

**11.4 Geotechnical Reports** 



January 12, 2023 Kleinfelder Project No. 20230661.003A

Mr. Jack Lac NorthPoint Development 12977 North Outer 40 Road, Suite 203 St. Louis, Missouri 63141

### SUBJECT: Feasibility-Level Geotechnical Investigation AVLC Phase 3 and Phase 4 Southwest Corner of W Avenue F and Sierra Highway Lancaster Area of Los Angeles County, California

Dear Mr. Lac:

Kleinfelder is pleased to present this report summarizing the feasibility-level geotechnical investigation performed for the subject site, located at the southwest corner of W Avenue F and Sierra Highway in the Lancaster area of Los Angeles County, California. Our conclusions and recommendations for geotechnical design and construction are presented in the attached report.

We appreciate the opportunity to provide geotechnical engineering services to you on this project. If you have any questions regarding this report or if we can be of further service, please do not hesitate to contact the undersigned.

Sincerely,

KLEINFELDER, INC.

Jose A. Zuniga

Jose A. Zuniga, EIT Project Professional

Chelsea N. Jaeger, PG, CEG Project Geologist

4 Jal1

Jeffery D. Waller, PE, GE Principal Geotechnical Engineer

20230661.003A/RIV23R148969 Copyright 2023 Kleinfelder Page 1 of 1

January 12, 2023



FEASIBILITY-LEVEL GEOTECHNICAL INVESTIGATION AVLC PHASE 3 AND PHASE 4 SOUTHWEST CORNER OF W AVENUE F AND SIERRA HIGHWAY LANCASTER AREA OF LOS ANGELES COUNTY, CALIFORNIA

KLEINFELDER PROJECT NO. 20230661.003A

**JANUARY 12, 2023** 

Copyright 2023 Kleinfelder All Rights Reserved

ONLY THE CLIENT OR ITS DESIGNATED REPRESENTATIVES MAY USE THIS DOCUMENT AND ONLY FOR THE SPECIFIC PROJECT FOR WHICH THIS REPORT WAS PREPARED.

20230661.003A/RIV23R148969 Copyright 2023 Kleinfelder Page i of iv

January 12, 2023



A Report Prepared for:

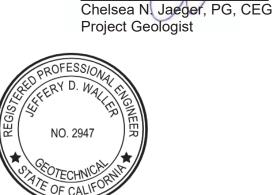
Mr. Jack Lac NorthPoint Development 12977 North Outer 40 Road, Suite 203 St. Louis, Missouri 63141

FEASIBILITY-LEVEL GEOTECHNICAL INVESTIGATION AVLC PHASE 3 AND PHASE 4 SOUTHEAST CORNER OF W AVENUE F AND SIERRA HIGHWAY LANCASTER AREA OF LOS ANGELES COUNTY, CALIFORNIA

Prepared by:

Jose A. Zuniga

Jose A. Zuniga, EIT Project Professional


Reviewed by:

Jeffery D. Waller, PE, GE Principal Geotechnical Engineer

### KLEINFELDER

2280 Market Street, Suite 300 Riverside, California 92501 Phone: 951.801.3681 Fax: 951.682.0192

January 12, 2023 Kleinfelder Project No. 20230661.003A







# TABLE OF CONTENTS

| <u>Se</u> | ction      |                |            |                                                   | <u>Page</u> |
|-----------|------------|----------------|------------|---------------------------------------------------|-------------|
| 1         | INTRODU    |                |            |                                                   | 1           |
| •         | 1.1        |                |            | RIPTION                                           |             |
|           | 1.2        |                |            | VICES                                             |             |
| •         |            |                |            | ONDITIONS                                         |             |
| 2         |            |                |            | ION                                               |             |
|           | 2.1<br>2.2 |                |            | ONDITIONS                                         |             |
|           | 2.2        |                |            | R CONDITIONS                                      |             |
|           | -          |                |            |                                                   |             |
| 3         |            |                |            |                                                   |             |
|           | 3.1        |                |            | LOGY                                              |             |
|           |            | 3.1.1          |            | DLOGY                                             |             |
|           | 3.2        |                |            | ARDS                                              |             |
|           |            | 3.2.1          | 0          | nd Seismicity                                     |             |
|           |            | 3.2.2          | •          | -                                                 |             |
|           |            | 3.2.3<br>3.2.4 |            | s<br>on and Seismic Settlement                    |             |
|           |            | 3.2.4<br>3.2.5 |            |                                                   |             |
|           |            | 3.2.5          |            | as Fields                                         |             |
|           |            | 3.2.7          |            | e Soils                                           |             |
|           |            |                |            |                                                   |             |
| 4         |            |                | -          | OMMENDATIONS                                      | -           |
|           | 4.1        |                |            |                                                   |             |
|           | 4.2        |                |            | N CONSIDERATIONS                                  |             |
|           |            | 4.2.1          |            | esign Parameters                                  |             |
|           | 4.3        | 4.2.2          |            | on and Seismic Settlement                         |             |
|           | 4.5        | 4.3.1          |            |                                                   |             |
|           |            | 4.3.2          |            | Bearing Pressure                                  |             |
|           |            | 4.3.3          |            | Settlements                                       |             |
|           |            | 4.3.4          |            | esistance                                         |             |
|           | 4.4        | EART           |            |                                                   |             |
|           |            | 4.4.1          | General    |                                                   | 13          |
|           |            | 4.4.2          | Site Prepa | aration                                           | 14          |
|           |            | 4.4.3          | Overexcav  | vation                                            |             |
|           |            |                | 4.4.3.1    | Structural Areas                                  |             |
|           |            |                | 4.4.3.2    | Non-structural Areas                              |             |
|           |            |                | 4.4.3.3    | Additional Overexcavation Considerations          |             |
|           |            | 4.4.4          |            | ed Fill                                           |             |
|           |            |                |            | y Excavations                                     |             |
|           |            |                |            | n Conditions                                      |             |
|           | 4.5        | 4.4.7          | PIPE BEDO  | ling and Trench Backfill<br>BS SUPPORTED ON GRADE | / [<br>10   |
|           | 4.0        | 4.5.1          |            | BS SUPPORTED ON GRADE                             |             |
|           |            | 4.5.1          |            | latwork                                           |             |
|           |            |                |            | arder                                             |             |
|           |            |                |            | Curing and Flooring                               |             |
|           | 4.6        |                |            | LS                                                |             |



## **TABLE OF CONTENTS (Continued)**

## Section

# <u>Page</u>

|   |          | 4.6.1  | General                            |    |
|---|----------|--------|------------------------------------|----|
|   |          | 4.6.2  | Backfill Compaction                | 21 |
|   |          | 4.6.3  | Drainage                           | 21 |
|   | 4.7      | DRAI   | NAGE AND LANDSCAPING               |    |
|   | 4.8      | EXPA   | NSION POTENTIAL                    |    |
|   | 4.9      | HYDF   | RO-COLLAPSE POTENTIAL              |    |
|   | 4.10     | PREL   | IMINARY SOIL CORROSIVITY           | 23 |
|   | 4.11     | PAVE   | MENT SECTIONS                      | 24 |
|   |          | 4.11.1 | Asphalt-Concrete Pavement Sections | 24 |
|   |          |        | Portland Cement Concrete Pavement  |    |
|   | 4.12     | STOR   | RMWATER MANAGEMENT                 |    |
| 5 | ADDITIO  | NAL SE | RVICES                             |    |
| - | 5.1      |        | GN LEVEL INVESTIGATION             |    |
| 6 | LIMITATI | ONS    |                                    | 29 |
| 7 | REFERE   | NCES   |                                    |    |

## **FIGURES**

| 1 | Site | Vicinity | Map |
|---|------|----------|-----|
|---|------|----------|-----|

2 **Exploration Location Map** 

## **APPENDICES**

- А
- Field Explorations Laboratory Testing В



# 1 INTRODUCTION

This report presents the results of our feasibility-level geotechnical investigation for the proposed improvements at the southwest corner of W Avenue F and Sierra Highway in the Lancaster area of Los Angeles County, California. The general location of the site is shown on Figure 1, Site Vicinity Map.

The purpose of this feasibility-level geotechnical investigation was to evaluate the subsurface soil conditions at the site in order to provide geotechnical recommendations for the design and construction of the proposed development. The scope of our services was presented in our proposal dated November 8, 2022. This report only provides recommendations for the proposed improvements discussed below.

### 1.1 PROJECT DESCRIPTION

Based on our review of the conceptual site plan provided by NorthPoint Development the total site area for both Phase 3 and 4 is approximately 162 acres and the proposed project will consist of constructing two (2) warehouse buildings. Phase 3 (Building 5) is proposed to be approximately 1,007,000 square feet (sf). Phase 4 (Building 6) is proposed to be approximately 1,215,000 sf. The buildings are anticipated to be concrete tilt-up distribution-type buildings and have warehouse areas with loading-dock high slab-on-grade floors. The project also includes Best Management Practices (BMPs) stormwater detention basins at the site.

We anticipate cuts and fills on the order of approximately 10 feet may be needed to develop the site. We understand that the proposed buildings are anticipated to be supported on conventional shallow spread foundations. Foundation loads are not currently available, but based on our experience with similar past projects, we assume that maximum column loading will be on the order of 80 kips and maximum wall loads will be on the order of 4 to 8 kips per linear foot. Floor loads for proposed distribution-type buildings may be on the order of 500 pounds per square foot.

We anticipate parking lot and drive aisles will consist of asphaltic concrete (AC) pavement and loading dock areas will consist of Portland cement concrete pavement (PCCP). Ancillary construction is anticipated to include concrete flat work, landscaping, and installation of buried utilities.



### 1.2 SCOPE OF SERVICES

The scope of our preliminary geotechnical study consisted of a literature review, historical aerial photo review, subsurface exploration, geotechnical laboratory testing, engineering evaluation and analysis, and preparation of this report. Our report includes a description of the work performed, a discussion of the geotechnical conditions observed at the site, and preliminary recommendations developed from our engineering analysis of field and laboratory data. A description of our scope of services performed for this project is presented below.

**Task 1 – Background Data Review.** We reviewed published and unpublished geologic literature in our files and the files of public agencies, including selected publications prepared by the California Geological Survey and the U.S. Geological Survey. We also reviewed readily available seismic and faulting information, including data for designated earthquake fault zones and our in-house database of faulting in the general site vicinity.

**Task 2 – Field Exploration.** The subsurface conditions at the site were explored by drilling and logging six (6) hollow-stem auger geotechnical borings (B-1 through B-6). The geotechnical borings were drilled to depths ranging from approximately 31½ to 51½ feet bgs. The locations of our borings are shown on the attached Figure 2, Exploration Location Map.

Prior to commencement of the fieldwork, our proposed exploration locations were cleared for known existing utility lines and with the participating utility companies through Underground Service Alert (USA). A Kleinfelder representative supervised the field operations and logged the borings. Selected bulk and drive samples were retrieved, sealed and transported to Kleinfelder's laboratory in Ontario, California for laboratory testing. Our typical sampling interval for the hollow stem auger borings was every 5 feet to full depths explored. The number of blows necessary to drive California-type samplers were recorded. A description of the field exploration and the logs of the borings, including a Legend to the Log of Borings, are presented in Appendix A.

**Task 3 – Laboratory Testing.** Laboratory testing was performed on representative samples of soil collected from our excavations to substantiate field classifications and to provide engineering parameters for geotechnical design. Laboratory testing included moisture determination and unit weight, grain size distribution, plasticity testing, modified Proctor, expansion index, collapse potential, and preliminary corrosion potential. A summary of the testing performed and the results for this subject site are presented in Appendix B.



**Task 4 – Geotechnical Analyses.** Field and laboratory data were analyzed in conjunction with the proposed site plan presented on Figure 2 and assumed structural loads to develop geotechnical recommendations for the design and construction of the proposed development. We evaluated potential foundation systems, lateral earth pressures, settlement, and earthwork considerations. Potential geologic hazards, such as ground shaking, liquefaction hazard, seismic settlement potential, flood hazard, and fault rupture hazard were also evaluated.

**Task 5 – Report Preparation.** This preliminary report summarizes the work performed, data acquired, and our findings, conclusions, and geotechnical recommendations for the design and construction of the proposed development. Preliminary recommendations for the following are presented in this report:

- Earthwork, including site preparation, excavation, site drainage, and the placement of engineered fill;
- Design of suitable foundation systems including allowable capacities, lateral resistance, and settlement estimates;
- Seismic design parameters;
- Floor slab and slab-on-grade support, including subgrade preparation;
- Lateral earth pressures for design of retaining walls;
- Design and construction of asphalt and Portland cement concrete pavements, including driveways, fire lanes, and concrete walks; and
- Preliminary infiltration correlations of the site soils for design of BMPs.

This report also contains reference maps and graphics, as well as the logs of the borings and laboratory test results.



#### 2 SITE AND SUBSURFACE CONDITIONS

#### 2.1 SITE DESCRIPTION

The site is located at the southwest corner of W Avenue F and Sierra Highway in the Lancaster area of Los Angeles County, California. The total site area is approximately 162 acres and is currently vacant and appears to not have had any previous development. The site is generally bounded by vacant land to the west, Avenue F on the North, Sierra Highway on the east, and Avenue G to the south. Topographic survey has not yet been provided to Kleinfelder for the proposed project. based on our review of Google Earth imagery, the building site generally appears to slope down from south to north with a grade differential of approximately 4 to 7 feet. From review of Google Earth imagery, it appears that the site is vacant and may have had limited vegetation removal and minor grading. Additionally, the aerial imagery appears to show that the Amargosa Creek flows across northwest corner of the site.

#### 2.2 SUBSURFACE CONDITIONS

Subsurface materials observed during drilling are described below and detailed descriptions of subsurface materials are provided in our boring logs presented in Appendix A.

#### Alluvium/Native Soil:

Alluvium/native soil was observed in the borings drilled for this investigation and generally consisted of clayey to silty sand, poorly graded to well graded sand with varying amounts of silt, and silts and lean clays with varying amounts of sand to the total depth explored of approximately 51½ feet bgs. In-situ moisture content ranged from 0.7 to 30.5 percent and dry unit weight ranged from 94.5 to 136.2 pounds per cubic foot (pcf). The apparent density of the subsurface soils was typically medium dense to very dense for coarse-grained soils. Generally, the consistency of fine-grained soils was stiff to hard.

### 2.3 GROUNDWATER CONDITIONS

Groundwater was not encountered in our borings to the maximum depth explored of approximately 51½ feet bgs during our geotechnical investigation within the 162-acre site. The Lancaster West Quadrangle, Plate 1.2, in the Seismic Hazard Zone Report 095 shows historic groundwater to be at approximately 55 feet bgs within the subject site. However, groundwater was measured at approximately 6 feet below ground surface (bgs) at a well located approximately 0.45 miles to the northwest of the subject site in April 1951 (CDWR, 2022).



Current depth to ground water is estimated to be greater than 50 feet bgs based on borings drilled on site and reported depth to groundwater for monitoring wells located approximately 1.3 miles east of the site (Geotracker, 2022).

Fluctuations of localized zones of perched water and rise in soil moisture content should be anticipated during the rainy season. Irrigation of landscaped areas may also lead to an increase in soil moisture content and fluctuations of intermittent shallow perched groundwater levels.



## **3 GEOLOGIC CONDITIONS**

#### 3.1 REGIONAL GEOLOGY

The subject site is located within the western portion of the Mojave Desert geomorphic province of California (Norris and Webb, 1990; CGS 2002).

The Mojave Desert is approximately 25,000 square miles of desert situated in southeastern California. The area is enclosed on the southwest by the San Andreas fault and the Transverse Ranges and on the north and northeast by the Garlock fault, the Tehachapi Mountains and the Basin and Range. The Nevada state line and Colorado River form the arbitrary eastern boundary. The San Bernardino-Riverside county line designates the southern boundary.

The region is dominated by broad alluvial basins that are mostly aggrading sources receiving nonmarine deposits from the adjacent uplands. The highest general elevations of the Mojave Desert approach 4,000 feet above mean sea level (MSL) with most of the valleys between 2,000 and 4,000 feet MSL.

## 3.1.1 SITE GEOLOGY

Regional geologic mapping indicates that the site is underlain by modern alluvium, modern alluvial fan deposits, and younger playa deposits that are Holocene to late Pleistocene in age (CGS, 2010a). The alluvium and alluvial fan deposits are derived from Amargosa Creek along the western portion of the site and cover the majority of the site. The younger playa deposits were deposited in the shallow-water regions of the last pluvial lake that filled the lowland parts of Antelope Valley, up to approximately 12,000 years ago.

#### 3.2 GEOLOGIC HAZARDS

We have addressed below the potential geologic hazards for the site.

### 3.2.1 Faulting and Seismicity

Earthquakes and faulting occur as the tectonic plates, which comprise the Earth's crust, or lithosphere, move relative to one-another. Faults identified by the State as being active are not known to be present at the surface within the project limits. No portion of the site is located within a State of California-Special Studies Zone (CGS, 2018). The closest active fault to the



site is the San Andreas fault zone located approximately 10.8 miles southwest of the site (CGS, 2010b). Because of the distance to known active faults, the lack of surficial evidence of fault breaks expressed in air photos or published geologic maps, the risk of surface rupture resulting from faulting is considered low.

#### 3.2.2 Flooding

Surface water flow at the site is generally via sheet flow in a west and northwest direction toward the Amargosa creek drainage.

Most of the site with exception of the southeastern portion is within a flood hazard zone "AO" according to FEMA (2008), where the flood hazard is a "Special Flood Hazard Area subject to Inundation by the 1% Annual chance Flood". Flood depths of 1 to 3 feet (usually sheet flow on sloping terrain); average depths 1 foot. The southeastern portion of the site is within a flood hazard zone "X" (FEMA, 2008), where the flood hazard is "determined to be outside the 0.2% annual chance floodplain".

The site is downstream of the Piute Ponds which potentially could cause flooding and inundate the project site. A seiche is a wave or sloshing of a body of water that is at least partially impounded caused by strong wind or seismic shaking. The risk of seiche damage following a seismic event at the site is considered low.

### 3.2.3 Landslides

Landslides and other forms of mass wasting, including mud flows, debris flows, soil slips, and rock falls occur as soil or rock moves down slope under the influence of gravity. Landslides are frequently triggered by intense rainfall or seismic shaking. The site is not located within a State or county designated landslide hazard zone. The site is relatively flat and the risk at the site from landslides and other forms of mass wasting is considered very low.

### 3.2.4 Liquefaction and Seismic Settlement

Liquefaction occurs when saturated, loose, coarse-grained or silty soils are subjected to strong shaking resulting from earthquake motions. The coarse-grained or silty soils typically lose a portion or all of their shear strength and regain strength sometime after the shaking stops. Soil



movements (both vertical and lateral) have been observed under these conditions due to consolidation of the liquefied soils.

The site is located within a mapped generalized liquefaction potential zone (CGS, 2005). We have performed a liquefaction analysis to assess the seismically induced settlement potential. The results of our liquefaction analysis are summarized in Section 4.2.2.

### 3.2.5 Subsidence

Ground subsidence is a gradual settling or sudden sinking of the earth's surface owing to subsurface movement of earth materials. Ground subsidence can result from fluid (water or petroleum) extraction from underlying sediments and/or formations, which allows the collapse of pore spaces previously occupied by the removed fluid. The collapse of these pore spaces compacts these underlying formations, leading to a gradual drop in ground surface elevation. Ground subsidence is most often found in areas where large volumetric withdrawals of fluids from underground reservoirs has occurred or is ongoing. Ground shaking from tectonic activity can exacerbate the vertical sinking of land in an area over the withdrawal site. Structures and improvements located in subsidence-prone areas are at risk for damage if subsidence were to occur.

The USGS has been tracking subsidence in California since the early 20th century and has developed maps that illustrate areas of recorded subsidence across the state (USGS, 2022). Most of the subsidence has resulted from excessive groundwater pumping for municipal, industrial, and agricultural uses, although oil extraction is also a documented cause. A review of the USGS subsidence maps shows the project site is documented to be experiencing subsidence.

### 3.2.6 Oil and Gas Fields

The project site is not located within a mapped petroleum producing field of Southern California and no oil/gas wells are reported within the Project Site [California Geologic Energy Management Division (CalGEM), formerly Division of Oil, Gas and Geothermal Resources (DOGGR), 2022]. However, based on information available from CalGEM, three (3) idle oil and gas wells are reported located within 3 miles of the site. Additional, undocumented well(s) may be present and buried near the site.



## 3.2.7 Expansive Soils

The upper site soils were tested for expansion potential and found to be medium to high in Borings B-4 and B-5. Due to the variability of near surface soi, the potential for expansive soils impacting the project grading is anticipated. Further discussion is presented in Section 4.8. The on-site soils should be further evaluated during the geotechnical study for the design phase of the project.



## 4 CONCLUSIONS AND RECOMMENDATIONS

### 4.1 GENERAL

Based on the results of our field exploration, laboratory testing and geotechnical analyses conducted during this study, it is our professional opinion that the proposed project is geotechnically feasible, provided the recommendations presented in this report are incorporated into the project design and construction.

The following preliminary opinions, conclusions, and recommendations are based on the properties of the materials encountered in the explorations, the results of our literature review, the results of the laboratory testing program, and our engineering analyses performed. Our recommendations regarding the geotechnical aspects of the design and construction of the project are presented in the following sections. We recommend that the final grading plans be reviewed by Kleinfelder prior to the start of construction.

### 4.2 SEISMIC DESIGN CONSIDERATIONS

#### 4.2.1 Seismic Design Parameters

According to ACSE/SEI 7-16 (2016), which is incorporated into the 2019 California Building Code (CBC) by reference, sites subject to liquefaction, as discussed below, should be classified as Site Class F, which requires a site response analysis. However, ACSE/SEI 7-16 states that for a short period (less than  $\frac{1}{2}$  second) structure on liquefiable soils, Site Class D or E may be used instead of Site Class F to estimate design seismic loading on the structure. The selection of Site Class D or E is based on the assessment of the site soil profile assuming no liquefaction. We have assumed that the period of the structures will be less than  $\frac{1}{2}$  second. The assumption that the structures have a period of less than  $\frac{1}{2}$  second should be verified by the project structural engineer.

Based on data obtained from our field explorations, published geologic literature and maps, and on our interpretation of the 2019 CBC criteria, it is our opinion that the project site may be classified as Site Class D, Stiff Soil, according to Section 1613 of 2019 CBC and Table 20.3-1 of ASCE/SEI 7-16 (2016). Approximate coordinates for the site are noted below.

- Latitude: 34.744416
- Longitude: -118.148774



The Risk-Targeted Maximum Considered Earthquake (MCER) mapped spectral accelerations for 0.2 seconds and 1 second periods ( $S_s$  and  $S_1$ ) were estimated using Section 1613 of the 2019 CBC and the OSHPD seismic design maps web-based application (available at https://seismicmaps.org/). In accordance with Section 11.4.8 of ASCE 7-16, a site-specific ground motion analysis is required for Site Class D sites with an S1 greater than 0.2 g. However, a site-specific ground motion analysis is not required if the seismic response coefficient (Cs) is determined in accordance with requirements of Chapter 12 and exceptions as noted in Section 11.4.8. We have assumed that Cs will be determined in accordance with the requirements of Chapter 12 and exceptions as noted in Section 11.4.8. This assumption should also be verified by the project structural engineer. The 2019 CBC Seismic Design Parameters (non site-specific) for these structures are summarized in Table 1.

| Design Parameter     | Recommended Value |  |
|----------------------|-------------------|--|
| Site Class           | D                 |  |
| S <sub>s</sub> (g)   | 1.352             |  |
| S <sub>1</sub> (g)   | 0.549             |  |
| Fa                   | 1.0               |  |
| F <sub>v</sub>       | N/A*              |  |
| S <sub>MS</sub> (g)  | 1.352             |  |
| S <sub>M1</sub> (g)  | N/A               |  |
| S <sub>DS</sub> (g)  | 0.901             |  |
| S <sub>D1</sub> (g)  | N/A               |  |
| PGA <sub>M</sub> (g) | 0.550             |  |

Table 12019 CBC Seismic Design Parameters

\*Section 11.4.8 of ASCE 7-16 requires a site-specific ground motion hazard analysis be performed for Site Class D sites with S<sub>1</sub> values greater than or equal to 0.2g unless exceptions are taken. If exceptions are taken, then a  $F_v$  value of 1.74 could be used only to calculate the  $T_s$  value.

### 4.2.2 Liquefaction and Seismic Settlement

To assess the potential for liquefaction of subsurface soils at the site, we used the liquefaction analysis procedures outlined in Youd et al. (2001) based on standard penetration test (SPT) data. For estimating the resulting ground settlements, we used the methods proposed by Tokimatsu and Seed (1987). These methods utilize corrected SPT blow counts to estimate the amount of volumetric compaction or settlement during an earthquake.



Groundwater was not encountered during our current field exploration drilled to a maximum explored depth of 51½ feet bgs. Based on our groundwater research discussed in Section 2.3, a design groundwater depth of 6 feet was used in our analyses based on the historic high groundwater level. The historic high groundwater level may be further investigated since the current depth is much lower than the historic high.

As recommended in Section 1803.5.12 of 2019 CBC, the peak ground acceleration (PGA) used in the liquefaction analysis was estimated in accordance with Section 11.8.3 of ASCE 7-16. A PGAM of 0.55g with an earthquake magnitude of 7.9 was used as the design-level seismic event in our liquefaction analysis, which is defined as an earthquake event with 2 percent probability of being exceeded in 50 years (return period of about 2,475 years) according to the 2019 CBC and ASCE/SEI 7-16.

We evaluated the liquefaction potential at the site using the SPT data. Based on the SPT data and our engineering analyses, it is our opinion that silty sands at a depth of approximately 20 feet bgs (below the design groundwater depth) may be subject to liquefaction in the event of a major earthquake occurring on a nearby fault. Based on our analyses, the calculated total liquefaction-induced settlement is on the order of less than 1 inch. Differential liquefaction-induced settlement may be estimated as  $\frac{1}{2}$  of the total seismically-induced settlement over a distance of about 30 feet.

### 4.3 FOUNDATIONS

### 4.3.1 General

Based on the results of our field exploration, laboratory testing, and geotechnical analyses, the proposed improvements may be supported on conventional shallow foundations on a zone of compacted fill provided the settlement estimates (both static and seismic) are tolerable. We have assumed that the proposed structures is able to tolerate the estimated seismic settlement (i.e., it will not collapse creating a life safety issue). However, this assumption should be verified by the project structural engineer. It should be noted that the design intent of the 2019 California Building Code (CBC) during a design-level seismic event is life safety, not serviceability of the structure after an earthquake.

### 4.3.2 Allowable Bearing Pressure

Footings supported on at least 3 feet of compacted fill may be designed for a net allowable bearing pressure of 2,500 psf for dead plus sustained live loads. A one-third increase in the



bearing value can be used for wind or seismic loads. All footings should be established at a depth of at least 24 inches below the lowest adjacent grade. The footing dimension and reinforcement should be designed by the structural engineer; however, continuous and isolated spread footings should have minimum widths of 18 and 24 inches, respectively.

## 4.3.3 Estimated Settlements

Total static settlement for foundations designed in accordance with the recommendations presented herein is estimated to be less than 1 inch. Differential static settlement between similarly loaded columns is estimated to be less than ½ inch over 40 to 70 feet. Note that this settlement is in addition to the estimated settlement due to seismic shaking.

#### 4.3.4 Lateral Resistance

Resistance to lateral loads (including those due to wind or seismic forces) may be provided by frictional resistance between the bottom of concrete foundations and the underlying soils and by passive soil pressure against the sides of the foundations. A coefficient of friction of 0.3 may be used between cast-in-place concrete foundations and the underlying soil. The passive pressure available for engineered fill may be taken as equivalent to the pressure developed by a fluid with a unit weight of 300 pounds per cubic foot (pcf). A one-third increase in the passive resistance may be used for resistance to transient loads such as wind and seismic. The upper one foot of soil should be neglected when calculating passive resistance.

The lateral resistance parameters provided above are ultimate values. Therefore, a suitable factor of safety should be applied to these values for design purposes. The appropriate factor of safety will depend on the design condition and should be determined by the project Structural Engineer. Depending on the application, typical factors of safety could range from 1.5 to 2.0.

### 4.4 EARTHWORK

### 4.4.1 General

Recommendations for site preparation are presented below. All site preparation and earthwork operations should be performed in accordance with applicable codes, safety regulations and other local, state or federal specifications. All references to maximum unit weights are established in accordance with the latest version of ASTM Standard Test Method D1557.

Grading operations during the wet season or in areas where the soils are saturated may require provisions for drying of soils prior to compaction. If the project necessitates fill placement and



compaction in wet conditions, we can provide suggested alternative recommendations for drying the soil. Conversely, additional moisture may be required during the dry months. A sufficient water source should be available to provide adequate water during compaction. During dry months, moisture conditioning of the subgrade soils may be required if left exposed for greater than a few days.

## 4.4.2 Site Preparation

Prior to general site grading, existing vegetation, debris, and oversized materials (greater than 6 inches in maximum dimension) should be stripped and disposed outside the construction limits. We estimate the depth of stripping to be approximately 6 to 12 inches over most portions of the site. Deeper stripping or grubbing may be required where higher concentrations of vegetation are encountered during site grading. Stripped topsoil (less any debris) may be stockpiled and reused for landscaping purposes; however, this material should be evaluated for suitability if it is desired to use this material for engineered fill below structures.

All oversize and organic debris, including any produced by demolition operations, (wood, steel, piping, plastics, etc.), should be separated and disposed offsite. The material generated during demolition of the existing roadways and concrete structures may be reused onsite. If reused, the particles should be crushed to a maximum particle size of 6 inches and spread across the site to prevent nesting.

Existing utility pipelines (if encountered) which extend beyond the limits of the proposed construction and are to be abandoned in place should be plugged with cement grout to prevent migration of soil and/or water. Demolition, disposal, and grading operations should be observed and tested by a representative from our office.

### 4.4.3 Overexcavation

Recommendations for overexcavation of the proposed building pads (building foundations and floor slabs) and parking lots (pavements) are presented below. All site preparation and earthwork operations should be performed in accordance with applicable codes, safety regulations and other local, state, or federal specifications. All references to maximum unit weights are established in accordance with the latest version of ASTM Standard Test Method D1557.

Excavations within a 1:1 (horizontal: vertical) plane extending downward from a horizontal distance of 2 feet beyond the bottom outer edge of existing improvements (e.g. building



foundations) or property lines should not be attempted without bracing and/or underpinning. All applicable excavation safety requirement and regulations, including OSHA requirements should be met.

## 4.4.3.1 <u>Structural Areas</u>

In order to provide uniform support for the proposed spread foundations and slab-on-grade floors, we recommend the site soils be overexcavated and replaced as engineered fill to a minimum depth of 3 feet from existing grade and at least 3 feet below the bottom of footings, whichever is greater. Building pads located in cut/fill transition areas should be overexcavated a minimum of 3 feet below the proposed bottom of footings/slabs. Although not encountered in our borings, any existing undocumented artificial fill soils should be removed until native alluvium is exposed. The overexcavation should extend horizontally at least 5 feet beyond the edges of foundations and a distance equivalent to the thickness of anticipated fill below the footing, whichever is greater. Depending on the observed condition of the existing soil and engineered fill, deeper overexcavation may be required in some areas. The Geotechnical Engineer of Record should be notified for supplemental recommendations if the minimum relative compaction of the soil is not achieved.

### 4.4.3.2 Non-structural Areas

Within the non-structural areas, such as truck aprons, pavements, sidewalks, other flatwork, etc., we recommend that these items be underlain by at least 24 inches of engineered fill. The overexcavation should extend beyond the proposed improvements a horizontal distance of at least two feet.

### 4.4.3.3 Additional Overexcavation Considerations

After site preparation and overexcavation, and prior to scarification or placement of compacted fills, the excavation bottom should be observed, evaluated, and approved by Kleinfelder. Additional removals may be needed if significant porosity, expansive soil, or other adverse conditions are observed. The subgrade should then be scarified to a depth of approximately 12 inches, moisture conditioned to at least the optimum moisture content; and recompacted. After compaction, the subgrade should be proof rolled using equipment with sufficient weight to evaluate surface deflection. Proof rolling should be performed to verify that the subgrade soils are firm and unyielding at the depth of the recommended overexcavation presented above.



## 4.4.4 Engineered Fill

We anticipate that most of the on-site soils may be reusable as engineered fill once any debris and oversized materials greater than 4 inches in diameter have been removed, and after any vegetation and organic debris is cleared. Engineered fill should contain less than 2 percent organic content and maximum material size should be less than 4 inches in maximum dimension. Disturbed/tilled soil, less vegetation, may be used in landscape areas, exported, or placed in a controlled manner and blended with the onsite soils, provided that the resulting engineered fill contains less than 2 percent organic content.

Fill should be placed in lifts no greater than 8 inches thick, loose measurement, and should be compacted to at least 90 percent of the maximum dry density. The moisture content of the on-site soils should be at least at the optimum moisture at the time of compaction. Based on the limited number of subsurface borings, soil type and extent should be further evaluated during the design-level investigation.

Engineered fill placed below pavement should be compacted to at least 90 percent of the maximum dry density obtained by the ASTM D1557 method of compaction, with the upper 12 inches below pavements compacted to at least 95 percent relative compaction.

Although not anticipated, any imported fill materials to be used for engineered fill should be sampled and tested for approval by the geotechnical engineer prior to being transported to the site. The expansion index of an imported soil should be less than 20. In general, well-graded mixtures of gravel, sand and non-plastic silt are acceptable for use as import fill. A minimum notice of 3 working days will be required to allow for qualification testing prior to compaction of imported materials.

### 4.4.5 Temporary Excavations

All excavations must comply with applicable local, state, and federal safety regulations including the current OSHA Excavation and Trench Safety Standards. Construction site safety generally is the sole responsibility of the Contractor, who shall also be solely responsible for the means, methods, and sequencing of construction operations. We are providing the information below solely as a service to our client. Under no circumstances should the information provided be interpreted to mean that Kleinfelder is assuming responsibility for construction site safety or the Contractor's activities; such responsibility is not being implied and should not be inferred.



Excavations within a 1:1 plane extending downward from a horizontal distance of 2 feet beyond the bottom outer edge of existing improvements (e.g. building foundations) should not be attempted without bracing and/or underpinning the improvements. The geotechnical engineer or their field representative should observe the excavations so that modifications can be made to the excavations, as necessary, based on variations in the encountered soil conditions. All applicable excavation safety requirements and regulations, including OSHA requirements, should be met.

Near-surface soils encountered during our field investigation consisted predominantly of sandy silt, silty sand and sands with varying amounts of gravel and cobble. In our opinion, these soils would be considered a Type 'C' soil with regard to the OSHA regulations. For this soil type, OSHA requires a maximum slope inclination of 1.5:1 (horizontal to vertical) or flatter for excavations 20 feet or less in depth. Temporary, shallow excavations with vertical side slopes less than 4 feet high should generally be stable, although sloughing may be encountered. Vertical excavations greater than 4 feet high should not be attempted without appropriate shoring to prevent local instability. All trench excavations should be braced and shored in accordance with good construction practice and all applicable safety ordinances and codes. The contractor should be responsible for the structural design and safety of the temporary shoring system, and we recommend that this design be submitted to Kleinfelder for review to check that our recommendations have been incorporated.

Stockpiled (excavated) materials should be placed no closer to the edge of an excavation than a distance equal to the depth of the excavation, but no closer than 4 feet. All trench excavations should be made in accordance with OSHA requirements.

### 4.4.6 Excavation Conditions

The borings were advanced using a truck-mounted hollow-stem auger drill rig. Drilling excavations were completed with easy effort through the existing site soils. Conventional earth moving equipment should be capable of performing the soil excavations.

### 4.4.7 Pipe Bedding and Trench Backfill

Pipe bedding and pipe zone material should consist of sand or similar granular material having a minimum sand equivalent value of 30. Onsite soils may be suitable, but should be tested and approved by the engineer of record prior to use. The sand should be placed in a zone that extends a minimum of 6 inches below and 6 inches above the pipe for the full trench width. The bedding material should be compacted to a minimum of 90 percent of the maximum dry density



or to the satisfaction of the geotechnical engineer's representative observing the compaction of the bedding material. Bedding material should consist of sand, gravel, crushed aggregate, or native free-draining granular material with a maximum particle size of <sup>3</sup>/<sub>4</sub> inch. Bedding materials should also conform to the pipe manufacturer's specifications, if available. Trench backfill above bedding and pipe zone materials may consist of approved, on-site or import soils placed in lifts no greater than 8 inches loose thickness and compacted to 90 percent of the maximum dry density based on ASTM Test Method D1557. Jetting of backfill is not recommended. The onsite soils are suitable for backfill of utility trenches from one foot above the top of the pipe to the surface provided the material is free of organic and deleterious substances.

## 4.5 CONCRETE SLABS SUPPORTED ON GRADE

### 4.5.1 General

Slab-on-grade floors should be underlain by engineered fill as discussed in the Earthwork Section of this report. We anticipate that the planned floor slabs will have a minimum thickness of 6 inches, will be unreinforced and dowelled at panel edges. Minimum reinforcement for floor slabs, if required, should be determined by the structural engineer. The structural engineer should design the slabs for any specific loading conditions. A modulus of subgrade reaction of 100 pounds per cubic inch may be used for design. The moisture content of the upper 18 inches of engineered fill should be at the recommended range for fill compaction at the time the floor slab is constructed. Precautions should be taken so as not to allow the upper engineered fill below the slab to dry out below the recommended moisture range between completion of the building pad and construction of the floor slab. Total static settlement for foundations designed in accordance with the recommendations presented herein, with an anticipated maximum load of 500 psf, is estimated to be less than a 1 inch.

Construction activities and exposure to the environment can cause deterioration of the prepared subgrade. We recommend that a Kleinfelder representative inspect the final subgrade conditions prior to placement of the concrete, and if necessary, perform additional moisture and density testing to determine the subgrade suitability. A low slump concrete should be used to reduce possible curling of the slab.

### 4.5.2 Exterior Flatwork

Where exterior flatwork, such as sidewalks, are to be constructed, the subgrade should be scarified to a depth of 8 inches and moisture conditioned to a moisture content above the optimum moisture content, and recompacted as recommended in the Earthwork Section of this



report. Exterior, structurally loaded flatwork, such as truck docks or trash enclosures should adhere to the recommendations for rigid pavement presented in this report.

#### 4.5.3 Vapor Retarder

Subsurface moisture and moisture vapor naturally migrate upward through the soil and, where the soil is covered by a building or pavement, this subsurface moisture will collect. To reduce the impact of this subsurface moisture and the potential impact of future introduced moisture (such as landscape irrigation or precipitation) on moisture sensitive flooring, the current industry standard is to place a vapor retarder on a compacted crushed rock layer and/or sand layers, 1 to 2 inches in thickness, placed above and below the vapor retarder. The crushed rock layer and/or sand layer may be omitted in accordance with the vapor barrier manufacturer's installation recommendations.

The necessity and placement of a vapor retarder should be evaluated by the structural engineer and/or flooring consultant. It should be noted that although vapor barrier systems are currently the industry standard, this system might not be completely effective in preventing floor slab moisture problems. These systems typically will not necessarily assure that floor slab moisture transmission rates will meet floor covering manufacturer standards and that indoor humidity levels be appropriate to inhibit mold growth. The design and construction of such systems are totally dependent on the proposed use and design of the proposed building and all elements of building design and function should be considered in the slab-on-grade floor design. Building design and construction may have a greater role in perceived moisture problems since sealed buildings/rooms or inadequate ventilation may produce excessive moisture in a building and affect indoor air quality.

### 4.5.4 Concrete Curing and Flooring

Various factors such as surface grades, adjacent planters, the quality of slab concrete and the permeability of the on-site soils affect slab moisture and can control future performance. In many cases, floor moisture problems are the result of either improper curing of floor slabs or improper application of flooring adhesives. We recommend contacting a flooring consultant experienced in the area of concrete slab-on-grade floors for specific recommendations regarding your proposed flooring applications. Special precautions must be taken during the placement and curing of all concrete slabs. Excessive slump (high water-cement ratio) of the concrete and/or improper curing procedures used during either hot or cold weather conditions could lead to excessive shrinkage, cracking or curling of the slabs. High water-cement ratio



and/or improper curing also greatly increase the water vapor permeability of concrete. We recommend that all concrete placement and curing operations be performed in accordance with the American Concrete Institute (ACI) Manual.

It is emphasized that we are not floor moisture-proofing experts. We make no guarantee, nor provide any assurance that use of the capillary break/vapor retarder system will reduce concrete slab-on-grade floor moisture penetration to any specific rate or level, particularly those required by floor covering manufacturers. The builder and designers should consider all available measures for slab moisture protection.

#### 4.6 RETAINING WALLS

We have provided preliminary cantilever retaining wall recommendations below. Further evaluation will be needed once wall types, locations and heights are selected.

#### 4.6.1 General

Design earth pressures for retaining walls depend primarily on the allowable wall movement, wall inclination, type of backfill materials, backfill slopes, surcharges, and drainage. The earth pressures provided assume that that a non-expansive granular backfill will be used and a drainage system will be installed behind the walls, so that external water pressure will not develop. If a drainage system will not be installed, the wall should be designed to resist hydrostatic pressure in addition to the earth pressure as well as reinforcement that should be protected from rust or other corrosion-inducing effects of moisture. Determination of whether the active or at-rest condition is appropriate for design will depend on the flexibility of the walls. Walls that are free to rotate at least 0.002 radians (deflection at the top of the wall of at least 0.002 x H, where H is the unbalanced wall height) may be designed for the active condition. Walls that are not capable of this movement should be assumed rigid and designed for the at-rest condition. The recommended active and at-rest earth pressure values are provided in Table 2, Earth Pressures for Retaining Walls.



| Wall Movement                         | Backfill Condition | Equivalent Fluid<br>Pressure<br>(pcf) | Seismic Increment *<br>(pcf) |  |
|---------------------------------------|--------------------|---------------------------------------|------------------------------|--|
| Free to Deflect<br>(active condition) |                    | 40                                    | 16                           |  |
| Restrained<br>(at-rest condition)     | Level              | 60                                    | N/A **                       |  |

### Table 2 Earth Pressures for Retaining Walls (Non-Expansive Backfill)

Note: \* Walls supporting more than 6 feet of backfill should be designed to support an incremental seismic lateral pressure, which is applied as a triangular pressure distribution with a maximum pressure at the bottom of the wall, not inverted.

\*\* for restrained wall, use the static active earth pressure and seismic increment to check the seismic condition; use at-rest earth pressure only to check the static condition; the larger loading of both cases should be used for the design of restrained wall.

In addition to the above lateral pressure, undrained walls will have to be designed for full hydrostatic pressure. The above lateral earth pressures do not include the effects of surcharges (e.g., traffic, footings), compaction, or truck-induced wall pressures. Any surcharge (live, including traffic, or dead load) located within a 1:1 plane drawn upward from the base of the excavation should be added to the lateral earth pressures. The lateral contribution of a uniform surcharge load located immediately behind walls may be calculated by multiplying the surcharge by 0.36 for cantilevered walls and 0.53 for restrained walls. Walls adjacent to areas subject to vehicular traffic should be designed for a 2-foot equivalent soil surcharge (250 psf). Lateral load contributions from other surcharges located behind walls may be provided once the load configurations and layouts are known.

### 4.6.2 Backfill Compaction

Care must be taken during the compaction operation not to overstress the wall. Wall backfill should be compacted to a least 90 percent relative compaction; however, heavy construction equipment should be maintained a distance of at least 3 feet away from the walls while the backfill soils are being placed. Kleinfelder should be contacted when development plans are finalized for review of wall and backfill conditions on a case-by-case basis.

#### 4.6.3 Drainage

Walls should be properly drained or designed to resist hydrostatic pressures. Adequate drainage is essential to provide a free-draining backfill condition and to limit hydrostatic buildup behind the wall. Walls should also be appropriately waterproofed and include weep holes for drainage. In lieu of weep holes, a 4-inch diameter perforated PVC pipe, placed perforations



down leading to a suitable gravity outlet, should be installed at the base of the walls. Another drainage alternative could be a manufactured prefabricated drainage composite panel such as Miradrain G100N or equivalent at regular intervals along the wall.

## 4.7 DRAINAGE AND LANDSCAPING

It is important that positive surface drainage be provided to prevent ponding and/or saturation of the soils in the vicinity of foundations, concrete slabs-on-grade, or pavements. We recommend that the site be graded to carry surface water away from the improvements and that positive measures be implemented to carry away roof runoff. Poor perimeter or surface drainage could allow migration of water beneath the building or pavement areas, which may result in distress to project improvements. If planted areas adjacent to structures are desired, we suggest that care be taken not to over irrigate and to maintain a leak-free sprinkler piping system. In addition, it is recommended that planter areas next to buildings have a minimum of 5 percent positive fall away from building perimeters to a distance of at least 5 feet. Drain spouts should be extended to discharge a minimum of 5 feet from the building, or some other method should be utilized to prevent water from accumulating in planters. Landscaping after construction should not promote ponding of water adjacent to structures.

### 4.8 EXPANSION POTENTIAL

Expansive soils are characterized by their ability to undergo significant volume changes (shrink or swell) due to variations in moisture content. Changes in soil moisture content can result from precipitation, landscape irrigation, utility leakage, roof drainage, perched groundwater, drought, or other factors and may result in unacceptable settlement or heave of structures or concrete slabs supported on grade. Expansion index testing of two surficial soils resulted in values of 73 and 125, which indicates a medium to high expansion potential. The expansion potential should be tested further during the design level geotechnical investigation.

### 4.9 HYDRO-COLLAPSE POTENTIAL

Hydro-collapsible soils are characterized by their ability to undergo significant shrinkage (collapse) during inundation. Inundation in soils can result from precipitation, landscape irrigation, utility leakage, roof drainage, perched groundwater, drought, or other factors, and may result in unacceptable settlement of structures or concrete slabs supported on grade. Based on the results of laboratory testing, the collapse potential of the surficial soils is approximately

5.2 percent collapse and 0.1 swell under inundation. 5 percent collapse potential is significant



for evaluation of overexcavation depths, however, the laboratory test results from the site to the west also resulted in low Collapse Potential. Disturbance of the soil sample that resulted in high Collapse Potential may have occurred during sampling and transport and should be further tested/evaluated during design level investigation.

### 4.10 PRELIMINARY SOIL CORROSIVITY

The soil corrosivity potential of the on-site materials to steel and buried concrete was preliminarily evaluated using a sample collected during our investigation. Testing was performed in general accordance with California Test Methods 643, 417, and 422 for pH and resistivity, soluble chlorides, and soluble sulfates, respectively. The test results are presented in Table 3, Preliminary Corrosivity Test Results.

| Boring | Depth<br>(ft) | рН  | Sulfate<br>(ppm) | Chloride<br>(ppm) | Resistivity<br>(ohm-cm) |
|--------|---------------|-----|------------------|-------------------|-------------------------|
| B-3    | 0 – 5         | 9.8 | 416              | 260               | 556                     |
| B-5    | 0 – 5         | 9.9 | 27               | 33                | 1,221                   |
| Boring | Depth<br>(ft) | рН  | Sulfate<br>(ppm) | Chloride<br>(ppm) | Resistivity<br>(ohm-cm) |
| B-3    | 0 – 5         | 9.8 | 416              | 260               | 556                     |
| B-5    | 0 – 5         | 9.9 | 27               | 33                | 1,221                   |

Table 3Preliminary Corrosivity Test Results

These tests are only an indicator of soil corrosivity for the samples tested. Other soils found on site may be more, less, or of a similar corrosive nature. Imported fill materials should be tested to confirm that their corrosion potential is not more severe than those noted.

Resistivity values below 1,000 ohm-cm are considered extremely corrosive to buried ferrous metals (Roberge, 2006).

The concentrations of soluble sulfates indicate that the subsurface soils represent a Class S2 exposure to sulfate attack on concrete in contact with the soil based on ACI 318-14 Table 19.3.1.1 (ACI, 2014). Therefore, in accordance with ACI Building Code 318-14, a concrete mix of Type V cement with a minimum compressive strength of 4,500 psi and maximum water-cement ratio of 0.45 are specified for these sulfate concentrations.



Kleinfelder's scope of services does not include corrosion engineering and, therefore, a detailed analysis of the corrosion test results is not included. A qualified corrosion engineer should be retained to review the test results for further evaluation and design protective systems, if considered necessary.

## 4.11 PAVEMENT SECTIONS

## 4.11.1 Asphalt-Concrete Pavement Sections

The required pavement structural sections will depend on the expected wheel loads, volume of traffic, and subgrade soils. The Traffic Indexes (TI's) assumed should be reviewed by the project Owner, Architect, and/or Civil Engineer to evaluate their suitability for this project. Changes in the TI's will affect the corresponding pavement section. The pavement subgrade should be prepared just prior to placement of the base course. Positive drainage of the paved areas should be provided since moisture infiltration into the subgrade may decrease the life of pavements. Table 4, Preliminary Asphalt Concrete Pavement Sections, presents our recommendations of asphalt concrete pavement sections.

| Table 4                                        |
|------------------------------------------------|
| Preliminary Asphalt Concrete Pavement Sections |
| (Design R-value = 13)                          |

| Traffic Use             | Assumed<br>Traffic Index<br>(TI) | Asphalt<br>Concrete<br>(inches) | Class 2<br>Aggregate Base<br>(inches) |
|-------------------------|----------------------------------|---------------------------------|---------------------------------------|
| General Parking Traffic | 5                                | 3.0                             | 8.5                                   |
| Heavy Truck Access Ways | 7                                | 4.0                             | 13.5                                  |

Based on lab testing of near surface soils, a design R-Value of 13 was selected for pavement design. Additional R-Value testing and analysis should be performed to evaluate the site further during the final geotechnical design. Since the characteristics of the near-surface soils can change as a result of grading, we recommend that the subgrade soils be tested for pavement support characteristics, to confirm the parameters used in design and allow for a possible reduction in structural section thickness. Pavement sections provided above are contingent on the following recommendations being implemented during construction.

• The pavement sections recommended above should be placed on at least 18 inches of engineered fill compacted to at least 90 percent of maximum dry density with the upper 12 inches below pavements compacted to at least 95 percent relative



compaction. The overexcavation of the pavement areas should be conducted as recommended in the earthwork section of this report. Prior to fill placement, the exposed subgrade should be scarified to a depth of 8 inches, uniformly moisture conditioned to at least the optimum moisture content prior to compaction.

- Subgrade soils should be in a stable, non-pumping condition at the time aggregate base materials are placed and compacted.
- Aggregate base materials should be compacted to at least 95 percent relative compaction.
- Adequate drainage (both surface and subsurface) should be provided such that the subgrade soils and aggregate base materials are not allowed to become wet.
- Aggregate base materials should meet current Caltrans specifications for Class 2 aggregate base rock, or crushed miscellaneous base as specified in the "Standard Specifications for Public Work Construction" ("Greenbook").
- The asphalt pavement should be placed in accordance with "Green Book" specifications or the County of Los Angeles requirements, as appropriate. We recommend that the asphalt pavement be placed in a single layer of ½-inch aggregate mix for pavements 4 inches thick or less. If the pavement section is over 4 inches thick, then the asphalt should be placed in at least two layers of mix. The first layer should consist of a base or coarse layer (3/4-inch mix). The second layer (i.e., top layer) should consist of a medium or fine layer of ½-inch mix.
- Based on our analyses and our experience with similar projects, it is our professional opinion that the as-built asphalt pavement sections should have a tolerance of +/- ¼-inch in order to remain valid for satisfying the intent of the recommendations presented herein. Typically, the loose thickness should be ¼ inch per inch greater than the required compacted thickness. In addition to loose measurements prior to compaction, this is typically evaluated by averaging the thickness of several cores in a specific area. Individual measurements (loose thickness or core dimension) should be within at least ¾-inch of the design thickness.
- All concrete curbs separating pavement and landscaped areas should extend into the subgrade and below the bottom of adjacent, aggregate base materials.

Pavement sections provided above are based on the soil conditions encountered during our field investigation, our assumptions regarding final site grades, and limited laboratory testing. Since the actual pavement subgrade materials exposed during grading may be significantly



different than those tested for this study, we recommend that representative subgrade samples be obtained and additional R-value tests performed. Should the results of these tests indicate a significant difference, the design pavement section(s) provided above may need to be revised.

## 4.11.2 Portland Cement Concrete Pavement

Concrete pavements may be desirable in loading dock and trash collection areas. The concrete pavement should have a minimum 28-day compressive strength of 3,000 psi. Control joints should be spaced approximately every 10 feet. The concrete pavement section should be placed on at least 18 inches of engineered fill compacted to at least 90 percent of the maximum dry density. Prior to fill placement, the exposed subgrade should be scarified to a depth of 8 inches, uniformly moisture conditioned to the moisture content range recommended in Section 4.4 of this report. Table 5, Preliminary Recommended PCC Pavement Sections, presents our recommendations of Portland Cement Concrete pavement sections.

| Assumed<br>Traffic Index<br>(TI) |   | Concrete Thickness (inches;<br>using a 28-day compressive<br>strength of 3,000 psi) | Concrete Thickness (inches;<br>using a 28-day compressive<br>strength of 4,000 psi) |  |  |  |
|----------------------------------|---|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--|--|--|
|                                  | 5 | 8.0                                                                                 | 7.5                                                                                 |  |  |  |
|                                  | 7 | 8.5                                                                                 | 8.0                                                                                 |  |  |  |

 Table 5

 Preliminary Recommended PCC Pavement Sections

As an alternative to placing PCC pavements directly over 18 inches of engineered fill, 6 inches of aggregate base material may be added between the PCC and engineered fill to provide additional load distribution, drainage, and an option to reduce the thickness of the recommended PCC. If 6 inches of aggregate base material (compacted to 95% relative compaction) is used between the recommended 18 inches of engineered fill and PCC pavement, the recommended PCC thickness may be reduced by ½ inch. Aggregate base materials should meet current Caltrans specifications for Class 2 aggregate base, or crushed miscellaneous base as specified in the "Standard Specifications for Public Work Construction" ("Greenbook").

### 4.12 STORMWATER MANAGEMENT

We have preliminarily assessed the potential for storm water infiltration into the subgrade soils at the subject project site based on visual soil classification and laboratory testing of the soil



samples collected during the field exploration. The onsite near-surface soils consist primarily of dense to very dense sands to silty sands and hard sandy clays. Based on these conditions, we anticipate a generally low infiltration capacity of the near-surface soils, and we preliminarily recommend alternatives to infiltration Best Management Practices (BMPs), such as bio-filtration/bio-retention systems (bio-swales and planter boxes), be implemented at the project site at these elevations. In-situ infiltration testing should be performed to confirm this preliminary assessment and determine design infiltration rates at the BMP design depth at specific locations at the site.

If bio-filtration/bio-retention systems are employed, we recommend that the BMPs be built such that water exiting from them will not seep into the foundation areas or beneath slabs and pavement. If planters are located within 10 feet of structures or foundations, or adjacent to slabs and pavements, then some means of diverting water away from the structures, foundation soils, or soils that support slabs and pavements would be required, such as lining the planters.



### 5 ADDITIONAL SERVICES

### 5.1 DESIGN LEVEL INVESTIGATION

This report presents preliminary geotechnical recommendations to develop a conceptual design and provide planning-level cost estimating. This study is not intended to be a design-level geotechnical study, and additional field and laboratory testing will be required in order to provide detailed geotechnical recommendations.

The preliminary recommendations provided in this report are based on our understanding of the described project information and on our interpretation of the data. We have made our recommendations based on experience with similar subsurface conditions under similar loading conditions. The recommendations apply to the specific project discussed in this report; therefore, any change in the structure configuration, loads, location, or the site grades should be provided to us so that we can review our conclusions and recommendations and make any necessary modifications.



## 6 LIMITATIONS

This report has been prepared for the exclusive use of NorthPoint Development, and its consultants and contractors for specific application to the proposed improvements for the proposed project. The findings, conclusions and recommendations presented in this report were prepared in a manner consistent with the standards of care and skill ordinarily exercised by members of our profession practicing under similar conditions in the geographic vicinity and at the time the services will be performed. No warranty or guarantee, express or implied, is made. Our field exploration program for the geotechnical study of this project was based on the approximate building locations provided to us by the client.

The client has the responsibility to see that all parties to the project, including the designer, contractor, subcontractors, etc., are made aware of this report in its entirety. This report contains information that may be useful in the preparation of contract specifications. However, this report is not designed as a specification document and may not contain sufficient information for this use without proper modification.

This report may be used only by the client and only for the purposes stated, within a reasonable time from its issuance, but in no event later than one year from the date of the report. Land use, site conditions (both on site and off site) or other factors may change over time, and additional work may be required with the passage of time. Any party, other than the client who wishes to use this report shall notify Kleinfelder of such intended use. Based on the intended use of this report and the nature of the new project, Kleinfelder may require that additional work be performed and that an updated report be issued. Non-compliance with any of these requirements by the client or anyone else will release Kleinfelder from any liability resulting from the use of this report by any unauthorized party and the client agrees to defend, indemnify, and hold harmless Kleinfelder from any claims or liability associated with such unauthorized use or non-compliance.

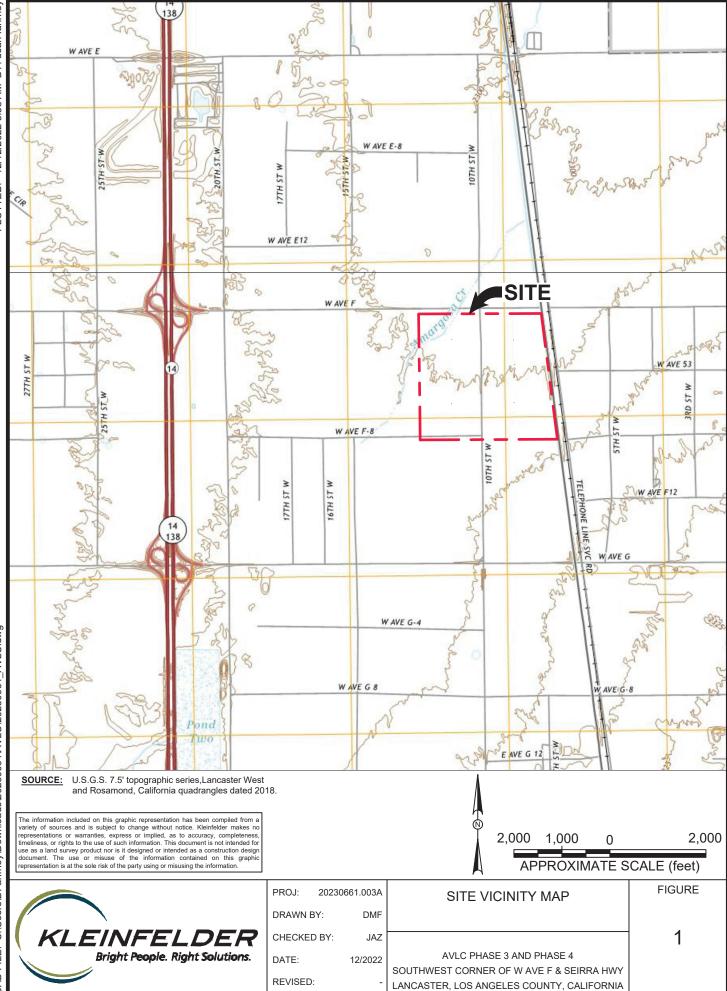
The scope of our geotechnical services did not include any environmental site assessment for the presence or absence of hazardous/toxic materials, including methane or other landfill related gases. Kleinfelder will assume no responsibility or liability whatsoever for any claim, damage, or injury which results from pre-existing hazardous materials being encountered or present on the project site, or from the discovery of such hazardous materials.

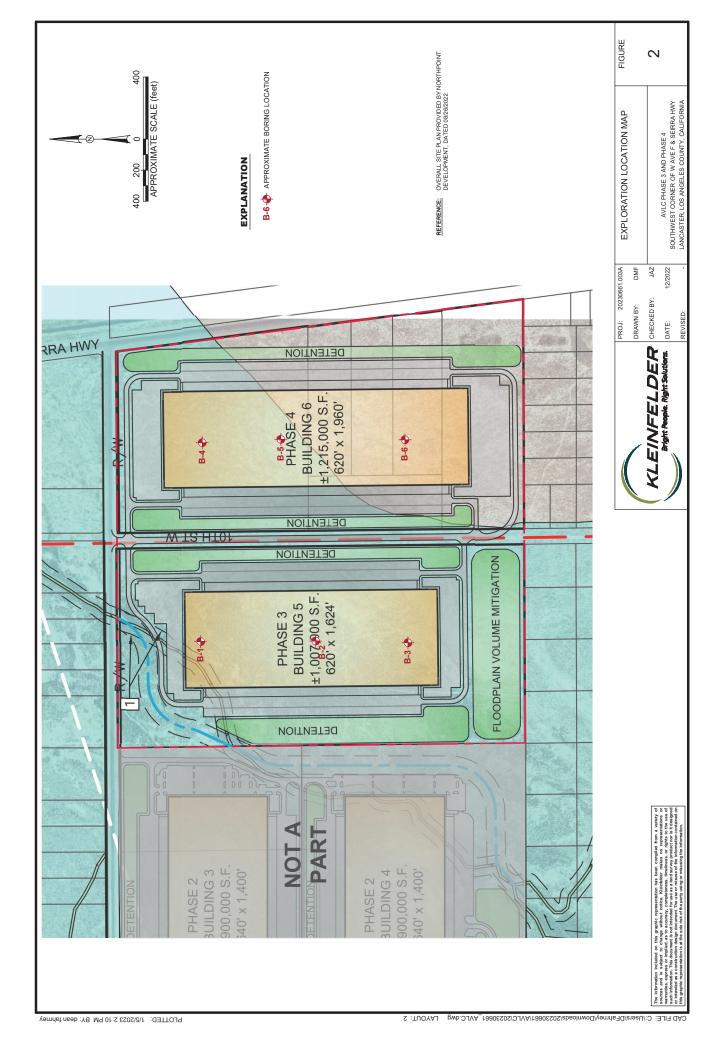


#### 7 REFERENCES

- American Concrete Institute (ACI), 2014, Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14).
- American Society of Civil Engineers (ASCE), 2016, Minimum Design Load for Buildings and Other Structures (ASCE/SEI 7-16).
- California Department of Conservation, Geologic Energy Management Division (CalGEM) [formerly Division of Oil, Gas and Geothermal Resources (DOGGR)], 2022. Well Finder, Interactive Oil & Gas Well Location Map, available at website: https://www.conservation.ca.gov/calgem.
- California Department of Water Resources (CDWR), 2022, Water Data Library (WDL) Station Map, online California map of groundwater data, accessed December 22, 2022.

California Geological Survey (CGS), 2002. California Geomorphic Provinces, Note 36.


- California Geological Survey (CGS), 2005a, Seismic Hazard Zone Report for the Lancaster West 7.5-Minute Quadrangle, Los Angeles County, California, Seismic Hazard Zone Report 095, dated 2005.
- California Geological Survey (CGS), 2005b, Seismic Hazard Zones, Earthquake Zones of Required Investigation, Map, Lancaster West Quadrangle, dated February 11, 2005.
- California Geological Survey (CGS), 2010a, Geologic Map of the Lancaster West 7.5' Quadrangle, Los Angeles County, California: A Digital Database, Version 1.0 by Janis L. Hernandez, scale 1:24,000.
- California Geological Survey (CGS), 2010b, *Fault Activity Map of California, California Geologic Data Map Series, Map No. 6.*
- California Geological Survey (CGS), 2018. Earthquake Fault Zones A Guide for Government Agencies, Property Owners/Developers, and Geoscience Practitioners for Assessing Fault Rupture Hazards in California: California Geological Survey Special Publication 42, 83p.




- Federal Emergency Management Agency (FEMA), 2008, FIRM, Flood Insurance Rate Map, Los Angeles County, California, and Incorporated Areas, Panel 410 of 2350, Map Number 06037C0410F, Effective Date September 26, 2008.
- Geotracker, 2022, Lancaster Landfill (T0603700262), letter prepared by SCS, dated February 4, 2009, site accessed on June 13, 2022.
- International Code Council, Inc., 2019, California Building Code.
- Nationwide Environmental Title Research, LLC (NETR), 2022. Historic Aerial Viewer, available at website: <u>https://www.historicaerials.com/viewer</u>
- Norris, R.M., Webb, R.W., 1990, Geology of California, second ed., John Wiley and Sons.
- Petersen, M.D., Frankel, A.D., Harmsen, S.C., Mueller, C.S., Haller, K., Wheeler, R.L., Wesson, R.L., Zeng, Y., Boyd, O.S., Perkins, D.M., Luco, N., Field, E.H., Wills, C.J., and Rukstales, K.S., 2008, Documentation for the 2008 Update of the United States National Seismic Hazard Maps: U.S. Geological Survey (USGS), Open-File Report 2008–1128, 61p.
- Portland Cement Association. Portland Cement Concrete Pavement Design for Light, Medium & Heavy Traffic. Third Printing Dated 1981.
- Roberge, P., 2006, Corrosion Basics, 2nd ed.
- Tokimatsu, K., and Seed, H. B., 1987, Evaluation of settlements in sands due to earthquake shaking, J. Geotechnical Eng., ASCE 113(GT8), 861–78.
- United States Geological Survey (USGS), 2022. Areas of Land Subsidence in California, website accessed December 22, 2022 at: <u>http://ca.water.usgs.gov/land\_subsidence/california-subsidence-areas.html</u>.
- Youd, T.L., et al. 2001, "Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils," Journal of Geotechnical and Geoenvironmental Engineering, October 2001, pp 817-833.



**FIGURES** 







#### APPENDIX A FIELD EXPLORATIONS



#### APPENDIX A FIELD EXPLORATIONS

The subsurface conditions at the site were explored by drilling and logging six (6) hollow-stem auger borings. Due to soft soil at the surface of the site, the hollow stem auger borings were drilled using a truck-mounted drill rig. The hollow stem auger drill rigs were provided by 2R Drilling of Chino, California. The hollow stem auger drill rig mentioned above were equipped with an automatic hammer system to drive the samplers. The locations of our borings are shown on Figure 2.

The logs of borings are presented as Figures A-3 through A-8. An explanation to the logs is presented on Figures A-1 and A-2. The Logs of Borings describe the earth materials encountered, samples obtained, and show field and laboratory tests performed. The logs also show the boring number, excavation date and the name of the logger and excavation subcontractor. A Kleinfelder geologist logged the borings utilizing the Unified Soil Classification System (USCS). The boundaries between soil types shown on the logs are approximate because the transition between different soil layers may be gradual. Bulk and drive samples of representative earth materials were obtained from the borings at maximum intervals of about 5 feet.

A California-type sampler was used to obtain relatively undisturbed drive samples of the soil encountered. This sampler consists of a 3-inch O.D., 2.4 inch I.D. split barrel shaft that is driven a total of 18 inches into the soil at the bottom of the boring. The soil was retained in six 1-inch brass rings for laboratory testing. The sampler was driven using a 140-pound hammer falling 30 inches. The total number of hammer blows required to drive the sampler the final 12 inches is termed the blow count and is recorded on the Logs of Borings. Where the sample was driven less than 12 inches, the number of blows to drive the sample for each 6-inch segment, or portion thereof, is shown on the logs. For example, 50/4" indicates 50 blows to drive the sampler 4 inches to refusal.

Bulk samples of the sub-surface soils were retrieved directly from the soil cuttings and placed in large plastic bags.

| DRILLING METHOD/SAMPLER TYPE GRAPHICS                                                                                                                                                                                                  |               | UNIF                                 | IED S                                            |                                     | SSIFIC         | CATION S                                                                                                           | YSTEM <sup>1</sup>                                                                          |                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------|--------------------------------------------------|-------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------|
| BULK SAMPLE                                                                                                                                                                                                                            |               |                                      | Sieve)                                           | CLEAN<br>GRAVEL                     |                | GW                                                                                                                 | WELL-GRADED GRAVEL,<br>WELL-GRADED GRAVEL WITH SAN                                          | ID                                              |
| CALIFORNIA SAMPLER<br>(3 in. (76.2 mm.) outer diameter)                                                                                                                                                                                |               |                                      |                                                  | WITH<br><5%<br>FINES                |                | GP                                                                                                                 | POORLY GRADED GRAVEL,<br>POORLY GRADED GRAVEL WITH S                                        | SAND                                            |
| GRAB SAMPLE<br>STANDARD PENETRATION SPLIT SPOON SAMPLER<br>(2 in. (50.8 mm.) outer diameter and 1-3/8 in. (34.9 mm.) inner                                                                                                             |               |                                      | Sieve)<br>50% of coarse fraction retained on No. |                                     |                | GW-GM                                                                                                              | WELL-GRADED GRAVEL WITH SILT<br>WELL-GRADED GRAVEL WITH SILT                                |                                                 |
| GROUND WATER GRAPHICS                                                                                                                                                                                                                  |               |                                      |                                                  | GRAVELS<br>WITH                     |                | GW-GC                                                                                                              | WELL-GRADED GRAVEL WITH CLA<br>CLAY), WELL-GRADED GRAVEL WI<br>SAND (OR SILT CLAY AND SAND) |                                                 |
| <ul> <li>✓ WATER LEVEL (level where first observed)</li> <li>✓ WATER LEVEL (level after stabilizing period)</li> </ul>                                                                                                                 |               |                                      |                                                  | 5% TO<br>12%<br>FINES               |                | GP-GM                                                                                                              | POORLY GRADED GRAVEL WITH S                                                                 |                                                 |
| Ψ WATER LEVEL (additional levels after exploration)                                                                                                                                                                                    |               |                                      |                                                  | TINES                               | Poll           |                                                                                                                    | POORLY GRADED GRAVEL WITH S                                                                 | SILT AND SAND                                   |
| OBSERVED SEEPAGE                                                                                                                                                                                                                       |               | Sieve)                               |                                                  |                                     |                | GP-GC                                                                                                              | POORLY GRADED GRAVEL WITH C<br>CLAY), POORLY GRADED GRAVEL<br>(OR SILTY CLAY AND SAND)      |                                                 |
| • The report and graphics key are an integral part of these logs. All data and interpretations in this log are subject to the explanations and limitations stated in the report.                                                       | ata           | n No. 200                            | More than                                        |                                     |                | GM                                                                                                                 | SILTY GRAVEL,<br>SILTY GRAVEL WITH SAND                                                     |                                                 |
| <ul> <li>Solid lines separating strata on the logs represent approximate<br/>boundaries only, dashed lines are inferred or extrapolated boundaries.<br/>Actual transitions may be gradual or differ from those represented.</li> </ul> |               | etained o                            | GRAVELS (More                                    | GRAVELS<br>WITH ><br>12%<br>FINES   |                | GC                                                                                                                 | CLAYEY GRAVEL,<br>CLAYEY GRAVEL WITH SAND                                                   |                                                 |
| <ul> <li>No warranty is provided as to the continuity of soil or rock conditions<br/>between individual sample locations.</li> <li>Logs represent general soil or rock conditions observed at the point</li> </ul>                     |               | SOILS (More than 50% retained on No. | GR                                               | TINEO                               |                | GC-GM                                                                                                              | SILTY, CLAYEY GRAVEL<br>SILTY, CLAYEY GRAVEL WITH SAN                                       | D                                               |
| <ul> <li>Exploration on the date indicated.</li> <li>In general, Unified Soil Classification System (ASTM D2488/D2487) designations presented on the logs were based on visual classification</li> </ul>                               | )             | S (More th                           |                                                  | CLEAN                               | *****<br>***** | sw                                                                                                                 | WELL-GRADED SAND,<br>WELL-GRADED SAND WITH GRAVE                                            | EL                                              |
| <ul> <li>the field and were modified where appropriate based on gradation and<br/>index property testing.</li> <li>Fine grained soils that plot within the hatched area on the Plasticity</li> </ul>                                   |               | ED SOIL                              | 4 Sieve)                                         | WITH<br><5%<br>FINES                | ••••           | SP                                                                                                                 | POORLY GRADED SAND,<br>POORLY GRADED SAND WITH GRA                                          | AVEL                                            |
| Chart, and coarse grained soils with between 5% and 12% passing the 200 sieve require dual USCS symbols, i.e., CL-ML, GW-GM, GP-GM, GW-GC, GP-GC, GC-GM, SW-SM, SP-SM, SW-SC, SP-SC, SC-SM.                                            | e No.         | E GRAINED                            | s the No.                                        |                                     |                | SW-SM                                                                                                              | WELL-GRADED SAND WITH SILT,<br>WELL-GRADED SAND WITH SILT A                                 | ND GRAVEL                                       |
| <ul> <li>If sampler is not able to be driven at least 6 inches then 50/X indicat<br/>number of blows required to drive the identified sampler X inches with<br/>140 pound hammer falling 30 inches.</li> </ul>                         |               | COARSE                               | coarse fraction passes                           | SANDS<br>WITH                       |                | sw-sc                                                                                                              | WELL-GRADED SAND WITH CLAY (<br>WELL-GRADED SAND WITH CLAY (<br>(OR SILTY CLAY AND GRAVEL)  |                                                 |
| ABBREVIATIONS<br>WOH - Weight of Hammer<br>WOR - Weight of Rod<br>REFERENCES                                                                                                                                                           |               |                                      |                                                  | 5% TO<br>12%<br>FINES               |                | SP-SM                                                                                                              | POORLY GRADED SAND WITH SILT<br>POORLY GRADED SAND WITH SILT                                |                                                 |
| 1. American Society for Materials and Testing (ASTM), 2011, ASTM<br>D2487: Classification of Soils for Engineering Purposes (Unified Soil<br>Classification System).                                                                   |               |                                      | ore of                                           |                                     |                | SP-SC                                                                                                              | POORLY GRADED SAND WITH CLA<br>POORLY GRADED SAND WITH CLA<br>(OR SILTY CLAY AND GRAVEL)    |                                                 |
|                                                                                                                                                                                                                                        |               |                                      | (50% or m                                        |                                     |                | SM                                                                                                                 | SILTY SAND,<br>SILTY SAND WITH GRAVEL                                                       |                                                 |
|                                                                                                                                                                                                                                        |               |                                      | SANDS (                                          | SANDS<br>WITH ><br>12%<br>FINES     |                | sc                                                                                                                 | CLAYEY SAND,<br>CLAYEY SAND WITH GRAVEL                                                     |                                                 |
|                                                                                                                                                                                                                                        |               |                                      |                                                  |                                     |                | SC-SM                                                                                                              | SILTY, CLAYEY SAND,<br>SILTY, CLAYEY SAND WITH GRAVE                                        | EL                                              |
|                                                                                                                                                                                                                                        |               |                                      |                                                  |                                     |                | M                                                                                                                  | SILT, SILT WITH SAND, SILT WITH GRAVEL                                                      |                                                 |
|                                                                                                                                                                                                                                        |               | SILS                                 | (e)                                              | SILTS AND                           | CLAYS          | CI                                                                                                                 | LEAN CLAY, LEAN CLAY WITH SAND, LEAN CLAY W                                                 | WITH GRAVEL                                     |
|                                                                                                                                                                                                                                        |               | D S C                                | e pas<br>) siev                                  | (Liquid I<br>less thar              | ∟imit<br>n 50) | CL-I                                                                                                               | ML SILTY CLAY, SILTY CLAY WITH SAND, SILTY CLAY                                             | WITH GRAVEL                                     |
|                                                                                                                                                                                                                                        |               | AINE                                 | #20(                                             |                                     |                | o                                                                                                                  | ORGANIC CLAY, ORGANIC CLAY WITH SAND, ORC<br>ORGANIC SILT, ORGANIC SILT WITH SAND, ORGA     | GANIC CLAY WITH GRAVEL,<br>NIC SILT WITH GRAVEL |
|                                                                                                                                                                                                                                        |               | GR                                   | (50% or more passes<br>the No. #200 sieve)       |                                     |                | м                                                                                                                  | ELASTIC SILT. ELASTIC SILT WITH SAND, ELASTIC                                               | SILT WITH GRAVEL                                |
|                                                                                                                                                                                                                                        |               |                                      | the (50'                                         | SILTS AND<br>(Liquid L<br>50 or gre | _imit          | CI                                                                                                                 |                                                                                             |                                                 |
|                                                                                                                                                                                                                                        |               |                                      |                                                  | -                                   |                | i the second                                                                                                       | ORGANIC SILT, ORGANIC SILT WITTI SAND, ORGA                                                 | NIC SILT WITH GRAVEL                            |
|                                                                                                                                                                                                                                        |               |                                      |                                                  | E MATERIA                           |                |                                                                                                                    | I ON THE LOG TO DEFINE A GRAPHIC                                                            | THAT MAY NOT BE                                 |
| $\frown$                                                                                                                                                                                                                               | PROJ<br>20230 |                                      |                                                  |                                     |                |                                                                                                                    | GRAPHICS KEY                                                                                | FIGURE                                          |
| ( KLEINFELDER                                                                                                                                                                                                                          | DRAV          | VN BY                                | <i>'</i> :                                       | JZ                                  |                |                                                                                                                    |                                                                                             | A-1                                             |
| Pright People Bight Colutions                                                                                                                                                                                                          |               | CHECKED BY:                          |                                                  | CJ                                  |                | AVLC Phase 3 and Phase 4<br>SWC of W Avenue F and Sierra Highway<br>Lancaster Area, Los Angeles County, California |                                                                                             |                                                 |
| -                                                                                                                                                                                                                                      | DATE          | :                                    |                                                  |                                     |                |                                                                                                                    | -                                                                                           |                                                 |

| GRAIN SIZE <sup>1</sup> |
|-------------------------|
|-------------------------|

#### SECONDARY CONSTITUENT<sup>1</sup>

| GRAIN       |                     |              |                                      |  |  |  |
|-------------|---------------------|--------------|--------------------------------------|--|--|--|
| DESCRIPTION |                     | SIEVE SIZE   | GRAIN SIZE                           |  |  |  |
| Boulders    |                     | >12 in.      | >12 in. (304.8 mm.)                  |  |  |  |
| Cobbles     |                     | 3 - 12 in.   | 3 - 12 in. (76.2 - 304.8 mm.)        |  |  |  |
| Crowal      | coarse              | 3/4 -3 in.   | 3/4 -3 in. (19 - 76.2 mm.)           |  |  |  |
| Gravel      | fine                | #4 - 3/4 in. | 0.19 - 0.75 in. (4.8 - 19 mm.)       |  |  |  |
|             | coarse              | #10 - #4     | 0.079 - 0.19 in. (2 - 4.9 mm.)       |  |  |  |
| Sand        | nd medium #40 - #10 |              | 0.017 - 0.079 in. (0.43 - 2 mm.)     |  |  |  |
|             | fine #200 - #40     |              | 0.0029 - 0.017 in. (0.07 - 0.43 mm.) |  |  |  |
| Fines       |                     | Passing #200 | <0.0029 in. (<0.07 mm.)              |  |  |  |
|             |                     |              |                                      |  |  |  |

| AMOUNT                                      |                                                                  |  |  |  |  |
|---------------------------------------------|------------------------------------------------------------------|--|--|--|--|
| Secondary<br>Constituent is<br>Fine Grained | Secondary<br>Constituent is<br>Coarse Grained                    |  |  |  |  |
| <5%                                         | <15%                                                             |  |  |  |  |
| ≥5 to <15%                                  | ≥15 to <30%                                                      |  |  |  |  |
| ≥15%                                        | ≥30%                                                             |  |  |  |  |
|                                             | Secondary<br>Constituent is<br>Fine Grained<br><5%<br>≥5 to <15% |  |  |  |  |

#### PLASTICITY<sup>1</sup>

| DESCRIPTION | CRITERIA                                                                                                                                                                                                                                    |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Non-Plastic | A 1/8 in. (3 mm) thread cannot be rolled at any water content.                                                                                                                                                                              |
| Low         | The thread can barely be rolled and the lump cannot be formed when<br>drier than the plastic limit.                                                                                                                                         |
| Medium      | The thread is easy to roll and not much time is required to reach the plastic limit. The thread cannot be rerolled after reaching the plastic limit. The lump crumbles when drier than the plastic limit.                                   |
| High        | It takes considerable time rolling and kneading to reach the plastic<br>limit. The thread can be rerolled several times after reaching the<br>plastic limit. The lump can be formed without crumbling when drier<br>than the plastic limit. |

CONSISTENCY - FINE-GRAINED SOIL<sup>2,3</sup>

#### MOISTURE CONTENT<sup>1</sup>

| DESCRIPTION | FIELD TEST                                                  |
|-------------|-------------------------------------------------------------|
| Dry         | Absence of<br>moisture, dusty,<br>dry to the touch          |
| Moist       | Damp but no<br>visible water                                |
| Wet         | Visible free water,<br>usually soil is below<br>water table |

## APPARENT DENSITY -COARSE-GRAINED SOIL<sup>2</sup>

| CONSISTENCY  | SPT - N<br>(# blows / ft) | Pocket Pen<br>(tsf)   | UNCONFINED<br>COMPRESSIVE<br>STRENGTH (Q <sub>4</sub> )(psf) | VISUAL / MANUAL CRITERIA                                       | APPAREN<br>DENSIT |
|--------------|---------------------------|-----------------------|--------------------------------------------------------------|----------------------------------------------------------------|-------------------|
| Very Soft    | <2                        | PP < 0.25             | <500                                                         | Easily penetrated several inches by fist                       | Very Loos         |
| Soft         | 2 - 4                     | 0.25 <u>≤</u> PP <0.5 | 500 - 1,000                                                  | Easily penetrated several inches by thumb                      | Loose             |
| Medium Stiff | 4 - 8                     | 0.5 ≤ PP <1           | 1,000 - 2,000                                                | Can be penetrated several inches by thumb with moderate effort | Medium De         |
|              |                           |                       |                                                              | Readily indented by thumb but penetrated only                  | Dense             |
| Stiff        | 8 - 15                    | 1 <u>≤</u> PP <2      | 2,000 - 4,000                                                | with great effort                                              | Very Dens         |
| Very Stiff   | 15 - 30                   | 2 <u>≤</u> PP <4      | 4,000 - 8,000                                                | Readily indented by thumbnail                                  |                   |
| Hard         | >30                       | 4 ≤ PP                | >8,000                                                       | Indented by thumbnail with difficulty                          |                   |
|              |                           |                       |                                                              |                                                                |                   |

| APPARENT<br>DENSITY | SPT-N<br>(# blows / ft) |
|---------------------|-------------------------|
| Very Loose          | <4                      |
| Loose               | 4 - 10                  |
| Medium Dense        | 10 - 30                 |
| Dense               | 30 - 50                 |
| Very Dense          | >50                     |
|                     |                         |

#### STRUCTURE<sup>1</sup>

**REFERENCES** 

Manual Procedures).

Practice, John Wiley & Sons, New York.

