidewalk.

Class II bike lanes are provided along the roadway. The intersection of Calabasas Road/Parkway Calabasas is controlled by traffic signals.

Mureau Road, located west of the Project site, is an east-west 2 to 4-lane arterial roadway in the study-area. The posted speed on Mureau Road is 35 mph. The roadway extends east from Las Virgenes Road to Calabasas Road. Mureau Road serves primarily residential uses in the study-area. The roadway partially improved with curb and gutter. Class II bike lanes are provided along the roadway. Currently the intersection of Calabasas Road/Mureau Road is

STOP-Sign controlled. A roundabout is programmed for installation at the Calabasas Road/Mureau Road intersection in 2024/2025 and is assumed to be in place for the post Project scenarios.

Existing Intersection Operations

Because traffic flow on urban arterial roadways is most constrained at intersections, detailed traffic flow analyses focus on the operating conditions of critical intersections during peak travel periods. "Levels of Service" (LOS) A through F are used to rate intersection operations, with LOS A indicating free flow operations and LOS F indicating congested operations (more complete definitions of levels of service are included in the Technical Appendix). The City of Calabasas considers LOS C better acceptable for signalized City intersections and LOS D for freeway ramp intersections.

Figure 3 shows the existing traffic controls and lane geometries at the study-area intersections and Figure 4 illustrates the existing AM and PM peak hour traffic volumes. Existing intersection traffic volumes were obtained from traffic count data collected on February 1, 2023 (see Technical Appendix for count data). Counts provided by the City of Calabasas were conducted during the AM peak commuter period (7:00-9:00 AM) and PM peak commuter period (4:00-6:00 PM). The peak 1-hour volumes were then identified for the analysis.

Levels of service were calculated for the signalized and unsignalized study-area intersections using the methodology outlined in the Highway Capacity Manual (HCM 6th Edition). Levels of service are based on the average number of seconds of delay per vehicle during the peak 15-minute period within the overall peak hour. Table 1 lists the Existing traffic controls and levels of service for the study-area intersections (calculation worksheets included in Technical Appendix.

Table 1
Existing Peak Hour Intersection Levels of Service

Intersection		Delay	/LOS(a)
mtersection	Control	AM Peak Hour	PM Peak Hour
Calabasas Road/Mureau Road	STOP-Sign	22.8 Sec./LOS C	20.5 Sec./LOS C
U.S. Highway 101 SB Ramps/Calabasas Road	Signal	22.9 Sec./LOS C	21.9 Sec./LOS C
Calabasas Road/Calabasas Parkway	Signal	35.6 Sec./LOS D	33.8 Sec./LOS D

The data presented in Table 1 show that the study-area intersections operate in the LOS C - D range during the AM and PM peak hour periods.

PEDESTRIAN, BICYCLE AND TRANSIT FACILITIES

Pedestrian and Bicycle Facilities

Currently limited there are pedestrian facilities (sidewalks crosswalk, located etc.) along Calabasas Road in the study-area. Sidewalks are provided along the developed portions of Calabasas Road in the study-area. Currently there is no sidewalk provided on Calabasas Road adjacent to the Project site. As part of the Project frontage improvements, a sidewalk will be provided on Calabasas Road. The Project site design includes an internal pedestrian pathway that will

connect to the sidewalk along Calabasas Road. The sidewalks connect the Project to the local transit service provided in the study-area on Parkway Calabasas. The nearest pedestrian crosswalk across Calabasas Road is provided at the signalized Calabasas Road/Parkway Calabasas intersection. Striped pedestrian crosswalks, ADA ramps with detectable warning strips and pedestrian call buttons are provided on each leg of the intersection. The proposed Project would not have an adverse effect on the existing pedestrian facilities.

The Project site is served by the City of Calabasas Bikeway System. The existing bicycle facilities located in the study-area consist of Class II bike lanes along Calabasas Road, Parkway Calabasas and Mureau Road. These bike facilities connect the Project to the residential areas east and west of the Project. The proposed Project would not have an adverse effect on the existing bicycle facilities. Bicycle parking (4 spaces) would be provided on-site for employees and customers that choose to bike to the Kia of Calabasas.

Transit Facilities

The City of Calabasas, Los Angeles Metro (Metro) and Los Angeles Department of Transportation (LADOT) are the local transit providers in the City of Calabasas. The Project site is served by the City of Calabasas Line 1 Shuttle. The Line 1 Shuttle operates Monday through Friday from 6:30 AM to 6:00 PM providing fixed route bus service on Calabasas Road in the vicinity of the Project site. The nearest Line 1 Shuttle stop to the Project is located just west of the site adjacent to Bob Smith's BMW dealership.

The Project site is also served by the LA Metro #161 Route (Canoga Station - Thousand Oaks). The #161 Route operates daily providing fixed route bus service on Parkway Calabasas in the vicinity of the Project site. During the peak commute hours, the #161 Route operates with 30-minute headways. The nearest Route #161 stop to the Project is located on the west side of Parkway Calabasas, just south of Calabasas Road. The Project site is also served by the

LADOT Commuter Express #423 Route (Downtown LA - Thousand Oaks). The #423 Route operates Monday through Friday providing fixed route bus service on Calabasas Road and Parkway Calabasas in the vicinity of the Project site. During the peak commute hours, the

#423 Route operates with 30-minute headways. The nearest #423 Route stop to the Project is located on the west side of Parkway Calabasas, just south of Calabasas Road. The proposed Project has the potential to increase transit ridership in the study-area which would be accommodated by the existing transit service provided.

CITY OF CALABASAS INTERSECTION ADVERSE EFFECT POLICY

An adverse effect on intersection operations occurs when the analysis demonstrates that a project would cause the operations standard at a study intersection to fall below LOS C with the addition of project vehicle-trips to baseline conditions. For signalized intersections already operating at LOS D, E or F under baseline conditions, an adverse effect is defined in the following tables.

City of Calabasas Criteria for City-Operated Signalized Intersections

LOS without Project	LOS with Project	Average Total Delay (Seconds per Vehicle) Project-Related Increase in Second Average Total Delay			
A, B or C	D, E or F	-	Any increase in delay		
D, E or F	D, E or F	>35.0	Equal to or greater than 5.0 seconds		

City of Calabasas Criteria for Signalized Freeway Intersections

LOS without Project	LOS with Project	Average Total Delay (Seconds per Vehicle)	Project-Related Increase in Seconds of Average Total Delay
A, B, C or D	E or F	-	Any increase in delay
E or F	E or F	>55.0	Equal to or greater than 5.0 seconds

City of Calabasas Criteria for Unsignalized (All-Way STOP Controlled) Intersections

LOS without Project	LOS with Project	Average Total Delay (Seconds per Vehicle)	Project-Related Increase in Seconds of Average Total Delay
A, B or C	D, E or F	=	Any increase in delay
D, E or F	D, E or F	>25.0	Equal to or greater than 3.0 seconds

City of Calabasas Criteria for Unsignalized (Two-Way STOP Controlled) Intersections

LOS with Project	Average Total Delay (Seconds per Vehicle)	Project-Related Increase in LOS or Seconds of Average Total Delay
D	> 25.0 to 35.0	LOS C or better to LOS D or worse and meets the peak hour warrant for a traffic signal
E	>35.0 to 50.0	LOS D or better to LOS E or worse and meets the peak hour warrant for a traffic signal
F	>50.0	>10 seconds of delay for worst-case approach if already at LOS F and meets the peak hour warrant for a traffic signal

An adverse intersection operation effect by City of Calabasas standards may be addressed by implementing measures that would restore intersection level of service to background conditions or better.

PLANNED IMPROVEMENTS

<u>Calabasas Road/Mureau Road</u>. The intersection is currently STOP-Sign controlled on the eastbound approach. The City has programmed the implementation of a three-approach single lane roundabout with YIELD traffic control at the intersection in 2024/2025. The Existing + Project and Cumulative analysis therefore evaluates the future intersection operations assuming the roundabout control.

EXISTING + PROJECT ANALYSIS

Project Trip Generation

The Project is proposing to construct 47,944 square-feet of new auto sales space. Trip generation estimates were calculated for the Kia of Calabasas Project based on the rates published in the Institute of Transportation Engineers (ITE), <u>Trip Generation</u>, 11th Edition for Automobile Sales - New (Land Use Code #840). The analysis assumes that the car wash facility would be an ancillary use to the dealership and would not generate any additional traffic. Table 2 presents the trip generation estimates for the Project.

Table 2 Project Trip Generation

		Α	ADT AM Peak Hour PM Pe		ADT		AM Peak Hour		Peak Hour
Land Use	Size	Rate	Trips	Rate	Trips	Rate	Trips		
Automobile Sales - New	47,944 SF	27.84	1,335	1.86	89 (65/24)	2.42	116 (46/70)		

The data presented in Table 2 indicate that the Kia of Calabasas Project is estimated to generate 1,335 ADT, 89 AM peak hour trips and 116 PM peak hour trips.

Project Trip Distribution

The trip distribution model developed for the Project was based on existing traffic patterns observed in the study-area, estimated service area for the new car dealership, the proposed site access and parking system, and input from City staff. Table 3 presents the trip distribution percentages developed for the analysis and Figure 5 illustrates the assignment of Project traffic on the study-area street network.

Table 3
Project Trip Distribution

Route	Origin/Destination	Percentage
LLC Highway 101	North	40%
U.S. Highway 101	South	35%
Calabasas Parkway	South	5%
Calabasas Road	East	5%
Ventura Boulevard	East	5%
Mureau Road	West	10%
	Total:	100%

Existing + Project Intersection Levels of Service

Levels of service were calculated for the study-area intersections assuming the Existing + Project traffic volumes illustrated on Figure 6. Tables 4 and 5 compare the Existing and Existing + Project AM and PM peak hour levels of service for the study-area intersections and identify operational effects based on City policy. The City has programmed the implementation of a three-approach single lane roundabout with YIELD traffic control at the Calabasas Road/Mureau Road intersection in 2024/2025. The Existing + Project analysis evaluates the intersection operations assuming roundabout control.

Table 4
Existing + Project AM Peak Hour Levels of Service

Intersection	Existing		Existing + Project		Project-Added	
mersection	Delay	LOS	Delay	LOS	Delay	Exceed?
Calabasas Road/Mureau Road	22.8 Sec.	LOS C	3.8 Sec.	LOS A	0.0 Sec.	NO
U.S. Highway 101 SB Ramps/Calabasas Road	22.9 Sec.	LOS C	23.2 Sec.	LOS C	0.3 Sec.	NO
Calabasas Road/Calabasas Parkway	35.6 Sec.	LOS D	35.9 Sec.	LOS D	0.3 Sec.	NO

Table 5
Existing + Project PM Peak Hour Levels of Service

Intersection	Existing		Existing +	Project	Project-Added	
mersection	Delay	LOS	Delay	LOS	Delay	Exceed?
Calabasas Road/Mureau Road	20.5 Sec.	LOS C	3.9 Sec.	LOS A	0.0 Sec.	NO
U.S. Highway 101 SB Ramps/Calabasas Road	21.9 Sec.	LOS C	22.0 Sec.	LOS C	0.1 Sec.	NO
Calabasas Road/Calabasas Parkway	33.8 Sec.	LOS C	33.9 Sec.	LOS C	0.1 Sec.	NO

The data presented in Tables 4 and 5 indicate that with the addition of Project traffic the study-area intersections would operate in the LOS A - D range during the AM and PM peak hour periods. For City operated signalized intersections already operating at LOS D, E or F under baseline conditions, an adverse effect is defined as an increase of 5 seconds or more. The Project would not have an adverse effect on intersection operations based on the City's intersection operation policy.

CUMULATIVE ANALYSIS

The City of Calabasas Local Transportation Study Guidelines require that intersection operations be evaluated assuming development of approved/pending projects proposed within the City of Calabasas.

Cumulative Traffic Forecasts

Cumulative traffic volumes were forecast for the study-area intersections assuming development of the approved and pending projects proposed within the City of Calabasas. The list of projects was obtained from the City of Calabasas. Trip generation estimates were calculated for the cumulative projects based on the rates published in the Institute of Transportation Engineers (ITE), <u>Trip Generation</u>, 11th Edition and presented in Table 6. Traffic generated by the cumulative projects was then added to the Existing volumes to produce the Cumulative traffic forecasts. The Cumulative peak hour traffic volumes are illustrated on Figure 7.

Table 6
Cumulative Projects Trip Generation

Project Name	Land Use	Size/Units	ADT	Trips		
	Land Ose Size/Onits		ADI	AM Peak Hour	PM Peak Hour	
The Park Apartments	Residential	107 Units	368	47	42	
Calabasas Commons	Residential	202 Units	695	89	79	
Calabasas Auto Park	Auto Dealership	31,683 SF	46	6	6	
Hidden Terraces Specific Plan	Residential	180 Units	583	52	54	
Hidden Terraces Specific Plan	Residential	83 Beds	216	18	27	
Barrett Medical Center	Medical Office	25,030 SF	901	78	98	
Total Trip Generation:				290	306	

The data presented in Table 6 indicate that the cumulative projects are estimated to generate 2,809 ADT, 290 AM peak hour trips and 306 PM peak hour trips.

Cumulative Intersection Levels of Service

Levels of service were calculated for the study-area intersections assuming the Cumulative traffic volumes illustrated on Figure 7. Table 7 presents the Cumulative AM and PM peak hour levels of service.

Table 7
Cumulative Peak Hour Intersection Levels of Service

Intersection	AM Pea	k Hour	PM Peak Hour	
intersection	Delay	LOS	Delay	LOS
Calabasas Road/Mureau Road ^(a)	7.4 Sec.	LOS A	6.1 Sec.	LOS A
U.S. Highway 101 SB Ramps/Calabasas Road	23.7 Sec.	LOS C	22.6 Sec.	LOS C
Calabasas Road/Calabasas Parkway 36.5 Sec. LOS D 33.9 Sec. LOS C				LOS C
(a) LOS analysis assumes implementation of a single-lane roundabout.				

The data presented in Table 7 indicate that the study-area intersections would operate acceptably in the LOS A - D range with Cumulative (Existing + Approved/Pending Project) traffic volumes.

Cumulative + Project Intersection Levels of Service

Levels of service were calculated for the study-area intersections assuming the Cumulative + Project traffic volumes illustrated on Figure 8. Tables 8 and 9 compare the Cumulative and Cumulative + Project AM and PM peak hour levels of service for the study-area intersections and identify operation effects based on City policy.

Table 8
Cumulative + Project AM Peak Hour Levels of Service

Intersection	Cumu	Cumulative		Cumulative + Project		Project-Added	
intersection	Delay	LOS	Delay	LOS	Delay	Exceed?	
Calabasas Road/Mureau Road ^(a)	7.4 Sec.	LOS A	7.4 Sec.	LOS A	0.0 Sec.	NO	
U.S. Highway 101 SB Ramps/Calabasas Road	23.7 Sec.	LOS C	24.1 Sec.	LOS C	0.4 Sec.	NO	
Calabasas Road/Calabasas Parkway	36.5 Sec.	LOS D	36.9 Sec.	LOS D	0.4 Sec.	NO	
(a) LOS analysis assumes implementation of a single-lane roundabout.							

Table 9
Cumulative + Project PM Peak Hour Levels of Service

Intersection	Cumulative		Cumulative + Project		Project-Added	
intersection	Delay	LOS	Delay	LOS	Delay	Exceed?
Calabasas Road/Mureau Road ^(a)	6.1 Sec.	LOS A	6.2 Sec.	LOS A	0.1 Sec.	NO
U.S. Highway 101 SB Ramps/Calabasas Road	22.6 Sec.	LOS C	22.9 Sec.	LOS C	0.3 Sec.	NO
Calabasas Road/Calabasas Parkway	33.9 Sec.	LOS C	34.0 Sec.	LOS C	0.1 Sec.	NO
(a) LOS analysis assumes implementation of a single-lane roundabout.						

The data presented in Tables 8 and 9 indicate that with the addition of Project traffic, the study-area intersections would continue to operate in the LOS A - D range. For City operated signalized intersections already operating at LOS D, E or F under baseline conditions, an adverse effect is defined as an increase of 5 seconds or more. The Project would not have an adverse effect on intersection operations based on the City's intersection operation policy.

SITE ACCESS AND CIRCULATION

Access to the site would be provided via a relocated driveway connection (26 feet wide) to Calabasas Road (see Figure 2 - Project Site Plan). The Project driveway will be designed and constructed to City of Calabasas design standards and allow full access. Figures 9 and 10 illustrate the turning movements for vehicles entering and exiting the site. As illustrated on the figures, adequate space is provided for vehicles to make the turning maneuvers with good visibility. Car carrier delivery trucks would not be able enter the site via the Project driveway. Instead, new vehicles would be unloaded off-site and then driven on-site or stored in other off-site lots. It is estimated that there would be approximately 6 car carrier deliveries per month between the hours of 7:00 AM and 6:00 PM.

The section of Calabasas Road adjacent to the site has not been fully improved with curb, gutter, sidewalk, and street lighting. The Project would be required to complete the frontage improvements as illustrated on Figure 11. As shown on the figure, the existing center turn lane on Calabasas Road would be extended to the Project frontage. An on-street loading zone would also be provided adjacent to the Project site to accommodate the car carrier trucks. The car carrier trucks would also be able to use the extended center turn lane to unload vehicles, which is a typical delivery practice for the other dealerships along Calabasas Road.

Sight Distance

Adjacent to the Project site, Calabasas Road is relatively straight and level. A sight distance analysis was completed at the proposed driveway location to determine if there would be adequate intervisibility between a driver exiting from the driveway and a vehicle traveling on Calabasas Road. The posted speed limit on Calabasas Road is 40 mph adjacent to the driveway. The AASHTO minimum corner sight distance for a 40-mph design speed is 440 feet. As illustrated on Figure 12, the sight

distance looking to the east and west from the driveway satisfies the AASHTO 440-foot corner sight distance requirement. The AASHTO minimum stopping sight distance for a 40-mph design speed is 300 feet. As illustrated on Figure 13, the sight distance looking from the east and west of the driveway satisfies the AASHTO 300-foot stopping sight distance requirement.

