
Master Project Specific Water Quality Management Plan

A Template for Projects located within the Santa Ana Watershed Region of Riverside County

Project Title: Harvest Landing Retail Center and Business Park

Development No: TTM 38810, 38811-1, 38811-2, 38811-3

Design Review/Case No: P22-05250

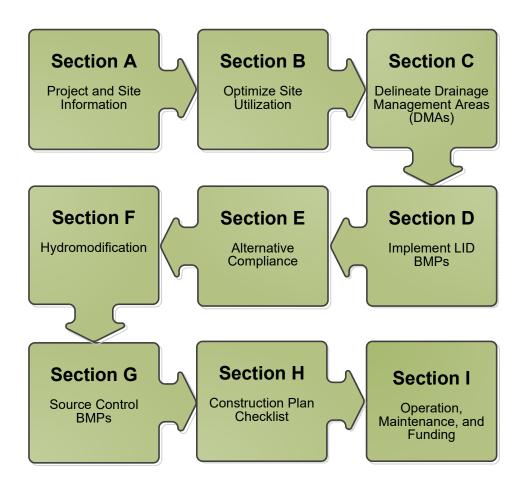
Contact Information:

Prepared for:

Howard Industrial Partners. 1944 North Tustin Street, Suite 122 Orange, CA 92865

Prepared by:

FMCivil Engineers Inc. 41870 Kalmia St, Suite 120 Murrieta, CA 92562 (951) 973-0201


Original Date Prepared: October 3, 2024

Revision Date(s):

Prepared for Compliance with Regional Board Order No. <u>R8-2010-0033</u> <u>Template revised June 30, 2016</u>

A Brief Introduction

This Project-Specific WQMP Template for the **Santa Ana Region** has been prepared to help guide you in documenting compliance for your project. Because this document has been designed to specifically document compliance, you will need to utilize the WQMP Guidance Document as your "how-to" manual to help guide you through this process. Both the Template and Guidance Document go hand-in-hand, and will help facilitate a well prepared Project-Specific WQMP. Below is a flowchart for the layout of this Template that will provide the steps required to document compliance.

OWNER'S CERTIFICATION

This Project-Specific Water Quality Management Plan (WQMP) has been prepared for Howard Industrial Partners, Inc by FMCivil Engineers Inc for the Harvest Landing Retail Center and Business Park (P22-05250).

This WQMP is intended to comply with the requirements of the City of Perris for Water Quality Ordinance 1194 which includes the requirement for the preparation and implementation of a Project-Specific WQMP.

The undersigned, while owning the property/project described in the preceding paragraph, shall be responsible for the implementation and funding of this WQMP and will ensure that this WQMP is amended as appropriate to reflect up-to-date conditions on the site. In addition, the property owner accepts responsibility for interim operation and maintenance of Stormwater BMPs until such time as this responsibility is formally transferred to a subsequent owner. This WQMP will be reviewed with the facility operator, facility supervisors, employees, tenants, maintenance and service contractors, or any other party (or parties) having responsibility for implementing portions of this WQMP. At least one copy of this WQMP will be maintained at the project site or project office in perpetuity. The undersigned is authorized to certify and to approve implementation of this WQMP. The undersigned is aware that implementation of this WQMP is enforceable under the city of Perris Water Quality Ordinance 1194. (Municipal Code Section 14.22).

"I, the undersigned, certify under penalty of law that the provisions of this WQMP have been reviewed and accepted and that the WQMP will be transferred to future specessors in interest."

Owner's Signatu

Tim Howard Owner's Printed Name

Date

Owner's Title/Position

PREPARER'S CERTIFICATION

"The selection, sizing and design of stormwater treatment and other stormwater quality and quantity control measures in this plan meet the requirements of Regional Water Quality Control Board Order No. **R8-2010-0033** and any subsequent amendments thereto."

- 3 -

Preparer's Signature

Francisco Martinez, Jr Preparer's Printed Name

Preparer's Licensure:

October 3, 2024 Date

Principal Preparer's Title/Position A notary public or other officer completing this certificate verifies only the identity of the individual who signed the document to which this certificate is attached, and not the truthfulness, accuracy, or validity of that document.

}

State of California

County of Orange

on 10-04-2024 before me, Nicole-Roe Gleason

personally appeared <u>Timothy</u> John Howard, who proved to me on the basis of satisfactory evidence to be the person(**x**) whose name(**x**) (**s**) are subscribed to the within instrument and acknowledged to me that he)she/they executed the same in his) her/their authorized capacity(ites), and that by his her/their signature(**x**) on the instrument the person(**y**, or the entity upon behalf of which the person(**y**) acted, executed the instrument.

I certify under PENALTY OF PERJURY under the laws of the State of California that the foregoing paragraph is true and correct.

WITNESS my hand and official seal.

Notary Public Signature

(Seal)

DPTIONAL INFORMATION

DOCUMENT

Cert fication (name or type of document)

(number of pages)

SIGNER CAPACITY

10-04	-2024
(document d	ate)

(capacity claimed by the signer)

NOTICE The Notary Public does not certify the Authorized Capacity of the Signer

Table of Contents

Section A: Project and Site Information	6
A.1 Maps and Site Plans A.2 Identify Receiving Waters A.3 Additional Permits/Approvals required for the Project:	8
Section B: Optimize Site Utilization (LID Principles)	10
Section C: Delineate Drainage Management Areas (DMAs)	12
Section D: Implement LID BMPs	19
D.1 Infiltration Applicability D.2 Harvest and Use Assessment	20
D.3 Bioretention and Biotreatment Assessment D.4 Feasibility Assessment Summaries D.5 LID BMP Sizing	25
Section E: Alternative Compliance (LID Waiver Program)	
 E.1 Identify Pollutants of Concern E.2 Stormwater Credits E.3 Sizing Criteria E.4 Treatment Control BMP Selection 	30 30
Section F: Hydromodification	45
F.1 Hydrologic Conditions of Concern (HCOC) Analysis F.2 HCOC Mitigation	46
Section G: Source Control BMPs	
Section H: Construction Plan Checklist	50
Section I: Operation, Maintenance and Funding	51

List of Tables

Table A.1 Identification of Receiving Waters	8
Table A.2 Other Applicable Permits	9
Table C.1 DMA Classifications	12
Table C.2 Type 'A', Self-Treating Areas	15
Table C.3 Type 'B', Self-Retaining Areas	16
Table C.4 Type 'C', Areas that Drain to Self-Retaining Areas	16
Table C.5 Type 'D', Areas Draining to BMPs	17
Table D.1 Infiltration Feasibility	19
Table D.2 LID Prioritization Summary Matrix	25
Table D.3 DCV Calculations for LID BMPs	26
Table E.1 Potential Pollutants by Land Use Type	29
Table E.2 Water Quality Credits	
Table E.3 Treatment Control BMP Sizing	
Table E.4 Treatment Control BMP Selection	44
Table F.1 Hydrologic Conditions of Concern Summary	45
Table G.1 Permanent and Operational Source Control Measures	47
Table H.1 Construction Plan Cross-reference	50

List of Appendices

Appendix 1: Maps and Site Plans	A1
Appendix 2: Construction Plans	A2
Appendix 3: Soils Information	A3
Appendix 4: Historical Site Conditions	A4
Appendix 5: LID Infeasibility	A5
Appendix 6: BMP Design Details	A6
Appendix 7: Hydromodification	A7
Appendix 8: Source Control	A8
Appendix 9: O&M	A9
Appendix 10: Educational Materials	A10

Section A: Project and Site Information

PROJECT INFORMATION				
Type of Project:	Commercial and Industrial			
Planning Area:	g Area: Harvest Landing Specific Plan			
Community Name:				
Development Name:				
PROJECT LOCATION				
Latitude & Longitude (DM	S): 33°48′49.79", -117°13′58.08"			
Project Watershed and Su	b-Watershed: Santa Ana Watershed, San Jacinto River Sub-Wate	ershed		
Gross Acres: 311.8				
APN(s) (Phase 1):				
	l, 002, 003, 004, 005, 006, 007, 015, 016, 021, 022, 023, 024, 025			
	7, 008, 020, 021, 022, 023, 024, 025, 026, 305-130-001, 002, 003			
	6, 027, 031, 032, 034, 040, 041, 049, 050, 052, 053, 054, 055, 05			
	2, 023, 024, 025, 026, 027, 028, 029, 030, 305-170-018, 305-190	0-014, 019, 020, 028, 029, 030,		
031, 033, 305-220-011, 01	3, 018, 020, 021, 023, 028, 031, 038, 059, 060, 061, 062.			
$\Delta DN(c)$ (Dhase 2):				
APN(s) (Phase 2):				
305-000-030, 037, 042, 30	15-070-004, 305-090-015, 016, 017, 019, 026, 028, 030, 032, 055	, 050, 057, 058, 059		
Map Book and Page No.: E	300k 305, Pages 7, 9, 10, 11, 12, 13, 14, 16, 17, 19, 22			
PROJECT CHARACTERISTICS				
Proposed or Potential Lan	d Use(s)	General Warehousing,		
		Retail, Multiple Business Use		
Proposed or Potential SIC	Code(s)	4225, 5331, 5339, 5411,		
		5541, 5812		
Area of Impervious Project	t Footprint (SF)	±10,270,000		
Total Area of <u>proposed</u> Im	pervious Surfaces within Project Footprint (SF)/or Replacement	±10,270,000		
Does the project consist o	f offsite road improvements?	🗌 Y 🛛 N		
Does the project propose	to construct unpaved roads?	🗌 Y 🛛 N		
Is the project part of a larg	ger common plan of development (phased project)?	🗌 Y 🛛 N		
EXISTING SITE CHARACTERISTIC	S			
Total area of <u>existing</u> Impe	ervious Surfaces within the Project limits Footprint (SF)	±30,000		
	in any MSHCP Criteria Cell?	🗌 Y 🛛 N		
If so, identify the Cell num		N/A		
	rologic features on the project site?	∏Y ⊠N		
Is a Geotechnical Report a		Y N		
-	the NRCS soils type(s) present on the site (A, B, C and/or D)	N/A		
What is the Water Quality	Design Storm Depth for the project?	0.60		
See next page for Project	ct Narrative:			

Overall Project Narrative:

Harvest Landing Retail Center and Business Park is a proposed industrial and retail development consisting of multiple sites across two phases. The site is within the Harvest Landing Specific Plan Area, bounded by East Frontage Road to the west, an existing shopping center to the south, Placentia Avenue to the north, and Perris Boulevard to the east.

Phase I is comprised of 10 sites; Site 1 (59.37 acres) is a warehouse site, comprised of 1 building, truck yard, auto parking, and landscaping. Sites 2-7 (24.13, 7.15, 3.60, 3.47, 25.81, 16.37 ac., respectively) are each comprised of 1 building, truck yard, auto parking, and landscaping. Site 8 (22.16 ac.) is a retail shopping center with 18 buildings, an outdoor food court, and auto parking. Site 9 (24.33 ac.) is also a retail center, with three buildings currently proposed, auto parking, and a consumer fueling station which will be hydrologically separated from the rest of Site 9 and have separate treatment. Site 10 (12.91 ac.) contains a shared bioretention basin for treatment flows from Sites 8 and 9, underground detention system to store treatment flows, and lift station. The basin will be described in greater detail in a later section.

Phase II is a 95.96-acre portion of the development, with a currently unspecified use and number of sites. Its impact to the Design Capture Volume treatment needs of the development has been calculated with an assumption of 88% impervious cover types, and 12% pervious cover types. Treatment for Phase II will be performed onsite similarly to the Phase I Industrial Sites.

Construction phasing within Phases I and II have not yet been determined, except for the retail components being planned for construction before the industrial sites.

Site 10 (12.91 ac.) in Phase I will be the location of a shared bioretention basin which will treat flows from Sites 8 and 9 and will be referred to as "Offsite Basin" in the following sections of the report. Site 10 consists of a bioretention basin with a bottom surface area totaling 76,615 SF, and a Design Treatment Capacity of 137,907 cubic feet, along with open space areas and public amenities such as walking paths and benches. This site receives flows from only Sites 8 and 9, which are conveyed via a low flow water quality line, then stored inside an underground CMP chamber system where they will be pumped up to the surface via a lift station. The lift station will be sized to fully evacuate the chambers within 72 hours in the event of 2-year, 24-hour storm event.

Proposed public streets, namely Daniela Way and the extension of Barrett Avenue to Orange Avenue, will also be treated at each inlet with a proprietary flow-based device.

Flows in excess of the 2-year, 24-hour storm event from all sites will bypass into onsite underground detention systems within their respective sites, ultimately discharging into a proposed extension of MDP Line "K".

All water quality treatment within Harvest Landing will be achieved via bioretention basins or proprietary flow-based devices (Modular Wetlands). This is because infiltration BMPs are not feasible for the overall development as infiltration rates are considerably low (<1in/hr) within large portions of the Harvest Landing area (See infiltration report in Appendix 3 and list of rates in Section B). The project also fails to meet the minimum criteria for Harvest and Use. Due to site layouts and constraints, most Harvest Landing sites could not accommodate on-site BMPs large enough to treat the DCV generated.

A.1 Maps and Site Plans

When completing your Project-Specific WQMP, include a map of the local vicinity and existing site. In addition, include all grading, drainage, landscape/plant palette and other pertinent construction plans in Appendix 2. At a **minimum**, your WQMP Site Plan should include the following:

- Drainage Management Areas
- Proposed Structural BMPs
- Drainage Path
- Drainage Infrastructure, Inlets, Overflows
- Source Control BMPs
- Buildings, Roof Lines, Downspouts
- Impervious Surfaces
- Standard Labeling
- BMP Locations (Lat/Long)

Use your discretion on whether or not you may need to create multiple sheets or can appropriately accommodate these features on one or two sheets. Keep in mind that the Co-Permittee plan reviewer must be able to easily analyze your project utilizing this template and its associated site plans and maps.

A.2 Identify Receiving Waters

Using Table A.1 below, list in order of upstream to downstream, the receiving waters that the project site is tributary to. Continue to fill each row with the Receiving Water's 303(d) listed impairments (if any), designated beneficial uses, and proximity, if any, to a RARE beneficial use. Include a map of the receiving waters in Appendix 1.

Receiving Waters	EPA Approved 303(d) List Impairments	Designated Beneficial Uses	Proximity to RARE Beneficial Use
Perris Valley Channel	None Listed	REC2, WILD, RARE	±0.9 Miles downstream of Site
San Jacinto River Reach 3	None Listed	RARE	±5.2 Miles downstream of Site
Canyon Lake (Railroad Canyon Reservoir)	Nutrients	MUN, AGR, GWR, REC1, REC2, COMM, WARM, WILD	±11.2 Miles downstream of Site
San Jacinto River Reach 1	None Listed	RARE	±14.8 Miles downstream of Site
Lake Elsinore	DDT, Nutrients, Organic Enrichment/Low Dissolved Oxygen, PCBs (Polychlorinated biphenyls),Toxicity	REC1, REC2, COMM, WARM, WILD, RARE	±19.2 Miles downstream of Site

Table A.1 Identification of Receiving Waters

A.3 Additional Permits/Approvals required for the Project:

Table A.2 Other Applicable Permits

Agency	Permit Required		
State Department of Fish and Game, 1602 Streambed Alteration Agreement	Υ	N 🛛	
State Water Resources Control Board, Clean Water Act (CWA) Section 401 Water Quality Cert.	Υ	N 🛛	
US Army Corps of Engineers, CWA Section 404 Permit	Υ	N 🛛	
US Fish and Wildlife, Endangered Species Act Section 7 Biological Opinion	□ Y	N 🛛	
Statewide Construction General Permit Coverage	×Ν	<u> </u>	
Statewide Industrial General Permit Coverage (Dependent on Tenant)	×Ν	□ N	
Western Riverside MSHCP Consistency Approval (e.g., JPR, DBESP)	□ Y	N 🛛	
Other (please list in the space below as required) City of Perris Building and Grading Permits	×	N	

If yes is answered to any of the questions above, the Co-Permittee may require proof of approval/coverage from those agencies as applicable including documentation of any associated requirements that may affect this Project-Specific WQMP.

Section B: Optimize Site Utilization (LID Principles)

Review of the information collected in Section 'A' will aid in identifying the principal constraints on site design and selection of LID BMPs as well as opportunities to reduce imperviousness and incorporate LID Principles into the site and landscape design. For example, **constraints** might include impermeable soils, high groundwater, groundwater pollution or contaminated soils, steep slopes, geotechnical instability, high-intensity land use, heavy pedestrian or vehicular traffic, utility locations or safety concerns. **Opportunities** might include existing natural areas, low areas, oddly configured or otherwise unbuildable parcels, easements and landscape amenities including open space and buffers (which can double as locations for bioretention BMPs), and differences in elevation (which can provide hydraulic head). Prepare a brief narrative for each of the site optimization strategies described below. This narrative will help you as you proceed with your LID design and explain your design decisions to others.

The 2010 Santa Ana MS4 Permit further requires that LID Retention BMPs (Infiltration Only or Harvest and Use) be used unless it can be shown that those BMPs are infeasible. Therefore, it is important that your narrative identify and justify if there are any constraints that would prevent the use of those categories of LID BMPs. Similarly, you should also note opportunities that exist which will be utilized during project design. Upon completion of identifying Constraints and Opportunities, include these on your WQMP Site plan in Appendix 1.

Consideration of "highest and best use" of the discharge should also be considered. For example, Lake Elsinore is evaporating faster than runoff from natural precipitation can recharge it. Requiring infiltration of 85% of runoff events for projects tributary to Lake Elsinore would only exacerbate current water quality problems associated with Pollutant concentration due to lake water evaporation. In cases where rainfall events have low potential to recharge Lake Elsinore (i.e. no hydraulic connection between groundwater to Lake Elsinore, or other factors), requiring infiltration of Urban Runoff from projects is counterproductive to the overall watershed goals. Project proponents, in these cases, would be allowed to discharge Urban Runoff, provided they used equally effective filtration-based BMPs.

Site Optimization

The following questions are based upon Section 3.2 of the WQMP Guidance Document. Review of the WQMP Guidance Document will help you determine how best to optimize your site and subsequently identify opportunities and/or constraints, and document compliance.

Did you identify and preserve existing drainage patterns? If so, how? If not, why?

Existing drainage patterns will be preserved. Flows currently sheet-flow eastward until reaching Perris Boulevard, where they are collected by City or County storm drain facilities, and eventually discharged into the Perris Valley Channel. Flows from the proposed development will also ultimately discharge to the Perris Valley Channel through an extension of the existing MDP Line "K", and through proposed public storm drain laterals that will connect to Line "K".

Did you identify and protect existing vegetation? If so, how? If not, why?

No, there is no significant vegetation to protect. Sites 1-3 and 7 are proposed to have landscaping coverages at or near 20% per site, with Site 4 at around 30%, and Site 5 at around 50%. Sites 6, 8 and 9, due to their layout and purpose, propose landscaping to the maximum extent practicable and maintain a minimum of 10% landscaping. Phase II Site layouts are undeveloped but assume a 12% minimum landscaping cover for DCV and Harvest and Reuse exemption calculations.

Did you identify and preserve natural infiltration capacity? If so, how? If not, why?

The Harvest Landing SP Sites have very poor natural infiltration capacity. See infiltration report in Appendix 3 for locations of infiltration tests. Infiltration rates average below 1 inch per hour. The infiltration rates found over the Specific Plan are as follows:

Test No.	Rate (in/hr)						
I-1	0.8	I-13	0.2	I-25	0.1	I-37	0.1
I-2	1.0	I-14	0.2	I-26	0.0	I-38	0.1
I-3	6.8	I-15	0.0	I-27	0.1	I-39	0.0
I-4	0.3	I-16	0.2	I-28	0.0	I-40	0.1
I-5	0.9	I-17	0.0	I-29	0.0	I-41	0.0
I-6	1.3	I-18	0.0	I-30	0.1	I-42	0.0
I-7	<0.1	I-19	0.1	I-31	0.1	I-43	0.0
I-8	0.2	I-20	0.1	I-32	0.1	I-44	0.1
I-9	0.1	I-21	0.4	I-33	0.1	I-45	0.8
I-10	0.3	I-22	0.3	I-34	0.1	I-46	0.1
I-11	0.2	I-23	0.1	I-35	0.1	I-47	0.1
I-12	0.2	I-24	1.7	I-36	0.0		

Did you identify and minimize impervious area? If so, how? If not, why?

Impervious area was minimized to the maximum extent practicable per site depending on the proposed use case.

Did you identify and disperse runoff to adjacent pervious areas? If so, how? If not, why?

Overall, Site layouts did not allow for dispersion to adjacent pervious areas. Dispersion occurred on Sites 4 and 5 into bioretention basins, and for smaller impervious areas within Sites 2, 3, and 7. Otherwise due to grading constraints, impervious areas are largely disconnected from pervious areas.

Section C: Delineate Drainage Management Areas (DMAs)

Utilizing the procedure in Section 3.3 of the WQMP Guidance Document which discusses the methods of delineating and mapping your project site into individual DMAs, complete Table C.1 below to appropriately categorize the types of classification (e.g., Type A, Type B, etc.) per DMA for your project site. Upon completion of this table, this information will then be used to populate and tabulate the corresponding tables for their respective DMA classifications.

DMA Name or ID	Surface Type(s) ¹²	Area (Sq. Ft.)	DMA Туре
S1-1A	Roofs	40526.29	D
S1-1B	Landscaping	19041.78	A
S1-1C	Concrete or Asphalt	277973.92	D
\$1-2A	Roofs	55315.38	D
S1-2B	Landscaping	41163.15	A
\$1-2C	Concrete or Asphalt	237178.68	D
\$1-3A	Roofs	9599.60	D
S1-3B	Landscaping	35809.64	A
\$1-3C	Concrete or Asphalt	254184.8	D
S1-4B	Landscaping	69045.08	A
S1-4C	Concrete or Asphalt	264175.33	D
\$1-5C	Concrete or Asphalt	117505.00	D
S1-6C	Concrete or Asphalt	130304.77	D
S1-7B	Landscaping	42838.67	A
\$1-7C	Concrete or Asphalt	140627.27	D
S1-8B	Landscaping	20084.43	A
S1-8C	Concrete or Asphalt	124278.20	D
\$1-9B	Landscaping	9525.82	A
\$1-9C	Concrete or Asphalt	38340	D
S1-10A	Roofs	36878.51	D
S1-10A S1-10B	Landscaping	15265.47	A
\$1-10D \$1-10C	Concrete or Asphalt	60733.10	D
S1-11A	Roofs	70795.56	D
S1-11R S1-11B	Landscaping	19360.12	A
S1-110	Concrete or Asphalt	29593.31	D
S1-112B	Landscaping	16895.67	A
S1-12D S1-12C	Concrete or Asphalt	23273.88	D
S1-13B	Landscaping	7835.18	A
S1-13D S1-13C	Concrete or Asphalt	28300.75	D
S1-14B	Landscaping	4875.73	A
S1-14B S1-14C	Concrete or Asphalt	8629.30	D
S1-15B	Landscaping	107128.11	A
S1-16A	Roofs	19615.00	D
S1-16B	Landscaping	122816.87	A
S1-16C	Concrete or Asphalt	337.89	D
S2-1B	Landscaping	80975.94	A
\$2-10 \$2-10	Concrete or Asphalt	186366.60	D
S2-2A	Roofs	190057.60	D
S2-2R	Landscaping	9175.65	A
S2-2B S2-2C	Concrete or Asphalt	23066.2	D
S2-3A	Roofs	194209.20	D
S2-3A S2-3B	Landscaping	27649.37	A
52-3B S2-3C	Concrete or Asphalt	44222.67	D
52-3C S2-4C	Concrete or Asphalt	129874.50	D
S2-5B	Landscaping	95031.43	B
S2-5B	Concrete or Asphalt	17428.74	С
S2-6B	Landscaping	22173.93	
52-6B S2-6C	Concrete or Asphalt	31142.53	A D
J2-0C		51142.55	<u>ب</u>

62.14	Deefe	00000 47	0
S3-1A	Roofs	82323.47	D
S3-1B S3-1C	Landscaping	13948.61	A
	Concrete or Asphalt	49531.63	D
S3-2A S3-2B	Roofs	28787.68	D
S3-2B S3-2C	Landscaping Concrete or Asphalt	<u> </u>	A
S3-3B	Landscaping	11817.16	В
S3-3C	Concrete or Asphalt	116.28	C
S3-4B	Landscaping	26275.45	В
S3-4C	Concrete or Asphalt	4363.50	C
S3-5B	Landscaping	10776.10	A
S3-5C	Concrete or Asphalt	28679.95	P
S4-1A	Roofs	57919.51	D
S4-1B	Landscaping	42752.28	A
S4-1C	Concrete or Asphalt	56064.51	D
S5-1A	Roofs	18981.97	D
S5-1B	Landscaping	56677.24	A
S5-1C	Concrete or Asphalt	38716.49	D
S5-2A	Roofs	3619.40	D
S5-2B	Landscaping	13914.06	A
S5-2C	Concrete or Asphalt	19057.84	D
S6-1A	Roofs	142737.60	D
S6-1B	Landscaping	52222.06	A
S6-1C	Concrete or Asphalt	114415.6	D
S6-2A	Roofs	143823.90	D
S6-2B	Landscaping	53079.77	A
S6-2C	Concrete or Asphalt	127078.40	D
S6-3A	Roofs	88575.34	D
S6-3B	Landscaping	3149.25	A
S6-3C S6-4A	Concrete or Asphalt	60762.75	D
S6-4A S6-4B	Roofs	87541.33 3111.23	D
S6-4B	Landscaping Concrete or Asphalt		A
S6-5A	Roofs	<u> </u>	P
S6-5B	Landscaping	20930.30	A
S6-5C	Concrete or Asphalt	47001.96	D
S6-6A	Roofs	20934.50	P
S6-6B	Landscaping	24047.65	A
S6-6C	Concrete or Asphalt	52272.30	P
S7-1A	Roofs	57309.90	P
\$7-1B	Landscaping	30570.41	A
S7-1C	Concrete or Asphalt	67852.19	D
S7-2A	Roofs	17606.00	D
S7-2B	Landscaping	3375.67	А
S7-2C	Concrete or Asphalt	11967.73	D
S7-3A	Roofs	54098.50	D
S7-3B	Landscaping	22677.90	A
S7-3C	Concrete or Asphalt	32139.36	D
S7-4A	Roofs	98582.75	D
S7-4B	Landscaping	35071.86	A
S7-4C	Concrete or Asphalt	93880.34	D
S7-5A	Roofs	56184.36	D
S7-5B	Landscaping	2393.99	A
S7-5C	Concrete or Asphalt	43500.29	D
S7-6A	Roofs	6528.45	D
S7-6B	Landscaping	13391.52	A
S7-6C	Concrete or Asphalt	1757.82	D
S7-7A	Roofs	13853.76	D
S7-7B	Landscaping	7156.22	A
S7-7C	Concrete or Asphalt	126.33	D
S7-8B S7-8C	Landscaping	42867.99	B
51-0L	Concrete or Asphalt	87.08	
	Sites 8-10 and Phase I	II Sites 8-10 and Phase II	
	on next sheets	on next sheets	
l	· · · · · · · · · · · · · · · · · · ·		

S8-1A	Roofs	252423.02	D
S8-1B	Landscaping	111038.81	A
S8-1C	Concrete or Asphalt	601813.44	D
S9-1A	Roofs	166666.10	D
S9-1B	Landscaping	155343.40	A
S9-1C	Concrete or Asphalt	629913.10	D
S9-2B	Landscaping	20433.98	A
S9-2C	Concrete or Asphalt	87575.20	D
S10-1B	Landscaping	409550.08	A
S10-1C	Concrete or Asphalt	76117.46	D
S10-1D	Landscaping	76615.37	A
P2-1A (Phase II West)	Impervious Cover	1617036.74	D
P2-1B (Phase II West)	Pervious Cover	220505.01	A
P2-2A (Phase II East)	Impervious Cover	2093617.79	D
P2-2B (Phase II East)	Pervious Cover	285493.33	A
S-1B (Public Streets)	Landscaping	82,751	A
S-1C (Public Streets)	Concrete or Asphalt		D

¹Reference Table 2-1 in the WQMP Guidance Document to populate this column ²If multi-surface provide back-up

Table C.2 Type 'A', Self-Treating Areas

able C.2 Type 'A', Self-Treat DMA Name or ID	Area (Sq. Ft.)	Stabilization Type	Irrigation Type (if any)
S1-1B	19041.78	Landscaping, Natural grasses	Drip Tubing
S1-2B	41163.15	Landscaping, Natural grasses	Drip Tubing
S1-3B	35809.64	Landscaping, Natural grasses	Drip Tubing
S1-4B	69045.08	Landscaping, Natural grasses	Drip Tubing
S1-7B	42838.67	Landscaping, Natural grasses	Drip Tubing
S1-8B	20084.43	Landscaping, Natural grasses	Drip Tubing
S1-9B	9525.82	Landscaping, Natural grasses	Drip Tubing
S1-10B	15265.47	Landscaping, Natural grasses	Drip Tubing
S1-11B	19360.12	Landscaping, Natural grasses	Drip Tubing
S1-12B	16895.67	Landscaping, Natural grasses	Drip Tubing
S1-13B	7835.18	Landscaping, Natural grasses	Drip Tubing
S1-14B	4875.73	Landscaping, Natural grasses	Drip Tubing
S1-15B	107128.11	Landscaping, Natural grasses	Drip Tubing
S1-16B	122816.87	Landscaping, Natural grasses	Drip Tubing
S2-1B	80975.94	Landscaping, Natural grasses	Drip Tubing
S2-2B	9175.65	Landscaping, Natural grasses	Drip Tubing
S2-3B	27649.37	Landscaping, Natural grasses	Drip Tubing
S2-6B	22173.93	Landscaping, Natural grasses	Drip Tubing
S3-1B	13948.61	Landscaping, Natural grasses	Drip Tubing
S3-2B	11245.32	Landscaping, Natural grasses	Drip Tubing
S3-5B	10776.10	Landscaping, Natural grasses	Drip Tubing
S4-1B	42752.28	Landscaping, Natural grasses	Drip Tubing
S5-1B	56677.24	Landscaping, Natural grasses	Drip Tubing
S5-2B	13914.06	Landscaping, Natural grasses	Drip Tubing
S6-1B	52222.06	Landscaping, Natural grasses	Drip Tubing
S6-2B	53079.77	Landscaping, Natural grasses	Drip Tubing
S6-3B	3149.25	Landscaping, Natural grasses	Drip Tubing
S6-4B	3111.23	Landscaping, Natural grasses	Drip Tubing
S6-5B	22753.70	Landscaping, Natural grasses	Drip Tubing
S6-6B	24047.65	Landscaping, Natural grasses	Drip Tubing
S7-1B	30570.41	Landscaping, Natural grasses	Drip Tubing
S7-2B	3375.67	Landscaping, Natural grasses	Drip Tubing
S7-3B	22677.90	Landscaping, Natural grasses	Drip Tubing
S7-4B	35071.86	Landscaping, Natural grasses	Drip Tubing
S7-5B	2393.99	Landscaping, Natural grasses	Drip Tubing
S7-6B	13391.52	Landscaping, Natural grasses	Drip Tubing
\$7-7B	7156.22	Landscaping, Natural grasses	Drip Tubing
\$8-1B	111038.81	Landscaping, Natural grasses	Drip Tubing
\$9-1B	155343.40	Landscaping, Natural grasses	Drip Tubing
S9-2B	20433.98	Landscaping, Natural grasses	Drip Tubing
S10-1B S10-1D	409550.08	Landscaping, Natural grasses	Drip Tubing
	76615.37	Per Riverside County LID	Drip Tubing
P2-1B (Phase II West)	220505.01	Landscaping, Natural grasses	Drip Tubing
P2-2B (Phase II East)	285493.33	Landscaping, Natural grasses	Drip Tubing
S-1B (Public Streets)	41505.31	Landscaping, Natural grasses	Drip Tubing

Table C.3 Type 'B', Self-Retaining Areas

Self-Retai	ning Area			Type 'C' DMAs Area	Type 'C' DMAs that are draining to the Self-Retainin Area				
DMA Name/ ID	Post-project surface type	Area (square feet) [A]	Storm Depth (inches) [B]	 DMA Name / ID	[C] from Table C.4 = [C]	Required Retention Depth (inches) [D]			
S2-5B	Landscaping	95031.43	0.60	S2-5C	17428.74	0.71			
S3-3B	Landscaping	11817.16	0.60	S3-4C	116.28	0.61			
S3-4B	Landscaping	10776.10	0.60	S3-5C	4363.50	0.84			
S7-8B	Landscaping	42867.99	0.60	S7-8C	87.08	0.60			
			[D] =	$= [B] + \frac{[B] \cdot [C]}{[A]}$					

 Table C.4 Type 'C', Areas that Drain to Self-Retaining Areas

DMA					Receiving Self-F	Retaining DMA	
DMA Name/ ID	Area (square feet)	Post-project surface type	Impervious fraction	Product		Area (square feet)	Ratio
DMJ	[A]	Post surfa	[B]	[C] = [A] x [B]	DMA name /ID	[D]	[C]/[D]
S2-5C		Conc/	1		S2-5B		0.183
	17428.74	Asphalt		17428.74		95031.43	
S3-3C		Conc/	1		S3-3B		0.010
	116.28	Asphalt		116.28		11817.16	
S3-4C		Conc/	1		S3-3B		0.404
	4363.50	Asphalt		4363.50		10776.10	
S7-8C		Conc/	1		S7-8B		0.002
	87.08	Asphalt		87.08		42867.99	

 Table C.5 Type 'D', Areas Draining to BMPs

DMA Name or ID	BMP Name or ID
S1-1A	S1-1 Modular Wetlands
S1-1C	S1-1 Modular Wetlands
S1-2A	S1-2 Modular Wetlands
\$1-2C	S1-2 Modular Wetlands
\$1-3A	S1-3 Modular Wetlands
\$1-3C	S1-3 Modular Wetlands
\$1-4C	S1-4 Modular Wetlands
\$1-5C	S1-5 Modular Wetlands
S1-6C	S1-6 Modular Wetlands
S1-7C	S1-7 Modular Wetlands
\$1-8C	S1-8 Modular Wetlands
S1-9C	S1-9 Modular Wetlands
S1-10A	S1-10 Modular Wetlands
S1-10C	S1-10 Modular Wetlands
S1-11A	S1-11 Modular Wetlands
\$1-11C	S1-11 Modular Wetlands
\$1-12C	S1-12 Modular Wetlands
S1-13C	S1-13 Modular Wetlands
S1-14C	S1-14 Modular Wetlands
S1-16A	S1-16 Modular Wetlands
S1-16C	S1-16 Modular Wetlands
\$2-1C	S2-1 Modular Wetlands
\$2-2A	S2-2 Modular Wetlands
\$2-2C	S2-2 Modular Wetlands
\$2-3A	S2-3 Modular Wetlands
\$2-3C	S2-3 Modular Wetlands
\$2-4C	S2-4 Modular Wetlands
\$2-6C	S2-6 Modular Wetlands
S3-1A	S3-1 Modular Wetlands
\$3-1C	S3-1 Modular Wetlands
\$3-2A	S3-2 Modular Wetlands
\$3-2C	S3-2 Modular Wetlands
\$3-5C	S3-5 Modular Wetlands
S4-1A	Site 4 Onsite Bioretention Basin
\$4-1C	Site 4 Onsite Bioretention Basin
S5-1A	Site 5-1 Onsite Bioretention Basin
\$5-1C	Site 5-1 Onsite Bioretention Basin
S5-2A	Site 5-2 Onsite Bioretention Basin
\$5-2C	Site 5-2 Onsite Bioretention Basin
S6-1A	S6-1 Modular Wetlands
S6-1C	S6-1 Modular Wetlands
S6-2A	S6-2 Modular Wetlands
S6-2C	S6-2 Modular Wetlands
S6-3A	S6-3 Modular Wetlands
S6-3C	S6-3 Modular Wetlands
S6-4A	S6-4 Modular Wetlands
S6-4C	S6-4 Modular Wetlands
S6-5A	S6-5 Modular Wetlands
S6-5C	
50.50	S6-5 Modular Wetlands

<u>Note</u>: More than one drainage management area can drain to a single LID BMP, however, one drainage management area may not drain to more than one BMP.

DMA Name or ID	BMP Name or ID
S6-6A	S6-6 Modular Wetlands
S6-6C	S6-6 Modular Wetlands
S7-1A	S7-1 Modular Wetlands
\$7-1C	S7-1 Modular Wetlands
S7-2A	S7-2 Modular Wetlands
\$7-2C	S7-2 Modular Wetlands
S7-3A	S7-3 Modular Wetlands
\$7-3C	S7-3 Modular Wetlands
S7-4A	S7-4 Modular Wetlands
S7-4C	S7-4 Modular Wetlands
S7-5A	S7-5 Modular Wetlands
\$7-5C	S7-5 Modular Wetlands
S7-6A	S7-6 Modular Wetlands
S7-6C	S7-6 Modular Wetlands
S7-7A	S7-7 Modular Wetlands
S7-7C	S7-7 Modular Wetlands
S8-1A	Offsite Basin
S8-1C	Offsite Basin
S9-1A	Offsite Basin
S9-1C	Offsite Basin
S9-2A	S9-2 Modular Wetlands
S9-2C	S9-2 Modular Wetlands
\$10-1C	Offsite Basin
P2-1A (Phase II West)	Onsite Treatment TBD
P2-2A (Phase II East)	Onsite Treatment TBD
Streets 1C (Public Streets – Barrett Ave and Daniela Way)	Modular Wetlands at every inlet
	1

<u>Note</u>: More than one drainage management area can drain to a single LID BMP, however, one drainage management area may not drain to more than one BMP.

Section D: Implement LID BMPs

D.1 Infiltration Applicability

Is there an approved downstream 'Highest and Best Use' for stormwater runoff (see discussion in Chapter 2.4.4 of the WQMP Guidance Document for further details)? $\Box Y \boxtimes N$

If yes has been checked, Infiltration BMPs shall not be used for the site; proceed to section D.3

If no, continue working through this section to implement your LID BMPs. It is recommended that you contact your Co-Permittee to verify whether or not your project discharges to an approved downstream 'Highest and Best Use' feature.

Geotechnical Report

A Geotechnical Report or Phase I Environmental Site Assessment may be required by the Copermittee to confirm present and past site characteristics that may affect the use of Infiltration BMPs. In addition, the Co-Permittee, at their discretion, may not require a geotechnical report for small projects as described in Chapter 2 of the WQMP Guidance Document. If a geotechnical report has been prepared, include it in Appendix 3. In addition, if a Phase I Environmental Site Assessment has been prepared, include it in Appendix 4.

Is this project classified as a small project consistent with the requirements of Chapter 2 of the WQMP Guidance Document? \Box Y \boxtimes N

Infiltration Feasibility

Table D.1 below is meant to provide a simple means of assessing which DMAs on your site support Infiltration BMPs and is discussed in the WQMP Guidance Document in Chapter 2.4.5. Check the appropriate box for each question and then list affected DMAs as applicable. If additional space is needed, add a row below the corresponding answer.

Does the project site	YES	NO
have any DMAs with a seasonal high groundwater mark shallower than 10 feet?		Х
If Yes, list affected DMAs:		
have any DMAs located within 100 feet of a water supply well?		Х
If Yes, list affected DMAs:		
have any areas identified by the geotechnical report as posing a public safety risk where infiltration of stormwater		Х
could have a negative impact?		
If Yes, list affected DMAs:		
have measured in-situ infiltration rates of less than 1.6 inches / hour? See list in Section B or report in Appendix 3	х	
If Yes, list affected DMAs: All DMAs		
have significant cut and/or fill conditions that would preclude in-situ testing of infiltration rates at the final		Х
infiltration surface?		
If Yes, list affected DMAs:		
geotechnical report identify other site-specific factors that would preclude effective and safe infiltration?		Х
Describe here:		

Table D.1 Infiltration Feasibility

If you answered "Yes" to any of the questions above for any DMA, Infiltration BMPs should not be used for those DMAs and you should proceed to the assessment for Harvest and Use below.

D.2 Harvest and Use Assessment

Please check what applies:

 \square Reclaimed water will be used for the non-potable water demands for the project.

 \Box Downstream water rights may be impacted by Harvest and Use as approved by the Regional Board (verify with the Copermittee).

□ The Design Capture Volume will be addressed using Infiltration Only BMPs. In such a case, Harvest and Use BMPs are still encouraged, but it would not be required if the Design Capture Volume will be infiltrated or evapotranspired.

If any of the above boxes have been checked, Harvest and Use BMPs need not be assessed for the site. If none of the above criteria applies, follow the steps below to assess the feasibility of irrigation use, toilet use and other non-potable uses (e.g., industrial use).

Irrigation Use Feasibility

Complete the following steps to determine the feasibility of harvesting stormwater runoff for Irrigation Use BMPs on your site:

Step 1: Identify the total area of irrigated landscape on the site, and the type of landscaping used.

Total Area of Irrigated Landscape:

I	Site 1	Site 2	Site 3	Site 4	Site 5	Site 6	Site 7	Site 8	Site 9
	12.21	5.39	1.70	0.98	1.62	3.64	3.62	2.55	4.04

Type of Landscaping (Conservation Design or Active Turf): **Conservation Design for all sites.**

Step 2: Identify the planned total of all impervious areas on the proposed project from which runoff might be feasibly captured and stored for irrigation use. Depending on the configuration of buildings and other impervious areas on the site, you may consider the site as a whole, or parts of the site, to evaluate reasonable scenarios for capturing and storing runoff and directing the stored runoff to the potential use(s) identified in Step 1 above.

Total Area of Impervious Surfaces:

Site 1	Site 2	Site 3	Site 4	Site 5	Site 6	Site 7	Site 8	Site 9
47.17	18.74	5.45	2.62	1.85	22.18	12.75	19.61	20.30

Step 3: Cross reference the Design Storm depth for the project site (see Exhibit A of the WQMP Guidance Document) with the left column of Table 2-3 in Chapter 2 to determine the minimum area of Effective Irrigated Area per Tributary Impervious Area (EIATIA).

Enter your EIATIA factor: 0.79

Step 4: Multiply the unit value obtained from Step 3 by the total of impervious areas from Step 2 to develop the minimum irrigated area that would be required.

Minimum required irrigated area:

Site 1	Site 2	Site 3	Site 4	Site 5	Site 6	Site 7	Site 8	Site 9
37.26	14.81	4.30	2.07	1.46	17.52	10.07	15.49	16.03

Step 5: Determine if harvesting stormwater runoff for irrigation use is feasible for the project by comparing the total area of irrigated landscape (Step 1) to the minimum required irrigated area (Step 4).

Site	Total Area (ac)	Minimum Required (ac)
1	12.21	37.26
2	5.39	14.81
3	1.70	4.30
4	0.98	2.07
5	1.62	1.46
6	3.64	17.52
7	3.62	10.07
8	2.55	15.49
9	4.04	16.03

Toilet Use Feasibility

Complete the following steps to determine the feasibility of harvesting stormwater runoff for toilet flushing uses on your site:

Step 1: Identify the projected total number of daily toilet users during the wet season, and account for any periodic shut downs or other lapses in occupancy:

Projected Number of Daily Toilet Users:

ſ	Site 1	Site 2	Site 3	Site 4	Site 5	Site 6	Site 7	Site 8	Site 9
	480	580	280	150	85	750	450	950	630

Project Type: Industrial (Sites 1-7), Retail (Sites 8 & 9)

Step 2: Identify the planned total of all impervious areas on the proposed project from which runoff might be feasibly captured and stored for toilet use. Depending on the configuration of buildings and other impervious areas on the site, you may consider the site as a whole, or parts of the site, to evaluate reasonable scenarios for capturing and storing runoff and directing the stored runoff to the potential use(s) identified in Step 1 above.

Total Area of Impervious Surfaces:

Site 1	Site 2	Site 3	Site 4	Site 5	Site 6	Site 7	Site 8	Site 9
47.17	18.74	5.45	2.62	1.85	22.18	12.75	19.61	20.30

Step 3: Enter the Design Storm depth for the project site (see Exhibit A) into the left column of Table 2-2 in Chapter 2 to determine the minimum number or toilet users per tributary impervious acre (TUTIA).

Enter your TUTIA factor: **172 for Industrial, 132 for Retail**

Step 4: Multiply the unit value obtained from Step 3 by the total of impervious areas from Step 2 to develop the minimum number of toilet users that would be required.

Minimum number of toilet users:

Site 1	Site 2	Site 3	Site 4	Site 5	Site 6	Site 7	Site 8	Site 9
8,113	3,223	937	450	317	3,815	2,193	2,589	2,679

Step 5: Determine if harvesting stormwater runoff for toilet flushing use is feasible for the project by comparing the Number of Daily Toilet Users (Step 1) to the minimum required number of toilet users (Step 4).

Site	Estimated Users	Minimum Required		
1	480	8,113		
2	580	3,223		
3	280	937		
4	150	450		
5	85	317		
6	750	3,815		
7	450	2,193		
8	950	2,589		
9	630	2,679		

Other Non-Potable Use Feasibility

Are there other non-potable uses for stormwater runoff on the site (e.g. industrial use)? See Chapter 2 of the Guidance for further information. If yes, describe below. If no, write N/A.

N/A

Step 1: Identify the projected average daily non-potable demand, in gallons per day, during the wet season and accounting for any periodic shut downs or other lapses in occupancy or operation.

Average Daily Demand: N/A

Step 2: Identify the planned total of all impervious areas on the proposed project from which runoff might be feasibly captured and stored for the identified non-potable use. Depending on the configuration of buildings and other impervious areas on the site, you may consider the site as a whole, or parts of the site, to evaluate reasonable scenarios for capturing and storing runoff and directing the stored runoff to the potential use(s) identified in Step 1 above.

Total Area of Impervious Surfaces: N/A

Step 3: Enter the Design Storm depth for the project site (see Exhibit A) into the left column of Table 2-4 in Chapter 2 to determine the minimum demand for non-potable uses per tributary impervious acre.

Enter the factor from Table 2-4: N/A

Step 4: Multiply the unit value obtained from Step 3 by the total of impervious areas from Step 2 to develop the minimum number of gallons per day of non-potable use that would be required.

Minimum required use: N/A

Step 5: Determine if harvesting stormwater runoff for other non-potable use is feasible for the project by comparing the projected average daily use (Step 1) to the minimum required non-potable use (Step 4).

Minimum required non-potable use (Step 4)	Projected average daily use (Step 1)
N/A	N/A

If Irrigation, Toilet and Other Use feasibility anticipated demands are less than the applicable minimum values, Harvest and Use BMPs are not required and you should proceed to utilize LID Bioretention and Biotreatment per Section 3.4.2 of the WQMP Guidance Document.

D.3 Bioretention and Biotreatment Assessment

Other LID Bioretention and Biotreatment BMPs as described in Chapter 2.4.7 of the WQMP Guidance Document are feasible on nearly all development sites with sufficient advance planning.

Select one of the following:

⊠ LID Bioretention/Biotreatment BMPs will be used for some or all DMAs of the project as noted below in Section D.4 (note the requirements of Section 3.4.2 in the WQMP Guidance Document).

 \Box A site-specific analysis demonstrating the technical infeasibility of all LID BMPs has been performed and is included in Appendix 5. If you plan to submit an analysis demonstrating the technical infeasibility of LID BMPs, request a pre-submittal meeting with the Copermittee to discuss this option. Proceed to Section E to document your alternative compliance measures.

D.4 Feasibility Assessment Summaries

From the Infiltration, Harvest and Use, Bioretention and Biotreatment Sections above, complete Table D.2 below to summarize which LID BMPs are technically feasible, and which are not, based upon the established hierarchy.

TADIE D.Z LIL	D Prioritization Summ	ai y iviati ix			
		LID BMP	Hierarchy		No LID
DMA Name/ID	1. Infiltration	2. Harvest and use	3. Bioretention	4. Biotreatment	(Alternative Compliance)
DA 4,					
DA 5-1					
DA 5-2,			\boxtimes		
DA 8,					
DA 9-1					
ALL					\square
OTHER					
DMA					

 Table D.2
 LID Prioritization Summary Matrix

For those DMAs where LID BMPs are not feasible, provide a brief narrative below summarizing why they are not feasible, include your technical infeasibility criteria in Appendix 5, and proceed to Section E below to document Alternative Compliance measures for those DMAs. Recall that each proposed DMA must pass through the LID BMP hierarchy before alternative compliance measures may be considered.

D.5 LID BMP Sizing

Each LID BMP must be designed to ensure that the Design Capture Volume will be addressed by the selected BMPs. First, calculate the Design Capture Volume for each LID BMP using the V_{BMP} worksheet in Appendix F of the LID BMP Design Handbook. Second, design the LID BMP to meet the required V_{BMP} using a method approved by the Copermittee. Utilize the worksheets found in the LID BMP Design Handbook or consult with your Copermittee to assist you in correctly sizing your LID BMPs. Complete Table D.3 below to document the Design Capture Volume and the Proposed Volume for each LID BMP. Provide the completed design procedure sheets for each LID BMP in Appendix 6. You may add additional rows to the table below as needed.

DMA Type/ID	DMA Area (square feet)	Post- Project Surface Type	Effective Impervious Fraction, I _f	DMA Runoff Factor	DMA Areas x Runoff Factor	Bioretention Basin 4-1		
4-1A	[A]	Deefe	[B]	[C] 0.89				
4-1A	57919.51	Roofs	1	0.89	51664.20			Proposed
4-1C	56064.51	Conc/Asphalt	1	0.89	50009.50	Design	Design	Volume
						Storm	Capture	on Plans
						Depth	Volume, V _{ВМР}	(cubic
						(in)	(cubic feet)	feet)
	$A_{\rm T} = \Sigma[A]$ 113984.02				Σ= [D] 101673.70	0.60	5,084	5,498

 Table D.3 DCV Calculations for LID BMPs

DMA Type/ID	DMA Area (square feet)	Post- Project Surface Type	Effective Impervious Fraction, I _f	DMA Runoff Factor	DMA Areas x Runoff Factor	Bioretention Basin 5-1			
	[A]		[B]	[C]	[A] x [C]				
5-1A	18981.97	Roofs	1	0.89	16391.90			Proposed	
5-1C	38716.49	Conc/Asphalt	1	0.89	34535.10	Design	Design	Volume	
						Storm	Capture	on Plans	
						Depth	Volume, V _{ВМР}	(cubic	
						(in)	(cubic feet)	feet)	
	$A_{\rm T} = \Sigma[A]$ 57698.46				Σ= [D] 51467.00	0.60	2,573	4,321	

[B], [C] is obtained as described in Section 2.3.1 of the WQMP Guidance Document

[E] is obtained from Exhibit A in the WQMP Guidance Document

[G] is obtained from a design procedure sheet, such as in LID BMP Design Handbook and placed in Appendix 6

DMA Type/ID	DMA Area (square feet)	Post- Project Surface Type	Effective Impervious Fraction, I _f	DMA Runoff Factor	DMA Areas x Runoff Factor	Bioretention Basin 5-2			
	[A]		[B]	[C]	[A] x [C]				
5-2A	3619.40	Roofs	1	0.89	3228.50			Proposed	
5-2C	19057.84	Conc/Asphalt	1	0.89	16999.60	Design	Design	Volume	
						Storm	Capture	on Plans	
						Depth	Volume, V вмр	(cubic	
						(in)	(cubic feet)	feet)	
	$A_{\rm T} = \Sigma[A]$ 22677.24				Σ= [D] 20228.10	0.60	1,011	1,708	

DMA Type/ID	DMA Area (square feet)	Post- Project Surface Type	Effective Impervious Fraction, I _f	DMA Runoff Factor	DMA Areas x Runoff Factor	Offsite Basin			
	[A]		[B]	[C]	[A] x [C]				
8-1A	252423.02	Roofs	1	0.89	225161.30		Design	Proposed	
8-1C	601813.44	Conc/Asphalt	1	0.89	536817.60	Design	Capture	Volume	
9-1A	166666.11	Roofs	1	0.89	148666.20	Storm	Volume,	on Plans	
9-2C	629913.07	Conc/Asphalt	1	0.89	561882.50	Depth	V_{вмр} (cubic	(cubic	
						(in)	feet)	feet)	
	$A_{\rm T} = \Sigma[A]$ 1,650,815.64				Σ= [D] 1,472,527	0.60	73,626	137,907	

[E] is obtained from Exhibit A in the WQMP Guidance Document

[G] is obtained from a design procedure sheet, such as in LID BMP Design Handbook and placed in Appendix 6

Section E: Alternative Compliance (LID Waiver Program)

LID BMPs are expected to be feasible on virtually all projects. Where LID BMPs have been demonstrated to be infeasible as documented in Section D, other Treatment Control BMPs must be used (subject to LID waiver approval by the Copermittee). Check one of the following Boxes:

□ LID Principles and LID BMPs have been incorporated into the site design to fully address all Drainage Management Areas. No alternative compliance measures are required for this project and thus this Section is not required to be completed.

- Or -

⊠ The following Drainage Management Areas are unable to be addressed using LID BMPs. A sitespecific analysis demonstrating technical infeasibility of LID BMPs has been approved by the Co-Permittee and included in Appendix 5. Additionally, no downstream regional and/or sub-regional LID BMPs exist or are available for use by the project. The following alternative compliance measures on the following pages are being implemented to ensure that any pollutant loads expected to be discharged by not incorporating LID BMPs, are fully mitigated.

E.1 Identify Pollutants of Concern

Utilizing Table A.1 from Section A above which noted your project's receiving waters and their associated EPA approved 303(d) listed impairments, cross reference this information with that of your selected Priority Development Project Category in Table E.1 below. If the identified General Pollutant Categories are the same as those listed for your receiving waters, then these will be your Pollutants of Concern and the appropriate box or boxes will be checked on the last row. The purpose of this is to document compliance and to help you appropriately plan for mitigating your Pollutants of Concern in lieu of implementing LID BMPs.

Prior	ty Development	General P	ollutant Ca	ategories					
Proje Proje that a	ct Features (check those	Bacterial Indicators	Metals	Nutrients	Pesticides	Toxic Organic Compounds	Sediments	Trash & Debris	Oil & Grease
	Detached Residential Development	Ρ	N	Р	Р	Ν	Р	Ρ	Ρ
	Attached Residential Development	Р	N	Р	Р	Ν	Р	Р	P ⁽²⁾
	Commercial/Industrial Development	P ⁽³⁾	Ρ	P ⁽¹⁾	P ⁽¹⁾	P ⁽⁵⁾	P ⁽¹⁾	Р	Р
	Automotive Repair Shops	Ν	Ρ	N	N	P ^(4, 5)	N	Р	Р
	Restaurants (>5,000 ft ²)	Р	N	N	N	N	N	Р	Ρ
	Hillside Development (>5,000 ft ²)	Ρ	N	Р	Р	Ν	Р	Р	Ρ
	Parking Lots (>5,000 ft ²)	P ⁽⁶⁾	Ρ	P ⁽¹⁾	P ⁽¹⁾	P ⁽⁴⁾	P ⁽¹⁾	Ρ	Ρ
	Retail Gasoline Outlets	Ν	Р	N	N	Р	N	Р	Р
	ect Priority Pollutant(s) oncern		\boxtimes						

Table E.1 Potential Pollutants by Land Use Type

P = Potential

N = Not Potential

⁽¹⁾ A potential Pollutant if non-native landscaping exists or is proposed onsite; otherwise not expected

⁽²⁾ A potential Pollutant if the project includes uncovered parking areas; otherwise not expected

⁽³⁾ A potential Pollutant is land use involving animal waste

⁽⁴⁾ Specifically petroleum hydrocarbons

⁽⁵⁾ Specifically solvents

⁽⁶⁾ Bacterial indicators are routinely detected in pavement runoff

E.2 Stormwater Credits

Projects that cannot implement LID BMPs but nevertheless implement smart growth principles are potentially eligible for Stormwater Credits. Utilize Table 3-8 within the WQMP Guidance Document to identify your Project Category and its associated Water Quality Credit. If not applicable, write N/A. Table E-2 Water Quality Credits

Qualifying Project Categories	Credit Percentage ²
-	-
-	-
-	-
Total Credit Percentage ¹	N/A

¹Cannot Exceed 50%

²Obtain corresponding data from Table 3-8 in the WQMP Guidance Document

E.3 Sizing Criteria

After you appropriately considered Stormwater Credits for your project, utilize Table E.3 below to appropriately size them to the DCV, or Design Flow Rate, as applicable. Please reference Chapter 3.5.2 of the WQMP Guidance Document for further information.

DMA Type/ ID	DMA Area (square feet) [A]	Post-Project Surface Type	Effective Impervious Fraction, I _f [B]	DMA Runoff Factor [C]	DMA Area x Runoff Factor [A] x [C]	S1-1 Modular Wetlands 2 EA of MWS-L-8-24		
\$1-1A	40526.29	Roofs	0.89	1	36149.50			Proposed
S1-1C	277973.92	Conc/Asphalt	0.89	1	247952.70	Design Minimum		Proposed Volume or
						Rainfall		Flow on Plans
						Intensity (in/hr)	(cubic feet or cfs)	(cubic feet or cfs)
	A _T = 318500.21				Σ= 284,102.20	[E]=0.20	1.30	1.386

Table E.3 Treatment Control BMP Sizing

DMA Type/ ID	DMA Area (square feet) [A]	Post-Project Surface Type	Effective Impervious Fraction, I _f [B]	DMA Runoff Factor [C]	DMA Area x Runoff Factor [A] x [C]	S1-2 Modular Wetlands 1 EA of MWS-L-8-24 & 1 EA of MWS-L-8-20		
S1-2A	55315.38	Roofs	0.89	1	49341.30			Proposed
S1-2C	237178.68	Conc/Asphalt	0.89	1	211563.40	Design Minimum		Volume or
						Rainfall	Flow Rate	Flow on Plans
						Intensity (in/hr)	(cubic feet or cfs)	(cubic feet or cfs)
	A _T = 292494.06				Σ= 260904.70	[E]=0.20	1.20	1.270

[B], [C] is obtained as described in Section 2.3.1 from the WQMP Guidance Document

[E] is for Flow-Based Treatment Control BMPs [E] = .2, for Volume-Based Control Treatment BMPs, [E] obtained from Exhibit A in the WQMP Guidance Document

[G] is for Flow-Based Treatment Control BMPs [G] = 43,560, for Volume-Based Control Treatment BMPs, [G] = 12

[H] is from the Total Credit Percentage as Calculated from Table E.2 above

DMA Type/ ID	DMA Area (square feet) [A]	Post-Project Surface Type	Effective Impervious Fraction, I _f [B]	DMA Runoff Factor [C]	DMA Area x Runoff Factor [A] x [C]	S1-3 Modular Wetlands 1 EA of MWS-L-8-20 & 2 EA of MWS-L-8-16		
S1-3A	95990.60	Roofs	0.89	1	85623.60			Proposed
S1-3C	254184.80	Conc/Asphalt	0.89	1	226732.80	Design	Minimum	Volume or
						Rainfall	Flow Rate	Flow on Plans
						Intensity (in/hr)	(cubic feet or cfs)	(cubic feet or cfs)
	A _T = 350175.40				Σ= 312356.40	[E]=0.20	1.43	1.501

DMA Type/ ID	DMA Area (square feet) [A]	Post-Project Surface Type	Effective Impervious Fraction, I _f [B]	DMA Runoff Factor [C]	DMA Area x Runoff Factor [A] x [C]	S1-4 Modular Wetlands 2 EA of MWS-L-8-20		
S1-4C	264175.33	Conc/Asphalt	0.89	1	235644.40	Design Rainfall Intensity (in/hr)	Rainfall Flow Rate Flow on Plan Intensity (cubic feet (cubic feet	
	A _T = 264175.33				Σ= 235644.40	[E]=0.20 1.08 1.154		1.154

DMA Type/ ID	DMA Area (square feet) [A]	Post-Project Surface Type	Effective Impervious Fraction, I _f [B]	DMA Runoff Factor [C]	DMA Area x Runoff Factor [A] x [C]	S1-5 Modular Wetlands 1 EA of MWS-L-8-20		
\$1-5C	117505.00	Conc/Asphalt	0.89	1	104814.50	Design Rainfall Intensity (in/hr)	Rainfall Flow Rate Flow on Plan Intensity (cubic feet (cubic feet o	
	A _T = 117505.00				Σ= 104814.50	[E]=0.20	0.48	0.577

[E] is for Flow-Based Treatment Control BMPs [E] = .2, for Volume-Based Control Treatment BMPs, [E] obtained from Exhibit A in the WQMP Guidance Document

[G] is for Flow-Based Treatment Control BMPs [G] = 43,560, for Volume-Based Control Treatment BMPs, [G] = 12

[H] is from the Total Credit Percentage as Calculated from Table E.2 above

DMA Type/ ID	DMA Area (square feet) [A]	Post-Project Surface Type	Effective Impervious Fraction, I _f [B]	DMA Runoff Factor [C]	DMA Area x Runoff Factor [A] x [C]	S1-6 Modular Wetlands 1 EA of MWS-L-8-20			
S1-6C	130304.77	Conc/Asphalt	0.89	1	116231.90	Proposed			
						Design Minimum Volur Rainfall Flow Rate Flow		Volume or Flow on Plans (cubic feet or	
						Intensity (in/hr)	(cubic feet or cfs)	cfs)	
	A _T = 130304.77				Σ= 116231.90	[E]=0.20 0.53 0.577		0.577	

DMA Type/ ID	DMA Area (square feet) [A]	Post-Project Surface Type	Effective Impervious Fraction, I _f [B]	DMA Runoff Factor [C]	DMA Area x Runoff Factor [A] x [C]	S1-7 Modular Wetlands 1 EA of MWS-L-8-20		
S1-7C	140627.27	Conc/Asphalt	0.89	1	125439.50	Design Rainfall Intensity (in/hr)	Rainfall Flow Rate Flow on Plan Intensity (cubic feet (cubic feet o	
	A _T = 140627.27				Σ= 125439.50	[E]=0.20	0.58	0.577

DMA Type/ ID	DMA Area (square feet) [A]	Post-Project Surface Type	Effective Impervious Fraction, I _f [B]	DMA Runoff Factor [C]	DMA Area x Runoff Factor [A] x [C]	S1-8 Modular Wetlands 1 EA of MWS-L-8-20		
S1-8C	124278.20	Conc/Asphalt	0.89	1	110856.20	Design Rainfall Intensity (in/hr)	Rainfall Flow Rate Flow on Plan Intensity (cubic feet (cubic feet c	
	A _T = 124278.20				Σ= 110856.20	[E]=0.20	0.48	0.577

[E] is for Flow-Based Treatment Control BMPs [E] = .2, for Volume-Based Control Treatment BMPs, [E] obtained from Exhibit A in the WQMP Guidance Document

[G] is for Flow-Based Treatment Control BMPs [G] = 43,560, for Volume-Based Control Treatment BMPs, [G] = 12

[H] is from the Total Credit Percentage as Calculated from Table E.2 above

DMA Type/ ID	DMA Area (square feet) [A]	Post-Project Surface Type	Effective Impervious Fraction, I _f [B]	DMA Runoff Factor [C]	DMA Area x Runoff Factor [A] x [C]	S1-9 Modular Wetlands 1 EA of MWS-L-4-15		
S1-9C	38340.00	Conc/Asphalt	0.89	1	34199.30	Design Rainfall	Proposed Volume or Flow on Plans	
								(cubic feet or
	A _T = 38340.00				Σ= 34199.30	[E]=0.20 0.16 0.175		0.175

DMA Type/ ID	DMA Area (square feet) [A]	Post-Project Surface Type	Effective Impervious Fraction, I _f [B]	DMA Runoff Factor [C]	DMA Area x Runoff Factor [A] x [C]	S1-10 Modular Wetlands 1 EA of MWS-L-8-16				
S1-10A	36878.51	Roofs	0.89	1	32895.60	Dramacad				
S1-10C	60733.10	Conc/Asphalt	0.89	1	54173.90	Design	Propo Desian Minimum Volun			
						Rainfall Flow Rate Flow on Plan				
						Intensity (in/hr)	(cubic feet or cfs)	(cubic feet or cfs)		
	A _T = 97611.61				Σ= 87069.50	[E]=0.20	0.40	0.462		

DMA Type/ ID	DMA Area (square feet) [A]	Post-Project Surface Type	Effective Impervious Fraction, I _f [B]	DMA Runoff Factor [C]	DMA Area x Runoff Factor [A] x [C]	S1-11 Modular Wetlands 1 EA of MWS-L-8-16		
S1-11A	70795.56	Roofs	0.89	1	63149.60			Proposed
S1-11C	29593.31	Conc/Asphalt	0.89	1	26397.20	Design	Volume or	
						Rainfall	Flow Rate	Flow on Plans
						Intensity (in/hr)	(cubic feet or cfs)	(cubic feet or cfs)
	A _T = 100388.87				Σ= 89546.80	[E]=0.20	0.41	0.462

[E] is for Flow-Based Treatment Control BMPs [E] = .2, for Volume-Based Control Treatment BMPs, [E] obtained from Exhibit A in the WQMP Guidance Document

[G] is for Flow-Based Treatment Control BMPs [G] = 43,560, for Volume-Based Control Treatment BMPs, [G] = 12

[H] is from the Total Credit Percentage as Calculated from Table E.2 above

DMA Type/ ID	DMA Area (square feet) [A]	Post-Project Surface Type	Effective Impervious Fraction, I _f [B]	DMA Runoff Factor [C]	DMA Area x Runoff Factor [A] x [C]	S1-12 Modular Wetlands 1 EA of MWS-L-4-8		
\$1-12C	23273.88	Conc/Asphalt	0.89	1	20760.30	Design Rainfall Intensity (in/hr)	Rainfall Flow Rate Flow on Plan Intensity (cubic feet (cubic feet o	
	A _T = 23273.88				Σ= 20760.30	[E]=0.20 0.10 0.115		0.115

DMA Type/ ID	DMA Area (square feet) [A]	Post-Project Surface Type	Effective Impervious Fraction, I _f [B]	DMA Runoff Factor [C]	DMA Area x Runoff Factor [A] x [C]	S1-13 Modular Wetlands 1 EA of MWS-L-4-13		
S1-13C	28300.75	Conc/Asphalt	0.89	1	25244.30	Design Rainfall Intensity (in/hr)	Rainfall Flow Rate Flow on Plan Intensity (cubic feet (cubic feet o	
	A _T = 28300.75				Σ= 25244.30	[E]=0.20 0.12 0.144		0.144

DMA Type/ ID	DMA Area (square feet) [A]	Post-Project Surface Type	Effective Impervious Fraction, I _f [B]	DMA Runoff Factor [C]	DMA Area x Runoff Factor [A] x [C]	S1-14 Modular Wetlands 1 EA of MWS-L-4-4		
S1-14C	8629.30	Conc/Asphalt	0.89	1	7697.30	Design Rainfall Intensity (in/hr)	Rainfall Flow Rate Flow on Plan Intensity (cubic feet (cubic feet o	
	A _T = 8629.30				Σ= 7697.30	[E]=0.20 0.04 0.052		0.052

[E] is for Flow-Based Treatment Control BMPs [E] = .2, for Volume-Based Control Treatment BMPs, [E] obtained from Exhibit A in the WQMP Guidance Document

[G] is for Flow-Based Treatment Control BMPs [G] = 43,560, for Volume-Based Control Treatment BMPs, [G] = 12

[H] is from the Total Credit Percentage as Calculated from Table E.2 above

DMA Type/ ID	DMA Area (square feet) [A]	Post-Project Surface Type	Effective Impervious Fraction, I _f [B]	DMA Runoff Factor [C]	DMA Area x Runoff Factor [A] x [C]	S1-16 Modular Wetlands 1 EA of MWS-L-4-8			
S1-16A	19615.00	Roofs	0.89	1	17496.60	Oreneed			
S1-16C	337.89	Conc/Asphalt	0.89	1	301.40	Design	Design Minimum Volume o		
						Rainfall	Flow Rate	Flow on Plans	
						Intensity (cubic feet (cubic feet o (in/hr) or cfs) cfs)		-	
	A _T = 19952.89				Σ= 34199.30	[E]=0.20 0.08 0.115		0.115	

DMA Type/ ID	DMA Area (square feet) [A]	Post-Project Surface Type	Effective Impervious Fraction, I _f [B]	DMA Runoff Factor [C]	DMA Area x Runoff Factor [A] x [C]	S2-1 Modular Wetlands 1 EA of MWS-L-8-16 & 1 EA of MWS-L-8-12		
S2-1C	186366.61	Conc/Asphalt	0.89	1	166239.00	Design Rainfall Intensity (in/hr)	Minimum Flow Rate (cubic feet or cfs)	Proposed Volume or Flow on Plans (cubic feet or cfs)
	A _T = 186366.61				Σ= 166239.00	[E]=0.20	0.76	0.808

DMA Type/ ID	DMA Area (square feet) [A]	Post-Project Surface Type	Effective Impervious Fraction, I _f [B]	DMA Runoff Factor [C]	DMA Area x Runoff Factor [A] x [C]	S2-2 Modular Wetlands 2 EA of MWS-L-8-16		
S2-2A	190057.62	Roofs	0.89	1	169531.40			Proposed
S2-2C	23066.20	Conc/Asphalt	0.89	1	20575.10	Design	Minimum	Volume or
						Rainfall Intensity (in/hr)	Flow Rate (cubic feet or cfs)	Flow on Plans (cubic feet or cfs)
	A _T = 213123.82				Σ= 190106.50	[E]=0.20	0.87	0.924

[E] is for Flow-Based Treatment Control BMPs [E] = .2, for Volume-Based Control Treatment BMPs, [E] obtained from Exhibit A in the WQMP Guidance Document

[G] is for Flow-Based Treatment Control BMPs [G] = 43,560, for Volume-Based Control Treatment BMPs, [G] = 12

[H] is from the Total Credit Percentage as Calculated from Table E.2 above

DMA Type/ ID	DMA Area (square feet) [A]	Post-Project Surface Type	Effective Impervious Fraction, I _f [B]	DMA Runoff Factor [C]	DMA Area x Runoff Factor [A] x [C]	S2-3 Modular Wetlands 2 EA of MWS-L-8-20		
S2-3A	194209.17	Roofs	0.89	1	173234.60			Proposed
S2-3C	44222.67	Conc/Asphalt	0.89	1	39446.60	Proposed Design Minimum Volume o		
						Rainfall Intensity	Flow Rate	Flow on Plans
						Intensity (cubic feet (cubic feet (in/hr) or cfs) cfs)		(cubic feet or cfs)
	A _T = 238431.84				Σ= 212681.20	[E]=0.20	0.98	1.154

DMA Type/ ID	DMA Area (square feet) [A]	Post-Project Surface Type	Effective Impervious Fraction, I _f [B]	DMA Runoff Factor [C]	DMA Area x Runoff Factor [A] x [C]	S2-4 Modular Wetlands 1 EA of MWS-L-8-20		
S2-4C	129874.52	Conc/Asphalt	0.89	1	115848.10	Design Rainfall Intensity (in/hr)	Minimum Flow Rate (cubic feet or cfs)	Proposed Volume or Flow on Plans (cubic feet or cfs)
	A _T = 129874.52				Σ= 115848.10	[E]=0.20 0.53 0.577		

DMA Type/ ID	DMA Area (square feet) [A]	Post-Project Surface Type	Effective Impervious Fraction, I _f [B]	DMA Runoff Factor [C]	DMA Area x Runoff Factor [A] x [C]	S2-5 Modular Wetlands 1 EA of MWS-L-4-6		
S2-5C	17428.74	Conc/Asphalt	0.89	1	15546.40	Design Rainfall Intensity (in/hr)	Rainfall Flow Rate Flow on Plan Intensity (cubic feet (cubic feet c	
	A _T = 17428.74				Σ= 15546.40	[E]=0.20	0.07	0.073

[E] is for Flow-Based Treatment Control BMPs [E] = .2, for Volume-Based Control Treatment BMPs, [E] obtained from Exhibit A in the WQMP Guidance Document

[G] is for Flow-Based Treatment Control BMPs [G] = 43,560, for Volume-Based Control Treatment BMPs, [G] = 12

[H] is from the Total Credit Percentage as Calculated from Table E.2 above

DMA Type/ ID	DMA Area (square feet) [A]	Post-Project Surface Type	Effective Impervious Fraction, I _f [B]	DMA Runoff Factor [C]	DMA Area x Runoff Factor [A] x [C]	S2-6 Modular Wetlands 1 EA of MWS-L-4-13		
S2-6C	31142.53	Conc/Asphalt	0.89	1	27779.10	Design Rainfall Intensity (in/hr)	Rainfall Flow Rate Flow on Plan Intensity (cubic feet (cubic feet o	
	A _T = 31142.53				Σ= 27779.10	[E]=0.20 0.13 0.144		

DMA Type/ ID	DMA Area (square feet) [A]	Post-Project Surface Type	Effective Impervious Fraction, I _f [B]	DMA Runoff Factor [C]	DMA Area x Runoff Factor [A] x [C]	S3-1 Modular Wetlands 1 EA of MWS-L-8-20			
S3-1A	82323.47	Roofs	0.89	1	73432.50	Dramacad			
S3-1C	49531.63	Conc/Asphalt	0.89	1	44182.20	Proposed Design Minimum Volume o			
						Rainfall	Flow Rate	Flow on Plans	
						Intensity (in/hr)(cubic feet or cfs)(cubic feet cfs)[E]=0.200.540.577			
	A _T = 131855.10				Σ= 117614.70				

DMA Type/ ID	DMA Area (square feet) [A]	Post-Project Surface Type	Effective Impervious Fraction, I _f [B]	DMA Runoff Factor [C]	DMA Area x Runoff Factor [A] x [C]	S3-2 Modular Wetlands 1 EA of MWS-L-8-12			
S3-2A	28787.68	Roofs	0.89	1	25678.60	Drangeed			
S3-2C	43453.31	Conc/Asphalt	0.89	1	38760.40	Proposed Design Minimum Volume o			
						Rainfall	Flow Rate	Flow on Plans	
						Intensity (cubic feet (cubic feet (in/hr) or cfs) cfs)		(cubic feet or cfs)	
	A _T = 72240.99				Σ= 64439.00	[E]=0.20	0.30	0.346	

[E] is for Flow-Based Treatment Control BMPs [E] = .2, for Volume-Based Control Treatment BMPs, [E] obtained from Exhibit A in the WQMP Guidance Document

[G] is for Flow-Based Treatment Control BMPs [G] = 43,560, for Volume-Based Control Treatment BMPs, [G] = 12

[H] is from the Total Credit Percentage as Calculated from Table E.2 above

DMA Type/ ID	DMA Area (square feet) [A]	Post-Project Surface Type	Effective Impervious Fraction, I _f [B]	DMA Runoff Factor [C]	DMA Area x Runoff Factor [A] x [C]	S3-4 Modular Wetlands 1 EA of MWS-L-4-4			
S3-4C	4363.50	Conc/Asphalt	0.89	1	3892.20	Proposed			
						Design			
						Rainfall Intensity	Flow Rate (cubic feet	Flow on Plans (cubic feet or	
						(in/hr)	or cfs)	cfs)	
	A _T = 4363.50				Σ= 3892.20	[E]=0.20 0.02 0.052		0.052	

DMA Type/ ID	DMA Area (square feet) [A]	Post-Project Surface Type	Effective Impervious Fraction, I _f [B]	DMA Runoff Factor [C]	DMA Area x Runoff Factor [A] x [C]	S3-5 Modular Wetlands 1 EA of MWS-L-4-13		
S3-5C	28679.95	Conc/Asphalt	0.89	1	25582.50	Proposed Design Minimum Volume of Rainfall Flow Rate Flow on Plans Intensity (cubic feet (cubic feet of		
	A _T = 28679.95				Σ= 25582.50	(in/hr) or cfs) cfs) [E]=0.20 0.12 0.144		

DMA Type/ ID	DMA Area (square feet) [A]	Post-Project Surface Type	Effective Impervious Fraction, I _f [B]	DMA Runoff Factor [C]	DMA Area x Runoff Factor [A] x [C]	<i>S6-1 Modular Wetlands 2 EA of MWS-L-8-20</i>			
S6-1A	142737.57	Roofs	0.89	1	127321.90	Duranacad			
S6-1C	114415.59	Conc/Asphalt	0.89	1	105058.70	Proposed Design Minimum Volume o			
						Rainfall	Flow Rate	Flow on Plans	
						Intensity (cubic feet (cubic feet (in/hr) or cfs) cfs)			
	A _T = 257153.16				Σ= 229380.60	50 [E]=0.20 1.05 1.154		1.154	

[E] is for Flow-Based Treatment Control BMPs [E] = .2, for Volume-Based Control Treatment BMPs, [E] obtained from Exhibit A in the WQMP Guidance Document

[G] is for Flow-Based Treatment Control BMPs [G] = 43,560, for Volume-Based Control Treatment BMPs, [G] = 12

[H] is from the Total Credit Percentage as Calculated from Table E.2 above

DMA Type/ ID	DMA Area (square feet) [A]	Post-Project Surface Type	Effective Impervious Fraction, I _f [B]	DMA Runoff Factor [C]	DMA Area x Runoff Factor [A] x [C]	S6-2 Modular Wetlands 2 EA of MWS-L-8-20			
S6-2A	143823.86	Roofs	0.89	1	128290.90	Oreneed			
S6-2C	127078.39	Conc/Asphalt	0.89	1	113353.90	Design Minimum Volume o			
						Rainfall Intensity	Flow Rate	Flow on Plans	
						Intensity (cubic feet (cubic feet (in/hr) or cfs) cfs)			
	A _T = 270902.25				Σ= 241644.80	[E]=0.20 1.11 1.154		1.154	

DMA Type/ ID	DMA Area (square feet) [A]	Post-Project Surface Type	Effective Impervious Fraction, I _f [B]	DMA Runoff Factor [C]	DMA Area x Runoff Factor [A] x [C]	S6-3 Modular Wetlands 1 EA of MWS-L-8-24			
S6-3A	88575.34	Roofs	0.89	1	79009.20	Dranged			
S6-3C	60762.75	Conc/Asphalt	0.89	1	54200.40	DesignMinimumProposedDesignMinimumVolumeoRainfallFlowRateFlow on Plan.Intensity(cubic feet(cubic feet(in/hr)or cfs)cfs)			
	A _T = 149338.09				Σ= 133209.60				

DMA Type/ ID	DMA Area (square feet) [A]	Post-Project Surface Type	Effective Impervious Fraction, I _f [B]	DMA Runoff Factor [C]	DMA Area x Runoff Factor [A] x [C]	S6-4 Modular Wetlands 1 EA of MWS-L-8-24			
S6-4A	87541.33	Roofs	0.89	1	78086.90	Dramacad			
S6-4C	60000.62	Conc/Asphalt	0.89	1	53520.60	Proposed Design Minimum Volume			
						Rainfall	Flow Rate	Flow on Plans	
						Intensity (in/hr)(cubic feet or cfs)(cubic feet cfs)0[E]=0.200.600.693			
	A _T = 147541.95				Σ= 131607.50			0.693	

[E] is for Flow-Based Treatment Control BMPs [E] = .2, for Volume-Based Control Treatment BMPs, [E] obtained from Exhibit A in the WQMP Guidance Document

[G] is for Flow-Based Treatment Control BMPs [G] = 43,560, for Volume-Based Control Treatment BMPs, [G] = 12

[H] is from the Total Credit Percentage as Calculated from Table E.2 above

DMA Type/ ID	DMA Area (square feet) [A]	Post-Project Surface Type	Effective Impervious Fraction, I _f [B]	DMA Runoff Factor [C]	DMA Area x Runoff Factor [A] x [C]	S6-5 Modu 1 EA of MV	ılar Wetlands NS-L-8-12	
S6-5A	20936.36	Roofs	0.89	1	18675.20			Proposed
S6-5C	47001.96	Conc/Asphalt	0.89	1	41925.70	Design	Minimum	Volume or
						Rainfall	Flow Rate	Flow on Plans
						Intensity (in/hr)	(cubic feet or cfs)	(cubic feet or cfs)
	A _T = 67938.32				Σ= 60600.90	[E]=0.20	0.28	0.346

DMA Type/ ID	DMA Area (square feet) [A]	Post-Project Surface Type	Effective Impervious Fraction, I _f [B]	DMA Runoff Factor [C]	DMA Area x Runoff Factor [A] x [C]	S6-6 Modu 1 EA of MV	lar Wetlands NS-L-8-12	
S6-6A	20934.50	Roofs	0.89	1	18673.60			Proposed
S6-6C	52272.30	Conc/Asphalt	0.89	1	46626.90	Design	Minimum	Volume or
						Rainfall	Flow Rate	Flow on Plans
						Intensity (in/hr)	(cubic feet or cfs)	(cubic feet or cfs)
	A _T = 73206.80				Σ= 65300.50	[E]=0.20	0.30	0.346

DMA Type/ ID	DMA Area (square feet) [A]	Post-Project Surface Type	Effective Impervious Fraction, I _f [B]	DMA Runoff Factor [C]	DMA Area x Runoff Factor [A] x [C]	S7-1 Modu 1 EA of MV	ılar Wetlands NS-L-8-20	
\$7-1A	57309.90	Roofs	0.89	1	51120.40			Proposed
S7-1C	67852.19	Conc/Asphalt	0.89	1	60254.20	Design	Minimum	Volume or
						Rainfall	Flow Rate	Flow on Plans
						Intensity (in/hr)	(cubic feet or cfs)	(cubic feet or cfs)
	A _T = 125162.09				Σ= 111644.60	[E]=0.20	0.51	0.577

[E] is for Flow-Based Treatment Control BMPs [E] = .2, for Volume-Based Control Treatment BMPs, [E] obtained from Exhibit A in the WQMP Guidance Document

[G] is for Flow-Based Treatment Control BMPs [G] = 43,560, for Volume-Based Control Treatment BMPs, [G] = 12

[H] is from the Total Credit Percentage as Calculated from Table E.2 above

DMA Type/ ID	DMA Area (square feet) [A]	Post-Project Surface Type	Effective Impervious Fraction, I _f [B]	DMA Runoff Factor [C]	DMA Area x Runoff Factor [A] x [C]	S7-2 Modu 1 EA of MV	ılar Wetlands NS-L-4-13	
\$7-2A	17606.00	Roofs	0.89	1	15704.60			Proposed
\$7-2C	11967.73	Conc/Asphalt	0.89	1	10675.20	Design	Minimum	Volume or
						Rainfall	Flow Rate	Flow on Plans
						Intensity (in/hr)	(cubic feet or cfs)	(cubic feet or cfs)
	A _T = 29573.73				Σ= 26379.80	[E]=0.20	0.12	0.144

DMA Type/ ID	DMA Area (square feet) [A]	Post-Project Surface Type	Effective Impervious Fraction, I _f [B]	DMA Runoff Factor [C]	DMA Area x Runoff Factor [A] x [C]	S7-3 Modu 1 EA of MV	lar Wetlands NS-L-8-12	
S7-3A	54098.50	Roofs	0.89	1	48255.90			Proposed
\$7-3C	32139.36	Conc/Asphalt	0.89	1	28668.30	Design	Minimum	Volume or
						Rainfall	Flow Rate	Flow on Plans
						Intensity (in/hr)	(cubic feet or cfs)	(cubic feet or cfs)
	A _T = 86237.86				Σ= 76924.20	[E]=0.20	0.35	0.346

DMA Type/ ID	DMA Area (square feet) [A]	Post-Project Surface Type	Effective Impervious Fraction, I _f [B]	DMA Runoff Factor [C]	DMA Area x Runoff Factor [A] x [C]		ılar Wetlands NS-L-8-16 & NS-L-8-12	
\$7-4A	98582.75	Roofs	0.89	1	87935.80			Proposed
S7-4C	93880.34	Conc/Asphalt	0.89	1	83741.30	Design	Minimum	Volume or
						Rainfall	Flow Rate	Flow on Plans
						Intensity (in/hr)	(cubic feet or cfs)	(cubic feet or cfs)
	A _T = 192463.09				Σ= 171677.10	[E]=0.20	0.79	0.808

[E] is for Flow-Based Treatment Control BMPs [E] = .2, for Volume-Based Control Treatment BMPs, [E] obtained from Exhibit A in the WQMP Guidance Document

[G] is for Flow-Based Treatment Control BMPs [G] = 43,560, for Volume-Based Control Treatment BMPs, [G] = 12

[H] is from the Total Credit Percentage as Calculated from Table E.2 above

DMA Type/ ID	DMA Area (square feet) [A]	Post-Project Surface Type	Effective Impervious Fraction, I _f [B]	DMA Runoff Factor [C]	DMA Area x Runoff Factor [A] x [C]	S7-5 Modu 1 EA of MV	lar Wetlands NS-L-8-16	
S7-5A	56184.36	Roofs	0.89	1	50116.40			Proposed
S7-5C	43500.29	Conc/Asphalt	0.89	1	38802.30	Design	Minimum	Volume or
						Rainfall	Flow Rate	Flow on Plans
						Intensity (in/hr)	(cubic feet or cfs)	(cubic feet or cfs)
	A _T = 99684.65				Σ= 88918.70	[E]=0.20	0.41	0.462

DMA Type/ ID	DMA Area (square feet) [A]	Post-Project Surface Type	Effective Impervious Fraction, I _f [B]	DMA Runoff Factor [C]	DMA Area x Runoff Factor [A] x [C]	S7-6 Modu 1 EA of MV	ılar Wetlands NS-L-4-4	
S7-6A	6528.45	Roofs	0.89	1	5823.40			Proposed
S7-6C	1757.82	Conc/Asphalt	0.89	1	1568.00	Design	Minimum	Volume or
						Rainfall	Flow Rate	Flow on Plans
						Intensity (in/hr)	(cubic feet or cfs)	(cubic feet or cfs)
	A _T = 8286.27				Σ= 7391.40	[E]=0.20	0.03	0.052

DMA Type/ ID	DMA Area (square feet) [A]	Post-Project Surface Type	Effective Impervious Fraction, I _f [B]	DMA Runoff Factor [C]	DMA Area x Runoff Factor [A] x [C]	S7-7 Modu 1 EA of MV	ılar Wetlands NS-L-4-6	
S7-7A	13853.76	Roofs	0.89	1	12357.60			Proposed
S7-7C	126.23	Conc/Asphalt	0.89	1	112.60	Design	Minimum	Volume or
						Rainfall	Flow Rate	Flow on Plans
						Intensity (in/hr)	(cubic feet or cfs)	(cubic feet or cfs)
	A _T = 13979.99				Σ= 12470.20	[E]=0.20	0.06	0.073

[E] is for Flow-Based Treatment Control BMPs [E] = .2, for Volume-Based Control Treatment BMPs, [E] obtained from Exhibit A in the WQMP Guidance Document

[G] is for Flow-Based Treatment Control BMPs [G] = 43,560, for Volume-Based Control Treatment BMPs, [G] = 12

[H] is from the Total Credit Percentage as Calculated from Table E.2 above

DMA Type/ ID	DMA Area (square feet) [A]	Post-Project Surface Type	Effective Impervious Fraction, I _f [B]	DMA Runoff Factor [C]	DMA Area x Runoff Factor [A] x [C]	S9-2 Modu 1 EA of MV	ılar Wetlands NS-L-8-16	
\$9-2C	87575.20	Conc/Asphalt	0.89	1	78117.10	Design Rainfall Intensity (in/hr)	Minimum Flow Rate (cubic feet or cfs)	Proposed Volume or Flow on Plans (cubic feet or cfs)
	A _T = 87575.20				Σ= 78117.10	[E]=0.20	0.36	0.462

DMA Type/ ID	DMA Area (square feet) [A]	Post-Project Surface Type	Effective Impervious Fraction, I _f [B]	DMA Runoff Factor [C]	DMA Area x Runoff Factor [A] x [C]	Way)	ets (Barrett Av 12 at each inle	ve and Daniella t
Streets 1C	346032.58	Conc/Asphalt	0.89	1	308661.10	Design Rainfall Intensity (in/hr)	Minimum Flow Rate (cubic feet or cfs)	Proposed Volume or Flow on Plans (cubic feet or cfs)
	A _T = 346032.58				Σ= 308661.10	[E]=0.20	1.42	1.73

[E] is for Flow-Based Treatment Control BMPs [E] = .2, for Volume-Based Control Treatment BMPs, [E] obtained from Exhibit A in the WQMP Guidance Document

[G] is for Flow-Based Treatment Control BMPs [G] = 43,560, for Volume-Based Control Treatment BMPs, [G] = 12

[H] is from the Total Credit Percentage as Calculated from Table E.2 above

E.4 Treatment Control BMP Selection

Treatment Control BMPs typically provide proprietary treatment mechanisms to treat potential pollutants in runoff, but do not sustain significant biological processes. Treatment Control BMPs must have a removal efficiency of a medium or high effectiveness as quantified below:

- High: equal to or greater than 80% removal efficiency
- Medium: between 40% and 80% removal efficiency

Such removal efficiency documentation (e.g., studies, reports, etc.) as further discussed in Chapter 3.5.2 of the WQMP Guidance Document, must be included in Appendix 6. In addition, ensure that proposed Treatment Control BMPs are properly identified on the WQMP Site Plan in Appendix 1.

able E.4 Treatment Control BIVIP Selection		
Selected Treatment Control BMP	Priority Pollutant(s) of	Removal Efficiency
Name or ID ¹	Concern to Mitigate ²	Percentage ³
Contech Modular Wetlands	Metals, Organic Compounds,	High, >80%
	Trash & Debris,	
	Hydrocarbons	

 Table E.4 Treatment Control BMP Selection

¹ Treatment Control BMPs must not be constructed within Receiving Waters. In addition, a proposed Treatment Control BMP may be listed more than once if they possess more than one qualifying pollutant removal efficiency.

² Cross Reference Table E.1 above to populate this column.

³ As documented in a Co-Permittee Approved Study and provided in Appendix 6.

Section F: Hydromodification

F.1 Hydrologic Conditions of Concern (HCOC) Analysis

Once you have determined that the LID design is adequate to address water quality requirements, you will need to assess if the proposed LID Design may still create a HCOC. Review Chapters 2 and 3 (including Figure 3-7) of the WQMP Guidance Document to determine if your project must mitigate for Hydromodification impacts. If your project meets one of the following criteria which will be indicated by the check boxes below, you do not need to address Hydromodification at this time. However, if the project does not qualify for Exemptions 1, 2 or 3, then additional measures must be added to the design to comply with HCOC criteria. This is discussed in further detail below in Section F.2.

The project is located within the Mapped HCOC Exempt areas as presented in the Riverside County WAP mapping tool as approved April 20, 2017.

HCOC EXEMPTION 1: The Priority Development Project disturbs less than one acre. The Copermittee has the discretion to require a Project-Specific WQMP to address HCOCs on projects less than one acre on a case by case basis. The disturbed area calculation should include all disturbances associated with larger common plans of development.

 \square N

Does the project qualify for this HCOC Exemption?

If Yes, HCOC criteria do not apply.

HCOC EXEMPTION 2: The volume and time of concentration¹ of storm water runoff for the postdevelopment condition is not significantly different from the pre-development condition for a 2-year return frequency storm (a difference of 5% or less is considered insignificant) using one of the following methods to calculate:

- Riverside County Hydrology Manual
- Technical Release 55 (TR-55): Urban Hydrology for Small Watersheds (NRCS 1986), or derivatives thereof, such as the Santa Barbara Urban Hydrograph Method
- Other methods acceptable to the Co-Permittee

Does the project qualify for this HCOC Exemption? $\Box Y \boxtimes N$

If Yes, report results in Table F.1 below and provide your substantiated hydrologic analysis in Appendix 7.

	2 year – 24 hour			
	Pre-condition	Post-condition	% Difference	
Time of Concentration	N/A	N/A	N/A	
Volume (Cubic Feet)	N/A	N/A	N/A	

Table I	F.1	Hydrologic	Conditions	of	Concern	Summary
---------	-----	------------	------------	----	---------	---------

¹ Time of concentration is defined as the time after the beginning of the rainfall when all portions of the drainage basin are contributing to flow at the outlet.

HCOC EXEMPTION 3: All downstream conveyance channels to an adequate sump (for example, Prado Dam, Lake Elsinore, Canyon Lake, Santa Ana River, or other lake, reservoir or naturally erosion resistant feature) that will receive runoff from the project are engineered and regularly maintained to ensure design flow capacity; no sensitive stream habitat areas will be adversely affected; or are not identified on the Co-Permittees Hydromodification Susceptibility Maps.

Does the project qualify for this HCOC Exemption?

If Yes, HCOC criteria do not apply and note below which adequate sump applies to this HCOC qualifier:

F.2 HCOC Mitigation

If none of the above HCOC Exemption Criteria are applicable, HCOC criteria is considered mitigated if they meet one of the following conditions:

- a. Additional LID BMPS are implemented onsite or offsite to mitigate potential erosion or habitat impacts as a result of HCOCs. This can be conducted by an evaluation of site-specific conditions utilizing accepted professional methodologies published by entities such as the California Stormwater Quality Association (CASQA), the Southern California Coastal Water Research Project (SCCRWP), or other Co-Permittee approved methodologies for site-specific HCOC analysis.
- b. The project is developed consistent with an approved Watershed Action Plan that addresses HCOC in Receiving Waters.
- c. Mimicking the pre-development hydrograph with the post-development hydrograph, for a 2-year return frequency storm. Generally, the hydrologic conditions of concern are not significant, if the post-development hydrograph is no more than 10% greater than pre-development hydrograph. In cases where excess volume cannot be infiltrated or captured and reused, discharge from the site must be limited to a flow rate no greater than 110% of the pre-development 2-year peak flow.

Be sure to include all pertinent documentation used in your analysis of the items a, b or c in Appendix 7.

The project is located within the Mapped HCOC Exempt areas as presented in the Riverside County WAP mapping tool as approved April 20, 2017.

Section G: Source Control BMPs

Source control BMPs include permanent, structural features that may be required in your project plans — such as roofs over and berms around trash and recycling areas — and Operational BMPs, such as regular sweeping and "housekeeping", that must be implemented by the site's occupant or user. The MEP standard typically requires both types of BMPs. In general, Operational BMPs cannot be substituted for a feasible and effective permanent BMP. Using the Pollutant Sources/Source Control Checklist in Appendix 8, review the following procedure to specify Source Control BMPs for your site:

- 1. *Identify Pollutant Sources*: Review Column 1 in the Pollutant Sources/Source Control Checklist. Check off the potential sources of Pollutants that apply to your site.
- 2. **Note Locations on Project-Specific WQMP Exhibit:** Note the corresponding requirements listed in Column 2 of the Pollutant Sources/Source Control Checklist. Show the location of each Pollutant source and each permanent Source Control BMP in your Project-Specific WQMP Exhibit located in Appendix 1.
- 3. **Prepare a Table and Narrative:** Check off the corresponding requirements listed in Column 3 in the Pollutant Sources/Source Control Checklist. In the left column of Table G.1 below, list each potential source of runoff Pollutants on your site (from those that you checked in the Pollutant Sources/Source Control Checklist). In the middle column, list the corresponding permanent, Structural Source Control BMPs (from Columns 2 and 3 of the Pollutant Sources/Source Control Checklist) used to prevent Pollutants from entering runoff. **Add additional narrative** in this column that explains any special features, materials or methods of construction that will be used to implement these permanent, Structural Source Control BMPs.
- 4. Identify Operational Source Control BMPs: To complete your table, refer once again to the Pollutant Sources/Source Control Checklist. List in the right column of your table the Operational BMPs that should be implemented as long as the anticipated activities continue at the site. Copermittee stormwater ordinances require that applicable Source Control BMPs be implemented; the same BMPs may also be required as a condition of a use permit or other revocable Discretionary Approval for use of the site.

Potential Sources of Runoff pollutants	Permanent Structural Source Control BMPs	Operational Source Control BMPs
On-Site Storm Drain Inlet	Mark all inlets with the words "Only Rain Down the Storm Drain" or similar. Catch basin markers may be available from the Riverside County Flood Control and Water Conservation District, call (951) 955- 1200 to verify.	 -Maintain and periodically repaint or replace inlet markings. -Provide stormwater pollution prevention information to new site owners, lessees, or operators. -See applicable operational BMPs in Fact Sheet SC-44, "Drainage System Maintenance," in the CASQA Stormwater Quality Handbooks at www.cabmphandbooks.com -Include the following in lease agreements: "Tenant shall not allow

Table G.1 Permanent and Operational Source Control Measures

		anyone to discharge anything to storm drains or to store or deposit materials so as to create a potential discharge to storm drains."
Loading Docks	The project site will have truck docks which will be shown on the Post- Construction BMP Site Plan. The truck docks shall be inspected on a weekly basis to help ensure that any trash and debris are collected prior to being washed into the underground storm drain system. All storm water runoff from the loading dock areas will be discharged into underground infiltration chambers prior to conveyance to the public storm drain system. Documentation of such inspection/maintenance shall be kept by the owner in perpetuity.	-Move loaded and unloaded items indoors as soon as possible. See fact sheet SC-30, "Outdoor Loading and Unloading," in Appendix 10.
Hardscape, Sidewalks, and Parking Lots	Documentation of sweeping activities shall be kept by the owner in perpetuity. Frequency of sweeping shall be adjusted as necessary to maintain a clean site.	Sweep hardscape, sidewalks, and parking lots regularly to prevent the accumulation of litter, debris and sediment. Parking lots to be vacuum swept by vacuum truck. Collect debris from pressure washing to prevent entry into the storm drain system. Collect wash water containing any cleaning agent or degreaser and discharge to the sanitary sewer, not the storm drain system.
Trash Storage Areas	Trash container storage area shall be paved with an impervious surface designed not to allow run-on from adjoining areas. They shall be designed to divert drainage from adjoining roofs and pavements from the surrounding area, and screened or walled to prevent off-site transport of trash. Dumpsters shall be leak proof and have attached covers and lids. Trash enclosures shall be roofed. Connection of trash area drains to the MS4 is prohibited. See CASQA SD-32 BMP fact sheet in Appendix 10 for additional information. Signs shall be posted on or near dumpsters with the words "Do not dump hazardous materials here" or similar.	An adequate number of receptacles shall be provided. Inspect receptables regularly and repair or replace leaky receptacles. Inspect condition of lids and replace as needed. Keep receptacles covered. Prohibit/prevent dumping of liquid or hazardous wastes. Post "no hazardous materials" signs. Inspect and pick up litter daily and clean up spills immediately. Keep spill control materials available onsite. See fact sheet SC-34 "Waste Handling and Disposal" in the CASQA Stormwater Quality Handbook in Appendix 10.

Fire Sprinkler Test Water	Provide a means to drain fire sprinkler test water to the sanitary sewer.	See note in Fact Sheet SC-41 "Building Grounds and Maintenance" in Appendix 10.
Fuel Dispensing Areas	Fueling areas shall have impermeable floors (i.e., portland cement concrete or equivalent smooth impervious surface) that are: a) graded at the minimum slope necessary to prevent ponding; and b) separated from the rest of the site by a grade break that prevents run-on of stormwater to the maximum extent practicable. Fueling areas shall be covered by a canopy that extends a minimum of ten feet in each direction from each pump. [Alternative: The fueling area must be covered and the cover's minimum dimensions must be equal to or greater than the area within the grade break or fuel dispensing area1.] The canopy [or cover] shall not drain onto the fueling area.	The property owner shall dry sweep the fueling area routinely. See the Fact Sheet SD-30, "Fueling Areas" in the CASQA Stormwater Quality Handbooks at www.cabmphandbooks.com

Section H: Construction Plan Checklist

Populate Table H.1 below to assist the plan checker in an expeditious review of your project. The first two columns will contain information that was prepared in previous steps, while the last column will be populated with the corresponding plan sheets. This table is to be completed with the submittal of your final Project-Specific WQMP.

****Table to be completed during Final WQMP****

Table H.1 (Table H.1 Construction Plan Cross-reference						
BMP No. or ID	BMP Identifier and Description	Corresponding Plan Sheet(s)	BMP Location (Lat/Long)				

 Table H.1 Construction Plan Cross-reference

Note that the updated table — or Construction Plan WQMP Checklist — is **only a reference tool** to facilitate an easy comparison of the construction plans to your Project-Specific WQMP. Co-Permittee staff can advise you regarding the process required to propose changes to the approved Project-Specific WQMP.

Section I: Operation, Maintenance and Funding

The Copermittee will periodically verify that Stormwater BMPs on your site are maintained and continue to operate as designed. To make this possible, your Copermittee will require that you include in Appendix 9 of this Project-Specific WQMP:

- 1. A means to finance and implement facility maintenance in perpetuity, including replacement cost.
- 2. Acceptance of responsibility for maintenance from the time the BMPs are constructed until responsibility for operation and maintenance is legally transferred. A warranty covering a period following construction may also be required.
- 3. An outline of general maintenance requirements for the Stormwater BMPs you have selected.
- 4. Figures delineating and designating pervious and impervious areas, location, and type of Stormwater BMP, and tables of pervious and impervious areas served by each facility. Geo-locating the BMPs using a coordinate system of latitude and longitude is recommended to help facilitate a future statewide database system.
- 5. A separate list and location of self-retaining areas or areas addressed by LID Principles that do not require specialized O&M or inspections but will require typical landscape maintenance as noted in Chapter 5, pages 85-86, in the WQMP Guidance. Include a brief description of typical landscape maintenance for these areas.

Your local Co-Permittee will also require that you prepare and submit a detailed Stormwater BMP Operation and Maintenance Plan that sets forth a maintenance schedule for each of the Stormwater BMPs built on your site. An agreement assigning responsibility for maintenance and providing for inspections and certification may also be required.

Details of these requirements and instructions for preparing a Stormwater BMP Operation and Maintenance Plan are in Chapter 5 of the WQMP Guidance Document.