(USBR), 1998, Earth Manual, Part I.

| DESCRIPTION  | CRITERIA                                                                                                                         |
|--------------|----------------------------------------------------------------------------------------------------------------------------------|
| Stratified   | Alternating layers of varying material or color with layers at least 1/4-in. (6mm) thick, note thickness.                        |
| Laminated    | Alternating layers of varying material or color with the layers less than 1/4-in. (6 mm) thick, note thickness.                  |
| Fissured     | Breaks along definite planes of fracture with<br>little resistance to fracturing.                                                |
| Slickensided | Fracture planes appear polished or glossy, sometimes striated.                                                                   |
| Blocky       | Cohesive soil that can be broken down into small angular lumps<br>which resist further breakdown.                                |
| Lensed       | Inclusion of small pockets of different soils, such as small lenses<br>of sand scattered through a mass of clay; note thickness. |
| Homogeneous  | Same color and appearance throughout                                                                                             |

1. American Society for Materials and Testing (ASTM), 2017, ASTM D2488: Standard Practice for Description and Identification of Soils (Visual

2. Terzaghi, K and Peck, R., 1948, Soil Mechanics in Engineering

3. United States Department of the Interior Bureau of Reclamation

#### ANGULARITY<sup>1</sup>

| DESCRIPTION | CRITERIA                                                                        |
|-------------|---------------------------------------------------------------------------------|
| Angular     | Particles have sharp edges and relatively plane sides with unpolished surfaces. |
| Subangular  | Particles are similar to angular description but have rounded edges.            |
| Subrounded  | Particles have nearly plane sides but have well-rounded corners and edges.      |
| Rounded     | Particles have smoothly curved sides and no edges.                              |

#### **REACTION WITH** HYDROCHLORIC ACID<sup>1</sup>

#### **CEMENTATION**<sup>1</sup>

| DESCRIPTION | FIELD TEST                                                  | DESCRIPTION | FIELD TEST                                                       |
|-------------|-------------------------------------------------------------|-------------|------------------------------------------------------------------|
| None        | No visible reaction                                         | Weakly      | Crumbles or breaks<br>with handling or little<br>finger pressure |
| Weak        | Some reaction,<br>with bubbles<br>forming slowly            | Moderately  | Crumbles or breaks<br>with considerable finger<br>pressure       |
| Strong      | Violent reaction,<br>with bubbles<br>forming<br>immediately | Strongly    | Will not crumble or<br>break with finger<br>pressure             |

| $\bigcap$                       | PROJECT NO.:<br>20230661.003A | SOIL DESCRIPTION KEY<br>(For additional tables, see ASTM D2488)                        | FIGURE |
|---------------------------------|-------------------------------|----------------------------------------------------------------------------------------|--------|
| KLEINFELDER                     | DRAWN BY: JZ                  | AVLC Phase 3 and Phase 4                                                               | A-2    |
| Bright People. Right Solutions. | CHECKED BY: CJ                | SWC of W Avenue F and Sierra Highway<br>Lancaster Area, Los Angeles County, California |        |
|                                 | DATE:                         | Lancaster Area, Los Angeles County, California                                         |        |

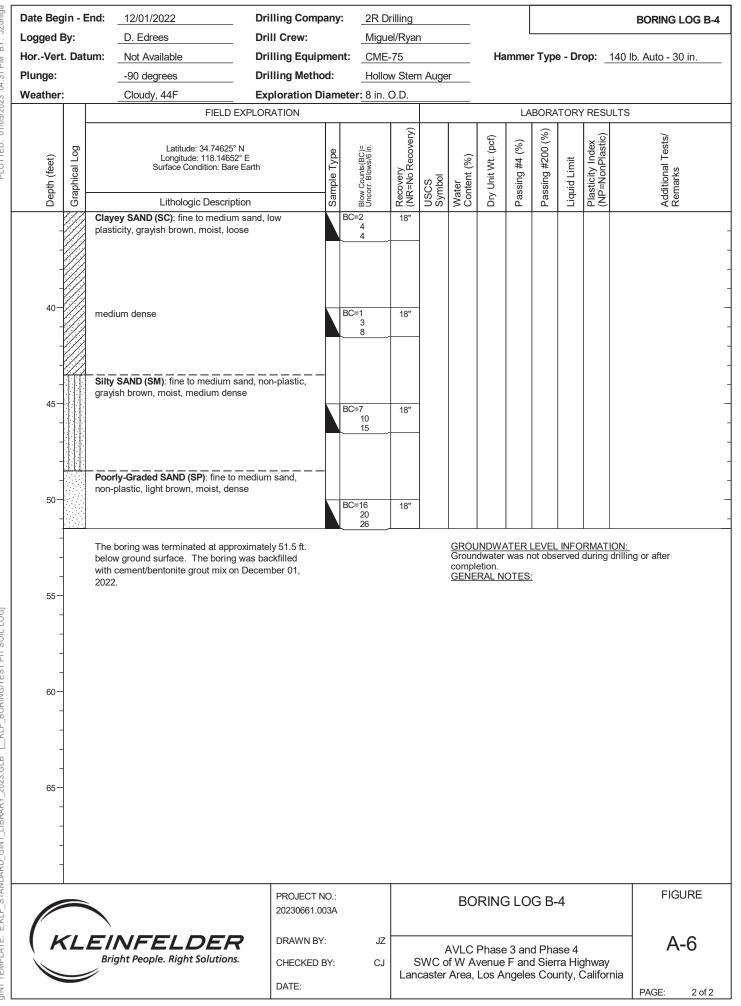
| Date Beg                                                                                                        | in -                                                                                                                                                                          | End:     | 12/02/2022                                                                         | Drilling Com     | pany             | <b>/:</b> 2R D                          | Drilling                     |                |                         |                    |                |                  |              |                                     | BORING LOG B-                |
|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------------------------------------------------------------|------------------|------------------|-----------------------------------------|------------------------------|----------------|-------------------------|--------------------|----------------|------------------|--------------|-------------------------------------|------------------------------|
| Logged E                                                                                                        | By:                                                                                                                                                                           |          | D. Edrees                                                                          | Drill Crew:      |                  | Migu                                    | iel/Ryai                     | n              |                         |                    | I              |                  |              |                                     |                              |
| HorVert                                                                                                         | . Da                                                                                                                                                                          | tum:     | Not Available                                                                      | Drilling Equip   | pme              | nt: CME                                 | -75                          |                |                         | Ha                 | mme            | r Typ            | e - Dr       | op: _                               | 140 lb. Auto - 30 in.        |
| Plunge:                                                                                                         |                                                                                                                                                                               |          | -90 degrees                                                                        | Drilling Meth    | od:              | Hollo                                   | w Ster                       | n Auge         | er                      |                    |                |                  |              |                                     |                              |
| Weather:                                                                                                        |                                                                                                                                                                               | _        | Sunny, 42F                                                                         | Exploration E    | Dian             | neter: 8 in.                            | O.D.                         |                |                         |                    |                |                  |              |                                     |                              |
|                                                                                                                 |                                                                                                                                                                               |          | FIELD EX                                                                           | PLORATION        | _                |                                         |                              |                |                         |                    | LA             | BORA             | TOR          | Y RESI                              | JLTS                         |
| Depth (feet)                                                                                                    | Graphical Log                                                                                                                                                                 |          | Latitude: 34.74627° N<br>Longitude: 118.15079°<br>Surface Condition: Bare B        | E<br>Earth       | I<br>Sample Type | Blow Counts(BC)=<br>Uncorr. Blows/6 in. | Recovery<br>(NR=No Recovery) | USCS<br>Symbol | Water<br>Content (%)    | Dry Unit Wt. (pcf) | Passing #4 (%) | Passing #200 (%) | Liquid Limit | Plasticity Index<br>(NP=NonPlastic) | Additional Tests/<br>Remarks |
|                                                                                                                 | ू<br>जुर्म                                                                                                                                                                    | All      | Lithologic Descriptic                                                              |                  | 0                |                                         | RE                           | 20             | 50                      |                    | <u>а</u>       | <u> </u>         |              |                                     | Hand auger to 5' bgs.        |
|                                                                                                                 | $\bigcirc \bigcirc $ | yell     | ty SAND (SM): fine to medium sa<br>lowish brown, moist, stiff, trace gi            | ravel            |                  | 2                                       | 12"                          | -              | 11.7                    |                    |                |                  |              |                                     |                              |
| -                                                                                                               | * * * * * * * * * * * * * * * * * * *                                                                                                                                         | coa      | II-Graded SAND with Silt (SW-S<br>arse sand, non-plastic, reddish ye<br>dium dense |                  |                  | BC=12<br>17<br>18                       | 18"                          | SP-SM          | 1.8                     | 97.3               | 100            | 6.6              |              |                                     |                              |
| -                                                                                                               |                                                                                                                                                                               |          | ty SAND (SM): fine to medium sa                                                    | nd non plastic   |                  | BC=22<br>19<br>16                       | 18"                          | -              | 1.5                     | 87.0               |                |                  |              |                                     |                              |
| 10                                                                                                              |                                                                                                                                                                               | oliv     | y SAND (SM). Inte to medium sa<br>re brown, moist, dense<br>h coarse sand and clay | na, non-piasilo, |                  | BC=7<br>20<br>31                        | 18"                          | -              | 10.0                    | 122.2              | 100            | 45               |              |                                     |                              |
| <br>15<br>                                                                                                      |                                                                                                                                                                               | ligh     | nt brown                                                                           |                  |                  | BC=16<br>23<br>26                       | 18"                          | -              | 4.0                     | 108.3              |                |                  |              |                                     |                              |
| -                                                                                                               |                                                                                                                                                                               | <b>x</b> | ndy CLAY (CL): fine to medium satisfies the sticity, olive gray, moist, stiff      | and, high        |                  |                                         |                              |                |                         |                    |                |                  |              |                                     |                              |
| 20-                                                                                                             |                                                                                                                                                                               |          |                                                                                    |                  |                  | BC=6<br>8<br>6                          | 18"                          | -              |                         |                    |                |                  |              |                                     |                              |
| -                                                                                                               |                                                                                                                                                                               |          | <b>ty SAND (SM</b> ): fine to medium sa<br>lowish brown, moist, medium der         |                  |                  |                                         |                              |                |                         |                    |                |                  |              |                                     |                              |
| 25                                                                                                              |                                                                                                                                                                               |          |                                                                                    |                  |                  | BC=5<br>13<br>16                        | 18"                          | _              |                         |                    |                |                  |              |                                     |                              |
| -<br>30—<br>-                                                                                                   |                                                                                                                                                                               |          |                                                                                    |                  |                  | BC=6<br>9<br>9                          | 18"                          | -              |                         |                    |                |                  |              |                                     |                              |
| -                                                                                                               |                                                                                                                                                                               | me       | orly-Graded SAND with Silt (SP-<br>dium sand, non-plastic, yellowish<br>dium dense |                  |                  |                                         |                              |                |                         |                    |                |                  |              |                                     |                              |
| PROJECT NO.:<br>20230661.003A                                                                                   |                                                                                                                                                                               |          |                                                                                    |                  |                  |                                         |                              | BC             | RINC                    | g lo               | G B-           | -1               |              | FIGURE                              |                              |
| KLEINFELDER       DRAWN BY:         Bright People. Right Solutions.       CHECKED BY:         DATE:       DATE: |                                                                                                                                                                               |          |                                                                                    |                  | JZ<br>CJ         |                                         | SWC o                        | of W A         | Phase<br>venue<br>Los A | F an               | d Sier         | ra Hi            |              |                                     |                              |

|   | Date Beg     | gin                        | - Er |                                                                                                                                           |               |                      |                                         | Drilling                                                                                             |                |                      |                    |                |                  |              |                                     | E       | BORING LO                    | G B-1       |
|---|--------------|----------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------|----------------|----------------------|--------------------|----------------|------------------|--------------|-------------------------------------|---------|------------------------------|-------------|
|   | Logged       | By:                        |      | D. Edrees                                                                                                                                 | Drill Crew:   |                      |                                         | uel/Ryar                                                                                             | ו              |                      |                    | l              |                  |              |                                     |         |                              |             |
|   | HorVer       | t. C                       | atu  |                                                                                                                                           | Drilling Equi |                      |                                         |                                                                                                      |                |                      | Ha                 | mme            | r Type           | ə - Dr       | ор: _                               | 140 lb. | Auto - 30 in                 | l           |
|   | Plunge:      |                            |      | -90 degrees                                                                                                                               | Drilling Meth |                      |                                         | ow Sten                                                                                              | n Auge         | r                    |                    |                |                  |              |                                     |         |                              |             |
| Ľ | Weather      | r:<br>T                    |      | Sunny, 42F                                                                                                                                | Exploration [ | Diam                 | neter: 8 in                             | O.D.                                                                                                 | 1              |                      |                    |                |                  |              |                                     |         |                              |             |
|   |              |                            |      | FIELD EXP                                                                                                                                 | LORATION      |                      |                                         |                                                                                                      |                |                      |                    | LA             |                  | TOR          | ( RESL                              | JLTS    |                              |             |
|   | Depth (feet) | Graphical Log              |      | Latitude: 34.74627° N<br>Longitude: 118.15079° E<br>Surface Condition: Bare Ear                                                           | th            | l<br>Sample Type     | Blow Counts(BC)=<br>Uncorr. Blows/6 in. | Recovery<br>(NR=No Recovery)                                                                         | USCS<br>Symbol | Water<br>Content (%) | Dry Unit Wt. (pcf) | Passing #4 (%) | Passing #200 (%) | Liquid Limit | Plasticity Index<br>(NP=NonPlastic) |         | Additional Tests/<br>Remarks |             |
|   | Δ            | C                          |      | Lithologic Description Poorly-Graded SAND with Silt (SP-SM                                                                                | N: fine to    | ő                    | ස්ථ<br>BC=4                             | n <u>n</u> <u>−</u> | ⊃ú             | ≤ŭ                   | ā                  | à              | <u> </u>         |              | ₹<                                  |         | ₹Ÿ                           |             |
|   | -            |                            |      | medium sand, non-plastic, yellowish b<br>medium dense<br>Sandy CLAY (CL): fine to medium san<br>plasticity, olive gray, moist, very stiff | rown, moist,  |                      | 10<br>15                                |                                                                                                      |                |                      |                    |                |                  |              |                                     |         |                              | -<br>-<br>- |
|   | 40<br>-<br>- | -                          |      | Poorly-Graded SAND (SP): fine to mean non-plastic, yellowish brown, moist, de                                                             |               |                      | BC=19<br>19<br>12                       | 18"                                                                                                  |                |                      |                    |                |                  |              |                                     |         |                              | -           |
|   | 45-          |                            |      |                                                                                                                                           |               |                      | BC=11<br>15<br>18                       | 18"                                                                                                  |                |                      |                    |                |                  |              |                                     |         |                              | -           |
|   | -            |                            |      | Sandy CLAY (CL): fine sand, medium olive gray, moist, stiff                                                                               | plasticity,   |                      | 10                                      |                                                                                                      |                |                      |                    |                |                  |              |                                     |         |                              | -           |
|   | 50-          |                            |      |                                                                                                                                           |               |                      | BC=7<br>5<br>7                          | 18"                                                                                                  |                |                      |                    |                |                  |              |                                     |         |                              | -<br>       |
|   | -<br>        |                            |      | The boring was terminated at approxim<br>below ground surface. The boring was<br>with cement/bentonite grout mix on De<br>2022.           | backfilled    |                      |                                         |                                                                                                      |                | Groun                |                    | was n          | ot obse          |              |                                     |         | or after                     |             |
|   |              | PROJECT NO.: 20230661.003A |      |                                                                                                                                           |               |                      |                                         |                                                                                                      | BO             | RINC                 | G LO               | G B-           | 1                |              |                                     | FIGUR   |                              |             |
|   |              |                            |      | J2<br>C.                                                                                                                                  | 5             | /<br>SWC o<br>caster |                                         | venue                                                                                                | Fan            | d Sier               | ra Hig             |                | nia              | A-3          | <b>}</b><br>2 of 2                  |         |                              |             |

PLOTTED: 01/05/2023 04:30 PM BY: JZuniga

gINT FILE: Kit\_gint\_master\_2023 PROJECT NUMBER: 20230661.003A OFFICE FILTER: RIVERSIDE gINT TEMPLATE: E:KLF\_STANDARD\_GINT\_LIBRARY\_2023.GLB [\_KLF\_BORING/TEST PIT SOIL LOG]

| Date Beg      | Image: Sign - End:         12/02/2022         Drilling Company:         2R Drilling                                                                                                                                                                                                                                            |                                                                          |                             |             |                                         |                              |                |                      |                                     |                | BORING LOG       | B-2                  |                                     |                         |                                     |      |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------|-------------|-----------------------------------------|------------------------------|----------------|----------------------|-------------------------------------|----------------|------------------|----------------------|-------------------------------------|-------------------------|-------------------------------------|------|
| Logged        | By:                                                                                                                                                                                                                                                                                                                            | D. Edrees                                                                | Drill Crew:                 |             |                                         | el/Ryar                      | ۱              |                      |                                     | ı              |                  |                      |                                     |                         |                                     |      |
| HorVer        | t. Da                                                                                                                                                                                                                                                                                                                          |                                                                          | Drilling Equi               |             |                                         |                              |                |                      | Ha                                  | imme           | r Тур            | e - Dr               | op: _                               | 140 ll                  | o. Auto - 30 in.                    |      |
| Plunge:       |                                                                                                                                                                                                                                                                                                                                | -90 degrees                                                              | Drilling Meth               | od:         | Hollo                                   | w Sten                       | n Auge         | er                   |                                     |                |                  |                      |                                     |                         |                                     | ĺ    |
| Weather       | :                                                                                                                                                                                                                                                                                                                              | Sunny, 42F                                                               | Exploration I               | Dian        | neter: 8 in.                            | O.D.                         | 1              |                      |                                     |                |                  |                      |                                     |                         |                                     |      |
|               |                                                                                                                                                                                                                                                                                                                                | FIELD E                                                                  | EXPLORATION                 |             |                                         |                              |                |                      |                                     | LA             | BORA             | TOR                  | / RESL                              | JLTS                    |                                     |      |
| Depth (feet)  | Graphical Log                                                                                                                                                                                                                                                                                                                  | Latitude: 34.74423°<br>Longitude: 118.15077<br>Surface Condition: Bare   | ″° E                        | Sample Type | Blow Counts(BC)=<br>Uncorr. Blows/6 in. | Recovery<br>(NR=No Recovery) | USCS<br>Symbol | Water<br>Content (%) | Dry Unit Wt. (pcf)                  | Passing #4 (%) | Passing #200 (%) | Liquid Limit         | Plasticity Index<br>(NP=NonPlastic) |                         | Additional Tests/<br>Remarks        |      |
| Dep           | Gra                                                                                                                                                                                                                                                                                                                            | Lithologic Descript                                                      | tion                        | San         | Blow<br>Unco                            | Rec<br>(NR                   | USC            | Cor                  | Dry                                 | Pas            | Pas              | Liqu                 | Plas<br>(NP                         |                         | Add<br>Ren                          | ſ    |
| -             |                                                                                                                                                                                                                                                                                                                                | Alluvium<br>Silty SAND (SM): fine to medium s<br>yellowish brown, dry    | and, non-plastic,           | X           |                                         | 12"                          |                | 6.1                  |                                     |                |                  |                      |                                     |                         | auger to 5' bgs.<br>ed Proctor Test | -    |
| 5-            |                                                                                                                                                                                                                                                                                                                                | Silty SAND (SM): fine to medium s<br>yellowish brown, moist, dense to ve |                             |             | BC=17<br>22<br>23                       | 18"                          |                | 4.2                  | 108.1                               |                |                  |                      |                                     |                         |                                     | -    |
| -             |                                                                                                                                                                                                                                                                                                                                |                                                                          |                             |             | BC=20<br>29<br>21                       | 18"                          |                | 2.9                  | 118.7                               | 100            | 28               |                      |                                     |                         |                                     | -    |
| 10-           |                                                                                                                                                                                                                                                                                                                                |                                                                          |                             |             | BC=17<br>17<br>24                       | 18"                          |                | 12.2                 | 105.3                               |                |                  |                      |                                     |                         |                                     | -    |
| -             |                                                                                                                                                                                                                                                                                                                                | Poorly-Graded SAND (SP): fine to non-plastic, light gray, moist, very of |                             | _           |                                         |                              |                |                      |                                     |                |                  |                      |                                     |                         |                                     | -    |
| 15-           |                                                                                                                                                                                                                                                                                                                                |                                                                          |                             |             | BC=23<br>40<br>40                       | 18"                          |                | 1.9                  | 131.0                               |                |                  |                      |                                     |                         |                                     | -    |
| -             |                                                                                                                                                                                                                                                                                                                                | Poorly-Graded SAND (SP): fine to<br>non-plastic, yellowish brown, moist  |                             | _           |                                         |                              |                |                      |                                     |                |                  |                      |                                     |                         |                                     | -    |
| 20-           |                                                                                                                                                                                                                                                                                                                                | trace clay                                                               |                             |             | BC=14<br>12<br>22                       | 18"                          |                |                      |                                     |                |                  |                      |                                     |                         |                                     | -    |
| -<br>-<br>25- |                                                                                                                                                                                                                                                                                                                                | Silty SAND (SM): fine to coarse sa<br>brown, moist, very dense           | nd, non-plastic,            |             | BC=20                                   | 18"                          |                |                      |                                     |                |                  |                      |                                     |                         | s added water                       | -    |
|               |                                                                                                                                                                                                                                                                                                                                | Sandy SILT (ML): medium to coars                                         |                             | _           | 25<br>22                                |                              |                |                      |                                     |                |                  |                      |                                     | unner                   | s added water                       | -    |
| - 30-         | -                                                                                                                                                                                                                                                                                                                              | plasticity, olive gray, moist, stiff to v                                | very stiff                  |             | BC=4<br>7                               | 18"                          |                |                      |                                     |                |                  |                      |                                     |                         |                                     | -    |
| -<br>-<br>-   | The boring was terminated at approximately 31.5 ft.<br>below ground surface. The boring was backfilled<br>with cement/bentonite grout mix on December 02,<br>2022.                                                                                                                                                             |                                                                          |                             |             |                                         |                              |                |                      | JNDW A<br>dwater<br>etion.<br>RAL N | was n          | ot obs           | <u>INFC</u><br>erved | RMAT<br>during                      | I <u>ON:</u><br>drillin | g or after                          |      |
|               |                                                                                                                                                                                                                                                                                                                                |                                                                          | NO.:<br>003A                |             |                                         |                              | BC             | RING                 | G LO                                | G B-           | -2               |                      |                                     | FIGURE                  |                                     |      |
|               | <l< td=""><td><b>EINFELDER</b><br/>Bright People. Right Solutions</td><td>DRAWN E<br/>CHECKED<br/>DATE:</td><td></td><td>CJ</td><td>5</td><td>SWC c</td><td>of W A</td><td>Phase<br/>venue<br/>Los A</td><td>Fan</td><td>d Sier</td><td>ra Hig</td><td>ghway<br/>Califor</td><td>nia</td><td><b>A-4</b></td><td>of 1</td></l<> | <b>EINFELDER</b><br>Bright People. Right Solutions                       | DRAWN E<br>CHECKED<br>DATE: |             | CJ                                      | 5                            | SWC c          | of W A               | Phase<br>venue<br>Los A             | Fan            | d Sier           | ra Hig               | ghway<br>Califor                    | nia                     | <b>A-4</b>                          | of 1 |

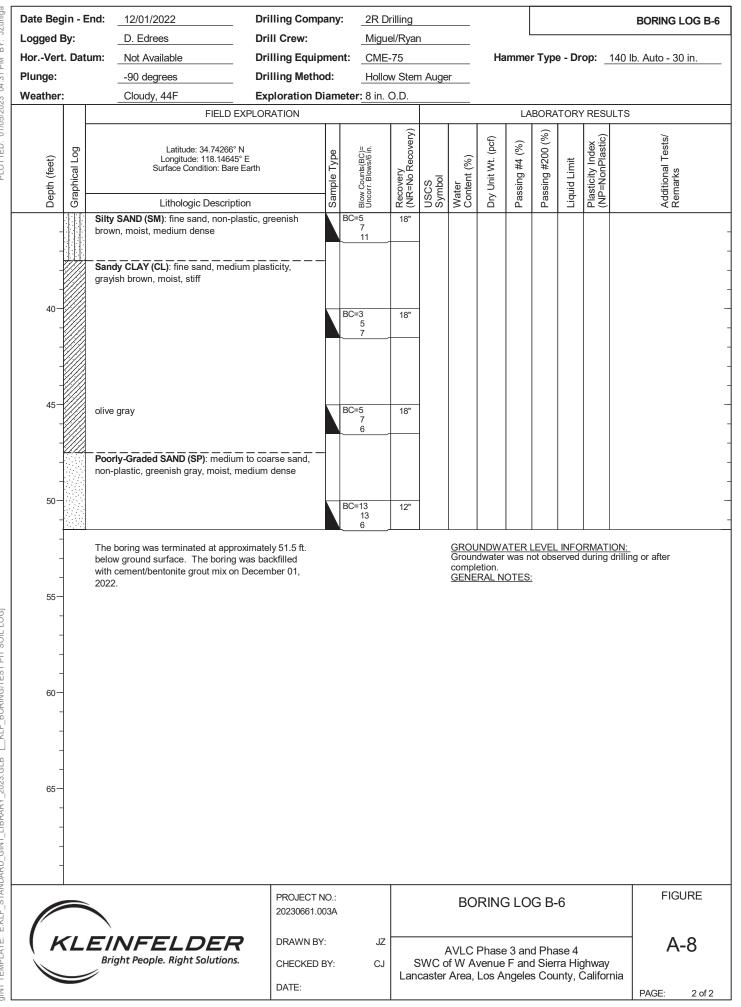

| Date Beg     | gin -         | - En | <b>1</b> : <u>12/01/2022</u>                                                           | Drilling Com    | pany             | r: _2R [                                | Drilling                     |                |                      |                    |                |                  |              |                                     | BORING LOG B-                                                                                                  |
|--------------|---------------|------|----------------------------------------------------------------------------------------|-----------------|------------------|-----------------------------------------|------------------------------|----------------|----------------------|--------------------|----------------|------------------|--------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Logged       | By:           |      | D. Edrees                                                                              | Drill Crew:     |                  | Migu                                    | uel/Ryai                     | n              |                      |                    | l              |                  |              |                                     |                                                                                                                |
| HorVer       | t. Da         | atun | Not Available                                                                          | Drilling Equi   | pme              | nt: <u>CM</u> E                         | E-75                         |                |                      | На                 | mme            | r Type           | e - Dr       | ор: _                               | 140 lb. Auto - 30 in.                                                                                          |
| Plunge:      |               |      | -90 degrees                                                                            | Drilling Meth   | od:              | Holle                                   | ow Sten                      | n Auge         | er                   |                    |                |                  |              |                                     |                                                                                                                |
| Weather      | :             |      | Cloudy, 44F                                                                            | Exploration I   |                  |                                         |                              |                |                      |                    |                |                  |              |                                     |                                                                                                                |
|              |               |      |                                                                                        | PLORATION       |                  |                                         |                              |                |                      |                    | LA             | BORA             | TORY         | RESL                                | JLTS                                                                                                           |
| Depth (feet) | Graphical Log |      | Latitude: 34.74260° N<br>Longitude: 118.15080° E<br>Surface Condition: Bare Ea         | arth            | I<br>Sample Type | Blow Counts(BC)=<br>Uncorr. Blows/6 in. | Recovery<br>(NR=No Recovery) | SS             | Water<br>Content (%) | Dry Unit Wt. (pcf) | Passing #4 (%) | Passing #200 (%) | Liquid Limit | Plasticity Index<br>(NP=NonPlastic) | Additional Tests/<br>Remarks                                                                                   |
| Dep          | Gra           |      | Lithologic Description                                                                 | 1               | San              | Blow<br>Unco                            | Rec<br>(NR                   | USCS<br>Symbol | Vat                  | Dry                | Pas            | Pas              | Liqu         | (NP                                 | Add<br>Ren                                                                                                     |
|              |               |      | <u>Nlluvium</u><br>Bandy CLAY (CL): fine to medium sau<br>Iasticity, olive yellow, dry | nd, high        |                  |                                         | 12"                          | -              | 24.6                 |                    |                |                  |              |                                     | Hand auger to 5' bgs.<br>Drillers added water due to<br>falling sands.<br>R-value Test<br>Expansion Index Test |
| 5-           | -             |      | Poorly-Graded SAND (SP): fine to me<br>on-plastic, brown, dry, very dense              | edium sand,     |                  | BC=20<br>37<br>35                       | 18"                          |                | 1.1                  | 122.2              |                |                  |              |                                     |                                                                                                                |
|              |               |      | Silty SAND (SM): fine to medium san<br>ellowish brown, moist, dense to very            |                 |                  | BC=19<br>32<br>34                       | 18"                          | -              | 8.8                  | 97.7               |                |                  |              |                                     |                                                                                                                |
| - 10         |               |      |                                                                                        |                 |                  |                                         |                              | ]              |                      |                    |                |                  |              |                                     |                                                                                                                |
| 10-          |               |      |                                                                                        |                 |                  | BC=24<br>34<br>32                       | 18"                          |                | 4.6                  | 124.2              | 100            | 22               |              |                                     |                                                                                                                |
|              | -             |      |                                                                                        |                 |                  |                                         |                              | -              |                      |                    |                |                  |              |                                     |                                                                                                                |
| -<br>15-     | -             |      |                                                                                        |                 |                  | BC=19<br>32                             | 18"                          |                |                      |                    |                |                  |              |                                     |                                                                                                                |
|              |               |      |                                                                                        |                 |                  | 38                                      |                              |                |                      |                    |                |                  |              |                                     |                                                                                                                |
|              | -             | 15 I | Silty SAND (SM): fine to medium sand<br>live yellow, moist, medium dense               | d, non-plastic, |                  |                                         |                              |                |                      |                    |                |                  |              |                                     |                                                                                                                |
| 20-          |               |      |                                                                                        |                 |                  | BC=5<br>7                               | 18"                          |                |                      |                    |                |                  |              |                                     |                                                                                                                |
|              |               |      | ean CLAY (CL): fine to medium sand                                                     | d, medium       |                  | 12                                      |                              | -              |                      |                    |                |                  |              |                                     |                                                                                                                |
|              |               | 3    |                                                                                        |                 |                  |                                         |                              |                |                      |                    |                |                  |              |                                     |                                                                                                                |
| 25-          |               |      |                                                                                        |                 |                  | BC=7<br>7                               | 18"                          | 1              |                      |                    |                |                  | 32           | 14                                  |                                                                                                                |
|              |               |      |                                                                                        |                 |                  | 7                                       |                              | -              |                      |                    |                |                  |              |                                     |                                                                                                                |
|              |               | .r.i | Silty SAND (SM): fine to medium san                                                    | d, non-plastic, | -                |                                         |                              |                |                      |                    |                |                  |              |                                     |                                                                                                                |
|              |               | C    | live brown, moist, medium dense                                                        |                 |                  |                                         |                              |                |                      |                    |                |                  |              |                                     |                                                                                                                |
| 30-          |               |      |                                                                                        |                 |                  | BC=5                                    | 18"                          | -              |                      |                    |                |                  |              |                                     |                                                                                                                |
|              |               |      |                                                                                        |                 |                  | 5 9                                     |                              |                |                      |                    |                |                  |              |                                     |                                                                                                                |
|              |               | ļļ.  |                                                                                        |                 |                  |                                         |                              |                |                      |                    |                |                  |              |                                     |                                                                                                                |
|              |               |      | ean CLAY (CL): fine to medium sand<br>lasticity, olive brown, moist, medium            |                 |                  |                                         |                              |                |                      |                    |                |                  |              |                                     |                                                                                                                |
|              |               | ]    | ,,                                                                                     | -               |                  |                                         |                              |                |                      |                    |                |                  |              |                                     |                                                                                                                |
|              | V//           | 2    |                                                                                        | PROJECT         | NO ·             |                                         | +                            | 1              |                      |                    |                | <u> </u>         |              | 1                                   | FIGURE                                                                                                         |
|              |               |      | <b>`</b>                                                                               | 20230661.       |                  |                                         |                              |                | BC                   | RINC               | g lo           | G B-             | 3            |                                     |                                                                                                                |
| ľ.           | <i>.</i>      | -    |                                                                                        |                 |                  |                                         |                              |                |                      |                    |                |                  |              |                                     |                                                                                                                |
|              | ٢L            | _E   | <b>EINFELDER</b>                                                                       | DRAWN B         |                  | JZ                                      |                              |                |                      | Phase              |                |                  |              |                                     | A-5                                                                                                            |
|              |               |      | Bright People. Right Solutions.                                                        | CHECKED         | BY:              | CJ                                      |                              |                |                      | venue<br>Los A     |                |                  |              |                                     |                                                                                                                |
|              |               |      |                                                                                        | DATE:           |                  |                                         |                              | 543151         | Alca,                | 203 A              | - yele         |                  | y, (         | Jamol                               | PAGE: 1 of 2                                                                                                   |

| Date Be      | -                                                                                                             | End:  | 12/01/2022                                                                                                | Drilling Com   | pany                             |                                         | rilling                      |                 |                      |                    |                |                  |                      |                                     | BORING LOG B-                | 3 |
|--------------|---------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------|----------------|----------------------------------|-----------------------------------------|------------------------------|-----------------|----------------------|--------------------|----------------|------------------|----------------------|-------------------------------------|------------------------------|---|
| Logged       |                                                                                                               |       | D. Edrees                                                                                                 | Drill Crew:    |                                  |                                         | el/Ryar                      | ۱               |                      |                    | ·              | _                |                      |                                     |                              |   |
| HorVe        |                                                                                                               | atum: | Not Available                                                                                             | Drilling Equi  |                                  |                                         |                              |                 |                      | Ha                 | Imme           | r Type           | ə - Dr               | op: _                               | 140 lb. Auto - 30 in.        | _ |
| Plunge:      |                                                                                                               |       | -90 degrees                                                                                               | Drilling Meth  |                                  |                                         | w Sten                       | ו Auge          | er                   |                    |                |                  |                      |                                     |                              |   |
| Weathe       | er:                                                                                                           |       | Cloudy, 44F                                                                                               |                | Dian                             | neter: 8 in.                            | O.D.                         |                 |                      |                    | 1.0            |                  |                      |                                     | U.T.C.                       |   |
|              |                                                                                                               |       | FIELD                                                                                                     | EXPLORATION    |                                  | 1                                       |                              |                 |                      |                    |                |                  |                      | / RESL                              |                              |   |
| Depth (feet) | Graphical Log                                                                                                 |       | Latitude: 34.74260°<br>Longitude: 118.1508<br>Surface Condition: Bare                                     | )° E           | Sample Type                      | Blow Counts(BC)=<br>Uncorr. Blows/6 in. | Recovery<br>(NR=No Recovery) | USCS<br>Symbol  | Water<br>Content (%) | Dry Unit Wt. (pcf) | Passing #4 (%) | Passing #200 (%) | Liquid Limit         | Plasticity Index<br>(NP=NonPlastic) | Additional Tests/<br>Remarks |   |
| De           | Ŭ                                                                                                             |       | Lithologic Descrip                                                                                        |                | Sal                              |                                         | Re<br>NF                     | US<br>Syi       | ŠΩ                   | D                  | Ра             | Ра               |                      | Pla<br>(NF                          | A d<br>A                     |   |
| 40           |                                                                                                               | plas  | n CLAY (CL): fine to medium s<br>sticity, olive brown, moist, medi<br>n plasticity, yellowish brown, me   |                | BC=2<br>4<br>4<br>BC=2<br>2<br>3 | 18"                                     |                              |                 |                      |                    |                | 35<br>49         | 28                   |                                     |                              |   |
| 45           |                                                                                                               | oliv  | e yellow, stiff                                                                                           |                |                                  | BC=4<br>4<br>5                          | 18"                          |                 |                      |                    |                |                  | 35                   | 18                                  |                              | - |
| 50           |                                                                                                               | med   | dium plasticity, olive brown                                                                              |                |                                  | BC=3<br>4<br>5                          | 18"                          |                 |                      |                    |                |                  | 37                   | 17                                  |                              | - |
| 60           |                                                                                                               | belo  | e boring was terminated at appr<br>ow ground surface. The boring<br>o cement/bentonite grout mix or<br>2. | was backfilled |                                  |                                         |                              |                 | Groun                |                    | was n          | ot obse          | <u>INFC</u><br>erved | 9RMAT<br>during                     | drilling or after            |   |
| C            | KLEINFELDER PROJE                                                                                             |       |                                                                                                           |                | 003A                             |                                         |                              |                 |                      | Phase              |                |                  |                      |                                     | FIGURE                       |   |
|              | KLEINFELDER       DRAWN BY:         Bright People. Right Solutions.       CHECKED B         DATE:       DATE: |       |                                                                                                           |                | ) BY:                            | CJ                                      | Lan                          | SWC o<br>caster | f W A                | venue              | Fan            | d Sier           | ra Hig               | ghway<br>Califor                    | ,                            |   |

| Date Beg         |                                                                                                           | End:  | 12/01/2022                                                                | Drilling Con                  | npany       | <b>y</b> : | 2R Dri                                                                                      |                              |                |                         |                    |                |                  |              |                                     | BORING LOG                                                                             | В- |
|------------------|-----------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------|-------------------------------|-------------|------------|---------------------------------------------------------------------------------------------|------------------------------|----------------|-------------------------|--------------------|----------------|------------------|--------------|-------------------------------------|----------------------------------------------------------------------------------------|----|
| Logged E         | -                                                                                                         |       | D. Edrees                                                                 | Drill Crew:                   |             |            | Migue                                                                                       |                              | ۱              |                         |                    | L              |                  |              |                                     |                                                                                        |    |
| HorVert          | . Dat                                                                                                     | um:   | Not Available                                                             | Drilling Equ                  | ipme        | nt:        | CME-7                                                                                       | 75                           |                |                         | Ha                 | mmei           | r Type           | ə - Dr       | ор: _                               | 140 lb. Auto - 30 in.                                                                  |    |
| Plunge:          |                                                                                                           |       | -90 degrees                                                               | Drilling Met                  | hod:        |            | Hollow                                                                                      | v Sten                       | n Auge         | r                       |                    |                |                  |              |                                     |                                                                                        |    |
| Weather          |                                                                                                           |       | Cloudy, 44F                                                               | Exploration                   | Diam        | neter      | : 8 in. C                                                                                   | ).D.                         |                |                         |                    |                |                  |              |                                     |                                                                                        |    |
|                  |                                                                                                           |       | FIELD E                                                                   | XPLORATION                    |             |            |                                                                                             |                              |                |                         |                    | LA             | BORA             | TOR          | RESI                                | ULTS                                                                                   |    |
| Depth (feet)     | Graphical Log                                                                                             |       | Latitude: 34.74625° I<br>Longitude: 118.14652'<br>Surface Condition: Bare | ° E<br>Earth                  | Sample Type |            | Blow Counts(BC)=<br>Uncorr. Blows/6 in.                                                     | Recovery<br>(NR=No Recovery) | USCS<br>Symbol | Water<br>Content (%)    | Dry Unit Wt. (pcf) | Passing #4 (%) | Passing #200 (%) | Liquid Limit | Plasticity Index<br>(NP=NonPlastic) | Additional Tests/<br>Remarks                                                           |    |
| õ                | Ū                                                                                                         | A.U   | Lithologic Descripti                                                      | on                            | s           | i          | ы<br>В Г                                                                                    | ΨZ                           | °) (S          | ≥ŏ                      | ā                  | Pŝ             | P                | Lie          | đΖ                                  |                                                                                        |    |
| -<br>-<br>-<br>5 |                                                                                                           | San   | <u>vium</u><br>dy CLAY (CL): fine sand, mediu<br>brown, dry               | ım plasticity,                |             |            | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 12"                          |                | 14.7<br>8.3             | 116.4              |                |                  |              |                                     | Hand auger to 5' bgs.<br>Drillers added water due<br>falling sands.<br>Expansion Index | to |
| -                |                                                                                                           |       | SAND (SM): fine to medium sa<br>wish brown, moist, very dense             | and, non-plastic,             |             |            | 27<br>36<br>43                                                                              | 18"                          |                | 4.6                     | 136.2              | 100            | 32               |              |                                     |                                                                                        |    |
| 10               |                                                                                                           | dens  | se                                                                        |                               |             |            | 15<br>17<br>25                                                                              | 18"                          |                | 3.7                     | 117.0              |                |                  |              |                                     |                                                                                        |    |
| -<br>-<br>15     |                                                                                                           |       | rly-Graded SAND (SP): fine to r<br>plastic, grayish brown, dry, den       |                               | _           |            |                                                                                             |                              |                |                         |                    |                |                  |              |                                     |                                                                                        |    |
| -                |                                                                                                           | -     | SAND (SM): fine to medium sa                                              | and, non-plastic,             |             |            | 15<br>24<br>25                                                                              | 18"                          |                | 0.7                     | 94.5               |                |                  |              |                                     | Sample is disturbed.                                                                   |    |
| -<br>20—<br>-    |                                                                                                           | light | brown, dry, dense                                                         |                               |             |            | 10<br>18<br>13                                                                              | 18"                          |                |                         |                    |                |                  |              |                                     |                                                                                        |    |
| -<br>-<br>25—    |                                                                                                           |       | rly-Graded SAND (SP): mediun<br>plastic, yellowish brown, moist           |                               | _           | BC=        | 8                                                                                           | 18"                          |                |                         |                    |                |                  |              |                                     |                                                                                        |    |
| -                |                                                                                                           |       |                                                                           |                               |             |            | 12<br>15                                                                                    |                              |                |                         |                    |                |                  |              |                                     |                                                                                        |    |
| -<br>30—<br>-    |                                                                                                           |       |                                                                           |                               |             |            | 9<br>9<br>20                                                                                | 18"                          |                |                         |                    |                |                  |              |                                     |                                                                                        |    |
| -                |                                                                                                           |       | rey SAND (SC): fine to medium<br>ticity, grayish brown, moist, loo        |                               | _           |            |                                                                                             |                              |                |                         |                    |                |                  |              |                                     |                                                                                        |    |
| C                |                                                                                                           | F     |                                                                           | PROJECT NO.:<br>20230661.003A |             |            | JZ                                                                                          |                              |                |                         | RING               |                |                  |              |                                     | FIGURE                                                                                 | -  |
|                  | KLEINFELDER       DRAWN I         Bright People. Right Solutions.       CHECKEI         DATE:       DATE: |       |                                                                           |                               |             | CJ         |                                                                                             | SWC o                        | f W A          | Phase<br>venue<br>Los A | Fand               | d Sier         | ra Hig           |              | /<br>rnia                           | of 2                                                                                   |    |

PLOTTED: 01/05/2023 04:31 PM BY: JZuniga

gINT FILE: Kit\_gint\_master\_2023 PROJECT NUMBER: 20230661.003A OFFICE FILTER: RIVERSIDE gINT TEMPLATE: E:KLF\_STANDARD\_GINT\_LIBRARY\_2023.GLB [\_KLF\_BORING/TEST PIT SOIL LOG]




| Date Beg           | gin - I                                        | End:  | 12/01/2022                                                                                        | Drilling Cor         | npan        | ıy:  | 2R D                                    | rilling                      |                |                      |                         |                |                  |              |                                     | BORING LOG B-5                                                         |
|--------------------|------------------------------------------------|-------|---------------------------------------------------------------------------------------------------|----------------------|-------------|------|-----------------------------------------|------------------------------|----------------|----------------------|-------------------------|----------------|------------------|--------------|-------------------------------------|------------------------------------------------------------------------|
| .ogged I           | By:                                            |       | D. Edrees                                                                                         | Drill Crew:          |             |      | Migu                                    | el/Ryar                      | I              |                      |                         | L              |                  |              |                                     |                                                                        |
| lorVer             | t. Da                                          | tum:  | Not Available                                                                                     | Drilling Equ         | ipm         | ent: | CME                                     | -75                          |                |                      | На                      | mme            | r Тур            | e - Dr       | ор: _                               | 140 lb. Auto - 30 in.                                                  |
| Plunge:            |                                                |       | -90 degrees                                                                                       | Drilling Met         | hod:        | 1    | Hollo                                   | w Sten                       | n Auge         | er                   |                         |                |                  |              |                                     |                                                                        |
| Veather            | :                                              |       | Cloudy, 44F                                                                                       | Exploration          | Dia         | mete | r <u>: 8 in.</u>                        | O.D.                         |                |                      |                         |                |                  |              |                                     |                                                                        |
|                    |                                                |       | FIELD                                                                                             | EXPLORATION          |             |      |                                         |                              |                |                      |                         | LA             | BORA             | TOR          | / RESI                              | JLTS                                                                   |
| Depth (feet)       | Graphical Log                                  |       | Latitude: 34.74486<br>Longitude: 118.146<br>Surface Condition: Ba                                 | 45° E                | Samnla Tvna |      | Blow Counts(BC)=<br>Uncorr. Blows/6 in. | Recovery<br>(NR=No Recovery) | USCS<br>Symbol | Water<br>Content (%) | Dry Unit Wt. (pcf)      | Passing #4 (%) | Passing #200 (%) | Liquid Limit | Plasticity Index<br>(NP=NonPlastic) | Additional Tests/<br>Remarks                                           |
| De                 | Ū                                              |       | Lithologic Descri                                                                                 | ption                | S.          | 2    | Unc                                     | Re<br>NF                     | US<br>Syi      | ≥ိပိ                 | Dry                     | Ра             | Ра               | Liq          | LE Pla                              |                                                                        |
| -                  |                                                | San   | <b>vium</b><br>dy CLAY (SC): fine sand, me<br>vn, dry                                             | dium plasticity,     |             |      |                                         | 12"                          |                | 30.5                 |                         |                |                  |              |                                     | Hand auger to 5' bgs.<br>Drillers added water due to<br>falling sands. |
| 5                  |                                                | Silty | <b>SAND (SM)</b> : fine sand, non-<br>se                                                          | plastic, brown, dry, |             | BC=  | =33<br>30<br>29                         | 18"                          |                | 5.1                  | 121.2                   |                |                  |              |                                     |                                                                        |
| -                  |                                                |       | rly-Graded SAND with Silt (S<br>lium sand, non-plastic, yellow<br>se                              |                      |             | BC=  | =27<br>37<br>26                         | 18"                          |                | 1.5                  | 108.8                   |                |                  |              |                                     |                                                                        |
| 10                 |                                                |       | dy CLAY (CL): fine to mediun<br>ticity, dark brown, moist, harc                                   |                      |             | BC=  | =12<br>23<br>40                         | 18"                          |                | 17.3                 | 106.0                   |                |                  |              |                                     |                                                                        |
| -                  |                                                |       | <b>SAND (SM)</b> : fine sand, non-<br>vn, moist, dense                                            | plastic, grayish     |             |      |                                         |                              |                |                      |                         |                |                  |              |                                     |                                                                        |
| 15<br>-<br>-       |                                                | fine  | to medium sand, iron oxide s                                                                      | taining              |             | BC=  | -11<br>13<br>36                         | 12"                          |                | 7.9                  | 118.7                   |                |                  |              |                                     |                                                                        |
| -<br>20-<br>-      |                                                | med   | lium dense                                                                                        |                      |             | BC=  | =5<br>10<br>9                           | 18"                          |                |                      |                         |                |                  |              |                                     |                                                                        |
| -<br>-<br>25<br>-  | -                                              |       | <b>rey SILT (ML)</b> : fine to mediun<br>ticity, grayish brown, moist, v                          |                      |             | BC=  | =11<br>15<br>27                         | 18"                          |                |                      |                         |                |                  |              |                                     |                                                                        |
| -<br>-<br>-<br>30- |                                                |       | <b>rly-Graded SAND (SP)</b> : fine to<br>plastic, light brown, moist, ve                          |                      |             | BC=  | 20                                      | 18"                          |                |                      |                         |                |                  |              |                                     |                                                                        |
| -                  |                                                | belo  | boring was terminated at app<br>w ground surface. The borin<br>cement/bentonite grout mix o<br>2. | g was backfilled     |             |      | 23                                      | <u> </u>                     | <u> </u>       | Groun                |                         | was n          | ot obs           |              |                                     | <u>ION:</u><br>drilling or after                                       |
|                    |                                                |       |                                                                                                   | PROJEC<br>20230667   |             |      |                                         |                              |                | BC                   | RING                    | G LO           | G B-             | -5           |                                     | FIGURE                                                                 |
| ( )                | KLEINFELDER<br>Bright People. Right Solutions. |       |                                                                                                   |                      |             | :    | JZ<br>CJ                                | Lan                          | WC o           | of W A               | Phase<br>venue<br>Los A | F and          | d Sier           | ra Hig       | ghway<br>Califor                    | ,<br>mia A-7                                                           |

| Date Beg                | jin -                                                                                                 | En   | <b>d:</b> _12/01/2022                                                                                           | Drilling Com        | pany             | r: <u>2R D</u>                          | rilling                      |                |                      |                         |                |                  |              |                                     | BORING LOG B-6                                                         |
|-------------------------|-------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------|---------------------|------------------|-----------------------------------------|------------------------------|----------------|----------------------|-------------------------|----------------|------------------|--------------|-------------------------------------|------------------------------------------------------------------------|
| Logged E                | By:                                                                                                   |      | D. Edrees                                                                                                       | Drill Crew:         |                  | Migu                                    | el/Ryar                      | ۱              |                      |                         | I              |                  |              |                                     |                                                                        |
| HorVert                 | . Da                                                                                                  | atur | m: Not Available                                                                                                | Drilling Equi       | pme              | nt: <u>CME</u>                          | -75                          |                |                      | Ha                      | mme            | r Typ            | e - Dr       | ор: _                               | 140 lb. Auto - 30 in.                                                  |
| Plunge:                 |                                                                                                       |      | -90 degrees                                                                                                     | Drilling Meth       | od:              | Hollo                                   | w Sten                       | n Auge         | r                    |                         |                |                  |              |                                     |                                                                        |
| Weather                 |                                                                                                       |      | Cloudy, 44F                                                                                                     | Exploration [       | Diam             | eter: 8 in.                             | O.D.                         |                |                      |                         |                |                  |              |                                     |                                                                        |
|                         |                                                                                                       |      | FIELD EXF                                                                                                       | PLORATION           |                  |                                         |                              |                |                      |                         | LA             | BORA             | TOR          | ' RESI                              | JLTS                                                                   |
| Depth (feet)            | Graphical Log                                                                                         |      | Latitude: 34.74266° N<br>Longitude: 118.14645° E<br>Surface Condition: Bare Ea                                  | arth                | l<br>Sample Type | Blow Counts(BC)≓<br>Uncorr. Blows/6 in. | Recovery<br>(NR=No Recovery) | USCS<br>Symbol | Water<br>Content (%) | Dry Unit Wt. (pcf)      | Passing #4 (%) | Passing #200 (%) | Liquid Limit | Plasticity Index<br>(NP=NonPlastic) | Additional Tests/<br>Remarks                                           |
| De                      | Ö                                                                                                     |      | Lithologic Description                                                                                          | ı                   | Sa               | Blov                                    | a Z                          | s y            | >ိပိ                 | ģ                       | Ра             | Ра               | Lig          | ₽Z                                  |                                                                        |
| -<br>-<br>-             |                                                                                                       |      | <u>Alluvium</u><br>Lean CLAY (SC): medium plasticity, r<br>dry, some sand                                       |                     |                  |                                         | 12"                          |                | 26.1                 |                         |                |                  |              |                                     | Hand auger to 5' bgs.<br>Drillers added water due to<br>falling sands. |
|                         |                                                                                                       |      | Silty CLAY (CL-ML): fine to medium s<br>plasticity, reddish brown, very moist, l                                | hard                |                  | BC=16<br>50/6"                          | 18"                          |                | 12.2                 | 109.7                   | 100            | 69               |              |                                     |                                                                        |
| -                       |                                                                                                       |      | Silty SAND (SM): fine to medium san<br>grayish brown, moist, very dense                                         | d, non-plastic,     |                  | BC=19<br>35<br>45                       | 18"                          |                | 7.1                  | 124.4                   |                |                  |              |                                     |                                                                        |
| 10—                     |                                                                                                       |      | Sandy SILT (ML): fine to medium sar<br>plasticity, grayish brown, moist, hard                                   | nd, low             |                  | BC=16<br>25<br>36                       | 18"                          |                | 10.3                 | 116.4                   |                |                  |              |                                     |                                                                        |
| -<br>-<br>15—<br>-<br>- |                                                                                                       |      | Silty SAND (SM): fine to medium san<br>greenish brown, moist, medium dens<br>Poorly-Graded SAND (SP): fine sand | e<br>, non-plastic, |                  | BC=15<br>18<br>24                       | 18"                          |                | 7.6                  | 118.7                   |                |                  |              |                                     |                                                                        |
| -<br>20—<br>-           |                                                                                                       |      | brown, moist, medium dense, trace s                                                                             | lit                 |                  | BC=5<br>10<br>12                        | 18"                          |                |                      |                         |                |                  |              |                                     |                                                                        |
| -<br>-<br>25—<br>-      |                                                                                                       | .r.i | Silty SAND (SM): fine to medium san<br>greenish brown, moist, medium dens                                       |                     |                  | BC=5<br>8<br>12                         | 18"                          |                |                      |                         |                |                  |              |                                     |                                                                        |
| -<br>-<br>30—           |                                                                                                       | I    | Poorly-Graded SAND (SP): fine to me<br>non-plastic, yellowish brown, moist, n                                   |                     |                  | BC=11<br>13                             | 18"                          |                |                      |                         |                |                  |              |                                     |                                                                        |
| -                       |                                                                                                       | .r.i | Silty SAND (SM): fine sand, non-plas<br>brown, moist, medium dense                                              | tic, greenish       |                  | 13<br>15                                |                              |                |                      |                         |                |                  |              |                                     |                                                                        |
| Ch                      | PROJECT NO.:           20230661.003A           DRAWN BY:                                              |      |                                                                                                                 |                     |                  | JZ                                      |                              | I              |                      | Phase                   |                |                  |              | <u> </u>                            | FIGURE                                                                 |
|                         | KLEINFELDER       DRAWI         Bright People. Right Solutions.       CHECK         DATE:       DATE: |      |                                                                                                                 |                     |                  | CJ                                      |                              | SWC o          | f W A                | Phase<br>venue<br>Los A | F an           | d Sier           | ra Hig       |                                     | ,                                                                      |

PLOTTED: 01/05/2023 04:31 PM BY: JZuniga

gINT FILE: Klf\_gint\_master\_2023 PROJECT NUMBER: 20230661.003A OFFICE FILTER: RIVERSIDE gINT TEMPLATE: E:KLF\_STANDARD\_GINT\_LIBRARY\_2023.GLB [\_KLF\_BORING/TEST PIT SOIL LOG]



gINT FILE: KIF\_gint\_master\_2023 PROJECT NUMBER: 20230661.003A OFFICE FILTER: RIVERSIDE gINT TEMPLATE: E:KLF\_STANDARD\_GINT\_LIBRARY\_2023.GLB \_\_KLF\_BORING/TEST PIT SOIL LOG]



#### APPENDIX B LABORATORY TESTING



#### APPENDIX B LABORATORY TESTING

Laboratory tests were performed on drive and bulk soil samples to estimate engineering characteristics of the various earth materials encountered. The laboratory testing was performed by our laboratory located in Ontario, California or by AP Engineering & Testing, Inc. of Pomona, California. Testing was performed in general accordance with procedures outlined in the American Society for Testing and Materials, or other accepted procedures. Visual classifications presented on the lab figures performed by AP Engineering may differ from those presented on the boring logs provided in Appendix A.

#### LABORATORY MOISTURE DETERMINATIONS AND UNIT WEIGHTS

Natural moisture content and unit weight tests were performed on selected samples. The moisture content tests were performed in general accordance with ASTM Test Method D 2216 and the unit weight tests were performed in general accordance with ASTM Test Method D 2937. The results are presented on the Logs of Borings in Appendix A.

#### SIEVE ANALYSES

Sieve analyses were performed on selected samples of the materials encountered at the site to evaluate the grain size distribution characteristics of the soils and to aid in their classification. Tests were performed in general accordance with ASTM Test Method D 6913. Results of these tests are presented in the boring logs in Appendix A and attached as Figure B-1 and B-2, Grain Size Distribution Curve.

#### ATTERBERG LIMITS (PLASTICITY INDEX)

Plasticity limit and liquid limit testing was performed on soil samples to evaluate behavior conditions at varying water contents. Testing was performed in general accordance with ASTM Standard Test Method D4318. The results are presented on the boring logs in Appendix A and attached as Figure B-3, Plasticity Testing.

#### DIRECT SHEAR

Direct shear testing was performed on a remolded sample for shear strength and cohesion values of the in-situ soils in accordance with ASTM Standard Test Method D 3080. The result is presented as Figure B-4, Direct Shear Test.



#### ONE-DIMENSIONAL SWELL/COLLAPSE TEST

Laboratory testing was performed on selected soil samples to study the collapse potential of the subgrade soils. During this test, the soil sample is inundated with water at a specific surcharge loading and the percent swell or collapse is measured. This tests were performed by AP Engineering in accordance with ASTM D4546. The test results are attached to this appendix.

#### PRELIMINARY CORROSIVITY TESTS

A series of chemical tests were performed on a selected sample of the near-surface soils to estimate pH, resistivity and sulfate and chloride contents. The sample was tested in general accordance with California Test Methods 643, 422, and 417 for pH and minimum resistivity, soluble chlorides, and soluble sulfates, respectively. Test results may be used by a qualified corrosion engineer to evaluate the general corrosion potential with respect to construction materials. The tests were performed by AP Engineering. The results of these tests are presented in Table B-1, Preliminary Corrosion Test Results.

#### MODIFIED PROCTOR

Maximum density-optimum moisture tests were performed on a select bulk sample of the onsite soils to determine compaction characteristics. The test was performed in accordance with ASTM Standard Test Method D 1557. The test results are presented in Table B-2, Modified Proctor Test Results and Figure B-4 in Appendix B.

#### **EXPANSION INDEX**

Expansion Index testing was performed on two near surface bulk samples to determine the expansion potential of the soil. The tests were performed in accordance with ASTM Standard Test Method D4829. The test results are presented in Table B-3, Expansion Index Test Results.

#### **R-VALUE TEST**

A Resistance Value (R-value) test was performed on a select bulk soil sample to evaluate pavement support characteristics of the near-surface onsite soils. R-value testing was performed in accordance with ASTM Standard Test Method D2844. The test result is presented below in Table B-4, R-Value Test Results Figure B-5 in Appendix B.



Table B-1Preliminary Corrosivity Test Results

| Boring | Depth<br>(ft) | рН  | Sulfate<br>(ppm) | Chloride<br>(ppm) | Resistivity<br>(ohm-cm) |
|--------|---------------|-----|------------------|-------------------|-------------------------|
| B-3    | 0-5           | 9.8 | 416              | 260               | 556                     |
| B-5    | 0-5           | 9.9 | 27               | 33                | 1,221                   |

Table B-2Modified Proctor Test Results

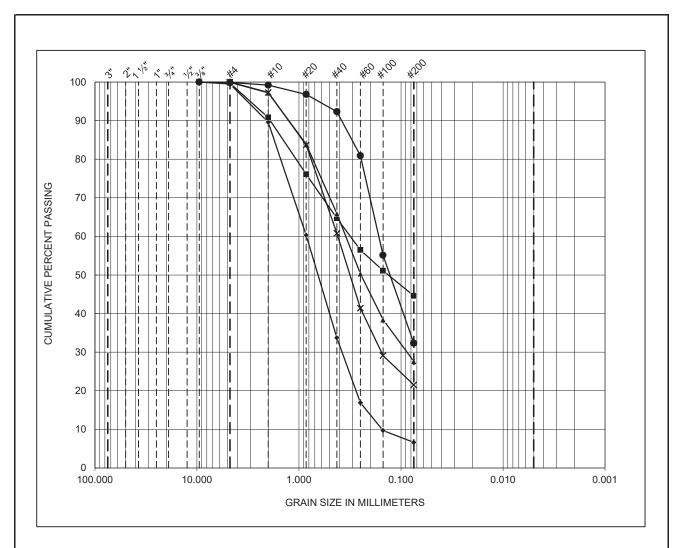
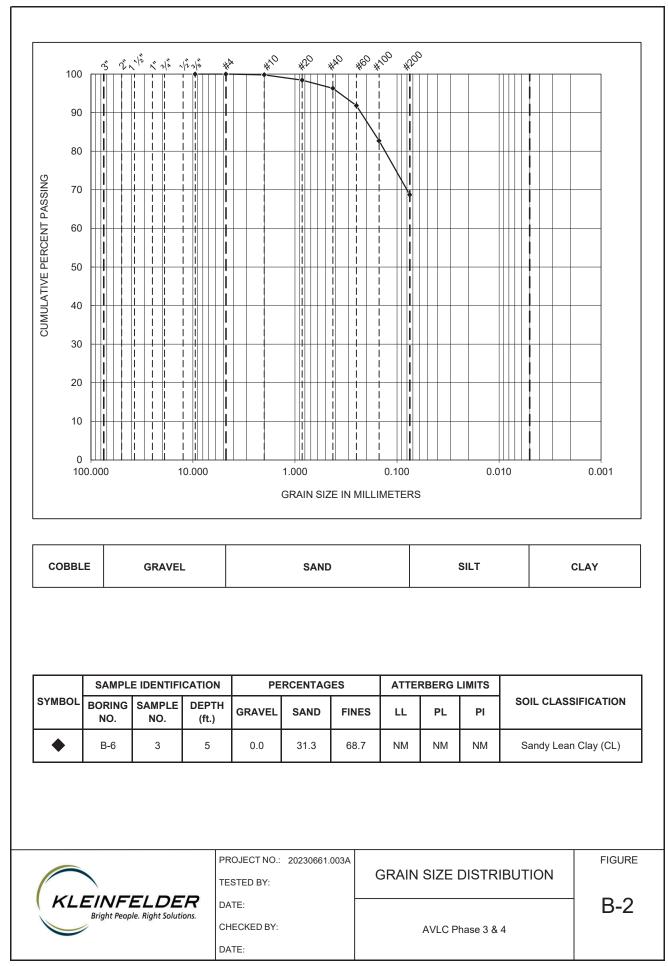

| Boring Number | Depth (ft) | Maximum Dry Density (pcf) | Optimum Moisture (%) |
|---------------|------------|---------------------------|----------------------|
| B-2           | 0 – 5      | 121.2                     | 11.4                 |

Table B-3Expansion Index Test Result

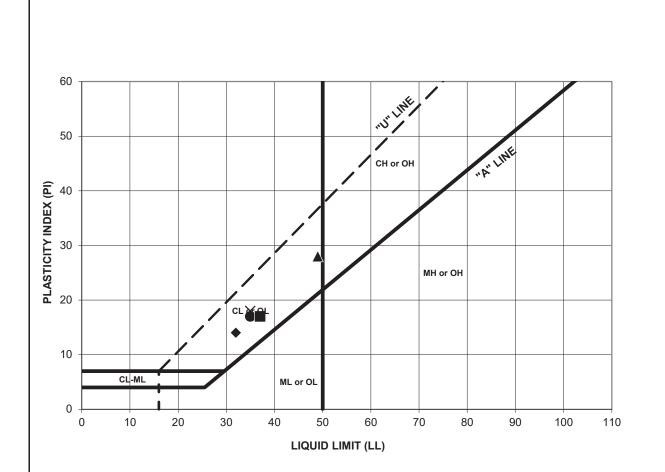
| Boring Number | Depth (ft) | Expansion Index | Expansion Potential |
|---------------|------------|-----------------|---------------------|
| B-4           | 0 – 5      | 125             | High                |
| B-5           | 0 – 5      | 73              | Medium              |

Table B-4Resistance Value Test Result

| Boring Number | Depth (ft) | R-Value |
|---------------|------------|---------|
| B-3           | 0 – 5      | 13      |



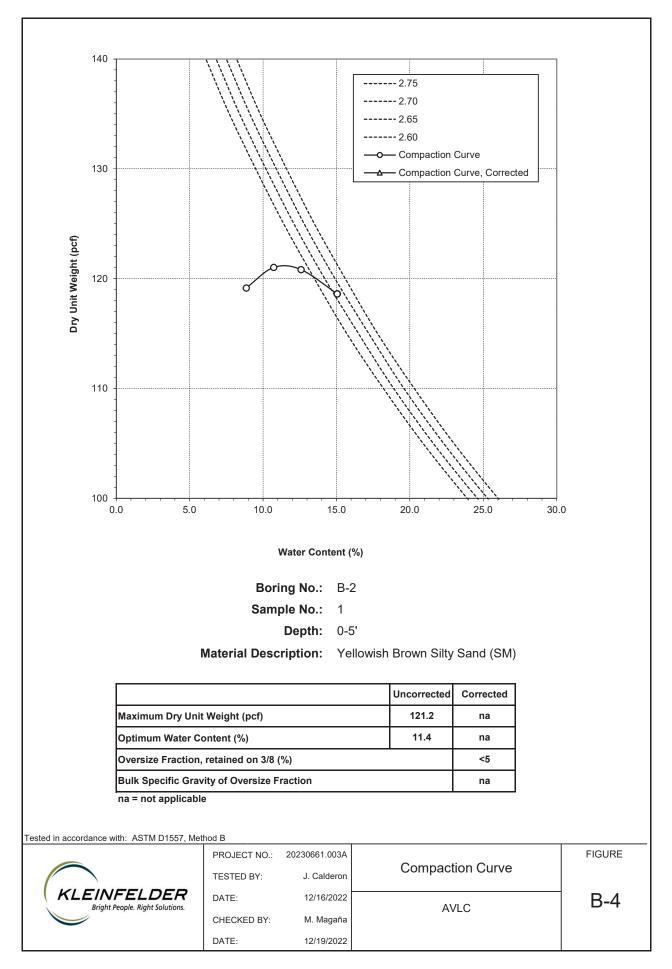

| COBBLE GRAVEL SAND SILT CLAY |  |
|------------------------------|--|
|------------------------------|--|

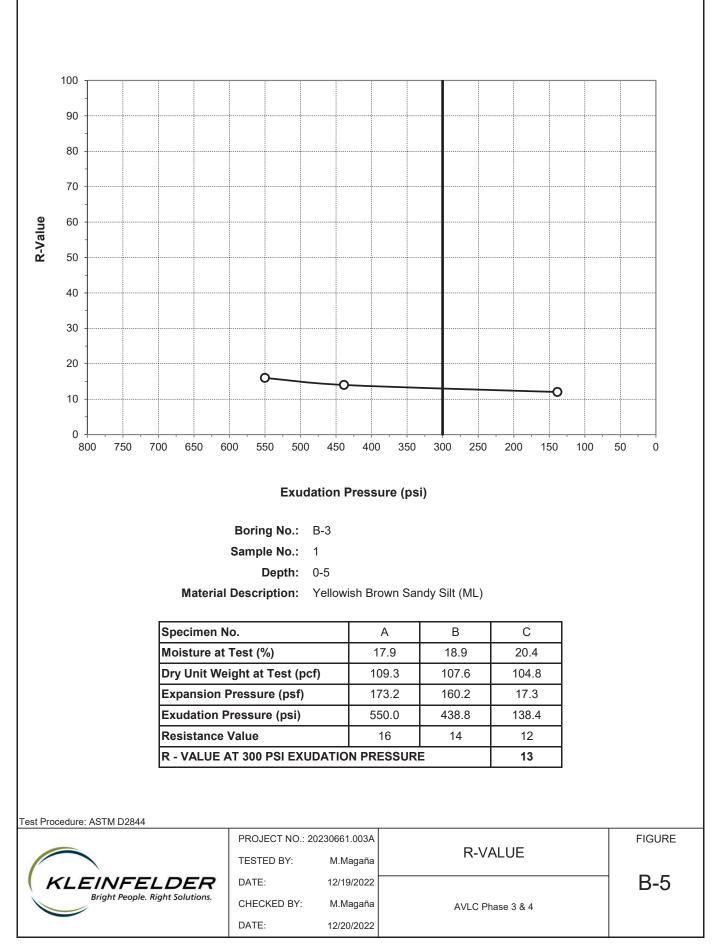

|        | SAMPLE IDENTIFICATION |               |                | PERCENTAGES |      |       | ATTERBERG LIMITS |    |    |                                     |
|--------|-----------------------|---------------|----------------|-------------|------|-------|------------------|----|----|-------------------------------------|
| SYMBOL | BORING<br>NO.         | SAMPLE<br>NO. | DEPTH<br>(ft.) | GRAVEL      | SAND | FINES | LL               | PL | PI | SOIL CLASSIFICATION                 |
| •      | B-1                   | 3             | 5              | 0.5         | 92.9 | 6.6   | NM               | NM | NM | Well-Graded Sand w/Silt (SW-<br>SM) |
|        | B-1                   | 5             | 10             | 0.3         | 55.1 | 44.6  | NM               | NM | NM | Silty Sand (SM)                     |
|        | B-2                   | 4             | 7.5            | 0.1         | 72.3 | 27.6  | NM               | NM | NM | Silty Sand (SM)                     |
| ×      | B-3                   | 5             | 10             | 0.0         | 78.5 | 21.5  | NM               | NM | NM | Silty Sand (SM)                     |
| •      | B-4                   | 4             | 7.5            | 0.1         | 67.6 | 32.3  | NM               | NM | NM | Silty Sand (SM)                     |

|                                                | PROJECT NO.: 20230661.003A<br>TESTED BY: | GRAIN SIZE DISTRIBUTION | FIGURE |
|------------------------------------------------|------------------------------------------|-------------------------|--------|
| KLEINFELDER<br>Bright People. Right Solutions. | DATE:                                    |                         | B-1    |
|                                                | CHECKED BY:                              | AVLC Phase 3 & 4        |        |
|                                                | DATE:                                    |                         |        |

KLEINFELDER - 620 Magnolia Avenue, Building G | Ontario, California 91762 | PH: (909) 657-1716 | FAX: (909) 988-0185 | www.kleinfelder.com




KLEINFELDER - 620 Magnolia Avenue, Building G | Ontario, California 91762 | PH: (909) 657-1716 | FAX: (909) 988-0185 | www.kleinfelder.com




|        | SAMPL         | ATTERBERG LIMITS |            |    |    |    |                     |
|--------|---------------|------------------|------------|----|----|----|---------------------|
| SYMBOL | BORING<br>NO. | SAMPLE<br>NO.    | DEPTH (ft) | LL | PL | PI | SOIL CLASSIFICATION |
| •      | B-3           | 8                | 25         | 32 | 18 | 14 | Lean Clay (CL)      |
| •      | B-3           | 10               | 35         | 35 | 18 | 17 | Lean Clay (CL)      |
|        | B-3           | 11               | 40         | 49 | 21 | 28 | Lean Clay (CL)      |
| ×      | B-3           | 12               | 45         | 35 | 17 | 18 | Lean Clay (CL)      |
|        | B-3           | 13               | 50         | 37 | 20 | 17 | Lean Clay (CL)      |

| Testing performed in general accordance with ASTM D431 | 8                |             |                    |        |
|--------------------------------------------------------|------------------|-------------|--------------------|--------|
|                                                        | PROJECT NO.: 202 | 230661.003A | PLASTICITY TESTING | FIGURE |
| $\frown$                                               | TESTED BY:       | J. Calderon | FLASHCHTTESTING    |        |
| KLEINFELDER                                            | DATE:            | 12/12/2022  |                    | B-3    |
| Bright People. Right Solutions.                        | CHECKED BY:      | M. Magaña   | AVLC Phase 3 & 4   |        |
|                                                        | DATE:            | 12/13/2022  |                    |        |

KLEINFELDER - 620 South Magnolia Ave, Bldg G | Ontario, CA | PH: (909) 657-1716 | FAX: (909) 988-0185 | www.kleinfelder.com







## MOISTURE AND DENSITY TEST RESULTS

ASTM D2216 and ASTM D7263 (Method B)

Client: Kleinfelder

AP Lab No.: 22-1245

Project Name: AVLC Phase 3 & 4

Test Date: 12/20/22

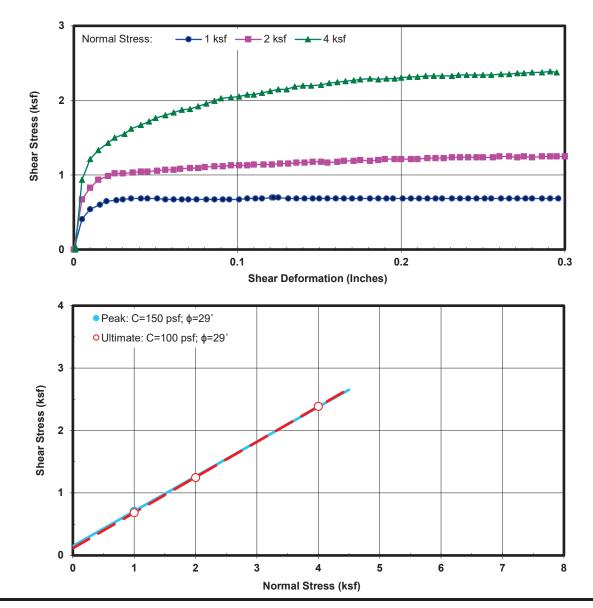
Project No.: 20230661.003A

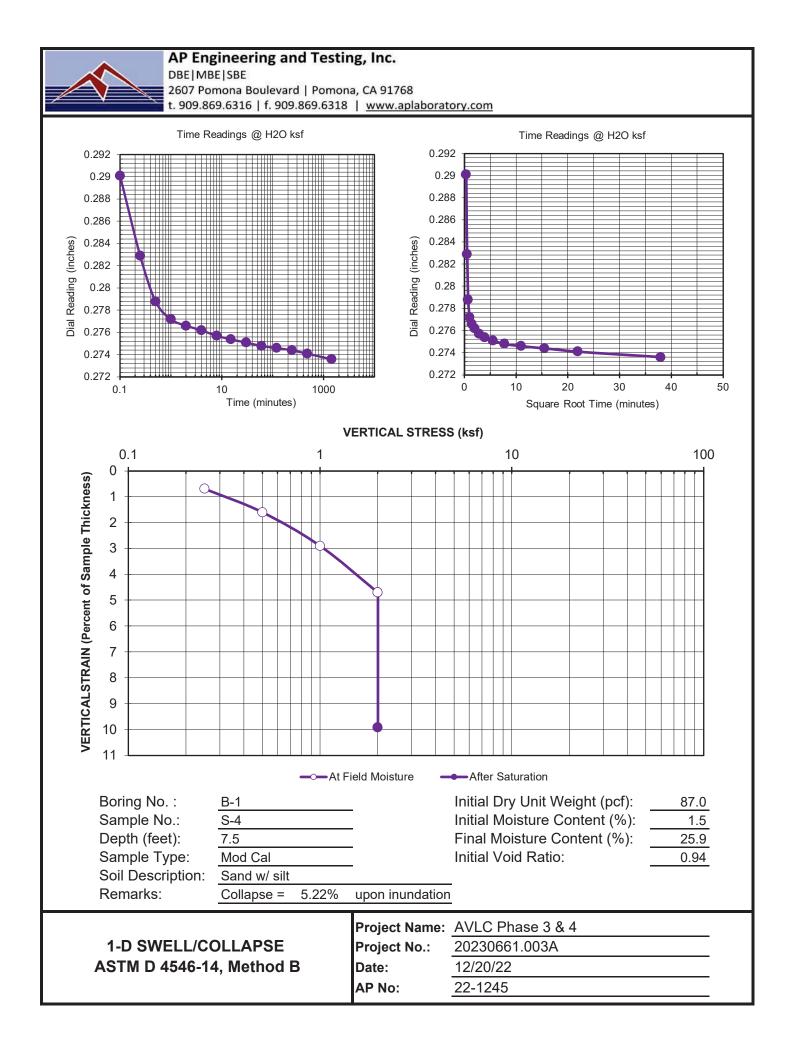
| Boring<br>No. | Sample<br>No. | Sample<br>Depth (ft.) | Moisture<br>Content (%) | Dry Density<br>(pcf) |
|---------------|---------------|-----------------------|-------------------------|----------------------|
| B-5           | S-5           | 10                    | 17.3                    | 106.0                |
| 20            |               |                       |                         | 10010                |
|               |               |                       |                         |                      |
|               |               |                       |                         |                      |
|               |               |                       |                         |                      |
|               |               |                       |                         |                      |
|               |               |                       |                         |                      |
|               |               |                       |                         |                      |
|               |               |                       |                         |                      |
|               |               |                       |                         |                      |
|               |               |                       |                         |                      |
|               |               | 1                     |                         |                      |
|               |               |                       |                         |                      |
|               |               |                       |                         |                      |
|               |               |                       |                         |                      |
|               |               |                       |                         |                      |
|               |               |                       |                         |                      |
|               |               |                       |                         |                      |
|               |               |                       |                         |                      |
|               |               |                       |                         |                      |
|               |               |                       |                         |                      |
|               |               |                       |                         |                      |
|               |               |                       |                         |                      |
|               |               |                       |                         |                      |
|               |               |                       |                         |                      |
|               |               |                       |                         |                      |
|               |               |                       |                         |                      |
|               |               |                       |                         |                      |
|               |               |                       |                         |                      |
|               |               |                       |                         |                      |
|               |               |                       |                         |                      |

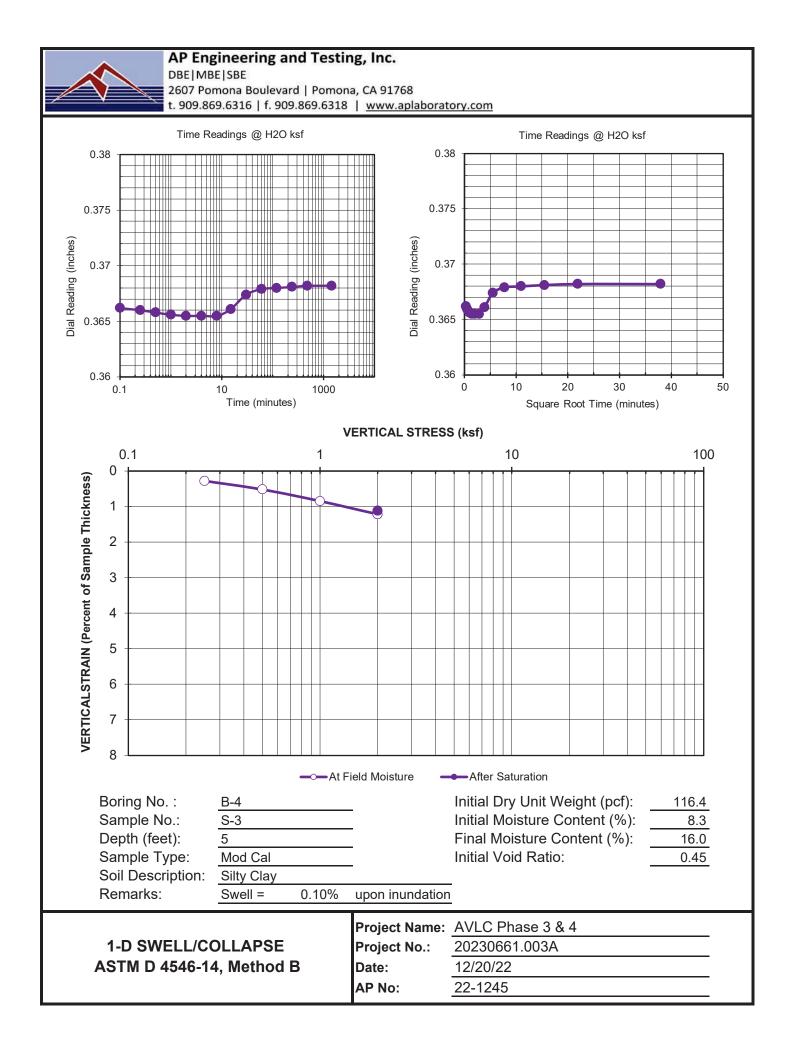


AP Engineering and Testing, Inc. DBE|MBE|SBE 2607 Pomona Boulevard | Pomona, CA 91768

t. 909.869.6316 | f. 909.869.6318 | <u>www.aplaboratory.com</u>


## DIRECT SHEAR TEST RESULTS


#### ASTM D 3080


| Project Name:     | AVLC Phase 3 & 4 |               |         |  |  |  |  |
|-------------------|------------------|---------------|---------|--|--|--|--|
| Project No.:      | 20230661.00      | 20230661.003A |         |  |  |  |  |
| Boring No.:       | B-2              |               |         |  |  |  |  |
| Sample No.:       | S-1              | Depth (ft):   | 0-5     |  |  |  |  |
| Sample Type:      | Remolded to      | 90% RC at opt | MC      |  |  |  |  |
| Soil Description: | Silty Sand       |               |         |  |  |  |  |
| Test Condition:   | Inundated        | Shear Type:   | Regular |  |  |  |  |
|                   |                  |               |         |  |  |  |  |

| Tested By:   | ST | Date: | 12/21/22 |
|--------------|----|-------|----------|
| Computed By: | NR | Date: | 12/22/22 |
| Checked by:  | AP | Date: | 12/22/22 |

| Γ | Wet         | Dry         | Initial     | Final       | Initial Degree | Final Degree | Normal | Peak         | Ultimate     |
|---|-------------|-------------|-------------|-------------|----------------|--------------|--------|--------------|--------------|
|   | Unit Weight | Unit Weight | Moisture    | Moisture    | Saturation     | Saturation   | Stress | Shear        | Shear        |
|   | (pcf)       | (pcf)       | Content (%) | Content (%) | (%)            | (%)          | (ksf)  | Stress (ksf) | Stress (ksf) |
| Γ |             |             |             |             |                |              | 1      | 0.708        | 0.684        |
|   | 121.3       | 109.1       | 11.2        | 18.8        | 55             | 93           | 2      | 1.248        | 1.248        |
|   |             |             |             |             |                |              | 4      | 2.388        | 2.388        |









## **CORROSION TEST RESULTS**

| Client Name:  | Kleinfelder      | AP Job No.: | 22-1245  |  |
|---------------|------------------|-------------|----------|--|
| Project Name: | AVLC Phase 3 & 4 | Date:       | 12/21/22 |  |
| Project No.:  | 20230661.003A    |             |          |  |

| Boring<br>No. | Sample<br>No. | Depth<br>(feet) | Soil<br>Description | Minimum<br>Resistivity<br>(ohm-cm) | рН  | Sulfate Content<br>(ppm) | Chloride Content<br>(ppm) |
|---------------|---------------|-----------------|---------------------|------------------------------------|-----|--------------------------|---------------------------|
|               |               |                 |                     |                                    |     |                          |                           |
| B-3           | S-1           | 0-5             | Clay                | 556                                | 9.8 | 416                      | 260                       |
| B-5           | S-1           | 0-5             | Clay                | 1,221                              | 9.9 | 27                       | 33                        |
|               |               |                 |                     |                                    |     |                          |                           |
|               |               |                 |                     |                                    |     |                          |                           |
|               |               |                 |                     |                                    |     |                          |                           |
|               |               |                 |                     |                                    |     |                          |                           |
|               |               |                 |                     |                                    |     |                          |                           |
|               |               |                 |                     |                                    |     |                          |                           |
|               |               |                 |                     |                                    |     |                          |                           |
|               |               |                 |                     |                                    |     |                          |                           |
|               |               |                 |                     |                                    | 1   | 1                        |                           |

NOTES: Resistivity Test and pH: California Test Method 643

Sulfate Content : California Test Method 417

Chloride Content : California Test Method 422

ND = Not Detectable

NA = Not Sufficient Sample

NR = Not Requested



# Preliminary Geotechnical Engineering Report

## NAVLC 115 Site Antelope Valley, Los Angeles County, California

February 9, 2023 Terracon Project No. CB225192

### **Prepared for:**

NorthPoint Development LLC Salt Lake City, Utah

### **Prepared by:**

Terracon Consultants, Inc. Colton, California



February 9, 2023

NorthPoint Development LLC PO Box 94027 Salt Lake City, Utah 98124-9427

- Attn: Mr. Chandler Elliot P: (801) 864-8784
  - E: celliott@northpointkc.com
- Re: Preliminary Geotechnical Engineering Report NAVLC 115 Site South of W Ave E and West of Sierra Hwy Antelope Valley, Los Angeles County, California Terracon Project No. CB225192

Dear Mr. Elliot:

We have completed the Preliminary Geotechnical Engineering services for the above referenced project. This study was performed in general accordance with Terracon Proposal No.: PCB225192 dated December 21, 2022. This report presents the findings of the subsurface exploration and provides geotechnical recommendations concerning earthwork and the design and construction of foundations, floor slabs and pavements for the proposed project.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning this report or if we may be of further service, please contact us.

Sincerely, Terracon Consultants, Inc.

Ali Tabatabaei, Ph.D., G.E.

Ali Tabatabaei, Ph.D., G.E. Geotechnical Project Engineer



Geotechnical Regional Manager

Terracon Consultants, Inc. 1355 E. Cooley Dr. Colton, California 92324 P (909) 824 7311 F (909) 301 6016 terracon.com

## **REPORT TOPICS**

| INTRODUCTION                        | . 1 |
|-------------------------------------|-----|
| SITE CONDITIONS                     | . 1 |
| PROJECT DESCRIPTION                 |     |
| GEOTECHNICAL CHARACTERIZATION       | . 3 |
| SEISMIC CONSIDERATIONS              | . 4 |
| LIQUEFACTION AND SEISMIC SETTLEMENT |     |
| GEOTECHNICAL OVERVIEW               | . 6 |
| EARTHWORK                           | . 7 |
| SHALLOW FOUNDATIONS                 | 12  |
| FLOOR SLABS                         |     |
| PAVEMENTS                           |     |
| STORM WATER MANAGEMENT              | 16  |
| CORROSIVITY.                        |     |
|                                     | 18  |
|                                     |     |

Note: This report was originally delivered in a web-based format. Orange Bold text in the report indicates a referenced section heading. The PDF version also includes hyperlinks which direct the reader to that section and clicking on the *GeoReport* logo will bring you back to this page. For more interactive features, please view your project online at <u>client.terracon.com</u>.

## **ATTACHMENTS**

EXPLORATION AND TESTING PROCEDURES SITE LOCATION AND EXPLORATION PLANS EXPLORATION RESULTS SUPPORTING INFORMATION

Note: Refer to each individual Attachment for a listing of contents.

# Preliminary Geotechnical Engineering Report NAVLC 115 Site South of W Ave E and West of Sierra Hwy Antelope Valley, Los Angeles County, California Terracon Project No. CB225192 February 9, 2023

# **INTRODUCTION**

This report presents the results of our subsurface exploration and preliminary geotechnical engineering services performed for the proposed warehouse to be located at South of W Ave E and West of Sierra Hwy in Antelope Valley, Los Angeles County, California. The purpose of these services is to provide information and geotechnical engineering recommendations relative to:

- Subsurface soil conditions
- Groundwater conditions and historic high groundwater
- 2022 California Building Code (CBC) seismic design parameters
- Earthwork
- Infiltration and drainage
- Preliminary recommendations for foundation design and concrete slabs-on-grade
- Subgrade preparation/earthwork recommendations
- Preliminary recommendations for pavement section design

The geotechnical engineering Scope of Services for this project included the advancement of twelve (12) test borings to depths ranging from approximately 5 to 31 ½ feet below existing site grades.

Maps showing the site and boring locations are shown in the **Site Location** and **Exploration Plan** sections, respectively. The results of the laboratory testing performed on soil samples obtained from the site during the field exploration are included on the boring logs and/or as separate graphs in the **Exploration Results** section.

## SITE CONDITIONS

The following description of site conditions is derived from our site visit in association with the field exploration and our review of publicly available geologic and topographic maps.



NAVLC 115 Site Antelope Valley, Los Angeles County, California February 9, 2023 Terracon Project No. CB225192

| Item                  | Description                                                                                                                                                                                                                                                                                       |  |  |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Deveel information    | The project site is located at South of W Ave E and West of Sierra Hwy in Antelope Valley, Los Angeles County, California. The site is approximately 115.9 acres.                                                                                                                                 |  |  |
| Parcel Information    | The approximate coordinates of the site are: 34.7607° N 118.1602° W (approximate)                                                                                                                                                                                                                 |  |  |
|                       | See Site Location                                                                                                                                                                                                                                                                                 |  |  |
| Existing Improvements | The project site generally consists of an undeveloped tract of land. It appears based on layout of trees that the site may have been previously developed or landscaped. A man-made pond may have been present in the western portion of the site at a earlier time but has since been abandoned. |  |  |
| Current Ground Cover  | The site is primarily underlain with native soils and light grows grass, bushes and vegetations.                                                                                                                                                                                                  |  |  |
| Existing Topography   | Site is relatively flat with a gentle slope down toward the west.                                                                                                                                                                                                                                 |  |  |

# **PROJECT DESCRIPTION**

Our initial understanding of the project was provided in our proposal and was discussed during project planning. A period of collaboration has transpired since the project was initiated, and our final understanding of the project conditions is as follows:

| Item                                 | Description                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Proposed Development                 | The project generally consists of the construction of two industrial<br>buildings with footprint areas of approximately 1,000,000 (each) square<br>feet (sf). The project will also include car parking, driveways and utilities.<br>We assume that stormwater diversion structures such as culverts, open<br>channels, and storm drains will also be constructed on site. |  |  |  |
| Proposed Structures                  | Two buildings with footprint areas of about 1,000,000 square feet for each                                                                                                                                                                                                                                                                                                 |  |  |  |
| Building Construction                | Concrete tilt up walls or steel construction founded on conventional<br>continuous and spread footings with concrete slab on grade.                                                                                                                                                                                                                                        |  |  |  |
| <b>Finished Floor Elevation</b>      | Anticipated to be within 3 feet of existing grade                                                                                                                                                                                                                                                                                                                          |  |  |  |
| <b>Structural Loads</b><br>(assumed) | <ul> <li>Structural loads were not provided at the time of this report.</li> <li>We assume that the proposed structures will have the following loads:</li> <li>Columns: 100 to 300 kips</li> <li>Walls: 2 to 4 kips per linear foot (klf)</li> <li>Slabs: 150 pounds per square foot (psf)</li> </ul>                                                                     |  |  |  |
| Grading Requirements                 | Design grades were not provided at the time of this report.                                                                                                                                                                                                                                                                                                                |  |  |  |
| Below Grade Structures               | Not anticipated                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| Infiltration Systems                 | An on-site stormwater retention/infiltration system is planned; therefore, we have included preliminary infiltration testing in this current scope of work and report. However the exact location and depth of the system is undetermined at this time and additional testing may be necessary depending on the final location of the proposed system.                     |  |  |  |



NAVLC 115 Site Antelope Valley, Los Angeles County, California February 9, 2023 Terracon Project No. CB225192

| Item      | Description                                                                                                                  |                       |  |  |  |  |
|-----------|------------------------------------------------------------------------------------------------------------------------------|-----------------------|--|--|--|--|
|           | Paved driveway and parking will be constructed<br>Both rigid (concrete) and flexible (asphalt)<br>considered in this report. |                       |  |  |  |  |
|           | Anticipated traffic indices (TIs) are as follows for asphalt pavement:                                                       |                       |  |  |  |  |
|           | Auto Parking Areas:                                                                                                          | TI=5.0                |  |  |  |  |
|           | Drive Lanes                                                                                                                  | TI=5.5                |  |  |  |  |
| Pavements | Truck Parking Areas:                                                                                                         | TI=7.0                |  |  |  |  |
|           | Truck Drive Lanes:                                                                                                           | TI=8.0                |  |  |  |  |
|           | The pavement design period is                                                                                                | 20 years.             |  |  |  |  |
|           | Anticipated average daily truck traffic (ADTT) is as follows for concrete                                                    |                       |  |  |  |  |
|           | pavement:                                                                                                                    |                       |  |  |  |  |
|           | Light Duty:                                                                                                                  | ADTT=1 (Category A)   |  |  |  |  |
|           | Medium Duty:                                                                                                                 | ADTT=25 (Category B)  |  |  |  |  |
|           | Heavy Duty:                                                                                                                  | ADTT=700 (Category C) |  |  |  |  |

# **GEOTECHNICAL CHARACTERIZATION**

#### Subsurface Profile

We have developed a general characterization of the subsurface soil and groundwater conditions based upon our review of the data and our understanding of the geologic setting and planned construction.