It was noted that vehicles currently park along the curb adjacent to the Project driveway. These parked vehicles could block the sight distance of drivers exiting the Project driveway. It is therefore recommended that a Red Curb "No Parking" zone be installed on Calabasas Road east and west of the Project driveway (50 feet to east and west). It is also noted that the existing landscaping along the frontage of the Project while looking east and west along Calabasas Road needs to be maintained at a height of less than 3.5 feet in order to provide intervisibility between eastbound and westbound traffic on Calabasas Road and traffic exiting the Project driveway.

PARKING ANALYSIS

Zoning Ordinance Parking Requirements

The City of Calabasas Zoning Ordinance parking requirements were calculated for the Project based on the rates established for the Commercial Office Zoning District (CO) Zone. The parking space requirement is based on the following specifications for Car Dealerships:

Motor Vehicle and Parts Sales - 1 space for each 450 sq.ft. of gross floor area for showroom and office, plus 1 space for each 2,000 sq.ft. of outdoor display area, plus 1 space for each 500 sq.ft. of gross floor area for vehicle repair, plus 1 space of each 300 sq.ft. of gross floor area for the parts department.

Table 10 presents the City Zoning Ordinance parking requirements for the Kia of Calabasas.

Table 10 Zoning Ordinance Parking Requirements

Land-Use	Building Area	Zoning Ordinance Requirement	Required Parking Spaces	
Car Sales	13,662 sq.ft. Showroom/Office Area	1 Space/per 450 sq.ft.	31 Vehicle Spaces	
	969 sq.ft. Outdoor Display Area	1 Space/per 2,000 sq.ft.	42 Vehicle Spaces	
	20,737 sq.ft. Vehicle Repair Area	1 Space/per 500 sq.ft.	1 Vehicle_Space	
	1,356 sq.ft. Parts Department	1 Space/per 300 sq.ft.	5 Vehicle Spaces	
		79 Spaces		
		Parking Provided:	79 Spaces	

The data presented in Table 10 indicate that the City Zoning Ordinance parking requirement is 79 vehicle parking spaces. The 79 on-site vehicle parking spaces provided would satisfy the City's requirements.

REFERENCES AND PERSONS CONTACTED

Associated Transportation Engineers

Scott A. Schell, Principal Planner Darryl F. Nelson, Senior Transportation Planner Glenn O. Manaois, Transportation Engineer I

References

Transportation Analysis Handbook, City of Calabasas, April 2020.

Highway Capacity Manual, 6th Edition, Transportation Research Board, 2016.

Trip Generation, Institute of Transportation Engineers, 11th Edition, 2020.

Envision Calabasas 2040 General Plan, City of Calabasas, July 2022.

Persons Contacted

Tom Mericle, P.E. Traffic Engineer, City of Calabasas

TECHNICAL APPENDIX

CONTENTS:

LEVEL OF SERVICE DEFINITIONS

CITY OF CALABASAS LOCAL TRANSPORTATION STUDY CHECKLIST/SCOPE OF WORK

TRAFFIC COUNTS

INTERSECTION LEVEL OF SERVICE CALCULATION WORKSHEETS

Reference 1 - Calabasas Road/Mureau Road

Reference 2 - U.S. Highway 101 Southbound Ramps/Calabasas Road

Reference 3 - Calabasas Road/Calabasas Parkway

CITY OF CALABASAS APPROVED DEVELOPMENT PROJECTS

LEVEL OF SERVICE DEFINITIONS	

LEVEL OF SERVICE DEFINITIONS

"Levels of Service" (LOS) A through F are used to rate roadway and intersection operating conditions, with LOS A indicating very good operations and LOS F indicating poor operations. More complete level of service definitions are:

LOS	Definition
	Low volumes; primarily free flow operations. Density is low and
A	vehicles can freely maneuver within traffic stream. Drivers can
	maintain their desired speeds with little or no delay.
	Stable flow with potential for some restriction of operating speeds
В	due to traffic conditions. Maneuvering is only slightly restricted.
	Stopped delays are not bothersome and drivers are not subject to
	appreciable tension.
	Stable operations, however the ability to maneuver is more
С	restricted by the increase in traffic volumes. Relatively satisfactory
	operating speeds prevail but adverse signal coordination or longer
	queues cause delays.
	Approaching unstable traffic flow where small increases in volume
D	could cause substantial delays. Most drivers are restricted in their
	ability to maneuver and their selection of travel speeds. Comfort
	and convenience are low but tolerable.
	Operations characterized by significant approach delays and
	average travel speeds of one-half to one-third of free flow speed.
E	Flow is unstable and potential for stoppages of brief duration. High
	signal density, extensive queuing, or signal progression/timing are
	the typical causes of delays.
	Forced flow operations with high approach delays at critical
	signalized intersections. Speeds are reduced substantially and
	stoppages may occur for short or long periods of time because of
	downstream congestion.

Signalized Intersection Level of Service Definitions

LOS	Delay ^a	V/C Ratio	Definition
А	< 10:0	< 0.60	Progression is extremely favorable. Most vehicles arrive during the green phase. Many vehicles do not stop at all.
В	10.1 - 20.0	0.61 - 0.70	Good progression, short cycle lengths, or both. More vehicles stop than with LOS A, causing higher levels of delay.
С	20.1 - 35.0	0.71 - 0.80	Only fair progression, longer cycle lengths, or both, result in higher cycle lengths. Cycle lengths may fail to serve queued vehicles, and overflow occurs. Number of vehicles stopped is significant, though many still pass through intersection without stopping.
D	35.1 - 55.0	0.81 - 0.90	Congestion becomes more noticeable. Unfavorable progression, long cycle lengths and high v/c ratios result in longer delays. Many vehicles stop, and the proportion of vehicles not stopping declines. Individual cycle failures are noticeable.
Е	55.1 - 80.0	0.91 - 1.00	High delay values indicate poor progression, long cycle lengths and high v/c ratios. Individual cycle failures are frequent
F	> 80.0	> 1.00	Considered unacceptable for most drivers, this level occurs when arrival flow rates exceed the capacity of lane groups, resulting in many individual cycle failures. Poor progression and long cycle lengths may also contribute to high delay levels.

^a Average control delay per vehicle in seconds.

Unsignalized Intersection Level of Service Definitions

The HCM¹ uses *control delay* to determine the level of service at unsignalized intersections. Control delay is the difference between the travel time actually experienced at the control device and the travel time that would occur in the absence of the traffic control device. Control delay includes deceleration from free flow speed, queue move-up time, stopped delay and acceleration back to free flow speed.

LOS	Control Delay Seconds per Vehicle
А	< 10.0
В	10.1 - 15.0
С	15.1 - 25.0
D	25.1 - 35.0
E	35.1 - 50.0
F	> 50.0

¹ Highway Capacity Manual, National Research Board, 2000

CITY OF CALABASAS LOCAL TRANSPORTATION STUDY CHECKLIST/SCOPE OF WORK

CITY of CALABASAS

LOCAL TRANSPORTATION STUDY CHECKLIST

This checklist will be used to screen land development projects to determine if they may be presumed to have no significant CEQA transportation impacts, if they need to have a formal VMT traffic study, and if they need to have a Local Transportation Operational Assessment. The process will include the following steps as outlined below.

Date of Review:

January 19, 2023

Project Name:

KIA Car Dealership – 24460 Calabasas Road

Project Description: 47,944 SF Car Dealer

Reviewed By:

Tom Mericle, TKM Engineering for City of Calabasas

Summary:

Needs TIA NONeeds LTA YES

Comments:

From both an employee trip and customer trip perspective the project will have a less than significant CEQA transportation impact on regional VMT. However, the new local peak hour trips generated by the project may have a local transportation operations or safety impact and a local transportation analysis will need to be prepared to determine if and what level of operation or safety impact may occur.

Transportation Environmental Impact Analysis for CEQA Compliance (TIA)

Step 1: Check Project Type:

Meet: YES

Certain project types can be presumed to improve, have no impact to, or have a less than significant impact. The following type generally improve regional VMT or have no impact:

- Maintenance of existing facilities
- Installation of safety devices
- Installation of traffic control devices
- Installation of bicycle or pedestrian facilities
- Reducing the number or width of existing vehicle lanes
- Modifications to on-street parking
- Adding alternative fuel charging infrastructure

Local serving retail projects generally improve the convenience of shopping close to home and has the effect of reducing regional vehicle travel. This could be applied to individual businesses in a community-based shopping center. Similarly, adding local neighborhood serving parks and schools can reduce vehicle travel from facilities located further away. The following types of uses could be presumed to have a less than significant impact as their uses are local serving in nature:

- Local-serving retail establishments (less than 50,000 sf each)
- Local-serving K-12 schools
- Local parks
- Day care centers
- Local-serving gas stations
- Local-serving banks
- Local-serving medical offices
- Local-serving community assembly uses (community organizations, places of worship, etc.)
- Local-serving restaurants
- Local-serving hotels (e.g. non-destination hotels)
- Student housing projects
- Local serving community colleges that are consistent with the assumptions in the Regional Transportation Plan and Sustainable Community Strategy
- Projects generating less than 110 daily vehicle trips. The City would estimate trip generation for a project that may fall in this area and compare it to the 110 daily trip limit criteria. This generally corresponds to the following "typical" development:
 - o 11 single family housing units
 - o 16 multi-family, condominiums, or townhouse housing units
 - o 10,000 sq. ft. of office
 - o 15,000 sq. ft. of light industrial
 - o 63,000 sq. ft. of warehousing
 - o 79,000 sq. ft. of high cube transload and short-term storage warehouse
- Other locally serving land uses as determined by the Community Development Director

Project land use: _Car Dealership__ Project size: _47,944 sf__

Comments: If reviewed from a customer perspective, a new KIA car dealership would reduce local Calabasas, Agoura Hills, and west SF Valley residents from going to either the existing Simi Valley or Van Nuys Kia dealership.

Step 2: Check for Low VMT Area

Residential and office land use type projects located within a low VMT-generating area may be presumed to have a less than significant impact since the travel patterns will be similar to existing for the same uses. In addition, other employment-related and mixed-use land use projects may be screened if the project can reasonably be expected to generate VMT per resident, per worker, or per service population that is similar to the existing land uses in the low VMT area. Low VMT-generating areas are mapped using the SCAG regional traffic model.

The reviewer needs to identify that the project is consistent with the existing land uses within the traffic analysis zone and use professional judgement that there is nothing unique about the project that would otherwise be misrepresented utilizing the data from the travel demand model.

Comments: The project is in a low employee VMT area. If the project is considered as a home-based work trip rather than a customer commercial trip it is in a low work based trip VMT area and would have a less than significant VMT impact.

Step 3: Check for Transit Priority Area (TPA) Screening

Meet:

Meet: YES

NO

Projects located within a TPA may be presumed to have a less than significant impact. Transit priority areas are defined as ½ mile from an existing High-Quality Transit Corridor (15 min headway or better during peak periods) stop or ½ mile around an existing major transit stop such as a Metrolink station or regional bus service stop. Unfortunately, the City does not currently have transit services that would qualify as high-quality transit.

Full VMT Analysis Required: NO

Projects not screened through the steps will need to complete a VMT analysis and forecasting through the SCAG regional traffic model to determine the projected VMT from the development project. The VMT would then be compared to the following City's adopted threshold to determine if there is a significant impact or less than significant impact for CEQA compliance:

- 1. A significant transportation impact would occur for land use projects under one of the following conditions:
 - a. For residential land use projects if the project generated home-based VMT exceeds 15% below the citywide baseline VMT per capita.
 - b. For commercial or industrial land use projects if the project generated home-based work VMT exceeds 15% below the citywide baseline average VMT per employee.
 - c. For regional retail land use projects if the project generates a net increase in total VMT in comparison to the citywide baseline VMT.
 - d. For land use plans if the plan generates a net increase in total VMT in comparison to the citywide baseline average VMT per service population.

- 2. For mixed use projects each land use component will be evaluated separately using the criteria above.
- 3. For other types of land use projects City staff will determine the appropriate VMT metric depending on the project characteristics. A significant impact would occur if the project exceeds 15% below citywide baseline VMT or if the project results in a net increase in Total VMT
- 4. A significant transportation impact would occur for transportation projects if the project results in a net increase in total VMT in the City compared to baseline conditions.

Projects that have to prepare a full VMT analysis may need to also comply with Caltrans requirements for VMT impact evaluation depending on proximity to a Caltrans facility.

Local Transportation Operational Assessment (LTA)

Check Estimated Project Trip Generation:

Projects that generate less than 110 daily vehicle trips typically do not have to prepare a formal LTA that determines levels of service or other roadway operational impacts. However, they project will still need to be reviewed through the development review process for site circulation, safety, and bicyclist/pedestrian safety access. Projects that are estimated to generate 110 daily trips or more will have to prepare a formal LTA.

Meet: YES

Project is projected to generate 1,335 daily trips and will be required to prepare a local transportation operational assessment.

Low VMT Screening: Office (2021)

Darryl Nelson

From:

Tom Mericle <tmericle@cityofcalabasas.com>

Sent:

Friday, July 14, 2023 10:03 AM

To: Cc: Darryl Nelson Tom Mericle

Subject:

Re: City of Carpinteria

Attachments:

Calabasas_Traffic_Study_Guidelines_FINAL_July 2021.pdf; Traffic Study Screening Checklist_KIA.pdf; Traffic Count Data.pdf;

Cumulative Project List.pdf

Darryl,

This is my Calabasas email account.

Attached are the City's traffic study preparation guidelines and the VMT screening checklist. I already screened it out of VMT via the attached checklist. Therefore, you only have to do the Local Transportation Assessment (LTA). All of the criteria are in the guidelines.

The intersections to look at will be:

- Calabasas Road and Mureau Road
- Calabasas Road and Ventura Freeway Southbound on and off ramps
- Calabasas Road and Parkway Calabasas

I have the counts already from a medical office building near the site that was taken in February 2023. You can use the City as reference for the data. Another consultant collected this but is part of the public record since they submitted their study for review. It has not yet been approved.

Also attached is the cumulative project list from that study.

Let me know if you have any other questions.

Thank you, Tom

Thomas Mericle, PE, TE

City of Calabasas Contract Traffic Engineering Services (805) 701-2977 TRAFFIC COUNTS

CITY TRAFFIC COUNTERS WWW.CTCOUNTERS.COM

File Name : MureauRd_CalabasasRd Site Code : 00000000

Start Date : 2/1/2023

Page No : 1

Groups Printed-Vehicles

		reau Road			basas Roa		vernicles				oasas Roa	ad	
		uthbound			estbound			<u>rthbound</u>			stbound		
Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
06:00 AM	17	0	0	0	6	8	0	0	0	0	7	0	38
06:15 AM	14	0	1	0	1	5	0	0	0	1	6	0	28
06:30 AM	22	0	0	0	2	10	0	0	0	1	3	0	38
06:45 AM	31	0	0	0	10	33	0	0	0	0	1	0	75
Total	84	0	1	0	19	56	0	0	0	2	17	0	179
07:00 AM	25	0	1	0	3	25	0	0	0	3	0	0	57
07:15 AM	36	0	1	0	0	43	0	0	0	0	1	0	81
07:30 AM	80	0	1	0	0	89	0	0	0	3	1	0	174
07:45 AM	133	0	0	0	5	111	0	0	0	1	2	0	252
Total	274	0	3	0	8	268	0	0	0	7	4	0	564
08:00 AM	130	0	2	0	6	64	0	0	0	0	6	0	208
08:15 AM	54	0	2	0	11	57	0	0	0	1	1	0	126
08:30 AM	53	0	0	0	7	58	0	0	0	1	3	0	122
08:45 AM	75	0	0	0	13	65	0	0	0	0	5	0	158
Total	312	0	4	0	37	244	0	0	0	2	15	0	614
04:00 PM	157	0	0	0	10	79	0	0	0	0	5	0	251
04:15 PM	137	0	2	0	5	70	0	0	0	3	15	0	232
04:30 PM	146	0	0	0	10	71	0	0	0	1	9	0	237
04:45 PM	110	0	0	0	1	64	0	0	0	2	2	0	179
Total	550	0	2	0	26	284	0	0	0	6	31	0	899
05:00 PM	130	0	0	0	2	62	0	0	0	0	6	0	200
05:15 PM	90	0	0	0	1	60	0	0	0	-1	5	0	157
05:30 PM	107	0	0	0	0	61	0	0	0	1	4	0	173
05:45 PM	112	. 0	0	0	2	72	0	0	0	1	2	0	189
Total	439	0	0	0	5	255	0	0	0	3	17	0	719
Grand Total	1659	0	10	0	95	1107	0	0	0	20	84	0	2975
Apprch %	99.4	0	0.6	0	7.9	92.1	0	0	0	19.2	80.8	0	
Total %	55.8	0	0.3	0	3.2	37.2	0	0	0	0.7	2.8	0	

WWW.CTCOUNTERS.COM

File Name: MureauRd_CalabasasRd

Site Code : 00000000 Start Date : 2/1/2023

Page No : 2

		Murea	u Road		1	Calabas	sas Roa	ad					(Calabas	sas Roa	ıd	
		South	bound			West	bound			North	bound			East	bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Analy	ysis From	n 06:00	AM to 0	9:45 AM -	Peak 1	of 1											
Peak Hour for E	ntire Inte	rsection	n Begins	at 07:30	AM												
07:30 AM	80	0	1	81	0	0	89	89	0	0	0	0	3	1	0	4	174
07:45 AM	133	0	0	133	0	5	111	116	0	0	0	0	1	2	0	3	252
08:00 AM	130	0	2	132	0	6	64	70	0	0	0	0	0	6	0	6	208
08:15 AM	54	0	2	56	0	11	57	68	0	0	0	0	1	1	0	2	126
Total Volume	397	0	5	402	0	22	321	343	0	0	0	0	5	10	0	15	760
% App. Total	98.8	0	1.2		0	6.4	93.6		0	0	0		33.3	66.7	0		
PHF	.746	.000	.625	.756	.000	.500	.723	.739	.000	.000	.000	.000	.417	.417	.000	.625	.754