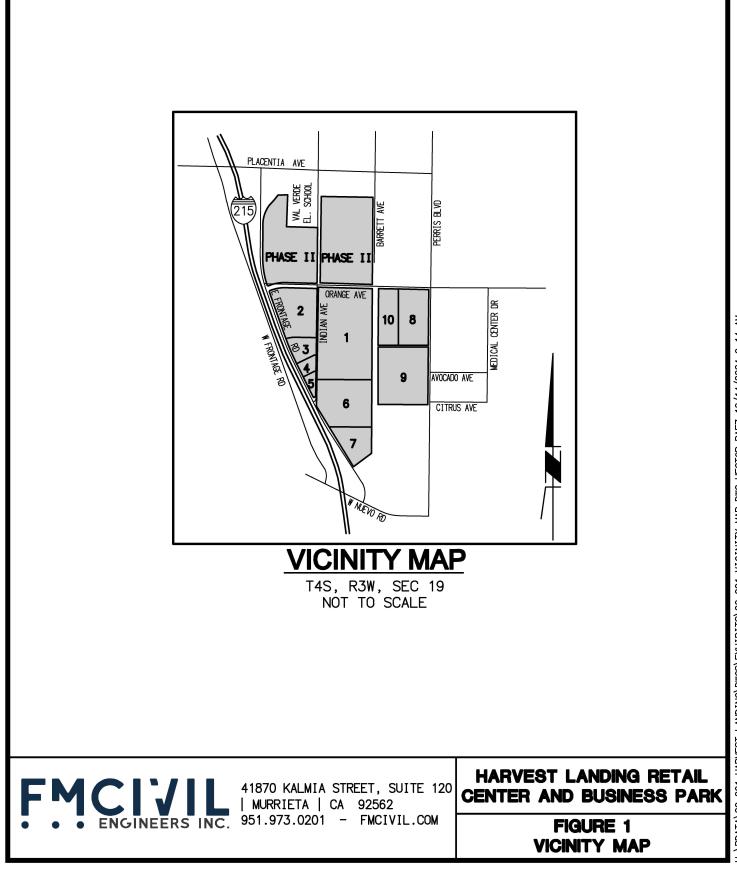
Maintenance Mechanism:

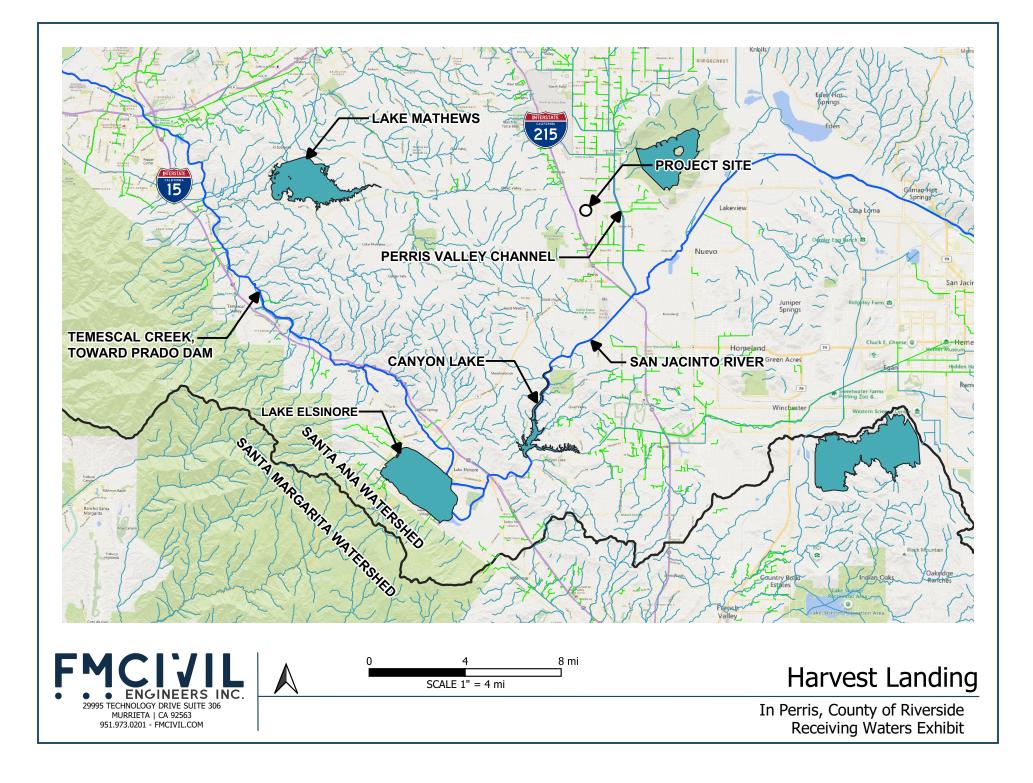
Maintenance mechanism for the offsite basin will be the responsibility of a POA to be determined during Final WQMP. Modular Wetland units will be maintained by the site owner (onsite) or by the City (public streets) per the manufacturer's recommendations. Bioretention basins will be maintained per County BMP Handbook by private owner.

Will the proposed BMPs be maintained by a Home Owners' Association (HOA) or Property Owners Association (POA)?

⊠ Y □ N

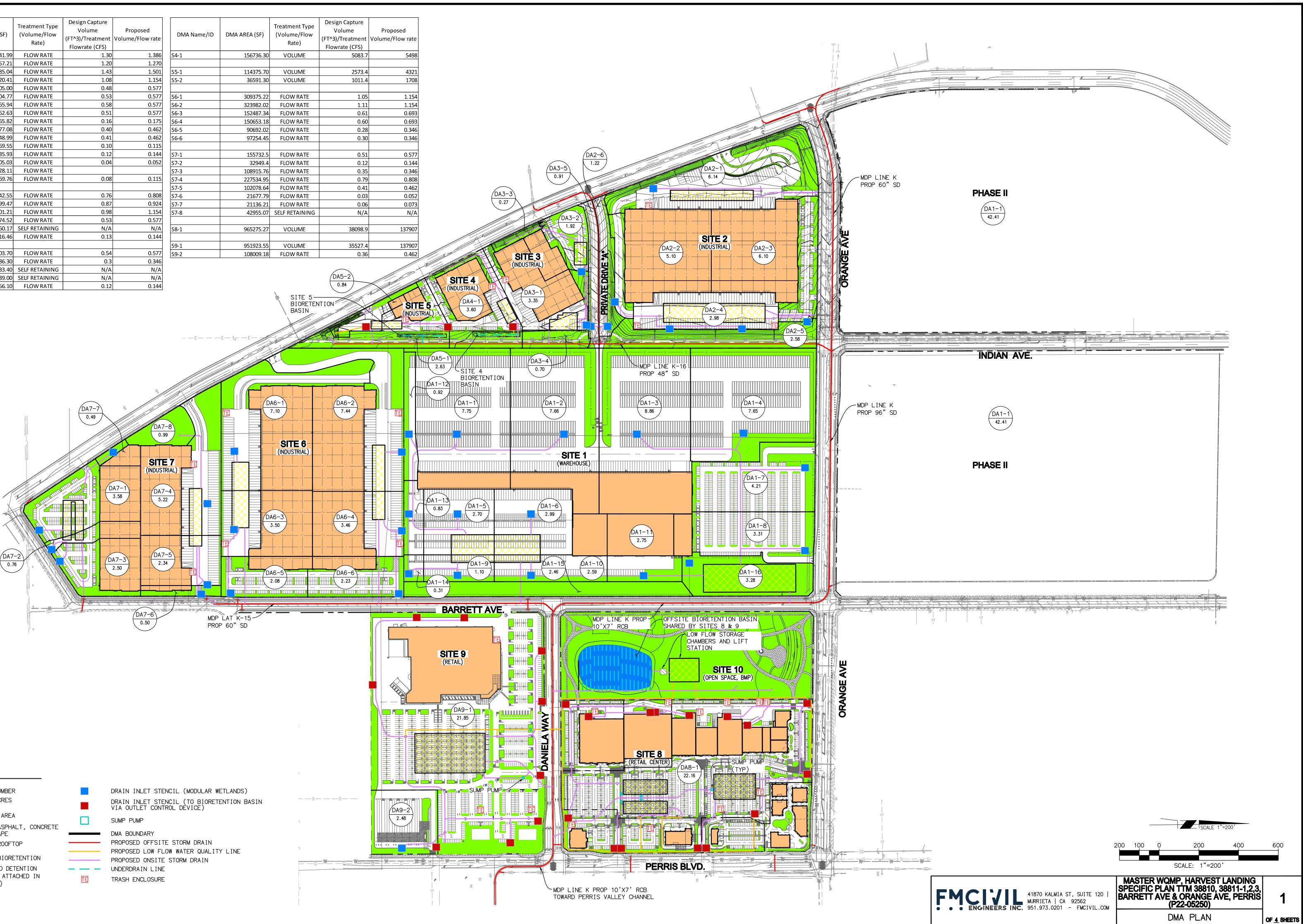
A POA will maintain the offsite shared bioretention basin for Sites 8 and 9. All other Sites will not be required to be part of this POA and BMPs within them will be maintained privately by their owners.


Include your Operation and Maintenance Plan and Maintenance Mechanism in Appendix 9. Additionally, include all pertinent forms of educational materials for those personnel that will be maintaining the proposed BMPs within this Project-Specific WQMP in Appendix 10.


This section will be completed during the Final WQMP. Owner info is provided for the PWQMP/Interim:

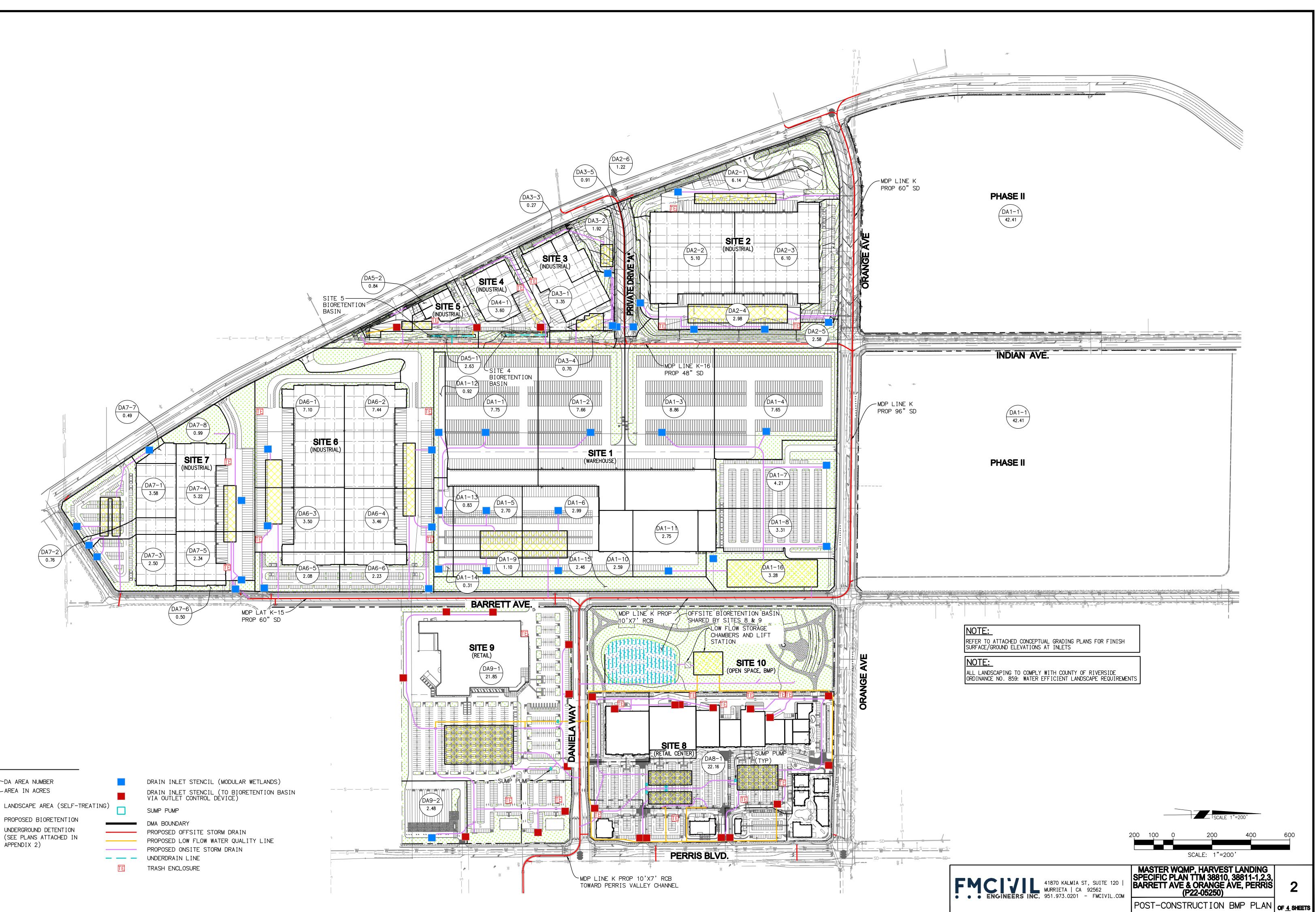
Name	Title	Address	Email	Phone
Tim Howard	Partner	2244 North Pacific St,	thoward@hipre.net	(714) 637-3333
		Orange, CA 92865		

Appendix 1: Maps and Site Plans


Location Map, WQMP Site Plan and Receiving Waters Map

		Treatment Type	Design Capture	
DMA Name/ID	DMA AREA (SF)	(Volume/Flow	Volume	P
· · · ·		Rate)	(FT^3)/Treatment	Volun
			Flowrate (CFS)	
S4-1	156736.30	VOLUME	5083.7	
\$5-1	114375.70	VOLUME	2573.4	
\$5-2	36591.30	VOLUME	1011.4	
S6-1	309375.22	FLOW RATE	1.05	
S6-2	323982.02	FLOW RATE	1.11	
S6-3	152487.34	FLOW RATE	0.61	
S6-4	150653.18	FLOW RATE	0.60	
S6-5	90692.02	FLOW RATE	0.28	
S6-6	97254.45	FLOW RATE	0.30	
S7-1	155732.5	FLOW RATE	0.51	
\$7-1 \$7-2	32949.4	FLOW RATE	0.12	
\$7-2 \$7-3	108915.76	FLOW RATE	0.35	
<u>\$7-5</u> \$7-4	227534.95	FLOW RATE	0.79	
\$7-5	102078.64	FLOW RATE	0.41	
\$7-6	21677.79	FLOW RATE	0.03	
S7-7	21136.21	FLOW RATE	0.06	
S7-8	42955.07	SELF RETAINING	N/A	
S8-1	965275.27	VOLUME	38098.9	
S9-1	951923.55	VOLUME	35527.4	
<u>59-1</u> S9-2	108009.18	FLOW RATE	0.36	

DMA Name/ID	DMA AREA (SF)	Treatment Type (Volume/Flow Rate)	Design Capture Volume (FT^3)/Treatment Flowrate (CFS)	Proposed Volume/Flow rate
S1-1	337541.99	FLOW RATE	1.30	1.386
S1-2	333657.21	FLOW RATE	1.20	1.270
S1-3	385985.04	FLOW RATE	1.43	1.502
S1-4	333220.41	FLOW RATE	1.08	1.154
S1-5	117505.00	FLOW RATE	0.48	0.57
S1-6	130304.77	FLOW RATE	0.53	0.57
S1-7	183465.94	FLOW RATE	0.58	0.57
S1-8	144362.63	FLOW RATE	0.51	0.57
S1-9	47865.82	FLOW RATE	0.16	0.17
S1-10	112877.08	FLOW RATE	0.40	0.46
S1-11	119748.99	FLOW RATE	0.41	0.46
S1-12	40169.55	FLOW RATE	0.10	0.11
S1-13	36135.93	FLOW RATE	0.12	0.14
S1-14	13505.03	FLOW RATE	0.04	0.05
S1-15	107128.11	FLOW RATE		
S1-16	142769.76	FLOW RATE	0.08	0.11
S2-1	267342.55	FLOW RATE	0.76	0.80
S2-2	222299.47	FLOW RATE	0.87	0.92
S2-3	265901.21	FLOW RATE	0.98	1.15
S2-4	129874.52	FLOW RATE	0.53	0.57
S2-5	112460.17	SELF RETAINING	N/A	N//
S2-6	53316.46	FLOW RATE	0.13	0.14
S3-1	145803.70	FLOW RATE	0.54	0.57
\$3-2	83486.30	FLOW RATE	0.3	0.34
\$3-3	11933.40	SELF RETAINING	N/A	N//
S3-4	30639.00	SELF RETAINING	N/A	N/.
S3-5	39456.10	FLOW RATE	0.12	0.14

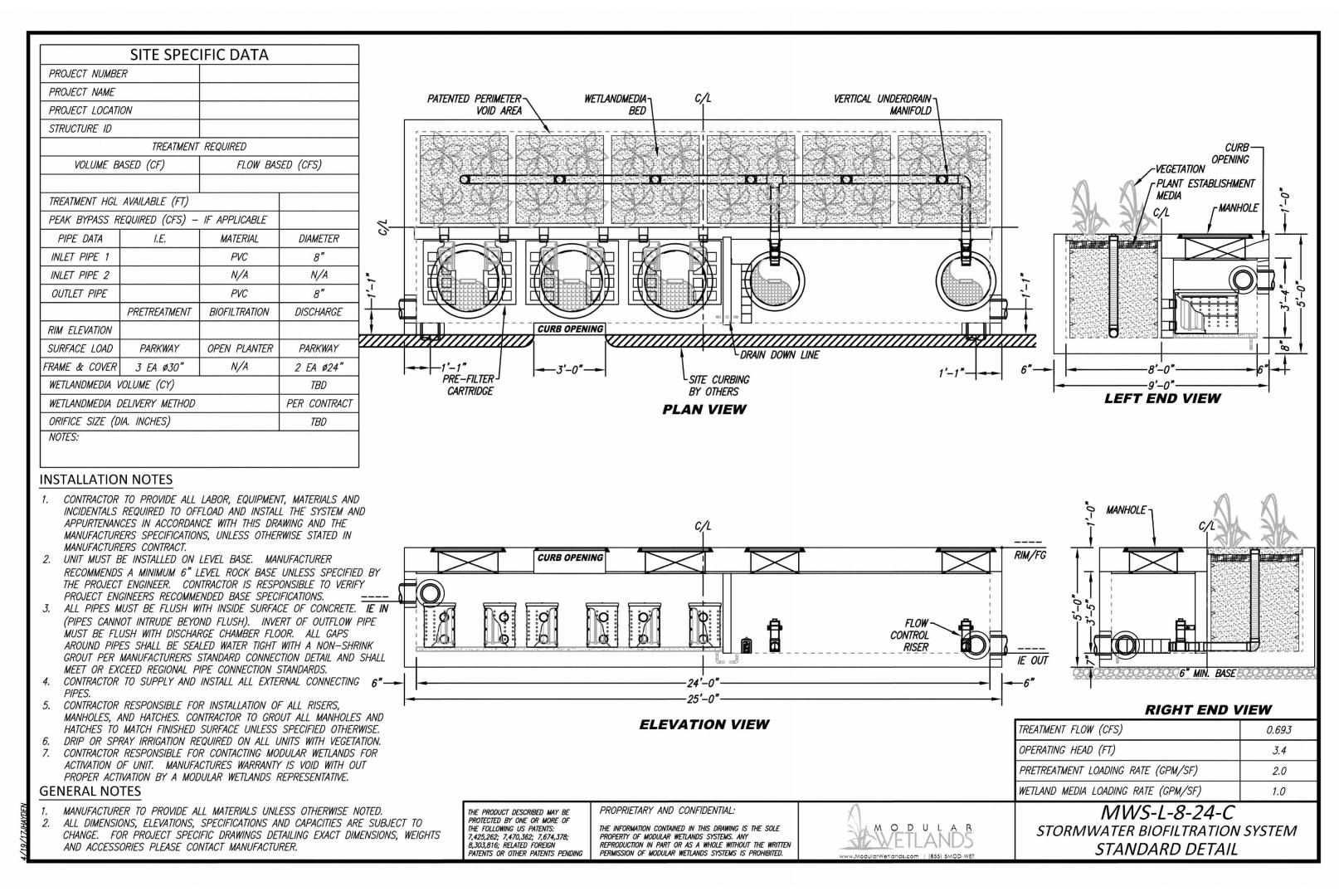

<u>LEGEND</u>

DMA 1 3.38	

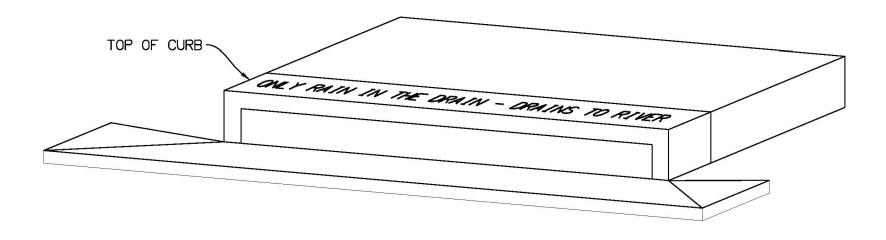
- DA AREA NUMBER -AREA IN ACRES

LANDSCAPE AREA PROPOSED ASPHALT, CONCRETE OR HARDSCAPE PROPOSED ROOFTOP

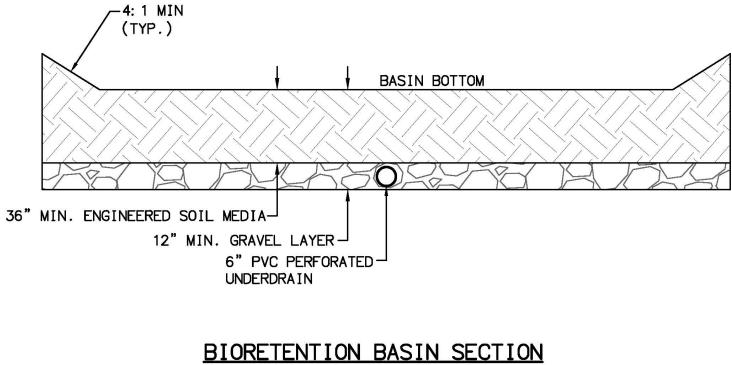
PROPOSED BIORETENTION UNDERGROUND DETENTION (SEE PLANS ATTACHED IN APPENDIX 2)

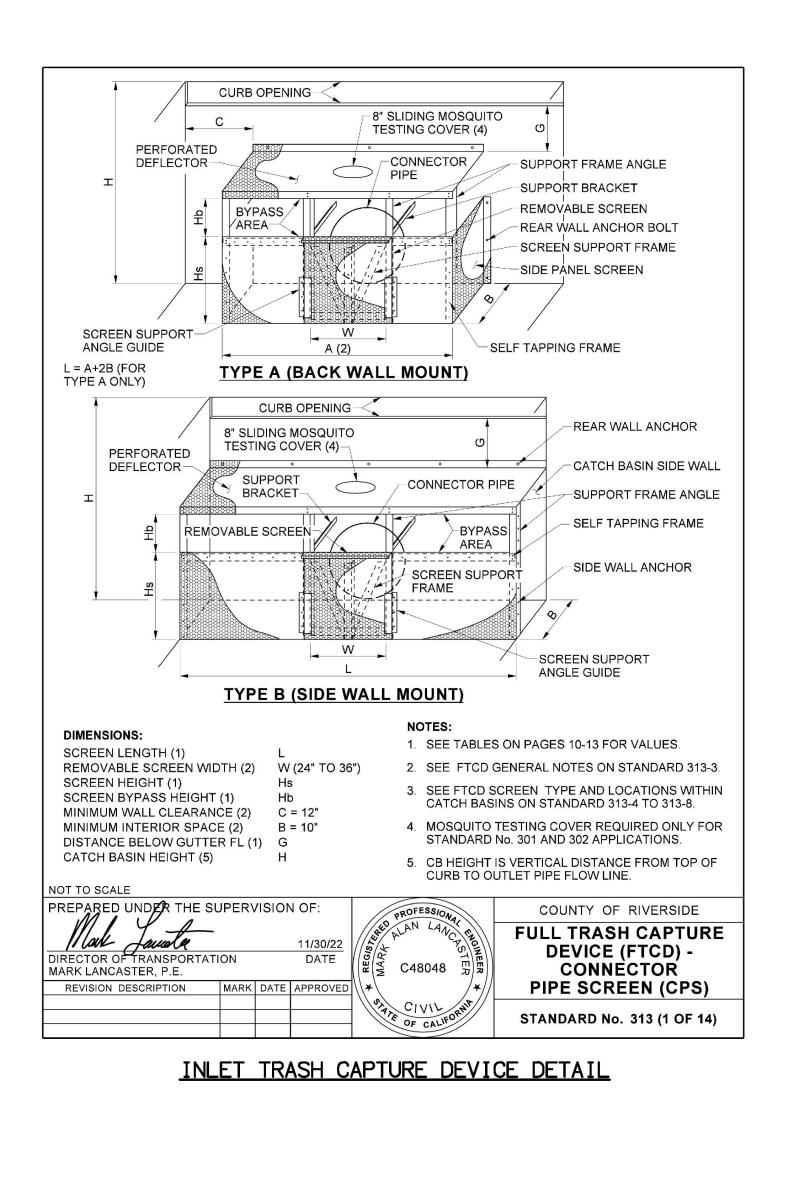


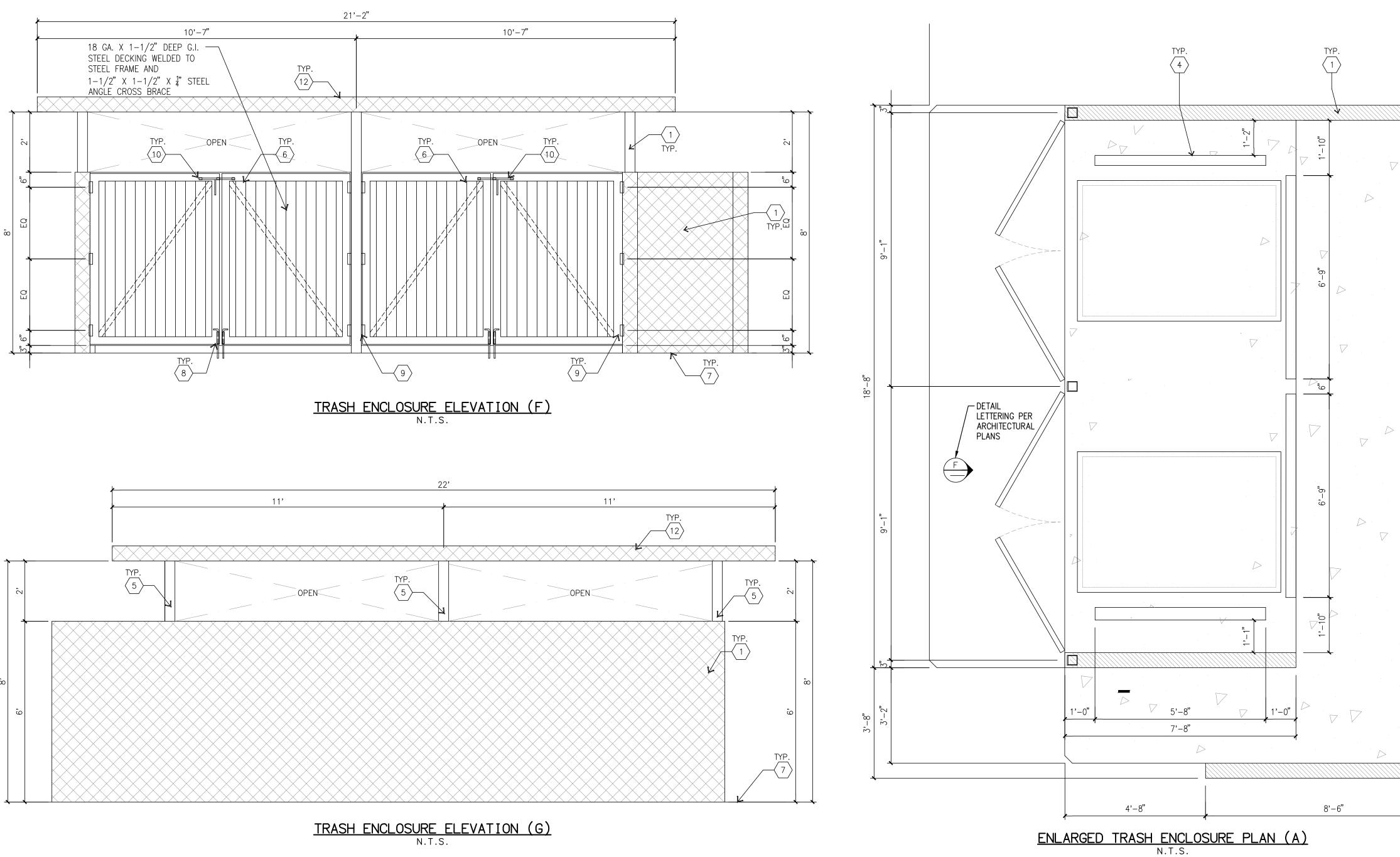
LEGEND

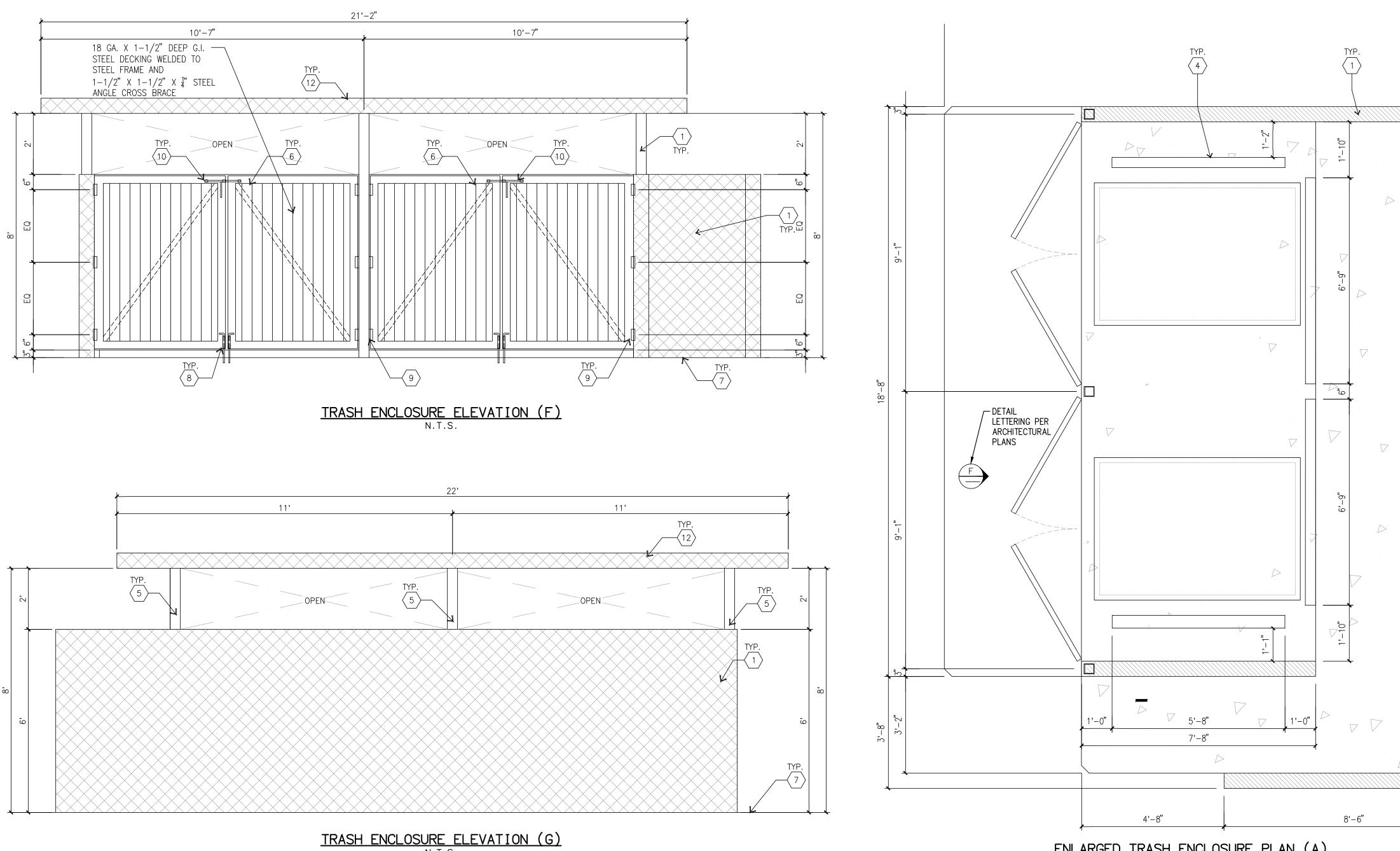

DMA1 DA AREA NUMBER 3.38 AREA IN ACRES

> PROPOSED BIORETENTION UNDERGROUND DETENTION (SEE PLANS ATTACHED IN APPENDIX 2)

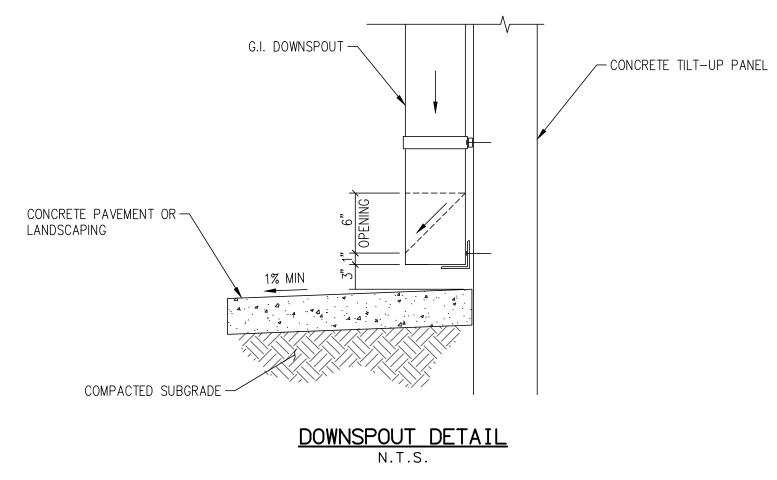



EXAMPLE MODULAR WETLANDS DETAIL


- 1. STENCILS TO HAVE 2" LETTERS AS FOLLOWS: "ONLY RAIN IN THE DRAIN DRAINS TO RIVER".
- 2. PLACE BOTH STENCILS CENTERED WITHIN THE CATCH BASIN OPENINGS AND WITHIN THE TOP OF THE CURB.
- 3. SPRAY BOTH STENCILS WITH WHITE PAINT. 4. REMOVE STENCILS WHEN PAINT IS DRY.
- CATCH BASIN STENCILING DETAIL NTS



TYPICAL SECTION SITES 4, 5, 10 N.T.S.



TRASH ENCLOSURE ELEVATION (G)

NOTES

TYP.

 $\left< 5 \right>$

TYP. $\left< 5 \right>$

G

 $\nabla \nabla$

- $\langle 1 \rangle$ concrete tilt-up wall.
- $\langle 2 \rangle$ double swing metal gates.
- $\langle 3 \rangle$ concrete appron 5" min.
- \checkmark 4"W X 6"H WHEEL STOPS WITH 1" BEVEL TOP CUTS, SHALL BE FROM RECYCLED MATERIALS. SECURED TO SLAB W/ 1/2" DIA. ANCHOR BLOTS @ 36" O.C. MIN. TYPICAL
- $\left< 5 \right>$ STEEL TUBE FRAME
- 6 18 GA. X 1 1/2" DEEP G.I. STEEL DECKING WELDED TO STEEL FRAME AND 1 1/2" X 1 1/2" X 1/4" STEEL ANGLE CROSS BRACE.
- $\langle 7 \rangle$ FINISH SURFACE.
- $\langle 8 \rangle$ steel cane bolt w/ sleeve, located on outside of one gate. (typical ea. side)
- $\langle 9 \rangle$ heavy duty steel hinge. (typical ea. gate)
- $\langle 10
 angle$ heavy duty slide bolt. (typical ea. gate)
- (11) NOT USED
- $\langle 12 \rangle$ galvanized corrugated metal deck. $\langle 13 \rangle$ 20 GA. G.I. GUTTER PAINTED.

MASTER WQMP, HARVEST LANDING SPECIFIC PLAN TTM 38810, 38811-1,2,3, BARRETT AVE & ORANGE AVE, PERRIS (P22-05250) POST-CONSTRUCTION BMP DETAILS OF 4 SHEETS

Appendix 2: Construction Plans

Grading and Drainage Plans

LEGEND

—(1025)—

— — W—

_____W____

_____SS_____

— — SD— -

— — E— -

O MH

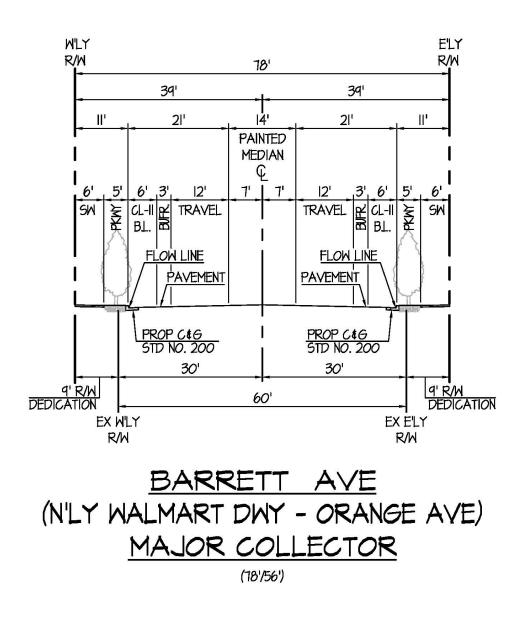
EXISTING CONTOUR PROPOSED CONTOUR RETAINING WALL FENCE EDGE OF PAVEMENT SIGN MANHOLE RIGHT OF WAY EASEMENT = = =____ PARCEL LINE PARCEL MAP BOUNDARY STREET CENTER LINE SCREEN WALL COMBINATION SCREEN/RETAINING WALL EXISTING LOT LINE RIDGE LINE RIBBON GUTTER FLOW ARROW PROPOSED EDGE OF PAVEMENT EXISTING WATER LINE PROPOSED WATER LINE EXISTING SWR LINE PROPOSED SEWER LINE EXISTING STORM DRAIN PIPE _____SD_____ PROPOSED STORM DRAIN PIPE EXISTING OVERHEAD LINES CUT/FILL LINE SLOPE SYMBOL

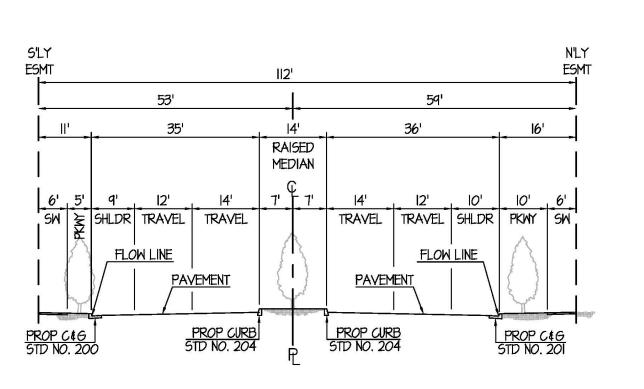
ZONING ORDINANCE

EXISTING ZONING:

HARVEST LANDING SPECIFIC PLANS - MULTIPLE BUSINESS USE (MBU) PROPOSED ZONING:

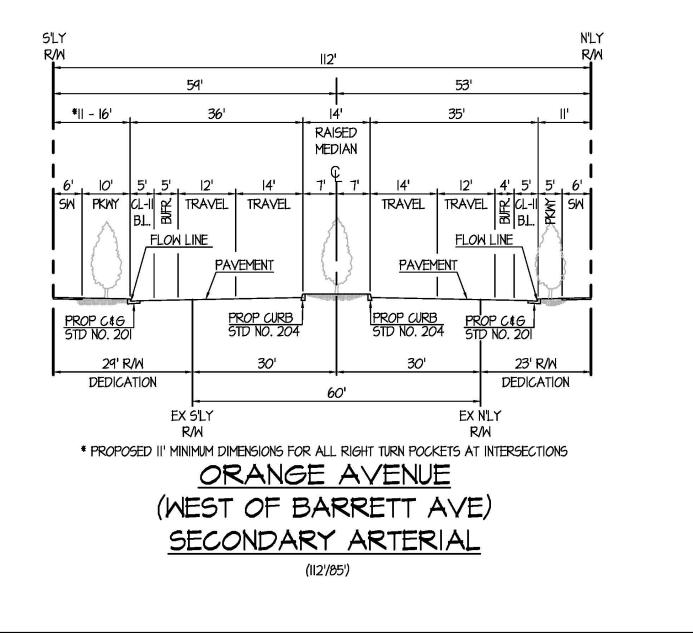
HARVEST LANDING SPECIFIC PLANS - MULTIPLE BUSINESS USE (MBU)

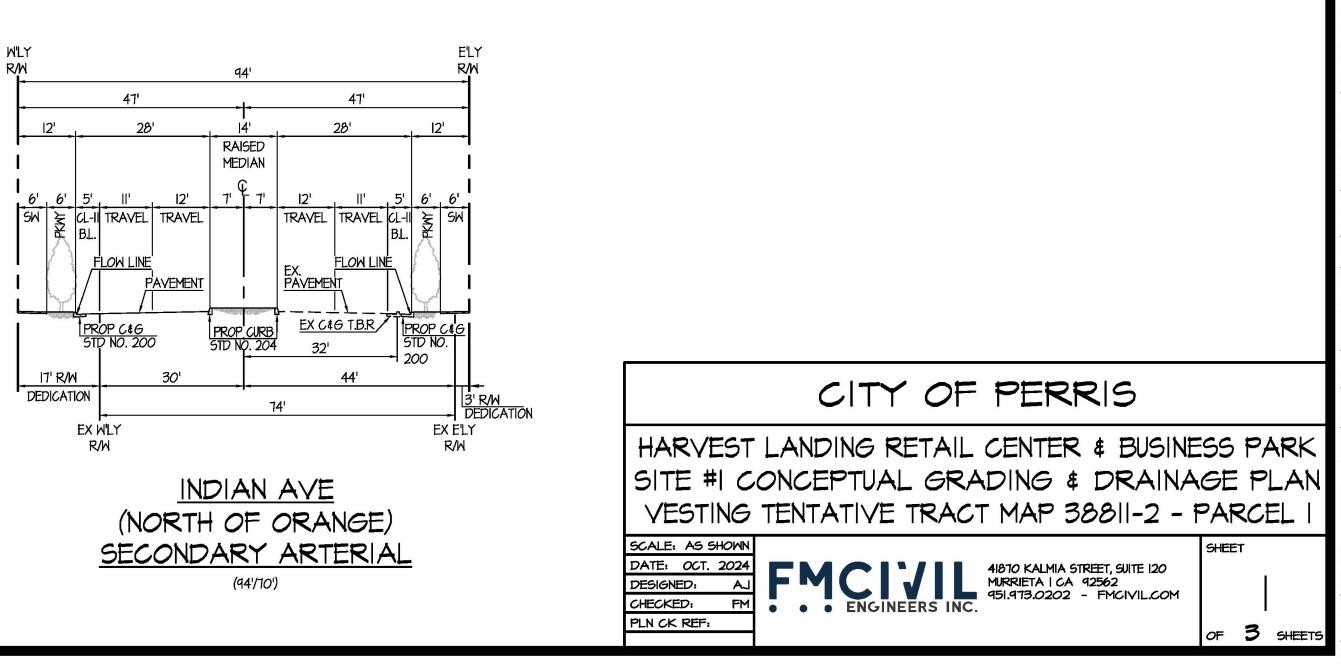

ASSESSOR'S PARCEL NUMBERS:


305-120-004 thru 008, 020 thru 026, \$ 305-130-001 thru 006,009, \$ 305-160-001 thru 003, 025 thru 030, \$ 305-190-014, 019, 020, 028 thru 031, \$ 305-220-011, 059 thru 062

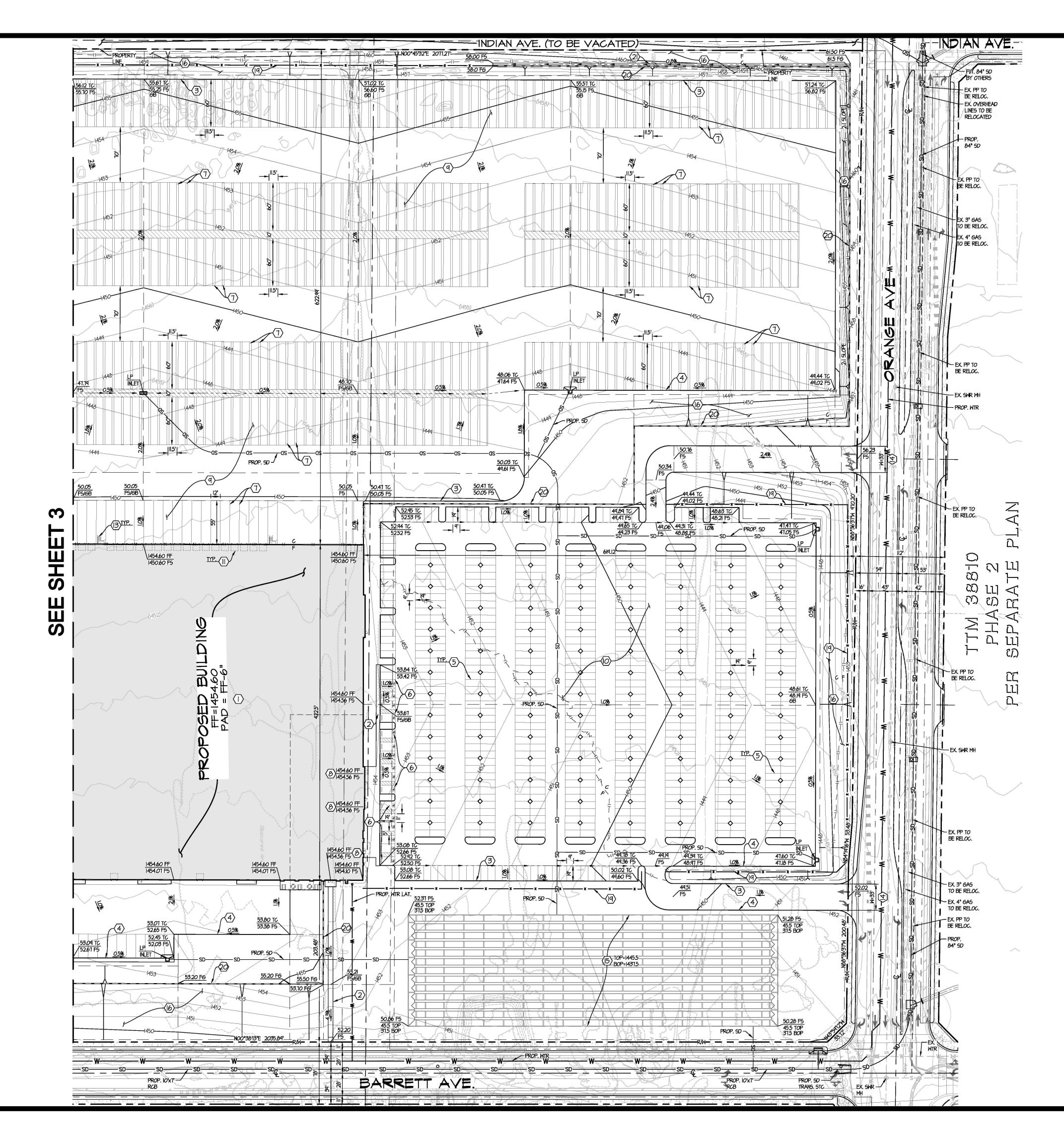
LEGAL DESCRIPTION

BLOCKS 1-4 OF FIGADOTA FARMS NO. IA AS SHOWN BY MAP ON FILE IN THE OFFICE OF THE COUNTY RECORDER OF THE COUNTY OF RIVERSIDE, STATE OF CALIFORNIA, IN BOOK 16 OF MAPS, PAGE 68 TOGETHER WITH LOTS 1-8, AND 13-20 OF FIGADOTA FARMS AS SHOWN BY MAP ON FILE IN THE OFFICE OF THE COUNTY RECORDER OF THE COUNTY OF RIVERSIDE, STATE OF CALIFORNIA, IN BOOK 16 OF MAPS, PAGE 53 EXCEPTING THAT PORTION LYING WEST OF THE EASTERLY LINE OF THE FRONTAGE ROAD.

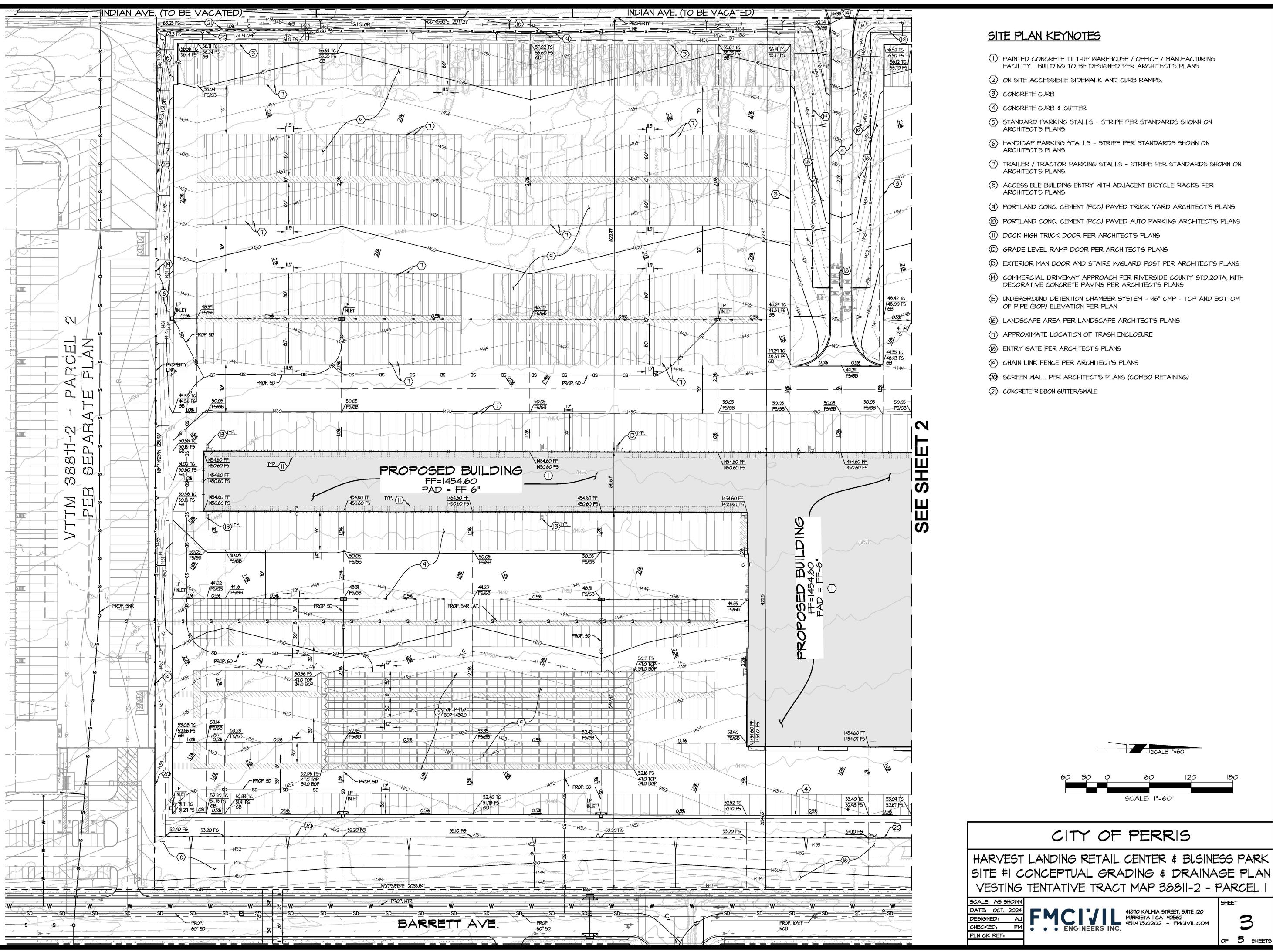




PRIVATE DRIVE "A" SECONDARY ARTERIAL


(112'/85')

SCALE: |"=200'


RAW CUT:	291,230			
RAW FILL:	93,330	CY		
NET:	197,900	CY	EXPORT	

SITE PLAN KEYNOTES

- PAINTED CONCRETE TILT-UP WAREHOUSE / OFFICE / MANUFACTURING FACILITY. BUILDING TO BE DESIGNED PER ARCHITECT'S PLANS
- $\langle 2 \rangle$ ON SITE ACCESSIBLE SIDEWALK AND CURB RAMPS.
- (3) CONCRETE CURB
- (4) CONCRETE CURB & GUTTER
- 5 STANDARD PARKING STALLS STRIPE PER STANDARDS SHOWN ON ARCHITECT'S PLANS
- 6 HANDICAP PARKING STALLS STRIPE PER STANDARDS SHOWN ON ARCHITECT'S PLANS
- (7) TRAILER / TRACTOR PARKING STALLS STRIPE PER STANDARDS SHOWN ON ARCHITECT'S PLANS
- ACCESSIBLE BUILDING ENTRY WITH ADJACENT BICYCLE RACKS PER ARCHITECT'S PLANS
- $\langle \overline{4} \rangle$ PORTLAND CONC. CEMENT (PCC) PAVED TRUCK YARD ARCHITECT'S PLANS
- D PORTLAND CONC. CEMENT (PCC) PAVED AUTO PARKING ARCHITECT'S PLANS
- (II) DOCK HIGH TRUCK DOOR PER ARCHITECT'S PLANS
- (2) GRADE LEVEL RAMP DOOR PER ARCHITECT'S PLANS
- (3) EXTERIOR MAN DOOR AND STAIRS W/GUARD POST PER ARCHITECT'S PLANS
- (4) COMMERCIAL DRIVEWAY APPROACH PER RIVERSIDE COUNTY STD.207A, WITH DECORATIVE CONCRETE PAVING PER ARCHITECT'S PLANS
- (15) UNDERGROUND DETENTION CHAMBER SYSTEM 96" CMP TOP AND BOTTOM OF PIPE (BOP) ELEVATION PER PLAN
- (16) LANDSCAPE AREA PER LANDSCAPE ARCHITECT'S PLANS
- (T) APPROXIMATE LOCATION OF TRASH ENCLOSURE
- B ENTRY GATE PER ARCHITECT'S PLANS
- (9) CHAIN LINK FENCE PER ARCHITECT'S PLANS
- O SCREEN WALL PER ARCHITECT'S PLANS (COMBO RETAINING)
- (21) CONCRETE RIBBON GUTTER/SWALE

		CALE "=60'	
60 30	0 60 SCALE: I	20 	
CITY	OF PER	RRIS	
HARVEST LANDING RE SITE #I CONCEPTUAL VESTING TENTATIVE T	GRADING	& DRAINA	GE PLAN
SCALE: AS SHOWN DATE: OCT. 2024 DESIGNED: AJ CHECKED: FM PLN CK REF:	MURRIETA 951.973.020	IA STREET, SUITE 120 CA 92562 D2 - FMCIVIL.COM	SHEET 2 OF 3 SHEETS

PROJECT SUMMARY

CALCULATION DETAILS • LOADING = HS20/HS25 • APPROX. LINEAR FOOTAGE = 6,117 LF

STORAGE SUMMARY

- STORAGE VOLUME REQUIRED = N/A
- PIPE STORAGE VOLUME = 307,474 CF
- BACKFILL STORAGE VOLUME = 0 CF
- TOTAL STORAGE PROVIDED = 307,474 CF

PIPE DETAILS

- DIAMETER = 96"
- CORRUGATION = 5x1
- GAGE = 16
- COATING = ALT2
- WALL TYPE = SOLID
- BARREL SPACING = 36"

BACKFILL DETAILS

- WIDTH AT ENDS = 12"
- ABOVE PIPE = 0"
- WIDTH AT SIDES = 12"
- BELOW PIPE = 0"

NOTES

Z

- ALL RISER AND STUB DIMENSIONS ARE TO CENTERLINE. ALL ELEVATIONS, DIMENSIONS, AND LOCATIONS OF RISERS AND INLETS, SHALL BE VERIFIED BY THE ENGINEER OF RECORD PRIOR TO RELEASING FOR FABRICATION.
- ALL FITTINGS AND REINFORCEMENT COMPLY WITH ASTM A998.
- ALL RISERS AND STUBS ARE $2^2_{/3}$ " x $1^{/2}_{/2}$ " CORRUGATION AND 16 GAGE UNLESS OTHERWISE NOTED. RISERS TO BE FIELD TRIMMED TO GRADE.
- QUANTITY OF PIPE SHOWN DOES NOT PROVIDE EXTRA PIPE FOR CONNECTING THE SYSTEM TO EXISTING PIPE OR DRAINAGE STRUCTURES. OUR SYSTEM AS DETAILED PROVIDES NOMINAL INLET AND/OR OUTLET PIPE STUB FOR CONNECTION TO EXISTING DRAINAGE FACILITIES. IF ADDITIONAL PIPE IS NEEDED IT IS THE RESPONSIBILITY OF THE CONTRACTOR.
- BAND TYPE TO BE DETERMINED UPON FINAL DESIGN. • THE PROJECT SUMMARY IS REFLECTIVE OF THE DYODS DESIGN, QUANTITIES ARE APPROX. AND SHOULD BE VERIFIED UPON FINAL DESIGN AND APPROVAL. FOR EXAMPLE, TOTAL EXCAVATION DOES
- NOT CONSIDER ALL VARIABLES SUCH AS SHORING AND ONLY ACCOUNTS FOR MATERIAL WITHIN THE ESTIMATED EXCAVATION FOOTPRINT. • THESE DRAWINGS ARE FOR CONCEPTUAL PURPOSES

for any other states and the states

AND DO NOT REFLECT ANY LOCAL PREFERENCES OR REGULATIONS. PLEASE CONTACT YOUR LOCAL CONTECH REP FOR MODIFICATIONS.

ALES/COM Conte drawi modil	tesign and information snown on unis drawing is provided service to the project owner, engineer and contractor by sch Engineered Solutions LLC ("Contech"). Neither this ng, nor any part thereof, may be used, reproduced or led in any manner without the prior written consent of				C NTECH	CENTECH ®	DYO36259 20-001 H
	sch. Failure to comply is done at the user's own risk and sch expressly disclaims any liability or responsibility for use.				ENGINEERED SOLUTIONS LLC	CMP DETENTION SYSTEMS	
the di	repancies between the supplied information upon which rawing is based and actual field conditions are encountered e work progresses, these discrepancies must be reported				9025 Centre Pointe Dr., Suite 400, West Chester, OH 45069	CONTECH DYODS	
🗒 accer	ntech immediately for re-evaluation of the design. Contech ots no liability for designs based on missing, incomplete or urate information supplied by others.	DATE	REVISION DESCRIPTION	BY	800-338-1122 513-645-7000 513-645-7993 FAX	DRAWING	

þ 40'-

465'-0"

Harvest Landing Reta Site 1 - Northerly Ch Perris, CA **DETENTION SYSTEM**

		-
		\square
		\geq
		\sum
		\geq
		\sum
		\geq
		\sum
		\geq
		\sum
		\geq
		\sum
		\sum
		\sim

ail Center and	d Business	Park
nambers		

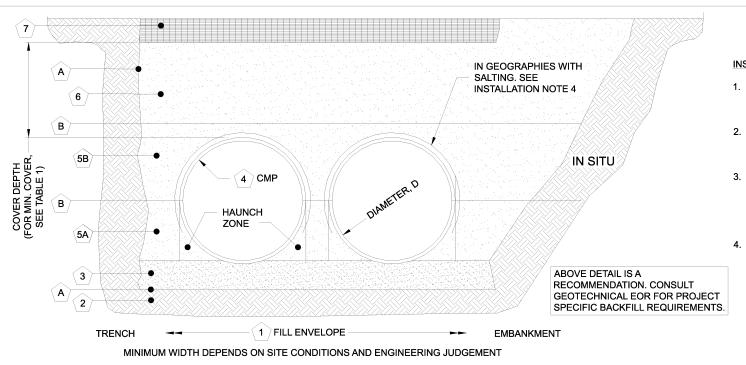

PROJECT No.: 24611	SEQ. 1 362	No.: 259	DATE: 10/4/2024
DESIGNED:		DRAW	/N:
DYO			DYO
CHECKED:		APPR	OVED:
DYO			DYO
SHEET NO .:			
			1

TABLE 1:		
DIAMETER, D	MIN. COVER	CORR. PROFILE
6"-10"	12"	1 1/2" x 1/4"
12"-48"	12"	2 2/3" x 1/2"
>48"-96"	12"	3" x 1", 5" x 1"
>96"	D/8	3" x 1", 5" x 1"

- STRUCTURAL BACKFILL MUST EXTEND TO LIMITS OF THE TABLE
- TOTAL HEIGHT OF COMPACTED COVER FOR CONVENTIONAL HIGHWAY LOADS IS MEASURED FROM TOP OF PIPE TO BOTTOM OF FLEXIBLE PAVEMENT OR TOP OF RIGID PAVEMENT

TABLE 2: SOLID STANDARD

ULTRAFLO ALSO AVAILABLE FOR SIZES 18" - 120" WITH 3/4"x 3/4"x 7 1/2" CORRUGATION

CMP DETENTION AND CMP DRAINAGE STANDARD BACKFILL SPECIFICATIONS MATERIAL LOCATION MATERIAL SPECIFICATION DESCRIPTION MINIMUM TRENCH WIDTH MUST ALLOW ROOM FOR PROPER COMPACTION OF MINIMUM EMBANKMENT WIDTH (IN FEET) FOR INITIAL FILL ENVELOPE: HAUNCH MATERIALS UNDER THE PIPE. PIPE < 24": 3.0D FILL ENVELOPE WIDTH PER ENGINEER OF RECORD THE SUGGESTED MINIMUM TRENCH WIDTH, OR EOR RECOMMENDATION: **(1**) PIPE 24" - 144": D + 4'0" PIPE ≤ 12": D + 16" PIPE > 144": D + 10'0" PIPE > 12" 1 5D + 12 PRIOR TO PLACING THE BEDDING, THE FOUNDATION MUST BE CONSTRUCTED TO A UNIFORM AND STABLE GRADE. IN THE EVENT THAT UNSUITABLE AASHTO 26.5.2 OR PER ENGINEER OF RECORD FOUNDATION MATERIALS ARE ENCOUNTERED DURING EXCAVATION, THEY SHALL BE REMOVED AND FOUNDATION BROUGHT BACK TO GRADE WITH A FILL 〔2〕 FOUNDATION MATERIAL APPROVED BY THE ENGINEER OF RECORD. ENGINEER OF RECORD TO DETERMINE IF BEDDING IS REQUIRED. PIPE MAY BE PLACED ON THE TRENCH BOTTOM OF A RELATIVELY LOOSE, NATIVE SUITABLE AASHTO M 43: 3, 357, 4, 467, 5, 56, 57 WELL GRADED GRANULAR MATERIAL THAT IS ROUGHLY SHAPED TO FIT THE BOTTOM OF THE PIPE, 2" MIN DEPTH. THE BEDDING MATERIAL MAY BE SUITABLE ં 3ે BEDDING (APPROVED REGIONAL EQUIVALENTS INCLUDE CA-7) FOUNDATION SOILS CONFORMING TO AASHTO SOIL CLASSIFICATIONS A1, A2, OR A3 WITH MAXIMUM PARTICLE SIZE OF 3" PER AASHTO 26.3.8.1 4 CORRUGATED METAL PIPE HAUNCH ZONE MATERIAL SHALL BE HAND SHOVELED OR SHOVEL SLICED INTO PLACE TO ALLOW FOR PROPER COMPACTION WITHOUT SOFT SPOTS. BACKFILL SHALL BE PLACED IN 8" +/- LOOSE LIFTS AND COMPACTED TO 90% STANDARD PROCTOR PER AASHTO T 99. BACKFILL SHALL BE PLACED SUCH THAT (5A) **CRITICAL BACKFILL** AASHTO M 145: A-1, A-2, A-3 * THERE IS NO MORE THAN A THREE LIFT (24") DIFFERENTIAL BETWEEN ANY OF THE PIPES AT ANY TIME DURING THE BACKFILL PROCESS. THE BACKFILL SHOULD BE ADVANCED ALONG THE LENGTH OF THE SYSTEM TO AVOID DIFFERENTIAL LOADING. WELL GRADED GRANULAR MATERIAL WHICH MAY CONTAIN SMALL AMOUNTS OF SILT OR CLAY AND MAXIMUM PARTICLE SIZE OF 3" (PER AASHTO 26.3.8.1 AND 5B 12.4-1.3). BACKFILL AASHTO M 145: A-1, A-2, A-3 UP TO MIN. COVER - SEE 5A AND 5B ABOVE 6 COVER MATERIAL COVER MATERIAL MAY INCLUDE NON-BITUMINOUS, GRANULAR ROAD BASE MATERIAL WITHIN MIN COVER LIMITS ABOVE MIN. COVER - PER ENGINEER OF RECORD **RIGID OR FLEXIBLE PAVEMENT (IF** FLEXIBLE PAVEMENT SHOULD NOT BE COUNTED AS PART OF THE FILL HEIGHT OVER THE CMP. FINAL BACKFILL MATERIAL SELECTION AND COMPACTION 7 PER ENGINEER OF RECORD APPLICABLE) REQUIREMENTS SHALL FOLLOW THE PROJECT PLANS AND SPECIFICATIONS PER THE ENGINEER OF RECORD. A OPTIONAL SIDE GEOTEXTILE NONE GEOTEXTILE LAYER IS RECOMMENDED ON SIDES OF EXCAVATION TO PREVENT SOIL MIGRATION. OPTIONAL GEOTEXTILE BETWEEN IF SOIL TYPES DIFFER AT ANY POINT ABOVE PIPE INVERT, A GEOTEXTILE LAYER IS RECOMMENDED TO BE PLACED BETWEEN THE LAYERS TO PREVENT SOIL (B) NONE LAYERS MIGRATION.

NOTES:

REVISION DESCRIPTION

FOR MULTIPLE BARREL INSTALLATIONS, THE RECOMMENDED STANDARD SPACING BETWEEN PARALLEL PIPE RUNS SHALL BE THE PIPE DIAMETER /2 BUT NO LESS THAN 12" FOR DIAMETERS <72". FOR 72" AND LARGER DIAMETERS, THE MINIMUM SPACING IS 36". CONTACT YOUR CONTECH REPRESENTATIVE FOR NONSTANDARD SPACING.

APPROVED REGIONAL EQUIVALENTS FOR SECTION 5A INCLUDE CA-7, CODOT #67, MIDOT 2G, 34G, OR 21AA STONE OR GRAVEL; #8; #57; MIDOT 6A, 2G, 3G, 34G.

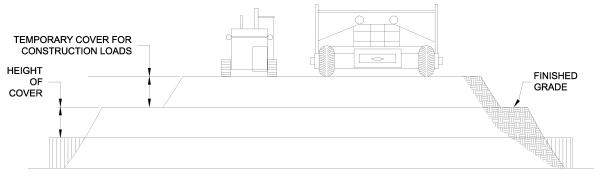
MANUFACTURER RECOMMENDED BACKFILL

NOT TO SCALE

ĺ	The design and information shown on this drawing is provided as a service to the project owner, engineer and contractor by Contech Engineered Solutions LLC ("Contech"). Neither this	
	drawing, nor any part thereof, may be used, reproduced or modified in any manner without the prior written consent of	
	Contech. Failure to comply is done at the user's own risk and Contech expressly disclaims any liability or responsibility for	
	such use.	
	If discrepancies between the supplied information upon which	
	the drawing is based and actual field conditions are encountered as site work progresses, these discrepancies must be reported	
	to Contech immediately for re-evaluation of the design. Contech	
	accepts no liability for designs based on missing, incomplete or inaccurate information supplied by others	DATE

CNTECH ENGINEERED SOLUTIONS LLC www.ContechES.com 9025 Centre Pointe Dr., Suite 400, West Chester, OH 45069 800-338-1122 513-645-7000 513-645-7993 FAX BY

CMP DETENTION SYSTEMS CONTECH DYODS DRAWING


DYO36259 20-001 Harvest Landing Reta Site 1 - Northerly Ch Perris, CA DETENTION SYSTEM

INSTALLATION NOTES

- WHEN PLACING THE FIRST LIFTS OF BACKFILL IT IS IMPORTANT TO MAKE SURE THAT THE BACKFILL IS PROPERLY COMPACTED UNDER AND AROUND THE PIPE HAUNCHES.
- 2. OTHER ALTERNATE BACKFILL MATERIAL MAY BE ALLOWED DEPENDING ON SITE SPECIFIC CONDITIONS, AS APPROVED BY SITE ENGINEER.
- 3. BACKFILL USING CONTROLLED LOW-STRENGTH MATERIAL (CLSM, "FLASH FILL" OR "FLOWABLE FILL") MAY BE USED WHEN THE SPACING BETWEEN THE PIPES WILL NOT ALLOW FOR PLACEMENT AND ADEQUATE COMPACTION OF THE BACKFILL CONTACT CONTECH FOR FURTHER EVALUATION.
- 4. IF SALTING AGENTS FOR SNOW AND ICE REMOVAL ARE USED ON OR NEAR THE PROJECT, A GEOMEMBRANE BARRIER IS RECOMMENDED OVER THE UPPER HALF OF THE PIPE. THE GEOMEMBRANE LINER IS INTENDED TO HELP PROTECT THE SYSTEM FROM THE POTENTIAL ADVERSE EFFECTS THAT MAY RESULT FROM A CHANGE IN THE SURROUNDING ENVIRONMENT OVER A PERIOD OF TIME. PLEASE REFER TO THE CORRUGATED METAL PIPE DETENTION DESIGN GUIDE FOR ADDITIONAL INFORMATION.

ail Center and Business Park	PROJECT No.: 24611
hambers	DESIGNED: DYO
	CHECKED: DYO

PROJECT No.: 24611	SEQ. No.: 36259		DATE: 10/4/20	24
DESIGNED:		DRAW	/N:	
DYO			DYO	
CHECKED:		APPR	OVED:	
DYO			DYO	
SHEET NO .:				4

CONSTRUCTION LOADS

FOR TEMPORARY CONSTRUCTION VEHICLE LOADS, AN EXTRA AMOUNT OF COMPACTED COVER MAY BE REQUIRED OVER THE TOP OF THE PIPE. THE HEIGHT-OF-COVER SHALL MEET THE MINIMUM REQUIREMENTS SHOWN IN THE TABLE BELOW. THE USE OF HEAVY CONSTRUCTION EQUIPMENT NECESSITATES GREATER PROTECTION FOR THE PIPE THAN FINISHED GRADE COVER MINIMUMS FOR NORMAL HIGHWAY TRAFFIC.

PIPE SPAN,	AXLE LOADS (kips)				
INCHES	18-50	50-75	75-110	110-150	
	MI	NIMUM C	OVER (F	- T)	
12-42	2.0	2.5	3.0	3.0	
48-72	3.0	3.0	3.5	4.0	
78-120	3.0	3.5	4.0	4.0	
126-144	3.5	4.0	4.5	4.5	

*MINIMUM COVER MAY VARY, DEPENDING ON LOCAL CONDITIONS. THE CONTRACTOR MUST PROVIDE THE ADDITIONAL COVER REQUIRED TO AVOID DAMAGE TO THE PIPE. MINIMUM COVER IS MEASURED FROM THE TOP OF THE PIPE TO THE TOP OF THE MAINTAINED CONSTRUCTION ROADWAY SURFACE.

CONSTRUCTION LOADING DIAGRAM

SCALE: N.T.S.

SPECIFICATION FOR DESIGNED DETENTION SYSTEM:

SCOPE

THIS SPECIFICATION COVERS THE MANUFACTURE AND INSTALLATION OF THE DESIGNED DETENTION SYSTEM DETAILED IN THE PROJECT PLANS.

MATERIAI

THE MATERIAL SHALL CONFORM TO THE APPLICABLE REQUIREMENTS LISTED BELOW

ALUMINIZED TYPE 2 STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-274 OR ASTM A-92.

THE GALVANIZED STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-218 OR ASTM A-929.

THE POLYMER COATED STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-246 OR ASTM A-742.

THE ALUMINUM COILS SHALL CONFORM TO THE APPLICABLE OF AASHTO M-197 OR ASTM B-744.

CONSTRUCTION LOADS

CONSTRUCTION LOADS MAY BE HIGHER THAN FINAL LOADS. FOLLOW THE MANUFACTURER'S OR NCSPA GUIDELINES.

DATE

NOTE:
THESE DRAWINGS ARE FOR CONCEPTUAL
PURPOSES AND DO NOT REFLECT ANY LOCAL
PREFERENCES OR REGULATIONS. PLEASE
CONTACT YOUR LOCAL CONTECH REP FOR
MODIFICATIONS.
The design and information shown on this drawing is provided as a service to the project owner, engineer and contractor by Contech Engineered Solutions LLC ("Contect"). Neither this
drawing, nor any part thereof, may be used, reproduced or modified in any manner without the prior written consent of

Contech Engineered Solutions LLC ("Contech"). Neither this drawing, nor any part thereof, may be used, heproduced or modified in any manner without the prior written consent of Contech. Failure to comply is done at the user's own risk an Contech expressly disclaims any liability or responsibility for such use.
If discrepancies between the supplied information upon whice the drawing is based and actual field conditions are encount as site work progresses, these discrepancies must be report to Contech imediately for re-evaluation of the design. Con accepts no liability for designs based on missing, incomplete incomprete information supplied by other

PIPF THE PIPE SHALL BE MANUFACTURED IN ACCORDANCE TO THE APPLICABLE REQUIREMENTS LISTED BELOW:

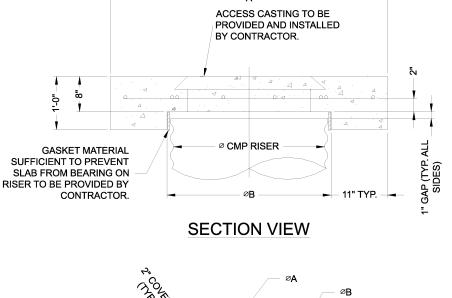
ALUMINIZED TYPE 2: AASHTO M-36 OR ASTM A-760

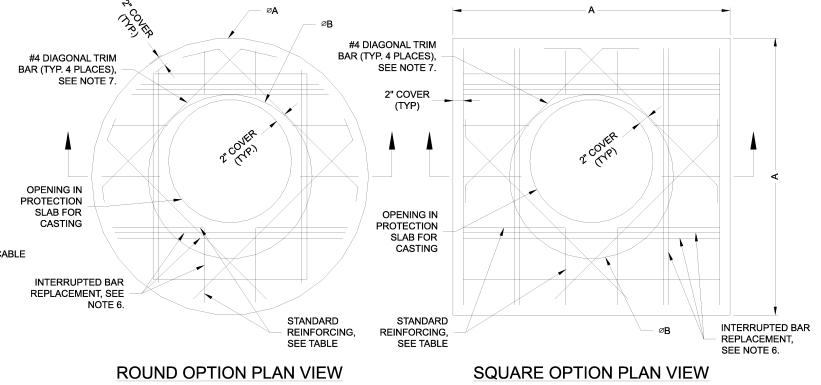
GALVANIZED: AASHTO M-36 OR ASTM A-760

AFFOLICYANELIEE COATED: AASHTO M-245 OR ASTM A-762

ALUMINUM: AASHTO M-196 OR ASTM B-745

APPLICABLE


HANDLING AND ASSEMBLY SHALL BE IN ACCORDANCE WITH NCSP'S (NATIONAL CORRUGATED STEEL AFFREE ABSED CIATION) FOR ALUMINIZED TYPE 2. GALVANIZED OR POLYMER COATED STEEL. SHALL BE IN ACCORDANCE WITH THE MANUFACTURER'S RECOMMENDATIONS FOR ALUMINUM PIPE.


REQUIREMENTS

INSTALLATION SHALL BE IN ACCORDANCE WITH AASHTO STANDARD SPECIFICATIONS FOR HIGHWAY BRIDGES, SECTION 26, DIVISION II DIVISION II OR ASTM A-798 (FOR ALUMINIZED TYPE 2, GALVANIZED OR POLYMER COATED STEEL) OR ASTM B-788 (FOR ALUMINUM PIPE) AND IN CONFORMANCE WITH THE PROJECT PLANS AND SPECIFICATIONS. IF THERE ARE ANY INCONSISTENCIES OR CONFLICTS THE CONTRACTOR SHOULD DISCUSS AND RESOLVE WITH THE SITE ENGINEER.

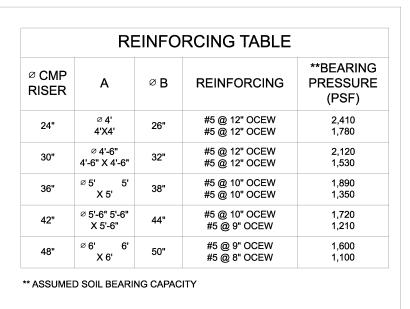
IT IS ALWAYS THE RESPONSIBILITY OF THE CONTRACTOR TO FOLLOW OSHA GUIDELINES FOR SAFE PRACTICES.

NOTES:

CUNTECH

CMP DETENTION SYSTEMS

CONTECH


DYODS

DRAWING

- 1. DESIGN IN ACCORDANCE WITH AASHTO, 17th EDITION.
- 2. DESIGN LOAD HS25.
- 3. EARTH COVER = 1' MAX.
- 4. CONCRETE STRENGTH = 3,500 psi
- 5. REINFORCING STEEL = ASTM A615, GRADE 60.
- 6. PROVIDE ADDITIONAL REINFORCING AROUND OPENINGS EQUAL TO THE BARS INTERRUPTED, HALF EACH SIDE. ADDITIONAL BARS TO BE IN THE SAME PLANE.

DYO36259 20-001 Harvest Landing Reta Site 1 - Northerly Cha Perris, CA DETENTION SYSTEM

REVISION DESCRIPTION BY

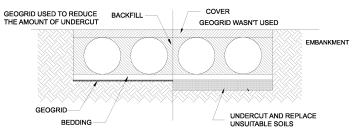
- 7. TRIM OPENING WITH DIAGONAL #4 BARS, EXTEND BARS A MINIMUM OF 12" BEYOND OPENING, BEND BARS AS REQUIRED TO MAINTAIN BAR COVER.
- 8. PROTECTION SLAB AND ALL MATERIALS TO BE PROVIDED AND INSTALLED BY CONTRACTOR.
- 9. DETAIL DESIGN BY DELTA ENGINEERING, BINGHAMTON, NY.

MANHOLE CAP DETAIL

SCALE: N.T.S.

il	Center	and	Business	s Park
a	mbers			

PROJECT No.: 24611	SEQ. 1 362		DATE: 10/4/2024	
DESIGNED:		DRAW	NI-	
DESIGNED.		DRAW	IN.	
DYO			DYO	
CHECKED:		APPR	OVED:	
DYO			DYO	
SHEET NO .:				
			1	


CMP DETENTION INSTALLATION GUIDE

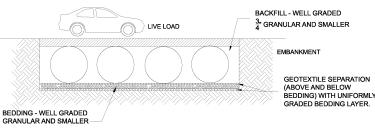
PROPER INSTALLATION OF A FLEXIBLE UNDERGROUND DETENTION SYSTEM WILL ENSURE LONG-TERM PERFORMANCE. THE CONFIGURATION OF THESE SYSTEMS OFTEN REQUIRES SPECIAL CONSTRUCTION PRACTICES THAT DIFFER FROM CONVENTIONAL FLEXIBLE PIPE CONSTRUCTION. CONTECH ENGINEERED SOLUTIONS STRONGLY SUGGESTS SCHEDULING A PRE-CONSTRUCTION MEETING WITH YOUR LOCAL SALES ENGINEER TO DETERMINE IF ADDITIONAL MEASURES, NOT COVERED IN THIS GUIDE, ARE APPROPRIATE FOR YOUR SITE.

FOUNDATION

CONSTRUCT A FOUNDATION THAT CAN SUPPORT THE DESIGN LOADING APPLIED BY THE PIPE AND ADJACENT BACKFILL WEIGHT AS WELL AS MAINTAIN ITS INTEGRITY DURING CONSTRUCTION.

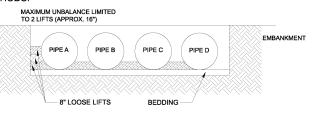
IF SOFT OR UNSUITABLE SOILS ARE ENCOUNTERED, REMOVE THE POOR SOILS DOWN TO A SUITABLE DEPTH AND THEN BUILD UP TO THE APPROPRIATE ELEVATION WITH A COMPETENT BACKFILL MATERIAL. THE STRUCTURAL FILL MATERIAL GRADATION SHOULD NOT ALLOW THE MIGRATION OF FINES, WHICH CAN CAUSE SETTLEMENT OF THE DETENTION SYSTEM OR PAVEMENT ABOVE. IF THE STRUCTURAL FILL MATERIAL IS NOT COMPATIBLE WITH THE UNDERLYING SOILS AN ENGINEERING FABRIC SHOULD BE USED AS A SEPARATOR IN SOME CASES, USING A STIFE REINFORCING GEOGRIF REDUCES OVER EXCAVATION AND REPLACEMENT FILL QUANTITIES.

GRADE THE FOUNDATION SUBGRADE TO A UNIFORM OR SLIGHTLY SLOPING GRADE. IF THE SUBGRADE IS CLAY OR RELATIVELY NON-POROUS AND THE CONSTRUCTION SEQUENCE WILL LAST FOR AN EXTENDED PERIOD OF TIME. IT IS BEST TO SLOPE THE GRADE TO ONE END OF THE SYSTEM. THIS WILL ALLOW EXCESS WATER TO DRAIN QUICKLY, PREVENTING SATURATION OF THE SUBGRADE


GEOMEMBRANE BARRIER

OF VARIOUS SALTING, DE-ICING, AND AGRICULTURAL AGENTS APPLIED ON OR NEAR THE AREA. TO MITIGATE THE POTENTIAL IMPACT OF THESE AGENTS, AN HDPE MEMBRANE LINER WILL BE INSTALLED ON THE CROWN OF EACH PIPE, CREATING AN IMPERMEABLE BARRIER. THIS MEASURE IS DESIGNED TO PROTECT THE SYSTEM FROM ENVIRONMENTAL CHANGES THAT COULD LEAD TO PREMATURE CORROSION AND REDUCE THE OVERALL SERVICE LIFE.

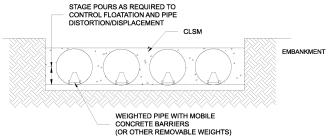
IN-SITU TRENCH WALL


IF EXCAVATION IS REQUIRED, THE TRENCH WALL NEEDS TO BE CAPABLE OF SUPPORTING THE LOAD THAT THE PIPE SHEDS AS THE SYSTEM IS LOADED. IF SOILS ARE NOT CAPABLE OF SUPPORTING THESE LOADS, THE PIPE CAN DEFLECT PERFORM A SIMPLE SOIL PRESSURE CHECK USING THE APPLIED LOADS TO DETERMINE THE LIMITS OF EXCAVATION BEYOND THE SPRING LINE OF THE OUTER MOST PIPES.

IN MOST CASES THE REQUIREMENTS FOR A SAFE WORK ENVIRONMENT AND PROPER BACKFILL PLACEMENT AND COMPACTION TAKE CARE OF THIS CONCERN.

BACKFILL PLACEMENT

MATERIAL SHALL BE WORKED INTO THE PIPE HAUNCHES BY MEANS OF SHOVEL-SLICING, RODDING, AIR TAMPER, VIBRATORY ROD, OR OTHER EFFECTIVE METHODS

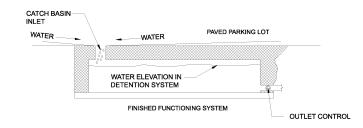


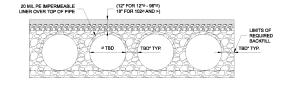
IF AASHTO T99 PROCEDURES ARE DETERMINED INFEASIBLE BY THE GEOTECHNICAL ENGINEER OF RECORD. COMPACTION IS CONSIDERED ADEQUATE WHEN NO FURTHER YIELDING OF THE MATERIAL IS OBSERVED UNDER THE COMPACTOR, OR UNDER FOOT, AND THE GEOTECHNICAL ENGINEER OF RECORD (OR REPRESENTATIVE THEREOF) IS SATISFIED WITH THE LEVEL OF COMPACTION.

THE RESISTIVITY OF A PROJECT SITE MAY CHANGE OVER TIME DUE TO THE USE FOR LARGE SYSTEMS, CONVEYOR SYSTEMS, BACKHOES WITH LONG REACHES OR DRAGLINES WITH STONE BUCKETS MAY BE USED TO PLACE BACKFILL, ONCE MINIMUM COVER FOR CONSTRUCTION LOADING ACROSS THE ENTIRE WIDTH OF THE SYSTEM IS REACHED. ADVANCE THE EQUIPMENT TO THE END OF THE RECENTLY PLACED FILL, AND BEGIN THE SEQUENCE AGAIN UNTIL THE SYSTEM IS COMPLETELY BACKFILLED. THIS TYPE OF CONSTRUCTION SEQUENCE PROVIDES ROOM FOR STOCKPILED BACKFILL DIRECTLY BEHIND THE BACKHOF, AS WELL AS THE MOVEMENT OF CONSTRUCTION TRAFFIC. MATERIAL STOCKPILES ON TOP OF THE BACKFILLED DETENTION SYSTEM SHOULD BE LIMITED TO 8- TO 10-FEET HIGH AND MUST PROVIDE BALANCED LOADING ACROSS ALL BARRELS. TO DETERMINE THE PROPER COVER OVER THE PIPES TO ALLOW THE MOVEMENT OF CONSTRUCTION EQUIPMENT SEE TABLE 1, OR CONTACT YOUR LOCAL CONTECH SALES ENGINEER.

TYPICALLY, SMALL LIFTS ARE PLACED BETWEEN THE PIPES AND THEN ALLOWED TO SET-UP PRIOR TO THE PLACEMENT OF THE NEXT LIFT. THE ALLOWABLE THICKNESS OF THE CLSM LIFT IS A FUNCTION OF A PROPER BALANCE BETWEEN THE UPLIFT FORCE OF THE CLSM, THE OPPOSING WEIGHT OF THE PIPE, AND THE EFFECT OF OTHER RESTRAINING MEASURES. THE PIPE CAN CARRY LIMITED FLUID PRESSURE WITHOUT PIPE DISTORTION OR DISPLACEMENT, WHICH ALSO AFFECTS THE CLSM LIFT THICKNESS. YOUR LOCAL CONTECH SALES ENGINEER CAN HELP DETERMINE THE PROPER LIFT THICKNESS.

WHEN FLOWABLE FILL IS USED, YOU MUST PREVENT PIPE FLOATATION




CONSTRUCTION LOADING

ACCUMULATED SEDIMENT AND TRASH CAN TYPICALLY BE EVACUATED TYPICALLY, THE MINIMUM COVER SPECIFIED FOR A PROJECT ASSUMES H-20 THROUGH THE MANHOLE OVER THE OUTLET ORIFICE. IF MAINTENANCE IS NOT LIVE LOAD. BECAUSE CONSTRUCTION LOADS OFTEN EXCEED DESIGN LIVE PERFORMED AS RECOMMENDED, SEDIMENT AND TRASH MAY ACCUMULATE IN LOADS, INCREASED TEMPORARY MINIMUM COVER REQUIREMENTS ARE FRONT OF THE OUTLET ORIFICE. MANHOLE COVERS SHOULD BE SECURELY SEATED FOLLOWING CLEANING ACTIVITIES. CONTECH SUGGESTS THAT ALL NECESSARY. SINCE CONSTRUCTION EQUIPMENT VARIES FROM JOB TO JOB, SYSTEMS BE DESIGNED WITH AN ACCESS/INSPECTION MANHOLE SITUATED AT IT IS BEST TO ADDRESS EQUIPMENT SPECIFIC MINIMUM COVER OR NEAR THE INLET AND THE OUTLET ORIFICE. SHOULD IT BE NECESSARY TO REQUIREMENTS WITH YOUR LOCAL CONTECH SALES ENGINEER DURING GET INSIDE THE SYSTEM TO PERFORM MAINTENANCE ACTIVITIES, ALL APPROPRIATE PRECAUTIONS REGARDING CONFINED SPACE ENTRY AND OSHA YOUR PRE-CONSTRUCTION MEETING. REGULATIONS SHOULD BE FOLLOWED.

ADDITIONAL CONSIDERATIONS

BECAUSE MOST SYSTEMS ARE CONSTRUCTED BELOW-GRADE, RAINFALL AS PART OF THE MAINTENANCE PROGRAM FOR THE SYSTEM. CAN RAPIDLY FILL THE EXCAVATION; POTENTIALLY CAUSING FLOATATION MAINTAINING AN UNDERGROUND DETENTION OR INFILTRATION SYSTEM IS AND MOVEMENT OF THE PREVIOUSLY PLACED PIPES. TO HELP MITIGATE EASIEST WHEN THERE IS NO FLOW ENTERING THE SYSTEM. FOR THIS POTENTIAL PROBLEMS, IT IS BEST TO START THE INSTALLATION AT THE REASON. IT IS A GOOD IDEA TO SCHEDULE THE CLEANOUT DURING DRY DOWNSTREAM END WITH THE OUTLET ALREADY CONSTRUCTED TO ALLOW WEATHER A ROUTE FOR THE WATER TO ESCAPE. TEMPORARY DIVERSION MEASURES MAY BE REQUIRED FOR HIGH FLOWS DUE TO THE RESTRICTED NATURE OF THE OUTLET PIPE.

REVISION DESCRIPTION

The design and information shown on this drawing is provided as a service to the project owner, engineer and contractor by		
Contech Engineered Solutions LLC ("Contech"). Neither this drawing, nor any part thereof, may be used, reproduced or modified in any manner without the prior written consent of		
Contech. Failure to comply is done at the user's own risk and Contech expressly disclaims any liability or responsibility for such use.		
If discrepancies between the supplied information upon which the drawing is based and actual field conditions are encountered		
as site work progresses, these discrepancies must be reported to Contech immediately for re-evaluation of the design. Contech		
accepts no liability for designs based on missing, incomplete or inaccurate information supplied by others.	DATE	

	CENTECH® ENGINEERED SOLUTIONS LLC	(
	9025 Centre Pointe Dr., Suite 400, West Chester, OH 45069	
BY	800-338-1122 513-645-7000 513-645-7993 FAX	

TYPICAL BACKFILL SEQUENCE

8

9

DYODS

DRAWING

EMBANKMEN

15

6

DYO36259 20-001 Harvest Landing Reta Site 1 - Northerly Ch Perris, CA DETENTION SYS

CMP DETENTION SYSTEM INSPECTION AND MAINTENANCE

UNDERGROUND STORMWATER DETENTION AND INFILTRATION SYSTEMS MUST BE INSPECTED AND MAINTAINED AT REGULAR INTERVALS FOR PURPOSES OF PERFORMANCE AND LONGEVITY.

INSPECTION

INSPECTION IS THE KEY TO EFFECTIVE MAINTENANCE OF CMP DETENTION SYSTEMS AND IS EASILY PERFORMED. CONTECH RECOMMENDS ONGOING, ANNUAL INSPECTIONS. SITES WITH HIGH TRASH LOAD OR SMALL OUTLET CONTROL ORIFICES MAY NEED MORE FREQUENT INSPECTIONS. THE RATE AT WHICH THE SYSTEM COLLECTS POLLUTANTS WILL DEPEND MORE ON SITE SPECIFIC ACTIVITIES RATHER THAN THE SIZE OR CONFIGURATION OF THE SYSTEM.

INSPECTIONS SHOULD BE PERFORMED MORE OFTEN IN EQUIPMENT WASHDOWN AREAS, IN CLIMATES WHERE SANDING AND/OR SALTING OPERATIONS TAKE PLACE, AND IN OTHER VARIOUS INSTANCES IN WHICH ONE WOULD EXPECT HIGHER ACCUMULATIONS OF SEDIMENT OR ABRASIVE/ CORROSIVE CONDITIONS. A RECORD OF EACH INSPECTION IS TO BE MAINTAINED FOR THE LIFE OF THE SYSTEM

MAINTENANCE

CMP DETENTION SYSTEMS SHOULD BE CLEANED WHEN AN INSPECTION REVEALS ACCUMULATED SEDIMENT OR TRASH IS CLOGGING THE DISCHARGE ORIFICE.

ANNUAL INSPECTIONS ARE BEST PRACTICE FOR ALL UNDERGROUND SYSTEMS. DURING THIS INSPECTION, IF EVIDENCE OF SALTING/DE-ICING AGENTS IS OBSERVED WITHIN THE SYSTEM, IT IS BEST PRACTICE FOR THE SYSTEM TO BE RINSED, INCLUDING ABOVE THE SPRING LINE SOON AFTER THE SPRING THAW

THE FOREGOING INSPECTION AND MAINTENANCE EFFORTS HELP ENSURE UNDERGROUND PIPE SYSTEMS USED FOR STORMWATER STORAGE CONTINUE TO FUNCTION AS INTENDED BY IDENTIFYING RECOMMENDED REGULAR INSPECTION AND MAINTENANCE PRACTICES. INSPECTION AND MAINTENANCE RELATED TO THE STRUCTURAL INTEGRITY OF THE PIPE OR THE SOUNDNESS OF PIPE JOINT CONNECTIONS IS BEYOND THE SCOPE OF THIS GUIDE.

ail Center and Business Park	PROJECT No.: 24611	SEQ. No.: 36259		DATE: 10/4/2024
ambers	DESIGNED: DYO		DRAWN: DYO	
	CHECKED: DYO		APPRO	DVED: DYO
STEM	SHEET NO .:			4

PROJECT SUMMARY

CALCULATION DETAILS • LOADING = HS20/HS25 • APPROX. LINEAR FOOTAGE = 5,896 LF

STORAGE SUMMARY

- STORAGE VOLUME REQUIRED = N/A
- PIPE STORAGE VOLUME = 296,365 CF
- BACKFILL STORAGE VOLUME = 0 CF
- TOTAL STORAGE PROVIDED = 296,365 CF

PIPE DETAILS

- DIAMETER = 96"
- CORRUGATION = 5x1
- GAGE = 16
- COATING = ALT2
- WALL TYPE = SOLID
- BARREL SPACING = 36"

BACKFILL DETAILS

- WIDTH AT ENDS = 12"
- ABOVE PIPE = 0" • WIDTH AT SIDES = 12"
- BELOW PIPE = 0"

NOTES

Z

- ALL RISER AND STUB DIMENSIONS ARE TO CENTERLINE. ALL ELEVATIONS, DIMENSIONS, AND LOCATIONS OF RISERS AND INLETS, SHALL BE VERIFIED BY THE ENGINEER OF RECORD PRIOR TO RELEASING FOR FABRICATION.
- ALL FITTINGS AND REINFORCEMENT COMPLY WITH ASTM A998.
- ALL RISERS AND STUBS ARE $2\frac{2}{3}$ " x $\frac{1}{2}$ " CORRUGATION AND 16 GAGE UNLESS OTHERWISE NOTED. RISERS TO BE FIELD TRIMMED TO GRADE.
- QUANTITY OF PIPE SHOWN DOES NOT PROVIDE EXTRA PIPE FOR CONNECTING THE SYSTEM TO EXISTING PIPE OR DRAINAGE STRUCTURES. OUR SYSTEM AS DETAILED PROVIDES NOMINAL INLET AND/OR OUTLET PIPE STUB FOR CONNECTION TO EXISTING DRAINAGE FACILITIES. IF ADDITIONAL PIPE IS NEEDED IT IS THE RESPONSIBILITY OF THE CONTRACTOR.
- BAND TYPE TO BE DETERMINED UPON FINAL DESIGN.
 THE PROJECT SUMMARY IS REFLECTIVE OF THE
 DYODS DESIGN, QUANTITIES ARE APPROX. AND SHOULD BE VERIFIED UPON FINAL DESIGN AND APPROVAL. FOR EXAMPLE, TOTAL EXCAVATION DOES NOT CONSIDER ALL VARIABLES SUCH AS SHORING AND ONLY ACCOUNTS FOR MATERIAL WITHIN THE

The design and information shown on this drawing is provided as a service to the project owner, regineer and contracts by Contexh Engineered Solutions LLC (Contexh"). Netther this drawing, nor ray part thread, may be used, reproduced or modified in any manner without the prior written consent of Contexh. Failure to comply is done at the user's own risk and Contexh expressly disclaims any liability or responsibility for such use. If discrepancies between the supplied information upon which the drawing is based and actual field confilions are encountered as site work progresses, these discrepancies must be reported to Contech immediately for re-evaluation of the design. Contech accepts no liability for designs.	DATE	REVISION DESCRIPTION	BY	ENGI	NEERED SOLU www.ContechEs inte Dr., Suite 400, W 513-645-7000	CMP DETENTION SYSTEMS	DYO36256 20-001 Harvest Landing Reta Site 1-Southerly Cha Perris, CA DETENTION SYS
inaccurate information supplied by others.	DATE	REVISION DESCRIPTION	BY				

-								

ASSEMBLY

SCALE: 1" = 50'

ail	Center and	Business	Park
ar	nbers		

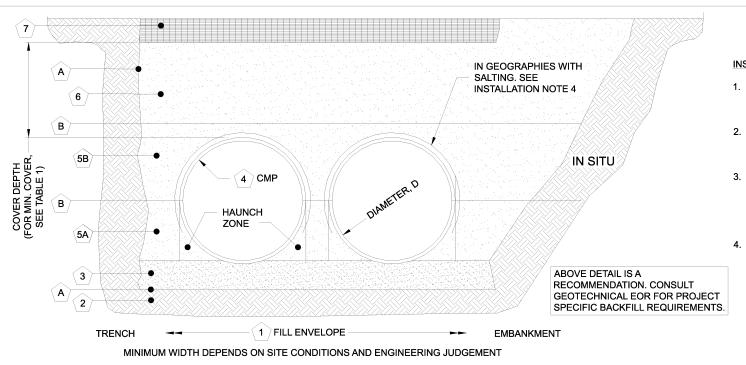

PROJECT No.: 24609	SEQ. 1 363	No.: 256	DATE: 10/2/2024
DESIGNED:		DRAW	/N:
DYO			DYO
CHECKED:		APPR	OVED:
DYO			DYO
SHEET NO .:			
			1

TABLE 1:								
DIAMETER, D	MIN. COVER	CORR. PROFILE						
6"-10"	12"	1 1/2" x 1/4"						
12"-48"	12"	2 2/3" x 1/2"						
>48"-96"	12"	3" x 1", 5" x 1"						
>96"	D/8	3" x 1", 5" x 1"						

- STRUCTURAL BACKFILL MUST EXTEND TO LIMITS OF THE TABLE
- TOTAL HEIGHT OF COMPACTED COVER FOR CONVENTIONAL HIGHWAY LOADS IS MEASURED FROM TOP OF PIPE TO BOTTOM OF FLEXIBLE PAVEMENT OR TOP OF RIGID PAVEMENT

TABLE 2: SOLID STANDARD

ULTRAFLO ALSO AVAILABLE FOR SIZES 18" - 120" WITH 3/4"x 3/4"x 7 1/2" CORRUGATION

CMP DETENTION AND CMP DRAINAGE STANDARD BACKFILL SPECIFICATIONS MATERIAL LOCATION MATERIAL SPECIFICATION DESCRIPTION MINIMUM TRENCH WIDTH MUST ALLOW ROOM FOR PROPER COMPACTION OF MINIMUM EMBANKMENT WIDTH (IN FEET) FOR INITIAL FILL ENVELOPE: HAUNCH MATERIALS UNDER THE PIPE. PIPE < 24": 3.0D FILL ENVELOPE WIDTH PER ENGINEER OF RECORD THE SUGGESTED MINIMUM TRENCH WIDTH, OR EOR RECOMMENDATION: **(1**) PIPE 24" - 144": D + 4'0" PIPE ≤ 12": D + 16" PIPE > 144": D + 10'0" PIPE > 12" 1 5D + 12 PRIOR TO PLACING THE BEDDING, THE FOUNDATION MUST BE CONSTRUCTED TO A UNIFORM AND STABLE GRADE. IN THE EVENT THAT UNSUITABLE FOUNDATION AASHTO 26.5.2 OR PER ENGINEER OF RECORD FOUNDATION MATERIALS ARE ENCOUNTERED DURING EXCAVATION, THEY SHALL BE REMOVED AND FOUNDATION BROUGHT BACK TO GRADE WITH A FILL 〔2〕 MATERIAL APPROVED BY THE ENGINEER OF RECORD. ENGINEER OF RECORD TO DETERMINE IF BEDDING IS REQUIRED. PIPE MAY BE PLACED ON THE TRENCH BOTTOM OF A RELATIVELY LOOSE, NATIVE SUITABLE AASHTO M 43: 3, 357, 4, 467, 5, 56, 57 WELL GRADED GRANULAR MATERIAL THAT IS ROUGHLY SHAPED TO FIT THE BOTTOM OF THE PIPE, 2" MIN DEPTH. THE BEDDING MATERIAL MAY BE SUITABLE ં 3ે BEDDING (APPROVED REGIONAL EQUIVALENTS INCLUDE CA-7) FOUNDATION SOILS CONFORMING TO AASHTO SOIL CLASSIFICATIONS A1, A2, OR A3 WITH MAXIMUM PARTICLE SIZE OF 3" PER AASHTO 26.3.8.1 ໌ 4 CORRUGATED METAL PIPE HAUNCH ZONE MATERIAL SHALL BE HAND SHOVELED OR SHOVEL SLICED INTO PLACE TO ALLOW FOR PROPER COMPACTION WITHOUT SOFT SPOTS. BACKFILL SHALL BE PLACED IN 8" +/- LOOSE LIFTS AND COMPACTED TO 90% STANDARD PROCTOR PER AASHTO T 99. BACKFILL SHALL BE PLACED SUCH THAT (5A) **CRITICAL BACKFILL** AASHTO M 145: A-1, A-2, A-3 * THERE IS NO MORE THAN A THREE LIFT (24") DIFFERENTIAL BETWEEN ANY OF THE PIPES AT ANY TIME DURING THE BACKFILL PROCESS. THE BACKFILL SHOULD BE ADVANCED ALONG THE LENGTH OF THE SYSTEM TO AVOID DIFFERENTIAL LOADING. WELL GRADED GRANULAR MATERIAL WHICH MAY CONTAIN SMALL AMOUNTS OF SILT OR CLAY AND MAXIMUM PARTICLE SIZE OF 3" (PER AASHTO 26.3.8.1 AND 5B) 12.4-1.3). BACKFILL AASHTO M 145: A-1, A-2, A-3 UP TO MIN. COVER - SEE 5A AND 5B ABOVE 6 COVER MATERIAL COVER MATERIAL MAY INCLUDE NON-BITUMINOUS, GRANULAR ROAD BASE MATERIAL WITHIN MIN COVER LIMITS ABOVE MIN. COVER - PER ENGINEER OF RECORD **RIGID OR FLEXIBLE PAVEMENT (IF** FLEXIBLE PAVEMENT SHOULD NOT BE COUNTED AS PART OF THE FILL HEIGHT OVER THE CMP. FINAL BACKFILL MATERIAL SELECTION AND COMPACTION 7) PER ENGINEER OF RECORD APPLICABLE) REQUIREMENTS SHALL FOLLOW THE PROJECT PLANS AND SPECIFICATIONS PER THE ENGINEER OF RECORD. (A) OPTIONAL SIDE GEOTEXTILE NONE GEOTEXTILE LAYER IS RECOMMENDED ON SIDES OF EXCAVATION TO PREVENT SOIL MIGRATION. OPTIONAL GEOTEXTILE BETWEEN IF SOIL TYPES DIFFER AT ANY POINT ABOVE PIPE INVERT, A GEOTEXTILE LAYER IS RECOMMENDED TO BE PLACED BETWEEN THE LAYERS TO PREVENT SOIL (B) NONE LAYERS MIGRATION

NOTES:

REVISION DESCRIPTION

BY

FOR MULTIPLE BARREL INSTALLATIONS, THE RECOMMENDED STANDARD SPACING BETWEEN PARALLEL PIPE RUNS SHALL BE THE PIPE DIAMETER /2 BUT NO LESS THAN 12" FOR DIAMETERS <72". FOR 72" AND LARGER DIAMETERS, THE MINIMUM SPACING IS 36". CONTACT YOUR CONTECH REPRESENTATIVE FOR NONSTANDARD SPACING.