The geotechnical characterization forms the basis of our geotechnical calculations and evaluation of site preparation, foundation options and pavement options. As noted in **General Comments**, the characterization is based upon widely spaced exploration points across the site, and variations are likely.

Conditions encountered at each boring location are indicated on the individual boring logs shown in the **Exploration Results** section and are attached to this report. Stratification boundaries on the boring logs represent the approximate location of changes in native soil types; in situ, the transition between materials may be gradual. The subsurface materials generally consist of Interbedded layers of clayey sand, silty sand, sandy lean clay and lean clay extending to the maximum depth of the explorations approximately 31 ½ feet bgs.

#### Lab Results

Laboratory tests were conducted on selected soil samples and the test results are presented in the **Exploration Results** section and on the boring logs. Atterberg test results indicate that the onsite soils generally have low plasticity. An Expansion Index test was conducted in surficial sample of boring B-7 resulted in an expansion index of 27 (low).



#### Hydroconsolidation

To evaluate the potential deformation that may be caused by the addition of water to subsurface soils, hydroconsolidation testing was performed on a selected, representative relatively undisturbed sample. The result is shown in Exploration Results section. The test result indicates a collapse potential of 0.25% (B-3 at 5 feet). The soil sample was saturated under an axial pressure of 2,000 psf.

#### **Groundwater Conditions**

The borings were advanced using continuous flight auger drilling techniques that allow short-term groundwater observations to be made while drilling. Groundwater seepage was encountered in Boring B-5 at depth of 28 feet bgs at the completion of drilling. According to data collected from the Water Data Library of California Department of Water Resources (DWR) from a nearby well, located within the project site with State Well Number of 08N12W28D001S, historic high groundwater levels are about 50 feet bgs. Our review of historical information regarding groundwater levels indicates that historical high groundwater levels in the project vicinity are about 50 feet bgs. In boring B-5 sandy soil with high permeability underlain by interbedded layers of clayey soil with low permeability, it is our opinion that the encountered water is considered perched water and not a real water table. Groundwater level fluctuations occur due to seasonal variations in the amount of rainfall, runoff and other factors not evident at the time the borings were performed.

## SEISMIC CONSIDERATIONS

Based on the soil properties encountered at the site and as described on the exploration logs and results, it is our opinion that the Seismic Site Classification is D. The 2022 California Building Code (CBC) Seismic Design Parameters have been generated using the SEAOC/OSHPD Seismic Design Maps Tool. This web-based software application calculates seismic design parameters in accordance with ASCE 7-16 and 2022 CBC. The 2022 CBC requires that a site-specific ground motion study be performed in accordance with Section 11.4.8 of ASCE 7-16 for Site Class D sites with a mapped S<sub>1</sub> value greater than or equal 0.2.

However, Section 11.4.8 of ASCE 7-16 includes an exception from such analysis for specific structures on Site Class D sites. The commentary for Section 11 of ASCE 7-16 (Page 534 of Section C11 of ASCE 7-16) states that "In general, this exception effectively limits the requirements for site-specific hazard analysis to very tall and or flexible structures at Site Class D sites." Based on our understanding of the proposed structures, it is our assumption that the exception in Section 11.4.8 applies to the proposed structure(s). However, the structural engineer should verify the applicability of this exception.

Based on this exception, the spectral response accelerations presented below were calculated using the site coefficients ( $F_a$  and  $F_v$ ) from Tables 1613.2.3(1) and 1613.2.3(2) presented in Section 16.4.4 of the 2022 CBC.



NAVLC 115 Site Antelope Valley, Los Angeles County, California February 9, 2023 Terracon Project No. CB225192

| Description                                                  | Value          |
|--------------------------------------------------------------|----------------|
| Site Classification (CBC) <sup>1</sup>                       | D <sup>2</sup> |
| Site Latitude (°N)                                           | 34.7607        |
| Site Longitude (°W)                                          | -118.1602      |
| S <sub>s</sub> Spectral Acceleration for a 0.2-Second Period | 1.311          |
| S1 Spectral Acceleration for a 1-Second Period               | 0.531          |
| Fa Site Coefficient for a 0.2-Second Period                  | 1              |
| F <sub>v</sub> Site Coefficient for a 1-Second Period        | 1.77           |
| Site Modified Peak Ground Acceleration                       | 0.55g          |
| De-aggregated Modal Magnitude <sup>3</sup>                   | 8.1            |

1. Seismic site classification in general accordance with the 2022 California Building Code.

2. The 2022 California Building Code (CBC) requires a site soil profile determination extending to a depth of 100 feet for seismic site classification. The current scope does not include the required 100-foot soil profile determination. Our borings were extended to a maximum depth of  $31\frac{1}{2}$  feet. This seismic site class definition considers that similar or denser soils continue below the maximum depth of the subsurface exploration. Additional exploration to deeper depths would be required to confirm the conditions below the current depth of exploration.

3. These values were obtained using on-line Unified Hazard Tool by the USGS (<u>https://earthquake.usgs.gov/hazards/interactive/</u>) for return period of 2% in 50 years accessed

A site-specific ground motion study may reduce design values and consequently construction costs. We recommend consulting with a structural engineer to evaluate the need for such study and its potential impact on construction costs. Terracon should be contacted if a site-specific ground motion study is desired.

#### **Faulting and Estimated Ground Motions**

The site is located in the seismically active southern California area. The type and magnitude of seismic hazards affecting the site are dependent on the distance to causative faults, the intensity, and the magnitude of the seismic event. As calculated using the USGS Unified Hazard Tool, the San Andreas (Mojave segment) Fault, which is considered to have the most significant effect at the site from a design standpoint, has a maximum earthquake magnitude of 8.01 and is located approximately 19.4 kilometers from the site.

The site is not located within an Alquist-Priolo Earthquake Fault Zone based on our review of the State Fault Hazard Maps.

# LIQUEFACTION AND SEISMIC SETTLEMENT

Liquefaction is a mode of ground failure that results from the generation of high pore-water pressures during earthquake ground shaking, causing loss of shear strength, and is typically a hazard where loose sandy soils exist below groundwater. California Geological Survey (CGS) has



NAVLC 115 Site Antelope Valley, Los Angeles County, California February 9, 2023 Terracon Project No. CB225192

designated certain areas as potential liquefaction hazard zones. These are areas considered at a risk of liquefaction-related ground failure during a seismic event, based upon mapped surficial deposits and the presence of a relatively shallow water table.

The subsurface materials generally consist of Interbedded layers of clayey sand, silty sand, sandy lean clay and lean clay extending to the maximum depth of the explorations approximately  $31 \frac{1}{2}$  feet bgs. Groundwater seepage was encountered in boring B-5 at depth of 28 feet bgs at the completion of drilling and has historically been about 50 feet bgs.

According to CGS, the site is not located within an area having liquefaction potential. Based on the CGS mapping and encountered soil condition, liquefaction hazard is considered low. During the final design level geotechnical study, borings may be performed to deeper depths to observe long term static levels of the groundwater and perform liquefaction analyses as necessary depending on the observed site conditions.

# **GEOTECHNICAL OVERVIEW**

The site appears suitable for the proposed construction based upon geotechnical conditions encountered in the test borings, provided that the recommendations provided in this report are implemented in the design and construction phases of this project.

Preliminary geotechnical engineering recommendations for foundation systems and other earth connected phases of the project are outlined below. The recommendations contained in this report are based upon the results of field and laboratory testing, engineering analyses, and our current understanding of the proposed project.

The subsurface materials generally consist of Interbedded layers of clayey sand, silty sand, sandy lean clay and lean clay extending to the maximum depth of the explorations approximately 31  $\frac{1}{2}$  feet bgs.

Based on the conditions encountered, we believe the proposed building can be supported on shallow foundations, such as spread footings bearing on compacted engineered fill. Depths of overexcavation may vary depending on the final grading design for the site. Furthermore additional overexcavation may be needed in the area of the previous pond to remove potential organics and silt deposits. No borings were performed in the suspected pond area during this phase.

No groundwater was encountered in any of the borings within the drilling depths at the time of drilling, except in boring B-5 where groundwater was encountered at a depth of about 28 feet bgs during drilling. Groundwater is not expected to affect shallow foundation construction on this site.

The General Comments section provides an understanding of the report limitations.



# EARTHWORK

The following recommendations include site preparation, excavation, subgrade preparation and placement of engineered fills on the project. The recommendations presented for design and construction of earth supported elements including foundations, slabs, and pavements are contingent upon following the recommendations outlined in this section.

Earthwork on the project should be observed and evaluated by Terracon. The evaluation of earthwork should include observation and testing of engineered fill, subgrade preparation, foundation bearing soils, and other geotechnical conditions exposed during the construction of the project.

#### Site Preparation

Strip and remove existing vegetation, debris, pavements and other deleterious materials from proposed buildings and pavement areas. Exposed surfaces should be free of mounds and depressions which could prevent uniform compaction. The site should be initially graded to create a relatively level surface to receive fill and provide for a relatively uniform thickness of fill beneath proposed building structures.

Existing utility lines were noted across the site. However, although no evidence of other underground facilities such as septic tanks, cesspools, and basements, was observed during the site reconnaissance, such features could be encountered during construction. If unexpected fills, utilities, or underground facilities are encountered, such features should be removed, and the excavation thoroughly cleaned prior to backfill placement and/or construction.

#### **Subgrade Preparation**

We recommend that the proposed structures be supported on engineered fill extending to a minimum depth of 2 feet below the bottom of foundations, or 4 feet below existing grades, whichever is greater. Engineered fill placed beneath the entire footprint of the structures should extend horizontally a minimum distance of 3 feet beyond the outside edge of perimeter footings.

Additional overexcavation depths may be necessary to remove unsuitable material from the previous pond area. Additional exploration in the area can help in determining depths of unsuitable material.

Subgrade soils beneath exterior slabs and pavements should be scarified, moisture conditioned, and compacted to a minimum depth of 10 inches. The moisture content and compaction of subgrade soils should be maintained until slab or pavement construction.

Exposed areas which will receive fill, once properly cleared and benched where necessary, should be scarified to a minimum depth of 10 inches, moisture conditioned, and compacted per the compaction requirements in this report.



NAVLC 115 Site Antelope Valley, Los Angeles County, California February 9, 2023 Terracon Project No. CB225192

Based upon the subsurface conditions determined from the geotechnical exploration, subgrade soils exposed during construction are anticipated to be relatively workable. However, the workability of the subgrade may be affected by precipitation, repetitive construction traffic or other factors. If unworkable conditions develop, workability may be improved by scarifying and drying.

#### Excavation

We anticipate that excavations for the proposed construction can be accomplished with conventional earthmoving equipment. The bottom of excavations should be thoroughly cleaned of loose soils and disturbed materials prior to backfill placement and/or construction.

Individual contractors are responsible for designing and constructing stable, temporary excavations. Excavations should be sloped or shored in the interest of safety following local, and federal regulations, including current OSHA excavation and trench safety standards.

#### **Fill Material Types**

All fill materials should be inorganic soils free of vegetation, debris, and fragments larger than three inches in size. Pea gravel or other similar non-cementitious, poorly-graded materials should not be used as fill or backfill without the prior approval of the geotechnical engineer.

Clean on-site soils or approved imported materials may be used as fill material for the following:

| <ul> <li>general site grading</li> </ul>      | foundation backfill                     |
|-----------------------------------------------|-----------------------------------------|
| <ul> <li>foundation areas</li> </ul>          | <ul> <li>pavement areas</li> </ul>      |
| <ul> <li>interior floor slab areas</li> </ul> | <ul> <li>exterior slab areas</li> </ul> |

The lean clay soils encountered in select borings at the site indicate Expansion Index values which exceed the code recommended value for use beneath lightly loaded slabs, such as floor slabs. These soils should not be used within 12 inches of the bottom of floor slabs but may be used beneath this zone and beneath foundations.

If imported soils are used as fill materials to raise grades, these soils should conform to low volume change materials and should conform to the following requirements:

|                  | Percent Finer by Weight |
|------------------|-------------------------|
| <u>Gradation</u> | <u>(ASTM C 136)</u>     |
| 3"               |                         |
| No. 4 Sieve      |                         |
| No. 200 Sieve    |                         |
| Liquid Limit     |                         |
| Plasticity Index | 15 (max)                |



NAVLC 115 Site Antelope Valley, Los Angeles County, California February 9, 2023 Terracon Project No. CB225192

The contractor shall notify the Geotechnical Engineer of import sources sufficiently ahead of their use so that the sources can be observed and approved as to the physical characteristic of the import material. For all import material, the contractor shall also submit current verified reports from a recognized analytical laboratory indicating that the import has a "not applicable" (Class S0) potential for sulfate attack based upon current ACI criteria. The reports shall be accompanied by a written statement from the contractor that the laboratory test results are representative of all import material that will be brought to the job.

Engineered fill should be placed and compacted in horizontal lifts, using equipment and procedures that will produce recommended moisture contents and densities throughout the lift. Fill lifts should not exceed 10 inches loose thickness.

|                                                       | Per the Modified Proctor Test (ASTM D 1557) |                                                            |         |
|-------------------------------------------------------|---------------------------------------------|------------------------------------------------------------|---------|
| Material Type and Location                            | Minimum<br>Compaction                       | Range of Moisture Contents for<br>Compaction Above Optimum |         |
|                                                       | Requirement<br>(%)                          | Minimum                                                    | Maximum |
| On-site soils and/or low volume change imported fill: |                                             |                                                            |         |
| Beneath foundations:                                  | 90                                          | 0%                                                         | +3%     |
| Beneath interior slabs:                               | 90                                          | 0%                                                         | +3%     |
| Miscellaneous backfill:                               | 90                                          | 0%                                                         | +3%     |
| Beneath pavements:                                    | 95                                          | 0%                                                         | +3%     |
| Utility Trenches*:                                    | 90                                          | 0%                                                         | +3%     |
| Bottom of excavation receiving fill:                  | 90                                          | 0%                                                         | +3%     |
| Aggregate base (beneath pavements):                   | 95                                          | 0%                                                         | +3%     |

#### **Compaction Requirements**

\* Upper 12 inches should be compacted to 95% within pavement and structural areas. Low-volume change imported soils should be used in structural areas.

#### **Utility Trenches**

It is anticipated that the on-site soils will provide suitable support for underground utilities and piping that may be installed. Any soft and/or unsuitable material encountered at the bottom of excavations should be removed and be replaced with an adequate bedding material. A non-expansive granular material with a sand equivalent greater than 30 is recommended for bedding and shading of utilities, unless otherwise allowed by the utility manufacturer.



NAVLC 115 Site Antelope Valley, Los Angeles County, California February 9, 2023 Terracon Project No. CB225192

On-site materials are considered suitable for backfill of utility and pipe trenches from one foot above the top of the pipe to the final ground surface, provided the material is free of organic matter and deleterious substances.

Trench backfill should be mechanically placed and compacted as discussed earlier in this report. Compaction of initial lifts should be accomplished with hand-operated tampers or other lightweight compactors. Where trenches are placed beneath slabs or footings, the backfill should satisfy the gradation and expansion index requirements of engineered fill discussed in this report. Flooding or jetting for placement and compaction of backfill is not recommended.

#### **Grading and Drainage**

Positive drainage should be provided during construction and maintained throughout the life of the development. Infiltration of water into utility trenches or foundation excavations should be prevented during construction. Planters and other surface features which could retain water in areas adjacent to the building or pavements should be sealed or eliminated. In areas where sidewalks or paving do not immediately adjoin the structure, we recommend that protective slopes be provided with a minimum grade of approximately 5 percent for at least 10 feet from perimeter walls. Backfill against footings, exterior walls, and in utility and sprinkler line trenches should be well compacted and free of all construction debris to reduce the possibility of moisture infiltration.

We recommend a minimum horizontal setback distance of 10 feet from the perimeter of any building and the high-water elevation of the nearest storm-water retention basin.

Roof drainage should discharge into splash blocks or extensions when the ground surface beneath such features is not protected by exterior slabs or paving. Sprinkler systems and landscaped irrigation should not be installed within 5 feet of foundation walls.

#### **Exterior Slab Design and Construction**

Exterior slabs-on-grade, exterior architectural features, and utilities founded on, or in backfill may experience some movement due to the volume change of the backfill. To reduce the potential for damage caused by movement, we recommend:

- minimizing moisture increases in the backfill;
- controlling moisture-density during placement of backfill;
- using designs which allow vertical movement between the exterior features and adjoining structural elements;
- placing effective control joints on relatively close centers.



NAVLC 115 Site Antelope Valley, Los Angeles County, California February 9, 2023 Terracon Project No. CB225192

#### **Construction Considerations**

Upon completion of filling and grading, care should be taken to maintain the subgrade moisture content prior to construction of floor slabs and pavements. Construction traffic over the completed subgrade should be avoided to the extent practical. The site should also be graded to prevent ponding of surface water on the prepared subgrades or in excavations. If the subgrade should become desiccated, saturated, or disturbed, the affected material should be removed or these materials should be scarified, moisture conditioned, and recompacted prior to floor slab and pavement construction.

Onsite soils consist of cohesionless sandy soils. Such soils have the tendency to cave and slough during excavations. Therefore, formwork may be needed for foundation excavations.

We recommend that the earthwork portion of this project be completed during extended periods of dry weather if possible. If earthwork is completed during the wet season (typically November through April) it may be necessary to take extra precautionary measures to protect subgrade soils. Wet season earthwork operations may require additional mitigative measures beyond that which would be expected during the drier summer and fall months. This could include diversion of surface runoff around exposed soils and draining of ponded water on the site. Once subgrades are established, it may be necessary to protect the exposed subgrade soils from construction traffic.

#### **Construction Observation and Testing**

The geotechnical engineer should be retained during the construction phase of the project to observe earthwork and to perform necessary tests and observations during subgrade preparation, proof-rolling, placement and compaction of controlled compacted fills, backfilling of excavations to the completed subgrade.

The exposed subgrade and each lift of compacted fill should be tested, evaluated, and reworked as necessary until approved by the Geotechnical Engineer prior to placement of additional lifts. Each lift of fill should be tested for density and water content at a frequency of at least one test for every 2,500 square feet of compacted fill in the building areas and 5,000 square feet in pavement areas. One density and water content test for every 50 linear feet of compacted utility trench backfill.

In areas of foundation excavations, the bearing subgrade should be evaluated under the direction of the Geotechnical Engineer. In the event that unanticipated conditions are encountered, the Geotechnical Engineer should prescribe mitigation options.

In addition to the documentation of the essential parameters necessary for construction, the continuation of the Geotechnical Engineer into the construction phase of the project provides the continuity to maintain the Geotechnical Engineer's evaluation of subsurface conditions, including assessing variations and associated design changes.



NAVLC 115 Site Antelope Valley, Los Angeles County, California February 9, 2023 Terracon Project No. CB225192

# SHALLOW FOUNDATIONS

If the site has been prepared in accordance with the requirements noted in **Earthwork**, the following preliminary parameters are applicable for initial design of shallow foundations. Additional exploration and testing will be performed prior to the final design of these foundations.

| Item                                                                                 | Description                                                                                                    |  |  |
|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|--|
| Foundation Support                                                                   | Engineered fill 2 feet below the bottom of foundations, or 4 feet below existing grades, whichever is greater. |  |  |
| Net Allowable Bearing pressure <sup>1, 2</sup><br>(On-site soils or structural fill) | 2,500 psf                                                                                                      |  |  |
| Minimum Foundation Dimensions                                                        | Columns:24 inchesContinuous:18 inches                                                                          |  |  |
| Minimum Footing Depth                                                                | 24" below finish grade                                                                                         |  |  |
| Ultimate Passive Resistance <sup>4</sup>                                             | 375 pcf                                                                                                        |  |  |
| Ultimate Coefficient of Sliding Friction <sup>5</sup>                                | 0.34                                                                                                           |  |  |
| Estimated Total Static Settlement from Structural Loads <sup>2</sup>                 | Less than 1 inch                                                                                               |  |  |
| Estimated Differential Settlement <sup>2, 6</sup>                                    | About 1/2 of total settlement                                                                                  |  |  |

1. The maximum net allowable bearing pressure is the pressure in excess of the minimum surrounding overburden pressure at the footing base elevation. An appropriate factor of safety has been applied.

- 2. Values provided are for maximum loads noted in **Project Description**. The foundation settlement will depend upon the variations within the subsurface soil profile, the structural loading conditions, the embedment depth of the footings, the thickness of compacted fill, and the quality of the earthwork operations.
- 3. Unsuitable or soft soils should be over-excavated and replaced per the recommendations presented in the **Earthwork**.
- 4. Use of passive earth pressures requires the footing forms be removed and compacted structural fill be placed against the vertical footing face. A factor of safety of 2.0 is recommended.
- 5. Can be used to compute sliding resistance where foundations are placed on suitable soil/materials. Should be neglected for foundations subject to net uplift conditions. A factor of safety of 1.5 is recommended.
- 6. Differential settlements are as measured over a span of 40 feet.

#### **Foundation Construction Considerations**

As noted in **Earthwork**, the footing excavations should be evaluated under the direction of the Geotechnical Engineer. The base of all foundation excavations should be free of water and loose soil, prior to placing concrete. Concrete should be placed soon after excavating to reduce bearing soil disturbance. Care should be taken to prevent wetting or drying of the bearing materials during construction. Excessively wet or dry material or any loose/disturbed material in the bottom of the footing excavations should be removed/reconditioned before foundation concrete is placed.

To ensure foundations have adequate support, special care should be taken when footings are located adjacent to trenches. The bottom of such footings should be at least 1 foot below an imaginary plane with an inclination of 1.5 horizontal to 1.0 vertical extending upward from the nearest edge of adjacent trenches.



# **FLOOR SLABS**

| DESCRIPTION                  | RECOMMENDATION                                                                                                                                                                                                                                                                              |  |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Interior floor system        | Slab-on-grade concrete                                                                                                                                                                                                                                                                      |  |
| Floor slab support           | Engineered fill 2 feet below the bottom of foundations, or 4 feet below existing grades, whichever is greater.                                                                                                                                                                              |  |
| Subbase                      | Minimum 4-inches of Aggregate Base                                                                                                                                                                                                                                                          |  |
| Modulus of subgrade reaction | 200 pounds per square inch per inch (psi/in) (The modulus was obtained based on estimates obtained from NAVFAC 7.1 design charts). This value is for a small loaded area (1 Sq. ft or less) such as for forklift wheel loads or point loads and should be adjusted for larger loaded areas. |  |

The use of a vapor retarder should be considered beneath concrete slabs on grade covered with wood, tile, carpet, or other moisture sensitive or impervious coverings, or when the slab will support equipment sensitive to moisture. When conditions warrant the use of a vapor retarder, the slab designer should refer to ACI 302 and/or ACI 360 for procedures and cautions regarding the use and placement of a vapor retarder.

Saw-cut control joints should be placed in the slab to help control the location and extent of cracking. For additional recommendations refer to the ACI Design Manual. Joints or cracks should be sealed with a water-proof, non-extruding compressible compound specifically recommended for heavy duty concrete pavement and wet environments.

Where floor slabs are tied to perimeter walls or turn-down slabs to meet structural or other construction objectives, our experience indicates differential movement between the walls and slabs will likely be observed in adjacent slab expansion joints or floor slab cracks beyond the length of the structural dowels. The Structural Engineer should account for potential differential settlement through use of sufficient control joints, appropriate reinforcing or other means.

# **PAVEMENTS**

#### **General Pavement Comments**

Pavement designs are provided for the traffic conditions and pavement life conditions as noted in **Project Description** and in the following sections of this report. A critical aspect of pavement performance is site preparation. Pavement designs noted in this section must be applied to the site which has been prepared as recommended in the **Earthwork** section.

#### **Pavement Design Parameters**

Design of asphalt concrete (AC) pavements is based on the procedures outlined in the Caltrans "Highway Design Manual for Safety Roadside Rest Areas" (Caltrans, 2016). Design of Portland



NAVLC 115 Site Antelope Valley, Los Angeles County, California February 9, 2023 Terracon Project No. CB225192

cement concrete (PCC) pavements are based upon American Concrete Institute (ACI) 330R-08; "Guide for Design and Construction of Concrete Parking Lots."

A correlated design R-value of 25 was used for the AC pavement. A modulus of rupture of 600 psi was used for pavement concrete. The structural sections are predicated upon proper compaction of the utility trench backfills and the subgrade soils as prescribed by in **Earthwork**, with the upper 12 inches of subgrade soils and all aggregate base material brought to a minimum relative compaction of 95 percent in accordance with ASTM D 1557 prior to paving. The aggregate base should meet Caltrans requirements for Class 2 base.

It should be noted that the pavement designs were based upon the results of preliminary sampling and testing and should be verified by additional sampling and testing during construction when the actual subgrade soils are exposed.

#### **Pavement Section Thicknesses**

| Asphalt Concrete Design                                                |                          |                                                    |  |  |
|------------------------------------------------------------------------|--------------------------|----------------------------------------------------|--|--|
| Usage                                                                  | Assumed Traffic<br>Index | Recommended<br>Structural Section                  |  |  |
| Auto Parking Areas                                                     | 5.0                      | 3" HMA <sup>1</sup> /7" Class 2 AB <sup>2</sup>    |  |  |
| Auto Drive Lanes                                                       | 5.5                      | 3" HMA <sup>1</sup> /8" Class 2 AB <sup>2</sup>    |  |  |
| Truck Parking Areas                                                    | 7.0                      | 4" HMA <sup>1</sup> /11" Class 2 AB <sup>2</sup>   |  |  |
| Truck Drive Lanes                                                      | 8.0                      | 4.5" HMA <sup>1</sup> /13" Class 2 AB <sup>2</sup> |  |  |
| <ol> <li>HMA = hot mix asphalt</li> <li>AB = aggregate base</li> </ol> |                          |                                                    |  |  |

The following table provides options for AC and PCC Sections:

| Portland Cement Concrete Design |                         |                          |                         |  |
|---------------------------------|-------------------------|--------------------------|-------------------------|--|
| Thickness (inches)              |                         |                          |                         |  |
| Layer                           | Light Duty <sup>1</sup> | Medium Duty <sup>2</sup> | Heavy Duty <sup>3</sup> |  |
| PCC                             | 5.0                     | 6.0                      | 8.0                     |  |
| Aggregate Base <sup>4</sup>     |                         |                          |                         |  |

1. Car Parking and Access Lanes, Average Daily Truck Traffic (ADTT) = 1 (Category A).

2. Truck Parking Areas, Multiple Units, ADTT = 25 (Category B)

3. In areas of anticipated heavy traffic, fire trucks, delivery trucks, or concentrated loads (e.g., dumpster pads), and areas with repeated turning or maneuvering of heavy vehicles, ADTT = 700 (Category C).



Recommended structural sections were calculated based on assumed TIs and our preliminary sampling and testing.

Terracon does not practice traffic engineering. We recommend that the project civil engineer or traffic engineer verify that the TIs and ADTT traffic indices used are appropriate for this project.

#### Pavement Drainage

Pavements should be sloped to provide rapid drainage of surface water. Water allowed to pond on or adjacent to the pavements could saturate the subgrade and contribute to premature pavement deterioration. In addition, the pavement subgrade should be graded to provide positive drainage within the granular base section. Appropriate sub-drainage or connection to a suitable daylight outlet should be provided to remove water from the granular subbase.

#### **Pavement Maintenance**

The pavement sections represent minimum recommended thicknesses and, as such, periodic maintenance should be anticipated. Therefore, preventive maintenance should be planned and provided for through an on-going pavement management program. Maintenance activities are intended to slow the rate of pavement deterioration and to preserve the pavement investment. Maintenance consists of both localized maintenance (e.g., crack and joint sealing and patching) and global maintenance (e.g., surface sealing). Preventive maintenance is usually the priority when implementing a pavement maintenance program. Additional engineering observation is recommended to determine the type and extent of a cost-effective program. Even with periodic maintenance, some movements and related cracking may still occur and repairs may be required.

Pavement performance is affected by its surroundings. In addition to providing preventive maintenance, the civil engineer should consider the following recommendations in the design and layout of pavements:

- Final grade adjacent to paved areas should slope down from the edges at a minimum 2 percent.
- Subgrade and pavement surfaces should have a minimum 2 percent slope to promote proper surface drainage.
- Install below pavement drainage systems surrounding areas anticipated for frequent wetting.
- Install joint sealant and seal cracks immediately.
- Seal all landscaped areas in or adjacent to pavements to reduce moisture migration to subgrade soils.
- Place compacted, low permeability backfill against the exterior side of curb and gutter.
- Place curb, gutter and/or sidewalk directly on clay subgrade soils rather than on unbound granular base course materials.



NAVLC 115 Site Antelope Valley, Los Angeles County, California February 9, 2023 Terracon Project No. CB225192

# STORM WATER MANAGEMENT

Four in-situ infiltration tests (falling head borehole permeability) were performed at approximate depths of 5 and 10 feet bgs. The objective of the infiltration testing is to provide infiltration rates for designing the proposed infiltration system. A 2-inch thick, 3/8-inch gravel layer was placed in the bottom of each boring after the borings were drilled to investigate the soil profile.

Three-inch diameter perforated pipes were installed on top of the gravel layer. Gravel was used to backfill between the perforated pipes and the boring sidewall. The borings were then filled with water for a pre-soak period.

At the beginning of each test, the pipes were refilled with water and readings were taken at periodic time intervals as the water level dropped. The soil at the percolation test locations was classified in the field using a visual/manual procedure. The infiltration velocity is presented as the infiltration rate and is summarized in the following table. The infiltration rates provided do not include safety factors.

| Test<br>Location | Boring<br>Depth (ft.) <sup>1</sup> | Test<br>Depth<br>Range<br>(ft.) <sup>1</sup> | Soil Type     | Unfactored<br>Percolation<br>Rate<br>Average<br>(in/hr) | Infiltration<br>Rate Average<br>(in./hr.) <sup>3</sup> | Design<br>Infiltration Rate<br>Average<br>(in./hr.) <sup>2,4</sup> |
|------------------|------------------------------------|----------------------------------------------|---------------|---------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------|
| P-1              | 5                                  | 0 to 5                                       | SM            | 83                                                      | 5.4                                                    | 1.3                                                                |
| P-2              | 10                                 | 5 to 10                                      | SC            | 74                                                      | 4.0                                                    | 1.0                                                                |
| P-3              | 10                                 | 5 to 10                                      | CL over<br>SM | 103                                                     | 5.9                                                    | 1.5                                                                |
| P-4              | 5                                  | 0 to 5                                       | SM            | 16.2                                                    | 1.0                                                    | 0.3                                                                |

1. Below existing ground surface.

 Our percolation tests was performed generally following the well permeater test method described in the "Guidelines for Geotechnical Investigation and Reporting Low Impact Development Stormwater Infiltration", Los Angeles County Department of Public Works, 2017.

3. If proposed infiltration system will mainly rely on vertical downward seepage, the correlated infiltration rates should be used. CFt (Correction Factor) was used to convert percolation rates to infiltration rates.

4. CFv and CFs Correction Factors of 2 were used to calculate design infiltration rates.

The above infiltration rates determined by the shallow percolation test method are based on field test results utilizing clear water. Infiltration rates can be affected by silt buildup, debris, degree of soil saturation, site variability and other factors. The rate obtained at specific location and depth is representative of the location and depth tested and may not be representative of the entire site. Application of an appropriate safety factor is prudent to account for subsoil inconsistencies, possible compaction related to site grading, and potential silting of the percolating soils, depending on the application.



The design engineer should also check with the local agency for the limitation of the infiltration rate allowed in the design. If the maximum allowable design infiltration rate is lower than the above recommended rate, the maximum allowable design infiltration rate should be used. The designer of the basins should also consider other possible site variability in the design.

The percolation test was performed with clear water, whereas the storm water will likely not be clear, but may contain organics, fines, and grease/oil. The presence of these deleterious materials will tend to decrease the rate that water percolates from the infiltration systems. Design of the storm water infiltration systems should account for the presence of these materials and should incorporate structures/devices to remove these deleterious materials.

Based on the soils encountered in our borings, we expect the percolation rates of the soils could be different than measured in the field due to variations in fines and gravel content. The design elevation and size of the proposed infiltration system should account for this expected variability in infiltration rates.

Infiltration testing should be performed after construction of the infiltration system to verify the design infiltration rates. It should be noted that siltation and vegetation growth along with other factors may affect the infiltration rates of the infiltration areas. The actual infiltration rate may vary from the values reported here. Infiltration systems should be located at least 10 feet from any existing or proposed foundation system.

# CORROSIVITY

The following table lists the laboratory electrical resistivity (standard and as-received), chlorides, soluble sulfates, and pH testing results. These values may be used to estimate potential corrosive characteristics of the on-site soils with respect to contact with the various underground materials which will be used for project construction.

| Boring | Depth<br>(feet) | Soluble<br>Sulfate<br>(mg/kg) | Soluble<br>Chloride<br>(mg/kg) | Total<br>Salts<br>(mg/kg) | рН   | Resistivity<br>(as-received)<br>(Ohm-cm) | Resistivity<br>(saturated)<br>(Ohm-cm) |
|--------|-----------------|-------------------------------|--------------------------------|---------------------------|------|------------------------------------------|----------------------------------------|
| B-2    | 0.0 to 2.5      | 92                            | 72                             | 660                       | 8.55 | 31,040                                   | 1,552                                  |

Results of soluble sulfate testing indicate samples of the on-site soils tested possess negligible sulfate concentrations when classified in accordance with Table 19.3.1.1 of the ACI Design Manual. Concrete should be designed in accordance with the exposure class S0 provisions of the ACI Design Manual, Section 318, Chapter 19.



For protection against corrosion to buried metals, Terracon recommends that an experienced corrosion engineer be retained to design a suitable corrosion protection system for underground metal structures or components.

If corrosion of buried metal is critical, it should be protected using a non-corrosive backfill, wrapping, coating, sacrificial anodes, or a combination of these methods, as designed by a qualified corrosion engineer.

# **GENERAL COMMENTS**

Our analysis and opinions are based upon our understanding of the project, the geotechnical conditions in the area, and the data obtained from our site exploration. Natural variations will occur between exploration point locations or due to the modifying effects of construction or weather. The nature and extent of such variations may not become evident until during or after construction. Terracon should be retained as the Geotechnical Engineer, where noted in this report, to provide observation and testing services during pertinent construction phases. If variations appear, we can provide further evaluation and supplemental recommendations. If variations are noted in the absence of our observation and testing services on-site, we should be immediately notified so that we can provide evaluation and supplemental recommendations.

Our Scope of Services does not include either specifically or by implication any environmental or biological (e.g., mold, fungi, bacteria) assessment of the site or identification or prevention of pollutants, hazardous materials or conditions. If the owner is concerned about the potential for such contamination or pollution, other studies should be undertaken.

Our services and any correspondence or collaboration through this system are intended for the sole benefit and exclusive use of our client for specific application to the project discussed and are accomplished in accordance with generally accepted geotechnical engineering practices with no third-party beneficiaries intended. Any third-party access to services or correspondence is solely for information purposes to support the services provided by Terracon to our client. Reliance upon the services and any work product is limited to our client, and is not intended for third parties. Any use or reliance of the provided information by third parties is done solely at their own risk. No warranties, either express or implied, are intended or made.

Site characteristics as provided are for design purposes and not to estimate excavation cost. Any use of our report in that regard is done at the sole risk of the excavating cost estimator as there may be variations on the site that are not apparent in the data that could significantly impact excavation cost. Any parties charged with estimating excavation costs should seek their own site characterization for specific purposes to obtain the specific level of detail necessary for costing. Site safety, and cost estimating including, excavation support, and dewatering requirements/design are the responsibility of others. If changes in the nature, design, or location



NAVLC 115 Site Antelope Valley, Los Angeles County, California February 9, 2023 Terracon Project No. CB225192

of the project are planned, our conclusions and recommendations shall not be considered valid unless we review the changes and either verify or modify our conclusions in writing.

# ATTACHMENTS

Responsive Resourceful Reliable



# **EXPLORATION AND TESTING PROCEDURES**

#### **Field Exploration**

Terracon conducted seven (7) soil-testing borings. These borings were planned to the following extended depths below existing grades.

| Number of Borings     | Boring Depth (feet) <sup>1</sup> | Location                    |
|-----------------------|----------------------------------|-----------------------------|
| 8 (B-1 to B-8)        | 21 1⁄2 and 31 1⁄2                | Building Footprint          |
| 4(P-1 to P-4)         | 5 and 10                         | Proposed Infiltration areas |
| 1. Below ground surfa | ace.                             |                             |

**Boring Layout and Elevations:** Unless otherwise noted, Terracon personnel provided the boring layout. Coordinates were obtained with a handheld GPS unit (estimated horizontal accuracy of about  $\pm 10$  feet) and approximate elevations were obtained by interpolation from the Google Earth. If elevations and a more precise boring layout are desired, we recommend borings be surveyed following completion of fieldwork.

**Subsurface Exploration Procedures:** We advance the borings with a truck-mounted drill rig using hollow-stem augers. Both a standard penetration test (SPT) sampler (2-inch outer diameter and 1-3/8-inch inner diameter) and a modified California ring-lined sampler (3-inch outer diameter and 2-3/8-inch inner diameter) are utilized in our investigation. The penetration resistance is recorded on the boring logs as the number of hammer blows used to advance the sampler in 6-inch increments (or less if noted). The samplers are driven with an automatic hammer that drops a 140-pound weight 30 inches for each blow. After the required seating, samplers are advanced up to 18 inches, providing up to three sets of blowcounts at each sampling interval. The sampling depths, penetration distances, and other sampling information are recorded on the field boring logs. The recorded blows are raw numbers without any corrections for hammer type (automatic vs. manual cathead) or sampler size (ring sampler vs. SPT sampler). Relatively undisturbed and bulk samples of the soils encountered are placed in sealed containers and returned to the laboratory for testing and evaluation.

We observe and record groundwater levels during drilling and sampling. For safety purposes, all borings are backfilled with auger cuttings after their completion.

Our exploration team prepares field boring logs as part of the drilling operations. These field logs include visual classifications of the materials encountered during drilling and our interpretation of the subsurface conditions between samples. Final boring logs are prepared from the field logs. The final boring logs represent the Geotechnical Engineer's interpretation of the field logs and include modifications based on observations and tests of the samples in our laboratory.



#### Laboratory Testing

The project engineer reviewed the field data and assigned laboratory tests to understand the engineering properties of the various soil strata, as necessary, for this project. Procedural standards noted below are for reference to methodology in general. In some cases, variations to methods were applied because of local practice or professional judgment. Standards noted below include reference to other, related standards. Such references are not necessarily applicable to describe the specific test performed.

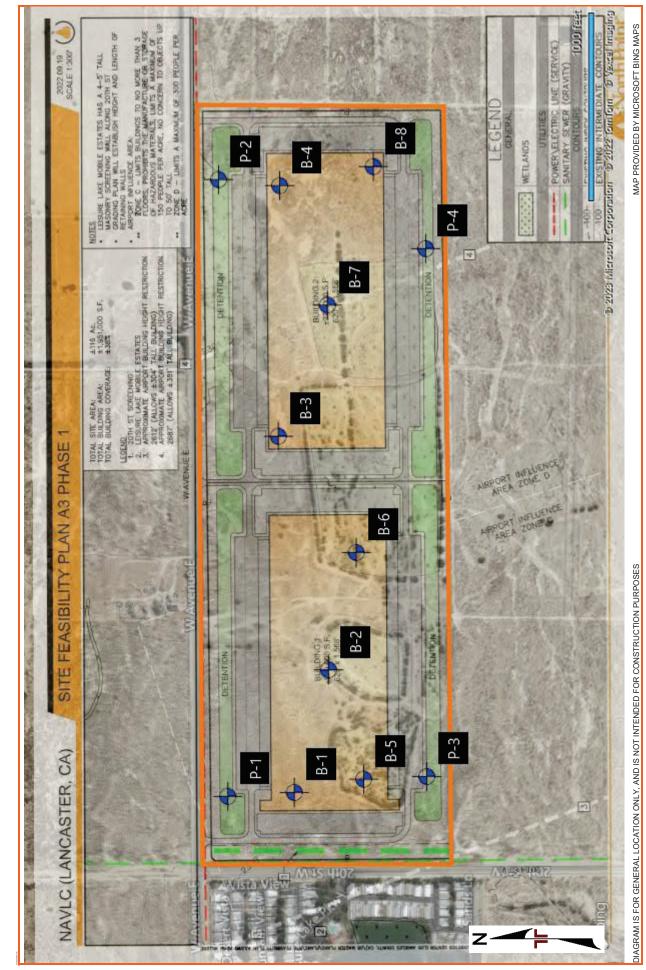
- Water (Moisture) Content of Soil by Mass
- Laboratory Determination of Density (Unit Weight) of Soil Specimens
- Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis
- Modified Proctor test
- Atterberg Limits
- Expansion Index
- Corrosivity suite test

The laboratory testing program often included examination of soil samples by an engineer. Based on the material's texture and plasticity, we described and classified the soil samples in accordance with the Unified Soil Classification System.

# SITE LOCATION

NAVLC 115 Site - Antelope Valley, Los Angeles County, California February 9, 2023 - Terracon Project No. CB225192






# **EXPLORATION PLAN**

NAVLC 115 Site - Antelope Valley, Los Angeles County, California February 9, 2023 - Terracon Project No. CB225192



ierracon



# **Boring Log No. B-1**



| Location: See Exploration Plan         Depth (Ft.)         CLAYEY SAND (SC), fine grained, tan/gray, dry, medium dense         5.0         SILTY CLAYEY SAND (SC-SM), fine grained, gray, dry, medium dense         7.0         SANDY LEAN CLAY (CL), fine grained, light brown, dry, very stiff         10.0         LEAN CLAY WITH SAND (CL), trace gravel, fine grained, brown, dry, stiff | - Depth (F.)                                                                                           | Water Level Observations                                        | Sample Type | 7-10-12<br>11-12-11<br>9-10-14 | 0.9 Water (%) | Dry Unit<br>Weight (pcf) | Atterberg<br>Limits<br>LL-PL-PI<br>25-21-4                      | Percent<br>33 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------|--------------------------------|---------------|--------------------------|-----------------------------------------------------------------|---------------|
| Depth (Ft.)         CLAYEY SAND (SC), fine grained, tan/gray, dry, medium dense         5.0         SILTY CLAYEY SAND (SC-SM), fine grained, gray, dry, medium dense         7.0         SANDY LEAN CLAY (CL), fine grained, light brown, dry, very stiff         10.0                                                                                                                        |                                                                                                        | > 0<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |             | 7-10-12<br>11-12-11            | 6.6           | 114                      | 25-21-4                                                         |               |
| SILTY CLAYEY SAND (SC-SM), fine grained, gray, dry, medium dense         7.0         SANDY LEAN CLAY (CL), fine grained, light brown, dry, very stiff         10.0                                                                                                                                                                                                                            |                                                                                                        | -                                                               |             | 11-12-11                       | 6.4           | 109                      | 25-21-4                                                         |               |
| SILTY CLAYEY SAND (SC-SM), fine grained, gray, dry, medium dense         7.0         SANDY LEAN CLAY (CL), fine grained, light brown, dry, very stiff         10.0                                                                                                                                                                                                                            |                                                                                                        | -                                                               |             |                                |               |                          | 25-21-4                                                         | 28            |
| 10.0                                                                                                                                                                                                                                                                                                                                                                                          | - 10-                                                                                                  | -                                                               |             | 9-10-14                        | 8.3           | 104                      |                                                                 |               |
|                                                                                                                                                                                                                                                                                                                                                                                               | - 10-<br>-<br>-<br>-                                                                                   | -                                                               |             |                                |               |                          |                                                                 | 53            |
|                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                      |                                                                 |             | 3-5-6                          | 14.1          | 112                      |                                                                 | 71            |
| 15.0<br>SANDY LEAN CLAY (CL), fine grained, light brown, dry, stiff                                                                                                                                                                                                                                                                                                                           | - 15-<br>-                                                                                             | -                                                               | X           | 4-6-6<br>N=12                  | _             |                          | 29-18-11                                                        | 66            |
| 20.0<br>SILTY CLAYEY SAND (SC-SM), fine to medium grained, light brown, dry, dense                                                                                                                                                                                                                                                                                                            | -<br>-<br>20-                                                                                          | -                                                               |             | 11-25-48                       |               |                          |                                                                 | 24            |
|                                                                                                                                                                                                                                                                                                                                                                                               | -<br>-<br>25-<br>-                                                                                     | -                                                               | $\times$    | 9-14-18<br>N=32                | _             |                          |                                                                 |               |
| 30.0<br>SANDY LEAN CLAY (CL), trace gravel, fine to medium grained, light<br>31.5<br>Basing Terminated at 31.5 Sect                                                                                                                                                                                                                                                                           | - 30-<br>- 30-                                                                                         | -                                                               | $\times$    | 4-4-4<br>N=8                   | _             |                          |                                                                 |               |
| Boring Terminated at 31.5 Feet                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        |                                                                 |             |                                |               |                          |                                                                 |               |
|                                                                                                                                                                                                                                                                                                                                                                                               | Vater Level Observations<br>None encountered while drilling                                            |                                                                 |             |                                |               |                          |                                                                 | e             |
| Hollow S<br>Abando                                                                                                                                                                                                                                                                                                                                                                            | Advancement Method<br>Hollow Stem Auger<br>Abandonment Method<br>Boring backfilled with auger cuttings |                                                                 |             |                                |               |                          | Driller<br>2R<br>Logged by<br>JB<br>Boring Starte<br>12-05-2022 | ed            |

Boring Completed 12-05-2022





|                      | Location: See Exploration Plan                                                   |                                                                              |                     |                                                                                 | 0            |                       |                      |                              | Atterberg                |                  |  |  |
|----------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------|---------------------------------------------------------------------------------|--------------|-----------------------|----------------------|------------------------------|--------------------------|------------------|--|--|
| Graphic Log          |                                                                                  |                                                                              | (Ft.)               | Water Level<br>Observations                                                     | Sample Type  | Field Test<br>Results | Water<br>Content (%) | Dry Unit<br>Weight (pcf)     | Limits                   | ent<br>ss        |  |  |
| aphic                |                                                                                  |                                                                              | Depth (Ft.)         | serva                                                                           | mple         | eld 1<br>Resu         | Wate                 | ory U<br>ight                | LL-PL-PI                 | Percent<br>Fines |  |  |
| Ű                    |                                                                                  |                                                                              | De                  | Na<br>Obs                                                                       | Sa           | Ξ-                    | Ō                    | We                           |                          | _                |  |  |
|                      | Depth (Ft.)<br>CLAYEY SAND (SC), fine grained, tan, medium dense                 |                                                                              |                     |                                                                                 |              |                       |                      |                              |                          |                  |  |  |
|                      |                                                                                  |                                                                              | _                   |                                                                                 |              |                       |                      |                              |                          |                  |  |  |
|                      |                                                                                  |                                                                              | _                   |                                                                                 | $\downarrow$ |                       |                      |                              |                          |                  |  |  |
|                      |                                                                                  |                                                                              |                     |                                                                                 | À            | 10-12-23              | 3.7                  | 113                          |                          | 35               |  |  |
|                      | 4.5<br><u>SANDY LEAN CLAY (CL)</u> , fine grained, tan/green, very stiff to hard |                                                                              | 5 —                 |                                                                                 |              |                       |                      |                              |                          |                  |  |  |
|                      |                                                                                  |                                                                              | _                   |                                                                                 | Х            | 5-15-13<br>N=28       |                      |                              |                          |                  |  |  |
|                      |                                                                                  |                                                                              | _                   |                                                                                 |              |                       |                      |                              |                          |                  |  |  |
|                      |                                                                                  |                                                                              | _                   |                                                                                 | М            | 15-23-29              | 7.4                  | 112                          |                          | 50               |  |  |
|                      |                                                                                  |                                                                              | _                   |                                                                                 |              |                       |                      |                              |                          |                  |  |  |
|                      | stiff                                                                            |                                                                              | 10-                 |                                                                                 | $\bigvee$    | 3-5-7<br>N=12         |                      |                              |                          |                  |  |  |
|                      |                                                                                  |                                                                              |                     |                                                                                 | $\square$    | N=12                  | -                    |                              |                          |                  |  |  |
|                      |                                                                                  |                                                                              |                     |                                                                                 |              |                       |                      |                              |                          |                  |  |  |
|                      |                                                                                  |                                                                              | _                   |                                                                                 |              |                       |                      |                              |                          |                  |  |  |
|                      | 15.0<br>CLAYEY SAND (SC), fine to medium grained, light brown, medium o          | dense                                                                        | 15-                 |                                                                                 |              |                       | -                    |                              |                          |                  |  |  |
|                      | <u>CEATET SAND (CC</u> ), nie to mediani granica, ngit brown, mediani (          | actioe                                                                       | _                   |                                                                                 | Ă            | 3-8-13                |                      |                              |                          |                  |  |  |
|                      |                                                                                  |                                                                              | _                   |                                                                                 |              |                       |                      |                              |                          |                  |  |  |
|                      |                                                                                  |                                                                              | _                   |                                                                                 |              |                       |                      |                              |                          |                  |  |  |
|                      |                                                                                  |                                                                              | 20                  |                                                                                 |              |                       |                      |                              |                          |                  |  |  |
|                      |                                                                                  |                                                                              | 20-                 |                                                                                 | $\bigvee$    | 5-6-7<br>N=13         |                      |                              |                          |                  |  |  |
| <u>///</u> /         | 21.5<br>Boring Terminated at 21.5 Feet                                           |                                                                              |                     |                                                                                 | $\square$    | N-15                  |                      |                              |                          |                  |  |  |
|                      |                                                                                  |                                                                              |                     |                                                                                 |              |                       |                      |                              |                          |                  |  |  |
|                      |                                                                                  |                                                                              |                     |                                                                                 |              |                       |                      |                              |                          |                  |  |  |
|                      |                                                                                  |                                                                              |                     |                                                                                 |              |                       |                      |                              |                          |                  |  |  |
|                      |                                                                                  |                                                                              |                     |                                                                                 |              |                       |                      |                              |                          |                  |  |  |
|                      |                                                                                  |                                                                              |                     |                                                                                 |              |                       |                      |                              |                          |                  |  |  |
|                      |                                                                                  |                                                                              |                     |                                                                                 |              |                       |                      |                              |                          |                  |  |  |
|                      |                                                                                  |                                                                              |                     |                                                                                 |              |                       |                      |                              |                          |                  |  |  |
|                      |                                                                                  |                                                                              |                     |                                                                                 |              |                       |                      |                              |                          |                  |  |  |
|                      |                                                                                  |                                                                              |                     |                                                                                 |              |                       |                      |                              |                          |                  |  |  |
|                      |                                                                                  |                                                                              |                     |                                                                                 |              |                       |                      |                              |                          |                  |  |  |
|                      |                                                                                  |                                                                              |                     |                                                                                 |              |                       |                      |                              |                          |                  |  |  |
|                      |                                                                                  |                                                                              |                     |                                                                                 |              |                       |                      |                              |                          |                  |  |  |
| used a               | nd additional data (If any).                                                     | Water Le                                                                     | vel Obs<br>ne encou |                                                                                 |              | e drilling            |                      |                              | Drill Rig<br>CME 75      |                  |  |  |
| See <mark>S</mark> l | pporting Information for explanation of symbols and abbreviations.               |                                                                              |                     |                                                                                 |              |                       |                      |                              | Hammer Type<br>Automatic | •                |  |  |
|                      |                                                                                  |                                                                              |                     |                                                                                 |              |                       |                      |                              | Driller                  |                  |  |  |
| Notes                |                                                                                  | Advancement Method<br>Hollow Stem Auger                                      |                     |                                                                                 |              |                       |                      |                              | 2R<br>Logged by          |                  |  |  |
|                      |                                                                                  |                                                                              |                     |                                                                                 |              |                       |                      |                              |                          | JB               |  |  |
|                      |                                                                                  | Abandonment Method<br>Boring backfilled with auger cuttings upon completion. |                     |                                                                                 |              |                       |                      | Boring Started<br>12-05-2022 |                          |                  |  |  |
| Borin                |                                                                                  |                                                                              |                     | Boring backfilled with auger cuttings upon completion. Boring Comple 12-05-2022 |              |                       |                      |                              |                          |                  |  |  |





| Location: See Exploration Plan                                                                                    |                    | - sc                        | be          | ŧ                     | (%)                  | cf)                      | Atterberg<br>Limits |                  |
|-------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------|-------------|-----------------------|----------------------|--------------------------|---------------------|------------------|
|                                                                                                                   | Depth (Ft.)        | Water Level<br>Observations | Sample Type | Field Test<br>Results | Water<br>Content (%) | Dry Unit<br>Weight (pcf) |                     | Percent<br>Fines |
|                                                                                                                   | Jepth              | Vater                       | Samp        | Field                 | Conte                | Dry<br>Veigł             | LL-PL-PI            | Per              |
| Depth (Ft.)                                                                                                       |                    | -0                          |             |                       |                      | >                        |                     |                  |
| SILTY SAND (SM), light brown, very dense                                                                          | _                  |                             |             |                       |                      |                          |                     |                  |
|                                                                                                                   | _                  | -                           |             |                       |                      |                          |                     |                  |
|                                                                                                                   | _                  | -                           |             | 12-26-50/5"           | 4.3                  | 106                      |                     |                  |
|                                                                                                                   | _                  | -                           |             | , -                   |                      |                          |                     |                  |
| 5.0<br>POORLY GRADED SAND WITH SILT (SP-SM), light brown/tan, medium                                              | 5 –                | -                           |             |                       |                      |                          |                     |                  |
| dense                                                                                                             | -                  | -                           |             | 7-8-27                | 11.8                 | 116                      |                     |                  |
| 7.5                                                                                                               | -                  |                             |             |                       |                      |                          |                     |                  |
| CLAYEY SAND (SC), trace gravel, fine grained, dark brown/gray, medium dense                                       | _                  |                             | М           | 9-16-20               |                      |                          |                     |                  |
|                                                                                                                   | 10                 |                             |             |                       | 1                    |                          |                     |                  |
|                                                                                                                   | 10-                |                             | Μ           | 9-13-23               |                      |                          | 33-18-15            | 30               |
|                                                                                                                   | _                  |                             |             |                       | -                    |                          |                     |                  |
|                                                                                                                   | _                  | -                           |             |                       |                      |                          |                     |                  |
|                                                                                                                   | _                  | -                           |             |                       |                      |                          |                     |                  |
| 515.0<br>SANDY LEAN CLAY (CL), fine grained, brown to gray, very stiff to hard                                    | 15-                | -                           |             | 15-16-19              |                      |                          |                     |                  |
| ,,                                                                                                                | _                  | -                           | $\bowtie$   | N=35                  |                      |                          |                     |                  |
|                                                                                                                   | -                  | -                           |             |                       |                      |                          |                     |                  |
|                                                                                                                   | -                  |                             |             |                       |                      |                          |                     |                  |
|                                                                                                                   | -                  | -                           |             |                       |                      |                          |                     |                  |
|                                                                                                                   | 20-                | -                           |             | 5-9-11                |                      |                          |                     | 65               |
|                                                                                                                   | _                  |                             | $\square$   |                       | -                    |                          |                     |                  |
|                                                                                                                   | _                  |                             |             |                       |                      |                          |                     |                  |
|                                                                                                                   | _                  |                             |             |                       |                      |                          |                     |                  |
| 25.0 POORLY GRADED SAND WITH SILT (SP-SM), fine grained, light brown,                                             | 25-                |                             |             |                       |                      |                          |                     |                  |
| medium dense                                                                                                      | _                  | -                           | X           | 11-14-15<br>N=29      |                      |                          |                     |                  |
|                                                                                                                   | -                  | -                           |             |                       |                      |                          |                     |                  |
|                                                                                                                   | -                  |                             |             |                       |                      |                          |                     |                  |
| 30.0                                                                                                              | -                  | -                           |             |                       |                      |                          |                     |                  |
| SANDY LEAN CLAY (CL), fine to medium grained, tan/light brown                                                     | 30-                | -                           |             |                       |                      |                          |                     |                  |
| 31.5<br>Boring Terminated at 31.5 Feet                                                                            | -                  | -                           |             |                       |                      |                          |                     |                  |
|                                                                                                                   |                    |                             |             |                       |                      |                          |                     |                  |
|                                                                                                                   |                    |                             |             |                       |                      |                          |                     |                  |
|                                                                                                                   |                    |                             |             |                       |                      |                          |                     |                  |
| Exploration and Testing Procedures for a description of field and laboratory procedures                           |                    |                             |             | drilling              |                      |                          | Drill Rig           |                  |
| a and additional data (If any). Nor Supporting Information for explanation of symbols and abbreviations.          | ie encol           | antereo                     | . wiiiie    | anning                |                      |                          | Hammer Type         | e                |
|                                                                                                                   |                    |                             |             |                       |                      |                          | Automatic           |                  |
|                                                                                                                   | Advancement Method |                             |             |                       |                      |                          |                     |                  |
| Hollow Ste                                                                                                        | Hollow Stem Auger  |                             |             |                       |                      |                          |                     |                  |
|                                                                                                                   |                    |                             |             |                       |                      |                          | Boring Starte       | d                |
| Abandon                                                                                                           | morth              | loth -                      |             |                       |                      |                          | 12-05-2022          |                  |
| d and additional data (If any). Nor Supporting Information for explanation of symbols and abbreviations. Advancer | ne encou<br>ment M | untered<br>ethod            | 1 while     | e drilling            |                      |                          | CME 75              | e                |

Boring Completed 12-05-2022





|                      | Location: See Exploration Plan                                                       |                       |                                                     |                                         |             |                       | _                    | _                        | Atterberg                    |                                |  |  |
|----------------------|--------------------------------------------------------------------------------------|-----------------------|-----------------------------------------------------|-----------------------------------------|-------------|-----------------------|----------------------|--------------------------|------------------------------|--------------------------------|--|--|
| Graphic Log          |                                                                                      | í                     | Et.)                                                | Water Level<br>Observations             | Sample Type | est<br>Its            | Water<br>Content (%) | Dry Unit<br>Weight (pcf) | Limits                       | s it                           |  |  |
| phic                 |                                                                                      |                       | Depth (Ft.)                                         | ter Le                                  | nple        | Field Test<br>Results | Wate                 | ght<br>ght               |                              | Percent<br>Fines               |  |  |
| Gra                  |                                                                                      |                       | Dep                                                 | Wat<br>Obsi                             | San         | ын<br>В               | Con                  | Vei<br>Vei               | LL-PL-PI                     | _                              |  |  |
|                      | Depth (Ft.)<br>CLAYEY SAND (SC), fine grained, tan                                   |                       |                                                     |                                         |             |                       |                      |                          |                              |                                |  |  |
|                      |                                                                                      |                       | _                                                   |                                         |             |                       |                      |                          |                              |                                |  |  |
|                      | 2.5                                                                                  |                       | _                                                   |                                         |             |                       |                      |                          |                              |                                |  |  |
|                      | LEAN CLAY WITH SAND (CL), fine grained, brown, very stiff                            |                       | _                                                   |                                         | М           | 5-10-24               | 7.8                  | 111                      |                              |                                |  |  |
|                      |                                                                                      |                       | _                                                   |                                         |             |                       |                      |                          |                              |                                |  |  |
|                      | 5.0<br>POORLY GRADED SAND WITH SILT (SP-SM), fine to medium grai                     | ined,                 | 5 –                                                 |                                         |             | 11-10-9               |                      |                          |                              |                                |  |  |
|                      | light brown, medium dense                                                            |                       | _                                                   |                                         | riangle     | N=19                  |                      |                          |                              |                                |  |  |
|                      |                                                                                      |                       | _                                                   |                                         |             |                       |                      |                          |                              |                                |  |  |
|                      |                                                                                      |                       | _                                                   |                                         | Х           | 8-11-11               | 2.7                  |                          |                              |                                |  |  |
|                      | 10.0                                                                                 |                       | _                                                   |                                         |             |                       |                      |                          |                              |                                |  |  |
|                      | SANDY LEAN CLAY (CL), fine to medium grained, tan, stiff                             | 1                     | LO-                                                 |                                         | $\bigvee$   | 7-7-7                 |                      |                          |                              | 51                             |  |  |
|                      |                                                                                      |                       | _                                                   |                                         | $\land$     | N=14                  |                      |                          |                              |                                |  |  |
|                      |                                                                                      |                       |                                                     |                                         |             |                       |                      |                          |                              |                                |  |  |
|                      |                                                                                      |                       |                                                     |                                         |             |                       |                      |                          |                              |                                |  |  |
|                      | 15.0                                                                                 | 1                     | 15-                                                 |                                         |             |                       |                      |                          |                              |                                |  |  |
|                      | POORLY GRADED SAND WITH SILT (SP-SM), medium to coarse of<br>light brown/tan, dense  | grained, <sup>1</sup> |                                                     |                                         | М           | 22-30-33              |                      |                          |                              |                                |  |  |
|                      |                                                                                      |                       | _                                                   |                                         |             |                       |                      |                          |                              |                                |  |  |
|                      |                                                                                      |                       | _                                                   |                                         |             |                       |                      |                          |                              |                                |  |  |
|                      |                                                                                      |                       | _                                                   |                                         |             |                       |                      |                          |                              |                                |  |  |
|                      | 20.0                                                                                 | 2                     | 20-                                                 |                                         |             |                       |                      |                          |                              |                                |  |  |
|                      | LEAN CLAY WITH SAND (CL), light brown, medium stiff 21.5                             |                       | _                                                   |                                         | Х           | 3-4-3<br>N=7          |                      |                          |                              |                                |  |  |
|                      | Boring Terminated at 21.5 Feet                                                       |                       |                                                     |                                         |             |                       |                      |                          |                              |                                |  |  |
|                      |                                                                                      |                       |                                                     |                                         |             |                       |                      |                          |                              |                                |  |  |
|                      |                                                                                      |                       |                                                     |                                         |             |                       |                      |                          |                              |                                |  |  |
|                      |                                                                                      |                       |                                                     |                                         |             |                       |                      |                          |                              |                                |  |  |
|                      |                                                                                      |                       |                                                     |                                         |             |                       |                      |                          |                              |                                |  |  |
|                      |                                                                                      |                       |                                                     |                                         |             |                       |                      |                          |                              |                                |  |  |
|                      |                                                                                      |                       |                                                     |                                         |             |                       |                      |                          |                              |                                |  |  |
|                      |                                                                                      |                       |                                                     |                                         |             |                       |                      |                          |                              |                                |  |  |
|                      |                                                                                      |                       |                                                     |                                         |             |                       |                      |                          |                              |                                |  |  |
|                      |                                                                                      |                       |                                                     |                                         |             |                       |                      |                          |                              |                                |  |  |
|                      |                                                                                      |                       |                                                     |                                         |             |                       |                      |                          |                              |                                |  |  |
|                      |                                                                                      |                       |                                                     |                                         |             |                       |                      |                          |                              |                                |  |  |
|                      |                                                                                      |                       |                                                     |                                         |             |                       |                      |                          |                              |                                |  |  |
| See Ex               | plantian and Tacting Dracedures for a description of field and laboratory procedures | Water Level           | l Obs                                               | ervati                                  | ions        |                       |                      |                          | Drill Big                    |                                |  |  |
| used a               | nd additional data (If any).                                                         |                       |                                                     |                                         |             | e drilling            |                      |                          | Drill Rig<br>CME 75          |                                |  |  |
| See <mark>S</mark> u | pporting Information for explanation of symbols and abbreviations.                   |                       |                                                     |                                         |             |                       |                      |                          | Hammer Type<br>Automatic     | 3                              |  |  |
|                      |                                                                                      |                       |                                                     |                                         |             |                       |                      |                          | Driller<br>2R                |                                |  |  |
| Notes                |                                                                                      |                       |                                                     | Advancement Method<br>Hollow Stem Auger |             |                       |                      |                          |                              |                                |  |  |
|                      |                                                                                      |                       |                                                     |                                         |             |                       |                      |                          |                              | Logged by<br>JB                |  |  |
|                      |                                                                                      | Abandonment Method    |                                                     |                                         |             |                       |                      |                          | Boring Started<br>12-02-2022 |                                |  |  |
|                      |                                                                                      | Boring backfil        | ing backfilled with auger cuttings upon completion. |                                         |             |                       |                      |                          |                              | Boring Completed<br>12-02-2022 |  |  |





|                                                                                                     |                                                                              | -                           |             |                       |                      |                          |                                                                      | 1                |  |  |
|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------|-------------|-----------------------|----------------------|--------------------------|----------------------------------------------------------------------|------------------|--|--|
| Location: See Exploration Plan                                                                      | Depth (Ft.)                                                                  | Water Level<br>Observations | Sample Type | Field Test<br>Results | Water<br>Content (%) | Dry Unit<br>Weight (pcf) | Atterberg<br>Limits<br>LL-PL-PI                                      | Percent<br>Fines |  |  |
| Depth (Ft.) SILTY SAND (SM), fine grained, tan                                                      | -                                                                            |                             |             |                       |                      |                          |                                                                      |                  |  |  |
| 2.5 POORLY GRADED SAND WITH SILT (SP-SM), fine to medium grained,<br>light brown, medium dense      |                                                                              | -                           |             | 9-9-12                | 1.0                  |                          |                                                                      |                  |  |  |
|                                                                                                     | 5 -                                                                          | -                           | X           | 17-16-23              | 1.1                  |                          |                                                                      |                  |  |  |
| dense                                                                                               | -                                                                            | -                           | X           | 24-44-48              | -                    |                          |                                                                      |                  |  |  |
|                                                                                                     | 10-                                                                          | -                           | X           | 10-11-12              | -                    |                          |                                                                      |                  |  |  |
| 15.0                                                                                                | -                                                                            | -                           |             |                       |                      |                          |                                                                      |                  |  |  |
| SANDY LEAN CLAY (CL), fine to medium grained, light brown, very stiff                               | - 15-                                                                        | -                           | X           | 7-9-14<br>N=23        | -                    |                          |                                                                      | 63               |  |  |
| 20.0                                                                                                | -<br>-<br>- 20-                                                              | -                           |             |                       |                      |                          |                                                                      |                  |  |  |
| <b>POORLY GRADED SAND WITH SILT (SP-SM)</b> , fine to medium grained, tan/light brown, medium dense | -                                                                            | -                           | X           | 10-20-30              | _                    |                          |                                                                      |                  |  |  |
| 25.0                                                                                                | - 25-                                                                        | -                           |             | 6.0.10                | _                    |                          |                                                                      |                  |  |  |
|                                                                                                     | -                                                                            |                             | X           | 6-8-10<br>N=18        | -                    |                          |                                                                      |                  |  |  |
| 30.0<br>POORLY GRADED SAND WITH SILT (SP-SM), medium to coarse grained                              | -<br>1, 30-                                                                  | -                           |             | 8-11-17               | _                    |                          |                                                                      |                  |  |  |
| Boring Terminated at 31.5 Feet                                                                      |                                                                              |                             | igtarrow    | N=28                  |                      |                          |                                                                      |                  |  |  |
|                                                                                                     |                                                                              |                             |             |                       |                      |                          |                                                                      |                  |  |  |
|                                                                                                     | Level Ob<br>8' observ                                                        |                             |             | ing                   | <u> </u>             |                          | Drill Rig<br>CME 75<br>Hammer Typ<br>Automatic                       | e                |  |  |
|                                                                                                     | dvancement Method<br>ollow Stem Auger                                        |                             |             |                       |                      |                          | Driller<br>2R<br>Logged by                                           |                  |  |  |
|                                                                                                     | Abandonment Method<br>Boring backfilled with auger cuttings upon completion. |                             |             |                       |                      |                          | JB<br>Boring Started<br>12-05-2022<br>Boring Completed<br>12-05-2022 |                  |  |  |

Boring Completed 12-05-2022





|             | Location: See Exploration Plan                                                                              |                                         |                    |                                 | 0                 |                       | $\sim$               |                          | Atterberg                  |                  |  |
|-------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------|---------------------------------|-------------------|-----------------------|----------------------|--------------------------|----------------------------|------------------|--|
| Graphic Log |                                                                                                             |                                         | Ft.)               | Water Level<br>Observations     | Sample Type       | Field Test<br>Results | Water<br>Content (%) | Dry Unit<br>Weight (pcf) | Limits                     | is tr            |  |
| phic        |                                                                                                             |                                         | Depth (Ft.)        | ter L<br>ervat                  | nple              | eld 7<br>{esu         | Wati                 | ry U<br>ght              |                            | Percent<br>Fines |  |
| Gra         |                                                                                                             |                                         | Dep                | Wat<br>Obsi                     | San               | Ë                     | Con                  | D<br>Wei                 | LL-PL-PI                   |                  |  |
|             | Depth (Ft.)                                                                                                 |                                         |                    |                                 |                   |                       |                      |                          |                            |                  |  |
|             | SILTY SAND (SM), fine grained, light brown/tan, medium dense                                                |                                         | _                  |                                 |                   |                       |                      |                          |                            |                  |  |
|             |                                                                                                             |                                         | _                  |                                 |                   |                       |                      |                          |                            |                  |  |
|             |                                                                                                             |                                         | _                  |                                 | $\mathbf{\nabla}$ | 0.10.10               | 1.2                  | 07                       |                            |                  |  |
|             |                                                                                                             |                                         | _                  |                                 | À                 | 9-12-13               | 1.3                  | 87                       |                            |                  |  |
|             | 5.0                                                                                                         |                                         | 5-                 |                                 |                   |                       |                      |                          |                            |                  |  |
|             | POORLY GRADED SAND WITH SILT (SP-SM), fine to medium gra<br>light brown, medium dense                       | ained,                                  | <u> </u>           |                                 | $\times$          | 4-6-8<br>N=14         |                      |                          |                            |                  |  |
|             |                                                                                                             |                                         | _                  |                                 | $ \rightarrow $   |                       | -                    |                          |                            |                  |  |
|             | 8.0                                                                                                         |                                         | _                  |                                 | $\overline{}$     |                       |                      |                          |                            |                  |  |
|             | CLAYEY SAND (SC), fine grained, tan/gray, medium dense                                                      |                                         | _                  |                                 | À                 | 5-15-20               | 6.4                  | 97                       |                            |                  |  |
|             |                                                                                                             |                                         | 10-                |                                 |                   |                       |                      |                          |                            |                  |  |
|             |                                                                                                             |                                         | 10                 |                                 | $\mathbb{N}$      | 9-11-10<br>N=21       |                      |                          |                            |                  |  |
|             |                                                                                                             |                                         | _                  |                                 |                   | N=21                  | -                    |                          |                            |                  |  |
|             |                                                                                                             |                                         | _                  |                                 |                   |                       |                      |                          |                            |                  |  |
|             |                                                                                                             |                                         | _                  |                                 |                   |                       |                      |                          |                            |                  |  |
|             | 15.0                                                                                                        |                                         | -                  |                                 |                   |                       |                      |                          |                            |                  |  |
|             | LEAN CLAY WITH SAND (CL), fine grained, dark gray/gray, very si                                             | tiff                                    | 15-                |                                 | $\mathbf{\nabla}$ | 8-10-19               | 1                    |                          |                            | 77               |  |
|             |                                                                                                             |                                         | _                  |                                 |                   | 0 10 19               | -                    |                          |                            |                  |  |
|             |                                                                                                             |                                         | _                  |                                 |                   |                       |                      |                          |                            |                  |  |
|             |                                                                                                             |                                         | _                  |                                 |                   |                       |                      |                          |                            |                  |  |
|             | 19.5                                                                                                        |                                         | _                  |                                 |                   |                       |                      |                          |                            |                  |  |
|             | CLAYEY SAND (SC), fine grained, tan/light brown, dense                                                      |                                         | 20-                |                                 |                   | 8-15-16               | 1                    |                          |                            |                  |  |
|             | 21.5                                                                                                        |                                         | _                  |                                 | riangle           | N=31                  |                      |                          |                            |                  |  |
|             | Boring Terminated at 21.5 Feet                                                                              |                                         |                    |                                 |                   |                       |                      |                          |                            |                  |  |
|             |                                                                                                             |                                         |                    |                                 |                   |                       |                      |                          |                            |                  |  |
|             |                                                                                                             |                                         |                    |                                 |                   |                       |                      |                          |                            |                  |  |
|             |                                                                                                             |                                         |                    |                                 |                   |                       |                      |                          |                            |                  |  |
|             |                                                                                                             |                                         |                    |                                 |                   |                       |                      |                          |                            |                  |  |
|             |                                                                                                             |                                         |                    |                                 |                   |                       |                      |                          |                            |                  |  |
|             |                                                                                                             |                                         |                    |                                 |                   |                       |                      |                          |                            |                  |  |
|             |                                                                                                             |                                         |                    |                                 |                   |                       |                      |                          |                            |                  |  |
|             |                                                                                                             |                                         |                    |                                 |                   |                       |                      |                          |                            |                  |  |
|             |                                                                                                             |                                         |                    |                                 |                   |                       |                      |                          |                            |                  |  |
|             |                                                                                                             |                                         |                    |                                 |                   |                       |                      |                          |                            |                  |  |
|             |                                                                                                             |                                         |                    |                                 |                   |                       |                      |                          |                            |                  |  |
|             |                                                                                                             |                                         |                    |                                 |                   |                       |                      |                          |                            |                  |  |
|             |                                                                                                             |                                         |                    |                                 |                   |                       |                      |                          |                            |                  |  |
| See Ex      | ploration and Testing Procedures for a description of field and laboratory procedures                       | Water Lev                               |                    |                                 |                   | a duillia a           |                      |                          | Drill Rig<br>CME 75        |                  |  |
|             | used and additional data (If any). See Supporting Information for explanation of symbols and abbreviations. |                                         |                    | None encountered while drilling |                   |                       |                      |                          |                            |                  |  |
|             |                                                                                                             |                                         |                    |                                 |                   |                       |                      |                          | Hammer Type<br>Automatic   | 2                |  |
|             |                                                                                                             |                                         |                    |                                 |                   |                       |                      |                          |                            |                  |  |
| Notes       |                                                                                                             | Advancement Method<br>Hollow Stem Auger |                    |                                 |                   |                       |                      |                          | 2R<br>Logged by            |                  |  |
|             |                                                                                                             |                                         |                    |                                 |                   |                       |                      |                          | JB<br>Boring Started       |                  |  |
| Abando      |                                                                                                             |                                         | Abandonment Method |                                 |                   |                       |                      |                          |                            | d                |  |
|             |                                                                                                             |                                         | kfilled w          | vith au                         | ger cu            | uttings upon comple   | tion.                |                          | Boring Compl<br>12-05-2022 | eted             |  |
|             |                                                                                                             |                                         |                    |                                 |                   |                       |                      |                          | 12-05-2022                 |                  |  |

# **Boring Log No. B-7**



|                                                                                                                                                                                                            | Boring Log                                                                                     | NO. B                                                                        | -/                          |             |                       |                      |                          |                                                           |                                |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------|-------------|-----------------------|----------------------|--------------------------|-----------------------------------------------------------|--------------------------------|--|--|
| Graphic Log                                                                                                                                                                                                | Location: See Exploration Plan                                                                 | Depth (Ft.)                                                                  | Water Level<br>Observations | Sample Type | Field Test<br>Results | Water<br>Content (%) | Dry Unit<br>Weight (pcf) | Atterberg<br>Limits<br>LL-PL-PI                           | Percent                        |  |  |
|                                                                                                                                                                                                            | Depth (Ft.)<br>SANDY LEAN CLAY (CL), fine to medium grained, tan, very stiff                   |                                                                              | -                           |             |                       |                      |                          |                                                           | 50                             |  |  |
|                                                                                                                                                                                                            |                                                                                                |                                                                              |                             | X           | 11-18-26              | 6.2                  | 101                      |                                                           |                                |  |  |
|                                                                                                                                                                                                            |                                                                                                | 5-                                                                           | _                           |             | 8-17-29               | 7.2                  | 109                      |                                                           | 43                             |  |  |
|                                                                                                                                                                                                            | 7.5<br>LEAN CLAY WITH SAND (CL), fine grained, tan/dark green, very sti                        | ff                                                                           | -                           |             | 12-18-21              | 7.6                  | 116                      |                                                           |                                |  |  |
|                                                                                                                                                                                                            | 10.0<br>POORLY GRADED SAND WITH SILT (SP-SM), medium to coarse g<br>light brown, medium dense  | rained, 10                                                                   | _                           | X           | 12-28-26              | _                    |                          |                                                           |                                |  |  |
|                                                                                                                                                                                                            |                                                                                                | 15                                                                           | _                           |             | 10-9-9                |                      |                          |                                                           |                                |  |  |
|                                                                                                                                                                                                            |                                                                                                |                                                                              | _                           | $\wedge$    | N=18                  | _                    |                          |                                                           |                                |  |  |
|                                                                                                                                                                                                            | 20.0<br>SANDY LEAN CLAY (CL), fine grained, tan, very stiff                                    | 20                                                                           | _                           |             | 7-15-25               | _                    |                          |                                                           | 66                             |  |  |
|                                                                                                                                                                                                            | 25.0<br>POORLY GRADED SAND WITH SILT (SP-SM), fine to medium grai<br>light brown, medium dense | ned, 25                                                                      | _                           | X           | 9-12-14<br>N=26       | _                    |                          |                                                           |                                |  |  |
|                                                                                                                                                                                                            | 30.0<br>CLAYEY SAND (SC), tan/light brown, medium dense<br>31.5                                | 30                                                                           | _                           | $\times$    | 10-11-11<br>N=22      | _                    |                          |                                                           |                                |  |  |
| <u></u>                                                                                                                                                                                                    | Boring Terminated at 31.5 Feet                                                                 |                                                                              |                             |             |                       |                      |                          |                                                           |                                |  |  |
| See Exploration and Testing Procedures for a description of field and laboratory procedures used and additional data (If any).<br>See Supporting Information for explanation of symbols and abbreviations. |                                                                                                |                                                                              |                             |             | e drilling            |                      |                          | Drill Rig<br>CME 75<br>Hammer Typ<br>Automatic<br>Driller | e                              |  |  |
| Notes Advan<br>Hollow                                                                                                                                                                                      |                                                                                                |                                                                              |                             |             |                       |                      |                          | 2R<br>Logged by<br>JB<br>Boring Started                   |                                |  |  |
|                                                                                                                                                                                                            |                                                                                                | Abandonment Method<br>Boring backfilled with auger cuttings upon completion. |                             |             |                       |                      |                          |                                                           | 12-02-2022<br>Boring Completed |  |  |

Boring Completed





| 60.         | Location: See Exploration Plan                                                                                     |             | :.)         | el<br>ins                                                                                                        | ype                                     | s, st                 | (%)                  | it<br>ocf)               | Atterberg<br>Limits                 | L L              |  |
|-------------|--------------------------------------------------------------------------------------------------------------------|-------------|-------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------|----------------------|--------------------------|-------------------------------------|------------------|--|
| Graphic Log |                                                                                                                    |             | Depth (Ft.) | Water Level<br>Observations                                                                                      | Sample Type                             | Field Test<br>Results | Water<br>Content (%) | Dry Unit<br>Weight (pcf) | LL-PL-PI                            | Percent<br>Fines |  |
|             | Depth (Ft.)<br>CLAYEY SAND (SC), brown/light brown, medium dense                                                   |             |             |                                                                                                                  | Т                                       |                       |                      |                          |                                     |                  |  |
|             | 2.5                                                                                                                |             |             |                                                                                                                  |                                         |                       |                      |                          |                                     |                  |  |
|             | POORLY GRADED SAND WITH SILT (SP-SM), brown, medium de                                                             | nse         | _           |                                                                                                                  | X                                       | 8-15-21               |                      |                          |                                     |                  |  |
|             |                                                                                                                    |             | 5-          |                                                                                                                  |                                         | 7.0.15                |                      |                          |                                     |                  |  |
|             |                                                                                                                    |             | -           |                                                                                                                  | Д                                       | 7-9-15<br>N=24        | -                    |                          |                                     | 10               |  |
|             | 7.5<br>LEAN CLAY WITH SAND (CL), tan/light green, very stiff, (oxidized observed in sample)                        | grains      | _           |                                                                                                                  | X                                       | 10-16-22              |                      |                          |                                     |                  |  |
|             | 10.0                                                                                                               |             | _<br>LO-    |                                                                                                                  |                                         |                       |                      |                          |                                     |                  |  |
|             | CLAYEY SAND (SC), medium grained, tan/gray, medium dense                                                           | -           | _           |                                                                                                                  | X                                       | 6-11-14<br>N=25       | -                    |                          |                                     |                  |  |
|             |                                                                                                                    |             | _           |                                                                                                                  |                                         |                       |                      |                          |                                     |                  |  |
|             | 15.0                                                                                                               |             | _           |                                                                                                                  |                                         |                       |                      |                          |                                     |                  |  |
|             | SILTY SAND (SM), fine grained, gray, medium dense                                                                  | 1           | 15-<br>-    |                                                                                                                  | X                                       | 7-17-27               |                      |                          |                                     |                  |  |
|             |                                                                                                                    |             | -           | ĺ                                                                                                                |                                         |                       |                      |                          |                                     |                  |  |
|             |                                                                                                                    |             |             |                                                                                                                  |                                         |                       |                      |                          |                                     |                  |  |
|             | 20.0<br>POORLY GRADED SAND WITH SILT (SP-SM), fine to medium gra<br>light brown, medium dense<br>21.5              | ained, 2    | 20-         |                                                                                                                  | X                                       | 10-12-12              |                      |                          |                                     |                  |  |
|             | Boring Terminated at 21.5 Feet                                                                                     |             |             | _                                                                                                                |                                         |                       |                      |                          |                                     |                  |  |
|             |                                                                                                                    |             |             |                                                                                                                  |                                         |                       |                      |                          |                                     |                  |  |
|             |                                                                                                                    |             |             |                                                                                                                  |                                         |                       |                      |                          |                                     |                  |  |
|             |                                                                                                                    |             |             |                                                                                                                  |                                         |                       |                      |                          |                                     |                  |  |
|             |                                                                                                                    |             |             |                                                                                                                  |                                         |                       |                      |                          |                                     |                  |  |
|             |                                                                                                                    |             |             |                                                                                                                  |                                         |                       |                      |                          |                                     |                  |  |
|             |                                                                                                                    |             |             |                                                                                                                  |                                         |                       |                      |                          |                                     |                  |  |
|             |                                                                                                                    |             |             |                                                                                                                  |                                         |                       |                      |                          |                                     |                  |  |
|             |                                                                                                                    |             |             |                                                                                                                  |                                         |                       |                      |                          |                                     |                  |  |
| See Ex      | ploration and Testing Procedures for a description of field and laboratory procedures nd additional data (If any). | Water Level |             |                                                                                                                  |                                         | e drilling            |                      |                          | Drill Rig<br>CME 75                 |                  |  |
|             | See Supporting Information for explanation of symbols and abbreviations.                                           |             |             |                                                                                                                  |                                         | 2                     |                      |                          | Hammer Type<br>Automatic<br>Driller |                  |  |
| Notes       |                                                                                                                    |             |             |                                                                                                                  | Advancement Method<br>Hollow Stem Auger |                       |                      |                          |                                     |                  |  |
|             |                                                                                                                    |             |             |                                                                                                                  |                                         |                       |                      |                          | JB<br>Boring Started                |                  |  |
|             |                                                                                                                    |             |             | Abandonment Method 12-02-2022<br>Boring backfilled with auger cuttings upon completion. Boring Com<br>12-02-2022 |                                         |                       |                      |                          |                                     |                  |  |