CITY TRAFFIC COUNTERS WWW.CTCOUNTERS.COM

File Name: MureauRd_CalabasasRd

Site Code : 00000000 Start Date : 2/1/2023

Page No : 3

		Murea	u Road	l	(Calabas	sas Roa	ad					(Calabas	sas Roa	ad	
		South	bound			West	bound			North	bound			East	bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Analy	ysis Fron	n 04:45	PM to 0	5:45 PM -	Peak 1	of 1											
Peak Hour for E	ntire Inte	rsection	Begins	at 05:00	PM							v					
05:00 PM	130	0	0	130	0	2	62	64	0	0	0	0	0	6	0	6	200
05:15 PM	90	0	0	90	0	1	60	61	0	0	0	0	1	5	0	6	157
05:30 PM	107	0	0	107	0	0	61	61	0	0	0	0	1	4	0	5	173
05:45 PM	112	0	0	112	0	2	72	74	0	0	0	0	1	2	0	3	189
Total Volume	439	0	0	439	0	5	255	260	0	0	0	0	3	17	0	20	719
% App. Total	100	0	0		0	1.9	98.1		0	0	0		15	85	0		
PHF	.844	.000	.000	.844	.000	.625	.885	.878	.000	.000	.000	.000	.750	.708	.000	.833	.899

WWW.CTCOUNTERS.COM

File Name : 101FreewaySBRamps_CalabasasRd Site Code : 00000000

Start Date : 2/1/2023

Page No : 1
Groups Printed- Vehicles

		vay South Off Ramps uthbound	6		oasas Roa estbound	ad	Nor	thbound			oasas Roa stbound	ad	
Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
06:00 AM	19	0	2	0	19	6	0	0	0	12	5	0	63
06:15 AM	15	0	0	0	16	5	0	0	0	14	5	0	55
06:30 AM	23	0	1	0	17	5	0	0	0	19	2	0	67
06:45 AM	45	0	5	0	45	12	0	0	0	20	13	0	140
Total	102	0	8	0	97	28	0	0	0	65	25	0	325
07:00 AM	46	0	7	0	31	10	0	0	0	20	11	0	125
07:15 AM	80	0	11	0	49	4	0	0	0	18	13	0	175
07:30 AM	78	0	16	0	90	2	0	0	0	31	36	0	253
07:45 AM	123	0	14	0	127	7	0	0	0	43	78	0	392
Total	327	0	48	0	297	23	0	0	0	112	138	0	945
08:00 AM	121	0	12	0	90	9	0	0	0	71	96	0	399
08:15 AM	118	0	11	0	83	8	0	0	0	33	34	0	287
08:30 AM	116	0	11	0	70	15	0	0	0	26	34	0	272
08:45 AM	149	0	15	0	87	7	0	0	0	39	63	0	360
Total	504	0	49	0	330	39	0	0	0	169	227	0	1318
04:00 PM	100	0	9	0	88	40	0	0	0	88	86	0	411
04:15 PM	140	0	3	0	70	29	0	0	0	63	104	0	409
04:30 PM	157	0	5	0	82	33	0	0	0	64	86	0	427
04:45 PM	153	0	4	0	63	47	0	0	0	56	83	0	406
Total	550	0	21	0	303	149	0	0	0	271	359	0	1653
05:00 PM	122	0	6	0	54	61	0	0	0	64	80	0	387
05:15 PM	129	0	3	0	73	45	0	0	0	46	80	0	376
05:30 PM	133	0	3	0	57	43	0	0	0	35	93	0	364
05:45 PM	131	0	2	0	85	32	0	0	0	50	87	0	387
Total	515	0	14	0	269	181	0	0	0	195	340	0	1514
Grand Total	1998	0	140	0	1296	420	0	0	0	812	1089	0	5755
Apprch %	93.5	0	6.5	0	75.5	24.5	0	0	0	42.7	57.3	0	
Total %	34.7	0	2.4	0	22.5	7.3	0	0	0	14.1	18.9	0	

WWW.CTCOUNTERS.COM

File Name: 101FreewaySBRamps_CalabasasRd

Site Code : 00000000 Start Date : 2/1/2023

Page No : 2

	101 F	reeway On/Off South		Control of the Contro			sas Roa bound	d		North	bound		(sas Roa bound	ıd	
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Analy	ysis Fron	n 06:00	AM to 0	8:45 AM -	Peak 1	of 1											
Peak Hour for E	ntire Inte	rsection	Begins	at 07:45	AM												
07:45 AM	123	0	14	137	0	127	7	134	0	0	0	0	43	78	0	121	392
08:00 AM	121	0	12	133	0	90	9	99	0	0	0	0	71	96	0	167	399
08:15 AM	118	0	11	129	0	83	8	91	0	0	0	0	33	34	0	67	287
08:30 AM	116	0	11	127	0	70	15	85	0	0	0	0	26	34	0	60	272
Total Volume	478	0	48	526	0	370	39	409	0	0	0	0	173	242	0	415	1350
% App. Total	90.9	0	9.1		0	90.5	9.5		0	0	0		41.7	58.3	0		
PHF	.972	.000	.857	.960	.000	.728	.650	.763	.000	.000	.000	.000	.609	.630	.000	.621	.846

WWW.CTCOUNTERS.COM

File Name: 101FreewaySBRamps_CalabasasRd

Site Code : 00000000 Start Date : 2/1/2023

Page No : 3

		reeway On/Off South		6	(sas Roa bound	ad		North	bound		(sas Roa bound	ad	
Start Time	Left	Thru	Right	App. Total	Left	3				Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Anal	ysis Fron	n 04:00	PM to 0	5:45 PM -	Peak 1	of 1			•				-				•
Peak Hour for E	ntire Inte	rsection	Begins	at 04:00	PM												
04:00 PM	100	0	9	109	0	88	40	128	0	0	0	0	88	86	0	174	411
04:15 PM	140	0	3	143	0	70	29	99	0	0	0	0	63	104	0	167	409
04:30 PM	157	0	5	162	0	82	33	115	0	0	0	0	64	86	0	150	427
04:45 PM	153	0	4	157	0	63	47	110	0	0	0	0	56	83	0	139	406
Total Volume	550	0	21	571	0	303	149	452	0	0	0	0	271	359	0	630	1653
% App. Total	96.3	0	3.7		0	67	33		0	0	0		43	57	0		
PHF	.876	.000	.583	.881	.000	.861	.793	.883	.000	.000	.000	.000	.770	.863	.000	.905	.968

WWW.CTCOUNTERS.COM

File Name : ParkwayCalabasas_CalabasasRd Site Code : 00000000

Start Date : 2/1/2023

Page No : 1
Groups Printed- Vehicles

							Vehicles						
	Park	way Calab	asas	Cala	basas Ro	ad	Parkw	ay Calaba	asas	Cala	basas Ro	ad	
		Southboun	d	W	estbound		No	orthbound	t	Ea	astbound		
Start Time	e Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
06:00 AM	1 4	17	15	1	2	8	1	38	0	5	7	8	106
06:15 AM			24	1	8	10	0	36	3	3	12	10	134
06:30 AM			19	4	5	6	1	49	1	7	10	12	166
06:45 AM			43	3	5	12	2	44	2	5	29	25	243
Tota	35	138	101	9	20	36	4	167	6	20	58	55	649
07:00 AM	/ 11	69	46	2	12	17	1	70	0	10	26	24	288
07:15 AM	1 26	89	39	2 2	14	18	7	88	3	12	19	25	342
07:30 AN	1 16	97	83	5	28	28	7	115	0	3	53	84	519
07:45 AN	1 20	128	99	2	20	51	32	157	5	19	68	93	694
Tota	1 73	383	267	11	74	114	47	430	8	44	166	226	1843
08:00 AN	/ 30	120	60	4	24	50	14	196	8	19	109	98	732
08:15 AN	1 30	118	45	4	32	54	14	182	7	15	74	56	631
08:30 AN	1 23	105	51	6	25	45	17	155	6	22	62	72	589
08:45 AN	48	139	62	5	28	34	10	110	4	32	89	65	626
Tota	131	482	218	19	109	183	55	643	25	88	334	291	2578
04:00 PN	/ 52	77	67	7	27	84	27	142	7	34	124	65	713
04:15 PN	۸ 38	91	50	19	31	66	12	151	9	33	133	72	705
04:30 PN			73	7	31	91	11	136	3	26	129	61	701
04:45 PN	43	78	66	9	29	75	16	145	15	23	100	70	669
Tota	179	333	256	42	118	316	66	574	34	116	486	268	2788
05:00 PN	/ 62	81	93	17	33	107	10	147	6	15	112	67	750
05:15 PN	/ 63	94	73	13	26	92	9	139	5	15	111	65	705
05:30 PN	A 35	80	84	13	13	87	14	130	8	19	112	68	663
05:45 PN	1 42	83	72	13	35	90	9	119	6	19	95	60	643
Tota	1 202	338	322	56	107	376	42	535	25	68	430	260	2761
Grand Tota		1674	1164	137	428	1025	214	2349	98	336	1474	1100	10619
Apprch %			33.7	8.6	26.9	64.5	8	88.3	3.7	11.5	50.7	37.8	
Total %		15.8	11	1.3	4	9.7	2	22.1	0.9	3.2	13.9	10.4	

WWW.CTCOUNTERS.COM

File Name: ParkwayCalabasas_CalabasasRd

Site Code : 00000000 Start Date : 2/1/2023

Page No : 2

	Pa	rkway	Calaba	sas	(Calabas	sas Roa	ad	Pa	rkway	Calaba	sas	(Calabas	sas Roa	ad	
		South	bound			West	bound			North	bound			East	bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Analy	ysis Fron	n 06:00	AM to 0	8:45 AM -	Peak 1	of 1											
Peak Hour for E	ntire Inte	rsection	Begins	at 07:45	AM												
07:45 AM	20	128	99	247	2	20	51	73	32	157	5	194	19	68	93	180	694
08:00 AM	30	120	60	210	4	24	50	78	14	196	8	218	19	109	98	226	732
08:15 AM	30	118	45	193	4	32	54	90	14	182	7	203	15	74	56	145	631
08:30 AM	23	105	51	179	6	25	45	76	17	155	6	178	22	62	72	156	589
Total Volume	103	471	255	829	16	101	200	317	77	690	26	793	75	313	319	707	2646
% App. Total	12.4	56.8	30.8		5	31.9	63.1		9.7	87	3.3		10.6	44.3	45.1		
PHF	.858	.920	.644	.839	.667	.789	.926	.881	.602	.880	.813	.909	.852	.718	.814	.782	.904

WWW.CTCOUNTERS.COM

File Name: ParkwayCalabasas_CalabasasRd

Site Code : 00000000 Start Date : 2/1/2023

Page No : 3

	Pa		Calaba		(sas Roa bound	ıd	Pa		Calaba	sas	(sas Roa	ad	
Ot and Time	1 - 6				1 -4	0000			1.4				1.04				Int Total
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Analy	ysis Fron	n 04:00	PM to 0)5:45 PM -	Peak 1	of 1											
Peak Hour for E	ntire Inte	rsection	Begins	at 04:15	PM												
04:15 PM	38	91	50	179	19	31	66	116	12	151	9	172	33	133	72	238	705
04:30 PM	46	87	73	206	7	31	91	129	11	136	3	150	26	129	61	216	701
04:45 PM	43	78	66	187	9	29	75	113	16	145	15	176	23	100	70	193	669
05:00 PM	62	81	93	236	17	33	107	157	10	147	6	163	15	112	67	194	750
Total Volume	189	337	282	808	52	124	339	515	49	579	33	661	97	474	270	841	2825
% App. Total	23.4	41.7	34.9		10.1	24.1	65.8		7.4	87.6	5		11.5	56.4	32.1		
PHF	.762	.926	.758	.856	.684	.939	.792	.820	.766	.959	.550	.939	.735	.891	.938	.883	.942

INTERSECTION LEVEL OF SERVICE CALCULATIONS

Reference 1 - Calabasas Road/Mureau Road

Reference 2 - U.S. Highway 101 Southbound Ramps/Calabasas Road

Reference 3 - Calabasas Road/Calabasas Parkway

	HCS7 Two-	Way Stop-Control Report	
General Information		Site Information	
Analyst	Darryl Nelson	Intersection	Calabasas Road/Mureau Road
Agency/Co.	ATE	Jurisdiction	City of Calabasas
Date Performed	11/1/2023	East/West Street	Calabasas Road
Analysis Year	2023	North/South Street	Mureau Road-Calabasas Road
Time Analyzed	AM Peak Hour	Peak Hour Factor	0.75
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Kia of Calabasas		

Approach	T	Facth	oound			Westh	acund	-	Г	North	bound		Г	South	bound	
Approach		Easic				vvesti										
Movement	U	L	T	R	U	L	Т	R	U	L	Т	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	0	0	0	1	1	0	0	0	1	0
Configuration		LT								L	Т					TR
Volume (veh/h)		5	10							22	321				397	5
Percent Heavy Vehicles (%)		3	3							3						
Proportion Time Blocked																
Percent Grade (%)			0													
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		7.1	6.5							4.1						
Critical Headway (sec)		7.13	6.53							4.13						
Base Follow-Up Headway (sec)		3.5	4.0							2.2						
Follow-Up Headway (sec)		3.53	4.03							2.23						
Delay, Queue Length, an	d Leve	of S	ervice													
Flow Rate, v (veh/h)		20								29						
Capacity, c (veh/h)		222							VI A	1027						
v/c Ratio		0.09								0.03						
95% Queue Length, Q ₉₅ (veh)		0.3								0.1						
Control Delay (s/veh)		22.8								8.6						
Level of Service (LOS)		С								Α						
Approach Delay (s/veh)		22	2.8				Section Assessed Teachers			. 0	.6					
Approach LOS			С				A COLUMN									

	HCS7 Two-V	Vay Stop-Control Report	
General Information		Site Information	
Analyst	Darryl Nelson	Intersection	Calabasas Road/Mureau Roa
Agency/Co.	ATE	Jurisdiction	City of Calabasas
Date Performed	11/1/2023	East/West Street	Calabasas Road
Analysis Year	2023	North/South Street	Mureau Road
Time Analyzed	PM Peak Hour	Peak Hour Factor	0.75
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Kia of Calabasas		

Vehicle Volumes and Ad	justme	nts														
Approach	T	Easth	oound	***************************************		West	bound			North	bound		T	South	bound	
Movement	U	L	Т	R	U	L	T	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	0	0	0	1	1	0	0	0	1	0
Configuration		LT		,						L	Т					TR
Volume (veh/h)		3	17							5	255				439	0
Percent Heavy Vehicles (%)		3	3							3						
Proportion Time Blocked																
Percent Grade (%)			0													
Right Turn Channelized																
Median Type Storage				Und	ivided											
Critical and Follow-up H	leadwa	ys														
Base Critical Headway (sec)	T	7,1	6.5				T		T	4.1			T			
Critical Headway (sec)		7.13	6.53							4.13						
Base Follow-Up Headway (sec)		3.5	4.0							2.2						
Follow-Up Headway (sec)		3.53	4.03							2.23						
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)		27			1	T			Τ	7			T	I	T	
Capacity, c (veh/h)	N N N N	258								984						
v/c Ratio		0.10						İ		0.01						
95% Queue Length, Q ₉₅ (veh)		0.3		-99					1 550	0.0						
Control Delay (s/veh)	-	20.5						Ì		8.7						
Level of Service (LOS)		С								А						
Approach Delay (s/veh)		2	0.5				Name to the last			C).2					Account to the last of the las
Approach LOS			С						100				1			

	HCS7 Two-Way	Stop-Control Report	
General Information		Site Information	
Analyst	Darryl Nelson	Intersection	Calabasas Road/Mureau Roa
Agency/Co.	ATE	Jurisdiction	City of Calabasas
Date Performed	11/1/2023	East/West Street	Calabasas Road
Analysis Year	2023 + Project	North/South Street	Mureau Road
Time Analyzed	AM Peak Hour	Peak Hour Factor	0.75
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Kia of Calabasas		

Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U L T R U L T R U L T R U 10 11 12 7 8 9 1U 1 2 3 4U							U	L	Т	R					
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	0	0	0	1	1	0	0	0	1	0
Configuration		LT								L	Т					TR
Volume (veh/h)		5	10							22	323				403	5
Percent Heavy Vehicles (%)		3	3							3						
Proportion Time Blocked																
Percent Grade (%)			0													
Right Turn Channelized																
Median Type Storage	Undiv				vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)	T	7.1	6.5				Γ		Ī	4.1					I	
Critical Headway (sec)		7.13	6.53							4.13						
Base Follow-Up Headway (sec)		3.5	4.0							2.2						
Follow-Up Headway (sec)		3.53	4.03							2.23			N. C.			
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)	T	20							T T	29					T	
Capacity, c (veh/h)		219			13/8					1020						Sin
v/c Ratio		0.09		-						0.03						
95% Queue Length, Q ₉₅ (veh)		0.3								0.1						
Control Delay (s/veh)		23.1								8.6						
Level of Service (LOS)		С						E CE	123/8	А						
Approach Delay (s/veh)		23	3.1					-	0.6						Action Assessed	
Approach LOS		(C				May (E)			0.0						1000

	HCS7 Two-Wa	y Stop-Control Report	
General Information		Site Information	
Analyst	Darryl Nelson	Intersection	Calabasas Road/Mureau Roa
Agency/Co.	ATE	Jurisdiction	City of Calabasas
Date Performed	11/1/2023	East/West Street	Calabasas Road
Analysis Year	2023 + Project	North/South Street	Mureau Road
Time Analyzed	PM Peak Hour	Peak Hour Factor	0.75
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Kia of Calabasas		

Vehicle Volumes and Ad					I								г			
Approach		Eastb	ound			West	bound	,		North	bound			South	bound	
Movement	U	L	T	R	U	L	Т	R	U	L	Т	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	0	0	0	1	1	0	0	0	1	0
Configuration		LT								L	Т					TR
Volume (veh/h)		3	17							5	262				444	0
Percent Heavy Vehicles (%)		3	3							3						
Proportion Time Blocked																
Percent Grade (%)																
Right Turn Channelized																
Median Type Storage	Undiv				vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		7.1	6.5							4.1						
Critical Headway (sec)		7.13	6.53							4.13						
Base Follow-Up Headway (sec)		3.5	4.0							2.2				COLOR COLOR		
Follow-Up Headway (sec)		3.53	4.03							2.23						
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)		27								7						
Capacity, c (veh/h)		253								979						
v/c Ratio		0.11		-						0.01						
95% Queue Length, Q ₉₅ (veh)		0.3								0.0						
Control Delay (s/veh)		20.9		-						8.7					T	
Level of Service (LOS)		С								А						
Approach Delay (s/veh)	1	2	0.9						0.2							decement
Approach LOS			С													CATE OF