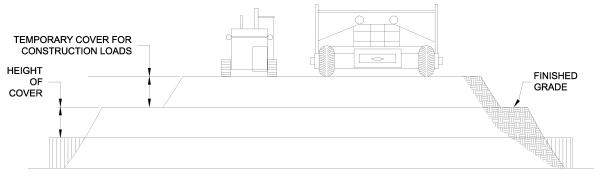
APPROVED REGIONAL EQUIVALENTS FOR SECTION 5A INCLUDE CA-7, CODOT #67, MIDOT 2G, 34G, OR 21AA STONE OR GRAVEL; #8; #57; MIDOT 6A, 2G, 3G, 34G.

MANUFACTURER RECOMMENDED BACKFILL

NOT TO SCALE

į	The design and information shown on this drawing is provided as a service to the project owner, engineer and contractor by Contech Engineered Solutions LLC ("Contech"). Neither this	
2	drawing, nor any part thereof, may be used, reproduced or modified in any manner without the prior written consent of	
1	Contech. Failure to comply is done at the user's own risk and	
	Contech expressly disclaims any liability or responsibility for such use.	
5	If discrepancies between the supplied information upon which	
5	the drawing is based and actual field conditions are encountered as site work progresses, these discrepancies must be reported to Contech immediately for re-evaluation of the design. Contech	
5	accepts no liability for designs based on missing, incomplete or incompared in the instance of the second se	DATE

CNTECH ENGINEERED SOLUTIONS LLC www.ContechES.com 9025 Centre Pointe Dr., Suite 400, West Chester, OH 45069 800-338-1122 513-645-7000 513-645-7993 FAX


CMP DETENTION SYSTEMS CONTECH DYODS DRAWING

DYO36256 20-001 Harvest Landing Ref Site 1-Southerly Cl Perris, CA DETENTION SYSTEM

INSTALLATION NOTES

- WHEN PLACING THE FIRST LIFTS OF BACKFILL IT IS IMPORTANT TO MAKE SURE THAT THE BACKEILL IS PROPERLY COMPACTED UNDER AND AROUND THE PIPE HAUNCHES.
- 2. OTHER ALTERNATE BACKFILL MATERIAL MAY BE ALLOWED DEPENDING ON SITE SPECIFIC CONDITIONS, AS APPROVED BY SITE ENGINEER.
- 3. BACKFILL USING CONTROLLED LOW-STRENGTH MATERIAL (CLSM, "FLASH FILL" OR "FLOWABLE FILL") MAY BE USED WHEN THE SPACING BETWEEN THE PIPES WILL NOT ALLOW FOR PLACEMENT AND ADEQUATE COMPACTION OF THE BACKFILL CONTACT CONTECH FOR FURTHER EVALUATION.
- 4. IF SALTING AGENTS FOR SNOW AND ICE REMOVAL ARE USED ON OR NEAR THE PROJECT, A GEOMEMBRANE BARRIER IS RECOMMENDED OVER THE UPPER HALE OF THE PIPE. THE GEOMEMBRANE LINER IS INTENDED TO HELP PROTECT THE SYSTEM FROM THE POTENTIAL ADVERSE EFFECTS THAT MAY RESULT FROM A CHANGE IN THE SURROUNDING ENVIRONMENT OVER A PERIOD OF TIME. PLEASE REFER TO THE CORRUGATED METAL PIPE DETENTION DESIGN GUIDE FOR ADDITIONAL INFORMATION.

tail Center and Business Park	PROJECT No.: 24609	SEQ. No.: 36256		DATE: 10/2/2024
hambers	DESIGNED: DYO		DRAWN: DYO	
	CHECKED: DYO		APPR	OVED: DYO
OTEM	SHEET NO .:			

CONSTRUCTION LOADS

FOR TEMPORARY CONSTRUCTION VEHICLE LOADS, AN EXTRA AMOUNT OF COMPACTED COVER MAY BE REQUIRED OVER THE TOP OF THE PIPE. THE HEIGHT-OF-COVER SHALL MEET THE MINIMUM REQUIREMENTS SHOWN IN THE TABLE BELOW. THE USE OF HEAVY CONSTRUCTION EQUIPMENT NECESSITATES GREATER PROTECTION FOR THE PIPE THAN FINISHED GRADE COVER MINIMUMS FOR NORMAL HIGHWAY TRAFFIC.

PIPE SPAN, INCHES	AXLE LOADS (kips)				
INCHES	18-50	50-75	75-110	110-150	
	MINIMUM COVER (FT)				
12-42	2.0	2.5	3.0	3.0	
48-72	3.0	3.0	3.5	4.0	
78-120	3.0	3.5	4.0	4.0	
126-144	3.5	4.0	4.5	4.5	

*MINIMUM COVER MAY VARY, DEPENDING ON LOCAL CONDITIONS. THE CONTRACTOR MUST PROVIDE THE ADDITIONAL COVER REQUIRED TO AVOID DAMAGE TO THE PIPE. MINIMUM COVER IS MEASURED FROM THE TOP OF THE PIPE TO THE TOP OF THE MAINTAINED CONSTRUCTION ROADWAY SURFACE.

CONSTRUCTION LOADING DIAGRAM

SCALE: N.T.S.

REVISION DESCRIPTION

SPECIFICATION FOR DESIGNED DETENTION SYSTEM:

SCOPE

THIS SPECIFICATION COVERS THE MANUFACTURE AND INSTALLATION OF THE DESIGNED DETENTION SYSTEM DETAILED IN THE PROJECT PLANS.

MATERIAI

THE MATERIAL SHALL CONFORM TO THE APPLICABLE REQUIREMENTS LISTED BELOW

ALUMINIZED TYPE 2 STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-274 OR ASTM A-92.

THE GALVANIZED STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-218 OR ASTM A-929.

THE POLYMER COATED STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-246 OR ASTM A-742.

THE ALUMINUM COILS SHALL CONFORM TO THE APPLICABLE OF AASHTO M-197 OR ASTM B-744.

CONSTRUCTION LOADS

CONSTRUCTION LOADS MAY BE HIGHER THAN FINAL LOADS. FOLLOW THE MANUFACTURER'S OR NCSPA GUIDELINES.

DATE

NOTE:	
THESE DRAWINGS ARE FOR CONCEPTU	JAL
PURPOSES AND DO NOT REFLECT ANY	LOCAL
PREFERENCES OR REGULATIONS. PLE	ASE
CONTACT YOUR LOCAL CONTECH REP	FOR
MODIFICATIONS.	
The design and information shown on this drawing is provided as a service to the project owner, engineer and contractor by	
Contech Engineered Solutions LLC ("Contech"). Neither this drawing, nor any part thereof, may be used, reproduced or modified in any manner without the prior written consent of	

intech expressly disclaims any liability or responsibility for ch use.	u
iscrepancies between the supplied information upon which e drawing is based and actual field conditions are encounte site work progresses, these discrepancies must be report Contech immediately for re-evaluation of the design. Cont cepts no liability for designs based on missing, incomplete	erec ed ech

PIPF THE PIPE SHALL BE MANUFACTURED IN ACCORDANCE TO THE APPLICABLE REQUIREMENTS LISTED BELOW:

ALUMINIZED TYPE 2: AASHTO M-36 OR ASTM A-760

GALVANIZED: AASHTO M-36 OR ASTM A-760

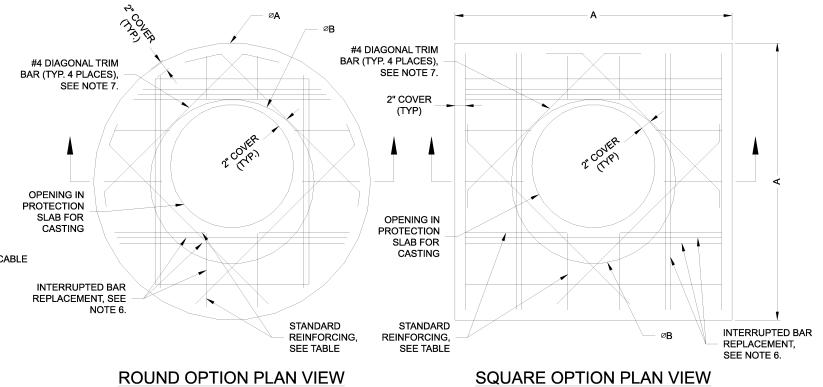
AFFOLICYANELIEE COATED: AASHTO M-245 OR ASTM A-762

ALUMINUM: AASHTO M-196 OR ASTM B-745

APPLICABLE HANDLING AND ASSEMBLY

BY

SHALL BE IN ACCORDANCE WITH NCSP'S (NATIONAL CORRUGATED STEEL AFFREE ABSED CIATION) FOR ALUMINIZED TYPE 2. GALVANIZED OR POLYMER COATED STEEL. SHALL BE IN ACCORDANCE WITH THE MANUFACTURER'S RECOMMENDATIONS FOR ALUMINUM PIPE.


REQUIREMENTS

INSTALLATION SHALL BE IN ACCORDANCE WITH AASHTO STANDARD SPECIFICATIONS FOR HIGHWAY BRIDGES, SECTION 26, DIVISION II DIVISION II OR ASTM A-798 (FOR ALUMINIZED TYPE 2, GALVANIZED OR POLYMER COATED STEEL) OR ASTM B-788 (FOR ALUMINUM PIPE) AND IN CONFORMANCE WITH THE PROJECT PLANS AND SPECIFICATIONS. IF THERE ARE ANY INCONSISTENCIES OR CONFLICTS THE CONTRACTOR SHOULD DISCUSS AND RESOLVE WITH THE SITE ENGINEER.

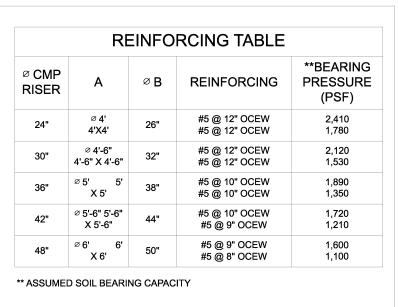
IT IS ALWAYS THE RESPONSIBILITY OF THE CONTRACTOR TO FOLLOW OSHA GUIDELINES FOR SAFE PRACTICES.

ACCESS CASTING TO BE PROVIDED AND INSTALLED BY CONTRACTOR. 2 ŀ Ø CMP RISER Ξ GASKET MATERIAL SUFFICIENT TO PREVENT (TYP. SLAB FROM BEARING ON RISER TO BE PROVIDED BY GAP CONTRACTOR. ØF - 11" TYP SECTION VIEW

NOTES:

CUNTECH

CMP DETENTION SYSTEMS


CONTECH

DYODS

DRAWING

- 1. DESIGN IN ACCORDANCE WITH AASHTO, 17th EDITION.
- 2. DESIGN LOAD HS25.
- 3. EARTH COVER = 1' MAX.
- 4. CONCRETE STRENGTH = 3,500 psi
- 5. REINFORCING STEEL = ASTM A615, GRADE 60.
- 6. PROVIDE ADDITIONAL REINFORCING AROUND OPENINGS EQUAL TO THE BARS INTERRUPTED, HALF EACH SIDE. ADDITIONAL BARS TO BE IN THE SAME PLANE.

DYO36256 20-001 Harvest Landing Reta Site 1-Southerly Cha Perris, CA DETENTION SYSTEM

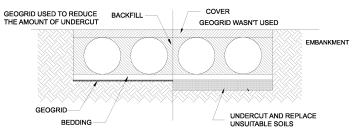
- 7. TRIM OPENING WITH DIAGONAL #4 BARS, EXTEND BARS A MINIMUM OF 12" BEYOND OPENING, BEND BARS AS REQUIRED TO MAINTAIN BAR COVER.
- 8. PROTECTION SLAB AND ALL MATERIALS TO BE PROVIDED AND INSTALLED BY CONTRACTOR.
- 9. DETAIL DESIGN BY DELTA ENGINEERING, BINGHAMTON, NY.

MANHOLE CAP DETAIL

SCALE: N.T.S.

il Center and Business Park
ambers

PROJECT No.: 24609	SEQ. 1 362	No.: 256	DATE: 10/2/2024	
DESIGNED:		DRAWN:		
DYO			DYO	
CHECKED:		APPR	OVED:	
DYO			DYO	
SHEET NO .:				
			1	


CMP DETENTION INSTALLATION GUIDE

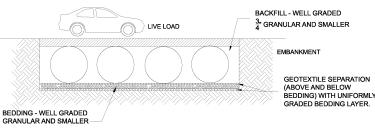
PROPER INSTALLATION OF A FLEXIBLE UNDERGROUND DETENTION SYSTEM WILL ENSURE LONG-TERM PERFORMANCE. THE CONFIGURATION OF THESE SYSTEMS OFTEN REQUIRES SPECIAL CONSTRUCTION PRACTICES THAT DIFFER FROM CONVENTIONAL FLEXIBLE PIPE CONSTRUCTION. CONTECH ENGINEERED SOLUTIONS STRONGLY SUGGESTS SCHEDULING A PRE-CONSTRUCTION MEETING WITH YOUR LOCAL SALES ENGINEER TO DETERMINE IF ADDITIONAL MEASURES, NOT COVERED IN THIS GUIDE, ARE APPROPRIATE FOR YOUR SITE.

FOUNDATION

CONSTRUCT A FOUNDATION THAT CAN SUPPORT THE DESIGN LOADING APPLIED BY THE PIPE AND ADJACENT BACKFILL WEIGHT AS WELL AS MAINTAIN ITS INTEGRITY DURING CONSTRUCTION.

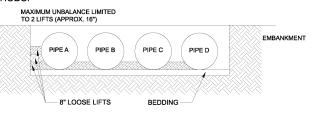
IF SOFT OR UNSUITABLE SOILS ARE ENCOUNTERED, REMOVE THE POOR SOILS DOWN TO A SUITABLE DEPTH AND THEN BUILD UP TO THE APPROPRIATE ELEVATION WITH A COMPETENT BACKFILL MATERIAL. THE STRUCTURAL FILL MATERIAL GRADATION SHOULD NOT ALLOW THE MIGRATION OF FINES, WHICH CAN CAUSE SETTLEMENT OF THE DETENTION SYSTEM OR PAVEMENT ABOVE. IF THE STRUCTURAL FILL MATERIAL IS NOT COMPATIBLE WITH THE UNDERLYING SOILS AN ENGINEERING FABRIC SHOULD BE USED AS A SEPARATOR IN SOME CASES, USING A STIFE REINFORCING GEOGRIF REDUCES OVER EXCAVATION AND REPLACEMENT FILL QUANTITIES.

GRADE THE FOUNDATION SUBGRADE TO A UNIFORM OR SLIGHTLY SLOPING GRADE. IF THE SUBGRADE IS CLAY OR RELATIVELY NON-POROUS AND THE CONSTRUCTION SEQUENCE WILL LAST FOR AN EXTENDED PERIOD OF TIME. IT IS BEST TO SLOPE THE GRADE TO ONE END OF THE SYSTEM. THIS WILL ALLOW EXCESS WATER TO DRAIN QUICKLY, PREVENTING SATURATION OF THE SUBGRADE


GEOMEMBRANE BARRIER

OF VARIOUS SALTING, DE-ICING, AND AGRICULTURAL AGENTS APPLIED ON OR NEAR THE AREA. TO MITIGATE THE POTENTIAL IMPACT OF THESE AGENTS, AN HDPE MEMBRANE LINER WILL BE INSTALLED ON THE CROWN OF EACH PIPE, CREATING AN IMPERMEABLE BARRIER. THIS MEASURE IS DESIGNED TO PROTECT THE SYSTEM FROM ENVIRONMENTAL CHANGES THAT COULD LEAD TO PREMATURE CORROSION AND REDUCE THE OVERALL SERVICE LIFE.

IN-SITU TRENCH WALL


IF EXCAVATION IS REQUIRED, THE TRENCH WALL NEEDS TO BE CAPABLE OF SUPPORTING THE LOAD THAT THE PIPE SHEDS AS THE SYSTEM IS LOADED. IF SOILS ARE NOT CAPABLE OF SUPPORTING THESE LOADS, THE PIPE CAN DEFLECT PERFORM A SIMPLE SOIL PRESSURE CHECK USING THE APPLIED LOADS TO DETERMINE THE LIMITS OF EXCAVATION BEYOND THE SPRING LINE OF THE OUTER MOST PIPES.

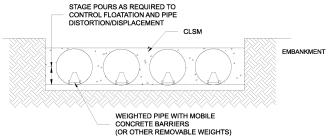
IN MOST CASES THE REQUIREMENTS FOR A SAFE WORK ENVIRONMENT AND PROPER BACKFILL PLACEMENT AND COMPACTION TAKE CARE OF THIS CONCERN.

BACKFILL PLACEMENT

MATERIAL SHALL BE WORKED INTO THE PIPE HAUNCHES BY MEANS OF SHOVEL-SLICING, RODDING, AIR TAMPER, VIBRATORY ROD, OR OTHER EFFECTIVE METHODS

IF AASHTO T99 PROCEDURES ARE DETERMINED INFEASIBLE BY THE GEOTECHNICAL ENGINEER OF RECORD. COMPACTION IS CONSIDERED ADEQUATE WHEN NO FURTHER YIELDING OF THE MATERIAL IS OBSERVED UNDER THE COMPACTOR, OR UNDER FOOT, AND THE GEOTECHNICAL ENGINEER OF RECORD (OR REPRESENTATIVE THEREOF) IS SATISFIED WITH THE LEVEL OF COMPACTION.

THE RESISTIVITY OF A PROJECT SITE MAY CHANGE OVER TIME DUE TO THE USE FOR LARGE SYSTEMS, CONVEYOR SYSTEMS, BACKHOES WITH LONG REACHES OR DRAGLINES WITH STONE BUCKETS MAY BE USED TO PLACE BACKFILL, ONCE MINIMUM COVER FOR CONSTRUCTION LOADING ACROSS THE ENTIRE WIDTH OF THE SYSTEM IS REACHED. ADVANCE THE EQUIPMENT TO THE END OF THE RECENTLY PLACED FILL, AND BEGIN THE SEQUENCE AGAIN UNTIL THE SYSTEM IS COMPLETELY BACKFILLED. THIS TYPE OF CONSTRUCTION SEQUENCE PROVIDES ROOM FOR STOCKPILED BACKFILL DIRECTLY BEHIND THE BACKHOF, AS WELL AS THE MOVEMENT OF CONSTRUCTION TRAFFIC. MATERIAL STOCKPILES ON TOP OF THE BACKFILLED DETENTION SYSTEM SHOULD BE LIMITED TO 8- TO 10-FEET HIGH AND MUST PROVIDE BALANCED LOADING ACROSS ALL BARRELS. TO DETERMINE THE PROPER COVER OVER THE PIPES TO ALLOW THE MOVEMENT OF CONSTRUCTION EQUIPMENT SEE TABLE 1, OR CONTACT YOUR LOCAL CONTECH SALES ENGINEER.

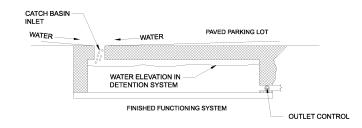

TYPICAL BACKFILL SEQUENCE

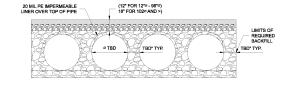
8

9

TYPICALLY, SMALL LIFTS ARE PLACED BETWEEN THE PIPES AND THEN ALLOWED TO SET-UP PRIOR TO THE PLACEMENT OF THE NEXT LIFT. THE ALLOWABLE THICKNESS OF THE CLSM LIFT IS A FUNCTION OF A PROPER BALANCE BETWEEN THE UPLIFT FORCE OF THE CLSM, THE OPPOSING WEIGHT OF THE PIPE, AND THE EFFECT OF OTHER RESTRAINING MEASURES. THE PIPE CAN CARRY LIMITED FLUID PRESSURE WITHOUT PIPE DISTORTION OR DISPLACEMENT, WHICH ALSO AFFECTS THE CLSM LIFT THICKNESS. YOUR LOCAL CONTECH SALES ENGINEER CAN HELP DETERMINE THE PROPER LIFT THICKNESS.

WHEN FLOWABLE FILL IS USED, YOU MUST PREVENT PIPE FLOATATION.




CONSTRUCTION LOADING

ACCUMULATED SEDIMENT AND TRASH CAN TYPICALLY BE EVACUATED TYPICALLY, THE MINIMUM COVER SPECIFIED FOR A PROJECT ASSUMES H-20 THROUGH THE MANHOLE OVER THE OUTLET ORIFICE. IF MAINTENANCE IS NOT LIVE LOAD. BECAUSE CONSTRUCTION LOADS OFTEN EXCEED DESIGN LIVE PERFORMED AS RECOMMENDED, SEDIMENT AND TRASH MAY ACCUMULATE IN LOADS, INCREASED TEMPORARY MINIMUM COVER REQUIREMENTS ARE FRONT OF THE OUTLET ORIFICE. MANHOLE COVERS SHOULD BE SECURELY SEATED FOLLOWING CLEANING ACTIVITIES. CONTECH SUGGESTS THAT ALL NECESSARY. SINCE CONSTRUCTION EQUIPMENT VARIES FROM JOB TO JOB. SYSTEMS BE DESIGNED WITH AN ACCESS/INSPECTION MANHOLE SITUATED AT IT IS BEST TO ADDRESS EQUIPMENT SPECIFIC MINIMUM COVER OR NEAR THE INLET AND THE OUTLET ORIFICE. SHOULD IT BE NECESSARY TO REQUIREMENTS WITH YOUR LOCAL CONTECH SALES ENGINEER DURING GET INSIDE THE SYSTEM TO PERFORM MAINTENANCE ACTIVITIES, ALL APPROPRIATE PRECAUTIONS REGARDING CONFINED SPACE ENTRY AND OSHA YOUR PRE-CONSTRUCTION MEETING. REGULATIONS SHOULD BE FOLLOWED.

ADDITIONAL CONSIDERATIONS

BECAUSE MOST SYSTEMS ARE CONSTRUCTED BELOW-GRADE, RAINFALL AS PART OF THE MAINTENANCE PROGRAM FOR THE SYSTEM. CAN RAPIDLY FILL THE EXCAVATION; POTENTIALLY CAUSING FLOATATION MAINTAINING AN UNDERGROUND DETENTION OR INFILTRATION SYSTEM IS AND MOVEMENT OF THE PREVIOUSLY PLACED PIPES. TO HELP MITIGATE EASIEST WHEN THERE IS NO FLOW ENTERING THE SYSTEM. FOR THIS POTENTIAL PROBLEMS, IT IS BEST TO START THE INSTALLATION AT THE REASON. IT IS A GOOD IDEA TO SCHEDULE THE CLEANOUT DURING DRY DOWNSTREAM END WITH THE OUTLET ALREADY CONSTRUCTED TO ALLOW WEATHER A ROUTE FOR THE WATER TO ESCAPE. TEMPORARY DIVERSION MEASURES THE FOREGOING INSPECTION AND MAINTENANCE EFFORTS HELP ENSURE MAY BE REQUIRED FOR HIGH FLOWS DUE TO THE RESTRICTED NATURE OF THE OUTLET PIPE.

REVISION DESCRIPTION

The design and information shown on this drawing is provided as a service to the project owner, engineer and contractor by Contech Engineered Solutions LLC ("Contech"). Neither this - drawing, nor any part (thereof, may be used, reproduced or		
modified in any manner without the prior written consent of Contech. Failure to comply is done at the user's own risk and Contech expressly disclaims any liability or responsibility for such use.		
If discrepancies between the supplied information upon which the drawing is based and actual field conditions are encountered as site work progresses, these discrepancies must be reported to Contech immediate/for re-evaluation of the design. Contech		
accepts no liability for designs based on missing, incomplete or	DATE	

	ENGINEERED SOLUTIONS LLC www.ContechES.com
	9025 Centre Pointe Dr., Suite 400, West Chester, OH 45069
BY	800-338-1122 513-645-7000 513-645-7993 FAX

DYODS

DRAWING

EMBANKMEN

15

6

DYO36256 20-001 Harvest Landing Reta Site 1-Southerly Cha Perris, CA DETENTION SYS

CMP DETENTION SYSTEM INSPECTION AND MAINTENANCE

UNDERGROUND STORMWATER DETENTION AND INFILTRATION SYSTEMS MUST BE INSPECTED AND MAINTAINED AT REGULAR INTERVALS FOR PURPOSES OF PERFORMANCE AND LONGEVITY.

INSPECTION

INSPECTION IS THE KEY TO EFFECTIVE MAINTENANCE OF CMP DETENTION SYSTEMS AND IS EASILY PERFORMED. CONTECH RECOMMENDS ONGOING, ANNUAL INSPECTIONS. SITES WITH HIGH TRASH LOAD OR SMALL OUTLET CONTROL ORIFICES MAY NEED MORE FREQUENT INSPECTIONS. THE RATE AT WHICH THE SYSTEM COLLECTS POLLUTANTS WILL DEPEND MORE ON SITE SPECIFIC ACTIVITIES RATHER THAN THE SIZE OR CONFIGURATION OF THE SYSTEM.

INSPECTIONS SHOULD BE PERFORMED MORE OFTEN IN EQUIPMENT WASHDOWN AREAS, IN CLIMATES WHERE SANDING AND/OR SALTING OPERATIONS TAKE PLACE, AND IN OTHER VARIOUS INSTANCES IN WHICH ONE WOULD EXPECT HIGHER ACCUMULATIONS OF SEDIMENT OR ABRASIVE/ CORROSIVE CONDITIONS. A RECORD OF EACH INSPECTION IS TO BE MAINTAINED FOR THE LIFE OF THE SYSTEM

MAINTENANCE

CMP DETENTION SYSTEMS SHOULD BE CLEANED WHEN AN INSPECTION REVEALS ACCUMULATED SEDIMENT OR TRASH IS CLOGGING THE DISCHARGE ORIFICE.

ANNUAL INSPECTIONS ARE BEST PRACTICE FOR ALL UNDERGROUND SYSTEMS. DURING THIS INSPECTION, IF EVIDENCE OF SALTING/DE-ICING AGENTS IS OBSERVED WITHIN THE SYSTEM, IT IS BEST PRACTICE FOR THE SYSTEM TO BE RINSED, INCLUDING ABOVE THE SPRING LINE SOON AFTER THE SPRING THAW

UNDERGROUND PIPE SYSTEMS USED FOR STORMWATER STORAGE CONTINUE TO FUNCTION AS INTENDED BY IDENTIFYING RECOMMENDED REGULAR INSPECTION AND MAINTENANCE PRACTICES. INSPECTION AND MAINTENANCE RELATED TO THE STRUCTURAL INTEGRITY OF THE PIPE OR THE SOUNDNESS OF PIPE JOINT CONNECTIONS IS BEYOND THE SCOPE OF THIS GUIDE.

il Center and Business Park	PROJECT No.: 24609	SEQ. 1 362	No.: 256	DATE: 10/2/2024	
ambers	DESIGNED: DYO		DRAWN: DYO		
	CHECKED: DYO		APPF	ROVED: DYO	
STEM	SHEET NO .:			1	

LEGEND

_

_

1025)	EXISTING CONTOUR
025	PROPOSED CONTOUR
\land	RETAINING WALL
X	FENCE
	EDGE OF PAVEMENT
-	SIGN
O MH	MANHOLE
	RIGHT OF WAY
	EASEMENT
	PARCEL LINE
	PARCEL MAP BOUNDARY
	STREET CENTER LINE
	SCREEN WALL
	COMBINATION SCREEN/RETAINING WALL
	EXISTING LOT LINE
	RIDGE LINE
	RIBBON GUTTER
\sim	FLOW ARROW
	PROPOSED EDGE OF PAVEMENT
	EXISTING WATER LINE
- W	PROPOSED WATER LINE
-SS	EXISTING SWR LINE
-SS	PROPOSED SEWER LINE
-SD	EXISTING STORM DRAIN PIPE
-SD	PROPOSED STORM DRAIN PIPE
—E— —	EXISTING OVERHEAD LINES
	CUT/FILL LINE
Ϋ́	SLOPE SYMBOL

ZONING ORDINANCE

EXISTING ZONING:

HARVEST LANDING SPECIFIC PLANS - MULTIPLE BUSINESS USE (MBU)

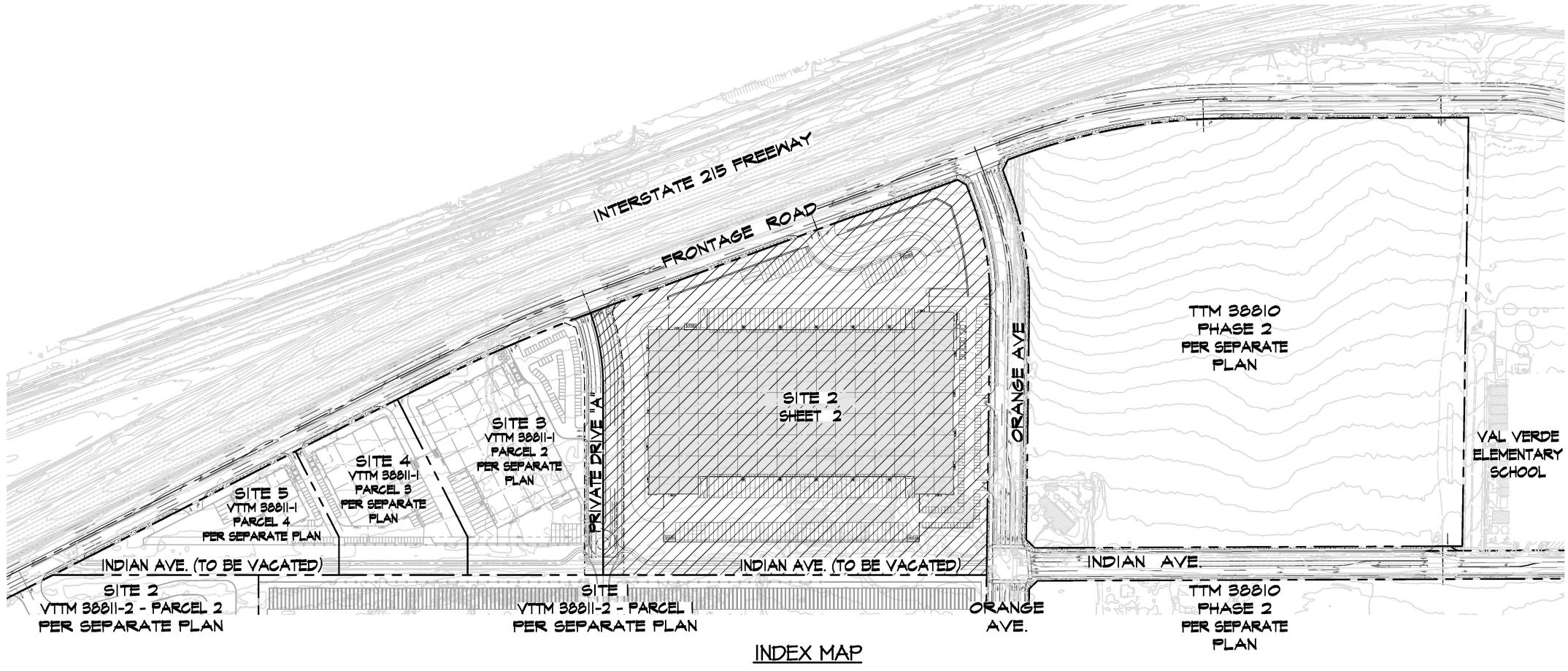
HARVEST LANDING SPECIFIC PLANS - MULTIPLE BUSINESS USE (MBU)

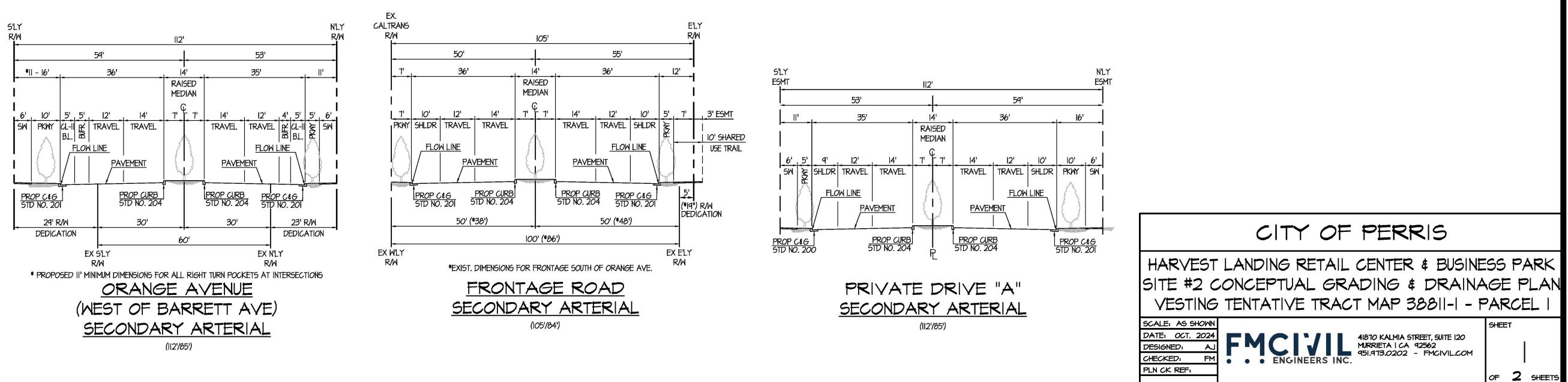
ASSESSOR'S PARCEL NUMBERS: 305-100-028, 305-170-018, 305-100-008, \$ 305-100-009

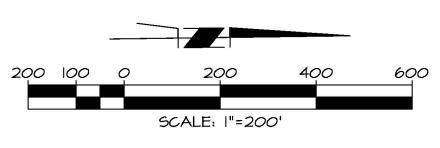
LEGAL DESCRIPTION

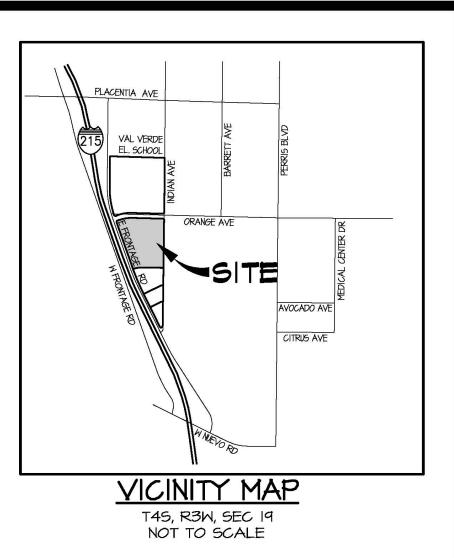
PARCELS 2-5:

(APNS:305-100-028, 305-170-018, 305-100-008, 305-100-009)


THAT PORTION OF THE NORTHWEST QUARTER OF SECTION 19, TOWNSHIP 4 SOUTH, RANGE 3 WEST, SAN BERNARDINO BASE AND MERIDIAN, WHICH LIES EASTERLY OF STATE HIGHWAY 395 AS CONVEYED TO THE STATE OF CALIFORNIA BY DEED RECORDED APRIL 28, 1952 AS INSTRUMENT NO. 18008.


EXCEPTING THE NORTH 30 FEET IN ORANGE AVENUE, THE EAST 30 FEET IN INDIAN AVENUE AND THE SOUTH 30 FEET IN CITRUS AVENUE.


ALSO EXCEPTING THEREFROM THE PORTION DESCRIBED IN DEED RECORDED DECEMBER 21, 1965 AS INSTRUMENT NO. 142400 AND IN DEED RECORDED MARCH 13, 1969 AS INSTRUMENT NO. 24345, RECORDS OF RIVERSIDE COUNTY.


ALSO EXCEPTING THEREFROM THOSE PORTIONS CONVEYED TO THE STATE OF CALIFORNIA BY DEEDS RECORDED MARCH 22, 1992, AS INSTRUMENT NOS. 94602 AND 94603.

IN THE CITY OF PERRIS, COUNTY OF RIVERSIDE, STATE OF CALIFORNIA HARVEST LANDING RETAIL CENTER & BUSINESS PARK SITE #2 CONCEPTUAL GRADING & DRAINAGE PLAN VESTING TENTATIVE TRACT MAP 38811-1 - PARCEL I

APPLICANT/OWNER

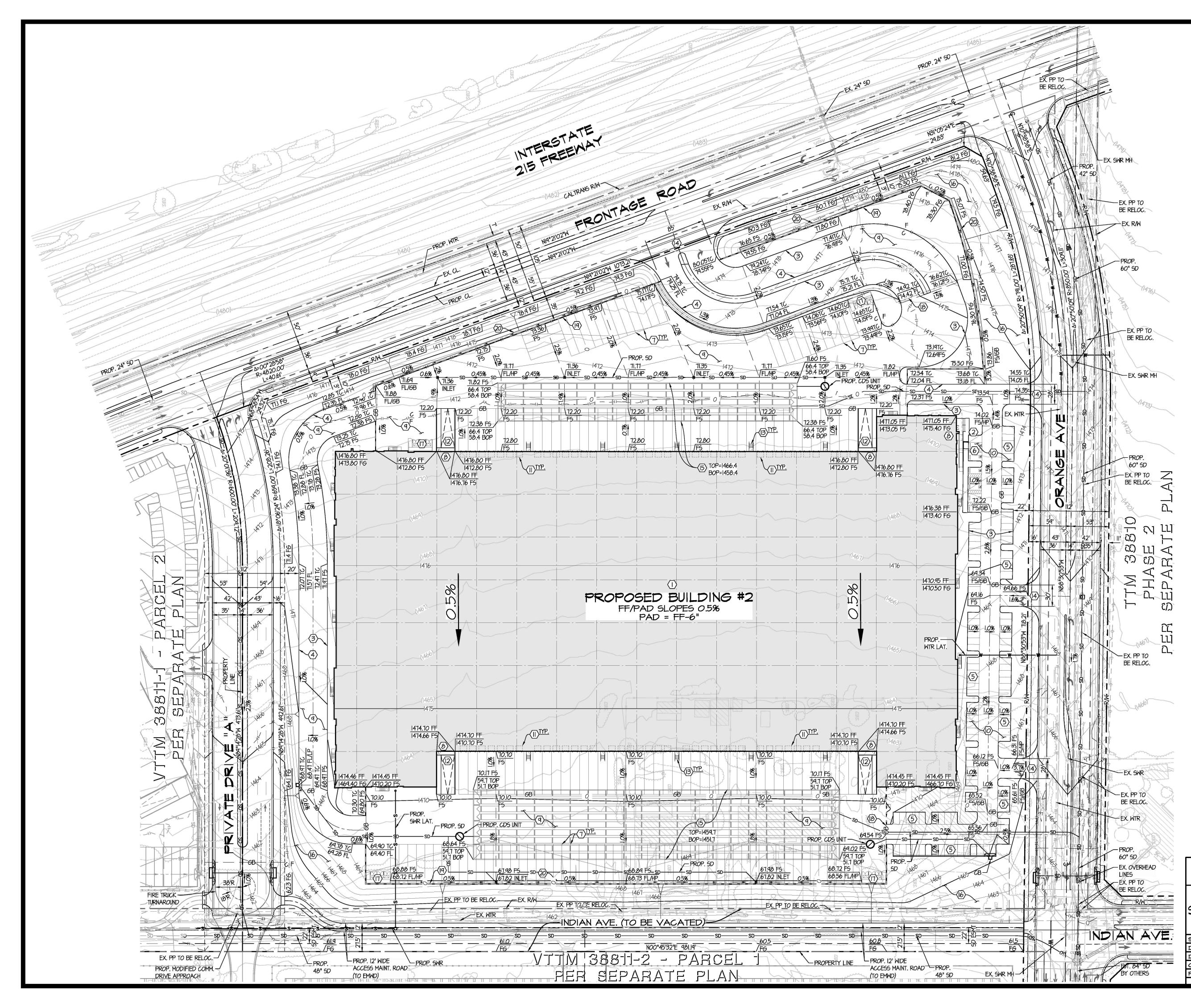
HOWARD INDUSTRIAL PARTNERS 1944 NORTH TUSTIN STREET, SUITE 122 ORANGE, CA 92865 CONTACT: TIM HOWARD (TEL)714-769-9155

ENGINEER

FMCIVIL ENGINEERS INC. 41870 KALMIA ST., SUITE 120 MURRIETA, CA 92562 CONTACT: FRANCISCO MARTINEZ (TEL)951-973-0202

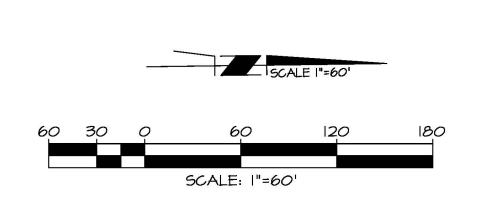
ARCHITECT

AO ARCHITECTURE 144 NORTH STREET ORANGE, CA 92866 CONTACT: DAN MACDAVID (TEL)714-639-9860


EARTHWORK ESTIMATE:

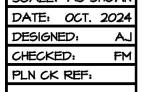
 RAW CUT:
 2,780 CY

 RAW FILL:
 192,100 CY


 NET:
 189,320 CY

HAUL TRIPS: ASSUMED (13 CY PER TRIP) = 14,564

SITE PLAN KEYNOTES


- PAINTED CONCRETE TILT-UP WAREHOUSE / OFFICE / MANUFACTURING FACILITY. BUILDING TO BE DESIGNED PER ARCHITECT'S PLANS
- $\langle 2 \rangle$ ON SITE ACCESSIBLE SIDEWALK AND CURB RAMPS.
- 3 CONCRETE CURB
- $\langle 4 \rangle$ CONCRETE CURB & GUTTER
- (5) STANDARD PARKING STALLS STRIPE PER STANDARDS SHOWN ON ARCHITECT'S PLANS
- $\langle 6 \rangle$ Handicap Parking Stalls Stripe per Standards Shown on Architect's plans
- (7) TRAILER / TRACTOR PARKING STALLS STRIPE PER STANDARDS SHOWN ON ARCHITECT'S PLANS
- $\langle \overline{\delta} \rangle$ ACCESSIBLE BUILDING ENTRY WITH ADJACENT BICYCLE RACKS PER ARCHITECT'S PLANS
- (9) PORTLAND CONC. CEMENT (PCC) PAVED TRUCK YARD ARCHITECT'S PLANS
- (O) PORTLAND CONC. CEMENT (PCC) PAVED AUTO PARKING ARCHITECT'S PLANS
- (II) DOCK HIGH TRUCK DOOR PER ARCHITECT'S PLANS
- (2) GRADE LEVEL RAMP DOOR PER ARCHITECT'S PLANS
- (3) EXTERIOR MAN DOOR AND STAIRS WOUARD POST PER ARCHITECT'S PLANS
- (14) COMMERCIAL DRIVEWAY APPROACH PER RIVERSIDE COUNTY STD.201A, WITH DECORATIVE CONCRETE PAVING PER ARCHITECT'S PLANS
- (15) UNDERGROUND DETENTION CHAMBER SYSTEM 96" CMP TOP AND BOTTOM OF PIPE (BOP) ELEVATION PER PLAN
- (6) LANDSCAPE AREA PER LANDSCAPE ARCHITECT'S PLANS
- (T) APPROXIMATE LOCATION OF TRASH ENCLOSURE
- (B) ENTRY GATE PER ARCHITECT'S PLANS
- (9) SCREEN WALL PER ARCHITECT'S PLANS (COMBO RETAINING)
- O CONCRETE RIBBON GUTTER/SWALE

HARVEST LANDING RETAIL CENTER & BUSINESS PARK SITE #2 CONCEPTUAL GRADING & DRAINAGE PLAN VESTING TENTATIVE TRACT MAP 38811-1 - PARCEL I SCALE: AS SHOWN

> FMCI/IL ENGINEERS INC.

41870 KALMIA STREET, SUITE 120 MURRIETA | CA 92562 1 951.973.0202 - FMCIVIL.COM .

M 2 of 2 sheets

CALCULATION DETAILS • LOADING = HS20/HS25 • APPROX. LINEAR FOOTAGE = 4,651 LF

STORAGE SUMMARY

- STORAGE VOLUME REQUIRED = N/A
- PIPE STORAGE VOLUME = 233,785 CF
- BACKFILL STORAGE VOLUME = 0 CF
- TOTAL STORAGE PROVIDED = 233,785 CF

PIPE DETAILS

- DIAMETER = 96"
- CORRUGATION = 5x1
- GAGE = 16
- COATING = ALT2
- WALL TYPE = SOLID
- BARREL SPACING = 36"

BACKFILL DETAILS

- WIDTH AT ENDS = 12"
- ABOVE PIPE = 0"

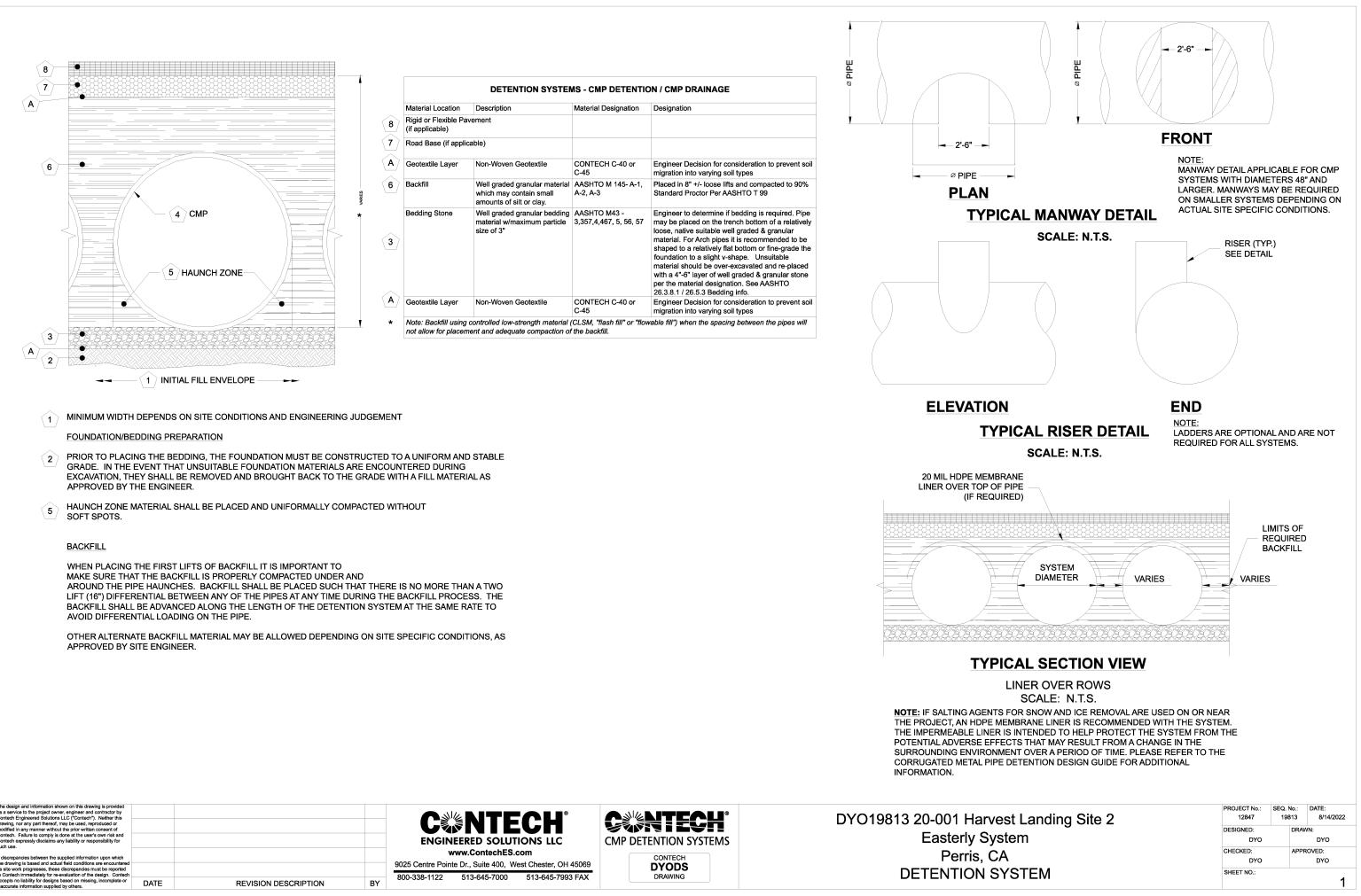
• WIDTH AT SIDES = 12" • BELOW PIPE = 0"

NOTES

- ALL RISER AND STUB DIMENSIONS ARE TO CENTERLINE. ALL ELEVATIONS, DIMENSIONS, AND LOCATIONS OF RISERS AND INLETS, SHALL BE VERIFIED BY THE ENGINEER OF RECORD PRIOR TO RELEASING FOR FABRICATION.
- ALL FITTINGS AND REINFORCEMENT COMPLY WITH ASTM A998.
- ALL RISERS AND STUBS ARE $2\frac{2}{3}$ " x $\frac{1}{2}$ " CORRUGATION AND 16 GAGE UNLESS OTHERWISE NOTED. • RISERS TO BE FIELD TRIMMED TO GRADE.
- RISERS TO BE FIELD TRIMMED TO GRADE. • QUANTITY OF PIPE SHOWN DOES NOT PROVIDE
- QUANITIY OF PIPE SHOWN DOES NOT PROVIDE EXTRA PIPE FOR CONNECTING THE SYSTEM TO EXISTING PIPE OR DRAINAGE STRUCTURES. OUR SYSTEM AS DETAILED PROVIDES NOMINAL INLET AND/OR OUTLET PIPE STUB FOR CONNECTION TO EXISTING DRAINAGE FACILITIES. IF ADDITIONAL PIPE IS NEEDED IT IS THE RESPONSIBILITY OF THE CONTRACTOR.
- BAND TYPE TO BE DETERMINED UPON FINAL DESIGN.
 THE PROJECT SUMMARY IS REFLECTIVE OF THE DYODS DESIGN, QUANTITIES ARE APPROX. AND SHOULD BE VERIFIED UPON FINAL DESIGN AND APPROVAL. FOR EXAMPLE, TOTAL EXCAVATION DOES
- NOT CONSIDER ALL VARIABLES SUCH AS SHORING AND ONLY ACCOUNTS FOR MATERIAL WITHIN THE ESTIMATED EXCAVATION FOOTPRINT. • THESE DRAWINGS ARE FOR CONCEPTUAL PURPOSES
- THESE DRAWINGS ARE FOR CONCEPTUAL PORPOSES AND DO NOT REFLECT ANY LOCAL PREFERENCES OR REGULATIONS. PLEASE CONTACT YOUR LOCAL CONTECH REP FOR MODIFICATIONS.

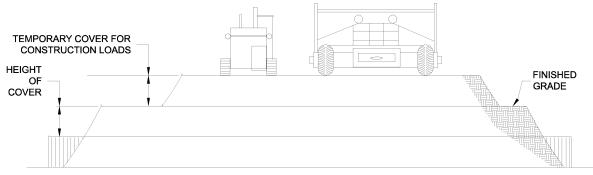
The design and information shown on this drawing is provided as a service to the project owner, engineer and contractor by Contech Engineered Solutions LLC ('Contech'). Neither this drawing, nor any part thereof, may be used, reproduced or contech. Failure to comply is done at the user's own risk and Contech expressly disclaims any liability or responsibility for			ENGINEERED SOLUTIONS LLC	CONTECH® CMP DETENTION SYSTEMS	DYO19813 20-001 Harvest Easterly Syste
If discrepancies between the supplied information upon which the drawing is based and actual field conditions are encountered as site work progresses, these discrepancies must be reported to Contech immediately for re-evaluation of the design. Contech inaccurate information supplied by others.	REVISION DESCRIPTION	BY	www.ContechES.com 9025 Centre Pointe Dr., Suite 400, West Chester, OH 45069 800-338-1122 513-645-7000 513-645-7993 FAX	CONTECH DYODS DRAWING	Perris, CA DETENTION SYS

.0-,96


- 511'-6" -

ASSEMBLY

SCALE: 1" = 50'


Landing Site 2	PROJECT No.: SEQ. 12847 19			
em	DESIGNED: DYO	DF	DRAWN: DYO	
	CHECKED: DYO	AF	PROVED: DYO	
STEM	SHEET NO .:		1	

			\geq
			\geq
			\sum
			\geq
			\sum
			>
			\sum
			-

reported . Contech _ 		
	DATE	

www.ContechES.com
9025 Centre Pointe Dr., Suite 400, West Chester, OH

FOR TEMPORARY CONSTRUCTION VEHICLE LOADS, AN EXTRA AMOUNT OF COMPACTED COVER MAY BE REQUIRED OVER THE TOP OF THE PIPE. THE HEIGHT-OF-COVER SHALL MEET THE MINIMUM REQUIREMENTS SHOWN IN THE TABLE BELOW. THE USE OF HEAVY CONSTRUCTION EQUIPMENT NECESSITATES GREATER PROTECTION FOR THE PIPE THAN FINISHED GRADE COVER MINIMUMS FOR NORMAL HIGHWAY TRAFFIC.

PIPE SPAN,	AXLE LOADS (kips)							
INCHES	18-50	50-75	75-110	110-150				
	MINIMUM COVER (FT)							
12-42	2.0	2.5	3.0	3.0				
48-72	3.0	3.0	3.5	4.0				
78-120	3.0	3.5	4.0	4.0				
126-144	3.5	4.0	4.5	4.5				

*MINIMUM COVER MAY VARY, DEPENDING ON LOCAL CONDITIONS. THE CONTRACTOR MUST PROVIDE THE ADDITIONAL COVER REQUIRED TO AVOID DAMAGE TO THE PIPE. MINIMUM COVER IS MEASURED FROM THE TOP OF THE PIPE TO THE TOP OF THE MAINTAINED CONSTRUCTION ROADWAY SURFACE.

CONSTRUCTION LOADING DIAGRAM

SCALE: N.T.S.

REVISION DESCRIPTION

SPECIFICATION FOR DESIGNED DETENTION SYSTEM:

SCOPE

THIS SPECIFICATION COVERS THE MANUFACTURE AND INSTALLATION OF THE DESIGNED DETENTION SYSTEM DETAILED IN THE PROJECT PLANS.

MATERIAL

THE MATERIAL SHALL CONFORM TO THE APPLICABLE REQUIREMENTS LISTED BELOW

ALUMINIZED TYPE 2 STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-274 OR ASTM A-92.

THE GALVANIZED STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-218 OR ASTM A-929.

THE POLYMER COATED STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-246 OR ASTM A-742.

THE ALUMINUM COILS SHALL CONFORM TO THE APPLICABLE OF AASHTO M-197 OR ASTM B-744.

CONSTRUCTION LOADS

CONSTRUCTION LOADS MAY BE HIGHER THAN FINAL LOADS. FOLLOW THE MANUFACTURER'S OR NCSPA GUIDELINES.

DATE

NOTE:	
THESE DRAWINGS ARE FOR CONCEPTUAL	
PURPOSES AND DO NOT REFLECT ANY LOG	CAL
PREFERENCES OR REGULATIONS. PLEASE	
CONTACT YOUR LOCAL CONTECH REP FOR	र
MODIFICATIONS.	
The design and information shown on this drawing is provided as a service to the project owner, engineer and contractor by	
Contech Engineered Solutions LLC ("Contech"). Neither this	
drawing, nor any part thereof, may be used, reproduced or	

THE PIPE SHALL BE MANUFACTURED IN ACCORDANCE TO THE APPLICABLE REQUIREMENTS LISTED BELOW:

ALUMINIZED TYPE 2: AASHTO M-36 OR ASTM A-760

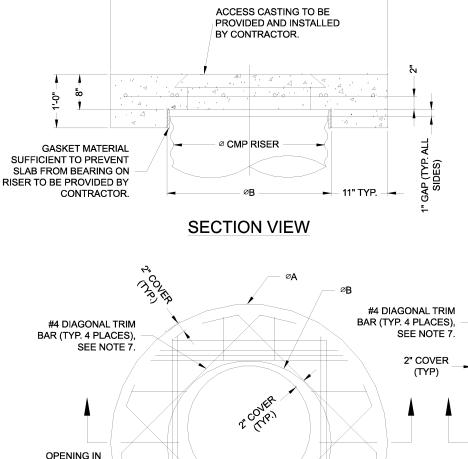
GALVANIZED: AASHTO M-36 OR ASTM A-760

AFFOLICYANGINE COATED: AASHTO M-245 OR ASTM A-762

ALUMINUM: AASHTO M-196 OR ASTM B-745

APPLICABLE

BY


HANDLING AND ASSEMBLY SHALL BE IN ACCORDANCE WITH NCSP'S (NATIONAL CORRUGATED STEEL AFPRECABSEDCIATION) FOR ALUMINIZED TYPE 2. GALVANIZED OR POLYMER COATED STEEL. SHALL BE IN ACCORDANCE WITH THE MANUFACTURER'S RECOMMENDATIONS FOR ALUMINUM PIPE.

REQUIREMENTS

INSTALLATION SHALL BE IN ACCORDANCE WITH AASHTO STANDARD SPECIFICATIONS FOR HIGHWAY BRIDGES, SECTION 26, DIVISION II DIVISION II OR ASTM A-798 (FOR ALUMINIZED TYPE 2, GALVANIZED OR POLYMER COATED STEEL) OR ASTM B-788 (FOR ALUMINUM PIPE) AND IN CONFORMANCE WITH THE PROJECT PLANS AND SPECIFICATIONS. IF THERE ARE ANY INCONSISTENCIES OR CONFLICTS THE CONTRACTOR SHOULD DISCUSS AND RESOLVE WITH THE SITE ENGINEER.

IT IS ALWAYS THE RESPONSIBILITY OF THE CONTRACTOR TO FOLLOW OSHA GUIDELINES FOR SAFE PRACTICES.

STANDARD REINFORCING, SEE TABLE

STANDARD REINFORCING, SEE TABLE

OPENING IN

PROTECTION SLAB FOR

CASTING

ROUND OPTION PLAN VIEW

NOTES:

PROTECTION SLAB FOR

// N 17

C NTECH

CMP DETENTION SYSTEMS

CONTECH

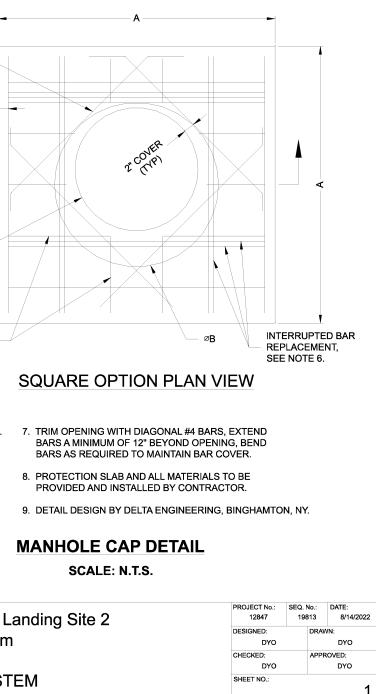
DYODS

DRAWING

CASTING

INTERRUPTED BAR

REPLACEMENT, SEE

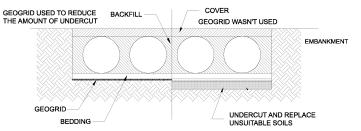

NOTE 6.

- 1. DESIGN IN ACCORDANCE WITH AASHTO, 17th EDITION.
- 2. DESIGN LOAD HS25.
- 3. EARTH COVER = 1' MAX.
- 4. CONCRETE STRENGTH = 3,500 psi
- 5. REINFORCING STEEL = ASTM A615, GRADE 60.
- 6. PROVIDE ADDITIONAL REINFORCING AROUND OPENINGS EQUAL TO THE BARS INTERRUPTED, HALF EACH SIDE. ADDITIONAL BARS TO BE IN THE SAME PLANE.

DYO19813 20-001 Harvest Landing Site 2 Easterly System Perris, CA **DETENTION SYSTEM**

	RE	EINFO	RCING TABLE	
Ø CMP RISER	Α	ØB	REINFORCING	**BEARING PRESSURE (PSF)
24"	∅ 4' 4'X4'	26"	#5 @ 12" OCEW #5 @ 12" OCEW	2,410 1,780
30"	∅ 4'-6" 4'-6" X 4'-6"	32"	#5 @ 12" OCEW #5 @ 12" OCEW	2,120 1,530
36"	∞ 5' 5' X 5'	38"	#5 @ 10" OCEW #5 @ 10" OCEW	1,890 1,350
42"	∅ 5'-6" 5'-6" X 5'-6"	44"	#5 @ 10" OCEW #5 @ 9" OCEW	1,720 1,210
48"	∞6'6' X6'	50"	#5 @ 9" OCEW #5 @ 8" OCEW	1,600 1,100

** ASSUMED SOIL BEARING CAPACITY



PROPER INSTALLATION OF A FLEXIBLE UNDERGROUND DETENTION SYSTEM WILL ENSURE LONG-TERM PERFORMANCE. THE CONFIGURATION OF THESE SYSTEMS OFTEN REQUIRES SPECIAL CONSTRUCTION PRACTICES THAT DIFFER FROM CONVENTIONAL FLEXIBLE PIPE CONSTRUCTION. CONTECH ENGINEERED SOLUTIONS STRONGLY SUGGESTS SCHEDULING A PRE-CONSTRUCTION MEETING WITH YOUR LOCAL SALES ENGINEER TO DETERMINE IF ADDITIONAL MEASURES, NOT COVERED IN THIS GUIDE, ARE APPROPRIATE FOR YOUR SITE.

FOUNDATION

CONSTRUCT A FOUNDATION THAT CAN SUPPORT THE DESIGN LOADING APPLIED BY THE PIPE AND ADJACENT BACKFILL WEIGHT AS WELL AS MAINTAIN ITS INTEGRITY DURING CONSTRUCTION.

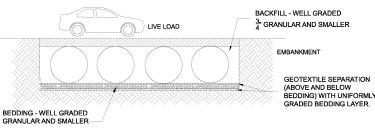
IF SOFT OR UNSUITABLE SOILS ARE ENCOUNTERED, REMOVE THE POOR SOILS DOWN TO A SUITABLE DEPTH AND THEN BUILD UP TO THE APPROPRIATE ELEVATION WITH A COMPETENT BACKFILL MATERIAL. THE STRUCTURAL FILL MATERIAL GRADATION SHOULD NOT ALLOW THE MIGRATION OF FINES, WHICH CAN CAUSE SETTLEMENT OF THE DETENTION SYSTEM OR PAVEMENT ABOVE. IF THE STRUCTURAL FILL MATERIAL IS NOT COMPATIBLE WITH THE UNDERLYING SOILS AN ENGINEERING FABRIC SHOULD BE USED AS A SEPARATOR. IN SOME CASES, USING A STIFF REINFORCING GEOGRID REDUCES OVER EXCAVATION AND REPLACEMENT FILL QUANTITIES.

GRADE THE FOUNDATION SUBGRADE TO A UNIFORM OR SLIGHTLY SLOPING GRADE. IF THE SUBGRADE IS CLAY OR RELATIVELY NON-POROUS AND THE CONSTRUCTION SEQUENCE WILL LAST FOR AN EXTENDED PERIOD OF TIME, IT IS BEST TO SLOPE THE GRADE TO ONE END OF THE SYSTEM. THIS WILL ALLOW EXCESS WATER TO DRAIN QUICKLY, PREVENTING SATURATION OF THE SUBGRADE.

GEOMEMBRANE BARRIER

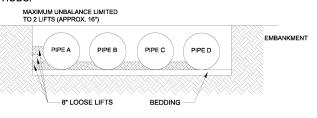
A SITE'S RESISTIVITY MAY CHANGE OVER TIME WHEN VARIOUS TYPES OF SALTING AGENTS ARE USED, SUCH AS ROAD SALTS FOR DEICING AGENTS. IF SALTING AGENTS ARE USED ON OR NEAR THE PROJECT SITE, A GEOMEMBRANE BARRIER IS RECOMMENDED WITH THE SYSTEM. THE GEOMEMBRANE LINER IS INTENDED TO HELP PROTECT THE SYSTEM FROM THE POTENTIAL ADVERSE EFFECTS THAT MAY RESULT FROM THE USE OF SUCH AGENTS INCLUDING PREMATURE CORROSION AND REDUCED ACTUAL SERVICE LIFE.

THE PROJECT'S ENGINEER OF RECORD IS TO EVALUATE WHETHER SALTING AGENTS WILL BE USED ON OR NEAR THE PROJECT SITE, AND USE HIS/HER BEST JUDGEMENT TO DETERMINE IF ANY ADDITIONAL PROTECTIVE MEASURES ARE REQUIRED. BELOW IS A TYPICAL DETAIL SHOWING THE PLACEMENT OF A GEOMEMBRANE BARRIER FOR PROJECTS WHERE SALTING AGENTS ARE USED ON OR NEAR THE PROJECT SITE.


20 MIL PE IMPERMEABLE LINER OVER TOP OF PIPE 0 18 FOR 102× AND >) 18 FOR 102× AND >)

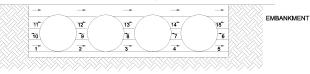
REVISION DESCRIPTION

IN-SITU TRENCH WALL


IF EXCAVATION IS REQUIRED, THE TRENCH WALL NEEDS TO BE CAPABLE OF SUPPORTING THE LOAD THAT THE PIPE SHEDS AS THE SYSTEM IS LOADED. IF SOILS ARE NOT CAPABLE OF SUPPORTING THESE LOADS, THE PIPE CAN DEFLECT. PERFORM A SIMPLE SOIL PRESSURE CHECK USING THE APPLIED LOADS TO DETERMINE THE LIMITS OF EXCAVATION BEYOND THE SPRING LINE OF THE OUTER MOST PIPES.

IN MOST CASES THE REQUIREMENTS FOR A SAFE WORK ENVIRONMENT AND PROPER BACKFILL PLACEMENT AND COMPACTION TAKE CARE OF THIS CONCERN.

BACKFILL PLACEMENT

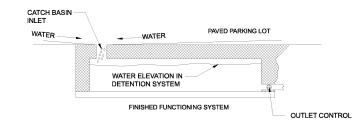

MATERIAL SHALL BE WORKED INTO THE PIPE HAUNCHES BY MEANS OF SHOVEL-SLICING, RODDING, AIR TAMPER, VIBRATORY ROD, OR OTHER EFFECTIVE METHODS.


IF AASHTO T99 PROCEDURES ARE DETERMINED INFEASIBLE BY THE GEOTECHNICAL ENGINEER OF RECORD, COMPACTION IS CONSIDERED ADEQUATE WHEN NO FURTHER YIELDING OF THE MATERIAL IS OBSERVED UNDER THE COMPACTOR, OR UNDER FOOT, AND THE GEOTECHNICAL ENGINEER OF RECORD (OR REPRESENTATIVE THEREOF) IS SATISFIED WITH THE LEVEL OF COMPACTION.

FOR LARGE SYSTEMS, CONVEYOR SYSTEMS, BACKHOES WITH LONG REACHES OR DRAGLINES WITH STONE BUCKETS MAY BE USED TO PLACE BACKFILL. ONCE MINIMUM COVER FOR CONSTRUCTION LOADING ACROSS THE ENTIRE WIDTH OF THE SYSTEM IS REACHED, ADVANCE THE EQUIPMENT TO THE END OF THE RECENTLY PLACED FILL, AND BEGIN THE SEQUENCE AGAIN UNTIL THE SYSTEM IS COMPLETELY BACKFILLED. THIS TYPE OF CONSTRUCTION SEQUENCE PROVIDES ROOM FOR STOCKPILED BACKFILL DIRECTLY BEHIND THE BACKHOE, AS WELL AS THE MOVEMENT OF CONSTRUCTION TRAFFIC. MATERIAL STOCKPILES ON TOP OF THE BACKFILLED DETENTION SYSTEM SHOULD BE LIMITED TO 8- TO 10-FEET HIGH AND MUST PROVIDE BALANCED LOADING ACROSS ALL BARRELS. TO DETERMINE THE PROPER COVER OVER THE PIPES TO ALLOW THE MOVEMENT OF CONSTRUCTION EQUIPMENT SEE TABLE 1, OR CONTACT YOUR LOCAL CONTECH SALES ENGINEER.

TYPICAL BACKFILL SEQUENCE

WHEN FLOWABLE FILL IS USED, YOU MUST PREVENT PIPE FLOATATION. TYPICALLY, SMALL LIFTS ARE PLACED BETWEEN THE PIPES AND THEN ALLOWED TO SET-UP PRIOR TO THE PLACEMENT OF THE NEXT LIFT. THE ALLOWABLE THICKNESS OF THE CLSM LIFT IS A FUNCTION OF A PROPER BALANCE BETWEEN THE UPLIFT FORCE OF THE CLSM, THE OPPOSING WEIGHT OF THE PIPE, AND THE EFFECT OF OTHER RESTRAINING MEASURES. THE PIPE CAN CARRY LIMITED FLUID PRESSURE WITHOUT PIPE DISTORTION OR DISPLACEMENT, WHICH ALSO AFFECTS THE CLSM LIFT THICKNESS. YOUR LOCAL CONTECH SALES ENGINEER CAN HELP DETERMINE THE PROPER LIFT THICKNESS.



CONSTRUCTION LOADING

ACCUMULATED SEDIMENT AND TRASH CAN TYPICALLY BE EVACUATED TYPICALLY, THE MINIMUM COVER SPECIFIED FOR A PROJECT ASSUMES H-20 THROUGH THE MANHOLE OVER THE OUTLET ORIFICE. IF MAINTENANCE IS NOT LIVE LOAD. BECAUSE CONSTRUCTION LOADS OFTEN EXCEED DESIGN LIVE PERFORMED AS RECOMMENDED, SEDIMENT AND TRASH MAY ACCUMULATE IN FRONT OF THE OUTLET ORIFICE. MANHOLE COVERS SHOULD BE SECURELY LOADS, INCREASED TEMPORARY MINIMUM COVER REQUIREMENTS ARE SEATED FOLLOWING CLEANING ACTIVITIES. CONTECH SUGGESTS THAT ALL NECESSARY. SINCE CONSTRUCTION EQUIPMENT VARIES FROM JOB TO JOB, SYSTEMS BE DESIGNED WITH AN ACCESS/INSPECTION MANHOLE SITUATED AT IT IS BEST TO ADDRESS EQUIPMENT SPECIFIC MINIMUM COVER OR NEAR THE INLET AND THE OUTLET ORIFICE. SHOULD IT BE NECESSARY TO REQUIREMENTS WITH YOUR LOCAL CONTECH SALES ENGINEER DURING GET INSIDE THE SYSTEM TO PERFORM MAINTENANCE ACTIVITIES, ALL YOUR PRE-CONSTRUCTION MEETING. APPROPRIATE PRECAUTIONS REGARDING CONFINED SPACE ENTRY AND OSHA REGULATIONS SHOULD BE FOLLOWED.

ADDITIONAL CONSIDERATIONS

BECAUSE MOST SYSTEMS ARE CONSTRUCTED BELOW-GRADE, RAINFALL CAN RAPIDLY FILL THE EXCAVATION; POTENTIALLY CAUSING FLOATATION AND MOVEMENT OF THE PREVIOUSLY PLACED PIPES. TO HELP MITIGATE POTENTIAL PROBLEMS, IT IS BEST TO START THE INSTALLATION AT THE DOWNSTREAM END WITH THE OUTLET ALREADY CONSTRUCTED TO ALLOW A ROUTE FOR THE WATER TO ESCAPE. TEMPORARY DIVERSION MEASURES MAY BE REQUIRED FOR HIGH FLOWS DUE TO THE RESTRICTED NATURE OF THE OUTLET PIPE. AROUTE FOR HIGH FLOWS DUE TO THE RESTRICTED NATURE OF THE OUTLET PIPE. AROUTE FOR HIGH FLOWS DUE TO THE RESTRICTED NATURE OF

- L			
C:\EXPORTS\TEMPLATES\CMP	The design and information shown on this drawing is provided		
8	as a service to the project owner, engineer and contractor by		
×	Contech Engineered Solutions LLC ("Contech"). Neither this		
йí	drawing, nor any part thereof, may be used, reproduced or		
5	modified in any manner without the prior written consent of		
2	Contech. Failure to comply is done at the user's own risk and		
Ξ	Contech expressly disclaims any liability or responsibility for		
Ξ	such use.		
5			
Ë.	If discrepancies between the supplied information upon which		
<u>۳</u>	the drawing is based and actual field conditions are encountered		
2	as site work progresses, these discrepancies must be reported		
<u> </u>	to Contech immediately for re-evaluation of the design. Contech		
2	accepts no liability for designs based on missing, incomplete or	DATE	
υ	inaccurate information cumplied by others	DATE	

BY BY

CMP DETENTION SYSTEMS

DRAWING

DYO19813 20-001 Harvest Easterly Syste Perris, CA DETENTION SYS

CMP DETENTION SYSTEM INSPECTION AND MAINTENANCE

UNDERGROUND STORMWATER DETENTION AND INFILTRATION SYSTEMS MUST BE INSPECTED AND MAINTAINED AT REGULAR INTERVALS FOR PURPOSES OF PERFORMANCE AND LONGEVITY.

INSPECTION

INSPECTION IS THE KEY TO EFFECTIVE MAINTENANCE OF CMP DETENTION SYSTEMS AND IS EASILY PERFORMED. CONTECH RECOMMENDS ONGOING, ANNUAL INSPECTIONS. SITES WITH HIGH TRASH LOAD OR SMALL OUTLET CONTROL ORIFICES MAY NEED MORE FREQUENT INSPECTIONS. THE RATE AT WHICH THE SYSTEM COLLECTS POLLUTANTS WILL DEPEND MORE ON SITE SPECIFIC ACTIVITIES RATHER THAN THE SIZE OR CONFIGURATION OF THE SYSTEM.

INSPECTIONS SHOULD BE PERFORMED MORE OFTEN IN EQUIPMENT WASHDOWN AREAS, IN CLIMATES WHERE SANDING AND/OR SALTING OPERATIONS TAKE PLACE, AND IN OTHER VARIOUS INSTANCES IN WHICH ONE WOULD EXPECT HIGHER ACCUMULATIONS OF SEDIMENT OR ABRASIVE/ CORROSIVE CONDITIONS. A RECORD OF EACH INSPECTION IS TO BE MAINTAINED FOR THE LIFE OF THE SYSTEM

MAINTENANCE

CMP DETENTION SYSTEMS SHOULD BE CLEANED WHEN AN INSPECTION REVEALS ACCUMULATED SEDIMENT OR TRASH IS CLOGGING THE DISCHARGE ORIFICE.

ANNUAL INSPECTIONS ARE BEST PRACTICE FOR ALL UNDERGROUND SYSTEMS. DURING THIS INSPECTION, IF EVIDENCE OF SALTING/DE-ICING AGENTS IS OBSERVED WITHIN THE SYSTEM, IT IS BEST PRACTICE FOR THE SYSTEM TO BE RINSED, INCLUDING ABOVE THE SPRING LINE SOON AFTER THE SPRING THAW AS PART OF THE MAINTENANCE PROGRAM FOR THE SYSTEM.

Landing Site 2				EQ. No.: DATE: 19813 8/14/2022		
	DESIGNED: DYO		DRAWN: DYO			
	CHECKED: DYO		APPROVED: DYO			
STEM	SHEET NO .:				1	

CALCULATION DETAILS • LOADING = HS20/HS25 • APPROX. LINEAR FOOTAGE = 2,114 LF

STORAGE SUMMARY

- STORAGE VOLUME REQUIRED = N/A
- PIPE STORAGE VOLUME = 106,261 CF
- BACKFILL STORAGE VOLUME = 0 CF
- TOTAL STORAGE PROVIDED = 106,261 CF

PIPE DETAILS

- DIAMETER = 96"
- CORRUGATION = 5x1
- GAGE = 16
- COATING = ALT2
- WALL TYPE = SOLID
- BARREL SPACING = 36"

BACKFILL DETAILS

• WIDTH AT ENDS = 12"

• ABOVE PIPE = 0"

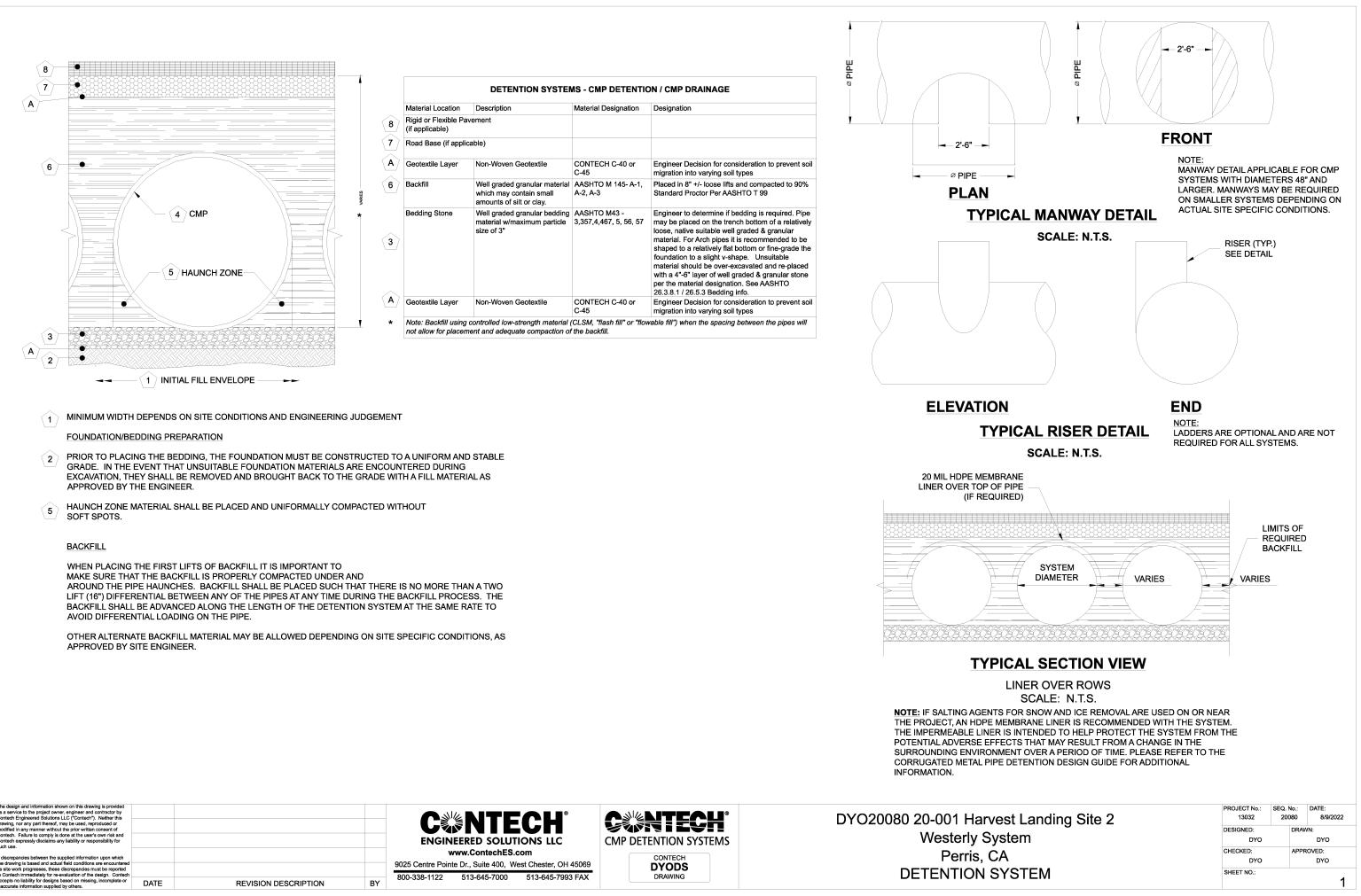
• WIDTH AT SIDES = 12"

• BELOW PIPE = 0"

52'-0"	$\overline{\left\langle \right\rangle}$		 					
	/				418	-0"		

ASSEMBLY SCALE: 1" = 40'

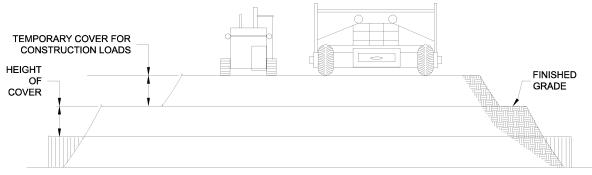
NOTES


- ALL RISER AND STUB DIMENSIONS ARE TO CENTERLINE. ALL ELEVATIONS, DIMENSIONS, AND LOCATIONS OF RISERS AND INLETS, SHALL BE VERIFIED BY THE ENGINEER OF RECORD PRIOR TO RELEASING FOR FABRICATION.
- ALL FITTINGS AND REINFORCEMENT COMPLY WITH ASTM A998.
- ALL RISERS AND STUBS ARE $2\frac{2}{3}$ " x $\frac{1}{2}$ " CORRUGATION AND 16 GAGE UNLESS OTHERWISE NOTED. RISERS TO BE FIELD TRIMMED TO GRADE. QUANTITY OF PIPE SHOWN DOES NOT PROVIDE EXTRA PIPE FOR CONNECTING THE SYSTEM TO
- EXISTING PIPE OR DRAINAGE STRUCTURES. OUR SYSTEM AS DETAILED PROVIDES NOMINAL INLET AND/OR OUTLET PIPE STUB FOR CONNECTION TO EXISTING DRAINAGE FACILITIES. IF ADDITIONAL PIPE IS NEEDED IT IS THE RESPONSIBILITY OF THE CONTRACTOR.
- BAND TYPE TO BE DETERMINED UPON FINAL DESIGN.
 THE PROJECT SUMMARY IS REFLECTIVE OF THE
 DYODS DESIGN, QUANTITIES ARE APPROX. AND SHOULD BE VERIFIED UPON FINAL DESIGN AND APPROVAL. FOR EXAMPLE, TOTAL EXCAVATION DOES NOT CONSIDER ALL VARIABLES SUCH AS SHORING

	NOT CONSIDERALE VARIABLES SUCHAS SHORING
	AND ONLY ACCOUNTS FOR MATERIAL WITHIN THE
	ESTIMATED EXCAVATION FOOTPRINT.
•	THESE DRAWINGS ARE FOR CONCEPTUAL PURPOSES
	AND DO NOT REFLECT ANY LOCAL PREFERENCES OR
	REGULATIONS. PLEASE CONTACT YOUR LOCAL
	CONTECH REP FOR MODIFICATIONS.

-	1						
LATES/CMP	The design and information shown on this drawing is provided as a service to the project owner, engineer and contractor by Contech Engineered Solutions LLC ("Contech"). Neither this drawing, nor any part thereof, may be used, reproduced or modified in any manner without the prior written consent of Contech. Failure to comply its done at the user's own risk and				C NTECH	CENTECH	DYO20080 20-001 Harvest
MP	Contech expressly disclaims any liability or responsibility for				ENGINEERED SOLUTIONS LLC	CMP DETENTION SYSTEMS	Westerly Syste
XPORTS/TE	such use. If discrepancies between the supplied information upon which the drawing is based and actual field conditions are encountered as site work progresses, these discrepancies must be reported to Contech immediately for revaluation of the design. Contech				www.ContechES.com 9025 Centre Pointe Dr., Suite 400, West Chester, OH 45069		Perris, CA DETENTION SYS
ы С	accepts no liability for designs based on missing, incomplete or inaccurate information supplied by others.	DATE	REVISION DESCRIPTION	BY	800-338-1122 513-645-7000 513-645-7993 FAX	DRAWING	DETENTION STS

t Landing Site 2	PROJECT No.: 13032	SEQ. 1 200		DATE: 8/9/202	2
	DESIGNED: DYO		DRAWN: DYO		
	CHECKED: DYO		APPR	oved: Dyo	
STEM	SHEET NO .:				1


		\sum
		\geq
		-

n the supplied information up
d actual field conditions are e
these discrepancies must be
for re-evaluation of the desig
esions based on missing, inco
upplied by others.

REVISION DESCRIPTIO

www.contechilo.com
025 Centre Pointe Dr., Suite 400, West Chester, OH 4

FOR TEMPORARY CONSTRUCTION VEHICLE LOADS, AN EXTRA AMOUNT OF COMPACTED COVER MAY BE REQUIRED OVER THE TOP OF THE PIPE. THE HEIGHT-OF-COVER SHALL MEET THE MINIMUM REQUIREMENTS SHOWN IN THE TABLE BELOW. THE USE OF HEAVY CONSTRUCTION EQUIPMENT NECESSITATES GREATER PROTECTION FOR THE PIPE THAN FINISHED GRADE COVER MINIMUMS FOR NORMAL HIGHWAY TRAFFIC.

PIPE SPAN,	AXLE LOADS (kips)							
INCHES	18-50	50-75	75-110	110-150				
	MI	NIMUM C	OVER (F	ER (FT)				
12-42	2.0	2.5	3.0	3.0				
48-72	3.0	3.0	3.5	4.0				
78-120	3.0	3.5	4.0	4.0				
126-144	3.5	4.0	4.5	4.5				

*MINIMUM COVER MAY VARY, DEPENDING ON LOCAL CONDITIONS. THE CONTRACTOR MUST PROVIDE THE ADDITIONAL COVER REQUIRED TO AVOID DAMAGE TO THE PIPE. MINIMUM COVER IS MEASURED FROM THE TOP OF THE PIPE TO THE TOP OF THE MAINTAINED CONSTRUCTION ROADWAY SURFACE.

CONSTRUCTION LOADING DIAGRAM

SCALE: N.T.S.

REVISION DESCRIPTION

SPECIFICATION FOR DESIGNED DETENTION SYSTEM:

SCOPE

THIS SPECIFICATION COVERS THE MANUFACTURE AND INSTALLATION OF THE DESIGNED DETENTION SYSTEM DETAILED IN THE PROJECT PLANS.

MATERIAL

THE MATERIAL SHALL CONFORM TO THE APPLICABLE REQUIREMENTS LISTED BELOW

ALUMINIZED TYPE 2 STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-274 OR ASTM A-92.

THE GALVANIZED STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-218 OR ASTM A-929.

THE POLYMER COATED STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-246 OR ASTM A-742.

THE ALUMINUM COILS SHALL CONFORM TO THE APPLICABLE OF AASHTO M-197 OR ASTM B-744.

CONSTRUCTION LOADS

CONSTRUCTION LOADS MAY BE HIGHER THAN FINAL LOADS. FOLLOW THE MANUFACTURER'S OR NCSPA GUIDELINES.

DATE

NOTE:	
THESE DRAWINGS ARE FOR CONCEPTU	AL
PURPOSES AND DO NOT REFLECT ANY I	LOCAL
PREFERENCES OR REGULATIONS. PLEA	SE
CONTACT YOUR LOCAL CONTECH REP F	-OR
MODIFICATIONS.	
The design and information shown on this drawing is provided	
as a service to the project owner, engineer and contractor by Contech Engineered Solutions LLC ("Contech"). Neither this	
drawing, nor any part thereof, may be used, reproduced or	

THE PIPE SHALL BE MANUFACTURED IN ACCORDANCE TO THE APPLICABLE REQUIREMENTS LISTED BELOW:

ALUMINIZED TYPE 2: AASHTO M-36 OR ASTM A-760

GALVANIZED: AASHTO M-36 OR ASTM A-760

AFFOLICYANGINE COATED: AASHTO M-245 OR ASTM A-762

ALUMINUM: AASHTO M-196 OR ASTM B-745

APPLICABLE

BY

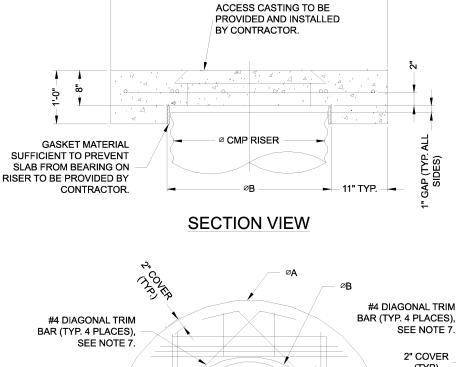
HANDLING AND ASSEMBLY SHALL BE IN ACCORDANCE WITH NCSP'S (NATIONAL CORRUGATED STEEL AFPRECABSEDCIATION) FOR ALUMINIZED TYPE 2. GALVANIZED OR POLYMER COATED STEEL. SHALL BE IN ACCORDANCE WITH THE MANUFACTURER'S RECOMMENDATIONS FOR ALUMINUM PIPE.

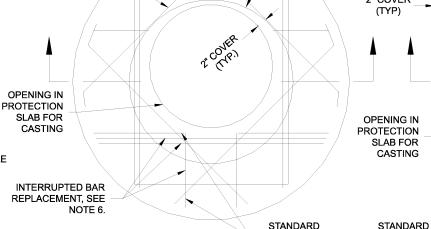
REQUIREMENTS

INSTALLATION SHALL BE IN ACCORDANCE WITH AASHTO STANDARD SPECIFICATIONS FOR HIGHWAY BRIDGES, SECTION 26, DIVISION II DIVISION II OR ASTM A-798 (FOR ALUMINIZED TYPE 2, GALVANIZED OR POLYMER COATED STEEL) OR ASTM B-788 (FOR ALUMINUM PIPE) AND IN CONFORMANCE WITH THE PROJECT PLANS AND SPECIFICATIONS. IF THERE ARE ANY INCONSISTENCIES OR CONFLICTS THE CONTRACTOR SHOULD DISCUSS AND RESOLVE WITH THE SITE ENGINEER.

IT IS ALWAYS THE RESPONSIBILITY OF THE CONTRACTOR TO FOLLOW OSHA GUIDELINES FOR SAFE PRACTICES.

// N 17


CMP DETENTION SYSTEMS


CONTECH

DYODS

DRAWING

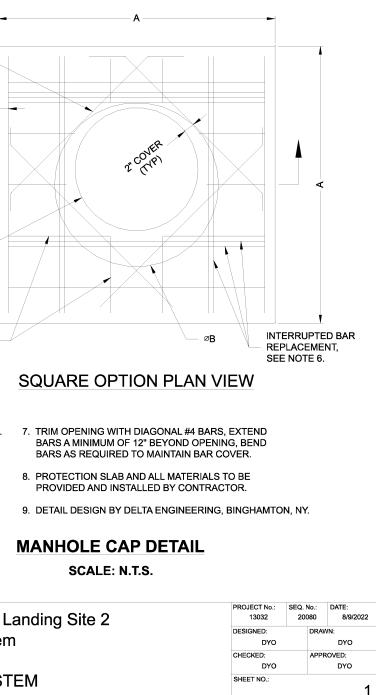
CINTE

REINFORCING, SEE TABLE

REINFORCING,

SEE TABLE

ROUND OPTION PLAN VIEW

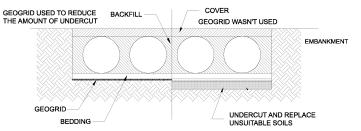

NOTES:

- 1. DESIGN IN ACCORDANCE WITH AASHTO, 17th EDITION.
- 2. DESIGN LOAD HS25.
- 3. EARTH COVER = 1' MAX.
- 4. CONCRETE STRENGTH = 3,500 psi
- 5. REINFORCING STEEL = ASTM A615, GRADE 60.
- 6. PROVIDE ADDITIONAL REINFORCING AROUND OPENINGS EQUAL TO THE BARS INTERRUPTED, HALF EACH SIDE. ADDITIONAL BARS TO BE IN THE SAME PLANE.

DYO20080 20-001 Harvest Landing Site 2 Westerly System Perris, CA **DETENTION SYSTEM**

	REINFORCING TABLE					
Ø CMP RISER	Α		REINFORCING	**BEARING PRESSURE (PSF)		
24"	∅ 4' 4'X4'	26"	#5 @ 12" OCEW #5 @ 12" OCEW	2,410 1,780		
30"	∅ 4'-6" 4'-6" X 4'-6"	32"	#5 @ 12" OCEW #5 @ 12" OCEW	2,120 1,530		
36"	∞ 5' 5' X 5'	38"	#5 @ 10" OCEW #5 @ 10" OCEW	1,890 1,350		
42"	∅ 5'-6" 5'-6" X 5'-6"	44"	#5 @ 10" OCEW #5 @ 9" OCEW	1,720 1,210		
48"	∞6'6'6' X6'	50"	#5 @ 9" OCEW #5 @ 8" OCEW	1,600 1,100		

** ASSUMED SOIL BEARING CAPACITY



PROPER INSTALLATION OF A FLEXIBLE UNDERGROUND DETENTION SYSTEM WILL ENSURE LONG-TERM PERFORMANCE. THE CONFIGURATION OF THESE SYSTEMS OFTEN REQUIRES SPECIAL CONSTRUCTION PRACTICES THAT DIFFER FROM CONVENTIONAL FLEXIBLE PIPE CONSTRUCTION. CONTECH ENGINEERED SOLUTIONS STRONGLY SUGGESTS SCHEDULING A PRE-CONSTRUCTION MEETING WITH YOUR LOCAL SALES ENGINEER TO DETERMINE IF ADDITIONAL MEASURES, NOT COVERED IN THIS GUIDE, ARE APPROPRIATE FOR YOUR SITE.

FOUNDATION

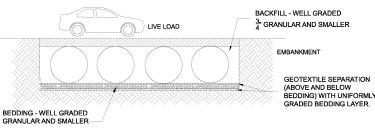
CONSTRUCT A FOUNDATION THAT CAN SUPPORT THE DESIGN LOADING APPLIED BY THE PIPE AND ADJACENT BACKFILL WEIGHT AS WELL AS MAINTAIN ITS INTEGRITY DURING CONSTRUCTION.

IF SOFT OR UNSUITABLE SOILS ARE ENCOUNTERED, REMOVE THE POOR SOILS DOWN TO A SUITABLE DEPTH AND THEN BUILD UP TO THE APPROPRIATE ELEVATION WITH A COMPETENT BACKFILL MATERIAL. THE STRUCTURAL FILL MATERIAL GRADATION SHOULD NOT ALLOW THE MIGRATION OF FINES, WHICH CAN CAUSE SETTLEMENT OF THE DETENTION SYSTEM OR PAVEMENT ABOVE. IF THE STRUCTURAL FILL MATERIAL IS NOT COMPATIBLE WITH THE UNDERLYING SOILS AN ENGINEERING FABRIC SHOULD BE USED AS A SEPARATOR. IN SOME CASES, USING A STIFF REINFORCING GEOGRID REDUCES OVER EXCAVATION AND REPLACEMENT FILL QUANTITIES.

GRADE THE FOUNDATION SUBGRADE TO A UNIFORM OR SLIGHTLY SLOPING GRADE. IF THE SUBGRADE IS CLAY OR RELATIVELY NON-POROUS AND THE CONSTRUCTION SEQUENCE WILL LAST FOR AN EXTENDED PERIOD OF TIME, IT IS BEST TO SLOPE THE GRADE TO ONE END OF THE SYSTEM. THIS WILL ALLOW EXCESS WATER TO DRAIN QUICKLY, PREVENTING SATURATION OF THE SUBGRADE.

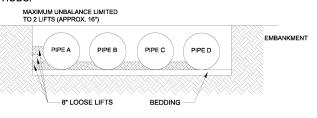
GEOMEMBRANE BARRIER

A SITE'S RESISTIVITY MAY CHANGE OVER TIME WHEN VARIOUS TYPES OF SALTING AGENTS ARE USED, SUCH AS ROAD SALTS FOR DEICING AGENTS. IF SALTING AGENTS ARE USED ON OR NEAR THE PROJECT SITE, A GEOMEMBRANE BARRIER IS RECOMMENDED WITH THE SYSTEM. THE GEOMEMBRANE LINER IS INTENDED TO HELP PROTECT THE SYSTEM FROM THE POTENTIAL ADVERSE EFFECTS THAT MAY RESULT FROM THE USE OF SUCH AGENTS INCLUDING PREMATURE CORROSION AND REDUCED ACTUAL SERVICE LIFE.


THE PROJECT'S ENGINEER OF RECORD IS TO EVALUATE WHETHER SALTING AGENTS WILL BE USED ON OR NEAR THE PROJECT SITE, AND USE HIS/HER BEST JUDGEMENT TO DETERMINE IF ANY ADDITIONAL PROTECTIVE MEASURES ARE REQUIRED. BELOW IS A TYPICAL DETAIL SHOWING THE PLACEMENT OF A GEOMEMBRANE BARRIER FOR PROJECTS WHERE SALTING AGENTS ARE USED ON OR NEAR THE PROJECT SITE.

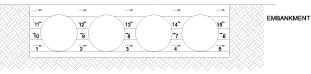
20 MIL PE IMPERMEABLE LINER OVER TOP OF PIPE 0 18 FOR 102× AND >) 18 FOR 102× AND >)

IN-SITU TRENCH WALL


IF EXCAVATION IS REQUIRED, THE TRENCH WALL NEEDS TO BE CAPABLE OF SUPPORTING THE LOAD THAT THE PIPE SHEDS AS THE SYSTEM IS LOADED. IF SOILS ARE NOT CAPABLE OF SUPPORTING THESE LOADS, THE PIPE CAN DEFLECT. PERFORM A SIMPLE SOIL PRESSURE CHECK USING THE APPLIED LOADS TO DETERMINE THE LIMITS OF EXCAVATION BEYOND THE SPRING LINE OF THE OUTER MOST PIPES.

IN MOST CASES THE REQUIREMENTS FOR A SAFE WORK ENVIRONMENT AND PROPER BACKFILL PLACEMENT AND COMPACTION TAKE CARE OF THIS CONCERN.

BACKFILL PLACEMENT

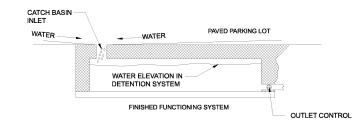

MATERIAL SHALL BE WORKED INTO THE PIPE HAUNCHES BY MEANS OF SHOVEL-SLICING, RODDING, AIR TAMPER, VIBRATORY ROD, OR OTHER EFFECTIVE METHODS.


IF AASHTO T99 PROCEDURES ARE DETERMINED INFEASIBLE BY THE GEOTECHNICAL ENGINEER OF RECORD, COMPACTION IS CONSIDERED ADEQUATE WHEN NO FURTHER YIELDING OF THE MATERIAL IS OBSERVED UNDER THE COMPACTOR, OR UNDER FOOT, AND THE GEOTECHNICAL ENGINEER OF RECORD (OR REPRESENTATIVE THEREOF) IS SATISFIED WITH THE LEVEL OF COMPACTION.

FOR LARGE SYSTEMS, CONVEYOR SYSTEMS, BACKHOES WITH LONG REACHES OR DRAGLINES WITH STONE BUCKETS MAY BE USED TO PLACE BACKFILL. ONCE MINIMUM COVER FOR CONSTRUCTION LOADING ACROSS THE ENTIRE WIDTH OF THE SYSTEM IS REACHED, ADVANCE THE EQUIPMENT TO THE END OF THE RECENTLY PLACED FILL, AND BEGIN THE SEQUENCE AGAIN UNTIL THE SYSTEM IS COMPLETELY BACKFILLED. THIS TYPE OF CONSTRUCTION SEQUENCE PROVIDES ROOM FOR STOCKPILED BACKFILL DIRECTLY BEHIND THE BACKHOE, AS WELL AS THE MOVEMENT OF CONSTRUCTION TRAFFIC. MATERIAL STOCKPILES ON TOP OF THE BACKFILLED DETENTION SYSTEM SHOULD BE LIMITED TO 8- TO 10-FEET HIGH AND MUST PROVIDE BALANCED LOADING ACROSS ALL BARRELS. TO DETERMINE THE PROPER COVER OVER THE PIPES TO ALLOW THE MOVEMENT OF CONSTRUCTION EQUIPMENT SEE TABLE 1, OR CONTACT YOUR LOCAL CONTECH SALES ENGINEER.

TYPICAL BACKFILL SEQUENCE

WHEN FLOWABLE FILL IS USED, YOU MUST PREVENT PIPE FLOATATION. TYPICALLY, SMALL LIFTS ARE PLACED BETWEEN THE PIPES AND THEN ALLOWED TO SET-UP PRIOR TO THE PLACEMENT OF THE NEXT LIFT. THE ALLOWABLE THICKNESS OF THE CLSM LIFT IS A FUNCTION OF A PROPER BALANCE BETWEEN THE UPLIFT FORCE OF THE CLSM, THE OPPOSING WEIGHT OF THE PIPE, AND THE EFFECT OF OTHER RESTRAINING MEASURES. THE PIPE CAN CARRY LIMITED FLUID PRESSURE WITHOUT PIPE DISTORTION OR DISPLACEMENT, WHICH ALSO AFFECTS THE CLSM LIFT THICKNESS. YOUR LOCAL CONTECH SALES ENGINEER CAN HELP DETERMINE THE PROPER LIFT THICKNESS.



CONSTRUCTION LOADING

ACCUMULATED SEDIMENT AND TRASH CAN TYPICALLY BE EVACUATED TYPICALLY, THE MINIMUM COVER SPECIFIED FOR A PROJECT ASSUMES H-20 THROUGH THE MANHOLE OVER THE OUTLET ORIFICE. IF MAINTENANCE IS NOT LIVE LOAD. BECAUSE CONSTRUCTION LOADS OFTEN EXCEED DESIGN LIVE PERFORMED AS RECOMMENDED, SEDIMENT AND TRASH MAY ACCUMULATE IN LOADS, INCREASED TEMPORARY MINIMUM COVER REQUIREMENTS ARE FRONT OF THE OUTLET ORIFICE. MANHOLE COVERS SHOULD BE SECURELY SEATED FOLLOWING CLEANING ACTIVITIES. CONTECH SUGGESTS THAT ALL NECESSARY. SINCE CONSTRUCTION EQUIPMENT VARIES FROM JOB TO JOB, SYSTEMS BE DESIGNED WITH AN ACCESS/INSPECTION MANHOLE SITUATED AT IT IS BEST TO ADDRESS EQUIPMENT SPECIFIC MINIMUM COVER OR NEAR THE INLET AND THE OUTLET ORIFICE. SHOULD IT BE NECESSARY TO REQUIREMENTS WITH YOUR LOCAL CONTECH SALES ENGINEER DURING GET INSIDE THE SYSTEM TO PERFORM MAINTENANCE ACTIVITIES, ALL YOUR PRE-CONSTRUCTION MEETING. APPROPRIATE PRECAUTIONS REGARDING CONFINED SPACE ENTRY AND OSHA REGULATIONS SHOULD BE FOLLOWED.