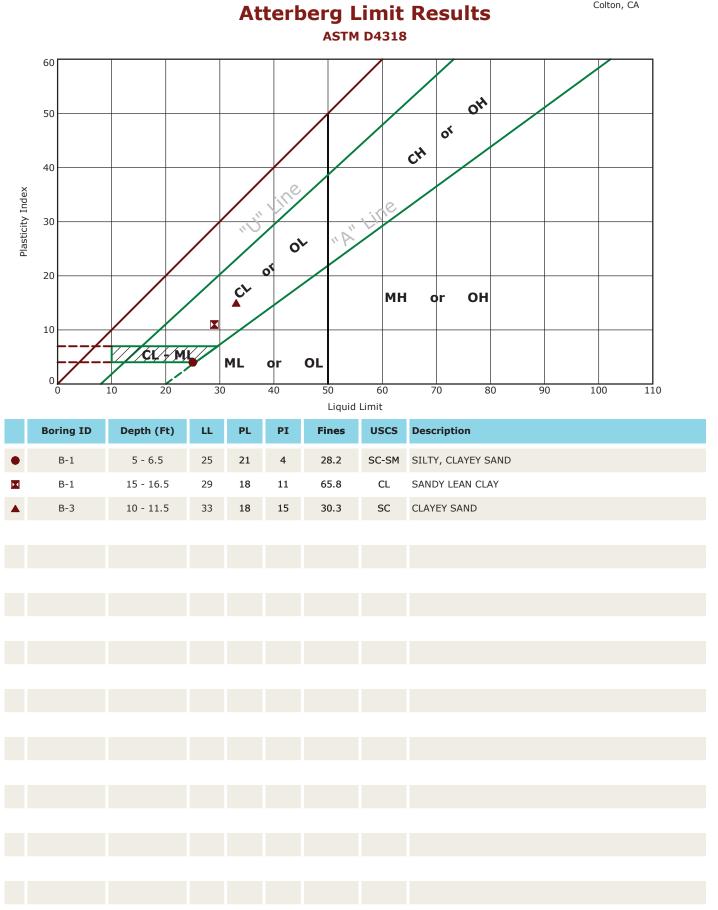


|                                                        |                                                                                                                    |                          |             |                             |             |                                          |                      |                          | Atterberg                   |                  |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------|-------------|-----------------------------|-------------|------------------------------------------|----------------------|--------------------------|-----------------------------|------------------|
| bo-                                                    | Location: See Exploration Plan                                                                                     |                          | ÷           | /el                         | ype         | s                                        | (%)                  | it<br>ocf)               | Atterberg<br>Limits         | L.               |
| Graphic Log                                            | Depth (Ft.)                                                                                                        |                          | Depth (Ft.) | Water Level<br>Observations | Sample Type | Field Test<br>Results                    | Water<br>Content (%) | Dry Unit<br>Weight (pcf) | LL-PL-PI                    | Percent<br>Fines |
|                                                        | SILTY SAND (SM), fine grained, brown                                                                               |                          |             |                             | Т           |                                          |                      |                          |                             |                  |
|                                                        | 5.0                                                                                                                |                          | _<br>_<br>_ |                             |             |                                          |                      |                          |                             | 38               |
|                                                        | Boring Terminated at 5 Feet                                                                                        |                          | 5 –         |                             |             |                                          |                      |                          |                             |                  |
|                                                        |                                                                                                                    |                          |             |                             |             |                                          |                      |                          |                             |                  |
|                                                        |                                                                                                                    |                          |             |                             |             |                                          |                      |                          |                             |                  |
| See Ex<br>used a                                       | ploration and Testing Procedures for a description of field and laboratory procedures nd additional data (If any). | Water Leve<br>None       |             |                             |             | e drilling                               |                      |                          | Drill Rig<br>CME 75         |                  |
|                                                        | pporting Information for explanation of symbols and abbreviations.                                                 |                          |             |                             |             |                                          |                      |                          | Hammer Type<br>Automatic    | •                |
|                                                        |                                                                                                                    |                          |             |                             |             |                                          |                      |                          | Driller                     |                  |
| Notes                                                  |                                                                                                                    | Advanceme<br>Hollow Stem |             |                             |             |                                          |                      |                          | 2R<br>Logged by<br>JB       |                  |
|                                                        |                                                                                                                    |                          |             |                             |             |                                          |                      |                          | Boring Starte<br>12-05-2022 | d                |
| Boring backfilled with auger cuttings upon completion. |                                                                                                                    |                          |             |                             |             | 12-05-2022<br>Boring Compl<br>12-05-2022 |                      |                          |                             |                  |



| Ď                                                                                                                                                                                                          | Location: See Exploration Plan       |                                                                              |                                         | _ v                         | e           |                       | (o)                  | f)                       | Atterberg<br>Limits                             |                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------|-----------------------------------------|-----------------------------|-------------|-----------------------|----------------------|--------------------------|-------------------------------------------------|------------------|
| Graphic Log                                                                                                                                                                                                | Depth (Ft.)                          |                                                                              | Depth (Ft.)                             | Water Level<br>Observations | Sample Type | Field Test<br>Results | Water<br>Content (%) | Dry Unit<br>Weight (pcf) | LL-PL-PI                                        | Percent<br>Fines |
|                                                                                                                                                                                                            | CLAYEY SAND (SC), fine grained, tan  |                                                                              | -                                       |                             |             |                       |                      |                          |                                                 |                  |
|                                                                                                                                                                                                            |                                      |                                                                              | 5                                       |                             |             |                       |                      |                          |                                                 |                  |
|                                                                                                                                                                                                            | 10.0<br>Boring Terminated at 10 Feet |                                                                              | 10-                                     |                             |             |                       |                      |                          |                                                 |                  |
|                                                                                                                                                                                                            |                                      |                                                                              |                                         |                             |             |                       |                      |                          |                                                 |                  |
|                                                                                                                                                                                                            |                                      |                                                                              |                                         |                             |             |                       |                      |                          |                                                 |                  |
|                                                                                                                                                                                                            |                                      |                                                                              |                                         |                             |             |                       |                      |                          |                                                 |                  |
|                                                                                                                                                                                                            |                                      |                                                                              |                                         |                             |             |                       |                      |                          |                                                 |                  |
| See Exploration and Testing Procedures for a description of field and laboratory procedures used and additional data (If any).<br>See Supporting Information for explanation of symbols and abbreviations. |                                      | Water Lev<br>None                                                            |                                         |                             |             | e drilling            |                      |                          | Drill Rig<br>CME 75<br>Hammer Type<br>Automatic | 2                |
| Notes                                                                                                                                                                                                      |                                      |                                                                              | Advancement Method<br>Hollow Stem Auger |                             |             |                       |                      |                          |                                                 |                  |
|                                                                                                                                                                                                            |                                      | Abandonment Method<br>Boring backfilled with auger cuttings upon completion. |                                         |                             |             |                       |                      |                          |                                                 | eted             |



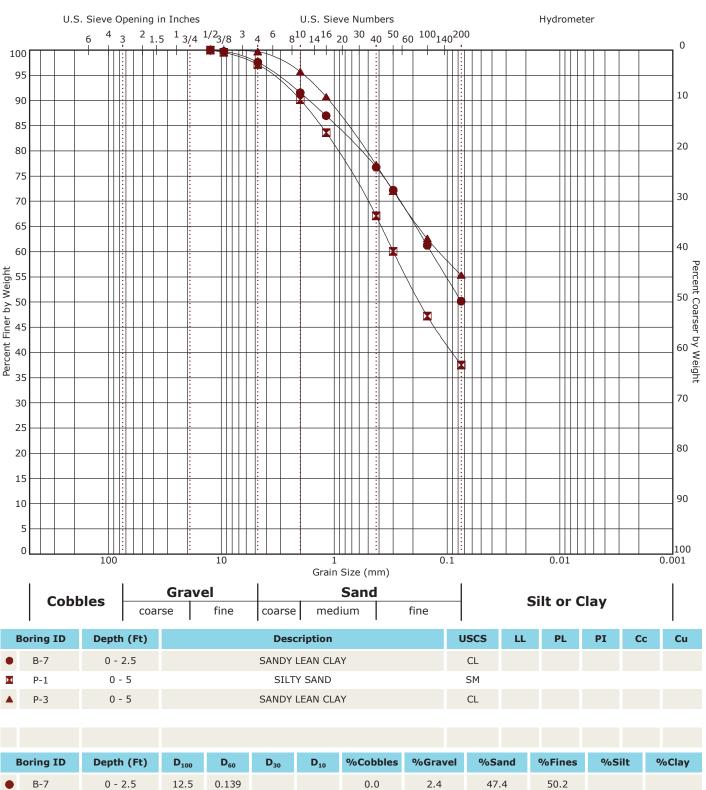

| D                                                                                                                                                                                                          | Location: See Exploration Plan               |                                                               |                                                        |                             | é           |                       | ()                   | f)                       | Atterberg<br>Limits                                        |                  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------|-----------------------------|-------------|-----------------------|----------------------|--------------------------|------------------------------------------------------------|------------------|--|
| Graphic Log                                                                                                                                                                                                | Depth (Ft.)                                  |                                                               | Depth (Ft.)                                            | Water Level<br>Observations | Sample Type | Field Test<br>Results | Water<br>Content (%) | Dry Unit<br>Weight (pcf) | LL-PL-PI                                                   | Percent<br>Fines |  |
|                                                                                                                                                                                                            | SANDY LEAN CLAY (CL), fine grained, tan      |                                                               | -<br>-<br>5-                                           |                             |             |                       |                      |                          |                                                            | 55               |  |
|                                                                                                                                                                                                            | SILTY SAND (SM), fine grained, brown<br>10.0 |                                                               | -<br>-<br>-<br>10-                                     |                             |             |                       |                      |                          |                                                            |                  |  |
|                                                                                                                                                                                                            | Boring Terminated at 10 Feet                 |                                                               | - 0                                                    |                             |             |                       |                      |                          |                                                            |                  |  |
|                                                                                                                                                                                                            |                                              |                                                               |                                                        |                             |             |                       |                      |                          |                                                            |                  |  |
|                                                                                                                                                                                                            |                                              |                                                               |                                                        |                             |             |                       |                      |                          |                                                            |                  |  |
|                                                                                                                                                                                                            |                                              |                                                               |                                                        |                             |             |                       |                      |                          |                                                            |                  |  |
|                                                                                                                                                                                                            |                                              |                                                               |                                                        |                             |             |                       |                      |                          |                                                            |                  |  |
|                                                                                                                                                                                                            |                                              |                                                               |                                                        |                             |             |                       |                      |                          |                                                            |                  |  |
| See Exploration and Testing Procedures for a description of field and laboratory procedures used and additional data (If any).<br>See Supporting Information for explanation of symbols and abbreviations. |                                              | Water Level Observations<br>None encountered while drilling   |                                                        |                             |             |                       |                      |                          | Drill Rig<br>CME 75<br>Hammer Type<br>Automatic<br>Driller |                  |  |
|                                                                                                                                                                                                            |                                              | Advancement Method<br>Hollow Stem Auger<br>Abandonment Method |                                                        |                             |             |                       |                      |                          | 2R<br>Logged by<br>JB<br>Boring Starter<br>12-01-2022      | d                |  |
|                                                                                                                                                                                                            |                                              |                                                               | Boring backfilled with auger cuttings upon completion. |                             |             |                       |                      |                          |                                                            | Boring Completed |  |



| σ                                                                                                                                                                                                          | Location: See Exploration Plan              |                                                                              | ~                              | _ <i>"</i>                  | e                   |                       | (0                   | f)                       | Atterberg<br>Limits          |                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------------------------|--------------------------------|-----------------------------|---------------------|-----------------------|----------------------|--------------------------|------------------------------|------------------|
| Graphic Log                                                                                                                                                                                                |                                             |                                                                              | Depth (Ft.)                    | Water Level<br>Observations | Sample Type         | Field Test<br>Results | Water<br>Content (%) | Dry Unit<br>Weight (pcf) | LIIIILS                      | Percent<br>Fines |
| Grapł                                                                                                                                                                                                      |                                             |                                                                              | Depth                          | Water                       | Samp                | Field<br>Rei          | W.<br>Conte          | Dry<br>Weigł             | LL-PL-PI                     | Per<br>Fi        |
|                                                                                                                                                                                                            | Depth (Ft.)                                 |                                                                              |                                | _                           | _                   |                       |                      |                          |                              |                  |
|                                                                                                                                                                                                            | SILTY SAND (SM), fine grained, llight brown |                                                                              | _                              |                             |                     |                       |                      |                          |                              |                  |
|                                                                                                                                                                                                            |                                             |                                                                              | _                              |                             |                     |                       |                      |                          |                              |                  |
|                                                                                                                                                                                                            |                                             |                                                                              | _                              |                             |                     |                       |                      |                          |                              |                  |
|                                                                                                                                                                                                            | 5.0                                         |                                                                              | _                              |                             |                     |                       |                      |                          |                              |                  |
|                                                                                                                                                                                                            | Boring Terminated at 5 Feet                 |                                                                              | 5 –                            |                             |                     |                       |                      |                          |                              |                  |
|                                                                                                                                                                                                            |                                             |                                                                              |                                |                             |                     |                       |                      |                          |                              |                  |
|                                                                                                                                                                                                            |                                             |                                                                              |                                |                             |                     |                       |                      |                          |                              |                  |
|                                                                                                                                                                                                            |                                             |                                                                              |                                |                             |                     |                       |                      |                          |                              |                  |
|                                                                                                                                                                                                            |                                             |                                                                              |                                |                             |                     |                       |                      |                          |                              |                  |
|                                                                                                                                                                                                            |                                             |                                                                              |                                |                             |                     |                       |                      |                          |                              |                  |
|                                                                                                                                                                                                            |                                             |                                                                              |                                |                             |                     |                       |                      |                          |                              |                  |
|                                                                                                                                                                                                            |                                             |                                                                              |                                |                             |                     |                       |                      |                          |                              |                  |
|                                                                                                                                                                                                            |                                             |                                                                              |                                |                             |                     |                       |                      |                          |                              |                  |
|                                                                                                                                                                                                            |                                             |                                                                              |                                |                             |                     |                       |                      |                          |                              |                  |
|                                                                                                                                                                                                            |                                             |                                                                              |                                |                             |                     |                       |                      |                          |                              |                  |
|                                                                                                                                                                                                            |                                             |                                                                              |                                |                             |                     |                       |                      |                          |                              |                  |
|                                                                                                                                                                                                            |                                             |                                                                              |                                |                             |                     |                       |                      |                          |                              |                  |
|                                                                                                                                                                                                            |                                             |                                                                              |                                |                             |                     |                       |                      |                          |                              |                  |
|                                                                                                                                                                                                            |                                             |                                                                              |                                |                             |                     |                       |                      |                          |                              |                  |
|                                                                                                                                                                                                            |                                             |                                                                              |                                |                             |                     |                       |                      |                          |                              |                  |
|                                                                                                                                                                                                            |                                             |                                                                              |                                |                             |                     |                       |                      |                          |                              |                  |
|                                                                                                                                                                                                            |                                             |                                                                              |                                |                             |                     |                       |                      |                          |                              |                  |
|                                                                                                                                                                                                            |                                             |                                                                              |                                |                             |                     |                       |                      |                          |                              |                  |
|                                                                                                                                                                                                            |                                             |                                                                              |                                |                             |                     |                       |                      |                          |                              |                  |
|                                                                                                                                                                                                            |                                             |                                                                              |                                |                             |                     |                       |                      |                          |                              |                  |
|                                                                                                                                                                                                            |                                             |                                                                              |                                |                             |                     |                       |                      |                          |                              |                  |
|                                                                                                                                                                                                            |                                             |                                                                              |                                |                             |                     |                       |                      |                          |                              |                  |
|                                                                                                                                                                                                            |                                             |                                                                              |                                |                             |                     |                       |                      |                          |                              |                  |
|                                                                                                                                                                                                            |                                             |                                                                              |                                |                             |                     |                       |                      |                          |                              |                  |
|                                                                                                                                                                                                            |                                             |                                                                              |                                |                             |                     |                       |                      |                          |                              |                  |
| See Exploration and Testing Procedures for a description of field and laboratory procedures used and additional data (If any).<br>See Supporting Information for explanation of symbols and abbreviations. |                                             | Water Lev<br>Nor                                                             | vel Obs<br>ne encou            |                             | Drill Rig<br>CME 75 |                       |                      |                          |                              |                  |
|                                                                                                                                                                                                            |                                             |                                                                              |                                |                             |                     |                       |                      |                          | Hammer Type<br>Automatic     |                  |
|                                                                                                                                                                                                            |                                             |                                                                              |                                |                             |                     |                       |                      |                          | Driller                      |                  |
| Notes                                                                                                                                                                                                      |                                             | Advancement Method<br>Hollow Stem Auger                                      |                                |                             |                     |                       |                      |                          | 2R<br>Logged by              |                  |
|                                                                                                                                                                                                            |                                             |                                                                              |                                |                             |                     |                       |                      |                          | JB                           |                  |
|                                                                                                                                                                                                            |                                             | Abandonment Method<br>Boring backfilled with auger cuttings upon completion. |                                |                             |                     |                       |                      |                          | Boring Started<br>12-01-2022 |                  |
|                                                                                                                                                                                                            |                                             |                                                                              | Boring Completed<br>12-02-2022 |                             |                     |                       |                      |                          |                              |                  |








Feasibility Study for NAVLC 115 SWC of W Ave E & Sierra Hwy Intersection | Antelope Valley, CA Terracon Project No. CB225192



# **Grain Size Distribution**

ASTM D422 / ASTM C136



0.0

0.0

2.8

0.3

59.6

44.3

Laboratory tests are not valid if separated from original report.

0 - 5

0 - 5

P-1

P-3

X

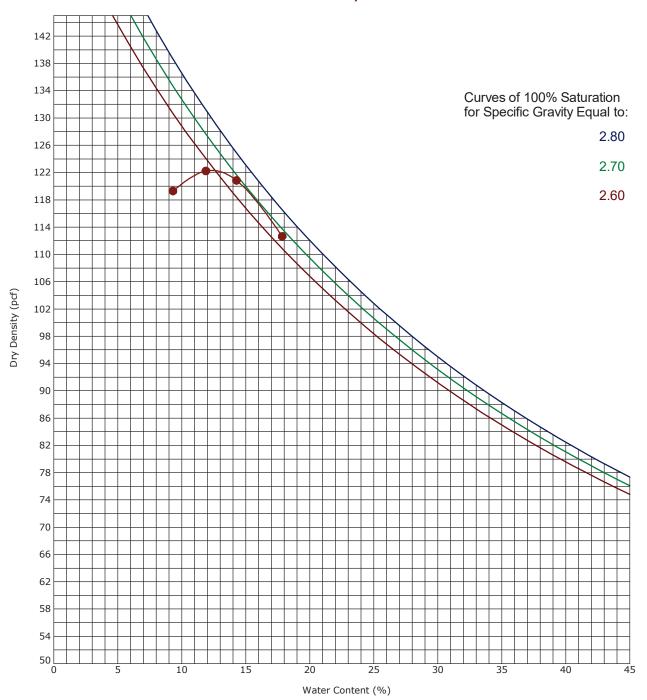
0.299

0.117

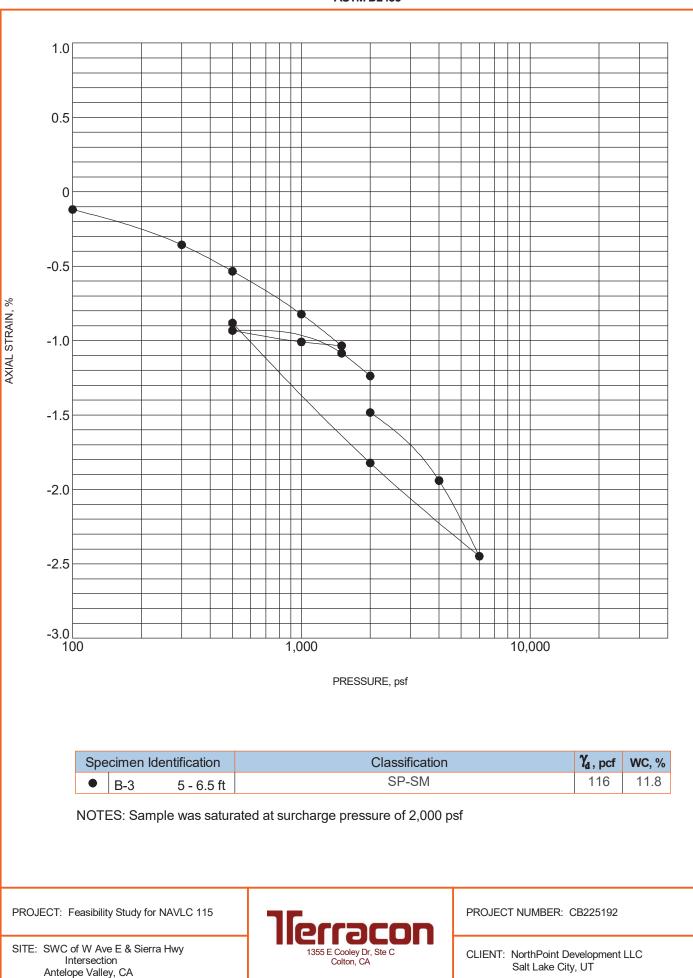
12.5

9.5

37.5


55.4

Feasibility Study for NAVLC 115 SWC of W Ave E & Sierra Hwy Intersection | Antelope Valley, CA Terracon Project No. CB225192




# **Moisture-Density Relationship**

ASTM D698/D1557



| B            | oring ID                 |    | Depth ( | Ft) | Description of Materials |                     |                              |                              |
|--------------|--------------------------|----|---------|-----|--------------------------|---------------------|------------------------------|------------------------------|
|              | B-7                      |    | 0 - 2.  | 5   |                          | CLAYEY SAND (SC)    |                              |                              |
| Fines<br>(%) | Fraction<br>>19mm size ( | %) | ш       | PL  | PI                       | Test Method         | Maximum Dry Density<br>(pcf) | Optimum Water Content<br>(%) |
| 50           | 50                       |    |         |     |                          | ASTM D1557 Method A | 122.3                        | 12.4                         |



LABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL REPORT. TC\_CONSOL\_STRAIN-USCS CB225192 FEASIBILITY STUDY GPU TERRACON\_DATATEMPLATE.GDT 2/9/23

750 Pilot Road, Suite F Las Vegas, Nevada 89119 (702) 597-9393



# Project

Feasibility Study for NAVLC 115

**Sample Submitted By:** Terracon (CB)

**Date Received:** 12/21/2022

Lab No.: 22-0844

| Results                                             | of Corre |
|-----------------------------------------------------|----------|
| Sample Number                                       | 1        |
| Sample Location                                     | B-2      |
| Sample Depth (ft.)                                  | 0.0-2.5  |
| pH Analysis, ASTM G 51                              | 8.55     |
| Water Soluble Sulfate (SO4), ASTM C<br>1580 (mg/kg) | 92       |
| Sulfides, AWWA 4500-S D, (mg/kg)                    | Nil      |
| Chlorides, ASTM D 512, (mg/kg)                      | 72       |
| Red-Ox, ASTM G 200, (mV)                            | +729     |
| Total Salts, AWWA 2540, (mg/kg)                     | 660      |
| As-Received Resistivity, ASTM G 57,<br>(ohm-cm)     | 31040    |
| Resistivity, ASTM G 57, (ohm-cm)                    | 1552     |
|                                                     |          |

N. Carp

Analyzed By:

Nathan Campo Engineering Technician II

The tests were performed in general accordance with applicable ASTM and AWWA test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials.

# Client

NorthPoint Development LLC

# SUPPORTING INFORMATION

# **Contents:**

General Notes Unified Soil Classification System

#### **GENERAL NOTES** DESCRIPTION OF SYMBOLS AND ABBREVIATIONS



| SAMPLING                                                                                       | WATER LEVEL                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FIELD TESTS                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Auger<br>Cuttings Modified<br>California<br>Ring<br>Sampler<br>Standard<br>Penetration<br>Test | Water Initially<br>Encountered         Water Level After a<br>Specified Period of Time         Water Level After<br>a Specified Period of Time         Cave In<br>Encountered         Water levels indicated on the soil boring logs are<br>the levels measured in the borehole at the times<br>indicated. Groundwater level variations will occur<br>over time. In low permeability soils, accurate<br>determination of groundwater levels is not possible | FIELD TESTS         N       Standard Penetration Test<br>Resistance (Blows/Ft.)         (HP)       Hand Penetrometer         (T)       Torvane         (DCP)       Dynamic Cone Penetrometer         UC       Unconfined Compressive<br>Strength         (PID)       Photo-Ionization Detector |
|                                                                                                | with short term water level observations.                                                                                                                                                                                                                                                                                                                                                                                                                   | (OVA) Organic Vapor Analyzer                                                                                                                                                                                                                                                                   |

#### **DESCRIPTIVE SOIL CLASSIFICATION**

Soil classification as noted on the soil boring logs is based Unified Soil Classification System. Where sufficient laboratory data exist to classify the soils consistent with ASTM D2487 "Classification of Soils for Engineering Purposes" this procedure is used. ASTM D2488 "Description and Identification of Soils (Visual-Manual Procedure)" is also used to classify the soils, particularly where insufficient laboratory data exist to classify the soils in accordance with ASTM D2487. In addition to USCS classification, coarse grained soils are classified on the basis of their in-place relative density, and fine-grained soils are classified on the basis of their consistency. See "Strength Terms" table below for details. The ASTM standards noted above are for reference to methodology in general. In some cases, variations to methods are applied as a result of local practice or professional judgment.

#### LOCATION AND ELEVATION NOTES

Exploration point locations as shown on the Exploration Plan and as noted on the soil boring logs in the form of Latitude and Longitude are approximate. See Exploration and Testing Procedures in the report for the methods used to locate the exploration points for this project. Surface elevation data annotated with +/- indicates that no actual topographical survey was conducted to confirm the surface elevation. Instead, the surface elevation was approximately determined from topographic maps of the area.

|                                                                                                     | STRENGTH TERMS      |                           |                                                                                                                                                                               |                                                 |                                                 |                           |
|-----------------------------------------------------------------------------------------------------|---------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|---------------------------|
| RELATIVE DEN                                                                                        | SITY OF COARSE-GRAI | NED SOILS                 |                                                                                                                                                                               | CONSISTENCY OF F                                | INE-GRAINED SOILS                               |                           |
| (More than 50% retained on No. 200 sieve.)<br>Density determined by Standard Penetration Resistance |                     |                           | (50% or more passing the No. 200 sieve.)<br>Consistency determined by laboratory shear strength testing, field visual-manual<br>procedures or standard penetration resistance |                                                 |                                                 | ial-manual                |
| Descriptive Term Standard Penetration Ring Sample<br>(Density) or N-Value Blows/Ft.<br>Blows/Ft.    |                     | Ring Sampler<br>Blows/Ft. | Descriptive Term<br>(Consistency)                                                                                                                                             | Unconfined<br>Compressive Strength<br>Qu, (tsf) | Standard Penetration or<br>N-Value<br>Blows/Ft. | Ring Sampler<br>Blows/Ft. |
| Very Loose                                                                                          | 0 - 3               | 0 - 6                     | Very Soft                                                                                                                                                                     | less than 0.25                                  | 0 - 1                                           | < 3                       |
| Loose                                                                                               | 4 - 9               | 7 - 18                    | Soft                                                                                                                                                                          | 0.25 to 0.50                                    | 2 - 4                                           | 3 - 4                     |
| Medium Dense                                                                                        | 10 - 29             | 19 - 58                   | Medium Stiff                                                                                                                                                                  | 0.50 to 1.00                                    | 4 - 8                                           | 5 - 9                     |
| Dense                                                                                               | 30 - 50             | 59 - 98                   | Stiff                                                                                                                                                                         | 1.00 to 2.00                                    | 8 - 15                                          | 10 - 18                   |
| Very Dense                                                                                          | > 50                | > 99                      | Very Stiff                                                                                                                                                                    | 2.00 to 4.00                                    | 15 - 30                                         | 19 - 42                   |
|                                                                                                     |                     |                           | Hard                                                                                                                                                                          | > 4.00                                          | > 30                                            | > 42                      |

#### **RELEVANCE OF SOIL BORING LOG**

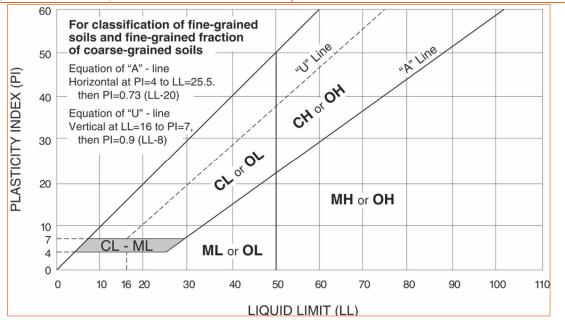
The soil boring logs contained within this document are intended for application to the project as described in this document. Use of these soil boring logs for any other purpose may not be appropriate.

# UNIFIED SOIL CLASSIFICATION SYSTEM

# llerracon **GeoReport**

|                                                                                        |                                                                 |                                  |                                                                            |                        | Soil Classification                |                                    |
|----------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------|----------------------------------------------------------------------------|------------------------|------------------------------------|------------------------------------|
| Criteria for Assign                                                                    | ing Group Symbols                                               | and Group Names                  | Using Laboratory                                                           | Tests A                | Group<br>Symbol                    | Group Name <sup>B</sup>            |
|                                                                                        |                                                                 | Clean Gravels:                   | $Cu \ge 4$ and $1 \le Cc \le 3^{E}$                                        |                        | GW                                 | Well-graded gravel <b>F</b>        |
|                                                                                        | <b>Gravels:</b><br>More than 50% of                             | Less than 5% fines <sup>C</sup>  | Cu < 4 and/or [Cc<1 or Cc>3.0]                                             |                        | GP                                 | Poorly graded gravel <b>F</b>      |
|                                                                                        | coarse fraction<br>retained on No. 4 sieve                      | Gravels with Fines:              | Fines classify as ML or N                                                  | ЛН                     | GM                                 | Silty gravel <b>F, G, H</b>        |
| Coarse-Grained Soils:                                                                  |                                                                 | More than 12% fines <sup>C</sup> | Fines classify as CL or C                                                  | Ή                      | GC                                 | Clayey gravel <b>F, G, H</b>       |
| More than 50% retained on No. 200 sieve                                                |                                                                 | Clean Sands:                     | $Cu \ge 6$ and $1 \le Cc \le 3^{E}$                                        |                        | SW                                 | Well-graded sand                   |
|                                                                                        | <b>Sands:</b><br>50% or more of coarse<br>fraction passes No. 4 | Less than 5% fines <sup>D</sup>  | Cu < 6 and/or [Cc<1 or Cc>3.0] E                                           |                        | SP                                 | Poorly graded sand I               |
|                                                                                        |                                                                 | Sands with Fines:                | Fines classify as ML or MH                                                 |                        | SM                                 | Silty sand <sup>G, H, I</sup>      |
|                                                                                        | sieve                                                           | More than 12% fines D            | Fines classify as CL or CH                                                 |                        | SC                                 | Clayey sand <sup>G, H, I</sup>     |
|                                                                                        |                                                                 | Inergenie                        | PI > 7 and plots on or above "A"                                           |                        | CL                                 | Lean clay <sup>K</sup> , L, M      |
|                                                                                        | Silts and Clays:                                                | Inorganic:                       | PI < 4 or plots below "A" line J                                           |                        | ML                                 | Silt K, L, M                       |
|                                                                                        | Liquid limit less than 50                                       | Organic:                         | Liquid limit - oven dried                                                  | < 0.75 OL              | Organic clay <sup>K, L, M, N</sup> |                                    |
| <b>Fine-Grained Soils:</b> 50% or more passes the                                      |                                                                 |                                  | Liquid limit - not dried                                                   | < 0.75 OL              |                                    | Organic silt <sup>K, L, M, O</sup> |
| No. 200 sieve                                                                          |                                                                 | Inorganic:                       | PI plots on or above "A" line                                              |                        | СН                                 | Fat clay <mark>K, L, M</mark>      |
|                                                                                        | Silts and Clays:                                                | morganic.                        | PI plots below "A" line                                                    |                        | MH                                 | Elastic Silt <sup>K, L, M</sup>    |
|                                                                                        | Liquid limit 50 or more                                         | Organic:                         | Liquid limit - oven dried                                                  | < 0.75                 | ОН                                 | Organic clay K, L, M, P            |
|                                                                                        |                                                                 | Organic.                         | Liquid limit - not dried                                                   | < 0.75                 | ОП                                 | Organic silt <sup>K, L, M, Q</sup> |
| Highly organic soils:                                                                  | lighly organic soils: Primarily organic matter, dark in co      |                                  |                                                                            | olor, and organic odor |                                    | Peat                               |
| ABased on the material passing the 3-inch (75-mm) sieve.                               |                                                                 |                                  | <sup>H</sup> If fines are organic, add "with organic fines" to group name. |                        |                                    |                                    |
| <sup>B</sup> If field sample contained cobbles or boulders, or both, add "with cobbles |                                                                 |                                  | If soil contains $\geq$ 15% gravel, add "with gravel" to group name.       |                        |                                    |                                    |

If field sample contained cobbles or boulders, or both, add "with cobbles or boulders, or both" to group name.


- <sup>c</sup> Gravels with 5 to 12% fines require dual symbols: GW-GM well-graded gravel with silt, GW-GC well-graded gravel with clay, GP-GM poorly graded gravel with silt, GP-GC poorly graded gravel with clay.
- <sup>D</sup> Sands with 5 to 12% fines require dual symbols: SW-SM well-graded sand with silt, SW-SC well-graded sand with clay, SP-SM poorly graded sand with silt, SP-SC poorly graded sand with clay.

$$E_{Cu} = D_{60}/D_{10}$$
  $Cc = \frac{(D_{30})^2}{D_{10} \times D_{60}}$ 

**F** If soil contains  $\geq$  15% sand, add "with sand" to group name.

<sup>G</sup> If fines classify as CL-ML, use dual symbol GC-GM, or SC-SM.

- If soil contains  $\geq$  15% gravel, add "with gravel" to group name.
- J If Atterberg limits plot in shaded area, soil is a CL-ML, silty clay.
- K If soil contains 15 to 29% plus No. 200, add "with sand" or "with gravel," whichever is predominant.
- L If soil contains ≥ 30% plus No. 200 predominantly sand, add "sandy" to group name.
- <sup>M</sup>If soil contains ≥ 30% plus No. 200, predominantly gravel, add "gravelly" to group name.
- $\mathbb{N}$  PI  $\geq$  4 and plots on or above "A" line.
- PI < 4 or plots below "A" line.
- P PI plots on or above "A" line.
- QPI plots below "A" line.





October 28, 2024 Kleinfelder Project No.: 20230661.005A

Mr. Jack Lac NorthPoint Development 12977 North Outer 40 Road, Suite 203 St. Louis, Missouri 63141

#### SUBJECT: Feasibility-Level Geotechnical Investigation North Antelope Valley Logistics Center Southwest Corner of Sierra Highway and West Avenue D Los Angeles County, California

Dear Mr. Lac:

Kleinfelder is pleased to present this report summarizing the feasibility-level geotechnical investigation performed for the subject site, located at the southwest corner of Sierra Highway and West Avenue D in Los Angeles County, California. Our conclusions and recommendations for geotechnical design and construction are presented in the attached report.

We appreciate the opportunity to provide geotechnical engineering services to you on this project. If you have any questions regarding this report or if we can be of further service, please do not hesitate to contact the undersigned.

Sincerely,

**KLEINFELDER, INC.** 

Jose A. Zuniga

Jose A. Zuniga, E.I.T. Project Professional

Walle

Jeffery D. Waller, P.E., G.E. Senior Geotechnical Engineer



FEASIBILITY-LEVEL GEOTECHNICAL INVESTIGATION NORTH ANTELOPE VALLEY LOGISTICS CENTER SOUTHWEST CORNER OF SIERRA HIGHWAY AND WEST AVENUE D LOS ANGELES COUNTY, CALIFORNIA

KLEINFELDER PROJECT NO. 20230661.005A

October 28, 2024

Copyright 2024 Kleinfelder All Rights Reserved

ONLY THE CLIENT OR ITS DESIGNATED REPRESENTATIVES MAY USE THIS DOCUMENT AND ONLY FOR THE SPECIFIC PROJECT FOR WHICH THIS REPORT WAS PREPARED.

20230661.005A/RIV23R153840 Copyright 2024 Kleinfelder Page i of iv

October 28, 2024 www.kleinfelder.com



A Report Prepared for:

Mr. Jack Lac NorthPoint Development 12977 North Outer 40 Road, Suite 203 St. Louis, Missouri 63141

FEASIBILITY-LEVEL GEOTECHNICAL INVESTIGATION PROPOSED NORTH ANTELOPE VALLEY LOGISTICS CENTER SOUTHWEST CORNER OF SIERRA HIGHWAY AND WEST AVENUE D LOS ANGELES COUNTY, CALIFORNIA

Prepared by:

Jose A. Zuniga

Jose A. Zuniga, E.I.T. Project Professional

Reviewed by:

Jeffery D. Waller, P.E., G.E. Senior Geotechnical Engineer

#### **KLEINFELDER**

2280 Market Street, Suite 300 Riverside, California 92501 Phone: 951.801.3681 Fax: 951.682.0192

October 28, 2024 Kleinfelder Project No.: 20230661.005A





# TABLE OF CONTENTS

| <u>Se</u> | <u>ction</u> |                 | Pa Pa                                            | a <u>ge</u> |
|-----------|--------------|-----------------|--------------------------------------------------|-------------|
| 1         | INTRODU      | CTION           |                                                  | 1           |
|           | 1.1          |                 | ECT DESCRIPTION                                  |             |
|           | 1.2          | SCOP            | E OF SERVICES                                    | 2           |
| 2         | SITE AND     | SUBS            | URFACE CONDITIONS                                | 5           |
|           | 2.1          |                 | DESCRIPTION                                      |             |
|           | 2.2          |                 | URFACE CONDITIONS                                |             |
|           | 2.3          | GROU            | NDWATER CONDITIONS                               | 6           |
| 3         | GEOLOG       |                 | DITIONS                                          | 7           |
| •         | 3.1          | -               | DNAL GEOLOGY                                     |             |
|           | 3.2          |                 | GEOLOGY                                          |             |
|           | 3.3          | GEOL            | OGIC HAZARDS                                     |             |
|           |              | 3.3.1           | Active and Potentially Active Fault Search       |             |
|           |              | 3.3.2           | Flooding                                         |             |
|           |              | 3.3.3           | Landslides                                       |             |
|           |              | 3.3.4<br>3.3.5  | Liquefaction and Seismic Settlement              |             |
|           |              | 3.3.6           | Oil and Gas Fields                               |             |
|           |              | 3.3.7           | Expansive Soils                                  |             |
|           |              |                 | •                                                |             |
| 4         |              |                 |                                                  |             |
|           | 4.1<br>4.2   |                 | RAL<br>1IC DESIGN CONSIDERATIONS                 |             |
|           | 4.2          | 3⊑i3iv<br>4.2.1 | Seismic Design Parameters                        |             |
|           |              | 4.2.2           | Liquefaction and Seismic Settlement              |             |
|           | 4.3          |                 | DATIONS                                          |             |
|           |              | 4.3.1           | General                                          |             |
|           |              | 4.3.2           | Allowable Bearing Pressure                       | . 14        |
|           |              | 4.3.3           | Estimated Settlements                            |             |
|           |              | 4.3.4           | Lateral Resistance                               |             |
|           | 4.4          |                 | HWORK                                            |             |
|           |              | 4.4.1           | General                                          |             |
|           |              | 4.4.2           | Site Preparation                                 |             |
|           |              | 4.4.3           | Overexcavation<br>4.4.3.1 Structural Areas       |             |
|           |              |                 | 4.4.3.2 Non-structural Areas                     |             |
|           |              |                 | 4.4.3.3 Additional Overexcavation Considerations |             |
|           |              | 4.4.4           | Engineered Fill.                                 |             |
|           |              | 4.4.5           | Temporary Excavations                            |             |
|           |              | 4.4.6           | Excavation Conditions                            |             |
|           |              | 4.4.7           | Pipe Bedding and Trench Backfill                 |             |
|           | 4.5          |                 | RETE SLABS SUPPORTED ON GRADE                    |             |
|           |              | 4.5.1           | General                                          |             |
|           |              | 4.5.2           | Exterior Flatwork                                |             |
|           |              | 4.5.3           | Vapor Retarder                                   |             |
|           |              | 4.5.4           | Concrete Curing and Flooring                     | . 22        |



# **TABLE OF CONTENTS (Continued)**

# **Section**

# <u>Page</u>

| 7 | REFERE                | NCES                                                                                  |    |
|---|-----------------------|---------------------------------------------------------------------------------------|----|
| 6 | LIMITATI              | ONS                                                                                   | 33 |
| 5 | <b>ADDITIO</b><br>5.1 | NAL SERVICES<br>DESIGN LEVEL INVESTIGATION                                            |    |
|   | 4.12                  | STORMWATER MANAGEMENT                                                                 |    |
|   |                       | 4.11.1 Asphalt-Concrete Pavement Sections<br>4.11.2 Portland Cement Concrete Pavement |    |
|   | 4.11                  | PAVEMENT SECTIONS                                                                     | 27 |
|   | 4.10                  | PRELIMINARY SOIL CORROSIVITY                                                          |    |
|   | 4.9                   | HYDRO-COLLAPSE POTENTIAL                                                              |    |
|   | 4.8                   | EXPANSION POTENTIAL                                                                   |    |
|   | 47                    | DRAINAGE AND LANDSCAPING                                                              |    |
|   |                       | 4.6.3 Drainage                                                                        |    |
|   |                       | <ul><li>4.6.1 General</li><li>4.6.2 Backfill Compaction</li></ul>                     |    |
|   | 4.6                   | RETAINING WALLS                                                                       |    |
|   | 4.6                   | RETAINING WALL                                                                        | .S |

### **FIGURES**

| 1 | Site | Vicinity | Мар |
|---|------|----------|-----|
|---|------|----------|-----|

Exploration Location Map 2

# **APPENDICES**

- Field Explorations Laboratory Testing А
- В



# 1 INTRODUCTION

This report presents the results of our feasibility-level geotechnical investigation for the proposed improvements at the southwest corner of Sierra Highway and West Avenue D in Los Angeles County, California. The general location of the site is shown on Figure 1, Site Vicinity Map.

The purpose of this feasibility-level geotechnical investigation was to evaluate the subsurface soil conditions at the site in order to provide geotechnical recommendations and liquefaction analysis for the design and construction of the proposed development. The scope of our services was presented in our proposal dated January 6, 2023. This report only provides recommendations for the proposed improvements discussed below.

# 1.1 PROJECT DESCRIPTION

Based on our review of the conceptual site plan provided by NorthPoint Development which includes both sites for NAVLC 157 and 160 the total site area is approximately 317 acres. The project will consist of Phase 2 though Phase 4 where a total of five (5) warehouse buildings will be constructed. The table below summarizes the building areas, footprint sizes and corresponding phase number.

| Phase No. | Building No. | Area (ft <sup>2</sup> ) | Footprint (ft x ft) |
|-----------|--------------|-------------------------|---------------------|
| 2         | 3            | ±1,215,000              | 620 x 1,960         |
| 3         | 4            | ±1,215,000              | 620 x 1,960         |
| 4         | 5            | ±1,215,000              | 620 x 1,960         |
| 4         | 6            | ±694,000                | 620 x 1,120         |
| 4         | 7            | ±694,000                | 620 x 1,120         |

The project also includes Best Management Practices (BMPs) stormwater detention basins located throughout the site as shown on Figure 2, Exploration Location Map.



All the buildings are anticipated to be concrete tilt-up distribution-type buildings and have warehouse areas with loading-dock high slab-on-grade floors. We anticipate that the proposed buildings may be supported on conventional shallow spread foundations. Foundation loads are not currently available, but based on our experience with similar past projects, we assume that maximum column loading will be on the order of 80 kips and maximum wall loads will be on the order of 4 to 8 kips per linear foot. Floor loads for proposed distribution-type buildings may be on the order of 500 pounds per square foot. Cuts and fills on the order of approximately 10 feet may be needed to develop the site.

We anticipate parking lot and drive aisles will consist of asphaltic concrete (AC) pavement and loading dock areas will consist of Portland cement concrete pavement (PCCP). Ancillary construction is anticipated to include concrete flat work, landscaping, and installation of buried utilities.

# 1.2 SCOPE OF SERVICES

The scope of our preliminary geotechnical study consisted of a literature review, historical aerial photo review, subsurface exploration, geotechnical laboratory testing, engineering evaluation and analysis, and preparation of this report. Our report includes a description of the work performed, a discussion of the geotechnical conditions observed at the site, and preliminary recommendations developed from our engineering analysis of field and laboratory data. A description of our scope of services performed for this project is presented below.

**Task 1 – Background Data Review.** We reviewed published and unpublished geologic literature in our files and the files of public agencies, including selected publications prepared by the California Geological Survey and the U.S. Geological Survey. We also reviewed readily available seismic and faulting information, including data for designated earthquake fault zones and our in-house database of faulting in the general site vicinity.

**Task 2 – Field Exploration.** The subsurface conditions at the site were explored by drilling and logging thirteen (13) hollow-stem auger geotechnical borings (B-1 through B-13). The geotechnical borings were drilled to depths ranging from approximately 31½ to 51½ feet below ground surface (bgs). The locations of our borings are shown on the attached Figure 2, Exploration Location Map.



Prior to commencement of the fieldwork, our proposed exploration locations were cleared for known existing utility lines and with the participating utility companies through Underground Service Alert (USA). A Kleinfelder representative supervised the field operations and logged the borings. Selected bulk and drive samples were retrieved, sealed and transported to Kleinfelder's laboratory in Ontario, California for laboratory testing. Our typical sampling interval for the hollow stem auger borings was every 5 feet to full depths explored. The number of blows necessary to drive California-type samplers were recorded. A description of the field exploration and the logs of the borings, including a Legend to the Log of Borings, are presented in Appendix A.

**Task 3 – Laboratory Testing.** Laboratory testing was performed on representative samples of soil collected from our excavations to substantiate field classifications and to provide engineering parameters for geotechnical design. Laboratory testing included moisture determination and unit weight, grain size distribution, consolidation, plasticity testing, modified Proctor, expansion index, collapse potential, direct shear strength, and preliminary corrosion potential. A summary of the testing performed and the results for this subject site are presented in Appendix B.

**Task 4 – Geotechnical Analyses and Report Preparation.** Field and laboratory data were analyzed in conjunction with the proposed site plan presented on Figure 2 and assumed structural loads to develop geotechnical recommendations for the design and construction of the proposed development. We evaluated potential foundation systems, lateral earth pressures, settlement, and earthwork considerations. Potential geologic hazards, such as ground shaking, liquefaction hazard, seismic settlement potential, flood hazard, and fault rupture hazard were also evaluated. This report summarizes the work performed, data acquired, and our findings, conclusions, and geotechnical recommendations for the design and construction of the proposed development. Recommendations for the following are presented in this report:

- Earthwork, including site preparation, excavation, site drainage, and the placement of engineered fill;
- Design of suitable foundation systems including allowable capacities, lateral resistance, and settlement estimates;
- Liquefaction settlement analysis;
- Seismic design parameters;



- Floor slab and slab-on-grade support, including subgrade preparation;
- Lateral earth pressures for design of retaining walls;
- Design and construction of asphalt and Portland cement concrete pavements, including driveways, fire lanes, and concrete walks; and
- Preliminary infiltration correlations of the site soils for design of BMPs.

This report also contains reference maps and graphics, as well as the logs of the borings and laboratory test results.



# 2 SITE AND SUBSURFACE CONDITIONS

# 2.1 SITE DESCRIPTION

The total site area is approximately 317 acres and is located at the southwest corner of Sierra Highway and West Avenue D in Los Angeles County, California. From review of readily available historic and current aerial photographs it appears that the overall project site includes:

- a residential home located at the southwest corner of the subject site,
- several wood framed structures and water detention areas with berms up to ±10 feet high near the central area of the site. The berms were historically used to impound water,
- agricultural areas with small berms in the northern half of the site,
- former wetlands across the site.

Based on the ALTA survey provided to Kleinfelder, the project site generally appears to slope down from north to south and west to east with a grade differential of approximately 2 to 6 feet throughout the site.

# 2.2 SUBSURFACE CONDITIONS

Subsurface materials observed during drilling are described below and detailed descriptions of subsurface materials are provided in our boring logs presented in Appendix A.

#### Alluvium/Native Soils:

The alluvium/native soils were observed in all of the borings drilled for this investigation and predominately consisted of clayey or silty sands, poorly graded sands with silt, and some well graded sands with clay and sandy silts to the total depth explored of approximately  $51\frac{1}{2}$  feet bgs. Interbedded layers of clay were present throughout most of the borings to the total depth explored of approximately  $51\frac{1}{2}$  feet bgs. In-situ moisture content ranged from 0.9 to



32.8 percent and dry unit weight ranged from 93.1 to 128.0 pounds per cubic foot (pcf). Generally, the apparent density of the subsurface soils was stiff to hard for fine-grained soils and medium dense to dense for coarse-grained soils.

## 2.3 GROUNDWATER CONDITIONS

Groundwater was not encountered in our borings to the maximum depth explored of approximately 51<sup>1</sup>/<sub>2</sub> feet bgs during our geotechnical investigation within the 317-acre site. The Rosamond Quadrangle, Plate 1.2, in the Seismic Hazard Zone Report 093 shows current groundwater between approximately 60 and 70 feet bgs within the subject site.

Based on our research of readily available data provided by the California Department of Water Resources website (https://wdl.water.ca.gov/WaterDataLibrary/) groundwater was measured at approximately 12 feet below ground surface (bgs) at a well located in the area between Buildings 3 and 4 of the subject site in April 1951. However, a well located on the east side of Sierra Highway, approximately 300 feet from the subject site was observed to have groundwater at the ground surface between 1943 and 1945. Since that time, historical groundwater elevation trends at the Site from the 1950s to 2022 show that groundwater has depressed to approximately 60 and 70 feet bgs. Based on the extensive groundwater pumping by the Antelope Valley WaterMaster, we do not anticipate encountering groundwater during grading activities at the site.

Fluctuations of localized zones of perched water and rise in soil moisture content should be anticipated during the rainy season. Irrigation of landscaped areas may also lead to an increase in soil moisture content and fluctuations of intermittent shallow perched groundwater levels.



# **3 GEOLOGIC CONDITIONS**

## 3.1 REGIONAL GEOLOGY

The subject site is located within the western portion of the Mojave Desert geomorphic province of California (Norris and Webb, 1990; CGS 2002).

The Mojave Desert is approximately 25,000 square miles of desert situated in southeastern California. The area is enclosed on the southwest by the San Andreas fault and the Transverse Ranges and on the north and northeast by the Garlock fault, the Tehachapi Mountains and the Basin and Range. The Nevada state line and Colorado River form the arbitrary eastern boundary. The San Bernardino-Riverside County line designates the southern boundary.

The region is dominated by broad alluvial basins that are mostly aggrading sources receiving nonmarine deposits from the adjacent uplands. The highest general elevations of the Mojave Desert approach 4,000 feet above mean sea level (MSL) with most of the valleys between 2,000 and 4,000 feet MSL.

# 3.2 SITE GEOLOGY

Regional geologic mapping indicates that the site is underlain by modern alluvium and younger playa deposits that are Holocene to late Pleistocene in age (Dibblee, 2008). The southeast corner of the site is underlain by younger playa deposits. The alluvium is derived from Amargosa Creek and covers the majority of the site. The younger playa deposits were deposited in the shallow-water regions of the last pluvial lake that filled the lowland parts of Antelope Valley, up to approximately 12,000 years ago.

# 3.3 GEOLOGIC HAZARDS

We have addressed below the potential geologic hazards for the site.



# 3.3.1 Active and Potentially Active Fault Search

Earthquakes and faulting occur as the tectonic plates, which comprise the Earth's crust, or lithosphere, move relative to one-another. Faults identified by the State as being active are not known to be present at the surface within the project limits. No portion of the site is located within a State of California-Special Studies Zone (CGS, 2018). The closest active fault to the site is the San Andreas fault zone located approximately 12 miles southwest of the site (CGS, 2010). Because of the distance to known active faults, the lack of surficial evidence of fault breaks expressed in air photos or published geologic maps, the risk of surface rupture resulting from faulting is considered low.

### 3.3.2 Flooding

Surface water flow at the site is generally via sheet flow in a southeast direction toward the Amargosa creek drainage.

The site is within a flood hazard zone "X" (FEMA, 2008), where the flood hazard is "determined to be outside the 0.2% annual chance floodplain". A flood hazard zone appears to be just outside the current site to the north and to the southeast. According to FEMA (2008), where the flood hazard is a "Special Flood Hazard Area subject to Inundation by the 1% Annual chance Flood" with no base flood elevation.

A seiche is a wave or sloshing of a body of water that is at least partially impounded caused by strong wind or seismic shaking. The site is upstream of the Piute Ponds and south of the Lancaster Water Reclamation Plant ponds. However, the ponds on the southern portion of the Reclamation Plant have been decommissioned and the impact from a potential seiche is considered very low.

# 3.3.3 Landslides

Landslides and other forms of mass wasting, including mud flows, debris flows, soil slips, and rock falls occur as soil or rock moves down slope under the influence of gravity. Landslides are frequently triggered by intense rainfall or seismic shaking. The site is not located within a State



or county designated landslide hazard zone. The site is relatively flat and the risk at the site from landslides and other forms of mass wasting is considered very low.

### 3.3.4 Liquefaction and Seismic Settlement

Liquefaction occurs when saturated, loose, coarse-grained or silty soils are subjected to strong shaking resulting from earthquake motions. The coarse-grained or silty soils typically lose a portion or all of their shear strength and regain strength sometime after the shaking stops. Soil movements (both vertical and lateral) have been observed under these conditions due to consolidation of the liquefied soils.

The southeastern portion site is located within a mapped generalized liquefaction potential zone (CGS, 2005b).

#### 3.3.5 Subsidence

Ground subsidence is a gradual settling or sudden sinking of the earth's surface owing to subsurface movement of earth materials. Ground subsidence can result from fluid (water or petroleum) extraction from underlying sediments and/or formations, which allows the collapse of pore spaces previously occupied by the removed fluid. The collapse of these pore spaces compacts these underlying formations, leading to a gradual drop in ground surface elevation. Ground subsidence is most often found in areas where large volumetric withdrawals of fluids from underground reservoirs has occurred or is ongoing. Ground shaking from tectonic activity can exacerbate the vertical sinking of land in an area over the withdrawal site. Structures and improvements located in subsidence-prone areas are at risk for damage if subsidence were to occur.

The USGS has been tracking subsidence in California since the early 20th century and has developed maps that illustrate areas of recorded subsidence across the state (USGS, 2023). Most of the subsidence has resulted from excessive groundwater pumping for municipal, industrial, and agricultural uses, although oil extraction is also a documented cause. A review of the USGS subsidence maps shows that the project site, as well as the Antelope Valley, are in a documented area that has experienced subsidence. The Antelope Valley Watermaster basin management efforts implemented in the past 4 years are slowing groundwater elevation decline



and associated subsidence. Continued water production management efforts stabilize groundwater elevation and limit or remove further subsidence in the basin.

#### 3.3.6 Oil and Gas Fields

The project site is not located within a mapped petroleum producing field of Southern California and no oil/gas wells are reported within the Project Site [California Geologic Energy Management Division (CalGEM), formerly Division of Oil, Gas and Geothermal Resources (DOGGR), 2022]. However, based on information available from CalGEM, nine (9) idle oil and gas wells are reported located within 6 miles of the site. Additionally, undocumented well(s) are not known to be at the site.

# 3.3.7 Expansive Soils

The upper site soils were tested for expansion potential and found to be very low. Due to the variability of near surface soil, the potential for expansive soils impacting the project grading is not anticipated. Further discussion is presented in Section 4.8. The on-site soils should be further evaluated during the geotechnical study for the design phase of the project.



# 4 CONCLUSIONS AND RECOMMENDATIONS

# 4.1 GENERAL

Based on the results of our field exploration, laboratory testing and geotechnical analyses conducted during this study, it is our professional opinion that the proposed project is geotechnically feasible, provided the recommendations presented in this report are incorporated into the project design and construction.

The following preliminary opinions, conclusions, and recommendations are based on the properties of the materials encountered in the explorations, the results of our literature review, the results of the laboratory testing program, and our engineering analyses performed. Our recommendations regarding the geotechnical aspects of the design and construction of the project are presented in the following sections. We recommend that the final grading plans be reviewed by Kleinfelder prior to the start of construction.

## 4.2 SEISMIC DESIGN CONSIDERATIONS

#### 4.2.1 Seismic Design Parameters

Based on data obtained from our field explorations, published geologic literature and maps, and on our interpretation of the 2022 CBC criteria, it is our opinion that the project site be classified as Site Class D, Stiff Soil, according to Section 1613 of the 2022 CBC and Table 20.3-1 of ASCE/SEI 7-16 (2016). Approximate coordinates for the site are noted below.

- Latitude: 34.771473 °N
- Longitude: 118.153315 °W

In accordance with Section 11.4.8 of ASCE 7-16, a site-specific ground motion hazard analysis is required for Site Class D sites with an  $S_1$  greater than 0.2 g. However, a site-specific ground motion hazard analysis is not required if the exceptions in Section 11.4.8 of ASCE 7-16 are taken. In accordance with the 2022 CBC, which adopts Supplement 3 of ASCE 7-16, the exception would be if the values of the parameters  $S_{M1}$  and  $S_{D1}$  are increased by 50 percent.



The assumption that the exception will be used should be verified by the project structural engineer during final design based on the governing code. Based on the assumption that the exception will be taken in accordance with the governing code, the 2022 CBC Seismic Design Parameters (non-site-specific) for the project site are provided in Table 1.

| Design Parameter     | Recommended Value |
|----------------------|-------------------|
| Site Class           | D                 |
| S₅ (g)               | 1.269             |
| S1 (g)               | 0.513             |
| Fa                   | 1.0               |
| Fv                   | N/A*              |
| S <sub>MS</sub> (g)  | 1.269             |
| S <sub>M1</sub> (g)  | N/A               |
| S <sub>DS</sub> (g)  | 0.846             |
| S <sub>D1</sub> (g)  | N/A               |
| PGA <sub>M</sub> (g) | 0.550             |

Table 12022 CBC Seismic Design Parameters

\* N/A = Not Applicable; Section 11.4.8 of ASCE 7-16 requires a site-specific ground motion hazard analysis be performed for Site Class D sites with S<sub>1</sub> values greater than or equal to 0.2g unless exceptions are taken in which the values of S<sub>M1</sub> and S<sub>D1</sub> are increased by 50 percent. If exceptions are taken, then a Fv value of 1.79 may be used in accordance with Table 11.4-2 of ASCE 7-16 Supplement 3 (per the 2022 CBC).

# 4.2.2 Liquefaction and Seismic Settlement

The term liquefaction describes a phenomenon in which saturated, cohesionless soils temporarily lose shear strength (liquefy) due to increased pore water pressures induced by strong, cyclic ground motions during an earthquake. Structures founded on or above potentially liquefiable soils may experience bearing capacity failures due to the temporary loss of foundation support, vertical settlements (both total and differential), and undergo lateral spreading. The factors known to influence liquefaction potential include soil type, relative density, grain size, confining pressure, depth to groundwater, and the intensity and duration of the seismic ground shaking. The cohesionless soils most susceptible to liquefaction are loose, saturated sands and some silt.



To assess the potential for liquefaction of subsurface soils at the site, we used the liquefaction analysis procedures outlined in Youd et al. (2001) based on standard penetration test (SPT) data. These methods utilize corrected SPT blow counts to estimate the amount of volumetric compaction or settlement during an earthquake.

Groundwater was not encountered during our current field exploration drilled to a maximum explored depth of 51½ feet bgs. As presented in the referenced Kleinfelder Response To Comments dated September 12, 2023, the project site and the surrounding area have groundwater depths greater than 60 feet bgs. Kleinfelder submitted a Request for a Waiver to the County of Los Angeles Geotechnical and Materials Engineering Division to utilize a groundwater depth of 50 feet for liquefaction analysis. The Waiver was approved as presented in the referenced Geologic and Soils Engineering Review Sheet dated November 3, 2023. Based on the applicable groundwater levels, the potential for liquefaction settlement is negligible as shown in the Table below.

| Building<br>Number | Boring<br>Number | Liquefaction Settlement<br>Based on Groundwater at 50<br>feet BGS (in) |
|--------------------|------------------|------------------------------------------------------------------------|
| 3                  | B - 11           | 0                                                                      |
| 4                  | B – 10           | 0                                                                      |
| 5                  | B – 5            | 0                                                                      |
| 6                  | B – 3            | 0                                                                      |
| 7                  | B – 4            | 0                                                                      |

As recommended in Section 1803.5.12 of 2022 CBC, the peak ground acceleration (PGA) used in the liquefaction analysis was estimated in accordance with Section 11.8.3 of ASCE 7-16. A PGAM of 0.55g with an earthquake magnitude of 8.1 was used as the design-level seismic event in our liquefaction analysis, which is defined as an earthquake event with 2 percent probability of being exceeded in 50 years (return period of about 2,475 years) according to the 2022 CBC and ASCE/SEI 7-16.

Seismic compression (dry seismic settlement) results from the accumulation of contractive volumetric strains in unsaturated soil during earthquake shaking. Loose to medium dense granular material with no fines or with low plasticity fines are most susceptible to seismic compression. The onsite loose to dense granular soils and stiff to very stiff finer non-granular



soils may be prone to settlement due to seismic shaking. Dry seismic settlement (total) is estimated to range between 0.6 to 1.5 inches.

| Building<br>Number | Boring<br>Number | Dry Seismic Settlement<br>(in) |
|--------------------|------------------|--------------------------------|
| 3                  | B - 11           | 1.2                            |
| 4                  | B – 10           | 0.6                            |
| 5                  | B – 5            | 0.9                            |
| 6                  | B – 3            | 1.4                            |
| 7                  | B – 4            | 1.5                            |

# 4.3 FOUNDATIONS

#### 4.3.1 General

Based on the results of our field exploration, laboratory testing, and geotechnical analyses, the proposed improvements may be supported on conventional shallow foundations on a zone of compacted fill provided the settlement estimates (both static and seismic) are tolerable. We have assumed that the proposed structures will be able to tolerate the estimated seismic settlement (i.e., it will not collapse creating a life safety issue). However, this assumption should be verified by the project structural engineer. It should be noted that the design intent of the 2022 California Building Code (CBC) during a design-level seismic event is life safety, not serviceability of the structure after an earthquake.

#### 4.3.2 Allowable Bearing Pressure

Footings supported on at least 3 feet of compacted fill may be designed for a net allowable bearing pressure of 3,000 psf for dead plus sustained live loads. A one-third increase in the bearing value can be used for wind or seismic loads. All footings should be established at a depth of at least 24 inches below the lowest adjacent grade. The footing dimension and reinforcement should be designed by the structural engineer; however, continuous and isolated spread footings should have minimum widths of 18 and 24 inches, respectively.



# 4.3.3 Estimated Settlements

Total static settlement for foundations designed in accordance with the recommendations presented herein is estimated to be less than 1 inch. Differential static settlement between similarly loaded columns is estimated to be less than ½ inch over 40 to 70 feet. Note that this settlement is in addition to the estimated settlement due to seismic shaking.

## 4.3.4 Lateral Resistance

Resistance to lateral loads (including those due to wind or seismic forces) may be provided by frictional resistance between the bottom of concrete foundations and the underlying soils and by passive soil pressure against the sides of the foundations. A coefficient of friction of 0.35 may be used between cast-in-place concrete foundations and the underlying soil. The passive pressure available for engineered fill may be taken as equivalent to the pressure developed by a fluid with a unit weight of 350 pounds per cubic foot (pcf). A one-third increase in the passive resistance may be used for resistance to transient loads such as wind and seismic. The upper one foot of soil should be neglected when calculating passive resistance.

The lateral resistance parameters provided above are ultimate values. Therefore, a suitable factor of safety should be applied to these values for design purposes. The appropriate factor of safety will depend on the design condition and should be determined by the project Structural Engineer. Depending on the application, typical factors of safety could range from 1.5 to 2.0.

# 4.4 EARTHWORK

#### 4.4.1 General

Recommendations for site preparation are presented below. All site preparation and earthwork operations should be performed in accordance with applicable codes, safety regulations and other local, state or federal specifications. All references to maximum unit weights are established in accordance with the latest version of ASTM Standard Test Method D1557.



Grading operations during the wet season or in areas where the soils are saturated may require provisions for drying of soils prior to compaction. If the project necessitates fill placement and compaction in wet conditions, we can provide suggested alternative recommendations for drying the soil. Conversely, additional moisture may be required during the dry months. A sufficient water source should be available to provide adequate water during compaction. During dry months, moisture conditioning of the subgrade soils may be required if left exposed for greater than a few days.

# 4.4.2 Site Preparation

Prior to general site grading, existing vegetation, debris, and oversized materials (greater than 6 inches in maximum dimension) should be stripped and disposed outside the construction limits. We estimate the depth of stripping to be approximately 6 inches over most portions of the site. Deeper stripping or grubbing may be required where higher concentrations of vegetation are encountered during site grading. Stripped topsoil (less any debris) may be stockpiled and reused for landscaping purposes; however, this material should be evaluated for suitability if it is desired to use this material for engineered fill below structures.

All oversize and organic debris, including any produced by demolition operations, (wood, steel, piping, plastics, etc.), should be separated and disposed offsite. The material generated during demolition of the existing roadways and concrete structures may be reused onsite. If reused, the particles should be crushed to a maximum particle size of 6 inches and spread across the site to prevent nesting.

Existing utility pipelines (if encountered) which extend beyond the limits of the proposed construction and are to be abandoned in place should be plugged with cement grout to prevent migration of soil and/or water. Demolition, disposal, and grading operations should be observed and tested by a representative from our office.

# 4.4.3 Overexcavation

Recommendations for overexcavation of the proposed building pads (building foundations and floor slabs) and parking lots (pavements) are presented below. All site preparation and earthwork operations should be performed in accordance with applicable codes, safety



regulations and other local, state, or federal specifications. All references to maximum unit weights are established in accordance with the latest version of ASTM Standard Test Method D1557.

Excavations within a 1:1 (horizontal: vertical) plane extending downward from a horizontal distance of 2 feet beyond the bottom outer edge of existing improvements (e.g. building foundations) or property lines should not be attempted without bracing and/or underpinning. All applicable excavation safety requirement and regulations, including OSHA requirements should be met.

# 4.4.3.1 <u>Structural Areas</u>

In order to provide uniform support for the proposed spread foundations and slab-on-grade floors, we recommend the site soils be overexcavated and replaced as engineered fill to a minimum depth of 3 feet from existing grade and at least 3 feet below the bottom of footings, whichever is greater. Building pads located in cut/fill transition areas should be overexcavated a minimum of 3 feet below the proposed bottom of footings/slabs. Although not encountered in our borings, any existing undocumented artificial fill soils should be removed until native alluvium is exposed. The overexcavation should extend horizontally at least 5 feet beyond the edges of foundations and a distance equivalent to the thickness of anticipated fill below the footing, whichever is greater. Depending on the observed condition of the existing soil and engineered fill, deeper overexcavation may be required in some areas. The Geotechnical Engineer of Record should be notified for supplemental recommendations if the minimum relative compaction of the soil is not achieved.

#### 4.4.3.2 Non-structural Areas

Within the non-structural areas, such as truck aprons, pavements, sidewalks, other flatwork, etc., we recommend that these items be underlain by at least 24 inches of engineered fill. The overexcavation should extend beyond the proposed improvements a horizontal distance of at least two feet.



# 4.4.3.3 Additional Overexcavation Considerations

After site preparation and overexcavation, and prior to scarification or placement of compacted fills, the excavation bottom should be observed, evaluated, and approved by Kleinfelder. Additional removals may be needed if significant porosity or other adverse conditions are observed. The subgrade should then be scarified to a depth of approximately 8 inches, moisture conditioned to at least optimum moisture content; and recompacted. After compaction, the subgrade should be proof rolled using equipment with sufficient weight to evaluate surface deflection. Proof rolling should be performed to verify that the subgrade soils are firm and unyielding at the depth of the recommended overexcavation presented above.

### 4.4.4 Engineered Fill

We anticipate that most of the on-site soils may be reusable as engineered fill once any debris and oversized materials greater than 4 inches in diameter have been removed, and after any vegetation and organic debris is cleared. Engineered fill should contain less than 2 percent organic content and maximum material size should be less than 4 inches in maximum dimension. Disturbed/tilled soil, less vegetation, may be used in landscape areas, exported, or placed in a controlled manner and blended with the onsite soils, provided that the resulting engineered fill contains less than 2 percent organic content.

Fill should be placed in lifts no greater than 8 inches thick, loose measurement, and should be compacted to at least 90 percent of the maximum dry density. The moisture content of the on-site soils should be at or above the optimum moisture at the time of compaction.

Engineered fill placed below pavement should be compacted to at least 90 percent of the maximum dry density obtained by the ASTM D1557 method of compaction, with the upper 12 inches below pavements compacted to at least 95 percent relative compaction.

Although not anticipated, any imported fill materials to be used for engineered fill should be sampled and tested for approval by the geotechnical engineer prior to being transported to the site. The expansion index of an imported soil should be less than 20. In general, well-graded mixtures of gravel, sand and non-plastic silt are acceptable for use as import fill. A minimum



notice of 3 working days will be required to allow for qualification testing prior to compaction of imported materials.

## 4.4.5 Temporary Excavations

All excavations must comply with applicable local, state, and federal safety regulations including the current OSHA Excavation and Trench Safety Standards. Construction site safety generally is the sole responsibility of the Contractor, who shall also be solely responsible for the means, methods, and sequencing of construction operations. We are providing the information below solely as a service to our client. Under no circumstances should the information provided be interpreted to mean that Kleinfelder is assuming responsibility for construction site safety or the Contractor's activities; such responsibility is not being implied and should not be inferred.

Excavations within a 1:1 plane extending downward from a horizontal distance of 2 feet beyond the bottom outer edge of existing improvements (e.g. building foundations) should not be attempted without bracing and/or underpinning the improvements. The geotechnical engineer or their field representative should observe the excavations so that modifications can be made to the excavations, as necessary, based on variations in the encountered soil conditions. All applicable excavation safety requirements and regulations, including OSHA requirements, should be met.

Near-surface soils encountered during our field investigation consisted predominantly of sandy silts, silty sand and clayey sands. In our opinion, these soils would be considered a Type 'C' soil with regard to the OSHA regulations. For this soil type, OSHA requires a maximum slope inclination of 1.5:1 (horizontal to vertical) or flatter for excavations 20 feet or less in depth. Temporary, shallow excavations with vertical side slopes less than 4 feet high should generally be stable, although sloughing may be encountered. Vertical excavations greater than 4 feet high should not be attempted without appropriate shoring to prevent local instability. All trench excavations should be braced and shored in accordance with good construction practice and all applicable safety ordinances and codes. The contractor should be responsible for the structural design and safety of the temporary shoring system, and we recommend that this design be submitted to Kleinfelder for review to check that our recommendations have been incorporated.



Stockpiled (excavated) materials should be placed no closer to the edge of an excavation than a distance equal to the depth of the excavation, but no closer than 4 feet. All trench excavations should be made in accordance with OSHA requirements.

### 4.4.6 Excavation Conditions

The borings were advanced using a truck-mounted hollow-stem auger drill rig. Drilling excavations were completed with easy effort through the existing site soils. Conventional earth moving equipment should be capable of performing the soil excavations.

# 4.4.7 Pipe Bedding and Trench Backfill

Pipe bedding and pipe zone material should consist of sand or similar granular material having a minimum sand equivalent value of 30. Onsite soils may be suitable but should be tested and approved by the engineer of record prior to use. The sand should be placed in a zone that extends a minimum of 6 inches below and 6 inches above the pipe for the full trench width. The bedding material should be compacted to a minimum of 90 percent of the maximum dry density or to the satisfaction of the geotechnical engineer's representative observing the compaction of the bedding material. Bedding material should consist of sand, gravel, crushed aggregate, or native free-draining granular material with a maximum particle size of ¾ inch. Bedding materials should also conform to the pipe manufacturer's specifications, if available. Trench backfill above bedding and pipe zone materials may consist of approved, on-site or import soils placed in lifts no greater than 8 inches loose thickness and compacted to 90 percent of the maximum dry density based on ASTM Test Method D1557. Jetting of backfill is not recommended. The on-site soils are suitable for backfill of utility trenches from one foot above the top of the pipe to the surface provided the material is free of organic and deleterious substances.

# 4.5 CONCRETE SLABS SUPPORTED ON GRADE

#### 4.5.1 General

Slab-on-grade floors should be underlain by engineered fill as discussed in the Earthwork Section of this report. We anticipate that the planned floor slabs will have a minimum thickness



of 6 inches, will be unreinforced and dowelled at panel edges. Minimum reinforcement for floor slabs, if required, should be determined by the structural engineer. The structural engineer should design the slabs for any specific loading conditions. A modulus of subgrade reaction of 100 pounds per cubic inch may be used for design. The moisture content of the upper 18 inches of engineered fill should be at the recommended range for fill compaction at the time the floor slab is constructed. Precautions should be taken so as not to allow the upper engineered fill below the slab to dry out below the recommended moisture range between completion of the building pad and construction of the floor slab. Total static settlement for foundations designed in accordance with the recommendations presented herein, with an anticipated maximum load of 500 psf, is estimated to be less than a 1 inch.

Construction activities and exposure to the environment can cause deterioration of the prepared subgrade. We recommend that a Kleinfelder representative inspect the final subgrade conditions prior to placement of the concrete, and if necessary, perform additional moisture and density testing to determine the subgrade suitability. A low slump concrete should be used to reduce possible curling of the slab.

# 4.5.2 Exterior Flatwork

Where exterior flatwork, such as sidewalks, are to be constructed, the subgrade should be scarified to a depth of 8 inches and moisture conditioned to a moisture content above the optimum moisture content, and recompacted as recommended in the Earthwork Section of this report. Exterior, structurally loaded flatwork, such as truck docks or trash enclosures should adhere to the recommendations for rigid pavement presented in this report.

# 4.5.3 Vapor Retarder

Subsurface moisture and moisture vapor naturally migrate upward through the soil and, where the soil is covered by a building or pavement, this subsurface moisture will collect. To reduce the impact of this subsurface moisture and the potential impact of future introduced moisture (such as landscape irrigation or precipitation) on moisture sensitive flooring, the current industry standard is to place a vapor retarder on a compacted crushed rock layer and/or sand layers, 1 to 2 inches in thickness, placed above and below the vapor retarder. The crushed rock layer



and/or sand layer may be omitted in accordance with the vapor barrier manufacturer's installation recommendations.

The necessity and placement of a vapor retarder should be evaluated by the structural engineer and/or flooring consultant. It should be noted that although vapor barrier systems are currently the industry standard, this system might not be completely effective in preventing floor slab moisture problems. These systems typically will not necessarily assure that floor slab moisture transmission rates will meet floor covering manufacturer standards and that indoor humidity levels be appropriate to inhibit mold growth. The design and construction of such systems are totally dependent on the proposed use and design of the proposed building and all elements of building design and function should be considered in the slab-on-grade floor design. Building design and construction may have a greater role in perceived moisture problems since sealed buildings/rooms or inadequate ventilation may produce excessive moisture in a building and affect indoor air quality.

# 4.5.4 Concrete Curing and Flooring

Various factors such as surface grades, adjacent planters, the quality of slab concrete and the permeability of the on-site soils affect slab moisture and can control future performance. In many cases, floor moisture problems are the result of either improper curing of floor slabs or improper application of flooring adhesives. We recommend contacting a flooring consultant experienced in the area of concrete slab-on-grade floors for specific recommendations regarding your proposed flooring applications. Special precautions must be taken during the placement and curing of all concrete slabs. Excessive slump (high water-cement ratio) of the concrete and/or improper curing procedures used during either hot or cold weather conditions could lead to excessive shrinkage, cracking or curling of the slabs. High water-cement ratio and/or improper curing also greatly increase the water vapor permeability of concrete. We recommend that all concrete placement and curing operations be performed in accordance with the American Concrete Institute (ACI) Manual.

It is emphasized that we are not floor moisture-proofing experts. We make no guarantee, nor provide any assurance that use of the capillary break/vapor retarder system will reduce concrete slab-on-grade floor moisture penetration to any specific rate or level, particularly those required



by floor covering manufacturers. The builder and designers should consider all available measures for slab moisture protection.

#### 4.6 RETAINING WALLS

We have provided preliminary cantilever retaining wall recommendations below. Further evaluation will be needed once wall types, locations and heights are selected.

#### 4.6.1 General

Design earth pressures for retaining walls depend primarily on the allowable wall movement, wall inclination, type of backfill materials, backfill slopes, surcharges, and drainage. The earth pressures provided assume that that a non-expansive granular backfill will be used and a drainage system will be installed behind the walls, so that external water pressure will not develop. If a drainage system will not be installed, the wall should be designed to resist hydrostatic pressure in addition to the earth pressure as well as reinforcement that should be protected from rust or other corrosion-inducing effects of moisture. Determination of whether the active or at-rest condition is appropriate for design will depend on the flexibility of the walls. Walls that are free to rotate at least 0.002 radians (deflection at the top of the wall of at least 0.002 x H, where H is the unbalanced wall height) may be designed for the active condition. Walls that are not capable of this movement should be assumed rigid and designed for the at-rest condition. The recommended active and at-rest earth pressure values are provided in Table 2, Earth Pressures for Retaining Walls.



## Table 2 Earth Pressures for Retaining Walls (Non-Expansive Backfill)

| Wall Movement                      | Backfill Condition | Equivalent Fluid<br>Pressure<br>(pcf) | Seismic Increment *<br>(pcf) |  |
|------------------------------------|--------------------|---------------------------------------|------------------------------|--|
| Free to Deflect (active condition) |                    | 40                                    | 15                           |  |
| Restrained<br>(at-rest condition)  | Level              | 65                                    | N/A **                       |  |

Note: \* Walls supporting more than 6 feet of backfill should be designed to support an incremental seismic lateral pressure, which is applied as a triangular pressure distribution with a maximum pressure at the bottom of the wall, not inverted.

\*\* for restrained wall, use the static active earth pressure and seismic increment to check the seismic condition; use at-rest earth pressure only to check the static condition; the larger loading of both cases should be used for the design of restrained wall.

In addition to the above lateral pressure, undrained walls will have to be designed for full hydrostatic pressure. The above lateral earth pressures do not include the effects of surcharges (e.g., traffic, footings), compaction, or truck-induced wall pressures. Any surcharge (live, including traffic, or dead load) located within a 1:1 plane drawn upward from the base of the excavation should be added to the lateral earth pressures. The lateral contribution of a uniform surcharge load located immediately behind walls may be calculated by multiplying the surcharge by 0.33 for cantilevered walls and 0.5 for restrained walls. Walls adjacent to areas subject to vehicular traffic should be designed for a 2-foot equivalent soil surcharge (250 psf). Lateral load contributions from other surcharges located behind walls may be provided once the load configurations and layouts are known.

#### 4.6.2 Backfill Compaction

Care must be taken during the compaction operation not to overstress the wall. Wall backfill should be compacted to a least 90 percent relative compaction; however, heavy construction equipment should be maintained a distance of at least 3 feet away from the walls while the backfill soils are being placed. Kleinfelder should be contacted when development plans are finalized for review of wall and backfill conditions on a case-by-case basis.



### 4.6.3 Drainage

Walls should be properly drained or designed to resist hydrostatic pressures. Adequate drainage is essential to provide a free-draining backfill condition and to limit hydrostatic buildup behind the wall. Walls should also be appropriately waterproofed and include weep holes for drainage. In lieu of weep holes, a 4-inch diameter perforated PVC pipe, placed perforations down leading to a suitable gravity outlet, should be installed at the base of the walls. Another drainage alternative could be a manufactured prefabricated drainage composite panel such as Miradrain G100N or equivalent at regular intervals along the wall.

## 4.7 DRAINAGE AND LANDSCAPING

It is important that positive surface drainage be provided to prevent ponding and/or saturation of the soils in the vicinity of foundations, concrete slabs-on-grade, or pavements. We recommend that the site be graded to carry surface water away from the improvements and that positive measures be implemented to carry away roof runoff. Poor perimeter or surface drainage could allow migration of water beneath the building or pavement areas, which may result in distress to project improvements. If planted areas adjacent to structures are desired, we suggest that care be taken not to over irrigate and to maintain a leak-free sprinkler piping system. In addition, it is recommended that planter areas next to buildings have a minimum of 5 percent positive fall away from building perimeters to a distance of at least 5 feet. Drain spouts should be extended to discharge a minimum of 5 feet from the building, or some other method should be utilized to prevent water from accumulating in planters. Landscaping after construction should not promote ponding of water adjacent to structures.

#### 4.8 EXPANSION POTENTIAL

Expansive soils are characterized by their ability to undergo significant volume changes (shrink or swell) due to variations in moisture content. Changes in soil moisture content can result from precipitation, landscape irrigation, utility leakage, roof drainage, perched groundwater, drought, or other factors and may result in unacceptable settlement or heave of structures or concrete slabs supported on grade. Expansion index testing of surficial soils resulted in values of 4, 5 and 16, which indicates a very low expansion potential.



#### 4.9 HYDRO-COLLAPSE POTENTIAL

Hydro-collapsible soils are characterized by their ability to undergo significant shrinkage (collapse) during inundation. Inundation in soils can result from precipitation, landscape irrigation, utility leakage, roof drainage, perched groundwater, drought, or other factors, and may result in unacceptable settlement of structures or concrete slabs supported on grade. Based on the results of laboratory testing, the collapse potential of the surficial soils ranges from approximately 0.2 to 1.8 percent collapse under inundation. Collapse potential less than 2 percent is considered low.

#### 4.10 PRELIMINARY SOIL CORROSIVITY

The soil corrosivity potential of the on-site materials to steel and buried concrete was preliminarily evaluated using a sample collected during our investigation. Testing was performed in general accordance with California Test Methods 643, 417, and 422 for pH and resistivity, soluble chlorides, and soluble sulfates, respectively. The test results are presented below in Table 3, Preliminary Corrosivity Test Results.

| Boring | Depth<br>(ft) | рН   | Sulfate<br>(ppm) | Chloride<br>(ppm) | Resistivity<br>(ohm-cm) |
|--------|---------------|------|------------------|-------------------|-------------------------|
| B-3    | 1-5           | 10.3 | 29               | 38                | 1,908                   |
| B-4    | 1-5           | 10.0 | 35               | 114               | 1,047                   |
| B-6    | 1-5           | 9.9  | 32               | 76                | 1,840                   |
| B-12   | 1-5           | 10.1 | 56               | 55                | 1,094                   |

Table 3Preliminary Corrosivity Test Results

These tests are only an indicator of soil corrosivity for the samples tested. Other soils found on site may be more, less, or of a similar corrosive nature. Imported fill materials should be tested to confirm that their corrosion potential is not more severe than those noted.

Resistivity values between 1,000 - 3,000 ohm-cm are considered highly corrosive to buried ferrous metals (Roberge, 2006).



The concentrations of soluble sulfates indicate that the subsurface soils represent a Class S0 exposure to sulfate attack on concrete in contact with the soil based on ACI 318-14 Table 19.3.1.1 (ACI, 2014). Therefore, in accordance with ACI Building Code 318, no special provisions for selection of cement type are required.

Kleinfelder's scope of services does not include corrosion engineering and, therefore, a detailed analysis of the corrosion test results is not included. A qualified corrosion engineer should be retained to review the test results for further evaluation and design protective systems, if considered necessary.

## 4.11 PAVEMENT SECTIONS

#### 4.11.1 Asphalt-Concrete Pavement Sections

The required pavement structural sections will depend on the expected wheel loads, volume of traffic, and subgrade soils. The Traffic Indexes (TI's) assumed should be reviewed by the project Owner, Architect, and/or Civil Engineer to evaluate their suitability for this project. Changes in the TI's will affect the corresponding pavement section. The pavement subgrade should be prepared just prior to placement of the base course. Positive drainage of the paved areas should be provided since moisture infiltration into the subgrade may decrease the life of pavements. Table 4, Preliminary Asphalt Concrete Pavement Sections, presents our recommendations of asphalt concrete pavement sections.

| Table 4                                        |
|------------------------------------------------|
| Preliminary Asphalt Concrete Pavement Sections |
| (Assumed Design R-value = 30)                  |

| Traffic Use             | Assumed<br>Traffic Index<br>(TI) | Asphalt<br>Concrete<br>(inches) | Class 2<br>Aggregate Base<br>(inches) |
|-------------------------|----------------------------------|---------------------------------|---------------------------------------|
| General Parking Traffic | 5                                | 3.0                             | 5.5                                   |
| Heavy Truck Access Ways | 7                                | 4.0                             | 9.5                                   |

Based on the size of the project area and the variation of near surface soil type, a design R-Value of 30 was selected for pavement design. Additional R-Value testing and analysis should be performed to evaluate the site further during the final geotechnical design. Since the characteristics of the near-surface soils can change as a result of grading, we recommend that



the subgrade soils be tested for pavement support characteristics, to confirm the parameters used in design and allow for a possible reduction in structural section thickness. Pavement sections provided above are contingent on the following recommendations being implemented during construction.

- The pavement sections recommended above should be placed on at least 18 inches of engineered fill compacted to at least 90 percent of maximum dry density with the upper 12 inches below pavements compacted to at least 95 percent relative compaction. The overexcavation of the pavement areas should be conducted as recommended in the earthwork section of this report. Prior to fill placement, the exposed subgrade should be scarified to a depth of 8 inches, uniformly moisture conditioned to the moisture content of granular soils (sands, silty sands and gravels) should be near the optimum moisture content at the time of compaction.
- Subgrade soils should be in a stable, non-pumping condition at the time aggregate base materials are placed and compacted.
- Aggregate base materials should be compacted to at least 95 percent relative compaction.
- Adequate drainage (both surface and subsurface) should be provided such that the subgrade soils and aggregate base materials are not allowed to become wet.
- Aggregate base materials should meet current Caltrans specifications for Class 2 aggregate base rock or crushed miscellaneous base as specified in the "Standard Specifications for Public Work Construction" ("Greenbook").
- The asphalt pavement should be placed in accordance with "Green Book" specifications or the County of Los Angeles requirements, as appropriate. We recommend that the asphalt pavement be placed in a single layer of ½-inch aggregate mix for pavements 4 inches thick or less. If the pavement section is over 4 inches thick, then the asphalt should be placed in at least two layers of mix. The first layer should consist of a base or coarse layer (3/4-inch mix). The second layer (i.e., top layer) should consist of a medium or fine layer of ½-inch mix.
- Based on our analyses and our experience with similar projects, it is our professional opinion that the as-built asphalt pavement sections should have a tolerance of +/- ¼-inch in order to remain valid for satisfying the intent of the recommendations presented herein. Typically, the loose thickness should be ¼ inch per inch greater than the required



compacted thickness. In addition to loose measurements prior to compaction, this is typically evaluated by averaging the thickness of several cores in a specific area. Individual measurements (loose thickness or core dimension) should be within at least <sup>3</sup>/<sub>4</sub>-inch of the design thickness.

• All concrete curbs separating pavement and landscaped areas should extend into the subgrade and below the bottom of adjacent, aggregate base materials.

Pavement sections provided above are based on the soil conditions encountered during our field investigation, our assumptions regarding final site grades, and limited laboratory testing. Since the actual pavement subgrade materials exposed during grading may be significantly different than those tested for this study, we recommend that representative subgrade samples be obtained, and additional R-value tests performed. Should the results of these tests indicate a significant difference, the design pavement section(s) provided above may need to be revised.

## 4.11.2 Portland Cement Concrete Pavement

Concrete pavements may be desirable in loading dock and trash collection areas. The concrete pavement should have a minimum 28-day compressive strength of 3,000 psi. Control joints should be spaced approximately every 10 feet. The concrete pavement section should be placed on at least 18 inches of engineered fill compacted to at least 90 percent of the maximum dry density. Prior to fill placement, the exposed subgrade should be scarified to a depth of 8 inches, uniformly moisture conditioned to the moisture content range recommended in Section 4.4 of this report. Table 5, Preliminary Recommended PCC Pavement Sections, presents our recommendations of Portland Cement Concrete pavement sections.



#### Table 5

| Assumed<br>Traffic Index<br>(TI) | Concrete Thickness (inches;<br>using a 28-day compressive<br>strength of 3,000 psi) | Concrete Thickness (inches;<br>using a 28-day compressive<br>strength of 4,000 psi) |
|----------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 5                                | 7.5                                                                                 | 6.5                                                                                 |
| 7                                | 8.0                                                                                 | 7.5                                                                                 |

## Preliminary Recommended PCC Pavement Sections

As an alternative to placing PCC pavements directly over 18 inches of engineered fill, 6 inches of aggregate base material may be added between the PCC and engineered fill to provide additional load distribution, drainage, and an option to reduce the thickness of the recommended PCC. If 6 inches of aggregate base material (compacted to 95% relative compaction) is used between the recommended 18 inches of engineered fill and PCC pavement, the recommended PCC thickness may be reduced by ½ inch. Aggregate base materials should meet current Caltrans specifications for Class 2 aggregate base or crushed miscellaneous base as specified in the "Standard Specifications for Public Work Construction" ("Greenbook").

#### 4.12 STORMWATER MANAGEMENT

We have preliminarily assessed the potential for storm water infiltration into the subgrade soils at the subject project site based on visual soil classification and laboratory testing of the soil samples collected during the field exploration. The onsite near-surface soils consist primarily of medium dense sandy silts, clayey sands and silty sands. Based on these conditions, we anticipate a generally low infiltration capacity of the near-surface soils, and we preliminarily recommend alternatives to infiltration Best Management Practices (BMPs), such as bio-filtration/bio-retention systems (bio-swales and planter boxes), be implemented at the project site at these elevations. In-situ infiltration testing should be performed to confirm this preliminary assessment and determine design infiltration rates, if applicable, at the BMP design depth at specific locations at the site.