Interpolition							
Intersection Intersection Delay, s/veh	3.8						Constitution of the
Intersection LOS	3.0 A						
Intersection LOS	A						
Approach		EB		WB		SB	
Entry Lanes		1		1		1	
Conflicting Circle Lanes		1		1		1	
Adj Approach Flow, veh/h		20		460		544	
Demand Flow Rate, veh/h		20		470		555	
Vehicles Circulating, veh/h		548		7		30	
Vehicles Exiting, veh/h		37		561		7	
Ped Vol Crossing Leg, #/h		0		0		0	
Ped Cap Adj		1.000		1.000	1.	.000	
Approach Delay, s/veh		4.9		0.2		6.7	
Approach LOS		Α		Α	è	Α	
Lane	Left		Left	Bypass	Left		
Designated Moves	LT		Т	R	LR		
Assumed Moves	LT		T.	R	LR		
RT Channelized				Free			
Lane Util 1.	.000		1.000		1.000		
Follow-Up Headway, s 2.	609		2.609		2.609		
	.976		4.976	440	4.976		
Entry Flow, veh/h	20		30	1938	555		
Control of the Contro	789		1370	0.980	1338		
,	.987		0.980	431	0.980		
Flow Entry, veh/h	20		29	1900	544		
,	779		1343	0.227	1312		
	.025		0.022	0.0	0.415		
Control Delay, s/veh	4.9		2.8	Α	6.7		
LOS	Α		Α	1	Α		
95th %tile Queue, veh	0		0		2		

Interpolice	250000						State of State of	
Intersection Delay alvel	2.0	Maria Maria						
Intersection Delay, s/vel		and the same						
Intersection LOS	Α							
Approach		EB		WB		SB		
Entry Lanes		1		1	TO ONLY	1		
Conflicting Circle Lanes		1		1		1		
Adj Approach Flow, veh	/h	22		300	4	199		
Demand Flow Rate, veh	ı/h	22		306		509		
Vehicles Circulating, vel	n/h	509		3		6		
Vehicles Exiting, veh/h		6		528		3		
Ped Vol Crossing Leg, #	<i>‡</i> /h	0		0		0		
Ped Cap Adj		1.000		1.000		000		
Approach Delay, s/veh		4.7		0.1		6.1		
Approach LOS		Α		Α		Α		
Lane	Left		Left	Bypass	Left			
Designated Moves	LT		T	R	LR			
Assumed Moves	LT		T	R	LR			
RT Channelized				Free				
Lane Util	1.000		1.000		1.000			
Follow-Up Headway, s	2.609		2.609		2.609			
Critical Headway, s	4.976		4.976	300	4.976			
Entry Flow, veh/h	22		6	1938	509			
Cap Entry Lane, veh/h	821		1376	0.980	1371			
Entry HV Adj Factor	0.983		0.980	294	0.980			
Flow Entry, veh/h	22		6	1900	499			
Cap Entry, veh/h	807		1349	0.155	1344			
V/C Ratio	0.027		0.004	0.0	0.371			
Control Delay, s/veh	4.7		2.7	Α	6.1			
LOS	Α		Α	1	Α			
95th %tile Queue, veh	0		0		2			

Intersection		Virginia (
Intersection Delay, s/ve	h 7.4					•
Intersection LOS	Α	341217				
Approach		EB	V	VB	SB	
Entry Lanes		1		1	1	
Conflicting Circle Lanes		1		1	1	
Adj Approach Flow, veh		44	5	64	595	
Demand Flow Rate, veh		45		75	606	
Vehicles Circulating, ve		582		12	98	
Vehicles Exiting, veh/h	0.000	122		15	489	
Ped Vol Crossing Leg, #	#/h	0		0	0	
Ped Cap Adj		1.000	1.0	00	1.000	
Approach Delay, s/veh		5.4	6	6.8	8.1	
Approach LOS		Α		Α	Α	
Lane	Left		Left	Left		
Lano	LOIL					
Designated Moves	IT		TR	IR		
Designated Moves	LT		TR TR	LR LR		
Assumed Moves	LT LT		TR TR	LR LR		
Assumed Moves RT Channelized	LT		TR	LR		
Assumed Moves RT Channelized Lane Util	LT 1.000		TR 1.000	LR 1.000		
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s	LT		TR	LR		
Assumed Moves RT Channelized Lane Util	LT 1.000 2.609		TR 1.000 2.609	LR 1.000 2.609		
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s	1.000 2.609 4.976		TR 1.000 2.609 4.976	LR 1.000 2.609 4.976		
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h	1.000 2.609 4.976 45		TR 1.000 2.609 4.976 575	1.000 2.609 4.976 606		
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h	1.000 2.609 4.976 45 762		1.000 2.609 4.976 575 1363	1.000 2.609 4.976 606 1249		
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h	1.000 2.609 4.976 45 762 0.986 44 751		1.000 2.609 4.976 575 1363 0.981 564 1337	1.000 2.609 4.976 606 1249 0.982		
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h V/C Ratio	1.000 2.609 4.976 45 762 0.986 44 751 0.059		1.000 2.609 4.976 575 1363 0.981 564 1337 0.422	1.000 2.609 4.976 606 1249 0.982 595 1226 0.485		
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h V/C Ratio Control Delay, s/veh	1.000 2.609 4.976 45 762 0.986 44 751 0.059 5.4		1.000 2.609 4.976 575 1363 0.981 564 1337 0.422 6.8	1.000 2.609 4.976 606 1249 0.982 595 1226 0.485 8.1		
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h V/C Ratio	1.000 2.609 4.976 45 762 0.986 44 751 0.059		1.000 2.609 4.976 575 1363 0.981 564 1337 0.422	1.000 2.609 4.976 606 1249 0.982 595 1226 0.485		

Cumulative AM Peak Hour

Intersection Intersection Delay, s/veh 6.1 Intersection LOS A								
Intersection LOS A								Intersection
		X				.1	y, s/veh 6.1	Intersection Delay, s
Approach ER W/R CR						Α	Α	Intersection LOS
Approach	ATS (1997)	SB		WB		EB		Approach
Entry Lanes 1 1 1		1		1		1		Entry Lanes
Conflicting Circle Lanes 1 1		1		1		1	Lanes	Conflicting Circle La
Adj Approach Flow, veh/h 102 369 547		547		369		102	ow, veh/h	Adj Approach Flow,
Demand Flow Rate, veh/h 104 377 558		558		377		104	ate, veh/h	Demand Flow Rate,
Vehicles Circulating, veh/h 551 20 35		35		20		551	ing, veh/h	Vehicles Circulating
Vehicles Exiting, veh/h 42 635 362						42		O.
Ped Vol Crossing Leg, #/h 0 0							g Leg, #/h	
Ped Cap Adj 1.000 1.000 1.000						1.000		
Approach Delay, s/veh 6.0 5.2 6.8		6.8		5.2		6.0	s/veh	
Approach LOS A A A		Α		Α		Α		Approach LOS
			Left	Left	Left	eft	Left	Lane
Lane Left Left Left								
Designated Moves LT TR LR			LR	TR	TR			0
Designated Moves LT TR LR Assumed Moves LT TR LR								Assumed Moves
Designated Moves LT TR LR Assumed Moves LT TR LR RT Channelized			LR	TR	TR	LT	LT	Assumed Moves RT Channelized
Designated Moves LT TR LR Assumed Moves LT TR LR RT Channelized Lane Util 1.000 1.000 1.000			LR 1.000	TR 000	TR 1.000	_T 00	LT 1.000	Assumed Moves RT Channelized Lane Util
Designated Moves LT TR LR Assumed Moves LT TR LR RT Channelized Lane Util 1.000 1.000 1.000 Follow-Up Headway, s 2.609 2.609 2.609			1.000 2.609	TR 000 609	1.000 2.609	_T 00 09	1.000 way, s 2.609	Assumed Moves RT Channelized Lane Util Follow-Up Headway
Designated Moves LT TR LR Assumed Moves LT TR LR RT Channelized Lane Util 1.000 1.000 1.000 Follow-Up Headway, s 2.609 2.609 2.609 Critical Headway, s 4.976 4.976 4.976			1.000 2.609 4.976	TR 000 609 976	TR 1.000 2.609 4.976	_T 00 09 76	1.000 way, s 2.609 y, s 4.976	Assumed Moves RT Channelized Lane Util Follow-Up Headway Critical Headway, s
Designated Moves LT TR LR Assumed Moves LT TR LR RT Channelized Lane Util 1.000 1.000 1.000 Follow-Up Headway, s 2.609 2.609 2.609 Critical Headway, s 4.976 4.976 Entry Flow, veh/h 104 377 558			1.000 2.609 4.976 558	TR 000 609 976 377	1.000 2.609 4.976 377	_T 00 09 76 04	1.000 way, s 2.609 y, s 4.976	Assumed Moves RT Channelized Lane Util Follow-Up Headway Critical Headway, s Entry Flow, veh/h
Designated Moves LT TR LR Assumed Moves LT TR LR RT Channelized Lane Util 1.000 1.000 1.000 Follow-Up Headway, s 2.609 2.609 2.609 Critical Headway, s 4.976 4.976 4.976 Entry Flow, veh/h 104 377 558 Cap Entry Lane, veh/h 787 1352 1331			1.000 2.609 4.976 558 1331	TR 000 609 976 377 352	TR 1.000 2.609 4.976 377 1352	_T 00 09 76 04 87	1.000 way, s 2.609 y, s 4.976 n 104 veh/h 787	Assumed Moves RT Channelized Lane Util Follow-Up Headway Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh
Designated Moves LT TR LR Assumed Moves LT TR LR RT Channelized Lane Util 1.000 1.000 1.000 Follow-Up Headway, s 2.609 2.609 2.609 Critical Headway, s 4.976 4.976 4.976 Entry Flow, veh/h 104 377 558 Cap Entry Lane, veh/h 787 1352 1331 Entry HV Adj Factor 0.984 0.980 0.980			1.000 2.609 4.976 558 1331 0.980	TR 000 609 976 377 352 980	1.000 2.609 4.976 377 1352 0.980	_T 00 09 76 04 87 84	1.000 way, s 2.609 y, s 4.976 n 104 veh/h 787 ctor 0.984	Assumed Moves RT Channelized Lane Util Follow-Up Headway Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh Entry HV Adj Factor
Designated Moves LT TR LR Assumed Moves LT TR LR RT Channelized Lane Util 1.000 1.000 1.000 Follow-Up Headway, s 2.609 2.609 2.609 Critical Headway, s 4.976 4.976 4.976 Entry Flow, veh/h 104 377 558 Cap Entry Lane, veh/h 787 1352 1331 Entry HV Adj Factor 0.984 0.980 0.980 Flow Entry, veh/h 102 369 547			1.000 2.609 4.976 558 1331 0.980 547	TR 000 609 976 377 352 980 369	1.000 2.609 4.976 377 1352 0.980 369	_T 00 09 76 04 87 84	1.000 way, s 2.609 y, s 4.976 n 104 veh/h 787 ctor 0.984 n 102	Assumed Moves RT Channelized Lane Util Follow-Up Headway Critical Headway, s Entry Flow, veh/h Cap Entry Lane, vel Entry HV Adj Factor Flow Entry, veh/h
Designated Moves LT TR LR Assumed Moves LT TR LR RT Channelized Lane Util 1.000 1.000 1.000 1.000 1.000 Follow-Up Headway, s 2.609 2.609 2.609 2.609 Critical Headway, s 4.976 4.976 4.976 4.976 Entry Flow, veh/h 104 377 558 558 558 Cap Entry Lane, veh/h 787 1352 1331 1352 1331 Entry HV Adj Factor 0.984 0.980 0.980 0.980 Flow Entry, veh/h 102 369 547 547 Cap Entry, veh/h 774 1324 1305			1.000 2.609 4.976 558 1331 0.980 547	TR 000 609 976 377 352 980 369 324	1.000 2.609 4.976 377 1352 0.980 369 1324	_T 00 09 76 04 87 84 02	1.000 way, s 2.609 y, s 4.976 n 104 veh/h 787 otor 0.984 n 102 774	Assumed Moves RT Channelized Lane Util Follow-Up Headway, Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h
Designated Moves LT TR LR Assumed Moves LT TR LR RT Channelized Lane Util 1.000 1.000 1.000 Follow-Up Headway, s 2.609 2.609 2.609 Critical Headway, s 4.976 4.976 4.976 Entry Flow, veh/h 104 377 558 Cap Entry Lane, veh/h 787 1352 1331 Entry HV Adj Factor 0.984 0.980 0.980 Flow Entry, veh/h 102 369 547 Cap Entry, veh/h 774 1324 1305 V/C Ratio 0.132 0.279 0.419			1.000 2.609 4.976 558 1331 0.980 547 1305 0.419	TR 000 609 976 377 352 980 369 324 279	1.000 2.609 4.976 377 1352 0.980 369 1324 0.279	_T 00 09 76 04 87 84 02 74	1.000 way, s 2.609 y, s 4.976 n 104 veh/h 787 otor 0.984 n 102 774 0.132	Assumed Moves RT Channelized Lane Util Follow-Up Headway, Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h V/C Ratio
Designated Moves LT TR LR Assumed Moves LT TR LR RT Channelized Lane Util 1.000 1.000 1.000 Follow-Up Headway, s 2.609 2.609 2.609 Critical Headway, s 4.976 4.976 4.976 Entry Flow, veh/h 104 377 558 Cap Entry Lane, veh/h 787 1352 1331 Entry HV Adj Factor 0.984 0.980 0.980 Flow Entry, veh/h 102 369 547 Cap Entry, veh/h 774 1324 1305 V/C Ratio 0.132 0.279 0.419 Control Delay, s/veh 6.0 5.2 6.8			1.000 2.609 4.976 558 1331 0.980 547 1305 0.419	TR 000 609 976 377 352 980 369 324 279 5.2	1.000 2.609 4.976 377 1352 0.980 369 1324 0.279 5.2	_T 00 09 76 04 87 84 02 74	1.000 way, s 2.609 y, s 4.976 n 104 veh/h 787 otor 0.984 n 102 774 0.132	Assumed Moves RT Channelized Lane Util Follow-Up Headway, Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h V/C Ratio Control Delay, s/veh
Designated Moves LT TR LR Assumed Moves LT TR LR RT Channelized Lane Util 1.000 1.000 1.000 Follow-Up Headway, s 2.609 2.609 2.609 Critical Headway, s 4.976 4.976 4.976 Entry Flow, veh/h 104 377 558 Cap Entry Lane, veh/h 787 1352 1331 Entry HV Adj Factor 0.984 0.980 0.980 Flow Entry, veh/h 102 369 547 Cap Entry, veh/h 774 1324 1305 V/C Ratio 0.132 0.279 0.419			1.000 2.609 4.976 558 1331 0.980 547 1305 0.419 6.8 A	TR 000 609 976 377 352 980 369 324 279 5.2	1.000 2.609 4.976 377 1352 0.980 369 1324 0.279 5.2	DO 00 09 76 04 87 84 02 74 32 5.0	1.000 way, s 2.609 y, s 4.976 n 104 veh/h 787 ctor 0.984 n 102 774 0.132 veh 6.0	Assumed Moves RT Channelized Lane Util Follow-Up Headway, Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h V/C Ratio Control Delay, s/veh LOS

Cumulative PM Peak Hour

Intersection Intersection Delay, s/veh 7.4 Intersection LOS A
Intersection LOS A
Approach EB WB SB
Entry Lanes 1 1 1
Conflicting Circle Lanes 1 1
Adj Approach Flow, veh/h 44 567 603
Demand Flow Rate, veh/h 45 578 615
Vehicles Circulating, veh/h 591 12 98
Vehicles Exiting, veh/h 122 624 492
Ped Vol Crossing Leg, #/h 0 0
Ped Cap Adj 1.000 1.000 1.000
Approach Delay, s/veh 5.4 6.8 8.2
Approach LOS A A A
lone loft loft
Lane Left Left Left
Designated Moves LT TR Left Left Left Left Left Left Left Left
the first of the same of the s
Designated Moves LT TR LR
Designated Moves LT TR LR Assumed Moves LT TR LR
Designated Moves LT TR LR Assumed Moves LT TR LR RT Channelized Lane Util 1.000 1.000 1.000 Follow-Up Headway, s 2.609 2.609 2.609
Designated Moves LT TR LR Assumed Moves LT TR LR RT Channelized Lane Util 1.000 1.000 1.000 Follow-Up Headway, s 2.609 2.609 2.609 Critical Headway, s 4.976 4.976 4.976
Designated Moves LT TR LR Assumed Moves LT TR LR RT Channelized Lane Util 1.000 1.000 1.000 Follow-Up Headway, s 2.609 2.609 2.609 Critical Headway, s 4.976 4.976 Entry Flow, veh/h 45 578 615
Designated Moves LT TR LR Assumed Moves LT TR LR RT Channelized Lane Util 1.000 1.000 1.000 Follow-Up Headway, s 2.609 2.609 2.609 Critical Headway, s 4.976 4.976 4.976 Entry Flow, veh/h 45 578 615 Cap Entry Lane, veh/h 755 1363 1249
Designated Moves LT TR LR Assumed Moves LT TR LR RT Channelized Lane Util 1.000 1.000 1.000 Follow-Up Headway, s 2.609 2.609 2.609 Critical Headway, s 4.976 4.976 4.976 Entry Flow, veh/h 45 578 615 Cap Entry Lane, veh/h 755 1363 1249 Entry HV Adj Factor 0.986 0.981 0.980
Designated Moves LT TR LR Assumed Moves LT TR LR RT Channelized Lane Util 1.000 1.000 1.000 Follow-Up Headway, s 2.609 2.609 2.609 Critical Headway, s 4.976 4.976 4.976 Entry Flow, veh/h 45 578 615 Cap Entry Lane, veh/h 755 1363 1249 Entry HV Adj Factor 0.986 0.981 0.980 Flow Entry, veh/h 44 567 603
Designated Moves LT TR LR Assumed Moves LT TR LR RT Channelized Lane Util 1.000 1.000 1.000 Follow-Up Headway, s 2.609 2.609 2.609 Critical Headway, s 4.976 4.976 4.976 Entry Flow, veh/h 45 578 615 Cap Entry Lane, veh/h 755 1363 1249 Entry HV Adj Factor 0.986 0.981 0.980 Flow Entry, veh/h 44 567 603 Cap Entry, veh/h 744 1337 1224
Designated Moves LT TR LR Assumed Moves LT TR LR RT Channelized Lane Util 1.000 1.000 1.000 Follow-Up Headway, s 2.609 2.609 2.609 Critical Headway, s 4.976 4.976 4.976 Entry Flow, veh/h 45 578 615 Cap Entry Lane, veh/h 755 1363 1249 Entry HV Adj Factor 0.986 0.981 0.980 Flow Entry, veh/h 44 567 603
Designated Moves LT TR LR Assumed Moves LT TR LR RT Channelized Lane Util 1.000 1.000 1.000 Follow-Up Headway, s 2.609 2.609 2.609 Critical Headway, s 4.976 4.976 4.976 Entry Flow, veh/h 45 578 615 Cap Entry Lane, veh/h 755 1363 1249 Entry HV Adj Factor 0.986 0.981 0.980 Flow Entry, veh/h 44 567 603 Cap Entry, veh/h 744 1337 1224 V/C Ratio 0.060 0.424 0.493 Control Delay, s/veh 5.4 6.8 8.2
Designated Moves LT TR LR Assumed Moves LT TR LR RT Channelized Lane Util 1.000 1.000 1.000 Follow-Up Headway, s 2.609 2.609 2.609 Critical Headway, s 4.976 4.976 4.976 Entry Flow, veh/h 45 578 615 Cap Entry Lane, veh/h 755 1363 1249 Entry HV Adj Factor 0.986 0.981 0.980 Flow Entry, veh/h 44 567 603 Cap Entry, veh/h 744 1337 1224 V/C Ratio 0.060 0.424 0.493