ADDITIONAL CONSIDERATIONS

BECAUSE MOST SYSTEMS ARE CONSTRUCTED BELOW-GRADE, RAINFALL CAN RAPIDLY FILL THE EXCAVATION; POTENTIALLY CAUSING FLOATATION AND MOVEMENT OF THE PREVIOUSLY PLACED PIPES. TO HELP MITIGATE POTENTIAL PROBLEMS, IT IS BEST TO START THE INSTALLATION AT THE DOWNSTREAM END WITH THE OUTLET ALREADY CONSTRUCTED TO ALLOW A ROUTE FOR THE WATER TO ESCAPE. TEMPORARY DIVERSION MEASURES MAY BE REQUIRED FOR HIGH FLOWS DUE TO THE RESTRICTED NATURE OF THE OUTLET PIPE. AROUTE FOR HIGH FLOWS DUE TO THE RESTRICTED NATURE OF THE OUTLET PIPE. AROUTE FOR HIGH FLOWS DUE TO THE RESTRICTED NATURE OF

<u> </u>			
₽,	The design and information shown on this drawing is provided		
ATES/CMP	as a service to the project owner, engineer and contractor by		
×	Contech Engineered Solutions LLC ("Contech"). Neither this		
ш	drawing, nor any part thereof, may be used, reproduced or		
5	modified in any manner without the prior written consent of		
ς.	Contech. Failure to comply is done at the user's own risk and		
5	Contech expressly disclaims any liability or responsibility for		
Ē.	such use.		
5			
<u>م</u>	If discrepancies between the supplied information upon which		
Ř	the drawing is based and actual field conditions are encountered		
Υ.	as site work progresses, these discrepancies must be reported		
×.	to Contech immediately for re-evaluation of the design. Contech		
C:\EXPORTS\TEMPL	accepts no liability for designs based on missing, incomplete or		
ö	incompto the labeling for accignic backet of modeling, modeling accomptote of	DATE	REVISION DESCRIPTION

	CENTECH ENGINEERED SOLUTIONS LLC	
	9025 Centre Pointe Dr., Suite 400, West Chester, OH 45069	
 BY	800-338-1122 513-645-7000 513-645-7993 FAX	

CMP DETENTION SYSTEMS

DRAWING

DYO20080 20-001 Harvest Westerly Syste Perris, CA DETENTION SYS

CMP DETENTION SYSTEM INSPECTION AND MAINTENANCE

UNDERGROUND STORMWATER DETENTION AND INFILTRATION SYSTEMS MUST BE INSPECTED AND MAINTAINED AT REGULAR INTERVALS FOR PURPOSES OF PERFORMANCE AND LONGEVITY.

INSPECTION

INSPECTION IS THE KEY TO EFFECTIVE MAINTENANCE OF CMP DETENTION SYSTEMS AND IS EASILY PERFORMED. CONTECH RECOMMENDS ONGOING, ANNUAL INSPECTIONS. SITES WITH HIGH TRASH LOAD OR SMALL OUTLET CONTROL ORIFICES MAY NEED MORE FREQUENT INSPECTIONS. THE RATE AT WHICH THE SYSTEM COLLECTS POLLUTANTS WILL DEPEND MORE ON SITE SPECIFIC ACTIVITIES RATHER THAN THE SIZE OR CONFIGURATION OF THE SYSTEM.

INSPECTIONS SHOULD BE PERFORMED MORE OFTEN IN EQUIPMENT WASHDOWN AREAS, IN CLIMATES WHERE SANDING AND/OR SALTING OPERATIONS TAKE PLACE, AND IN OTHER VARIOUS INSTANCES IN WHICH ONE WOULD EXPECT HIGHER ACCUMULATIONS OF SEDIMENT OR ABRASIVE/ CORROSIVE CONDITIONS. A RECORD OF EACH INSPECTION IS TO BE MAINTAINED FOR THE LIFE OF THE SYSTEM

MAINTENANCE

CMP DETENTION SYSTEMS SHOULD BE CLEANED WHEN AN INSPECTION REVEALS ACCUMULATED SEDIMENT OR TRASH IS CLOGGING THE DISCHARGE ORIFICE.

ANNUAL INSPECTIONS ARE BEST PRACTICE FOR ALL UNDERGROUND SYSTEMS. DURING THIS INSPECTION, IF EVIDENCE OF SALTING/DE-ICING AGENTS IS OBSERVED WITHIN THE SYSTEM, IT IS BEST PRACTICE FOR THE SYSTEM TO BE RINSED, INCLUDING ABOVE THE SPRING LINE SOON AFTER THE SPRING THAW AS PART OF THE MAINTENANCE PROGRAM FOR THE SYSTEM.

Landing Site 2	PROJECT No.: 13032	SEQ. 1 200		DATE: 8/9/202	22
em	DESIGNED: DYO		DRAWN: DYO		
	CHECKED: DYO		APPR	oved: Dyo	
STEM	SHEET NO .:				1

LEGEND

(1025)	EXISTING CONTOUR
	PROPOSED CONTOUR
	RETAINING WALL
——×————×——	FENCE
- <u> </u>	EDGE OF PAVEMENT
	SIGN
O MH	MANHOLE
	RIGHT OF WAY
= $=$ $=$	EASEMENT
	PARCEL LINE
	PARCEL MAP BOUNDARY
	STREET CENTER LINE
	SCREEN WALL
	COMBINATION SCREEN/RETAINING WALL
	EXISTING LOT LINE
	RIDGE LINE
_ 	RIBBON GUTTER
\sim	FLOW ARROW
<u>\</u>	PROPOSED EDGE OF PAVEMENT
— — W— —	EXISTING WATER LINE
——	PROPOSED WATER LINE
— —SS— —	EXISTING SWR LINE
SS	PROPOSED SEWER LINE
— —SD— —	EXISTING STORM DRAIN PIPE
SD	PROPOSED STORM DRAIN PIPE
— —E— —	EXISTING OVERHEAD LINES
— <u> </u>	CUT/FILL LINE
Ý	SLOPE SYMBOL

ZONING ORDINANCE

EXISTING ZONING: HARVEST LANDING SPECIFIC PLANS - MULTIPLE BUSINESS USE (MBU,

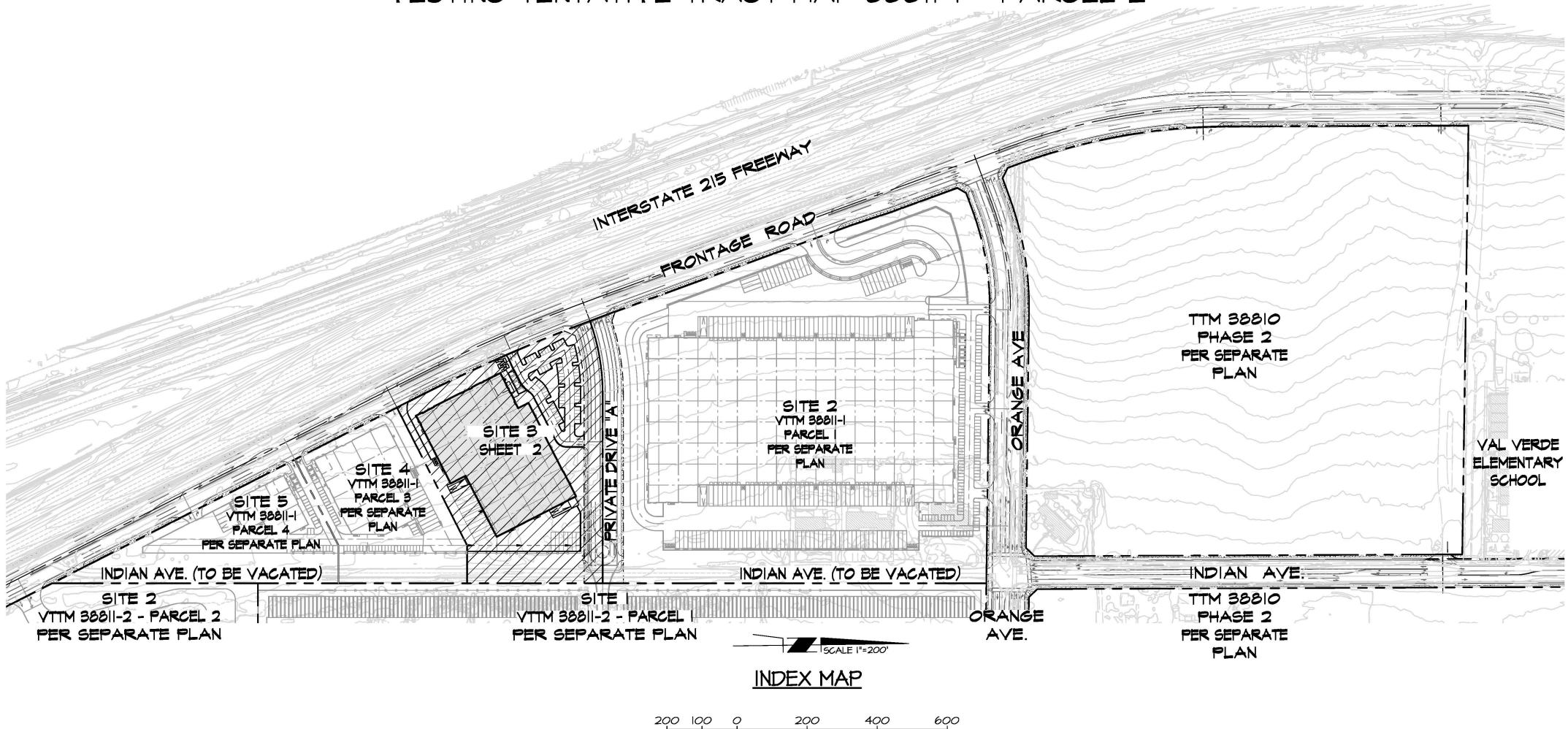
PROPOSED ZONING: HARVEST LANDING SPECIFIC PLANS - MULTIPLE BUSINESS USE (MBU,

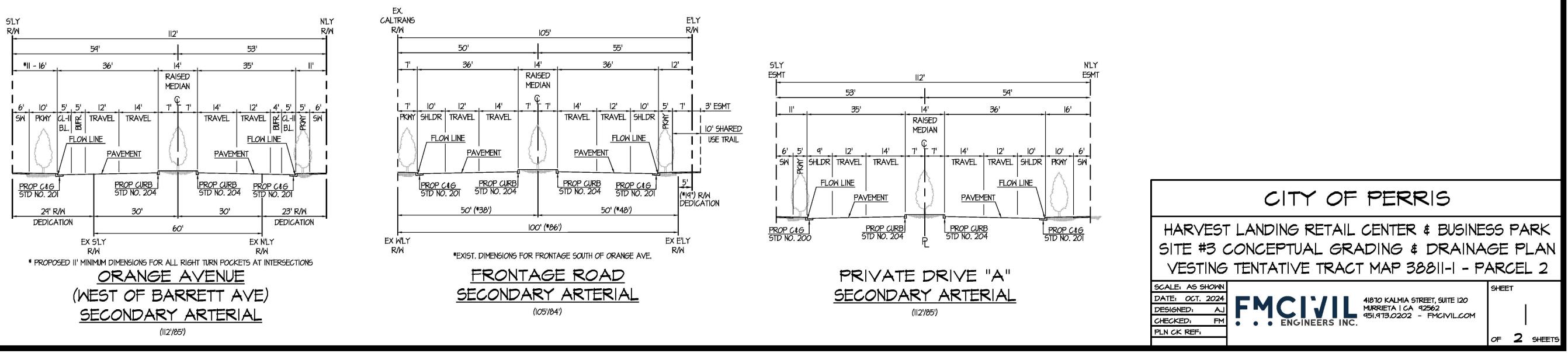
ASSESSOR'S PARCEL NUMBERS: 305-100-028.305-170-018.305-100-008. \$ 305-100-009

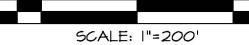
LEGAL DESCRIPTION

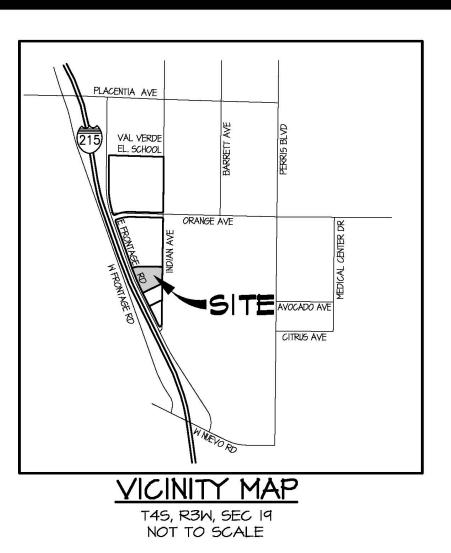
PARCELS 2-5:

(APNS: 305-100-028, 305-170-018, 305-100-008, 305-100-009)


THAT PORTION OF THE NORTHWEST QUARTER OF SECTION 19, TOWNSHIP 4 SOUTH, RANGE 3 WEST, SAN BERNARDINO BASE AND MERIDIAN. WHICH LIES EASTERLY OF STATE HIGHWAY 395 AS CONVEYED TO THE STATE OF CALIFORNIA BY DEED RECORDED APRIL 28, 1952 AS INSTRUMENT NO. 18008.


EXCEPTING THE NORTH 30 FEET IN ORANGE AVENUE, THE EAST 30 FEET IN INDIAN AVENUE AND THE SOUTH 30 FEET IN CITRUS AVENUE.


ALSO EXCEPTING THEREFROM THE PORTION DESCRIBED IN DEED RECORDED DECEMBER 21, 1965 AS INSTRUMENT NO. 142400 AND IN DEED RECORDED MARCH 13, 1969 AS INSTRUMENT NO. 24345, RECORDS OF RIVERSIDE COUNTY.


ALSO EXCEPTING THEREFROM THOSE PORTIONS CONVEYED TO THE STATE OF CALIFORNIA BY DEEDS RECORDED MARCH 22, 1992, AS INSTRUMENT NOS. 94602 AND 94603.

IN THE CITY OF PERRIS, COUNTY OF RIVERSIDE, STATE OF CALIFORNIA HARVEST LANDING RETAIL CENTER & BUSINESS PARK SITE #3 CONCEPTUAL GRADING & DRAINAGE PLAN VESTING TENTATIVE TRACT MAP 38811-1 - PARCEL 2

APPLICANT/OWNER

HOWARD INDUSTRIAL PARTNERS 1944 NORTH TUSTIN STREET, SUITE 122 ORANGE, CA 92865 CONTACT: TIM HOWARD (TEL)714-769-9155

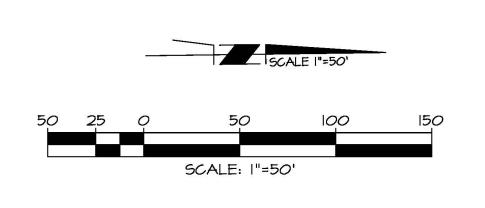
ENGINEER

FMCIVIL ENGINEERS INC. 41870 KALMIA ST., SUITE 120 MURRIETA, CA 92562 CONTACT: FRANCISCO MARTINEZ (TEL)951-973-0202

ARCHITECT

AO ARCHITECTURE 144 NORTH STREET ORANGE, CA 92866 CONTACT: DAN MACDAVID (TEL)714-639-9860

EARTHWORK ESTIMATE:


RAW CUT:	640 CY
RAW FILL:	18,850 CY
NET:	18,210 CY IMPORT

HAUL TRIPS: ASSUMED (13 CY PER TRIP) = 1,401

SITE PLAN KEYNOTES

- PAINTED CONCRETE TILT-UP WAREHOUSE / OFFICE / MANUFACTURING FACILITY. BUILDING TO BE DESIGNED PER ARCHITECT'S PLANS
- $\langle 2 \rangle$ on site accessible sidewalk and curb ramps.
- (3) CONCRETE CURB
- ⟨4⟩ CONCRETE CURB & GUTTER
- $\langle 5 \rangle$ STANDARD PARKING STALLS STRIPE PER STANDARDS SHOWN ON ARCHITECT'S PLANS
- $\langle 6 \rangle$ Handicap Parking Stalls Stripe per standards shown on architect's plans
- (7) TRAILER / TRACTOR PARKING STALLS STRIPE PER STANDARDS SHOWN ON ARCHITECT'S PLANS
- $\langle \delta \rangle$ ACCESSIBLE BUILDING ENTRY WITH ADJACENT BICYCLE RACKS PER ARCHITECT'S PLANS
- $\langle \overline{\mathsf{q}} \rangle$ PORTLAND CONC. CEMENT (PCC) PAVED TRUCK YARD ARCHITECT'S PLANS
- (0) PORTLAND CONC. CEMENT (PCC) PAVED AUTO PARKING ARCHITECT'S PLANS
- DOCK HIGH TRUCK DOOR PER ARCHITECT'S PLANS
- (2) GRADE LEVEL RAMP DOOR PER ARCHITECT'S PLANS
- (3) EXTERIOR MAN DOOR AND STAIRS WOUARD POST PER ARCHITECT'S PLANS
- (14) COMMERCIAL DRIVEWAY APPROACH PER RIVERSIDE COUNTY STD.201A, WITH DECORATIVE CONCRETE PAVING PER ARCHITECT'S PLANS
- (15) UNDERGROUND DETENTION CHAMBER SYSTEM 96" CMP TOP AND BOTTOM OF PIPE (BOP) ELEVATION PER PLAN
- (16) LANDSCAPE AREA PER LANDSCAPE ARCHITECT'S PLANS
- $\langle \Pi \rangle$ APPROXIMATE LOCATION OF TRASH ENCLOSURE
- (B) ENTRY GATE PER ARCHITECT'S PLANS
- (19) SCREEN WALL PER ARCHITECT'S PLANS (COMBO RETAINING)
- O CONCRETE RIBBON GUTTER/SWALE

CALCULATION DETAILS • LOADING = HS20/HS25 • APPROX. LINEAR FOOTAGE = 4,651 LF

STORAGE SUMMARY

- STORAGE VOLUME REQUIRED = N/A
- PIPE STORAGE VOLUME = 233,785 CF
- BACKFILL STORAGE VOLUME = 0 CF
- TOTAL STORAGE PROVIDED = 233,785 CF

PIPE DETAILS

- DIAMETER = 96"
- CORRUGATION = 5x1
- GAGE = 16
- COATING = ALT2
- WALL TYPE = SOLID
- BARREL SPACING = 36"

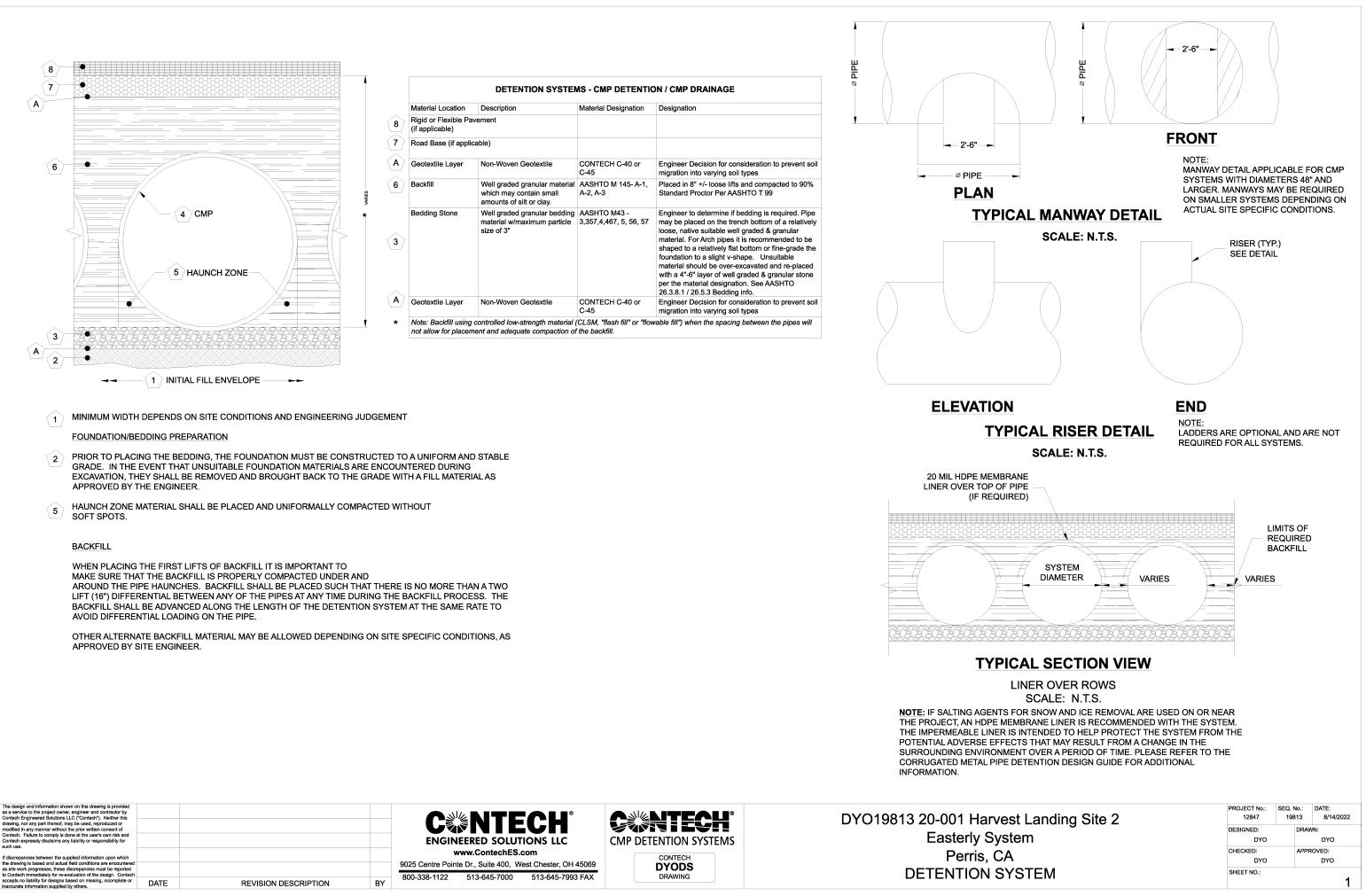
BACKFILL DETAILS

- WIDTH AT ENDS = 12"
- ABOVE PIPE = 0"

• WIDTH AT SIDES = 12" • BELOW PIPE = 0"

NOTES

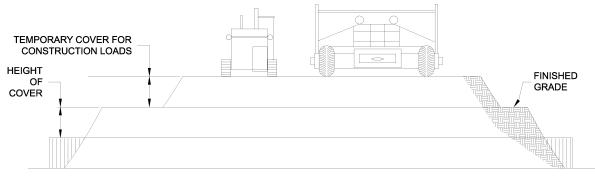
- ALL RISER AND STUB DIMENSIONS ARE TO CENTERLINE. ALL ELEVATIONS, DIMENSIONS, AND LOCATIONS OF RISERS AND INLETS, SHALL BE VERIFIED BY THE ENGINEER OF RECORD PRIOR TO RELEASING FOR FABRICATION.
- ALL FITTINGS AND REINFORCEMENT COMPLY WITH ASTM A998.
- ALL RISERS AND STUBS ARE $2\frac{2}{3}$ " x $\frac{1}{2}$ " CORRUGATION AND 16 GAGE UNLESS OTHERWISE NOTED. • RISERS TO BE FIELD TRIMMED TO GRADE.
- RISERS TO BE FIELD TRIMMED TO GRADE. • QUANTITY OF PIPE SHOWN DOES NOT PROVIDE
- QUANTITY OF PIPE SHOWN DOES NOT PROVIDE EXTRA PIPE FOR CONNECTING THE SYSTEM TO EXISTING PIPE OR DRAINAGE STRUCTURES. OUR SYSTEM AS DETAILED PROVIDES NOMINAL INLET AND/OR OUTLET PIPE STUB FOR CONNECTION TO EXISTING DRAINAGE FACILITIES. IF ADDITIONAL PIPE IS NEEDED IT IS THE RESPONSIBILITY OF THE CONTRACTOR.
- BAND TYPE TO BE DETERMINED UPON FINAL DESIGN.
 THE PROJECT SUMMARY IS REFLECTIVE OF THE DYODS DESIGN, QUANTITIES ARE APPROX. AND SHOULD BE VERIFIED UPON FINAL DESIGN AND APPROVAL. FOR EXAMPLE, TOTAL EXCAVATION DOES NOT CONSIDER ALL VARIABLES SUCH AS SHORING AND ONLY ACCOUNTS FOR MATERIAL WITHIN THE ESTIMATED EXCAVATION FOOTPRINT.


The design and information shown on this drawing is provided as a service to the project owner, engineer and contractor by Contech Engineered Solutions LLC ("Contech"). Neither this drawing, on any part thereof, may be used, reproduced or modified in any manner without the prior written consent of Contech. Failure to comply is done at the user's own risk and Contech expressly disclams any liability or responsibility for				ENGINEERED SOLUTIONS LLC	CANTECH [®] CMP DETENTION SYSTEMS	DYO19813 20-001 Harvest Easterly Syste
such use. If discrepancies between the supplied information upon which the drawing is based and actual field conditions are encountered as site work progresses, these discrepancies must be reported to Contech imediately for evaluation of the design. Contech necessaries no liability for designs based on missing, incomplete or inaccurate information supplied by others.	DATE	REVISION DESCRIPTION	BY	www.ContechES.com 9025 Centre Pointe Dr., Suite 400, West Chester, OH 45069 800-338-1122 513-645-7000 513-645-7993 FAX	CONTECH DYODS DRAWING	Perris, CA DETENTION SYS

1												7
												\geq
												Ś
	17											
- P			 									
-96			 									4
	Ľ											21
												\geq
												\sum
•	\square											
						511'-6	3"					_

ASSEMBLY

SCALE: 1" = 50'


rvest Landing Site 2	PROJECT No.: 12847	SEQ. No.: 19813	DATE: 8/14/2022
System	DESIGNED: DYO	DRA	WN: DYO
, ČA	CHECKED: DYO	APP	ROVED: DYO
N SYSTEM	SHEET NO .:		1

natior ons a s mu the d sing,
t

upon which e encountered		
t be reported sign. Contech		
ncomplete or	DATE	

www.ContechES.com
9025 Centre Pointe Dr., Suite 400, West Chester, OH

FOR TEMPORARY CONSTRUCTION VEHICLE LOADS, AN EXTRA AMOUNT OF COMPACTED COVER MAY BE REQUIRED OVER THE TOP OF THE PIPE. THE HEIGHT-OF-COVER SHALL MEET THE MINIMUM REQUIREMENTS SHOWN IN THE TABLE BELOW. THE USE OF HEAVY CONSTRUCTION EQUIPMENT NECESSITATES GREATER PROTECTION FOR THE PIPE THAN FINISHED GRADE COVER MINIMUMS FOR NORMAL HIGHWAY TRAFFIC.

PIPE SPAN,	AXLE LOADS (kips)							
INCHES	18-50	50-75	75-110	110-150				
	MI	NIMUM C	OVER (F	- T)				
12-42	2.0	2.5	3.0	3.0				
48-72	3.0	3.0	3.5	4.0				
78-120	3.0	3.5	4.0	4.0				
126-144	3.5	4.0	4.5	4.5				

*MINIMUM COVER MAY VARY, DEPENDING ON LOCAL CONDITIONS. THE CONTRACTOR MUST PROVIDE THE ADDITIONAL COVER REQUIRED TO AVOID DAMAGE TO THE PIPE. MINIMUM COVER IS MEASURED FROM THE TOP OF THE PIPE TO THE TOP OF THE MAINTAINED CONSTRUCTION ROADWAY SURFACE.

CONSTRUCTION LOADING DIAGRAM

SCALE: N.T.S.

REVISION DESCRIPTION

SPECIFICATION FOR DESIGNED DETENTION SYSTEM:

SCOPE

THIS SPECIFICATION COVERS THE MANUFACTURE AND INSTALLATION OF THE DESIGNED DETENTION SYSTEM DETAILED IN THE PROJECT PLANS.

MATERIAI

THE MATERIAL SHALL CONFORM TO THE APPLICABLE REQUIREMENTS LISTED BELOW

ALUMINIZED TYPE 2 STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-274 OR ASTM A-92.

THE GALVANIZED STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-218 OR ASTM A-929.

THE POLYMER COATED STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-246 OR ASTM A-742.

THE ALUMINUM COILS SHALL CONFORM TO THE APPLICABLE OF AASHTO M-197 OR ASTM B-744.

CONSTRUCTION LOADS

CONSTRUCTION LOADS MAY BE HIGHER THAN FINAL LOADS. FOLLOW THE MANUFACTURER'S OR NCSPA GUIDELINES.

NOTE:	
THESE DRAWINGS ARE FOR CONCEPTUAL	
PURPOSES AND DO NOT REFLECT ANY LOCA	٩L
PREFERENCES OR REGULATIONS. PLEASE	
CONTACT YOUR LOCAL CONTECH REP FOR	
MODIFICATIONS.	
The design and information shown on this drawing is provided as a service to the project owner, engineer and contractor by	
Contech Engineered Solutions LLC ("Contech"). Neither this	
drawing, nor any part thereof, may be used, reproduced or	

drawing, nor any part thereof, may be use modified in any manner without the prior v Contech. Failure to comply is done at the Contech expressly disclaims any liability of such use.
If discrepancies between the supplied info the drawing is based and actual field con- as site work progresses, these discrepan- to Contech immediately for re-evaluation accepte no isolatility for designs based on a

rritten consent of user's own risk an r responsibility for DATE

PIPF

THE PIPE SHALL BE MANUFACTURED IN ACCORDANCE TO THE APPLICABLE REQUIREMENTS LISTED BELOW:

ALUMINIZED TYPE 2: AASHTO M-36 OR ASTM A-760

GALVANIZED: AASHTO M-36 OR ASTM A-760

AFFOLICYANELIEE COATED: AASHTO M-245 OR ASTM A-762

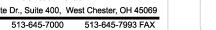
800-338-1122

BY

ALUMINUM: AASHTO M-196 OR ASTM B-745

APPLICABLE

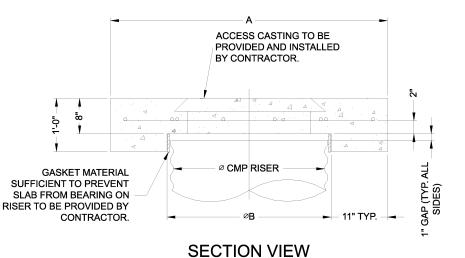
HANDLING AND ASSEMBLY SHALL BE IN ACCORDANCE WITH NCSP'S (NATIONAL CORRUGATED STEEL

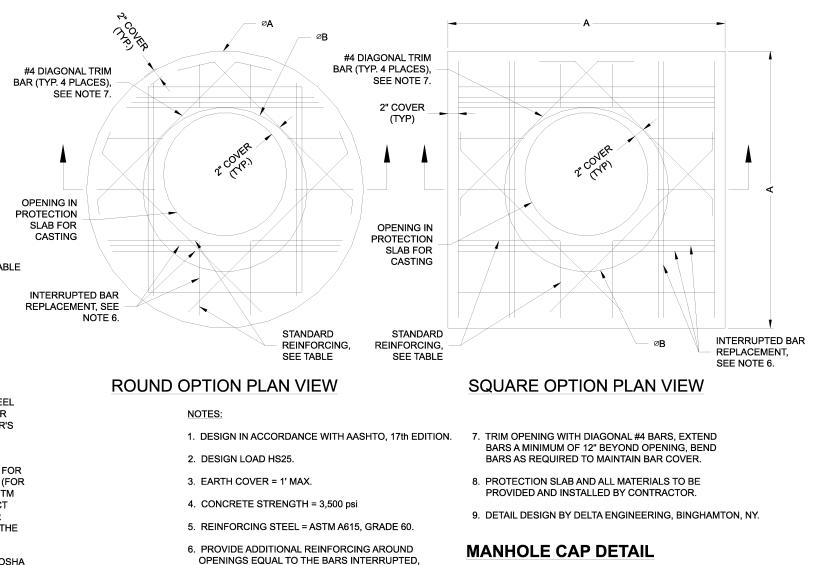

AFFREE ABSED CIATION) FOR ALUMINIZED TYPE 2. GALVANIZED OR POLYMER COATED STEEL. SHALL BE IN ACCORDANCE WITH THE MANUFACTURER'S RECOMMENDATIONS FOR ALUMINUM PIPE.

REQUIREMENTS INSTALLATION

SHALL BE IN ACCORDANCE WITH AASHTO STANDARD SPECIFICATIONS FOR HIGHWAY BRIDGES, SECTION 26, DIVISION II DIVISION II OR ASTM A-798 (FOR ALUMINIZED TYPE 2, GALVANIZED OR POLYMER COATED STEEL) OR ASTM B-788 (FOR ALUMINUM PIPE) AND IN CONFORMANCE WITH THE PROJECT PLANS AND SPECIFICATIONS. IF THERE ARE ANY INCONSISTENCIES OR CONFLICTS THE CONTRACTOR SHOULD DISCUSS AND RESOLVE WITH THE SITE ENGINEER.

IT IS ALWAYS THE RESPONSIBILITY OF THE CONTRACTOR TO FOLLOW OSHA GUIDELINES FOR SAFE PRACTICES.


CINTECH


CMP DETENTION SYSTEMS

CONTECH

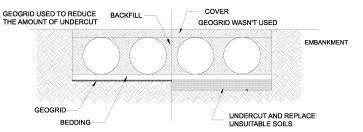
DYODS

DRAWING

- HALF EACH SIDE. ADDITIONAL BARS TO BE IN THE SAME PLANE.

PROJECT No. SEQ. No.: DATE: DYO19813 20-001 Harvest Landing Site 2 8/14/2022 12847 19813 DESIGNED: DRAW Easterly System DYO DYO CHECKED: APPROVED Perris, CA DYO DYO **DETENTION SYSTEM** SHEET NO.

REINFORCING TABLE							
Ø CMP RISER	Α	ØB	REINFORCING	**BEARING PRESSURE (PSF)			
24"	∞ 4' 4'X4'	26"	#5 @ 12" OCEW #5 @ 12" OCEW	2,410 1,780			
30"	∅ 4'-6" 4'-6" X 4'-6"	32"	#5 @ 12" OCEW #5 @ 12" OCEW	2,120 1,530			
36"	∞ 5' 5' X 5'	38"	#5 @ 10" OCEW #5 @ 10" OCEW	1,890 1,350			
42"	∅ 5'-6" 5'-6" X 5'-6"	44"	#5 @ 10" OCEW #5 @ 9" OCEW	1,720 1,210			
48"	∞ 6' 6' X 6'	50"	#5 @ 9" OCEW #5 @ 8" OCEW	1,600 1,100			


SCALE: N.T.S.

PROPER INSTALLATION OF A FLEXIBLE UNDERGROUND DETENTION SYSTEM WILL ENSURE LONG-TERM PERFORMANCE. THE CONFIGURATION OF THESE SYSTEMS OFTEN REQUIRES SPECIAL CONSTRUCTION PRACTICES THAT DIFFER FROM CONVENTIONAL FLEXIBLE PIPE CONSTRUCTION. CONTECH ENGINEERED SOLUTIONS STRONGLY SUGGESTS SCHEDULING A PRE-CONSTRUCTION MEETING WITH YOUR LOCAL SALES ENGINEER TO DETERMINE IF ADDITIONAL MEASURES, NOT COVERED IN THIS GUIDE, ARE APPROPRIATE FOR YOUR SITE.

FOUNDATION

CONSTRUCT A FOUNDATION THAT CAN SUPPORT THE DESIGN LOADING APPLIED BY THE PIPE AND ADJACENT BACKFILL WEIGHT AS WELL AS MAINTAIN ITS INTEGRITY DURING CONSTRUCTION.

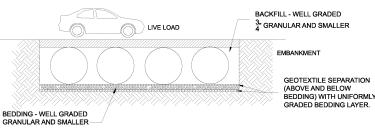
IF SOFT OR UNSUITABLE SOILS ARE ENCOUNTERED, REMOVE THE POOR SOILS DOWN TO A SUITABLE DEPTH AND THEN BUILD UP TO THE APPROPRIATE ELEVATION WITH A COMPETENT BACKFILL MATERIAL. THE STRUCTURAL FILL MATERIAL GRADATION SHOULD NOT ALLOW THE MIGRATION OF FINES, WHICH CAN CAUSE SETTLEMENT OF THE DETENTION SYSTEM OR PAVEMENT ABOVE. IF THE STRUCTURAL FILL MATERIAL IS NOT COMPATIBLE WITH THE UNDERLYING SOILS AN ENGINEERING FABRIC SHOULD BE USED AS A SEPARATOR IN SOME CASES, USING A STIFE REINFORCING GEOGRIF REDUCES OVER EXCAVATION AND REPLACEMENT FILL QUANTITIES.

GRADE THE FOUNDATION SUBGRADE TO A UNIFORM OR SLIGHTLY SLOPING GRADE. IF THE SUBGRADE IS CLAY OR RELATIVELY NON-POROUS AND THE CONSTRUCTION SEQUENCE WILL LAST FOR AN EXTENDED PERIOD OF TIME. IT IS BEST TO SLOPE THE GRADE TO ONE END OF THE SYSTEM. THIS WILL ALLOW EXCESS WATER TO DRAIN QUICKLY, PREVENTING SATURATION OF THE SUBGRADE

GEOMEMBRANE BARRIER

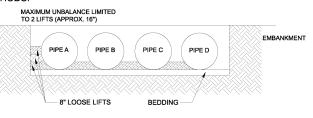
A SITE'S RESISTIVITY MAY CHANGE OVER TIME WHEN VARIOUS TYPES OF SALTING AGENTS ARE USED, SUCH AS ROAD SALTS FOR DEICING AGENTS. IF SALTING AGENTS ARE USED ON OR NEAR THE PROJECT SITE, A GEOMEMBRANE BARRIER IS RECOMMENDED WITH THE SYSTEM. THE GEOMEMBRANE LINER IS INTENDED TO HELP PROTECT THE SYSTEM FROM THE POTENTIAL ADVERSE EFFECTS THAT MAY RESULT FROM THE USE OF SUCH AGENTS INCLUDING PREMATURE CORROSION AND REDUCED ACTUAL SERVICE LIFE.

THE PROJECT'S ENGINEER OF RECORD IS TO EVALUATE WHETHER SALTING AGENTS WILL BE USED ON OR NEAR THE PROJECT SITE, AND USE HIS/HER BEST JUDGEMENT TO DETERMINE IF ANY ADDITIONAL PROTECTIVE MEASURES ARE REQUIRED, BELOW IS A TYPICAL DETAIL SHOWING THE PLACEMENT OF A GEOMEMBRANE BARRIER FOR PROJECTS WHERE SALTING AGENTS ARE USED ON OR NEAR THE PROJECT SITE.


20 MIL PE IMPERMEABLE (12" FOR 12"@ - 96"@) 18" FOR 102@ AND >)

e design and information shown on this drawing is provide a service to the project owner, engineer and contractor by ntech Engineered Solutions LLC ("Contech"). Neither this rawing, nor any part thereof, may be used, repr nodified in any manner without the prior written consent contech. Failure to comply is done at the user's own ris DATE

IN-SITU TRENCH WALL


IF EXCAVATION IS REQUIRED, THE TRENCH WALL NEEDS TO BE CAPABLE OF SUPPORTING THE LOAD THAT THE PIPE SHEDS AS THE SYSTEM IS LOADED. IF SOILS ARE NOT CAPABLE OF SUPPORTING THESE LOADS, THE PIPE CAN DEFLECT PERFORM A SIMPLE SOIL PRESSURE CHECK USING THE APPLIED LOADS TO DETERMINE THE LIMITS OF EXCAVATION BEYOND THE SPRING LINE OF THE OUTER MOST PIPES.

IN MOST CASES THE REQUIREMENTS FOR A SAFE WORK ENVIRONMENT AND PROPER BACKFILL PLACEMENT AND COMPACTION TAKE CARE OF THIS CONCERN.

BACKFILL PLACEMENT

MATERIAL SHALL BE WORKED INTO THE PIPE HAUNCHES BY MEANS OF SHOVEL-SLICING, RODDING, AIR TAMPER, VIBRATORY ROD, OR OTHER EFFECTIVE METHODS

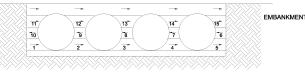
IF AASHTO T99 PROCEDURES ARE DETERMINED INFEASIBLE BY THE GEOTECHNICAL ENGINEER OF RECORD. COMPACTION IS CONSIDERED ADEQUATE WHEN NO FURTHER YIELDING OF THE MATERIAL IS OBSERVED. UNDER THE COMPACTOR, OR UNDER FOOT, AND THE GEOTECHNICAL ENGINEER OF RECORD (OR REPRESENTATIVE THEREOF) IS SATISFIED WITH THE LEVEL OF COMPACTION.

FOR LARGE SYSTEMS, CONVEYOR SYSTEMS, BACKHOES WITH LONG REACHES OR DRAGLINES WITH STONE BUCKETS MAY BE USED TO PLACE BACKFILL, ONCE MINIMUM COVER FOR CONSTRUCTION LOADING ACROSS THE ENTIRE WIDTH OF THE SYSTEM IS REACHED. ADVANCE THE EQUIPMENT TO THE END OF THE RECENTLY PLACED FILL, AND BEGIN THE SEQUENCE AGAIN UNTIL THE SYSTEM IS COMPLETELY BACKFILLED. THIS TYPE OF CONSTRUCTION SEQUENCE PROVIDES ROOM FOR STOCKPILED BACKFILL DIRECTLY BEHIND THE BACKHOF, AS WELL AS THE MOVEMENT OF CONSTRUCTION TRAFFIC. MATERIAL STOCKPILES ON TOP OF THE BACKFILLED DETENTION SYSTEM SHOULD BE LIMITED TO 8- TO 10-FEET HIGH AND MUST PROVIDE BALANCED LOADING ACROSS ALL BARRELS. TO DETERMINE THE PROPER COVER OVER THE PIPES TO ALLOW THE MOVEMENT OF CONSTRUCTION EQUIPMENT SEE TABLE 1, OR CONTACT YOUR LOCAL CONTECH SALES ENGINEER.

TYPICAL BACKFILL SEQUENCE

CINTECH

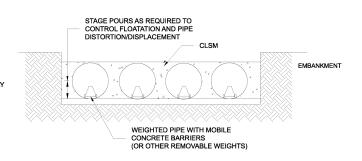
ENGINEERED SOLUTIONS LLC www.ContechES.com


9025 Centre Pointe Dr., Suite 400, West Chester, OH 45069

513-645-7993 FAX

513-645-7000

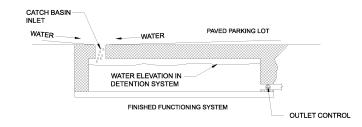
800-338-1122


BY

CANTECH CMP DETENTION SYSTEMS CONTECH DYODS

DRAWING

WHEN FLOWABLE FILL IS USED, YOU MUST PREVENT PIPE FLOATATION TYPICALLY, SMALL LIFTS ARE PLACED BETWEEN THE PIPES AND THEN ALLOWED TO SET-UP PRIOR TO THE PLACEMENT OF THE NEXT LIFT. THE ALLOWABLE THICKNESS OF THE CLSM LIFT IS A FUNCTION OF A PROPER BALANCE BETWEEN THE UPLIFT FORCE OF THE CLSM, THE OPPOSING WEIGHT OF THE PIPE, AND THE EFFECT OF OTHER RESTRAINING MEASURES. THE PIPE CAN CARRY LIMITED FLUID PRESSURE WITHOUT PIPE DISTORTION OR DISPLACEMENT, WHICH ALSO AFFECTS THE CLSM LIFT THICKNESS. YOUR LOCAL CONTECH SALES ENGINEER CAN HELP DETERMINE THE PROPER LIFT THICKNESS.



CONSTRUCTION LOADING

ACCUMULATED SEDIMENT AND TRASH CAN TYPICALLY BE EVACUATED TYPICALLY, THE MINIMUM COVER SPECIFIED FOR A PROJECT ASSUMES H-20 THROUGH THE MANHOLE OVER THE OUTLET ORIFICE. IF MAINTENANCE IS NOT LIVE LOAD. BECAUSE CONSTRUCTION LOADS OFTEN EXCEED DESIGN LIVE PERFORMED AS RECOMMENDED, SEDIMENT AND TRASH MAY ACCUMULATE IN LOADS, INCREASED TEMPORARY MINIMUM COVER REQUIREMENTS ARE FRONT OF THE OUTLET ORIFICE. MANHOLE COVERS SHOULD BE SECURELY SEATED FOLLOWING CLEANING ACTIVITIES. CONTECH SUGGESTS THAT ALL NECESSARY. SINCE CONSTRUCTION EQUIPMENT VARIES FROM JOB TO JOB, SYSTEMS BE DESIGNED WITH AN ACCESS/INSPECTION MANHOLE SITUATED AT IT IS BEST TO ADDRESS EQUIPMENT SPECIFIC MINIMUM COVER OR NEAR THE INLET AND THE OUTLET ORIFICE. SHOULD IT BE NECESSARY TO REQUIREMENTS WITH YOUR LOCAL CONTECH SALES ENGINEER DURING GET INSIDE THE SYSTEM TO PERFORM MAINTENANCE ACTIVITIES, ALL YOUR PRE-CONSTRUCTION MEETING. APPROPRIATE PRECAUTIONS REGARDING CONFINED SPACE ENTRY AND OSHA REGULATIONS SHOULD BE FOLLOWED.

ADDITIONAL CONSIDERATIONS

BECAUSE MOST SYSTEMS ARE CONSTRUCTED BELOW-GRADE, RAINFALL AS PART OF THE MAINTENANCE PROGRAM FOR THE SYSTEM. CAN RAPIDLY FILL THE EXCAVATION; POTENTIALLY CAUSING FLOATATION MAINTAINING AN UNDERGROUND DETENTION OR INFILTRATION SYSTEM IS AND MOVEMENT OF THE PREVIOUSLY PLACED PIPES. TO HELP MITIGATE EASIEST WHEN THERE IS NO FLOW ENTERING THE SYSTEM. FOR THIS POTENTIAL PROBLEMS, IT IS BEST TO START THE INSTALLATION AT THE REASON. IT IS A GOOD IDEA TO SCHEDULE THE CLEANOUT DURING DRY DOWNSTREAM END WITH THE OUTLET ALREADY CONSTRUCTED TO ALLOW WEATHER A ROUTE FOR THE WATER TO ESCAPE. TEMPORARY DIVERSION MEASURES MAY BE REQUIRED FOR HIGH FLOWS DUE TO THE RESTRICTED NATURE OF THE OUTLET PIPE.

DYO19813 20-001 Harvest Easterly Syste Perris, CA DETENTION SYS

REVISION DESCRIPTION

ne supplied information upon which	
ctual field conditions are encountered	_
ese discrepancies must be reported	
re-evaluation of the design. Contech	
ans based on missing, incomplete or	
plied by others	

CMP DETENTION SYSTEM INSPECTION AND MAINTENANCE

UNDERGROUND STORMWATER DETENTION AND INFILTRATION SYSTEMS MUST BE INSPECTED AND MAINTAINED AT REGULAR INTERVALS FOR PURPOSES OF PERFORMANCE AND LONGEVITY.

INSPECTION

INSPECTION IS THE KEY TO EFFECTIVE MAINTENANCE OF CMP DETENTION SYSTEMS AND IS EASILY PERFORMED. CONTECH RECOMMENDS ONGOING. ANNUAL INSPECTIONS. SITES WITH HIGH TRASH LOAD OR SMALL OUTLET CONTROL ORIFICES MAY NEED MORE FREQUENT INSPECTIONS. THE RATE AT WHICH THE SYSTEM COLLECTS POLLUTANTS WILL DEPEND MORE ON SITE SPECIFIC ACTIVITIES RATHER THAN THE SIZE OR CONFIGURATION OF THE SYSTEM.

INSPECTIONS SHOULD BE PERFORMED MORE OFTEN IN EQUIPMENT WASHDOWN AREAS. IN CLIMATES WHERE SANDING AND/OR SALTING OPERATIONS TAKE PLACE, AND IN OTHER VARIOUS INSTANCES IN WHICH ONE WOULD EXPECT HIGHER ACCUMULATIONS OF SEDIMENT OR ABRASIVE/ CORROSIVE CONDITIONS. A RECORD OF EACH INSPECTION IS TO BE MAINTAINED FOR THE LIFE OF THE SYSTEM

MAINTENANCE

CMP DETENTION SYSTEMS SHOULD BE CLEANED WHEN AN INSPECTION REVEALS ACCUMULATED SEDIMENT OR TRASH IS CLOGGING THE DISCHARGE ORIFICE

ANNUAL INSPECTIONS ARE BEST PRACTICE FOR ALL UNDERGROUND SYSTEMS. DURING THIS INSPECTION, IF EVIDENCE OF SALTING/DE-ICING AGENTS IS OBSERVED WITHIN THE SYSTEM, IT IS BEST PRACTICE FOR THE SYSTEM TO BE RINSED, INCLUDING ABOVE THE SPRING LINE SOON AFTER THE SPRING THAW

	PROJECT No.:	SEQ. N	No.:	DATE:	
Landing Site 2	12847	198	313	8/14/20	22
	DESIGNED:		DRAW	/N:	
m	DYO			DYO	
	CHECKED:		APPR	OVED:	
	DYO			DYO	
STEM	SHEET NO .:				-
					1

CALCULATION DETAILS • LOADING = HS20/HS25 • APPROX. LINEAR FOOTAGE = 2,114 LF

STORAGE SUMMARY

- STORAGE VOLUME REQUIRED = N/A
- PIPE STORAGE VOLUME = 106,261 CF
- BACKFILL STORAGE VOLUME = 0 CF
- TOTAL STORAGE PROVIDED = 106,261 CF

PIPE DETAILS

- DIAMETER = 96"
- CORRUGATION = 5x1
- GAGE = 16
- COATING = ALT2
- WALL TYPE = SOLID
- BARREL SPACING = 36"

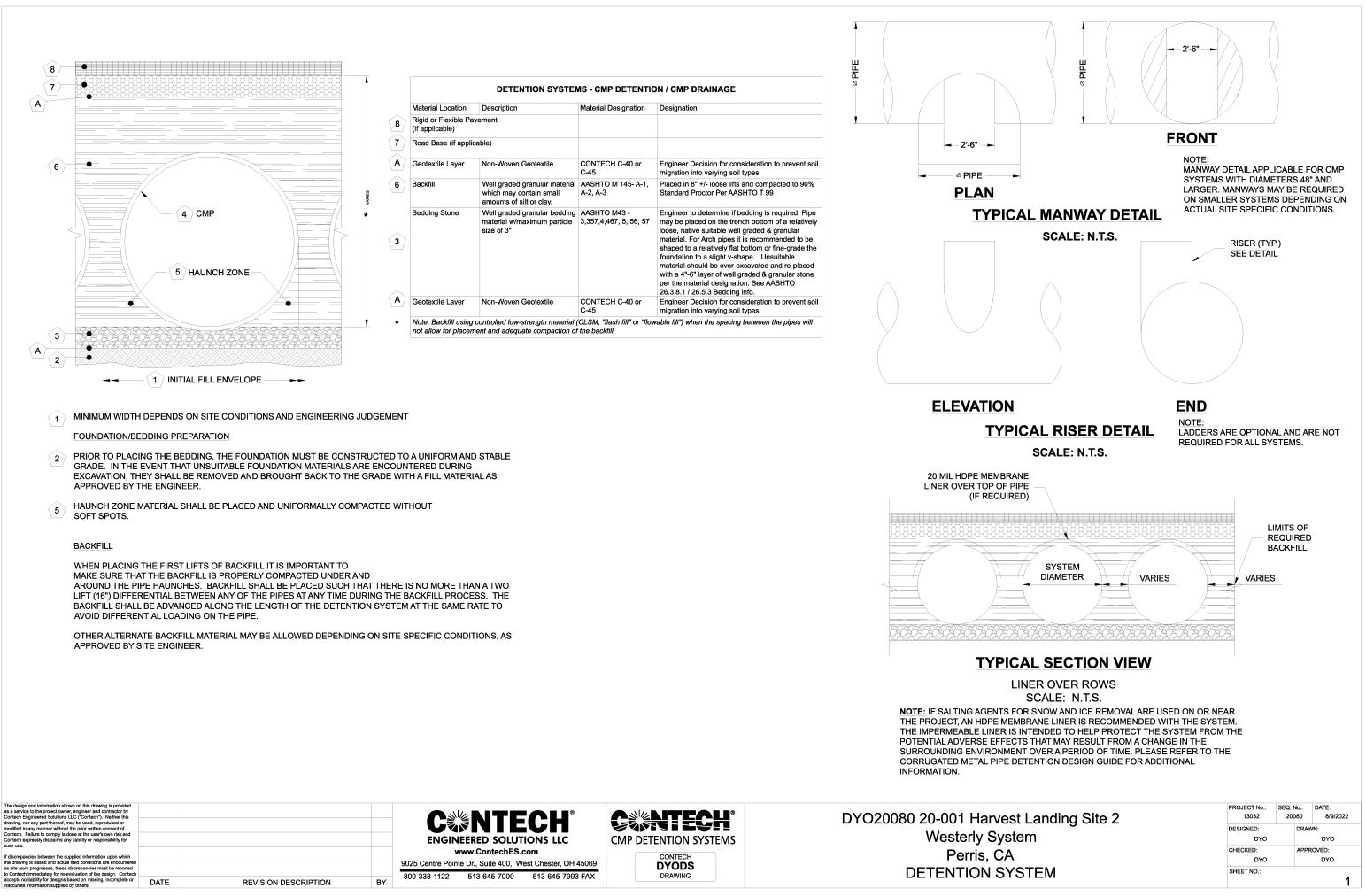
BACKFILL DETAILS

- WIDTH AT ENDS = 12"
- ABOVE PIPE = 0"
- WIDTH AT SIDES = 12"
- BELOW PIPE = 0"

NO	TES	

- ALL RISER AND STUB DIMENSIONS ARE TO CENTERLINE. ALL ELEVATIONS, DIMENSIONS, AND LOCATIONS OF RISERS AND INLETS, SHALL BE VERIFIED BY THE ENGINEER OF RECORD PRIOR TO RELEASING FOR FABRICATION.
- ALL FITTINGS AND REINFORCEMENT COMPLY WITH ASTM A998.
- ALL RISERS AND STUBS ARE $2\frac{2}{3}$ " x $\frac{1}{2}$ " CORRUGATION AND 16 GAGE UNLESS OTHERWISE NOTED. RISERS TO BE FIELD TRIMMED TO GRADE.
- QUANTITY OF PIPE SHOWN DOES NOT PROVIDE EXTRA PIPE FOR CONNECTING THE SYSTEM TO EXISTING PIPE OR DRAINAGE STRUCTURES. OUR SYSTEM AS DETAILED PROVIDES NOMINAL INLET AND/OR OUTLET PIPE STUB FOR CONNECTION TO EXISTING DRAINAGE FACILITIES. IF ADDITIONAL PIPE IS NEEDED IT IS THE RESPONSIBILITY OF THE CONTRACTOR.
- BAND TYPE TO BE DETERMINED UPON FINAL DESIGN.
 THE PROJECT SUMMARY IS REFLECTIVE OF THE
 DYODS DESIGN, QUANTITIES ARE APPROX. AND SHOULD BE VERIFIED UPON FINAL DESIGN AND APPROVAL. FOR EXAMPLE, TOTAL EXCAVATION DOES NOT CONSIDER ALL VARIABLES SUCH AS SHORING AND ONLY ACCOUNTS FOR MATERIAL WITHIN THE
- ESTIMATED EXCAVATION FOOTPRINT.
 THESE DRAWINGS ARE FOR CONCEPTUAL PURPOSES AND DO NOT REFLECT ANY LOCAL PREFERENCES OR REGULATIONS. PLEASE CONTACT YOUR LOCAL CONTECH REP FOR MODIFICATIONS.

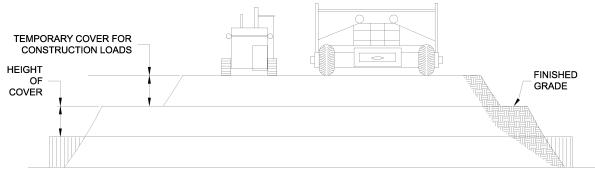
The design and information shown on this drawing is provided as a service to the project owner, engineer and contractor by Contech Engineered Solutions LLC ("Contech"). Neither this drawing, nor any part thereof, may be used, reproduced or modified in any manner without the prior written consent of Contech, Failure to comply is done at liability or responsibility for Contech expressly disclaims any liability or responsibility for				ENGINEERED SOLUTIONS LLC	CANTECH [®] CMP DETENTION SYSTEMS	DYO20080 20-001 Harvest Westerly Syste
such use. If discrepancies between the supplied information upon which the drawing is based and actual field conditions are encountered as site work progresses, these discrepancies must be reported to Contech immediately for re-valuation of the design. Contech accepts no liability for designs based on missing, incomplete or inaccurate information supplied by others.	DATE	REVISION DESCRIPTION	BY	www.ContechES.com 9025 Centre Pointe Dr., Suite 400, West Chester, OH 45069 800-338-1122 513-645-7000 513-645-7993 FAX	CONTECH DYODS DRAWING	Perris, CA DETENTION SYS


ō Ň

> ASSEMBLY SCALE: 1" = 40'

418'-0"

	PROJECT No.:	SEQ. No.:	DATE:
vest Landing Site 2	13032	20080	8/9/2022
ystem	DESIGNED: DYO	DRA	WN: DYO
ČA	CHECKED: DYO	APP	ROVED: DYO
SYSTEM	SHEET NO .:		1


		-/
		\sum
		\sum
		\geq
		-

-	00011 000.
U:/EAPURI 3/1	If discrepancies between the supplied information the drawing is based and actual field conditions a as site work progresses, these discrepancies mus to Contech immediately for re-evaluation of the de accepts no liability for designs based on missing, inaccurate information supolied by others.

on upon which are encountered ust be reported design, Contech		
g, incomplete or	DATE	

9025 Centre Pointe Dr., Suite 400, West Chester, OH 45

FOR TEMPORARY CONSTRUCTION VEHICLE LOADS, AN EXTRA AMOUNT OF COMPACTED COVER MAY BE REQUIRED OVER THE TOP OF THE PIPE. THE HEIGHT-OF-COVER SHALL MEET THE MINIMUM REQUIREMENTS SHOWN IN THE TABLE BELOW. THE USE OF HEAVY CONSTRUCTION EQUIPMENT NECESSITATES GREATER PROTECTION FOR THE PIPE THAN FINISHED GRADE COVER MINIMUMS FOR NORMAL HIGHWAY TRAFFIC.

PIPE SPAN,	AXLE LOADS (kips)				
INCHES	18-50	50-75	75-110	110-150	
	MI	NIMUM C	OVER (F	- T)	
12-42	2.0	2.5	3.0	3.0	
48-72	3.0	3.0	3.5	4.0	
78-120	3.0	3.5	4.0	4.0	
126-144	3.5	4.0	4.5	4.5	

*MINIMUM COVER MAY VARY, DEPENDING ON LOCAL CONDITIONS. THE CONTRACTOR MUST PROVIDE THE ADDITIONAL COVER REQUIRED TO AVOID DAMAGE TO THE PIPE. MINIMUM COVER IS MEASURED FROM THE TOP OF THE PIPE TO THE TOP OF THE MAINTAINED CONSTRUCTION ROADWAY SURFACE.

CONSTRUCTION LOADING DIAGRAM

SCALE: N.T.S.

SPECIFICATION FOR DESIGNED DETENTION SYSTEM:

SCOPE

THIS SPECIFICATION COVERS THE MANUFACTURE AND INSTALLATION OF THE DESIGNED DETENTION SYSTEM DETAILED IN THE PROJECT PLANS.

MATERIAI

THE MATERIAL SHALL CONFORM TO THE APPLICABLE REQUIREMENTS LISTED BELOW

ALUMINIZED TYPE 2 STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-274 OR ASTM A-92.

THE GALVANIZED STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-218 OR ASTM A-929.

THE POLYMER COATED STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-246 OR ASTM A-742.

THE ALUMINUM COILS SHALL CONFORM TO THE APPLICABLE OF AASHTO M-197 OR ASTM B-744.

CONSTRUCTION LOADS

CONSTRUCTION LOADS MAY BE HIGHER THAN FINAL LOADS. FOLLOW THE MANUFACTURER'S OR NCSPA GUIDELINES.

NOTE:
THESE DRAWINGS ARE FOR CONCEPTUAL
PURPOSES AND DO NOT REFLECT ANY LOCAL
PREFERENCES OR REGULATIONS. PLEASE
CONTACT YOUR LOCAL CONTECH REP FOR
MODIFICATIONS.
The design and information shown on this drawing is provided as a service to the project owner, engineer and contractor by
Contech Engineered Solutions LLC ("Contech"). Neither this
drawing, nor any part thereof, may be used, reproduced or

DATE REVISION DESCRIPTION

PIPF THE PIPE SHALL BE MANUFACTURED IN ACCORDANCE TO THE APPLICABLE REQUIREMENTS LISTED BELOW:

ALUMINIZED TYPE 2: AASHTO M-36 OR ASTM A-760

GALVANIZED: AASHTO M-36 OR ASTM A-760

AFFOLICYANELIEE COATED: AASHTO M-245 OR ASTM A-762

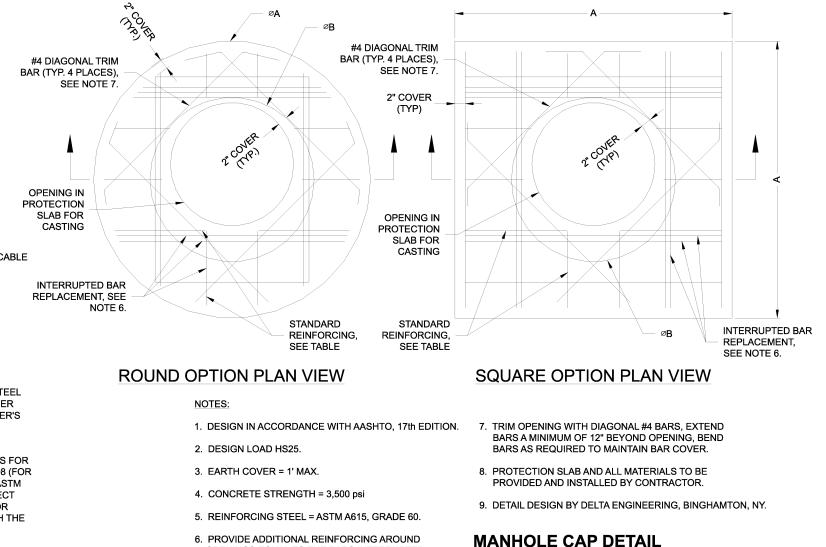
ALUMINUM: AASHTO M-196 OR ASTM B-745

APPLICABLE

BY

HANDLING AND ASSEMBLY SHALL BE IN ACCORDANCE WITH NCSP'S (NATIONAL CORRUGATED STEEL

AFFREE ABSED CIATION) FOR ALUMINIZED TYPE 2. GALVANIZED OR POLYMER COATED STEEL. SHALL BE IN ACCORDANCE WITH THE MANUFACTURER'S RECOMMENDATIONS FOR ALUMINUM PIPE.


REQUIREMENTS INSTALLATION

SHALL BE IN ACCORDANCE WITH AASHTO STANDARD SPECIFICATIONS FOR HIGHWAY BRIDGES, SECTION 26, DIVISION II DIVISION II OR ASTM A-798 (FOR ALUMINIZED TYPE 2, GALVANIZED OR POLYMER COATED STEEL) OR ASTM B-788 (FOR ALUMINUM PIPE) AND IN CONFORMANCE WITH THE PROJECT PLANS AND SPECIFICATIONS. IF THERE ARE ANY INCONSISTENCIES OR CONFLICTS THE CONTRACTOR SHOULD DISCUSS AND RESOLVE WITH THE SITE ENGINEER.

IT IS ALWAYS THE RESPONSIBILITY OF THE CONTRACTOR TO FOLLOW OSHA GUIDELINES FOR SAFE PRACTICES.

ACCESS CASTING TO BE PROVIDED AND INSTALLED BY CONTRACTOR. n. 20 ŀ Ø CMP RISER GASKET MATERIAL SUFFICIENT TO PREVENT (TYP. SLAB FROM BEARING ON RISER TO BE PROVIDED BY GAP SI CONTRACTOR. ØF - 11" TYP SECTION VIEW

CINTECH

CMP DETENTION SYSTEMS

CONTECH

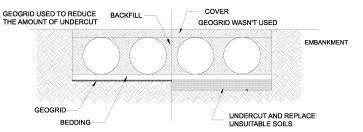
DYODS

DRAWING

- OPENINGS EQUAL TO THE BARS INTERRUPTED, HALF EACH SIDE. ADDITIONAL BARS TO BE IN THE SAME PLANE.

PROJECT No. SEQ. No.: DATE: DYO20080 20-001 Harvest Landing Site 2 8/9/2022 13032 20080 DESIGNED: DRAWN Westerly System DYO DYO CHECKED: APPROVED: Perris, CA DYO DYO **DETENTION SYSTEM** SHEET NO.

	RE	EINFO	RCING TABLE	
Ø CMP RISER	A	ØB	REINFORCING	**BEARING PRESSURE (PSF)
24"	∅ 4' 4'X4'	26"	#5 @ 12" OCEW #5 @ 12" OCEW	2,410 1,780
30"	∅ 4'-6" 4'-6" X 4'-6"	32"	#5 @ 12" OCEW #5 @ 12" OCEW	2,120 1,530
36"	∞ 5' 5' X 5'	38"	#5 @ 10" OCEW #5 @ 10" OCEW	1,890 1,350
42"	∅ 5'-6" 5'-6" X 5'-6"	44"	#5 @ 10" OCEW #5 @ 9" OCEW	1,720 1,210
48"	∞ 6' 6' X 6'	50"	#5 @ 9" OCEW #5 @ 8" OCEW	1,600 1,100


SCALE: N.T.S.

PROPER INSTALLATION OF A FLEXIBLE UNDERGROUND DETENTION SYSTEM WILL ENSURE LONG-TERM PERFORMANCE. THE CONFIGURATION OF THESE SYSTEMS OFTEN REQUIRES SPECIAL CONSTRUCTION PRACTICES THAT DIFFER FROM CONVENTIONAL FLEXIBLE PIPE CONSTRUCTION. CONTECH ENGINEERED SOLUTIONS STRONGLY SUGGESTS SCHEDULING A PRE-CONSTRUCTION MEETING WITH YOUR LOCAL SALES ENGINEER TO DETERMINE IF ADDITIONAL MEASURES, NOT COVERED IN THIS GUIDE, ARE APPROPRIATE FOR YOUR SITE.

FOUNDATION

CONSTRUCT A FOUNDATION THAT CAN SUPPORT THE DESIGN LOADING APPLIED BY THE PIPE AND ADJACENT BACKFILL WEIGHT AS WELL AS MAINTAIN ITS INTEGRITY DURING CONSTRUCTION.

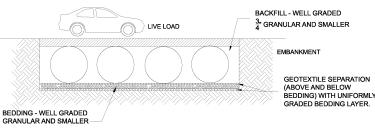
IF SOFT OR UNSUITABLE SOILS ARE ENCOUNTERED, REMOVE THE POOR SOILS DOWN TO A SUITABLE DEPTH AND THEN BUILD UP TO THE APPROPRIATE ELEVATION WITH A COMPETENT BACKFILL MATERIAL. THE STRUCTURAL FILL MATERIAL GRADATION SHOULD NOT ALLOW THE MIGRATION OF FINES, WHICH CAN CAUSE SETTLEMENT OF THE DETENTION SYSTEM OR PAVEMENT ABOVE. IF THE STRUCTURAL FILL MATERIAL IS NOT COMPATIBLE WITH THE UNDERLYING SOILS AN ENGINEERING FABRIC SHOULD BE USED AS A SEPARATOR. IN SOME CASES, USING A STIFF REINFORCING GEOGRID REDUCES OVER EXCAVATION AND REPLACEMENT FILL QUANTITIES.

GRADE THE FOUNDATION SUBGRADE TO A UNIFORM OR SLIGHTLY SLOPING GRADE. IF THE SUBGRADE IS CLAY OR RELATIVELY NON-POROUS AND THE CONSTRUCTION SEQUENCE WILL LAST FOR AN EXTENDED PERIOD OF TIME, IT IS BEST TO SLOPE THE GRADE TO ONE END OF THE SYSTEM. THIS WILL ALLOW EXCESS WATER TO DRAIN QUICKLY, PREVENTING SATURATION OF THE SUBGRADE.

GEOMEMBRANE BARRIER

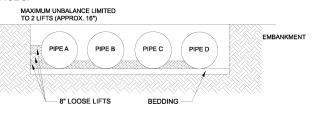
A SITE'S RESISTIVITY MAY CHANGE OVER TIME WHEN VARIOUS TYPES OF SALTING AGENTS ARE USED, SUCH AS ROAD SALTS FOR DEICING AGENTS. IF SALTING AGENTS ARE USED ON OR NEAR THE PROJECT SITE, A GEOMEMBRANE BARRIER IS RECOMMENDED WITH THE SYSTEM. THE GEOMEMBRANE LINER IS INTENDED TO HELP PROTECT THE SYSTEM FROM THE POTENTIAL ADVERSE EFFECTS THAT MAY RESULT FROM THE USE OF SUCH AGENTS INCLUDING PREMATURE CORROSION AND REDUCED ACTUAL SERVICE LIFE.

THE PROJECT'S ENGINEER OF RECORD IS TO EVALUATE WHETHER SALTING AGENTS WILL BE USED ON OR NEAR THE PROJECT SITE, AND USE HIS/HER BEST JUDGEMENT TO DETERMINE IF ANY ADDITIONAL PROTECTIVE MEASURES ARE REQUIRED. BELOW IS A TYPICAL DETAIL SHOWING THE PLACEMENT OF A GEOMEMBRANE BARRIER FOR PROJECTS WHERE SALTING AGENTS ARE USED ON OR NEAR THE PROJECT SITE.


20 MIL PE IMPERMEABLE LINER OVER TOP OF PIPE 15 FOR 152*- 36*9) 15 FOR 152*- 36*9) 16 FOR 152*- 36*9) 18 FOR 152*- 36*9) 19 FOR 152*- 36*9 19 FOR 152*- 36*9) 19 FOR 152*- 36*9 19 FOR 152*- 36*9 19 FOR 152*- 36*9 10 FOR 152*- 36*

The design and information shown on this drawing is provided as a service to the project owner, engineer and contractor by Contech Engineered Solutions LLC ("Contech"). Neither this drawing, nor any part thereof, may be used, reproduced or modified in any manner without the prior written consent of Contech. Faulties to comply is done at the user's own risk and Contech expressly disclaims any liability or responsibility for such use. If discrepancies between the supplied information upon which the drawing is based and actual field conditions are encountered as lite work progresses, these discrepancies must be reported to Contech. Fanjoresses the supplied information upon which the drawing is based and actual field conditions are encountered as lite work progresses, these discrepancies incomplete or to contech immediately for mevaluation or the design. Contech incomplete the or theme.

IN-SITU TRENCH WALL


IF EXCAVATION IS REQUIRED, THE TRENCH WALL NEEDS TO BE CAPABLE OF SUPPORTING THE LOAD THAT THE PIPE SHEDS AS THE SYSTEM IS LOADED. IF SOILS ARE NOT CAPABLE OF SUPPORTING THESE LOADS, THE PIPE CAN DEFLECT. PERFORM A SIMPLE SOIL PRESSURE CHECK USING THE APPLIED LOADS TO DETERMINE THE LIMITS OF EXCAVATION BEYOND THE SPRING LINE OF THE OUTER MOST PIPES.

IN MOST CASES THE REQUIREMENTS FOR A SAFE WORK ENVIRONMENT AND PROPER BACKFILL PLACEMENT AND COMPACTION TAKE CARE OF THIS CONCERN.

BACKFILL PLACEMENT

MATERIAL SHALL BE WORKED INTO THE PIPE HAUNCHES BY MEANS OF SHOVEL-SLICING, RODDING, AIR TAMPER, VIBRATORY ROD, OR OTHER EFFECTIVE METHODS.

IF AASHTO T99 PROCEDURES ARE DETERMINED INFEASIBLE BY THE GEOTECHNICAL ENGINEER OF RECORD, COMPACTION IS CONSIDERED ADEQUATE WHEN NO FURTHER YIELDING OF THE MATERIAL IS OBSERVED UNDER THE COMPACTOR, OR UNDER FOOT, AND THE GEOTECHNICAL ENGINEER OF RECORD (OR REPRESENTATIVE THEREOF) IS SATISFIED WITH THE LEVEL OF COMPACTION.

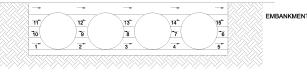
FOR LARGE SYSTEMS, CONVEYOR SYSTEMS, BACKHOES WITH LONG REACHES OR DRAGLINES WITH STONE BUCKETS MAY BE USED TO PLACE BACKFILL. ONCE MINIMUM COVER FOR CONSTRUCTION LOADING ACROSS THE ENTIRE WIDTH OF THE SYSTEM IS REACHED, ADVANCE THE EQUIPMENT TO THE END OF THE RECENTLY PLACED FILL, AND BEGIN THE SEQUENCE AGAIN UNTIL THE SYSTEM IS COMPLETELY BACKFILLED. THIS TYPE OF CONSTRUCTION SEQUENCE PROVIDES ROOM FOR STOCKPILED BACKFILL DIRECTLY BEHIND THE BACKHOE, AS WELL AS THE MOVEMENT OF CONSTRUCTION TRAFFIC. MATERIAL STOCKPILES ON TOP OF THE BACKFILLED DETENTION SYSTEM SHOULD BE LIMITED TO 8- TO 10-FEET HIGH AND MUST PROVIDE BALANCED LOADING ACROSS ALL BARRELS. TO DETERMINE THE PROPER COVER OVER THE PIPES TO ALLOW THE MOVEMENT OF CONSTRUCTION EQUIPMENT SEE TABLE 1, OR CONTACT YOUR LOCAL CONTECH SALES ENGINEER.

TYPICAL BACKFILL SEQUENCE

CINTECH

ENGINEERED SOLUTIONS LLC

9025 Centre Pointe Dr., Suite 400, West Chester, OH 45069


513-645-7993 FAX

www.ContechES.com

513-645-7000

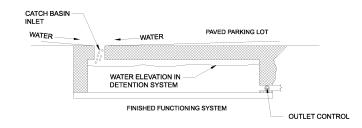
800-338-1122

BY

CMP DETENTION SYSTEMS

DRAWING

WHEN FLOWABLE FILL IS USED, YOU MUST PREVENT PIPE FLOATATION. TYPICALLY, SMALL LIFTS ARE PLACED BETWEEN THE PIPES AND THEN ALLOWED TO SET-UP PRIOR TO THE PLACEMENT OF THE NEXT LIFT. THE ALLOWABLE THICKNESS OF THE CLSM LIFT IS A FUNCTION OF A PROPER BALANCE BETWEEN THE UPLIFT FORCE OF THE CLSM, THE OPPOSING WEIGHT OF THE PIPE, AND THE EFFECT OF OTHER RESTRAINING MEASURES. THE PIPE CAN CARRY LIMITED FLUID PRESSURE WITHOUT PIPE DISTORTION OR DISPLACEMENT, WHICH ALSO AFFECTS THE CLSM LIFT THICKNESS. YOUR LOCAL CONTECH SALES ENGINEER CAN HELP DETERMINE THE PROPER LIFT THICKNESS.



CONSTRUCTION LOADING

ACCUMULATED SEDIMENT AND TRASH CAN TYPICALLY BE EVACUATED TYPICALLY, THE MINIMUM COVER SPECIFIED FOR A PROJECT ASSUMES H-20 THROUGH THE MANHOLE OVER THE OUTLET ORIFICE. IF MAINTENANCE IS NOT LIVE LOAD. BECAUSE CONSTRUCTION LOADS OFTEN EXCEED DESIGN LIVE PERFORMED AS RECOMMENDED, SEDIMENT AND TRASH MAY ACCUMULATE IN LOADS, INCREASED TEMPORARY MINIMUM COVER REQUIREMENTS ARE FRONT OF THE OUTLET ORIFICE. MANHOLE COVERS SHOULD BE SECURELY SEATED FOLLOWING CLEANING ACTIVITIES. CONTECH SUGGESTS THAT ALL NECESSARY. SINCE CONSTRUCTION EQUIPMENT VARIES FROM JOB TO JOB, SYSTEMS BE DESIGNED WITH AN ACCESS/INSPECTION MANHOLE SITUATED AT IT IS BEST TO ADDRESS EQUIPMENT SPECIFIC MINIMUM COVER OR NEAR THE INLET AND THE OUTLET ORIFICE. SHOULD IT BE NECESSARY TO REQUIREMENTS WITH YOUR LOCAL CONTECH SALES ENGINEER DURING GET INSIDE THE SYSTEM TO PERFORM MAINTENANCE ACTIVITIES, ALL YOUR PRE-CONSTRUCTION MEETING. APPROPRIATE PRECAUTIONS REGARDING CONFINED SPACE ENTRY AND OSHA REGULATIONS SHOULD BE FOLLOWED.

ADDITIONAL CONSIDERATIONS

BECAUSE MOST SYSTEMS ARE CONSTRUCTED BELOW-GRADE, RAINFALL CAN RAPIDLY FILL THE EXCAVATION; POTENTIALLY CAUSING FLOATATION AND MOVEMENT OF THE PREVIOUSLY PLACED PIPES. TO HELP MITIGATE POTENTIAL PROBLEMS, IT IS BEST TO START THE INSTALLATION AT THE DOWNSTREAM END WITH THE OUTLET ALREADY CONSTRUCTED TO ALLOW A ROUTE FOR THE WATER TO ESCAPE. TEMPORARY DIVERSION MEASURES MAY BE REQUIRED FOR HIGH FLOWS DUE TO THE RESTRICTED NATURE OF THE OUTLET PIPE. AS PART OF THE MAINTENANCE PROGRAM FOR THE SYSTEM. AS PART OF THE MAINTENANCE PROGRAM FOR THE SYSTEM. MAINTAINING AN UNDERGROUND DETENTION OR INFILTRATION SYSTEM IS EASIEST WHEN THERE IS NO FLOW ENTERING THE SYSTEM. FOR THIS REASON, IT IS A GOOD IDEA TO SCHEDULE THE CLEANOUT DURING DRY WEATHER. THE FOREGOING INSPECTION AND MAINTENANCE EFFORTS HELP ENSURE UNDERGROUND PIPE SYSTEMS USED FOR STORMWATER STORAGE CONT TO ELUNCTION AS INTENDED PRIVINCIPAL OF THE MAINTENANCE PROGRAM FOR THE SYSTEM.

DYO20080 20-001 Harvest Westerly Syste Perris, CA DETENTION SYS

REVISION DESCRIPTION

CMP DETENTION SYSTEM INSPECTION AND MAINTENANCE

UNDERGROUND STORMWATER DETENTION AND INFILTRATION SYSTEMS MUST BE INSPECTED AND MAINTAINED AT REGULAR INTERVALS FOR PURPOSES OF PERFORMANCE AND LONGEVITY.

INSPECTION

INSPECTION IS THE KEY TO EFFECTIVE MAINTENANCE OF CMP DETENTION SYSTEMS AND IS EASILY PERFORMED. CONTECH RECOMMENDS ONGOING, ANNUAL INSPECTIONS. SITES WITH HIGH TRASH LOAD OR SMALL OUTLET CONTROL ORIFICES MAY NEED MORE FREQUENT INSPECTIONS. THE RATE AT WHICH THE SYSTEM COLLECTS POLLUTANTS WILL DEPEND MORE ON SITE SPECIFIC ACTIVITIES RATHER THAN THE SIZE OR CONFIGURATION OF THE SYSTEM.

INSPECTIONS SHOULD BE PERFORMED MORE OFTEN IN EQUIPMENT WASHDOWN AREAS, IN CLIMATES WHERE SANDING AND/OR SALTING OPERATIONS TAKE PLACE, AND IN OTHER VARIOUS INSTANCES IN WHICH ONE WOULD EXPECT HIGHER ACCUMULATIONS OF SEDIMENT OR ABRASIVE/ CORROSIVE CONDITIONS. A RECORD OF EACH INSPECTION IS TO BE MAINTAINED FOR THE LIFE OF THE SYSTEM

MAINTENANCE

CMP DETENTION SYSTEMS SHOULD BE CLEANED WHEN AN INSPECTION REVEALS ACCUMULATED SEDIMENT OR TRASH IS CLOGGING THE DISCHARGE ORIFICE.

ANNUAL INSPECTIONS ARE BEST PRACTICE FOR ALL UNDERGROUND SYSTEMS. DURING THIS INSPECTION, IF EVIDENCE OF SALTING/DE-ICING AGENTS IS OBSERVED WITHIN THE SYSTEM, IT IS BEST PRACTICE FOR THE SYSTEM TO BE RINSED, INCLUDING ABOVE THE SPRING LINE SOON AFTER THE SPRING THAW AS PART OF THE MAINTENANCE PROGRAM FOR THE SYSTEM.

	PROJECT No.:	SEQ. N	No.:	DATE:	
Landing Site 2	13032	20080		8/9/20	22
	DESIGNED:	DR		DRAWN:	
em	DYO		DYÖ		
	CHECKED:		APPR	OVED:	
	DYO			DYO	
STEM	SHEET NO .:				
. =					1

LEGEND

(1025)	EXISTING CONTOUR
	PROPOSED CONTOUR
	RETAINING WALL
XX	FENCE
- <u> </u>	EDGE OF PAVEMENT
_	SIGN
O MH	MANHOLE
	RIGHT OF WAY
= = =	EASEMENT
	PARCEL LINE
<u> </u>	PARCEL MAP BOUNDARY
	STREET CENTER LINE
	SCREEN WALL
	COMBINATION SCREEN/RETAINING WALL
	EXISTING LOT LINE
	RIDGE LINE
	RIBBON GUTTER
	FLOW ARROW
<u>w</u>	PROPOSED EDGE OF PAVEMENT
— — W— —	EXISTING WATER LINE
——	PROPOSED WATER LINE
— —SS— —	EXISTING SWR LINE
SS	PROPOSED SEWER LINE
— —SD— —	EXISTING STORM DRAIN PIPE
SD	PROPOSED STORM DRAIN PIPE
— —E— —	EXISTING OVERHEAD LINES
	CUT/FILL LINE
Ý	SLOPE SYMBOL

ZONING ORDINANCE

EXISTING ZONING: HARVEST LANDING SPECIFIC PLANS - MULTIPLE BUSINESS USE (MBU,

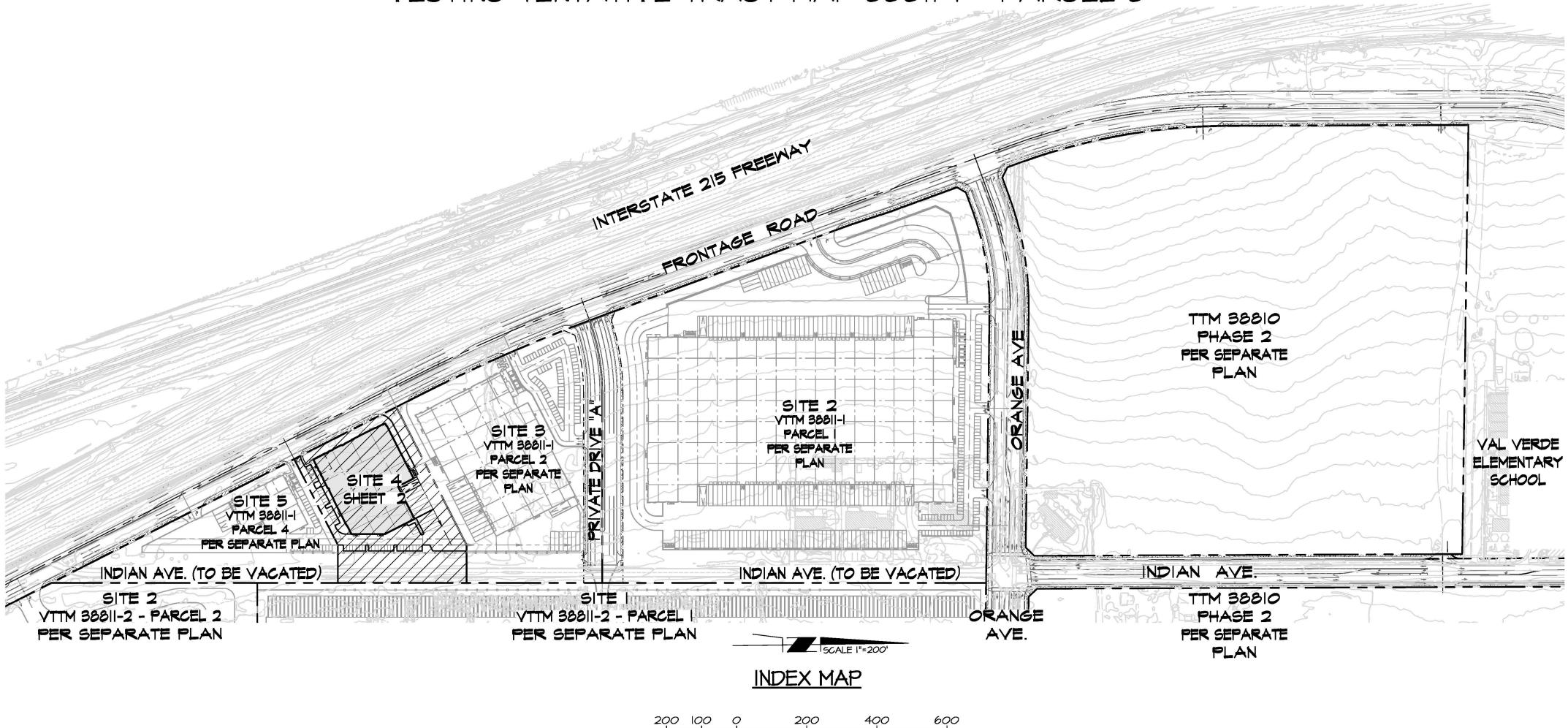
PROPOSED ZONING: HARVEST LANDING SPECIFIC PLANS - MULTIPLE BUSINESS USE (MBU,

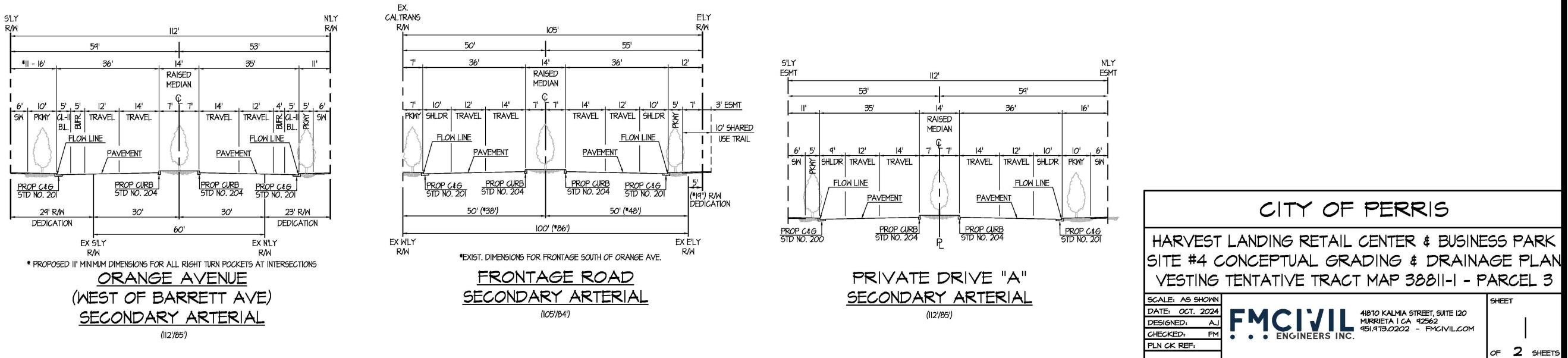
ASSESSOR'S PARCEL NUMBERS: 305-100-028.305-170-018.305-100-008. \$ 305-100-009

LEGAL DESCRIPTION

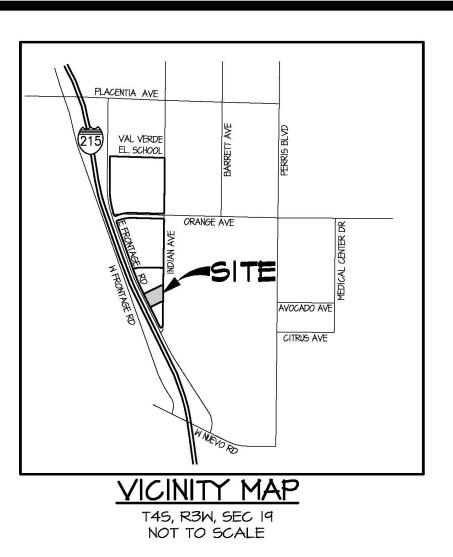
PARCELS 2-5:

(APNS: 305-100-028, 305-170-018, 305-100-008, 305-100-009)


THAT PORTION OF THE NORTHWEST QUARTER OF SECTION 19, TOWNSHIP 4 SOUTH, RANGE 3 WEST, SAN BERNARDINO BASE AND MERIDIAN, WHICH LIES EASTERLY OF STATE HIGHWAY 395 AS CONVEYED TO THE STATE OF CALIFORNIA BY DEED RECORDED APRIL 28, 1952 AS INSTRUMENT NO. 18008.


EXCEPTING THE NORTH 30 FEET IN ORANGE AVENUE, THE EAST 30 FEET IN INDIAN AVENUE AND THE SOUTH 30 FEET IN CITRUS AVENUE.

ALSO EXCEPTING THEREFROM THE PORTION DESCRIBED IN DEED RECORDED DECEMBER 21, 1965 AS INSTRUMENT NO. 142400 AND IN DEED RECORDED MARCH 13, 1969 AS INSTRUMENT NO. 24345, RECORDS OF RIVERSIDE COUNTY.


ALSO EXCEPTING THEREFROM THOSE PORTIONS CONVEYED TO THE STATE OF CALIFORNIA BY DEEDS RECORDED MARCH 22, 1992, AS INSTRUMENT NOS. 94602 AND 94603.

IN THE CITY OF PERRIS, COUNTY OF RIVERSIDE, STATE OF CALIFORNIA HARVEST LANDING RETAIL CENTER & BUSINESS PARK SITE #4 CONCEPTUAL GRADING & DRAINAGE PLAN VESTING TENTATIVE TRACT MAP 38811-1 - PARCEL 3

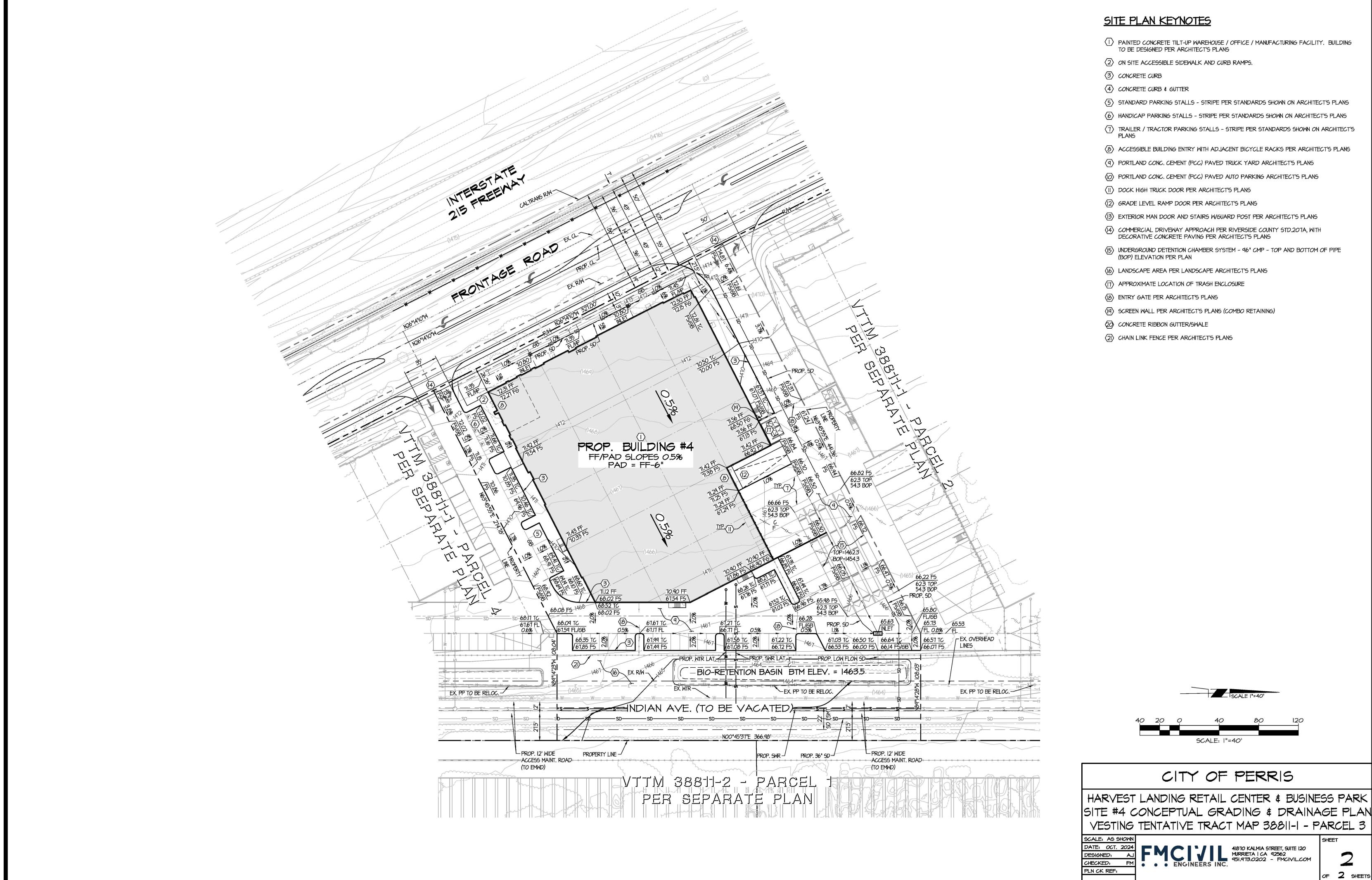
SCALE: |"=200'

APPLICANT/OWNER

HOWARD INDUSTRIAL PARTNERS 1944 NORTH TUSTIN STREET, SUITE 122 ORANGE, CA 92865 CONTACT: TIM HOWARD (TEL)714-769-9155

ENGINEER

FMCIVIL ENGINEERS INC. 41870 KALMIA ST., SUITE 120 MURRIETA, CA 92562 CONTACT: FRANCISCO MARTINEZ (TEL)951-973-0202


ARCHITECT

AO ARCHITECTURE 144 NORTH STREET ORANGE, CA 92866 CONTACT: DAN MACDAVID (TEL)714-639-9860

EARTHWORK ESTIMATE:

RAW CUT:	440 CY
RAW FILL:	11,840 CY
NET:	11,400 CY IMPORT

HAUL TRIPS: ASSUMED (13 CY PER TRIP) = 877

CALCULATION DETAILS • LOADING = HS20/HS25 • APPROX. LINEAR FOOTAGE = 664 LF

STORAGE SUMMARY

- STORAGE VOLUME REQUIRED = N/A
- PIPE STORAGE VOLUME = 33,376 CF
- BACKFILL STORAGE VOLUME = 0 CF
- TOTAL STORAGE PROVIDED = 33,376 CF

PIPE DETAILS

- DIAMETER = 96"
- CORRUGATION = 5x1
- GAGE = 16
- COATING = ALT2
- WALL TYPE = SOLID
- BARREL SPACING = 36"

BACKFILL DETAILS

- WIDTH AT ENDS = 12"
- ABOVE PIPE = 0"
- WIDTH AT SIDES = 12" • BELOW PIPE = 0"

NOTES

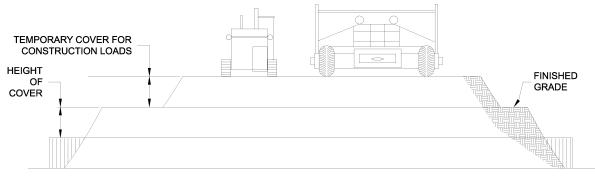
- ALL RISER AND STUB DIMENSIONS ARE TO CENTERLINE. ALL ELEVATIONS, DIMENSIONS, AND LOCATIONS OF RISERS AND INLETS, SHALL BE VERIFIED BY THE ENGINEER OF RECORD PRIOR TO RELEASING FOR FABRICATION.
- ALL FITTINGS AND REINFORCEMENT COMPLY WITH ASTM A998.
- ALL RISERS AND STUBS ARE $2\frac{2}{3}$ " x $\frac{1}{2}$ " CORRUGATION AND 16 GAGE UNLESS OTHERWISE NOTED. RISERS TO BE FIELD TRIMMED TO GRADE.
- QUANTITY OF PIPE SHOWN DOES NOT PROVIDE EXTRA PIPE FOR CONNECTING THE SYSTEM TO EXISTING PIPE OR DRAINAGE STRUCTURES. OUR SYSTEM AS DETAILED PROVIDES NOMINAL INLET AND/OR OUTLET PIPE STUB FOR CONNECTION TO EXISTING DRAINAGE FACILITIES. IF ADDITIONAL PIPE IS NEEDED IT IS THE RESPONSIBILITY OF THE CONTRACTOR.
- BAND TYPE TO BE DETERMINED UPON FINAL DESIGN. • THE PROJECT SUMMARY IS REFLECTIVE OF THE DYODS DESIGN, QUANTITIES ARE APPROX. AND SHOULD BE VERIFIED UPON FINAL DESIGN AND APPROVAL. FOR EXAMPLE, TOTAL EXCAVATION DOES NOT CONSIDER ALL VARIABLES SUCH AS SHORING AND ONLY ACCOUNTS FOR MATERIAL WITHIN THE

	ESTIMATED EXCAVATION FOOTPRINT.
,	THESE DRAWINGS ARE FOR CONCEPTUAL PURPOSES
	AND DO NOT REFLECT ANY LOCAL PREFERENCES OR
	REGULATIONS. PLEASE CONTACT YOUR LOCAL
	CONTECH REP FOR MODIFICATIONS.

The design and information shown on this drawing is provided as a service to the project owner, engineer and contractor by Contech Engineered Solutions LLC ("Contech"). Neither this drawing, nor any part thereof, may be used, reproduced or modified in any manner without the prior written consent of Contech. Failure to comply is done at the user's own risk and					CENTECH	יס
Contech expressly disclaims any liability or responsibility for				ENGINEERED SOLUTIONS LLC	CMP DETENTION SYSTEMS	
If discrepancies between the supplied information upon which the drawing is based and actual field conditions are encountered				www.ContechES.com 9025 Centre Pointe Dr., Suite 400, West Chester, OH 45069		
as site work progresses, these discrepancies must be reported to Contech immediately for re-evaluation of the design. Contech				800-338-1122 513-645-7000 513-645-7993 FAX	DRAWING	
accepts no liability for designs based on missing, incomplete or inaccurate information supplied by others	DATE	REVISION DESCRIPTION	BY	800-338-1122 513-645-7000 513-645-7993 FAX	DRAWING	

ь Ň

118'-3"



YO19778 20-001 Harvest Site 4 Chambe Perris, CA DETENTION SYS

-	

Landing Site 4	PROJECT No.: 12820	SEQ. N 197		DATE: 8/2/2022	
ers	DESIGNED: DYO			WN: DYO	
	CHECKED: DYO		APPR	OVED: DYO	
TEM	SHEET NO.:	1		1	

FOR TEMPORARY CONSTRUCTION VEHICLE LOADS, AN EXTRA AMOUNT OF COMPACTED COVER MAY BE REQUIRED OVER THE TOP OF THE PIPE. THE HEIGHT-OF-COVER SHALL MEET THE MINIMUM REQUIREMENTS SHOWN IN THE TABLE BELOW. THE USE OF HEAVY CONSTRUCTION EQUIPMENT NECESSITATES GREATER PROTECTION FOR THE PIPE THAN FINISHED GRADE COVER MINIMUMS FOR NORMAL HIGHWAY TRAFFIC.

PIPE SPAN,	A	XLE LO	ADS (kips	s)
INCHES	18-50	50-75	75-110	110-150
	MI	NIMUM C	OVER (F	- T)
12-42	2.0	2.5	3.0	3.0
48-72	3.0	3.0	3.5	4.0
78-120	3.0	3.5	4.0	4.0
126-144	3.5	4.0	4.5	4.5

*MINIMUM COVER MAY VARY, DEPENDING ON LOCAL CONDITIONS. THE CONTRACTOR MUST PROVIDE THE ADDITIONAL COVER REQUIRED TO AVOID DAMAGE TO THE PIPE. MINIMUM COVER IS MEASURED FROM THE TOP OF THE PIPE TO THE TOP OF THE MAINTAINED CONSTRUCTION ROADWAY SURFACE.

CONSTRUCTION LOADING DIAGRAM

SCALE: N.T.S.

REVISION DESCRIPTION

SPECIFICATION FOR DESIGNED DETENTION SYSTEM:

SCOPE

THIS SPECIFICATION COVERS THE MANUFACTURE AND INSTALLATION OF THE DESIGNED DETENTION SYSTEM DETAILED IN THE PROJECT PLANS.

MATERIAL

THE MATERIAL SHALL CONFORM TO THE APPLICABLE REQUIREMENTS LISTED BELOW

ALUMINIZED TYPE 2 STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-274 OR ASTM A-92.

THE GALVANIZED STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-218 OR ASTM A-929.

THE POLYMER COATED STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-246 OR ASTM A-742.

THE ALUMINUM COILS SHALL CONFORM TO THE APPLICABLE OF AASHTO M-197 OR ASTM B-744.

CONSTRUCTION LOADS

CONSTRUCTION LOADS MAY BE HIGHER THAN FINAL LOADS. FOLLOW THE MANUFACTURER'S OR NCSPA GUIDELINES.