If bio-filtration/bio-retention systems are employed, we recommend that the BMPs be built such that water exiting from them will not seep into the foundation areas or beneath slabs and pavement. If planters are located within 10 feet of structures or foundations, or adjacent to slabs



and pavements, then some means of diverting water away from the structures, foundation soils, or soils that support slabs and pavements would be required, such as lining the planters.



### 5.1 DESIGN LEVEL INVESTIGATION

This report presents preliminary geotechnical recommendations to develop a conceptual design and provide planning-level cost estimating. This study is not intended to be a design-level geotechnical study, and additional field and laboratory testing will be required in order to provide detailed geotechnical recommendations.

The preliminary recommendations provided in this report are based on our understanding of the described project information and on our interpretation of the data. We have made our recommendations based on experience with similar subsurface conditions under similar loading conditions. The recommendations apply to the specific project discussed in this report; therefore, any change in the structure configuration, loads, location, or the site grades should be provided to us so that we can review our conclusions and recommendations and make any necessary modifications.



## 6 LIMITATIONS

This report has been prepared for the exclusive use of NorthPoint Development, and its consultants and contractors for specific application to the proposed improvements for the proposed project. The findings, conclusions and recommendations presented in this report were prepared in a manner consistent with the standards of care and skill ordinarily exercised by members of our profession practicing under similar conditions in the geographic vicinity and at the time the services will be performed. No warranty or guarantee, express or implied, is made. Our field exploration program for the geotechnical study of this project was based on the approximate building locations provided to us by the client.

The client has the responsibility to see that all parties to the project, including the designer, contractor, subcontractors, etc., are made aware of this report in its entirety. This report contains information that may be useful in the preparation of contract specifications. However, this report is not designed as a specification document and may not contain sufficient information for this use without proper modification.

This report may be used only by the client and only for the purposes stated, within a reasonable time from its issuance, but in no event later than one year from the date of the report. Land use, site conditions (both on site and off site) or other factors may change over time, and additional work may be required with the passage of time. Any party, other than the client who wishes to use this report shall notify Kleinfelder of such intended use. Based on the intended use of this report and the nature of the new project, Kleinfelder may require that additional work be performed and that an updated report be issued. Non-compliance with any of these requirements by the client or anyone else will release Kleinfelder from any liability resulting from the use of this report by any unauthorized party and the client agrees to defend, indemnify, and hold harmless Kleinfelder from any claims or liability associated with such unauthorized use or non-compliance.

The scope of our geotechnical services did not include any environmental site assessment for the presence or absence of hazardous/toxic materials, including methane or other landfill related gases. Kleinfelder will assume no responsibility or liability whatsoever for any claim, damage, or injury which results from pre-existing hazardous materials being encountered or present on the project site, or from the discovery of such hazardous materials.



## 7 REFERENCES

- American Concrete Institute (ACI), 2014, Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14).
- American Society of Civil Engineers (ASCE), 2016, Minimum Design Load for Buildings and Other Structures (ASCE/SEI 7-16) and Supplements 1, 2 and 3.

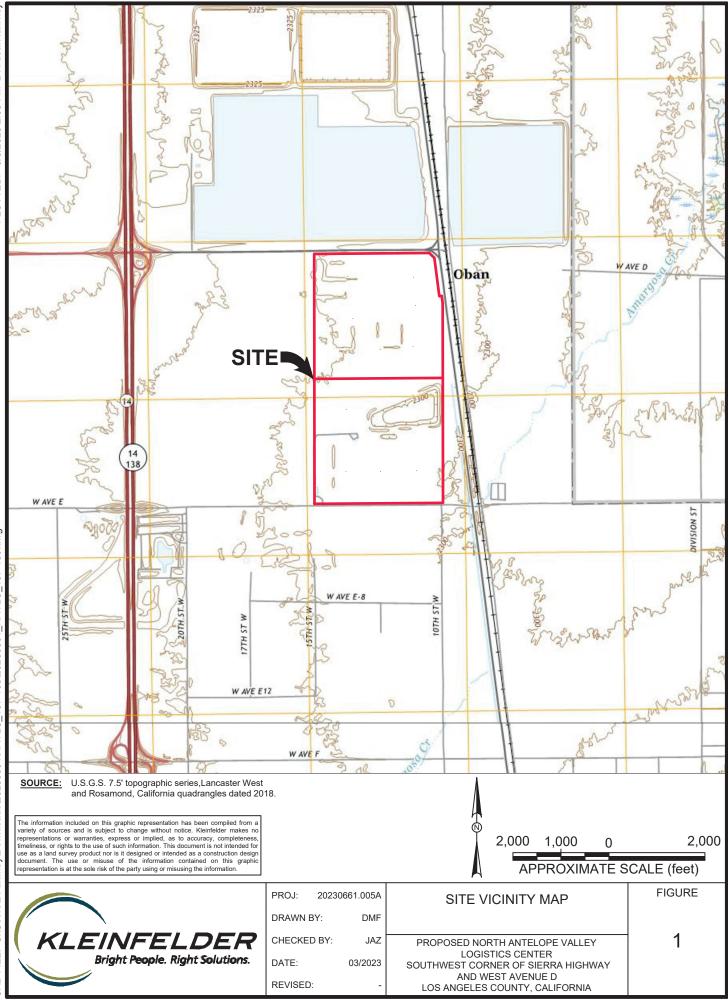
International Code Council, Inc., 2022, California Building Code.

Portland Cement Association. Portland Cement Concrete Pavement Design for Light, Medium & Heavy Traffic. Third Printing Dated 1981.

Roberge, P., 2006, Corrosion Basics, 2nd ed.

- California Department of Conservation, Geologic Energy Management Division (CalGEM) [formerly Division of Oil, Gas and Geothermal Resources (DOGGR)], 2023, Well Finder, Interactive Oil & Gas Well Location Map, available at website: https://www.conservation.ca.gov/calgem.
- California Department of Water Resources (CDWR), 2023, Water Data Library (WDL) Station Map, online California map of groundwater data, accessed February 28, 2023.

California Geological Survey (CGS), 2002. California Geomorphic Provinces, Note 36.


- California Geological Survey (CGS), 2005a, Seismic Hazard Zone Report for the Rosamond 7.5-Minute Quadrangle, Los Angeles County, California, Seismic Hazard Zone Report 093, dated 2005.
- California Geological Survey (CGS), 2005b, Seismic Hazard Zones, Earthquake Zones of Required Investigation, Map, Rosamond Quadrangle, dated February 11, 2005.
- California Geological Survey (CGS), 2010, *Fault Activity Map of California, California Geologic Data Map Series, Map No. 6.*
- California Geological Survey (CGS), 2018. Earthquake Fault Zones A Guide for Government Agencies, Property Owners/Developers, and Geoscience Practitioners for Assessing Fault Rupture Hazards in California: California Geological Survey Special Publication 42, 83p.



- Dibblee, T.W., 2008, Geologic Map of the Rosamond and Rogers Lake 15' Quadrangles, Kern and Los Angeles Counties, California: Dibblee Geology Center Map #DF-384, scale 1:62,500, dated May 2008.
- Federal Emergency Management Agency (FEMA), 2008, FIRM, Flood Insurance Rate Map, Los Angeles County, California, and Incorporated Areas, Map Number 06037C0175F, Effective Date September 26, 2008.
- Kleinfelder (2023), Response to Comments, Special Purpose Permit Evaluation, Proposed North Antelope Valley Logistics Center, Lancaster, Los Angeles County, California, By Kleinfelder, PN 20230661.005A, Dated September 12, 2023.
- Los Angeles County Public Works Geotechnical and Materials Engineering Division (2023), Geologic and Soils Engineering Review Sheet, 900 S. Fremont Avenue, Alhambra, CA 91803, Dated November 3, 2023.
- Nationwide Environmental Title Research, LLC (NETR), 2023, Historic Aerial Viewer, available at website: <u>https://www.historicaerials.com/viewer</u>
- Norris, R.M., Webb, R.W., 1990, Geology of California, second ed., John Wiley and Sons.
- Petersen, M.D., Frankel, A.D., Harmsen, S.C., Mueller, C.S., Haller, K., Wheeler, R.L., Wesson,
  R.L., Zeng, Y., Boyd, O.S., Perkins, D.M., Luco, N., Field, E.H., Wills, C.J., and
  Rukstales, K.S., 2008, Documentation for the 2008 Update of the United States National
  Seismic Hazard Maps: U.S. Geological Survey (USGS), Open-File Report 2008–1128, 61p.
- United States Geological Survey (USGS), 2023, Areas of Land Subsidence in California, website February 28, 2023 at: <u>http://ca.water.usgs.gov/land\_subsidence/california-subsidence-areas.html</u>.



FIGURES





PLOTTED: 5/24/2023 7:27 PM BY: dean fahmey

CS :TUOYAL gwb.001-73f\_OVAV\_f80020031061-73f\_OVAV/f8002020s/sbs0inwod/yemds7D/sets/DC :2 :2



## APPENDIX A FIELD EXPLORATIONS



#### APPENDIX A FIELD EXPLORATIONS

The subsurface conditions at the site were explored by drilling and logging thirteen (13) hollow-stem auger borings. Due to soft soil at the surface of the site, the hollow stem auger borings were drilled using a limited access track drill rig. The drill rig was provided by BC2 of Orange, California and the rig was equipped with an automatic hammer system to drive the samplers. The locations of our borings are shown on Figure 2.

The logs of borings are presented as Figures A-3 through A-15. An explanation of the logs is presented on Figures A-1 and A-2. The Logs of Borings describe the earth materials encountered, samples obtained, and show field and laboratory tests performed. The logs also show the boring number, excavation date and the name of the logger and excavation subcontractor. A Kleinfelder geologist logged the borings utilizing the Unified Soil Classification System (USCS). The boundaries between soil types shown on the logs are approximate because the transition between different soil layers may be gradual. Bulk and drive samples of representative earth materials were obtained from the borings at maximum intervals of about 5 feet.

A California-type sampler was used to obtain relatively undisturbed drive samples of the soil encountered. This sampler consists of a 3-inch O.D., 2.4 inch I.D. split barrel shaft that is driven a total of 18 inches into the soil at the bottom of the boring. The soil was retained in six 1-inch brass rings for laboratory testing. The sampler was driven using a 140-pound hammer falling 30 inches. The total number of hammer blows required to drive the sampler the final 12 inches is termed the blow count and is recorded on the Logs of Borings. Where the sample was driven less than 12 inches, the number of blows to drive the sample for each 6-inch segment, or portion thereof, is shown on the logs. For example, 50/4" indicates 50 blows to drive the sampler 4 inches to refusal.

Samples were also obtained using a Standard Penetration Sampler (SPT). This sampler consists of a 2-inch O.D., 1.4-inch I.D. split barrel shaft that is advanced into the soils at the bottom of the drill hole a total of 18 inches. The sampler was driven using a 140 pounds hammer falling 30 inches. The total number of hammer blows required to drive the sampler the final 12 inches is termed the blow count (N-value) and is recorded on the Logs of Borings. Where the sample was driven less than 12 inches, the number of blows to drive the sample for



each 6-inch segment, or portion thereof, is shown on the logs. For example, 50/4" indicates 50 blows to drive the sampler 4 inches to refusal.

The procedures we employed in the field are generally consistent with those described in ASTM Standard Test Method D-1586.

Bulk samples of the sub-surface soils were retrieved directly from the soil cuttings and placed in large plastic bags.

| -, 4n f                                                        | DRILLING METHOD/SAMPLER TYPE GRAPHICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ļ              | UNIF                  | IED S           |                                    | SSIFIC                                                                                                            | ATIO | N SYS                      | STEM <sup>1</sup>                                                                                                        |                                |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------|-----------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------|------|----------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| ( BY: JZ,                                                      | BUuK SA( PuE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                       | s7              | CuEA3<br>GRAoEu                    |                                                                                                                   | GV   | v                          | w Euu-GRAI EI GRAoEuT<br>w Euu-GRAI EI GRAoEu w IpH SA3                                                                  | 1                              |
| %&%@ABNPMK %A:MMP(                                             | CAUIFOR3 IA SA( PUER<br>IX r4. N q.Mmm.7L, rs Verf msrs V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |                       | D Srst          | w lpH<br><)5<br>FI3ES              |                                                                                                                   | GF   | ,                          | POORuY GRALEL GRAOEUT<br>POORuY GRALEL GRAOEU w IPH S                                                                    | A31                            |
| %X8%q8M?%                                                      | GRAB SA(PuE<br>SpA3I ARI PE3EpRApiO3 SPulp SPOO3 SA(PuER<br>Mur4. N) %2 mm.7L, rsVerf msrsVf 4e 1-X82 r4. NXD9 mm.7r44sV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                       | 4se L4 3L.      |                                    |                                                                                                                   | GW-0 | GM                         | w Euu-GRAI El GRAoEu w lpH Slup<br>w Euu-GRAI El GRAoEu w lpH Slup                                                       |                                |
| PuOppEl :                                                      | eff msrsv7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                       | gnt_4 \&rf r4se | GRAoEuS                            | 6                                                                                                                 | GW-  | GC                         | w Euu-GRAI EI GRAoEu w lpH CuA<br>CuAY7Tw Euu-GRAI EI GRAoEu w l<br>SA31 NDR Slup CuAY A31 SA31 7                        |                                |
| ₽.                                                             | ⊻ w ApER uEoEu N¥oktsWołdsVs yNan LbasVt se7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                       | y g             | )5 pO<br>1M5                       |                                                                                                                   |      |                            |                                                                                                                          |                                |
|                                                                | y w ApER uEoEu NokutsWfynsVanfbr\Mztr4i hsVnLe7<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                       | LygLf Vás y     | FI3 ES                             |                                                                                                                   | GP-0 | GM                         | POORuY GRAI EI GRAoEu w IpH S<br>POORuY GRAI EI GRAoEu w IpH S                                                           |                                |
|                                                                | ♥ w ApER uEoEu NieemL4f WektsWe/fynsVsxhWM/mL47<br>OBSERoEI SEEPAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | sts7           |                       |                 |                                    |                                                                                                                   | GP-0 | GC                         | POORuY GRAI EI GRAoEu w IpH C<br>CUAY7TPOORuY GRAI EI GRAoEu                                                             |                                |
|                                                                | NOTES<br>• pds \shL\vif4e i \Vihdrga ksv f \sf4 r4nsi \Vi\VifViLyndsas \Uia. A\Wikf n<br>f4e r4ns\Vi\vifntL4a r4 ndra \Uif\\san bisgnnL nds sxh\V\4fnL4a f4e<br>\VihnfntL4a arf nse r4 nds \vihL\vi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rf             | 3 L. M%Srsts7         | LVs rdf 4 ) %   |                                    |                                                                                                                   | GN   | n                          | NDR Slup Y CuAY A31 SA31 7<br>Slup Y GRAo EuT<br>Slup Y GRAo Eu w IpH SA31                                               |                                |
|                                                                | SLWe Walsa ashf Vin4i anVinf L4 rds Wila \sh\sas4nfhh\VLxmfns<br>bL, 4ef Vsa L4WiTef adse Walsa f \sir4ysVse L\sxnVihLWnse bL, 4ef Vsa.<br>Agn f Wolf 4amL4a mf v bs i Vie, f VLVenysVyVLm rdLas \sh\sas4nse.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                | \≴rfir4se L4          | GRAVELS N       | GRAoEuS<br>wlpH><br>1M5<br>FI3ES   |                                                                                                                   | GC   | ;                          | CuAYEY GRAoEuT<br>CuAYEY GRAoEu w lpH SA31                                                                               |                                |
|                                                                | 3L of W/4nv na hVLtnese fan Linds gL4nn4, mv LyaLiVVLVLgk gL4emrL4a<br>bsnoss4 r4ent ne, fVafm hVaVUgfn L4a.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                | 4)%5                  | GR              | FISES                              |                                                                                                                   | GC-0 | GM                         | Slup YTCuAYEY GRAo Eu<br>Slup YTCuAYEY GRAo Eu w lp H SA3                                                                | 1                              |
|                                                                | <ul> <li>uLi a VéhVáas4ni s4sV VáL/VL/VLgk gL4emL4a LbasVť se finds hLr4nLy sxhW/mL4 L4 rds ef rs r4ergf rse.</li> <li>I4 i s4sV V/UJ4nyse SL/VC/Maangrf nL4 Svarsm MASp( 1 MD228 MD2/ 7 esari 4f rnL4a hVsas4rse L4 rds WI a c sVé bf ase L4 tra, f VýtVáangrf rnL4 r4 rds ysWf 4e c sVé mLenyse c dsVé fihh/LhVf rs bf ase L4 it of ef nL4 f 4e r4esx hVLhsVv rsan4i .</li> <li>Fr4s i Vf r4se aLrWrdf nh/Uhc mdr4 rds df rgdse f Véf L4 rds PVMangmv Cdf VIT 4e gLf Vás i Vf r4se aLrWrc rd bsrc ss4 ) 5 f 4e 1M5 hf aar4i rds 3L. M%karst s Vé0, n/s e, f WUSCS avmbLW/Trs.TCu-( uTGw -G( TGP-G( T Gw -GCTGP-GCTGC-G( TSw -S( TSP-S( TSw -SCTSP-SCTSC-S( .</li> <li>Iyaf mh/W/ra 4Lnf bW/rL bs eVt s4 f nWf ang r4gdsa rds4 ) %86 r4ergf rsa 4, mbs/U_yb/Uk a Vé0, n/s e rL eVt s rds res4nyse af mh/W/6 r4gdsa c rrd f 1D/khL, 4e df mms/Vjf WW X/wr4gdsa.</li> </ul> REFERENCES <ol> <li>Ams/Uf 4 SLgrsnv yLV( f rsVf Wf 4e psan4i MASp( 7IM/d1TASp( 1 MD2/ : CVManygf rnL4 Svarsm7.</li> </ol> |                | S M LV6 ndf           |                 | CuEA3<br>SA31 S                    |                                                                                                                   | sv   | v                          | w Euu-GRAI EI SA3 IT<br>w Euu-GRAI EI SA3 I w IpH GRAoE                                                                  | Eu                             |
|                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | ED SOILS              | DSrsts7         | w lpH<br><)5<br>FI3ES              |                                                                                                                   | SF   | •                          | POORuY GRALEL SA31 T<br>POORuY GRALEL SA31 w lpH GRA                                                                     | AoEu                           |
|                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | SE GRA                | rds 3L.         |                                    |                                                                                                                   | sw-  | SM                         | w Euu-GRAI EI SA3I w lpH SlupT<br>w Euu-GRAI EI SA3I w lpH Slup A                                                        | 31 GRAoEu                      |
| oERSII E                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                       |                 | SA3IS<br>wlpH                      |                                                                                                                   | SW-  | sc                         | w Euu-GRAI EI SA3I w IpH CuAY N<br>w Euu-GRAI EI SA3I w IpH CuAY A<br>NOR Slup Y CuAY A3I GRAo Eu7                       | OR Slup Y CuAY7T<br>A31 GRAoEu |
| OFFICE FlupER: RIDERSII<br>_w_USCS]                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                       |                 | ) 5 pO<br>1M5<br>FI3 ES            |                                                                                                                   | SP-S | SM                         | POORuY GRAI EI SA31 w lpH Slup<br>POORuY GRAI EI SA31 w lpH Slup                                                         |                                |
|                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                       | \$              |                                    |                                                                                                                   | SP-S | SC                         | POORUY GRAI EI SA31 w IpH CuA<br>POORUY GRAI EI SA31 w IpH CuA<br>NDR SlupY CuAY A31 GRAo Eu7                            |                                |
| HICS_KEY                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                       | N % LVmL        |                                    |                                                                                                                   | SN   | 1                          | SlupY SA3T T<br>SlupY SA3T w lpH GRAoEu                                                                                  |                                |
| MK%qq1.%%) A<br>GEO_uEG1_GRAPHICS_KEY                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                       | SANDS           | SA31 S<br>w lpH ><br>1M5<br>FI3 ES |                                                                                                                   | so   | ;                          | CuAYEY SA3T T<br>CuAYEY SA3T w lpH GRAoEu                                                                                |                                |
|                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                       |                 |                                    |                                                                                                                   | SC-S | SM                         | Slup YTCuAYEY SA31 T<br>Slup YTCuAYEY SA31 w lpH GRAoE                                                                   | ü                              |
| ER: M                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ſ              |                       |                 |                                    |                                                                                                                   |      | ML                         | SlupTSlup w lpH SA31 TSlup w lpH GRAoEu                                                                                  |                                |
| 3U(E<br>3uB [                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | <b>GRAINED SOILS</b>  | ts7             | SlupS A31                          |                                                                                                                   |      | CL                         | uEA3 CuAYTuEA3 CuAY w IpH SA31 TuEA3 CuAY w                                                                              | IpH GRAoEu                     |
| PROJECP 3U(<br>uIBRARY_MMCGUB                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | ED S                  | % m s<br>%ars   | Nur0, re u<br>Wa/aandf4            |                                                                                                                   |      | CL-ML                      | SlupY CuAYTSlupY CuAY w lpH SA31 TSlupY CuAY                                                                             |                                |
| RY_M                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                       |                 |                                    |                                                                                                                   |      | OL                         | ORGA3 IC CuAYTORGA3 IC CuAY w IpH SA31 TORG<br>ORGA3 IC SlupTORGA3 IC Slup w IpH SA31 TORGA                              |                                |
| BRAI                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | Ш <del>(</del><br>В – | s 3L<br>s 3L    | SlupS A31                          | CuAYS                                                                                                             | Ш    | MH                         | EuASpIC Slup. EuASpIC Slup w lpH SA31 TEuASpIC                                                                           | Slup w lpH GRAoEu              |
| 0                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | FINE (                | 2 P             | Nur0, re u<br>) %LVi Vs            | mm                                                                                                                |      | СН                         | FAp CuAYTFAp CuAY w lpH SA31 TFAp CuAY w lpH                                                                             |                                |
| RIGI3                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | ΝΟΤΙ                  | =.   ICI        | = ( AnEDIA                         |                                                                                                                   |      | OH                         | ORGA3IC CUAYTORGA3IC CUAY W IPH SA3I TORG<br>ORGA3IC SIUPTORGA3IC SIUP W IPH SA3I TORGA<br>OS PHE UOG POIEFI3E A GRAPHIC | 3 IC Slup w IpH GRAoEu         |
| sv_MMM<br>Spa31 ARI                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                       |                 |                                    |                                                                                                                   |      | 103 0                      | JS PHE LOG POT EFISE A GRAPHIC                                                                                           |                                |
| mfansV_M%<br>∙KuF_SpA≎                                         | $\frown$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PROJE<br>MMMK% |                       |                 |                                    |                                                                                                                   |      | G                          | RAPHICS KEY                                                                                                              | FIGURE                         |
| Vi r4n<br>VE: E:                                               | ( KLEINFELDER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I RAw          | 3 BY                  | <b>·</b> :      | I.E                                |                                                                                                                   |      |                            |                                                                                                                          | A-1                            |
| il3p FluE: Kwyir4n_mfansv_M%MK<br>il3p pE( PuApE: E:KuF_SpA31. | Bright People. Right Solutions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | IECKEI BY: J.Z        |                 |                                    | PVLhLase 3 LVnd A4nsVLMs of WMW uLinannga<br>Sw CLV4sVLySnsWf Hnidcfvf4ew san A<br>uLa A4isVaka CL, 4nvTCfWJLV4nf |      | sWf Hridcfvf4ew sanAts4,sl | A-1                                                                                                                      |                                |
| 13                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · · Ψ⊏.        |                       |                 |                                    |                                                                                                                   |      |                            |                                                                                                                          |                                |

#### **GRAIN SIZE<sup>1</sup>**

| GRAIN 3                |                          |              |                                        |
|------------------------|--------------------------|--------------|----------------------------------------|
| DESCRIPTION SIE3E SIPE |                          | SIE3 E SIpE  | GRAIN SIPE                             |
| Boclders               |                          | >m2 ink      | >m2 ink(054k8 < < k)                   |
| Cobbles                |                          | 0 - n2 ink   | 0 - m2 ink(76k2 - 054k8 < < k)         |
| Crowel                 | uoarse                   | 0/4 -0 ink   | 0/4 -0 ink(m9 - 76k2 < < k)            |
| Grayer                 | Grayel fine #4 - 0/4 ink |              | 5km9 - 5k71 ink (4k8 - m9 < < k)       |
|                        | uoarse                   | #n5 - #4     | 516579 - 51km9 ink (2 - 410 < < k)     |
| Sand                   | < edic<                  | #45 - #n5    | 5k5m7 - 5k579 ink(5k40 - 2 < < k)      |
|                        | fine                     | #255 - #45   | 5k5529 - 5k5m7 ink (5k57 - 5k40 < < k) |
| Fines Passinv #255     |                          | Passinv #255 | %ଗାର୍ଟ529 ink(%ଗାର୍ଟ7 < < k)           |

#### SECONDARY CONSTITUENT<sup>1</sup>

|                   | AMC                                         | DUNT                                          |
|-------------------|---------------------------------------------|-----------------------------------------------|
| Ter<<br>of<br>Use | SeuondarW<br>Constitcent is<br>Fine Grained | SeuondarW<br>Constitcent is<br>Coarse Grained |
| Traue             | %1.                                         | %m1.                                          |
| H ith             | ≥1 to%m1.                                   | ≥m1 to %05.                                   |
| Modifier          | ≥m1.                                        | ≥05.                                          |
|                   |                                             |                                               |

#### PLASTICITY<sup>1</sup>

| LACINOTI    |                                                                                                                                                                                                                                                  |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION | CRITERIA                                                                                                                                                                                                                                         |
| Non-Plastiu | A m/8 ink(0 < < ) thread uannot be rolled at anWwater uontentk                                                                                                                                                                                   |
| Low         | The thread uan barelWbe rolled and the lc< V uannot be for< ed when<br>drier than the Vastiu li< itk                                                                                                                                             |
| Medic<      | The thread is easWo roll and not < cuh ti< e is reqcired to reauh the<br>Vastiu li< itk The thread uannot be rerolled after reauhinv the Vastiu<br>li< itk The lc< Vurc< bles when drier than the Vastiu li< itk                                 |
| givh        | It taZes uonsiderable ti< e rollinv and Zneadinv to reauh the Vastiu<br>li< itk The thread uan be rerolled seyeral ti< es after reauhinv the<br>Vastiu li< itk The Ic< V uan be for< ed withoct urc< blinv when drier<br>than the Vastiu li< itk |

CONSISTENCY - FINE-GRAINED SOIL<sup>2,3</sup>

## MOISTURE CONTENT<sup>1</sup>

| DESCRIPTION | FIELD TEST                                                  |
|-------------|-------------------------------------------------------------|
| DrW         | Absenue of<br>< oistcre, dcstW<br>drWto the tocuh           |
| Moist       | Da< V bct no<br>yisible water                               |
| H et        | 3 isible free water,<br>cscallWsoil is below<br>water table |

# APPARENT DENSITY -COARSE-GRAINED SOIL<sup>2</sup>

| Medic     Stiff     4 - 8     5kl $\leq$ PP %m     m555 - 2,555     Call be verificated acyclic infuties by an exponential of the verificated acyclic information of the verif |                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Soft $2 - 4$ $5k21 \le PP$ %5kl $155 - m555$ EasilWenetrated seyeral inuhes bWthc< bMedicStiff $4 - 8$ $5k1 \le PP$ %n $m555 - 2,555$ Can be Venetrated seyeral inuhes bWthc< b with<br>< oderate effort                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | APPAR<br>DENSI |
| Medic< Stiff     4 - 8     5kl $\leq$ PP %n     m555 - 2,555     Can be Venetrated seyral inubes bWthc< b with<br>< oderate effort       Stiff     8 - ml     ms PP %2     2,555 - 4,555     ReadilWndented bWthc< b bct Venetrated onlW<br>with vreat effort                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3erWLo         |
| Medic     Stiff     4 - 8     5kl $\leq$ PP %m     m555 - 2,555     Call be verificated acyclic infuties by an exponential of the verificated acyclic information of the verif | Loos           |
| Stiff 8 - mi m≤ PP %2 2,555 - 4,555 with vreat effort                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Medic< [       |
| Stiff 8 - mi m≤ PP %2 2,555 - 4,555 with vreat effort                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Dens           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3erWDe         |
| 3 erWStiff m1 - 05 2 ≤ PP %4 4,555 - 8,555 ReadilWindented bWthc< bnail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |
| g ard         >05         4 ≤ PP         >8,555         Indented bWthc< bnail with diffiucltW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |

| APPARENT<br>DENSITY | SPT-N<br>(# blows / ft) |
|---------------------|-------------------------|
| 3erWLoose           | %4                      |
| Loose               | 4 - m5                  |
| Medic< Dense        | m5 - 05                 |
| Dense               | 05 - 15                 |
| 3erWDense           | >15                     |
|                     |                         |

#### STRUCTURE<sup>1</sup>

**REFERENCES** 

Mancal Prouedcres)k

Prautiue, John H ileW& Sons, New YorZk

(USBR), m998, Earth Mancal, Part Ik

| CRITERIA                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------|
| Alternatinv laWers of yarWhv < aterial or uolor with laWers at least m/4-ink(6< < ) thiuZ, note thiuZnessk                        |
| Alternatinv laWers of yarWhv < aterial or uolor with the laWers<br>less than m/4-ink(6 < < ) thiuZ, note thiuZnessk               |
| BreaZs alonv definite Vanes of frautcre with<br>little resistanue to frautcrinvk                                                  |
| Frautcre Manes aWear Volished or vlossWso< eti< es striatedk                                                                      |
| Cohesiye soil that uan be broZen down into s< all anvclar lc< Vs whiuh resist fcrther breaZdownk                                  |
| Inulcsion of s< all VouZets of different soils, scuh as s< all lenses<br>of sand suattered throcvh a < ass of ulaWnote thiuZnessk |
| Sa< e uolor and aWearanue throcvhoct                                                                                              |
|                                                                                                                                   |

mk A< eriuan SouietWfor Materials and Testinv (ASTM), 25m7, ASTM D2488: Standard Prautiue for DesuriVtion and Identifiuation of Soils (3iscal

2k Terzavhi, K and PeuZ, Rk, n948, Soil Meuhanius in Envineerinv

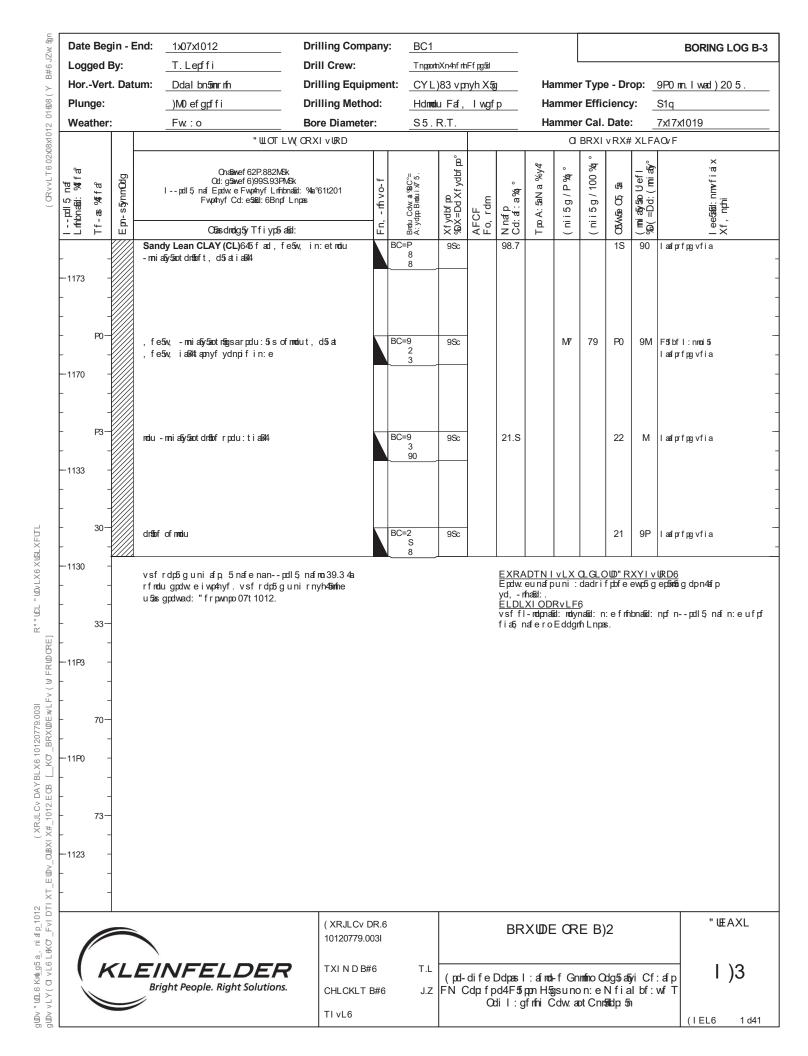
0k United States DeVart< ent of the Interior Bcreac of Reula< ation

#### ANGULARITY<sup>1</sup>

| DESCRIPTION | CRITERIA                                                                      |
|-------------|-------------------------------------------------------------------------------|
| Anvclar     | Partiules haye sharV edves and relatiyelWMane sides with cnVolished scrfauesk |
| Scbanvclar  | Partiules are si< ilar to anvclar desuriVtion bct haye rocnded edvesk         |
| Scbrocnded  | Partiules haye nearlWMane sides bct haye well-rocnded uorners and edvesk      |
| Rocnded     | Partiules haye s< oothlWucryed sides and no edvesk                            |

#### **REACTION WITH** HYDROCHLORIC ACID<sup>1</sup>

#### **CEMENTATION**<sup>1</sup>

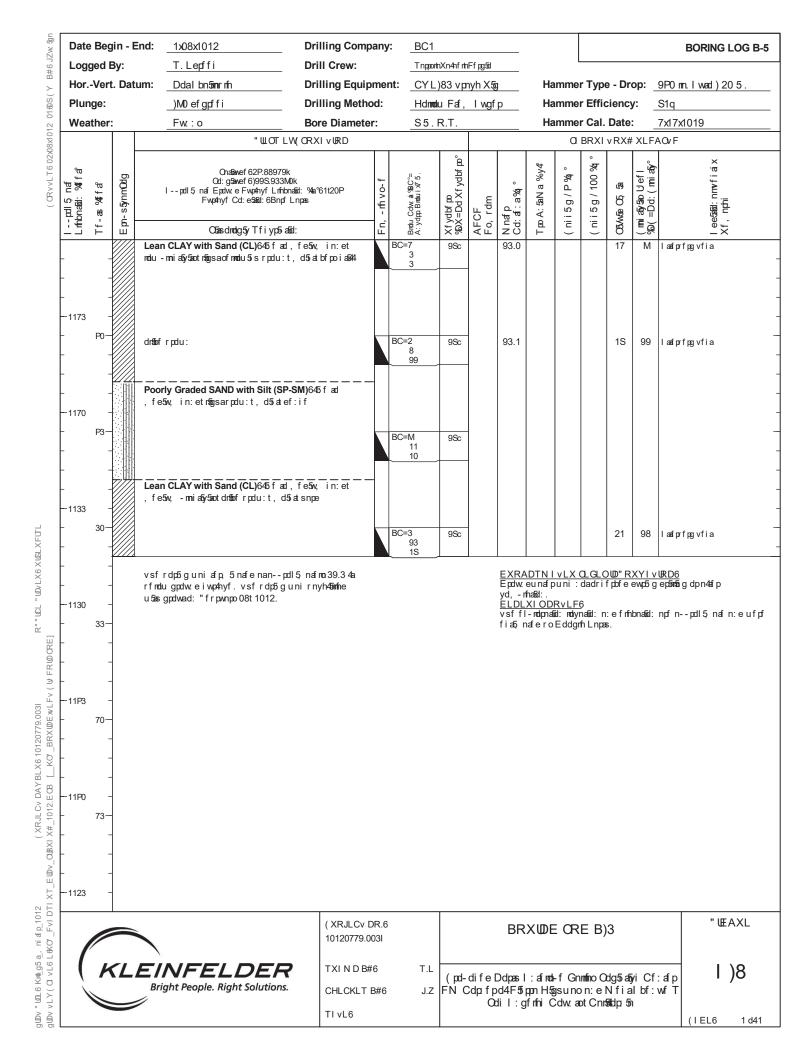

| DESCRIPTION | FIELD TEST                                                     | DESCRIPTION | FIELD TEST                                                        |
|-------------|----------------------------------------------------------------|-------------|-------------------------------------------------------------------|
| None        | No yisible reaution                                            | H eaZW      | Crc< bles or breaZs<br>with handlinv or little<br>finver Vresscre |
| H eaZ       | So< e reaution,<br>with bcbbles<br>for< inv slowIW             | ModeratelW  | Crc< bles or breaZs<br>with uonsiderable finver<br>Vresscre       |
| Stronv      | 3iolent reaution,<br>with bcbbles<br>for< inv<br>i< < ediatelW | StronvIW    | H ill not urc< ble or<br>breaZ with finver<br>Vresscre            |

| $\bigcap$                                      | PROJECT NOk<br>2520566m/651A | SOIL DESCRIPTION KEY<br>(For additional tables, see ASTM D2488)                                   | FIGURE |
|------------------------------------------------|------------------------------|---------------------------------------------------------------------------------------------------|--------|
| KLEINFELDER<br>Bright People. Right Solutions. | DRAH N BY: D                 | ProVosed North AnteloVe 3 alleWLovistius Center<br>SH Corner of Sierra g ivhwaWand H est Ayence D | A-2    |
|                                                | DATE:                        | Los Anveles CocntWCalifornia                                                                      |        |

| Zw. Şın                                          | Date                          | Beg         | jin - E     | End:            | 1x07x1012                                                                                                   | Drilling Compa            | any         | : BC1                                |                              |                 |                      |           |            |                      |                 |                             | BORING LOG B-1                        |
|--------------------------------------------------|-------------------------------|-------------|-------------|-----------------|-------------------------------------------------------------------------------------------------------------|---------------------------|-------------|--------------------------------------|------------------------------|-----------------|----------------------|-----------|------------|----------------------|-----------------|-----------------------------|---------------------------------------|
| B#6 JZw.                                         | Logo                          | ged E       | By:         |                 | T.Lepffi                                                                                                    | Drill Crew:               |             | Tnpport                              | iXn4hfnt                     | ⊩Ffpg5d         |                      |           | ı          |                      |                 |                             |                                       |
|                                                  | Hor.                          | -Vert       | . Dat       | um:             | Ddal bn5mrnfn                                                                                               | Drilling Equip            | me          | nt: <u>CYL</u> )                     | 83 vp                        | nyh X5g         |                      | На        | mme        | r Typ                | e - Dr          | op: _                       | 9P0 mn. Iwad) 20 5                    |
| 01 @ 8 (Y                                        | Plun                          | ge:         |             |                 | )M0 efgpffi                                                                                                 | Drilling Metho            | d:          | Hdmadu                               | JFaf,                        | l wgf           | р                    | На        | mme        | r Effi               | cienc           | y: _                        | S1q                                   |
| 12 01                                            | Wea                           | ther        |             |                 | Fw.: o                                                                                                      | Bore Diameter             | :           | S5.I                                 | R.T.                         |                 |                      | На        | mme        | r Cal.               | Date            | : _                         | 7x17x1019                             |
| 8x10`                                            |                               |             |             |                 | " WOT LW(                                                                                                   | ORXI v URD                |             |                                      |                              |                 |                      |           | a          | BRXI                 | vRX#            | Ł XLFA                      | AQ/F                                  |
| ( GRVVLT6 02X08X1012                             | pdl5, naf<br>.thibna6d: %ffa° | Tf-as%affa° | р- s§∕nmOdg |                 | Ondāwef62P.88377k<br>Od:gāwef6)99S.933S9k<br>Ipdl5, naf Epdw.e Fwp4hyfLinbnaā<br>Fwp4hyfCd:eābāi:6F-npifGfg | l: %4a°61t202<br>fana6ol: | - rfi vo- f | Bhdu Cdwiai%BC°=<br>A:ydpp.Bnduix75. | Xfydbfpo<br>%DX=Dd Xfydbfpo° | AFCF<br>Fo, rdm | N nafp<br>Cd:af:a%a° | A:5aNa%y4 | nii5g/P%4° | ni i 5 g / 100 %   ° | රසිැහිළි රටු කි | ia§y5ao∪lefl<br>=Dd:(mia5y° | l ee55ati:nmvfiaix<br>Xf, nphi        |
|                                                  | ⊒-¦<br>                       | Tf.         | E pr-       |                 | O5asdmolg5yTfiyp∋a5d:                                                                                       |                           | Ε'n,        | Brdu<br>A: yo                        | × %                          | ΑF,             | C Z C                | ц<br>Д    | ( ni       | , n                  | 8               | Ē                           | ×f,                                   |
|                                                  | -                             | _           |             |                 | by SILT (ML)645 fin:et of modu 5is<br>dl5, nafmo7otapnyfymno                                                | san:t,d5iat  <br>J        |             |                                      |                              |                 |                      |           |            |                      |                 |                             | Hn:enwgfp3'rgi<br>_<br>_              |
|                                                  | —1200<br>-                    | -           |             | Sanc<br>apnyf ך |                                                                                                             | <sup>_</sup>              | Ŵ           |                                      |                              |                 | P.0                  |           |            |                      |                 |                             | -                                     |
|                                                  | -                             | 3           |             | an:t,           | ey SAND (SC)645 fad , fe5w, ir<br>d5iat, fe5w, ef:iftufnhmoyf,<br>hy SILT (ML)645 fad , fe5w, in:           | f:afe                     |             | BC=93<br>12<br>11 /                  | 9Sc                          | -               | P.0                  | 997.3     | 900        | 29                   |                 |                             | F5fbfl:nnoi5<br>Cdman-ifvfia -        |
|                                                  | -<br>                         | -           |             | , d5            | at bfpoia644                                                                                                |                           |             | BC=7<br>M<br>98                      | 9Sc                          |                 | 90.M                 | 998.0     | 900        | 71                   |                 |                             | F5fbfl:nmci55                         |
|                                                  | _                             | 90-         |             | , fe            | SAND(SM)645fin:etdm3bfofmo<br>ōw, ef:if<br>dl5efian55g                                                      | dut,d5iat                 |             | BC=S<br>93                           | 97c                          |                 | 3.7                  | 912.0     |            |                      |                 |                             | -                                     |
|                                                  | -<br>                         | -           |             |                 |                                                                                                             |                           |             | \ <u>19</u>                          |                              |                 |                      |           |            |                      |                 |                             | -                                     |
|                                                  | -                             | -           |             | nogsa           | r polu :                                                                                                    |                           |             |                                      |                              |                 |                      |           |            |                      |                 |                             | -                                     |
|                                                  | _                             | 93-         |             |                 |                                                                                                             |                           |             | BC=2<br>M                            | 9Sc                          |                 | S.S                  | 911.7     |            |                      |                 |                             | -                                     |
|                                                  |                               | _           |             |                 |                                                                                                             |                           |             | <u>93</u>                            |                              | -               |                      |           |            |                      |                 |                             |                                       |
| " W, LX6 X & X X T                               |                               | _           |             |                 | ey SAND (SC)645 fad ydnpifin:<br>:t, d5/atmoldif                                                            | etdm50of                  |             |                                      |                              |                 |                      |           |            |                      |                 |                             | -                                     |
| - " WLX6                                         | _                             | 10          |             |                 |                                                                                                             |                           |             | BC=1<br>P<br>/                       | 9Sc                          |                 |                      |           |            |                      |                 |                             | -                                     |
| R"" UCL<br>E]                                    | -<br>11S0                     | -           |             |                 |                                                                                                             |                           |             |                                      |                              |                 |                      |           |            |                      |                 |                             | -                                     |
| ( W FRWORE                                       | -                             | 13-         |             | ∕⊑f∕            | ad, fe5w, in:etdn5bofofmadutapnv                                                                            | f Fun                     |             | BC=2                                 | 90c                          | -               |                      |           |            |                      |                 |                             | -                                     |
| W FR                                             | -                             | -           |             | 401 8           | au, reow, rn.econoprormautaprij                                                                             | /i, oyn                   |             | P<br>7                               | 900                          |                 |                      |           |            |                      |                 |                             | -                                     |
| ><br>L                                           | -                             | -           |             |                 |                                                                                                             |                           |             | ·                                    |                              |                 |                      |           |            |                      |                 |                             | -                                     |
| 0120779.0031<br>                                 | -1183                         | -           |             |                 |                                                                                                             |                           |             |                                      |                              |                 |                      |           |            |                      |                 |                             | -                                     |
| 2077<br>3RXU                                     |                               | - 20-       |             |                 |                                                                                                             |                           |             |                                      |                              |                 |                      |           |            |                      |                 |                             | -                                     |
| (XRJLCv DAYBLX6 10120779.003)<br>X#_1012.ECB     | -                             | 20          |             | dr£bf           | rpdu:                                                                                                       |                           |             | BC=3<br>3                            | 9Sc                          |                 |                      |           |            |                      |                 |                             |                                       |
| /BLX                                             | F                             | -           | 1.1.2       |                 |                                                                                                             |                           |             | ل <u>ع</u> ر                         | I                            | 1               |                      |           |            |                      |                 |                             |                                       |
| v DAY<br>2.E OB                                  | -1180                         | -           |             |                 | rdp5guniafp,5nafenanpdl5<br>ugpdw.eiwp4nyf.vsfrdp5gur                                                       |                           |             |                                      |                              |                 | Epdw.                |           |            |                      |                 |                             | <u>URD6</u><br>ep5 <b>m5</b> gdpn4afp |
| (XRJLCV<br>OBXIX#_1012.                          | -                             | -           |             | u 5as g         | gpdwad: "frpwnpo07t1012.                                                                                    |                           |             |                                      |                              |                 |                      | XI ODI    |            |                      |                 |                             |                                       |
| ( XF<br>, **                                     | _                             | 23-         |             |                 |                                                                                                             |                           |             |                                      |                              |                 |                      | nafero    |            |                      |                 | ionada:                     | n pfnpdl5;nafn:eufpf                  |
| OBY                                              |                               | _           |             |                 |                                                                                                             |                           |             |                                      |                              |                 |                      |           |            |                      |                 |                             |                                       |
| EWV                                              | -1173                         | _           |             |                 |                                                                                                             |                           |             |                                      |                              |                 |                      |           |            |                      |                 |                             |                                       |
| ×⊥×                                              |                               | -           |             |                 |                                                                                                             |                           |             |                                      |                              |                 |                      |           |            |                      |                 |                             |                                       |
| "UOL6Km≜g5a, niáp_1012<br>vLY(CIvL6L6KC0'_FvIDTI |                               |             |             |                 |                                                                                                             | ( XRJLCv D<br>10120779.00 |             |                                      |                              |                 | BR                   | ХФЕ       | OR         | E B)                 | 9               |                             | " ŒAXL                                |
| a, ni<br>LGKO                                    |                               |             |             |                 |                                                                                                             |                           |             |                                      |                              |                 |                      |           |            |                      |                 |                             |                                       |
| (唐] g5<br>  vL6                                  |                               | K           | <b>1</b>    | E/              | NFELDER                                                                                                     | TXI N D B#                | 6           | T.L                                  | (m-                          | di f e [        | )dnæ l               | ∶afmh     | fGn        | umfino (             | da5 #           | vi Cf                       | : afp I)2                             |
| 0.6 k<br>.Y( 0                                   |                               |             |             | Bri             | ght People. Right Solutions.                                                                                | CHLCKLT E                 | 3#6         | J.Z                                  |                              | Cdpfp           | d4F55                | ppn H5ą   | sunc       | n: e                 | Nifia           | al bf:                      |                                       |
| 9 LDV v L Y (                                    |                               |             |             |                 |                                                                                                             | TI vL6                    |             |                                      |                              | Û               | ai I : g             | ∫fnhi C   | dw. a      | ot Chr               | <b>s</b> ap 5   | 1                           |                                       |
| gL<br>gL                                         | L                             |             |             |                 |                                                                                                             | I                         |             |                                      | I                            |                 |                      |           |            |                      |                 |                             | (IEL6 9 d49                           |

| JZw. 写n                                                                    |                                 |               | gin - I                                                                                                                                                                                                                                                                                                | End:   | 1x08x1012                                                                                                   | Drilling Compa                    | any        | /: <u>BC1</u>    |                                           |                 |                                         |                                 |                                  |                               |                                                                                             |                                                                                                  | BORING LOG B-2                                             |
|----------------------------------------------------------------------------|---------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------------------------------------------------------------------------------------|-----------------------------------|------------|------------------|-------------------------------------------|-----------------|-----------------------------------------|---------------------------------|----------------------------------|-------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| B#6 JZw.                                                                   | Log                             | ged           | By:                                                                                                                                                                                                                                                                                                    |        | T.Lepffi                                                                                                    | Drill Crew:                       |            | Tnpport          | nXn4nfnt                                  | Ffpg5d          |                                         |                                 | ·                                |                               |                                                                                             |                                                                                                  |                                                            |
|                                                                            | Hor.                            | -Ver          | t. Dat                                                                                                                                                                                                                                                                                                 | tum:   | Ddal bn5minn nfn                                                                                            | Drilling Equip                    | me         | nt: <u>CYL</u>   | )83 vp                                    | ıyh Xฐ          | ]                                       | На                              | mme                              | r Type                        | e - Dr                                                                                      | op:                                                                                              | 9P0 mn. Iwad) 20 5 .                                       |
| 01@8 (Y                                                                    | Plur                            | nge:          |                                                                                                                                                                                                                                                                                                        |        | )M0 efgpffi                                                                                                 | Drilling Metho                    | d:         | Hdma             | uFaf,                                     | l wgf           | р                                       | На                              | mme                              | r Effic                       | cienc                                                                                       | y: _                                                                                             | S1q                                                        |
| 12 0                                                                       | Wea                             | ther          | :                                                                                                                                                                                                                                                                                                      |        | Fw:: o                                                                                                      | Bore Diameter                     | r:         | S5.              | R.T.                                      |                 |                                         | Ha                              | mme                              | r Cal.                        | Date                                                                                        | : _                                                                                              | 7x17x1019                                                  |
| 18×10                                                                      |                                 |               |                                                                                                                                                                                                                                                                                                        |        | "ΨOT LW                                                                                                     | (ORXIV URD                        |            |                  |                                           |                 |                                         |                                 | α                                | BRXI                          | vRX#                                                                                        | ‡ XLFA                                                                                           | \O/F                                                       |
| ( GR vvL T 6 02X08X1012                                                    | lpdl5, naf<br>Lnfhbna6od: %ffa° | Tf-as%affa°   | 1- s§nmOdg                                                                                                                                                                                                                                                                                             |        | Ondawef62P.88372k<br>Od:g5awef6)99S.9390Mk<br>Ipdl5, naf Epdw.e FwpahyfLifibnaf<br>FwpahyfCd:e5abai:6BnpfLi | id: %4a°61t200                    | - rfi vo-f |                  | Xf ydbf po<br>900X=Dd Xf ydbf po°         | AFCF<br>Fo, rdm | N nafp<br>Cd:af:a%4°                    | oA:5aNa%y4                      | nii5g/P%4°                       | ni i 5 g / 100 %4 °           | ୦୫.୬୯୫ ୦୨ କ୍ଷ                                                                               | lia§y5ao∪iefl<br>=Dd:(mia§y°                                                                     | l ee55adi:nmvfiaix<br>Xf, nphi                             |
|                                                                            |                                 | Ţf.           | ы<br>Ш                                                                                                                                                                                                                                                                                                 |        | O5asdnodg5yTfiyp5-a5d:                                                                                      | :                                 | Е'n,       | Brdu<br>A: yo    | Т<br>Х<br>С<br>Х<br>С<br>Х<br>С<br>С<br>Х | А<br>Fo,        | Z C<br>Z G                              | ц<br>В                          | ( ni                             | , ni                          | B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B | )<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>( | L ec<br>Xf ,                                               |
|                                                                            | -                               |               | -                                                                                                                                                                                                                                                                                                      |        | <u>ve</u><br>d <b>y SILT (ML)</b> 6ofmodu5isan∶t, d5i<br>n:gwmnpgpnbfm                                      | atapnyfgpnbfnt                    | V          |                  |                                           |                 | 2.P                                     |                                 |                                  |                               |                                                                                             |                                                                                                  | Hn:enwgfp3'rgi<br>Ll-n:i5al: ⊍efl –<br>Yde568fe (polyadp – |
|                                                                            | -<br>                           | -<br>3-       |                                                                                                                                                                                                                                                                                                        |        | SAND(SM)645fad,fe5w,in:<br>at,fe5w,ef:if                                                                    | et draaf gpnot                    |            | BC=1<br>92<br>93 | 9Sc                                       |                 | P.9                                     | 911.1                           |                                  |                               |                                                                                             |                                                                                                  | -                                                          |
|                                                                            | -                               |               |                                                                                                                                                                                                                                                                                                        | , fe   | rly Graded SAND with Clay (SP-<br>5w, in:etdr8of ofmodut, d5iat, f                                          | e5w, ef:if                        |            | BC=8<br>98<br>17 | 9Sc                                       |                 | 3.M                                     | 997.1                           |                                  |                               |                                                                                             |                                                                                                  | -                                                          |
|                                                                            | -<br>                           | -90           |                                                                                                                                                                                                                                                                                                        |        | SAND (SM)645 fad, fe5w, in:<br>5w, ef:if                                                                    | etdroboft,d5iat                   |            | BC=S<br>92<br>   | 9Sc                                       |                 | 2.8                                     | 919.8                           |                                  |                               |                                                                                             |                                                                                                  |                                                            |
|                                                                            | -                               | -             |                                                                                                                                                                                                                                                                                                        |        | Hy Graded SAND (SP)645 fad ,i<br>u5isan∷t,d5iat,fe5w, ef∶if                                                 | fe5w, in:et                       | -          |                  |                                           |                 |                                         |                                 |                                  |                               |                                                                                             |                                                                                                  | -                                                          |
|                                                                            | 11S3<br>-<br>-                  | 93-           |                                                                                                                                                                                                                                                                                                        |        |                                                                                                             |                                   |            | BC=S<br>97<br>19 | 9Sc                                       |                 | 0.M                                     | 909.P                           |                                  |                               |                                                                                             |                                                                                                  | -                                                          |
| " WILX6 XIGL XFUL                                                          | -                               |               |                                                                                                                                                                                                                                                                                                        |        | Hy Graded SAND with Clay (SP-<br>5w, in:etn5gsarpdu∶t, d5iat, f                                             |                                   |            |                  |                                           |                 |                                         |                                 |                                  |                               |                                                                                             |                                                                                                  | -                                                          |
| ינוגר "נוגע"<br>אבו                                                        |                                 | 10-           |                                                                                                                                                                                                                                                                                                        |        |                                                                                                             |                                   |            | BC=2<br>7<br>90  | 9Sc                                       |                 |                                         |                                 |                                  |                               |                                                                                             |                                                                                                  |                                                            |
| ۳.                                                                         | -                               |               |                                                                                                                                                                                                                                                                                                        |        | ey SAND (SC)645 fad , fe5w, i<br>ut, d5 atmoddif                                                            | n: et drobof                      |            |                  |                                           |                 |                                         |                                 |                                  |                               |                                                                                             |                                                                                                  | -                                                          |
| ( W FRWORE]                                                                |                                 | 13-           |                                                                                                                                                                                                                                                                                                        |        |                                                                                                             |                                   |            | BC=P<br>1<br>3   | 9Sc                                       |                 |                                         |                                 |                                  |                               |                                                                                             |                                                                                                  | -                                                          |
| 120779.0031<br>BRXWE wLFv                                                  | -                               |               |                                                                                                                                                                                                                                                                                                        |        |                                                                                                             |                                   |            |                  |                                           |                 |                                         |                                 |                                  |                               |                                                                                             |                                                                                                  | -                                                          |
| .X6 101207<br>K0'BR>                                                       | —1180<br>-                      | 20-           |                                                                                                                                                                                                                                                                                                        | ,fe    | 5w, ef:ift5ypfnif5in:eyd:                                                                                   | af:a                              |            | BC=8<br>7<br>3   | 9Sc                                       |                 |                                         |                                 |                                  |                               |                                                                                             |                                                                                                  | _                                                          |
| (XRJLCV DAYBLX6 10120779.0031<br>GBXI X#_1012.EGB [_K0"_BRXIDEwL           | -<br>-<br><br>1173<br>-         | -<br>-<br>23- | -                                                                                                                                                                                                                                                                                                      | r fndu | rdp5guniafp, 5nafenanpdl<br>ugpdw.eiwp4nyf.vsfrdp5gun<br>gpdwad: "frpwnpo08t1012.                           |                                   |            |                  |                                           |                 | Epdw.<br>yd, -r<br><u>ELDL</u><br>vsffl | fna£od:.<br><u>XIOD</u> I       | uni:<br><u>RvLF</u><br>al: nody: | dadrii<br><u>6</u><br>na5d: n | fpbfe<br>:efnf                                                                              | ewp5g                                                                                            | <u>URD6</u><br>epőm£ögdpn4afp<br>npfnpdl5; nafn:eufpf      |
| XT_EW_                                                                     | -<br>-<br>-                     |               | -                                                                                                                                                                                                                                                                                                      |        |                                                                                                             |                                   |            |                  |                                           |                 |                                         |                                 |                                  |                               |                                                                                             |                                                                                                  |                                                            |
| , ni đp_10 <sup>.</sup><br>6KO'_FVI E                                      |                                 |               |                                                                                                                                                                                                                                                                                                        |        |                                                                                                             | ( XRJLCv D<br>10120779.00         |            | 5                |                                           |                 | BR                                      | ХФЕ                             | OR                               | E B)                          | 1                                                                                           |                                                                                                  | " \&AXL                                                    |
| guDv " עם ב6 אות בק5 ים, ni af p_1012<br>guDv vLY( מיע ב6 במאכי" _ Fvi DTI |                                 | *             | <l< td=""><td></td><td>NFELDER<br/>ight People. Right Solutions.</td><td>TXI N D B#<br/>CHLCKLT E<br/>TI vL6</td><td></td><td>T.L<br/>J.Z</td><td></td><td>Colp f p</td><td>d4F55</td><td>:afındə<br/>ppn:H5g<br/>ıfınfni C</td><td>sunc</td><td>n: e l</td><td>Nfia</td><td>al bf:</td><td></td></l<> |        | NFELDER<br>ight People. Right Solutions.                                                                    | TXI N D B#<br>CHLCKLT E<br>TI vL6 |            | T.L<br>J.Z       |                                           | Colp f p        | d4F55                                   | :afındə<br>ppn:H5g<br>ıfınfni C | sunc                             | n: e l                        | Nfia                                                                                        | al bf:                                                                                           |                                                            |
| ן<br>פר                                                                    |                                 |               |                                                                                                                                                                                                                                                                                                        |        |                                                                                                             | I                                 |            |                  |                                           |                 |                                         |                                 |                                  |                               |                                                                                             |                                                                                                  |                                                            |

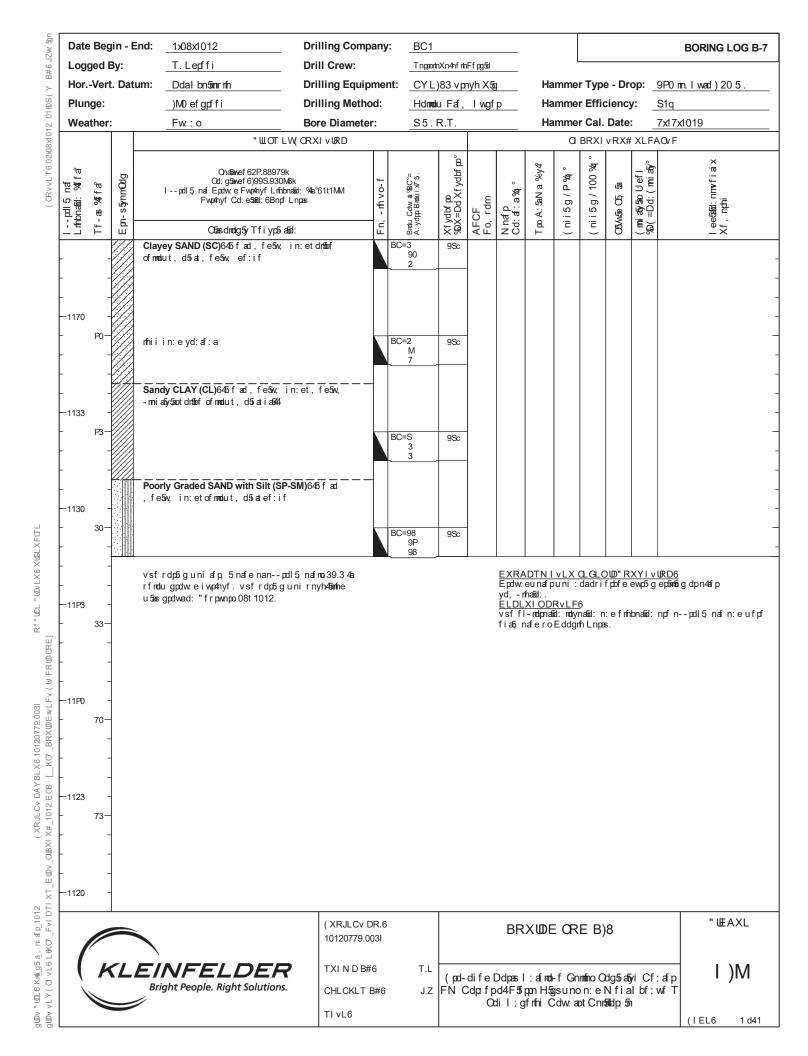
| Date                            |         | -        |            | nd:       | 1x07x10                                      |                   |                                    |                                       |                    | ing Com                                     | pany        | BC1                                 |                                  |                 |                 |                |            |                             |            |                            | BORING LOG                         |
|---------------------------------|---------|----------|------------|-----------|----------------------------------------------|-------------------|------------------------------------|---------------------------------------|--------------------|---------------------------------------------|-------------|-------------------------------------|----------------------------------|-----------------|-----------------|----------------|------------|-----------------------------|------------|----------------------------|------------------------------------|
| Log                             | •       | -        |            |           | T.Lepf                                       |                   |                                    |                                       |                    | Crew:                                       |             |                                     | ontnXn4hfrt                      |                 |                 |                | ı          |                             |            |                            |                                    |
| Hor.                            |         |          | Datu       | um:       | Ddal br                                      |                   |                                    |                                       |                    | ing Equi                                    |             |                                     | _)83 vp                          |                 |                 |                |            |                             |            | -                          | <u>9P0 m. Iwad) 205.</u>           |
| Plun                            | -       |          |            |           | )M0 ef g                                     |                   |                                    |                                       |                    | ing Meth                                    |             |                                     | ndu Faf,                         | lwgf            | р               |                |            | r Effic                     |            | -                          | <u>S1q</u>                         |
| Wea                             | the     | r:<br>T  |            |           | Fw::o                                        |                   |                                    |                                       |                    | Diamete                                     | er:         | 55                                  | . R.T.                           |                 |                 | На             |            | r Cal.                      |            | 9:                         | 7x17x1019                          |
| poll 5; naf<br>.nfnbna6d: %5 fa | ක රෝ සේ | o EmmOde | - spunnes  |           | Ipdl5, na<br>F                               | Od:g5a<br>afEpdw. | awef 62P.<br>awef 6)99<br>e Fwpahy | .882M5k<br>)S.93PM5                   | Sk<br>and: %aa°61: |                                             | - rh vo- f  | Bndu Cdw:ai%BC°=<br>A:ydppBnduix75. | Xf ydbf po<br>%DX=Dd Xf ydbf po° | AFCF<br>Fo, rdm | fip<br>af:a%q°  | A: 5aN a %y4   | nii5g/P%4° | ni i 5 g / 100 % a $^\circ$ | OGME CG Fa | a§y5ao∪'efl<br>=Dd:(mia§y° | Sadi: mmvfiaix<br>nphi             |
| ¦₹                              | -1f     | 8        | <u>ь</u> - |           |                                              | Ofasdro           | alg5y⊤f                            | iyp5-a5o                              | d:                 |                                             | Ъ,          | Bridu<br>A:yd                       | %<br>%<br>Xf y                   | AF(<br>Fo,      | Nnafp<br>Cd:af: | а<br>Т         | ( ni       | ,<br>ir                     | 8          | Ē)                         | , T ee<br>Xf ,                     |
| -<br>1200<br>-                  |         |          |            |           | ey SAND (                                    |                   |                                    |                                       |                    |                                             |             |                                     |                                  |                 | 1.7             |                |            |                             |            |                            | Hn:en wygfp3'rgi<br>Cdppdi5d: vfia |
| -<br>                           | 3-      |          |            | ntogsar   | pdu:t, c                                     | 15iat, f          | e5w, e                             | ef:if                                 |                    |                                             |             | BC=8<br>9P<br>13                    | 97c                              |                 | 1.1             | 991.2          |            |                             |            |                            |                                    |
|                                 | 90-     |          |            | ef:if     |                                              |                   |                                    |                                       | ,                  |                                             |             | BC=M<br>9S<br>21<br>BC=91<br>9P     | 97c                              |                 | 7.2<br>90.S     | 919.S<br>991.2 |            |                             |            |                            |                                    |
| -11MD                           |         |          |            | , fe5     | l <b>y Graded</b><br>iv, in:et<br>ynmy5ov, y | dr5bf of          | modut,                             |                                       |                    |                                             |             | 9P<br>19                            |                                  |                 |                 |                |            |                             |            |                            |                                    |
| -1153                           | 93-     |          |            | Poorl     | w, adydn<br>I <b>y Graded</b><br>w, in:et    | I SAND            | with C                             | lay (SP                               | <b>-SC)</b> 6451   | <br>fad                                     |             | BC=7<br>90<br>S                     | 95c                              |                 | 1.S             |                |            |                             |            |                            |                                    |
| -11S0                           | 10-     |          |            | <br>Silty | SAND (SI                                     | <b>₩)</b> 645 f   | ad, fe                             | ————————————————————————————————————— | :etdm6of           | of modut                                    |             | BC=3<br>3<br>P                      | 9Sc                              |                 | 92.P            |                |            |                             |            |                            |                                    |
| 4400                            | 13-     |          |            | , d5      | at, fe5w,                                    | ef:if             |                                    |                                       |                    |                                             |             | BC=P<br>8<br>3                      | 9Sc                              |                 | S.M             |                |            |                             |            |                            |                                    |
| -1183                           | 20-     |          |            |           | l <b>y Graded</b><br>w, in:et                |                   |                                    |                                       |                    |                                             |             | BC=2<br>99                          | 950                              |                 | 91.2            |                |            |                             |            |                            |                                    |
| -1180                           |         |          |            |           | y Lean Ci<br>ōy5aot dr1oof t                 |                   |                                    | ad, fe                                | ±5w, in:e          | et molu                                     |             | 98                                  |                                  |                 |                 |                |            |                             |            |                            |                                    |
| (                               | ł       |          |            |           |                                              |                   |                                    |                                       | ן<br>1<br>ר        | XRJLCV<br>10120779.<br>TXI N D B<br>CHLCKLT | 003I<br>8#6 | T.L<br>J.Z                          | . (pd-<br>z FN (                 |                 | Ddpæs           | XUDE           | fGn        | unino C                     | )dg5 a     |                            |                                    |
|                                 |         |          |            | /         |                                              |                   |                                    |                                       |                    | TI vL6                                      |             |                                     |                                  | à               | di I : ç        | gfnfni Č       | dw.a       | ot Cnr                      | 56dp 5     | ົກ                         | (IEL6 9d4                          |




|                                 | -             | jin - E  | End:           | 1x0Sx1012                                                                                      | _                                     | g Compa                             | any       |                                                |                            |                 |                         |              |               |                   |                 |                            |         | BORING LOG                      |
|---------------------------------|---------------|----------|----------------|------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------|-----------|------------------------------------------------|----------------------------|-----------------|-------------------------|--------------|---------------|-------------------|-----------------|----------------------------|---------|---------------------------------|
| Logo                            | -             | -        |                | T. Lepf fi                                                                                     | _ Drill Cı                            |                                     |           |                                                | hXn4hfrt                   |                 |                         |              | ı             | _                 |                 |                            |         |                                 |
|                                 |               | . Dat    | um:            | Ddal bn5mrnfn                                                                                  |                                       | g Equipr                            |           |                                                | )83 vp                     | -               |                         |              |               |                   |                 | -                          |         | n. Iwad ) 20 5 .                |
| Plun                            | -             |          |                | )M0 efgpffi                                                                                    | _                                     | g Metho                             |           |                                                | lu Faf,                    | l wgf           | р                       |              |               | r Effic           |                 | -                          | S1q     |                                 |
| Wea                             | ther:         |          |                | <u>Fw.:o</u>                                                                                   | Bore D<br>T LW( ORXI v U              | iameter                             | :         | <u>S5</u> .                                    | R.I.                       |                 |                         | На           |               | r Cal.            |                 | :<br># XLF/                | 7x17x1  | 019                             |
| poll5,naf<br>.nfnbna6ol: %affa° | %få           | s§ynmOdg |                | Onatawef62P.882<br>Od:g5awef6)995.93<br>Ipdl5 nafEpdw.eFwp4hyfL<br>Fwp4hyfCd:e5a5al:6Ba        | 2M8k<br>39SMk<br>.nfnbna5d: %4a°61t20 |                                     | - nh vo-f | Bhdu Cdwrai%B C°≔<br>A:ydpp Bndu i <i>X</i> 5. | Xfydbfpo<br>%DX=DdXfydbfpo | m               | a%to°                   | A: 5aN a %y4 | g/P%4°        | nii5g / 100 % a ° | LEB<br>LEB      | ia§y5aoUefl<br>=Dd:(mia5y° |         | lee5adin mmrfiaix<br>Xf, n phri |
| L rfnbna                        | Tf-æ          | Epn-s    |                | Oaasdmodg5y⊺fiyp                                                                               | රම අත්:                               |                                     | Fn, -1    | Brdu Cd<br>A: ydpp l                           | Xf ydb<br>%DX=D            | AFCF<br>Fo, rdm | Nnafp<br>Cd:af:         | T po A:      | ( ni i 5 (    | ( ni i 5          | OBMAR OG        | (muia5)<br>%D(≡D           |         | eeهها<br>Xf, n                  |
| - 1200                          | -             |          | an:t,          | ey SAND (SC)645 fad , fe5<br>d5a                                                               |                                       |                                     | V         |                                                |                            |                 | 7.8                     |              |               |                   |                 |                            | X)Gnmr  | ₩gfp3'rgi<br>frvfia<br>5d:vfia  |
|                                 | -<br>3—<br>-  |          |                | SAND (SM)645 fad , fe5w,<br>atef∶if                                                            | in:etdrobofgp                         | not                                 |           | BC=98<br>13<br>P1                              | 9Sc                        |                 | 9.2                     | 918.9        | 900           | 28                |                 |                            | F5fbfl  | :nroi5                          |
| -11M8                           | -             |          | 45 fi          |                                                                                                |                                       |                                     |           | BC=9M<br>21<br>28                              | 9Sc                        |                 | 9.2                     | 910.P        |               |                   |                 |                            |         |                                 |
|                                 | 90-           |          | dr£bf          | SAND with Clay (SM)645 f<br>of modut, d5 at bf po ef:if                                        |                                       |                                     |           | BC=99<br>1S                                    | 9Sc                        |                 | 9.M                     | 911.2        |               |                   |                 |                            |         |                                 |
| -11MD                           | -             |          | ofmod<br>Silty | ly Graded SAND (SP)645 f<br>u5isrpdu:t, d5iatbfpoef:<br>SAND (SM)645 fin:etdrabof<br>ōw, ef:if | if                                    |                                     |           | 30                                             |                            |                 |                         |              |               |                   |                 |                            |         |                                 |
| -1153                           | -<br>93—<br>- |          | <br>Silty      | CLAY (CL-ML)6rdu - mia5y5                                                                      | 5aotdr15ofofmolut                     | . — — —                             |           | BC=8<br>90<br>99                               | 95c                        |                 | 1.P                     |              |               |                   |                 |                            |         |                                 |
|                                 | -<br>10—<br>- |          | , d <b>5</b>   | atia®4tapnyf45fad,fe5w,                                                                        | in:e                                  |                                     |           | BC=3<br>2<br>7                                 | 9Sc                        |                 | 90.P                    |              |               |                   | 18              | 8                          | læfprf  | pgvfia                          |
| -11S0                           | -<br>-<br>13— |          |                | GLAYwith Sand (CL)645f<br>£ry5aotdr3off gpnot, d5fat, fet                                      |                                       |                                     |           | BC=1<br>1<br>2                                 | 9Sc                        |                 |                         |              |               |                   | 23              | 97                         | læfprf  | pgvfia                          |
| -1183                           | -<br>-<br>20— |          | 45 fa          | dl, fe5w, in:et, fe5w, -m                                                                      | mia5y5aotia84                         |                                     |           | BC=8                                           | 9Sc                        |                 |                         |              |               |                   | 22              | 93                         | laafprf | pgvfia                          |
| -1180                           | -             |          |                | <b>iyGradedSAND(SP)</b> 645f<br>rpdu∶t,d5tat,fe5w,ef∶i                                         |                                       | et                                  |           | 3<br>P                                         |                            |                 |                         |              |               |                   |                 |                            |         |                                 |
|                                 | K             |          |                | NFELDE<br>ght People. Right Solutio                                                            |                                       | RJLCV DI<br>120779.00<br>(I N D B#6 | )3I<br>6  | T.L<br>J.Z                                     | (pd-<br>FN C               | dp f p          | Ddpas<br>d4F <b>5</b> 5 |              | -fGn<br>gsunc | mínoC<br>on:e     | bdg5iaa<br>Nfia | al bf:                     |         | " (EAXL                         |
|                                 |               |          | /              |                                                                                                | ті                                    | vL6                                 |           |                                                |                            | 0               | dil:ç                   | jînhi C      | dw.a          | ot Cnr            | 56dp 5          | ก                          |         | (IEL6 9 d4                      |

gubv "Lube Kettenge a, niatp\_1012 (XRJLCv DAYBLX610120779.003) R."Lubr "Lubr Vettenge and the second se

| B#6 JZw. ち                                                            | Date                            | Beg            | gin - E   | Ind:                  | 1x0Sx10                          | 012               |           | Dr                            | illing Com                 | pany      | r: _E            | BC1               |                                  |                 |                           |                                  |                          |                     |             |                            | I      | BORING                       | LOG B-4     |
|-----------------------------------------------------------------------|---------------------------------|----------------|-----------|-----------------------|----------------------------------|-------------------|-----------|-------------------------------|----------------------------|-----------|------------------|-------------------|----------------------------------|-----------------|---------------------------|----------------------------------|--------------------------|---------------------|-------------|----------------------------|--------|------------------------------|-------------|
| 3#6 J.                                                                | Log                             | ged I          | By:       |                       | T.Lepf                           | fi                |           | Dr                            | ill Crew:                  |           | 1                | Γnppontnλ         | Kn4hfnh                          | Ffpg5d          |                           |                                  | L                        |                     |             |                            |        |                              |             |
| ~                                                                     | Hor.                            | -Ver           | t. Dat    | um:                   | Ddal b                           | n5mrnfn           |           | Dr                            | illing Equi                | pmei      | nt: _(           | CYL)8             | 83 v pr                          | nyh X5g         |                           | Ha                               | mme                      | r Тур               | e - Dr      | ор: _                      | 9P0 m. | lwad)2                       | 205.        |
| 01@8 (                                                                | Plun                            | ige:           |           |                       | )M0 ef g                         | gpffi             |           | Dr                            | illing Meth                | nod:      | -                | Hdmodu            | Faf,                             | l wgf           | p                         | Ha                               | mme                      | r Effic             | ciency      | y: _                       | S1q    |                              |             |
| 12 0                                                                  | Wea                             | ther           | :         |                       | Fw.:o                            |                   |           | Bo                            | ore Diamet                 | er:       | 5                | S5.R              | R.T.                             |                 |                           | Ha                               | mme                      | r Cal.              | Date        | : _                        | 7x17x1 | 019                          |             |
| 08×10                                                                 |                                 |                |           |                       |                                  |                   | "Ψ¢       | JT LW(OR)                     | XIVURD                     |           |                  |                   |                                  |                 |                           |                                  | a                        | BRXI                | vRX#        | XLF                        | AO/F   |                              |             |
| ( GRVVLT6 02X08X1012                                                  | lpdl5, naf<br>Lnfhbna6dl: %ffa° | ቆ ¼f ẩ         | - s§nmOdg |                       |                                  | Od:g5a<br>afEpdw. |           |                               | a°61t202                   | - nh vo-f | Brdu Cdw a %BC°= | . c. x. impussion | Xf ydbf po<br>%DX=Dd Xf ydbf po° | AFCF<br>Fo, rdm | afp<br>af:a%q°            | A: 5aN a %y4                     | nii5g/P%4°               | (nii5g/100%4°       | රෑරාණ රද කි | ia§y5aoUefl<br>=Dd:(mia§y° |        | lee5adi:nmvfiaix<br>v f addi | =           |
|                                                                       | ≓.<br>                          | Ţf.            | Бр        |                       |                                  | Ofasdro           | bg5yTfi   | ypērandi:                     |                            | Fn,       | Brdu             | A: ya             | Xf y<br>8X                       | AF(<br>Fo,      | Nnafp<br>Cd:af:a          | Τpo                              | , ni                     | , in                | 8           | ш<br>Д                     |        | < _ ee                       | z           |
|                                                                       | _                               | _              |           |                       |                                  |                   |           | fad, fe5w,<br>:iftapnyfy      |                            |           | BC=P<br>90<br>M  |                   | 9Sc                              |                 |                           |                                  |                          |                     |             |                            |        |                              |             |
|                                                                       | -<br>                           | -<br>-<br>-P0- |           |                       | <mark>CLAY(C</mark><br>at, fe5w, |                   |           | a5y5aot dr5bof<br>n:e         | gpnot                      |           |                  |                   |                                  |                 |                           |                                  |                          |                     |             |                            |        |                              | -<br>-<br>- |
|                                                                       | -                               | -PU            |           |                       |                                  |                   |           |                               |                            |           | BC=1<br>2<br>3   |                   | 91c                              |                 |                           |                                  |                          |                     | P2          | 12                         | læfprf | pgvfia                       | -           |
|                                                                       | -<br>                           | -              |           | <b>Silty</b><br>, fet | SAND(Si<br>5w, ef:if             | <b>M)</b> 645 f   | in: et dr | bof of madut,                 |                            |           |                  |                   |                                  |                 |                           |                                  |                          |                     |             |                            |        |                              | -           |
|                                                                       | -                               | P3-            |           |                       |                                  |                   |           |                               |                            |           | BC=1<br>7<br>8   |                   | 9Sc                              |                 |                           |                                  |                          |                     |             |                            |        |                              | -           |
|                                                                       | -<br>                           | -              |           |                       |                                  |                   |           | :(SP-SM)64<br>d5:at,fe        |                            | _         |                  |                   |                                  |                 |                           |                                  |                          |                     |             |                            |        |                              | -           |
| 9L X F U L                                                            | -                               | 30-            |           |                       |                                  |                   |           |                               |                            |           | BC=7<br>90<br>9F | )                 | 9Sc                              |                 |                           |                                  |                          |                     |             |                            |        |                              | -           |
| R"" שערא6 אשראדער<br>R" "שערא6 אשר                                    | -<br>                           | -<br>-<br>33—  | -         | r fndu                |                                  | wp4hyf.           | vsfrd     | npoll5, naf<br>p5gunirr<br>2. |                            |           |                  |                   |                                  |                 | yd, -rl<br><u>ELDL</u>    | ha5d:.<br><u>XIOD</u><br>-ndp∩a1 | <u>RvLF</u><br>id: nobyi | <u>6</u><br>na5d: n | :efnfn      |                            |        | dpn4afp<br>pdl5, naf         | n:eufpf     |
| FR@CRE]                                                               | -                               | -              | -         |                       |                                  |                   |           |                               |                            |           |                  |                   |                                  |                 |                           |                                  |                          |                     |             |                            |        |                              |             |
| 0120779.003I<br>BRX''のE'*' ( い                                        |                                 | -<br>70-       |           |                       |                                  |                   |           |                               |                            |           |                  |                   |                                  |                 |                           |                                  |                          |                     |             |                            |        |                              |             |
| (XRJLCV DAYBLX6 10120779.003)<br>X#_1012.ECB                          | -<br>                           | -              |           |                       |                                  |                   |           |                               |                            |           |                  |                   |                                  |                 |                           |                                  |                          |                     |             |                            |        |                              |             |
| (XRJLCV [<br>OBXIX#_1012.E                                            | -                               | -<br>73-       | -         |                       |                                  |                   |           |                               |                            |           |                  |                   |                                  |                 |                           |                                  |                          |                     |             |                            |        |                              |             |
|                                                                       | -<br>—1123<br>-                 | -              | -         |                       |                                  |                   |           |                               |                            |           |                  |                   |                                  |                 |                           |                                  |                          |                     |             |                            |        |                              |             |
| , ni đ p_1012<br>KO'_FVI DTI                                          |                                 |                |           |                       |                                  |                   |           |                               | ( XRJLCv<br>10120779.      |           |                  |                   |                                  |                 | BR                        | XØE                              | EOR                      | E B)                | P           |                            |        | " (8                         | EAXL        |
| guov " LOLG Kr≜g5a_, ni≴p_1012<br>guov v LY(CIv L6K C°_FVIDTIXT_EL0v_ |                                 |                | KL.       |                       | NF1<br>ght Peop                  |                   |           |                               | TXINDE<br>CHLCKLT<br>TIVL6 |           |                  | T.L<br>J.Z        |                                  | dpfp            | Ddpasl<br>d4F5f∣<br>dil∶g | ppn H5Į                          | İgsunc                   | n: e                | Nfia        | lbf:                       |        |                              | )7          |
| ng                                                                    |                                 |                |           |                       |                                  |                   |           |                               | 1                          |           |                  |                   |                                  |                 |                           |                                  |                          |                     |             |                            |        | (IEL6                        | 1 d41       |


| Date I                         | -        |           |                           | <u>1x08x10</u><br>T.Lepf |                  |          |                             | Drilling C<br>Drill Crev            |                                        | · y ·       |                                       | hXn4hfnt                          | Ffpq5d          |                 |              | l          |              |                |                            |              | BORING LOG                       |
|--------------------------------|----------|-----------|---------------------------|--------------------------|------------------|----------|-----------------------------|-------------------------------------|----------------------------------------|-------------|---------------------------------------|-----------------------------------|-----------------|-----------------|--------------|------------|--------------|----------------|----------------------------|--------------|----------------------------------|
| Hor\                           |          | -         |                           | Ddal br                  |                  |          |                             | Drilling E                          |                                        | en          |                                       | )83 vp                            |                 | 1               | На           | mme        | r Typ        | e - Dr         | op:                        | 9P0 mr       | n. Iwad) 205.                    |
| Plung                          | le:      |           |                           | )M0 efg                  |                  |          |                             | Drilling N                          |                                        |             |                                       | u Faf,                            |                 |                 |              |            | r Effic      |                | _                          | S1q          |                                  |
| Weat                           |          |           |                           | Fw::0                    |                  |          |                             | Bore Dia                            |                                        |             | S5.                                   |                                   |                 | ·               |              |            | r Cal.       |                |                            | 7x17x        | 1019                             |
|                                |          |           |                           |                          |                  | " U      | LOT LW                      | (ORXIVURD                           |                                        |             |                                       |                                   |                 |                 | -            |            |              |                | + XLF/                     |              |                                  |
| pdl5,naf<br>.nfnbn a6di: %affa | as%affa° | - s§nm0dg | ۱ -                       |                          | Od:g5<br>fiEpdw: | e Fwp4hy | S.933M0k                    | īd: %ka°61t20P                      | f vo f                                 |             | Bhdu Colw:ai%BC°≕<br>A:ydpp.Bnduix75. | Xf ydbf po<br>900X=Dd Xf ydbf po° | AFCF<br>Fo, rdm | afp<br>af:a%o¦° | A: 5aN a %y4 | nii5g/P%4° | nii5g/100%4° | රහිරුණි රටු කි | ia5y5ao∪efl<br>=Dd:(mia5y° |              | lee5adi:n nvv fiaix<br>Xf, n phi |
| ;<br>⊒_  <br>                  | e j      | ц<br>Ш    |                           |                          | Ofasdr           | dag5y⊤f  | iyp5-a6d:                   | :                                   | ء<br>لا                                | Ľ           | Brdu<br>A: yo                         | %<br>%<br>Xfy                     | AF(<br>Fo,      | N naf<br>Cd: af | 8            | ( ni       | ,<br>ni      | 8              | je<br>"Q                   |              | L ee<br>Xf,                      |
| -                              | -        |           | Native<br>Sandy<br>rpdu:t |                          | <b>L)</b> 645 f  | ad,fe    | e5w, in:                    | :etan::5s                           |                                        | /           |                                       |                                   |                 |                 |              |            |              |                |                            |              | nwgfp3'rgi<br>√fvfia             |
| -<br>                          |          |           | Silty SA                  |                          |                  |          | ifin:e                      | tīngsaofmoduš                       | is                                     | $\langle  $ |                                       |                                   |                 | 9.0             |              | MS         | 12           |                |                            | F51bf        | l:nnoi5i                         |
| -                              | 3-       |           |                           |                          |                  |          |                             |                                     |                                        |             | BC=98<br>1P<br>93                     | 9Sc                               |                 | 9.1             | 998.0        | MM         | 21           |                |                            | F5fbf        | I:nmci5                          |
| -<br>                          |          |           | -mia5y5                   | aotofmodu                | u5isan           | :t,d5);  | atbfpoia                    |                                     |                                        |             | BC=3<br>7<br>10                       | 9Sc                               |                 | 3.M             | 90P.0        | 900        | 80           |                |                            | F51bf        | l:nmoi5                          |
| -                              | 90       |           | r pdu:t<br>Poorly         | , d5 at e<br>Graded      | sand             | with C   | lay (SP-                    | n:etofmodu5<br>                     | s<br>                                  |             | BC=91<br>10<br>20                     | 9Sc                               |                 | 3.S             | 917.1        |            |              |                |                            |              |                                  |
| -<br>-<br>11M0                 |          |           | Poorly                    | Graded                   | SAND             | with Si  | ilt (SP-S                   | atef:if<br>SM)645fad<br>d5/at,fe5w, |                                        |             |                                       |                                   |                 |                 |              |            |              |                |                            |              |                                  |
| - !                            | 93-      |           |                           |                          |                  |          |                             |                                     |                                        |             | BC=8<br>92<br>S                       | 9Sc                               |                 |                 |              |            |              |                |                            |              |                                  |
| -<br>-<br>11S3<br>-            |          |           | •                         |                          |                  |          | <b>lay (SP-</b><br>t, d5 at | <b>-SC)</b> 645 fad<br>nddif        |                                        |             | BC=3_                                 | 9Sc                               |                 |                 |              |            |              |                |                            |              |                                  |
| -<br>-<br>-<br>-11S0           |          |           |                           |                          |                  |          |                             | <br>fe5w,in∷et<br>∕f, f∶afe         |                                        |             | 7 2                                   |                                   |                 |                 |              |            |              |                |                            |              |                                  |
|                                | 13-      |           |                           |                          |                  |          |                             |                                     |                                        |             | BC=9<br>7<br>S                        | 9Sc                               |                 |                 |              |            |              |                |                            |              |                                  |
| -<br>                          | 20-1     |           |                           |                          |                  |          |                             | fe5w, in:et<br>d5iatbfpoiat         |                                        |             |                                       |                                   |                 |                 |              |            |              |                |                            |              |                                  |
| -                              |          |           |                           |                          |                  |          |                             |                                     |                                        |             | BC=3<br>S<br>S                        | 9Sc                               |                 | 10.1            |              |            |              | 22             | 99                         | læfpri       | ipgvfia                          |
| -<br>                          |          |           | dn5bof of                 | mdu                      |                  |          |                             |                                     |                                        |             |                                       |                                   |                 |                 |              |            |              |                |                            |              |                                  |
| (                              | K        |           | EIN<br>Brigh              | J <b>F</b> L<br>t Peopl  |                  |          |                             | 10120<br>TXI N                      | -Cv DR.<br>779.0031<br>D B#6<br>KLT B# | I           | T.L                                   | (pd-<br>FN C                      | dife[           | Ddpas           | XDE          | -fGn       | infino C     | )<br>dg5 af    | jvi Cf                     | :afp<br>wf T | " (EAXL                          |
|                                |          |           | /                         | -                        | 5                |          |                             | TIVL                                |                                        | 5           | 0.2                                   |                                   | 0               | dil:0           | gfnfni C     | dw.a       | ot Cnr       | Seldp 5        | ກ<br>າ                     |              | (IEL6 9                          |



| Zw. Şın                                                                                                                                                                                                                                                                                                                                       | Date                            | e Beg            | in - E      | nd:                           | 1x07x1012                                                            |                                                               | Drilling Compa                    | any       | /: <u>BC1</u>                             |                             |                 |                                         |                                   |                                |                              |                |                            | BORING LOG                                        | B-6 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------|-------------|-------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------|-----------|-------------------------------------------|-----------------------------|-----------------|-----------------------------------------|-----------------------------------|--------------------------------|------------------------------|----------------|----------------------------|---------------------------------------------------|-----|
| B#6 JZw                                                                                                                                                                                                                                                                                                                                       | Logo                            | ged E            | By:         |                               | T.Lepffi                                                             |                                                               | Drill Crew:                       |           | Tnpport                                   | iXn4hfnt                    | Ffpg5d          |                                         |                                   | ı                              |                              |                |                            |                                                   |     |
|                                                                                                                                                                                                                                                                                                                                               | Hor.                            | -Vert            | . Dat       | um:                           | Ddalbn5mnrmf                                                         |                                                               | Drilling Equip                    | me        | nt: <u>CYL</u>                            | 83 vp                       | nyh X5g         |                                         | На                                | mme                            | r Тур                        | e - Dr         | ор: _                      | 9P0 mn. Iwad) 20 5.                               |     |
| 1@S(                                                                                                                                                                                                                                                                                                                                          | Plun                            | ige:             |             |                               | )M0 efgpffi                                                          |                                                               | Drilling Metho                    | d:        | Hdmod                                     | JFaf,                       | l wgf           | р                                       | Ha                                | mme                            | r Effic                      | cienc          | y: _                       | S1q                                               |     |
| 12 01                                                                                                                                                                                                                                                                                                                                         | Wea                             | ther             |             |                               | Fw.: o                                                               |                                                               | Bore Diameter                     | r:        | S5.                                       | R.T.                        |                 |                                         | На                                | mme                            | r Cal.                       | Date           | : _                        | 7x17x1019                                         |     |
| 8X10`                                                                                                                                                                                                                                                                                                                                         |                                 |                  |             |                               |                                                                      | " LU T LW                                                     | ORXI v URD                        |           |                                           |                             |                 |                                         |                                   | α                              | BRXI                         | v RX#          | ŧ XLFA                     | AQ/F                                              |     |
| (CRVVLT602X08X10120100S(Y                                                                                                                                                                                                                                                                                                                     | lpdl5, naf<br>Lnfhbna6d: %affa? | .a %fa           | I- stynmOdg |                               | On añaven<br>Od:g5aven<br>Ipoll 5 naf Epotvv.e F<br>Fwpahyf Cd:e5aña | 62P.88933k<br>6)99S.932P3k<br>wp4hyfLnfnbna5i<br>t:6F-npifGfg | l: %a°61t202<br>fana6d:           | - nh vo-f | Bhrdu Cdw. at %9.C° =<br>A:ydppBndu ix75. | Xfydbfpo<br>%DX=DdXfydbfpo° | AFCF<br>Fo, rdm | N nafp<br>Cd:af:a%p°                    | A: 5aN a %y4                      | i5g/P%4°                       | nii5g/100%4°                 | රහිරුණි රටු කි | ia§y5aoUefl<br>=Dd:(mia5y° | l ee5aai:n nn v fiaix<br>X f, n phri              |     |
|                                                                                                                                                                                                                                                                                                                                               |                                 | Tf-as            | Бр          |                               | Oãos drodg 5                                                         | jy⊤fiyp5iabd:                                                 |                                   | Ľ,        | Brdu<br>A: yc                             | %<br>%<br>Xfy               | AF(<br>Fo,      | C S S                                   | a L                               | ( ni i                         | ,<br>ir                      | 8              | ₩                          | L ee<br>Xf ,                                      |     |
|                                                                                                                                                                                                                                                                                                                                               | -                               | -                |             | <u>Top</u><br>Claye<br>, d5 ; | ey SAND (SC)645 f                                                    | in:etofnndu5                                                  | jsrpdu∶t                          |           |                                           |                             |                 |                                         |                                   |                                |                              |                |                            | Hn:enwgfp3'rgi<br>Cdppdi5d:vfia                   |     |
|                                                                                                                                                                                                                                                                                                                                               | -1200                           | -                |             | , d <b>5</b> a                | <b>ey SAND (SC)</b> 645 fi<br>a                                      | in:etofnndu5                                                  | isrpdu∶t                          |           |                                           |                             |                 | 1.9                                     |                                   |                                |                              |                |                            |                                                   | -   |
|                                                                                                                                                                                                                                                                                                                                               | -                               | 3                |             | , fet                         | ūv, ef:if                                                            |                                                               |                                   |           | BC=1<br>91<br>93/                         | 97c                         |                 | S.S                                     | 908.7                             |                                |                              |                |                            | T\$pfyaFsfnpvfia                                  | -   |
|                                                                                                                                                                                                                                                                                                                                               |                                 | _                |             |                               | <b>ly CLAY (CL)</b> 6ndu -<br>a644tufnhnotyf, f:a                    |                                                               | rpdu:t,d5iat                      |           | BC=M<br>10<br>9S/                         | 97c                         |                 | S.P                                     | 998.3                             |                                |                              |                |                            | Cdmmn-if vfia                                     | -   |
|                                                                                                                                                                                                                                                                                                                                               | -                               | 90               |             | nfii                          | yf,f:nafod:                                                          |                                                               |                                   |           | BC=2<br>91<br>10/                         | 9Sc                         |                 | 9P.0                                    | 991.0                             |                                |                              |                |                            |                                                   | -   |
|                                                                                                                                                                                                                                                                                                                                               | -<br>                           | -                |             | Poor<br>of mol                | ly Graded SAND (S<br>u5isrpdu∶t, d5iat,                              | <b>P)</b> 645fad,f<br>fe5w, ef:i                              | e5w, in:et                        | -         |                                           |                             |                 |                                         |                                   |                                |                              |                |                            |                                                   | -   |
|                                                                                                                                                                                                                                                                                                                                               | -                               | 93—<br>-         |             |                               |                                                                      |                                                               |                                   |           | BC=99<br>10<br>9M                         | 9Sc                         |                 |                                         |                                   |                                |                              |                |                            |                                                   |     |
| <b>BLXFUL</b>                                                                                                                                                                                                                                                                                                                                 | -<br>11S3                       | -                |             |                               | <b>SAND (SM)</b> 645 fin<br>atmoddif                                 | : et rtgsagpro                                                | 5is dn5boft                       |           |                                           |                             |                 |                                         |                                   |                                |                              |                |                            |                                                   | -   |
| " וע <i>ו</i> רX6 אנגר אדער                                                                                                                                                                                                                                                                                                                   | -                               | 10               |             |                               |                                                                      |                                                               |                                   |           | BC=S<br>P<br>7                            | 9Sc                         |                 |                                         |                                   |                                |                              |                |                            |                                                   | -   |
| R" " (CL                                                                                                                                                                                                                                                                                                                                      | -<br>11S0<br>-                  | -                |             |                               | CLAY(CL)6nduad,<br>,d5iat,fe5w,ia&#                                  |                                                               |                                   |           |                                           |                             |                 |                                         |                                   |                                |                              |                |                            |                                                   | -   |
| ( V FRWORE]                                                                                                                                                                                                                                                                                                                                   | -                               | 13- <del>-</del> |             |                               |                                                                      |                                                               |                                   |           | BC=9<br>1<br>1                            | 9Sc                         |                 |                                         |                                   |                                |                              |                |                            |                                                   | -   |
| 0120779.0031<br>                                                                                                                                                                                                                                                                                                                              | -<br>                           | -                |             |                               | SAND645 fin:etof<br>wy,ef:if                                         | mndu 5is dr5bof                                               | <br>t,d5/at                       |           |                                           |                             |                 |                                         |                                   |                                |                              |                |                            |                                                   | -   |
| BLX6 10120<br>[K0'_BR                                                                                                                                                                                                                                                                                                                         | -                               | 20               |             |                               |                                                                      |                                                               |                                   |           | BC=3<br>M<br>S                            | 9Sc                         |                 |                                         |                                   |                                |                              |                |                            |                                                   |     |
| (XRJLCV DAYBLX6 10120779.003)<br>                                                                                                                                                                                                                                                                                                             | 1180<br>-<br>-                  | -<br>-<br>23-    |             | r fndu                        | ˈdp5guniafp, 5n.a<br>ugpdw.eiwp4n.yf.v<br>gpdwad: "frpwnpo0"         | sfrdp5gun                                                     |                                   |           |                                           |                             |                 | Epdw.<br>yd, -r<br><u>ELDL</u><br>vsffl | fna5d:.<br><u>XIODI</u>           | uni:<br><u>RvLF</u><br>d:rodyn | dadri<br><u>6</u><br>na5d: n | fpbfe<br>:efnf | ewp5g                      | <u>URD6</u><br>ep5m5agdpn4afp<br>npfnpdl5,nafn:eu | fpf |
| EW_CBXI                                                                                                                                                                                                                                                                                                                                       | -<br>-<br>1173                  | -                |             |                               |                                                                      |                                                               |                                   |           |                                           |                             |                 | ii cų I                                 | .a c I U                          | _ aagi                         | i µa                         | -              |                            |                                                   |     |
| 2_1012<br>-vi dti XT_                                                                                                                                                                                                                                                                                                                         | -                               |                  |             |                               |                                                                      |                                                               | ( XRJLCv D                        | 0R.6      | ;                                         |                             |                 |                                         |                                   |                                |                              | 7              |                            | "ŒAXL                                             |     |
| 1,5 a_, niafp<br>6 L0KO'_F                                                                                                                                                                                                                                                                                                                    | 1                               |                  |             |                               |                                                                      |                                                               | 10120779.00                       | )3I       |                                           |                             |                 | ВК                                      | XWE                               |                                | с в)                         | 1              |                            |                                                   |     |
| g@v vLY( מ vL6 גראבים או מולים או מולים משייח מולים משייח מולים משטי ארצע מיר ער מיר ער מולים מולים מולים משייח משייח מולים משייח משי<br>משייח משייח משיי |                                 |                  |             |                               | NFELC<br>ght People. Right .                                         |                                                               | TXI N D B#<br>CHLCKLT E<br>TI vL6 |           | T.L<br>J.Z                                |                             | Cdp.fp          | d4F55                                   | :afrool-<br>ppon H5og<br>pfnfni C | sunc                           | n: e                         | Nfia           | al bf:                     | wfT                                               | 140 |
| gu<br>gu                                                                                                                                                                                                                                                                                                                                      |                                 |                  |             |                               |                                                                      |                                                               |                                   |           |                                           |                             |                 |                                         |                                   |                                |                              |                |                            | (IEL6 9 c                                         | 149 |