Internation							
Intersection	- 0.0						
Intersection Delay, s/vel							
Intersection LOS	Α						
Approach		EB		WB	A SHIP STATE	SB	
Entry Lanes		1		1		1	
Conflicting Circle Lanes		1		1		1	
Adj Approach Flow, veh	ı/h	102		377		553	
Demand Flow Rate, veh	n/h	104		385		564	
Vehicles Circulating, vel	h/h	557		20		35	
Vehicles Exiting, veh/h		42		641		370	
Ped Vol Crossing Leg, #	#/h	0		0		0	
Ped Cap Adj		1.000	1.	000		1.000	
Approach Delay, s/veh		6.1		5.2		6.9	
Approach LOS		Α		Α		Α	
Lane	Left		Left		Left	Line State	
Designated Moves	LT		TR		LR		
Assumed Moves	LT		TR		LR		
RT Channelized							
Lane Util	1.000		1.000		1.000		
Follow-Up Headway, s	2.609		2.609		2.609		
Critical Headway, s	4.976		4.976		4.976		
Entry Flow, veh/h	104		385		564		
Cap Entry Lane, veh/h	782		1352		1331		
Entry HV Adj Factor	0.984		0.980		0.980		
Flow Entry, veh/h	102		377		553		
Cap Entry, veh/h	769		1325		1305		
V/C Ratio	0.133		0.285		0.424		
Control Delay, s/veh	6.1		5.2		6.9		
LOS	Α		Α		Α		
95th %tile Queue, veh	0		1		2		

→ ← < > √
Movement EBL EBT WBT WBR SBL SBR
Lane Configurations 7 1 7 77 7
Traffic Volume (veh/h) 173 242 370 39 478 48
Future Volume (veh/h) 173 242 370 39 478 48
Initial Q (Qb), veh 0 0 0 0 0
Ped-Bike Adj(A_pbT) 1.00 1.00 1.00
Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00
Work Zone On Approach No No No
Adj Sat Flow, veh/h/ln 1870 1870 1870 1870 1870
Adj Flow Rate, veh/h 204 285 435 0 562 0
Peak Hour Factor 0.85 0.85 0.85 0.85 0.85
Percent Heavy Veh, % 2 2 2 2 2 2
Cap, veh/h 318 866 866 1510
Arrive On Green 0.46 0.46 0.15 0.00 0.44 0.00
Sat Flow, veh/h 954 1870 1870 1585 3456 1585
Grp Volume(v), veh/h 204 285 435 0 562 0
Grp Sat Flow(s), veh/h/ln 954 1870 1870 1585 1728 1585
Q Serve(g_s), s 18.4 8.7 19.2 0.0 9.8 0.0
Cycle Q Clear(g_c), s 37.6 8.7 19.2 0.0 9.8 0.0
Prop In Lane 1.00 1.00 1.00
Lane Grp Cap(c), veh/h 318 866 866 1510
V/C Ratio(X) 0.64 0.33 0.50 0.37
Avail Cap(c_a), veh/h 412 1049 1049 1510
HCM Platoon Ratio 1.00 1.00 0.33 0.33 1.00 1.00
Upstream Filter(I) 1.00 1.00 0.94 0.00 1.00 0.00
Uniform Delay (d), s/veh 32.2 15.3 28.6 0.0 17.0 0.0 Incr Delay (d2), s/veh 2.2 0.2 0.4 0.0 0.7 0.0
%ile BackOfQ(50%),veh/ln 4.3 3.6 9.6 0.0 3.9 0.0
Unsig. Movement Delay, s/veh
LnGrp Delay(d),s/veh 34.4 15.5 29.0 0.0 17.7 0.0
LnGrp LOS C B C B
Approach Vol, veh/h 489 435 562
Approach Delay, s/veh 23.4 29.0 17.7
Approach LOS C C B
Timer - Assigned Phs 4 6 8
Phs Duration (G+Y+Rc), s 46.2 43.8 46.2
Change Period (Y+Rc), s 4.5 4.5
Max Green Setting (Gmax), s 50.5 30.5 50.5
Max Q Clear Time (g_c+l1), s 39.6 11.8 21.2
Green Ext Time (p_c), s 2.1 2.0 2.9
Intersection Summary
HCM 6th Ctrl Delay 22.9
HCM 6th LOS C
Notes

	ၨ	-	-	4	-	1	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	*	^	^	7	77	7	
Traffic Volume (veh/h)	271	359	303	149	550	21	
Future Volume (veh/h)	271	359	303	149	550	21	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00	J		1.00	1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach		No	No	1.00	No	1.00	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	
Adj Flow Rate, veh/h	282	374	316	0	573	0	
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	
Percent Heavy Veh, %	2	2	2	2	2	2	
Cap, veh/h	406	857	857	SHAPE	1526	HARTIN .	
Arrive On Green	0.46	0.46	0.15	0.00	0.44	0.00	
Sat Flow, veh/h	1064	1870	1870	1585	3456	1585	
Grp Volume(v), veh/h	282	374	316	0	573	0	
Grp Sat Flow(s), veh/h/ln		1870	1870	1585	1728	1585	
Q Serve(g_s), s	22.5	12.2	13.7	0.0	10.0	0.0	
Cycle Q Clear(g_c), s	36.2	12.2	13.7	0.0	10.0	0.0	
Prop In Lane	1.00	12.2	13.7	1.00	1.00	1.00	
Lane Grp Cap(c), veh/h	406	857	857	1.00	1526	1.00	
V/C Ratio(X)	0.69	0.44	0.37		0.38	To be to be	
Avail Cap(c_a), veh/h	527	1070	1070		1526		
HCM Platoon Ratio	1.00	1.00	0.33	0.33	1.00	1.00	
Upstream Filter(I)	1.00	1.00	0.33	0.00	1.00	0.00	
Uniform Delay (d), s/veh	29.5	16.5	26.5	0.00	16.8	0.00	
Incr Delay (d2), s/veh	29.5	0.4	0.2	0.0	0.7	0.0	
Initial Q Delay(d3),s/veh	0.0	0.4	0.2	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/		5.1	6.8	0.0	4.0	0.0	
Unsig. Movement Delay,		5.1	0.0	0.0	4.0	0.0	
LnGrp Delay(d),s/veh	32.1	16.9	26.7	0.0	17.5	0.0	
	32.1 C	16.9 B	26.7 C	0.0	17.5 B	0.0	
LnGrp LOS	U						
Approach Vol, veh/h	16:31	656	316		573		
Approach Delay, s/veh		23.4	26.7		17.5	10-11-11-2	
Approach LOS		C	C	A CONTRACTOR	В		
Timer - Assigned Phs				4		6	8
Phs Duration (G+Y+Rc),	S			45.7		44.3	45.7
Change Period (Y+Rc), s				4.5		4.5	4.5
Max Green Setting (Gma				51.5		29.5	51.5
Max Q Clear Time (g c+l				38.2		12.0	15.7
Green Ext Time (p_c), s				3.1		2.0	2.0
Intersection Summary							A TANK DOOR
HCM 6th Ctrl Delay		MARKET	21.9	No.	THE PARTY	EDI DI	
HCM 6th LOS	- 10		C				
Notes	2000						

EBL EBT WBT WBR SBL SBR urations 1
urations
me (veh/h) 181 256 402 39 478 75 me (veh/h) 181 256 402 39 478 75), veh 0 0 0 0 0 0 dj(A_pbT) 1.00 1.00 1.00 1.00 , Adj 1.00 1.00 1.00 1.00 On Approach No No No
me (veh/h) 181 256 402 39 478 75), veh 0 0 0 0 0 ij(A_pbT) 1.00 1.00 1.00 1.00 , Adj 1.00 1.00 1.00 1.00 On Approach No No
), veh 0 0 0 0 0 0 lj(A_pbT) 1.00 1.00 1.00 1.00 , Adj 1.00 1.00 1.00 1.00 1.00 On Approach No No No
/ij(A_pbT) 1.00 1.00 1.00 1.00 , Adj 1.00 1.00 1.00 1.00 1.00 On Approach No No No
, Adj 1.00 1.00 1.00 1.00 1.00 On Approach No No No
On Approach No No No
/ Ven/n/in 18/U 18/U 18/U 18/U 18/U 18/U
te, veh/h 213 301 473 0 562 0
Factor 0.85 0.85 0.85 0.85 0.85
avy Veh, % 2 2 2 2 2 2
324 928 928 1395
reen 0.50 0.50 0.16 0.00 0.40 0.00
9h/h 921 1870 1870 1585 3456 1585
(v), veh/h 213 301 473 0 562 0
1
_ \ /'
<i>,</i> -
ar(g_c), s 40.7 8.7 20.8 0.0 10.4 0.0
e 1.00 1.00 1.00 1.00
ap(c), veh/h 324 928 928 1395
0.66 0.32 0.51 0.40
_a), veh/h 394 1070 1070 1395
n Ratio 1.00 1.00 0.33 0.33 1.00 1.00
ilter(I) 1.00 1.00 0.93 0.00 1.00 0.00
ay (d), s/veh 31.6 13.6 27.6 0.0 19.1 0.0
d2), s/veh 2.9 0.2 0.4 0.0 0.9 0.0
ay(d3),s/veh 0.0 0.0 0.0 0.0 0.0
fQ(50%),veh/ln 4.6 3.5 10.4 0.0 4.2 0.0
ement Delay, s/veh
y(d),s/veh 34.5 13.8 28.0 0.0 20.0 0.0
C B C B
ol, veh/h 514 473 562
elay, s/veh 22.4 28.0 20.0
OS C C B
igned Phs 4 6 8
n (G+Y+Rc), s 49.2 40.8 49.2
iod (Y+Rc), s 4.5 4.5
Setting (Gmax), s 51.5 29.5 51.5
r Time (g_c+l1), s 42.7 12.4 22.8
Find $(9_0, 1)$, s 2.0 2.0 3.2
Summary
rl Delay 23.2
OS C

	ⅉ	-	←	*	1	1		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	ሻ	A	^	71	ሻሻ	7		
Traffic Volume (veh/h)	295	398	326	149	550	39		
Future Volume (veh/h)	295	398	326	149	550	39		
Initial Q (Qb), veh	0	0	0	0	0	0		
Ped-Bike Adj(A_pbT)	1.00			1.00	1.00	1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00		
Work Zone On Approach		No	No	1.00	No	1.00		
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870		
Adj Flow Rate, veh/h	307	415	340	0	573	0		
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96		
Percent Heavy Veh, %	2	2	2	2	2	2		
Cap, veh/h	430	932	932		1389	Miles N		
Arrive On Green	0.50	0.50	0.16	0.00	0.40	0.00		
Sat Flow, veh/h	1040	1870	1870	1585	3456	1585		
Grp Volume(v), veh/h	307	415	340	0	573	0		
Grp Sat Flow(s), veh/h/ln		1870	1870	1585	1728	1585		
Q Serve(g_s), s	25.0	12.9	14.5	0.0	10.7	0.0	AND DESCRIPTION OF THE PARTY OF	
Cycle Q Clear(g_c), s	39.5	12.9	14.5	0.0	10.7	0.0		
Prop In Lane	1.00	12.0	1 1.0	1.00	1.00	1.00		
Lane Grp Cap(c), veh/h	430	932	932	MANAGE	1389			
V/C Ratio(X)	0.71	0.45	0.36		0.41			
Avail Cap(c_a), veh/h	530	1112	1112	H () () ()	1389			
HCM Platoon Ratio	1.00	1.00	0.33	0.33	1.00	1.00		
Upstream Filter(I)	1.00	1.00	0.92	0.00	1.00	0.00		
Uniform Delay (d), s/veh		14.6	25.0	0.0	19.3	0.0		
Incr Delay (d2), s/veh	3.5	0.3	0.2	0.0	0.9	0.0		
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0		
%ile BackOfQ(50%),veh.		5.2	7.3	0.0	4.3	0.0		
Unsig. Movement Delay,								
LnGrp Delay(d),s/veh	31.6	14.9	25.2	0.0	20.2	0.0		
LnGrp LOS	С	В	С		С			
Approach Vol, veh/h		722	340		573			
Approach Delay, s/veh		22.0	25.2	ALCOHOLD BY	20.2			
Approach LOS		C	C		C			7,46
Timer - Assigned Phs				4	50000	6	8	
Phs Duration (G+Y+Rc),	S		THE REAL	49.3	hetone.	40.7	49.3	N. F.
Change Period (Y+Rc), s			Nation Land	4.5		4.5	4.5	
Max Green Setting (Gma			New York	53.5		27.5	53.5	
Max Q Clear Time (g_c+				41.5		12.7	16.5	
Green Ext Time (p c), s	/,			3.3		1.9	2.2	
//								
Intersection Summary		Marine.						
HCM 6th Ctrl Delay			22.0					
HCM 6th LOS			С					
NI CONTRACTOR OF THE PARTY OF T			F - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		e les l'actions	41 15 1 Sept.		