DATE

NOTE:	
THESE DRAWINGS ARE FOR CONCEP	TUAL
PURPOSES AND DO NOT REFLECT AN	Y LOCAL
PREFERENCES OR REGULATIONS. PL	EASE
CONTACT YOUR LOCAL CONTECH REP	P FOR
MODIFICATIONS.	
The design and information shown on this drawing is provided as a service to the project owner, engineer and contractor by	
Contech Engineered Solutions LLC ("Contech"). Neither this drawing nor any part thereof may be used reproduced or	

PIPF THE PIPE SHALL BE MANUFACTURED IN ACCORDANCE TO THE APPLICABLE REQUIREMENTS LISTED BELOW:

ALUMINIZED TYPE 2: AASHTO M-36 OR ASTM A-760

GALVANIZED: AASHTO M-36 OR ASTM A-760

AFFOLICYANELIEE COATED: AASHTO M-245 OR ASTM A-762

ALUMINUM: AASHTO M-196 OR ASTM B-745

APPLICABLE

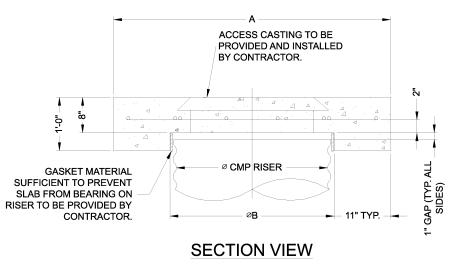
BY

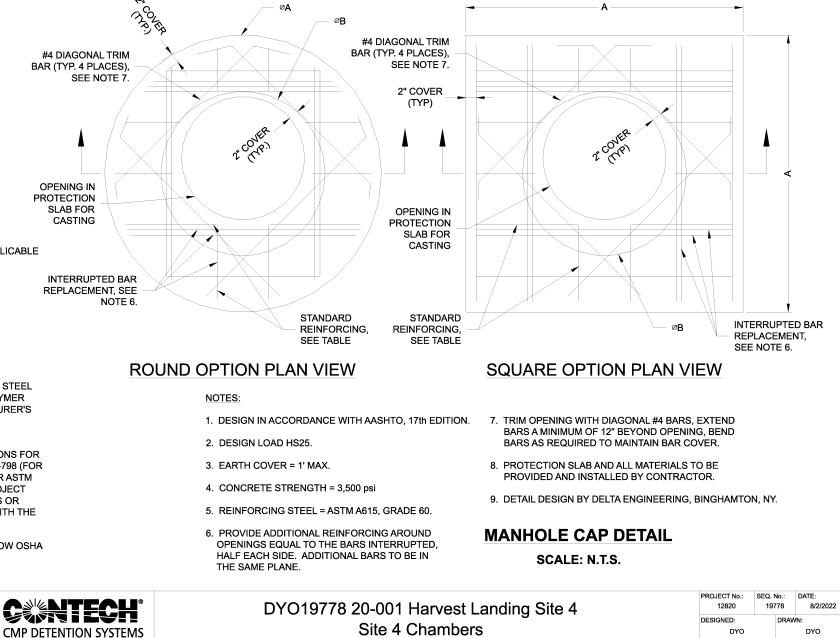
HANDLING AND ASSEMBLY SHALL BE IN ACCORDANCE WITH NCSP'S (NATIONAL CORRUGATED STEEL

AFFPEECABSEDCIATION) FOR ALUMINIZED TYPE 2. GALVANIZED OR POLYMER COATED STEEL. SHALL BE IN ACCORDANCE WITH THE MANUFACTURER'S RECOMMENDATIONS FOR ALUMINUM PIPE.

REQUIREMENTS INSTALLATION

SHALL BE IN ACCORDANCE WITH AASHTO STANDARD SPECIFICATIONS FOR HIGHWAY BRIDGES, SECTION 26, DIVISION II DIVISION II OR ASTM A-798 (FOR ALUMINIZED TYPE 2, GALVANIZED OR POLYMER COATED STEEL) OR ASTM B-788 (FOR ALUMINUM PIPE) AND IN CONFORMANCE WITH THE PROJECT PLANS AND SPECIFICATIONS. IF THERE ARE ANY INCONSISTENCIES OR CONFLICTS THE CONTRACTOR SHOULD DISCUSS AND RESOLVE WITH THE SITE ENGINEER.


IT IS ALWAYS THE RESPONSIBILITY OF THE CONTRACTOR TO FOLLOW OSHA GUIDELINES FOR SAFE PRACTICES.



800-338-1122 513-645-7000 513-645-7993 FAX CONTECH

DYODS

DRAWING

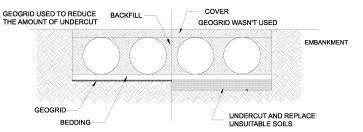
Site 4 Chambers Perris, CA **DETENTION SYSTEM**

REINFORCING TABLE						
Ø CMP RISER	Α	ØB	REINFORCING	**BEARING PRESSURE (PSF)		
24"	∞ 4' 4'X4'	26"	#5 @ 12" OCEW #5 @ 12" OCEW	2,410 1,780		
30"	∅ 4'-6" 4'-6" X 4'-6"	32"	#5 @ 12" OCEW #5 @ 12" OCEW	2,120 1,530		
36"	∞ 5' 5' X 5'	38"	#5 @ 10" OCEW #5 @ 10" OCEW	1,890 1,350		
42"	∅ 5'-6" 5'-6" X 5'-6"	44"	#5 @ 10" OCEW #5 @ 9" OCEW	1,720 1,210		
48"	∞ 6' 6' X 6'	50"	#5 @ 9" OCEW #5 @ 8" OCEW	1,600 1,100		

DYO	
APPROVED:	
DYO	
	1

CHECKED:

SHEET NO .:


DYO

PROPER INSTALLATION OF A FLEXIBLE UNDERGROUND DETENTION SYSTEM WILL ENSURE LONG-TERM PERFORMANCE. THE CONFIGURATION OF THESE SYSTEMS OFTEN REQUIRES SPECIAL CONSTRUCTION PRACTICES THAT DIFFER FROM CONVENTIONAL FLEXIBLE PIPE CONSTRUCTION. CONTECH ENGINEERED SOLUTIONS STRONGLY SUGGESTS SCHEDULING A PRE-CONSTRUCTION MEETING WITH YOUR LOCAL SALES ENGINEER TO DETERMINE IF ADDITIONAL MEASURES, NOT COVERED IN THIS GUIDE, ARE APPROPRIATE FOR YOUR SITE.

FOUNDATION

CONSTRUCT A FOUNDATION THAT CAN SUPPORT THE DESIGN LOADING APPLIED BY THE PIPE AND ADJACENT BACKFILL WEIGHT AS WELL AS MAINTAIN ITS INTEGRITY DURING CONSTRUCTION.

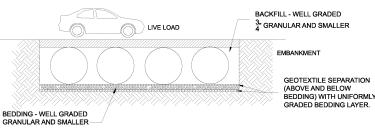
IF SOFT OR UNSUITABLE SOILS ARE ENCOUNTERED, REMOVE THE POOR SOILS DOWN TO A SUITABLE DEPTH AND THEN BUILD UP TO THE APPROPRIATE ELEVATION WITH A COMPETENT BACKFILL MATERIAL. THE STRUCTURAL FILL MATERIAL GRADATION SHOULD NOT ALLOW THE MIGRATION OF FINES, WHICH CAN CAUSE SETTLEMENT OF THE DETENTION SYSTEM OR PAVEMENT ABOVE. IF THE STRUCTURAL FILL MATERIAL IS NOT COMPATIBLE WITH THE UNDERLYING SOILS AN ENGINEERING FABRIC SHOULD BE USED AS A SEPARATOR IN SOME CASES, USING A STIFE REINFORCING GEOGRIF REDUCES OVER EXCAVATION AND REPLACEMENT FILL QUANTITIES.

GRADE THE FOUNDATION SUBGRADE TO A UNIFORM OR SLIGHTLY SLOPING GRADE. IF THE SUBGRADE IS CLAY OR RELATIVELY NON-POROUS AND THE CONSTRUCTION SEQUENCE WILL LAST FOR AN EXTENDED PERIOD OF TIME. IT IS BEST TO SLOPE THE GRADE TO ONE END OF THE SYSTEM. THIS WILL ALLOW EXCESS WATER TO DRAIN QUICKLY, PREVENTING SATURATION OF THE SUBGRADE

GEOMEMBRANE BARRIER

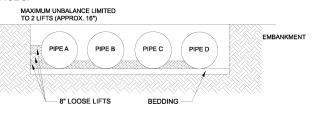
A SITE'S RESISTIVITY MAY CHANGE OVER TIME WHEN VARIOUS TYPES OF SALTING AGENTS ARE USED, SUCH AS ROAD SALTS FOR DEICING AGENTS. IF SALTING AGENTS ARE USED ON OR NEAR THE PROJECT SITE, A GEOMEMBRANE BARRIER IS RECOMMENDED WITH THE SYSTEM. THE GEOMEMBRANE LINER IS INTENDED TO HELP PROTECT THE SYSTEM FROM THE POTENTIAL ADVERSE EFFECTS THAT MAY RESULT FROM THE USE OF SUCH AGENTS INCLUDING PREMATURE CORROSION AND REDUCED ACTUAL SERVICE LIFE.

THE PROJECT'S ENGINEER OF RECORD IS TO EVALUATE WHETHER SALTING AGENTS WILL BE USED ON OR NEAR THE PROJECT SITE, AND USE HIS/HER BEST JUDGEMENT TO DETERMINE IF ANY ADDITIONAL PROTECTIVE MEASURES ARE REQUIRED. BELOW IS A TYPICAL DETAIL SHOWING THE PLACEMENT OF A GEOMEMBRANE BARRIER FOR PROJECTS WHERE SALTING AGENTS ARE USED ON OR NEAR THE PROJECT SITE.


20 MIL PE IMPERMEABLE (12" FOR 12"@ - 96"@) 18" FOR 102@ AND >)

asign and information shown on this drawing is provide ervice to the project owner, engineer and contractor by ch Engineered Solutions LLC ("Contech"). Neither this rawing, nor any part thereof, may be used, repr odified in any manner without the prior written consent ontech. Failure to comply is done at the user's own risk disclaims any liability or resp ween the supplied wing is based and actual field conditions are en work progresses, these discrepancies must be tech immediately for re-evaluation of the design s no liability for designs based on missing, inco-rate information supplied by others DATE

IN-SITU TRENCH WALL


IF EXCAVATION IS REQUIRED, THE TRENCH WALL NEEDS TO BE CAPABLE OF SUPPORTING THE LOAD THAT THE PIPE SHEDS AS THE SYSTEM IS LOADED. IF SOILS ARE NOT CAPABLE OF SUPPORTING THESE LOADS, THE PIPE CAN DEFLECT PERFORM A SIMPLE SOIL PRESSURE CHECK USING THE APPLIED LOADS TO DETERMINE THE LIMITS OF EXCAVATION BEYOND THE SPRING LINE OF THE OUTER MOST PIPES.

IN MOST CASES THE REQUIREMENTS FOR A SAFE WORK ENVIRONMENT AND PROPER BACKFILL PLACEMENT AND COMPACTION TAKE CARE OF THIS CONCERN.

BACKFILL PLACEMENT

MATERIAL SHALL BE WORKED INTO THE PIPE HAUNCHES BY MEANS OF SHOVEL-SLICING, RODDING, AIR TAMPER, VIBRATORY ROD, OR OTHER EFFECTIVE METHODS

IF AASHTO T99 PROCEDURES ARE DETERMINED INFEASIBLE BY THE GEOTECHNICAL ENGINEER OF RECORD. COMPACTION IS CONSIDERED ADEQUATE WHEN NO FURTHER YIELDING OF THE MATERIAL IS OBSERVED. UNDER THE COMPACTOR, OR UNDER FOOT, AND THE GEOTECHNICAL ENGINEER OF RECORD (OR REPRESENTATIVE THEREOF) IS SATISFIED WITH THE LEVEL OF COMPACTION.

FOR LARGE SYSTEMS, CONVEYOR SYSTEMS, BACKHOES WITH LONG REACHES OR DRAGLINES WITH STONE BUCKETS MAY BE USED TO PLACE BACKFILL, ONCE MINIMUM COVER FOR CONSTRUCTION LOADING ACROSS THE ENTIRE WIDTH OF THE SYSTEM IS REACHED. ADVANCE THE EQUIPMENT TO THE END OF THE RECENTLY PLACED FILL, AND BEGIN THE SEQUENCE AGAIN UNTIL THE SYSTEM IS COMPLETELY BACKFILLED. THIS TYPE OF CONSTRUCTION SEQUENCE PROVIDES ROOM FOR STOCKPILED BACKFILL DIRECTLY BEHIND THE BACKHOF, AS WELL AS THE MOVEMENT OF CONSTRUCTION TRAFFIC. MATERIAL STOCKPILES ON TOP OF THE BACKFILLED DETENTION SYSTEM SHOULD BE LIMITED TO 8- TO 10-FEET HIGH AND MUST PROVIDE BALANCED LOADING ACROSS ALL BARRELS. TO DETERMINE THE PROPER COVER OVER THE PIPES TO ALLOW THE MOVEMENT OF CONSTRUCTION EQUIPMENT SEE TABLE 1, OR CONTACT YOUR LOCAL CONTECH SALES ENGINEER.

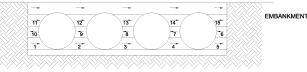
TYPICAL BACKFILL SEQUENCE

CINTECH

ENGINEERED SOLUTIONS LLC

9025 Centre Pointe Dr., Suite 400, West Chester, OH 45069

513-645-7993 FAX

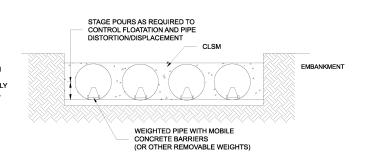

www.ContechES.com

513-645-7000

800-338-1122

BY

REVISION DESCRIPTION

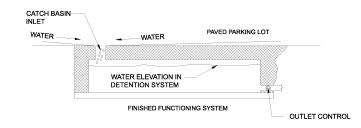


CENTECH CMP DETENTION SYSTEMS CONTECH DYODS

DRAWING

DYO19778 20-001 Harvest Site 4 Chambe Perris, CA

WHEN FLOWABLE FILL IS USED, YOU MUST PREVENT PIPE FLOATATION TYPICALLY, SMALL LIFTS ARE PLACED BETWEEN THE PIPES AND THEN ALLOWED TO SET-UP PRIOR TO THE PLACEMENT OF THE NEXT LIFT. THE ALLOWABLE THICKNESS OF THE CLSM LIFT IS A FUNCTION OF A PROPER BALANCE BETWEEN THE UPLIFT FORCE OF THE CLSM, THE OPPOSING WEIGHT OF THE PIPE, AND THE EFFECT OF OTHER RESTRAINING MEASURES. THE PIPE CAN CARRY LIMITED FLUID PRESSURE WITHOUT PIPE DISTORTION OR DISPLACEMENT, WHICH ALSO AFFECTS THE CLSM LIFT THICKNESS. YOUR LOCAL CONTECH SALES ENGINEER CAN HELP DETERMINE THE PROPER LIFT THICKNESS.



CONSTRUCTION LOADING

ACCUMULATED SEDIMENT AND TRASH CAN TYPICALLY BE EVACUATED TYPICALLY, THE MINIMUM COVER SPECIFIED FOR A PROJECT ASSUMES H-20 THROUGH THE MANHOLE OVER THE OUTLET ORIFICE. IF MAINTENANCE IS NOT LIVE LOAD. BECAUSE CONSTRUCTION LOADS OFTEN EXCEED DESIGN LIVE PERFORMED AS RECOMMENDED, SEDIMENT AND TRASH MAY ACCUMULATE IN LOADS, INCREASED TEMPORARY MINIMUM COVER REQUIREMENTS ARE FRONT OF THE OUTLET ORIFICE. MANHOLE COVERS SHOULD BE SECURELY SEATED FOLLOWING CLEANING ACTIVITIES. CONTECH SUGGESTS THAT ALL NECESSARY. SINCE CONSTRUCTION EQUIPMENT VARIES FROM JOB TO JOB, SYSTEMS BE DESIGNED WITH AN ACCESS/INSPECTION MANHOLE SITUATED AT IT IS BEST TO ADDRESS EQUIPMENT SPECIFIC MINIMUM COVER OR NEAR THE INLET AND THE OUTLET ORIFICE. SHOULD IT BE NECESSARY TO REQUIREMENTS WITH YOUR LOCAL CONTECH SALES ENGINEER DURING GET INSIDE THE SYSTEM TO PERFORM MAINTENANCE ACTIVITIES, ALL YOUR PRE-CONSTRUCTION MEETING. APPROPRIATE PRECAUTIONS REGARDING CONFINED SPACE ENTRY AND OSHA REGULATIONS SHOULD BE FOLLOWED.

ADDITIONAL CONSIDERATIONS

BECAUSE MOST SYSTEMS ARE CONSTRUCTED BELOW-GRADE, RAINFALL AS PART OF THE MAINTENANCE PROGRAM FOR THE SYSTEM. CAN RAPIDLY FILL THE EXCAVATION; POTENTIALLY CAUSING FLOATATION MAINTAINING AN UNDERGROUND DETENTION OR INFILTRATION SYSTEM IS AND MOVEMENT OF THE PREVIOUSLY PLACED PIPES. TO HELP MITIGATE EASIEST WHEN THERE IS NO FLOW ENTERING THE SYSTEM. FOR THIS POTENTIAL PROBLEMS, IT IS BEST TO START THE INSTALLATION AT THE REASON. IT IS A GOOD IDEA TO SCHEDULE THE CLEANOUT DURING DRY DOWNSTREAM END WITH THE OUTLET ALREADY CONSTRUCTED TO ALLOW WEATHER A ROUTE FOR THE WATER TO ESCAPE. TEMPORARY DIVERSION MEASURES MAY BE REQUIRED FOR HIGH FLOWS DUE TO THE RESTRICTED NATURE OF THE OUTLET PIPE.

CMP DETENTION SYSTEM INSPECTION AND MAINTENANCE

UNDERGROUND STORMWATER DETENTION AND INFILTRATION SYSTEMS MUST BE INSPECTED AND MAINTAINED AT REGULAR INTERVALS FOR PURPOSES OF PERFORMANCE AND LONGEVITY.

INSPECTION

INSPECTION IS THE KEY TO EFFECTIVE MAINTENANCE OF CMP DETENTION SYSTEMS AND IS EASILY PERFORMED. CONTECH RECOMMENDS ONGOING, ANNUAL INSPECTIONS. SITES WITH HIGH TRASH LOAD OR SMALL OUTLET CONTROL ORIFICES MAY NEED MORE FREQUENT INSPECTIONS. THE RATE AT WHICH THE SYSTEM COLLECTS POLLUTANTS WILL DEPEND MORE ON SITE SPECIFIC ACTIVITIES RATHER THAN THE SIZE OR CONFIGURATION OF THE SYSTEM.

INSPECTIONS SHOULD BE PERFORMED MORE OFTEN IN EQUIPMENT WASHDOWN AREAS. IN CLIMATES WHERE SANDING AND/OR SALTING OPERATIONS TAKE PLACE, AND IN OTHER VARIOUS INSTANCES IN WHICH ONE WOULD EXPECT HIGHER ACCUMULATIONS OF SEDIMENT OR ABRASIVE/ CORROSIVE CONDITIONS. A RECORD OF EACH INSPECTION IS TO BE MAINTAINED FOR THE LIFE OF THE SYSTEM

MAINTENANCE

CMP DETENTION SYSTEMS SHOULD BE CLEANED WHEN AN INSPECTION REVEALS ACCUMULATED SEDIMENT OR TRASH IS CLOGGING THE DISCHARGE ORIFICE

ANNUAL INSPECTIONS ARE BEST PRACTICE FOR ALL UNDERGROUND SYSTEMS. DURING THIS INSPECTION, IF EVIDENCE OF SALTING/DE-ICING AGENTS IS OBSERVED WITHIN THE SYSTEM, IT IS BEST PRACTICE FOR THE SYSTEM TO BE RINSED, INCLUDING ABOVE THE SPRING LINE SOON AFTER THE SPRING THAW

	PROJECT No .:	SEQ. No.	: DATE:
78 20-001 Harvest Landing Site 4	12820	19778	8/2/2022
5	DESIGNED:	D	RAWN:
Site 4 Chambers	DYO		DYO
Perris, CA	CHECKED:	A	PPROVED:
,	DYO		DYO
DETENTION SYSTEM	SHEET NO .:		
			1

LEGEND

(1025)	EXISTING CONTOUR
1025	PROPOSED CONTOUR
	RETAINING WALL
X	FENCE
	EDGE OF PAVEMENT
_	SIGN
O MH	MANHOLE
	RIGHT OF WAY
= =	EASEMENT
	PARCEL LINE
	PARCEL MAP BOUNDARY
	STREET CENTER LINE
	SCREEN WALL
	COMBINATION SCREEN/RETAINING WALL
	EXISTING LOT LINE
	RIDGE LINE
	RIBBON GUTTER
	FLOW ARROW
	PROPOSED EDGE OF PAVEMENT
—W— —	EXISTING WATER LINE
	PROPOSED WATER LINE
—SS— —	EXISTING SWR LINE
SS	PROPOSED SEWER LINE
—SD— —	EXISTING STORM DRAIN PIPE
SD	PROPOSED STORM DRAIN PIPE
—E— —	EXISTING OVERHEAD LINES
	CUT/FILL LINE
Ý	SLOPE SYMBOL

ZONING ORDINANCE

_

EXISTING ZONING:

HARVEST LANDING SPECIFIC PLANS - MULTIPLE BUSINESS USE (MBU)

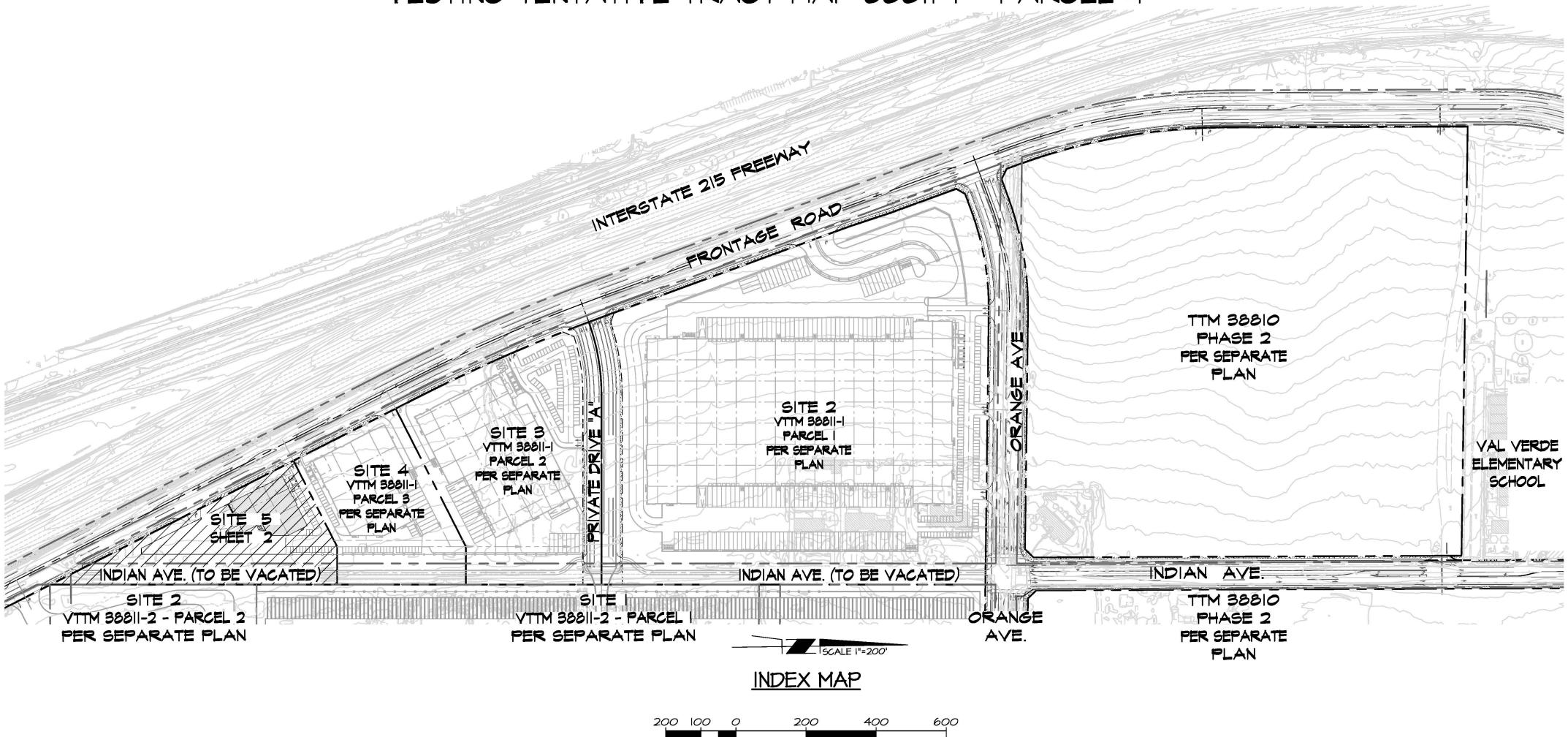
HARVEST LANDING SPECIFIC PLANS - MULTIPLE BUSINESS USE (MBU)

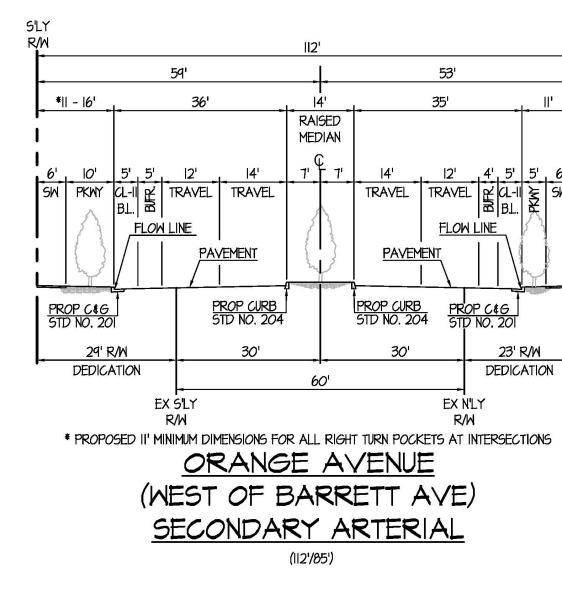
ASSESSOR'S PARCEL NUMBERS: 305-100-028, 305-170-018, 305-100-008, \$ 305-100-009

LEGAL DESCRIPTION

PARCELS 2-5:

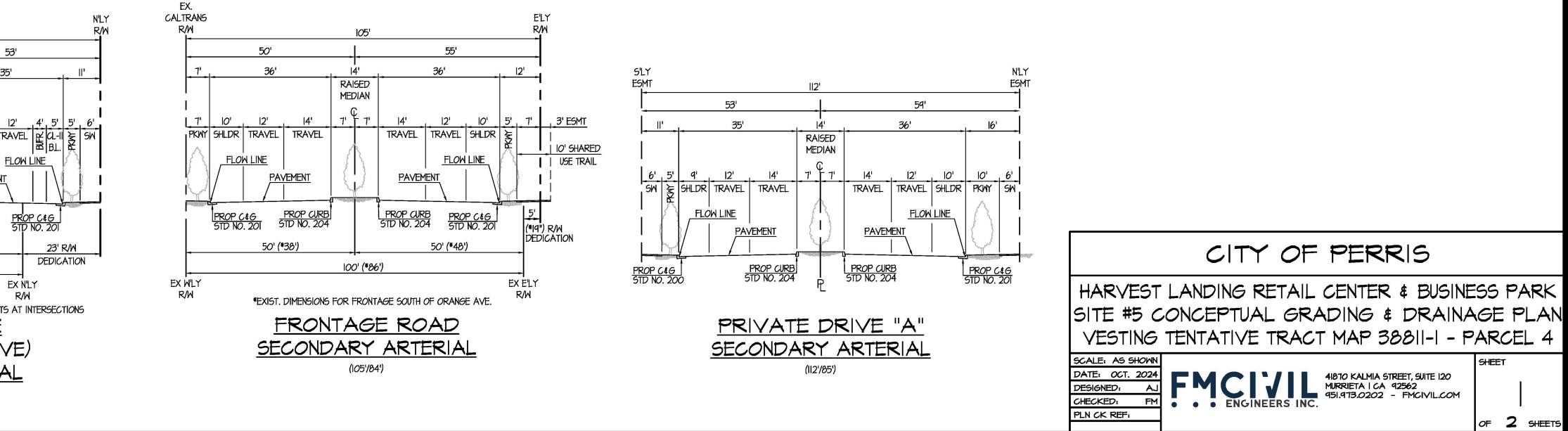
(APNS:305-100-028, 305-170-018, 305-100-008, 305-100-009)

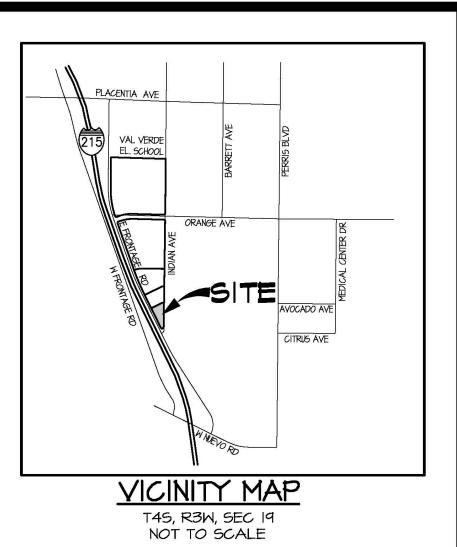

THAT PORTION OF THE NORTHWEST QUARTER OF SECTION 19, TOWNSHIP 4 SOUTH, RANGE 3 WEST, SAN BERNARDINO BASE AND MERIDIAN, WHICH LIES EASTERLY OF STATE HIGHWAY 395 AS CONVEYED TO THE STATE OF CALIFORNIA BY DEED RECORDED APRIL 28, 1952 AS INSTRUMENT NO. 18008.


EXCEPTING THE NORTH 30 FEET IN ORANGE AVENUE, THE EAST 30 FEET IN INDIAN AVENUE AND THE SOUTH 30 FEET IN CITRUS AVENUE.

ALSO EXCEPTING THEREFROM THE PORTION DESCRIBED IN DEED RECORDED DECEMBER 21, 1965 AS INSTRUMENT NO. 142400 AND IN DEED RECORDED MARCH 13, 1969 AS INSTRUMENT NO. 24345, RECORDS OF RIVERSIDE COUNTY.

ALSO EXCEPTING THEREFROM THOSE PORTIONS CONVEYED TO THE STATE OF CALIFORNIA BY DEEDS RECORDED MARCH 22, 1992, AS INSTRUMENT NOS. 94602 AND 94603.


IN THE CITY OF PERRIS, COUNTY OF RIVERSIDE, STATE OF CALIFORNIA HARVEST LANDING RETAIL CENTER & BUSINESS PARK SITE #5 CONCEPTUAL GRADING & DRAINAGE PLAN



VESTING TENTATIVE TRACT MAP 38811-1 - PARCEL 4

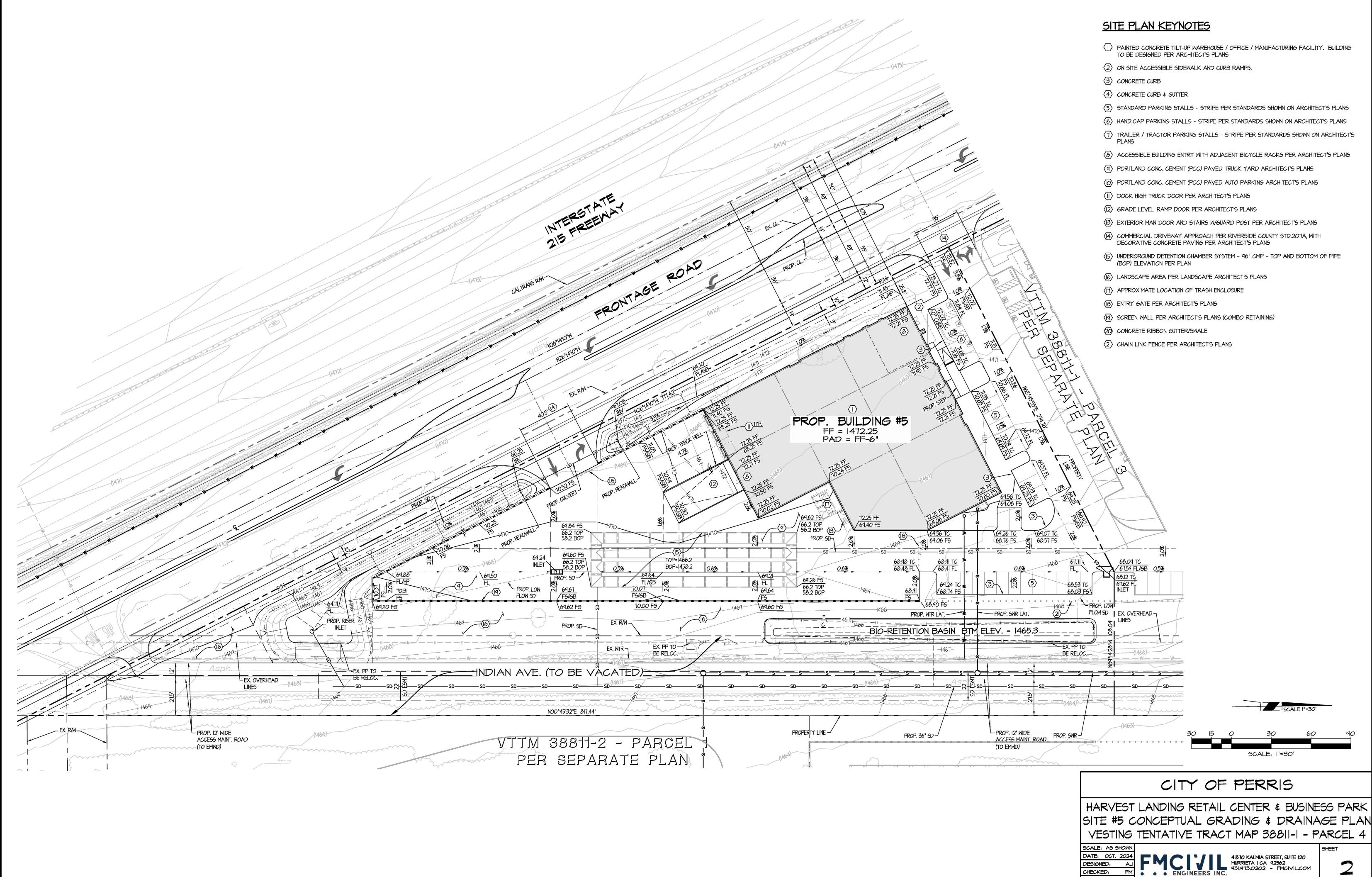
SCALE: |"=200'

APPLICANT/OWNER

HOWARD INDUSTRIAL PARTNERS 1944 NORTH TUSTIN STREET, SUITE 122 ORANGE, CA 92865 CONTACT: TIM HOWARD (TEL)714-769-9155

ENGINEER

FMCIVIL ENGINEERS INC. 41870 KALMIA ST., SUITE 120 MURRIETA, CA 92562 CONTACT: FRANCISCO MARTINEZ (TEL)951-973-0202


ARCHITECT

AO ARCHITECTURE 144 NORTH STREET ORANGE, CA 92866 CONTACT: DAN MACDAVID (TEL)714-639-9860

EARTHWORK ESTIMATE:

RAW CUT:	575 CY
RAW FILL:	9,075 CY
NET:	8500 CY IMPORT

HAUL TRIPS: ASSUMED (13 CY PER TRIP) = 654

PLN CK REF:

OF 2 SHEETS

CALCULATION DETAILS • LOADING = HS20/HS25 • APPROX. LINEAR FOOTAGE = 634 LF

STORAGE SUMMARY

- STORAGE VOLUME REQUIRED = N/A
- PIPE STORAGE VOLUME = 31,843 CF
- BACKFILL STORAGE VOLUME = 0 CF
- TOTAL STORAGE PROVIDED = 31,843 CF

PIPE DETAILS

- DIAMETER = 96"
- CORRUGATION = 5x1
- GAGE = 16
- COATING = ALT2
- WALL TYPE = SOLID
- BARREL SPACING = 36"

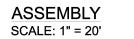
BACKFILL DETAILS

- WIDTH AT ENDS = 12"
- ABOVE PIPE = 0" • WIDTH AT SIDES = 12"
- BELOW PIPE = 0"

NOTES

- ALL RISER AND STUB DIMENSIONS ARE TO CENTERLINE. ALL ELEVATIONS, DIMENSIONS, AND LOCATIONS OF RISERS AND INLETS, SHALL BE VERIFIED BY THE ENGINEER OF RECORD PRIOR TO RELEASING FOR FABRICATION.
- ALL FITTINGS AND REINFORCEMENT COMPLY WITH ASTM A998.
- ALL RISERS AND STUBS ARE $2\frac{2}{3}$ " x $\frac{1}{2}$ " CORRUGATION AND 16 GAGE UNLESS OTHERWISE NOTED. • RISERS TO BE FIELD TRIMMED TO GRADE.
- RISERS TO BE FIELD TRIMMED TO GRADE.
 QUANTITY OF PIPE SHOWN DOES NOT PROVIDE
- EXTRA PIPE FOR CONNECTING THE SYSTEM TO EXISTING PIPE OR DRAINAGE STRUCTURES. OUR SYSTEM AS DETAILED PROVIDES NOMINAL INLET AND/OR OUTLET PIPE STUB FOR CONNECTION TO EXISTING DRAINAGE FACILITIES. IF ADDITIONAL PIPE IS NEEDED IT IS THE RESPONSIBILITY OF THE CONTRACTOR.
- BAND TYPE TO BE DETERMINED UPON FINAL DESIGN.
 THE PROJECT SUMMARY IS REFLECTIVE OF THE DYODS DESIGN, QUANTITIES ARE APPROX. AND SHOULD BE VERIFIED UPON FINAL DESIGN AND APPROVAL. FOR EXAMPLE, TOTAL EXCAVATION DOES NOT CONSIDER ALL VARIABLES SUCH AS SHORING AND ONLY ACCOUNTS FOR MATERIAL WITHIN THE

ESTIMATED EXCAVATION FOOTPRINT.
• THESE DRAWINGS ARE FOR CONCEPTUAL PURPOSES
AND DO NOT REFLECT ANY LOCAL PREFERENCES OR
REGULATIONS. PLEASE CONTACT YOUR LOCAL
CONTECH REP FOR MODIFICATIONS.
The design and information shown on this drawing is provided

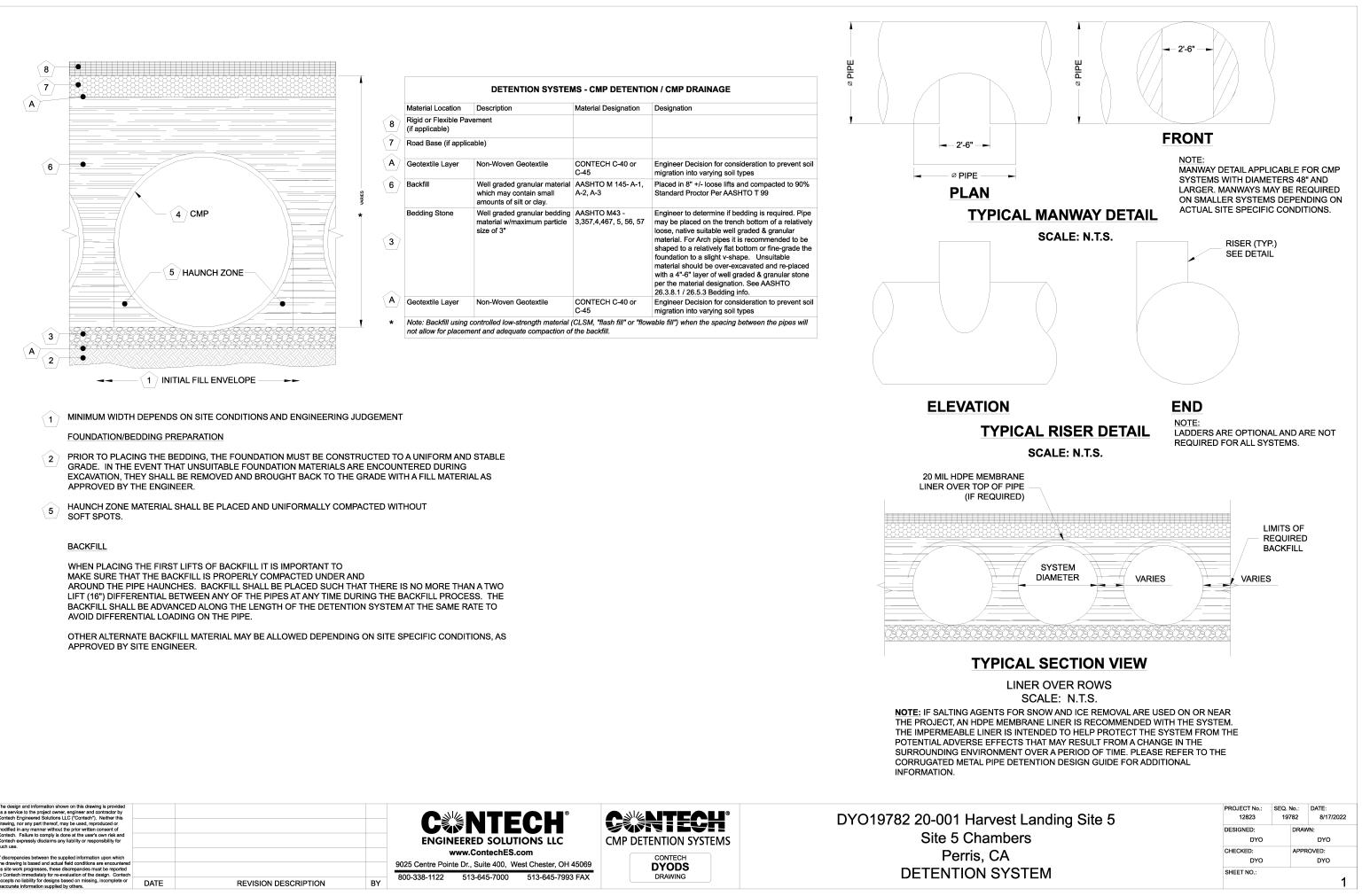

as a service to the project owner, engineer and contractor by Contach Engineered Solutions LLC ('Contach'). Neither this drawing, nor any part thereof, may be used, reproduced or modified in any manner without the prior written consent of Contach. Failure to comply is done at the user's own risk and Contach expressly disclaims any liability or responsibility for such use.				ENGINEERED SOLUTIONS LLC	CMP DETENTION SYSTEMS	
such use. If discrepancies between the supplied information upon which the drawing is based and actual field conditions are encountered as site work progresses, these discrepancies must be reported to Contech imrediately for re-evaluation of the desian. Contech				www.ContechES.com 9025 Centre Pointe Dr., Suite 400, West Chester, OH 45069	CONTECH DYODS	
accepts no liability for designs based on missing, incomplete or inaccurate information supplied by others.	DATE	REVISION DESCRIPTION	BY	800-338-1122 513-645-7000 513-645-7993 FAX	DRAWING	

_

21'-6"

-

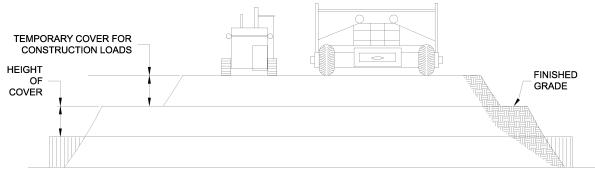
22'-6"



DYO19782 20-001 Harvest Site 5 Chambe Perris, CA DETENTION SYS

	•
/	
· /	
\rightarrow	
\rightarrow	
	5
	63'-6"
	9
\rightarrow	
\sim	
\rightarrow	
/	
 -	

52'-6" -


t Landing Site 5	PROJECT No.: 12823	SEQ. N 197		DATE: 8/17/20	22
ers	DESIGNED: DYO		DRAWN: DYO		
	CHECKED: DYO		APPR	OVED: DYO	
STEM	SHEET NO .:				1

ssly disclain
s between t
based and a
ogresses, th mediately for
oility for desi

information upon which		
conditions are encountered pancies must be reported		
tion of the design. Contech		
on missing, incomplete or	DATE	

www.ContechES.com
 9025 Centre Pointe Dr., Suite 400, West Cheste

FOR TEMPORARY CONSTRUCTION VEHICLE LOADS, AN EXTRA AMOUNT OF COMPACTED COVER MAY BE REQUIRED OVER THE TOP OF THE PIPE. THE HEIGHT-OF-COVER SHALL MEET THE MINIMUM REQUIREMENTS SHOWN IN THE TABLE BELOW. THE USE OF HEAVY CONSTRUCTION EQUIPMENT NECESSITATES GREATER PROTECTION FOR THE PIPE THAN FINISHED GRADE COVER MINIMUMS FOR NORMAL HIGHWAY TRAFFIC.

PIPE SPAN,	A	s)		
INCHES	18-50	50-75	75-110	110-150
	MI	NIMUM C	OVER (F	- T)
12-42	2.0	2.5	3.0	3.0
48-72	3.0	3.0	3.5	4.0
78-120	3.0	3.5	4.0	4.0
126-144	3.5	4.0	4.5	4.5

*MINIMUM COVER MAY VARY, DEPENDING ON LOCAL CONDITIONS. THE CONTRACTOR MUST PROVIDE THE ADDITIONAL COVER REQUIRED TO AVOID DAMAGE TO THE PIPE. MINIMUM COVER IS MEASURED FROM THE TOP OF THE PIPE TO THE TOP OF THE MAINTAINED CONSTRUCTION ROADWAY SURFACE.

CONSTRUCTION LOADING DIAGRAM

SCALE: N.T.S.

REVISION DESCRIPTION

SPECIFICATION FOR DESIGNED DETENTION SYSTEM:

SCOPE

THIS SPECIFICATION COVERS THE MANUFACTURE AND INSTALLATION OF THE DESIGNED DETENTION SYSTEM DETAILED IN THE PROJECT PLANS.

MATERIAI

THE MATERIAL SHALL CONFORM TO THE APPLICABLE REQUIREMENTS LISTED BELOW

ALUMINIZED TYPE 2 STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-274 OR ASTM A-92.

THE GALVANIZED STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-218 OR ASTM A-929.

THE POLYMER COATED STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-246 OR ASTM A-742.

THE ALUMINUM COILS SHALL CONFORM TO THE APPLICABLE OF AASHTO M-197 OR ASTM B-744.

CONSTRUCTION LOADS

CONSTRUCTION LOADS MAY BE HIGHER THAN FINAL LOADS. FOLLOW THE MANUFACTURER'S OR NCSPA GUIDELINES.

NOTE:
THESE DRAWINGS ARE FOR CONCEPTUAL
PURPOSES AND DO NOT REFLECT ANY LOCAL
PREFERENCES OR REGULATIONS. PLEASE
CONTACT YOUR LOCAL CONTECH REP FOR
MODIFICATIONS.
The design and information shown on this drawing is provided as a service to the project owner, engineer and contractor by
Contech Engineered Solutions LLC ("Contech"). Neither this

modified in any manner without the prior written consent of Contech. Failure to comply is done at the user's own risk an Contech expressly disclaims any liability or responsibility for DATE

PIPF THE PIPE SHALL BE MANUFACTURED IN ACCORDANCE TO THE APPLICABLE REQUIREMENTS LISTED BELOW:

ALUMINIZED TYPE 2: AASHTO M-36 OR ASTM A-760

GALVANIZED: AASHTO M-36 OR ASTM A-760

AFFOLICYANELIEE COATED: AASHTO M-245 OR ASTM A-762

800-338-1122

BY

ALUMINUM: AASHTO M-196 OR ASTM B-745

APPLICABLE

HANDLING AND ASSEMBLY SHALL BE IN ACCORDANCE WITH NCSP'S (NATIONAL CORRUGATED STEEL

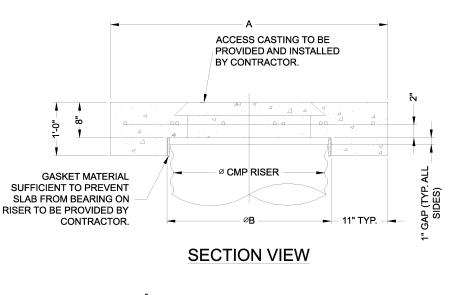
AFFREE ABSED CIATION) FOR ALUMINIZED TYPE 2. GALVANIZED OR POLYMER COATED STEEL. SHALL BE IN ACCORDANCE WITH THE MANUFACTURER'S RECOMMENDATIONS FOR ALUMINUM PIPE.

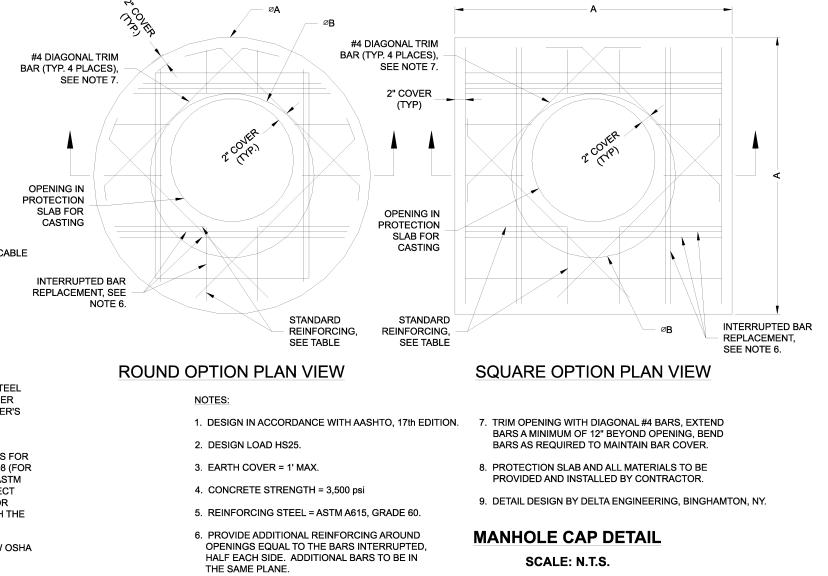
REQUIREMENTS INSTALLATION

SHALL BE IN ACCORDANCE WITH AASHTO STANDARD SPECIFICATIONS FOR HIGHWAY BRIDGES, SECTION 26, DIVISION II DIVISION II OR ASTM A-798 (FOR ALUMINIZED TYPE 2, GALVANIZED OR POLYMER COATED STEEL) OR ASTM B-788 (FOR ALUMINUM PIPE) AND IN CONFORMANCE WITH THE PROJECT PLANS AND SPECIFICATIONS. IF THERE ARE ANY INCONSISTENCIES OR CONFLICTS THE CONTRACTOR SHOULD DISCUSS AND RESOLVE WITH THE SITE ENGINEER.

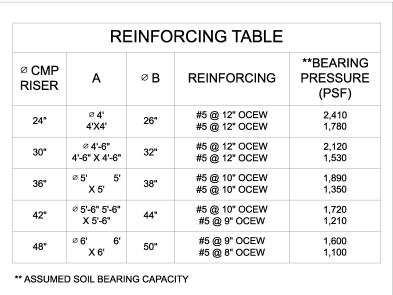
IT IS ALWAYS THE RESPONSIBILITY OF THE CONTRACTOR TO FOLLOW OSHA GUIDELINES FOR SAFE PRACTICES.

513-645-7000 513-645-7993 FAX


CINTECH

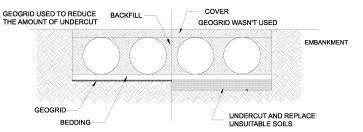

CMP DETENTION SYSTEMS

CONTECH


DYODS

DRAWING

PROJECT No .: SEQ. No.: DATE: DYO19782 20-001 Harvest Landing Site 5 8/17/2022 12823 19782 DESIGNED: DRAV Site 5 Chambers DYO DYO CHECKED: APPROVED: Perris, CA DYO DYO **DETENTION SYSTEM** SHEET NO.



PROPER INSTALLATION OF A FLEXIBLE UNDERGROUND DETENTION SYSTEM WILL ENSURE LONG-TERM PERFORMANCE. THE CONFIGURATION OF THESE SYSTEMS OFTEN REQUIRES SPECIAL CONSTRUCTION PRACTICES THAT DIFFER FROM CONVENTIONAL FLEXIBLE PIPE CONSTRUCTION. CONTECH ENGINEERED SOLUTIONS STRONGLY SUGGESTS SCHEDULING A PRE-CONSTRUCTION MEETING WITH YOUR LOCAL SALES ENGINEER TO DETERMINE IF ADDITIONAL MEASURES, NOT COVERED IN THIS GUIDE, ARE APPROPRIATE FOR YOUR SITE.

FOUNDATION

CONSTRUCT A FOUNDATION THAT CAN SUPPORT THE DESIGN LOADING APPLIED BY THE PIPE AND ADJACENT BACKFILL WEIGHT AS WELL AS MAINTAIN ITS INTEGRITY DURING CONSTRUCTION.

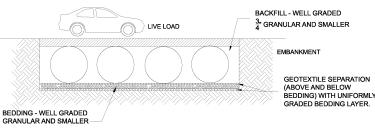
IF SOFT OR UNSUITABLE SOILS ARE ENCOUNTERED, REMOVE THE POOR SOILS DOWN TO A SUITABLE DEPTH AND THEN BUILD UP TO THE APPROPRIATE ELEVATION WITH A COMPETENT BACKFILL MATERIAL. THE STRUCTURAL FILL MATERIAL GRADATION SHOULD NOT ALLOW THE MIGRATION OF FINES, WHICH CAN CAUSE SETTLEMENT OF THE DETENTION SYSTEM OR PAVEMENT ABOVE. IF THE STRUCTURAL FILL MATERIAL IS NOT COMPATIBLE WITH THE UNDERLYING SOILS AN ENGINEERING FABRIC SHOULD BE USED AS A SEPARATOR. IN SOME CASES, USING A STIFF REINFORCING GEOGRID REDUCES OVER EXCAVATION AND REPLACEMENT FILL QUANTITIES.

GRADE THE FOUNDATION SUBGRADE TO A UNIFORM OR SLIGHTLY SLOPING GRADE. IF THE SUBGRADE IS CLAY OR RELATIVELY NON-POROUS AND THE CONSTRUCTION SEQUENCE WILL LAST FOR AN EXTENDED PERIOD OF TIME, IT IS BEST TO SLOPE THE GRADE TO ONE END OF THE SYSTEM. THIS WILL ALLOW EXCESS WATER TO DRAIN QUICKLY, PREVENTING SATURATION OF THE SUBGRADE.

GEOMEMBRANE BARRIER

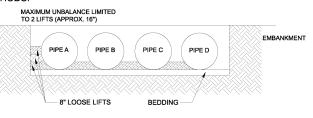
A SITE'S RESISTIVITY MAY CHANGE OVER TIME WHEN VARIOUS TYPES OF SALTING AGENTS ARE USED, SUCH AS ROAD SALTS FOR DEICING AGENTS. IF SALTING AGENTS ARE USED ON OR NEAR THE PROJECT SITE, A GEOMEMBRANE BARRIER IS RECOMMENDED WITH THE SYSTEM. THE GEOMEMBRANE LINER IS INTENDED TO HELP PROTECT THE SYSTEM FROM THE POTENTIAL ADVERSE EFFECTS THAT MAY RESULT FROM THE USE OF SUCH AGENTS INCLUDING PREMATURE CORROSION AND REDUCED ACTUAL SERVICE LIFE.

THE PROJECT'S ENGINEER OF RECORD IS TO EVALUATE WHETHER SALTING AGENTS WILL BE USED ON OR NEAR THE PROJECT SITE, AND USE HIS/HER BEST JUDGEMENT TO DETERMINE IF ANY ADDITIONAL PROTECTIVE MEASURES ARE REQUIRED. BELOW IS A TYPICAL DETAIL SHOWING THE PLACEMENT OF A GEOMEMBRANE BARRIER FOR PROJECTS WHERE SALTING AGENTS ARE USED ON OR NEAR THE PROJECT SITE.



The design and information shown on this drawing is provided as a service to the project owner, engineer and contractor by Contech Engineered Solutions LLC ("Contech"). Neither this drawing, no any part thereof, may be used, reproduced or modified in any manner without the prior written consent of Contech. Faultue to comply is done at the user's own risk and Contech expressly disclaims any liability or responsibility for such use. If discrepancies between the supplied information upon which the drawing is based and actual field conditions are nountered as its work progresses, these discrepancies must be reported to Contech minediately for re-evaluation or the design. Contech become the to othere in the othere. DATE

IN-SITU TRENCH WALL


IF EXCAVATION IS REQUIRED, THE TRENCH WALL NEEDS TO BE CAPABLE OF SUPPORTING THE LOAD THAT THE PIPE SHEDS AS THE SYSTEM IS LOADED. IF SOILS ARE NOT CAPABLE OF SUPPORTING THESE LOADS, THE PIPE CAN DEFLECT. PERFORM A SIMPLE SOIL PRESSURE CHECK USING THE APPLIED LOADS TO DETERMINE THE LIMITS OF EXCAVATION BEYOND THE SPRING LINE OF THE OUTER MOST PIPES.

IN MOST CASES THE REQUIREMENTS FOR A SAFE WORK ENVIRONMENT AND PROPER BACKFILL PLACEMENT AND COMPACTION TAKE CARE OF THIS CONCERN.

BACKFILL PLACEMENT

MATERIAL SHALL BE WORKED INTO THE PIPE HAUNCHES BY MEANS OF SHOVEL-SLICING, RODDING, AIR TAMPER, VIBRATORY ROD, OR OTHER EFFECTIVE METHODS.

IF AASHTO T99 PROCEDURES ARE DETERMINED INFEASIBLE BY THE GEOTECHNICAL ENGINEER OF RECORD, COMPACTION IS CONSIDERED ADEQUATE WHEN NO FURTHER YIELDING OF THE MATERIAL IS OBSERVED UNDER THE COMPACTOR, OR UNDER FOOT, AND THE GEOTECHNICAL ENGINEER OF RECORD (OR REPRESENTATIVE THEREOF) IS SATISFIED WITH THE LEVEL OF COMPACTION.

FOR LARGE SYSTEMS, CONVEYOR SYSTEMS, BACKHOES WITH LONG REACHES OR DRAGLINES WITH STONE BUCKETS MAY BE USED TO PLACE BACKFILL. ONCE MINIMUM COVER FOR CONSTRUCTION LOADING ACROSS THE ENTIRE WIDTH OF THE SYSTEM IS REACHED, ADVANCE THE EQUIPMENT TO THE END OF THE RECENTLY PLACED FILL, AND BEGIN THE SEQUENCE AGAIN UNTIL THE SYSTEM IS COMPLETELY BACKFILLED. THIS TYPE OF CONSTRUCTION SEQUENCE PROVIDES ROOM FOR STOCKPILED BACKFILL DIRECTLY BEHIND THE BACKHOE, AS WELL AS THE MOVEMENT OF CONSTRUCTION TRAFFIC. MATERIAL STOCKPILES ON TOP OF THE BACKFILLED DETENTION SYSTEM SHOULD BE LIMITED TO 8- TO 10-FEET HIGH AND MUST PROVIDE BALANCED LOADING ACROSS ALL BARRELS. TO DETERMINE THE PROPER COVER OVER THE PIPES TO ALLOW THE MOVEMENT OF CONSTRUCTION EQUIPMENT SEE TABLE 1, OR CONTACT YOUR LOCAL CONTECH SALES ENGINEER.

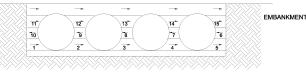
TYPICAL BACKFILL SEQUENCE

CINTECH

ENGINEERED SOLUTIONS LLC

9025 Centre Pointe Dr., Suite 400, West Chester, OH 45069

513-645-7993 FAX


www.ContechES.com

513-645-7000

800-338-1122

BY

REVISION DESCRIPTION

CMP DETENTION SYSTEMS

DRAWING

ACCUMULATED SEDIMENT AND TRASH CAN TYPICALLY BE EVACUATED TYPICALLY, THE MINIMUM COVER SPECIFIED FOR A PROJECT ASSUMES H-20 THROUGH THE MANHOLE OVER THE OUTLET ORIFICE. IF MAINTENANCE IS NOT LIVE LOAD. BECAUSE CONSTRUCTION LOADS OFTEN EXCEED DESIGN LIVE PERFORMED AS RECOMMENDED, SEDIMENT AND TRASH MAY ACCUMULATE IN LOADS, INCREASED TEMPORARY MINIMUM COVER REQUIREMENTS ARE FRONT OF THE OUTLET ORIFICE. MANHOLE COVERS SHOULD BE SECURELY SEATED FOLLOWING CLEANING ACTIVITIES. CONTECH SUGGESTS THAT ALL NECESSARY. SINCE CONSTRUCTION EQUIPMENT VARIES FROM JOB TO JOB, SYSTEMS BE DESIGNED WITH AN ACCESS/INSPECTION MANHOLE SITUATED AT IT IS BEST TO ADDRESS EQUIPMENT SPECIFIC MINIMUM COVER OR NEAR THE INLET AND THE OUTLET ORIFICE. SHOULD IT BE NECESSARY TO REQUIREMENTS WITH YOUR LOCAL CONTECH SALES ENGINEER DURING GET INSIDE THE SYSTEM TO PERFORM MAINTENANCE ACTIVITIES, ALL YOUR PRE-CONSTRUCTION MEETING. APPROPRIATE PRECAUTIONS REGARDING CONFINED SPACE ENTRY AND OSHA REGULATIONS SHOULD BE FOLLOWED. ANNUAL INSPECTIONS ARE BEST PRACTICE FOR ALL UNDERGROUND SYSTEMS.

ADDITIONAL CONSIDERATIONS

CONSTRUCTION LOADING

WHEN FLOWABLE FILL IS USED, YOU MUST PREVENT PIPE FLOATATION

TYPICALLY, SMALL LIFTS ARE PLACED BETWEEN THE PIPES AND THEN ALLOWED TO SET-UP PRIOR TO THE PLACEMENT OF THE NEXT LIFT. THE

ALLOWABLE THICKNESS OF THE CLSM LIFT IS A FUNCTION OF A PROPER

BALANCE BETWEEN THE UPLIFT FORCE OF THE CLSM, THE OPPOSING

MEASURES. THE PIPE CAN CARRY LIMITED FLUID PRESSURE WITHOUT

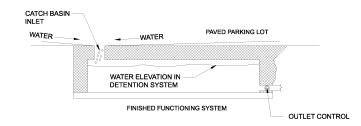
PIPE DISTORTION OR DISPLACEMENT, WHICH ALSO AFFECTS THE CLSM

CLSM

EMBANKMENT

LIFT THICKNESS. YOUR LOCAL CONTECH SALES ENGINEER CAN HELP

WEIGHTED PIPE WITH MOBILE


CONCRETE BARRIERS (OR OTHER REMOVABLE WEIGHTS)

WEIGHT OF THE PIPE, AND THE EFFECT OF OTHER RESTRAINING

DETERMINE THE PROPER LIFT THICKNESS.

STAGE POURS AS REQUIRED TO CONTROL FLOATATION AND PIPE DISTORTION/DISPLACEMENT

BECAUSE MOST SYSTEMS ARE CONSTRUCTED BELOW-GRADE, RAINFALL CAN RAPIDLY FILL THE EXCAVATION; POTENTIALLY CAUSING FLOATATION AND MOVEMENT OF THE PREVIOUSLY PLACED PIPES. TO HELP MITIGATE POTENTIAL PROBLEMS, IT IS BEST TO START THE INSTALLATION AT THE DOWNSTREAM END WITH THE OUTLET ALREADY CONSTRUCTED TO ALLOW A ROUTE FOR THE WATER TO ESCAPE. TEMPORARY DIVERSION MEASURES MAY BE REQUIRED FOR HIGH FLOWS DUE TO THE RESTRICTED NATURE OF THE OUTLET PIPE. AS PART OF THE MAINTENANCE PROGRAM FOR THE SYSTEM. AS PART OF THE MAINTENANCE PROGRAM FOR THE SYSTEM. MAINTAINING AN UNDERGROUND DETENTION OR INFILTRATION SYSTEM IS EASIEST WHEN THERE IS NO FLOW ENTERING THE SYSTEM. FOR THIS REASON, IT IS A GOOD IDEA TO SCHEDULE THE CLEANOUT DURING DRY WEATHER. THE FOREGOING INSPECTION AND MAINTENANCE EFFORTS HELP ENSURE UNDERGROUND PIPE SYSTEMS USED FOR STORMWATER STORAGE CONT TO ELUNCTION AS INTENDED PRIVINCIPAL OF THE MAINTENANCE PROGRAM FOR THE SYSTEM.

DYO19782 20-001 Harvest Site 5 Chambe Perris, CA DETENTION SYS

CMP DETENTION SYSTEM INSPECTION AND MAINTENANCE

UNDERGROUND STORMWATER DETENTION AND INFILTRATION SYSTEMS MUST BE INSPECTED AND MAINTAINED AT REGULAR INTERVALS FOR PURPOSES OF PERFORMANCE AND LONGEVITY.

INSPECTION

INSPECTION IS THE KEY TO EFFECTIVE MAINTENANCE OF CMP DETENTION SYSTEMS AND IS EASILY PERFORMED. CONTECH RECOMMENDS ONGOING, ANNUAL INSPECTIONS. SITES WITH HIGH TRASH LOAD OR SMALL OUTLET CONTROL ORIFICES MAY NEED MORE FREQUENT INSPECTIONS. THE RATE AT WHICH THE SYSTEM COLLECTS POLLUTANTS WILL DEPEND MORE ON SITE SPECIFIC ACTIVITIES RATHER THAN THE SIZE OR CONFIGURATION OF THE SYSTEM.

INSPECTIONS SHOULD BE PERFORMED MORE OFTEN IN EQUIPMENT WASHDOWN AREAS, IN CLIMATES WHERE SANDING AND/OR SALTING OPERATIONS TAKE PLACE, AND IN OTHER VARIOUS INSTANCES IN WHICH ONE WOULD EXPECT HIGHER ACCUMULATIONS OF SEDIMENT OR ABRASIVE/ CORROSIVE CONDITIONS. A RECORD OF EACH INSPECTION IS TO BE MAINTAINED FOR THE LIFE OF THE SYSTEM

MAINTENANCE

CMP DETENTION SYSTEMS SHOULD BE CLEANED WHEN AN INSPECTION REVEALS ACCUMULATED SEDIMENT OR TRASH IS CLOGGING THE DISCHARGE ORIFICE.

ANNUAL INSPECTIONS ARE BEST PRACTICE FOR ALL UNDERGROUND SYSTEMS. DURING THIS INSPECTION, IF EVIDENCE OF SALTING/DE-ICING AGENTS IS OBSERVED WITHIN THE SYSTEM, IT IS BEST PRACTICE FOR THE SYSTEM TO BE RINSED, INCLUDING ABOVE THE SPRING LINE SOON AFTER THE SPRING THAW AS PART OF THE MAINTENANCE PROGRAM FOR THE SYSTEM.

Landing Site 5	PROJECT No.: 12823	SEQ. No.: 19782		DATE: 8/17/20	22
	DESIGNED: DYO		DRAWN: DYO		
	CHECKED: DYO		APPR	OVED: DYO	
STEM	SHEET NO .:				1

LEGEND

—(1025)—

_____**____

— — W—

_____W____

_____SS_____

— — SD— -

— — E— -

O MH

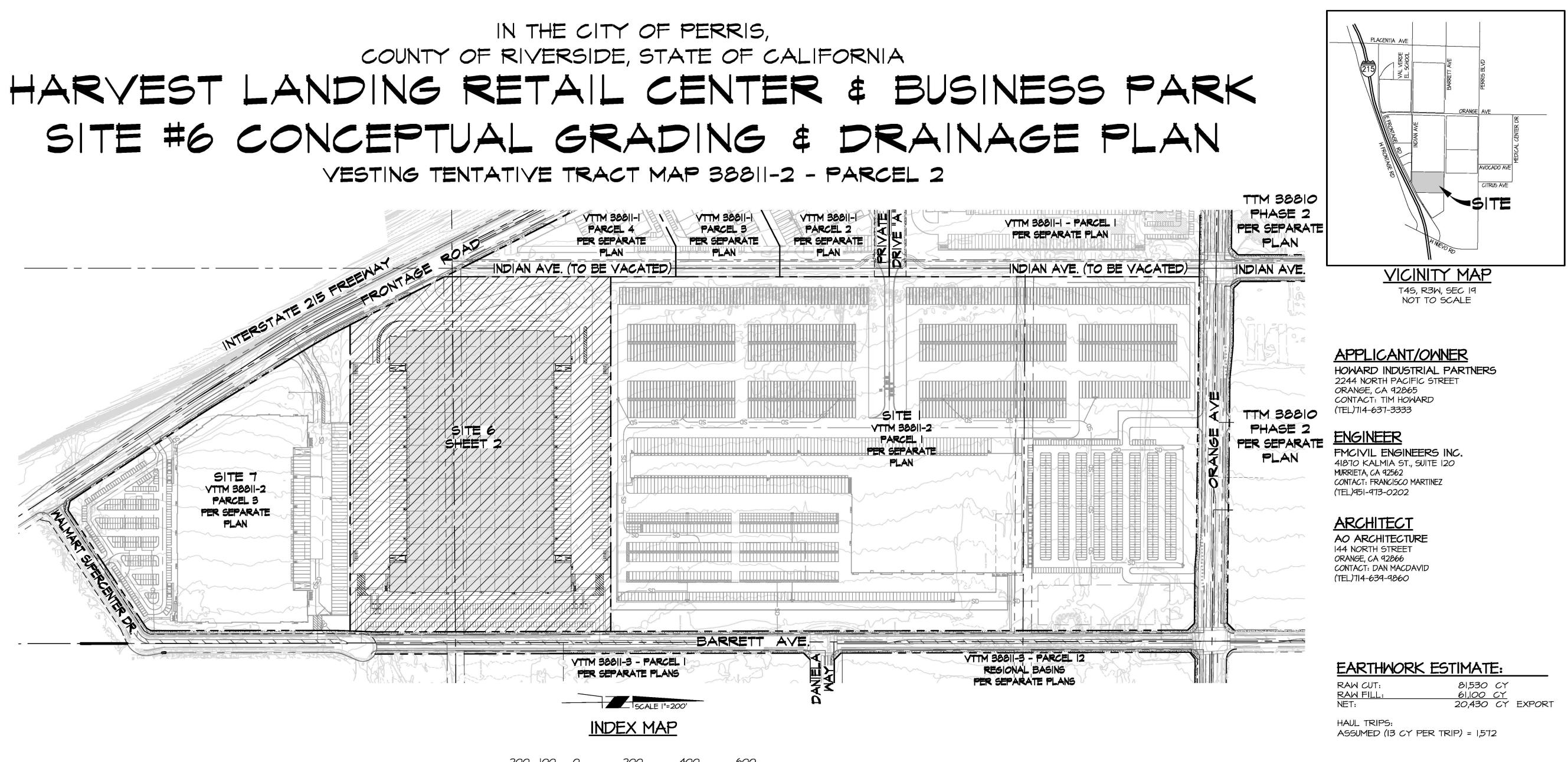
EXISTING CONTOUR PROPOSED CONTOUR RETAINING WALL FENCE EDGE OF PAVEMENT SIGN MANHOLE RIGHT OF WAY EASEMENT = = =____ PARCEL LINE PARCEL MAP BOUNDARY STREET CENTER LINE SCREEN WALL COMBINATION SCREEN/RETAINING WALL EXISTING LOT LINE RIDGE LINE RIBBON GUTTER FLOW ARROW PROPOSED EDGE OF PAVEMENT EXISTING WATER LINE PROPOSED WATER LINE EXISTING SWR LINE PROPOSED SEWER LINE EXISTING STORM DRAIN PIPE _____SD_____ PROPOSED STORM DRAIN PIPE EXISTING OVERHEAD LINES CUT/FILL LINE SLOPE SYMBOL

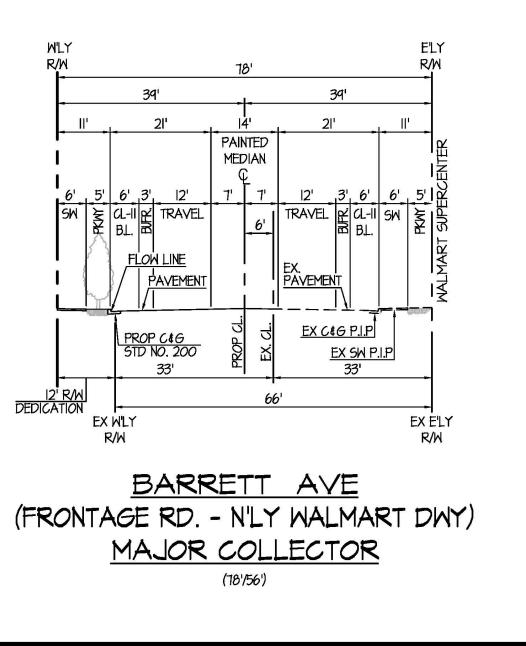
ZONING ORDINANCE

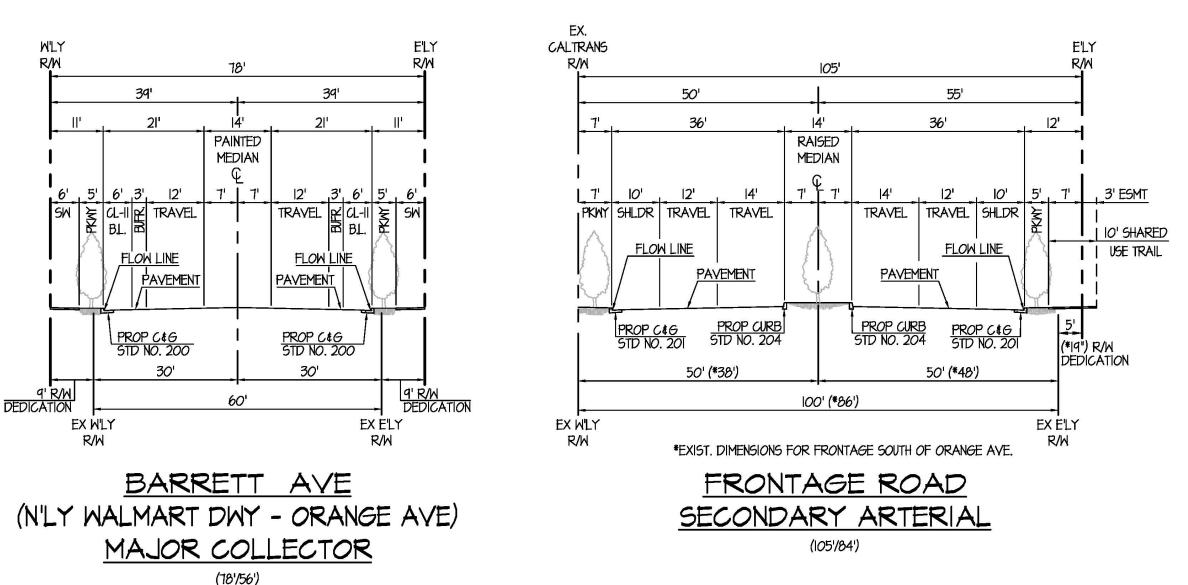
EXISTING ZONING:

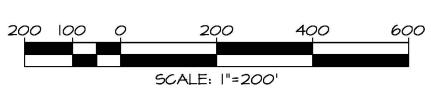
HARVEST LANDING SPECIFIC PLANS - MULTIPLE BUSINESS USE (MBU) PROPOSED ZONING:

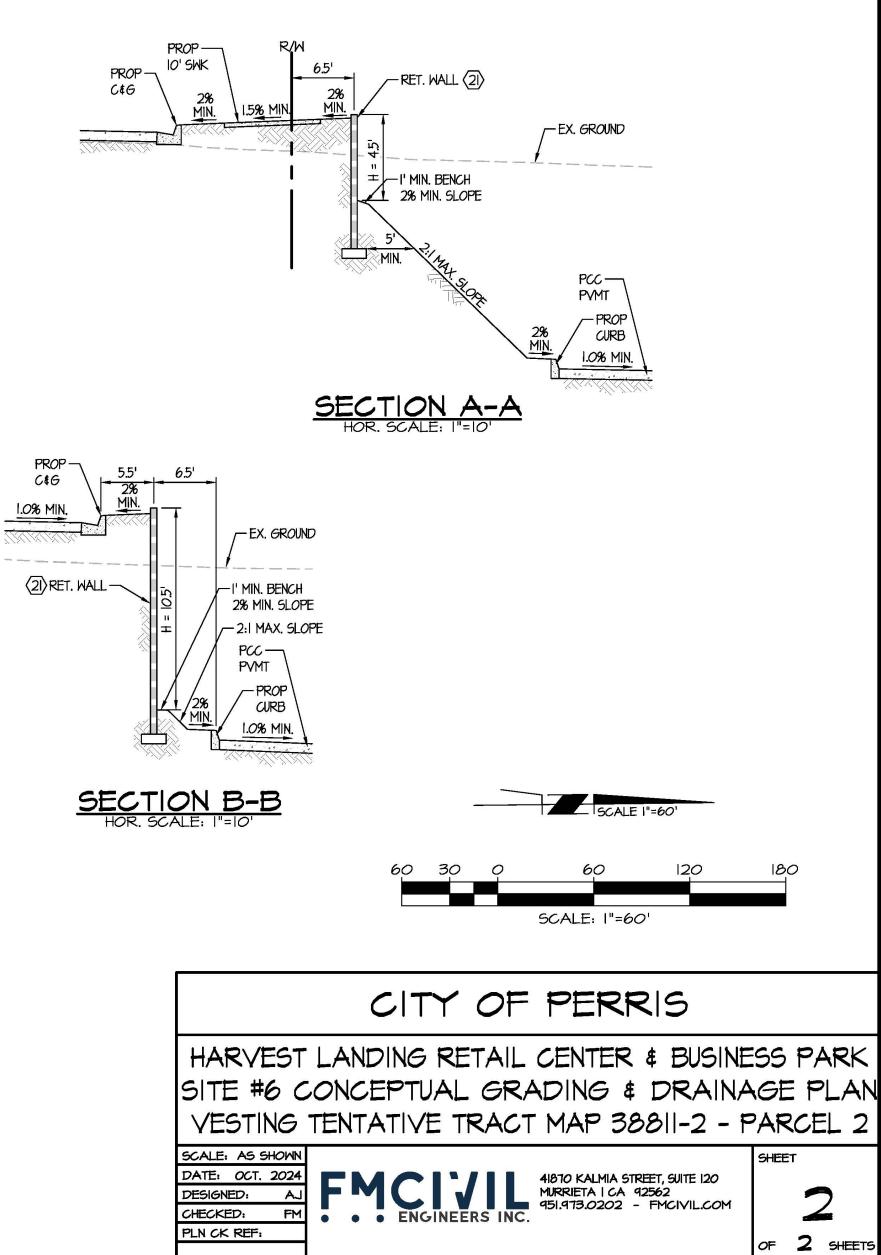
HARVEST LANDING SPECIFIC PLANS - MULTIPLE BUSINESS USE (MBU)


ASSESSOR'S PARCEL NUMBERS:


305-120-004 thru 008, 020 thru 026, \$ 305-130-001 thru 006, 009, \$ 305-160-001 thru 003, 025 thru 030, \$ 305-190-014, 019, 020, 028 thru 031, \$ 305-220-011, 059 thru 062


LEGAL DESCRIPTION


BLOCKS 1-4 OF FIGADOTA FARMS NO. IA AS SHOWN BY MAP ON FILE IN THE OFFICE OF THE COUNTY RECORDER OF THE COUNTY OF RIVERSIDE, STATE OF CALIFORNIA, IN BOOK 16 OF MAPS, PAGE 68 TOGETHER WITH LOTS 1-8, AND 13-20 OF FIGADOTA FARMS AS SHOWN BY MAP ON FILE IN THE OFFICE OF THE COUNTY RECORDER OF THE COUNTY OF RIVERSIDE, STATE OF CALIFORNIA, IN BOOK 16 OF MAPS, PAGE 53 EXCEPTING THAT PORTION LYING WEST OF THE EASTERLY LINE OF THE FRONTAGE ROAD.


AW CUT:	81,530 CY
AW FILL:	61,100 CY
ET:	20,430 CY EXPORT

SITE PLAN KEYNOTES

- PAINTED CONCRETE TILT-UP WAREHOUSE / OFFICE / MANUFACTURING FACILITY. BUILDING TO BE DESIGNED PER ARCHITECT'S PLANS
- $\langle 2 \rangle$ ON SITE ACCESSIBLE SIDEWALK AND CURB RAMPS.
- (3) CONCRETE CURB
- $\langle 4 \rangle$ CONCRETE CURB & GUTTER
- 5 STANDARD PARKING STALLS STRIPE PER STANDARDS SHOWN ON ARCHITECT'S PLANS
- 6 HANDICAP PARKING STALLS STRIPE PER STANDARDS SHOWN ON ARCHITECT'S PLANS
- (7) TRAILER / TRACTOR PARKING STALLS STRIPE PER STANDARDS SHOWN ON ARCHITECT'S PLANS
- (8) ACCESSIBLE BUILDING ENTRY WITH ADJACENT BICYCLE RACKS PER ARCHITECT'S PLANS
- (9) PORTLAND CONC. CEMENT (PCC) PAVED TRUCK YARD ARCHITECT'S PLANS
- (D) PORTLAND CONC. CEMENT (PCC) PAVED AUTO PARKING ARCHITECT'S PLANS
- $\left< \square \right>$ dock high truck door per architect's plans
- (2) GRADE LEVEL RAMP DOOR PER ARCHITECT'S PLANS
- (3) EXTERIOR MAN DOOR AND STAIRS W/GUARD POST PER ARCHITECT'S PLANS
- COMMERCIAL DRIVEWAY APPROACH PER RIVERSIDE COUNTY STD.207A, WITH DECORATIVE CONCRETE PAVING PER ARCHITECT'S PLANS
 UNDERCROUND DETENTION CHAMPER SYSTEM - 4011 CMP. TOP AND POTTOM
- (15) UNDERGROUND DETENTION CHAMBER SYSTEM 96" CMP TOP AND BOTTOM OF PIPE (BOP) ELEVATION PER PLAN
- (6) LANDSCAPE AREA PER LANDSCAPE ARCHITECT'S PLANS
- $\langle \overline{1} \rangle$ APPROXIMATE LOCATION OF TRASH ENCLOSURE
- (B) ENTRY GATE PER ARCHITECT'S PLANS
- (9) CHAIN LINK FENCE PER ARCHITECT'S PLANS
- O SCREEN WALL PER ARCHITECT'S PLANS (COMBO RETAINING)
- (21) RETAINING WALL (H=APPROXIMATE MAXIMUM EXPOSED WALL FACE)

H: \PDATA\20-001 HARVEST LANDING\DWGS\PLNG\ENTITLEMENT\CUP\ALT-3\BLDG-6\20-001-CUP_BLDG6-CG-01.DWG JASON STOUFFER 10/10/2024 3:39 PM

CALCULATION DETAILS • LOADING = HS20/HS25 • APPROX. LINEAR FOOTAGE = 2,280 LF

STORAGE SUMMARY

- STORAGE VOLUME REQUIRED = N/A
- PIPE STORAGE VOLUME = 114,605 CF
- BACKFILL STORAGE VOLUME = 0 CF
- TOTAL STORAGE PROVIDED = 114,605 CF

PIPE DETAILS

- DIAMETER = 96"
- CORRUGATION = 5x1
- GAGE = 16
- COATING = ALT2
- WALL TYPE = SOLID
- BARREL SPACING = 36"

BACKFILL DETAILS

- WIDTH AT ENDS = 12"
- ABOVE PIPE = 0"

• WIDTH AT SIDES = 12" • BELOW PIPE = 0"

ASSEMBLY

375'-0"

NOTES

Z

- ALL RISER AND STUB DIMENSIONS ARE TO CENTERLINE. ALL ELEVATIONS, DIMENSIONS, AND LOCATIONS OF RISERS AND INLETS, SHALL BE VERIFIED BY THE ENGINEER OF RECORD PRIOR TO RELEASING FOR FABRICATION.
- ALL FITTINGS AND REINFORCEMENT COMPLY WITH ASTM A998.
- ALL RISERS AND STUBS ARE $2\frac{2}{3}$ " x $\frac{1}{2}$ " CORRUGATION AND 16 GAGE UNLESS OTHERWISE NOTED. RISERS TO BE FIELD TRIMMED TO GRADE.
- QUANTITY OF PIPE SHOWN DOES NOT PROVIDE EXTRA PIPE FOR CONNECTING THE SYSTEM TO EXISTING PIPE OR DRAINAGE STRUCTURES. OUR SYSTEM AS DETAILED PROVIDES NOMINAL INLET AND/OR OUTLET PIPE STUB FOR CONNECTION TO EXISTING DRAINAGE FACILITIES. IF ADDITIONAL PIPE IS NEEDED IT IS THE RESPONSIBILITY OF THE CONTRACTOR.
- BAND TYPE TO BE DETERMINED UPON FINAL DESIGN. • THE PROJECT SUMMARY IS REFLECTIVE OF THE DYODS DESIGN, QUANTITIES ARE APPROX. AND SHOULD BE VERIFIED UPON FINAL DESIGN AND APPROVAL. FOR EXAMPLE, TOTAL EXCAVATION DOES NOT CONSIDER ALL VARIABLES SUCH AS SHORING

CONTECH REP FOR MODIFICA	TIONS.					SCALE: 1" = 40'
The design and information shown on this drawing is provided as a service to the project owner, engineer and contractor by Contech Engineered Solutions LLC ("Contech"). Neither this drawing, nor any part thereof, may be used, reproduced or modified in any manner without the prior writien consent of Contech. Failure to comply is done at the user's own risk and Contech expressly disclaims any liability or responsibility for such use. If discrepancies between the supplied information upon which the drawing is based and actual field conditions are encountered as site work progresses, these discrepancies must be reported to Contech immediately for re-evaluation of the design. Contech				Compare Notestand New Contections New Cont	CMP DETENTION SYSTEMS	DYO60538 20-001 Har Northerly Ch Perris, DETENTION
accepts no liability for designs based on missing, incomplete or inaccurate information supplied by others	DATE	REVISION DESCRIPTION	BY			

þ <u>8</u>.

> rvest haml CA SYS

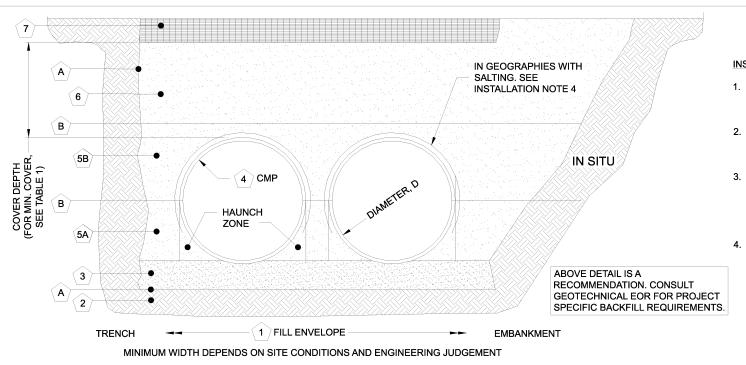

t Landing Site 6	PROJECT No.: 42824	SEQ. N 605		DATE: 10/2/2024
bers	DESIGNED: DYO		DRAW	/N: DYO
	CHECKED: DYO		APPR	OVED: DYO
STEM	SHEET NO.:			1

TABLE 1:						
DIAMETER, D	MIN. COVER	CORR. PROFILE				
6"-10"	12"	1 1/2" x 1/4"				
12"-48"	12"	2 2/3" x 1/2"				
>48"-96"	12"	3" x 1", 5" x 1"				
>96"	D/8	3" x 1", 5" x 1"				

- STRUCTURAL BACKFILL MUST EXTEND TO LIMITS OF THE TABLE
- TOTAL HEIGHT OF COMPACTED COVER FOR CONVENTIONAL HIGHWAY LOADS IS MEASURED FROM TOP OF PIPE TO BOTTOM OF FLEXIBLE PAVEMENT OR TOP OF RIGID PAVEMENT

TABLE 2: SOLID STANDARD

ULTRAFLO ALSO AVAILABLE FOR SIZES 18" - 120" WITH 3/4"x 3/4"x 7 1/2" CORRUGATION

CMP DETENTION AND CMP DRAINAGE STANDARD BACKFILL SPECIFICATIONS MATERIAL LOCATION MATERIAL SPECIFICATION DESCRIPTION MINIMUM TRENCH WIDTH MUST ALLOW ROOM FOR PROPER COMPACTION OF HAUNCH MATERIALS UNDER THE PIPE. FILL ENVELOPE WIDTH PER ENGINEER OF RECORD THE SUGGESTED MINIMUM TRENCH WIDTH, OR EOR RECOMMENDATION: **(1**) PIPE ≤ 12": D + 16" PIPE > 12" 1 5D + 12 PRIOR TO PLACING THE BEDDING, THE FOUNDATION MUST BE CONSTRUCTED TO A UNIFORM AND STABLE GRADE. IN THE EVENT THAT UNSUITABLE AASHTO 26.5.2 OR PER ENGINEER OF RECORD FOUNDATION MATERIALS ARE ENCOUNTERED DURING EXCAVATION, THEY SHALL BE REMOVED AND FOUNDATION BROUGHT BACK TO GRADE WITH A FILL 〔2〕 FOUNDATION MATERIAL APPROVED BY THE ENGINEER OF RECORD. ENGINEER OF RECORD TO DETERMINE IF BEDDING IS REQUIRED. PIPE MAY BE PLACED ON THE TRENCH BOTTOM OF A RELATIVELY LOOSE, NATIVE SUITABLE AASHTO M 43: 3, 357, 4, 467, 5, 56, 57 WELL GRADED GRANULAR MATERIAL THAT IS ROUGHLY SHAPED TO FIT THE BOTTOM OF THE PIPE, 2" MIN DEPTH. THE BEDDING MATERIAL MAY BE SUITABLE ં 3ે BEDDING (APPROVED REGIONAL EQUIVALENTS INCLUDE CA-7) FOUNDATION SOILS CONFORMING TO AASHTO SOIL CLASSIFICATIONS A1, A2, OR A3 WITH MAXIMUM PARTICLE SIZE OF 3" PER AASHTO 26.3.8.1 4 CORRUGATED METAL PIPE HAUNCH ZONE MATERIAL SHALL BE HAND SHOVELED OR SHOVEL SLICED INTO PLACE TO ALLOW FOR PROPER COMPACTION WITHOUT SOFT SPOTS. BACKFILL SHALL BE PLACED IN 8" +/- LOOSE LIFTS AND COMPACTED TO 90% STANDARD PROCTOR PER AASHTO T 99. BACKFILL SHALL BE PLACED SUCH THAT 5A) **CRITICAL BACKFILL** AASHTO M 145: A-1, A-2, A-3 * THERE IS NO MORE THAN A THREE LIFT (24") DIFFERENTIAL BETWEEN ANY OF THE PIPES AT ANY TIME DURING THE BACKFILL PROCESS. THE BACKFILL SHOULD BE ADVANCED ALONG THE LENGTH OF THE SYSTEM TO AVOID DIFFERENTIAL LOADING. GRADED GRANULAR MATERIAL WHICH MAY CONTAIN SMALL AMOUNTS OF SILT OR CLAY AND MAXIMUM PARTICLE SIZE OF 3" (PER AASHTO 26.3.8.1 AND 5B 12.4-1.3). BACKFILL AASHTO M 145: A-1, A-2, A-3 UP TO MIN. COVER - SEE 5A AND 5B ABOVE 6 COVER MATERIAL COVER MATERIAL MAY INCLUDE NON-BITUMINOUS, GRANULAR ROAD BASE MATERIAL WITHIN MIN COVER LIMITS ABOVE MIN. COVER - PER ENGINEER OF RECORD **RIGID OR FLEXIBLE PAVEMENT (IF** FLEXIBLE PAVEMENT SHOULD NOT BE COUNTED AS PART OF THE FILL HEIGHT OVER THE CMP. FINAL BACKFILL MATERIAL SELECTION AND COMPACTION 7) PER ENGINEER OF RECORD APPLICABLE) REQUIREMENTS SHALL FOLLOW THE PROJECT PLANS AND SPECIFICATIONS PER THE ENGINEER OF RECORD. A OPTIONAL SIDE GEOTEXTILE NONE GEOTEXTILE LAYER IS RECOMMENDED ON SIDES OF EXCAVATION TO PREVENT SOIL MIGRATION. OPTIONAL GEOTEXTILE BETWEEN IF SOIL TYPES DIFFER AT ANY POINT ABOVE PIPE INVERT, A GEOTEXTILE LAYER IS RECOMMENDED TO BE PLACED BETWEEN THE LAYERS TO PREVENT SOIL (B) NONE LAYERS MIGRATION.

NOTES:

REVISION DESCRIPTION

BY

FOR MULTIPLE BARREL INSTALLATIONS, THE RECOMMENDED STANDARD SPACING BETWEEN PARALLEL PIPE RUNS SHALL BE THE PIPE DIAMETER /2 BUT NO LESS THAN 12" FOR DIAMETERS <72". FOR 72" AND LARGER DIAMETERS, THE MINIMUM SPACING IS 36". CONTACT YOUR CONTECH REPRESENTATIVE FOR NONSTANDARD SPACING.

APPROVED REGIONAL EQUIVALENTS FOR SECTION 5A INCLUDE CA-7, CODOT #67, MIDOT 2G, 34G, OR 21AA STONE OR GRAVEL; #8; #57; MIDOT 6A, 2G, 3G, 34G.

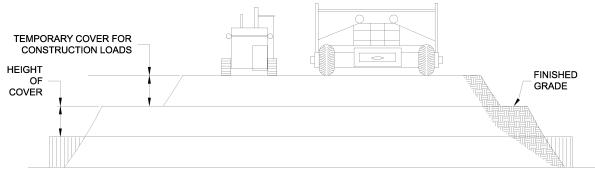
MANUFACTURER RECOMMENDED BACKFILL

NOT TO SCALE

ĺ	The design and information shown on this drawing is provided as a service to the project owner, engineer and contractor by Contech Engineered Solutions LLC ("Contech"). Neither this	
1	drawing, nor any part thereof, may be used, reproduced or modified in any manner without the prior written consent of	
i	Contech. Failure to comply is done at the user's own risk and	
	Contech expressly disclaims any liability or responsibility for such use.	
	If discrepancies between the supplied information upon which	
	the drawing is based and actual field conditions are encountered	
	as site work progresses, these discrepancies must be reported	
	to Contech immediately for re-evaluation of the design. Contech	
	accepts no liability for designs based on missing, incomplete or	D 41

ENGINEER		TIONS LLC		CMP I
025 Centre Pointe Dr	, Suite 400, V	Vest Chester, OH 4506	9	
800-338-1122 5 [°]	13-645-7000	513-645-7993 FAX	<	l

DYO60538 20-001 Harvest Northerly Chaml Perris, CA **DETENTION SYS**


INSTALLATION NOTES

- WHEN PLACING THE FIRST LIFTS OF BACKFILL IT IS IMPORTANT TO MAKE SURE THAT THE BACKFILL IS PROPERLY COMPACTED UNDER AND AROUND THE PIPE HAUNCHES.
- 2. OTHER ALTERNATE BACKFILL MATERIAL MAY BE ALLOWED DEPENDING ON SITE SPECIFIC CONDITIONS, AS APPROVED BY SITE ENGINEER.
- 3. BACKFILL USING CONTROLLED LOW-STRENGTH MATERIAL (CLSM, "FLASH FILL" OR "FLOWABLE FILL") MAY BE USED WHEN THE SPACING BETWEEN THE PIPES WILL NOT ALLOW FOR PLACEMENT AND ADEQUATE COMPACTION OF THE BACKFILL CONTACT CONTECH FOR FURTHER EVALUATION.
- 4. IF SALTING AGENTS FOR SNOW AND ICE REMOVAL ARE USED ON OR NEAR THE PROJECT, A GEOMEMBRANE BARRIER IS RECOMMENDED OVER THE UPPER HALF OF THE PIPE. THE GEOMEMBRANE LINER IS INTENDED TO HELP PROTECT THE SYSTEM FROM THE POTENTIAL ADVERSE EFFECTS THAT MAY RESULT FROM A CHANGE IN THE SURROUNDING ENVIRONMENT OVER A PERIOD OF TIME. PLEASE REFER TO THE CORRUGATED METAL PIPE DETENTION DESIGN GUIDE FOR ADDITIONAL INFORMATION.

MINIMUM EMBANKMENT WIDTH (IN FEET) FOR INITIAL FILL ENVELOPE: PIPE < 24": 3.0D PIPE 24" - 144": D + 4'0" PIPE > 144": D + 10'0"

WELL

Landing Site 6	PROJECT No.: 42824	SEQ. 1 605		DATE: 10/2/2024
	DESIGNED: DYO		DRAW	N: DYO
	CHECKED: DYO		APPR	OVED: DYO
STEM	SHEET NO .:			1

FOR TEMPORARY CONSTRUCTION VEHICLE LOADS, AN EXTRA AMOUNT OF COMPACTED COVER MAY BE REQUIRED OVER THE TOP OF THE PIPE. THE HEIGHT-OF-COVER SHALL MEET THE MINIMUM REQUIREMENTS SHOWN IN THE TABLE BELOW. THE USE OF HEAVY CONSTRUCTION EQUIPMENT NECESSITATES GREATER PROTECTION FOR THE PIPE THAN FINISHED GRADE COVER MINIMUMS FOR NORMAL HIGHWAY TRAFFIC.

PIPE SPAN,	· · · · · · · · · · · · · · · · · · ·				
INCHES	18-50	50-75	75-110	110-150	
	MI	NIMUM C	OVER (F	- T)	
12-42	2.0	2.5	3.0	3.0	
48-72	3.0	3.0	3.5	4.0	
78-120	3.0	3.5	4.0	4.0	
126-144	3.5	4.0	4.5	4.5	

*MINIMUM COVER MAY VARY, DEPENDING ON LOCAL CONDITIONS. THE CONTRACTOR MUST PROVIDE THE ADDITIONAL COVER REQUIRED TO AVOID DAMAGE TO THE PIPE. MINIMUM COVER IS MEASURED FROM THE TOP OF THE PIPE TO THE TOP OF THE MAINTAINED CONSTRUCTION ROADWAY SURFACE.

CONSTRUCTION LOADING DIAGRAM

SCALE: N.T.S.

REVISION DESCRIPTION

SPECIFICATION FOR DESIGNED DETENTION SYSTEM:

SCOPE

THIS SPECIFICATION COVERS THE MANUFACTURE AND INSTALLATION OF THE DESIGNED DETENTION SYSTEM DETAILED IN THE PROJECT PLANS.

MATERIAI

THE MATERIAL SHALL CONFORM TO THE APPLICABLE REQUIREMENTS LISTED BELOW

ALUMINIZED TYPE 2 STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-274 OR ASTM A-92.

THE GALVANIZED STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-218 OR ASTM A-929.

THE POLYMER COATED STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-246 OR ASTM A-742.

THE ALUMINUM COILS SHALL CONFORM TO THE APPLICABLE OF AASHTO M-197 OR ASTM B-744.

CONSTRUCTION LOADS

CONSTRUCTION LOADS MAY BE HIGHER THAN FINAL LOADS. FOLLOW THE MANUFACTURER'S OR NCSPA GUIDELINES.

NOTE:	
THESE DRAWINGS ARE FOR CONCEPT	UAL
PURPOSES AND DO NOT REFLECT ANY	LOCAL
PREFERENCES OR REGULATIONS. PLE	ASE
CONTACT YOUR LOCAL CONTECH REP	FOR
MODIFICATIONS.	
The design and information shown on this drawing is provided	
as a service to the project owner, engineer and contractor by Contech Engineered Solutions LLC ("Contech"). Neither this	
drawing, nor any part thereof, may be used, reproduced or	
modified in any manner without the prior written consent of	

lesign and information shown on this drawing is provided	
service to the project owner, engineer and contractor by	
ech Engineered Solutions LLC ("Contech"). Neither this	
ng, nor any part thereof, may be used, reproduced or	
ied in any manner without the prior written consent of	
ech. Failure to comply is done at the user's own risk and	
ech expressly disclaims any liability or responsibility for	
use.	

DATE

PIPF THE PIPE SHALL BE MANUFACTURED IN ACCORDANCE TO THE APPLICABLE REQUIREMENTS LISTED BELOW:

ALUMINIZED TYPE 2: AASHTO M-36 OR ASTM A-760

GALVANIZED: AASHTO M-36 OR ASTM A-760

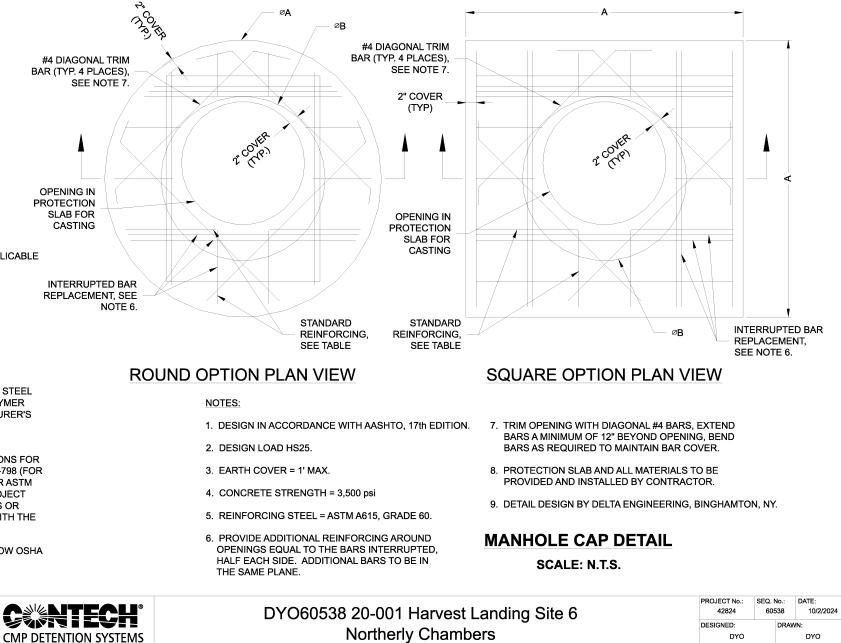
AFFOLICYANELIEE COATED: AASHTO M-245 OR ASTM A-762

ALUMINUM: AASHTO M-196 OR ASTM B-745

APPLICABLE

BY

HANDLING AND ASSEMBLY SHALL BE IN ACCORDANCE WITH NCSP'S (NATIONAL CORRUGATED STEEL AFFREE ABSED CIATION) FOR ALUMINIZED TYPE 2. GALVANIZED OR POLYMER COATED STEEL. SHALL BE IN ACCORDANCE WITH THE MANUFACTURER'S RECOMMENDATIONS FOR ALUMINUM PIPE.