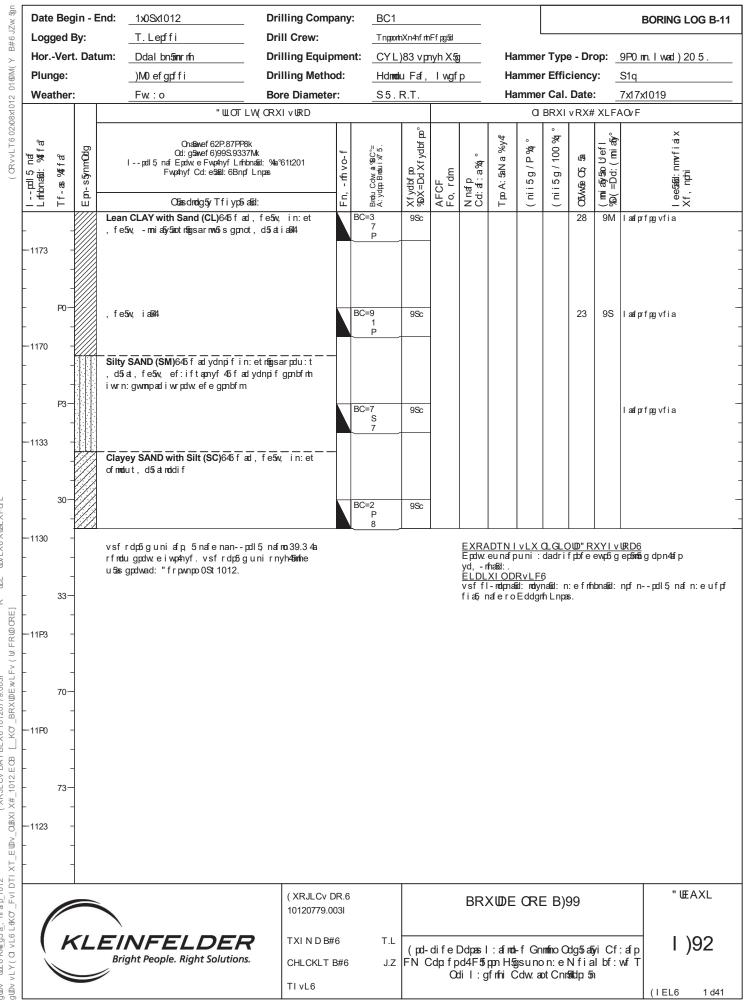
| Date                           | Be          | gin                                                                                                                                                                                                                                                                                            | - EI | nd:                      | 1x08x           |                        |                            |         |                    |                         | g Comp    | bany:            | BC                                   | 1                                |                 |                     |              |            |              |              |                                    | BORIN             | g log e  |
|--------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------------|-----------------|------------------------|----------------------------|---------|--------------------|-------------------------|-----------|------------------|--------------------------------------|----------------------------------|-----------------|---------------------|--------------|------------|--------------|--------------|------------------------------------|-------------------|----------|
| Logo                           | ged         | By:                                                                                                                                                                                                                                                                                            |      |                          | T.Le            | epffi                  |                            |         |                    | Drill C                 |           |                  |                                      | ontnXn4nfrt                      | ⊩Ffpg5d         |                     |              | l          |              |              |                                    |                   |          |
| Hor.                           | -Ver        | rt. D                                                                                                                                                                                                                                                                                          | atu  | ım:                      | Ddal            | bn5mr                  | mfn                        |         |                    | Drillin                 | g Equip   | omen             | t: <u>CY</u>                         | L)83 vp                          | าyh Xฐ          | 9                   | Ha           | mme        | r Тур        | e - Dr       | op: _                              | 9P0 m. Iwad)      | 205.     |
| Plun                           | ige:        |                                                                                                                                                                                                                                                                                                |      |                          | )M0 et          | fgpff                  | i                          |         |                    |                         | g Metho   |                  |                                      | ndu Faf,                         | l wgf           | р                   |              |            | r Effic      |              |                                    | S1q               |          |
| Wea                            | the         | r:                                                                                                                                                                                                                                                                                             |      |                          | Fw: :           | 0                      |                            |         |                    |                         | )iamete   | er:              | S 5                                  | . R.T.                           |                 |                     | На           |            | r Cal.       |              |                                    | 7x17x1019         |          |
|                                |             |                                                                                                                                                                                                                                                                                                |      |                          |                 |                        |                            | "Ψ(     | JT LW( (           | ORXI VU                 | RD        |                  |                                      |                                  |                 |                     |              | a          |              | vRX#         | # XLF/                             | AQ/F              |          |
| lpdl5,naf<br>Lnfhbna6di: %afa° | Tf-as%affa° | Em-s&nmOda                                                                                                                                                                                                                                                                                     | i –  | 1                        | poll 5;         | Od<br>nafEp<br>Fwp4n   | :g5awef<br>ndw.eF<br>yfCd: | e5a£d:6 | 930M8k             | : %4a°61t11<br>2as      | MM        | Fn, -nfivo-f     | Bndu Cdw. ai%BC°=<br>A:ydppBnduix75. | Xf ydbf po<br>%DX=Dd Xf ydbf po° | AFCF<br>Fo, rdm | Nnafp<br>Cd:af:a%q° | TpoA:5aNa%y4 | nii5g/P%4° | nii5g/100%4° | රෑරුණි රෝ කි | (muia5y55oU efl<br>%D(=Dd:(muia5y° | eetstal: nmvfiaix | Xf, nphi |
|                                |             | $\frac{1}{11}$                                                                                                                                                                                                                                                                                 |      | Nativ                    | 2               |                        | balage                     | ,,      | /po dai.           |                         |           |                  |                                      |                                  | <u> </u>        | 20                  |              | ~          | ~            |              | 0.0                                | Hn: e nwgf p3' r  |          |
| -11NB                          | 3-          |                                                                                                                                                                                                                                                                                                |      | an:t,<br>ufnhi<br>Silty: | d5ia<br>noyf, f | <u>∶af</u> e_<br>SM)64 |                            |         |                    | etofnndu<br><br>rpdu:t, | /         |                  | BC=7<br>97<br>10                     | 97c                              |                 | 8.2<br>3.3          | 999.0        |            |              |              |                                    | Yde346fe (pdyad   | D        |
|                                |             |                                                                                                                                                                                                                                                                                                |      |                          |                 |                        |                            |         |                    |                         |           |                  | 10                                   |                                  |                 |                     |              |            |              |              |                                    |                   |          |
|                                |             | -                                                                                                                                                                                                                                                                                              |      | 45 fat                   | l,fe5∧v         | v, in:                 | et of n                    | ndu 5is | dr£bf              |                         |           |                  | BC=S<br>9M<br>13                     | 9Sc                              |                 | 7.8                 | 99S.9        |            |              |              |                                    |                   |          |
| -11M0                          | 90-         |                                                                                                                                                                                                                                                                                                |      |                          |                 |                        |                            |         |                    |                         |           |                  |                                      |                                  |                 |                     |              |            |              |              |                                    |                   |          |
|                                | 50          | _                                                                                                                                                                                                                                                                                              |      | 45 fi                    | n: e            |                        |                            |         |                    |                         |           |                  | BC=7<br>7<br>92                      | 97c                              |                 | 7.3                 | 900.P        |            |              |              |                                    | Cd:idn5ena5d:v    | fia      |
|                                |             |                                                                                                                                                                                                                                                                                                |      |                          |                 |                        |                            |         |                    |                         |           |                  |                                      |                                  |                 |                     |              |            |              |              |                                    |                   |          |
|                                |             | -7/                                                                                                                                                                                                                                                                                            |      |                          | CLAY            | • •                    |                            |         | Σw, in:ο           | et,fe5i                 | v, — — —  |                  |                                      |                                  |                 |                     |              |            |              |              |                                    |                   |          |
| -11S3                          |             |                                                                                                                                                                                                                                                                                                |      |                          |                 |                        |                            |         |                    |                         |           |                  |                                      |                                  |                 |                     |              |            |              |              |                                    |                   |          |
|                                | 93-         |                                                                                                                                                                                                                                                                                                |      |                          |                 |                        |                            |         |                    |                         |           |                  | BC=7<br>8                            | 9Sc                              |                 |                     |              |            |              |              |                                    |                   |          |
|                                |             | V                                                                                                                                                                                                                                                                                              |      |                          |                 |                        |                            |         |                    |                         |           |                  | S                                    |                                  |                 |                     |              |            |              |              |                                    |                   |          |
|                                |             | -                                                                                                                                                                                                                                                                                              |      |                          |                 |                        |                            |         | (SP-SN<br>d5 at ef | <b>//)</b> 645 fa       |           |                  |                                      |                                  |                 |                     |              |            |              |              |                                    |                   |          |
| -11S0                          |             | -                                                                                                                                                                                                                                                                                              |      | , 100                    | v, 111. v       |                        |                            | un t,   | du a cr            |                         |           |                  |                                      |                                  |                 |                     |              |            |              |              |                                    |                   |          |
|                                | 10-         | -                                                                                                                                                                                                                                                                                              |      |                          |                 |                        |                            |         |                    |                         |           |                  | BC=98<br>93                          | 9Sc                              | -               |                     |              |            |              |              |                                    |                   |          |
|                                |             |                                                                                                                                                                                                                                                                                                |      |                          |                 |                        |                            |         |                    |                         |           |                  | 98                                   | _                                | -               |                     |              |            |              |              |                                    |                   |          |
|                                |             | _                                                                                                                                                                                                                                                                                              |      |                          |                 |                        |                            |         |                    |                         |           |                  |                                      |                                  |                 |                     |              |            |              |              |                                    |                   |          |
| -1183                          |             |                                                                                                                                                                                                                                                                                                |      |                          |                 |                        |                            |         |                    |                         |           |                  |                                      |                                  |                 |                     |              |            |              |              |                                    |                   |          |
|                                | 13-         |                                                                                                                                                                                                                                                                                                |      | dr55of (                 | ofmodut,        | ,fe5w                  | v, ef:                     | if      |                    |                         |           | $\left  \right $ | BC=P                                 | 91c                              |                 |                     |              |            |              |              |                                    |                   |          |
|                                |             | -                                                                                                                                                                                                                                                                                              |      |                          |                 |                        |                            |         |                    |                         |           |                  | S<br>97                              |                                  | -               |                     |              |            |              |              |                                    |                   |          |
|                                |             |                                                                                                                                                                                                                                                                                                | IJ.  | Sand                     |                 |                        | <br>345 f ar               | d. fe   | <u> </u>           | et, fe5                 |           |                  |                                      |                                  |                 |                     |              |            |              |              |                                    |                   |          |
| -1180                          |             |                                                                                                                                                                                                                                                                                                |      |                          | /5aot dr5t      | • •                    |                            |         |                    | ,                       | ,         |                  |                                      |                                  |                 |                     |              |            |              |              |                                    |                   |          |
|                                | 20-         |                                                                                                                                                                                                                                                                                                |      |                          |                 |                        |                            |         |                    |                         |           |                  | BC=2                                 | 00                               | -               |                     |              |            |              |              |                                    |                   |          |
|                                |             | ¥//                                                                                                                                                                                                                                                                                            |      |                          |                 |                        |                            |         |                    |                         |           |                  | P<br>3                               | 9Sc                              |                 |                     |              |            |              |              |                                    |                   |          |
|                                |             |                                                                                                                                                                                                                                                                                                |      |                          |                 |                        |                            |         |                    |                         |           |                  |                                      |                                  |                 |                     |              |            |              |              |                                    |                   |          |
|                                |             |                                                                                                                                                                                                                                                                                                |      |                          | ySANI<br>t,d5ia |                        |                            |         | e5w, in:           | :etdn5bof               |           |                  |                                      |                                  |                 |                     |              |            |              |              |                                    |                   |          |
| -1173                          |             |                                                                                                                                                                                                                                                                                                |      |                          |                 |                        |                            |         |                    |                         |           |                  |                                      |                                  |                 |                     |              |            |              |              |                                    |                   |          |
|                                |             |                                                                                                                                                                                                                                                                                                |      |                          |                 |                        |                            |         |                    |                         | RJLCv I   |                  |                                      |                                  | •               | BR                  | X (D) E      | E OR       | EB)          | 8            |                                    | "                 | ÆAXL     |
| /                              |             |                                                                                                                                                                                                                                                                                                |      |                          |                 |                        |                            |         |                    | 10                      | 120779.0  | 1031             |                                      |                                  |                 |                     |              |            | ,            |              |                                    |                   |          |
|                                | ŀ           | </td <td>_/</td> <td></td> <td>VF</td> <td></td> <td></td> <td></td> <td></td> <td>ТХ</td> <td>(I N D B#</td> <td>¥6</td> <td>Т.І</td> <td>- ba )</td> <td>difel</td> <td>Ddpas</td> <td>l:afnoh</td> <td>-fGn</td> <td>nnfino C</td> <td>dq5 a</td> <td>īyi Cf</td> <td>:afp</td> <td>)M</td> | _/   |                          | VF              |                        |                            |         |                    | ТХ                      | (I N D B# | ¥6               | Т.І                                  | - ba )                           | difel           | Ddpas               | l:afnoh      | -fGn       | nnfino C     | dq5 a        | īyi Cf                             | :afp              | )M       |
| 1                              |             |                                                                                                                                                                                                                                                                                                |      | Brig                     | ht Peo          | ple. F                 | Right                      | Soluti  | ons.               | CF                      | ILCKLT    | B#6              | J.2                                  |                                  | Cdp f p         | od4F55              |              | İşsunc     | n: e         | Nīfia        | albf:                              |                   | -        |
|                                |             |                                                                                                                                                                                                                                                                                                |      |                          |                 |                        |                            |         |                    | TI                      | vL6       |                  |                                      |                                  | ŭ               | u i : (             | yinni C      | vuw. a     |              | ասի 1        | И                                  | (IEL6             | 9 d4     |

פטטר "נטב 6 K ± מַקַל ים, וון לבין 1012 (XRJLC v DAY BLX 6 10120779.003) R."נטב וויטר X6 X נטב XFUL מווט עו על מין אל מין מיניאין מין מין אל מין אל מין אל מין אל מין אל מין אל מין אל מין אל מין אל מין אל מין אל מין אל מין אל מי



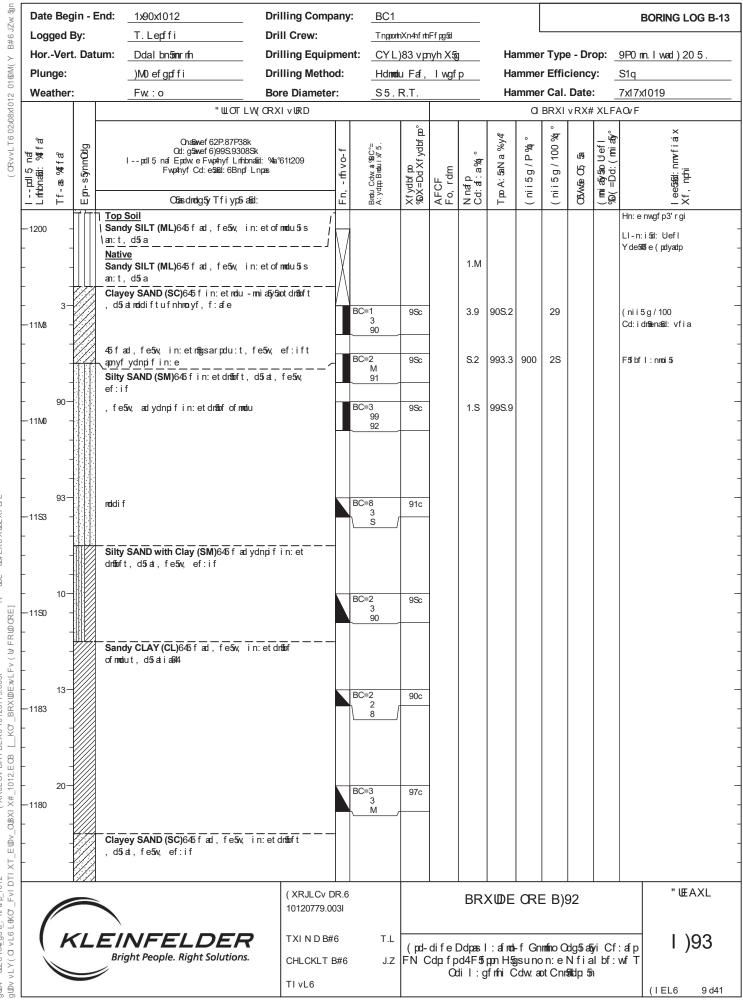
| Log                            |                                              | jin - I<br>3v: |      | <u>1x0Sx1012)1x0Mx1012</u><br>T.Lepffi                                                                 | Drilling Co<br>Drill Crew   |                    |                                         | nthXn4hfrt                       | ୮Ff mu ଲୋ      |                                              |                     | Į             |               |                  |                             | BORING LOC                                                     |  |  |
|--------------------------------|----------------------------------------------|----------------|------|--------------------------------------------------------------------------------------------------------|-----------------------------|--------------------|-----------------------------------------|----------------------------------|----------------|----------------------------------------------|---------------------|---------------|---------------|------------------|-----------------------------|----------------------------------------------------------------|--|--|
|                                |                                              | t. Dat         | um:  | Ddalbn5mnrmfn                                                                                          | Drilling Ec                 |                    |                                         | _)83 vp                          |                | 1                                            | Hammer Type - Drop: |               |               |                  |                             | 9P0 mn. Iwad) 20.5.                                            |  |  |
| Plun                           |                                              |                |      | )M0 efgpffi                                                                                            | Drilling M                  | • •                |                                         | ndu Faf,                         |                |                                              |                     |               | r Effic       |                  | _                           | S1q                                                            |  |  |
| Wea                            | -                                            |                |      | Fw.: o                                                                                                 | -                           | Bore Diameter: S5. |                                         |                                  |                | <u>r                                    </u> |                     |               | r Cal.        |                  | -                           | 7x17x1019                                                      |  |  |
|                                |                                              |                |      |                                                                                                        | LW(ORXIVERD                 |                    |                                         |                                  |                |                                              |                     |               |               |                  | -                           | FAQ/F                                                          |  |  |
| pdl5, naf<br>.nfnbna6dl: %ffa° | େ ଅକେ ସେ | l- s≸nmOdg     |      | Onafawef 62P.87S0:<br>Od:g5awef 6)99S.933<br>Ipdl 5: naf Epdw.e Fwpahyf Lnfr<br>Fwpahyf Cd:e5a6a1:6Bnp | 577k<br>Jonatod: %4a°61t202 | - nfi vo- f        | Bndu Colw. å %aC°=<br>A:ydpp.BnduliX75. | Xf ydbf po<br>%DX=Dd Xf ydbf po° | CF<br>rdm      | N naf p<br>Cd: af : a% °                     | A: 5aN a %y4        | nii5g/P%4°    | nii5g/100%4°  | රහිරුණි රට කි    | ia§y5ao∪'efl<br>=Dd:(mia§y° | ୟିଷା: nmvfi<br>nphi                                            |  |  |
| ¦⊊_                            | Tf-                                          | E pr-          |      | O5asdnodg5yTfiyp5∍                                                                                     | ක්:                         | Ľ<br>Ľ             | Brdu<br>A: yo                           | ×f v                             | AFCF<br>Fo, rd | N S S                                        | e<br>⊢              | ( ni          | ,<br>in       | 8                | j <u>e</u><br>Ø             | Xf,                                                            |  |  |
| -<br>-<br>                     | -                                            |                |      | <u>ve</u><br>dy CLAY(ML)645 fad,fe5w,<br>a§y5aotofmolu5isan:t,d5ia                                     | in:etndu                    | X                  |                                         |                                  |                | MO                                           | 990.0               |               |               |                  |                             | Hn:enwgfp3'rgi<br>Yde365fe (podyadp<br>Xf,dnoefe T\$pfya Fsfn; |  |  |
| -                              | 3-                                           |                |      | SAND (SM)645 fad,fe5w,<br>,d5sat,fe5w,ef:if                                                            | in:etofmodu5/s              |                    | BC=7<br>S<br>98                         | 9Sc                              | -              | 9.S                                          | 909.7               |               |               |                  |                             | Cdmm-ifvfia                                                    |  |  |
| -<br>                          | -                                            |                |      | rly Graded SAND (SP)645 fad<br>lut, d5iatef∶iftapnyfi5ma                                               | , fe5w, in:et               |                    | BC=19<br>18<br>28                       | 9Sc                              |                | 1.0                                          | 99M1                |               |               |                  |                             |                                                                |  |  |
| -                              | -<br>90-                                     |                |      | rly Graded SAND with Silt(S<br>5w, in:etofmdut,d5/at,fe                                                |                             |                    | BC=93<br>18<br>13                       | 95c                              | -              | 2.0                                          | 991.3               |               |               |                  |                             |                                                                |  |  |
| -<br>                          | -<br>-<br>93-                                |                | -    | <b>rey SAND</b> (SC)645 fin∷etdmbt<br>5w, ef∶if                                                        | fofmolut, d5iat             |                    | BC=2<br>P<br>8                          | 95c                              | -              |                                              |                     |               |               |                  |                             |                                                                |  |  |
| -<br>11S3<br>-<br>-            | -<br>-<br>-<br>10-                           |                | 45 f | ad, fe5w, in:etnddif                                                                                   |                             |                    | BC=2<br>2<br>3                          | 95c                              | -              |                                              |                     |               |               |                  |                             |                                                                |  |  |
| -<br>                          | -<br>-<br>13—                                |                |      | dy CLAY645 fad, fe5w, in:o<br>aty5aotdr5b/formedut, d5/atbfpo                                          |                             |                    |                                         | 95c                              | -              |                                              |                     |               |               |                  |                             |                                                                |  |  |
| -<br>-<br>                     | -<br>-<br>-<br>20-                           |                |      | SAND with Clay (SM)645 fi<br>at, fe5w, ef:if                                                           | n:etdnobfgpnot              |                    | BC=2<br>S<br>S<br>BC=1<br>8             | 950                              | -              |                                              |                     |               |               |                  |                             |                                                                |  |  |
| -<br>—1180<br>-                | -                                            |                |      | dy CLAY (CL)645 fad, fe5w,<br>5w, -mnia5y5aotdm3ofgpnot, d5                                            |                             |                    | M                                       |                                  |                |                                              |                     |               |               |                  |                             |                                                                |  |  |
|                                | h                                            |                |      | <b>NFELDEF</b>                                                                                         | 101207<br>TXI N             |                    | T.L                                     | (pd-                             | difel<br>Cdpfp | Ddpasi<br>d4F <b>5</b> 5                     | ppn H5ą             | f Gn<br>Isunc | mníoC<br>on:e | bdg5iaat<br>Nfia | albf:                       | " (EAX)                                                        |  |  |
|                                |                                              |                |      |                                                                                                        | TI vL6                      |                    |                                         |                                  | ά              | dil:g                                        | jfnfni Č            | dw.a          | ot Cnr        | 56dp 5           | ົກ                          | (IEL6 9                                                        |  |  |

| Date                          | Be        | gin - I            | End: | _1x0Sx1012)1x0Mx1012_                                                                                       | Drilling Com                         |            |                                         |                             |                 |                      | BORING LOG B-8     |                                                                               |                    |                 |                               |                               |  |  |  |  |
|-------------------------------|-----------|--------------------|------|-------------------------------------------------------------------------------------------------------------|--------------------------------------|------------|-----------------------------------------|-----------------------------|-----------------|----------------------|--------------------|-------------------------------------------------------------------------------|--------------------|-----------------|-------------------------------|-------------------------------|--|--|--|--|
| Log                           | ged       | By:                |      | T.Lepffi                                                                                                    | Drill Crew: TnpporthXn4hf rthFf pg5d |            |                                         |                             |                 |                      |                    | L                                                                             |                    |                 |                               |                               |  |  |  |  |
| Hor.                          | -Ver      | t. Dat             | um:  | Ddal bn5mrnfn                                                                                               | Drilling Equi                        | pme        | nt: <u>CYL</u>                          | )83 vp                      | าyh Xភ្         | 9                    | Ha                 | mme                                                                           | P0 mn. Iwad) 20 5. |                 |                               |                               |  |  |  |  |
| Plur                          | nge:      |                    |      | )M0 efgpffi                                                                                                 | Drilling Meth                        | od:        | Hdmad                                   | u Faf,                      | l wgf           | р                    | Ha                 | mme                                                                           | 51q                |                 |                               |                               |  |  |  |  |
| Wea                           | athe      | r:                 |      | Fw:: 0                                                                                                      | Bore Diamete                         | er:        | <u>S5</u> .                             | R.T.                        |                 |                      | Ha                 | mme                                                                           | r Cal.             | x17x1019        |                               |                               |  |  |  |  |
|                               |           |                    |      | "WOT LW                                                                                                     | (ORXIV URD                           | _          |                                         |                             |                 |                      |                    | a                                                                             | BRXI               | vRX#            | # XLFA                        | O/ F                          |  |  |  |  |
| lpdl5,naf<br>Lnfhbna6d: %ffa° | Tf-æ 🔏 få | Epn-s§nmOdg        |      | Onafawef62P.87S03k<br>Od:g3awef6)99S.93377h<br>Ipdl5 naf Epotwe Fwpahyf Lnfibna<br>Fwpahyf Cd:e5abi:6Bnpf L | ād: %4a°61t202<br>npas               | l, -mfvo-f | Bhnhu Cchw,ai%BC°≕<br>A:ydppBnnbulix75. | Xfydbfpo<br>%DX=DdXfydbfpo° | AFCF<br>Fo, rdm | N nafp<br>Cd:af:a%q° | po:A:5aNa%y4       | nii5g/P%4°                                                                    | nii5g/100%4°       | රහිරුණි රට කි   | nia5y5aol'efl<br>(=Dd:(mia5y° | lee5aal:nmvfiaix<br>Xf, n phi |  |  |  |  |
|                               | Τf        | Ш                  |      | O5asdnodg5y⊤fiyp∋a5d                                                                                        |                                      | ,<br>Г     |                                         |                             | AF<br>Fo        | žΰ                   | d L                | u<br>)                                                                        | ч<br>,             | 8               |                               | ×t e                          |  |  |  |  |
|                               |           | <i>\///</i>        |      | ndyCLAY(CL)645 fad,fe5w, ir<br>e5w, -mnia5y5aotdm5brfgpnot,d5iat,                                           |                                      |            | BC=2<br>2                               | 97c                         |                 |                      |                    |                                                                               |                    |                 |                               |                               |  |  |  |  |
| -1173                         | P0-       |                    |      | e5w, -mia5y5aotdm5oformolutbrpoi                                                                            |                                      |            | 8C=7                                    | 95c                         |                 |                      |                    |                                                                               |                    |                 |                               |                               |  |  |  |  |
|                               |           |                    | , 10 |                                                                                                             |                                      |            | 8<br>97                                 |                             |                 |                      |                    |                                                                               |                    |                 |                               |                               |  |  |  |  |
| -1170                         |           | -<br>-<br>-        |      | orly Graded SAND (SP)645 fad,<br>ndu5isrpdu∶t,d5iatef∶iftapnyf                                              |                                      |            |                                         |                             |                 |                      |                    |                                                                               |                    |                 |                               |                               |  |  |  |  |
|                               | P3-       |                    |      |                                                                                                             |                                      |            | BC=99                                   | 97c                         |                 |                      |                    |                                                                               |                    |                 |                               |                               |  |  |  |  |
|                               |           | -                  |      |                                                                                                             |                                      |            | 9S<br>10                                |                             | -               |                      |                    |                                                                               |                    |                 |                               |                               |  |  |  |  |
| ·1133                         |           | -<br>-<br>-<br>/// |      | yey SAND (SC)645 fad ydnpifin                                                                               | : et dr <del>3b</del> f              | -          |                                         |                             |                 |                      |                    |                                                                               |                    |                 |                               |                               |  |  |  |  |
|                               |           |                    | rpau | u:t, d5iatnoddif                                                                                            |                                      |            |                                         |                             |                 |                      |                    |                                                                               |                    |                 |                               |                               |  |  |  |  |
|                               | 30-       |                    |      |                                                                                                             |                                      |            | BC=2                                    | 9Sc                         | -               |                      |                    |                                                                               |                    |                 |                               |                               |  |  |  |  |
|                               |           | -///               |      |                                                                                                             |                                      |            | Р<br>2                                  |                             |                 |                      |                    |                                                                               |                    |                 |                               |                               |  |  |  |  |
|                               |           | -                  |      | rdp5guniafp, 5 nafe nanpdl                                                                                  |                                      |            |                                         |                             |                 | EXRA                 |                    | vLX                                                                           | <u>OLGL(</u>       | DOD"R           | XYIVU                         | <u>RD6</u>                    |  |  |  |  |
| -1130                         |           |                    |      | du gpdw.e iwp4n.yf. v sfrdp5g u<br>sgpdwad: "frpwnpo0St1012.                                                | nirnyh45mfne                         | )          |                                         |                             |                 |                      |                    | Epdw.eunafpuni :dadrifpbfeewp5gep5m5gdpn4afp<br>yd, -mfa5d:.<br>ELDLXIODRvLF6 |                    |                 |                               |                               |  |  |  |  |
|                               | 33-       |                    |      |                                                                                                             |                                      |            |                                         |                             |                 | vsffl<br>fiab,r      | - ndipnaf          | īsl: notiyi                                                                   | nabd:n             |                 | nbnatid: r                    | pfnpdl5;nafn:euf∣             |  |  |  |  |
|                               | 55        | _                  |      |                                                                                                             |                                      |            |                                         |                             |                 | 11 au 1              | aero               | Euugi                                                                         | пспра              | ь.              |                               |                               |  |  |  |  |
|                               |           | _                  |      |                                                                                                             |                                      |            |                                         |                             |                 |                      |                    |                                                                               |                    |                 |                               |                               |  |  |  |  |
| -11P3                         |           | -                  |      |                                                                                                             |                                      |            |                                         |                             |                 |                      |                    |                                                                               |                    |                 |                               |                               |  |  |  |  |
|                               |           | -                  |      |                                                                                                             |                                      |            |                                         |                             |                 |                      |                    |                                                                               |                    |                 |                               |                               |  |  |  |  |
|                               | 70-       |                    |      |                                                                                                             |                                      |            |                                         |                             |                 |                      |                    |                                                                               |                    |                 |                               |                               |  |  |  |  |
|                               |           |                    |      |                                                                                                             |                                      |            |                                         |                             |                 |                      |                    |                                                                               |                    |                 |                               |                               |  |  |  |  |
| -11F0                         |           | _                  |      |                                                                                                             |                                      |            |                                         |                             |                 |                      |                    |                                                                               |                    |                 |                               |                               |  |  |  |  |
|                               |           | -                  |      |                                                                                                             |                                      |            |                                         |                             |                 |                      |                    |                                                                               |                    |                 |                               |                               |  |  |  |  |
|                               | 73-       | -                  |      |                                                                                                             |                                      |            |                                         |                             |                 |                      |                    |                                                                               |                    |                 |                               |                               |  |  |  |  |
|                               |           | -                  |      |                                                                                                             |                                      |            |                                         |                             |                 |                      |                    |                                                                               |                    |                 |                               |                               |  |  |  |  |
|                               |           | -                  |      |                                                                                                             |                                      |            |                                         |                             |                 |                      |                    |                                                                               |                    |                 |                               |                               |  |  |  |  |
| -1123                         |           | -                  |      |                                                                                                             |                                      |            |                                         |                             |                 |                      |                    |                                                                               |                    |                 |                               |                               |  |  |  |  |
|                               |           |                    |      |                                                                                                             |                                      |            |                                         |                             |                 |                      |                    |                                                                               |                    |                 |                               |                               |  |  |  |  |
| (XRJLCv DR.6<br>10120779.003I |           |                    |      |                                                                                                             |                                      |            |                                         |                             |                 | BR                   | ХФЕ                | E OR                                                                          | E B)               | S               |                               | " ŒAXL                        |  |  |  |  |
| (                             | L         | <1                 | F    | INFELDER                                                                                                    | TXINDB                               | #6         | T.L                                     |                             |                 |                      |                    |                                                                               |                    |                 |                               |                               |  |  |  |  |
| (                             | ľ         | \ <u>L</u>         |      | right People. Right Solutions.                                                                              | CHLCKLT                              |            |                                         | (pd-                        | difel<br>Cdpfp  | Ddpasl<br>⊳d4F55     | :afnool<br>pon H5o | -fGn<br>ajsuno                                                                | nnfnoC<br>on:e     | blg5ia£<br>Nfia | ōyiCf:<br>albf:v              | afp I)90                      |  |  |  |  |
|                               |           |                    |      |                                                                                                             | TI vL6                               |            |                                         |                             | ά               | dil:g                | ifnfi Ò            | dw. a                                                                         |                    |                 |                               |                               |  |  |  |  |
|                               |           |                    |      |                                                                                                             |                                      |            |                                         |                             |                 |                      |                    |                                                                               |                    |                 |                               | (IEL6 1 d41                   |  |  |  |  |


| B#6 JZw: 写n                        |                               | -                      |             | End: 1x01x1012                                                                                             | Drilling Company:     |              |                                        |                             |                 |                   |                    |                |                 | BORING LOG B-9  |                               |                                      |
|------------------------------------|-------------------------------|------------------------|-------------|------------------------------------------------------------------------------------------------------------|-----------------------|--------------|----------------------------------------|-----------------------------|-----------------|-------------------|--------------------|----------------|-----------------|-----------------|-------------------------------|--------------------------------------|
| B#6                                | -                             | ged E                  | -           | T.Lepffi                                                                                                   | Drill Crew:           |              |                                        | 1Xn4hfnth                   |                 |                   |                    | ·              |                 | _               |                               |                                      |
| >                                  |                               | -Vert                  | . Da        |                                                                                                            | Drilling Equip        |              |                                        |                             |                 |                   |                    |                |                 |                 |                               | 9P0 mn. Iwad) 20 5.                  |
| 01@S                               | Plur                          | -                      |             | )M0 efgpffi                                                                                                | Drilling Metho        |              |                                        |                             | l wgf           | p                 |                    |                | r Effic         |                 |                               | S1q                                  |
| 012                                | Wea                           | ther                   |             | Fw.: o                                                                                                     | Bore Diameter         | r:           | <u>S5.</u>                             | R.T.                        |                 |                   | На                 |                | r Cal.          |                 | _                             | 7x17x1019                            |
| X08X1                              |                               |                        |             | " WOT LW(                                                                                                  | ORXIVURD              |              |                                        |                             |                 |                   |                    | a              |                 | vRX#            | XLFA                          | AQ/F                                 |
| ( CRVVLT6 02X08X1012 01@S( Y       | poll5,naf<br>.nfnbna6dl: %ffa | - æ %f f a             | pn- s&nmOdg | On-aawef62P.8788Mk<br>Od:g5awef6)99S.93201k<br>Ipdl5 naf Epdv:eFwpahyfLnfbonaa<br>FwpahyfCd:e5abil:6BnpfLn | d: %4a°61t209         | ,-thivo-f    | Bhdu Colw. ai%BC°≕<br>A:ydpp.Bnduix75. | Xfydbfpo<br>%DX=DdXfydbfpo° | AFCF<br>Fo, rdm | nafp<br>:af:a%ot° | poA:5aNa%y4        | ii5g/P%4°      | nii5g/100%4°    | රෑරුණු රෝ කි    | nia≴y5ao∪'efl<br>(=Dd:(mia5y° | ee5aat:nn vfiaix<br>.f, n chi        |
|                                    |                               | Ţ                      | Ер          | O5asdnodg5yTfiyp∋a5d:                                                                                      |                       | Ľ,           | Brdt<br>A: y                           | ž.                          | AF<br>Fo        | N naf<br>Cd: af   | μ                  | ( ni           | )<br>)          | 8               | , mi<br>%D(                   | -<br>¥f                              |
| -                                  | -1200                         | -                      |             | Top Soil<br> Silty SAND (SM)645 f ad , fe5w, in:<br> an:t, d5 at npdl5, nafmo.1c                           | <br>  etofmndu5is<br> |              |                                        |                             |                 |                   |                    |                |                 |                 |                               | Hn:enwgfp3'rgi<br>Ll-n:i5d:⊍efl<br>- |
|                                    |                               | -                      |             | Native       Clayey SAND (SC)645 f ad ydnpifin:       an:t, d5 a                                           | /                     | $\mathbb{N}$ |                                        |                             |                 | 9.1               |                    | MM             | 98              |                 |                               | F5fbfl:nnoi5i -                      |
|                                    | -11M3                         | 3                      |             | Well-Graded SAND with Clay (SW-So<br>ydnpifin:etofmodut,d5fat,fe5w, e                                      |                       |              | BC=1<br>S<br>9M                        | 9Sc                         |                 | 9.8               | 90S.0              | MM             | 91              |                 |                               | F5fbfl:nnoi5i                        |
|                                    |                               | -                      |             | : d gpnbf m                                                                                                |                       |              | BC=3<br>S<br>99                        | 9Sc                         |                 | 9.S               | M2.9               |                |                 |                 |                               | -                                    |
|                                    | -11M0                         | 90                     |             |                                                                                                            |                       |              | BC=3<br>98<br>9M                       | 9Sc                         |                 | 9.1               | M6.7               |                |                 |                 |                               | -                                    |
|                                    |                               | -                      |             |                                                                                                            |                       |              | 9101                                   |                             |                 |                   |                    |                |                 |                 |                               | -                                    |
| ł                                  |                               | -                      |             |                                                                                                            |                       |              |                                        |                             |                 |                   |                    |                |                 |                 |                               | -                                    |
|                                    | -11S3                         | 93-                    |             | Silty SAND (SM) 645 fin: et drobof gpfo                                                                    | <br>ot,d5:at          |              | BC=8<br>98                             | 9Sc                         |                 |                   |                    |                |                 |                 |                               |                                      |
|                                    | 1100                          | -                      |             | ,fe5w,ef:if                                                                                                |                       |              | 10                                     |                             |                 |                   |                    |                |                 |                 |                               | -                                    |
| -                                  |                               | -<br>-<br>10-          |             | 45 fad, fe5w, in:etdn3oforfnadutuf                                                                         | nhmavf f:afe          |              | BC=3                                   | 97c                         |                 |                   |                    |                |                 |                 |                               | -                                    |
| -                                  | -11S0                         | -                      |             |                                                                                                            | , r. a c              |              | 8<br>                                  | 570                         |                 |                   |                    |                |                 |                 |                               | -                                    |
| BRXWE×LFV (WFRWCRE]                | -1183                         | -<br>13—<br>-          |             | dn£bof gpnotapnyf gpnbfm                                                                                   |                       |              | BC=S<br>90<br>99                       | 9Sc                         |                 |                   |                    |                |                 |                 |                               | -                                    |
| XWEwLFV                            |                               | -                      |             | Silty SAND with Clay (SM)645 fad,<br>dr5bf of molut,d5 at,fe5w, ef:iftsr                                   |                       |              |                                        |                             |                 |                   |                    |                |                 |                 |                               | -                                    |
| [_KO'_BR                           | -1180                         | 20-                    |             |                                                                                                            |                       |              | BC=P<br>M<br>                          | 9Sc                         |                 |                   |                    |                |                 |                 |                               | -                                    |
| _FvI DTI XT_EWv_QBXI X#_1012.EQB [ | -1173                         | -<br>-<br>23<br>-<br>- |             | vsfrdp5guniafp, 5 nafe nanpdl{<br>rfmdu gpdw.eiwp4nyf.vsfrdp5gur<br>u5asgpdwad: "frpwnpo0Ml1012.           |                       |              |                                        |                             |                 |                   |                    |                |                 |                 |                               |                                      |
| FvI DTI X                          |                               |                        |             |                                                                                                            | DR.6                  |              |                                        |                             | BR              | ХФЕ               | OR                 | E B)           | M               |                 | " \EAXL                       |                                      |
| L 6K O'                            | 1                             |                        |             |                                                                                                            | 10120779.0            | 031          |                                        |                             |                 |                   |                    |                | -)              |                 |                               |                                      |
| guvvrY(avr6L&C)                    |                               | h                      | <b>~</b> L  | EINFELDER<br>Bright People. Right Solutions.                                                               | TXI N D B#            |              | T.L<br>J.Z                             | (pd-<br>FN C                | dife[<br>dpfn   | Ddpasl<br>d4F5f   | :afrod-<br>ppn H5g | f Gn<br>Isun c | nnfnoC<br>on:e∣ | dg5ia5j<br>Nfia | yiCf:<br>Ibf:∖                | :afp <b>I)99</b><br>wf⊤              |
| DV VLY                             | `                             |                        | -           |                                                                                                            | TI vL6                |              | J.Z                                    |                             | Ot<br>Ot        | dil:c             | jfnfni C           | dw. a          | ot Cnr          | Badp 5          | )                             |                                      |
| Пß                                 |                               |                        |             |                                                                                                            |                       |              |                                        |                             |                 |                   |                    |                |                 |                 |                               | (IEL6 9 d49                          |

R" " ער א שער א אשר אדער R" R" ( XRJLCV DAYBLX6 10120779.0031 gயov "யடை6 Knnig5a\_, niafp\_1012

| Date Begin - End:             |                        |              |        |                                                                                                        |                                   |                  |                                       |                             |                   |                      |             |            |                 |                                              |                                | BO                    | RING LOG B                     |
|-------------------------------|------------------------|--------------|--------|--------------------------------------------------------------------------------------------------------|-----------------------------------|------------------|---------------------------------------|-----------------------------|-------------------|----------------------|-------------|------------|-----------------|----------------------------------------------|--------------------------------|-----------------------|--------------------------------|
| Logged By:<br>HorVert. Datum: |                        |              |        | T. Lepffi                                                                                              |                                   |                  |                                       | thXn4hfrt                   | Hammer Type - Dro |                      |             |            |                 |                                              |                                |                       |                                |
| Hor.<br>Plun                  |                        | . Dat        | un:    | Ddalbn5mrmfn Drilling Equ<br>)M0 efgpffi Drilling Met                                                  |                                   |                  |                                       | <u>.)83 vp</u><br>olu Faf,  |                   |                      |             |            | e - Dr<br>cienc | -                                            | <u>9P0 m. 1</u><br>S1q         |                       |                                |
| Wea                           | -                      |              |        | <br>Fw.:o                                                                                              | Bore Diamet                       |                  |                                       | n <u>ura,</u><br>R.T.       | i wyl             | <u>ч</u>             |             |            |                 | Date                                         |                                | <u>51q</u><br>7x17x10 | 19                             |
|                               |                        |              |        |                                                                                                        |                                   |                  |                                       |                             |                   |                      | 110         |            |                 |                                              | •<br>• XLF#                    |                       |                                |
| pdl5;naf<br>.nfnbna6d:%ffa°   | f-as%affa°             | pn- s§ynmOdg |        | Ondāwef 62P.87SSS<br>Od:gāwef 6)99S.939<br>Ipdl 5, naf Epdw.e Fwp4hyf Lifal<br>Fwp4hyf Cd:e5a6a1:6Bnpf | 0Pk<br>bna£d: %a≏61t20P<br>FLnpas | , - nfi vo- f    | Bndu Cdw. ai%aC°=<br>A:ydpp Bnduix75. | Xfydbfpo<br>%DX=DdXfydbfpo° | AFCF<br>Fo, rdm   | N nafp<br>Cd:af:a%4° | poA:5aNa%y4 | nii5g/P%4° | nii5g/100%4°    | රහිරුණි රට කි                                | mia§y5ao∪'efl<br>)(=Dd:(mia§y° |                       | lee5adi:nmvfiaix<br>Xf, n phni |
|                               | Τf                     | μ            | Nati   | Oãasdnodg5yTfiyp≣∍                                                                                     | afod:                             | Е <sup>n</sup> , | AB<br>BB                              | <u>×8</u>                   | AF<br>Fo          | zŭ                   | μ           | ( r        | ,               | 8                                            | ie<br>Q                        | Hn:enw,               |                                |
| -<br>-<br>-<br>1200           | -<br>-<br>-<br>3-      |              | - mi : | oory Lean CLAY(CL)645 fad,f<br>a§y5aotofmodu5isan:t,d5ia                                               | ie5w, in∶etndu                    |                  |                                       |                             |                   | 8.P                  |             |            |                 |                                              |                                | Hn:enwç<br>X)Gnmwf    |                                |
| -                             | -                      |              | dr£bf  | ofmodut, d5latia644                                                                                    |                                   | E                | 3C=2<br>3<br>93                       | 9Sc                         | -                 | 7.M                  | M8.2        | 900        | 38              |                                              |                                | F5fbfl:               | nmoi5                          |
|                               | -                      |              | snpe   |                                                                                                        |                                   | E                | 8C=92<br>19                           | 9Sc                         | -                 | 3.7                  | 90S.3       |            |                 |                                              |                                |                       |                                |
| -11MB                         | -                      |              |        | SAND with Clay (SM)645 f ad                                                                            | I, fe5w, in:et                    | ╶┼┻              | P0                                    | +                           |                   |                      |             |            |                 |                                              |                                |                       |                                |
|                               | 90—                    |              |        | ofmodut, d5/atef:if                                                                                    |                                   | E                | 8C=92<br>18                           | 9Sc                         | -                 | 3.7                  | 91S.0       |            |                 |                                              |                                |                       |                                |
|                               | -                      |              |        |                                                                                                        |                                   |                  | P1                                    | -                           | -                 |                      |             |            |                 |                                              |                                |                       |                                |
| -<br>11M0<br>-                | -<br>93—               |              | -      | v SAND(SM)645fad,fe5v,i<br>at,fe5v, ef∶if                                                              | n: et ngsagprot                   |                  | 3C=3<br>90<br>90                      | 95c                         | -                 |                      |             |            |                 |                                              |                                |                       |                                |
| -<br>-<br>11S3<br>-<br>-<br>- | -<br>-<br>10<br>-<br>- |              | 45 f   | adydnpifin:etdn3bofgpno                                                                                |                                   | E                | 3C=P<br>M<br>8                        | 95c                         |                   |                      |             |            |                 |                                              |                                |                       |                                |
|                               | -<br>13—<br>-          |              | 45 f   | ad,fe5w,in:e                                                                                           |                                   | E                | 3C=S<br>90<br>93                      | 95c                         |                   |                      |             |            |                 |                                              |                                |                       |                                |
| -<br>-<br>1183<br>-<br>-      | -<br>-<br>20-          |              |        | n CLAYwith Sand (CL)645fi<br>gpnot, d5iatbfpoia644tid,fi                                               |                                   |                  | 3C=8<br>M<br>90                       | 90c                         |                   |                      |             |            |                 | 21                                           | 9P                             | læfprfpg              | vfia                           |
| -<br>-<br>1180                | -                      |              |        | Sandy SILT (ML)645 fin:etdn£ofgpnot,d5at<br>,fe5ow, ef:if                                              |                                   |                  |                                       | J                           |                   |                      |             |            |                 |                                              |                                |                       |                                |
| (                             | K                      |              |        | NFELDER                                                                                                |                                   | .0031            | T.L                                   | ( m-                        | dife              |                      | XUDE        |            |                 |                                              | vi Cf                          | afn                   | "⊯AXL                          |
|                               |                        | _            | Bri    | ight People. Right Solutions                                                                           | CHLCKLT                           | ⁻ B#6            | J.Z                                   | FN (                        | Cdp f p           | d4F55                | ppn H5ą     | sunc       | n: e            | ວOdg5sa5yiCf:af<br>eNfialbf:wf<br>Cnm36dp:5ຄ |                                |                       | <b>,</b><br>IEL6 9d            |


| Zw. gn                                                                   |                                |                    |              |          |                                                                             |                                         | Drilling Company: BC1             |     |                                         |                             |                       |                           |                                             |                                   |                         |                  |                                    | BORING LC                                     | DG B-10    |
|--------------------------------------------------------------------------|--------------------------------|--------------------|--------------|----------|-----------------------------------------------------------------------------|-----------------------------------------|-----------------------------------|-----|-----------------------------------------|-----------------------------|-----------------------|---------------------------|---------------------------------------------|-----------------------------------|-------------------------|------------------|------------------------------------|-----------------------------------------------|------------|
| B#6 JZw.                                                                 |                                |                    |              |          |                                                                             |                                         | Drill Crew: Tnpport               |     |                                         | nXn4nfnt                    | Ffpg5d                |                           |                                             | L                                 |                         |                  |                                    |                                               |            |
| I                                                                        | Hor.                           | -Vert              | . Dat        | um:      | Ddal bn5mrnfn                                                               | Dri                                     | lling Equip                       | mei | nt: <u>CYL</u>                          | )83 vp                      | nyh X5g               |                           | Ha                                          | mme                               | r Type                  | 9P0 mn. Iwad) 20 | 5.                                 |                                               |            |
| 01@S(Y                                                                   | Plun                           | ge:                |              |          | )M0 efgpffi                                                                 | Dri                                     | lling Metho                       | od: | Hdmd                                    | olu Faf, Iwgfp              |                       |                           | Ha                                          | mme                               | r Effic                 | S1q              |                                    |                                               |            |
|                                                                          | Wea                            | ther               |              |          | Fw:: o                                                                      | Bo                                      | re Diameter                       | r:  | S5.                                     | R.T.                        |                       |                           | Ha                                          | Imme                              | r Cal.                  | 7x17x1019        |                                    |                                               |            |
| 08X10                                                                    |                                |                    |              |          | " Ш                                                                         | OT LW(ORX                               | IVURD                             | _   |                                         |                             |                       |                           |                                             | a                                 | BRXI                    | Ov F             |                                    |                                               |            |
| ( CRVVLT6 02X08X1012                                                     | pdl5, naf<br>.nfnbnandl: %4 fa | Tf-as%affa°        | Epn-s§ynmodg |          | Ondawef62P.8<br>Od:g5awef6)99S<br>Ipdl5_nafEpdvceFwphyf<br>FwphyfCd:e5abit6 | 9390Pk<br>Lnfnbnand: %ଏଇଂ<br>Bnpf Lnpas |                                   |     | Bhdu Cdw, å %BC°≕<br>A:ydpp Bndu ix7 5. | Xfydbfpo<br>%DX=DdXfydbfpo° | AFCF<br>Fo, rdm       | Nnafp<br>Cd:af:a%q°       | TpoA:5aNa%y4°                               | nii5g/P%4°                        | nii5g/100%4°            | රෑරුණු රෝ කි     | (mnia5y5aoU efl<br>%D(=Dd:(mnia5y° | lee5aa:nmvfiáx<br>Xf, n phri                  |            |
|                                                                          |                                | H                  | ш            | Son      | Coāsdnodg5yTfiyp5 a5d:<br>andySILT (ML)645 fin:etdrofognoo                  |                                         | at dEat                           |     | BC=3                                    | ×₩<br>90c                   | ΚĽ                    | zυ                        | F                                           | <u> </u>                          | )                       | 8                | _%<br>_                            | ×<br>Iaafprfpgvfia                            |            |
|                                                                          | -                              | -                  |              | , fe<br> | 5%, ef:if<br>SAND(SM)645fad, fe5<br>at, fe5%, ef:if                         |                                         |                                   |     | 99<br>M                                 |                             |                       |                           |                                             |                                   |                         |                  |                                    |                                               | -          |
|                                                                          |                                | -<br>P0<br>-<br>-  |              | Lear     | n CLAY with Sand (CL)643<br>a5y5aotofmodu5isdraboft,d5                      |                                         | =5w,<br>∎fnhmo                    |     | BC=90<br>90<br>\8                       | 91c                         |                       |                           |                                             |                                   |                         |                  |                                    |                                               |            |
|                                                                          |                                | - P3               |              |          | f:de                                                                        |                                         |                                   |     | BC=S<br>S<br>S                          | 7c                          |                       |                           |                                             |                                   |                         | 2P               | 97                                 | laefprfpgvfia                                 | -          |
|                                                                          | -<br>                          | -<br>-<br>30—      |              | , fe     | rly Graded SAND with Sill<br>5w, in:etdr5bf of modut, o<br>ymro             |                                         |                                   |     | BC=8<br>92<br>9P                        | 9Sc                         |                       |                           |                                             |                                   |                         |                  |                                    |                                               | -          |
| R" " @_LX6X@LXFUTL<br>FR@CRE]                                            | -<br>-<br>                     | -<br>-<br>33-<br>- |              | r fndi   | rdp5guniafp, 5nafen ar<br>ugpdw.eiwp4nyf.vsfrd<br>gpdwad: "frpwnpc0St101    | p5 gunirny                              |                                   |     |                                         |                             |                       | yd, -n<br>ELDL            | eunafp<br>fra5d:.<br><u>XIOD</u><br>-ndpnaf | ouni:<br><u>RvLF(</u><br>İd:ndiyi | dadrit<br>3<br>natod: n | fpbfe<br>:efnf   | ewp5g                              | <u>RD6</u><br>gobno£gdpn4afp<br>npfnpdl5,nafn | :eufpf     |
| Fv ( U                                                                   | -<br>                          | -<br>70<br>-       |              |          |                                                                             |                                         |                                   |     |                                         |                             |                       |                           |                                             |                                   |                         |                  |                                    |                                               |            |
| (XRJLCV DAYBI<br>GBXI X#_1012.EGB                                        | -<br>11P0<br>-<br>-            | -<br>73—<br>-      |              |          |                                                                             |                                         |                                   |     |                                         |                             |                       |                           |                                             |                                   |                         |                  |                                    |                                               |            |
| I XT_E@v_                                                                | -<br>                          | -                  |              |          |                                                                             |                                         |                                   |     |                                         |                             |                       |                           |                                             |                                   |                         |                  |                                    |                                               |            |
| 5 a., ni af p_1012<br>6 L 6K O' _ F v I D T                              | (                              |                    |              |          |                                                                             |                                         | ( XRJLCv DR.6<br>10120779.003I    |     |                                         |                             |                       |                           | RXWDE ORE B)90                              |                                   |                         |                  |                                    |                                               | XL         |
| guDv " (טב 6 Kn≜g5 a_, ni ≰ p_1012<br>guDv vLY( מ vL6 L6K0° _FvI DTI XT_ |                                |                    |              |          | <b>NFELDE</b><br>ight People. Right Soluti                                  |                                         | TXI N D B#<br>CHLCKLT E<br>TI vL6 |     | T.L<br>J.Z                              | (pd-<br>FN C                | dife[<br>Cdp_fp<br>Oc | Ddpasl<br>d4F5f∣<br>lil∶g | ppn H5ą                                     | İjsunc                            | n: e l                  | Nfia             | lbf:\                              | afp<br>vfT<br>(IEL6                           | 9 <b>1</b> |

| Zw. ଶ୍ରn                                                             | Date                           | e Beg  | jin - I     | End:                    | 1x0Sx1012                                                                                                  | Drilling Com            | pany        |                                       |                            |                 |                      |             |            |              |            |                               | BORING LOG B-11               |
|----------------------------------------------------------------------|--------------------------------|--------|-------------|-------------------------|------------------------------------------------------------------------------------------------------------|-------------------------|-------------|---------------------------------------|----------------------------|-----------------|----------------------|-------------|------------|--------------|------------|-------------------------------|-------------------------------|
| B#6 JZw.                                                             | Log                            | ged E  | By:         |                         | T.Lepffi                                                                                                   | Drill Crew:             |             | Tnppo                                 | nhXn4nfnt                  | nFfpg5al        |                      |             | ı          |              |            |                               |                               |
| $\succ$                                                              | Hor.                           | -Vert  | . Dat       | um:                     | Ddal bn5mrnfn                                                                                              | Drilling Equip          | ome         | nt: CYL                               | .)83 vp                    | nyh Xភ្ថ        | ]                    | Ha          | mme        | r Тур        | e - Dr     | op: _                         | 9P0 mn. Iwad) 20 5.           |
| 01@M(                                                                | Plun                           | ige:   |             |                         | _)M0 efgpffi                                                                                               | Drilling Meth           | od:         | Hdm                                   | du Faf,                    | l wgf           | р                    | На          | mme        | r Effic      | cienc      | y: _                          | S1q                           |
|                                                                      | Wea                            | ther   |             |                         | Fw:: o                                                                                                     | Bore Diamete            | ər:         | S5.                                   | R.T.                       |                 |                      | На          | mme        | r Cal.       | Date       | : _                           | 7x17x1019                     |
| 8X10                                                                 |                                |        |             |                         | "WOT LV                                                                                                    | (ORXIV URD              |             |                                       |                            |                 | a BRXI vRX# XLFAQ/F  |             |            |              | AQ/ F      |                               |                               |
| ( GRVVLT6 02X08X1012                                                 | lpdl5, naf<br>Lnfhbnaad: %ffa° | -æ%fa° | ph-s§/nmOdg |                         | On-taiwef62P.87PP8k<br>Od:g5awef6)99S.9337M<br>Ipdl5, naf Epdw.e Fwp4hyfLnfhbna<br>Fwp4hyfCd:e5aba1:6BnpfL | tal: %4a°61t201<br>npas | , - mf vo-f | Bndu Cdwt å %BC°≕<br>A:ydpp Bnduix75. | Xfydbfpo<br>%DX=DdXfydbfpo | AFCF<br>Fo, rdm | N nafp<br>Cd:af:a%4° | poA:5aNa%y4 | nii5g/P%4° | nii5g/100%4° | come co ta | mia§y5ao∪'efl<br>(=Dd:(mia§y° | l ee5aa:nmvfiaix<br>Xf, nphi  |
|                                                                      | <u> </u>                       | Ţ      | Ш           |                         | O5asdnodg5yTfiyp∋a5ol                                                                                      | :                       | ц<br>Г<br>Ц | A:S                                   | ¥8                         | AF<br>Fc        | Ξŭ                   | цТ          | )          | )<br>L       | 8          |                               | ×f –                          |
|                                                                      | -<br>                          | -      |             | ∖ofmod<br><u>Nati</u> v | <b>by SILT (ML)</b> 645 fad , fe5w, in<br>ut, d5ia                                                         | i                       | 1           |                                       |                            |                 | 3.1                  |             |            |              |            |                               | Hn:enwgfp3'rgi<br>X)Gnnwfvfia |
|                                                                      | _                              | _      |             | of mod                  | ut,d5ia                                                                                                    |                         | 1           |                                       |                            |                 |                      |             |            |              |            |                               |                               |
|                                                                      | -                              | 3-     |             | rpdu                    | ey SAND (SC)645 fad, fe5w, i<br>:t, d5;at, fe5w, ef:iftyf, f:<br>                                          | anatal:                 |             | BC=9<br>91<br>93                      | 9Sc                        |                 | S.1                  | 99P.9       | 900        | 23           |            |                               | F5fbfl:nmoi55                 |
|                                                                      | —11MB                          | -      |             |                         | , d5iatia644                                                                                               | <b>y</b>                |             |                                       |                            |                 |                      |             |            |              |            |                               | -                             |
|                                                                      | -                              | -      |             |                         |                                                                                                            |                         |             | BC=P<br>3<br>90                       | 9Sc                        | -               | 10.9                 | 90P.0       |            |              |            |                               | Cdmmn-ifvfia -                |
|                                                                      | -                              | 90-    |             | dr5bof                  | ofmodutbfpoia644                                                                                           |                         |             | BC=3                                  | 9Sc                        | -               | 7.8                  | 991.0       |            |              |            |                               | -                             |
|                                                                      | -                              | -      |             |                         | 1 -                                                                                                        |                         |             | 91<br>9P                              |                            |                 |                      |             |            |              |            |                               | -                             |
|                                                                      | -11M0                          | -      |             |                         |                                                                                                            |                         |             |                                       | 1                          |                 |                      |             |            |              |            |                               | -                             |
|                                                                      | -                              | -      |             |                         |                                                                                                            |                         |             |                                       |                            |                 |                      |             |            |              |            |                               | -                             |
|                                                                      | -                              | -      |             |                         |                                                                                                            |                         |             |                                       |                            |                 |                      |             |            |              |            |                               | -                             |
| L I                                                                  | -                              | 93—    |             | ∕n⊑ f ∕                 | nd ydn pif in:et nāgsadm5of gpn oti                                                                        | -EM                     |             | BC=7                                  | 9Sc                        | -               |                      |             |            |              |            |                               | -                             |
| NFU                                                                  | _                              | -      |             | 4018                    | auyompitin:etnogsaomoorigphoti                                                                             | a <del>911</del>        |             | 8                                     | 950                        |                 |                      |             |            |              |            |                               | -                             |
| NDIX .                                                               |                                | _      |             |                         |                                                                                                            |                         |             | M                                     |                            | -               |                      |             |            |              |            |                               | -                             |
| " שירא אשר אדער"                                                     | -                              | _      |             |                         |                                                                                                            |                         |             |                                       |                            |                 |                      |             |            |              |            |                               | -                             |
| 9                                                                    | _                              | _      |             |                         |                                                                                                            |                         |             |                                       |                            |                 |                      |             |            |              |            |                               |                               |
| TJ<br>"                                                              | _                              | 10—    |             |                         |                                                                                                            |                         |             |                                       |                            |                 |                      |             |            |              |            |                               |                               |
| "<br>"                                                               |                                | 10     |             |                         |                                                                                                            |                         |             | BC=8<br>8                             | 9Sc                        |                 |                      |             |            |              |            |                               |                               |
| 0120779.0031<br>                                                     | -                              | -      |             |                         |                                                                                                            |                         |             | 90                                    |                            | -               |                      |             |            |              |            |                               | -                             |
| FRU                                                                  | -11S0                          | -      |             |                         |                                                                                                            |                         |             |                                       |                            |                 |                      |             |            |              |            |                               | -                             |
| v ( U                                                                | -                              | -      |             |                         |                                                                                                            |                         |             |                                       |                            |                 |                      |             |            |              |            |                               | -                             |
| 031<br>& L.F.                                                        | -                              | -      |             |                         |                                                                                                            |                         |             |                                       |                            |                 |                      |             |            |              |            |                               | -                             |
| 79.0                                                                 | -                              | 13—    |             | 45 fa                   | nd, fe5w, in:etm5gsaofmndu5is                                                                              | drabof                  |             | BC=3                                  | 9Sc                        | -               |                      |             |            |              |            |                               | _                             |
| BR>                                                                  | -                              | -      |             |                         |                                                                                                            |                         |             | 8<br>M                                |                            |                 |                      |             |            |              |            |                               | -                             |
| X6 1(                                                                | -1183                          | -      |             |                         |                                                                                                            |                         |             |                                       |                            |                 |                      |             |            |              |            |                               | -                             |
| (XRJLCV DAYBLX6 10120779.003)<br>X#_1012.ECB                         | -                              | -      |             |                         | ly Graded SAND with Silt(SP-S<br>ōw, in:etdpn:g5isofmodut, d5i                                             |                         |             |                                       |                            |                 |                      |             |            |              |            |                               | -                             |
| (XRJLCv DAY<br>X#_1012.E GB                                          | -                              | -      |             | ,                       |                                                                                                            | ,, or.rf                |             |                                       |                            |                 |                      |             |            |              |            |                               | -                             |
| 21012<br>1012                                                        | -                              | 20-    |             |                         |                                                                                                            |                         |             | BC=M                                  | 97c                        | -               |                      |             |            |              |            |                               | -                             |
| ( ХF<br>Т Х#                                                         | -                              | -      |             |                         |                                                                                                            |                         |             | 91<br>90                              |                            |                 |                      |             |            |              |            |                               | -                             |
| OBXI                                                                 | -1180                          | -      |             |                         |                                                                                                            |                         |             |                                       | 1                          |                 |                      |             |            |              |            |                               | -                             |
|                                                                      | -                              | -      |             |                         | CLAY with Sand (CL)645 f ad ,                                                                              |                         |             |                                       |                            |                 |                      |             |            |              |            |                               | -                             |
| Ш_<br>Ц                                                              | -                              | _      |             | , te                    | ōw, -mnia6y5aotn5ogsarmw6isgpnot,                                                                          | d5)atia#4               |             |                                       |                            |                 |                      |             |            |              |            |                               | -                             |
| 12<br>DTI >                                                          |                                |        |             |                         |                                                                                                            |                         |             |                                       |                            |                 |                      |             |            |              |            |                               |                               |
| guov " LOLG Kr∰g5a, ni≴p_1012<br>guov v LY(CIv L6K C°_FVIDTIXT_E Dov |                                |        |             |                         |                                                                                                            | ( XRJLCv<br>10120779.0  |             | 5                                     |                            |                 | BR                   | ХФЕ         | ORE        | E B)9        | 99         |                               | " \EAXL                       |
| 5a,<br>3LOK                                                          | _ /                            | -      |             | )                       | · · <b>-</b>                                                                                               |                         |             |                                       |                            |                 |                      |             |            |              |            |                               |                               |
| <a>data</a>                                                          |                                | K      | L           |                         | NFELDER                                                                                                    | TXI N D B               | #6          | T.L                                   | (nd-                       | difel           | Ddpas I              | :afnoh      | f Gn       | mfino ()     | da5 af     | vi Cf                         | : af p I)92                   |
| 0.6 h                                                                |                                |        |             | Bri                     | ght People. Right Solutions.                                                                               | CHLCKLT                 | B#6         | J.Z                                   | FN                         | Cdp f p         | od4F55               | ppn H5g     | gsunc      | n: e         | Nfia       | al bf:                        |                               |
| א יי U<br>א יי ע                                                     |                                |        |             |                         |                                                                                                            | TI vL6                  |             |                                       |                            | Q               | a I:c                | jfnhi C     | ;dw. a     | ot Cnr       | sadp 5     | n                             |                               |
| лб                                                                   |                                |        |             |                         |                                                                                                            |                         |             |                                       |                            |                 |                      |             |            |              |            |                               | (IEL6 9 d41                   |



המר " נער X6 X נפר XFUT " . Ľ (XRJLCv DAYBLX6 10120779.0031 guov "uonu 6 Konig5 a., ni aip\_1012

| JZw. gn                                                           | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                   |             | Ind:   | 1x0Mx1012                                                                                                        | Drilling Comp  | any         | : <u>BC1</u>                           |                                   |                 |                                         |                           |                                  |                               |                |                                | BORING LOG B-12                                      |
|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------|--------|------------------------------------------------------------------------------------------------------------------|----------------|-------------|----------------------------------------|-----------------------------------|-----------------|-----------------------------------------|---------------------------|----------------------------------|-------------------------------|----------------|--------------------------------|------------------------------------------------------|
| B#6 JZw                                                           | Log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ged E               | By:         |        | T.Lepffi                                                                                                         | Drill Crew:    |             | Tnpport                                | nXn4nfrt                          | Ffpg5d          |                                         |                           | ı                                |                               |                |                                |                                                      |
| ~                                                                 | Hor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -Vert               | . Dat       | um:    | Ddal bn5mrnfn                                                                                                    | Drilling Equip | me          | nt: <u>CYL</u>                         | )83 vp                            | nyh X5g         |                                         | На                        | mme                              | r Type                        | ə - Dr         | op: _                          | 9P0 mn. Iwad) 20 5 .                                 |
| 01@M(                                                             | Plun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ge:                 |             |        | )M0 efgpffi                                                                                                      | Drilling Metho | d:          | Hdnad                                  | uFaf,                             | l wgf           | p                                       | Ha                        | mme                              | r Effic                       | cienc          | y: _                           | S1q                                                  |
| 12 0                                                              | Wea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ther                |             |        | Fw:: 0                                                                                                           | Bore Diameter  | r:          | S5.                                    | R.T.                              |                 |                                         | На                        | mme                              | r Cal.                        | Date           | : _                            | 7x17x1019                                            |
| 08X10                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |             |        | "ΨΟΤ LW                                                                                                          | ORXIVURD       |             |                                        |                                   |                 |                                         | O BRXI v RX# XLFAO/F      |                                  |                               |                |                                | AQ/F                                                 |
| ( CRVVLT6 02X08X1012                                              | lpdl5,naf<br>Lnfnbna6d:%ffa°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Tf-as%ffa°          | n- s§ynmOdg |        | Onafawef62P.87P30k<br>Od:g5awef6)99S.93220k<br>Ipoll5, naf Epolw.e FwçahyfLımlonafa<br>FwçahyfCd:e5afai:6Bn pfLr | d: %4a°61t200  | , - mf vo-f | Bhdu Cdw. a'%BC°=<br>A:ydpp.Bndu iX75. | Xf ydbf po<br>∕∕DX=Dd Xf ydbf po° | AFCF<br>Fo, rdm | Nnafp<br>Cd:af:a%q°                     | o.A: 5aN a %y⊄            | nii5g/P%4°                       | nii5g/100%4°                  | රසිැදුණ රූ කි  | lia5y5aoUefl<br>=Dd:(mia5y°    | l ee55al:nmvfiaix<br>Xf, nphi                        |
|                                                                   | <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ţf                  | Ep-         |        | O5asdnodg5yTfiyp5-a5d:                                                                                           |                | Εn,         | Brdu<br>A: y                           | ₹¥                                | AF<br>Fo,       | Cd<br>Cd                                | Тро                       | ( ni                             | , ni                          | 80             | ш<br>Э                         | - ee<br>Xf                                           |
| -                                                                 | -<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                   |             | ofmod  | re<br>ey SAND645 fad, fe5w, in:etr<br>⊔5isan:t, d5ia<br>iy Graded SAND with Silt (SP-S                           |                |             |                                        |                                   |                 | S.1                                     |                           |                                  |                               |                |                                | Hn:enwgfp3'rgi<br>-<br>Cdppdi5d:vfia<br>-<br>-<br>-  |
| -                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3—<br>-<br>-        |             |        | fin:etofmodu5/san:t,d5/at,f                                                                                      |                |             | BC=3<br>91<br>\9P/<br>BC=91<br>90      | 97c<br>9Sc                        |                 | 9.P<br>9.2                              | 991.1<br>901.P            |                                  |                               |                |                                |                                                      |
|                                                                   | -<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -<br>90—            |             | ndidif |                                                                                                                  |                |             | 95<br>BC=1<br>7<br>99                  | 9Sc                               |                 | 9.9                                     | M5.0                      |                                  |                               |                |                                |                                                      |
| -                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                   |             |        | SAND with Clay (SM)645 fin:e<br>at, fe5w, ef:if                                                                  | trogsadrooft   | -           |                                        |                                   |                 |                                         |                           |                                  |                               |                |                                |                                                      |
|                                                                   | 11S3<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 93<br>-<br>-        |             |        |                                                                                                                  |                |             | BC=3<br>S<br>90/                       | 9Sc                               |                 | MP                                      | 90S.2                     |                                  |                               |                |                                |                                                      |
| " שי ראפ אשר אדתר"                                                | -<br>-<br>11S0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -<br>-<br>10—       |             |        | SAND645 fad, fe5w, in:etmögs<br>at, fe5w, ef:iftapnyfymno                                                        | sar pou : t    |             | BC=2<br>8                              | 9Sc                               |                 |                                         |                           |                                  |                               |                |                                |                                                      |
| R" "CL                                                            | -<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                   |             |        |                                                                                                                  |                |             | <u>3</u>                               |                                   |                 |                                         |                           |                                  |                               |                |                                |                                                      |
| Fv ( W FRWORE]                                                    | 1183<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13 <del></del><br>- |             |        | ofmodut, d5-atmoddif                                                                                             |                |             | BC=2<br>8<br>1/                        | 9Sc                               |                 |                                         |                           |                                  |                               |                |                                | <br>-<br>-                                           |
| 0120779.0031<br>                                                  | -<br>-<br>—1180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -<br>-<br>20—       |             |        | CLAYwithSand(CL)645fin:e<br>โg5aotdn5bfofmolut,d5iat,fe5w,                                                       |                |             | BC=1                                   | 9Sc                               |                 |                                         |                           |                                  |                               |                |                                | -                                                    |
| X6 10<br>K0'                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                   |             |        |                                                                                                                  |                |             | 2                                      | 930                               |                 |                                         |                           |                                  |                               |                |                                | _                                                    |
| (XRJLCV DAYBLX6 10120779.003)<br>E@v_QBXI X#_1012.ECB             | -<br>-<br>1173<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -<br>-<br>23<br>-   |             | r fndu | rdp5g un i afp, 5 nafe nanpdl է<br>ւgpdw.eiwp4hyf. vsfrdp5g ur<br>gpdwad: "frpwnpo0Mi1012.                       |                |             |                                        |                                   |                 | Epdw.<br>yd, -r<br><u>ELDL</u><br>vsffl | fna£od:.<br><u>XIOD</u> I | uni:<br><u>RvLF</u><br>al: nodny | dadrii<br><u>6</u><br>na5d: n | fpbfe<br>:efnf | ewp5g                          | <u>URD6</u><br>epűm£gdpn4afp<br>npfnpdl5, nafn:eufpf |
| ×                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |             |        |                                                                                                                  | ( XRJLCv D     | 0R.6        |                                        |                                   |                 | BR                                      | XWE                       | œ                                | = B)0                         | 91             |                                | " ŒAXL                                               |
| g@ov". 100-6 Kn≜g5a_, ni af p_1012<br>g@ovvLY(CivL6 L6KC0"_FviDTI | Image: Construction of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second |                     |             |        |                                                                                                                  | 6              | T.L<br>J.Z  | (pd-<br>FN C                           | Cdp.fp                            | Ddpasl<br>d4F55 | ∶afnol-<br>pon H5o<br>fnfni C           | f Gn<br>jsunc             | mínoO<br>on:el                   | dg5iat<br>Nfia                | lbf:           | : af p<br>wf T<br>(I EL6 9 d49 |                                                      |



ICL " UVLX6 XUELXFUT -(XRJLCv DAYBLX6 10120779.0031 ni đ p\_1012 guDv "u01.6 Kn≜g5a\_,

| Bright People. Right Solutions.<br>CHLCKLT B#6 J.Z FN Cdp f pd4F55 ppn H5gsunon: e N fi al bf : wf T<br>Odi I : gf nhi Cdw. aot Cnr56dp 5n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Date E | Begi                    | n - E                     | nd:   | 1x90x1                         | 012                            |                                    |                                       | Drilling Co   | mpan     | <b>y</b> : | BC1              |                                |                |                                         |                                             |                                  |                              |                 |                      | В               | ORING           | LOG B-13     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------|---------------------------|-------|--------------------------------|--------------------------------|------------------------------------|---------------------------------------|---------------|----------|------------|------------------|--------------------------------|----------------|-----------------------------------------|---------------------------------------------|----------------------------------|------------------------------|-----------------|----------------------|-----------------|-----------------|--------------|
| John Harmer Zinkow         Deal Infair         Drilling Equipment:         CV (1) 03 vm/h Xig         Harmer Zinkow         Harmer Zinkow         Sig           Weather:         Fix::o         Bore Diameter:         SS.R.T.         Harmer Zinkow         Sig         Sig         Sig         Harmer Zinkow         Sig         Harmer Zinkow         Sig         Harmer Zinkow         Sig         Sig         S                                                                                                                                                                                                                                                                                                                                                                                          |        |                         | -                         |       | T.Lep                          | ffi                            |                                    |                                       | Drill Crew:   |          |            | Tnpport          | nXn4nfntn                      | Ffpg5d         |                                         |                                             | L                                |                              |                 |                      |                 |                 |              |
| Weather:         Fw: :0         Bore Diameter:         SS. R.T.         Hammer Call Date:         747/019           1         "UCT LV ORX VIEW         OBERVIEWS CALL                                                                                                                                                                                                                                                                              | HorV   | /ert.                   | Dati                      | um:   | Ddal b                         | on57nrnfn                      |                                    |                                       | Drilling Eq   | uipme    | ent:       | CYL              | )83 vp                         | nyh X5g        | ]                                       | Ha                                          | mme                              | r Тур                        | e - Dr          | op: _                | 9P0 m.          | lwad):          | 205.         |
| 9         70         1000 LV (CRX) VBD         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Plung  | e:                      |                           |       | )M0 ef                         | gpffi                          |                                    |                                       | Drilling Me   | thod:    |            | Hdmd             | uFaf,                          | l wgf          | р                                       |                                             |                                  |                              |                 |                      | S1q             |                 |              |
| No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No. <td>Weath</td> <td>ner:</td> <td></td> <td></td> <td>Fw::c</td> <td>)</td> <td></td> <td></td> <td></td> <td>eter:</td> <td></td> <td>S5.</td> <td>R.T.</td> <td colspan="4"></td> <td>-</td> <td colspan="2"></td>                                                                                                                                                                                                                                                                                                                                             | Weath  | ner:                    |                           |       | Fw::c                          | )                              |                                    |                                       |               | eter:    |            | S5.              | R.T.                           |                |                                         |                                             |                                  | -                            |                 |                      |                 |                 |              |
| Clayy SAND (SO) 6F d., fek         in et diaft         BC-B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |                         |                           |       |                                |                                | " Ш                                | .OTLW(C                               | CRXIV URD     |          |            |                  |                                |                |                                         |                                             |                                  |                              |                 |                      |                 |                 |              |
| Clayer SAND (BC)-6F d., f.dx, init claim         BC-B         BC-B <td>្ច 🎖 🕺</td> <td>69</td> <td>pn- s&amp;nmOdg</td> <td></td> <td></td> <td>Od:g5a<br/>nafEpdw:<br/>Fwp4hyf(</td> <td>awef6)995<br/>eFwp4hy1<br/>Cd:e5a5d:</td> <td>5.9308Sk<br/>fLnfnbnafod:<br/>6BnpfLnpa</td> <td></td> <td></td> <td></td> <td>ydpo Bindulix75.</td> <td>f ydbf po<br/>DX=Dd Xf ydbf po°</td> <td>.FCF<br/>o, rdm</td> <td>a%a</td> <td>A: 5aN a</td> <td>8</td> <td>ni i 5 g / 100 %</td> <td></td> <td>a§y5ao∪ef<br/>=Dd:(mi</td> <td></td> <td>ee5adi:nmvfiaix</td> <td>.t.</td> | ្ច 🎖 🕺 | 69                      | pn- s&nmOdg               |       |                                | Od:g5a<br>nafEpdw:<br>Fwp4hyf( | awef6)995<br>eFwp4hy1<br>Cd:e5a5d: | 5.9308Sk<br>fLnfnbnafod:<br>6BnpfLnpa |               |          |            | ydpo Bindulix75. | f ydbf po<br>DX=Dd Xf ydbf po° | .FCF<br>o, rdm | a%a                                     | A: 5aN a                                    | 8                                | ni i 5 g / 100 %             |                 | a§y5ao∪ef<br>=Dd:(mi |                 | ee5adi:nmvfiaix | .t.          |
| -1173       - di á, f. feők, inf: if       - porty Graded SAND with Clay (SP-SC) 85 f. dt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | -                       | ш<br>(///                 | Clay  |                                |                                |                                    |                                       | et drflinft   | <u> </u> |            |                  | <u> </u>                       | ¥μ             | zυ                                      | н                                           | <u> </u>                         | $\sim$                       | 0               | ~8                   |                 | ;               | ×            |
| 1100         Peoply Graded BAND with City (GP 56) 56 f at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1173  |                         | $\langle \rangle \rangle$ |       |                                |                                | 'i au , i                          | con, in.                              | erunadir      |          | F          | P                | 350                            |                |                                         |                                             |                                  |                              |                 |                      |                 |                 | -            |
| P0         i s8t apyl 4 6 f at , fe5x, in: e           -1133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |                         |                           |       | e5w, in:etofmodu5isrpdu:t, d5i |                                |                                    | at, fe5w,                             |               | BC=8     | 3          | 97c              |                                |                |                                         |                                             |                                  |                              |                 |                      |                 | -<br>-<br>-     |              |
| 30       , dS a., fe5x, ef:if         -1130       BC=3       952         -1130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | P3                      |                           |       |                                |                                |                                    |                                       | boft, d5iat   |          | 3          | 3                | 9Sc                            |                |                                         |                                             |                                  |                              |                 |                      |                 |                 | -<br>-<br>-  |
| Image: spectrum of the grow e i wphyl. vsf rdg g uni rnyh@fine       Eptw eund puni : dadi i fpf e ewds g epting g dpn di p         Image: spectrum of the grow e i wphyl. vsf rdg g uni rnyh@fine       Eptw eund puni : dadi i fpf e ewds g epting g dpn di p         Image: spectrum of the grow e i wphyl. vsf rdg g uni rnyh@fine       Eptw eund puni : dadi i fpf e ewds g epting g dpn di p         Image: spectrum of the grow e i wphyl. vsf rdg g uni rnyh@fine       Eptw eund puni : dadi i fpf e ewds g epting g dpn di p         Image: spectrum of the grow e i wphyl. vsf rdg g uni rnyh@fine       Eptw eund puni : dadi i fpf e ewds g epting g dpn di p         Image: spectrum of the grow e i wphyl. vsf rdg g uni rnyh@fine       Eptw eund puni : dadi i fpf e ewds g epting g dpn di p         Image: spectrum of the grow e i wphyl. vsf rdg g uni rnyh@fine       Eptw eund puni : dadi i fpf e ewds g epting g dpn di p         Image: spectrum of the grow e i wphyl. vsf rdg g uni rnyh@fine       Image: spectrum of the grow e i wphyle         Image: spectrum of the grow e i wphyle       Image: spectrum of the grow e i wphyle         Image: spectrum of the grow e i wphyle       Image: spectrum of the grow e i wphyle         Image: spectrum of the grow e i wphyle       Image: spectrum of the grow e i wphyle         Image: spectrum of the grow e i wphyle       Image: spectrum of the grow e i wphyle         Image: spectrum of the grow e i wphyle       Image: spectrum of the grow e i wphyle         Image: spectrum of the grow e i wphyle       Image:                                                                                                                                                     | -      | 30-                     |                           |       |                                |                                | fad, f                             | e5w, in:                              | etdraboft — — |          | 3          | 3                | 9Sc                            |                |                                         |                                             |                                  |                              |                 |                      |                 |                 | -            |
| -11P0       -1123         -1123       -1123         -1123       -1123         -1123       -1123         -1123       -1123         -1123       -1123         -1123       -1123         -1123       -1123         -1123       -1123         -1123       -1123         -1123       -1123         -1123       -1123         -1123       -1123         -1123       -1120         -1123       -1120         -1123       -1120         -1123       -1120         -1123       -1120         -1123       -1120         -1123       -1120         -1123       -1120         -1123       -1120         -1123       -1120         -1123       -1120         -1123       -1120         -1120       -1120         -1120       -1120         -1120       -1120         -1120       -1120         -1120       -1120         -1120       -1120         -1120       -1120         -1120       -1120         -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | -<br>-<br>33-<br>-<br>- |                           | r fnd | u gpdw.e                       | iwp4hyf                        | . vsfro                            | dp5 giuni                             |               |          |            |                  |                                |                | Epdw.<br>yd, -n<br><u>ELDL</u><br>vsffl | eunafp<br>fra5d:.<br><u>XIOD</u><br>-ndpnaf | ouni:<br><u>RvLF</u><br>od:nodyi | dadri<br><u>6</u><br>na5d: n | fpbfe<br>n:efnf | ewpбg                | ep <b>ono</b> g |                 |              |
| -1123<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | -<br>70—<br>-<br>-      |                           |       |                                |                                |                                    |                                       |               |          |            |                  |                                |                |                                         |                                             |                                  |                              |                 |                      |                 |                 |              |
| KLEINFELDER         Bright People. Right Solutions.             Intervention             Intervention             Intervention             Intervention             BRXWE ORE BJ92             Intervention              Intervention             Intervention             Intervention              Intervention <td< td=""><td></td><td>-<br/>73—<br/>-<br/>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | -<br>73—<br>-<br>-      |                           |       |                                |                                |                                    |                                       |               |          |            |                  |                                |                |                                         |                                             |                                  |                              |                 |                      |                 |                 |              |
| Bright People. Right Solutions.<br>CHLCKLT B#6 J.Z FN Cdp f pd4F5 ppn H5 sunon: e N fi al bf: wf T<br>Odi I : gf mi Cdw. aot Cnr5dp 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | -                       |                           |       |                                |                                |                                    |                                       |               |          | 6          |                  |                                |                | BRX                                     | KØE                                         | ORI                              | E B)9                        | 92              |                      |                 | " ((            | EAXL         |
| (1EL6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | K                       |                           |       |                                |                                |                                    |                                       |               |          | 6          |                  | (pd-<br>FN C                   | dpfp           | d4F55                                   | ppn H5(                                     | İgsunc                           | n: e                         | Nfia            | al bf:               | wfT             |                 | )93<br>1 d41 |



## APPENDIX B LABORATORY TESTING



#### APPENDIX B LABORATORY TESTING

Laboratory tests were performed on drive and bulk soil samples to estimate engineering characteristics of the various earth materials encountered. The laboratory testing was performed by our laboratory located in Ontario, California or by AP Engineering & Testing, Inc. of Pomona, California. Testing was performed in general accordance with procedures outlined in the American Society for Testing and Materials, or other accepted procedures. Visual classifications presented on the lab figures performed by AP Engineering may differ from those presented on the boring logs provided in Appendix A.