Movement		≯	-	←		1	1		
Lane Configurations	Movement	FBI	FBT	WBT	WBR	SBL	SBR		
Traffic Volume (veh/h)									
Future Volume (veh/h)									
Initial Q (Qb), veh									
Ped-Bike Adj(A_pbT) 1.00								Michael Colonia	
Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 Work Zone On Approach No No No No No Adj Sat Flow, veh/h/ln 1870 1870 1870 1870 1870 1870 0 Peak Hour Factor 0.85 0.85 0.85 0.85 0.85 0.85 0.85 Percent Heavy Veh, % 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2									
Work Zone On Ápproach No No No No Adj Sat Flow, veh/h/h/ln 1870	, <u> </u>		1.00	1 00					
Adj Sat Flow, veh/h/ln 1870 1870 1870 1870 1870 1870 1870 Adj Flow Rate, veh/h 252 301 488 0 587 0 Peak Hour Factor 0.85 0.85 0.85 0.85 0.85 0.85 0.85 Percent Heavy Veh, % 2					1,100		1,00		
Adj Flow Rate, veh/h 252 301 488 0 587 0 Peak Hour Factor 0.85 0.85 0.85 0.85 0.85 0.85 Percent Heavy Veh, % 2					1870		1870	No extra contractor	100000
Peak Hour Factor 0.85 0.85 0.85 0.85 0.85 0.85 Percent Heavy Veh, % 2									
Percent Heavy Veh, % 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2									
Cap, veh/h 360 1014 1014 1236 Arrive On Green 0.54 0.54 0.18 0.00 0.36 0.00 Sat Flow, veh/h 908 1870 1870 1585 3456 1585 Grp Volume(v), veh/h 252 301 488 0 587 0 Grp Sat Flow(s), veh/h/ln 908 1870 1585 1728 1585 Q Serve(g_s), s 23.9 7.9 21.1 0.0 11.8 0.0 Cycle Q Clear(g_c), s 45.0 7.9 21.1 0.0 11.8 0.0 Prop In Lane 1.00 1.00 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 360 1014 1014 1014 104 1236 V/C Ratio(X) 0.70 0.30 0.48 0.47 0.47 Avail Cap(c_a), veh/h 407 1112 1112 1236 HCM Platoon Ratio 1.00 1.00 0.00 1.00 0.00 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Arrive On Green	•								A POLICE
Sat Flow, veh/h 908 1870 1870 1585 3456 1585 Grp Volume(v), veh/h 252 301 488 0 587 0 Grp Sat Flow(s),veh/h/ln 908 1870 1585 1728 1585 Q Serve(g_s), s 23.9 7.9 21.1 0.0 11.8 0.0 Cycle Q Clear(g_c), s 45.0 7.9 21.1 0.0 11.8 0.0 Prop In Lane 1.00 1.00 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 360 1014 1014 1236 100 1.00 V/C Ratio(X) 0.70 0.30 0.48 0.47 0.0 0.0 Avail Cap(c_a), veh/h 407 1112 1112 112 1236 HCM Platoon Ratio 1.00 1.00 0.33 0.33 1.00 1.00 Upstream Filter(I) 1.00 0.00 0.91 0.00 1.00 0.00 Uniform Delay (d), s/veh					0.00		0.00		
Grp Volume(v), veh/h 252 301 488 0 587 0 Grp Sat Flow(s),veh/h/ln 908 1870 1870 1585 1728 1585 Q Serve(g_s), s 23.9 7.9 21.1 0.0 11.8 0.0 Cycle Q Clear(g_c), s 45.0 7.9 21.1 0.0 11.8 0.0 Prop In Lane 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 360 1014 1014 1236 V/C Ratio(X) 0.70 0.30 0.48 0.47 Avail Cap(c_a), veh/h 407 1112 1112 1236 HCM Platoon Ratio 1.00 1.00 0.33 0.33 1.00 1.00 Upstream Filter(I) 1.00 1.00 0.91 0.00 1.00 0.00 Uniform Delay (d), s/veh 29.8 11.2 25.6 0.0 22.4 0.0 Initial Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Wile BackOfQ(50%), veh/ln 5.5 3.1 10.6 0.0 4.9 0.0 Unsig. Movement Delay, s/veh LnGrp Delay(d), s/veh 34.4 11.4 25.9 0.0 23.7 0.0 LnGrp LOS C B C C Approach Vol, veh/h 553 488 587 Approach Delay, s/veh 21.9 25.9 23.7 Approach LOS C C C C Timer - Assigned Phs 4 6 8 Phs Duration (G+Y+Rc), s 53.3 36.7 53.3 Change Period (Y+Rc), s 4.5 4.5 4.5 Max Green Setting (Gmax), s 53.5 27.5 53.5 Max Q Clear Time (g_c+I1), s 47.0 13.8 23.1 Intersection Summary HCM 6th Ctrl Delay									7554
Grp Sat Flow(s),veh/h/ln 908 1870 1870 1585 1728 1585 Q Serve(g_s), s 23.9 7.9 21.1 0.0 11.8 0.0 Cycle Q Clear(g_c), s 45.0 7.9 21.1 0.0 11.8 0.0 Prop In Lane 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 360 1014 1014 1236 V/C Ratio(X) 0.70 0.30 0.48 0.47 Avail Cap(c_a), veh/h 407 1112 1112 1236 HCM Platoon Ratio 1.00 1.00 0.33 0.33 1.00 1.00 Upstream Filter(I) 1.00 1.00 0.91 0.00 1.00 0.00 Uniform Delay (d), s/veh 29.8 11.2 25.6 0.0 22.4 0.0 Initial Q Delay(d3), s/veh 4.6 0.2 0.3 0.0 1.3 0.0 Initial Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Wile BackOfQ(50%), veh/ln 5.5 3.1 10.6 0.0 4.9 0.0 Unsig. Movement Delay, s/veh LnGrp Delay(d), s/veh 34.4 11.4 25.9 0.0 23.7 0.0 LnGrp LOS C B C C Approach Vol, veh/h 553 488 587 Approach Delay, s/veh 21.9 25.9 23.7 Approach LOS C C C C Timer - Assigned Phs Phs Duration (G+Y+Rc), s 4.5 4.5 Max Green Setting (Gmax), s 53.5 27.5 53.5 Max Q Clear Time (g_c+I1), s 47.0 13.8 23.1 Intersection Summary HCM 6th Ctrl Delay HCM 6th Ctrl Delay 23.7									
Q Serve(g_s), s 23.9 7.9 21.1 0.0 11.8 0.0 Cycle Q Clear(g_c), s 45.0 7.9 21.1 0.0 11.8 0.0 Prop In Lane 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 360 1014 1014 1236 V/C Ratio(X) 0.70 0.30 0.48 0.47 Avail Cap(c_a), veh/h 407 1112 1112 1236 HCM Platoon Ratio 1.00 1.00 0.33 0.33 1.00 1.00 Upstream Filter(I) 1.00 1.00 0.91 0.00 1.00 0.00 Uniform Delay (d), s/veh 29.8 11.2 25.6 0.0 22.4 0.0 Incr Delay (d2), s/veh 4.6 0.2 0.3 0.0 1.3 0.0 Initial Q Delay(3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Wile BackOfQ(50%),veh/ln 5.5 3.1 10.6 0.0 4.9 0.0 Unsig. Movement Delay, s/veh 11.4 25.9 0.0 23.7 0.0 LnGrp Delay(d),s/veh 34.4 11.4 25.9 0.0 23.7 0.0 LnGrp LOS C B C C Approach Vol, veh/h 553 488 587 Approach Delay, s/veh 21.9 25.9 23.7 Approach LOS C C C C Timer - Assigned Phs 4 6 8 Phs Duration (G+Y+Rc), s 5.3 3 36.7 53.3 Change Period (Y+Rc), s 4.5 4.5 4.5 Max Green Setting (Gmax), s 45.0 1.8 1.9 3.4 Intersection Summary HCM 6th Ctrl Delay 23.7									1261120
Cycle Q Clear(g_c), s 45.0 7.9 21.1 0.0 11.8 0.0 Prop In Lane 1.00 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 360 1014 1014 1236 V/C Ratio(X) 0.70 0.30 0.48 0.47 Avail Cap(c_a), veh/h 407 1112 1112 1236 HCM Platoon Ratio 1.00 1.00 0.33 1.00 1.00 Upstream Filter(l) 1.00 1.00 0.91 0.00 1.00 0.00 Uniform Delay (d), s/veh 29.8 11.2 25.6 0.0 22.4 0.0 Incr Delay (d2), s/veh 4.6 0.2 0.3 0.0 1.3 0.0 Initial Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Unsig. Movement Delay, s/veh 1.1.4 25.9 0.0 23.7 0.0 LnGrp LOS C B C C C Approach Vol, veh/									
Prop In Lane 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 360 1014 1014 1236 V/C Ratio(X) 0.70 0.30 0.48 0.47 Avail Cap(c_a), veh/h 407 1112 1112 1236 HCM Platoon Ratio 1.00 1.00 0.33 0.33 1.00 1.00 Upstream Filter(I) 1.00 1.00 0.91 0.00 1.00 0.00 Uniform Delay (d), s/veh 29.8 11.2 25.6 0.0 22.4 0.0 Initial Q Delay(d3),s/veh 4.6 0.2 0.3 0.0 1.3 0.0 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Wile BackOfQ(50%),veh/ln 5.5 3.1 10.6 0.0 4.9 0.0 Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh 34.4 11.4 25.9 0.0 23.7 0.0 LnGrp LOS C B C C Approach Vol, veh/h 553 488 587 Approach Delay, s/veh 21.9 25.9 23.7 Approach LOS C C C C Timer - Assigned Phs 4 6 8 Phs Duration (G+Y+Rc), s 53.3 36.7 53.3 Change Period (Y+Rc), s 4.5 4.5 Max Green Setting (Gmax), s 47.0 13.8 23.1 Green Ext Time (p_c), s 1.8 1.9 3.4 Intersection Summary HCM 6th Ctrl Delay 23.7									
Lane Grp Cap(c), veh/h 360 1014 1014 1236 V/C Ratio(X) 0.70 0.30 0.48 0.47 Avail Cap(c_a), veh/h 407 1112 1112 1236 HCM Platoon Ratio 1.00 1.00 0.33 0.33 1.00 1.00 Upstream Filter(I) 1.00 1.00 0.91 0.00 1.00 0.00 Uniform Delay (d), s/veh 29.8 11.2 25.6 0.0 22.4 0.0 Incr Delay (d2), s/veh 4.6 0.2 0.3 0.0 1.3 0.0 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 %ile BackOfQ(50%),veh/ln 5.5 3.1 10.6 0.0 4.9 0.0 Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh 34.4 11.4 25.9 0.0 23.7 0.0 LnGrp LOS C B C C Approach Vol, veh/h 553 488 587 Approach Delay, s/veh 21.9 25.9 23.7 Approach LOS C C C C Timer - Assigned Phs 4 6 8 Phs Duration (G+Y+Rc), s 53.3 36.7 53.3 Change Period (Y+Rc), s 4.5 4.5 Max Green Setting (Gmax), s 45.0 Max Q Clear Time (g_c+I1), s 47.0 13.8 23.1 Green Ext Time (p_c), s 1.8 1.9 3.4 Intersection Summary HCM 6th Ctrl Delay 23.7			1.0	21.1					
V/C Ratio(X) 0.70 0.30 0.48 0.47 Avail Cap(c_a), veh/h 407 1112 1112 1236 HCM Platoon Ratio 1.00 1.00 0.33 0.33 1.00 1.00 Upstream Filter(I) 1.00 1.00 0.91 0.00 1.00 0.00 Uniform Delay (d), s/veh 29.8 11.2 25.6 0.0 22.4 0.0 Incr Delay (d2), s/veh 4.6 0.2 0.3 0.0 1.3 0.0 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Wile BackOfQ(50%),veh/ln 5.5 3.1 10.6 0.0 4.9 0.0 Unsig. Movement Delay, s/veh 0.0 0.0 23.7 0.0 LnGrp LOS C B C C Approach Vol, veh/h 553 488 587 Approach LOS C C C C C C C Timer - Assigned Phs 4 6 8 Phs Duration (G+Y+Rc), s 53.3 36.7			1014	1014	1.00		1.00		1,145,0
Avail Cap(c_a), veh/h									
HCM Platoon Ratio 1.00 1.00 0.33 0.33 1.00 1.00 Upstream Filter(I) 1.00 1.00 0.91 0.00 1.00 0.00 Uniform Delay (d), s/veh 29.8 11.2 25.6 0.0 22.4 0.0 Incr Delay (d2), s/veh 4.6 0.2 0.3 0.0 1.3 0.0 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Wile BackOfQ(50%),veh/ln 5.5 3.1 10.6 0.0 4.9 0.0 Unsig. Movement Delay, s/veh 21.9 25.9 0.0 23.7 0.0 LnGrp Delay(d),s/veh 34.4 11.4 25.9 0.0 23.7 0.0 LnGrp LOS C B C C C Approach Vol, veh/h 553 488 587 Approach LOS C C C Timer - Assigned Phs 4 6 8 Phs Duration (G+Y+Rc), s 53.3 36.7 53.3 Max Green Setting (Gmax), s 53.5 27.5 53.5							0.152-6-34		
Upstream Filter(I) 1.00 1.00 0.91 0.00 1.00 0.00 Uniform Delay (d), s/veh 29.8 11.2 25.6 0.0 22.4 0.0 Incr Delay (d2), s/veh 4.6 0.2 0.3 0.0 1.3 0.0 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 %ile BackOfQ(50%),veh/ln 5.5 3.1 10.6 0.0 4.9 0.0 Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh 34.4 11.4 25.9 0.0 23.7 0.0 LnGrp LOS C B C C Approach Vol, veh/h 553 488 587 Approach Delay, s/veh 21.9 25.9 23.7 Approach LOS C C C Timer - Assigned Phs 4 6 8 Phs Duration (G+Y+Rc), s 53.3 36.7 53.3 Change Period (Y+Rc), s 4.5 4.5 Max Green Setting (Gmax), s 53.5 27.5 53.5 Max Q Clear Time (g_c+I1), s 47.0 13.8 23.1 Green Ext Time (p_c), s 1.8 1.9 3.4 Intersection Summary HCM 6th Ctrl Delay 23.7					0.33		1.00		
Uniform Delay (d), s/veh 29.8 11.2 25.6 0.0 22.4 0.0 Incr Delay (d2), s/veh 4.6 0.2 0.3 0.0 1.3 0.0 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.									
Incr Delay (d2), s/veh 4.6 0.2 0.3 0.0 1.3 0.0 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 %ile BackOfQ(50%),veh/ln 5.5 3.1 10.6 0.0 4.9 0.0 Unsig. Movement Delay, s/veh 21.9 25.9 0.0 23.7 0.0 LnGrp LOS C B C C Approach Vol, veh/h 553 488 587 Approach Delay, s/veh 21.9 25.9 23.7 Approach LOS C C C Timer - Assigned Phs 4 6 8 Phs Duration (G+Y+Rc), s 53.3 36.7 53.3 Change Period (Y+Rc), s 4.5 4.5 4.5 Max Green Setting (Gmax), s 53.5 27.5 53.5 Max Q Clear Time (g_c+l1), s 47.0 13.8 23.1 Green Ext Time (p_c), s 1.8 1.9 3.4 Intersection Summary 40.0 10.0 10.0<									
Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 %ile BackOfQ(50%),veh/ln 5.5 3.1 10.6 0.0 4.9 0.0 Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh 34.4 11.4 25.9 0.0 23.7 0.0 LnGrp LOS C B C C Approach Vol, veh/h 553 488 587 Approach Delay, s/veh 21.9 25.9 23.7 Approach LOS C C C C C C C C C C C C C C C C C C C									
%ile BackOfQ(50%),veh/ln 5.5 3.1 10.6 0.0 4.9 0.0 Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh 34.4 11.4 25.9 0.0 23.7 0.0 LnGrp LOS C B C C Approach Vol, veh/h 553 488 587 Approach Delay, s/veh 21.9 25.9 23.7 Approach LOS C C C Timer - Assigned Phs 4 6 8 Phs Duration (G+Y+Rc), s 53.3 36.7 53.3 Change Period (Y+Rc), s 4.5 4.5 4.5 Max Green Setting (Gmax), s 53.5 27.5 53.5 Max Q Clear Time (g_c+l1), s 47.0 13.8 23.1 Green Ext Time (p_c), s 1.8 1.9 3.4 Intersection Summary HCM 6th Ctrl Delay 23.7									
Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh 34.4 11.4 25.9 0.0 23.7 0.0 LnGrp LOS C B C C Approach Vol, veh/h 553 488 587 Approach Delay, s/veh 21.9 25.9 23.7 Approach LOS C C C Timer - Assigned Phs 4 6 8 Phs Duration (G+Y+Rc), s 53.3 36.7 53.3 Change Period (Y+Rc), s 4.5 4.5 Max Green Setting (Gmax), s 53.5 27.5 53.5 Max Q Clear Time (g_c+I1), s 47.0 13.8 23.1 Green Ext Time (p_c), s 1.8 1.9 3.4 Intersection Summary HCM 6th Ctrl Delay 23.7									20/11
LnGrp Delay(d),s/veh 34.4 11.4 25.9 0.0 23.7 0.0 LnGrp LOS C B C C Approach Vol, veh/h 553 488 587 Approach Delay, s/veh 21.9 25.9 23.7 Approach LOS C C C C C C C Timer - Assigned Phs 4 6 8 Phs Duration (G+Y+Rc), s 53.3 36.7 53.3 Change Period (Y+Rc), s 4.5 4.5 4.5 Max Green Setting (Gmax), s 53.5 27.5 53.5 Max Q Clear Time (g_c+l1), s 47.0 13.8 23.1 Green Ext Time (p_c), s 1.8 1.9 3.4 Intersection Summary HCM 6th Ctrl Delay 23.7			5.1	10.0	3.0	1,0	3.0		
LnGrp LOS C B C C Approach Vol, veh/h 553 488 587 Approach Delay, s/veh 21.9 25.9 23.7 Approach LOS C C C Timer - Assigned Phs 4 6 8 Phs Duration (G+Y+Rc), s 53.3 36.7 53.3 Change Period (Y+Rc), s 4.5 4.5 4.5 Max Green Setting (Gmax), s 53.5 27.5 53.5 Max Q Clear Time (g_c+l1), s 47.0 13.8 23.1 Green Ext Time (p_c), s 1.8 1.9 3.4 Intersection Summary HCM 6th Ctrl Delay 23.7			114	25.9	0.0	23.7	0.0		
Approach Vol, veh/h 553 488 587 Approach Delay, s/veh 21.9 25.9 23.7 Approach LOS C C C Timer - Assigned Phs 4 6 8 Phs Duration (G+Y+Rc), s 53.3 36.7 53.3 Change Period (Y+Rc), s 4.5 4.5 4.5 Max Green Setting (Gmax), s 53.5 27.5 53.5 Max Q Clear Time (g_c+l1), s 47.0 13.8 23.1 Green Ext Time (p_c), s 1.8 1.9 3.4 Intersection Summary 23.7					3.0		3.0	and the state of t	
Approach Delay, s/veh 21.9 25.9 23.7 Approach LOS C C C Timer - Assigned Phs 4 6 8 Phs Duration (G+Y+Rc), s 53.3 36.7 53.3 Change Period (Y+Rc), s 4.5 4.5 4.5 Max Green Setting (Gmax), s 53.5 27.5 53.5 Max Q Clear Time (g_c+l1), s 47.0 13.8 23.1 Green Ext Time (p_c), s 1.8 1.9 3.4 Intersection Summary HCM 6th Ctrl Delay 23.7					y ny fatoa				
Approach LOS C C Timer - Assigned Phs 4 6 8 Phs Duration (G+Y+Rc), s 53.3 36.7 53.3 Change Period (Y+Rc), s 4.5 4.5 4.5 Max Green Setting (Gmax), s 53.5 27.5 53.5 Max Q Clear Time (g_c+l1), s 47.0 13.8 23.1 Green Ext Time (p_c), s 1.8 1.9 3.4 Intersection Summary HCM 6th Ctrl Delay 23.7		A TOP SHAPE					-		
Timer - Assigned Phs 4 6 8 Phs Duration (G+Y+Rc), s 53.3 36.7 53.3 Change Period (Y+Rc), s 4.5 4.5 4.5 Max Green Setting (Gmax), s 53.5 27.5 53.5 Max Q Clear Time (g_c+l1), s 47.0 13.8 23.1 Green Ext Time (p_c), s 1.8 1.9 3.4 Intersection Summary HCM 6th Ctrl Delay 23.7					Property.				
Phs Duration (G+Y+Rc), s 53.3 36.7 53.3 Change Period (Y+Rc), s 4.5 4.5 4.5 Max Green Setting (Gmax), s 53.5 27.5 53.5 Max Q Clear Time (g_c+l1), s 47.0 13.8 23.1 Green Ext Time (p_c), s 1.8 1.9 3.4 Intersection Summary HCM 6th Ctrl Delay 23.7		ESCHIOLIS .			1		6	ρ	
Change Period (Y+Rc), s 4.5 4.5 Max Green Setting (Gmax), s 53.5 27.5 53.5 Max Q Clear Time (g_c+l1), s 47.0 13.8 23.1 Green Ext Time (p_c), s 1.8 1.9 3.4 Intersection Summary HCM 6th Ctrl Delay 23.7		c	Kerk-ter	the same					
Max Green Setting (Gmax), s 53.5 27.5 53.5 Max Q Clear Time (g_c+l1), s 47.0 13.8 23.1 Green Ext Time (p_c), s 1.8 1.9 3.4 Intersection Summary HCM 6th Ctrl Delay 23.7			District Services	Marie Service		The Carlo			
Max Q Clear Time (g_c+I1), s 47.0 13.8 23.1 Green Ext Time (p_c), s 1.8 1.9 3.4 Intersection Summary HCM 6th Ctrl Delay 23.7									h i i -c-
Green Ext Time (p_c), s 1.8 1.9 3.4 Intersection Summary HCM 6th Ctrl Delay 23.7						Distance of the last			3/11/5
Intersection Summary HCM 6th Ctrl Delay 23.7	(0)	11), 5	CHAR	A STATE OF THE STA					
HCM 6th Ctrl Delay 23.7		No Regis	manufer of the second	ALUE DE LE	1.0	MATERIAL STATE	1.8	5.4	
HCIM 6th LOS C									
	HCM 6th LOS			С					