REQUIREMENTS

INSTALLATION SHALL BE IN ACCORDANCE WITH AASHTO STANDARD SPECIFICATIONS FOR HIGHWAY BRIDGES, SECTION 26, DIVISION II DIVISION II OR ASTM A-798 (FOR ALUMINIZED TYPE 2, GALVANIZED OR POLYMER COATED STEEL) OR ASTM B-788 (FOR ALUMINUM PIPE) AND IN CONFORMANCE WITH THE PROJECT PLANS AND SPECIFICATIONS. IF THERE ARE ANY INCONSISTENCIES OR CONFLICTS THE CONTRACTOR SHOULD DISCUSS AND RESOLVE WITH THE SITE ENGINEER.

IT IS ALWAYS THE RESPONSIBILITY OF THE CONTRACTOR TO FOLLOW OSHA GUIDELINES FOR SAFE PRACTICES.

ACCESS CASTING TO BE PROVIDED AND INSTALLED BY CONTRACTOR. 2 ŀ Ø CMP RISER GASKET MATERIAL SUFFICIENT TO PREVENT (TYP. SLAB FROM BEARING ON RISER TO BE PROVIDED BY GAP SI CONTRACTOR. ØF - 11" TYP SECTION VIEW

CONTECH

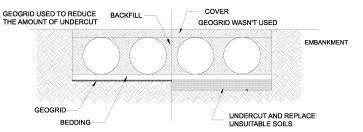
DYODS

DRAWING

Northerly Chambers Perris, CA **DETENTION SYS**

REINFORCING TABLE								
Ø CMP RISER	Α	ØB	REINFORCING	**BEARING PRESSURE (PSF)				
24"	∞ 4' 4'X4'	26"	#5 @ 12" OCEW #5 @ 12" OCEW	2,410 1,780				
30"	∅ 4'-6" 4'-6" X 4'-6"	32"	#5 @ 12" OCEW #5 @ 12" OCEW	2,120 1,530				
36"	∞ 5' 5' X 5'	38"	#5 @ 10" OCEW #5 @ 10" OCEW	1,890 1,350				
42"	∅ 5'-6" 5'-6" X 5'-6"	44"	#5 @ 10" OCEW #5 @ 9" OCEW	1,720 1,210				
48"	∞ 6' 6' X 6'	50"	#5 @ 9" OCEW #5 @ 8" OCEW	1,600 1,100				

۲,	F	M


	PROJECT No.:	SEQ. No.:		DATE:	
	42824	60	538	10/2/2024	
DESIGNED:			DRAWN:		
	DYO			DYO	
	CHECKED:		APPR	OVED:	
	DYO			DYO	
	SHEET NO .:				
				1	

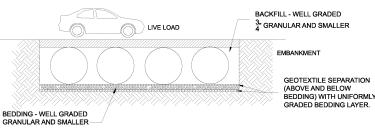
PROPER INSTALLATION OF A FLEXIBLE UNDERGROUND DETENTION SYSTEM WILL ENSURE LONG-TERM PERFORMANCE. THE CONFIGURATION OF THESE SYSTEMS OFTEN REQUIRES SPECIAL CONSTRUCTION PRACTICES THAT DIFFER FROM CONVENTIONAL FLEXIBLE PIPE CONSTRUCTION. CONTECH ENGINEERED SOLUTIONS STRONGLY SUGGESTS SCHEDULING A PRE-CONSTRUCTION MEETING WITH YOUR LOCAL SALES ENGINEER TO DETERMINE IF ADDITIONAL MEASURES, NOT COVERED IN THIS GUIDE, ARE APPROPRIATE FOR YOUR SITE.

FOUNDATION

CONSTRUCT A FOUNDATION THAT CAN SUPPORT THE DESIGN LOADING APPLIED BY THE PIPE AND ADJACENT BACKFILL WEIGHT AS WELL AS MAINTAIN ITS INTEGRITY DURING CONSTRUCTION.

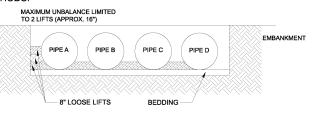
IF SOFT OR UNSUITABLE SOILS ARE ENCOUNTERED, REMOVE THE POOR SOILS DOWN TO A SUITABLE DEPTH AND THEN BUILD UP TO THE APPROPRIATE ELEVATION WITH A COMPETENT BACKFILL MATERIAL. THE STRUCTURAL FILL MATERIAL GRADATION SHOULD NOT ALLOW THE MIGRATION OF FINES, WHICH CAN CAUSE SETTLEMENT OF THE DETENTION SYSTEM OR PAVEMENT ABOVE. IF THE STRUCTURAL FILL MATERIAL IS NOT COMPATIBLE WITH THE UNDERLYING SOILS AN ENGINEERING FABRIC SHOULD BE USED AS A SEPARATOR IN SOME CASES, USING A STIFE REINFORCING GEOGRIF REDUCES OVER EXCAVATION AND REPLACEMENT FILL QUANTITIES.

GRADE THE FOUNDATION SUBGRADE TO A UNIFORM OR SLIGHTLY SLOPING GRADE. IF THE SUBGRADE IS CLAY OR RELATIVELY NON-POROUS AND THE CONSTRUCTION SEQUENCE WILL LAST FOR AN EXTENDED PERIOD OF TIME. IT IS BEST TO SLOPE THE GRADE TO ONE END OF THE SYSTEM. THIS WILL ALLOW EXCESS WATER TO DRAIN QUICKLY, PREVENTING SATURATION OF THE SUBGRADE


GEOMEMBRANE BARRIER

OF VARIOUS SALTING, DE-ICING, AND AGRICULTURAL AGENTS APPLIED ON OR NEAR THE AREA. TO MITIGATE THE POTENTIAL IMPACT OF THESE AGENTS, AN HDPE MEMBRANE LINER WILL BE INSTALLED ON THE CROWN OF EACH PIPE, CREATING AN IMPERMEABLE BARRIER. THIS MEASURE IS DESIGNED TO PROTECT THE SYSTEM FROM ENVIRONMENTAL CHANGES THAT COULD LEAD TO PREMATURE CORROSION AND REDUCE THE OVERALL SERVICE LIFE.

IN-SITU TRENCH WALL


IF EXCAVATION IS REQUIRED, THE TRENCH WALL NEEDS TO BE CAPABLE OF SUPPORTING THE LOAD THAT THE PIPE SHEDS AS THE SYSTEM IS LOADED. IF SOILS ARE NOT CAPABLE OF SUPPORTING THESE LOADS, THE PIPE CAN DEFLECT PERFORM A SIMPLE SOIL PRESSURE CHECK USING THE APPLIED LOADS TO DETERMINE THE LIMITS OF EXCAVATION BEYOND THE SPRING LINE OF THE OUTER MOST PIPES.

IN MOST CASES THE REQUIREMENTS FOR A SAFE WORK ENVIRONMENT AND PROPER BACKFILL PLACEMENT AND COMPACTION TAKE CARE OF THIS CONCERN.

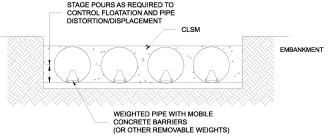
BACKFILL PLACEMENT

MATERIAL SHALL BE WORKED INTO THE PIPE HAUNCHES BY MEANS OF SHOVEL-SLICING, RODDING, AIR TAMPER, VIBRATORY ROD, OR OTHER EFFECTIVE METHODS

IF AASHTO T99 PROCEDURES ARE DETERMINED INFEASIBLE BY THE GEOTECHNICAL ENGINEER OF RECORD. COMPACTION IS CONSIDERED ADEQUATE WHEN NO FURTHER YIELDING OF THE MATERIAL IS OBSERVED UNDER THE COMPACTOR, OR UNDER FOOT, AND THE GEOTECHNICAL ENGINEER OF RECORD (OR REPRESENTATIVE THEREOF) IS SATISFIED WITH THE LEVEL OF COMPACTION.

THE RESISTIVITY OF A PROJECT SITE MAY CHANGE OVER TIME DUE TO THE USE FOR LARGE SYSTEMS, CONVEYOR SYSTEMS, BACKHOES WITH LONG REACHES OR DRAGLINES WITH STONE BUCKETS MAY BE USED TO PLACE BACKFILL, ONCE MINIMUM COVER FOR CONSTRUCTION LOADING ACROSS THE ENTIRE WIDTH OF THE SYSTEM IS REACHED. ADVANCE THE EQUIPMENT TO THE END OF THE RECENTLY PLACED FILL, AND BEGIN THE SEQUENCE AGAIN UNTIL THE SYSTEM IS COMPLETELY BACKFILLED. THIS TYPE OF CONSTRUCTION SEQUENCE PROVIDES ROOM FOR STOCKPILED BACKFILL DIRECTLY BEHIND THE BACKHOF, AS WELL AS THE MOVEMENT OF CONSTRUCTION TRAFFIC. MATERIAL STOCKPILES ON TOP OF THE BACKFILLED DETENTION SYSTEM SHOULD BE LIMITED TO 8- TO 10-FEET HIGH AND MUST PROVIDE BALANCED LOADING ACROSS ALL BARRELS. TO DETERMINE THE PROPER COVER OVER THE PIPES TO ALLOW THE MOVEMENT OF CONSTRUCTION EQUIPMENT SEE TABLE 1, OR CONTACT YOUR LOCAL CONTECH SALES ENGINEER.

TYPICAL BACKFILL SEQUENCE

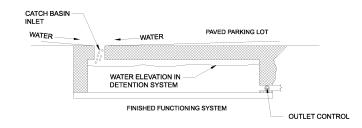

8

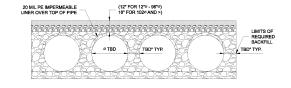
9

ALLOWED TO SET-UP PRIOR TO THE PLACEMENT OF THE NEXT LIFT. THE ALLOWABLE THICKNESS OF THE CLSM LIFT IS A FUNCTION OF A PROPER BALANCE BETWEEN THE UPLIFT FORCE OF THE CLSM, THE OPPOSING WEIGHT OF THE PIPE, AND THE EFFECT OF OTHER RESTRAINING MEASURES. THE PIPE CAN CARRY LIMITED FLUID PRESSURE WITHOUT PIPE DISTORTION OR DISPLACEMENT, WHICH ALSO AFFECTS THE CLSM LIFT THICKNESS. YOUR LOCAL CONTECH SALES ENGINEER CAN HELP DETERMINE THE PROPER LIFT THICKNESS. STAGE POURS AS REQUIRED TO

WHEN FLOWABLE FILL IS USED, YOU MUST PREVENT PIPE FLOATATION.

TYPICALLY, SMALL LIFTS ARE PLACED BETWEEN THE PIPES AND THEN




CONSTRUCTION LOADING

ACCUMULATED SEDIMENT AND TRASH CAN TYPICALLY BE EVACUATED TYPICALLY, THE MINIMUM COVER SPECIFIED FOR A PROJECT ASSUMES H-20 THROUGH THE MANHOLE OVER THE OUTLET ORIFICE. IF MAINTENANCE IS NOT LIVE LOAD. BECAUSE CONSTRUCTION LOADS OFTEN EXCEED DESIGN LIVE PERFORMED AS RECOMMENDED, SEDIMENT AND TRASH MAY ACCUMULATE IN LOADS, INCREASED TEMPORARY MINIMUM COVER REQUIREMENTS ARE FRONT OF THE OUTLET ORIFICE. MANHOLE COVERS SHOULD BE SECURELY SEATED FOLLOWING CLEANING ACTIVITIES. CONTECH SUGGESTS THAT ALL NECESSARY. SINCE CONSTRUCTION EQUIPMENT VARIES FROM JOB TO JOB, SYSTEMS BE DESIGNED WITH AN ACCESS/INSPECTION MANHOLE SITUATED AT IT IS BEST TO ADDRESS EQUIPMENT SPECIFIC MINIMUM COVER OR NEAR THE INLET AND THE OUTLET ORIFICE. SHOULD IT BE NECESSARY TO REQUIREMENTS WITH YOUR LOCAL CONTECH SALES ENGINEER DURING GET INSIDE THE SYSTEM TO PERFORM MAINTENANCE ACTIVITIES, ALL APPROPRIATE PRECAUTIONS REGARDING CONFINED SPACE ENTRY AND OSHA YOUR PRE-CONSTRUCTION MEETING. REGULATIONS SHOULD BE FOLLOWED.

ADDITIONAL CONSIDERATIONS

BECAUSE MOST SYSTEMS ARE CONSTRUCTED BELOW-GRADE, RAINFALL AS PART OF THE MAINTENANCE PROGRAM FOR THE SYSTEM. CAN RAPIDLY FILL THE EXCAVATION; POTENTIALLY CAUSING FLOATATION MAINTAINING AN UNDERGROUND DETENTION OR INFILTRATION SYSTEM IS AND MOVEMENT OF THE PREVIOUSLY PLACED PIPES. TO HELP MITIGATE EASIEST WHEN THERE IS NO FLOW ENTERING THE SYSTEM. FOR THIS POTENTIAL PROBLEMS, IT IS BEST TO START THE INSTALLATION AT THE REASON. IT IS A GOOD IDEA TO SCHEDULE THE CLEANOUT DURING DRY DOWNSTREAM END WITH THE OUTLET ALREADY CONSTRUCTED TO ALLOW WEATHER A ROUTE FOR THE WATER TO ESCAPE. TEMPORARY DIVERSION MEASURES THE FOREGOING INSPECTION AND MAINTENANCE EFFORTS HELP ENSURE MAY BE REQUIRED FOR HIGH FLOWS DUE TO THE RESTRICTED NATURE OF THE OUTLET PIPE.

REVISION DESCRIPTION

The design and information shown on this drawing is provided as a service to the project owner, engineer and contractor by		
Contech Engineered Solutions LLC ("Contech"). Neither this drawing, nor any part thereof, may be used, reproduced or modified in any manner without the prior written consent of		
Contech. Failure to comply is done at the user's own risk and Contech expressly disclaims any liability or responsibility for such use.		
If discrepancies between the supplied information upon which		
the drawing is based and actual field conditions are encountered as site work progresses, these discrepancies must be reported to Contech immediately for re-evaluation of the design. Contech		
accepts no liability for designs based on missing, incomplete or	DATE	

		NTE	CH [®]	
	ENGIN	EERED SOLUT	IONS LLC	C
	v	ww.ContechES.	com	
	9025 Centre Point	e Dr., Suite 400, W	est Chester, OH 45069	
BY	800-338-1122	513-645-7000	513-645-7993 FAX	

DRAWING

EMBANKMEN

15

6

DYO60538 20-001 Harvest Northerly Chaml Perris, CA DETENTION SYS

CMP DETENTION SYSTEM INSPECTION AND MAINTENANCE

UNDERGROUND STORMWATER DETENTION AND INFILTRATION SYSTEMS MUST BE INSPECTED AND MAINTAINED AT REGULAR INTERVALS FOR PURPOSES OF PERFORMANCE AND LONGEVITY.

INSPECTION

INSPECTION IS THE KEY TO EFFECTIVE MAINTENANCE OF CMP DETENTION SYSTEMS AND IS EASILY PERFORMED. CONTECH RECOMMENDS ONGOING, ANNUAL INSPECTIONS. SITES WITH HIGH TRASH LOAD OR SMALL OUTLET CONTROL ORIFICES MAY NEED MORE FREQUENT INSPECTIONS. THE RATE AT WHICH THE SYSTEM COLLECTS POLLUTANTS WILL DEPEND MORE ON SITE SPECIFIC ACTIVITIES RATHER THAN THE SIZE OR CONFIGURATION OF THE SYSTEM.

INSPECTIONS SHOULD BE PERFORMED MORE OFTEN IN EQUIPMENT WASHDOWN AREAS, IN CLIMATES WHERE SANDING AND/OR SALTING OPERATIONS TAKE PLACE, AND IN OTHER VARIOUS INSTANCES IN WHICH ONE WOULD EXPECT HIGHER ACCUMULATIONS OF SEDIMENT OR ABRASIVE/ CORROSIVE CONDITIONS. A RECORD OF EACH INSPECTION IS TO BE MAINTAINED FOR THE LIFE OF THE SYSTEM

MAINTENANCE

CMP DETENTION SYSTEMS SHOULD BE CLEANED WHEN AN INSPECTION REVEALS ACCUMULATED SEDIMENT OR TRASH IS CLOGGING THE DISCHARGE ORIFICE.

ANNUAL INSPECTIONS ARE BEST PRACTICE FOR ALL UNDERGROUND SYSTEMS. DURING THIS INSPECTION, IF EVIDENCE OF SALTING/DE-ICING AGENTS IS OBSERVED WITHIN THE SYSTEM, IT IS BEST PRACTICE FOR THE SYSTEM TO BE RINSED, INCLUDING ABOVE THE SPRING LINE SOON AFTER THE SPRING THAW

UNDERGROUND PIPE SYSTEMS USED FOR STORMWATER STORAGE CONTINUE TO FUNCTION AS INTENDED BY IDENTIFYING RECOMMENDED REGULAR INSPECTION AND MAINTENANCE PRACTICES. INSPECTION AND MAINTENANCE RELATED TO THE STRUCTURAL INTEGRITY OF THE PIPE OR THE SOUNDNESS OF PIPE JOINT CONNECTIONS IS BEYOND THE SCOPE OF THIS GUIDE.

Landing Site 6	PROJECT No.: 42824	SEQ. N 605		DATE: 10/2/20)24
	DESIGNED: DYO		DRAW	/N: DYO	
	CHECKED: DYO		APPR	OVED: DYO	
STEM	SHEET NO .:				1

PROJECT SUMMARY

CALCULATION DETAILS • LOADING = HS20/HS25 • APPROX. LINEAR FOOTAGE = 2,682 LF

STORAGE SUMMARY

- STORAGE VOLUME REQUIRED = N/A
- PIPE STORAGE VOLUME = 134,812 CF
- BACKFILL STORAGE VOLUME = 0 CF
- TOTAL STORAGE PROVIDED = 134,812 CF

PIPE DETAILS

- DIAMETER = 96"
- CORRUGATION = 5x1
- GAGE = 16
- COATING = ALT2
- WALL TYPE = SOLID
- BARREL SPACING = 36"

BACKFILL DETAILS

- WIDTH AT ENDS = 12"
- ABOVE PIPE = 0"
- WIDTH AT SIDES = 12"
- BELOW PIPE = 0"

NOTES

- ALL RISER AND STUB DIMENSIONS ARE TO CENTERLINE. ALL ELEVATIONS, DIMENSIONS, AND LOCATIONS OF RISERS AND INLETS, SHALL BE VERIFIED BY THE ENGINEER OF RECORD PRIOR TO RELEASING FOR FABRICATION.
- ALL FITTINGS AND REINFORCEMENT COMPLY WITH ASTM A998.
- ALL RISERS AND STUBS ARE $2^2_{/3}$ " x $1^{/2}_{/2}$ " CORRUGATION AND 16 GAGE UNLESS OTHERWISE NOTED. RISERS TO BE FIELD TRIMMED TO GRADE.
- QUANTITY OF PIPE SHOWN DOES NOT PROVIDE EXTRA PIPE FOR CONNECTING THE SYSTEM TO EXISTING PIPE OR DRAINAGE STRUCTURES. OUR SYSTEM AS DETAILED PROVIDES NOMINAL INLET AND/OR OUTLET PIPE STUB FOR CONNECTION TO EXISTING DRAINAGE FACILITIES. IF ADDITIONAL PIPE IS NEEDED IT IS THE RESPONSIBILITY OF THE CONTRACTOR.
- BAND TYPE TO BE DETERMINED UPON FINAL DESIGN. • THE PROJECT SUMMARY IS REFLECTIVE OF THE DYODS DESIGN, QUANTITIES ARE APPROX. AND SHOULD BE VERIFIED UPON FINAL DESIGN AND APPROVAL. FOR EXAMPLE, TOTAL EXCAVATION DOES NOT CONSIDER ALL VARIABLES SUCH AS SHORING

AND ONLY ACCOUNTS FOR MATERIAL WITHIN THE

• THESE DRAWINGS ARE FOR CONCEPTUAL PURPOSES AND DO NOT REFLECT ANY LOCAL PREFERENCES OR REGULATIONS. PLEASE CONTACT YOUR LOCAL CONTECH REP FOR MODIFICATIONS. The design and information shown on this drawing is provided as a service to the project owner, engineer and contractor by Contech Engineered Solutions LLC ("Contech"). Neither this drawing, nor any part thereof, may be used, reproduced or

modified in any manner without the prior written consent of Contech. Failure to comply is done at the user's own risk and Contech expressly disclaims any liability or responsibility for such use.		
If discrepancies between the supplied information upon which the drawing is based and actual field conditions are encountered as site work progresses, these discrepancies must be reported to Contech immediately for re-evaluation of the design. Contech		
accepts no liability for designs based on missing, incomplete or inaccurate information supplied by others.	DATE	

ESTIMATED EXCAVATION FOOTPRINT.

7					
Ì					
\rightarrow					
					<u></u>

CMP DETENTION SYSTEMS

CONTECH

DYODS

DRAWING

330'-0"

DYO60540 20-001 Harvest

Southerly Chaml Perris, CA **DETENTION SYS**

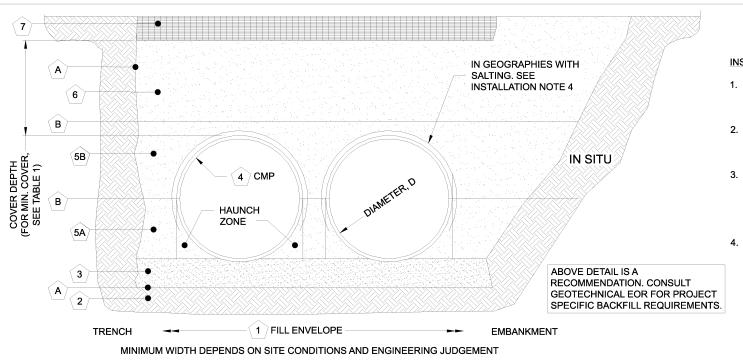
ENGINEERED SOLUTIONS LLC www.ContechES.com
Centre Pointe Dr., Suite 400, West Chester, OH 45069

513-645-7993 FAX

800-338-1122 513-645-7000

9025

ΒY


REVISION DESCRIPTION

		_
		\geq
		>
		>

t Landing Site 6	PROJECT No.: 42826	SEQ. N 605		DATE: 10/2/20	24
lbers	DESIGNED: DYO		DRAW	N: DYO	
	CHECKED: DYO		APPR	OVED: DYO	
STEM	SHEET NO .:				1

TABLE 1:			
DIAMETER, D	MIN. COVER	CORR. PROFILE	
6"-10"	12"	1 1/2" x 1/4"	
12"-48"	12"	2 2/3" x 1/2"	
>48"-96"	12"	3" x 1", 5" x 1"	
>96"	D/8	3" x 1", 5" x 1"	

- STRUCTURAL BACKFILL MUST EXTEND TO LIMITS OF THE TABLE
- TOTAL HEIGHT OF COMPACTED COVER FOR CONVENTIONAL HIGHWAY LOADS IS MEASURED FROM TOP OF PIPE TO BOTTOM OF FLEXIBLE PAVEMENT OR TOP OF RIGID PAVEMENT
- ULTRAFLO ALSO AVAILABLE FOR SIZES 18" 120" WITH 3/4"x 3/4"x 7 1/2" CORRUGATION

TABLE 2: SOLID STANDARD CMP DETENTION AND CMP DRAINAGE STANDARD BACKFILL SPECIFICATIONS MATERIAL LOCATION MATERIAL SPECIFICATION DESCRIPTION MINIMUM TRENCH WIDTH MUST ALLOW ROOM FOR PROPER COMPACTION OF HAUNCH MATERIALS UNDER THE PIPE. FILL ENVELOPE WIDTH PER ENGINEER OF RECORD THE SUGGESTED MINIMUM TRENCH WIDTH, OR EOR RECOMMENDATION: PIPE ≤ 12": D + 16" PIPE > 12" 1 5D + 12 PRIOR TO PLACING THE BEDDING, THE FOUNDATION MUST BE CONSTRUCTED TO A UNIFORM AND STABLE GRADE. IN THE EVENT THAT UNSUITABLE AASHTO 26.5.2 OR PER ENGINEER OF RECORD FOUNDATION MATERIALS ARE ENCOUNTERED DURING EXCAVATION, THEY SHALL BE REMOVED AND FOUNDATION BROUGHT BACK TO GRADE WITH A FILL FOUNDATION MATERIAL APPROVED BY THE ENGINEER OF RECORD. ENGINEER OF RECORD TO DETERMINE IF BEDDING IS REQUIRED. PIPE MAY BE PLACED ON THE TRENCH BOTTOM OF A RELATIVELY LOOSE, NATIVE SUITABLE AASHTO M 43: 3, 357, 4, 467, 5, 56, 57 WELL GRADED GRANULAR MATERIAL THAT IS ROUGHLY SHAPED TO FIT THE BOTTOM OF THE PIPE, 2" MIN DEPTH. THE BEDDING MATERIAL MAY BE SUITABLE BEDDING (APPROVED REGIONAL EQUIVALENTS INCLUDE CA-7) FOUNDATION SOILS CONFORMING TO AASHTO SOIL CLASSIFICATIONS A1, A2, OR A3 WITH MAXIMUM PARTICLE SIZE OF 3" PER AASHTO 26.3.8.1 CORRUGATED METAL PIPE HAUNCH ZONE MATERIAL SHALL BE HAND SHOVELED OR SHOVEL SLICED INTO PLACE TO ALLOW FOR PROPER COMPACTION WITHOUT SOFT SPOTS. BACKFILL SHALL BE PLACED IN 8" +/- LOOSE LIFTS AND COMPACTED TO 90% STANDARD PROCTOR PER AASHTO T 99. BACKFILL SHALL BE PLACED SUCH THAT **CRITICAL BACKFILL** AASHTO M 145: A-1, A-2, A-3 * THERE IS NO MORE THAN A THREE LIFT (24") DIFFERENTIAL BETWEEN ANY OF THE PIPES AT ANY TIME DURING THE BACKFILL PROCESS. THE BACKFILL SHOULD BE ADVANCED ALONG THE LENGTH OF THE SYSTEM TO AVOID DIFFERENTIAL LOADING. GRADED GRANULAR MATERIAL WHICH MAY CONTAIN SMALL AMOUNTS OF SILT OR CLAY AND MAXIMUM PARTICLE SIZE OF 3" (PER AASHTO 26.3.8.1 AND 12.4-1.3). BACKFILL AASHTO M 145: A-1, A-2, A-3 UP TO MIN. COVER - SEE 5A AND 5B ABOVE COVER MATERIAL COVER MATERIAL MAY INCLUDE NON-BITUMINOUS, GRANULAR ROAD BASE MATERIAL WITHIN MIN COVER LIMITS ABOVE MIN. COVER - PER ENGINEER OF RECORD **RIGID OR FLEXIBLE PAVEMENT (IF** FLEXIBLE PAVEMENT SHOULD NOT BE COUNTED AS PART OF THE FILL HEIGHT OVER THE CMP. FINAL BACKFILL MATERIAL SELECTION AND COMPACTION PER ENGINEER OF RECORD APPLICABLE) REQUIREMENTS SHALL FOLLOW THE PROJECT PLANS AND SPECIFICATIONS PER THE ENGINEER OF RECORD. OPTIONAL SIDE GEOTEXTILE NONE GEOTEXTILE LAYER IS RECOMMENDED ON SIDES OF EXCAVATION TO PREVENT SOIL MIGRATION.

NOTES:

OPTIONAL GEOTEXTILE BETWEEN

LAYERS

REVISION DESCRIPTION

(1)

〔2〕

ં 3ે

4

5A)

5B

6

7)

(A)

(B)

FOR MULTIPLE BARREL INSTALLATIONS, THE RECOMMENDED STANDARD SPACING BETWEEN PARALLEL PIPE RUNS SHALL BE THE PIPE DIAMETER /2 BUT NO LESS THAN 12" FOR DIAMETERS <72". FOR 72" AND LARGER DIAMETERS, THE MINIMUM SPACING IS 36". CONTACT YOUR CONTECH REPRESENTATIVE FOR NONSTANDARD SPACING.

APPROVED REGIONAL EQUIVALENTS FOR SECTION 5A INCLUDE CA-7, CODOT #67, MIDOT 2G, 34G, OR 21AA STONE OR GRAVEL; #8; #57; MIDOT 6A, 2G, 3G, 34G.

MANUFACTURER RECOMMENDED BACKFILL

NOT TO SCALE

The design and information shown on this drawing is provided as a service to the project owner, engineer and contractor by Contech Engineered Solutions LLC ("Contech"). Neither this	
drawing, nor any part thereof, may be used, reproduced or modified in any manner without the prior written consent of	
Contech. Failure to comply is done at the user's own risk and Contech expressly disclaims any liability or responsibility for	
such use.	
If discrepancies between the supplied information upon which	
the drawing is based and actual field conditions are encountered as site work progresses, these discrepancies must be reported	
to Contech immediately for re-evaluation of the design. Contech	
accepts no liability for designs based on missing, incomplete or	DATE

repancies between the supplied information upon which	
awing is based and actual field conditions are encountered	
work progresses, these discrepancies must be reported	
ntech immediately for re-evaluation of the design. Contech	
ts no liability for designs based on missing, incomplete or	

		C NTECH
		ENGINEERED SOLUTIONS LLC
		www.ContechES.com
+		9025 Centre Pointe Dr., Suite 400, West Chester, OH 4506
+	DV/	800-338-1122 513-645-7000 513-645-7993 FAX

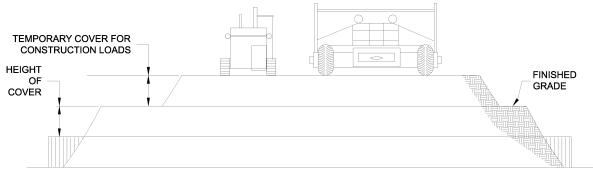
NONE

CANTECH CMP DETENTION SYSTEMS CONTECH DYODS DRAWING

DYO60540 20-001 Harvest Southerly Cham Perris, CA **DETENTION SYS**

MIGRATION.

INSTALLATION NOTES


- WHEN PLACING THE FIRST LIFTS OF BACKFILL IT IS IMPORTANT TO MAKE SURE THAT THE BACKFILL IS PROPERLY COMPACTED UNDER AND AROUND THE PIPE HAUNCHES.
- 2. OTHER ALTERNATE BACKFILL MATERIAL MAY BE ALLOWED DEPENDING ON SITE SPECIFIC CONDITIONS, AS APPROVED BY SITE ENGINEER.
- 3. BACKFILL USING CONTROLLED LOW-STRENGTH MATERIAL (CLSM, "FLASH FILL" OR "FLOWABLE FILL") MAY BE USED WHEN THE SPACING BETWEEN THE PIPES WILL NOT ALLOW FOR PLACEMENT AND ADEQUATE COMPACTION OF THE BACKFILL CONTACT CONTECH FOR FURTHER EVALUATION.
- 4. IF SALTING AGENTS FOR SNOW AND ICE REMOVAL ARE USED ON OR NEAR THE PROJECT, A GEOMEMBRANE BARRIER IS RECOMMENDED OVER THE UPPER HALF OF THE PIPE. THE GEOMEMBRANE LINER IS INTENDED TO HELP PROTECT THE SYSTEM FROM THE POTENTIAL ADVERSE EFFECTS THAT MAY RESULT FROM A CHANGE IN THE SURROUNDING ENVIRONMENT OVER A PERIOD OF TIME. PLEASE REFER TO THE CORRUGATED METAL PIPE DETENTION DESIGN GUIDE FOR ADDITIONAL INFORMATION.

MINIMUM EMBANKMENT WIDTH (IN FEET) FOR INITIAL FILL ENVELOPE: PIPE < 24": 3.0D PIPE 24" - 144": D + 4'0" PIPE > 144": D + 10'0"

WELL

IF SOIL TYPES DIFFER AT ANY POINT ABOVE PIPE INVERT, A GEOTEXTILE LAYER IS RECOMMENDED TO BE PLACED BETWEEN THE LAYERS TO PREVENT SOIL

Landing Site 6	PROJECT No.: SEQ. No.: 42826 60540				
bers	DESIGNED: DYO			DRAWN: DYO	
	CHECKED: DYO		APPR	OVED: DYO	
STEM	SHEET NO .:			1	

CONSTRUCTION LOADS

FOR TEMPORARY CONSTRUCTION VEHICLE LOADS, AN EXTRA AMOUNT OF COMPACTED COVER MAY BE REQUIRED OVER THE TOP OF THE PIPE. THE HEIGHT-OF-COVER SHALL MEET THE MINIMUM REQUIREMENTS SHOWN IN THE TABLE BELOW. THE USE OF HEAVY CONSTRUCTION EQUIPMENT NECESSITATES GREATER PROTECTION FOR THE PIPE THAN FINISHED GRADE COVER MINIMUMS FOR NORMAL HIGHWAY TRAFFIC.

PIPE SPAN,	A	XLE LO	ADS (kips	3)			
INCHES	18-50	50-75	75-110	110-150			
	MINIMUM COVER (FT)						
12-42	2.0	2.5	3.0	3.0			
48-72	3.0	3.0	3.5	4.0			
78-120	3.0	3.5	4.0	4.0			
126-144	3.5	4.0	4.5	4.5			

*MINIMUM COVER MAY VARY, DEPENDING ON LOCAL CONDITIONS. THE CONTRACTOR MUST PROVIDE THE ADDITIONAL COVER REQUIRED TO AVOID DAMAGE TO THE PIPE. MINIMUM COVER IS MEASURED FROM THE TOP OF THE PIPE TO THE TOP OF THE MAINTAINED CONSTRUCTION ROADWAY SURFACE.

CONSTRUCTION LOADING DIAGRAM

SCALE: N.T.S.

REVISION DESCRIPTION

SPECIFICATION FOR DESIGNED DETENTION SYSTEM:

SCOPE

THIS SPECIFICATION COVERS THE MANUFACTURE AND INSTALLATION OF THE DESIGNED DETENTION SYSTEM DETAILED IN THE PROJECT PLANS.

MATERIAI

THE MATERIAL SHALL CONFORM TO THE APPLICABLE REQUIREMENTS LISTED BELOW

ALUMINIZED TYPE 2 STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-274 OR ASTM A-92.

THE GALVANIZED STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-218 OR ASTM A-929.

THE POLYMER COATED STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-246 OR ASTM A-742.

THE ALUMINUM COILS SHALL CONFORM TO THE APPLICABLE OF AASHTO M-197 OR ASTM B-744.

CONSTRUCTION LOADS

CONSTRUCTION LOADS MAY BE HIGHER THAN FINAL LOADS. FOLLOW THE MANUFACTURER'S OR NCSPA GUIDELINES.

DATE

NOTE:
THESE DRAWINGS ARE FOR CONCEPTUAL
PURPOSES AND DO NOT REFLECT ANY LOCAL
PREFERENCES OR REGULATIONS. PLEASE
CONTACT YOUR LOCAL CONTECH REP FOR
MODIFICATIONS.
The design and information shown on this drawing is provided as a service to the project owner, engineer and contractor by Contech Engineered Solutions LLC ("Contect"). Neither this
drawing, nor any part thereof, may be used, reproduced or modified in any manner without the prior written consent of

diffed in any manner without the prior written consent o intech. Fallure to comply is done at the user's own risk nitech expressly disclaims any liability or responsibility f ch use.
iscrepancies between the supplied information upon wi e drawing is based and actual field conditions are encou site work progresses, these discrepancies must be rep Contech immediately for re-evaluation of the design. C cents no liability for desians based on missing, incomb
coursts information supplied by others

PIPF THE PIPE SHALL BE MANUFACTURED IN ACCORDANCE TO THE APPLICABLE REQUIREMENTS LISTED BELOW:

ALUMINIZED TYPE 2: AASHTO M-36 OR ASTM A-760

GALVANIZED: AASHTO M-36 OR ASTM A-760

AFFOLICYANELIEE COATED: AASHTO M-245 OR ASTM A-762

ALUMINUM: AASHTO M-196 OR ASTM B-745

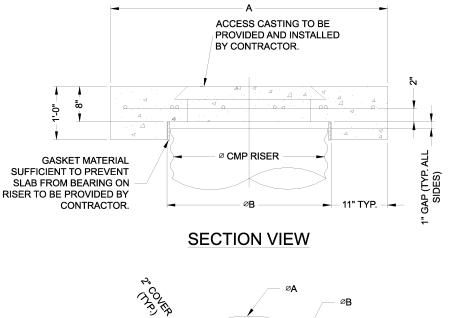
APPLICABLE

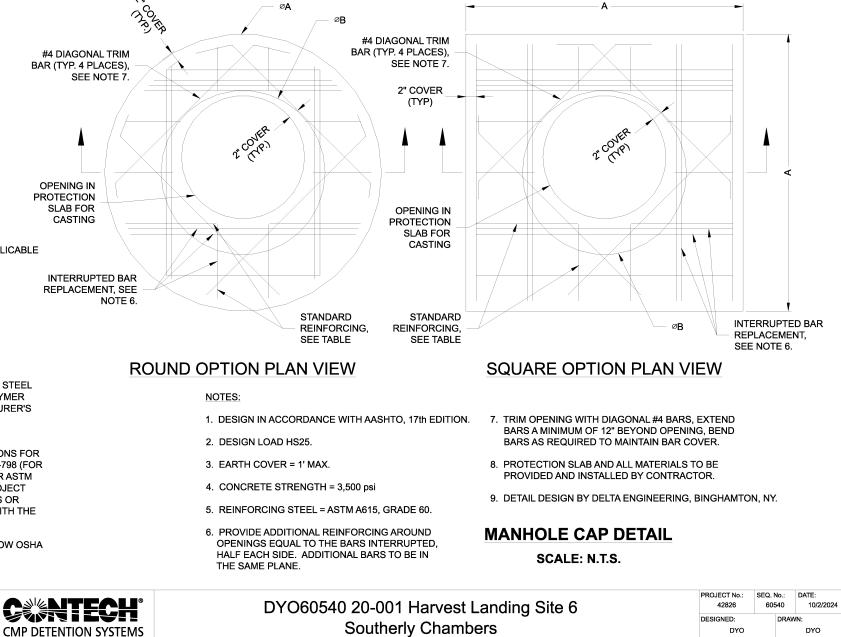
BY

HANDLING AND ASSEMBLY SHALL BE IN ACCORDANCE WITH NCSP'S (NATIONAL CORRUGATED STEEL AFFREECABSEDCIATION) FOR ALUMINIZED TYPE 2. GALVANIZED OR POLYMER COATED STEEL. SHALL BE IN ACCORDANCE WITH THE MANUFACTURER'S RECOMMENDATIONS FOR ALUMINUM PIPE.

REQUIREMENTS

INSTALLATION SHALL BE IN ACCORDANCE WITH AASHTO STANDARD SPECIFICATIONS FOR HIGHWAY BRIDGES, SECTION 26, DIVISION II DIVISION II OR ASTM A-798 (FOR ALUMINIZED TYPE 2, GALVANIZED OR POLYMER COATED STEEL) OR ASTM B-788 (FOR ALUMINUM PIPE) AND IN CONFORMANCE WITH THE PROJECT PLANS AND SPECIFICATIONS. IF THERE ARE ANY INCONSISTENCIES OR CONFLICTS THE CONTRACTOR SHOULD DISCUSS AND RESOLVE WITH THE SITE ENGINEER.


IT IS ALWAYS THE RESPONSIBILITY OF THE CONTRACTOR TO FOLLOW OSHA GUIDELINES FOR SAFE PRACTICES.



800-338-1122 513-645-7000 513-645-7993 FAX CONTECH

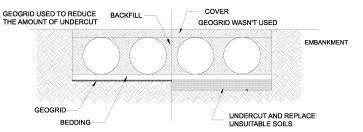
DYODS

DRAWING

Southerly Chambers Perris, CA **DETENTION SYS**

	RE	EINFO	RCING TABLE	
© CMP A ₽		ØB	REINFORCING	**BEARING PRESSURE (PSF)
24"	∞ 4' 4'X4'	26"	#5 @ 12" OCEW #5 @ 12" OCEW	2,410 1,780
30"	∅ 4'-6" 4'-6" X 4'-6"	32"	#5 @ 12" OCEW #5 @ 12" OCEW	2,120 1,530
36"	∞ 5' 5' X 5'	38"	#5 @ 10" OCEW #5 @ 10" OCEW	1,890 1,350
42"	∅ 5'-6" 5'-6" X 5'-6"	44"	#5 @ 10" OCEW #5 @ 9" OCEW	1,720 1,210
48"	∞6'6'6' X6'	50"	#5 @ 9" OCEW #5 @ 8" OCEW	1,600 1,100

٦ĩ	F	М


PROJECT No .:	SEQ. I	No.:	DATE:	
42826	60540		10/2/20	24
DESIGNED:	DRAWN:			
DYO	DYO			
CHECKED:		APPR	OVED:	
DYO			DYO	
SHEET NO .:				
				1

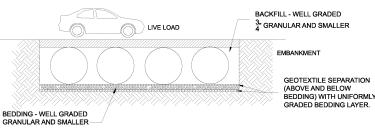
PROPER INSTALLATION OF A FLEXIBLE UNDERGROUND DETENTION SYSTEM WILL ENSURE LONG-TERM PERFORMANCE. THE CONFIGURATION OF THESE SYSTEMS OFTEN REQUIRES SPECIAL CONSTRUCTION PRACTICES THAT DIFFER FROM CONVENTIONAL FLEXIBLE PIPE CONSTRUCTION. CONTECH ENGINEERED SOLUTIONS STRONGLY SUGGESTS SCHEDULING A PRE-CONSTRUCTION MEETING WITH YOUR LOCAL SALES ENGINEER TO DETERMINE IF ADDITIONAL MEASURES, NOT COVERED IN THIS GUIDE, ARE APPROPRIATE FOR YOUR SITE.

FOUNDATION

CONSTRUCT A FOUNDATION THAT CAN SUPPORT THE DESIGN LOADING APPLIED BY THE PIPE AND ADJACENT BACKFILL WEIGHT AS WELL AS MAINTAIN ITS INTEGRITY DURING CONSTRUCTION.

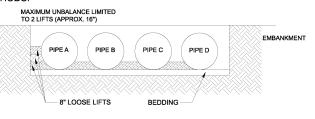
IF SOFT OR UNSUITABLE SOILS ARE ENCOUNTERED, REMOVE THE POOR SOILS DOWN TO A SUITABLE DEPTH AND THEN BUILD UP TO THE APPROPRIATE ELEVATION WITH A COMPETENT BACKEILL MATERIAL. THE STRUCTURAL FILL MATERIAL GRADATION SHOULD NOT ALLOW THE MIGRATION OF FINES, WHICH CAN CAUSE SETTLEMENT OF THE DETENTION SYSTEM OR PAVEMENT ABOVE. IF THE STRUCTURAL FILL MATERIAL IS NOT COMPATIBLE WITH THE UNDERLYING SOILS AN ENGINEERING FABRIC SHOULD BE USED AS A SEPARATOR IN SOME CASES, USING A STIFE REINFORCING GEOGRIF REDUCES OVER EXCAVATION AND REPLACEMENT FILL QUANTITIES.

GRADE THE FOUNDATION SUBGRADE TO A UNIFORM OR SLIGHTLY SLOPING GRADE. IF THE SUBGRADE IS CLAY OR RELATIVELY NON-POROUS AND THE CONSTRUCTION SEQUENCE WILL LAST FOR AN EXTENDED PERIOD OF TIME. IT IS BEST TO SLOPE THE GRADE TO ONE END OF THE SYSTEM. THIS WILL ALLOW EXCESS WATER TO DRAIN QUICKLY, PREVENTING SATURATION OF THE SUBGRADE


GEOMEMBRANE BARRIER

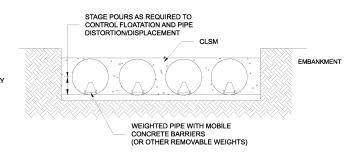
OF VARIOUS SALTING, DE-ICING, AND AGRICULTURAL AGENTS APPLIED ON OR NEAR THE AREA. TO MITIGATE THE POTENTIAL IMPACT OF THESE AGENTS, AN HDPE MEMBRANE LINER WILL BE INSTALLED ON THE CROWN OF EACH PIPE, CREATING AN IMPERMEABLE BARRIER. THIS MEASURE IS DESIGNED TO PROTECT THE SYSTEM FROM ENVIRONMENTAL CHANGES THAT COULD LEAD TO PREMATURE CORROSION AND REDUCE THE OVERALL SERVICE LIFE.

IN-SITU TRENCH WALL


IF EXCAVATION IS REQUIRED, THE TRENCH WALL NEEDS TO BE CAPABLE OF SUPPORTING THE LOAD THAT THE PIPE SHEDS AS THE SYSTEM IS LOADED. IF SOILS ARE NOT CAPABLE OF SUPPORTING THESE LOADS, THE PIPE CAN DEFLECT PERFORM A SIMPLE SOIL PRESSURE CHECK USING THE APPLIED LOADS TO DETERMINE THE LIMITS OF EXCAVATION BEYOND THE SPRING LINE OF THE OUTER MOST PIPES.

IN MOST CASES THE REQUIREMENTS FOR A SAFE WORK ENVIRONMENT AND PROPER BACKFILL PLACEMENT AND COMPACTION TAKE CARE OF THIS CONCERN.

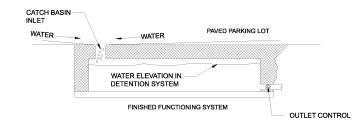
BACKFILL PLACEMENT

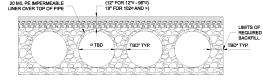

MATERIAL SHALL BE WORKED INTO THE PIPE HAUNCHES BY MEANS OF SHOVEL-SLICING, RODDING, AIR TAMPER, VIBRATORY ROD, OR OTHER EFFECTIVE METHODS

IF AASHTO T99 PROCEDURES ARE DETERMINED INFEASIBLE BY THE GEOTECHNICAL ENGINEER OF RECORD. COMPACTION IS CONSIDERED ADEQUATE WHEN NO FURTHER YIELDING OF THE MATERIAL IS OBSERVED UNDER THE COMPACTOR, OR UNDER FOOT, AND THE GEOTECHNICAL ENGINEER OF RECORD (OR REPRESENTATIVE THEREOF) IS SATISFIED WITH THE LEVEL OF COMPACTION.

THE RESISTIVITY OF A PROJECT SITE MAY CHANGE OVER TIME DUE TO THE USE FOR LARGE SYSTEMS, CONVEYOR SYSTEMS, BACKHOES WITH LONG REACHES OR DRAGLINES WITH STONE BUCKETS MAY BE USED TO PLACE BACKFILL. ONCE MINIMUM COVER FOR CONSTRUCTION LOADING ACROSS THE ENTIRE WIDTH OF THE SYSTEM IS REACHED. ADVANCE THE EQUIPMENT TO THE END OF THE RECENTLY PLACED FILL, AND BEGIN THE SEQUENCE AGAIN UNTIL THE SYSTEM IS COMPLETELY BACKFILLED. THIS TYPE OF CONSTRUCTION SEQUENCE PROVIDES ROOM FOR STOCKPILED BACKFILL DIRECTLY BEHIND THE BACKHOF, AS WELL AS THE MOVEMENT OF CONSTRUCTION TRAFFIC. MATERIAL STOCKPILES ON TOP OF THE BACKFILLED DETENTION SYSTEM SHOULD BE LIMITED TO 8- TO 10-FEET HIGH AND MUST PROVIDE BALANCED LOADING ACROSS ALL BARRELS. TO DETERMINE THE PROPER COVER OVER THE PIPES TO ALLOW THE MOVEMENT OF CONSTRUCTION EQUIPMENT SEE TABLE 1, OR CONTACT YOUR LOCAL CONTECH SALES ENGINEER.

WHEN FLOWABLE FILL IS USED, YOU MUST PREVENT PIPE FLOATATION. TYPICALLY, SMALL LIFTS ARE PLACED BETWEEN THE PIPES AND THEN ALLOWED TO SET-UP PRIOR TO THE PLACEMENT OF THE NEXT LIFT. THE ALLOWABLE THICKNESS OF THE CLSM LIFT IS A FUNCTION OF A PROPER BALANCE BETWEEN THE UPLIFT FORCE OF THE CLSM, THE OPPOSING WEIGHT OF THE PIPE, AND THE EFFECT OF OTHER RESTRAINING MEASURES. THE PIPE CAN CARRY LIMITED FLUID PRESSURE WITHOUT PIPE DISTORTION OR DISPLACEMENT, WHICH ALSO AFFECTS THE CLSM LIFT THICKNESS. YOUR LOCAL CONTECH SALES ENGINEER CAN HELP DETERMINE THE PROPER LIFT THICKNESS.




CONSTRUCTION LOADING

ACCUMULATED SEDIMENT AND TRASH CAN TYPICALLY BE EVACUATED TYPICALLY, THE MINIMUM COVER SPECIFIED FOR A PROJECT ASSUMES H-20 THROUGH THE MANHOLE OVER THE OUTLET ORIFICE. IF MAINTENANCE IS NOT LIVE LOAD. BECAUSE CONSTRUCTION LOADS OFTEN EXCEED DESIGN LIVE PERFORMED AS RECOMMENDED, SEDIMENT AND TRASH MAY ACCUMULATE IN LOADS, INCREASED TEMPORARY MINIMUM COVER REQUIREMENTS ARE FRONT OF THE OUTLET ORIFICE. MANHOLE COVERS SHOULD BE SECURELY SEATED FOLLOWING CLEANING ACTIVITIES. CONTECH SUGGESTS THAT ALL NECESSARY. SINCE CONSTRUCTION EQUIPMENT VARIES FROM JOB TO JOB. SYSTEMS BE DESIGNED WITH AN ACCESS/INSPECTION MANHOLE SITUATED AT IT IS BEST TO ADDRESS EQUIPMENT SPECIFIC MINIMUM COVER OR NEAR THE INLET AND THE OUTLET ORIFICE. SHOULD IT BE NECESSARY TO REQUIREMENTS WITH YOUR LOCAL CONTECH SALES ENGINEER DURING GET INSIDE THE SYSTEM TO PERFORM MAINTENANCE ACTIVITIES, ALL APPROPRIATE PRECAUTIONS REGARDING CONFINED SPACE ENTRY AND OSHA YOUR PRE-CONSTRUCTION MEETING. REGULATIONS SHOULD BE FOLLOWED.

ADDITIONAL CONSIDERATIONS

BECAUSE MOST SYSTEMS ARE CONSTRUCTED BELOW-GRADE, RAINFALL AS PART OF THE MAINTENANCE PROGRAM FOR THE SYSTEM. CAN RAPIDLY FILL THE EXCAVATION; POTENTIALLY CAUSING FLOATATION MAINTAINING AN UNDERGROUND DETENTION OR INFILTRATION SYSTEM IS AND MOVEMENT OF THE PREVIOUSLY PLACED PIPES. TO HELP MITIGATE EASIEST WHEN THERE IS NO FLOW ENTERING THE SYSTEM. FOR THIS POTENTIAL PROBLEMS, IT IS BEST TO START THE INSTALLATION AT THE REASON. IT IS A GOOD IDEA TO SCHEDULE THE CLEANOUT DURING DRY DOWNSTREAM END WITH THE OUTLET ALREADY CONSTRUCTED TO ALLOW WEATHER A ROUTE FOR THE WATER TO ESCAPE. TEMPORARY DIVERSION MEASURES THE FOREGOING INSPECTION AND MAINTENANCE EFFORTS HELP ENSURE MAY BE REQUIRED FOR HIGH FLOWS DUE TO THE RESTRICTED NATURE OF THE OUTLET PIPE

1	The design and information shown on this drawing is provided		
	as a service to the project owner, engineer and contractor by Contech Engineered Solutions LLC ("Contech"). Neither this drawing, nor any part thereof, may be used, reproduced or		
	modified in any manner without the prior written consent of Contech. Failure to comply is done at the user's own risk and		
	Contech expressly disclaims any liability or responsibility for such use.		
	If discrepancies between the supplied information upon which the drawing is based and actual field conditions are encountered		
	as site work progresses, these discrepancies must be reported to Contech immediately for re-evaluation of the design. Contech		
	accepts no liability for designs based on missing, incomplete or	DATE	

	v	ww.ContechES.	com	
	9025 Centre Point	e Dr., Suite 400, W	est Chester, OH 45069	
BY	800-338-1122	513-645-7000	513-645-7993 FAX	

TYPICAL BACKFILL SEQUENCE

8

9

DRAWING

EMBANKMEN

15

6

DYO60540 20-001 Harvest Southerly Cham Perris, CA DETENTION SYS

REVISION DESCRIPTION

CMP DETENTION SYSTEM INSPECTION AND MAINTENANCE

UNDERGROUND STORMWATER DETENTION AND INFILTRATION SYSTEMS MUST BE INSPECTED AND MAINTAINED AT REGULAR INTERVALS FOR PURPOSES OF PERFORMANCE AND LONGEVITY.

INSPECTION

INSPECTION IS THE KEY TO EFFECTIVE MAINTENANCE OF CMP DETENTION SYSTEMS AND IS EASILY PERFORMED. CONTECH RECOMMENDS ONGOING, ANNUAL INSPECTIONS. SITES WITH HIGH TRASH LOAD OR SMALL OUTLET CONTROL ORIFICES MAY NEED MORE FREQUENT INSPECTIONS. THE RATE AT WHICH THE SYSTEM COLLECTS POLLUTANTS WILL DEPEND MORE ON SITE SPECIFIC ACTIVITIES RATHER THAN THE SIZE OR CONFIGURATION OF THE SYSTEM.

INSPECTIONS SHOULD BE PERFORMED MORE OFTEN IN EQUIPMENT WASHDOWN AREAS, IN CLIMATES WHERE SANDING AND/OR SALTING OPERATIONS TAKE PLACE, AND IN OTHER VARIOUS INSTANCES IN WHICH ONE WOULD EXPECT HIGHER ACCUMULATIONS OF SEDIMENT OR ABRASIVE/ CORROSIVE CONDITIONS. A RECORD OF EACH INSPECTION IS TO BE MAINTAINED FOR THE LIFE OF THE SYSTEM

MAINTENANCE

CMP DETENTION SYSTEMS SHOULD BE CLEANED WHEN AN INSPECTION REVEALS ACCUMULATED SEDIMENT OR TRASH IS CLOGGING THE DISCHARGE ORIFICE.

ANNUAL INSPECTIONS ARE BEST PRACTICE FOR ALL UNDERGROUND SYSTEMS. DURING THIS INSPECTION, IF EVIDENCE OF SALTING/DE-ICING AGENTS IS OBSERVED WITHIN THE SYSTEM, IT IS BEST PRACTICE FOR THE SYSTEM TO BE RINSED, INCLUDING ABOVE THE SPRING LINE SOON AFTER THE SPRING THAW

UNDERGROUND PIPE SYSTEMS USED FOR STORMWATER STORAGE CONTINUE TO FUNCTION AS INTENDED BY IDENTIFYING RECOMMENDED REGULAR INSPECTION AND MAINTENANCE PRACTICES. INSPECTION AND MAINTENANCE RELATED TO THE STRUCTURAL INTEGRITY OF THE PIPE OR THE SOUNDNESS OF PIPE JOINT CONNECTIONS IS BEYOND THE SCOPE OF THIS GUIDE.

Landing Site 6	PROJECT No.: SEQ. No.: E 42826 60540					
	DESIGNED: DYO		DRAWN: DYO			
	CHECKED: DYO		APPR	OVED: DYO		
STEM	SHEET NO .:				1	

LEGEND

-(1025)-

— — W—

_____SS_____

— — SD— -

— — E— -

O MH

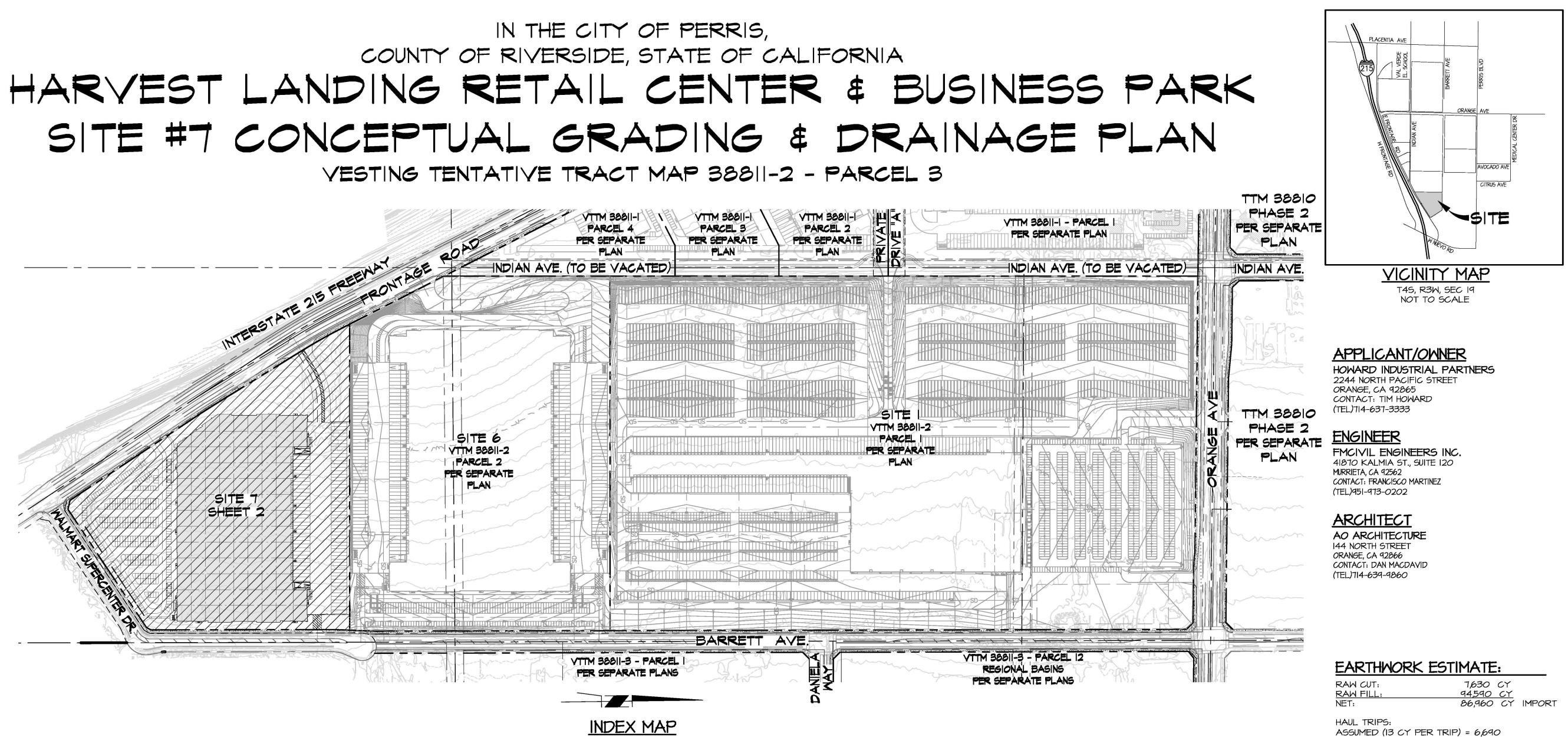
EXISTING CONTOUR PROPOSED CONTOUR RETAINING WALL FENCE EDGE OF PAVEMENT SIGN MANHOLE RIGHT OF WAY EASEMENT = = =____ PARCEL LINE PARCEL MAP BOUNDARY STREET CENTER LINE SCREEN WALL COMBINATION SCREEN/RETAINING WALL EXISTING LOT LINE RIDGE LINE RIBBON GUTTER FLOW ARROW PROPOSED EDGE OF PAVEMENT EXISTING WATER LINE PROPOSED WATER LINE EXISTING SWR LINE PROPOSED SEWER LINE EXISTING STORM DRAIN PIPE _____SD_____ PROPOSED STORM DRAIN PIPE EXISTING OVERHEAD LINES CUT/FILL LINE SLOPE SYMBOL

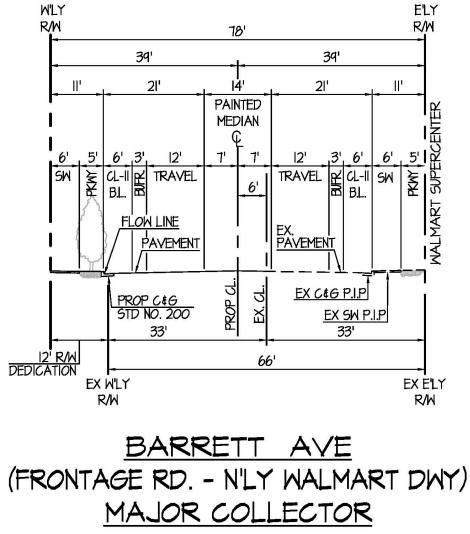
ZONING ORDINANCE

EXISTING ZONING:

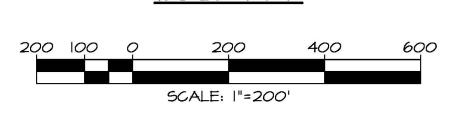
HARVEST LANDING SPECIFIC PLANS - MULTIPLE BUSINESS USE (MBU) PROPOSED ZONING:

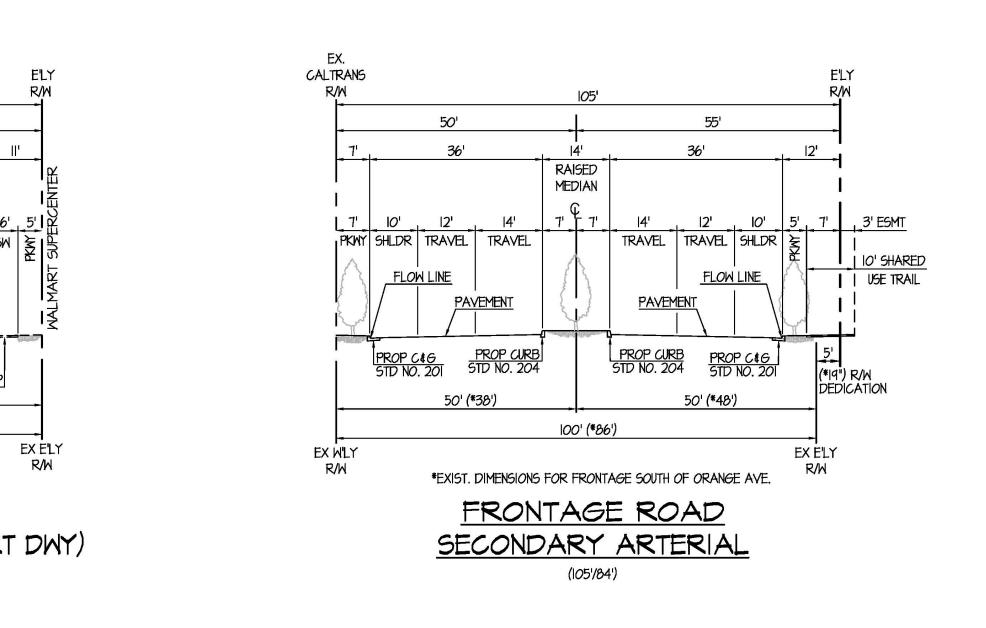
HARVEST LANDING SPECIFIC PLANS - MULTIPLE BUSINESS USE (MBU)

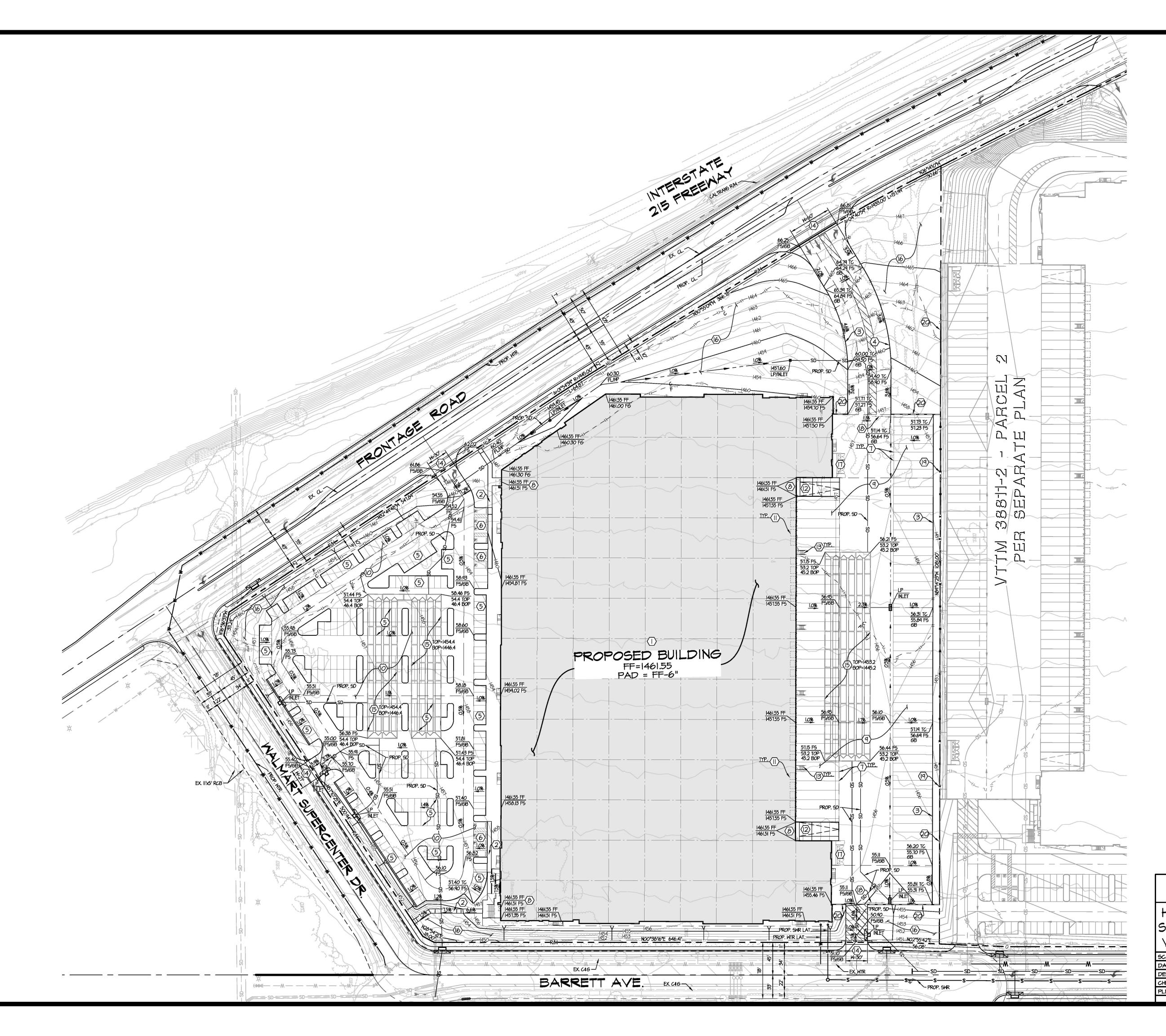

ASSESSOR'S PARCEL NUMBERS:

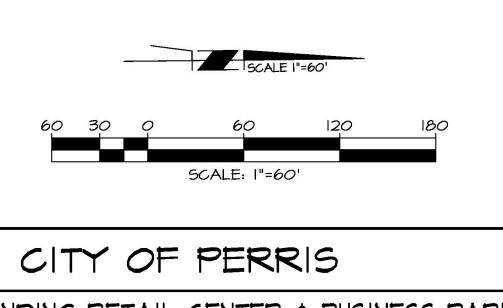

305-120-004 thru 008, 020 thru 026, \$ 305-130-001 thru 006,009, \$ 305-160-001 thru 003, 025 thru 030, \$ 305-190-014, 019, 020, 028 thru 031, \$ 305-220-011, 059 thru 062

LEGAL DESCRIPTION

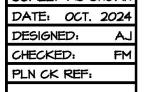

BLOCKS 1-4 OF FIGADOTA FARMS NO. IA AS SHOWN BY MAP ON FILE IN THE OFFICE OF THE COUNTY RECORDER OF THE COUNTY OF RIVERSIDE, STATE OF CALIFORNIA, IN BOOK 16 OF MAPS, PAGE 68 TOGETHER WITH LOTS 1-8, AND 13-20 OF FIGADOTA FARMS AS SHOWN BY MAP ON FILE IN THE OFFICE OF THE COUNTY RECORDER OF THE COUNTY OF RIVERSIDE, STATE OF CALIFORNIA, IN BOOK 16 OF MAPS, PAGE 53 EXCEPTING THAT PORTION LYING WEST OF THE EASTERLY LINE OF THE FRONTAGE ROAD.


IN THE CITY OF PERRIS, COUNTY OF RIVERSIDE, STATE OF CALIFORNIA VESTING TENTATIVE TRACT MAP 38811-2 - PARCEL 3


(78'/56')



	 100						
JT:			12	7,6	30	CY	
LL:			a	14,5	90	CY	
			8	36,9	160	CY	IMPORT



- D PAINTED CONCRETE TILT-UP WAREHOUSE / OFFICE / MANUFACTURING FACILITY. BUILDING TO BE DESIGNED PER ARCHITECT'S PLANS
- (2) ON SITE ACCESSIBLE SIDEWALK AND CURB RAMPS.
- 3 CONCRETE CURB
- (4) CONCRETE CURB & GUTTER
- 5 STANDARD PARKING STALLS STRIPE PER STANDARDS SHOWN ON ARCHITECT'S PLANS
- 6 HANDICAP PARKING STALLS STRIPE PER STANDARDS SHOWN ON ARCHITECT'S PLANS
- TRAILER / TRACTOR PARKING STALLS STRIPE PER STANDARDS SHOWN ON ARCHITECT'S PLANS
- ACCESSIBLE BUILDING ENTRY WITH ADJACENT BICYCLE RACKS PER ARCHITECT'S PLANS
- (9) PORTLAND CONC. CEMENT (PCC) PAVED TRUCK YARD ARCHITECT'S PLANS
- (D) PORTLAND CONC. CEMENT (PCC) PAVED AUTO PARKING ARCHITECT'S PLANS
- (II) DOCK HIGH TRUCK DOOR PER ARCHITECT'S PLANS
- (2) GRADE LEVEL RAMP DOOR PER ARCHITECT'S PLANS
- (B) EXTERIOR MAN DOOR AND STAIRS W/GUARD POST PER ARCHITECT'S PLANS
- (4) COMMERCIAL DRIVEWAY APPROACH PER RIVERSIDE COUNTY STD.207A, WITH DECORATIVE CONCRETE PAVING PER ARCHITECT'S PLANS
- (5) UNDERGROUND DETENTION CHAMBER SYSTEM 96" CMP TOP AND BOTTOM OF PIPE (BOP) ELEVATION PER PLAN
- (16) LANDSCAPE AREA PER LANDSCAPE ARCHITECT'S PLANS
- $\langle \Pi \rangle$ APPROXIMATE LOCATION OF TRASH ENCLOSURE
- (B) ENTRY GATE PER ARCHITECT'S PLANS
- (19) CHAIN LINK FENCE PER ARCHITECT'S PLANS
- O SCREEN WALL PER ARCHITECT'S PLANS (COMBO RETAINING)

HARVEST LANDING RETAIL CENTER & BUSINESS PARK SITE #7 CONCEPTUAL GRADING & DRAINAGE PLAN VESTING TENTATIVE TRACT MAP 38811-2 - PARCEL 3 SCALE: AS SHOP 41870 KALMIA STREET, SUITE 120 MURRIETA | CA 92562 1 951.973.0202 - FMCIVIL.COM FMCI/IL ENGINEERS INC. 2

PROJECT SUMMARY

CALCULATION DETAILS • LOADING = HS20/HS25 • APPROX. LINEAR FOOTAGE = 1,770 LF

STORAGE SUMMARY

- STORAGE VOLUME REQUIRED = N/A
- PIPE STORAGE VOLUME = 88,970 CF
- BACKFILL STORAGE VOLUME = 0 CF
- TOTAL STORAGE PROVIDED = 88,970 CF

PIPE DETAILS

- DIAMETER = 96"
- CORRUGATION = 5x1
- GAGE = 16
- COATING = ALT2
- WALL TYPE = SOLID
- BARREL SPACING = 36"

BACKFILL DETAILS

- WIDTH AT ENDS = 12"
- ABOVE PIPE = 0"
- WIDTH AT SIDES = 12"

• BELOW PIPE = 0"

- ALL RISER AND STUB DIMENSIONS ARE TO CENTERLINE. ALL ELEVATIONS, DIMENSIONS, AND LOCATIONS OF RISERS AND INLETS, SHALL BE VERIFIED BY THE ENGINEER OF RECORD PRIOR TO RELEASING FOR FABRICATION.
- ALL FITTINGS AND REINFORCEMENT COMPLY WITH ASTM A998.
- ALL RISERS AND STUBS ARE $2^{2}_{.3}$ " x $1^{1}_{.2}$ " CORRUGATION AND 16 GAGE UNLESS OTHERWISE NOTED.
- RISERS TO BE FIELD TRIMMED TO GRADE.
 QUANTITY OF PIPE SHOWN DOES NOT PROVIDE
- QUANITIY OF PIPE SHOWN DOES NOT PROVIDE EXTRA PIPE FOR CONNECTING THE SYSTEM TO EXISTING PIPE OR DRAINAGE STRUCTURES. OUR SYSTEM AS DETAILED PROVIDES NOMINAL INLET AND/OR OUTLET PIPE STUB FOR CONNECTION TO EXISTING DRAINAGE FACILITIES. IF ADDITIONAL PIPE IS NEEDED IT IS THE RESPONSIBILITY OF THE CONTRACTOR.
- BAND TYPE TO BE DETERMINED UPON FINAL DESIGN.
 THE PROJECT SUMMARY IS REFLECTIVE OF THE DYODS DESIGN, QUANTITIES ARE APPROX. AND SHOULD BE VERIFIED UPON FINAL DESIGN AND APPROVAL. FOR EXAMPLE, TOTAL EXCAVATION DOES NOT CONSIDER ALL VARIABLES SUCH AS SHORING
- AND ONLY ACCOUNTS FOR MATERIAL WITHIN THE ESTIMATED EXCAVATION FOOTPRINT. • THESE DRAWINGS ARE FOR CONCEPTUAL PURPOSES AND DO NOT REFLECT ANY LOCAL PREFERENCES OR REGULATIONS. PLEASE CONTACT YOUR LOCAL CONTECH REP FOR MODIFICATIONS.

CMP	The design and information shown on this drawing is provided as a service to the project owner, engineer and contractor by Contech Engineered Solutions LLC ("Contech"). Neither this	
ATES	drawing, nor any part thereof, may be used, reproduced or modified in any manner without the prior written consent of	
rempl	Contech. Failure to comply is done at the user's own risk and Contech expressly disclaims any liability or responsibility for such use.	
C:\EXPORTS\TEMPLATES\CMP_	If discrepancies between the supplied information upon which the drawing is based and actual field conditions are encountered	
Å	as site work progresses, these discrepancies must be reported to Contech immediately for re-evaluation of the design. Contech	
ö	accepts no liability for designs based on missing, incomplete or inaccurate information supplied by others.	DATE

	-			290'-0"		
4						
- P						
63'-0"						

CINTECH®

CMP DETENTION SYSTEMS

CONTECH

DYODS

DRAWING

ASSEMBLY	
SCALE: 1" = 30	

DYO60569 20-001 Harvest Landing Retain Northerly Chambour Perris, CA DETENTION SYS

	ENGINEERED SOLUTIONS LLC						
	www.ContechES.com						
	9025 Centre Poin	te Dr., Suite 400, W	est Chester, OH 45069				
 BY	800-338-1122	513-645-7000	513-645-7993 FAX				

REVISION DESCRIPTION

CINTECH

 1	
	\geq

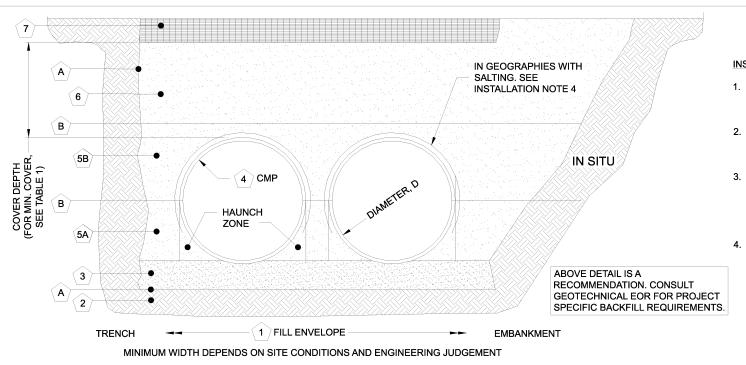

ail Center and Business Park	PROJECT No.: 42851	SEQ. No.: 60569	DATE: 10/3/2024
bers	DESIGNED: DYO	DR	AWN: DYO
	CHECKED: DYO	AP	PROVED: DYO
STEM	SHEET NO .:		1

TABLE 1:		
DIAMETER, D	MIN. COVER	CORR. PROFILE
6"-10"	12"	1 1/2" x 1/4"
12"-48"	12"	2 2/3" x 1/2"
>48"-96"	12"	3" x 1", 5" x 1"
>96"	D/8	3" x 1", 5" x 1"

- STRUCTURAL BACKFILL MUST EXTEND TO LIMITS OF THE TABLE
- TOTAL HEIGHT OF COMPACTED COVER FOR CONVENTIONAL HIGHWAY LOADS IS MEASURED FROM TOP OF PIPE TO BOTTOM OF FLEXIBLE PAVEMENT OR TOP OF RIGID PAVEMENT

TABLE 2: SOLID STANDARD

ULTRAFLO ALSO AVAILABLE FOR SIZES 18" - 120" WITH 3/4"x 3/4"x 7 1/2" CORRUGATION

CMP DETENTION AND CMP DRAINAGE STANDARD BACKFILL SPECIFICATIONS MATERIAL LOCATION MATERIAL SPECIFICATION DESCRIPTION MINIMUM TRENCH WIDTH MUST ALLOW ROOM FOR PROPER COMPACTION OF MINIMUM EMBANKMENT WIDTH (IN FEET) FOR INITIAL FILL ENVELOPE: HAUNCH MATERIALS UNDER THE PIPE. PIPE < 24": 3.0D FILL ENVELOPE WIDTH PER ENGINEER OF RECORD THE SUGGESTED MINIMUM TRENCH WIDTH, OR EOR RECOMMENDATION: **(1**) PIPE 24" - 144": D + 4'0" PIPE ≤ 12": D + 16" PIPE > 144": D + 10'0" PIPE > 12" 1 5D + 12 PRIOR TO PLACING THE BEDDING, THE FOUNDATION MUST BE CONSTRUCTED TO A UNIFORM AND STABLE GRADE. IN THE EVENT THAT UNSUITABLE AASHTO 26.5.2 OR PER ENGINEER OF RECORD FOUNDATION MATERIALS ARE ENCOUNTERED DURING EXCAVATION, THEY SHALL BE REMOVED AND FOUNDATION BROUGHT BACK TO GRADE WITH A FILL 〔2〕 FOUNDATION MATERIAL APPROVED BY THE ENGINEER OF RECORD. ENGINEER OF RECORD TO DETERMINE IF BEDDING IS REQUIRED. PIPE MAY BE PLACED ON THE TRENCH BOTTOM OF A RELATIVELY LOOSE, NATIVE SUITABLE AASHTO M 43: 3, 357, 4, 467, 5, 56, 57 WELL GRADED GRANULAR MATERIAL THAT IS ROUGHLY SHAPED TO FIT THE BOTTOM OF THE PIPE, 2" MIN DEPTH. THE BEDDING MATERIAL MAY BE SUITABLE ં 3ે BEDDING (APPROVED REGIONAL EQUIVALENTS INCLUDE CA-7) FOUNDATION SOILS CONFORMING TO AASHTO SOIL CLASSIFICATIONS A1, A2, OR A3 WITH MAXIMUM PARTICLE SIZE OF 3" PER AASHTO 26.3.8.1 4 CORRUGATED METAL PIPE HAUNCH ZONE MATERIAL SHALL BE HAND SHOVELED OR SHOVEL SLICED INTO PLACE TO ALLOW FOR PROPER COMPACTION WITHOUT SOFT SPOTS. BACKFILL SHALL BE PLACED IN 8" +/- LOOSE LIFTS AND COMPACTED TO 90% STANDARD PROCTOR PER AASHTO T 99. BACKFILL SHALL BE PLACED SUCH THAT (5A) **CRITICAL BACKFILL** AASHTO M 145: A-1, A-2, A-3 * THERE IS NO MORE THAN A THREE LIFT (24") DIFFERENTIAL BETWEEN ANY OF THE PIPES AT ANY TIME DURING THE BACKFILL PROCESS. THE BACKFILL SHOULD BE ADVANCED ALONG THE LENGTH OF THE SYSTEM TO AVOID DIFFERENTIAL LOADING. WELL GRADED GRANULAR MATERIAL WHICH MAY CONTAIN SMALL AMOUNTS OF SILT OR CLAY AND MAXIMUM PARTICLE SIZE OF 3" (PER AASHTO 26.3.8.1 AND 5B AASHTO M 145: A-1, A-2, A-3 12.4-1.3). BACKFILL UP TO MIN. COVER - SEE 5A AND 5B ABOVE 6 COVER MATERIAL COVER MATERIAL MAY INCLUDE NON-BITUMINOUS, GRANULAR ROAD BASE MATERIAL WITHIN MIN COVER LIMITS ABOVE MIN. COVER - PER ENGINEER OF RECORD **RIGID OR FLEXIBLE PAVEMENT (IF** FLEXIBLE PAVEMENT SHOULD NOT BE COUNTED AS PART OF THE FILL HEIGHT OVER THE CMP. FINAL BACKFILL MATERIAL SELECTION AND COMPACTION 7) PER ENGINEER OF RECORD APPLICABLE) REQUIREMENTS SHALL FOLLOW THE PROJECT PLANS AND SPECIFICATIONS PER THE ENGINEER OF RECORD. A OPTIONAL SIDE GEOTEXTILE NONE GEOTEXTILE LAYER IS RECOMMENDED ON SIDES OF EXCAVATION TO PREVENT SOIL MIGRATION. OPTIONAL GEOTEXTILE BETWEEN IF SOIL TYPES DIFFER AT ANY POINT ABOVE PIPE INVERT, A GEOTEXTILE LAYER IS RECOMMENDED TO BE PLACED BETWEEN THE LAYERS TO PREVENT SOIL (B) NONE LAYERS MIGRATION

NOTES:

REVISION DESCRIPTION

FOR MULTIPLE BARREL INSTALLATIONS, THE RECOMMENDED STANDARD SPACING BETWEEN PARALLEL PIPE RUNS SHALL BE THE PIPE DIAMETER /2 BUT NO LESS THAN 12" FOR DIAMETERS <72". FOR 72" AND LARGER DIAMETERS, THE MINIMUM SPACING IS 36". CONTACT YOUR CONTECH REPRESENTATIVE FOR NONSTANDARD SPACING.

APPROVED REGIONAL EQUIVALENTS FOR SECTION 5A INCLUDE CA-7, CODOT #67, MIDOT 2G, 34G, OR 21AA STONE OR GRAVEL; #8; #57; MIDOT 6A, 2G, 3G, 34G.

MANUFACTURER RECOMMENDED BACKFILL

NOT TO SCALE

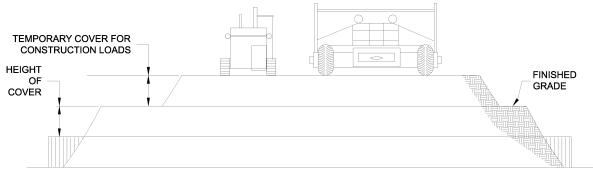
CANTECH

CMP DETENTION SYSTEMS

CONTECH DYODS

DRAWING

ĺ	The design and information shown on this drawing is provided as a service to the project owner, engineer and contractor by Contech Engineered Solutions LLC ("Contech"). Neither this	
	drawing, nor any part thereof, may be used, reproduced or modified in any manner without the prior written consent of	
	Contech. Failure to comply is done at the user's own risk and Contech expressly disclaims any liability or responsibility for	
	such use.	
	If discrepancies between the supplied information upon which	
	the drawing is based and actual field conditions are encountered as site work progresses, these discrepancies must be reported	
	to Contech immediately for re-evaluation of the design. Contech	
	accepts no liability for designs based on missing, incomplete or inaccurate information supplied by others	DATE


		NTE	CH [®]
		IEERED SOLUT	
	v	vww.ContechES.	com
	9025 Centre Poin	te Dr., Suite 400, W	est Chester, OH 45069
2	800-338-1122	513-645-7000	513-645-7993 FAX

DYO60569 20-001 Harvest Landing Reta Northerly Chaml Perris, CA DETENTION SYS

INSTALLATION NOTES

- WHEN PLACING THE FIRST LIFTS OF BACKFILL IT IS IMPORTANT TO MAKE SURE THAT THE BACKFILL IS PROPERLY COMPACTED UNDER AND AROUND THE PIPE HAUNCHES.
- 2. OTHER ALTERNATE BACKFILL MATERIAL MAY BE ALLOWED DEPENDING ON SITE SPECIFIC CONDITIONS, AS APPROVED BY SITE ENGINEER.
- 3. BACKFILL USING CONTROLLED LOW-STRENGTH MATERIAL (CLSM, "FLASH FILL" OR "FLOWABLE FILL") MAY BE USED WHEN THE SPACING BETWEEN THE PIPES WILL NOT ALLOW FOR PLACEMENT AND ADEQUATE COMPACTION OF THE BACKFILL CONTACT CONTECH FOR FURTHER EVALUATION.
- 4. IF SALTING AGENTS FOR SNOW AND ICE REMOVAL ARE USED ON OR NEAR THE PROJECT, A GEOMEMBRANE BARRIER IS RECOMMENDED OVER THE UPPER HALF OF THE PIPE. THE GEOMEMBRANE LINER IS INTENDED TO HELP PROTECT THE SYSTEM FROM THE POTENTIAL ADVERSE EFFECTS THAT MAY RESULT FROM A CHANGE IN THE SURROUNDING ENVIRONMENT OVER A PERIOD OF TIME. PLEASE REFER TO THE CORRUGATED METAL PIPE DETENTION DESIGN GUIDE FOR ADDITIONAL INFORMATION.

ail Center and Business Park	PROJECT No.: SEQ. 42851 60		. No.: DATE: 0569 10/3/2024		24
	DESIGNED: DYO		DRAW	N: DYO	
	CHECKED:		APPR	OVED:	
STEM	DYO SHEET NO.:			DYO	
					1

CONSTRUCTION LOADS

FOR TEMPORARY CONSTRUCTION VEHICLE LOADS, AN EXTRA AMOUNT OF COMPACTED COVER MAY BE REQUIRED OVER THE TOP OF THE PIPE. THE HEIGHT-OF-COVER SHALL MEET THE MINIMUM REQUIREMENTS SHOWN IN THE TABLE BELOW. THE USE OF HEAVY CONSTRUCTION EQUIPMENT NECESSITATES GREATER PROTECTION FOR THE PIPE THAN FINISHED GRADE COVER MINIMUMS FOR NORMAL HIGHWAY TRAFFIC.

PIPE SPAN,	A	XLE LO	ADS (kips	s)		
INCHES	18-50	50-75	75-110	110-150		
	MINIMUM COVER (FT)					
12-42	2.0	2.5	3.0	3.0		
48-72	3.0	3.0	3.5	4.0		
78-120	3.0	3.5	4.0	4.0		
126-144	3.5	4.0	4.5	4.5		

*MINIMUM COVER MAY VARY, DEPENDING ON LOCAL CONDITIONS. THE CONTRACTOR MUST PROVIDE THE ADDITIONAL COVER REQUIRED TO AVOID DAMAGE TO THE PIPE. MINIMUM COVER IS MEASURED FROM THE TOP OF THE PIPE TO THE TOP OF THE MAINTAINED CONSTRUCTION ROADWAY SURFACE.

CONSTRUCTION LOADING DIAGRAM

SCALE: N.T.S.

REVISION DESCRIPTION

SPECIFICATION FOR DESIGNED DETENTION SYSTEM:

SCOPE

THIS SPECIFICATION COVERS THE MANUFACTURE AND INSTALLATION OF THE DESIGNED DETENTION SYSTEM DETAILED IN THE PROJECT PLANS.

MATERIAI

THE MATERIAL SHALL CONFORM TO THE APPLICABLE REQUIREMENTS LISTED BELOW:

ALUMINIZED TYPE 2 STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-274 OR ASTM A-92.

THE GALVANIZED STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-218 OR ASTM A-929.

THE POLYMER COATED STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-246 OR ASTM A-742.

THE ALUMINUM COILS SHALL CONFORM TO THE APPLICABLE OF AASHTO M-197 OR ASTM B-744.

CONSTRUCTION LOADS

CONSTRUCTION LOADS MAY BE HIGHER THAN FINAL LOADS. FOLLOW THE MANUFACTURER'S OR NCSPA GUIDELINES.

DATE

NOTE:
THESE DRAWINGS ARE FOR CONCEPTUAL
PURPOSES AND DO NOT REFLECT ANY LOCAL
PREFERENCES OR REGULATIONS. PLEASE
CONTACT YOUR LOCAL CONTECH REP FOR
MODIFICATIONS.
The design and information shown on this drawing is provided as a service to the project owner, engineer and contractor by
Contech Engineered Solutions LLC ("Contech"). Neither this drawing, nor any part thereof, may be used, reproduced or modified in any manner without the orior written consent of

Contech Engineered Solutions LLC ("Contech"). Neither his drawing, nor any part thereof, may be used, perpoduced or modified in any manner without the prior written consent of Contech. Failure to comply is done at the user's own risk an Contech expressly disclaims any liability or responsibility for such use.
If discrepancies between the supplied information upon which the drawing is based and actual field conditions are encount as site work progresses, these discrepancies must be report to Contech immediately for re-evaluation of the design. Cont accepts no liability for designs based on missing, incomplete incomplete incomplete purchased by others.

PIPF THE PIPE SHALL BE MANUFACTURED IN ACCORDANCE TO THE APPLICABLE REQUIREMENTS LISTED BELOW:

ALUMINIZED TYPE 2: AASHTO M-36 OR ASTM A-760

GALVANIZED: AASHTO M-36 OR ASTM A-760

AFFOLICYANELIEE COATED: AASHTO M-245 OR ASTM A-762

800-338-1122

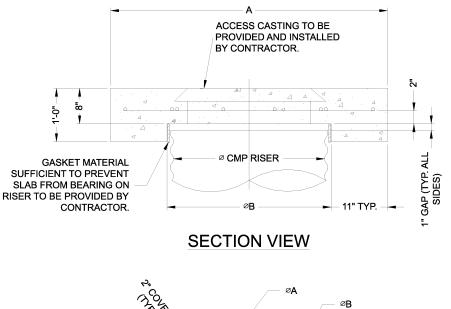
BY

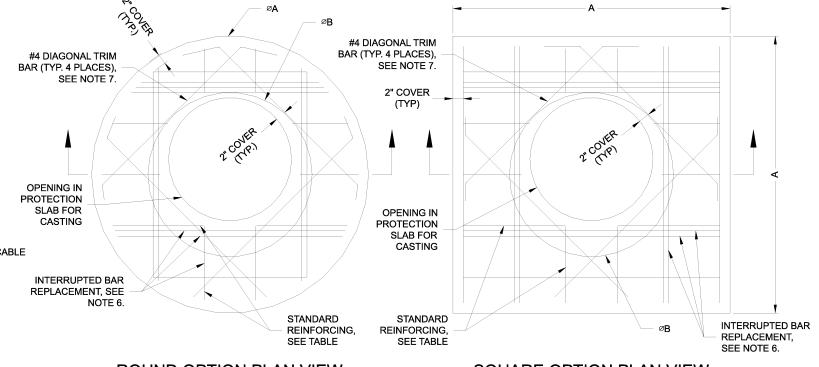
ALUMINUM: AASHTO M-196 OR ASTM B-745

APPLICABLE HANDLING AND ASSEMBLY

SHALL BE IN ACCORDANCE WITH NCSP'S (NATIONAL CORRUGATED STEEL AFFREECABSEDCIATION) FOR ALUMINIZED TYPE 2. GALVANIZED OR POLYMER COATED STEEL. SHALL BE IN ACCORDANCE WITH THE MANUFACTURER'S RECOMMENDATIONS FOR ALUMINUM PIPE.

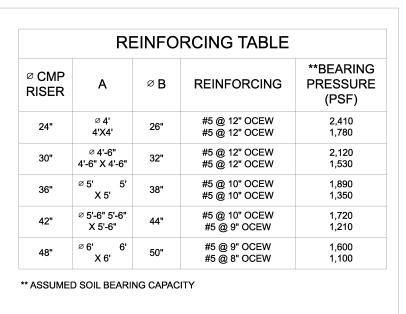
REQUIREMENTS


INSTALLATION SHALL BE IN ACCORDANCE WITH AASHTO STANDARD SPECIFICATIONS FOR HIGHWAY BRIDGES, SECTION 26, DIVISION II DIVISION II OR ASTM A-798 (FOR ALUMINIZED TYPE 2, GALVANIZED OR POLYMER COATED STEEL) OR ASTM B-788 (FOR ALUMINUM PIPE) AND IN CONFORMANCE WITH THE PROJECT PLANS AND SPECIFICATIONS. IF THERE ARE ANY INCONSISTENCIES OR CONFLICTS THE CONTRACTOR SHOULD DISCUSS AND RESOLVE WITH THE SITE ENGINEER.


IT IS ALWAYS THE RESPONSIBILITY OF THE CONTRACTOR TO FOLLOW OSHA GUIDELINES FOR SAFE PRACTICES.

CMP DETENTION SYSTEMS CONTECH DYODS 513-645-7993 FAX DRAWING

CANTECH



ROUND OPTION PLAN VIEW

NOTES:

- 1. DESIGN IN ACCORDANCE WITH AASHTO, 17th EDITION.
- 2. DESIGN LOAD HS25.
- 3. EARTH COVER = 1' MAX.
- 4. CONCRETE STRENGTH = 3,500 psi
- 5. REINFORCING STEEL = ASTM A615, GRADE 60.
- 6. PROVIDE ADDITIONAL REINFORCING AROUND OPENINGS EQUAL TO THE BARS INTERRUPTED, HALF EACH SIDE. ADDITIONAL BARS TO BE IN THE SAME PLANE.

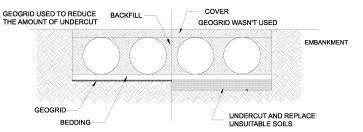
DYO60569 20-001 Harvest Landing Reta Northerly Chaml Perris, CA DETENTION SYS

SQUARE OPTION PLAN VIEW

- 7. TRIM OPENING WITH DIAGONAL #4 BARS, EXTEND BARS A MINIMUM OF 12" BEYOND OPENING, BEND BARS AS REQUIRED TO MAINTAIN BAR COVER.
- 8. PROTECTION SLAB AND ALL MATERIALS TO BE PROVIDED AND INSTALLED BY CONTRACTOR.
- 9. DETAIL DESIGN BY DELTA ENGINEERING, BINGHAMTON, NY.

MANHOLE CAP DETAIL

SCALE: N.T.S.


ail Center and Business Park	PROJECT No.: 42851	SEQ. N 605		'E: 10/3/2024
bers	DESIGNED: DYO		DRAWN:	YO
	CHECKED: DYO		APPROVE	D: IYO
STEM	SHEET NO.:			1

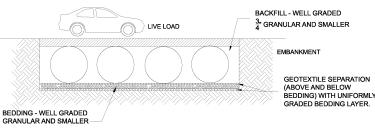
PROPER INSTALLATION OF A FLEXIBLE UNDERGROUND DETENTION SYSTEM WILL ENSURE LONG-TERM PERFORMANCE. THE CONFIGURATION OF THESE SYSTEMS OFTEN REQUIRES SPECIAL CONSTRUCTION PRACTICES THAT DIFFER FROM CONVENTIONAL FLEXIBLE PIPE CONSTRUCTION. CONTECH ENGINEERED SOLUTIONS STRONGLY SUGGESTS SCHEDULING A PRE-CONSTRUCTION MEETING WITH YOUR LOCAL SALES ENGINEER TO DETERMINE IF ADDITIONAL MEASURES, NOT COVERED IN THIS GUIDE, ARE APPROPRIATE FOR YOUR SITE.

FOUNDATION

CONSTRUCT A FOUNDATION THAT CAN SUPPORT THE DESIGN LOADING APPLIED BY THE PIPE AND ADJACENT BACKFILL WEIGHT AS WELL AS MAINTAIN ITS INTEGRITY DURING CONSTRUCTION.

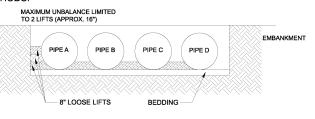
IF SOFT OR UNSUITABLE SOILS ARE ENCOUNTERED, REMOVE THE POOR SOILS DOWN TO A SUITABLE DEPTH AND THEN BUILD UP TO THE APPROPRIATE ELEVATION WITH A COMPETENT BACKFILL MATERIAL. THE STRUCTURAL FILL MATERIAL GRADATION SHOULD NOT ALLOW THE MIGRATION OF FINES, WHICH CAN CAUSE SETTLEMENT OF THE DETENTION SYSTEM OR PAVEMENT ABOVE. IF THE STRUCTURAL FILL MATERIAL IS NOT COMPATIBLE WITH THE UNDERLYING SOILS AN ENGINEERING FABRIC SHOULD BE USED AS A SEPARATOR IN SOME CASES, USING A STIFE REINFORCING GEOGRIF REDUCES OVER EXCAVATION AND REPLACEMENT FILL QUANTITIES.

GRADE THE FOUNDATION SUBGRADE TO A UNIFORM OR SLIGHTLY SLOPING GRADE. IF THE SUBGRADE IS CLAY OR RELATIVELY NON-POROUS AND THE CONSTRUCTION SEQUENCE WILL LAST FOR AN EXTENDED PERIOD OF TIME. IT IS BEST TO SLOPE THE GRADE TO ONE END OF THE SYSTEM. THIS WILL ALLOW EXCESS WATER TO DRAIN QUICKLY, PREVENTING SATURATION OF THE SUBGRADE


GEOMEMBRANE BARRIER

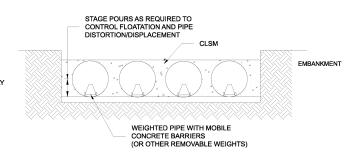
OF VARIOUS SALTING, DE-ICING, AND AGRICULTURAL AGENTS APPLIED ON OR NEAR THE AREA. TO MITIGATE THE POTENTIAL IMPACT OF THESE AGENTS, AN HDPE MEMBRANE LINER WILL BE INSTALLED ON THE CROWN OF EACH PIPE, CREATING AN IMPERMEABLE BARRIER. THIS MEASURE IS DESIGNED TO PROTECT THE SYSTEM FROM ENVIRONMENTAL CHANGES THAT COULD LEAD TO PREMATURE CORROSION AND REDUCE THE OVERALL SERVICE LIFE.

IN-SITU TRENCH WALL


IF EXCAVATION IS REQUIRED, THE TRENCH WALL NEEDS TO BE CAPABLE OF SUPPORTING THE LOAD THAT THE PIPE SHEDS AS THE SYSTEM IS LOADED. IF SOILS ARE NOT CAPABLE OF SUPPORTING THESE LOADS, THE PIPE CAN DEFLECT PERFORM A SIMPLE SOIL PRESSURE CHECK USING THE APPLIED LOADS TO DETERMINE THE LIMITS OF EXCAVATION BEYOND THE SPRING LINE OF THE OUTER MOST PIPES.

IN MOST CASES THE REQUIREMENTS FOR A SAFE WORK ENVIRONMENT AND PROPER BACKFILL PLACEMENT AND COMPACTION TAKE CARE OF THIS CONCERN.

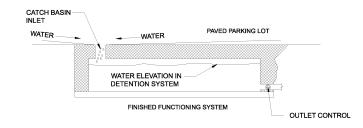
BACKFILL PLACEMENT

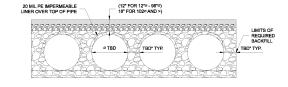

MATERIAL SHALL BE WORKED INTO THE PIPE HAUNCHES BY MEANS OF SHOVEL-SLICING, RODDING, AIR TAMPER, VIBRATORY ROD, OR OTHER EFFECTIVE METHODS

IF AASHTO T99 PROCEDURES ARE DETERMINED INFEASIBLE BY THE GEOTECHNICAL ENGINEER OF RECORD. COMPACTION IS CONSIDERED ADEQUATE WHEN NO FURTHER YIELDING OF THE MATERIAL IS OBSERVED UNDER THE COMPACTOR, OR UNDER FOOT, AND THE GEOTECHNICAL ENGINEER OF RECORD (OR REPRESENTATIVE THEREOF) IS SATISFIED WITH THE LEVEL OF COMPACTION.

THE RESISTIVITY OF A PROJECT SITE MAY CHANGE OVER TIME DUE TO THE USE FOR LARGE SYSTEMS, CONVEYOR SYSTEMS, BACKHOES WITH LONG REACHES OR DRAGLINES WITH STONE BUCKETS MAY BE USED TO PLACE BACKFILL. ONCE MINIMUM COVER FOR CONSTRUCTION LOADING ACROSS THE ENTIRE WIDTH OF THE SYSTEM IS REACHED. ADVANCE THE EQUIPMENT TO THE END OF THE RECENTLY PLACED FILL, AND BEGIN THE SEQUENCE AGAIN UNTIL THE SYSTEM IS COMPLETELY BACKFILLED. THIS TYPE OF CONSTRUCTION SEQUENCE PROVIDES ROOM FOR STOCKPILED BACKFILL DIRECTLY BEHIND THE BACKHOF, AS WELL AS THE MOVEMENT OF CONSTRUCTION TRAFFIC. MATERIAL STOCKPILES ON TOP OF THE BACKFILLED DETENTION SYSTEM SHOULD BE LIMITED TO 8- TO 10-FEET HIGH AND MUST PROVIDE BALANCED LOADING ACROSS ALL BARRELS. TO DETERMINE THE PROPER COVER OVER THE PIPES TO ALLOW THE MOVEMENT OF CONSTRUCTION EQUIPMENT SEE TABLE 1, OR CONTACT YOUR LOCAL CONTECH SALES ENGINEER.

WHEN FLOWABLE FILL IS USED, YOU MUST PREVENT PIPE FLOATATION. TYPICALLY, SMALL LIFTS ARE PLACED BETWEEN THE PIPES AND THEN ALLOWED TO SET-UP PRIOR TO THE PLACEMENT OF THE NEXT LIFT. THE ALLOWABLE THICKNESS OF THE CLSM LIFT IS A FUNCTION OF A PROPER BALANCE BETWEEN THE UPLIFT FORCE OF THE CLSM, THE OPPOSING WEIGHT OF THE PIPE, AND THE EFFECT OF OTHER RESTRAINING MEASURES. THE PIPE CAN CARRY LIMITED FLUID PRESSURE WITHOUT PIPE DISTORTION OR DISPLACEMENT, WHICH ALSO AFFECTS THE CLSM LIFT THICKNESS. YOUR LOCAL CONTECH SALES ENGINEER CAN HELP DETERMINE THE PROPER LIFT THICKNESS.