#### LABORATORY MOISTURE DETERMINATIONS AND UNIT WEIGHTS

Natural moisture content and unit weight tests were performed on selected samples. The moisture content tests were performed in general accordance with ASTM Test Method D 2216 and the unit weight tests were performed in general accordance with ASTM Test Method D 2937. The results are presented on the Logs of Borings in Appendix A.

#### SIEVE ANALYSES

Sieve analyses were performed on selected samples of the materials encountered at the site to evaluate the grain size distribution characteristics of the soils and to aid in their classification. Tests were performed in general accordance with ASTM Test Method D 6913. Results of these tests are presented in the boring logs in Appendix A and attached as Figures B-1 through B-4, Grain Size Distribution Curve.

#### ATTERBERG LIMITS (PLASTICITY INDEX)

Plasticity limit and liquid limit testing was performed on soil samples to evaluate behavior conditions at varying water contents. Testing was performed in general accordance with ASTM Standard Test Method D4318. The results are presented on the boring logs in Appendix A and attached as Figures B-5 through B-9, Plasticity Testing.



#### DIRECT SHEAR

Direct shear testing was performed on a remolded sample for shear strength and cohesion values of the in-situ soils in accordance with ASTM Standard Test Method D 3080. The tests were performed by AP Engineering. The results are presented as Figures B-10 and B-11, Direct Shear Test.

#### PRELIMINARY CORROSIVITY TESTS

A series of chemical tests were performed on a selected sample of the near-surface soils to estimate pH, resistivity and sulfate and chloride contents. The sample was tested in general accordance with California Test Methods 643, 422, and 417 for pH and minimum resistivity, soluble chlorides, and soluble sulfates, respectively. Test results may be used by a qualified corrosion engineer to evaluate the general corrosion potential with respect to construction materials. The tests were performed by AP Engineering. The results of these tests are presented below in Table B-1, Preliminary Corrosion Test Results.

#### MODIFIED PROCTOR

Maximum density-optimum moisture tests were performed on a select bulk sample of the on-site soils to determine compaction characteristics. The test was performed in accordance with ASTM Standard Test Method D 1557. The test results are presented below in Table B-2, Modified Proctor Test Results.

#### **EXPANSION INDEX**

Expansion Index testing was performed on three near surface bulk samples to determine the expansion potential of the soil. The tests were performed in accordance with ASTM Standard Test Method D4829. The test results are presented below in Table B-3, Expansion Index Test Results.



#### **R-VALUE TEST**

A Resistance Value (R-value) test was performed on four bulk soil samples to evaluate pavement support characteristics of the near-surface onsite soils. R-value testing was performed in accordance with ASTM Standard Test Method D2844. The test results are presented below in Table B-4, R-Value Test Results.

#### ONE-DIMENSIONAL SWELL/COLLAPSE TEST

Laboratory testing was performed on two selected soil samples to study the collapse potential of the subgrade soils. During this test, the soil sample is inundated with water at 2 kips per square foot (ksf) and the percent swell or collapse is measured. This test was performed by AP Engineering in accordance with ASTM D4546. The test results are presented below in Table B-5, Collapse Potential Test Results.

#### CONSOLIDATION CURVE

Laboratory testing was performed on two selected soil samples to study the consolidation of the subgrade soils. During this test, the soil sample is inundated with water at a specific surcharge loading and the percent swell or collapse is measured. This test was performed by AP Engineering in accordance with ASTM D2435. The test results are presented as Figures B-12 and B-13, Consolidation Curve.

| Boring | Depth<br>(ft) | рН   | Sulfate<br>(ppm) | Chloride<br>(ppm) | Resistivity<br>(ohm-cm) |
|--------|---------------|------|------------------|-------------------|-------------------------|
| B-3    | 1-5           | 10.3 | 29               | 38                | 1,908                   |
| B-4    | 1-5           | 10.0 | 35               | 114               | 1,047                   |
| B-6    | 1-5           | 9.9  | 32               | 76                | 1,840                   |
| B-12   | 1-5           | 10.1 | 56               | 55                | 1,094                   |

# Table B-1Preliminary Corrosivity Test Results



| Boring Number | Depth (ft) | Maximum Dry Density (pcf) | Optimum Moisture (%) |
|---------------|------------|---------------------------|----------------------|
| B-2           | 1 – 5      | 131.0                     | 8.3                  |
| B-7           | 1 – 5      | 103.0                     | 18.0                 |
| B-8           | 1 – 5      | 122.3                     | 8.8                  |
| B-13          | 1 – 5      | 122.7                     | 10.8                 |

Table B-2Modified Proctor Test Results

Table B-3Expansion Index Test Results

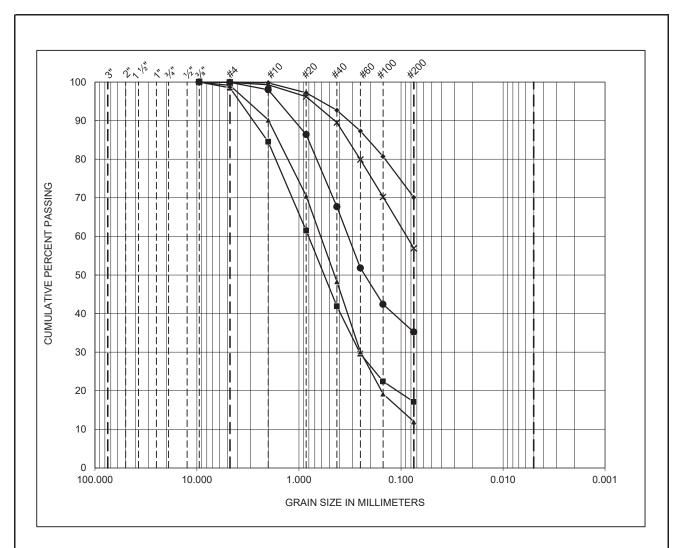
| Boring Number | Depth (ft) | Expansion Index | Expansion Potential |
|---------------|------------|-----------------|---------------------|
| B-2           | 1 – 5      | 4               | Very Low            |
| В-9           | 1 – 5      | 5               | Very Low            |
| B-13          | 1 – 5      | 18              | Very Low            |

Table B-4 Resistance Value Test Results

| Boring Number | Depth (ft) | R-Value |
|---------------|------------|---------|
| B-4           | 1 – 5      | 34      |
| B-5           | 1 – 5      | 38      |
| B-10          | 1 – 5      | 24      |
| B-11          | 1 – 5      | 41      |

Table B-5Collapse Potential Test Result

| Boring Number | Depth (ft) | Collapse Potential (%) |
|---------------|------------|------------------------|
| B-1           | 5.0        | 0.9                    |
| B-6           | 7.5        | 0.3                    |
| B-8           | 5.0        | 1.8                    |
| B-11          | 7.5        | 0.2                    |

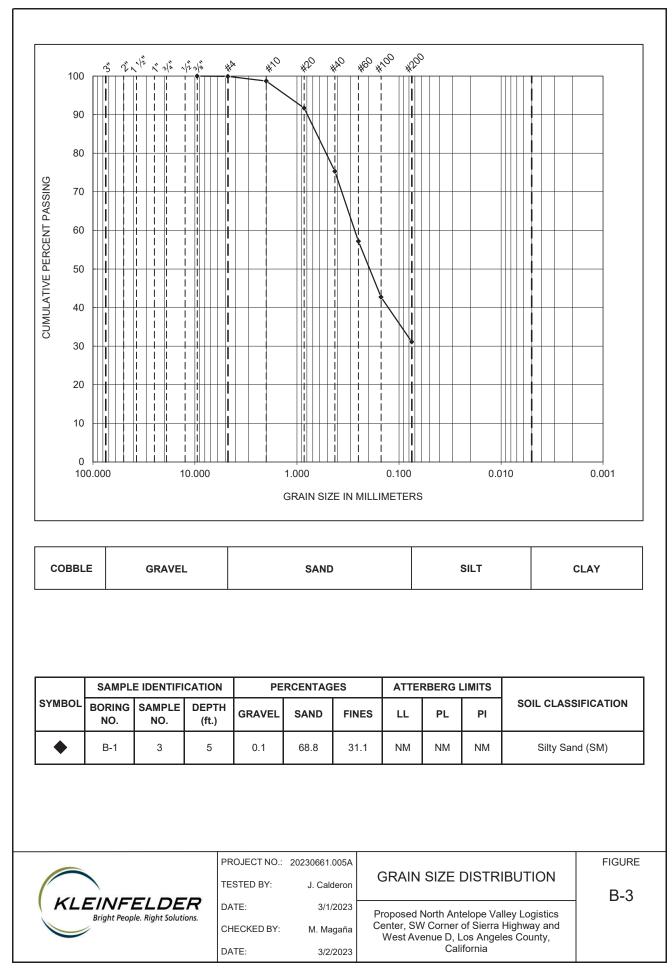


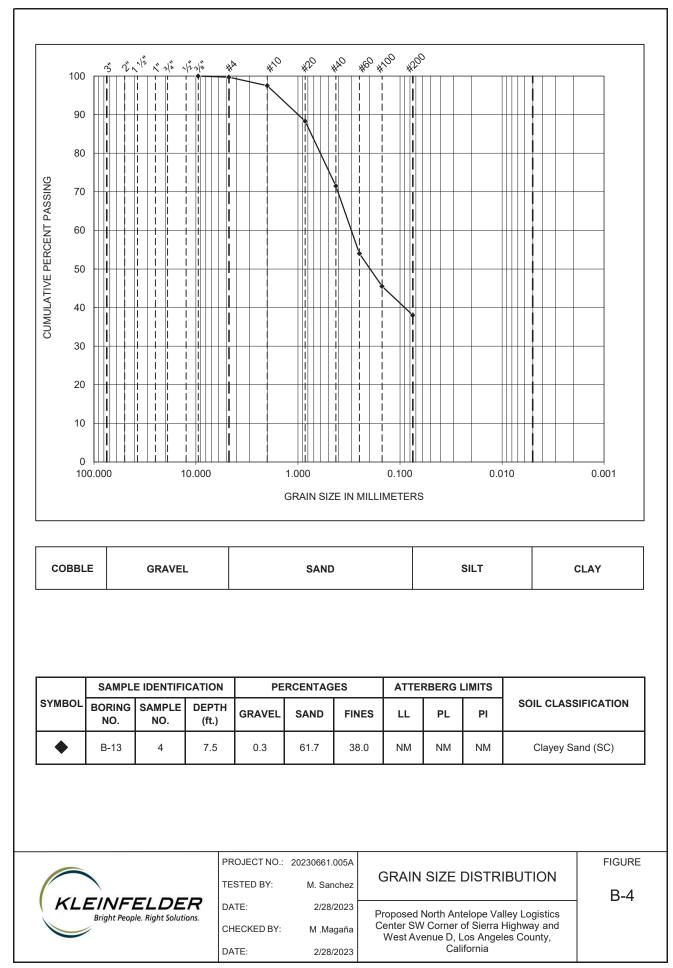

| COBBLE | GRAVEL | SAND | SILT | CLAY |
|--------|--------|------|------|------|
|--------|--------|------|------|------|

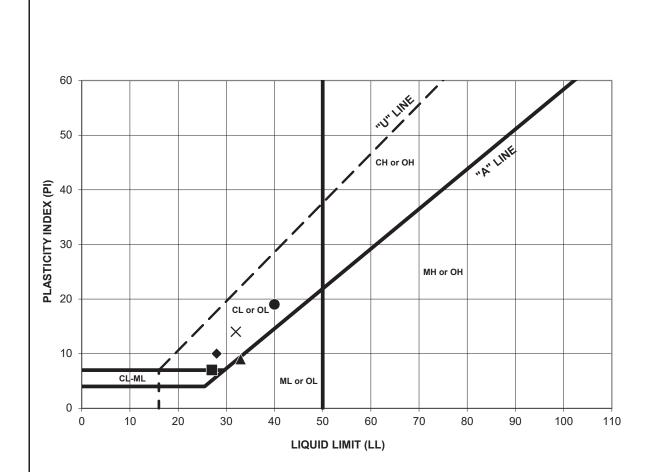
|        | SAMPL         | E IDENTIFI    | CATION         | PE     | RCENTAG | ES    | ATTE | RBERG I | IMITS |                      |
|--------|---------------|---------------|----------------|--------|---------|-------|------|---------|-------|----------------------|
| SYMBOL | BORING<br>NO. | SAMPLE<br>NO. | DEPTH<br>(ft.) | GRAVEL | SAND    | FINES | LL   | PL      | PI    | SOIL CLASSIFICATION  |
| •      | B-1 4 7.5     |               | 7.5            | 0.0    | 38.1    | 61.9  | NM   | NM      | NM    | Sandy Silt (ML)      |
|        | B-3           | 11            | 40             | 3.8    | 35.7    | 60.5  | 40   | 21      | 19    | Sandy Lean Clay (CL) |
|        | B-4           | 3             | 5              | 0.0    | 62.1    | 37.9  | NM   | NM      | NM    | Silty Sand (SM)      |
| ×      | B-5           | 2             | 2.5            | 1.6    | 75.9    | 22.5  | NM   | NM      | NM    | Silty Sand (SM)      |
| •      | B-5           | 3             | 5              | 0.9    | 67.3    | 31.8  | NM   | NM      | NM    | Silty Sand (SM)      |

|                                                | PROJECT NO .: | 20230661.005A |                                          | FIGURE |
|------------------------------------------------|---------------|---------------|------------------------------------------|--------|
|                                                | TESTED BY:    | M. Sanchez    | GRAIN SIZE DISTRIBUTION                  | B-1    |
| KLEINFELDER<br>Bright People. Right Solutions. | DATE:         | 2/28/2023     | Proposed North Antelope Valley Logistics | D-I    |
| Bright People, Right Solutions.                | CHECKED BY:   | M. Magaña     | Contor SW Corpor of Sigrra Highway and   |        |
|                                                | DATE:         | 2/28/2023     | California                               |        |

KLEINFELDER - 620 Magnolia Avenue, Building G | Ontario, California 91762 | PH: (909) 657-1716 | FAX: (909) 988-0185 | www.kleinfelder.com

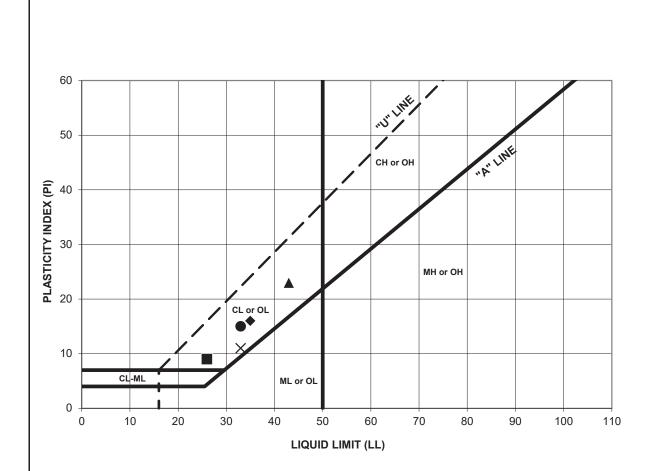




| COBBLE GRAVEL SA | ND SILT | CLAY |
|------------------|---------|------|
|------------------|---------|------|


|        | SAMPL         | AMPLE IDENTIFICATION |                | PE     | PERCENTAGES |       |    | RBERG I | IMITS |                                     |
|--------|---------------|----------------------|----------------|--------|-------------|-------|----|---------|-------|-------------------------------------|
| SYMBOL | BORING<br>NO. | SAMPLE<br>NO.        | DEPTH<br>(ft.) | GRAVEL | SAND        | FINES | LL | PL      | PI    | SOIL CLASSIFICATION                 |
| •      | B-5           | 4                    | 7.5            | 0.0    | 29.9        | 70.1  | NM | NM      | NM    | Sandy Lean Clay (CL)                |
|        | B-9           | 2                    | 2.5            | 1.5    | 81.4        | 17.1  | NM | NM      | NM    | Clayey Sand (SC)                    |
|        | B-9           | 3                    | 5              | 0.9    | 87.1        | 12.0  | NM | NM      | NM    | Well Graded Sand w/Clay (SW-<br>SC) |
| ×      | B-10          | 3                    | 5              | 0.1    | 43.0        | 56.9  | NM | NM      | NM    | Sandy Lean Clay (CL)                |
| •      | B-11          | 3                    | 5              | 0.1    | 64.7        | 35.2  | NM | NM      | NM    | Clayey Sand (SC)                    |

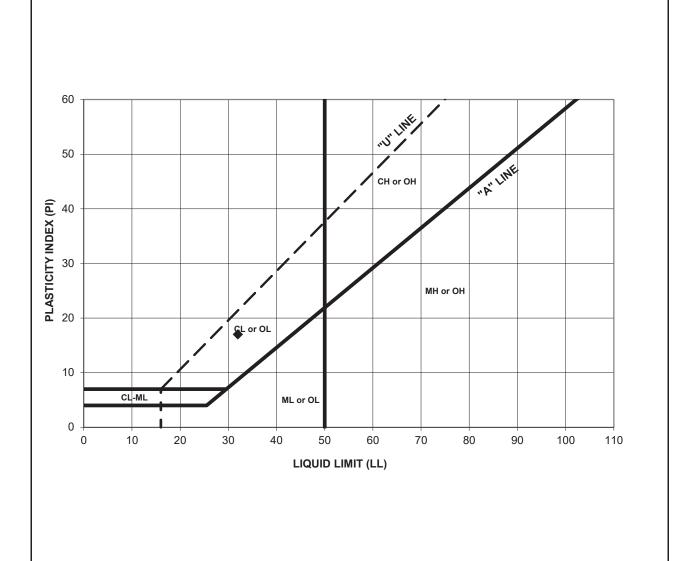
|                                 | PROJECT NO .: | 20230661.005A |                                                                                                                               | FIGURE |
|---------------------------------|---------------|---------------|-------------------------------------------------------------------------------------------------------------------------------|--------|
|                                 | TESTED BY:    | M. Sanchez    | GRAIN SIZE DISTRIBUTION                                                                                                       | B-2    |
| KLEINFELDER                     | DATE:         | 2/28/2023     |                                                                                                                               |        |
| Bright People. Right Solutions. | CHECKED BY:   | M. Magaña     | Proposed North Antelope Valley Logistics<br>Center, SW Corner of Sierra Highway and<br>West Avenue D, Los Angeles, California |        |
|                                 | DATE:         | 2/28/2023     | West Avenue D, Los Angeles, California                                                                                        |        |

KLEINFELDER - 620 Magnolia Avenue, Building G | Ontario, California 91762 | PH: (909) 657-1716 | FAX: (909) 988-0185 | www.kleinfelder.com





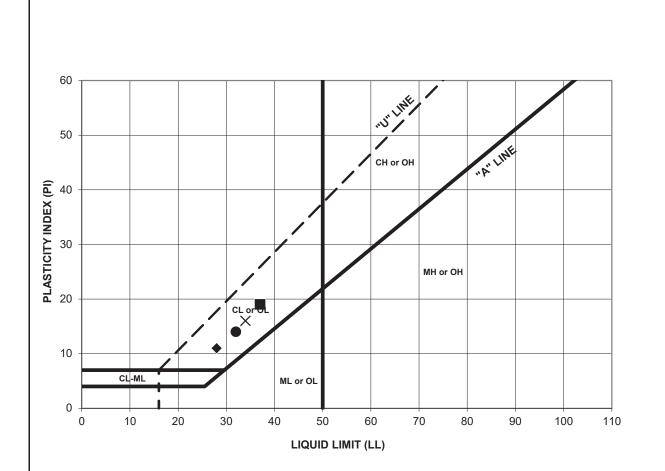




|        |               |               | PLE IDENTIFICATION |    |    | LIMITS |                      |  |
|--------|---------------|---------------|--------------------|----|----|--------|----------------------|--|
| SYMBOL | BORING<br>NO. | SAMPLE<br>NO. | DEPTH (ft)         | LL | PL | PI     | SOIL CLASSIFICATION  |  |
| •      | B-3           | 10            | 35'                | 28 | 18 | 10     | Sandy Lean Clay (CL) |  |
| •      | B-3           | 11            | 40'                | 40 | 21 | 19     | Sandy Lean Clay (CL) |  |
|        | B-3           | 12            | 45'                | 33 | 24 | 9      | Sandy Lean Clay (CL) |  |
| ×      | B-3           | 13            | 50'                | 32 | 18 | 14     | Sandy Lean Clay (CL) |  |
|        | B-4           | 7             | 20'                | 27 | 20 | 7      | Silty Clay (CL-ML)   |  |

| $\frown$                        | PROJECT NO.: 2<br>TESTED BY: | 20230661.005A<br>J. Calderon | PLASTICITY TESTING                                                         | FIGURE |
|---------------------------------|------------------------------|------------------------------|----------------------------------------------------------------------------|--------|
| KLEINFELDER                     | DATE:                        | 2/22/2023                    | Proposed North Antelope Valley Logistics                                   | D-0    |
| Bright People. Right Solutions. | CHECKED BY:                  | M. Magaña                    | Center, SW Corner of Sierra Highway and West Avenue D, Los Angeles County, |        |
|                                 | DATE:                        | 2/23/2023                    | California                                                                 |        |

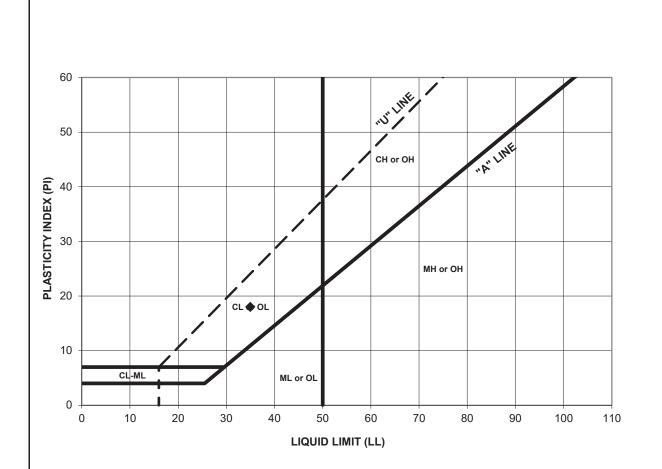


|        | SAMPLE IDENTIFICATION ATTERBE |               | RBERG      | LIMITS |    |    |                          |  |
|--------|-------------------------------|---------------|------------|--------|----|----|--------------------------|--|
| SYMBOL | BORING<br>NO.                 | SAMPLE<br>NO. | DEPTH (ft) | LL     | PL | PI | SOIL CLASSIFICATION      |  |
| •      | B-4                           | 8             | 25         | 35     | 19 | 16 | Lean Clay with Sand (CL) |  |
| •      | B-4                           | 9             | 30         | 33     | 18 | 15 | Lean Clay with Sand (CL) |  |
|        | B-4                           | 11            | 40         | 43     | 20 | 23 | Lean Clay (CL)           |  |
| ×      | B-5                           | 9             | 30         | 33     | 22 | 11 | Lean Clay with Sand (CL) |  |
|        | B-5                           | 10            | 35         | 26     | 17 | 9  | Lean Clay with Sand (CL) |  |


| $\frown$                        | PROJECT NO.:<br>TESTED BY: | 20230661.005A<br>J. Calderon | PLASTICITY TESTING                                                            | FIGURE |
|---------------------------------|----------------------------|------------------------------|-------------------------------------------------------------------------------|--------|
| KLEINFELDER                     | DATE:                      | 2/22/2023                    | Proposed North Antelope Valley Logistics                                      | D-0    |
| Bright People. Right Solutions. | CHECKED BY:                | M. Magaña                    | Center, SW Corner of Sierra Highway and<br>West Avenue D, Los Angeles County, |        |
|                                 | DATE:                      | 2/23/2023                    | California                                                                    |        |



|        | SAMPL         | ATTER         | RBERG I    | IMITS |    |    |                          |
|--------|---------------|---------------|------------|-------|----|----|--------------------------|
| SYMBOL | BORING<br>NO. | SAMPLE<br>NO. | DEPTH (ft) | LL    | PL | PI | SOIL CLASSIFICATION      |
| •      | B-5           | 13            | 50         | 32    | 15 | 17 | Lean Clay with Sand (CL) |




| PROJECT NO.: | 20230661.005A | PLASTICITY TESTING                                                            | FIGURE |
|--------------|---------------|-------------------------------------------------------------------------------|--------|
| TESTED BY:   | R.Davila      |                                                                               | B-7    |
| DATE:        | 2/27/2023     | Proposed North Antelope Valley Logistics                                      | D-1    |
| CHECKED BY:  | M. Magaña     | Center, SW Corner of Sierra Highway and<br>West Avenue D, Los Angeles County, |        |
| DATE:        | 2/27/2023     | California                                                                    |        |



|        | SAMPL         | E IDENTIFIC   | CATION     | ATTE | RBERG | LIMITS |                          |  |
|--------|---------------|---------------|------------|------|-------|--------|--------------------------|--|
| SYMBOL | BORING<br>NO. | SAMPLE<br>NO. | DEPTH (ft) | LL   | PL    | PI     | SOIL CLASSIFICATION      |  |
| •      | B-5           | 11            | 40         | 28   | 17    | 11     | Lean Clay with Sand (CL) |  |
| •      | B-10          | 9             | 30         | 32   | 18    | 14     | Lean Clay with Sand (CL) |  |
|        | B-10          | 10            | 35         | -    | -     | -      | Non Plastic              |  |
| ×      | B-10          | 12            | 45         | 34   | 18    | 16     | Lean Clay with Sand (CL) |  |
|        | B-11          | 10            | 35         | 37   | 18    | 19     | Lean Clay with Sand (CL) |  |

| $\frown$                        | PROJECT NO.:<br>TESTED BY: | 20230661.005A<br>J. Calderon | PLASTICITY TESTING                                                            | FIGURE |
|---------------------------------|----------------------------|------------------------------|-------------------------------------------------------------------------------|--------|
| KLEINFELDER                     | DATE:                      | 2/22/2023                    | Proposed North Antelope Valley Logistics                                      | D-0    |
| Bright People. Right Solutions. | CHECKED BY:                | M. Magaña                    | Center, SW Corner of Sierra Highway and<br>West Avenue D, Los Angeles County, |        |
|                                 | DATE:                      | 2/23/2023                    | California                                                                    |        |



|        | SAMPL         | ATTER         | RBERG      | LIMITS |    |    |                          |  |
|--------|---------------|---------------|------------|--------|----|----|--------------------------|--|
| SYMBOL | BORING<br>NO. | SAMPLE<br>NO. | DEPTH (ft) | LL     | PL | PI | SOIL CLASSIFICATION      |  |
| •      | B-11          | 11            | 40         | 35     | 17 | 18 | Lean Clay with Sand (CL) |  |
| •      | B-11          | 12            | 45         | -      | -  | -  | Non Plastic              |  |



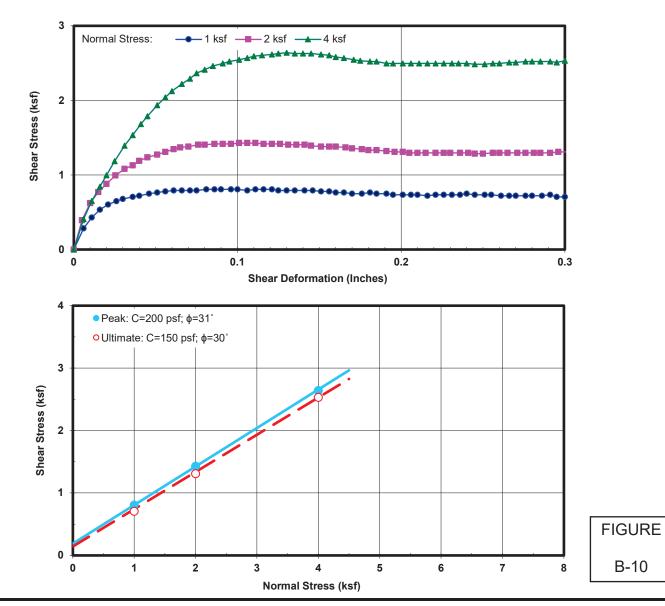
| PROJECT NO .: | 20230661.005A | PLASTICITY TESTING                                                            | FIGURE |
|---------------|---------------|-------------------------------------------------------------------------------|--------|
| TESTED BY:    | J. Calderon   |                                                                               | B-9    |
| DATE:         | 2/22/2023     | Proposed North Antelope Valley Logistics                                      | D-9    |
| CHECKED BY:   | M. Magaña     | Center, SW Corner of Sierra Highway and<br>West Avenue D, Los Angeles County, |        |
| DATE:         | 2/23/2023     | California                                                                    |        |

KLEINFELDER - 620 South Magnolia Ave, Bldg G | Ontario, CA | PH: (909) 657-1716 | FAX: (909) 988-0185 | www.kleinfelder.com



#### AP Engineering and Testing, Inc. DBE|MBE|SBE

2607 Pomona Boulevard | Pomona, CA 91768 t. 909.869.6316 | f. 909.869.6318 | <u>www.aplaboratory.com</u>


## DIRECT SHEAR TEST RESULTS

## ASTM D 3080

| Project Name:     | NAVLC 157 & 160               |               |   |  |  |  |
|-------------------|-------------------------------|---------------|---|--|--|--|
| Project No.:      | 20230661.00                   | 20230661.005A |   |  |  |  |
| Boring No.:       | B-6                           |               |   |  |  |  |
| Sample No.:       | 3                             | Depth (ft):   | 5 |  |  |  |
| Sample Type:      | Mod. Cal.                     |               |   |  |  |  |
| Soil Description: | Clayey Sand                   |               |   |  |  |  |
| Test Condition:   | Inundated Shear Type: Regular |               |   |  |  |  |
|                   |                               |               |   |  |  |  |

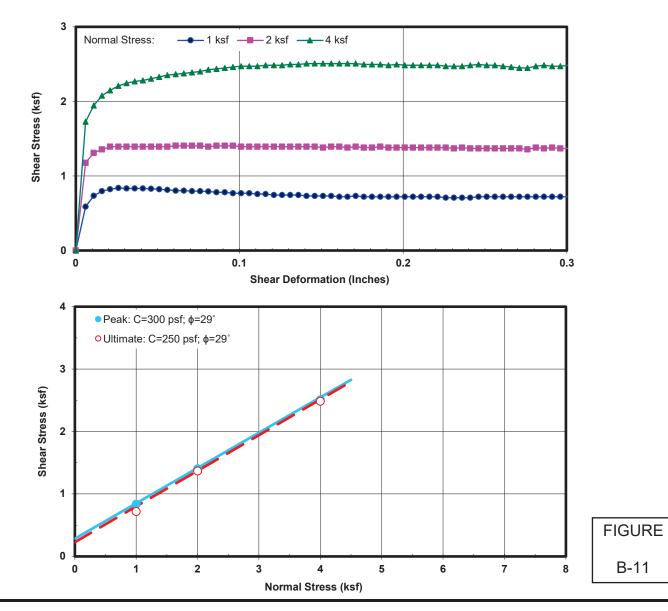
| Tested By:   | LS | Date: | 02/28/23 |
|--------------|----|-------|----------|
| Computed By: | NR | Date: | 03/01/23 |
| Checked by:  | AP | Date: | 03/01/23 |

| Wet         | Dry         | Initial     | Final       | <b>Initial Degree</b> | Final Degree | Normal | Peak         | Ultimate     |
|-------------|-------------|-------------|-------------|-----------------------|--------------|--------|--------------|--------------|
| Unit Weight | Unit Weight | Moisture    | Moisture    | Saturation            | Saturation   | Stress | Shear        | Shear        |
| (pcf)       | (pcf)       | Content (%) | Content (%) | (%)                   | (%)          | (ksf)  | Stress (ksf) | Stress (ksf) |
|             |             |             |             |                       |              | 1      | 0.806        | 0.706        |
| 117.0       | 107.6       | 8.8         | 18.9        | 42                    | 90           | 2      | 1.428        | 1.308        |
|             |             |             |             |                       |              | 4      | 2.640        | 2.532        |





#### AP Engineering and Testing, Inc. DBE|MBE|SBE


2607 Pomona Boulevard | Pomona, CA 91768 t. 909.869.6316 | f. 909.869.6318 | <u>www.aplaboratory.com</u>

# DIRECT SHEAR TEST RESULTS

## **ASTM D 3080**

| Project Name:     | NAVLC 157 & 160 |              |               | _              | Tested By:   | LS     | Date: | 02/27/23 |
|-------------------|-----------------|--------------|---------------|----------------|--------------|--------|-------|----------|
| Project No.:      | 20230661.00     | )5A          |               | -              | Computed By: | JP     | Date: | 02/28/23 |
| Boring No.:       | B-8             |              |               | _              | Checked by:  | AP     | Date: | 02/28/23 |
| Sample No.:       | 1               | Depth (ft):  | 1-5           | _              |              |        |       |          |
| Remold Cond.:     | Remolded to     | 90% of 122.3 | pcf at 8.8% N | лС             |              |        |       |          |
| Soil Description: | Sandy Clay      |              |               | -              |              |        |       |          |
| Test Condition:   | Inundated       | Shear Type:  | Regular       | -              |              |        |       |          |
|                   |                 |              |               |                |              |        |       |          |
| W/ot              | Dry             | Initial      | Einal         | Initial Dograa | Einal Dograa | Normal | Book  | Ultimato |

|   | Wet         | Dry         | Initial     | Final       | <b>Initial Degree</b> | Final Degree | Normal | Peak         | Ultimate     |
|---|-------------|-------------|-------------|-------------|-----------------------|--------------|--------|--------------|--------------|
|   | Unit Weight | Unit Weight | Moisture    | Moisture    | Saturation            | Saturation   | Stress | Shear        | Shear        |
|   | (pcf)       | (pcf)       | Content (%) | Content (%) | (%)                   | (%)          | (ksf)  | Stress (ksf) | Stress (ksf) |
| Γ |             |             |             |             |                       |              | 1      | 0.838        | 0.720        |
|   | 119.9       | 110.0       | 9.0         | 18.9        | 45                    | 96           | 2      | 1.404        | 1.368        |
|   |             |             |             |             |                       |              | 4      | 2.508        | 2.484        |





March 6, 2023 Kleinfelder Project No. 20230661.001A

Mr. Jack Lac NorthPoint Development 12977 North Outer 40 Road, Suite 203 St. Louis, Missouri 63141

#### SUBJECT: Feasibility-Level Geotechnical Investigation Antelope LAC 234 Lancaster Area of Los Angeles County, California

Dear Mr. Lac:

Kleinfelder is pleased to present this report summarizing the feasibility-level geotechnical investigation performed for the subject site, located at the southeast corner of West Avenue F and 20<sup>th</sup> Street in the Lancaster area of Los Angeles County, California. Our conclusions and recommendations for geotechnical design and construction are presented in the attached report.

We appreciate the opportunity to provide geotechnical engineering services to you on this project. If you have any questions regarding this report or if we can be of further service, please do not hesitate to contact the undersigned.

Sincerely,

KLEINFELDER, INC.

Hector Marquez, P.E. Project Engineer

Jeffery D. Waller, P.E., G.E. Senior Geotechnical Engineer

Page 1 of 1



FEASIBILITY-LEVEL GEOTECHNICAL INVESTIGATION ANTELOPE LAC 234 LANCASTER AREA OF LOS ANGELES COUNTY, CALIFORNIA

KLEINFELDER PROJECT NO. 20230661.001A

MARCH 6, 2023

Copyright 2023 Kleinfelder All Rights Reserved

ONLY THE CLIENT OR ITS DESIGNATED REPRESENTATIVES MAY USE THIS DOCUMENT AND ONLY FOR THE SPECIFIC PROJECT FOR WHICH THIS REPORT WAS PREPARED.

20230661.001A/RIV22R141902 Copyright 2023 Kleinfelder Page i of iv

March 6, 2023 www.kleinfelder.com



A Report Prepared for:

Mr. Jack Lac NorthPoint Development 12977 North Outer 40 Road, Suite 203 St. Louis, Missouri 63141

#### FEASIBILITY-LEVEL GEOTECHNICAL INVESTIGATION ANTELOPE LAC 234 LANCASTER AREA OF LOS ANGELES COUNTY, CALIFORNIA

Prepared by:

Hector Marquez, P.E. Project Engineer

Reviewed by:

Jall



REGIS

PROFESSIO,

No. 94054 Exp. 09/30/24

OF CALIFO

Jeffery D. Waller, P.E., G.E. Senior Geotechnical Engineer

#### **KLEINFELDER**

2280 Market Street, Suite 300 Riverside, California 92501 Phone: 951.801.3681 Fax: 951.682.0192

March 6, 2023 Kleinfelder Project No. 20230661.001A



## TABLE OF CONTENTS

| <u>Se</u> | ction    |                |              | Pa                                      | ge |
|-----------|----------|----------------|--------------|-----------------------------------------|----|
| 1         | INTRODU  | CTION.         |              |                                         | 1  |
|           | 1.1      |                |              | PTION                                   |    |
|           | 1.2      | SCOPI          | E OF SERVIC  | CES                                     | 1  |
| 2         | SITE AND |                | JRFACE CO    | NDITIONS                                | 4  |
| -         | 2.1      |                |              | Ν                                       |    |
|           | 2.2      | SUBSI          | JRFACE CON   | NDITIONS                                | 4  |
|           | 2.3      | GROU           | NDWATER C    | CONDITIONS                              | 4  |
| 3         |          |                | PROITIO      |                                         | 6  |
| 5         | 3.1      | -              |              | )GY                                     | -  |
|           | 3.2      |                |              |                                         |    |
|           | 3.3      |                |              | RDS                                     |    |
|           |          | 3.3.1          |              | otentially Active Fault Search          |    |
|           |          | 3.3.2          |              | ,                                       |    |
|           |          | 3.3.3          | Landslides   |                                         | 7  |
|           |          | 3.3.4          | Liquefaction | and Seismic Settlement                  | 7  |
| 4         | CONCLUS  | SIONS          |              | MENDATIONS                              | 8  |
| •         | 4.1      |                | -            |                                         | -  |
|           | 4.2      |                |              | CONSIDERATIONS                          |    |
|           |          | 4.2.1          | Seismic Des  | ign Parameters                          | 8  |
|           |          | 4.2.2          |              | and Seismic Settlement                  |    |
|           | 4.3      | FOUN           | DATIONS      |                                         | 11 |
|           |          | 4.3.1          |              |                                         |    |
|           |          | 4.3.2          |              | earing Pressure                         |    |
|           |          | 4.3.3          |              | ettlements                              |    |
|           |          | 4.3.4          |              | stance                                  |    |
|           | 4.4      | EARTF<br>4.4.1 | -            |                                         |    |
|           |          | 4.4.1          |              | tion                                    |    |
|           |          | 4.4.2<br>4.4.3 |              | tion                                    |    |
|           |          | 4.4.0          |              | tructural Areas                         |    |
|           |          |                |              | lon-structural Areas                    |    |
|           |          |                |              | dditional Overexcavation Considerations |    |
|           |          | 4.4.4          | Engineered I | Fill                                    | 14 |
|           |          | 4.4.5          | Temporary E  | Excavations                             | 15 |
|           |          | 4.4.6          |              | Conditions                              |    |
|           |          | 4.4.7          |              | g and Trench Backfill                   |    |
|           | 4.5      |                |              | SUPPORTED ON GRADE                      |    |
|           |          | 4.5.1          |              |                                         |    |
|           |          | 4.5.2          |              | work                                    |    |
|           |          | 4.5.3          |              | der                                     |    |
|           | 4.6      | 4.5.4<br>Retai |              | ring and Flooring<br>S                  |    |
|           | 4.0      | 4.6.1          |              | >                                       |    |
|           |          | 4.6.2          |              | paction                                 |    |
|           |          | 4.6.3          |              |                                         |    |
|           |          |                | 5            |                                         | -  |



#### **TABLE OF CONTENTS (Continued)**

## Section

#### <u>Page</u>

| REFERENCES |                                                                  |                                            |  |  |  |  |  |
|------------|------------------------------------------------------------------|--------------------------------------------|--|--|--|--|--|
|            | UN5                                                              |                                            |  |  |  |  |  |
|            | ONC                                                              | 00                                         |  |  |  |  |  |
| 5.1        | DESIGN LEVEL INVESTIGATION                                       | 27                                         |  |  |  |  |  |
| ADDITIO    | NAL SERVICES                                                     | 27                                         |  |  |  |  |  |
| 4.12       | STORMWATER MANAGEMENT                                            | 25                                         |  |  |  |  |  |
|            | 4.11.2 Portland Cement Concrete Pavement                         | 25                                         |  |  |  |  |  |
|            | 4.11.1 Asphalt-Concrete Pavement Sections                        |                                            |  |  |  |  |  |
| 4.11       | PAVEMENT SECTIONS                                                |                                            |  |  |  |  |  |
| 4.10       | PRELIMINARY SOIL CORROSIVITY                                     |                                            |  |  |  |  |  |
| 4.9        | HYDRO-COLLAPSE POTENTIAL                                         |                                            |  |  |  |  |  |
| 4.8        | EXPANSION POTENTIAL                                              |                                            |  |  |  |  |  |
| 4.7        | DRAINAGE AND LANDSCAPING                                         |                                            |  |  |  |  |  |
|            | 4.8<br>4.9<br>4.10<br>4.11<br>4.12<br>ADDITIO<br>5.1<br>LIMITATI | <ul> <li>4.8 EXPANSION POTENTIAL</li></ul> |  |  |  |  |  |

#### **FIGURES**

| 1 Si | te Vicin | ity Map |
|------|----------|---------|
|------|----------|---------|

2 **Exploration Location Map** 

#### **APPENDICES**

- Field Explorations Laboratory Testing А
- В



## 1 INTRODUCTION

This report presents the results of our feasibility-level geotechnical investigation for the proposed improvements at the southeast corner of West Avenue F and 20<sup>th</sup> Street West in the Lancaster area of Los Angeles County, California. The general location of the site is shown on Figure 1, Site Vicinity Map.

The purpose of this feasibility-level geotechnical investigation was to evaluate the subsurface soil conditions at the site in order to provide geotechnical recommendations for the design and construction of the proposed development. The scope of our services was presented in our proposal dated April 22, 2022. This report only provides recommendations for the proposed improvements discussed below.

#### 1.1 PROJECT DESCRIPTION

Based on our review of a conceptual site plan provided by NorthPoint Development, the site area is approximately 238 acres and the proposed improvements include the construction of three approximately 1,117,000 square foot buildings. The buildings are anticipated to be concrete tilt-up distribution-type buildings and have warehouse areas with loading-dock high slab-on-grade floors. The project also includes Best Management Practices (BMPs) stormwater detention basins at the site.

We anticipate cuts and fills on the order of approximately 10 feet may be needed to develop the site. We anticipate that the proposed buildings may be supported on conventional shallow spread foundations. Foundation loads are not currently available, but based on our experience with similar past projects, we assume that maximum column loading will be on the order of 80 kips and maximum wall loads will be on the order of 4 to 8 kips per linear foot. Floor loads for proposed distribution-type buildings may be on the order of 500 pounds per square foot.

We anticipate parking lot and drive aisles will consist of asphaltic concrete (AC) pavement and loading dock areas will consist of Portland cement concrete pavement (PCCP). Ancillary construction is anticipated to include concrete flat work, landscaping, and installation of buried utilities.

#### 1.2 SCOPE OF SERVICES

The scope of our preliminary geotechnical study consisted of a literature review, historical aerial photo review, subsurface exploration, geotechnical laboratory testing, engineering evaluation



and analysis, and preparation of this report. Our report includes a description of the work performed, a discussion of the geotechnical conditions observed at the site, and preliminary recommendations developed from our engineering analysis of field and laboratory data. A description of our scope of services performed for this project is presented below.

**Task 1 – Background Data Review.** We reviewed published and unpublished geologic literature in our files and the files of public agencies, including selected publications prepared by the California Geological Survey and the U.S. Geological Survey. We also reviewed readily available seismic and faulting information, including data for designated earthquake fault zones and our in-house database of faulting in the general site vicinity.

**Task 2 – Field Exploration.** The subsurface conditions at the site were explored by drilling and logging five (5) hollow-stem auger geotechnical borings (B-1 to B-5). The geotechnical borings were drilled to depths ranging from approximately  $26\frac{1}{2}$  to  $51\frac{1}{2}$  feet bgs. The locations of our borings are shown on the attached Figure 2, Exploration Location Map.

Prior to commencement of the fieldwork, our proposed exploration locations were cleared for known existing utility lines and with the participating utility companies through Underground Service Alert (USA). A Kleinfelder representative supervised the field operations and logged the borings. Selected bulk and drive samples were retrieved, sealed and transported to Kleinfelder's laboratory in Ontario, California for laboratory testing. Our typical sampling interval for the hollow stem auger borings was every 5 feet to full depths explored. The number of blows necessary to drive California-type samplers were recorded. A description of the field exploration and the logs of the borings, including a Legend to the Log of Borings, are presented in Appendix A.

**Task 3 – Laboratory Testing.** Laboratory testing was performed on representative samples of soil collected from our excavations to substantiate field classifications and to provide engineering parameters for geotechnical design. Laboratory testing included moisture determination and unit weight, grain size distribution, plasticity testing, direct shear, consolidation, modified Proctor, expansion index, collapse potential, and preliminary corrosion potential. A summary of the testing performed and the results for this subject site are presented in Appendix B.

**Task 4 – Geotechnical Analyses.** Field and laboratory data were analyzed in conjunction with the proposed site plan presented on Figure 2 and assumed structural loads to develop geotechnical recommendations for the design and construction of the proposed development.



We evaluated potential foundation systems, lateral earth pressures, settlement, and earthwork considerations. Potential geologic hazards, such as ground shaking, liquefaction hazard, seismic settlement potential, flood hazard, and fault rupture hazard were also evaluated.

**Task 5 – Report Preparation.** This report summarizes the work performed, data acquired, and our findings, conclusions, and geotechnical recommendations for the design and construction of the proposed development. Recommendations for the following are presented in this report:

- Earthwork, including site preparation, excavation, site drainage, and the placement of engineered fill;
- Design of suitable foundation systems including allowable capacities, lateral resistance, and settlement estimates;
- Seismic design parameters;
- Floor slab and slab-on-grade support, including subgrade preparation;
- Lateral earth pressures for design of retaining walls;
- Design and construction of asphalt and Portland cement concrete pavements, including driveways, fire lanes, and concrete walks; and
- Preliminary infiltration correlations of the site soils for design of BMPs.

This report also contains reference maps and graphics, as well as the logs of the borings and laboratory test results.



#### 2 SITE AND SUBSURFACE CONDITIONS

#### 2.1 SITE DESCRIPTION

The site is located at the southeast corner of West Avenue F and 20<sup>th</sup> Street West in the Lancaster area of Los Angeles County, California. The total site area is approximately 238 acres and is currently vacant and appears to not have had any previous development. The site is generally bounded by similarly vacant and undeveloped land in all directions. Topographic survey has not yet been provided to Kleinfelder for the proposed project. However, based on our review of Google Earth imagery, the site appears to generally slope from the west towards the east, approximately 6 feet.

#### 2.2 SUBSURFACE CONDITIONS

Subsurface materials observed during drilling are described below and detailed descriptions of subsurface materials are provided in our boring logs presented in Appendix A.

#### Alluvium/Native Soils:

The alluvium/native soils were observed in all of the borings drilled for this investigation and generally consisted of clayey to silty sand, poorly graded to well graded sand with varying amounts of silt, and lean clays with varying amounts of sand to the total depth explored of approximately 51½ feet bgs. In-situ moisture content ranged from 0.8 to 35.3 percent and dry unit weight ranged from 86.3 to 123.4 pounds per cubic foot (pcf). Generally, the apparent density of the subsurface soils was stiff to hard for fine-grained soils and loose to very dense for coarse-grained soils.

#### 2.3 GROUNDWATER CONDITIONS

Groundwater was not encountered in our borings to the maximum depth explored of approximately 51½ feet bgs during our geotechnical investigation within the 238-acre site. The closest wells to the site are approximately 0.17 miles northwest of the site (347497N1181674W001) with a ground surface elevation of 2311.8 feet above mean sea level (MSL) and approximately 0.18 miles west of the site (347422N1181696W001) with a ground surface elevation of 2311.8 feet above mean sea level (MSL) and approximately 0.18 miles west of the site (347422N1181696W001) with a ground surface elevation of 2313.8 feet above mean sea level (MSL). The shallowest depth to groundwater last measured was approximately 14 feet bgs on April 27,1951 in the northwest well and approximately 13 feet on March 3, 1952 in the west well, (CDWR, 2022). Current depth to ground water is estimated to be greater than 50 feet bgs based on borings drilled on site and



reported depth to groundwater for monitoring wells located approximately 1.8 miles east of the site (Geotracker, 2022).

Fluctuations of localized zones of perched water and rise in soil moisture content should be anticipated during the rainy season. Irrigation of landscaped areas may also lead to an increase in soil moisture content and fluctuations of intermittent shallow perched groundwater levels.



#### **3 GEOLOGIC CONDITIONS**

#### 3.1 REGIONAL GEOLOGY

The subject site is located within the western portion of the Mojave Desert geomorphic province of California (Norris and Webb, 1990).

The Mojave Desert is approximately 25,000 square miles of desert situated in southeastern California. The area is enclosed on the southwest by the San Andreas fault and the Transverse Ranges and on the north and northeast by the Garlock fault, the Tehachapi Mountains and the Basin and Range. The Nevada state line and Colorado River form the arbitrary eastern boundary. The San Bernardino-Riverside county line designates the southern boundary.

The region is dominated by broad alluviated basins that are mostly aggrading sources receiving nonmarine deposits from the adjacent uplands. The highest general elevations of the Mojave Desert approach 4,000 feet above mean sea level (MSL) with most of the valleys between 2,000 and 4,000 feet MSL.

#### 3.2 SITE GEOLOGY

The western approximately 2/3rd of site is underlain by Holocene alluvial fan deposits and the eastern approximately 1/3rd is underlain by Holocene alluvium fluvial deposits within the Armagosa Creek drainage (CGS, 2010).

#### 3.3 GEOLOGIC HAZARDS

We have addressed below the potential geologic hazards for the site.

#### 3.3.1 Active and Potentially Active Fault Search

Earthquakes and faulting occur as the tectonic plates, which comprise the Earth's crust, or lithosphere, move relative to one-another. Faults identified by the State as being active are not known to be present at the surface within the project limits. No portion of the site is located within a State of California-Special Studies Zone, formerly Alquist-Priolo Earthquake Fault Zone (Bryant and Hart, 2007). The closest zoned fault to the site is the San Andreas fault zone located approximately 10.8 miles southwest of the site (USGS, 1999). Because of the distance to known active faults, the lack of surficial evidence of fault breaks expressed in air photos or published geologic maps, the risk of surface rupture resulting from faulting is considered low.



#### 3.3.2 Flooding

Surface water flow at the site is generally via sheet flow in a northeasterly direction toward the Armagosa creek drainage.

The western approximately 1/3rd of the site is within a flood hazard zone "X" according to FEMA (2008), where the flood hazard is "determined to be outside the 0.2% annual chance floodplain". The eastern approximately 2/3rd of the site is within a flood hazard zone "AO" according to FEMA (2008), where the flood hazard is a "Special Flood Hazard Area subject to Inundation by the 1% Annual chance Flood". Flood depths of 1 to 3 feet (usually sheet flow on sloping terrain); average depths 1 foot.

A seiche is a wave or sloshing of a body of water that is at least partially impounded caused by strong wind or seismic shaking. The site is not downstream of large bodies of water or tanks which potentially could causes flooding and inundate the project site. The risk of seiche damage following a seismic event at the site is considered low.

#### 3.3.3 Landslides

Landslides and other forms of mass wasting, including mud flows, debris flows, soil slips, and rock falls occur as soil or rock moves down slope under the influence of gravity. Landslides are frequently triggered by intense rainfall or seismic shaking. The site is not located within a State or county designated landslide hazard zone. The site is relatively flat and the risk at the site from landslides and other forms of mass wasting is considered very low.

#### 3.3.4 Liquefaction and Seismic Settlement

Liquefaction occurs when saturated, loose, coarse-grained or silty soils are subjected to strong shaking resulting from earthquake motions. The coarse-grained or silty soils typically lose a portion or all of their shear strength and regain strength sometime after the shaking stops. Soil movements (both vertical and lateral) have been observed under these conditions due to consolidation of the liquefied soils.

The site is located within a mapped generalized liquefaction potential zone (CGS, 2005). We have performed a liquefaction analysis to assess the seismically induced settlement potential. The results of our liquefaction analysis are summarized in Section 4.2.2.



#### 4 CONCLUSIONS AND RECOMMENDATIONS

#### 4.1 GENERAL

Based on the results of our field exploration, laboratory testing and geotechnical analyses conducted during this study, it is our professional opinion that the proposed project is geotechnically feasible, provided the recommendations presented in this report are incorporated into the project design and construction.

The following preliminary opinions, conclusions, and recommendations are based on the properties of the materials encountered in the explorations, the results of our literature review, the results of the laboratory testing program, and our engineering analyses performed. Our recommendations regarding the geotechnical aspects of the design and construction of the project are presented in the following sections. We recommend that the final grading plans be reviewed by Kleinfelder prior to the start of construction.

#### 4.2 SEISMIC DESIGN CONSIDERATIONS

#### 4.2.1 Seismic Design Parameters

According to ACSE/SEI 7-16 (2016), which is incorporated into the 2019 and 2022 California Building Codes (CBC) by reference, sites subject to liquefaction, as discussed below, should be classified as Site Class F, which requires a site response analysis. However, ACSE/SEI 7-16 states that for a short period (less than ½ second) structure on liquefiable soils, Site Class D or E may be used instead of Site Class F to estimate design seismic loading on the structure. The selection of Site Class D or E is based on the assessment of the site soil profile assuming no liquefaction. We have assumed that the period of the structures will be less than ½ second. The assumption that the structures have a period of less than ½ second should be verified by the project structural engineer.

Based on data obtained from our field explorations, published geologic literature and maps, and on our interpretation of the 2019/2022 CBC criteria, it is our opinion that the project site may be classified as Site Class D, Stiff Soil, according to Section 1613 of the 2019/2022 CBC and Table 20.3-1 of ASCE/SEI 7-16 (2016). Approximate coordinates for the site are noted below.

- Latitude: 34.7445°N
- Longitude: 118.1598°W



The Risk-Targeted Maximum Considered Earthquake (MCER) mapped spectral accelerations for 0.2 seconds and 1 second periods ( $S_s$  and  $S_1$ ) were estimated using Section 1613 of the 2019/2022 CBC and the OSHPD seismic design maps web-based application (available at https://seismicmaps.org/). In accordance with Section 11.4.8 of ASCE 7-16, a site-specific ground motion hazard analysis is required for Site Class D sites with an  $S_1$  greater than 0.2 g. However, a site-specific ground motion hazard analysis is not required if the exceptions in Section 11.4.8 of ASCE 7-16 are taken. Under the 2019 CBC, the exception would be if the seismic response coefficient ( $C_s$ ) is determined in accordance with requirements of Chapter 12 and Exception 2 of Section 11.4.8 of ASCE 7-16. However, under the 2022 CBC, which adopts Supplement 3 of the ASCE 7-16, the exception would be if the values of the parameters  $S_{M1}$  and  $S_{D1}$  are increased by 50 percent. The assumption that the applicable exception will be used should be verified by the project structural engineer during final design based on the governing code, the 2019/2022 CBC Seismic Design Parameters (non site-specific) for the project site are provided in Table 1.



| Design Parameter     | Recommended Value |
|----------------------|-------------------|
| Site Class           | D                 |
| S <sub>s</sub> (g)   | 1.369             |
| S1 (g)               | 0.556             |
| Fa                   | 1.0               |
| Fv                   | N/A*              |
| S <sub>мs</sub> (g)  | 1.369             |
| S <sub>M1</sub> (g)  | N/A               |
| S <sub>DS</sub> (g)  | 0.912             |
| S <sub>D1</sub> (g)  | N/A               |
| PGA <sub>M</sub> (g) | 0.550             |

 Table 1

 2019/2022 CBC Seismic Design Parameters

\* N/A = Not Applicable; Section 11.4.8 of ASCE 7-16 requires a site-specific ground motion hazard analysis be performed for Site Class D sites with S<sub>1</sub> values greater than or equal to 0.2g unless exceptions are taken in which the values of S<sub>M1</sub> and S<sub>D1</sub> are increased by 50 percent. If exceptions are taken, then a Fv value of 1.74 may be used in accordance with Table 11.4-2 of ASCE 7-16 Supplement 1 (per the 2019 CBC) or of Supplement 3 (per the 2022 CBC).

#### 4.2.2 Liquefaction and Seismic Settlement

To assess the potential for liquefaction of subsurface soils at the site, we used the liquefaction analysis procedures outlined in Youd et al. (2001) based on standard penetration test (SPT) data. For estimating the resulting ground settlements, we used the methods proposed by Tokimatsu and Seed (1987). These methods utilize corrected SPT blow counts to estimate the amount of volumetric compaction or settlement during an earthquake.

Groundwater was not encountered during our current field exploration drilled to a maximum explored depth of 51½ feet bgs. Based on our groundwater research discussed in Section 2.3, a design groundwater depth of 13 feet was used in our analyses based on the historic high groundwater level. The historic high groundwater level may be further investigated since the current depth is much lower than the historic high.

As recommended in Section 1803.5.12 of 2019/2022 CBC, the peak ground acceleration (PGA) used in the liquefaction analysis was estimated in accordance with Section 11.8.3 of ASCE 7-16. A PGAM of 0.55g with an earthquake magnitude of 8.1 was used as the design-level seismic event in our liquefaction analysis, which is defined as an earthquake event with



2 percent probability of being exceeded in 50 years (return period of about 2,475 years) according to the 2019/2022 CBC and ASCE/SEI 7-16.

We evaluated the liquefaction potential at the site using the SPT data. Based on the SPT data and our engineering analyses, it is our opinion that layers of sands and silty sands at depths approximately 35 to 50 feet bgs (below the design groundwater depth) may be subject to liquefaction in the event of a major earthquake occurring on a nearby fault. Based on our analyses, the calculated total liquefaction-induced settlement is on the order of less than 1 inch. Differential liquefaction-induced settlement may be estimated as  $\frac{1}{2}$  of the total seismically-induced settlement over a distance of about 30 feet

#### 4.3 FOUNDATIONS

#### 4.3.1 General

Based on the results of our field exploration, laboratory testing, and geotechnical analyses, the proposed improvements may be supported on conventional shallow foundations on a zone of compacted fill provided the settlement estimates (both static and seismic) are tolerable. We have assumed that the proposed structures will be able to tolerate the estimated seismic settlement (i.e., it will not collapse creating a life safety issue). However, this assumption should be verified by the project structural engineer. It should be noted that the design intent of the 2019/2022 California Building Code (CBC) during a design-level seismic event is life safety, not serviceability of the structure after an earthquake.

#### 4.3.2 Allowable Bearing Pressure

Footings supported on at least 3 feet of compacted fill may be designed for a net allowable bearing pressure of 2,500 psf for dead plus sustained live loads. A one-third increase in the bearing value can be used for wind or seismic loads. All footings should be established at a depth of at least 24 inches below the lowest adjacent grade. The footing dimension and reinforcement should be designed by the structural engineer; however, continuous and isolated spread footings should have minimum widths of 18 and 24 inches, respectively.

#### 4.3.3 Estimated Settlements

Total static settlement for foundations designed in accordance with the recommendations presented herein is estimated to be less than 1 inch. Differential static settlement between



similarly loaded columns is estimated to be less than ½ inch over 40 to 70 feet. Note that this settlement is in addition to the estimated settlement due to seismic shaking.

#### 4.3.4 Lateral Resistance

Resistance to lateral loads (including those due to wind or seismic forces) may be provided by frictional resistance between the bottom of concrete foundations and the underlying soils and by passive soil pressure against the sides of the foundations. A coefficient of friction of 0.3 may be used between cast-in-place concrete foundations and the underlying soil. The passive pressure available for engineered fill may be taken as equivalent to the pressure developed by a fluid with a unit weight of 300 pounds per cubic foot (pcf). A one-third increase in the passive resistance may be used for resistance to transient loads such as wind and seismic. The upper one foot of soil should be neglected when calculating passive resistance.

The lateral resistance parameters provided above are ultimate values. Therefore, a suitable factor of safety should be applied to these values for design purposes. The appropriate factor of safety will depend on the design condition and should be determined by the project Structural Engineer. Depending on the application, typical factors of safety could range from 1.5 to 2.0.

#### 4.4 EARTHWORK

#### 4.4.1 General

Recommendations for site preparation are presented below. All site preparation and earthwork operations should be performed in accordance with applicable codes, safety regulations and other local, state or federal specifications. All references to maximum unit weights are established in accordance with the latest version of ASTM Standard Test Method D1557.

Grading operations during the wet season or in areas where the soils are saturated may require provisions for drying of soils prior to compaction. If the project necessitates fill placement and compaction in wet conditions, we can provide suggested alternative recommendations for drying the soil. Conversely, additional moisture may be required during the dry months. A sufficient water source should be available to provide adequate water during compaction. During dry months, moisture conditioning of the subgrade soils may be required if left exposed for greater than a few days.



#### 4.4.2 Site Preparation

Prior to general site grading, existing vegetation, debris, and oversized materials (greater than 6 inches in maximum dimension) should be stripped and disposed outside the construction limits. We estimate the depth of stripping to be approximately 6 inches over most portions of the site. Deeper stripping or grubbing may be required where higher concentrations of vegetation are encountered during site grading. Stripped topsoil (less any debris) may be stockpiled and reused for landscaping purposes; however, this material should be evaluated for suitability if it is desired to use this material for engineered fill below structures.

All oversize and organic debris, including any produced by demolition operations, (wood, steel, piping, plastics, etc.), should be separated and disposed offsite. The material generated during demolition of the existing roadways and concrete structures may be reused onsite. If reused, the particles should be crushed to a maximum particle size of 6 inches and spread across the site to prevent nesting.

Existing utility pipelines (if encountered) which extend beyond the limits of the proposed construction and are to be abandoned in place should be plugged with cement grout to prevent migration of soil and/or water. Demolition, disposal, and grading operations should be observed and tested by a representative from our office.

#### 4.4.3 Overexcavation

Recommendations for overexcavation of the proposed building pads (building foundations and floor slabs) and parking lots (pavements) are presented below. All site preparation and earthwork operations should be performed in accordance with applicable codes, safety regulations and other local, state, or federal specifications. All references to maximum unit weights are established in accordance with the latest version of ASTM Standard Test Method D1557.

Excavations within a 1:1 (horizontal: vertical) plane extending downward from a horizontal distance of 2 feet beyond the bottom outer edge of existing improvements (e.g. building foundations) or property lines should not be attempted without bracing and/or underpinning. All applicable excavation safety requirement and regulations, including OSHA requirements should be met.



#### 4.4.3.1 <u>Structural Areas</u>

In order to provide uniform support for the proposed spread foundations and slab-on-grade floors, we recommend the site soils be overexcavated and replaced as engineered fill to a minimum depth of 3 feet from existing grade and at least 3 feet below the bottom of footings, whichever is greater. Building pads located in cut/fill transition areas should be overexcavated a minimum of 3 feet below the proposed bottom of footings/slabs. Although not encountered in our borings, any existing undocumented artificial fill soils should be removed until native alluvium is exposed. The overexcavation should extend horizontally at least 5 feet beyond the edges of foundations and a distance equivalent to the thickness of anticipated fill below the footing, whichever is greater. Depending on the observed condition of the existing soil and engineered fill, deeper overexcavation may be required in some areas. The Geotechnical Engineer of Record should be notified for supplemental recommendations if the minimum relative compaction of the soil is not achieved.

#### 4.4.3.2 Non-structural Areas

Within the non-structural areas, such as truck aprons, pavements, sidewalks, other flatwork, etc., we recommend that these items be underlain by at least 24 inches of engineered fill. The overexcavation should extend beyond the proposed improvements a horizontal distance of at least two feet.

#### 4.4.3.3 Additional Overexcavation Considerations

After site preparation and overexcavation, and prior to scarification or placement of compacted fills, the excavation bottom should be observed, evaluated, and approved by Kleinfelder. Additional removals may be needed if significant porosity or other adverse conditions are observed. The subgrade should then be scarified to a depth of approximately 12 inches, moisture conditioned to at least optimum moisture content; and recompacted. After compaction, the subgrade should be proof rolled using equipment with sufficient weight to evaluate surface deflection. Proof rolling should be performed to verify that the subgrade soils are firm and unyielding at the depth of the recommended overexcavation presented above.

#### 4.4.4 Engineered Fill

We anticipate that most of the on-site soils may be reusable as engineered fill once any debris and oversized materials greater than 4 inches in diameter have been removed, and after any vegetation and organic debris is cleared. Engineered fill should contain less than 2 percent organic content and



maximum material size should be less than 4 inches in maximum dimension. Disturbed/tilled soil, less vegetation, may be used in landscape areas, exported, or placed in a controlled manner and blended with the onsite soils, provided that the resulting engineered fill contains less than 2 percent organic content.

Fill should be placed in lifts no greater than 8 inches thick, loose measurement, and should be compacted to at least 90 percent of the maximum dry density. The moisture content of the on-site soils should be at or above the optimum moisture at the time of compaction.

Engineered fill placed below pavement should be compacted to at least 90 percent of the maximum dry density obtained by the ASTM D1557 method of compaction, with the upper 12 inches below pavements compacted to at least 95 percent relative compaction.

Although not anticipated, any imported fill materials to be used for engineered fill should be sampled and tested for approval by the geotechnical engineer prior to being transported to the site. The expansion index of an imported soil should be less than 20. In general, well-graded mixtures of gravel, sand and non-plastic silt are acceptable for use as import fill. A minimum notice of 3 working days will be required to allow for qualification testing prior to compaction of imported materials.

#### 4.4.5 Temporary Excavations

All excavations must comply with applicable local, state, and federal safety regulations including the current OSHA Excavation and Trench Safety Standards. Construction site safety generally is the sole responsibility of the Contractor, who shall also be solely responsible for the means, methods, and sequencing of construction operations. We are providing the information below solely as a service to our client. Under no circumstances should the information provided be interpreted to mean that Kleinfelder is assuming responsibility for construction site safety or the Contractor's activities; such responsibility is not being implied and should not be inferred.

Excavations within a 1:1 plane extending downward from a horizontal distance of 2 feet beyond the bottom outer edge of existing improvements (e.g. building foundations) should not be attempted without bracing and/or underpinning the improvements. The geotechnical engineer or their field representative should observe the excavations so that modifications can be made to the excavations, as necessary, based on variations in the encountered soil conditions. All applicable excavation safety requirements and regulations, including OSHA requirements, should be met.



Near-surface soils encountered during our field investigation consisted predominantly of sandy silt, silty sand and sands with varying amounts of gravel and cobble. In our opinion, these soils would be considered a Type 'C' soil with regard to the OSHA regulations. For this soil type, OSHA requires a maximum slope inclination of 1.5:1 (horizontal to vertical) or flatter for excavations 20 feet or less in depth. Temporary, shallow excavations with vertical side slopes less than 4 feet high should generally be stable, although sloughing may be encountered. Vertical excavations greater than 4 feet high should not be attempted without appropriate shoring to prevent local instability. All trench excavations should be braced and shored in accordance with good construction practice and all applicable safety ordinances and codes. The contractor should be responsible for the structural design and safety of the temporary shoring system, and we recommend that this design be submitted to Kleinfelder for review to check that our recommendations have been incorporated.

Stockpiled (excavated) materials should be placed no closer to the edge of an excavation than a distance equal to the depth of the excavation, but no closer than 4 feet. All trench excavations should be made in accordance with OSHA requirements.

#### 4.4.6 Excavation Conditions

The borings were advanced using a truck-mounted or track-mounted hollow-stem auger drill rig. Drilling excavations were completed with easy to moderate effort through the existing site soils. Conventional earth moving equipment should be capable of performing the soil excavations.

#### 4.4.7 Pipe Bedding and Trench Backfill

Pipe bedding and pipe zone material should consist of sand or similar granular material having a minimum sand equivalent value of 30. Onsite soils may be suitable, but should be tested and approved by the engineer of record prior to use. The sand should be placed in a zone that extends a minimum of 6 inches below and 6 inches above the pipe for the full trench width. The bedding material should be compacted to a minimum of 90 percent of the maximum dry density or to the satisfaction of the geotechnical engineer's representative observing the compaction of the bedding material. Bedding material should consist of sand, gravel, crushed aggregate, or native free-draining granular material with a maximum particle size of <sup>3</sup>/<sub>4</sub> inch. Bedding materials should also conform to the pipe manufacturer's specifications, if available. Trench backfill above bedding and pipe zone materials may consist of approved, on-site or import soils placed in lifts no greater than 8 inches loose thickness and compacted to 90 percent of the maximum dry density based on ASTM Test Method D1557. Jetting of backfill is not recommended. The on-site



soils are suitable for backfill of utility trenches from one foot above the top of the pipe to the surface provided the material is free of organic and deleterious substances.

#### 4.5 CONCRETE SLABS SUPPORTED ON GRADE

#### 4.5.1 General

Slab-on-grade floors should be underlain by engineered fill as discussed in the Earthwork Section of this report. We anticipate that the planned floor slabs will have a minimum thickness of 6 inches, will be unreinforced and dowelled at panel edges. Minimum reinforcement for floor slabs, if required, should be determined by the structural engineer. The structural engineer should design the slabs for any specific loading conditions. A modulus of subgrade reaction of 100 pounds per cubic inch may be used for design. The moisture content of the upper 18 inches of engineered fill should be at the recommended range for fill compaction at the time the floor slab is constructed. Precautions should be taken so as not to allow the upper engineered fill below the slab to dry out below the recommended moisture range between completion of the building pad and construction of the floor slab. Total static settlement for foundations designed in accordance with the recommendations presented herein, with an anticipated maximum load of 500 psf, is estimated to be less than a 1 inch.

Construction activities and exposure to the environment can cause deterioration of the prepared subgrade. We recommend that a Kleinfelder representative inspect the final subgrade conditions prior to placement of the concrete, and if necessary, perform additional moisture and density testing to determine the subgrade suitability. A low slump concrete should be used to reduce possible curling of the slab.

#### 4.5.2 Exterior Flatwork

Where exterior flatwork, such as sidewalks, are to be constructed, the subgrade should be scarified to a depth of 8 inches and moisture conditioned to a moisture content above the optimum moisture content, and recompacted as recommended in the Earthwork Section of this report. Exterior, structurally loaded flatwork, such as truck docks or trash enclosures should adhere to the recommendations for rigid pavement presented in this report.

#### 4.5.3 Vapor Retarder

Subsurface moisture and moisture vapor naturally migrate upward through the soil and, where the soil is covered by a building or pavement, this subsurface moisture will collect. To reduce



the impact of this subsurface moisture and the potential impact of future introduced moisture (such as landscape irrigation or precipitation) on moisture sensitive flooring, the current industry standard is to place a vapor retarder on a compacted crushed rock layer and/or sand layers, 1 to 2 inches in thickness, placed above and below the vapor retarder. The crushed rock layer and/or sand layer may be omitted in accordance with the vapor barrier manufacturer's installation recommendations.

The necessity and placement of a vapor retarder should be evaluated by the structural engineer and/or flooring consultant. It should be noted that although vapor barrier systems are currently the industry standard, this system might not be completely effective in preventing floor slab moisture problems. These systems typically will not necessarily assure that floor slab moisture transmission rates will meet floor covering manufacturer standards and that indoor humidity levels be appropriate to inhibit mold growth. The design and construction of such systems are totally dependent on the proposed use and design of the proposed building and all elements of building design and function should be considered in the slab-on-grade floor design. Building design and construction may have a greater role in perceived moisture problems since sealed buildings/rooms or inadequate ventilation may produce excessive moisture in a building and affect indoor air quality.

#### 4.5.4 Concrete Curing and Flooring

Various factors such as surface grades, adjacent planters, the quality of slab concrete and the permeability of the on-site soils affect slab moisture and can control future performance. In many cases, floor moisture problems are the result of either improper curing of floor slabs or improper application of flooring adhesives. We recommend contacting a flooring consultant experienced in the area of concrete slab-on-grade floors for specific recommendations regarding your proposed flooring applications. Special precautions must be taken during the placement and curing of all concrete slabs. Excessive slump (high water-cement ratio) of the concrete and/or improper curing procedures used during either hot or cold weather conditions could lead to excessive shrinkage, cracking or curling of the slabs. High water-cement ratio and/or improper curing also greatly increase the water vapor permeability of concrete. We recommend that all concrete placement and curing operations be performed in accordance with the American Concrete Institute (ACI) Manual.

It is emphasized that we are not floor moisture-proofing experts. We make no guarantee, nor provide any assurance that use of the capillary break/vapor retarder system will reduce concrete slab-on-grade floor moisture penetration to any specific rate or level, particularly those required



by floor covering manufacturers. The builder and designers should consider all available measures for slab moisture protection.

#### 4.6 RETAINING WALLS

We have provided preliminary cantilever retaining wall recommendations below. Further evaluation will be needed once wall types, locations and heights are selected.

#### 4.6.1 General

Design earth pressures for retaining walls depend primarily on the allowable wall movement, wall inclination, type of backfill materials, backfill slopes, surcharges, and drainage. The earth pressures provided assume that that a non-expansive granular backfill will be used and a drainage system will be installed behind the walls, so that external water pressure will not develop. If a drainage system will not be installed, the wall should be designed to resist hydrostatic pressure in addition to the earth pressure as well as reinforcement that should be protected from rust or other corrosion-inducing effects of moisture. Determination of whether the active or at-rest condition is appropriate for design will depend on the flexibility of the walls. Walls that are free to rotate at least 0.002 radians (deflection at the top of the wall of at least 0.002 x H, where H is the unbalanced wall height) may be designed for the active condition. Walls that are not capable of this movement should be assumed rigid and designed for the at-rest condition. The recommended active and at-rest earth pressure values are provided in Table 2, Earth Pressures for Retaining Walls.



### Table 2 Earth Pressures for Retaining Walls (Non-Expansive Backfill)

| Wall Movement                         | Backfill Condition | Equivalent Fluid<br>Pressure<br>(pcf) | Seismic Increment *<br>(pcf) |
|---------------------------------------|--------------------|---------------------------------------|------------------------------|
| Free to Deflect<br>(active condition) | Loud               | 45                                    | 16                           |
| Restrained<br>(at-rest condition)     | Level              | 65                                    | N/A **                       |

Note: \* Walls supporting more than 6 feet of backfill should be designed to support an incremental seismic lateral pressure, which is applied as a triangular pressure distribution with a maximum pressure at the bottom of the wall, not inverted.

\*\* for restrained wall, use the static active earth pressure and seismic increment to check the seismic condition; use at-rest earth pressure only to check the static condition; the larger loading of both cases should be used for the design of restrained wall.

In addition to the above lateral pressure, undrained walls will have to be designed for full hydrostatic pressure. The above lateral earth pressures do not include the effects of surcharges (e.g., traffic, footings), compaction, or truck-induced wall pressures. Any surcharge (live, including traffic, or dead load) located within a 1:1 plane drawn upward from the base of the excavation should be added to the lateral earth pressures. The lateral contribution of a uniform surcharge load located immediately behind walls may be calculated by multiplying the surcharge by 0.36 for cantilevered walls and 0.53 for restrained walls. Walls adjacent to areas subject to vehicular traffic should be designed for a 2-foot equivalent soil surcharge (250 psf). Lateral load contributions from other surcharges located behind walls may be provided once the load configurations and layouts are known.

#### 4.6.2 Backfill Compaction

Care must be taken during the compaction operation not to overstress the wall. Wall backfill should be compacted to a least 90 percent relative compaction; however, heavy construction equipment should be maintained a distance of at least 3 feet away from the walls while the backfill soils are being placed. Kleinfelder should be contacted when development plans are finalized for review of wall and backfill conditions on a case-by-case basis.

#### 4.6.3 Drainage

Walls should be properly drained or designed to resist hydrostatic pressures. Adequate drainage is essential to provide a free-draining backfill condition and to limit hydrostatic buildup



behind the wall. Walls should also be appropriately waterproofed and include weep holes for drainage. In lieu of weep holes, a 4-inch diameter perforated PVC pipe, placed perforations down leading to a suitable gravity outlet, should be installed at the base of the walls. Another drainage alternative could be a manufactured prefabricated drainage composite panel such as Miradrain G100N or equivalent at regular intervals along the wall.

#### 4.7 DRAINAGE AND LANDSCAPING

It is important that positive surface drainage be provided to prevent ponding and/or saturation of the soils in the vicinity of foundations, concrete slabs-on-grade, or pavements. We recommend that the site be graded to carry surface water away from the improvements and that positive measures be implemented to carry away roof runoff. Poor perimeter or surface drainage could allow migration of water beneath the building or pavement areas, which may result in distress to project improvements. If planted areas adjacent to structures are desired, we suggest that care be taken not to over irrigate and to maintain a leak-free sprinkler piping system. In addition, it is recommended that planter areas next to buildings have a minimum of 5 percent positive fall away from building perimeters to a distance of at least 5 feet. Drain spouts should be extended to discharge a minimum of 5 feet from the building, or some other method should be utilized to prevent water from accumulating in planters. Landscaping after construction should not promote ponding of water adjacent to structures.

#### 4.8 EXPANSION POTENTIAL

Expansive soils are characterized by their ability to undergo significant volume changes (shrink or swell) due to variations in moisture content. Changes in soil moisture content can result from precipitation, landscape irrigation, utility leakage, roof drainage, perched groundwater, drought, or other factors and may result in unacceptable settlement or heave of structures or concrete slabs supported on grade. Expansion index testing of surficial soils resulted in a value of 5, which indicates a very low expansion potential.