	ⅉ	-	←		1	1		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		The same
Lane Configurations	7	^	^	7	44	71		
Traffic Volume (veh/h)	348	396	328	163	588	39		- 75
Future Volume (veh/h)	348	396	328	163	588	39		
Initial Q (Qb), veh	0	0	0	0	0	0		
Ped-Bike Adj(A_pbT)	1.00	0	U	1.00	1.00	1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	Second and a second	
Work Zone On Approach		No	No	1.00	No	1.00		
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870		
Adj Flow Rate, veh/h	362	412	342	0	612	0		
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96		
Percent Heavy Veh, %	2	2	2	2	2	2		15.7
Cap, veh/h	479	1017	1017		1232			
Arrive On Green	0.54	0.54	0.18	0.00	0.36	0.00		
Sat Flow, veh/h	1039	1870	1870	1585	3456	1585		12 9 3
Grp Volume(v), veh/h	362	412	342	0	612	0		
Grp Sat Flow(s), veh/h/ln		1870	1870	1585	1728	1585		
Q Serve(g_s), s	29.7	11.6	14.4	0.0	12.5	0.0		
Cycle Q Clear(g_c), s	44.0	11.6	14.4	0.0	12.5	0.0		
Prop In Lane	1.00	1017	1017	1.00	1.00	1.00		
Lane Grp Cap(c), veh/h	479	1017	1017		1232	18848	HS 1919 A STATE OF	
V/C Ratio(X)	0.76	0.41	0.34		0.50			
Avail Cap(c_a), veh/h	543	1133	1133	0.00	1232	4.00		
HCM Platoon Ratio	1.00	1.00	0.33	0.33	1.00	1.00		
Upstream Filter(I)	1.00	1.00	0.90	0.00	1.00	0.00		
Uniform Delay (d), s/veh		12.0	22.8	0.0	22.6	0.0		
Incr Delay (d2), s/veh	5.3	0.3	0.2	0.0	1.4	0.0		
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0		
%ile BackOfQ(50%),veh		4.6	7.2	0.0	5.2	0.0		
Unsig. Movement Delay,		740						
LnGrp Delay(d),s/veh	31.5	12.3	22.9	0.0	24.1	0.0		
LnGrp LOS	С	В	С		С			
Approach Vol, veh/h		774	342		612			
Approach Delay, s/veh		21.3	22.9		24.1			
Approach LOS		C	C		C			
Timer - Assigned Phs	(18)		TO SERVICE	4		6	8	
Phs Duration (G+Y+Rc),	c			53.4		36.6	53.4	-
Change Period (Y+Rc), s		DE SOCIETA	335723/	4.5	at the same of	4.5	4.5	
Max Green Setting (Gma		(constant		54.5		26.5	54.5	1000
				46.0	E 105155	14.5	16.4	
Max Q Clear Time (g_c+ Green Ext Time (p c), s	11), 5		CALLES TO	2.9		14.5		F
= /				2.9		1.9	2.3	
Intersection Summary					BLAK			
HCM 6th Ctrl Delay			22.6					
HCM 6th LOS			С					
Notes	Party Co.		MI TO SE	905755	NISSE N	RESERVE OF		(3) WAS

Movement EBL EBT WBT WBR SBL SBR Lane Configurations
Lane Configurations 7
Traffic Volume (veh/h) 222 270 447 65 499 99
Initial Q (Qb), veh 0 0 0 0 0
Ped-Bike Adj(A_pbT) 1.00 1.00 1.00 1.00
Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00
Work Zone On Approach No No No
Adj Sat Flow, veh/h/ln 1870 1870 1870 1870 1870
Adj Flow Rate, veh/h 261 318 526 0 587 0
Peak Hour Factor 0.85 0.85 0.85 0.85 0.85
Percent Heavy Veh, % 2 2 2 2 2 2
Cap, veh/h 367 1082 1082 1111
Arrive On Green 0.58 0.58 0.19 0.00 0.32 0.00
Sat Flow, veh/h 877 1870 1870 1585 3456 1585
Grp Volume(v), veh/h 261 318 526 0 587 0
Grp Sat Flow(s), veh/h/ln 877 1870 1870 1585 1728 1585
Q Serve(g_s), s 25.6 7.8 22.6 0.0 12.5 0.0
(02 //
· · · · · · · · · · · · · · · · · · ·
No. of the state o
V/C Ratio(X) 0.71 0.29 0.49 0.53
Avail Cap(c_a), veh/h 411 1174 1174 1111 HCM Platoon Ratio 1.00 1.00 0.33 0.33 1.00 1.00
Upstream Filter(I) 1.00 1.00 0.90 0.00 1.00 0.00
Uniform Delay (d), s/veh 29.0 9.6 24.5 0.0 25.0 0.0
Incr Delay (d2), s/veh 5.0 0.1 0.3 0.0 1.8 0.0
Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0
%ile BackOfQ(50%),veh/ln 5.7 3.0 11.3 0.0 5.3 0.0
Unsig. Movement Delay, s/veh
LnGrp Delay(d),s/veh 33.9 9.8 24.8 0.0 26.8 0.0
LnGrp LOS C A C C
Approach Vol, veh/h 579 526 587
Approach Delay, s/veh 20.7 24.8 26.8
Approach LOS C C
Timer - Assigned Phs 4 6 8
Phs Duration (G+Y+Rc), s 56.6 33.4 56.6
Change Period (Y+Rc), s 4.5 4.5 4.5
Max Green Setting (Gmax), s 56.5 24.5 56.5
Max Q Clear Time (g_ c+l1), s 50.2 14.5 24.6
Green Ext Time (p. c), s 1.9 1.7 3.8
Intersection Summary HCM 6th Ctrl Delay 24.1
HCM 6th LOS C
Notes

	ᄼ	-	-		1	1	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	'n	1	1	7	ሻሻ	7	
Traffic Volume (veh/h)	372	435	351	163	588	57	
Future Volume (veh/h)	372	435	351	163	588	57	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00			1.00	1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	STATE OF THE
Work Zone On Approach		No	No		No		
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	
Adj Flow Rate, veh/h	388	453	366	0	612	0	
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	
Percent Heavy Veh, %	2	2	2	2	2	2	
Cap, veh/h	501	1091	1091		1095		
Arrive On Green	0.58	0.58	0.19	0.00	0.32	0.00	
Sat Flow, veh/h	1016	1870	1870	1585	3456	1585	
Grp Volume(v), veh/h	388	453	366	0	612	0	
Grp Sat Flow(s), veh/h/ln		1870	1870	1585	1728	1585	
Q Serve(g_s), s	32.6	12.0	15.2	0.0	13.2	0.0	
Cycle Q Clear(g_c), s	47.8	12.0	15.2	0.0	13.2	0.0	
Prop In Lane	1.00			1.00	1.00	1.00	
Lane Grp Cap(c), veh/h	501	1091	1091		1095	SHOWS IN	
V/C Ratio(X)	0.77	0.42	0.34		0.56		
Avail Cap(c_a), veh/h	546	1174	1174		1095		
HCM Platoon Ratio	1.00	1.00	0.33	0.33	1.00	1.00	
Upstream Filter(I)	1.00	1.00	0.89	0.00	1.00	0.00	
Uniform Delay (d), s/veh	25.0	10.3	21.3	0.0	25.5	0.0	
Incr Delay (d2), s/veh	6.3	0.3	0.2	0.0	2.1	0.0	
Initial Q Delay(d3),s/veh		0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh		4.6	7.6	0.0	5.6	0.0	
Unsig. Movement Delay,							
LnGrp Delay(d),s/veh	31.3	10.6	21.4	0.0	27.6	0.0	
LnGrp LOS	С	В	С		С		
Approach Vol, veh/h		841	366		612		
Approach Delay, s/veh		20.1	21.4		27.6		
Approach LOS		С	С		С		
Timer - Assigned Phs				4	20,000	6	8
Phs Duration (G+Y+Rc),	S	DEPTH N	NE PORT	57.0	U de Cara	33.0	57.0
Change Period (Y+Rc),				4.5		4.5	4.5
Max Green Setting (Gma		essueni	18211	56.5		24.5	56.5
Max Q Clear Time (g_c+			u erandrik	49.8	4	15.2	17.2
Green Ext Time (p_c), s			4645	2.7		1.7	2.5
Intersection Summary	CC III	No.	200000	155101			
HCM 6th Ctrl Delay		SEED FOR	22.9				AND DESCRIPTION OF
HCM 6th LOS			ZZ.3		1-21-21-2		

Intersection: 8: Calabasas Road & U.S. Highway 101 Ramps

Movement	EB	EB	WB	SB	SB
Directions Served	L	Т	Т	L	L
Maximum Queue (ft)	167	159	160	115	93
Average Queue (ft)	126	95	154	77	65
95th Queue (ft)	174	180	168	122	101
Link Distance (ft)		2432	1485	104	104
Upstream Blk Time (%)				5	0
Queuing Penalty (veh)				0	0
Storage Bay Dist (ft)	150				
Storage Blk Time (%)	11	3			
Queuing Penalty (veh)	26	4			

Scenario 1

Movement	EB	EB	WB	WB	SB	SB
Directions Served	L	Т	Т	R	L	L
Maximum Queue (ft)	173	346	208	53	119	119
Average Queue (ft)	112	166	132	11	103	104
95th Queue (ft)	190	326	238	46	148	147
Link Distance (ft)		2432	1485	1485	104	104
Upstream Blk Time (%)					5	11
Queuing Penalty (veh)					0	0
Storage Bay Dist (ft)	150					
Storage Blk Time (%)	3	9				
Queuing Penalty (veh)	11	25				

Scenario 1 SimTraffic Report

Movement	EB	EB	WB	SB	SB	
Directions Served	L	Т	Т	L	L	
Maximum Queue (ft)	174	226	278	119	119	
Average Queue (ft)	116	126	192	80	83	
95th Queue (ft)	177	213	292	118	140	
Link Distance (ft)		2432	1485	104	104	
Upstream Blk Time (%)				1	4	
Queuing Penalty (veh)				0	0	
Storage Bay Dist (ft)	150					
Storage Blk Time (%)	7	5				
Queuing Penalty (veh)	18	8				

SimTraffic Report Scenario 1

Movement	EB	ED	WB	SB	SB
Movement	EB	EB	VVD	SD	SB
Directions Served	L	Т	Т	L	L
Maximum Queue (ft)	174	280	180	119	119
Average Queue (ft)	159	184	154	109	88
95th Queue (ft)	194	303	180	126	152
Link Distance (ft)		2432	1485	104	104
Upstream Blk Time (%)				12	9
Queuing Penalty (veh)				0	0
Storage Bay Dist (ft)	150				
Storage Blk Time (%)	15	6			
Queuing Penalty (veh)	59	18			

Movement	EB	EB	WB	SB	SB	
Directions Served	L	Т	Т	L	L	
Maximum Queue (ft)	170	199	223	119	119	
Average Queue (ft)	132	141	142	70	96	
95th Queue (ft)	196	213	217	121	142	
Link Distance (ft)		2412	1485	104	104	
Upstream Blk Time (%)				8	7	
Queuing Penalty (veh)				0	0	
Storage Bay Dist (ft)	150					
Storage Blk Time (%)	4	2				
Queuing Penalty (veh)	9	5				

Scenario 1 SimTraffic Report
Page 1

Movement	EB	EB	WB	SB	SB
Directions Served	L	Т	Т	L	L
Maximum Queue (ft)	174	495	136	143	119
Average Queue (ft)	165	310	101	121	105
95th Queue (ft)	191	543	131	139	130
Link Distance (ft)		2412	1485	104	104
Upstream Blk Time (%)				26	12
Queuing Penalty (veh)				0	0
Storage Bay Dist (ft)	150				
Storage Blk Time (%)	27	7			
Queuing Penalty (veh)	107	23			

EB	EB	WB	SB	SB	
L	Т	T	L	L	
174	328	200	119	119	
132	195	167	99	94	
212	327	206	140	132	
	2412	1485	104	104	
			16	12	
			0	0	
150					
11	9				
28	20				
	L 174 132 212	L T 174 328 132 195 212 327 2412 150 11 9	L T T 174 328 200 132 195 167 212 327 206 2412 1485 150 11 9	L T T L 174 328 200 119 132 195 167 99 212 327 206 140 2412 1485 104 4 16 0 150 11 9	L T T L L 174 328 200 119 119 132 195 167 99 94 212 327 206 140 132 2412 1485 104 104 104 150 0 0 150 11 9

Scenario 1

Movement	EB	EB	WB	WB	SB	SB
Directions Served	L	Т	Т	R	L	L
Maximum Queue (ft)	174	376	171	53	119	119
Average Queue (ft)	139	224	132	11	103	103
95th Queue (ft)	203	401	167	46	136	135
Link Distance (ft)		2412	1485	1485	104	104
Upstream Blk Time (%)					13	9
Queuing Penalty (veh)					0	0
Storage Bay Dist (ft)	150					
Storage Blk Time (%)	14	6				
Queuing Penalty (veh)	63	22				

SimTraffic Report Page 1 Scenario 1

	۶	-	*	•	-	•	1	†	~	1	ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	个 个	7	M	^	7	7	ተ ተጉ		7	414	7
Traffic Volume (vph)	75	313	319	16	101	200	77	690	26	103	471	255
Future Volume (vph)	75	313	319	16	101	200	77	690	26	103	471	255
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5		4.5	4.5	4.5
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.91		0.91	0.91	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.99		1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1770	3539	1583	1770	3539	1583	1770	5058		1610	3387	1583
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (perm)	1770	3539	1583	1770	3539	1583	1770	5058		1610	3387	1583
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	83	348	354	18	112	222	86	767	29	114	523	283
RTOR Reduction (vph)	0	0	281	0	0	190	0	4	0	0	0	215
Lane Group Flow (vph)	83	348	73	18	112	32	86	792	0	103	534	68
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Split	NA		Split	NA	Perm
Protected Phases	7	4		3	8		2	2		6	6	
Permitted Phases		2.85	4			8	-	45555			9.75	6
Actuated Green, G (s)	7.5	18.6	18.6	2.0	13.1	13.1	29.9	29.9		21.5	21.5	21.5
Effective Green, g (s)	7.5	18.6	18.6	2.0	13.1	13.1	29.9	29.9		21.5	21.5	21.5
Actuated g/C Ratio	0.08	0.21	0.21	0.02	0.15	0.15	0.33	0.33		0.24	0.24	0.24
Clearance Time (s)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5		4.5	4.5	4.5
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	147	731	327	39	515	230	588	1680		384	809	378
v/s Ratio Prot	c0.05	c0.10		0.01	0.03		0.05	c0.16		0.06	c0.16	
v/s Ratio Perm			0.05			0.02						0.04
v/c Ratio	0.56	0.48	0.22	0.46	0.22	0.14	0.15	0.47		0.27	0.66	0.18
Uniform Delay, d1	39.7	31.4	29.7	43.5	33.9	33.5	21.1	23.8		27.9	30.9	27.2
Progression Factor	0.96	1.01	2.49	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	4.8	0.5	0.3	8.4	0.2	0.3	0.5	1.0		1.7	4.2	1.0
Delay (s)	43.0	32.4	74.2	51.9	34.1	33.8	21.6	24.7		29.6	35.2	28.3
Level of Service	D	C	E	D	C	C	C	С		C	D	C
Approach Delay (s)		52.3			34.8			24.4			32.4	
Approach LOS		D			C			C			С	
Intersection Summary												
HCM 2000 Control Dela	у		35.6	1	ICM 20	00 Leve	of Serv	vice	D	Physics		
HCM 2000 Volume to C		ratio	0.55									
Actuated Cycle Length (90.0	5	Sum of I	ost time	(s)		18.0			
Intersection Capacity Ut			51.5%			el of Ser			Α			
Analysis Davis d (main)			45			15 10 10 10 10 10						

15

Analysis Period (min) c Critical Lane Group

	1	-	*	•	•	1	4	†	~	>	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	^	7	7	44	7	7	ተተ _ጉ		7	414	7
Traffic Volume (vph)	97	474	270	52	124	339	49	579	33	189	337	282
Future Volume (vph)	97	474	270	52	124	339	49	579	33	189	337	282
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5		4.5	4.5	4.5
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.91		0.91	0.91	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.99		1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1770	3539	1583	1770	3539	1583	1770	5044		1610	3381	1583
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (perm)	1770	3539	1583	1770	3539	1583	1770	5044		1610	3381	1583
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	103	504	287	55	132	361	52	616	35	201	359	300
RTOR Reduction (vph)	0	0	222	0	0	292	0	6	0	0	0	235
Lane Group Flow (vph)	103	504	65	55	132	69	52	645	0	181	379	65
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Split	NA		Split	NA	Perm
Protected Phases	7	4		3	8		2	2		6	6	
Permitted Phases			4			8						6
Actuated Green, G (s)	8.6	20.3	20.3	5.6	17.3	17.3	26.6	26.6		19.5	19.5	19.5
Effective Green, g (s)	8.6	20.3	20.3	5.6	17.3	17.3	26.6	26.6		19.5	19.5	19.5
Actuated g/C Ratio	0.10	0.23	0.23	0.06	0.19	0.19	0.30	0.30		0.22	0.22	0.22
Clearance Time (s)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5		4.5	4.5	4.5
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	169	798	357	110	680	304	523	1490		348	732	342
v/s Ratio Prot	c0.06	c0.14		0.03	0.04		0.03	c0.13		c0.11	0.11	
v/s Ratio Perm			0.04			0.04						0.04
v/c Ratio	0.61	0.63	0.18	0.50	0.19	0.23	0.10	0.43		0.52	0.52	0.19
Uniform Delay, d1	39.1	31.5	28.1	40.8	30.5	30.7	23.0	25.6		31.1	31.1	28.8
Progression Factor	0.95	0.96	2.03	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	5.9	1.6	0.2	3.5	0.1	0.4	0.4	0.9		5.5	2.6	1.2
Delay (s)	43.0	31.7	57.4	44.4	30.6	31.1	23.4	26.5		36.6	33.7	30.0
Level of Service	D	С	E	D	С	C	C	С		D	С	C
Approach Delay (s)		41.2			32.3			26.3			33.0	
Approach LOS		D			С			С			С	
Intersection Summary												
HCM 2000 Control Dela	у		33.8	H	ICM 20	00 Leve	of Serv	vice	C			
HCM 2000 Volume to C	apacity	ratio	0.54									
Actuated Cycle Length (90.0			ost time			18.0			
Intersection Capacity Ut	ilization		54.1%	10	CU Lev	el of Ser	vice		Α			
Analysis Period (min)			15									