CONSTRUCTION LOADING

ACCUMULATED SEDIMENT AND TRASH CAN TYPICALLY BE EVACUATED TYPICALLY, THE MINIMUM COVER SPECIFIED FOR A PROJECT ASSUMES H-20 THROUGH THE MANHOLE OVER THE OUTLET ORIFICE. IF MAINTENANCE IS NOT LIVE LOAD. BECAUSE CONSTRUCTION LOADS OFTEN EXCEED DESIGN LIVE PERFORMED AS RECOMMENDED, SEDIMENT AND TRASH MAY ACCUMULATE IN LOADS, INCREASED TEMPORARY MINIMUM COVER REQUIREMENTS ARE FRONT OF THE OUTLET ORIFICE. MANHOLE COVERS SHOULD BE SECURELY SEATED FOLLOWING CLEANING ACTIVITIES. CONTECH SUGGESTS THAT ALL NECESSARY. SINCE CONSTRUCTION EQUIPMENT VARIES FROM JOB TO JOB, SYSTEMS BE DESIGNED WITH AN ACCESS/INSPECTION MANHOLE SITUATED AT IT IS BEST TO ADDRESS EQUIPMENT SPECIFIC MINIMUM COVER OR NEAR THE INLET AND THE OUTLET ORIFICE. SHOULD IT BE NECESSARY TO REQUIREMENTS WITH YOUR LOCAL CONTECH SALES ENGINEER DURING GET INSIDE THE SYSTEM TO PERFORM MAINTENANCE ACTIVITIES, ALL APPROPRIATE PRECAUTIONS REGARDING CONFINED SPACE ENTRY AND OSHA YOUR PRE-CONSTRUCTION MEETING. REGULATIONS SHOULD BE FOLLOWED.

ADDITIONAL CONSIDERATIONS

BECAUSE MOST SYSTEMS ARE CONSTRUCTED BELOW-GRADE, RAINFALL AS PART OF THE MAINTENANCE PROGRAM FOR THE SYSTEM. CAN RAPIDLY FILL THE EXCAVATION; POTENTIALLY CAUSING FLOATATION MAINTAINING AN UNDERGROUND DETENTION OR INFILTRATION SYSTEM IS AND MOVEMENT OF THE PREVIOUSLY PLACED PIPES. TO HELP MITIGATE EASIEST WHEN THERE IS NO FLOW ENTERING THE SYSTEM. FOR THIS POTENTIAL PROBLEMS, IT IS BEST TO START THE INSTALLATION AT THE REASON. IT IS A GOOD IDEA TO SCHEDULE THE CLEANOUT DURING DRY DOWNSTREAM END WITH THE OUTLET ALREADY CONSTRUCTED TO ALLOW WEATHER A ROUTE FOR THE WATER TO ESCAPE. TEMPORARY DIVERSION MEASURES THE FOREGOING INSPECTION AND MAINTENANCE EFFORTS HELP ENSURE MAY BE REQUIRED FOR HIGH FLOWS DUE TO THE RESTRICTED NATURE OF THE OUTLET PIPE.

REVISION DESCRIPTION

The design and information shown on this drawing is provided as a service to the project owner, engineer and contractor by Contech Engineered Solutions LLC ("Contech"). Neither this		
drawing, nor any part thereof, may be used, reproduced or modified in any manner without the prior written consent of		
Contech. Failure to comply is done at the user's own risk and Contech expressly disclaims any liability or responsibility for such use.		
If discrepancies between the supplied information upon which the drawing is based and actual field conditions are encountered		
the drawing is based and actual field conditions are encountered as site work progresses, these discrepancies must be reported to Contech immediately for re-evaluation of the design. Contech		
accepts no liability for designs based on missing, incomplete or	DATE	

	ENGIN		IONS LLC	
	-		est Chester, OH 45069	
BY	800-338-1122	513-645-7000	513-645-7993 FAX	

TYPICAL BACKFILL SEQUENCE

8

9

DYODS

DRAWING

EMBANKMEN

15

6

DYO60569 20-001 Harvest Landing Reta Northerly Chaml Perris, CA DETENTION SYS

CMP DETENTION SYSTEM INSPECTION AND MAINTENANCE

UNDERGROUND STORMWATER DETENTION AND INFILTRATION SYSTEMS MUST BE INSPECTED AND MAINTAINED AT REGULAR INTERVALS FOR PURPOSES OF PERFORMANCE AND LONGEVITY.

INSPECTION

INSPECTION IS THE KEY TO EFFECTIVE MAINTENANCE OF CMP DETENTION SYSTEMS AND IS EASILY PERFORMED. CONTECH RECOMMENDS ONGOING, ANNUAL INSPECTIONS. SITES WITH HIGH TRASH LOAD OR SMALL OUTLET CONTROL ORIFICES MAY NEED MORE FREQUENT INSPECTIONS. THE RATE AT WHICH THE SYSTEM COLLECTS POLLUTANTS WILL DEPEND MORE ON SITE SPECIFIC ACTIVITIES RATHER THAN THE SIZE OR CONFIGURATION OF THE SYSTEM.

INSPECTIONS SHOULD BE PERFORMED MORE OFTEN IN EQUIPMENT WASHDOWN AREAS, IN CLIMATES WHERE SANDING AND/OR SALTING OPERATIONS TAKE PLACE, AND IN OTHER VARIOUS INSTANCES IN WHICH ONE WOULD EXPECT HIGHER ACCUMULATIONS OF SEDIMENT OR ABRASIVE/ CORROSIVE CONDITIONS. A RECORD OF EACH INSPECTION IS TO BE MAINTAINED FOR THE LIFE OF THE SYSTEM

MAINTENANCE

CMP DETENTION SYSTEMS SHOULD BE CLEANED WHEN AN INSPECTION REVEALS ACCUMULATED SEDIMENT OR TRASH IS CLOGGING THE DISCHARGE ORIFICE.

ANNUAL INSPECTIONS ARE BEST PRACTICE FOR ALL UNDERGROUND SYSTEMS. DURING THIS INSPECTION, IF EVIDENCE OF SALTING/DE-ICING AGENTS IS OBSERVED WITHIN THE SYSTEM, IT IS BEST PRACTICE FOR THE SYSTEM TO BE RINSED, INCLUDING ABOVE THE SPRING LINE SOON AFTER THE SPRING THAW

UNDERGROUND PIPE SYSTEMS USED FOR STORMWATER STORAGE CONTINUE TO FUNCTION AS INTENDED BY IDENTIFYING RECOMMENDED REGULAR INSPECTION AND MAINTENANCE PRACTICES. INSPECTION AND MAINTENANCE RELATED TO THE STRUCTURAL INTEGRITY OF THE PIPE OR THE SOUNDNESS OF PIPE JOINT CONNECTIONS IS BEYOND THE SCOPE OF THIS GUIDE.

ail Center and Business Park	PROJECT No.: 42851	SEQ. 60	No.: 569	DATE: 10/3/20	124
Ders	DESIGNED: DYO		DRAV	VN: DYO	
	CHECKED: DYO		APPF	ROVED: DYO	
STEM	SHEET NO .:				1

PROJECT SUMMARY

CALCULATION DETAILS • LOADING = HS20/HS25 • APPROX. LINEAR FOOTAGE = 1,656 LF

STORAGE SUMMARY

- STORAGE VOLUME REQUIRED = N/A
- PIPE STORAGE VOLUME = 83,240 CF
- BACKFILL STORAGE VOLUME = 0 CF
- TOTAL STORAGE PROVIDED = 83,240 CF

PIPE DETAILS

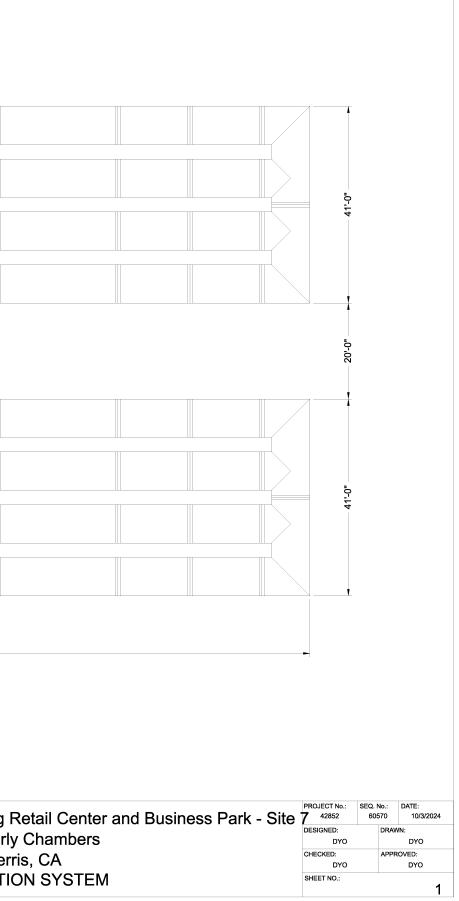
- DIAMETER = 96"
- CORRUGATION = 5x1
- GAGE = 16
- COATING = ALT2
- WALL TYPE = SOLID
- BARREL SPACING = 36"

BACKFILL DETAILS

- WIDTH AT ENDS = 12"
- ABOVE PIPE = 0"
- WIDTH AT SIDES = 12"
- BELOW PIPE = 0"

NOTES

A


19

Ŋ

- ALL RISER AND STUB DIMENSIONS ARE TO CENTERLINE. ALL ELEVATIONS, DIMENSIONS, AND LOCATIONS OF RISERS AND INLETS, SHALL BE VERIFIED BY THE ENGINEER OF RECORD PRIOR TO RELEASING FOR FABRICATION.
- ALL FITTINGS AND REINFORCEMENT COMPLY WITH ASTM A998.
- ALL RISERS AND STUBS ARE $2\frac{2}{3}$ " x $\frac{1}{2}$ " CORRUGATION AND 16 GAGE UNLESS OTHERWISE NOTED. RISERS TO BE FIELD TRIMMED TO GRADE.
- QUANTITY OF PIPE SHOWN DOES NOT PROVIDE
- EXTRA PIPE FOR CONNECTING THE SYSTEM TO EXISTING PIPE OR DRAINAGE STRUCTURES. OUR SYSTEM AS DETAILED PROVIDES NOMINAL INLET AND/OR OUTLET PIPE STUB FOR CONNECTION TO EXISTING DRAINAGE FACILITIES. IF ADDITIONAL PIPE IS NEEDED IT IS THE RESPONSIBILITY OF THE CONTRACTOR.
- BAND TYPE TO BE DETERMINED UPON FINAL DESIGN.
 THE PROJECT SUMMARY IS REFLECTIVE OF THE
 DYODS DESIGN, QUANTITIES ARE APPROX. AND SHOULD BE VERIFIED UPON FINAL DESIGN AND APPROVAL. FOR EXAMPLE, TOTAL EXCAVATION DOES N A٨ ES
- TH AN RE

NOT CONSIDER ALL VARIABLE AND ONLY ACCOUNTS FOR M. ESTIMATED EXCAVATION FOO • THESE DRAWINGS ARE FOR C	ATERIAL WITHI	NTHE				
AND DO NOT REFLECT ANY LC REGULATIONS. PLEASE CONT CONTECH REP FOR MODIFICA	OCAL PREFERE ACT YOUR LOC	INCES OR				ASSEMBLY SCALE: 1" = 20'
The design and information shown on this drawing is provided as a service to the project owner, engineer and contractor by Contech Engineered Solutions LLC ("Contech"). Neither this drawing, nor any part thereof, may be used, reproduced or modified in any manner without the prior written consent of Contech, Failure to comply is done at the user's own risk and Contech expressly disclaims any liability or responsibility for such use. If discrepancies between the supplied information upon which the drawing is based and actual field conditions are encountered as site work progresses, these discrepancies must be reported to Contech multiplicity or respondences must be reported acospts no liability for designs based on missing, incomplete or inaccurate information supplied by others.	DATE	REVISION DESCRIPTION	BY	Source Source<	CMP DETENTION SYSTEMS CMP DETENTION SYSTEMS CONTECH DYODS DRAWING	O60570 20-001 Harvest Landing Retail O Southerly Cham Perris, CA DETENTION SYS

	2	00'-0"	
 			11

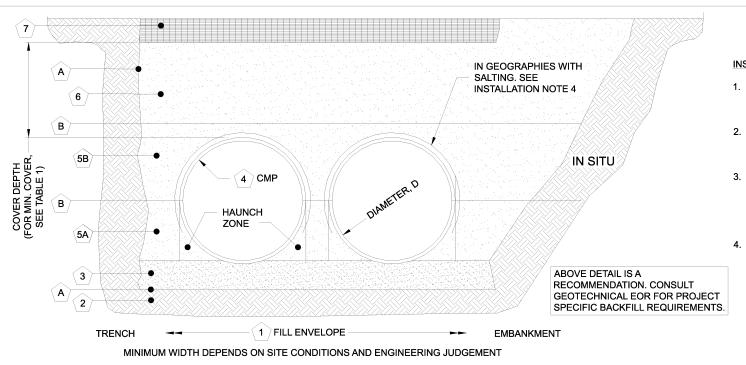


TABLE 1:							
DIAMETER, D	MIN. COVER	CORR. PROFILE					
6"-10"	12"	1 1/2" x 1/4"					
12"-48"	12"	2 2/3" x 1/2"					
>48"-96"	12"	3" x 1", 5" x 1"					
>96"	D/8	3" x 1", 5" x 1"					

- STRUCTURAL BACKFILL MUST EXTEND TO LIMITS OF THE TABLE
- TOTAL HEIGHT OF COMPACTED COVER FOR CONVENTIONAL HIGHWAY LOADS IS MEASURED FROM TOP OF PIPE TO BOTTOM OF FLEXIBLE PAVEMENT OR TOP OF RIGID PAVEMENT

TABLE 2: SOLID STANDARD

ULTRAFLO ALSO AVAILABLE FOR SIZES 18" - 120" WITH 3/4"x 3/4"x 7 1/2" CORRUGATION

CMP DETENTION AND CMP DRAINAGE STANDARD BACKFILL SPECIFICATIONS MATERIAL LOCATION MATERIAL SPECIFICATION DESCRIPTION MINIMUM TRENCH WIDTH MUST ALLOW ROOM FOR PROPER COMPACTION OF HAUNCH MATERIALS UNDER THE PIPE. FILL ENVELOPE WIDTH PER ENGINEER OF RECORD THE SUGGESTED MINIMUM TRENCH WIDTH, OR EOR RECOMMENDATION: **(1**) PIPE ≤ 12": D + 16" PIPE > 12" 1 5D + 12 PRIOR TO PLACING THE BEDDING, THE FOUNDATION MUST BE CONSTRUCTED TO A UNIFORM AND STABLE GRADE. IN THE EVENT THAT UNSUITABLE AASHTO 26.5.2 OR PER ENGINEER OF RECORD FOUNDATION MATERIALS ARE ENCOUNTERED DURING EXCAVATION, THEY SHALL BE REMOVED AND FOUNDATION BROUGHT BACK TO GRADE WITH A FILL 〔2〕 FOUNDATION MATERIAL APPROVED BY THE ENGINEER OF RECORD. ENGINEER OF RECORD TO DETERMINE IF BEDDING IS REQUIRED. PIPE MAY BE PLACED ON THE TRENCH BOTTOM OF A RELATIVELY LOOSE, NATIVE SUITABLE AASHTO M 43: 3, 357, 4, 467, 5, 56, 57 WELL GRADED GRANULAR MATERIAL THAT IS ROUGHLY SHAPED TO FIT THE BOTTOM OF THE PIPE, 2" MIN DEPTH. THE BEDDING MATERIAL MAY BE SUITABLE ં 3ે BEDDING (APPROVED REGIONAL EQUIVALENTS INCLUDE CA-7) FOUNDATION SOILS CONFORMING TO AASHTO SOIL CLASSIFICATIONS A1, A2, OR A3 WITH MAXIMUM PARTICLE SIZE OF 3" PER AASHTO 26.3.8.1 4 CORRUGATED METAL PIPE HAUNCH ZONE MATERIAL SHALL BE HAND SHOVELED OR SHOVEL SLICED INTO PLACE TO ALLOW FOR PROPER COMPACTION WITHOUT SOFT SPOTS. BACKFILL SHALL BE PLACED IN 8" +/- LOOSE LIFTS AND COMPACTED TO 90% STANDARD PROCTOR PER AASHTO T 99. BACKFILL SHALL BE PLACED SUCH THAT 5A) **CRITICAL BACKFILL** AASHTO M 145: A-1, A-2, A-3 * THERE IS NO MORE THAN A THREE LIFT (24") DIFFERENTIAL BETWEEN ANY OF THE PIPES AT ANY TIME DURING THE BACKFILL PROCESS. THE BACKFILL SHOULD BE ADVANCED ALONG THE LENGTH OF THE SYSTEM TO AVOID DIFFERENTIAL LOADING. GRADED GRANULAR MATERIAL WHICH MAY CONTAIN SMALL AMOUNTS OF SILT OR CLAY AND MAXIMUM PARTICLE SIZE OF 3" (PER AASHTO 26.3.8.1 AND 5B 12.4-1.3). BACKFILL AASHTO M 145: A-1, A-2, A-3 UP TO MIN. COVER - SEE 5A AND 5B ABOVE 6 COVER MATERIAL COVER MATERIAL MAY INCLUDE NON-BITUMINOUS, GRANULAR ROAD BASE MATERIAL WITHIN MIN COVER LIMITS ABOVE MIN. COVER - PER ENGINEER OF RECORD **RIGID OR FLEXIBLE PAVEMENT (IF** FLEXIBLE PAVEMENT SHOULD NOT BE COUNTED AS PART OF THE FILL HEIGHT OVER THE CMP. FINAL BACKFILL MATERIAL SELECTION AND COMPACTION 7 PER ENGINEER OF RECORD APPLICABLE) REQUIREMENTS SHALL FOLLOW THE PROJECT PLANS AND SPECIFICATIONS PER THE ENGINEER OF RECORD. A OPTIONAL SIDE GEOTEXTILE NONE GEOTEXTILE LAYER IS RECOMMENDED ON SIDES OF EXCAVATION TO PREVENT SOIL MIGRATION. OPTIONAL GEOTEXTILE BETWEEN IF SOIL TYPES DIFFER AT ANY POINT ABOVE PIPE INVERT, A GEOTEXTILE LAYER IS RECOMMENDED TO BE PLACED BETWEEN THE LAYERS TO PREVENT SOIL (B) NONE LAYERS MIGRATION.

NOTES:

FOR MULTIPLE BARREL INSTALLATIONS, THE RECOMMENDED STANDARD SPACING BETWEEN PARALLEL PIPE RUNS SHALL BE THE PIPE DIAMETER /2 BUT NO LESS THAN 12" FOR DIAMETERS <72". FOR 72" AND LARGER DIAMETERS, THE MINIMUM SPACING IS 36". CONTACT YOUR CONTECH REPRESENTATIVE FOR NONSTANDARD SPACING.

APPROVED REGIONAL EQUIVALENTS FOR SECTION 5A INCLUDE CA-7, CODOT #67, MIDOT 2G, 34G, OR 21AA STONE OR GRAVEL; #8; #57; MIDOT 6A, 2G, 3G, 34G.

ECH

MANUFACTURER RECOMMENDED BACKFILL

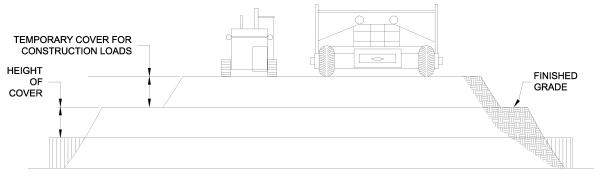
NOT TO SCALE

j	The design and information shown on this drawing is provided as a service to the project owner, engineer and contractor by Contech Engineered Solutions LLC ("Contech"). Neither this	
	drawing, nor any part thereof, may be used, reproduced or modified in any manner without the prior written consent of	
1	Contech. Failure to comply is done at the user's own risk and Contech expressly disclaims any liability or responsibility for	
	such use.	
2	If discrepancies between the supplied information upon which	
5	the drawing is based and actual field conditions are encountered as site work progresses, these discrepancies must be reported	
Ì	to Contech immediately for re-evaluation of the design. Contech accepts no liability for designs based on missing, incomplete or	DATE
)	inaccurate information supplied by others.	DATE

			EERED SOLU	
		w	ww.ContechES	S.com
		9025 Centre Point	e Dr., Suite 400,	West Chester, OH 45069
REVISION DESCRIPTION	BY	800-338-1122	513-645-7000	513-645-7993 FAX

CMP DETENTION SYSTEMS CONTECH DYODS DRAWING

CANTECHDYO60570 20-001 Harvest Landing Retail C Southerly Cham Perris, CA DETENTION SYS


INSTALLATION NOTES

- WHEN PLACING THE FIRST LIFTS OF BACKFILL IT IS IMPORTANT TO MAKE SURE THAT THE BACKFILL IS PROPERLY COMPACTED UNDER AND AROUND THE PIPE HAUNCHES.
- 2. OTHER ALTERNATE BACKFILL MATERIAL MAY BE ALLOWED DEPENDING ON SITE SPECIFIC CONDITIONS, AS APPROVED BY SITE ENGINEER.
- 3. BACKFILL USING CONTROLLED LOW-STRENGTH MATERIAL (CLSM, "FLASH FILL" OR "FLOWABLE FILL") MAY BE USED WHEN THE SPACING BETWEEN THE PIPES WILL NOT ALLOW FOR PLACEMENT AND ADEQUATE COMPACTION OF THE BACKFILL CONTACT CONTECH FOR FURTHER EVALUATION.
- 4. IF SALTING AGENTS FOR SNOW AND ICE REMOVAL ARE USED ON OR NEAR THE PROJECT, A GEOMEMBRANE BARRIER IS RECOMMENDED OVER THE UPPER HALF OF THE PIPE. THE GEOMEMBRANE LINER IS INTENDED TO HELP PROTECT THE SYSTEM FROM THE POTENTIAL ADVERSE EFFECTS THAT MAY RESULT FROM A CHANGE IN THE SURROUNDING ENVIRONMENT OVER A PERIOD OF TIME. PLEASE REFER TO THE CORRUGATED METAL PIPE DETENTION DESIGN GUIDE FOR ADDITIONAL INFORMATION.

MINIMUM EMBANKMENT WIDTH (IN FEET) FOR INITIAL FILL ENVELOPE: PIPE < 24": 3.0D PIPE 24" - 144": D + 4'0" PIPE > 144": D + 10'0"

WELL

	PROJECT No.:	SEQ. N	No.:	DATE:	
enter and Business Park - Site 🛾	7 42852	605	570	10/3/2024	
	DESIGNED:		DRAW	N:	
bers	DYO			DYO	
	CHECKED:		APPRO	OVED:	
	DYO			DYO	
STEM	SHEET NO .:			_	
				1	

CONSTRUCTION LOADS

FOR TEMPORARY CONSTRUCTION VEHICLE LOADS, AN EXTRA AMOUNT OF COMPACTED COVER MAY BE REQUIRED OVER THE TOP OF THE PIPE. THE HEIGHT-OF-COVER SHALL MEET THE MINIMUM REQUIREMENTS SHOWN IN THE TABLE BELOW. THE USE OF HEAVY CONSTRUCTION EQUIPMENT NECESSITATES GREATER PROTECTION FOR THE PIPE THAN FINISHED GRADE COVER MINIMUMS FOR NORMAL HIGHWAY TRAFFIC.

PIPE SPAN,	A	XLE LO	ADS (kips	s)
INCHES	18-50	50-75	75-110	110-150
	MI	NIMUM C	OVER (F	- T)
12-42	2.0	2.5	3.0	3.0
48-72	3.0	3.0	3.5	4.0
78-120	3.0	3.5	4.0	4.0
126-144	3.5	4.0	4.5	4.5

*MINIMUM COVER MAY VARY, DEPENDING ON LOCAL CONDITIONS. THE CONTRACTOR MUST PROVIDE THE ADDITIONAL COVER REQUIRED TO AVOID DAMAGE TO THE PIPE. MINIMUM COVER IS MEASURED FROM THE TOP OF THE PIPE TO THE TOP OF THE MAINTAINED CONSTRUCTION ROADWAY SURFACE.

CONSTRUCTION LOADING DIAGRAM

SCALE: N.T.S.

REVISION DESCRIPTION

SPECIFICATION FOR DESIGNED DETENTION SYSTEM:

PIPF

SCOPE

THIS SPECIFICATION COVERS THE MANUFACTURE AND INSTALLATION OF THE DESIGNED DETENTION SYSTEM DETAILED IN THE PROJECT PLANS.

MATERIAI

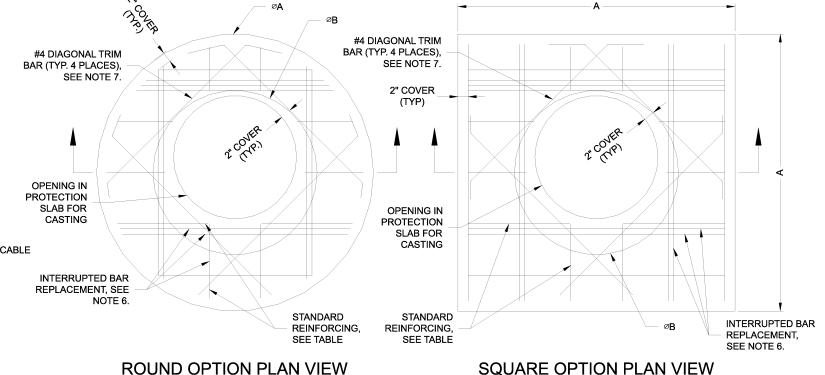
THE MATERIAL SHALL CONFORM TO THE APPLICABLE REQUIREMENTS LISTED BELOW

ALUMINIZED TYPE 2 STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-274 OR ASTM A-92.

THE GALVANIZED STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-218 OR ASTM A-929.

THE POLYMER COATED STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-246 OR ASTM A-742.

THE ALUMINUM COILS SHALL CONFORM TO THE APPLICABLE OF AASHTO M-197 OR ASTM B-744.


CONSTRUCTION LOADS

CONSTRUCTION LOADS MAY BE HIGHER THAN FINAL LOADS. FOLLOW THE MANUFACTURER'S OR NCSPA GUIDELINES.

DATE

NOTE:
THESE DRAWINGS ARE FOR CONCEPT
PURPOSES AND DO NOT REFLECT ANY
PREFERENCES OR REGULATIONS. PLE
CONTACT YOUR LOCAL CONTECH REP
MODIFICATIONS.
The design and information shown on this drawing is provided as a service to the project owner, engineer and contractor by Contech Engineered Solutions LLC ("Contech"). Neither this
drawing, nor any part thereof, may be used, reproduced or

ACCESS CASTING TO BE PROVIDED AND INSTALLED BY CONTRACTOR. 2 ŀ Ø CMP RISER Ξ GASKET MATERIAL SUFFICIENT TO PREVENT (TYP. SLAB FROM BEARING ON RISER TO BE PROVIDED BY GAP CONTRACTOR. ØF - 11" TYP 1 SECTION VIEW

ROUND OPTION PLAN VIEW

NOTES:

- 1. DESIGN IN ACCORDANCE WITH AASHTO, 17th EDITION.
- 2. DESIGN LOAD HS25.
- 3. EARTH COVER = 1' MAX.
- 4. CONCRETE STRENGTH = 3,500 psi
- 5. REINFORCING STEEL = ASTM A615, GRADE 60.
- 6. PROVIDE ADDITIONAL REINFORCING AROUND OPENINGS EQUAL TO THE BARS INTERRUPTED, HALF EACH SIDE. ADDITIONAL BARS TO BE IN THE SAME PLANE.

CENTECHDYO60570 20-001 Harvest Landing Retail C Southerly Cham CMP DETENTION SYSTEMS Perris, CA CONTECH DYODS DETENTION SYS DRAWING

NOTE:
THESE DRAWINGS ARE FOR CONCEPTUAL
PURPOSES AND DO NOT REFLECT ANY LOCAL
PREFERENCES OR REGULATIONS. PLEASE
CONTACT YOUR LOCAL CONTECH REP FOR
MODIFICATIONS

The design and information shown on this drawing is provided as a service to the project owner, engineer and contractor by Contech Engineered Solutions LLC ("Contech"). Neither this	
drawing, nor any part thereof, may be used, reproduced or modified in any manner without the prior written consent of	
Contech. Failure to comply is done at the user's own risk and Contech expressly disclaims any liability or responsibility for such use.	
If discrepancies between the supplied information upon which	
the drawing is based and actual field conditions are encountered as site work progresses, these discrepancies must be reported to Contech immediately for re-evaluation of the design. Contech	

THE PIPE SHALL BE MANUFACTURED IN ACCORDANCE TO THE APPLICABLE REQUIREMENTS LISTED BELOW:

ALUMINIZED TYPE 2: AASHTO M-36 OR ASTM A-760

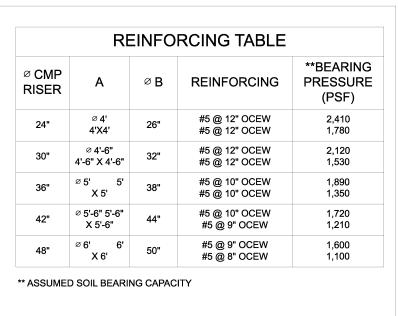
GALVANIZED: AASHTO M-36 OR ASTM A-760

AFFOLICYANELIEE COATED: AASHTO M-245 OR ASTM A-762

ALUMINUM: AASHTO M-196 OR ASTM B-745

APPLICABLE HANDLING AND ASSEMBLY

BY


SHALL BE IN ACCORDANCE WITH NCSP'S (NATIONAL CORRUGATED STEEL AFFREECABSEDCIATION) FOR ALUMINIZED TYPE 2. GALVANIZED OR POLYMER COATED STEEL. SHALL BE IN ACCORDANCE WITH THE MANUFACTURER'S RECOMMENDATIONS FOR ALUMINUM PIPE.

- REQUIREMENTS
- INSTALLATION

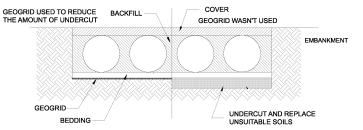
SHALL BE IN ACCORDANCE WITH AASHTO STANDARD SPECIFICATIONS FOR HIGHWAY BRIDGES, SECTION 26, DIVISION II DIVISION II OR ASTM A-798 (FOR ALUMINIZED TYPE 2, GALVANIZED OR POLYMER COATED STEEL) OR ASTM B-788 (FOR ALUMINUM PIPE) AND IN CONFORMANCE WITH THE PROJECT PLANS AND SPECIFICATIONS. IF THERE ARE ANY INCONSISTENCIES OR CONFLICTS THE CONTRACTOR SHOULD DISCUSS AND RESOLVE WITH THE SITE ENGINEER.

IT IS ALWAYS THE RESPONSIBILITY OF THE CONTRACTOR TO FOLLOW OSHA GUIDELINES FOR SAFE PRACTICES.

- 7. TRIM OPENING WITH DIAGONAL #4 BARS, EXTEND BARS A MINIMUM OF 12" BEYOND OPENING, BEND BARS AS REQUIRED TO MAINTAIN BAR COVER.
- 8. PROTECTION SLAB AND ALL MATERIALS TO BE PROVIDED AND INSTALLED BY CONTRACTOR.
- 9. DETAIL DESIGN BY DELTA ENGINEERING, BINGHAMTON, NY.

MANHOLE CAP DETAIL

SCALE: N.T.S.


Center and Business Park - Site	PROJECT No.: 7 42852	SEQ. N 605		DATE: 10/3/2024
bers	DESIGNED: DYO		DRAW	N: DYO
	CHECKED: DYO		APPR	OVED: DYO
STEM	SHEET NO .:			1

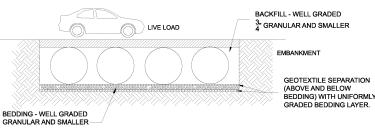
PROPER INSTALLATION OF A FLEXIBLE UNDERGROUND DETENTION SYSTEM WILL ENSURE LONG-TERM PERFORMANCE. THE CONFIGURATION OF THESE SYSTEMS OFTEN REQUIRES SPECIAL CONSTRUCTION PRACTICES THAT DIFFER FROM CONVENTIONAL FLEXIBLE PIPE CONSTRUCTION. CONTECH ENGINEERED SOLUTIONS STRONGLY SUGGESTS SCHEDULING A PRE-CONSTRUCTION MEETING WITH YOUR LOCAL SALES ENGINEER TO DETERMINE IF ADDITIONAL MEASURES, NOT COVERED IN THIS GUIDE, ARE APPROPRIATE FOR YOUR SITE.

FOUNDATION

CONSTRUCT A FOUNDATION THAT CAN SUPPORT THE DESIGN LOADING APPLIED BY THE PIPE AND ADJACENT BACKFILL WEIGHT AS WELL AS MAINTAIN ITS INTEGRITY DURING CONSTRUCTION.

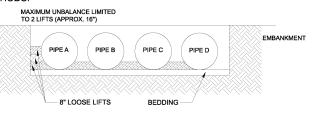
IF SOFT OR UNSUITABLE SOILS ARE ENCOUNTERED, REMOVE THE POOR SOILS DOWN TO A SUITABLE DEPTH AND THEN BUILD UP TO THE APPROPRIATE ELEVATION WITH A COMPETENT BACKFILL MATERIAL. THE STRUCTURAL FILL MATERIAL GRADATION SHOULD NOT ALLOW THE MIGRATION OF FINES, WHICH CAN CAUSE SETTLEMENT OF THE DETENTION SYSTEM OR PAVEMENT ABOVE. IF THE STRUCTURAL FILL MATERIAL IS NOT COMPATIBLE WITH THE UNDERLYING SOILS AN ENGINEERING FABRIC SHOULD BE USED AS A SEPARATOR IN SOME CASES, USING A STIFE REINFORCING GEOGRIF REDUCES OVER EXCAVATION AND REPLACEMENT FILL QUANTITIES.

GRADE THE FOUNDATION SUBGRADE TO A UNIFORM OR SLIGHTLY SLOPING GRADE. IF THE SUBGRADE IS CLAY OR RELATIVELY NON-POROUS AND THE CONSTRUCTION SEQUENCE WILL LAST FOR AN EXTENDED PERIOD OF TIME. IT IS BEST TO SLOPE THE GRADE TO ONE END OF THE SYSTEM. THIS WILL ALLOW EXCESS WATER TO DRAIN QUICKLY, PREVENTING SATURATION OF THE SUBGRADE


GEOMEMBRANE BARRIER

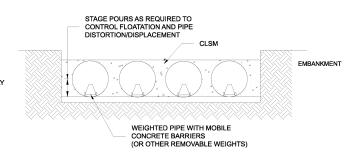
OF VARIOUS SALTING, DE-ICING, AND AGRICULTURAL AGENTS APPLIED ON OR NEAR THE AREA. TO MITIGATE THE POTENTIAL IMPACT OF THESE AGENTS, AN HDPE MEMBRANE LINER WILL BE INSTALLED ON THE CROWN OF EACH PIPE, CREATING AN IMPERMEABLE BARRIER. THIS MEASURE IS DESIGNED TO PROTECT THE SYSTEM FROM ENVIRONMENTAL CHANGES THAT COULD LEAD TO PREMATURE CORROSION AND REDUCE THE OVERALL SERVICE LIFE.

IN-SITU TRENCH WALL


IF EXCAVATION IS REQUIRED, THE TRENCH WALL NEEDS TO BE CAPABLE OF SUPPORTING THE LOAD THAT THE PIPE SHEDS AS THE SYSTEM IS LOADED. IF SOILS ARE NOT CAPABLE OF SUPPORTING THESE LOADS, THE PIPE CAN DEFLECT PERFORM A SIMPLE SOIL PRESSURE CHECK USING THE APPLIED LOADS TO DETERMINE THE LIMITS OF EXCAVATION BEYOND THE SPRING LINE OF THE OUTER MOST PIPES.

IN MOST CASES THE REQUIREMENTS FOR A SAFE WORK ENVIRONMENT AND PROPER BACKFILL PLACEMENT AND COMPACTION TAKE CARE OF THIS CONCERN.

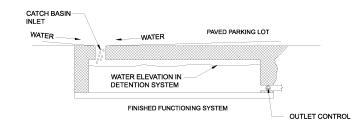
BACKFILL PLACEMENT

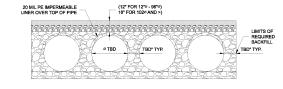

MATERIAL SHALL BE WORKED INTO THE PIPE HAUNCHES BY MEANS OF SHOVEL-SLICING, RODDING, AIR TAMPER, VIBRATORY ROD, OR OTHER EFFECTIVE METHODS

IF AASHTO T99 PROCEDURES ARE DETERMINED INFEASIBLE BY THE GEOTECHNICAL ENGINEER OF RECORD. COMPACTION IS CONSIDERED ADEQUATE WHEN NO FURTHER YIELDING OF THE MATERIAL IS OBSERVED UNDER THE COMPACTOR, OR UNDER FOOT, AND THE GEOTECHNICAL ENGINEER OF RECORD (OR REPRESENTATIVE THEREOF) IS SATISFIED WITH THE LEVEL OF COMPACTION.

THE RESISTIVITY OF A PROJECT SITE MAY CHANGE OVER TIME DUE TO THE USE FOR LARGE SYSTEMS, CONVEYOR SYSTEMS, BACKHOES WITH LONG REACHES OR DRAGLINES WITH STONE BUCKETS MAY BE USED TO PLACE BACKFILL. ONCE MINIMUM COVER FOR CONSTRUCTION LOADING ACROSS THE ENTIRE WIDTH OF THE SYSTEM IS REACHED. ADVANCE THE EQUIPMENT TO THE END OF THE RECENTLY PLACED FILL, AND BEGIN THE SEQUENCE AGAIN UNTIL THE SYSTEM IS COMPLETELY BACKFILLED. THIS TYPE OF CONSTRUCTION SEQUENCE PROVIDES ROOM FOR STOCKPILED BACKFILL DIRECTLY BEHIND THE BACKHOF, AS WELL AS THE MOVEMENT OF CONSTRUCTION TRAFFIC. MATERIAL STOCKPILES ON TOP OF THE BACKFILLED DETENTION SYSTEM SHOULD BE LIMITED TO 8- TO 10-FEET HIGH AND MUST PROVIDE BALANCED LOADING ACROSS ALL BARRELS. TO DETERMINE THE PROPER COVER OVER THE PIPES TO ALLOW THE MOVEMENT OF CONSTRUCTION EQUIPMENT SEE TABLE 1, OR CONTACT YOUR LOCAL CONTECH SALES ENGINEER.

WHEN FLOWABLE FILL IS USED, YOU MUST PREVENT PIPE FLOATATION. TYPICALLY, SMALL LIFTS ARE PLACED BETWEEN THE PIPES AND THEN ALLOWED TO SET-UP PRIOR TO THE PLACEMENT OF THE NEXT LIFT. THE ALLOWABLE THICKNESS OF THE CLSM LIFT IS A FUNCTION OF A PROPER BALANCE BETWEEN THE UPLIFT FORCE OF THE CLSM, THE OPPOSING WEIGHT OF THE PIPE, AND THE EFFECT OF OTHER RESTRAINING MEASURES. THE PIPE CAN CARRY LIMITED FLUID PRESSURE WITHOUT PIPE DISTORTION OR DISPLACEMENT, WHICH ALSO AFFECTS THE CLSM LIFT THICKNESS. YOUR LOCAL CONTECH SALES ENGINEER CAN HELP DETERMINE THE PROPER LIFT THICKNESS.




CONSTRUCTION LOADING

ACCUMULATED SEDIMENT AND TRASH CAN TYPICALLY BE EVACUATED TYPICALLY, THE MINIMUM COVER SPECIFIED FOR A PROJECT ASSUMES H-20 THROUGH THE MANHOLE OVER THE OUTLET ORIFICE. IF MAINTENANCE IS NOT LIVE LOAD. BECAUSE CONSTRUCTION LOADS OFTEN EXCEED DESIGN LIVE PERFORMED AS RECOMMENDED, SEDIMENT AND TRASH MAY ACCUMULATE IN LOADS, INCREASED TEMPORARY MINIMUM COVER REQUIREMENTS ARE FRONT OF THE OUTLET ORIFICE. MANHOLE COVERS SHOULD BE SECURELY SEATED FOLLOWING CLEANING ACTIVITIES. CONTECH SUGGESTS THAT ALL NECESSARY. SINCE CONSTRUCTION EQUIPMENT VARIES FROM JOB TO JOB, SYSTEMS BE DESIGNED WITH AN ACCESS/INSPECTION MANHOLE SITUATED AT IT IS BEST TO ADDRESS EQUIPMENT SPECIFIC MINIMUM COVER OR NEAR THE INLET AND THE OUTLET ORIFICE. SHOULD IT BE NECESSARY TO REQUIREMENTS WITH YOUR LOCAL CONTECH SALES ENGINEER DURING GET INSIDE THE SYSTEM TO PERFORM MAINTENANCE ACTIVITIES, ALL APPROPRIATE PRECAUTIONS REGARDING CONFINED SPACE ENTRY AND OSHA YOUR PRE-CONSTRUCTION MEETING. REGULATIONS SHOULD BE FOLLOWED.

ADDITIONAL CONSIDERATIONS

BECAUSE MOST SYSTEMS ARE CONSTRUCTED BELOW-GRADE, RAINFALL AS PART OF THE MAINTENANCE PROGRAM FOR THE SYSTEM. CAN RAPIDLY FILL THE EXCAVATION; POTENTIALLY CAUSING FLOATATION MAINTAINING AN UNDERGROUND DETENTION OR INFILTRATION SYSTEM IS AND MOVEMENT OF THE PREVIOUSLY PLACED PIPES. TO HELP MITIGATE EASIEST WHEN THERE IS NO FLOW ENTERING THE SYSTEM. FOR THIS POTENTIAL PROBLEMS, IT IS BEST TO START THE INSTALLATION AT THE REASON. IT IS A GOOD IDEA TO SCHEDULE THE CLEANOUT DURING DRY DOWNSTREAM END WITH THE OUTLET ALREADY CONSTRUCTED TO ALLOW WEATHER A ROUTE FOR THE WATER TO ESCAPE. TEMPORARY DIVERSION MEASURES THE FOREGOING INSPECTION AND MAINTENANCE EFFORTS HELP ENSURE MAY BE REQUIRED FOR HIGH FLOWS DUE TO THE RESTRICTED NATURE OF THE OUTLET PIPE.

REVISION DESCRIPTION

The design and information shown on this drawing is provided as a service to the project owner, engineer and contractor by Contech Engineered Solutions LLC ("Contech"). Neither this		
drawing, nor any part thereof, may be used, reproduced or modified in any manner without the prior written consent of		
Contech. Failure to comply is done at the user's own risk and Contech expressly disclaims any liability or responsibility for such use.		
If discrepancies between the supplied information upon which the drawing is based and actual field conditions are encountered		
as site work progresses, these discrepancies must be reported to Contech immediately for re-evaluation of the design. Contech		
accepts no liability for designs based on missing, incomplete or	DATE	

	9025 Centre Poin	te Dr., Suite 400, W	est Chester, OH 45069	
BY	800-338-1122	513-645-7000	513-645-7993 FAX	

TYPICAL BACKFILL SEQUENCE

8

9

EMBANKMEN

15

6

CENTECHDYO60570 20-001 Harvest Landing Retail C Southerly Cham CMP DETENTION SYSTEMS Perris, CA CONTECH DYODS DETENTION SYS DRAWING

CMP DETENTION SYSTEM INSPECTION AND MAINTENANCE

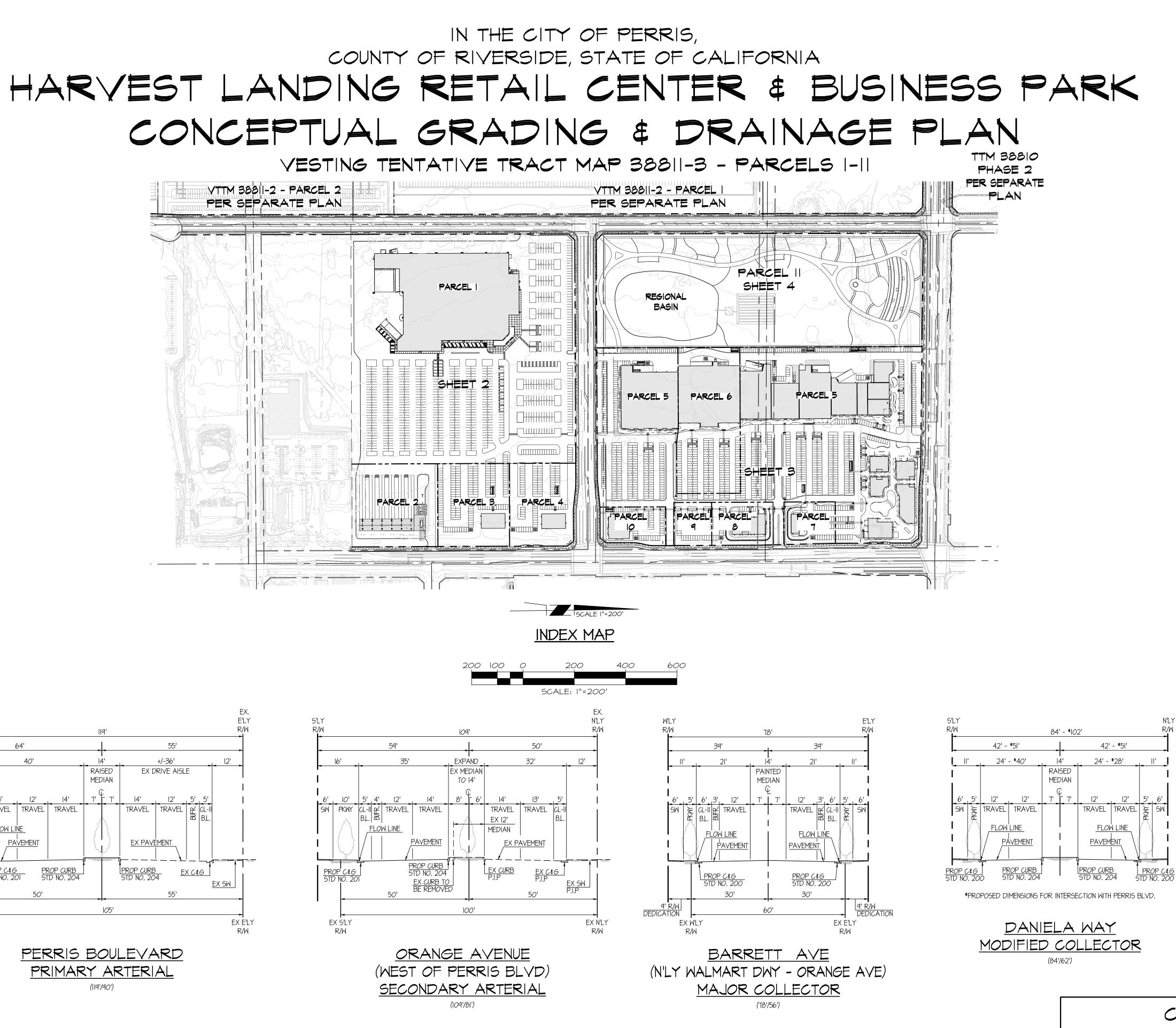
UNDERGROUND STORMWATER DETENTION AND INFILTRATION SYSTEMS MUST BE INSPECTED AND MAINTAINED AT REGULAR INTERVALS FOR PURPOSES OF PERFORMANCE AND LONGEVITY.

INSPECTION

INSPECTION IS THE KEY TO EFFECTIVE MAINTENANCE OF CMP DETENTION SYSTEMS AND IS EASILY PERFORMED. CONTECH RECOMMENDS ONGOING, ANNUAL INSPECTIONS. SITES WITH HIGH TRASH LOAD OR SMALL OUTLET CONTROL ORIFICES MAY NEED MORE FREQUENT INSPECTIONS. THE RATE AT WHICH THE SYSTEM COLLECTS POLLUTANTS WILL DEPEND MORE ON SITE SPECIFIC ACTIVITIES RATHER THAN THE SIZE OR CONFIGURATION OF THE SYSTEM.

INSPECTIONS SHOULD BE PERFORMED MORE OFTEN IN EQUIPMENT WASHDOWN AREAS, IN CLIMATES WHERE SANDING AND/OR SALTING OPERATIONS TAKE PLACE, AND IN OTHER VARIOUS INSTANCES IN WHICH ONE WOULD EXPECT HIGHER ACCUMULATIONS OF SEDIMENT OR ABRASIVE/ CORROSIVE CONDITIONS. A RECORD OF EACH INSPECTION IS TO BE MAINTAINED FOR THE LIFE OF THE SYSTEM

MAINTENANCE


CMP DETENTION SYSTEMS SHOULD BE CLEANED WHEN AN INSPECTION REVEALS ACCUMULATED SEDIMENT OR TRASH IS CLOGGING THE DISCHARGE ORIFICE.

ANNUAL INSPECTIONS ARE BEST PRACTICE FOR ALL UNDERGROUND SYSTEMS. DURING THIS INSPECTION, IF EVIDENCE OF SALTING/DE-ICING AGENTS IS OBSERVED WITHIN THE SYSTEM, IT IS BEST PRACTICE FOR THE SYSTEM TO BE RINSED, INCLUDING ABOVE THE SPRING LINE SOON AFTER THE SPRING THAW

UNDERGROUND PIPE SYSTEMS USED FOR STORMWATER STORAGE CONTINUE TO FUNCTION AS INTENDED BY IDENTIFYING RECOMMENDED REGULAR INSPECTION AND MAINTENANCE PRACTICES. INSPECTION AND MAINTENANCE RELATED TO THE STRUCTURAL INTEGRITY OF THE PIPE OR THE SOUNDNESS OF PIPE JOINT CONNECTIONS IS BEYOND THE SCOPE OF THIS GUIDE.

	PROJECT No.:	SEQ. I	No.:	DATE:	
enter and Business Park - Site 1	7 ⁴²⁸⁵²	605	570	10/3/2024	
	DESIGNED:		DRAW	'N:	
bers	DYO			DYO	
	CHECKED:		APPR	OVED:	
	DYO			DYO	
STEM	SHEET NO .:				
				1	

EXISTING CONTOUR PROPOSED CONTOUR RETAINING WALL FENCE EDGE OF PAVEMENT SIGN MANHOLE RIGHT OF WAY EASEMENT PARCEL LINE PARCEL MAP BOUNDARY STREET CENTER LINE SCREEN WALL COMBINATION SCREEN/RETAINING WALL EXISTING LOT LINE RIDGE LINE RIBBON GUTTER FLOW ARROW PROPOSED EDGE OF PAVEMENT EXISTING WATER LINE PROPOSED WATER LINE EXISTING SWR LINE PROPOSED SEWER LINE EXISTING STORM DRAIN PIPE PROPOSED STORM DRAIN PIPE EXISTING OVERHEAD LINES CUT/FILL LINE SLOPE SYMBOL

ZONING ORDINANCE

LEGEND

_ __ _

_____ = = =

_ _ _

_____ -----

 \leftarrow ______

- ____W____

_____W_____

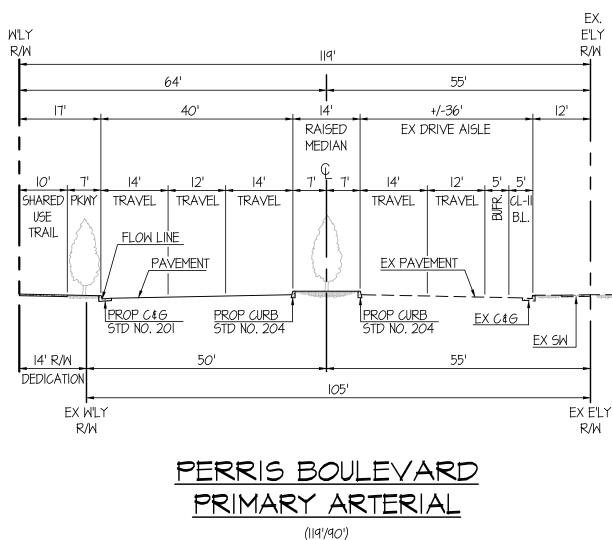
_____SS_____

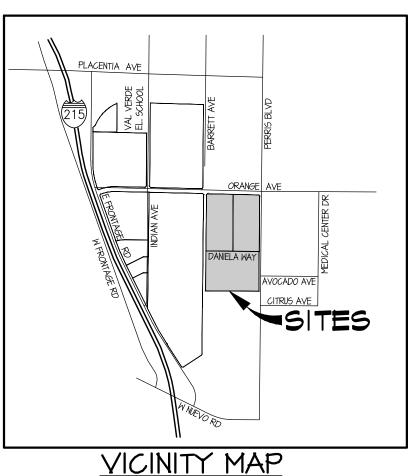
_____SD_____

____E___

EXISTING ZONING:

HARVEST LANDING SPECIFIC PLANS - MULTIPLE BUSINESS USE (MBU) PROPOSED ZONING:


HARVEST LANDING SPECIFIC PLANS - MULTIPLE BUSINESS USE (MBU)


ASSESSOR'S PARCEL NUMBERS:

305-110-015, 016, 022 thru 027, 032 thru 035, \$ 305-140-012, 024 thru 027, 031, 032, 034, 040, 041, 049 thru 050, 052 thru 061

LEGAL DESCRIPTION

BLOCKS 1-3, 8-14, AND 19-20 OF FIGADOTA FARMS NO. 6 AS SHOWN BY MAP ON FILE IN THE OFFICE OF THE COUNTY RECORDER OF THE COUNTY OF RIVERSIDE, STATE OF CALIFORNIA, IN BOOK 16 OF MAPS, PAGE 77.

T4S, R3W, SEC 19 NOT TO SCALE

APPLICANT/OWNER

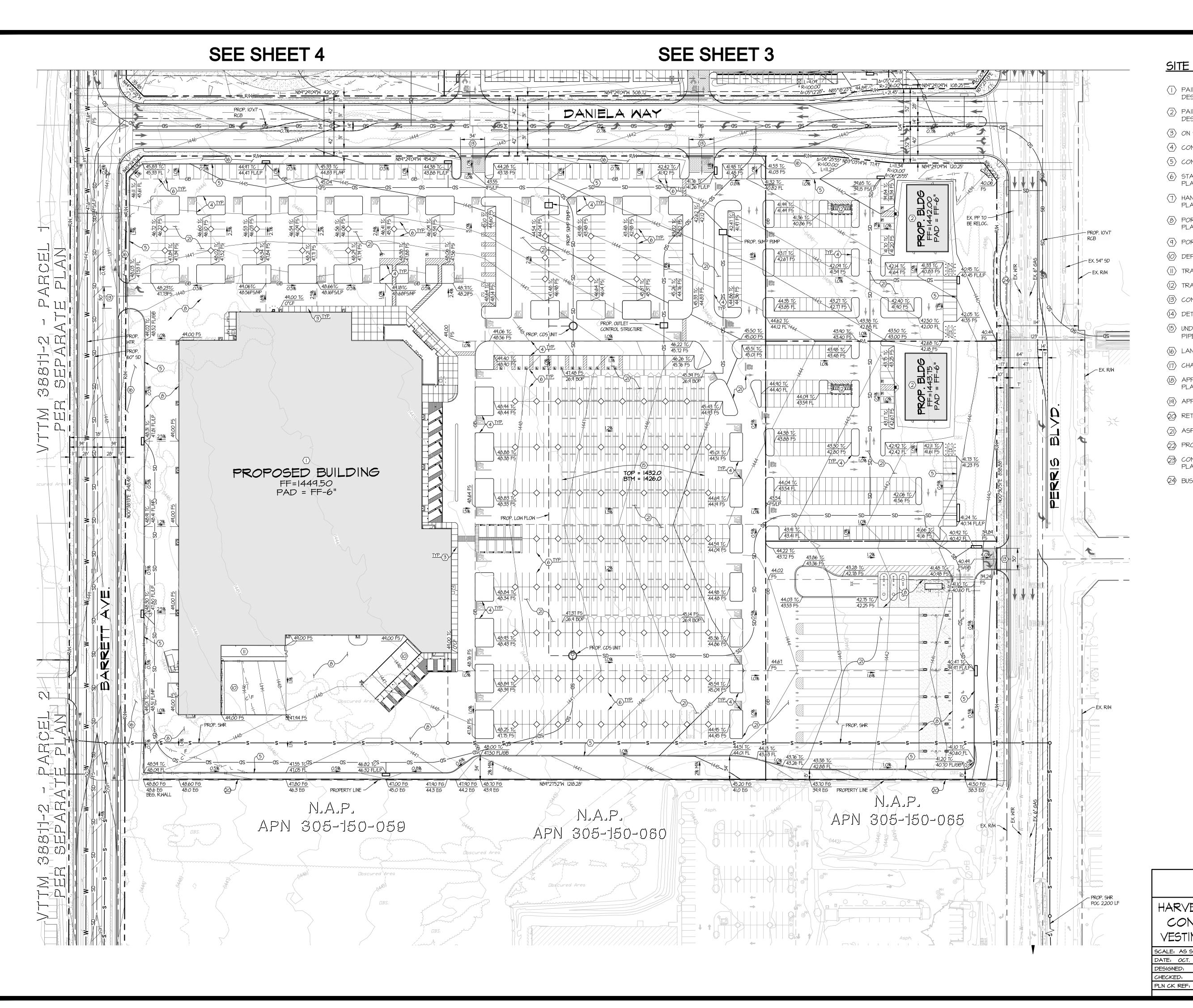
HOWARD INDUSTRIAL PARTNERS 2244 NORTH PACIFIC STREET ORANGE, CA 92865 CONTACT: TIM HOWARD (TEL)714-637-3333

ENGINEER

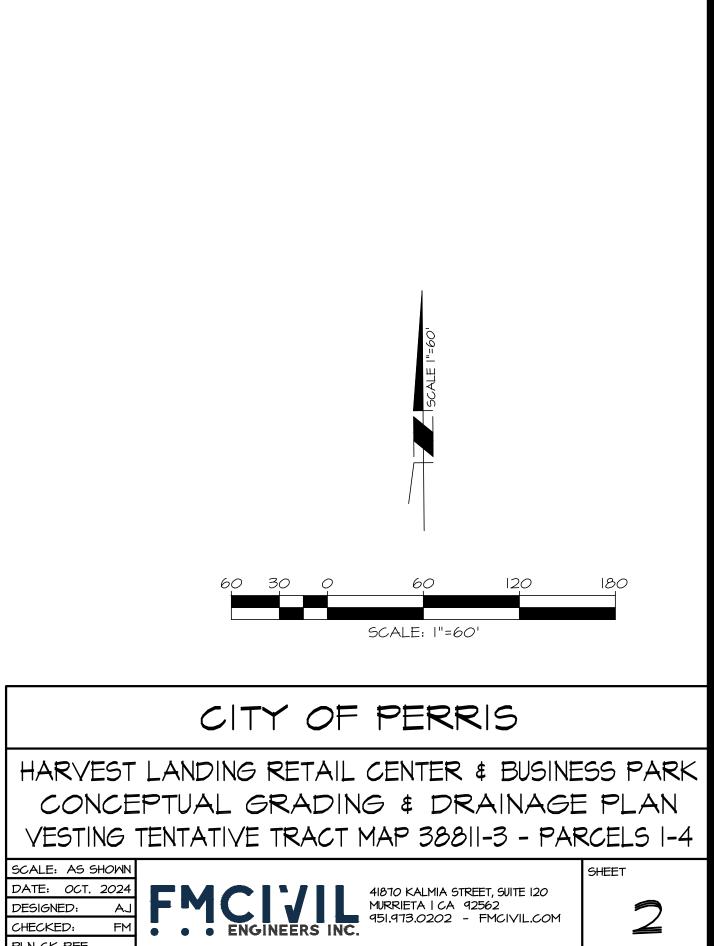
FMCIVIL ENGINEERS INC. 41870 KALMIA ST., SUITE 120 MURRIETA, CA 92562 CONTACT: FRANCISCO MARTINEZ (TEL)951-973-0202

ARCHITECT

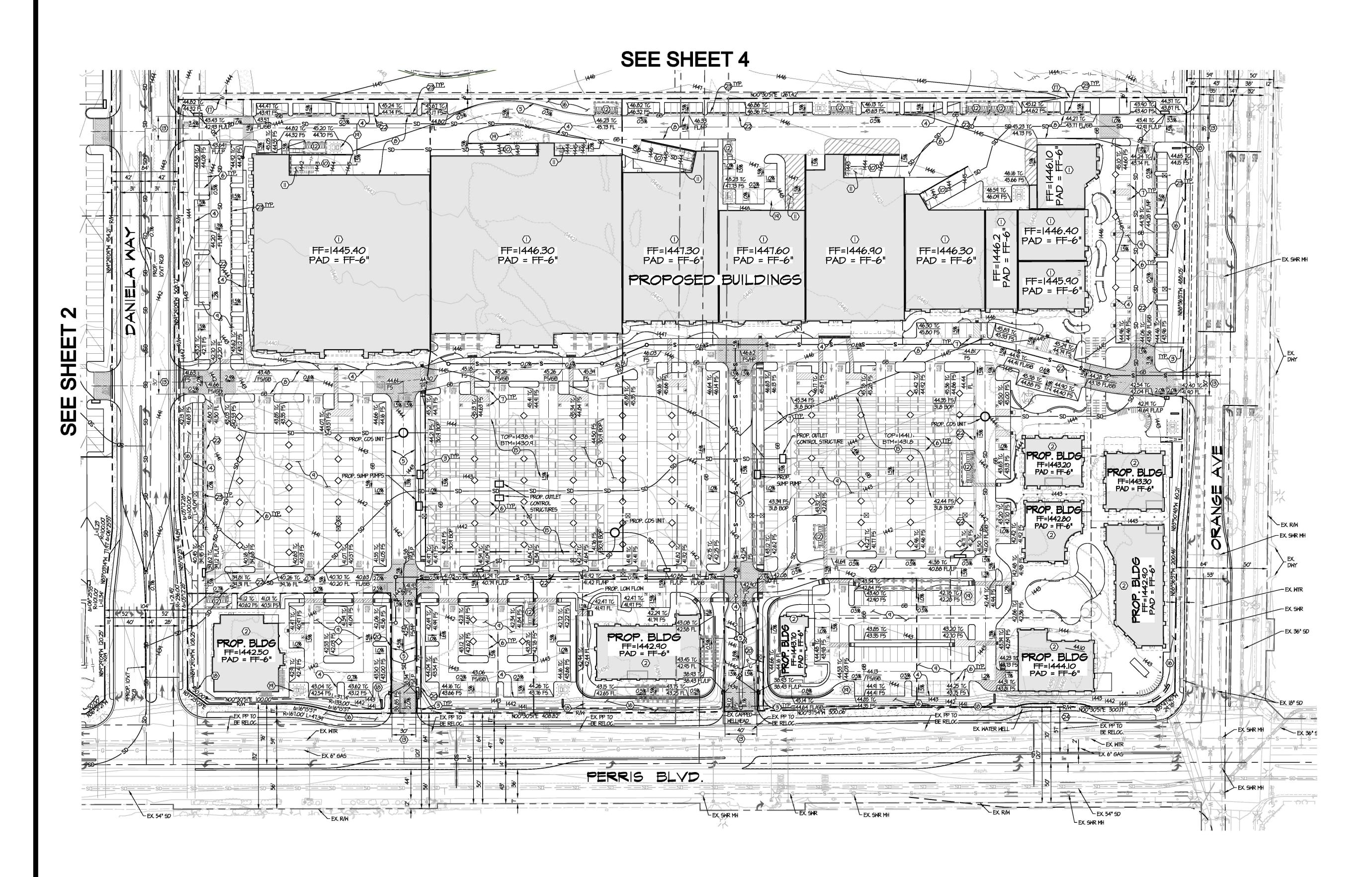
MMA ARCHITECTURE 120 WEST LIME AVE. MONROVIA, CA 91016 CONTACT: DANIEL KIM (TEL)626-583-8348


EARTHWORK ESTIMATE:

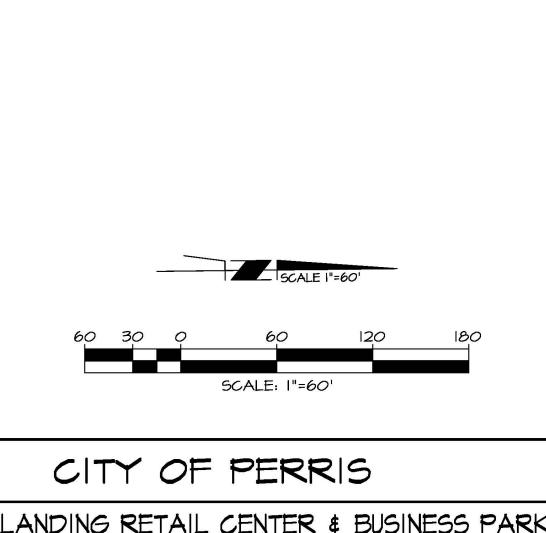
6,665 CY RAW CUT: <u>RAW FILL:</u> NET:


<u>261,405 CY</u> 254,740 CY IMPORT

HAUL TRIPS: ASSUMED (13 CY PER TRIP) = 19,595



- (I) PAINTED CONCRETE TILT-UP RETAIL / RESTAURANT FACILITY. BUILDING TO BE DESIGNED PER ARCHITECT'S PLANS
- 2 PAINTED STUCCO FRAMING RETAIL / RESTAURANT FACILITY. BUILDING TO BE DESIGNED PER ARCHITECT'S PLANS
- $\langle \overline{3} \rangle$ ON SITE ACCESSIBLE SIDEWALK AND CURB RAMPS.
- $\langle 4 \rangle$ CONCRETE CURB
- (5) CONCRETE CURB & GUTTER
- 6 STANDARD PARKING STALL STRIPING PER STANDARDS SHOWN ON ARCHITECT'S PLANS
- $\langle 7 \rangle$ HANDICAP PARKING STALL STRIPING PER STANDARDS SHOWN ON ARCHITECT'S PLANS
- (8) PORTLAND CONC. CEMENT (PCC) PAVED TRUCK ACCESS PER ARCHITECT'S PLANS
- (9) PORTLAND CONC. CEMENT (PCC) PAVED PARKING PER ARCHITECT'S PLANS
- O DEPRESSED LOADING DOCK PER ARCHITECT'S PLANS
- $\langle II \rangle$ TRASH COMPACTOR PER ARCHITECT'S PLANS
- $\langle 12 \rangle$ TRASH ENCLOSURES WITH ROOF PER ARCHITECT'S PLANS
- (B) COMMERCIAL DRIVEWAY APPROACH PER RIVERSIDE COUNTY STD. 201A
- (14) DETENTION BASIN
- (15) UNDERGROUND DETENTION CHAMBER SYSTEM 96" CMP TOP AND BOTTOM OF PIPE (BOP) ELEVATION PER PLAN
- (16) LANDSCAPE AREA PER LANDSCAPE ARCHITECT'S PLANS
- $\langle\overline{\Pi}\rangle$ CHAIN LINK FENCE PER ARCHITECT'S PLANS
- (B) APPROXIMATE LOCATION OF MONUMENT PROJECT SIGNS PER ARCHITECT'S PLANS
- $\langle \overline{|} q \rangle$ APPROXIMATE LOCATION OF ELECTRIC TRANSFORMERS
- (2) RETAINING WALL PER ARCHITECT'S PLANS
- $\langle 2i \rangle$ ASPHALT CONCRETE (AC) PAVED PARKING ARCHITECT'S PLANS
- 22 PROPOSED CONCRETE RIBBON GUTTER
- COMPACT PARKING STALL STRIPING PER STANDARDS SHOWN ON ARCHITECT'S PLANS
- 2 BUS TURNOUT PER RIVERSIDE COUNTY STD. 814

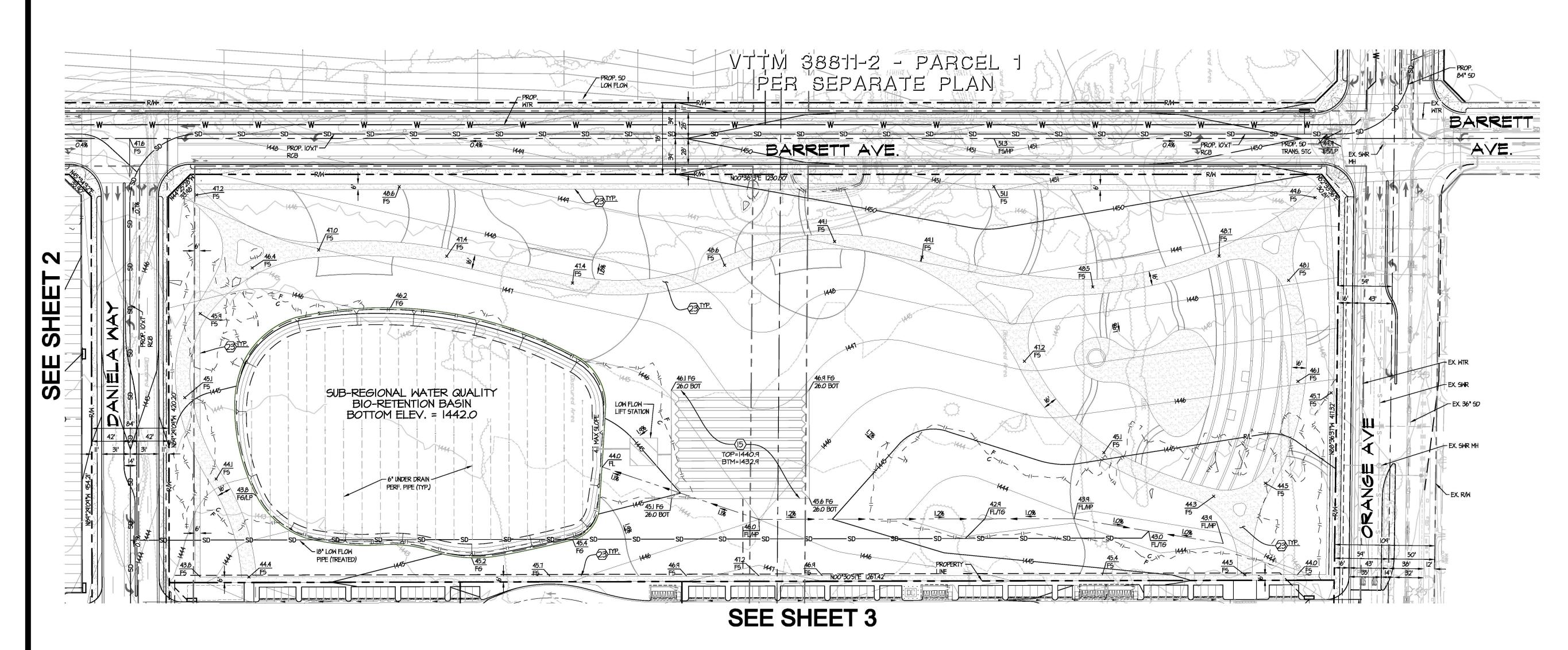


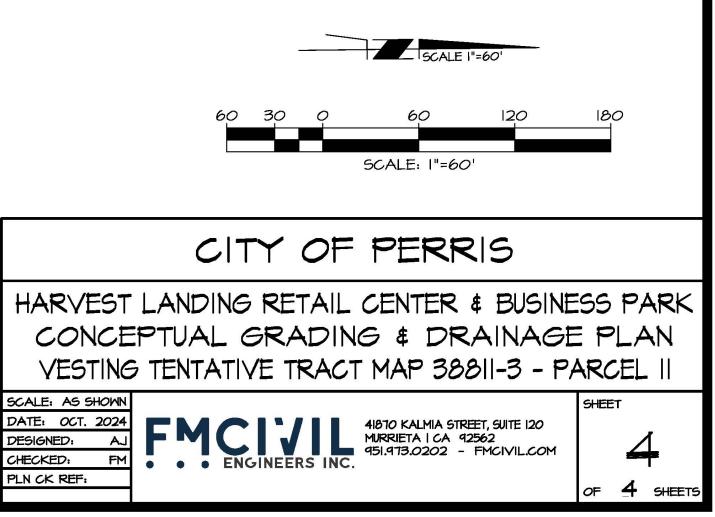
H:\PDATA\20-001 HARVEST LANDING\DWGS\PLNG\ENTITLEMENT\CUP\ALT-3\RETAIL\20-001-CUP_RETAIL-CG-01.DWG ALLAN 10/10/2024 4:07 PN

4 SHEET

- () PAINTED CONCRETE TILT-UP RETAIL / RESTAURANT FACILITY. BUILDING TO BE DESIGNED PER ARCHITECT'S PLANS
- 2 PAINTED STUCCO FRAMING RETAIL / RESTAURANT FACILITY. BUILDING TO BE DESIGNED PER ARCHITECT'S PLANS
- $\langle 3 \rangle$ ON SITE ACCESSIBLE SIDEWALK AND CURB RAMPS.
- (4) CONCRETE CURB
- $\overline{5}$ CONCRETE CURB & GUTTER
- 6 STANDARD PARKING STALL STRIPING PER STANDARDS SHOWN ON ARCHITECT'S PLANS
- (7) HANDICAP PARKING STALL STRIPING PER STANDARDS SHOWN ON ARCHITECT'S PLANS
- (B) PORTLAND CONC. CEMENT (PCC) PAVED TRUCK ACCESS PER ARCHITECT'S PLANS
- (9) PORTLAND CONC. CEMENT (PCC) PAVED PARKING PER ARCHITECT'S PLANS
- (10) DEPRESSED LOADING DOCK PER ARCHITECT'S PLANS
- (II) TRASH COMPACTOR PER ARCHITECT'S PLANS
- (2) TRASH ENCLOSURES WITH ROOF PER ARCHITECT'S PLANS
- (B) COMMERCIAL DRIVEWAY APPROACH PER RIVERSIDE COUNTY STD. 207A
- (4) DETENTION BASIN
- (15) UNDERGROUND DETENTION CHAMBER SYSTEM 96" CMP TOP AND BOTTOM OF PIPE (BOP) ELEVATION PER PLAN
- (6) LANDSCAPE AREA PER LANDSCAPE ARCHITECT'S PLANS
- (1) CHAIN LINK FENCE PER ARCHITECT'S PLANS
- (B) APPROXIMATE LOCATION OF MONUMENT PROJECT SIGNS PER ARCHITECT'S PLANS
- (19) APPROXIMATE LOCATION OF ELECTRIC TRANSFORMERS
- O RETAINING WALL PER ARCHITECT'S PLANS
- (21) ASPHALT CONCRETE (AC) PAVED PARKING ARCHITECT'S PLANS
- 22 PROPOSED CONCRETE RIBBON GUTTER
- COMPACT PARKING STALL STRIPING PER STANDARDS SHOWN ON ARCHITECT'S PLANS
- BUS TURNOUT PER RIVERSIDE COUNTY STD. 814

HARVEST LANDING RETAIL CENTER & BUSINESS PARK CONCEPTUAL GRADING & DRAINAGE PLAN VESTING TENTATIVE TRACT MAP 38811-3 - PARCELS 5-10 SCALE: AS SHOWN


> 41870 KALMIA STREET, SUITE 120 MURRIETA | CA 92562 1 951.973.0202 - FMCIVIL.COM


H: \PDATA\20-001 HARVEST LANDING\DWGS\PLNG\ENTITLEMENT\CUP\ALT-3\RETAIL\20-001-CUP_RETAIL-CG-02.DWG ALLAN 10/10/20

3

4 SHEET

- PAINTED CONCRETE TILT-UP RETAIL / RESTAURANT FACILITY. BUILDING TO BE DESIGNED PER ARCHITECT'S PLANS
- 2 PAINTED STUCCO FRAMING RETAIL / RESTAURANT FACILITY. BUILDING TO BE DESIGNED PER ARCHITECT'S PLANS
- $\langle \overline{3} \rangle$ ON SITE ACCESSIBLE SIDEWALK AND CURB RAMPS.
- $\langle 4 \rangle$ CONCRETE CURB
- (5) CONCRETE CURB & GUTTER
- 6 STANDARD PARKING STALL STRIPING PER STANDARDS SHOWN ON ARCHITECT'S PLANS
- (7) HANDICAP PARKING STALL STRIPING PER STANDARDS SHOWN ON ARCHITECT'S PLANS
- (B) PORTLAND CONC. CEMENT (PCC) PAVED TRUCK ACCESS PER ARCHITECT'S PLANS
- (9) PORTLAND CONC. CEMENT (PCC) PAVED PARKING PER ARCHITECT'S PLANS
- O DEPRESSED LOADING DOCK PER ARCHITECT'S PLANS
- $\langle II \rangle$ TRASH COMPACTOR PER ARCHITECT'S PLANS
- (2) TRASH ENCLOSURES WITH ROOF PER ARCHITECT'S PLANS
- (B) COMMERCIAL DRIVEWAY APPROACH PER RIVERSIDE COUNTY STD. 207A
- (4) DETENTION BASIN
- (5) UNDERGROUND DETENTION CHAMBER SYSTEM 96" CMP TOP AND BOTTOM OF PIPE (BOP) ELEVATION PER PLAN
- (6) LANDSCAPE AREA PER LANDSCAPE ARCHITECT'S PLANS
- (T) CHAIN LINK FENCE PER ARCHITECT'S PLANS
- (B) APPROXIMATE LOCATION OF MONUMENT PROJECT SIGNS PER ARCHITECT'S PLANS
- (17) APPROXIMATE LOCATION OF ELECTRIC TRANSFORMERS
- 20 RETAINING WALL PER ARCHITECT'S PLANS
- (21) ASPHALT CONCRETE (AC) PAVED PARKING ARCHITECT'S PLANS
- DROPOSED CONCRETE RIBBON GUTTER
- COMPACT PARKING STALL STRIPING PER STANDARDS SHOWN ON ARCHITECT'S PLANS
- 3 BUS TURNOUT PER RIVERSIDE COUNTY STD. 814

PROJECT SUMMARY

CALCULATION DETAILS • LOADING = HS20/HS25 • APPROX. LINEAR FOOTAGE = 5,020 LF

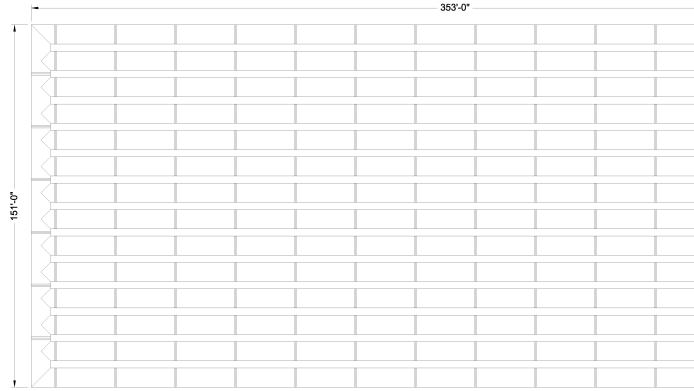
STORAGE SUMMARY

- STORAGE VOLUME REQUIRED = N/A
- PIPE STORAGE VOLUME = 252,333 CF
- BACKFILL STORAGE VOLUME = 0 CF
- TOTAL STORAGE PROVIDED = 252,333 CF

PIPE DETAILS

- DIAMETER = 96"
- CORRUGATION = 5x1
- GAGE = 16
- COATING = ALT2
- WALL TYPE = SOLID
- BARREL SPACING = 36"

BACKFILL DETAILS


- WIDTH AT ENDS = 12"
- ABOVE PIPE = 0" • WIDTH AT SIDES = 12"
- BELOW PIPE = 0"

NOTES

Z

- ALL RISER AND STUB DIMENSIONS ARE TO CENTERLINE. ALL ELEVATIONS, DIMENSIONS, AND LOCATIONS OF RISERS AND INLETS, SHALL BE VERIFIED BY THE ENGINEER OF RECORD PRIOR TO RELEASING FOR FABRICATION.
- ALL FITTINGS AND REINFORCEMENT COMPLY WITH ASTM A998.
- \bullet ALL RISERS AND STUBS ARE $2^{2/3}_{73}$ x $^{1/2}_{2}$ " Corrugation and 16 gage unless otherwise noted.
- RISERS TO BE FIELD TRIMMED TO GRADE.
- QUANTITY OF PIPE SHOWN DOES NOT PROVIDE EXTRA PIPE FOR CONNECTING THE SYSTEM TO EXISTING PIPE OR DRAINAGE STRUCTURES. OUR SYSTEM AS DETAILED PROVIDES NOMINAL INLET AND/OR OUTLET PIPE STUB FOR CONNECTION TO EXISTING DRAINAGE FACILITIES. IF ADDITIONAL PIPE IS NEEDED IT IS THE RESPONSIBILITY OF THE CONTRACTOR.
- BAND TYPE TO BE DETERMINED UPON FINAL DESIGN.
 THE PROJECT SUMMARY IS REFLECTIVE OF THE DYODS DESIGN, QUANTITIES ARE APPROX. AND SHOULD BE VERIFIED UPON FINAL DESIGN AND APPROVAL. FOR EXAMPLE, TOTAL EXCAVATION DOES
- NOT CONSIDER ALL VARIABLES SUCH AS SHORING AND ONLY ACCOUNTS FOR MATERIAL WITHIN THE ESTIMATED EXCAVATION FOOTPRINT. • THESE DRAWINGS ARE FOR CONCEPTUAL PURPOSES
- THESE DRAWINGS ARE FOR CONCEPTUAL PURPOSES AND DO NOT REFLECT ANY LOCAL PREFERENCES OR REGULATIONS. PLEASE CONTACT YOUR LOCAL CONTECH REP FOR MODIFICATIONS.

ATES\CM	The design and information shown on this drawing is provided as a service to the project owner, engineer and contractor by Contech Engineered Solutions LLC ("Contech"). Neither this drawing, nor any part thereof, may be used, reproduced or modified in any manner without the prior written consent of				C NTECH	C INTECH®	DYO36518 20-
M	Contech. Failure to comply is done at the user's own risk and Contech expressly disclaims any liability or responsibility for such use.				ENGINEERED SOLUTIONS LLC www.ContechES.com	CMP DETENTION SYSTEMS	
POR	If discrepancies between the supplied information upon which the drawing is based and actual field conditions are encountered as site work progresses, these discrepancies must be reported to Contech immediately for re-evaluation of the desin. Contech				9025 Centre Pointe Dr., Suite 400, West Chester, OH 45069		
2	accepts no liability for designs based on missing, incomplete or inaccurate information supplied by others.	DATE	REVISION DESCRIPTION	BY	800-338-1122 513-645-7000 513-645-7993 FAX	DRAWING	

ASSEMBLY SCALE: 1" = 40'

> 518 20-001 Harvest Landing Reta VTTM 38811-3, PARC Perris, CA DETENTION SYS

	_
	\triangleright
	K
	K
 	K
	Ł
	ert
	$\left[\right> \right]$
	\square
	Б
	KI

ail Center and Business F	Park
CELS 1-4	

SТ	Ε	М	

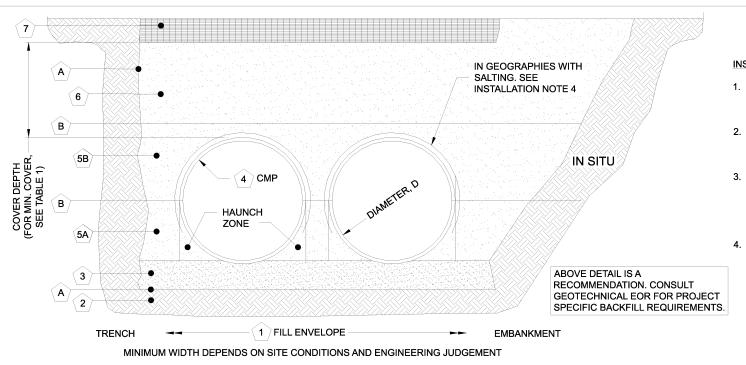

PROJECT No.: 24787	SEQ. 1 36	No.: 518	DATE: 10/3/2024	
DESIGNED: DYO		DRAWN: DYO		
CHECKED: DYO	APPRO		OVED: DYO	
SHEET NO .:			1	

TABLE 1:		
DIAMETER, D	MIN. COVER	CORR. PROFILE
6"-10"	12"	1 1/2" x 1/4"
12"-48"	12"	2 2/3" x 1/2"
>48"-96"	12"	3" x 1", 5" x 1"
>96"	D/8	3" x 1", 5" x 1"

- STRUCTURAL BACKFILL MUST EXTEND TO LIMITS OF THE TABLE
- TOTAL HEIGHT OF COMPACTED COVER FOR CONVENTIONAL HIGHWAY LOADS IS MEASURED FROM TOP OF PIPE TO BOTTOM OF FLEXIBLE PAVEMENT OR TOP OF RIGID PAVEMENT

TABLE 2: SOLID STANDARD

ULTRAFLO ALSO AVAILABLE FOR SIZES 18" - 120" WITH 3/4"x 3/4"x 7 1/2" CORRUGATION

CMP DETENTION AND CMP DRAINAGE STANDARD BACKFILL SPECIFICATIONS MATERIAL LOCATION MATERIAL SPECIFICATION DESCRIPTION MINIMUM TRENCH WIDTH MUST ALLOW ROOM FOR PROPER COMPACTION OF MINIMUM EMBANKMENT WIDTH (IN FEET) FOR INITIAL FILL ENVELOPE: HAUNCH MATERIALS UNDER THE PIPE. PIPE < 24": 3.0D FILL ENVELOPE WIDTH PER ENGINEER OF RECORD THE SUGGESTED MINIMUM TRENCH WIDTH, OR EOR RECOMMENDATION: **(1**) PIPE 24" - 144": D + 4'0" PIPE ≤ 12": D + 16" PIPE > 144": D + 10'0" PIPE > 12" 1 5D + 12 PRIOR TO PLACING THE BEDDING, THE FOUNDATION MUST BE CONSTRUCTED TO A UNIFORM AND STABLE GRADE. IN THE EVENT THAT UNSUITABLE FOUNDATION MATERIALS ARE ENCOUNTERED DURING EXCAVATION, THEY SHALL BE REMOVED AND FOUNDATION BROUGHT BACK TO GRADE WITH A FILL AASHTO 26.5.2 OR PER ENGINEER OF RECORD 〔2〕 FOUNDATION MATERIAL APPROVED BY THE ENGINEER OF RECORD. ENGINEER OF RECORD TO DETERMINE IF BEDDING IS REQUIRED. PIPE MAY BE PLACED ON THE TRENCH BOTTOM OF A RELATIVELY LOOSE, NATIVE SUITABLE AASHTO M 43: 3, 357, 4, 467, 5, 56, 57 WELL GRADED GRANULAR MATERIAL THAT IS ROUGHLY SHAPED TO FIT THE BOTTOM OF THE PIPE, 2" MIN DEPTH. THE BEDDING MATERIAL MAY BE SUITABLE ં 3ે BEDDING (APPROVED REGIONAL EQUIVALENTS INCLUDE CA-7) FOUNDATION SOILS CONFORMING TO AASHTO SOIL CLASSIFICATIONS A1, A2, OR A3 WITH MAXIMUM PARTICLE SIZE OF 3" PER AASHTO 26.3.8.1 4 CORRUGATED METAL PIPE HAUNCH ZONE MATERIAL SHALL BE HAND SHOVELED OR SHOVEL SLICED INTO PLACE TO ALLOW FOR PROPER COMPACTION WITHOUT SOFT SPOTS. BACKFILL SHALL BE PLACED IN 8" +/- LOOSE LIFTS AND COMPACTED TO 90% STANDARD PROCTOR PER AASHTO T 99. BACKFILL SHALL BE PLACED SUCH THAT (5A) **CRITICAL BACKFILL** AASHTO M 145: A-1, A-2, A-3 * THERE IS NO MORE THAN A THREE LIFT (24") DIFFERENTIAL BETWEEN ANY OF THE PIPES AT ANY TIME DURING THE BACKFILL PROCESS. THE BACKFILL SHOULD BE ADVANCED ALONG THE LENGTH OF THE SYSTEM TO AVOID DIFFERENTIAL LOADING. WELL GRADED GRANULAR MATERIAL WHICH MAY CONTAIN SMALL AMOUNTS OF SILT OR CLAY AND MAXIMUM PARTICLE SIZE OF 3" (PER AASHTO 26.3.8.1 AND 5B 12.4-1.3). BACKFILL AASHTO M 145: A-1, A-2, A-3 UP TO MIN. COVER - SEE 5A AND 5B ABOVE 6 COVER MATERIAL COVER MATERIAL MAY INCLUDE NON-BITUMINOUS, GRANULAR ROAD BASE MATERIAL WITHIN MIN COVER LIMITS ABOVE MIN. COVER - PER ENGINEER OF RECORD **RIGID OR FLEXIBLE PAVEMENT (IF** FLEXIBLE PAVEMENT SHOULD NOT BE COUNTED AS PART OF THE FILL HEIGHT OVER THE CMP. FINAL BACKFILL MATERIAL SELECTION AND COMPACTION 7 PER ENGINEER OF RECORD APPLICABLE) REQUIREMENTS SHALL FOLLOW THE PROJECT PLANS AND SPECIFICATIONS PER THE ENGINEER OF RECORD. A OPTIONAL SIDE GEOTEXTILE NONE GEOTEXTILE LAYER IS RECOMMENDED ON SIDES OF EXCAVATION TO PREVENT SOIL MIGRATION OPTIONAL GEOTEXTILE BETWEEN IF SOIL TYPES DIFFER AT ANY POINT ABOVE PIPE INVERT, A GEOTEXTILE LAYER IS RECOMMENDED TO BE PLACED BETWEEN THE LAYERS TO PREVENT SOIL (B) NONE LAYERS MIGRATION.

NOTES:

REVISION DESCRIPTION

FOR MULTIPLE BARREL INSTALLATIONS, THE RECOMMENDED STANDARD SPACING BETWEEN PARALLEL PIPE RUNS SHALL BE THE PIPE DIAMETER /2 BUT NO LESS THAN 12" FOR DIAMETERS <72". FOR 72" AND LARGER DIAMETERS, THE MINIMUM SPACING IS 36". CONTACT YOUR CONTECH REPRESENTATIVE FOR NONSTANDARD SPACING.

APPROVED REGIONAL EQUIVALENTS FOR SECTION 5A INCLUDE CA-7, CODOT #67, MIDOT 2G, 34G, OR 21AA STONE OR GRAVEL; #8; #57; MIDOT 6A, 2G, 3G, 34G.

MANUFACTURER RECOMMENDED BACKFILL

NOT TO SCALE

CNTECH

CMP DETENTION SYSTEMS

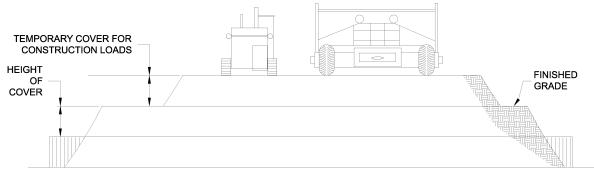
CONTECH

DYODS

DRAWING

The design and information shown on this drawing is provided as a service to the project owner, engineer and contractor by Contech Engineered Solutions LLC ("Contech"). Neither this	
drawing, nor any part thereof, may be used, reproduced or modified in any manner without the prior written consent of	
Contech. Failure to comply is done at the user's own risk and Contech expressly disclaims any liability or responsibility for such use.	
If discrepancies between the supplied information upon which the drawing is based and actual field conditions are encountered as site work progresses, these discrepancies must be reported to Contech immediately for re-evaluation of the design. Contech	
accepts no liability for designs based on missing, incomplete or	DATE

	ENGINEERED SOLUTIONS LLC
	www.ContechES.com
	9025 Centre Pointe Dr., Suite 400, West Chester, OH 45069
BY	800-338-1122 513-645-7000 513-645-7993 FAX


DYO36518 20-001 Harvest Landing Reta VTTM 38811-3, PAR Perris, CA **DETENTION SYSTEM**

INSTALLATION NOTES

- WHEN PLACING THE FIRST LIFTS OF BACKFILL IT IS IMPORTANT TO MAKE SURE THAT THE BACKFILL IS PROPERLY COMPACTED UNDER AND AROUND THE PIPE HAUNCHES.
- 2. OTHER ALTERNATE BACKFILL MATERIAL MAY BE ALLOWED DEPENDING ON SITE SPECIFIC CONDITIONS, AS APPROVED BY SITE ENGINEER.
- 3. BACKFILL USING CONTROLLED LOW-STRENGTH MATERIAL (CLSM, "FLASH FILL" OR "FLOWABLE FILL") MAY BE USED WHEN THE SPACING BETWEEN THE PIPES WILL NOT ALLOW FOR PLACEMENT AND ADEQUATE COMPACTION OF THE BACKFILL CONTACT CONTECH FOR FURTHER EVALUATION.
- 4. IF SALTING AGENTS FOR SNOW AND ICE REMOVAL ARE USED ON OR NEAR THE PROJECT, A GEOMEMBRANE BARRIER IS RECOMMENDED OVER THE UPPER HALF OF THE PIPE. THE GEOMEMBRANE LINER IS INTENDED TO HELP PROTECT THE SYSTEM FROM THE POTENTIAL ADVERSE EFFECTS THAT MAY RESULT FROM A CHANGE IN THE SURROUNDING ENVIRONMENT OVER A PERIOD OF TIME. PLEASE REFER TO THE CORRUGATED METAL PIPE DETENTION DESIGN GUIDE FOR ADDITIONAL INFORMATION.

ail Center and Business Park	P
CELS 1-4	D
	С

FROJECT NO	SEQ. I	NU	DAIE.
24787	365	518	10/3/2024
DESIGNED:		DRAW	/N:
DYO			DYO
CHECKED:		APPR	OVED:
DYO			DYO
SHEET NO .:			
			1

CONSTRUCTION LOADS

FOR TEMPORARY CONSTRUCTION VEHICLE LOADS, AN EXTRA AMOUNT OF COMPACTED COVER MAY BE REQUIRED OVER THE TOP OF THE PIPE. THE HEIGHT-OF-COVER SHALL MEET THE MINIMUM REQUIREMENTS SHOWN IN THE TABLE BELOW. THE USE OF HEAVY CONSTRUCTION EQUIPMENT NECESSITATES GREATER PROTECTION FOR THE PIPE THAN FINISHED GRADE COVER MINIMUMS FOR NORMAL HIGHWAY TRAFFIC.

PIPE SPAN,		AXLE LOADS (kips)			
	INCHES	18-50	50-75	75-110	110-150
		MI	NIMUM C	OVER (F	- T)
	12-42	2.0	2.5	3.0	3.0
	48-72	3.0	3.0	3.5	4.0
	78-120	3.0	3.5	4.0	4.0
	126-144	3.5	4.0	4.5	4.5

*MINIMUM COVER MAY VARY, DEPENDING ON LOCAL CONDITIONS. THE CONTRACTOR MUST PROVIDE THE ADDITIONAL COVER REQUIRED TO AVOID DAMAGE TO THE PIPE. MINIMUM COVER IS MEASURED FROM THE TOP OF THE PIPE TO THE TOP OF THE MAINTAINED CONSTRUCTION ROADWAY SURFACE.

CONSTRUCTION LOADING DIAGRAM

SCALE: N.T.S.

REVISION DESCRIPTION

SPECIFICATION FOR DESIGNED DETENTION SYSTEM:

SCOPE

THIS SPECIFICATION COVERS THE MANUFACTURE AND INSTALLATION OF THE DESIGNED DETENTION SYSTEM DETAILED IN THE PROJECT PLANS.

MATERIAI

THE MATERIAL SHALL CONFORM TO THE APPLICABLE REQUIREMENTS LISTED BELOW

ALUMINIZED TYPE 2 STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-274 OR ASTM A-92.

THE GALVANIZED STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-218 OR ASTM A-929.

THE POLYMER COATED STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-246 OR ASTM A-742.

THE ALUMINUM COILS SHALL CONFORM TO THE APPLICABLE OF AASHTO M-197 OR ASTM B-744.

CONSTRUCTION LOADS

CONSTRUCTION LOADS MAY BE HIGHER THAN FINAL LOADS. FOLLOW THE MANUFACTURER'S OR NCSPA GUIDELINES.

DATE

NOTE:
THESE DRAWINGS ARE FOR CONCEPTUAL
PURPOSES AND DO NOT REFLECT ANY LOCAL
PREFERENCES OR REGULATIONS. PLEASE
CONTACT YOUR LOCAL CONTECH REP FOR
MODIFICATIONS.
The design and information shown on this drawing is provided as a service to the project owner, engineer and contractor by
Contech Engineered Solutions LLC ("Contech"). Neither this drawing, nor any part thereof, may be used, reproduced or modified in any manner without the orior written consent of

Contech Engineered Solutions LLC ("Contech"). Neither this drawing, nor any part thereof, may be used, heproduced or modified in any manner without the prior written consent of Contech. Failure to comply is done at the user's own risk an Contech expressly disclaims any liability or responsibility for such use.
If discrepancies between the supplied information upon whice the drawing is based and actual field conditions are encount as site work progresses, these discrepancies must be report to Contech imediately for re-evaluation of the design. Con accepts no liability for designs based on missing, incomplete incomprete information supplied by other

PIPF THE PIPE SHALL BE MANUFACTURED IN ACCORDANCE TO THE APPLICABLE REQUIREMENTS LISTED BELOW:

ALUMINIZED TYPE 2: AASHTO M-36 OR ASTM A-760

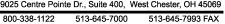
GALVANIZED: AASHTO M-36 OR ASTM A-760

AFFOLICYANELIEE COATED: AASHTO M-245 OR ASTM A-762

ALUMINUM: AASHTO M-196 OR ASTM B-745

APPLICABLE

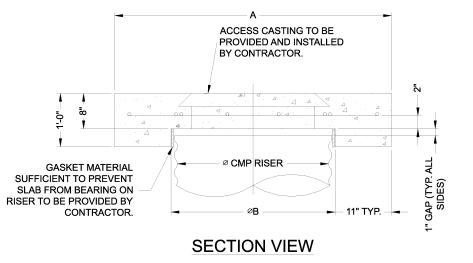
BY


HANDLING AND ASSEMBLY SHALL BE IN ACCORDANCE WITH NCSP'S (NATIONAL CORRUGATED STEEL AFFREECABSEDCIATION) FOR ALUMINIZED TYPE 2. GALVANIZED OR POLYMER COATED STEEL. SHALL BE IN ACCORDANCE WITH THE MANUFACTURER'S RECOMMENDATIONS FOR ALUMINUM PIPE.

REQUIREMENTS

INSTALLATION SHALL BE IN ACCORDANCE WITH AASHTO STANDARD SPECIFICATIONS FOR HIGHWAY BRIDGES, SECTION 26, DIVISION II DIVISION II OR ASTM A-798 (FOR ALUMINIZED TYPE 2, GALVANIZED OR POLYMER COATED STEEL) OR ASTM B-788 (FOR ALUMINUM PIPE) AND IN CONFORMANCE WITH THE PROJECT PLANS AND SPECIFICATIONS. IF THERE ARE ANY INCONSISTENCIES OR CONFLICTS THE CONTRACTOR SHOULD DISCUSS AND RESOLVE WITH THE SITE ENGINEER.

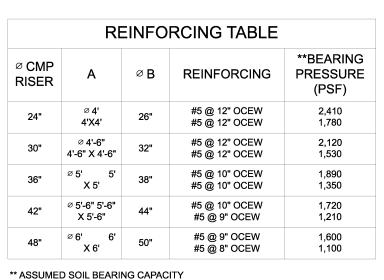
IT IS ALWAYS THE RESPONSIBILITY OF THE CONTRACTOR TO FOLLOW OSHA GUIDELINES FOR SAFE PRACTICES.


CUNTECH


CMP DETENTION SYSTEMS

CONTECH

DYODS


DRAWING

- 2. DESIGN LOAD HS25.
- 3. EARTH COVER = 1' MAX.
- 4. CONCRETE STRENGTH = 3,500 psi
- 5. REINFORCING STEEL = ASTM A615, GRADE 60.
- 6. PROVIDE ADDITIONAL REINFORCING AROUND OPENINGS EQUAL TO THE BARS INTERRUPTED, HALF EACH SIDE. ADDITIONAL BARS TO BE IN THE SAME PLANE.

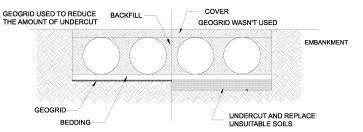
DYO36518 20-001 Harvest Landing Reta VTTM 38811-3, PARC Perris, CA **DETENTION SYSTEM**

- 8. PROTECTION SLAB AND ALL MATERIALS TO BE PROVIDED AND INSTALLED BY CONTRACTOR.
- 9. DETAIL DESIGN BY DELTA ENGINEERING, BINGHAMTON, NY.

MANHOLE CAP DETAIL

SCALE: N.T.S.

ail Center and B	usiness Park
CELS 1-4	


PROJECT No.: 24787	SEQ. 1 36	No.: 518	DATE: 10/3/2024
DESIGNED: DYO		DRAW	N: DYO
CHECKED: DYO		APPR	OVED: DYO
SHEET NO .:			1

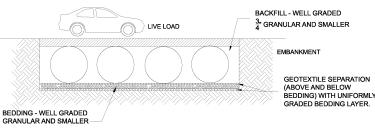
PROPER INSTALLATION OF A FLEXIBLE UNDERGROUND DETENTION SYSTEM WILL ENSURE LONG-TERM PERFORMANCE. THE CONFIGURATION OF THESE SYSTEMS OFTEN REQUIRES SPECIAL CONSTRUCTION PRACTICES THAT DIFFER FROM CONVENTIONAL FLEXIBLE PIPE CONSTRUCTION. CONTECH ENGINEERED SOLUTIONS STRONGLY SUGGESTS SCHEDULING A PRE-CONSTRUCTION MEETING WITH YOUR LOCAL SALES ENGINEER TO DETERMINE IF ADDITIONAL MEASURES, NOT COVERED IN THIS GUIDE, ARE APPROPRIATE FOR YOUR SITE.

FOUNDATION

CONSTRUCT A FOUNDATION THAT CAN SUPPORT THE DESIGN LOADING APPLIED BY THE PIPE AND ADJACENT BACKFILL WEIGHT AS WELL AS MAINTAIN ITS INTEGRITY DURING CONSTRUCTION.