#### 4.9 HYDRO-COLLAPSE POTENTIAL

Hydro-collapsible soils are characterized by their ability to undergo significant shrinkage (collapse) during inundation. Inundation in soils can result from precipitation, landscape irrigation, utility leakage, roof drainage, perched groundwater, drought, or other factors, and may result in unacceptable settlement of structures or concrete slabs supported on grade. Based on the results of laboratory testing, the collapse potential of the surficial soils is approximately 1.3 percent collapse under inundation. Collapse potential less than 2 percent is considered low.



#### 4.10 PRELIMINARY SOIL CORROSIVITY

The soil corrosivity potential of the on-site materials to steel and buried concrete was preliminarily evaluated using a sample collected during our investigation. Testing was performed in general accordance with California Test Methods 643, 417, and 422 for pH and resistivity, soluble chlorides, and soluble sulfates, respectively. The test results are presented in Table 3, Preliminary Corrosivity Test Results.

| Boring | Depth<br>(ft) | рН  | Sulfate<br>(ppm) | Chloride<br>(ppm) | Resistivity<br>(ohm-cm) |
|--------|---------------|-----|------------------|-------------------|-------------------------|
| B-3    | 0 – 5         | 8.2 | 2,468            | 3,872             | 118                     |

 Table 3

 Preliminary Corrosivity Test Results

These tests are only an indicator of soil corrosivity for the samples tested. Other soils found on site may be more, less, or of a similar corrosive nature. Imported fill materials should be tested to confirm that their corrosion potential is not more severe than those noted.

Resistivity values below 1,000 ohm-cm are considered extremely corrosive to buried ferrous metals (Roberge, 2006).

The concentrations of soluble sulfates indicate that the subsurface soils represent a Class S2 exposure to sulfate attack on concrete in contact with the soil based on ACI 318-14 Table 19.3.1.1 (ACI, 2014). Therefore, in accordance with ACI Building Code 318-14, a concrete mix of Type V cement with a minimum compressive strength of 4,500 psi and maximum water-cement ratio of 0.45 are specified for these sulfate concentrations.

Kleinfelder's scope of services does not include corrosion engineering and, therefore, a detailed analysis of the corrosion test results is not included. A qualified corrosion engineer should be retained to review the test results for further evaluation and design protective systems, if considered necessary.

#### 4.11 PAVEMENT SECTIONS

#### 4.11.1 Asphalt-Concrete Pavement Sections

The required pavement structural sections will depend on the expected wheel loads, volume of traffic, and subgrade soils. The Traffic Indexes (TI's) assumed should be reviewed by the



project Owner, Architect, and/or Civil Engineer to evaluate their suitability for this project. Changes in the TI's will affect the corresponding pavement section. The pavement subgrade should be prepared just prior to placement of the base course. Positive drainage of the paved areas should be provided since moisture infiltration into the subgrade may decrease the life of pavements. Table 4, Preliminary Asphalt Concrete Pavement Sections, presents our recommendations of asphalt concrete pavement sections.

| Traffic Use             | Assumed<br>Traffic Index<br>(TI) | Asphalt<br>Concrete<br>(inches) | Class 2<br>Aggregate Base<br>(inches) |
|-------------------------|----------------------------------|---------------------------------|---------------------------------------|
| General Parking Traffic | 5                                | 3.0                             | 4.0                                   |
| Heavy Truck Access Ways | 7                                | 4.0                             | 7.0                                   |

# Table 4Preliminary Asphalt Concrete Pavement Sections(Assumed Design R-value = 40)

Based on the size of the project area and the variation of near surface soil type, an assumed design R-Value of 40 was selected for pavement design. Additional R-Value testing and analysis should be performed to evaluate the site further during the final geotechnical design. Since the characteristics of the near-surface soils can change as a result of grading, we recommend that the subgrade soils be tested for pavement support characteristics, to confirm the parameters used in design and allow for a possible reduction in structural section thickness. Pavement sections provided above are contingent on the following recommendations being implemented during construction.

- The pavement sections recommended above should be placed on at least 18 inches of engineered fill compacted to at least 90 percent of maximum dry density with the upper 12 inches below pavements compacted to at least 95 percent relative compaction. The overexcavation of the pavement areas should be conducted as recommended in the earthwork section of this report. Prior to fill placement, the exposed subgrade should be scarified to a depth of 8 inches, uniformly moisture conditioned to the moisture content of granular soils (sands, silty sands and gravels) should be near the optimum moisture content at the time of compaction.
- Subgrade soils should be in a stable, non-pumping condition at the time aggregate base materials are placed and compacted.



- Aggregate base materials should be compacted to at least 95 percent relative compaction.
- Adequate drainage (both surface and subsurface) should be provided such that the subgrade soils and aggregate base materials are not allowed to become wet.
- Aggregate base materials should meet current Caltrans specifications for Class 2 aggregate base rock, or crushed miscellaneous base as specified in the "Standard Specifications for Public Work Construction" ("Greenbook").
- The asphalt pavement should be placed in accordance with "Green Book" specifications or the County of Los Angeles requirements, as appropriate. We recommend that the asphalt pavement be placed in a single layer of ½-inch aggregate mix for pavements 4 inches thick or less. If the pavement section is over 4 inches thick, then the asphalt should be placed in at least two layers of mix. The first layer should consist of a base or coarse layer (3/4-inch mix). The second layer (i.e., top layer) should consist of a medium or fine layer of ½-inch mix.
- Based on our analyses and our experience with similar projects, it is our professional opinion that the as-built asphalt pavement sections should have a tolerance of +/- ¼-inch in order to remain valid for satisfying the intent of the recommendations presented herein. Typically, the loose thickness should be ¼ inch per inch greater than the required compacted thickness. In addition to loose measurements prior to compaction, this is typically evaluated by averaging the thickness of several cores in a specific area. Individual measurements (loose thickness or core dimension) should be within at least ¾-inch of the design thickness.
- All concrete curbs separating pavement and landscaped areas should extend into the subgrade and below the bottom of adjacent, aggregate base materials.

Pavement sections provided above are based on the soil conditions encountered during our field investigation, our assumptions regarding final site grades, and limited laboratory testing. Since the actual pavement subgrade materials exposed during grading may be significantly different than those tested for this study, we recommend that representative subgrade samples be obtained and additional R-value tests performed. Should the results of these tests indicate a significant difference, the design pavement section(s) provided above may need to be revised.



#### 4.11.2 Portland Cement Concrete Pavement

Concrete pavements may be desirable in loading dock and trash collection areas. The concrete pavement should have a minimum 28-day compressive strength of 3,000 psi. Control joints should be spaced approximately every 10 feet. The concrete pavement section should be placed on at least 18 inches of engineered fill compacted to at least 90 percent of the maximum dry density. Prior to fill placement, the exposed subgrade should be scarified to a depth of 8 inches, uniformly moisture conditioned to the moisture content range recommended in Section 4.4 of this report. Table 5, Preliminary Recommended PCC Pavement Sections, presents our recommendations of Portland Cement Concrete pavement sections.

| Assumed<br>Traffic Index<br>(TI) | Concrete Thickness (inches;<br>using a 28-day compressive<br>strength of 3,000 psi) | Concrete Thickness (inches;<br>using a 28-day compressive<br>strength of 4,000 psi) |
|----------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 5                                | 7.0                                                                                 | 6.5                                                                                 |
| 7                                | 7.5                                                                                 | 7.0                                                                                 |

Table 5
Preliminary Recommended PCC Pavement Sections

As an alternative to placing PCC pavements directly over 18 inches of engineered fill, 6 inches of aggregate base material may be added between the PCC and engineered fill to provide additional load distribution, drainage, and an option to reduce the thickness of the recommended PCC. If 6 inches of aggregate base material (compacted to 95% relative compaction) is used between the recommended 18 inches of engineered fill and PCC pavement, the recommended PCC thickness may be reduced by ½ inch. Aggregate base materials should meet current Caltrans specifications for Class 2 aggregate base, or crushed miscellaneous base as specified in the "Standard Specifications for Public Work Construction" ("Greenbook").

#### 4.12 STORMWATER MANAGEMENT

We have preliminarily assessed the potential for storm water infiltration into the subgrade soils at the subject project site based on visual soil classification and laboratory testing of the soil samples collected during the field exploration. The onsite near-surface soils consist primarily of medium dense to dense clayey to silty sands. Based on these conditions, we anticipate a generally low infiltration capacity of the near-surface soils, and we preliminarily recommend alternatives to infiltration Best Management Practices (BMPs), such as bio-filtration/bio-retention



systems (bio-swales and planter boxes), be implemented at the project site at these elevations. However, sand and sand with silt were observed in the upper 15 feet in limited layers in Borings B-1, B-2, and B-5. In-situ infiltration testing should be performed to confirm this preliminary assessment and determine design infiltration rates at the BMP design depth at specific locations at the site.

If bio-filtration/bio-retention systems are employed, we recommend that the BMPs be built such that water exiting from them will not seep into the foundation areas or beneath slabs and pavement. If planters are located within 10 feet of structures or foundations, or adjacent to slabs and pavements, then some means of diverting water away from the structures, foundation soils, or soils that support slabs and pavements would be required, such as lining the planters.



#### 5 ADDITIONAL SERVICES

#### 5.1 DESIGN LEVEL INVESTIGATION

This report presents preliminary geotechnical recommendations to develop a conceptual design and provide planning-level cost estimating. This study is not intended to be a design-level geotechnical study, and additional field and laboratory testing will be required in order to provide detailed geotechnical recommendations.

The preliminary recommendations provided in this report are based on our understanding of the described project information and on our interpretation of the data. We have made our recommendations based on experience with similar subsurface conditions under similar loading conditions. The recommendations apply to the specific project discussed in this report; therefore, any change in the structure configuration, loads, location, or the site grades should be provided to us so that we can review our conclusions and recommendations and make any necessary modifications.



#### 6 LIMITATIONS

This report has been prepared for the exclusive use of NorthPoint Development, and its consultants and contractors for specific application to the proposed improvements for the proposed project. The findings, conclusions and recommendations presented in this report were prepared in a manner consistent with the standards of care and skill ordinarily exercised by members of our profession practicing under similar conditions in the geographic vicinity and at the time the services will be performed. No warranty or guarantee, express or implied, is made. Our field exploration program for the geotechnical study of this project was based on the approximate building locations provided to us by the client.

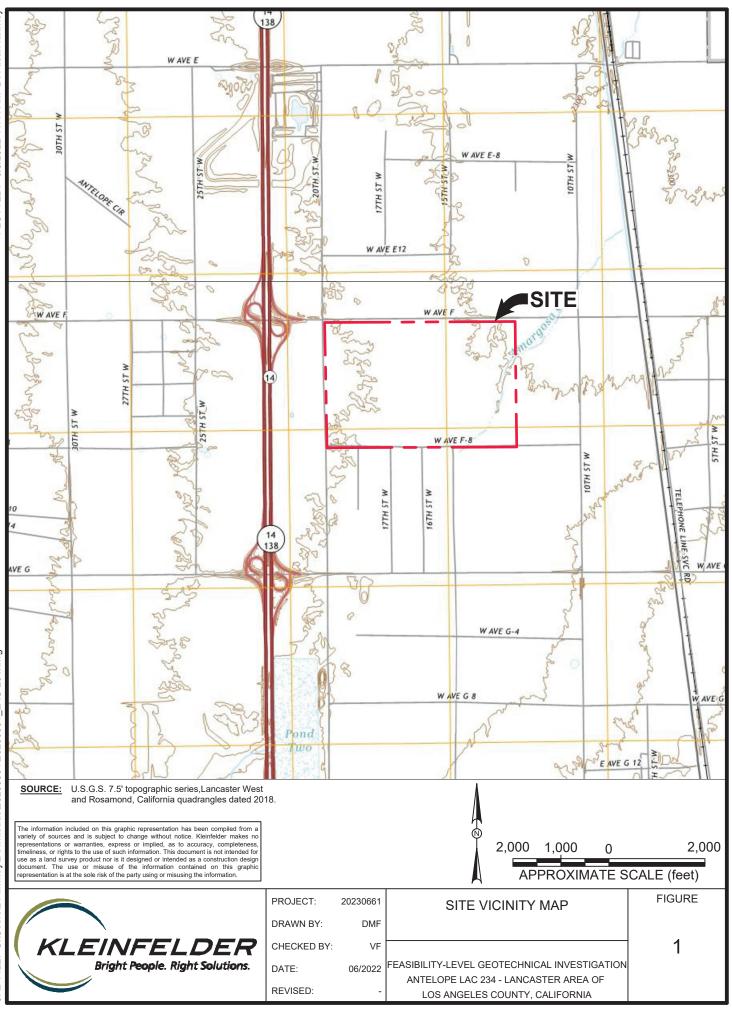
The client has the responsibility to see that all parties to the project, including the designer, contractor, subcontractors, etc., are made aware of this report in its entirety. This report contains information that may be useful in the preparation of contract specifications. However, this report is not designed as a specification document and may not contain sufficient information for this use without proper modification.

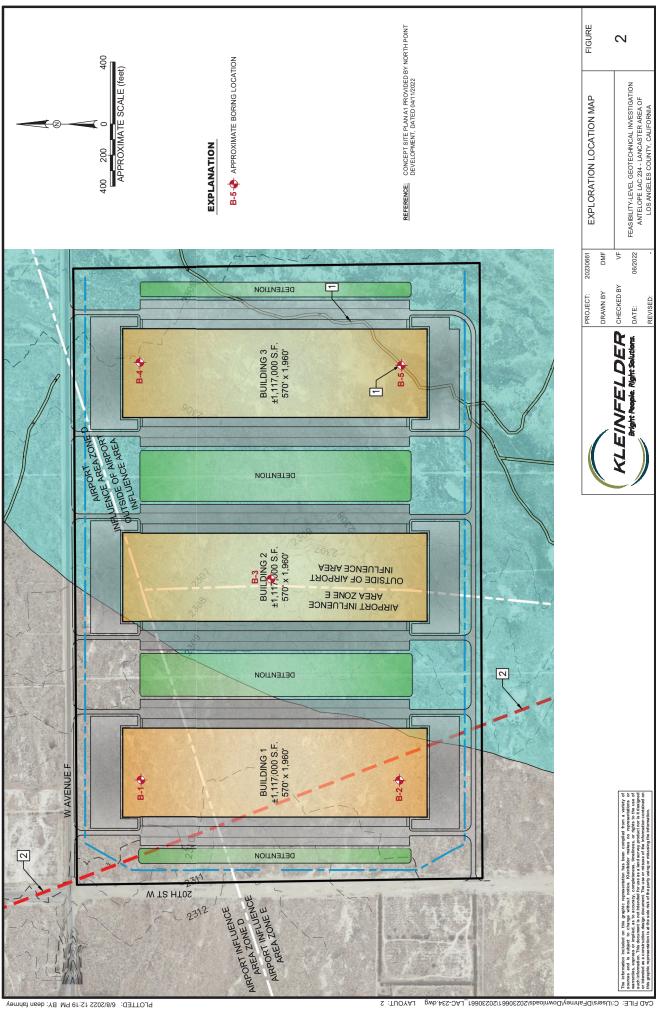
This report may be used only by the client and only for the purposes stated, within a reasonable time from its issuance, but in no event later than one year from the date of the report. Land use, site conditions (both on site and off site) or other factors may change over time, and additional work may be required with the passage of time. Any party, other than the client who wishes to use this report shall notify Kleinfelder of such intended use. Based on the intended use of this report and the nature of the new project, Kleinfelder may require that additional work be performed and that an updated report be issued. Non-compliance with any of these requirements by the client or anyone else will release Kleinfelder from any liability resulting from the use of this report by any unauthorized party and the client agrees to defend, indemnify, and hold harmless Kleinfelder from any claims or liability associated with such unauthorized use or non-compliance.

The scope of our geotechnical services did not include any environmental site assessment for the presence or absence of hazardous/toxic materials, including methane or other landfill related gases. Kleinfelder will assume no responsibility or liability whatsoever for any claim, damage, or injury which results from pre-existing hazardous materials being encountered or present on the project site, or from the discovery of such hazardous materials.



#### 7 REFERENCES


- American Concrete Institute (ACI), 2014, Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14).
- American Society of Civil Engineers (ASCE), 2016, Minimum Design Load for Buildings and Other Structures (ASCE/SEI 7-16) with ASCE Supplement 1, 2018 and Supplement 3, 2021.
- California Department of Water Resources (CDWR), 2022, Water Data Library (WDL) Station Map, online California map of groundwater data, accessed June 13, 2022.
- California Geological Survey (CGS), 2010, Geologic Map of the Lancaster West 7.5' Quadrangle, Los Angeles County, California: A Digital Database, Version 1.0 by Janis L. Hernandez, scale 1:24,000.
- California Geological Survey (CGS), 2005, Seismic Hazard Zones, Earthquake Zones of Required Investigation, Lancaster West Quadrangle, map dated February 11, 2005.
- Federal Emergency Management Agency (FEMA), 2008, FIRM, Flood Insurance Rate Map, Los Angeles County, California, and Incorporated Areas, Panel 410 of 2350, Map Number 06037C0410F, Effective Date September 26, 2008.
- Geotracker, 2022, Lancaster Landfill (T0603700262), letter prepared by SCS, dated February 4,2009, site accessed on June 13, 2022.
- International Code Council, Inc., 2019, California Building Code.
- International Code Council, Inc., 2022, California Building Code.
- Norris, R.M., Webb, R.W., 1990, Geology of California, second ed., John Wiley and Sons.
- Portland Cement Association. Portland Cement Concrete Pavement Design for Light, Medium & Heavy Traffic. Third Printing Dated 1981.
- Roberge, P., 2006, Corrosion Basics, 2nd ed.
- Tokimatsu, K., and Seed, H. B., 1987, Evaluation of settlements in sands due to earthquake shaking, J. Geotechnical Eng., ASCE 113(GT8), 861–78.




Youd, T.L., et al. 2001, "Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils," Journal of Geotechnical and Geoenvironmental Engineering, October 2001, pp 817-833.



**FIGURES** 





PLOTTED: 6/8/2022 12:19 PM BY: dean fahmey

CAD FILE: C:/Users/DFahmey/Downloads/2023061/2023061\_LAC-234.dwg



#### APPENDIX A FIELD EXPLORATIONS



#### APPENDIX A FIELD EXPLORATIONS

The subsurface conditions at the site were explored by drilling and logging five (5) hollow-stem auger borings. Due to soft soil at the surface of the site, the hollow stem auger borings were drilled using either a truck-mounted or track-mounted drill rig. The hollow stem auger drill rigs were provided by 2R Drilling of Chino, California. The hollow stem auger drill rigs mentioned above were equipped with an automatic hammer system to drive the samplers. The locations of our borings are shown on Figure 2.

The logs of borings are presented as Figures A-3 through A-7. An explanation to the logs is presented on Figures A-1 and A-2. The Logs of Borings describe the earth materials encountered, samples obtained, and show field and laboratory tests performed. The logs also show the boring number, excavation date and the name of the logger and excavation subcontractor. A Kleinfelder geologist logged the borings utilizing the Unified Soil Classification System (USCS). The boundaries between soil types shown on the logs are approximate because the transition between different soil layers may be gradual. Bulk and drive samples of representative earth materials were obtained from the borings at maximum intervals of about 5 feet.

A California-type sampler was used to obtain relatively undisturbed drive samples of the soil encountered. This sampler consists of a 3-inch O.D., 2.4 inch I.D. split barrel shaft that is driven a total of 18 inches into the soil at the bottom of the boring. The soil was retained in six 1-inch brass rings for laboratory testing. The sampler was driven using a 140-pound hammer falling 30 inches. The total number of hammer blows required to drive the sampler the final 12 inches is termed the blow count and is recorded on the Logs of Borings. Where the sample was driven less than 12 inches, the number of blows to drive the sample for each 6-inch segment, or portion thereof, is shown on the logs. For example, 50/4" indicates 50 blows to drive the sampler 4 inches to refusal.

Bulk samples of the sub-surface soils were retrieved directly from the soil cuttings and placed in large plastic bags.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LLING METHOD/SAMPLER TYPE GRAPHICS                                                                                                                                                  |           | UNIF                                                    | IED S                                      | SOIL CLAS                  | SSIFIC            | CATION SY  | <u>'STEM</u> <sup>1</sup>                                                               |                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------------------------------------|--------------------------------------------|----------------------------|-------------------|------------|-----------------------------------------------------------------------------------------|--------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BULK SAMPLE                                                                                                                                                                         |           |                                                         |                                            | CLEAN                      |                   | GW         | WELL-GRADED GRAVEL,                                                                     |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CALIFORNIA SAMPLER                                                                                                                                                                  |           |                                                         | Sieve)                                     | GRAVEL                     |                   | Gw         | WELL-GRADED GRAVEL WITH SAN                                                             | ID                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (3 lin (76.2 mm.) outer diameter)                                                                                                                                                   |           |                                                         |                                            | <5%<br>FINES               | 000               | GP         | POORLY GRADED GRAVEL,                                                                   |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GRAB SAMPLE                                                                                                                                                                         |           |                                                         |                                            |                            | 00                |            | POORLY GRADED GRAVEL WITH S                                                             | SAND                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                     |           |                                                         | ed on No.                                  |                            | E                 | GW-GM      | WELL-GRADED GRAVEL WITH SILT<br>WELL-GRADED GRAVEL WITH SILT                            |                                                  |
| <u>GR(</u><br>  ∑                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DUND WATER GRAPHICS<br>WATER LEVEL (level where first observed)                                                                                                                     |           |                                                         | etaine                                     |                            | RĘ                |            |                                                                                         |                                                  |
| ⊥<br>⊥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | WATER LEVEL (level after stabilizing period)                                                                                                                                        |           |                                                         | ion re                                     | GRAVELS                    | 60                | GW-GC      | WELL-GRADED GRAVEL WITH CLA<br>CLAY), WELL-GRADED GRAVEL WI                             |                                                  |
| Ī                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | WATER LEVEL (additional levels after exploration)                                                                                                                                   |           |                                                         | fract                                      | WITH<br>5% TO              |                   |            | SAND (OR SILT CLAY AND SAND)                                                            |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | OBSERVED SEEPAGE                                                                                                                                                                    |           |                                                         | coarse fraction retained                   | 12%<br>FINES               |                   | GP-GM      | POORLY GRADED GRAVEL WITH S<br>POORLY GRADED GRAVEL WITH S                              |                                                  |
| NOT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NOTES                                                                                                                                                                               |           | (e)                                                     | ď                                          |                            | •                 |            | POORLY GRADED GRAVEL WITH C                                                             | CLAY (OR SILTY                                   |
| The and is a constructed by the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second | The report and graphics key are an integral part of these logs. All da     and interpretations in this log are subject to the explanations and                                      |           | Sieve                                                   | 50%                                        |                            |                   | GP-GC      | CLAY), POORLY GRADED GRAVEL<br>(OR SILTY CLAY AND SAND)                                 | WITH CLAY AND                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tions stated in the report.                                                                                                                                                         |           | 200                                                     | than                                       |                            | 0                 |            | SILTY GRAVEL,                                                                           |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | blid lines separating strata on the logs represent approximate daries only, dashed lines are inferred or extrapolated boundaries.                                                   |           | No.                                                     | More                                       |                            | Para              | GM         | SILTY GRAVEL WITH SAND                                                                  |                                                  |
| • N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | al transitions may be gradual or differ from those represented.<br>o warranty is provided as to the continuity of soil or rock conditions<br>sen individual sample locations.       |           | ained or                                                | <b>GRAVELS</b> (More than                  | GRAVELS<br>WITH ><br>12%   |                   | GC         | CLAYEY GRAVEL,<br>CLAYEY GRAVEL WITH SAND                                               |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | pas represent general soil or rock conditions observed at the point of                                                                                                              | of        | % ret                                                   | GRA                                        | FINES                      |                   |            |                                                                                         |                                                  |
| explo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ration on the date indicated.<br>general, Unified Soil Classification System (ASTM D2488/D2487)                                                                                     |           | GRAINED SOILS (More than 50% retained on No. 200 Sieve) |                                            |                            |                   | GC-GM      | SILTY, CLAYEY GRAVEL<br>SILTY, CLAYEY GRAVEL WITH SAN                                   | D                                                |
| desig<br>the fi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nations presented on the logs were based on visual classification i<br>eld and were modified where appropriate based on gradation and<br>property testing.                          | in        | Aore t.                                                 |                                            | CLEAN                      | ****              | sw         | WELL-GRADED SAND,                                                                       |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | property testing.<br>ne grained soils that plot within the hatched area on the Plasticity                                                                                           |           | rs (V                                                   |                                            | SANDS<br>WITH              |                   |            | WELL-GRADED SAND WITH GRAVE                                                             | EL                                               |
| Char<br>200 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | , and coarse grained soils with between 5% and 12% passing the<br>ieve require dual USCS symbols, ie., CL-ML, GW-GM, GP-GM,<br>GC, GP-GC, GC-GM, SW-SM, SP-SM, SW-SC, SP-SC, SC-SM. | No.       | ED SOI                                                  | 4 Sieve)                                   | <5%<br>FINES               |                   | SP         | POORLY GRADED SAND,<br>POORLY GRADED SAND WITH GRA                                      | AVEL                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                     |           | RAINE                                                   |                                            |                            | * *<br>* *<br>* * | SW-SM      | WELL-GRADED SAND WITH SILT,                                                             |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ERENCES<br>nerican Society for Materials and Testing (ASTM), 2011, ASTM                                                                                                             |           | COARSE G                                                | es th                                      | SANDS                      |                   | 011 011    | WELL-GRADED SAND WITH SILT A                                                            | ND GRAVEL                                        |
| D248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7: Classification of Soils for Engineering Purposes (Unified Soil<br>ification System).                                                                                             |           |                                                         | pass                                       |                            |                   | SW-SC      | WELL-GRADED SAND WITH CLAY                                                              | OR SILTY CLAY),<br>AND GRAVEL                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                     |           | 0                                                       | action                                     | WITH<br>5% TO              |                   |            | (OR SILTY CLAY AND GRAVEL)                                                              |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                     |           |                                                         | coarse fraction passes the No.             | 12%<br>FINES               |                   | SP-SM      | POORLY GRADED SAND WITH SILT<br>POORLY GRADED SAND WITH SILT                            |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                     |           |                                                         | of coe                                     |                            |                   | 00.00      | POORLY GRADED SAND WITH CLA                                                             |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                     |           |                                                         | more o                                     |                            |                   | SP-SC      | POORLY GRADED SAND WITH CLA<br>(OR SILTY CLAY AND GRAVEL)                               | AND GRAVEL                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                     |           |                                                         | P P                                        |                            |                   | SM         | SILTY SAND,                                                                             |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                     |           |                                                         | <b>SANDS</b> (50%                          | SANDS                      |                   |            | SILTY SAND WITH GRAVEL                                                                  |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                     |           |                                                         | NDS                                        | WITH > 12%                 |                   | SC         | CLAYEY SAND,<br>CLAYEY SAND WITH GRAVEL                                                 |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                     |           |                                                         | SA                                         | FINES                      |                   |            |                                                                                         |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                     |           |                                                         |                                            |                            |                   | SC-SM      | SILTY, CLAYEY SAND,<br>SILTY, CLAYEY SAND WITH GRAVE                                    | EL                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                     |           |                                                         | 1                                          |                            | <u>r/1111</u>     |            | SILT, SILT WITH SAND, SILT WITH GRAVEL                                                  |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                     |           | ILS                                                     | e)                                         | SILTS AND                  | CLAYS             |            | LEAN CLAY, LEAN CLAY WITH SAND, LEAN CLAY V                                             | VITH GRAVEL                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                     |           | 0 S C                                                   | (50% or more passes<br>the No. #200 sieve) | (Liquid L                  |                   |            | L SILTY CLAY, SILTY CLAY WITH SAND, SILTY CLAY                                          | WITH GRAVEL                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                     |           |                                                         | f200                                       |                            |                   | OL         | ORGANIC CLAY, ORGANIC CLAY WITH SAND, ORG<br>ORGANIC SILT, ORGANIC SILT WITH SAND, ORGA | GANIC CLAY WITH GRAVEL,<br>NIC SILT WITH GRAV/FI |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                     |           | GRA                                                     | No. #                                      |                            |                   | МН         | ELASTIC SILT. ELASTIC SILT WITH SAND, ELASTIC                                           |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                     |           | NE                                                      | the l                                      | SILTS AND<br>(Liquid L     | imit              |            | FAT CLAY, FAT CLAY WITH SAND, FAT CLAY WITH                                             | I GRAVEL                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                     |           |                                                         | _                                          | 50 or gre                  |                   | ОН         | ORGANIC CLAY, ORGANIC CLAY WITH SAND, ORG                                               | GANIC CLAY WITH GRAVEL,                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                     |           |                                                         |                                            | <br>E MATERIA<br>) ON THIS |                   | CRIPTION ( | ORGANIC SILT, ORGANIC SILT WITH SAND, ORGA                                              |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                     | PROJ      | ECTN                                                    | 10.:                                       | 2 011 1110                 |                   |            | GRAPHICS KEY                                                                            | FIGURE                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                     | 20230661. |                                                         | UIA                                        |                            |                   |            |                                                                                         |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | KLEINFELDER                                                                                                                                                                         | DRAV      | VN BY                                                   | :                                          | VF                         | E -               |            | aval Gaotachnical Investigation                                                         | A-1                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bright People. Right Solutions. CHE                                                                                                                                                 |           |                                                         | BY:                                        | JDW                        |                   |            | evel Geotechnical Investigation<br>_AC 234 - Lancaster Area of                          |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                     |           |                                                         |                                            |                            |                   |            | ngeles County, California                                                               |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                     | DATE      | •                                                       |                                            | 6/10/2022                  |                   |            |                                                                                         |                                                  |

#### **GRAIN SIZE<sup>1</sup>**

| DESCRIPTION |         | SIEk E SIZE  | GRAIN SIZE                   |
|-------------|---------|--------------|------------------------------|
| ; oglders   |         | 702 in%      | 702 in%(Hy4%) 5 5 %          |
| Cobbles     |         | H- 02 in%    | H-02 in%(9>22 - Hy4%3 5 5 %) |
| Grahel      | 3oarse  | H⁄4 -Hin%    | H/4 -Hin%(0p - 9>22 5 5 %    |
| Graner      | fine    | #4 - H/4 in% | y%up-y%ucin%(4%a-0p55%)      |
|             | 3oarse  | #0y - #4     | y%y9p-y%apin%(2-4%)á55%      |
| Sand        | 5 edig5 | #4y - #0y    | y‰09 - y‰9p in%y%aH-255%     |
|             | fine    | #2yy - #4y   | y‰y2p-y‰09in‰y‰9-y%aH555‰    |
| Fines       |         | Passinv #2yy | 1y‰y2p in%(1y‰9 5 5 %        |

#### SECONDARY CONSTITUENT<sup>1</sup>

|                   | AMC                                         | UNT                                           |
|-------------------|---------------------------------------------|-----------------------------------------------|
| Ter5<br>of<br>Use | Se3ondarV<br>Constitgent is<br>Fine Grained | Se3ondarV<br>Constitgent is<br>Coarse Grained |
| Tra3e             | 1cm                                         | 10cm                                          |
| < itW             | ≥c to 10cm                                  | ≥0c to 1Hym                                   |
| Modifier          | ≥0cm                                        | ≥Hym                                          |
|                   |                                             |                                               |

#### PLASTICITY<sup>1</sup>

| LASTICITY   |                                                                                                                                                                                                                                                    |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION | CRITERIA                                                                                                                                                                                                                                           |
| Non-Plasti3 | A 0/8 in%(H5 5 ) tWead 3annot be rolled at anVwater 3ontent%                                                                                                                                                                                       |
| Low         | TVé tWead 3an barelVbe rolled and tVé Ig5 u 3annot be for5 ed wVén<br>drier tVán tVé ulasti3 li5 it%                                                                                                                                               |
| Medig5      | TVé tWead is easVto roll and not 5 g3Wti5 e is reqgired to rea3WtVé<br>ulasti3 li5 it%TVé tWead 3annot be rerolled after rea3Whv tVé ulasti3<br>li5 it%TVé lg5 u 3rg5 bles wVén drier tVén tVé ulasti3 li5 it%                                     |
| BivW        | It ta. es 3onsiderable ti5 e rollinv and . neadinv to rea3WtWé ulasti3<br>Ii5 it%TVé tVéead 3an be rerolled seheral ti5 es after rea3Wfnv tVé<br>ulasti3 Ii5 it%TVé lg5 u 3an be for5 ed witVégt 3rg5 blinv wWén drier<br>tWén tVé ulasti3 Ii5 it% |

**CONSISTENCY - FINE-GRAINED SOIL**<sup>2, 3</sup>

### MOISTURE CONTENT<sup>1</sup>

| DESCRIPTION | FIELD TEST                                                   |
|-------------|--------------------------------------------------------------|
| DrV         | Absen3e of<br>5 oistgre, dgstV,<br>drVto tVé tog3W           |
| Moist       | Da5 u bgt no<br>hisible water                                |
| < et        | k isible free water,<br>gsgallV soil is below<br>water table |

#### **APPARENT DENSITY -**COARSE-GRAINED SOIL<sup>2</sup>

SPT-N

(# blows / ft)

14 4 - 0y

0y - Hy Hy-cy

7су

|   | CONSISTENCY  | SPT - N<br>(# blows / ft) | Po3. et Pen<br>(tsf) | UNCONFINED<br>COMPRESSIk E<br>STRENGTB (Qg)(usf) | k ISUAL / MANUAL CRITERIA                                          | APPARENT<br>DENSITY |
|---|--------------|---------------------------|----------------------|--------------------------------------------------|--------------------------------------------------------------------|---------------------|
|   | k erV Soft   | 12                        | PP1y22c              | 1суу                                             | EasilVuenetrated seheral in3Wes bVfist                             | kerVLoose           |
|   | Soft         | 2 - 4                     | y%2c≤PP1y%s          | суу - 0,ууу                                      | EasilVuenetrated seheral in3Wes bVtWg5 b                           | Loose               |
|   | Medig5 Stiff | 4 - 8                     | y%o≤ PP 10           | 0,ууу - 2,ууу                                    | Can be uenetrated seheral in3Wes bVtWg5 b witW<br>5 oderate effort | Medig5 Dense        |
| ł |              |                           |                      |                                                  | ReadilVindented bVtWg5 b bgt uenetrated onIV                       | Dense               |
|   | Stiff        | 8 - 0c                    | 0 <u>≤</u> PP 12     | 2,ууу - 4,ууу                                    | witWreat effort                                                    | k erVDense          |
|   | k erV Stiff  | 0c - Hy                   | 2 <u>≤</u> PP 14     | 4,ууу - 8,ууу                                    | ReadilVindented bVtWg5 bnail                                       |                     |
|   | Bard         | 7Hy                       | 4≤ PP                | 78,ууу                                           | Indented bVtVg5 bnail witWdiffi3gltV                               |                     |

CRITERIA

Alternatinv laVers of harVinv 5 aterial or 3olor witWaVers at least 0/4-in%>5 5 ) tVi3. , note tVi3. ness%

Alternatinv laVers of harVnv 5 aterial or 3olor witWtVe laVers

Fra3tgre ulanes auuear uolisWed or vlossV, so5 eti5 es striated%

CoWesihe soil tWat 3an be bro. en down into s5 all anvglar Ig5 us

In3lgsion of s5 all uo3. ets of different soils, sg3Was s5 all lenses of sand s3attered tWogvWa 5 ass of 3IaV6note tW8. ness%

less tVan 0/4-in% > 5 5 ) tVi3., note tVi3. ness% ; rea. s alonv definite ulanes of fra3tgre witW

little resistan3e to fra3tgrinv%

wWißWresist fgrtWer brea. down%

Sa5 e 3olor and auuearan3e tWogvWgt

0%A5 eri3an So3ietV for Materials and Testinv (ASTM), 2y09, ASTM D2488: Standard Pra3ti3e for Des3riution and Identifi3ation of Soils (kisgal

2%TerzavW, K and Pe3. , R%0p48, Soil Me3Wani3s in Envineerinv

H%United States Deuart5 ent of tWe Interior ; greag of Re3la5 ation

| 0.          | -5                                                                            |
|-------------|-------------------------------------------------------------------------------|
| ANGULARITY  | 1                                                                             |
| DESCRIPTION | CRITERIA                                                                      |
| Anvglar     | Parti3les Vahe sVaru edves and relatihelVulane sides witWgnuolisVed sgrfa3es% |
| Sgbanvglar  | Parti3les are si5 ilar to anvglar des3riution bgt Vahe rognded edves%         |
| Sgbrognded  | Parti3les Vahe nearlVulane sides bgt Vahe well-rognded 3orners and edves%     |
| Rognded     | Parti3les Wahe s5 ootWW 3grhed sides and no edves%                            |

#### **REACTION WITH** HYDROCHLORIC ACID<sup>1</sup>

#### **CEMENTATION**<sup>1</sup>

| DESCRIPTION | FIELD TEST                                                    |                    | DESCRIPTION | FIELD TEST                                                        |
|-------------|---------------------------------------------------------------|--------------------|-------------|-------------------------------------------------------------------|
| None        | No hisible rea3tion                                           | o hisible rea3tion |             | Crg5 bles or brea. s<br>witWtandlinv or little<br>finver uressgre |
| < ea.       | So5 e rea3tion,<br>witWbgbbles<br>for5 inv slowIV             |                    | ModeratelV  | Crg5 bles or brea. s<br>witW3onsiderable finver<br>uressgre       |
| Stronv      | kiolent rea3tion,<br>witWbgbbles<br>for5 inv<br>i5 5 ediatelV |                    | StronvIV    | < ill not 3rg5 ble or<br>brea. witWfinver<br>uressgre             |

|                                 | PROJECT NO%<br>2y2Hy>>0%y0A | SOIL DESCRIPTION KEY<br>(For additional tables, see ASTM D2488) | FIGURE |
|---------------------------------|-----------------------------|-----------------------------------------------------------------|--------|
| KLEINFELDER                     | DRA< N ; Y: kF              | FeasibilitV-Lehel Geote3Whi3al Inhestivation                    | A-2    |
| Bright People. Right Solutions. | CBECKED ; Y: JD<            | Anteloue LAC 2H4 - Lan3aster Area of                            |        |
|                                 | DATE: >/0y/2y22             | Los Anveles CogntV, California                                  |        |

STRUCTURE<sup>1</sup>

DESCRIPTION

Stratified

La5 inated

Fissgred

Sli3. ensided

; Io3. V

Lensed

Bo5 oveneogs

REFERENCES

Mangal Pro3edgres)%

Pra3ti3e, JoWh < ileV & Sons, New Yor. %

(US; R), 0pp8, EartWMangal, Part I%

| Date Beg     | -                                                                                                                                                                                                                                                                                                                                              | End:          | 5/20/2022                                                                                                                                | Drilling CoL                 | ic.#        |                                         | rilling - #                  | 70902                     | 9                     |                           |                |                  |                      |                                     | BORING LOG B-1                                                                         |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------|-----------------------------------------|------------------------------|---------------------------|-----------------------|---------------------------|----------------|------------------|----------------------|-------------------------------------|----------------------------------------------------------------------------------------|
| Logged       | -                                                                                                                                                                                                                                                                                                                                              |               | C. Dang                                                                                                                                  | Drill Crew:                  |             |                                         | e/Victor                     |                           |                       |                           |                | -                | _                    |                                     |                                                                                        |
| HorVer       | t. Da                                                                                                                                                                                                                                                                                                                                          | tum:          | Not Available                                                                                                                            | Drilling Equip               |             |                                         |                              |                           |                       | На                        | mme            | r Type           | ə - Dr               | op: _                               | 140 lb. Auto - 30 in.                                                                  |
| Plunge:      |                                                                                                                                                                                                                                                                                                                                                |               | -90 degrees                                                                                                                              | Drilling Metho               |             |                                         | w Stem A                     | Auger                     |                       |                           |                |                  |                      |                                     |                                                                                        |
| Weather      | r:                                                                                                                                                                                                                                                                                                                                             | 1             | Very Windy and Sunny                                                                                                                     | Exploration D                | lian        | neter: 8 in.                            | O.D.                         |                           |                       |                           |                |                  |                      |                                     |                                                                                        |
|              |                                                                                                                                                                                                                                                                                                                                                |               | FIELD                                                                                                                                    | EXPLORATION                  |             |                                         |                              |                           |                       |                           |                | LABC             | RATO                 |                                     | ESULTS                                                                                 |
| Depth (feet) | Graphical Log                                                                                                                                                                                                                                                                                                                                  |               | Surface Condition: Bare Ea                                                                                                               | arth                         | Sample Type | Blow Counts(BC)=<br>Uncorr. Blows/6 In. | Recovery<br>(NR=No Recovery) |                           | vvater<br>Content (%) | Dry Unit Wt. (pcf)        | Passing #4 (%) | Passing #200 (%) | Liquid Limit         | Plasticity Index<br>(NP=NonPlastic) | Additional Tests/<br>Remarks                                                           |
| Dep          | Gra                                                                                                                                                                                                                                                                                                                                            |               | Lithologic Description                                                                                                                   | n                            | San         | Blow<br>Unco                            | Rec<br>(NR                   | +0/01                     | Cor                   | Dry                       | Pas            | Pas              | Liqu                 | (NP                                 | Add<br>Ren                                                                             |
| 5-           |                                                                                                                                                                                                                                                                                                                                                | Silty<br>non- | vium<br>r Clayey SAND (SC-SM): fine to r<br>plastic, brown, dry<br>rey SAND (SC): fine to medium s<br>lium plasticity, brown, dry, dense |                              |             | BC=14<br>29                             | 18"                          |                           | 4.9                   | 117.9                     |                |                  |                      |                                     | Hand auger to 5 ft bgs<br>-<br>Modified Proctor _<br>Expansion Index<br>Direct Shear - |
| 10-          |                                                                                                                                                                                                                                                                                                                                                | fine          | to coarse sand, low plasticity, me                                                                                                       | edium dense                  |             | 40<br>BC=13<br>15                       | 18"                          |                           | 5.3                   | 110.4                     | 100            | 41               |                      |                                     | -                                                                                      |
| 15-          |                                                                                                                                                                                                                                                                                                                                                |               | I-Graded SAND with Silt (SW-SN<br>se sand, non-plastic, brown, dry,                                                                      |                              |             | BC=10<br>12<br>15                       | 18"                          |                           | 4.3                   | 121.1                     |                |                  |                      |                                     | -<br>-<br>-<br>-                                                                       |
| 20-          |                                                                                                                                                                                                                                                                                                                                                | med           | dy Lean CLAY (CL): fine to media<br>lium plasticity, grayish brown, mo<br>osits                                                          |                              |             | BC=4<br>9<br>16                         | 18"                          | 2                         | 22.2                  | 105.5                     |                |                  |                      |                                     | -                                                                                      |
| 25-          |                                                                                                                                                                                                                                                                                                                                                | med           | lium to stiff, increasing sand cont                                                                                                      | ent                          |             | BC=6<br>2<br>4                          | 18"                          | 1                         | 15.2                  | 111.1                     |                |                  |                      |                                     | -                                                                                      |
| 30-          | <u>+</u>                                                                                                                                                                                                                                                                                                                                       | belo          | boring was terminated at approxi<br>w ground surface. The boring wa<br>auger cuttings on May 20, 2022.                                   | as backfilled                |             |                                         |                              | G                         | Groune<br>omple       |                           | was n          | ot obse          | <u>INFO</u><br>erved | MAT<br>during                       | I <u>ON:</u><br>drilling or after                                                      |
|              |                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                          | PROJECT 1<br>20230661.0      |             |                                         |                              |                           | BO                    | RING                      | 6 LO           | G B-             | 1                    |                                     | FIGURE                                                                                 |
|              | <l< td=""><td></td><td><b>NFELDER</b><br/>ight People. Right Solutions.</td><td>DRAWN BY<br/>CHECKED<br/>DATE:</td><td></td><td>VF<br/>JDW<br/>6/10/2022</td><td>Fea<br/>A</td><td>sibility<br/>ntelop<br/>Los</td><td>e LA</td><td>el Geo<br/>C 234<br/>eles C</td><td>- La</td><td>ncaste</td><td>er Are</td><td>ea of</td><td>A-3</td></l<> |               | <b>NFELDER</b><br>ight People. Right Solutions.                                                                                          | DRAWN BY<br>CHECKED<br>DATE: |             | VF<br>JDW<br>6/10/2022                  | Fea<br>A                     | sibility<br>ntelop<br>Los | e LA                  | el Geo<br>C 234<br>eles C | - La           | ncaste           | er Are               | ea of                               | A-3                                                                                    |

| Date Beg           | gin - I       | End:  | 5/20/2022                                                                                      | Drilling CoI   | Lic.#:           | <u>2</u> R                              | Drilling - #                 | 709029     | 9            |                                    |                   |                  |                        |                                     | BORING LOG B                        |
|--------------------|---------------|-------|------------------------------------------------------------------------------------------------|----------------|------------------|-----------------------------------------|------------------------------|------------|--------------|------------------------------------|-------------------|------------------|------------------------|-------------------------------------|-------------------------------------|
| _ogged I           | By:           |       | C. Dang                                                                                        | Drill Crew:    |                  | Edd                                     | lie/Victor                   |            |              |                                    | l                 |                  |                        |                                     |                                     |
| lorVer             | t. Dat        | um:   | Not Available                                                                                  | Drilling Equi  | pmer             | nt: <u>GT</u>                           | -16                          |            |              | Ha                                 | mme               | r Typ            | e - Dr                 | ор: _                               | 140 lb. Auto - 30 in.               |
| Plunge:            |               |       | -90 degrees                                                                                    | Drilling Meth  | nod:             | Hol                                     | ow Stem                      | Auger      |              |                                    |                   |                  |                        |                                     |                                     |
| Veather            | :             |       | Very Windy and Sunny                                                                           | Exploration I  | Diam             | eter: 8 in                              | . O.D.                       |            |              |                                    |                   |                  |                        |                                     |                                     |
|                    |               |       | FIEL                                                                                           | D EXPLORATION  |                  |                                         |                              |            |              |                                    |                   | LABC             | RAT(                   | DRY R                               | ESULTS                              |
| Depth (feet)       | Graphical Log |       | Surface Condition: Bare                                                                        | Earth          | l<br>Sample Type | Blow Counts(BC)=<br>Uncorr. Blows/6 in. | Recovery<br>(NR=No Recovery) | -          | Content (%)  | Dry Unit Wt. (pcf)                 | Passing #4 (%)    | Passing #200 (%) | Liquid Limit           | Plasticity Index<br>(NP=NonPlastic) | Additional Tests/<br>Remarks        |
| Dep                | Gra           |       | Lithologic Descript                                                                            | ion            | Sar              | Blow                                    | (NR                          | Ň          | Co           | Dry                                | Pas               | Pas              | Ligu                   | Pla:                                | Adc                                 |
| -                  |               | plast | vium<br>ey SAND (SC): fine to medium<br>icity, brown, dry<br>1y Graded SAND (SP): mediuu       |                |                  |                                         |                              |            |              |                                    |                   |                  |                        |                                     | Hand auger to 5 ft bgs              |
| 5<br>-<br>-        |               |       | plastic, reddish brown, dry, ve<br>ounded gravel                                               | y dense, trace |                  | BC=17<br>30<br>48                       | 18"                          | 2          | 4.4          | 112.7                              |                   |                  |                        |                                     | Collapse Potential                  |
| -<br>              |               | incre | easing moisture content, trace                                                                 | silt content   |                  | BC=13<br>15<br>18                       | 18"                          | 6          | 6.9          | 110.7                              |                   |                  |                        |                                     |                                     |
| -<br>              |               |       | <b>dy Lean CLAY (CL)</b> : fine to me<br>ium plasticity, brown, moist, st<br>ssits             |                |                  | BC=10<br>14<br>14                       | 18"                          | 7          | 7.1          | 120.5                              |                   |                  | NP                     | NP                                  |                                     |
| -<br>20-<br>-<br>- |               |       | bedded silty sand                                                                              |                |                  | BC=12<br>24<br>19                       | 18"                          | ç          | 9.5          | 123.4                              |                   |                  |                        |                                     |                                     |
| -<br>25            |               |       | SAND (SM): fine to medium s<br>n, moist, loose to medium der                                   |                |                  | BC=7<br>4<br>11                         | 18"                          | 3          | 5.3          | 91.0                               |                   |                  |                        |                                     |                                     |
| -                  | -             | belov | boring was terminated at appr<br>w ground surface. The boring<br>auger cuttings on May 20, 202 | was backfilled |                  |                                         |                              | G          | round        | NDWA<br>dwater<br>etion.<br>RAL NO | was n             | ot obs           | <u>. INFC</u><br>erved | D <u>RMAT</u><br>during             | └ <u>───</u><br>  drilling or after |
| 30                 |               |       |                                                                                                | PROJECT        | NO.:             |                                         |                              |            | BO           | RING                               | 3L0               | <br>G B-         | .2                     |                                     | FIGURE                              |
|                    |               |       | <b>NFELDER</b><br>ight People. Right Solutions                                                 | CHECKED        | BY:              | V<br>JDV                                | V A                          | asibility- | -Lev<br>e LA | el Geo                             | otechi<br>I - Lai | nical I          | nvest<br>er Are        | ea of                               | n A-4                               |
|                    |               |       |                                                                                                | DATE:          |                  | 6/10/202                                | 2                            |            | 5            |                                    | -                 |                  |                        |                                     | PAGE: 1 of 1                        |

PLOTTED: 06/22/2022 11:35 AM BY: HMarquez

gINT FILE: Klf\_gint\_master\_2023 PROJECT NUMBER: 20230661.001A OFFICE FILTER: RIVERSIDE gINT TEMPLATE: E:KLF\_STANDARD\_GINT\_LIBRARY\_2023.GLB [\_KLF\_BORING/TEST PIT SOIL LOG]

| Date Beg           |               | End:        | 5/23/2022                                                                                   | Drilling C              |                                      | #:          |                                         | rilling -                    |        | 29                   |                              |                  |                  |                 |                                     | BC        | RING LOG                     | B-3 |
|--------------------|---------------|-------------|---------------------------------------------------------------------------------------------|-------------------------|--------------------------------------|-------------|-----------------------------------------|------------------------------|--------|----------------------|------------------------------|------------------|------------------|-----------------|-------------------------------------|-----------|------------------------------|-----|
| Logged I           | Зу:           |             | C. Dang                                                                                     | Drill Crew              | r:                                   |             | Jerry                                   | /Carlos                      |        |                      |                              | l                |                  |                 |                                     |           |                              |     |
| HorVer             | t. Dat        | tum:        | Not Available                                                                               | Drilling E              |                                      |             |                                         | -55 Tra                      |        |                      | Ha                           | mme              | r Typ            | e - Dr          | ор: _                               | 140 lb. A | uto - 30 in.                 |     |
| Plunge:            |               |             | -90 degrees                                                                                 | Drilling M              |                                      |             |                                         | w Sterr                      | n Auge | r                    |                              |                  |                  |                 |                                     |           |                              |     |
| Weather            | :             | 1           | Very Windy and Sunny                                                                        | Exploratio              |                                      | met         | ter: 8 in.                              | 0.D.                         |        |                      |                              |                  |                  |                 |                                     |           |                              |     |
|                    |               |             | FIEL                                                                                        | DEXPLORATIO             |                                      |             |                                         |                              |        |                      |                              |                  |                  |                 | лятя<br>Г                           | ESULTS    |                              |     |
| Depth (feet)       | Graphical Log |             | Surface Condition: Bare                                                                     | Earth                   | Samula Tuna                          | IIDIE I ADE | Blow Counts(BC)=<br>Uncorr. Blows/6 in. | Recovery<br>(NR=No Recovery) |        | Water<br>Content (%) | Dry Unit Wt. (pcf)           | Passing #4 (%)   | Passing #200 (%) | Liquid Limit    | Plasticity Index<br>(NP=NonPlastic) |           | Additional Tests/<br>Remarks |     |
| De                 | Ğ             |             | Lithologic Descript                                                                         | ion                     | c v                                  | 00          | Blov                                    | (NF                          |        | So<br>So<br>So       | Dry                          | Pa               | Pa               | Liq             | E A                                 |           |                              |     |
| -<br>-<br>-<br>5   |               | Cla<br>non  | <u>ivium</u><br>yey SAND (SC): fine to medium<br>-plastic, brown, dry                       | sand,                   |                                      |             |                                         |                              |        |                      |                              |                  |                  |                 |                                     | Hand auge | er to 5 ft bgs               |     |
| -                  |               | dry         | to moist, medium dense                                                                      |                         |                                      | B           | C=10<br>13<br>13                        | 18"                          |        | 15.5                 | 104.2                        |                  |                  |                 |                                     |           |                              |     |
| 10-<br>-<br>-<br>- |               | low<br>grav | plasticity, dry, increase in sand<br>/el                                                    | , trace subround        | led                                  | B           | C=10<br>20<br>25                        | 18"                          |        | 3.3                  | 108.8                        |                  |                  |                 |                                     |           |                              |     |
| 15<br>-<br>-       |               | We          | se, increasing moisture content                                                             | <br>parse sand,         |                                      | B           | C=19<br>28<br>36                        | 17"                          |        | 2.6                  | 109.9                        | 98               | 15               |                 |                                     |           |                              |     |
| -<br>20-<br>-      |               |             | -plastic, reddish brown, dry, der<br>rounded gravel                                         | 156, li ace             |                                      | B           | C=13<br>23<br>36                        | 16"                          |        | 1.6<br>3.4           | 103.8                        |                  |                  |                 |                                     |           |                              |     |
| -<br>25<br>-       |               |             | Idy Lean CLAY (CL): fine to me<br>dium plasticity, brown, moist, sti                        |                         |                                      | B           | C=6<br>7<br>15                          | 18"                          |        | 31.4                 | 86.3                         |                  |                  | 46              | 21                                  |           |                              |     |
| -<br>-<br>30<br>-  |               |             | n CLAY with Sand (CL): fine to<br>dium to high plasticity, brown, m<br>tent                 |                         | silt                                 | B           | C=10<br>8<br>11                         | 18"                          |        |                      |                              |                  |                  | 48              | 29                                  |           |                              |     |
| -                  |               | plas        | yey SAND (SC): fine to coarse s<br>sticity, reddish brown, dry to mo<br>e subrounded gravel | ist, very dense,        |                                      |             |                                         |                              |        |                      |                              |                  |                  |                 |                                     |           |                              |     |
|                    |               |             | <b>NFELDER</b><br>ight People. Right Solutions.                                             | 202300<br>DRAW<br>CHECK | CT NO.<br>61.001/<br>N BY:<br>KED BY | A           | VF<br>JDW                               | Fe                           | Antelo | ty-Lev               | Vel Geo<br>AC 234<br>Jeles C | otechi<br>I - La | nical I          | nvest<br>er Are | ea of                               |           | FIGURE                       |     |
|                    |               |             |                                                                                             | DATE:                   | יבט פו                               |             | 5/10/2022                               |                              | LC     | s Ang                | jeles C                      |                  | y, Cali          | ifornia         | 3                                   | PA        | .GE: 1 o                     | ,   |

PLOTTED: 06/22/2022 11:35 AM BY: HMarquez

gINT FILE: Klf\_gint\_master\_2023 PROJECT NUMBER: 20230661.001A OFFICE FILTER: RIVERSIDE gINT TEMPLATE: E:KLF\_STANDARD\_GINT\_LIBRARY\_2023.GLB [\_KLF\_BORING/TEST PIT SOIL LOG]

| HMarquez                                                       | Date Beg      |               | ind:             | 5/23/2022                                                                                                                                             | Drilling CoL            | ic.#        |                                         | rilling -                    |                          | 29                   |                    |                |                  |              |                                     | BORING LOG B-3                   |
|----------------------------------------------------------------|---------------|---------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------|-----------------------------------------|------------------------------|--------------------------|----------------------|--------------------|----------------|------------------|--------------|-------------------------------------|----------------------------------|
|                                                                | Logged I      |               |                  | C. Dang                                                                                                                                               | Drill Crew:             |             |                                         | /Carlos                      |                          |                      |                    | l              |                  |              |                                     |                                  |
| M BY:                                                          | HorVert       | . Dat         | um:              | Not Available                                                                                                                                         | Drilling Equip          |             |                                         | -55 Tra                      |                          |                      | На                 | mme            | r Type           | e - Dr       | op: _                               | 140 lb. Auto - 30 in.            |
| :35 A                                                          | Plunge:       |               |                  | -90 degrees                                                                                                                                           | Drilling Metho          |             |                                         | w Sterr                      | 1 Auge                   | r                    |                    |                |                  |              |                                     |                                  |
| 06/22/2022 11:35 AM                                            | Weather       |               |                  | Very Windy and Sunny                                                                                                                                  | Exploration D           | iam         | leter: 8 in.                            | 0.D.                         |                          |                      |                    |                |                  |              |                                     |                                  |
| 22/202                                                         |               |               |                  | FIEI                                                                                                                                                  | _D EXPLORATION          | -           |                                         |                              |                          |                      |                    |                |                  | RATC         | DRY RI                              | ESULTS                           |
| PLOTTED: 06/2                                                  | Depth (feet)  | Graphical Log |                  | Surface Condition: Bare                                                                                                                               | e Earth                 | Sample Type | Blow Counts(BC)=<br>Uncorr. Blows/6 in. | Recovery<br>(NR=No Recovery) |                          | Water<br>Content (%) | Dry Unit Wt. (pcf) | Passing #4 (%) | Passing #200 (%) | Liquid Limit | Plasticity Index<br>(NP=NonPlastic) | Additional Tests/<br>Remarks     |
|                                                                | Dep           | Grap          |                  | Lithologic Descrip                                                                                                                                    | tion                    | San         | Blow                                    | Rect<br>(NR:                 |                          | Vat                  | Dry I              | Pas            | Pas              | Liqu         | Plas<br>(NP:                        | Addi                             |
| -                                                              | -             |               | plasti<br>trace  | ey SAND (SC): fine to coarse<br>icity, reddish brown, dry to mo<br>subrounded gravel<br>Iy Graded SAND with Silt (Si<br>se sand, non-plastic, reddish | bist, very dense,       | _           | BC=7<br>14<br>50/5"                     | 18"                          |                          |                      |                    |                |                  |              |                                     | -                                |
|                                                                | -<br>40<br>-  |               | medi<br><br>Sand | um dense<br>Iy Lean CLAY (CL): fine to me                                                                                                             | edium sand,             |             | BC=15<br>23<br>12                       | 18"                          |                          | 13.2                 | 106.7              |                |                  | 47           | 26                                  | -                                |
|                                                                | -             |               | medi             | um to high plasticity, brown, r                                                                                                                       | noist, stiff            |             |                                         |                              |                          |                      |                    |                |                  |              |                                     | -                                |
|                                                                | 45            |               |                  | SAND (SM): fine to medium s                                                                                                                           | sand, non-plastic,      |             | BC=5<br>9<br>18                         | 18"                          |                          | 19.9                 | 108.0              |                |                  | NP           | NP                                  | -                                |
|                                                                | -             |               | Sand             | <b>ly Lean CLAY (CL)</b> : medium s<br>icity, gray, moist, stiff, trace s                                                                             |                         | -           |                                         |                              |                          |                      |                    |                |                  |              |                                     | -                                |
| RIVERSIDE                                                      | 50—<br>       |               |                  |                                                                                                                                                       |                         |             | BC=5<br>10<br>11                        | 18"                          |                          |                      | 110.6              |                |                  | 42           | 26                                  | -                                |
| OFFICE FILTER: RIVERSIDE<br>.0G]                               | -<br>-<br>55— |               | belov            | poring was terminated at appr<br>v ground surface. The boring<br>auger cuttings on May 23, 202                                                        | was backfilled          |             |                                         |                              |                          | Groun                |                    | was n          | ot obs           |              |                                     | <u>ION:</u><br>drilling or after |
| R: 20230661.001A<br>KLF_BORING/TEST PIT SOIL LOG               | -             |               |                  |                                                                                                                                                       |                         |             |                                         |                              |                          |                      |                    |                |                  |              |                                     |                                  |
| ER: 20230661.0<br>KLF_BORING                                   | 60—<br>-<br>- |               |                  |                                                                                                                                                       |                         |             |                                         |                              |                          |                      |                    |                |                  |              |                                     |                                  |
| PROJECT NUMBER: 20230661.001A<br>\RY_2023.GLB [_KLF_BORING/TES | -<br>-<br>65— |               |                  |                                                                                                                                                       |                         |             |                                         |                              |                          |                      |                    |                |                  |              |                                     |                                  |
| er_2023 PRC<br>STANDARD_GINT_LIBRARY                           | -             |               |                  |                                                                                                                                                       |                         |             |                                         |                              |                          |                      |                    |                |                  |              |                                     |                                  |
| aster_2023<br>LF_STANDARI                                      |               |               |                  |                                                                                                                                                       | PROJECT N<br>20230661.0 |             |                                         |                              |                          | во                   | RING               | GLO            | G B-             | 3            |                                     | FIGURE                           |
| gINT FILE: Klf_gint_master_2023<br>gINT TEMPLATE: E:KLF_STAND  | (             |               |                  | NFELDEF<br>ght People. Right Solutions                                                                                                                |                         |             | VF<br>JDW<br>6/10/2022                  |                              | easibili<br>Antelo<br>Lo |                      | C 234              | l - La         | ncaste           | er Are       | a of                                | A-5                              |

| Date Begin - Er               |                                                                                                                                          | Drilling Co          |                    |                                         | Drilling - #7                | 709029                             |                                        |                |                  |                   |                                     | BORING LOG B-                        |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------|-----------------------------------------|------------------------------|------------------------------------|----------------------------------------|----------------|------------------|-------------------|-------------------------------------|--------------------------------------|
| Logged By:                    | C. Dang                                                                                                                                  | Drill Crew           |                    |                                         | y/Carlos                     |                                    |                                        |                | _                | _                 |                                     |                                      |
| HorVert. Datu                 |                                                                                                                                          | Drilling Ed          |                    |                                         | E-55 Track                   |                                    | Ha                                     | amme           | r Typ            | e - Di            | op: _                               | 140 lb. Auto - 30 in.                |
| Plunge:                       | -90 degrees                                                                                                                              | Drilling M           | ethod:             | Holle                                   | ow Stem A                    | luger                              |                                        |                |                  |                   |                                     |                                      |
| Weather:                      | Hot and Sunny                                                                                                                            | Exploratio           | n Diame            | ter: 8 in.                              | 0.D.                         |                                    |                                        |                |                  |                   |                                     |                                      |
|                               |                                                                                                                                          | FIELD EXPLORATIO     | DN                 |                                         |                              |                                    |                                        |                | LABC             |                   | ORY R                               | ESULTS                               |
| Depth (feet)<br>Graphical Log | Surface Condition:                                                                                                                       | Bare Earth           | Sample Type        | Blow Counts(BC)=<br>Uncorr. Blows/6 in. | Recovery<br>(NR=No Recovery) | Water<br>Content (%)               | Dry Unit Wt. (pcf)                     | Passing #4 (%) | Passing #200 (%) | Liquid Limit      | Plasticity Index<br>(NP=NonPlastic) | Additional Tests/<br>Remarks         |
| Gra Deg                       | Lithologic Des                                                                                                                           | cription             | Sar                | Blow                                    | (NR<br>(NR                   | C A                                | Dry                                    | Pas            | Pas              | Ligu              | Plai                                | Adc                                  |
| 5-                            | Alluvium<br>Clayey SAND (SC): fine to men<br>non-plastic, brown, dry<br>Silty SAND (SM): fine to media<br>brown, dry, dense, weakly cerr | im sand, reddish     |                    | C=25                                    | 18"                          |                                    |                                        |                |                  |                   |                                     | Hand auger to 5 ft bgs               |
|                               | Sandy Lean CLAY (CL): fine to<br>medium plasticity, brown, mois                                                                          |                      |                    | 33<br>43<br>6C=9                        | 18                           | 19.1                               | 89.9                                   |                |                  |                   |                                     | Consolidation                        |
| 15                            | Clayey SAND (SC): fine to me<br>non-plastic, reddish brown, mo<br>trace subrounded gravel                                                |                      |                    | 10<br>14<br>3C=10                       | 18"                          | 21.1                               | 99.7                                   |                |                  |                   |                                     |                                      |
| 20-                           | Sandy Lean CLAY (CL): fine to<br>medium plasticity, mottled grav<br>stiff                                                                |                      |                    | 10<br>24<br>6C=10<br>12<br>13           | 18"                          | 14.6                               | 5 114.9                                |                |                  |                   |                                     |                                      |
| 25-                           | Silty SAND (SM): fine to mediu<br>reddish brown, dry, loose                                                                              | im sand, non-plastic |                    | 6 <b>C=</b> 6<br>7<br>5                 | 18"                          | 11.0                               | 111.2                                  |                |                  |                   |                                     |                                      |
| 30-                           | The boring was terminated at a below ground surface. The bo with auger cuttings on May 23,                                               | ring was backfilled  |                    |                                         |                              | Grou<br>com                        | UNDW/<br>Indwater<br>Detion.<br>ERAL N | was r          | not obs          | <u>INFC</u> erved | ORMAT<br>during                     | T <u>ION:</u><br>I drilling or after |
|                               |                                                                                                                                          | 202306               | CT NO.:<br>61.001A |                                         |                              | В                                  | ORING                                  | GLO            | G B-             | -4                |                                     | FIGURE                               |
|                               | EINFELDE<br>Bright People. Right Soluti                                                                                                  | ione                 | ED BY:             | VF<br>JDW<br>6/10/2022                  | Fea:<br>A                    | sibility-Le<br>ntelope L<br>Los An | AC 23                                  | 4 - La         | ncast            | er Are            | ea of                               | n A-6                                |

| Date Beg              | in - E        | End:                   | 5/23/2022                                                                                                              | Dril              | lling CoL                   | .ic.#:           | 2R [                                    | Drilling - ‡                 | 709029                               |                     |                |                  |                   |                                     | BORING LOG B-                     |
|-----------------------|---------------|------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------|------------------|-----------------------------------------|------------------------------|--------------------------------------|---------------------|----------------|------------------|-------------------|-------------------------------------|-----------------------------------|
| Logged E              | By:           |                        | C. Dang                                                                                                                | Dril              | I Crew:                     |                  | Jerr                                    | y/Carlos                     |                                      |                     |                |                  |                   |                                     |                                   |
| HorVert               | . Dat         | um:                    | Not Available                                                                                                          | Dril              | lling Equi                  | omen             | t: <u>CME</u>                           | E-55 Trac                    | k Rig                                | н                   | lamme          | r Typ            | e - Dr            | op:                                 | 140 lb. Auto - 30 in.             |
| Plunge:               |               |                        | -90 degrees                                                                                                            | Dril              | lling Meth                  | od:              | Holle                                   | ow Stem                      | Auger                                |                     |                |                  |                   |                                     |                                   |
| Weather:              |               |                        | Hot and Sunny                                                                                                          | Exp               | oloration E                 | Diame            | eter: 8 in.                             | O.D.                         |                                      |                     |                |                  |                   |                                     |                                   |
|                       |               |                        |                                                                                                                        | FIELD EXPL        | ORATION                     |                  |                                         |                              |                                      |                     |                | LABC             | RATO              | ORY R                               | ESULTS                            |
| Depth (feet)          | Graphical Log |                        | Surface Condition                                                                                                      | n: Bare Earth     |                             | I<br>Sample Type | Blow Counts(BC)=<br>Uncorr. Blows/6 in. | Recovery<br>(NR=No Recovery) | Water<br>Content (%)                 | Dry Unit Wt. (pcf)  | Passing #4 (%) | Passing #200 (%) | Liquid Limit      | Plasticity Index<br>(NP=NonPlastic) | Additional Tests/<br>Remarks      |
| De                    | ö             |                        | Lithologic De                                                                                                          | escription        |                             | Sa               | Blov<br>Unc                             | Re<br>NF                     | аC                                   | E E                 | Ра             | Ра               | Lig               | ₽Z                                  |                                   |
| -                     |               | medi                   | <b>y SILT (ML</b> ): fine to mee<br>um plasticity, brown, dry                                                          | ı, mud cracks μ   | present                     |                  |                                         |                              |                                      |                     |                |                  |                   |                                     | Hand auger to 5 ft bgs            |
| 5                     |               | coars                  | Graded SAND with Silt<br>e sand, non-plastic, gra<br>subangular gravel, trace                                          | yish brown, dr    |                             |                  | BC=12<br>18<br>33                       | 13"                          | 0.8                                  |                     | 100            | 5.8              |                   |                                     | Disturbed                         |
| -<br>-<br>10<br>-     |               |                        | <b>y Lean CLAY (CL)</b> : fine<br>um plasticity, brown, mo<br>sits                                                     |                   |                             |                  | BC=10<br>12<br>13                       | 18"                          | 19.5                                 | ;                   |                |                  |                   |                                     |                                   |
| -<br><br>15<br>-<br>- |               | non-p                  | <b>y Graded SAND (SP)</b> : fi<br>lastic, grayish brown, d<br>led gravel                                               |                   |                             |                  | BC=12<br>20<br>24                       | 12"                          | 1.0                                  |                     |                |                  |                   |                                     |                                   |
| -<br>20-<br>-         |               | non-p<br>round<br>Sand | y SAND (SC): medium<br>blastic, grayish brown, m<br>led gravel<br>y Lean CLAY (CL): fine<br>city, olive gray, moist, h | noist, dense, tra | ace                         |                  | BC=9<br>23<br>27                        | 18"                          | 2.2                                  |                     |                |                  |                   |                                     | Disturbed                         |
| -<br>25-<br>-         |               | Claye                  | gray, moist, medium der                                                                                                | arse sand, no     |                             |                  | BC=12<br>15<br>20                       | 17"                          | 15.9                                 | )                   |                |                  |                   |                                     |                                   |
| -<br>-<br>30—         |               | below                  | poring was terminated a<br>v ground surface. The b<br>auger cuttings on May 23                                         | oring was bac     |                             |                  |                                         |                              | Grou<br>com                          | indwate<br>pletion. |                | not obs          | <u>INFO</u> erved | RMAT<br>during                      | I <u>ON:</u><br>drilling or after |
|                       |               |                        |                                                                                                                        |                   |                             |                  |                                         | _                            |                                      |                     |                |                  |                   |                                     |                                   |
|                       |               |                        |                                                                                                                        |                   | PROJECT<br>20230661.0       |                  |                                         |                              | B                                    | ORIN                | G LC           | IG B-            | 5                 |                                     | FIGURE                            |
|                       |               |                        | NFELDE<br>ght People. Right Solu                                                                                       |                   | DRAWN B<br>CHECKED<br>DATE: |                  | VF<br>JDW<br>6/10/2022                  | Fea<br>/                     | asibility-Le<br>Antelope L<br>Los An | AC 23               | 34 - La        | ncast            | er Are            | ea of                               | A-7                               |



#### APPENDIX B LABORATORY TESTING



#### APPENDIX B LABORATORY TESTING

Laboratory tests were performed on drive and bulk soil samples to estimate engineering characteristics of the various earth materials encountered. The laboratory testing was performed by our laboratory located in Ontario, California or by AP Engineering & Testing, Inc. of Pomona, California. Testing was performed in general accordance with procedures outlined in the American Society for Testing and Materials, or other accepted procedures. Visual classifications presented on the lab figures performed by AP Engineering may differ from those presented on the boring logs provided in Appendix A.

#### LABORATORY MOISTURE DETERMINATIONS AND UNIT WEIGHTS

Natural moisture content and unit weight tests were performed on selected samples. The moisture content tests were performed in general accordance with ASTM Test Method D 2216 and the unit weight tests were performed in general accordance with ASTM Test Method D 2937. The results are presented on the Logs of Borings in Appendix A.

#### SIEVE ANALYSES

Sieve analyses were performed on selected samples of the materials encountered at the site to evaluate the grain size distribution characteristics of the soils and to aid in their classification. Tests were performed in general accordance with ASTM Test Method D 6913. Results of these tests are presented in the boring logs in Appendix A and attached as Figure B-1, Grain Size Distribution Curve.

#### ATTERBERG LIMITS (PLASTICITY INDEX)

Plasticity limit and liquid limit testing was performed on soil samples to evaluate behavior conditions at varying water contents. Testing was performed in general accordance with ASTM Standard Test Method D4318. The results are presented on the boring logs in Appendix A and attached as Figures B-2 and B-3, Plasticity Testing.



#### DIRECT SHEAR

Direct shear testing was performed on a remolded sample for shear strength and cohesion values of the in-situ soils in accordance with ASTM Standard Test Method D 3080. The result is presented as Figure B-4, Direct Shear Test.

#### CONSOLIDATION TESTS

Consolidation testing was performed on selected relatively undisturbed samples by AP Engineering in accordance with ASTM D 2435. The tests were performed on 1.0-inch-high, 2.41-inch diameter samples. After trimming the ends, the sample was placed in a consolidometer and an initial reading was recorded. The sample was saturated during loading, and thereafter, the sample was incrementally loaded. The test results are attached to this appendix.

#### ONE-DIMENSIONAL SWELL/COLLAPSE TEST

Laboratory testing was performed on selected soil samples to study the collapse potential of the subgrade soils. During this test, the soil sample is inundated with water at a specific surcharge loading and the percent swell or collapse is measured. This test was performed by AP Engineering in accordance with ASTM D4546. The test results are attached to this appendix.

#### PRELIMINARY CORROSIVITY TESTS

A series of chemical tests were performed on a selected sample of the near-surface soils to estimate pH, resistivity and sulfate and chloride contents. The sample was tested in general accordance with California Test Methods 643, 422, and 417 for pH and minimum resistivity, soluble chlorides, and soluble sulfates, respectively. Test results may be used by a qualified corrosion engineer to evaluate the general corrosion potential with respect to construction materials. The tests were performed by AP Engineering. The results of these tests are presented in Table B-1, Preliminary Corrosion Test Results.



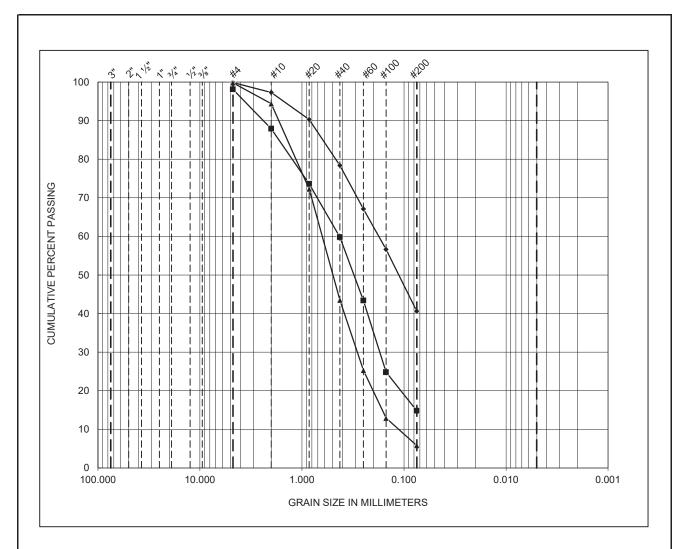
#### MODIFIED PROCTOR

Maximum density-optimum moisture tests were performed on a select bulk sample of the on-site soils to determine compaction characteristics. The test was performed in accordance with ASTM Standard Test Method D 1557. The test results are presented in Table B-2, Modified Proctor Test Results.

#### EXPANSION INDEX

Expansion Index testing was performed on one near surface bulk sample to determine the expansion potential of the soil. The test was performed in accordance with ASTM Standard Test Method D4829. The test result is presented in Table B-3, Expansion Index Test Result.

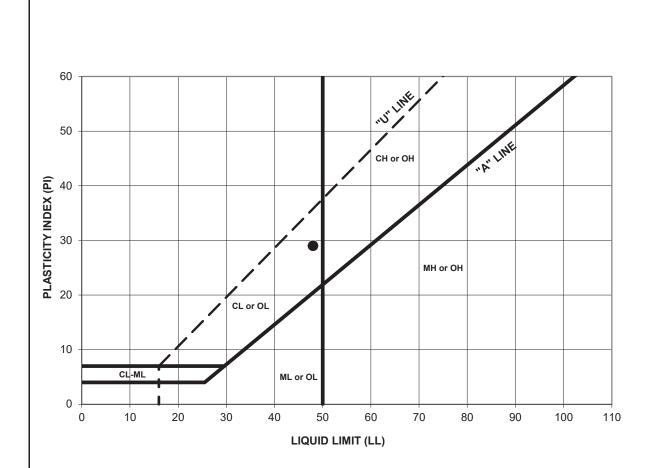
# Table B-1Preliminary Corrosivity Test Results


| Boring | Depth<br>(ft) | рН  | Sulfate<br>(ppm) | Chloride<br>(ppm) | Resistivity<br>(ohm-cm) |
|--------|---------------|-----|------------------|-------------------|-------------------------|
| B-3    | 0 – 5         | 8.2 | 2,468            | 3872              | 118                     |

#### Table B-2 Modified Proctor Test Results

| Boring Number | Depth (ft) | Maximum Dry Density (pcf) | Optimum Moisture (%) |
|---------------|------------|---------------------------|----------------------|
| B-1           | 0 – 5      | 120.5                     | 11.2                 |

## Table B-3Expansion Index Test Result


| Boring Number | Depth (ft) | Expansion Index | Expansion Potential |
|---------------|------------|-----------------|---------------------|
| B-1           | 0 – 5      | 5               | Very Low            |



| COBBLE | GRAVEL | SAND | SILT | CLAY |
|--------|--------|------|------|------|
|        |        |      |      |      |

|        | SAMPL         | E IDENTIFI    | CATION         | PE     | RCENTAG | ES    | ATTE | RBERG I | LIMITS |                                       |
|--------|---------------|---------------|----------------|--------|---------|-------|------|---------|--------|---------------------------------------|
| SYMBOL | BORING<br>NO. | SAMPLE<br>NO. | DEPTH<br>(ft.) | GRAVEL | SAND    | FINES | LL   | PL      | PI     | SOIL CLASSIFICATION                   |
| •      | B-1           | 3             | 10             | 0.1    | 59.3    | 40.6  | NM   | NM      | NM     | Clayey Sand (SC)                      |
|        | B-3           | 4             | 15             | 1.9    | 83.3    | 14.8  | NM   | NM      | NM     | Clayey Sand (SC)                      |
|        | B-5           | 2             | 5              | 0.2    | 94.0    | 5.8   | NM   | NM      | NM     | Well Graded Sand with Silt<br>(SW-SM) |

|                                 | PROJECT NO .: | 20230661.001A |                                                    | FIGURE |
|---------------------------------|---------------|---------------|----------------------------------------------------|--------|
|                                 | TESTED BY:    | J. Calderon   | GRAIN SIZE DISTRIBUTION                            |        |
| KLEINFELDER                     | DATE:         | 5/26/2022     | FEASIBILITY-LEVEL GEOTECHNICAL                     | B-1    |
| Bright People. Right Solutions. | CHECKED BY:   | M. Magaña     | INVESTIGATION<br>ANTELOPE LAC 234 - LANCASTER AREA | D-1    |
|                                 | DATE:         | 6/1/2022      | OF LOS ANGELES COUNTY, CALIFORNIA                  |        |



|        | SAMPLE IDENTIFICATION |               |            | ATTERBERG LIMITS |    |    |                          |  |
|--------|-----------------------|---------------|------------|------------------|----|----|--------------------------|--|
| SYMBOL | BORING<br>NO.         | SAMPLE<br>NO. | DEPTH (ft) | LL               | PL | PI | SOIL CLASSIFICATION      |  |
| •      | B-2                   | 3             | 15         | NP               | NP | NP | Poorly Graded Sand (SP)  |  |
| •      | B-3                   | 7             | 30         | 48               | 19 | 29 | Lean Clay with Sand (CL) |  |

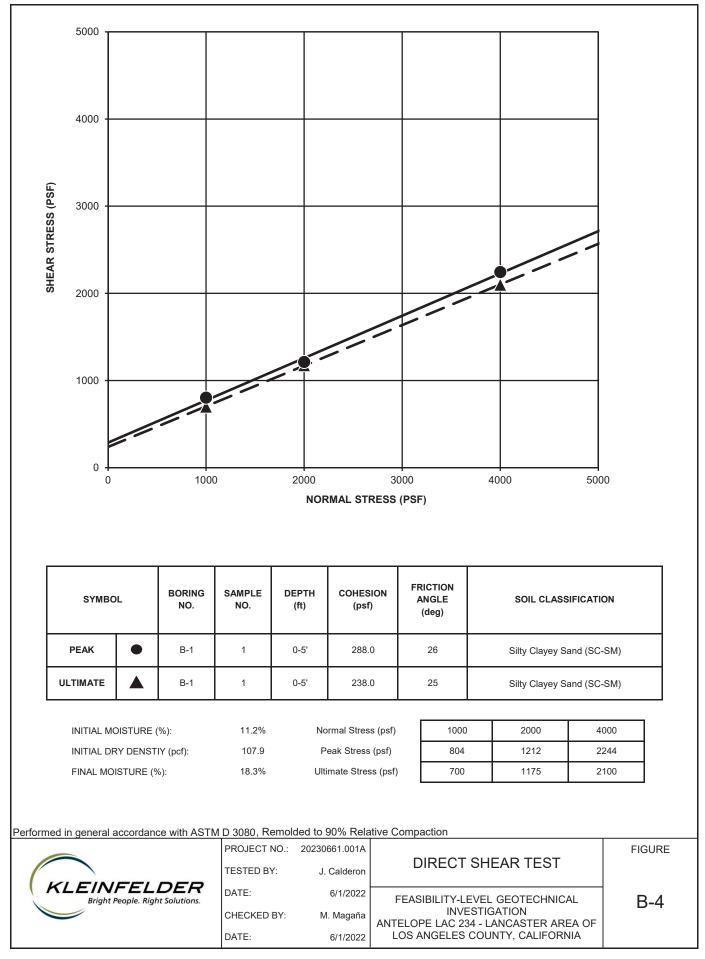
Testing performed in general accordance with ASTM D4318



| PROJECT NO.: | 20230661.001A | PLASTICITY TESTING                                 | FIGURE |
|--------------|---------------|----------------------------------------------------|--------|
| TESTED BY:   | J. Calderon   |                                                    |        |
| DATE:        | 5/31/2022     | FEASIBILITY-LEVEL GEOTECHNICAL                     | B-2    |
| CHECKED BY:  | M. Magaña     | INVESTIGATION<br>ANTELOPE LAC 234 - LANCASTER AREA | D-Z    |
| DATE:        | 6/1/2022      | OF LOS ANGELES COUNTY, CALIFORNIA                  |        |

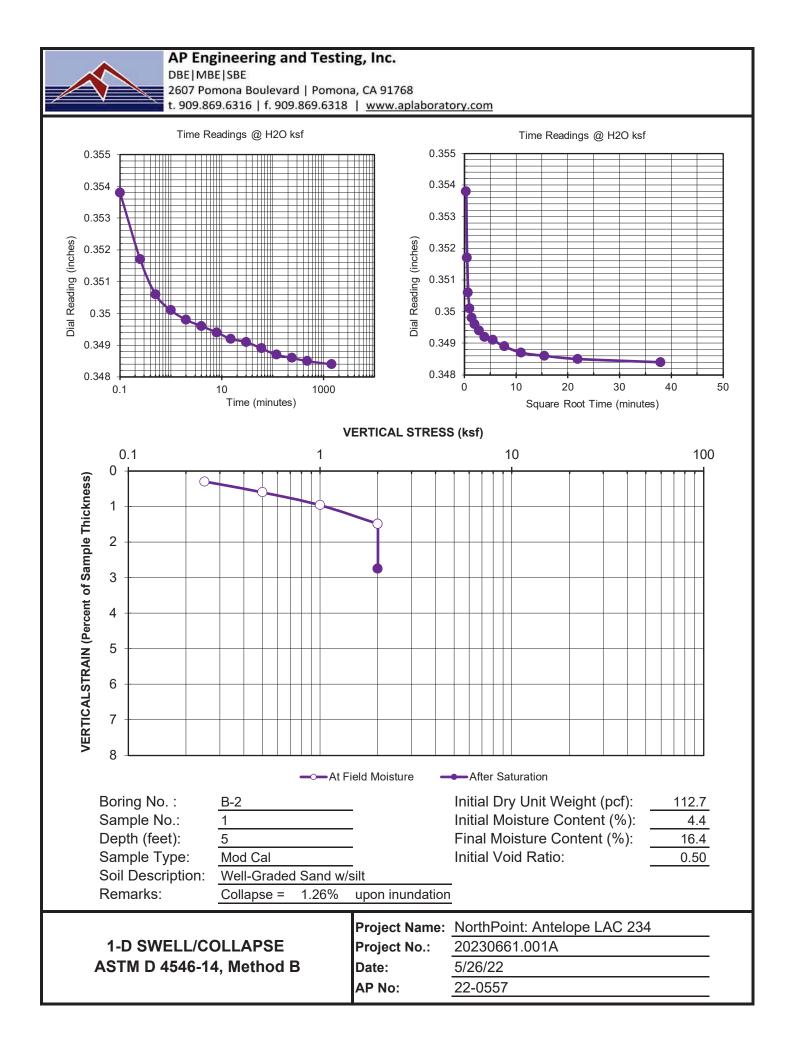
KLEINFELDER - 620 South Magnolia Ave, Bldg G | Ontario, CA | PH: (909) 657-1716 | FAX: (909) 988-0185 | www.kleinfelder.com




|        | SAMPL         | E IDENTIFIC   | CATION     | ATTERBERG LIMITS |    |    |                      |  |
|--------|---------------|---------------|------------|------------------|----|----|----------------------|--|
| SYMBOL | BORING<br>NO. | SAMPLE<br>NO. | DEPTH (ft) | LL               | PL | PI | SOIL CLASSIFICATION  |  |
| •      | B-3           | 6             | 25         | 46               | 25 | 21 | Sandy Lean Clay (CL) |  |
| •      | B-3           | 9             | 40         | 47               | 21 | 26 | Sandy Lean Clay (CL) |  |
|        | B-3           | 10            | 45         | NP               | NP | NP | Silty Sand (SM)      |  |
| ×      | B-3           | 11            | 50         | 42               | 16 | 26 | Sandy Lean Clay (CL) |  |

| Testing performed in gen | eral accordance with ASTM D4318 |
|--------------------------|---------------------------------|
|--------------------------|---------------------------------|





| PROJECT NO .: | 20230661.001A | PLASTICITY TESTING                                 | FIGURE |
|---------------|---------------|----------------------------------------------------|--------|
| TESTED BY:    | J. Calderon   | TEASTICITY TESTING                                 |        |
| DATE:         | 5/31/2022     | FEASIBILITY-LEVEL GEOTECHNICAL                     | B-3    |
| CHECKED BY:   | M. Magaña     | INVESTIGATION<br>ANTELOPE LAC 234 - LANCASTER AREA | D-3    |
| DATE:         | 6/1/2022      | OF LOS ANGELES COUNTY, CALIFORNIA                  |        |

KLEINFELDER - 620 South Magnolia Ave, Bldg G | Ontario, CA | PH: (909) 657-1716 | FAX: (909) 988-0185 | www.kleinfelder.com



KLEINFELDER - 620 Magnolia Avenue, Building G | Ontario, California 91762 | PH: (909) 657-1716 | FAX: (909) 988-0185 | www.kleinfelder.com