Existing PM Peak Hour

Critical Lane Group

	۶	-	*	•	•	1	4	†	1	1	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	N,	44	7	7	44	7"	ሻ	ተ ተጉ		7	474	7"
Traffic Volume (vph)	85	315	321	16	104	200	80	690	26	103	471	281
Future Volume (vph)	85	315	321	16	104	200	80	690	26	103	471	281
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5		4.5	4.5	4.5
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.91		0.91	0.91	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.99		1.00	1.00	0.85
FIt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1770	3539	1583	1770	3539	1583	1770	5058		1610	3387	1583
FIt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (perm)	1770	3539	1583	1770	3539	1583	1770	5058		1610	3387	1583
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	94	350	357	18	116	222	89	767	29	114	523	312
RTOR Reduction (vph)	0	0	282	0	0	190	0	4	0	0	0	244
Lane Group Flow (vph)	94	350	75	18	116	32	89	792	0	103	534	68
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Split	NA		Split	NA	Perm
Protected Phases	7	4		3	8		2	2		6	6	
Permitted Phases			4			8						6
Actuated Green, G (s)	8.6	18.8	18.8	2.8	13.0	13.0	30.9	30.9		19.5	19.5	19.5
Effective Green, g (s)	8.6	18.8	18.8	2.8	13.0	13.0	30.9	30.9		19.5	19.5	19.5
Actuated g/C Ratio	0.10	0.21	0.21	0.03	0.14	0.14	0.34	0.34		0.22	0.22	0.22
Clearance Time (s)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5		4.5	4.5	4.5
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	169	739	330	55	511	228	607	1736		348	733	342
v/s Ratio Prot	c0.05	c0.10		0.01	0.03		0.05	c0.16		0.06	c0.16	
v/s Ratio Perm			0.05			0.02						0.04
v/c Ratio	0.56	0.47	0.23	0.33	0.23	0.14	0.15	0.46		0.30	0.73	0.20
Uniform Delay, d1	38.9	31.3	29.6	42.7	34.1	33.6	20.4	23.0		29.5	32.8	28.8
Progression Factor	0.93	1.00	2.43	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	3.8	0.5	0.3	3.5	0.2	0.3	0.5	0.9		2.2	6.3	1.3
Delay (s)	39.9	31.7	72.2	46.1	34.3	33.9	20.9	23.9		31.7	39.1	30.1
Level of Service	D	C	E	D	C	C	C	C		C	D	C
Approach Delay (s)		50.7			34.6			23.6			35.3	
Approach LOS		D			C			C			D	
Intersection Summary												
HCM 2000 Control Dela	•		35.9	H	ICM 20	00 Leve	of Serv	vice	D			
HCM 2000 Volume to C	apacity	ratio	0.56									
Actuated Cycle Length (90.0			ost time			18.0			
Intersection Capacity Ut	ilization		51.5%	10	CU Leve	el of Ser	vice		Α			
Analysis Period (min)			15									
c Critical Lane Group												

	≯	-	*	•	←	•	4	†	-	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	44	7	7	44	7	7	ተ ተጉ		7	414	7
Traffic Volume (vph)	129	478	273	52	127	339	51	579	33	189	337	300
Future Volume (vph)	129	478	273	52	127	339	51	579	33	189	337	300
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5		4.5	4.5	4.5
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.91		0.91	0.91	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.99		1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1770	3539	1583	1770	3539	1583	1770	5044		1610	3381	1583
FIt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (perm)	1770	3539	1583	1770	3539	1583	1770	5044		1610	3381	1583
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	137	509	290	55	135	361	54	616	35	201	359	319
RTOR Reduction (vph)	0	0	221	0	0	296	0	6	0	0	0	257
Lane Group Flow (vph)	137	509	69	55	135	65	54	645	0	181	379	62
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Split	NA		Split	NA	Perm
Protected Phases	7	4		3	8		2	2		6	6	
Permitted Phases			4			8						6
Actuated Green, G (s)	11.9	21.3	21.3	6.7	16.1	16.1	26.5	26.5		17.5	17.5	17.5
Effective Green, g (s)	11.9	21.3	21.3	6.7	16.1	16.1	26.5	26.5		17.5	17.5	17.5
Actuated g/C Ratio	0.13	0.24	0.24	0.07	0.18	0.18	0.29	0.29		0.19	0.19	0.19
Clearance Time (s)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5		4.5	4.5	4.5
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	234	837	374	131	633	283	521	1485		313	657	307
v/s Ratio Prot	c0.08	c0.14		0.03	0.04		0.03	c0.13		c0.11	0.11	
v/s Ratio Perm			0.04			0.04						0.04
v/c Ratio	0.59	0.61	0.18	0.42	0.21	0.23	0.10	0.43		0.58	0.58	0.20
Uniform Delay, d1	36.7	30.6	27.4	39.8	31.5	31.6	23.1	25.7		32.9	32.9	30.4
Progression Factor	0.93	0.96	1.93	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	3.5	1.2	0.2	2.2	0.2	0.4	0.4	0.9		7.6	3.7	1.5
Delay (s)	37.7	30.5	53.0	42.0	31.7	32.0	23.5	26.6		40.5	36.6	31.9
Level of Service	D	C	D	D	С	C	C	C		D	D	C
Approach Delay (s)		38.5			33.0			26.4			35.7	
Approach LOS		D			C			С			D	
Intersection Summary												
HCM 2000 Control Dela			33.9	ŀ	ICM 20	00 Leve	of Serv	vice	C			
HCM 2000 Volume to C		ratio	0.55									
Actuated Cycle Length (90.0			ost time			18.0			
Intersection Capacity Ut	ilization		54.2%	I	CU Lev	el of Ser	vice		Α			
Analysis Period (min)			15									(B) 11-5

c Critical Lane Group

	۶	-	*	1	-	•	4	†	~	1	ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	^	7	7	44	77	ħ	ተተ _ጉ		7	474	77
Traffic Volume (vph)	89	331	329	17	130	208	99	718	27	111	485	318
Future Volume (vph)	89	331	329	17	130	208	99	718	27	111	485	318
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5		4.5	4.5	4.5
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.91		0.91	0.91	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00 •			1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1770	3539	1583	1770	3539	1583	1770	5058		1610	3387	1583
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (perm)	1770	3539	1583	1770	3539	1583	1770	5058		1610	3387	1583
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	99	368	366	19	144	231	110	798	30	123	539	353
RTOR Reduction (vph)	0	0	287	0	0	197	0	4	0	0	0	284
Lane Group Flow (vph)	99	368	79	19	144	34	110	824	0	111	551	69
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Split	NA		Split	NA	Perm
Protected Phases	7	4		3	8		2	2		6	6	
Permitted Phases			4			8						6
Actuated Green, G (s)	9.1	19.4	19.4	3.0	13.3	13.3	32.1	32.1		17.5	17.5	17.5
Effective Green, g (s)	9.1	19.4	19.4	3.0	13.3	13.3	32.1	32.1		17.5	17.5	17.5
Actuated g/C Ratio	0.10	0.22	0.22	0.03	0.15	0.15	0.36	0.36		0.19	0.19	0.19
Clearance Time (s)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5		4.5	4.5	4.5
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	178	762	341	59	522	233	631	1804		313	658	307
v/s Ratio Prot	c0.06	c0.10		0.01	0.04		0.06	c0.16		0.07	c0.16	
v/s Ratio Perm			0.05			0.02						0.04
v/c Ratio	0.56	0.48	0.23	0.32	0.28	0.15	0.17	0.46		0.35	0.84	0.22
Uniform Delay, d1	38.5	30.9	29.1	42.5	34.1	33.4	19.9	22.2		31.4	34.9	30.5
Progression Factor	0.83	0.91	2.41	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	3.6	0.5	0.3	3.2	0.3	0.3	0.6	0.8		3.1	12.1	1.7
Delay (s)	35.6	28.5	70.7	45.7	34.4	33.7	20.5	23.1		34.5	47.0	32.2
Level of Service	D	C	E	D	C	C	С	С		С	D	C
Approach Delay (s)		47.9			34.5			22.8			40.5	
Approach LOS		D			C			C			D	
Intersection Summary												
HCM 2000 Control Dela			36.5	H	ICM 20	00 Leve	of Serv	rice	D			
HCM 2000 Volume to C		ratio	0.58									
Actuated Cycle Length (90.0			ost time			18.0			4
Intersection Capacity Ut	ılızation		56.2%	10	CU Leve	el of Ser	vice		В			
Analysis Period (min)			15									21/2/9

c Critical Lane Group

	۶	→	*	•	•	*	4	†	-	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	44	7	Y	44	77	7	ተ ተጉ		N,	474	77
Traffic Volume (vph)	125	505	282	54	160	357	61	597	27	206	355	337
Future Volume (vph)	125	505	282	54	160	357	61	597	27	206	355	337
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5		4.5	4.5	4.5
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.91		0.91	0.91	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.99		1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1770	3539	1583	1770	3539	1583	1770	5052		1610	3379	1583
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (perm)	1770	3539	1583	1770	3539	1583	1770	5052		1610	3379	1583
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	133	537	300	57	170	380	65	635	29	219	378	359
RTOR Reduction (vph)	0	0	228	0	0	310	0	5	0	0	0	289
Lane Group Flow (vph)	133	537	72	57	170	70	65	659	0	193	404	70
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Split	NA		Split	NA	Perm
Protected Phases	7	4		3	8		2	2		6	6	
Permitted Phases			4			8						6
Actuated Green, G (s)	11.6	21.5	21.5	6.7	16.6	16.6	26.3	26.3		17.5	17.5	17.5
Effective Green, g (s)	11.6	21.5	21.5	6.7	16.6	16.6	26.3	26.3		17.5	17.5	17.5
Actuated g/C Ratio	0.13	0.24	0.24	0.07	0.18	0.18	0.29	0.29		0.19	0.19	0.19
Clearance Time (s)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5		4.5	4.5	4.5
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	228	845	378	131	652	291	517	1476		313	657	307
v/s Ratio Prot	c0.08	c0.15		0.03	0.05		0.04	c0.13		c0.12	0.12	
v/s Ratio Perm			0.05			0.04						0.04
v/c Ratio	0.58	0.64	0.19	0.44	0.26	0.24	0.13	0.45		0.62	0.61	0.23
Uniform Delay, d1	36.9	30.7	27.3	39.8	31.4	31.3	23.4	25.9		33.2	33.2	30.6
Progression Factor	0.86	0.87	2.05	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	3.5	1.5	0.2	2.3	0.2	0.4	0.5	1.0		8.8	4.3	1.7
Delay (s)	35.2	28.1	56.2	42.1	31.7	31.8	23.9	26.9		42.0	37.4	32.3
Level of Service	D	C	E	D	C	C	C	C		D	D	C
Approach Delay (s)		37.8			32.7			26.6			36.4	
Approach LOS		D			C			С			D	
Intersection Summary									KATA!	HIER		
HCM 2000 Control Dela	у		33.9	F	ICM 20	00 Leve	of Serv	vice	C			
HCM 2000 Volume to C	apacity	ratio	0.58									
Actuated Cycle Length (s)		90.0	5	Sum of I	ost time	(s)		18.0			
Intersection Capacity Ut	ilization		55.8%	10	CU Lev	el of Ser	vice		В			
Analysis Period (min)			15									

c Critical Lane Group

	•	-	*	•	•	1	4	†	-	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	^	7	7	44	7	7	ተተ _ጉ		7	41>	7
Traffic Volume (vph)	99	333	331	17	133	208	102	718	27	111	485	344
Future Volume (vph)	99	333	331	17	133	208	102	718	27	111	485	344
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5		4.5	4.5	4.5
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.91		0.91	0.91	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.99		1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1770	3539	1583	1770	3539	1583	1770	5058		1610	3387	1583
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (perm)	1770	3539	1583	1770	3539	1583	1770	5058		1610	3387	1583
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	110	370	368	19	148	231	113	798	30	123	539	382
RTOR Reduction (vph)	0	0	287	0	0	197	0	4	0	0	0	312
Lane Group Flow (vph)	110	370	81	19	148	34	113	824	0	111	551	70
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Split	NA		Split	NA	Perm
Protected Phases	7	4		3	8		2	2		6	6	
Permitted Phases			4			8						6
Actuated Green, G (s)	9.6	19.7	19.7	3.0	13.1	13.1	32.8	32.8		16.5	16.5	16.5
Effective Green, g (s)	9.6	19.7	19.7	3.0	13.1	13.1	32.8	32.8		16.5	16.5	16.5
Actuated g/C Ratio	0.11	0.22	0.22	0.03	0.15	0.15	0.36	0.36		0.18	0.18	0.18
Clearance Time (s)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5		4.5	4.5	4.5
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	188	774	346	59	515	230	645	1843		295	620	290
v/s Ratio Prot	c0.06	c0.10		0.01	0.04		0.06	c0.16		0.07	c0.16	
v/s Ratio Perm			0.05			0.02						0.04
v/c Ratio	0.59	0.48	0.23	0.32	0.29	0.15	0.18	0.45		0.38	0.89	0.24
Uniform Delay, d1	38.3	30.7	28.9	42.5	34.3	33.6	19.4	21.7		32.2	35.9	31.4
Progression Factor	0.82	0.86	2.32	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	4.4	0.4	0.3	3.2	0.3	0.3	0.6	0.8		3.6	17.2	2.0
Delay (s)	35.8	26.8	67.3	45.7	34.6	33.9	20.0	22.5		35.9	53.1	33.4
Level of Service	D	C	E	D	C	С	C	С		D	D	C
Approach Delay (s)		45.5			34.7			22.2			44.0	
Approach LOS		D			C			C			D	
Intersection Summary												
HCM 2000 Control Dela	У		36.9	F	ICM 20	00 Leve	of Serv	/ice	D			
HCM 2000 Volume to C	apacity	ratio	0.59									
Actuated Cycle Length (90.0	5	Sum of I	ost time	(s)		18.0			
Intersection Capacity Ut			56.3%			el of Ser			В			
Analysis Period (min)			15									

	۶	→	•	1	—	1	1	†	~	1	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ħ	ተተ	7"	7	ተተ	7	7	ተተ _ጉ		ň	414	7"
Traffic Volume (vph)	157	509	285	54	163	357	63	597	27	206	355	355
Future Volume (vph)	157	509	285	54	163	357	63	597	27	206	355	355
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5		4.5	4.5	4.5
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.91		0.91	0.91	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.99		1.00	1.00	0.85
FIt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1770	3539	1583	1770	3539	1583	1770	5052		1610	3379	1583
FIt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (perm)	1770	3539	1583	1770	3539	1583	1770	5052		1610	3379	1583
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	167	541	303	57	173	380	67	635	29	219	378	378
RTOR Reduction (vph)	0	0	229	0	0	315	0	5	0	0	0	309
Lane Group Flow (vph)	167	541	74	57	173	65	67	659	0	193	404	69
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Split	NA		Split	NA	Perm
Protected Phases	7	4		3	8		2	2		6	6	
Permitted Phases			4			8						6
Actuated Green, G (s)	13.2	22.0	22.0	6.7	15.5	15.5	26.8	26.8		16.5	16.5	16.5
Effective Green, g (s)	13.2	22.0	22.0	6.7	15.5	15.5	26.8	26.8		16.5	16.5	16.5
Actuated g/C Ratio	0.15	0.24	0.24	0.07	0.17	0.17	0.30	0.30		0.18	0.18	0.18
Clearance Time (s)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5		4.5	4.5	4.5
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	259	865	386	131	609	272	527	1504		295	619	290
v/s Ratio Prot	c0.09	c0.15		0.03	0.05		0.04	c0.13		c0.12	0.12	
v/s Ratio Perm			0.05			0.04						0.04
v/c Ratio	0.64	0.63	0.19	0.44	0.28	0.24	0.13	0.44		0.65	0.65	0.24
Uniform Delay, d1	36.2	30.3	27.0	39.8	32.4	32.2	23.1	25.5		34.1	34.1	31.4
Progression Factor	0.88	0.84	1.93	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	5.0	1.3	0.2	2.3	0.3	0.5	0.5	0.9		10.8	5.3	1.9
Delay (s)	36.7	26.8	52.1	42.1	32.7	32.6	23.6	26.5		44.9	39.4	33.3
Level of Service	D	C	D	D	C	C	C	C		D	D	C
Approach Delay (s)		36.1			33.5			26.2			38.1	
Approach LOS		D			С			C			D	
Intersection Summary												
HCM 2000 Control Dela			34.0	F	ICM 20	00 Leve	of Serv	vice	C			
HCM 2000 Volume to C		ratio	0.59									
Actuated Cycle Length (90.0			ost time			18.0			
Intersection Capacity Ut	ilization		55.9%	[(CU Leve	el of Ser	vice		В			
Analysis Period (min)			15									

Critical Lane Group

CITY OF CALABAS	AS APPROVED) DEVELOPMEN	NT PROJECTS	

Figure 8 – Related Projects Map

Table 4 provides information related to related project with the corresponding traffic volumes at the study intersections:

Table 4 -Related Projects List & Trip Generation

#	Project Name	Location	Land Use	Size	Unit	Daily Trips		v	Veekday l	Peak Ho		
	Ivanic					Titps		AM			PM	
							In	Out	Total	In	Out	Total
1	The Park Apartments	24100 Park Sorrento	Residential/Commercial	107	DU	368	11	36	47	27	15	42
2	Calabasas Commons	4799 Commons Way	Residential/Commercial	202	DU	695	20	68	89	51	28	79
3	Kia Car Dealership	24460 Calabasas Rd	Commercial	47,944	Sq Ft	1335	56	47	103	58	69	127
4	Calabasas Auto Park	23823 Ventura Blvd	Commercial	31,683	Sq Ft	46	3	3	6	3	3	6
5	Hidden Terraces Specific Plan	Mureau Rd near Crummer Canyon Rd	Residential	180	DU	583	23	29	52	29	25	54
5	Hidden Terraces Specific Plan	Mureau Rd near Crummer Canyon Rd	Residential	83	Beds	216	12	6	18	12	15	27

Refer to Figure 9 below for illustration showing the Related Projects' Trip Assignments at the study intersections.