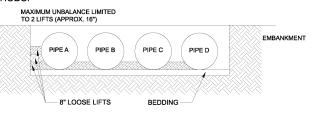
IF SOFT OR UNSUITABLE SOILS ARE ENCOUNTERED, REMOVE THE POOR SOILS DOWN TO A SUITABLE DEPTH AND THEN BUILD UP TO THE APPROPRIATE ELEVATION WITH A COMPETENT BACKFILL MATERIAL. THE STRUCTURAL FILL MATERIAL GRADATION SHOULD NOT ALLOW THE MIGRATION OF FINES, WHICH CAN CAUSE SETTLEMENT OF THE DETENTION SYSTEM OR PAVEMENT ABOVE. IF THE STRUCTURAL FILL MATERIAL IS NOT COMPATIBLE WITH THE UNDERLYING SOILS AN ENGINEERING FABRIC SHOULD BE USED AS A SEPARATOR IN SOME CASES, USING A STIFE REINFORCING GEOGRIF REDUCES OVER EXCAVATION AND REPLACEMENT FILL QUANTITIES.

GRADE THE FOUNDATION SUBGRADE TO A UNIFORM OR SLIGHTLY SLOPING GRADE. IF THE SUBGRADE IS CLAY OR RELATIVELY NON-POROUS AND THE CONSTRUCTION SEQUENCE WILL LAST FOR AN EXTENDED PERIOD OF TIME. IT IS BEST TO SLOPE THE GRADE TO ONE END OF THE SYSTEM. THIS WILL ALLOW EXCESS WATER TO DRAIN QUICKLY, PREVENTING SATURATION OF THE SUBGRADE


GEOMEMBRANE BARRIER

OF VARIOUS SALTING, DE-ICING, AND AGRICULTURAL AGENTS APPLIED ON OR NEAR THE AREA. TO MITIGATE THE POTENTIAL IMPACT OF THESE AGENTS, AN HDPE MEMBRANE LINER WILL BE INSTALLED ON THE CROWN OF EACH PIPE, CREATING AN IMPERMEABLE BARRIER. THIS MEASURE IS DESIGNED TO PROTECT THE SYSTEM FROM ENVIRONMENTAL CHANGES THAT COULD LEAD TO PREMATURE CORROSION AND REDUCE THE OVERALL SERVICE LIFE.

IN-SITU TRENCH WALL


IF EXCAVATION IS REQUIRED, THE TRENCH WALL NEEDS TO BE CAPABLE OF SUPPORTING THE LOAD THAT THE PIPE SHEDS AS THE SYSTEM IS LOADED. IF SOILS ARE NOT CAPABLE OF SUPPORTING THESE LOADS, THE PIPE CAN DEFLECT PERFORM A SIMPLE SOIL PRESSURE CHECK USING THE APPLIED LOADS TO DETERMINE THE LIMITS OF EXCAVATION BEYOND THE SPRING LINE OF THE OUTER MOST PIPES.

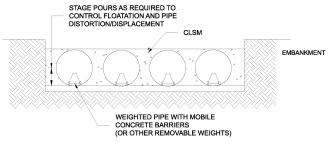
IN MOST CASES THE REQUIREMENTS FOR A SAFE WORK ENVIRONMENT AND PROPER BACKFILL PLACEMENT AND COMPACTION TAKE CARE OF THIS CONCERN.

BACKFILL PLACEMENT

MATERIAL SHALL BE WORKED INTO THE PIPE HAUNCHES BY MEANS OF SHOVEL-SLICING, RODDING, AIR TAMPER, VIBRATORY ROD, OR OTHER EFFECTIVE METHODS

IF AASHTO T99 PROCEDURES ARE DETERMINED INFEASIBLE BY THE GEOTECHNICAL ENGINEER OF RECORD. COMPACTION IS CONSIDERED ADEQUATE WHEN NO FURTHER YIELDING OF THE MATERIAL IS OBSERVED UNDER THE COMPACTOR, OR UNDER FOOT, AND THE GEOTECHNICAL ENGINEER OF RECORD (OR REPRESENTATIVE THEREOF) IS SATISFIED WITH THE LEVEL OF COMPACTION.

THE RESISTIVITY OF A PROJECT SITE MAY CHANGE OVER TIME DUE TO THE USE FOR LARGE SYSTEMS, CONVEYOR SYSTEMS, BACKHOES WITH LONG REACHES OR DRAGLINES WITH STONE BUCKETS MAY BE USED TO PLACE BACKFILL, ONCE MINIMUM COVER FOR CONSTRUCTION LOADING ACROSS THE ENTIRE WIDTH OF THE SYSTEM IS REACHED. ADVANCE THE EQUIPMENT TO THE END OF THE RECENTLY PLACED FILL, AND BEGIN THE SEQUENCE AGAIN UNTIL THE SYSTEM IS COMPLETELY BACKFILLED. THIS TYPE OF CONSTRUCTION SEQUENCE PROVIDES ROOM FOR STOCKPILED BACKFILL DIRECTLY BEHIND THE BACKHOF, AS WELL AS THE MOVEMENT OF CONSTRUCTION TRAFFIC. MATERIAL STOCKPILES ON TOP OF THE BACKFILLED DETENTION SYSTEM SHOULD BE LIMITED TO 8- TO 10-FEET HIGH AND MUST PROVIDE BALANCED LOADING ACROSS ALL BARRELS. TO DETERMINE THE PROPER COVER OVER THE PIPES TO ALLOW THE MOVEMENT OF CONSTRUCTION EQUIPMENT SEE TABLE 1, OR CONTACT YOUR LOCAL CONTECH SALES ENGINEER.

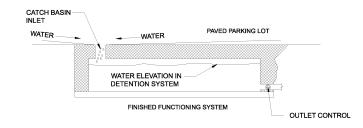

TYPICAL BACKFILL SEQUENCE

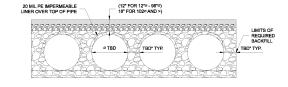
8

9

TYPICALLY, SMALL LIFTS ARE PLACED BETWEEN THE PIPES AND THEN ALLOWED TO SET-UP PRIOR TO THE PLACEMENT OF THE NEXT LIFT. THE ALLOWABLE THICKNESS OF THE CLSM LIFT IS A FUNCTION OF A PROPER BALANCE BETWEEN THE UPLIFT FORCE OF THE CLSM, THE OPPOSING WEIGHT OF THE PIPE, AND THE EFFECT OF OTHER RESTRAINING MEASURES. THE PIPE CAN CARRY LIMITED FLUID PRESSURE WITHOUT PIPE DISTORTION OR DISPLACEMENT, WHICH ALSO AFFECTS THE CLSM LIFT THICKNESS. YOUR LOCAL CONTECH SALES ENGINEER CAN HELP DETERMINE THE PROPER LIFT THICKNESS.

WHEN FLOWABLE FILL IS USED, YOU MUST PREVENT PIPE FLOATATION




CONSTRUCTION LOADING

ACCUMULATED SEDIMENT AND TRASH CAN TYPICALLY BE EVACUATED TYPICALLY, THE MINIMUM COVER SPECIFIED FOR A PROJECT ASSUMES H-20 THROUGH THE MANHOLE OVER THE OUTLET ORIFICE. IF MAINTENANCE IS NOT LIVE LOAD. BECAUSE CONSTRUCTION LOADS OFTEN EXCEED DESIGN LIVE PERFORMED AS RECOMMENDED, SEDIMENT AND TRASH MAY ACCUMULATE IN LOADS, INCREASED TEMPORARY MINIMUM COVER REQUIREMENTS ARE FRONT OF THE OUTLET ORIFICE. MANHOLE COVERS SHOULD BE SECURELY SEATED FOLLOWING CLEANING ACTIVITIES. CONTECH SUGGESTS THAT ALL NECESSARY. SINCE CONSTRUCTION EQUIPMENT VARIES FROM JOB TO JOB, SYSTEMS BE DESIGNED WITH AN ACCESS/INSPECTION MANHOLE SITUATED AT IT IS BEST TO ADDRESS EQUIPMENT SPECIFIC MINIMUM COVER OR NEAR THE INLET AND THE OUTLET ORIFICE. SHOULD IT BE NECESSARY TO REQUIREMENTS WITH YOUR LOCAL CONTECH SALES ENGINEER DURING GET INSIDE THE SYSTEM TO PERFORM MAINTENANCE ACTIVITIES, ALL APPROPRIATE PRECAUTIONS REGARDING CONFINED SPACE ENTRY AND OSHA YOUR PRE-CONSTRUCTION MEETING. REGULATIONS SHOULD BE FOLLOWED.

ADDITIONAL CONSIDERATIONS

BECAUSE MOST SYSTEMS ARE CONSTRUCTED BELOW-GRADE, RAINFALL AS PART OF THE MAINTENANCE PROGRAM FOR THE SYSTEM. CAN RAPIDLY FILL THE EXCAVATION; POTENTIALLY CAUSING FLOATATION MAINTAINING AN UNDERGROUND DETENTION OR INFILTRATION SYSTEM IS AND MOVEMENT OF THE PREVIOUSLY PLACED PIPES. TO HELP MITIGATE EASIEST WHEN THERE IS NO FLOW ENTERING THE SYSTEM. FOR THIS POTENTIAL PROBLEMS, IT IS BEST TO START THE INSTALLATION AT THE REASON. IT IS A GOOD IDEA TO SCHEDULE THE CLEANOUT DURING DRY DOWNSTREAM END WITH THE OUTLET ALREADY CONSTRUCTED TO ALLOW WEATHER A ROUTE FOR THE WATER TO ESCAPE. TEMPORARY DIVERSION MEASURES MAY BE REQUIRED FOR HIGH FLOWS DUE TO THE RESTRICTED NATURE OF THE OUTLET PIPE.

REVISION DESCRIPTION

The design and information shown on this drawing is provided as a service to the project owner, engineer and contractor by Contech Engineered Solutions LLC ("Contech"). Neither this drawing, nor any part thereof, may be used, reproduced or modified in any manner without the prior written consent of Contech. Failure to comply is done at the user's own risk and Contech expressly disclaims any liability or responsibility for sich use.		
If discrepancies between the supplied information upon which the drawing is based and actual field conditions are encountered		
as site work progresses, these discrepancies must be reported to Contech immediately for re-evaluation of the design. Contech		
accepts no liability for designs based on missing, incomplete or inaccurate information supplied by others.	DATE	

	ENGINEERED SOLUTIONS LLC
	9025 Centre Pointe Dr., Suite 400, West Chester, OH 45069
BY	800-338-1122 513-645-7000 513-645-7993 FAX

DYODS

DRAWING

EMBANKMEN

15

6

DYO36518 20-001 Harvest Landing Reta VTTM 38811-3, PAR Perris, CA **DETENTION SYSTEM**

CMP DETENTION SYSTEM INSPECTION AND MAINTENANCE

UNDERGROUND STORMWATER DETENTION AND INFILTRATION SYSTEMS MUST BE INSPECTED AND MAINTAINED AT REGULAR INTERVALS FOR PURPOSES OF PERFORMANCE AND LONGEVITY.

INSPECTION

INSPECTION IS THE KEY TO EFFECTIVE MAINTENANCE OF CMP DETENTION SYSTEMS AND IS EASILY PERFORMED. CONTECH RECOMMENDS ONGOING, ANNUAL INSPECTIONS. SITES WITH HIGH TRASH LOAD OR SMALL OUTLET CONTROL ORIFICES MAY NEED MORE FREQUENT INSPECTIONS. THE RATE AT WHICH THE SYSTEM COLLECTS POLLUTANTS WILL DEPEND MORE ON SITE SPECIFIC ACTIVITIES RATHER THAN THE SIZE OR CONFIGURATION OF THE SYSTEM.

INSPECTIONS SHOULD BE PERFORMED MORE OFTEN IN EQUIPMENT WASHDOWN AREAS, IN CLIMATES WHERE SANDING AND/OR SALTING OPERATIONS TAKE PLACE, AND IN OTHER VARIOUS INSTANCES IN WHICH ONE WOULD EXPECT HIGHER ACCUMULATIONS OF SEDIMENT OR ABRASIVE/ CORROSIVE CONDITIONS. A RECORD OF EACH INSPECTION IS TO BE MAINTAINED FOR THE LIFE OF THE SYSTEM

MAINTENANCE

CMP DETENTION SYSTEMS SHOULD BE CLEANED WHEN AN INSPECTION REVEALS ACCUMULATED SEDIMENT OR TRASH IS CLOGGING THE DISCHARGE ORIFICE.

ANNUAL INSPECTIONS ARE BEST PRACTICE FOR ALL UNDERGROUND SYSTEMS. DURING THIS INSPECTION, IF EVIDENCE OF SALTING/DE-ICING AGENTS IS OBSERVED WITHIN THE SYSTEM, IT IS BEST PRACTICE FOR THE SYSTEM TO BE RINSED, INCLUDING ABOVE THE SPRING LINE SOON AFTER THE SPRING THAW

THE FOREGOING INSPECTION AND MAINTENANCE EFFORTS HELP ENSURE UNDERGROUND PIPE SYSTEMS USED FOR STORMWATER STORAGE CONTINUE TO FUNCTION AS INTENDED BY IDENTIFYING RECOMMENDED REGULAR INSPECTION AND MAINTENANCE PRACTICES. INSPECTION AND MAINTENANCE RELATED TO THE STRUCTURAL INTEGRITY OF THE PIPE OR THE SOUNDNESS OF PIPE JOINT CONNECTIONS IS BEYOND THE SCOPE OF THIS GUIDE.

il Center and Business Park	
CELS 1-4	

PROJECT No.: 24787	SEQ. 1 365		DATE: 10/3/2024	
DESIGNED:		DRA	WN:	
DYO			DYÖ	
CHECKED:		APP	ROVED:	
DYO			DYO	
SHEET NO .:				
			1	

PROJECT SUMMARY

CALCULATION DETAILS • LOADING = HS20/HS25 • APPROX. LINEAR FOOTAGE = 2,134 LF

STORAGE SUMMARY

- STORAGE VOLUME REQUIRED = N/A
- PIPE STORAGE VOLUME = 107,267 CF
- BACKFILL STORAGE VOLUME = 0 CF
- TOTAL STORAGE PROVIDED = 107,267 CF

PIPE DETAILS

- DIAMETER = 96"
- CORRUGATION = 5x1
- GAGE = 16
- COATING = ALT2
- WALL TYPE = SOLID
- BARREL SPACING = 36"

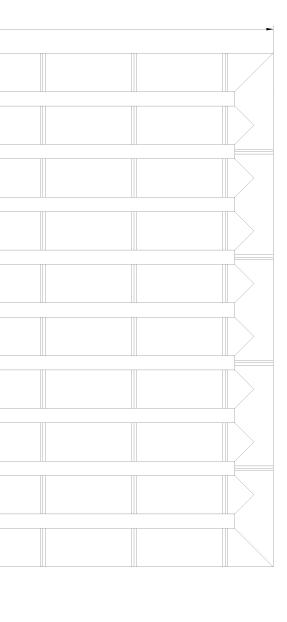
BACKFILL DETAILS

- WIDTH AT ENDS = 12"
- ABOVE PIPE = 0"
- WIDTH AT SIDES = 12"

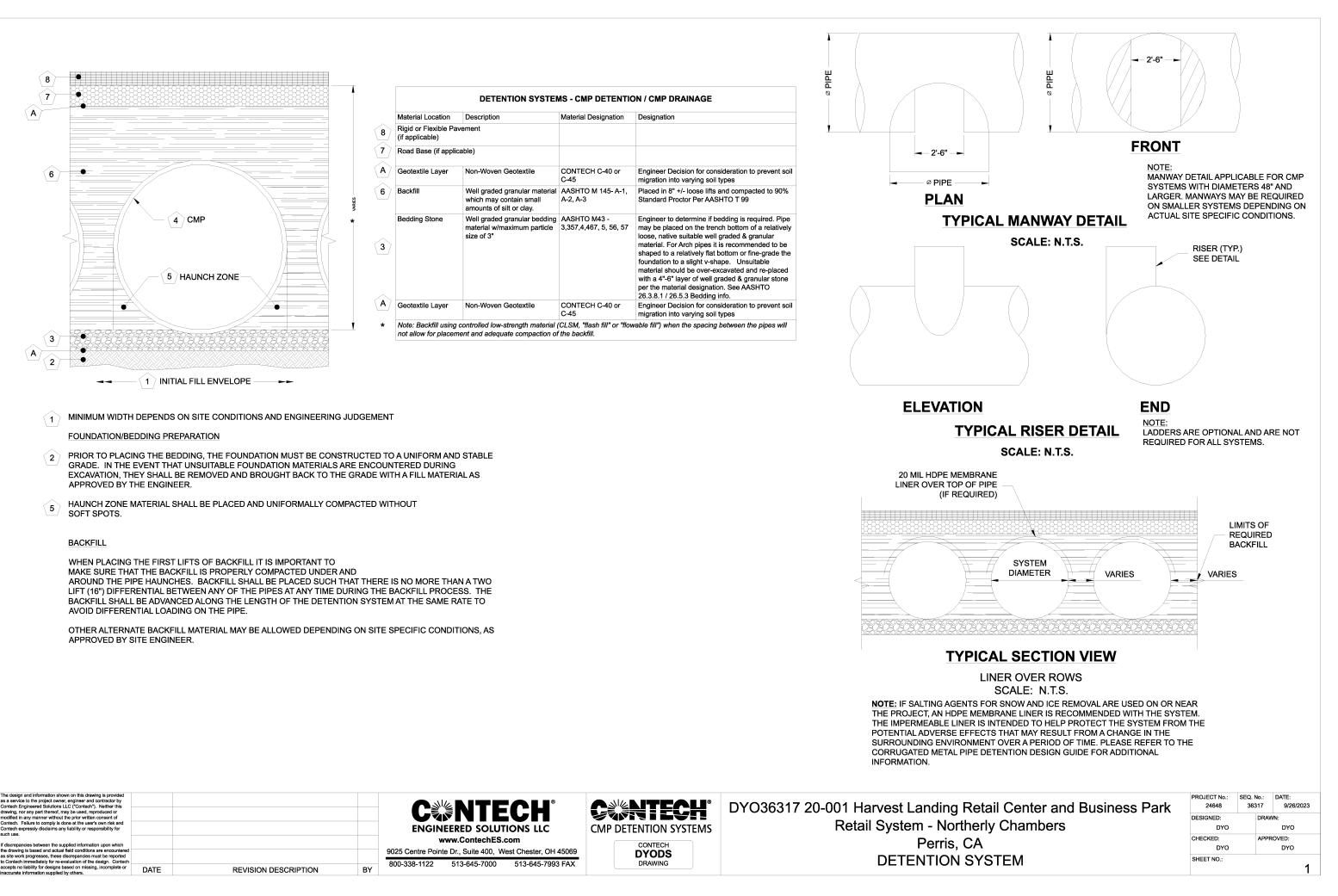
• BELOW PIPE = 0"

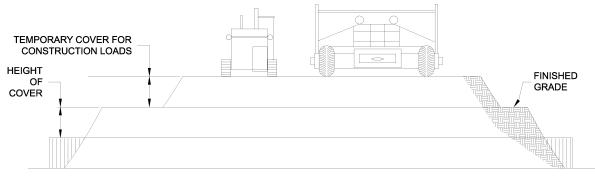
NOTES

- ALL RISER AND STUB DIMENSIONS ARE TO CENTERLINE. ALL ELEVATIONS, DIMENSIONS, AND LOCATIONS OF RISERS AND INLETS, SHALL BE VERIFIED BY THE ENGINEER OF RECORD PRIOR TO RELEASING FOR FABRICATION.
- ALL FITTINGS AND REINFORCEMENT COMPLY WITH ASTM A998.
- \bullet ALL RISERS AND STUBS ARE $2^{2/3}_{73}$ x $^{1/2}_{2}$ " Corrugation and 16 gage unless otherwise noted.
- RISERS TO BE FIELD TRIMMED TO GRADE. • QUANTITY OF PIPE SHOWN DOES NOT PROVIDE
- EXTRA PIPE FOR CONNECTING THE SYSTEM TO EXISTING PIPE OR DRAINAGE STRUCTURES. OUR SYSTEM AS DETAILED PROVIDES NOMINAL INLET AND/OR OUTLET PIPE STUB FOR CONNECTION TO EXISTING DRAINAGE FACILITIES. IF ADDITIONAL PIPE IS NEEDED IT IS THE RESPONSIBILITY OF THE CONTRACTOR.
- BAND TYPE TO BE DETERMINED UPON FINAL DESIGN.
- THE PROJECT SUMMARY IS REFLECTIVE OF THE DYODS DESIGN, QUANTITIES ARE APPROX. AND SHOULD BE VERIFIED UPON FINAL DESIGN AND APPROVAL. FOR EXAMPLE, TOTAL EXCAVATION DOES NOT CONSIDER ALL VARIABLES SUCH AS SHORING AND ONLY ACCOUNTS FOR MATERIAL WITHIN THE ESTIMATED EXCAVATION FOOTPRINT.
- THESE DRAWINGS ARE FOR CONCEPTUAL PURPOSES AND DO NOT REFLECT ANY LOCAL PREFERENCES OR


REGULATIONS. PLEASE CONTA CONTECH REP FOR MODIFICA		LOCAL			
The design and information above nor this drawing is provided as a service to the project owner, engineer and contractor by Context: Engineered Solutions LLC (Context*), Neither this drawing, nor any part thread, may be used, reproduced or modified in any manner without the prior written consent of Context: Failure to comply is done at the user's own risk and Context: engine to comply is done at the user's own risk and context: engine to comply is done at the user's own risk and context: engine to comply is done at the user's own risk and context: engine to comply is done at the user's own risk and context: engine to comply is and the user's own risk and context: engine to comply is and the user's own risk and context: engine to comply is any liability or responsibility for					CANTECH [®] CMP DETENTION SYSTEMS
If discrepancies between the supplied information upon which the drawing is based and actual field conditions are encountered as site work progresses, these discrepancies must be reported				www.ContechES.com 9025 Centre Pointe Dr., Suite 400, West Chester, OH 45069	CONTECH DYODS
to Contech immediately for re-evaluation of the design. Contech accepts no liability for designs based on missing, incomplete or inaccurate information supplied by others.	DATE	REVISION DESCRIPTION	BY	800-338-1122 513-645-7000 513-645-7993 FAX	DRAWING

þ 6


> ASSEMBLY SCALE: 1" = 20'


208'-0"

DYO36317 20-001 Harvest Landing Reta Retail System - Northerly Perris, CA **DETENTION SYSTEM**

ail Center and Business Park	PROJECT No.: 24648	SEQ. 1 363		DATE: 9/26/2023
ly Chambers	DESIGNED: DR DYO		DRAW	/N: DYO
	CHECKED: APPR DYO		OVED: DYO	
STEM	SHEET NO .:			

CONSTRUCTION LOADS

FOR TEMPORARY CONSTRUCTION VEHICLE LOADS, AN EXTRA AMOUNT OF COMPACTED COVER MAY BE REQUIRED OVER THE TOP OF THE PIPE. THE HEIGHT-OF-COVER SHALL MEET THE MINIMUM REQUIREMENTS SHOWN IN THE TABLE BELOW. THE USE OF HEAVY CONSTRUCTION EQUIPMENT NECESSITATES GREATER PROTECTION FOR THE PIPE THAN FINISHED GRADE COVER MINIMUMS FOR NORMAL HIGHWAY TRAFFIC.

PIPE SPAN, INCHES						
INCHES	18-50	50-75	75-110	110-150		
	MI	NIMUM C	OVER (F	-T)		
12-42	2.0	2.5	3.0	3.0		
48-72	3.0	3.0	3.5	4.0		
78-120	3.0	3.5	4.0	4.0		
126-144	3.5	4.0	4.5	4.5		

*MINIMUM COVER MAY VARY, DEPENDING ON LOCAL CONDITIONS. THE CONTRACTOR MUST PROVIDE THE ADDITIONAL COVER REQUIRED TO AVOID DAMAGE TO THE PIPE. MINIMUM COVER IS MEASURED FROM THE TOP OF THE PIPE TO THE TOP OF THE MAINTAINED CONSTRUCTION ROADWAY SURFACE.

CONSTRUCTION LOADING DIAGRAM

SCALE: N.T.S.

REVISION DESCRIPTION

SPECIFICATION FOR DESIGNED DETENTION SYSTEM:

SCOPE

THIS SPECIFICATION COVERS THE MANUFACTURE AND INSTALLATION OF THE DESIGNED DETENTION SYSTEM DETAILED IN THE PROJECT PLANS.

MATERIAL

THE MATERIAL SHALL CONFORM TO THE APPLICABLE REQUIREMENTS LISTED BELOW

ALUMINIZED TYPE 2 STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-274 OR ASTM A-92.

THE GALVANIZED STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-218 OR ASTM A-929.

THE POLYMER COATED STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-246 OR ASTM A-742.

THE ALUMINUM COILS SHALL CONFORM TO THE APPLICABLE OF AASHTO M-197 OR ASTM B-744.

CONSTRUCTION LOADS

CONSTRUCTION LOADS MAY BE HIGHER THAN FINAL LOADS. FOLLOW THE MANUFACTURER'S OR NCSPA GUIDELINES.

NOTE:	
THESE DRAWINGS ARE FOR CONCEPT	TUAL
PURPOSES AND DO NOT REFLECT AN	Y LOCAI
PREFERENCES OR REGULATIONS. PLI	EASE
CONTACT YOUR LOCAL CONTECH REP	P FOR
MODIFICATIONS.	
The design and information shown on this drawing is provided as a service to the project owner, engineer and contractor by	
Contech Engineered Solutions LLC ("Contech"). Neither this drawing, nor any part thereof, may be used, reproduced or	

TEMPLATE	drawing, nor any part thereor, may be used, n modified in any manner without the prior writh Contech. Failure to comply is done at the use Contech expressly disclaims any liability or re such use.
C:\EXPORTS\TEMPLATE	If discrepancies between the supplied informa the drawing is based and actual field condition as site work progresses, these discrepancies to Contech immediately for re-evaluation of th accepts no liability for designs based on miss insecurate information sumplied by others

PIPF THE PIPE SHALL BE MANUFACTURED IN ACCORDANCE TO THE APPLICABLE REQUIREMENTS LISTED BELOW:

ALUMINIZED TYPE 2: AASHTO M-36 OR ASTM A-760

GALVANIZED: AASHTO M-36 OR ASTM A-760

AFFOLICYANELIEE COATED: AASHTO M-245 OR ASTM A-762

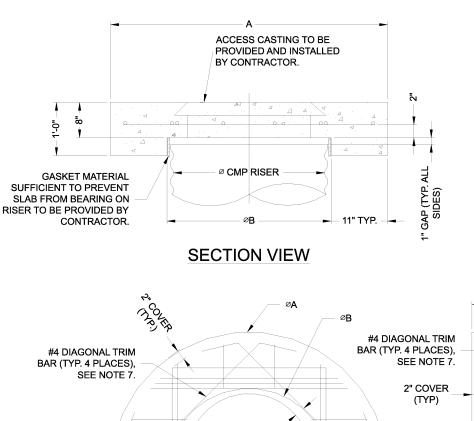
800-338-1122

BY

ALUMINUM: AASHTO M-196 OR ASTM B-745

APPLICABLE

HANDLING AND ASSEMBLY SHALL BE IN ACCORDANCE WITH NCSP'S (NATIONAL CORRUGATED STEEL AFFPEECABSEDCIATION) FOR ALUMINIZED TYPE 2. GALVANIZED OR POLYMER COATED STEEL. SHALL BE IN ACCORDANCE WITH THE MANUFACTURER'S RECOMMENDATIONS FOR ALUMINUM PIPE.


REQUIREMENTS

INSTALLATION SHALL BE IN ACCORDANCE WITH AASHTO STANDARD SPECIFICATIONS FOR HIGHWAY BRIDGES, SECTION 26, DIVISION II DIVISION II OR ASTM A-798 (FOR ALUMINIZED TYPE 2, GALVANIZED OR POLYMER COATED STEEL) OR ASTM B-788 (FOR ALUMINUM PIPE) AND IN CONFORMANCE WITH THE PROJECT PLANS AND SPECIFICATIONS. IF THERE ARE ANY INCONSISTENCIES OR CONFLICTS THE CONTRACTOR SHOULD DISCUSS AND RESOLVE WITH THE SITE ENGINEER.

IT IS ALWAYS THE RESPONSIBILITY OF THE CONTRACTOR TO FOLLOW OSHA GUIDELINES FOR SAFE PRACTICES.

513-645-7000 513-645-7993 FAX

REINFORCING, SEE TABLE

ROUND OPTION PLAN VIEW

NOTES:

OPENING IN PROTECTION SLAB FOR

CASTING

CUNTECH

CMP DETENTION SYSTEMS

CONTECH

DRAWING

DYODS

INTERRUPTED BAR

REPLACEMENT, SEE

NOTE 6.

- 1. DESIGN IN ACCORDANCE WITH AASHTO, 17th EDITION.
- 2. DESIGN LOAD HS25.
- 3. EARTH COVER = 1' MAX.
- 4. CONCRETE STRENGTH = 3,500 psi
- 5. REINFORCING STEEL = ASTM A615, GRADE 60.
- 6. PROVIDE ADDITIONAL REINFORCING AROUND OPENINGS EQUAL TO THE BARS INTERRUPTED, HALF EACH SIDE. ADDITIONAL BARS TO BE IN THE SAME PLANE.

DYO36317 20-001 Harvest Landing Retail Center and Business Park **Retail System - Northerly Chambers** Perris, CA **DETENTION SYSTEM**

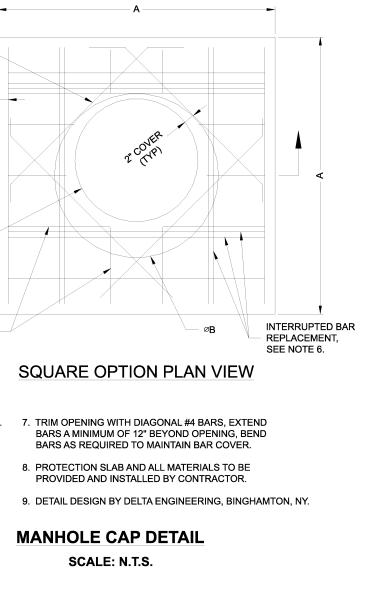
OPENING IN

PROTECTION SLAB FOR

CASTING

STANDARD

SEE TABLE

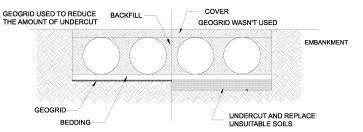

REINFORCING,

OR en consent of er's own risk an isponsibility for

DATE

expressly disclaims any liability or respon- t.	nsibili
ancies between the supplied information ing is based and actual field conditions a ork progresses, these discrepancies mus	re enc
ch immediately for re-evaluation of the de	esign.
no liability for designs based on missing,	incom
te information supplied by others.	

REINFORCING TABLE							
Ø CMP RISER			REINFORCING	**BEARING PRESSURE (PSF)			
24"	∞ 4' 4'X4'	26"	#5 @ 12" OCEW #5 @ 12" OCEW	2,410 1,780			
30"	∅ 4'-6" 4'-6" X 4'-6"	32"	#5 @ 12" OCEW #5 @ 12" OCEW	2,120 1,530			
36"	∞ 5' 5' X 5'	38"	#5 @ 10" OCEW #5 @ 10" OCEW	1,890 1,350			
42"	∅ 5'-6" 5'-6" X 5'-6"	44"	#5 @ 10" OCEW #5 @ 9" OCEW	1,720 1,210			
48"	∞ 6' 6' X 6'	50"	#5 @ 9" OCEW #5 @ 8" OCEW	1,600 1,100			


PROJECT No.: 24648	SEQ. 1 363		DATE: 9/26/20	023
DESIGNED: DYO		DRAW	N: DYO	
CHECKED: DYO		APPR	OVED: DYO	
SHEET NO .:				1

PROPER INSTALLATION OF A FLEXIBLE UNDERGROUND DETENTION SYSTEM WILL ENSURE LONG-TERM PERFORMANCE. THE CONFIGURATION OF THESE SYSTEMS OFTEN REQUIRES SPECIAL CONSTRUCTION PRACTICES THAT DIFFER FROM CONVENTIONAL FLEXIBLE PIPE CONSTRUCTION. CONTECH ENGINEERED SOLUTIONS STRONGLY SUGGESTS SCHEDULING A PRE-CONSTRUCTION MEETING WITH YOUR LOCAL SALES ENGINEER TO DETERMINE IF ADDITIONAL MEASURES, NOT COVERED IN THIS GUIDE, ARE APPROPRIATE FOR YOUR SITE.

FOUNDATION

CONSTRUCT A FOUNDATION THAT CAN SUPPORT THE DESIGN LOADING APPLIED BY THE PIPE AND ADJACENT BACKFILL WEIGHT AS WELL AS MAINTAIN ITS INTEGRITY DURING CONSTRUCTION.

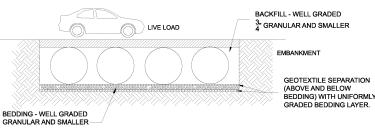
IF SOFT OR UNSUITABLE SOILS ARE ENCOUNTERED, REMOVE THE POOR SOILS DOWN TO A SUITABLE DEPTH AND THEN BUILD UP TO THE APPROPRIATE ELEVATION WITH A COMPETENT BACKFILL MATERIAL. THE STRUCTURAL FILL MATERIAL GRADATION SHOULD NOT ALLOW THE MIGRATION OF FINES, WHICH CAN CAUSE SETTLEMENT OF THE DETENTION SYSTEM OR PAVEMENT ABOVE. IF THE STRUCTURAL FILL MATERIAL IS NOT COMPATIBLE WITH THE UNDERLYING SOILS AN ENGINEERING FABRIC SHOULD BE USED AS A SEPARATOR IN SOME CASES, USING A STIFE REINFORCING GEOGRIF REDUCES OVER EXCAVATION AND REPLACEMENT FILL QUANTITIES.

GRADE THE FOUNDATION SUBGRADE TO A UNIFORM OR SLIGHTLY SLOPING GRADE. IF THE SUBGRADE IS CLAY OR RELATIVELY NON-POROUS AND THE CONSTRUCTION SEQUENCE WILL LAST FOR AN EXTENDED PERIOD OF TIME. IT IS BEST TO SLOPE THE GRADE TO ONE END OF THE SYSTEM. THIS WILL ALLOW EXCESS WATER TO DRAIN QUICKLY, PREVENTING SATURATION OF THE SUBGRADE

GEOMEMBRANE BARRIER

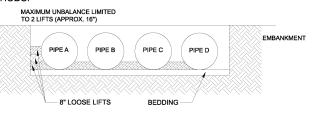
A SITE'S RESISTIVITY MAY CHANGE OVER TIME WHEN VARIOUS TYPES OF SALTING AGENTS ARE USED, SUCH AS ROAD SALTS FOR DEICING AGENTS. IF SALTING AGENTS ARE USED ON OR NEAR THE PROJECT SITE, A GEOMEMBRANE BARRIER IS RECOMMENDED WITH THE SYSTEM. THE GEOMEMBRANE LINER IS INTENDED TO HELP PROTECT THE SYSTEM FROM THE POTENTIAL ADVERSE EFFECTS THAT MAY RESULT FROM THE USE OF SUCH AGENTS INCLUDING PREMATURE CORROSION AND REDUCED ACTUAL SERVICE LIFE.

THE PROJECT'S ENGINEER OF RECORD IS TO EVALUATE WHETHER SALTING AGENTS WILL BE USED ON OR NEAR THE PROJECT SITE, AND USE HIS/HER BEST JUDGEMENT TO DETERMINE IF ANY ADDITIONAL PROTECTIVE MEASURES ARE REQUIRED. BELOW IS A TYPICAL DETAIL SHOWING THE PLACEMENT OF A GEOMEMBRANE BARRIER FOR PROJECTS WHERE SALTING AGENTS ARE USED ON OR NEAR THE PROJECT SITE.


20 MIL PE IMPERMEABLE (12" FOR 12"@ - 96"@) 18" FOR 102@ AND >)

asign and information shown on this drawing is provide ervice to the project owner, engineer and contractor by ch Engineered Solutions LLC ("Contech"). Neither this rawing, nor any part thereof, may be used, repr odified in any manner without the prior written consent ontech. Failure to comply is done at the user's own risk disclaims any liability or resp ween the supplied wing is based and actual field conditions are en work progresses, these discrepancies must be ech immediately for re-evaluation of the design no liability for designs based on missing, inco ate information sunplied by others DATE

IN-SITU TRENCH WALL

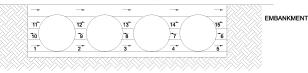

IF EXCAVATION IS REQUIRED, THE TRENCH WALL NEEDS TO BE CAPABLE OF SUPPORTING THE LOAD THAT THE PIPE SHEDS AS THE SYSTEM IS LOADED. IF SOILS ARE NOT CAPABLE OF SUPPORTING THESE LOADS, THE PIPE CAN DEFLECT PERFORM A SIMPLE SOIL PRESSURE CHECK USING THE APPLIED LOADS TO DETERMINE THE LIMITS OF EXCAVATION BEYOND THE SPRING LINE OF THE OUTER MOST PIPES.

IN MOST CASES THE REQUIREMENTS FOR A SAFE WORK ENVIRONMENT AND PROPER BACKFILL PLACEMENT AND COMPACTION TAKE CARE OF THIS CONCERN.

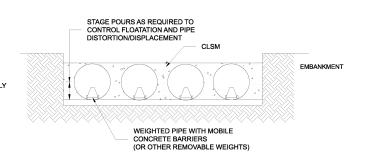
BACKFILL PLACEMENT

MATERIAL SHALL BE WORKED INTO THE PIPE HAUNCHES BY MEANS OF SHOVEL-SLICING, RODDING, AIR TAMPER, VIBRATORY ROD, OR OTHER EFFECTIVE METHODS

IF AASHTO T99 PROCEDURES ARE DETERMINED INFEASIBLE BY THE GEOTECHNICAL ENGINEER OF RECORD. COMPACTION IS CONSIDERED ADEQUATE WHEN NO FURTHER YIELDING OF THE MATERIAL IS OBSERVED. UNDER THE COMPACTOR, OR UNDER FOOT, AND THE GEOTECHNICAL ENGINEER OF RECORD (OR REPRESENTATIVE THEREOF) IS SATISFIED WITH THE LEVEL OF COMPACTION.


FOR LARGE SYSTEMS, CONVEYOR SYSTEMS, BACKHOES WITH LONG REACHES OR DRAGLINES WITH STONE BUCKETS MAY BE USED TO PLACE BACKFILL, ONCE MINIMUM COVER FOR CONSTRUCTION LOADING ACROSS THE ENTIRE WIDTH OF THE SYSTEM IS REACHED. ADVANCE THE EQUIPMENT TO THE END OF THE RECENTLY PLACED FILL, AND BEGIN THE SEQUENCE AGAIN UNTIL THE SYSTEM IS COMPLETELY BACKFILLED. THIS TYPE OF CONSTRUCTION SEQUENCE PROVIDES ROOM FOR STOCKPILED BACKFILL DIRECTLY BEHIND THE BACKHOF, AS WELL AS THE MOVEMENT OF CONSTRUCTION TRAFFIC. MATERIAL STOCKPILES ON TOP OF THE BACKFILLED DETENTION SYSTEM SHOULD BE LIMITED TO 8- TO 10-FEET HIGH AND MUST PROVIDE BALANCED LOADING ACROSS ALL BARRELS. TO DETERMINE THE PROPER COVER OVER THE PIPES TO ALLOW THE MOVEMENT OF CONSTRUCTION EQUIPMENT SEE TABLE 1, OR CONTACT YOUR LOCAL CONTECH SALES ENGINEER.

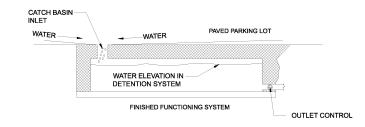
TYPICAL BACKFILL SEQUENCE


800-338-1122

BY

REVISION DESCRIPTION

WHEN FLOWABLE FILL IS USED. YOU MUST PREVENT PIPE FLOATATION TYPICALLY, SMALL LIFTS ARE PLACED BETWEEN THE PIPES AND THEN ALLOWED TO SET-UP PRIOR TO THE PLACEMENT OF THE NEXT LIFT. THE ALLOWABLE THICKNESS OF THE CLSM LIFT IS A FUNCTION OF A PROPER BALANCE BETWEEN THE UPLIFT FORCE OF THE CLSM, THE OPPOSING WEIGHT OF THE PIPE, AND THE EFFECT OF OTHER RESTRAINING MEASURES. THE PIPE CAN CARRY LIMITED FLUID PRESSURE WITHOUT PIPE DISTORTION OR DISPLACEMENT, WHICH ALSO AFFECTS THE CLSM LIFT THICKNESS. YOUR LOCAL CONTECH SALES ENGINEER CAN HELP DETERMINE THE PROPER LIFT THICKNESS.



CONSTRUCTION LOADING

ACCUMULATED SEDIMENT AND TRASH CAN TYPICALLY BE EVACUATED TYPICALLY, THE MINIMUM COVER SPECIFIED FOR A PROJECT ASSUMES H-20 THROUGH THE MANHOLE OVER THE OUTLET ORIFICE. IF MAINTENANCE IS NOT LIVE LOAD. BECAUSE CONSTRUCTION LOADS OFTEN EXCEED DESIGN LIVE PERFORMED AS RECOMMENDED, SEDIMENT AND TRASH MAY ACCUMULATE IN LOADS, INCREASED TEMPORARY MINIMUM COVER REQUIREMENTS ARE FRONT OF THE OUTLET ORIFICE. MANHOLE COVERS SHOULD BE SECURELY SEATED FOLLOWING CLEANING ACTIVITIES. CONTECH SUGGESTS THAT ALL NECESSARY. SINCE CONSTRUCTION EQUIPMENT VARIES FROM JOB TO JOB, SYSTEMS BE DESIGNED WITH AN ACCESS/INSPECTION MANHOLE SITUATED AT IT IS BEST TO ADDRESS EQUIPMENT SPECIFIC MINIMUM COVER OR NEAR THE INLET AND THE OUTLET ORIFICE. SHOULD IT BE NECESSARY TO REQUIREMENTS WITH YOUR LOCAL CONTECH SALES ENGINEER DURING GET INSIDE THE SYSTEM TO PERFORM MAINTENANCE ACTIVITIES, ALL APPROPRIATE PRECAUTIONS REGARDING CONFINED SPACE ENTRY AND OSHA YOUR PRE-CONSTRUCTION MEETING. REGULATIONS SHOULD BE FOLLOWED.

ADDITIONAL CONSIDERATIONS

BECAUSE MOST SYSTEMS ARE CONSTRUCTED BELOW-GRADE, RAINFALL AS PART OF THE MAINTENANCE PROGRAM FOR THE SYSTEM. CAN RAPIDLY FILL THE EXCAVATION; POTENTIALLY CAUSING FLOATATION MAINTAINING AN UNDERGROUND DETENTION OR INFILTRATION SYSTEM IS AND MOVEMENT OF THE PREVIOUSLY PLACED PIPES. TO HELP MITIGATE EASIEST WHEN THERE IS NO FLOW ENTERING THE SYSTEM. FOR THIS POTENTIAL PROBLEMS, IT IS BEST TO START THE INSTALLATION AT THE REASON. IT IS A GOOD IDEA TO SCHEDULE THE CLEANOUT DURING DRY DOWNSTREAM END WITH THE OUTLET ALREADY CONSTRUCTED TO ALLOW WEATHER A ROUTE FOR THE WATER TO ESCAPE. TEMPORARY DIVERSION MEASURES MAY BE REQUIRED FOR HIGH FLOWS DUE TO THE RESTRICTED NATURE OF THE OUTLET PIPE.

CANTECH CINTECH CMP DETENTION SYSTEMS ENGINEERED SOLUTIONS LLC www.ContechES.com CONTECH 9025 Centre Pointe Dr., Suite 400, West Chester, OH 45069 DYODS 513-645-7000 513-645-7993 FAX DRAWING

DYO36317 20-001 Harvest Landing Reta Retail System - Northerly Perris, CA DETENTION SYSTEM

CMP DETENTION SYSTEM INSPECTION AND MAINTENANCE

UNDERGROUND STORMWATER DETENTION AND INFILTRATION SYSTEMS MUST BE INSPECTED AND MAINTAINED AT REGULAR INTERVALS FOR PURPOSES OF PERFORMANCE AND LONGEVITY.

INSPECTION

INSPECTION IS THE KEY TO EFFECTIVE MAINTENANCE OF CMP DETENTION SYSTEMS AND IS EASILY PERFORMED. CONTECH RECOMMENDS ONGOING, ANNUAL INSPECTIONS. SITES WITH HIGH TRASH LOAD OR SMALL OUTLET CONTROL ORIFICES MAY NEED MORE FREQUENT INSPECTIONS. THE RATE AT WHICH THE SYSTEM COLLECTS POLLUTANTS WILL DEPEND MORE ON SITE SPECIFIC ACTIVITIES RATHER THAN THE SIZE OR CONFIGURATION OF THE SYSTEM.

INSPECTIONS SHOULD BE PERFORMED MORE OFTEN IN EQUIPMENT WASHDOWN AREAS. IN CLIMATES WHERE SANDING AND/OR SALTING OPERATIONS TAKE PLACE, AND IN OTHER VARIOUS INSTANCES IN WHICH ONE WOULD EXPECT HIGHER ACCUMULATIONS OF SEDIMENT OR ABRASIVE/ CORROSIVE CONDITIONS. A RECORD OF EACH INSPECTION IS TO BE MAINTAINED FOR THE LIFE OF THE SYSTEM

MAINTENANCE

CMP DETENTION SYSTEMS SHOULD BE CLEANED WHEN AN INSPECTION REVEALS ACCUMULATED SEDIMENT OR TRASH IS CLOGGING THE DISCHARGE ORIFICE.

ANNUAL INSPECTIONS ARE BEST PRACTICE FOR ALL UNDERGROUND SYSTEMS. DURING THIS INSPECTION, IF EVIDENCE OF SALTING/DE-ICING AGENTS IS OBSERVED WITHIN THE SYSTEM, IT IS BEST PRACTICE FOR THE SYSTEM TO BE RINSED, INCLUDING ABOVE THE SPRING LINE SOON AFTER THE SPRING THAW

THE FOREGOING INSPECTION AND MAINTENANCE EFFORTS HELP ENSURE UNDERGROUND PIPE SYSTEMS USED FOR STORMWATER STORAGE CONTINUE TO FUNCTION AS INTENDED BY IDENTIFYING RECOMMENDED REGULAR INSPECTION AND MAINTENANCE PRACTICES. INSPECTION AND MAINTENANCE RELATED TO THE STRUCTURAL INTEGRITY OF THE PIPE OR THE SOUNDNESS OF PIPE JOINT CONNECTIONS IS BEYOND THE SCOPE OF THIS GUIDE.

ail Center and	Business	Park
y Chambers		

PROJECT No.: 24648	SEQ.	No.: 317	DATE: 9/26/2023
24040		517	9/20/2023
DESIGNED:		DRAWN:	
DYO	DYO		DYO
CHECKED:		APPROVED:	
DYO			DYO
SHEET NO .:			
			1

PROJECT SUMMARY

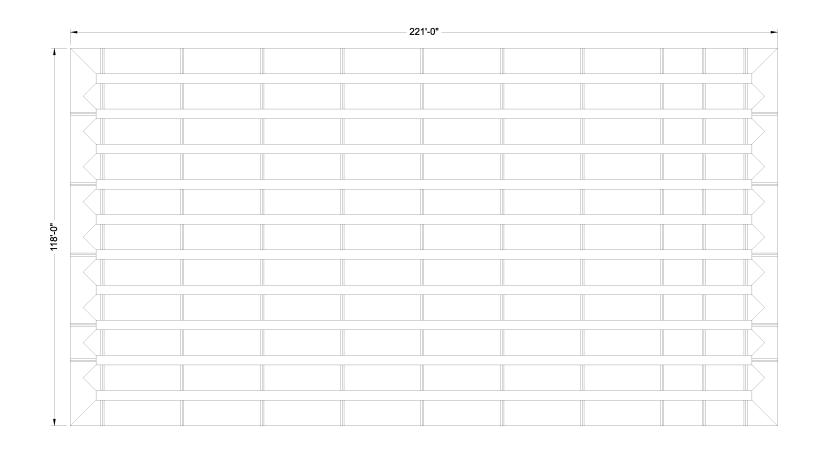
CALCULATION DETAILS • LOADING = HS20/HS25 • APPROX. LINEAR FOOTAGE = 2,491 LF

STORAGE SUMMARY

- STORAGE VOLUME REQUIRED = N/A
- PIPE STORAGE VOLUME = 125,211 CF
- BACKFILL STORAGE VOLUME = 0 CF
- TOTAL STORAGE PROVIDED = 125,211 CF

PIPE DETAILS

- DIAMETER = 96"
- CORRUGATION = 5x1
- GAGE = 16
- COATING = ALT2
- WALL TYPE = SOLID
- BARREL SPACING = 36"

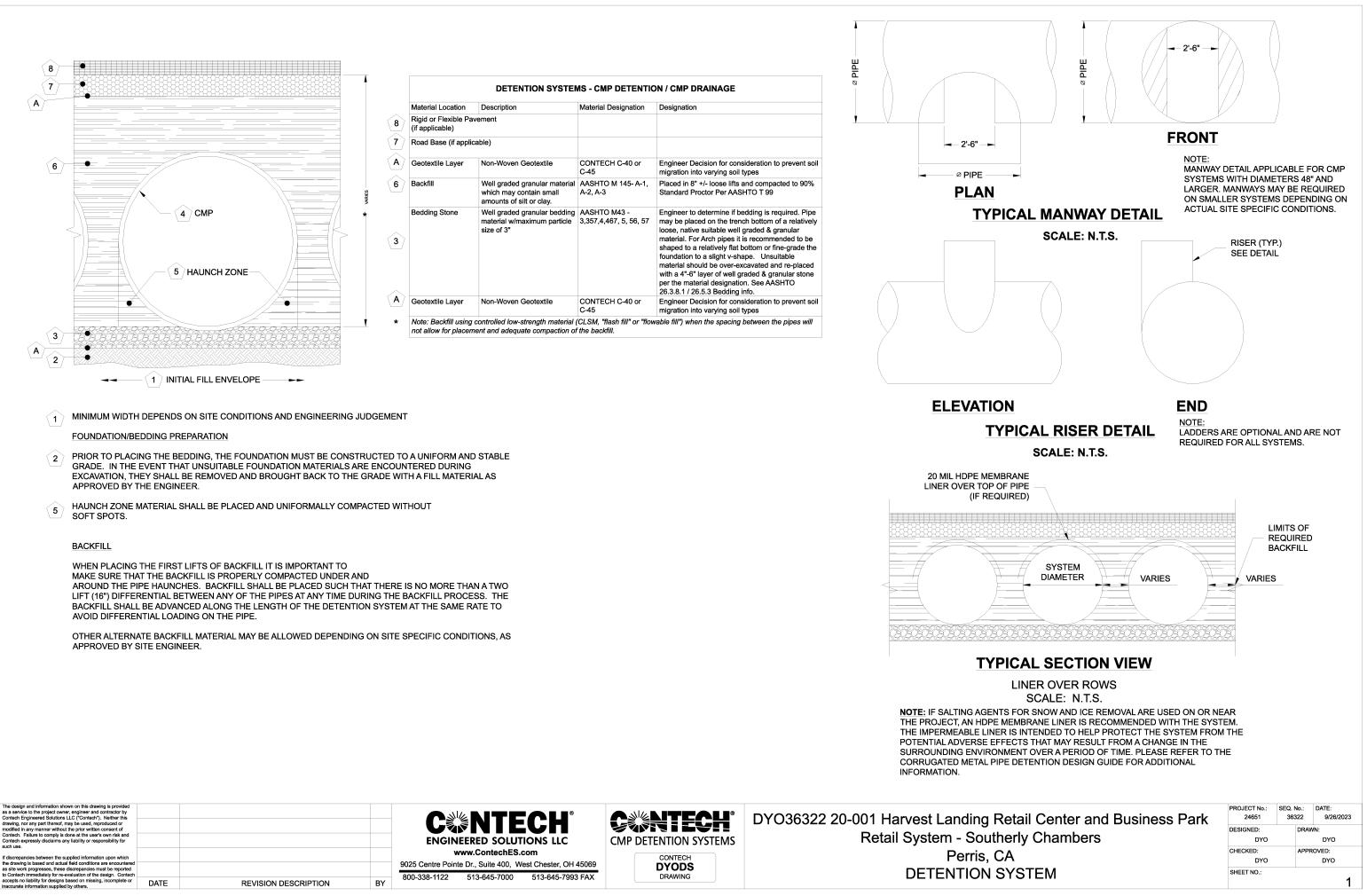

BACKFILL DETAILS

- WIDTH AT ENDS = 12"
- ABOVE PIPE = 0" • WIDTH AT SIDES = 12"
- BELOW PIPE = 0"

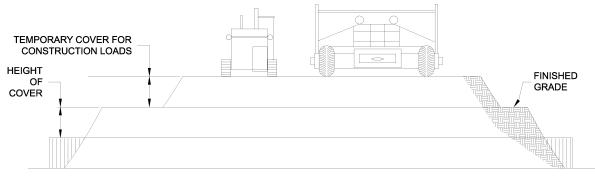
NOTES

- ALL RISER AND STUB DIMENSIONS ARE TO CENTERLINE. ALL ELEVATIONS, DIMENSIONS, AND LOCATIONS OF RISERS AND INLETS, SHALL BE VERIFIED BY THE ENGINEER OF RECORD PRIOR TO RELEASING FOR FABRICATION.
- ALL FITTINGS AND REINFORCEMENT COMPLY WITH ASTM A998.
- ALL RISERS AND STUBS ARE $2^2_{/3}$ " x $1^{/2}_{/2}$ " CORRUGATION AND 16 GAGE UNLESS OTHERWISE NOTED. RISERS TO BE FIELD TRIMMED TO GRADE.
- QUANTITY OF PIPE SHOWN DOES NOT PROVIDE EXTRA PIPE FOR CONNECTING THE SYSTEM TO EXISTING PIPE OR DRAINAGE STRUCTURES. OUR SYSTEM AS DETAILED PROVIDES NOMINAL INLET AND/OR OUTLET PIPE STUB FOR CONNECTION TO EXISTING DRAINAGE FACILITIES. IF ADDITIONAL PIPE IS NEEDED IT IS THE RESPONSIBILITY OF THE CONTRACTOR.
- BAND TYPE TO BE DETERMINED UPON FINAL DESIGN. • THE PROJECT SUMMARY IS REFLECTIVE OF THE DYODS DESIGN, QUANTITIES ARE APPROX. AND SHOULD BE VERIFIED UPON FINAL DESIGN AND APPROVAL. FOR EXAMPLE, TOTAL EXCAVATION DOES NOT CONSIDER ALL VARIABLES SUCH AS SHORING AND ONLY ACCOUNTS FOR MATERIAL WITHIN THE

Che design and information shown on this drawing is provided as a service to the project owner, engineer and contractor by the owner of the project owner, engineer and contractor by drawing, nor any part thrend, may be used, reproduced or drawing, nor any part thrend, the prior written consent of Contech. Failure to comply is done at the user's own risk and Contech expressly disclaims any liability or responsibility for such use.		ENGINEERED SOLUTIONS LLC	CONTECH CMP DETENTION SYSTEMS	DYO36322 20-001 Harve Retail Sy
If discrepancies between the supplied information upon which the drawing is based and actual field conditions are encountered as site work progresses, these discrepancies must be reported to contech immediately for re-evaluation of the design. Contech accepts ho liability for designs based on missing, incomplete or inaccurate information supplied by others.	REVISION DESCRIPTION BY	www.ContechES.com 9025 Centre Pointe Dr., Suite 400, West Chester, OH 45069 800-338-1122 513-645-7000 513-645-7993 FAX	CONTECH DYODS DRAWING	DI



est Landing Retail Center and Business Park ystem - Southerly Chambers


PROJECT No.: 24651	SEQ. 1 363	No.: 322	DATE: 9/26/2023
DESIGNED:	DRAW		/N:
DYO	DYO		DYO
CHECKED:		APPR	OVED:
DYO			DYO
SHEET NO .:			
			1

ETENTION SYSTEM

Perris, CA

expressiy discial e.
pancies between ving is based and vork progresses, t ch immediately fo no liability for des te information sup

CONSTRUCTION LOADS

FOR TEMPORARY CONSTRUCTION VEHICLE LOADS, AN EXTRA AMOUNT OF COMPACTED COVER MAY BE REQUIRED OVER THE TOP OF THE PIPE. THE HEIGHT-OF-COVER SHALL MEET THE MINIMUM REQUIREMENTS SHOWN IN THE TABLE BELOW. THE USE OF HEAVY CONSTRUCTION EQUIPMENT NECESSITATES GREATER PROTECTION FOR THE PIPE THAN FINISHED GRADE COVER MINIMUMS FOR NORMAL HIGHWAY TRAFFIC.

PIPE SPAN, INCHES	, AXLE LOADS (kips)				
INCHES	18-50	50-75	75-110	110-150	
	MINIMUM COVER (FT)				
12-42	2.0	2.5	3.0	3.0	
48-72	3.0	3.0	3.5	4.0	
78-120	3.0	3.5	4.0	4.0	
126-144	3.5	4.0	4.5	4.5	

*MINIMUM COVER MAY VARY, DEPENDING ON LOCAL CONDITIONS. THE CONTRACTOR MUST PROVIDE THE ADDITIONAL COVER REQUIRED TO AVOID DAMAGE TO THE PIPE. MINIMUM COVER IS MEASURED FROM THE TOP OF THE PIPE TO THE TOP OF THE MAINTAINED CONSTRUCTION ROADWAY SURFACE.

CONSTRUCTION LOADING DIAGRAM

SCALE: N.T.S.

REVISION DESCRIPTION

SPECIFICATION FOR DESIGNED DETENTION SYSTEM:

SCOPE

THIS SPECIFICATION COVERS THE MANUFACTURE AND INSTALLATION OF THE DESIGNED DETENTION SYSTEM DETAILED IN THE PROJECT PLANS.

MATERIAI

THE MATERIAL SHALL CONFORM TO THE APPLICABLE REQUIREMENTS LISTED BELOW

ALUMINIZED TYPE 2 STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-274 OR ASTM A-92.

THE GALVANIZED STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-218 OR ASTM A-929.

THE POLYMER COATED STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-246 OR ASTM A-742.

THE ALUMINUM COILS SHALL CONFORM TO THE APPLICABLE OF AASHTO M-197 OR ASTM B-744.

CONSTRUCTION LOADS

CONSTRUCTION LOADS MAY BE HIGHER THAN FINAL LOADS. FOLLOW THE MANUFACTURER'S OR NCSPA GUIDELINES.

DATE

NOTE:	
THESE DRAWINGS ARE FOR CONCEPT	TUAL
PURPOSES AND DO NOT REFLECT AN	Y LOCAL
PREFERENCES OR REGULATIONS. PLI	EASE
CONTACT YOUR LOCAL CONTECH REP	P FOR
MODIFICATIONS.	
The design and information shown on this drawing is provided as a service to the project owner, engineer and contractor by	
Contech Engineered Solutions LLC ("Contech"). Neither this drawing nor any part thereof may be used reproduced or	

PIPF

THE PIPE SHALL BE MANUFACTURED IN ACCORDANCE TO THE APPLICABLE REQUIREMENTS LISTED BELOW:

ALUMINIZED TYPE 2: AASHTO M-36 OR ASTM A-760

GALVANIZED: AASHTO M-36 OR ASTM A-760

AFFOLICYANELIEE COATED: AASHTO M-245 OR ASTM A-762

800-338-1122

BY

ALUMINUM: AASHTO M-196 OR ASTM B-745

APPLICABLE

HANDLING AND ASSEMBLY SHALL BE IN ACCORDANCE WITH NCSP'S (NATIONAL CORRUGATED STEEL

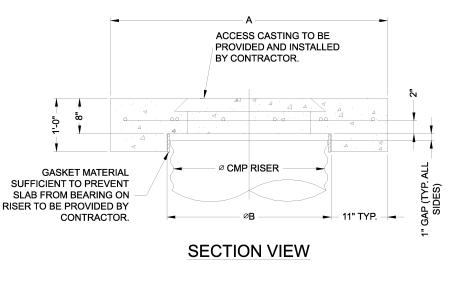
AFFPEECABSEDCIATION) FOR ALUMINIZED TYPE 2. GALVANIZED OR POLYMER COATED STEEL. SHALL BE IN ACCORDANCE WITH THE MANUFACTURER'S RECOMMENDATIONS FOR ALUMINUM PIPE.

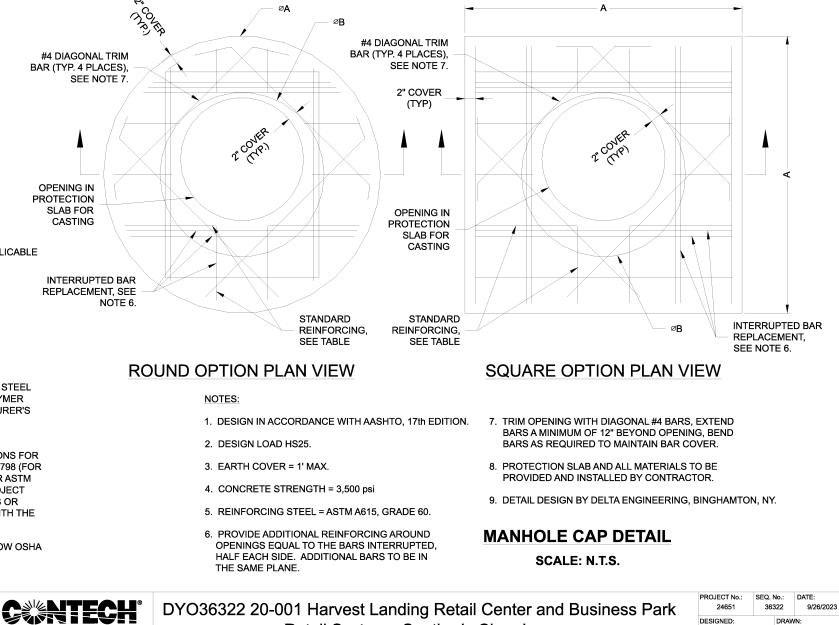
REQUIREMENTS

INSTALLATION

SHALL BE IN ACCORDANCE WITH AASHTO STANDARD SPECIFICATIONS FOR HIGHWAY BRIDGES, SECTION 26, DIVISION II DIVISION II OR ASTM A-798 (FOR ALUMINIZED TYPE 2, GALVANIZED OR POLYMER COATED STEEL) OR ASTM B-788 (FOR ALUMINUM PIPE) AND IN CONFORMANCE WITH THE PROJECT PLANS AND SPECIFICATIONS. IF THERE ARE ANY INCONSISTENCIES OR CONFLICTS THE CONTRACTOR SHOULD DISCUSS AND RESOLVE WITH THE SITE ENGINEER.

IT IS ALWAYS THE RESPONSIBILITY OF THE CONTRACTOR TO FOLLOW OSHA GUIDELINES FOR SAFE PRACTICES.


513-645-7000 513-645-7993 FAX


CMP DETENTION SYSTEMS

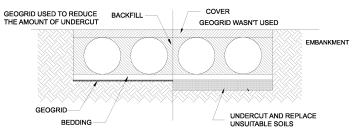
CONTECH

DYODS

DRAWING

DYO36322 20-001 Harvest Landing Retail Center and Business Park **Retail System - Southerly Chambers** Perris, CA **DETENTION SYSTEM**

	RE	EINFO	RCING TABLE	
Ø CMP RISER	Α	ØB	REINFORCING	**BEARING PRESSURE (PSF)
24"	∞ 4' 4'X4'	26"	#5 @ 12" OCEW #5 @ 12" OCEW	2,410 1,780
30"	∅ 4'-6" 4'-6" X 4'-6"	32"	#5 @ 12" OCEW #5 @ 12" OCEW	2,120 1,530
36"	∞ 5' 5' X 5'	38"	#5 @ 10" OCEW #5 @ 10" OCEW	1,890 1,350
42"	∅ 5'-6" 5'-6" X 5'-6"	44"	#5 @ 10" OCEW #5 @ 9" OCEW	1,720 1,210
48"	∞6'6'6' X6'	50"	#5 @ 9" OCEW #5 @ 8" OCEW	1,600 1,100


PROJECT No.: 24651	SEQ. No.: 36322		DATE: 9/26/2023	
DESIGNED:	DRAW		/N:	
DYO	DYO		DYO	
CHECKED:		APPR	OVED:	
DYO			DYO	
SHEET NO .:				
			1	

PROPER INSTALLATION OF A FLEXIBLE UNDERGROUND DETENTION SYSTEM WILL ENSURE LONG-TERM PERFORMANCE. THE CONFIGURATION OF THESE SYSTEMS OFTEN REQUIRES SPECIAL CONSTRUCTION PRACTICES THAT DIFFER FROM CONVENTIONAL FLEXIBLE PIPE CONSTRUCTION. CONTECH ENGINEERED SOLUTIONS STRONGLY SUGGESTS SCHEDULING A PRE-CONSTRUCTION MEETING WITH YOUR LOCAL SALES ENGINEER TO DETERMINE IF ADDITIONAL MEASURES, NOT COVERED IN THIS GUIDE, ARE APPROPRIATE FOR YOUR SITE.

FOUNDATION

CONSTRUCT A FOUNDATION THAT CAN SUPPORT THE DESIGN LOADING APPLIED BY THE PIPE AND ADJACENT BACKFILL WEIGHT AS WELL AS MAINTAIN ITS INTEGRITY DURING CONSTRUCTION.

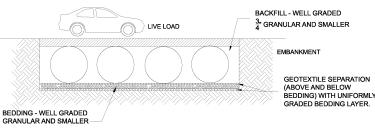
IF SOFT OR UNSUITABLE SOILS ARE ENCOUNTERED, REMOVE THE POOR SOILS DOWN TO A SUITABLE DEPTH AND THEN BUILD UP TO THE APPROPRIATE ELEVATION WITH A COMPETENT BACKFILL MATERIAL. THE STRUCTURAL FILL MATERIAL GRADATION SHOULD NOT ALLOW THE MIGRATION OF FINES, WHICH CAN CAUSE SETTLEMENT OF THE DETENTION SYSTEM OR PAVEMENT ABOVE. IF THE STRUCTURAL FILL MATERIAL IS NOT COMPATIBLE WITH THE UNDERLYING SOILS AN ENGINEERING FABRIC SHOULD BE USED AS A SEPARATOR IN SOME CASES, USING A STIFE REINFORCING GEOGRIF REDUCES OVER EXCAVATION AND REPLACEMENT FILL QUANTITIES.

GRADE THE FOUNDATION SUBGRADE TO A UNIFORM OR SLIGHTLY SLOPING GRADE. IF THE SUBGRADE IS CLAY OR RELATIVELY NON-POROUS AND THE CONSTRUCTION SEQUENCE WILL LAST FOR AN EXTENDED PERIOD OF TIME. IT IS BEST TO SLOPE THE GRADE TO ONE END OF THE SYSTEM. THIS WILL ALLOW EXCESS WATER TO DRAIN QUICKLY, PREVENTING SATURATION OF THE SUBGRADE

GEOMEMBRANE BARRIER

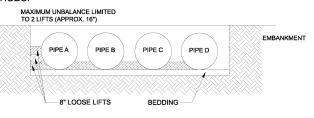
A SITE'S RESISTIVITY MAY CHANGE OVER TIME WHEN VARIOUS TYPES OF SALTING AGENTS ARE USED, SUCH AS ROAD SALTS FOR DEICING AGENTS. IF SALTING AGENTS ARE USED ON OR NEAR THE PROJECT SITE, A GEOMEMBRANE BARRIER IS RECOMMENDED WITH THE SYSTEM. THE GEOMEMBRANE LINER IS INTENDED TO HELP PROTECT THE SYSTEM FROM THE POTENTIAL ADVERSE EFFECTS THAT MAY RESULT FROM THE USE OF SUCH AGENTS INCLUDING PREMATURE CORROSION AND REDUCED ACTUAL SERVICE LIFE.

THE PROJECT'S ENGINEER OF RECORD IS TO EVALUATE WHETHER SALTING AGENTS WILL BE USED ON OR NEAR THE PROJECT SITE, AND USE HIS/HER BEST JUDGEMENT TO DETERMINE IF ANY ADDITIONAL PROTECTIVE MEASURES ARE REQUIRED. BELOW IS A TYPICAL DETAIL SHOWING THE PLACEMENT OF A GEOMEMBRANE BARRIER FOR PROJECTS WHERE SALTING AGENTS ARE USED ON OR NEAR THE PROJECT SITE.


20 MIL PE IMPERMEABLE (12" FOR 12"@ - 96"@) 18" FOR 102@ AND >)

asign and information shown on this drawing is provide ervice to the project owner, engineer and contractor by ch Engineered Solutions LLC ("Contech"). Neither this rawing, nor any part thereof, may be used, repr odified in any manner without the prior written consent ontech. Failure to comply is done at the user's own risk disclaims any liability or resp ween the supplied wing is based and actual field conditions are en work progresses, these discrepancies must be ech immediately for re-evaluation of the design no liability for designs based on missing, inco ate information sunplied by others DATE

IN-SITU TRENCH WALL


IF EXCAVATION IS REQUIRED, THE TRENCH WALL NEEDS TO BE CAPABLE OF SUPPORTING THE LOAD THAT THE PIPE SHEDS AS THE SYSTEM IS LOADED. IF SOILS ARE NOT CAPABLE OF SUPPORTING THESE LOADS, THE PIPE CAN DEFLECT PERFORM A SIMPLE SOIL PRESSURE CHECK USING THE APPLIED LOADS TO DETERMINE THE LIMITS OF EXCAVATION BEYOND THE SPRING LINE OF THE OUTER MOST PIPES.

IN MOST CASES THE REQUIREMENTS FOR A SAFE WORK ENVIRONMENT AND PROPER BACKFILL PLACEMENT AND COMPACTION TAKE CARE OF THIS CONCERN.

BACKFILL PLACEMENT

MATERIAL SHALL BE WORKED INTO THE PIPE HAUNCHES BY MEANS OF SHOVEL-SLICING, RODDING, AIR TAMPER, VIBRATORY ROD, OR OTHER EFFECTIVE METHODS

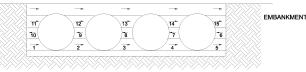
IF AASHTO T99 PROCEDURES ARE DETERMINED INFEASIBLE BY THE GEOTECHNICAL ENGINEER OF RECORD. COMPACTION IS CONSIDERED ADEQUATE WHEN NO FURTHER YIELDING OF THE MATERIAL IS OBSERVED. UNDER THE COMPACTOR, OR UNDER FOOT, AND THE GEOTECHNICAL ENGINEER OF RECORD (OR REPRESENTATIVE THEREOF) IS SATISFIED WITH THE LEVEL OF COMPACTION.

FOR LARGE SYSTEMS, CONVEYOR SYSTEMS, BACKHOES WITH LONG REACHES OR DRAGLINES WITH STONE BUCKETS MAY BE USED TO PLACE BACKFILL, ONCE MINIMUM COVER FOR CONSTRUCTION LOADING ACROSS THE ENTIRE WIDTH OF THE SYSTEM IS REACHED. ADVANCE THE EQUIPMENT TO THE END OF THE RECENTLY PLACED FILL, AND BEGIN THE SEQUENCE AGAIN UNTIL THE SYSTEM IS COMPLETELY BACKFILLED. THIS TYPE OF CONSTRUCTION SEQUENCE PROVIDES ROOM FOR STOCKPILED BACKFILL DIRECTLY BEHIND THE BACKHOF, AS WELL AS THE MOVEMENT OF CONSTRUCTION TRAFFIC. MATERIAL STOCKPILES ON TOP OF THE BACKFILLED DETENTION SYSTEM SHOULD BE LIMITED TO 8- TO 10-FEET HIGH AND MUST PROVIDE BALANCED LOADING ACROSS ALL BARRELS. TO DETERMINE THE PROPER COVER OVER THE PIPES TO ALLOW THE MOVEMENT OF CONSTRUCTION EQUIPMENT SEE TABLE 1, OR CONTACT YOUR LOCAL CONTECH SALES ENGINEER.

CINTECH

ENGINEERED SOLUTIONS LLC

9025 Centre Pointe Dr., Suite 400, West Chester, OH 45069


www.ContechES.com

513-645-7000

800-338-1122

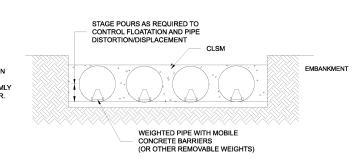
BY

REVISION DESCRIPTION

CANTECH CMP DETENTION SYSTEMS

THE FOREGOING INSPECTION AND MAINTENANCE EFFORTS HELP ENSURE UNDERGROUND PIPE SYSTEMS USED FOR STORMWATER STORAGE CONTINUE TO FUNCTION AS INTENDED BY IDENTIFYING RECOMMENDED REGULAR INSPECTION AND MAINTENANCE PRACTICES. INSPECTION AND MAINTENANCE RELATED TO THE STRUCTURAL INTEGRITY OF THE PIPE OR THE SOUNDNESS OF PIPE JOINT CONNECTIONS IS BEYOND THE SCOPE OF THIS GUIDE. PAVED PARKING LOT WATER WATER ELEVATION IN DETENTION SYSTEM

OUTLET CONTROL



DYODS

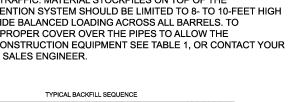
DRAWING

DYO36322 20-001 Harvest Landing Reta Retail System - Southerly Perris, CA DETENTION SYSTEM

WHEN FLOWABLE FILL IS USED, YOU MUST PREVENT PIPE FLOATATION TYPICALLY, SMALL LIFTS ARE PLACED BETWEEN THE PIPES AND THEN ALLOWED TO SET-UP PRIOR TO THE PLACEMENT OF THE NEXT LIFT. THE ALLOWABLE THICKNESS OF THE CLSM LIFT IS A FUNCTION OF A PROPER BALANCE BETWEEN THE UPLIFT FORCE OF THE CLSM, THE OPPOSING WEIGHT OF THE PIPE, AND THE EFFECT OF OTHER RESTRAINING MEASURES. THE PIPE CAN CARRY LIMITED FLUID PRESSURE WITHOUT PIPE DISTORTION OR DISPLACEMENT, WHICH ALSO AFFECTS THE CLSM LIFT THICKNESS. YOUR LOCAL CONTECH SALES ENGINEER CAN HELP DETERMINE THE PROPER LIFT THICKNESS.

ACCUMULATED SEDIMENT AND TRASH CAN TYPICALLY BE EVACUATED TYPICALLY, THE MINIMUM COVER SPECIFIED FOR A PROJECT ASSUMES H-20 THROUGH THE MANHOLE OVER THE OUTLET ORIFICE. IF MAINTENANCE IS NOT LIVE LOAD. BECAUSE CONSTRUCTION LOADS OFTEN EXCEED DESIGN LIVE PERFORMED AS RECOMMENDED, SEDIMENT AND TRASH MAY ACCUMULATE IN LOADS, INCREASED TEMPORARY MINIMUM COVER REQUIREMENTS ARE FRONT OF THE OUTLET ORIFICE. MANHOLE COVERS SHOULD BE SECURELY SEATED FOLLOWING CLEANING ACTIVITIES. CONTECH SUGGESTS THAT ALL NECESSARY. SINCE CONSTRUCTION EQUIPMENT VARIES FROM JOB TO JOB, SYSTEMS BE DESIGNED WITH AN ACCESS/INSPECTION MANHOLE SITUATED AT IT IS BEST TO ADDRESS EQUIPMENT SPECIFIC MINIMUM COVER OR NEAR THE INLET AND THE OUTLET ORIFICE. SHOULD IT BE NECESSARY TO REQUIREMENTS WITH YOUR LOCAL CONTECH SALES ENGINEER DURING GET INSIDE THE SYSTEM TO PERFORM MAINTENANCE ACTIVITIES, ALL APPROPRIATE PRECAUTIONS REGARDING CONFINED SPACE ENTRY AND OSHA YOUR PRE-CONSTRUCTION MEETING. REGULATIONS SHOULD BE FOLLOWED.

ADDITIONAL CONSIDERATIONS


CATCH BASIN

INLET

WATER

BECAUSE MOST SYSTEMS ARE CONSTRUCTED BELOW-GRADE, RAINFALL CAN RAPIDLY FILL THE EXCAVATION; POTENTIALLY CAUSING FLOATATION AND MOVEMENT OF THE PREVIOUSLY PLACED PIPES. TO HELP MITIGATE POTENTIAL PROBLEMS, IT IS BEST TO START THE INSTALLATION AT THE DOWNSTREAM END WITH THE OUTLET ALREADY CONSTRUCTED TO ALLOW A ROUTE FOR THE WATER TO ESCAPE. TEMPORARY DIVERSION MEASURES MAY BE REQUIRED FOR HIGH FLOWS DUE TO THE RESTRICTED NATURE OF THE OUTLET PIPE.

FINISHED FUNCTIONING SYSTEM

513-645-7993 FAX

CMP DETENTION SYSTEM INSPECTION AND MAINTENANCE

UNDERGROUND STORMWATER DETENTION AND INFILTRATION SYSTEMS MUST BE INSPECTED AND MAINTAINED AT REGULAR INTERVALS FOR PURPOSES OF PERFORMANCE AND LONGEVITY.

INSPECTION

INSPECTION IS THE KEY TO EFFECTIVE MAINTENANCE OF CMP DETENTION SYSTEMS AND IS EASILY PERFORMED. CONTECH RECOMMENDS ONGOING, ANNUAL INSPECTIONS. SITES WITH HIGH TRASH LOAD OR SMALL OUTLET CONTROL ORIFICES MAY NEED MORE FREQUENT INSPECTIONS. THE RATE AT WHICH THE SYSTEM COLLECTS POLLUTANTS WILL DEPEND MORE ON SITE SPECIFIC ACTIVITIES RATHER THAN THE SIZE OR CONFIGURATION OF THE SYSTEM.

INSPECTIONS SHOULD BE PERFORMED MORE OFTEN IN EQUIPMENT WASHDOWN AREAS. IN CLIMATES WHERE SANDING AND/OR SALTING OPERATIONS TAKE PLACE, AND IN OTHER VARIOUS INSTANCES IN WHICH ONE WOULD EXPECT HIGHER ACCUMULATIONS OF SEDIMENT OR ABRASIVE/ CORROSIVE CONDITIONS. A RECORD OF EACH INSPECTION IS TO BE MAINTAINED FOR THE LIFE OF THE SYSTEM

MAINTENANCE

CMP DETENTION SYSTEMS SHOULD BE CLEANED WHEN AN INSPECTION REVEALS ACCUMULATED SEDIMENT OR TRASH IS CLOGGING THE DISCHARGE ORIFICE.

ANNUAL INSPECTIONS ARE BEST PRACTICE FOR ALL UNDERGROUND SYSTEMS. DURING THIS INSPECTION, IF EVIDENCE OF SALTING/DE-ICING AGENTS IS OBSERVED WITHIN THE SYSTEM, IT IS BEST PRACTICE FOR THE SYSTEM TO BE RINSED, INCLUDING ABOVE THE SPRING LINE SOON AFTER THE SPRING THAW AS PART OF THE MAINTENANCE PROGRAM FOR THE SYSTEM.

MAINTAINING AN UNDERGROUND DETENTION OR INFILTRATION SYSTEM IS EASIEST WHEN THERE IS NO FLOW ENTERING THE SYSTEM. FOR THIS REASON. IT IS A GOOD IDEA TO SCHEDULE THE CLEANOUT DURING DRY WEATHER

il Center and	Business	Park
y Chambers		

PROJECT No.: 24651	SEQ. 1 363		DATE: 9/26/2023	
DESIGNED:		DRAV	VN:	
DYO	DYO		DYÖ	
CHECKED:		APPROVED:		
DYO			DYO	
SHEET NO .:			1	

Appendix 3: Soils Information

Geotechnical Study and Other Infiltration Testing Data

September 20, 2023

Howard Industrial Partners 1944 North Tustin Street, Suite 122 Orange, California 92865

- Attention: Mr. Mike Tunney Vice President
- Project No.: **22G183-4**
- Subject: **Results of Additional Infiltration Testing** Harvest Landing Industrial Development Indian Avenue and Orange Avenue Perris, California
- Reference: 1) <u>Geotechnical Investigation, Proposed Harvest Landing Industrial Development,</u> <u>Indian Avenue and Orange Avenue, Perris, California</u>, prepared for Howard Industrial Partners, by Southern California Geotechnical, Inc. (SCG), SCG Project No. 22G183-1, dated June 13, 2022.

2) <u>Results of Infiltration Testing, Proposed Harvest Landing Industrial</u> <u>Development, Indian Avenue and Orange Avenue, Perris, California</u>, prepared by Southern California Geotechnical, Inc. (SCG), SCG Project No. 22G183-2, dated July 1, 2022.

3) <u>Geotechnical Investigation, Harvest Landing Industrial Development, Indian</u> <u>Avenue and Orange Avenue, Perris, California</u>, prepared for Howard Industrial Partners, by Southern California Geotechnical, Inc. (SCG), SCG Project No. 22G183-3, dated September 21, 2023.

Mr. Tunney:

In accordance with your request, we have conducted infiltration testing at the subject site. We are pleased to present this report summarizing the results of the infiltration testing and our design recommendations.

Scope of Services

The scope of services performed for this project was in general accordance with our Proposal No. 23P306R, dated August 9, 2023. The scope of services included site reconnaissance, subsurface exploration, field testing, and engineering analysis to determine the infiltration rates of the onsite soils. The infiltration testing was performed in general accordance with the guidelines published in <u>Riverside County – Low Impact Development BMP Design Handbook – Section 2.3</u> of <u>Appendix A</u>, prepared for the Riverside County Department of Environmental Health (RCDEH), dated December, 2013.

Site and Project Description

The site is located at the southwest corner of North Perris Boulevard and Orange Avenue in Perris, California. The site is bounded to the north by Orange Avenue, West Water Avenue, and vacant land, to the west by Interstate 215 Frontage Road and Freeway I-215, to the south by an existing commercial development and a vacant land, and to the east by an existing commercial development, North Perris Boulevard and Barrett Avenue. The western portion of the site is partially transected by Indian Avenue (trending north-south). Orange Avenue (trending eastwest) separates the northern portion of the overall site (designated as Phase 2 on the site plans) from Phase 1 in the central to southern portions of the western portion of the overall site. The general location of the site is illustrated on the Site Location Map, enclosed as Plate 1 in Appendix A of this report.

The site consists of several parcels, which total $214.82\pm$ acres in size. The west-central area of the site, is developed with four (4) single-family residences (SFRs) which range from approximately 1,200 to 6,160 ft² in size. The residences are of wood-frame and stucco construction and are assumed to be supported on conventional shallow foundations, with slab-on-grade floors. Ground surface cover surrounding the SFRs includes asphaltic concrete with Portland cement concrete driveways, exposed soil, and trees. The remaining areas of the site are vacant and undeveloped. Ground surface cover consists of exposed soil with sparse to moderate native grass and weed growth and occasional trees. A water pump is present approximately 200 feet south of the intersection of Perris Boulevard and Orange Avenue, within the site's boundary. A 3- to 4-foot deep drainage rut is present in the central-eastern area of the site, trending east-west between a dirt road located and the east boundary of the site. Many small stockpiles of plant material and woodchips are located along the eastern side of Indian Avenue, approximately 2 to 4-feet in height. Based on historic aerial photographs obtained from Google Earth, the site was previously used for farming activities. Due to previous tilling activities, the ground surface throughout the site is generally hummocky.

Detailed topographic information was obtained from the Exhibit A-Infiltration Testing Locations plan, prepared by FM Civil Engineers, Inc. Based on this plan, the overall site topography slopes downward to the east at a gradient of $1.5\pm$ percent.

Proposed Development

Based on a site plan prepared by RGA, the site will be developed with the following industrial/commercial buildings, located throughout the site.

Building Type	Building Name	Location	Size (ft²)
Industrial	1	Northwest	380,000
Industrial	2	West-Central	88,400
Industrial	3	West-Central	50,000
Industrial	4	Southwest	18,800

Distribution	5	Central	440,000
Commercial	Big Box Retail	Southeast	165,000
Commercial	Shopping Center	Northeast	150,000
Retail	Pad 1	Northeast	6,500
Retail	Pad 2	Northeast	6,500
Restaurant	Pad 3	East	2,305
Retail	Pad 4	East	9,000
Restaurant	Pad 5	Southeast	3,172

Building Nos. 1 through 4 - Industrial Buildings

Dock-high doors will be constructed along a portion of at least one building wall for each of the industrial buildings. The buildings will be surrounded by asphaltic concrete pavements in the parking and drive lanes, Portland cement concrete pavements in the loading dock areas, and limited areas of concrete flatwork and landscape planters throughout.

Detailed structural information has not been provided. We assume the new industrial buildings will be single-story structures of tilt-up concrete construction, typically supported on conventional shallow foundation systems with concrete slab-on-grade floors. Based on the assumed construction, maximum column and wall loads are expected to be on the order of 100 kips and 4 to 7 kips per linear foot, respectively.

Building No. 5 - Distribution Building

Dock-high doors will be constructed along portions of the east and west building walls. The building will be surrounded by asphaltic concrete pavements in the parking and drive lanes, Portland cement concrete pavements in the loading dock areas, and limited areas of concrete flatwork and landscape planters throughout. Two ancillary buildings, $15,300 \pm ft^2$ and $3,300 \pm ft^2$ in size are located to the south of the main distribution building.

Detailed structural information has not been provided. We assume the new main distribution building will be a two-story structure of tilt-up concrete construction, typically supported on conventional shallow foundation system with a concrete slab-on-grade floor. Based on the assumed construction, maximum column and wall loads are expected to be on the order of 700 to 900 kips and 4 to 7 kips per linear foot, respectively.

Commercial – Big Box Retail

Dock-high doors will be constructed along a portion of the east building wall. The building will be surrounded by asphaltic concrete pavements in the parking and drive lanes, Portland cement concrete in the loading dock areas, and limited areas of concrete flatwork and landscape planters

throughout. This commercial development will include an automobile service station located east of the building. The service station will include a canopy, five (5) fuel pump islands, and underground storage tanks (USTs).

Detailed structural information has not been provided. We assume that the commercial building will be a single-story structure of tilt-up concrete construction, typically supported on conventional shallow foundation system with concrete slab-on-grade floors. Based on the assumed construction, maximum column and wall loads are expected to be on the order of 100 kips and 4 to 7 kips per linear foot, respectively. The new pump island canopy is expected to be a steel frame structure, typically supported on deepened shallow foundations. Maximum column loads for the canopy are expected to be in the range of 20 kips, with significant overturning and/or uplift loads.

Commercial – Shopping Center

The shopping center building will consist of eight (8) suites ranging from $2,400 \pm ft^2$ to $54,000 \pm ft^2$ in size. Dock-high doors will be constructed along a portion of the west building walls for four (4) of the suites of the shopping center building. The building will be surrounded by asphaltic concrete pavements in the parking and drive lanes, Portland cement concrete in the loading dock areas, and limited areas of concrete flatwork and landscape planters throughout.

Detailed structural information has not been provided. We assume that the new shopping center building will be a single-story structure of wood frame or masonry block construction, typically supported on conventional shallow foundation systems with a concrete slab-on-grade floor. Based on the assumed construction, maximum column and wall loads are expected to be on the order of 50 kips and 2 to 3 kips per linear foot, respectively.

Retail and Restaurant Buildings

The two fast-food restaurant buildings will include drive-thru lanes. Pad 4 will contain four (4) suites. The buildings will be surrounded by asphaltic concrete pavements in the parking and drive lanes, concrete flatwork, and limited areas of landscape planters throughout.

Detailed structural information has not been provided. We assume that the new retail and restaurant buildings will be single-story structures of wood frame construction, typically supported on conventional shallow foundation systems with concrete slab-on-grade floors. Based on the assumed construction, maximum column and wall loads are expected to be on the order of 20 kips and 1 to 3 kips per linear foot, respectively.

Streets

Barrett Avenue and two access streets will be constructed at the site. It is assumed that the new streets will consist of asphaltic concrete pavements.

<u>General</u>

No significant amounts of below-grade construction, such as basements or crawl spaces, are expected to be included in the proposed development. Based on the assumed topography, cuts and fills of up to 8 to $10\pm$ feet are expected to be necessary to achieve the proposed site grades

throughout the site.

Streets

Barrett Avenue and two access streets will be constructed at the site. It is assumed that the new streets will consist of asphaltic concrete pavements.

Previous Studies

Southern California Geotechnical (SCG) previously conducted a geotechnical investigation at the subject site (Reference No. 1). As a part of this study, twenty-three (23) borings (Identified as Boring Nos. B-1 through B-23) were advanced to depths of 15 to $25\pm$ feet below the existing site grades. Native alluvium was encountered at each boring locations, extending to at least the maximum depth explored of $25\pm$ feet below existing site grades. The alluvium generally consists of medium dense to very dense silty sands to sandy silts, with trace to little clay content. Free water was not encountered during the drilling of the borings. Based on the lack of water within the borings and the moisture contents of the recovered soil samples, the static groundwater is considered to have existed at a depth in excess of $25\pm$ feet at the time of the subsurface exploration.

SCG also previously conducted infiltration testing at the subject site (Reference No. 2). The subsurface exploration performed for the infiltration testing consisted of six (6) shallow infiltration trenches (identified as Infiltration Trench Nos. I-1 through I-6) and four (4) deep infiltration borings (identified as Infiltration Boring Nos. I-7 through I-10). The infiltration trenches were excavated to a depth of $7\pm$ feet below existing site grades. The infiltration borings were extended to a depth of $50\pm$ feet below existing site grades. In addition, one (1) exploratory boring was extended to a depth of 60± feet below site grades. Artificial fill soils were encountered at the ground surface at Infiltration Test No. I-3, extending to a depth of 1± foot below existing site grades. The fill soils consisted of medium dense fine to medium sandy silts with trace quantities of clay and fine gravel. Native alluvium was encountered at the ground surface at all of the remaining boring and trench locations, extending to at least the maximum explored depth of 60± feet below existing site grades. The near-surface alluvium encountered at depths less than 25± feet below existing site grades consisted of medium dense to very dense fine to medium sandy silts, silty fine to medium sands, clayey fine to coarse sands, and hard fine to coarse sandy clays. At depths greater than 25± feet, the alluvium consisted of medium dense to very dense fine sandy silts, fine to medium sandy silts, silty fine to medium sands, and hard fine to medium sandy clays. Based on the results of the testing, SCG recommended infiltration rates of 0.9 to 3.6 inches per hour for the proposed chamber systems. Additionally, SCG did not recommend dry well infiltration at the subject site.

Concurrent Study

SCG concurrently conducted a geotechnical investigation at the subject site (Reference No. 3). As a part of this study, forty-three (43) borings (identified as Boring Nos. B-25 through B-67) were advanced to depths of 10 to $50\pm$ feet below the existing site grades.

Younger native alluvium was encountered at the ground surface at Boring Nos. B-25, B-28, B-29, B-31, B-32, B-50, B-55 through B-58, B-60, B-64, and B-67, extending to depths of $2\frac{1}{2}$ to $5\frac{1}{2}$ feet below existing site grades. The alluvium generally consists of loose to medium dense silty

fine sands, silty fine to medium sands, fine sandy silts, clayey fine sands. Occasional layers of very stiff fine sandy clays and silty clays. The younger native alluvial soils are classified as "alluvium" on the boring logs. Native older alluvium was encountered beneath the younger native alluvial soils (at the boring locations listed above) and at the ground surface at the remaining boring locations. All of the borings were terminated within the older alluvium, and the older alluvial soils extend to at least the maximum depth explored of 50± feet below ground surface. The older alluvial soils generally consist of medium dense to very dense well- to poorly-graded silty sands with varying clay content, well-graded to poorly-graded to poorly-graded clayey sands with varying silt content, and clayey silts. Additionally, layers of very stiff to hard fine sandy clays and silty clays were encountered. The older alluvium generally possesses weak to moderate cementation, and occasionally possesses trace to extensive calcareous nodules and veining.

Groundwater

Free water was not encountered during the drilling of any of the borings. Based on the moisture content of the recovered soil samples and the lack of free water in the borings, the static groundwater table is at a depth greater than the maximum explored depth of $50\pm$ feet below existing site grades for this project.

Recent water level data was obtained from the California Department of Water Resources website, <u>http://www.water.ca.gov/waterdatalibrary/</u>. The nearest monitoring well is located on the northeast corner of the site. Water level readings within this monitoring well indicates a groundwater level of 40± feet (March 2023) below the ground surface.

Subsurface Exploration

Scope of Exploration

The subsurface exploration conducted for the infiltration testing consisted of thirty-seven (37) infiltration test borings, advanced to depths of 3 to $10\frac{1}{2}$ feet below the existing site grades. The infiltration borings were advanced using a truck-mounted drilling rig, equipped with 8-inchdiameter hollow stem augers and were logged during drilling by a member of our staff. The approximate locations of the infiltration test borings (identified as Infiltration Test Nos. I-11 through I-37) are indicated on the Infiltration Test Location Plan, enclosed as Plate 2 of this report.

Upon the completion of the infiltration borings, the bottom of each test boring was covered with $2\pm$ inches of clean 3/4-inch gravel. A sufficient length of 3-inch-diameter perforated PVC casing was then placed into each test hole so that the PVC casing extended from the bottom of the test hole to the ground surface. Clean 3/4-inch gravel was then installed in the annulus surrounding the PVC casing.

Geotechnical Conditions

Native younger alluvium was encountered at the ground surface at Infiltration Test Nos. I-11, I-23, I-26 and I-39, extending to depths of 3 to $6\pm$ feet below the existing site grades. The younger alluvium generally consists of medium dense silty sands and sandy silts. Native older alluvium was encountered beneath the native younger alluvium and at the ground surface at the remaining

infiltration test locations, extending to at least the maximum depth explored of $10\frac{1}{2}\pm$ feet. The older alluvium generally consists of medium dense to very dense silty sands and sandy silts with trace to little clay content. The older alluvium occasionally possesses weak cementation. The Infiltration Boring Logs, which illustrate the conditions encountered at each of the borings, are included with this report.

Infiltration Testing

As previously mentioned, the infiltration testing was performed in general accordance with the Riverside County guidelines: <u>Riverside County – Low Impact Development BMP Design Handbook</u> <u>– Section 2.3 of Appendix A</u>.

Pre-soaking

In accordance with the county infiltration standards all of the infiltration test borings were presoaked prior to the infiltration testing. The pre-soaking process consisted of filling the test borings by inverting a full 5-gallon bottle of clear water supported over each hole so that the water level reaches a level of at least 5 times the hole's radius above the gravel at the bottom of each hole. The pre-soaking was completed after all of the water had percolated through each test hole or after 15 hours since initiating the pre-soak. Based on the results of the pre-soaking process, 30minute readings were utilized during all of the infiltration tests, except for Infiltration Test Nos. I-24 and I-45. For Infiltration Test Nos. I-24 and I-45, 10-minute readings were utilized during the infiltration tests.

Infiltration Testing

Following the pre-soaking process of the infiltration test borings, SCG performed the infiltration testing. Each test hole was filled with water to a depth of at least 5 times the hole's radius above the gravel at the bottom of each test hole. In accordance with the Riverside County guidelines, in areas where "non-sandy soils" were encountered at the bottom of each infiltration test boring, (where 6 inches of water did not infiltrate into the surrounding soils in less than 25 minutes for two (2) consecutive readings), readings were taken at 30-minute intervals for a total of 6 hours at the test locations. At Infiltration Test Nos. I-24 and I-45, "sandy-soils" were encountered at the bottom of the test borings, (where 6 inches of water did infiltrate into the surrounding soils in less than 25 minutes for two (2) consecutive readings), therefore, readings were taken at 10-minute intervals for 1 hour at the test locations. The water level readings are presented on the spreadsheets enclosed with this report. The infiltration rates for each of the timed intervals are also tabulated on the spreadsheets.

The infiltration rates from the test are tabulated in inches per hour. In accordance with the typically accepted practice, it is recommended that the most conservative reading from the latter part of the infiltration tests be used as the design infiltration rate. The rates are summarized below:

Infiltration	<u>Depth</u>	Soil Description	<u>Measured Infiltration</u>
Test No.	(feet)		<u>Rate (inches/hour)</u>
I-11	41⁄2	YOUNGER ALLUVIUM: Brown Silty fine to coarse Sand, trace Clay	0.2

I-12	41⁄2	OLDER ALLUVIUM: Brown Silty fine to medium Sand, trace Clay, trace coarse Sand	0.2
I-13	51⁄2	OLDER ALLUVIUM: Brown Silty fine to medium Sand, little Clay, trace coarse Sand	0.2
I-14	71/2	OLDER ALLUVIUM: Brown Silty fine to medium Sand, little Clay, trace coarse Sand	0.2
I-15	101⁄2	OLDER ALLUVIUM: Brown Silty fine to medium Sand, little Clay, trace coarse Sand	0.0
I-16	91/2	OLDER ALLUVIUM: Dark Brown Silty fine to medium Sand,	0.2
I-17	10	trace Clay, trace coarse Sand OLDER ALLUVIUM: Brown Silty fine to medium Sand to fine	0.0
I-18	71/2	to medium Sandy Silt, trace to little Clay, trace coarse Sand OLDER ALLUVIUM: Brown Silty fine to medium Sand, trace	0.0
I-19	3	to little Clay, trace coarse Sand OLDER ALLUVIUM: Brown Silty fine to medium Sand, trace	0.1
I-20	3	Clay, trace coarse Sand OLDER ALLUVIUM: Brown Silty fine to medium Sand, little	0.1
I-21	31/2	Clay, trace coarse Sand OLDER ALLUVIUM: Brown Silty fine to medium Sand, trace	0.4
I-21	41/2	Clay, little coarse Sand OLDER ALLUVIUM: Brown Silty fine to medium Sand, trace	0.3
	9	Clay, little coarse Sand OLDER ALLUVIUM: Brown Silty fine to medium Sand, little	
I-23	_	Clay, trace coarse Sand	0.1
I-24	9	OLDER ALLUVIUM: Brown Silty fine to coarse Sand	1.7
I-25	9	OLDER ALLUVIUM: Brown Silty fine to medium Sand, trace Clay, trace coarse Sand	0.1
I-26	71⁄2	OLDER ALLUVIUM: Brown Silty fine to medium Sand, little Clay, trace coarse Sand	0.0
I-27	7	OLDER ALLUVIUM: Brown Silty fine to medium Sand, trace coarse Sand	0.1
I-28	51/2	OLDER ALLUVIUM: Brown Silty fine to medium Sand, trace Clay, trace coarse Sand	0.0
I-29	6	OLDER ALLUVIUM: Brown Silty fine to medium Sand, little Clay, trace coarse Sand	0.0
I-30	6	OLDER ALLUVIUM: Brown Silty fine to medium Sand to fine to medium Sandy Silt, trace Clay	0.1
I-31	6	OLDER ALLUVIUM: Brown Silty fine to medium Sand, trace Clay, trace coarse Sand	0.1
I-32	61⁄2	OLDER ALLUVIUM: Brown Silty fine to medium Sand, trace Clay, trace coarse Sand	0.1
I-33	61⁄2	OLDER ALLUVIUM: Brown fine to medium Sandy Silt to Silty fine to medium Sand, trace Clay	0.1
I-34	5	OLDER ALLUVIUM: Brown Silty fine to medium Sand, trace Clay, trace coarse Sand	0.1
I-35	41⁄2	OLDER ALLUVIUM: Light Brown Silty fine to medium Sand, trace Clay, trace coarse Sand	0.1
I-36	51/2	OLDER ALLUVIUM: Brown Silty fine to medium Sand, trace Clay, trace coarse Sand	0.0
I-37	6½	OLDER ALLUVIUM: Brown Silty fine to medium Sand, little Clay, trace coarse Sand	0.1
L	1		

I-38	6½	OLDER ALLUVIUM: Brown Silty fine to medium Sand, little Clay, trace coarse Sand	0.1
I-39	71⁄2	OLDER ALLUVIUM: Dark Brown Silty fine to medium Sand, little Clay, trace coarse Sand	0.0
I-40	71⁄2	OLDER ALLUVIUM: Brown Silty fine to medium Sand, trace Clay, trace coarse Sand	0.1
I-41	6	OLDER ALLUVIUM: Brown Silty fine to medium Sand to fine to medium Sandy Silt, trace Clay, trace coarse Sand	0.0
I-42	6	OLDER ALLUVIUM: Brown Silty fine to medium Sand to fine to medium Sandy Silt, trace Clay, trace coarse Sand	0.0
I-43	6	OLDER ALLUVIUM: Brown Silty fine to medium Sand, little Clay, trace coarse Sand	0.0
I-44	41⁄2	OLDER ALLUVIUM: Brown Silty fine to medium Sand, little Clay, trace coarse Sand	0.1
I-45	5	OLDER ALLUVIUM: Brown Silty fine to medium Sand, little Clay, trace coarse Sand	0.8
I-46	51⁄2	OLDER ALLUVIUM: Brown Silty fine to medium Sand, little Clay, trace coarse Sand	0.1
I-47	7	OLDER ALLUVIUM: Brown fine to medium Sandy Silt, little Clay	0.1

Laboratory Testing

Moisture Content

The moisture contents for the recovered soil samples within the borings were determined in accordance with ASTM D-2216 and are expressed as a percentage of the dry weight. These test results are presented on the Boring Logs.

Grain Size Analysis

The grain size distribution of selected soils collected from the bottom of each infiltration test boring have been determined using a range of wire mesh screens. These tests were performed in general accordance with ASTM D-422 and/or ASTM D-1140. The weight of the portion of the sample retained on each screen is recorded and the percentage finer or coarser of the total weight is calculated. The results of these tests are presented on Plates C-1 through C-37 of this report.

Design Recommendations

Thirty-seven (37) infiltration tests were performed at the subject site. As noted above, the calculated infiltration rates at the infiltration test locations range between 0.0 and 1.7 inches per hour. The major factors affecting the lack of infiltration at these locations are the presence of very dense older alluvium with high contents of fine-grained soil. **Based on these conditions and the results of infiltration testing we recommend the following design infiltration rates to be utilized for the proposed infiltration systems:**

<u>Infiltration</u> <u>System(s)</u>	<u>Infiltration</u> <u>Test Nos.</u>	Infiltration Test Depth (ft)	<u>Infiltration</u> System Type	<u>Infiltration</u> <u>System</u> <u>Location</u>	<u>Design</u> <u>Infiltration Rate</u> <u>(inches/hour)</u>		
"A″	I-11 4 ¹ / ₂ Bio-Retentio Basin		Bio-Retention Basin	West	Not Recommended		
"B″	I-12	41⁄2	Bio-Retention Basin	West	Not Recommended		
"C"	I-13	51⁄2	Below-Grade Chamber	West	Not Recommended		
"D″	I-14	71⁄2	Below-Grade Chamber	Northwest	Not Recommended		
"E″	I-15 through I-17	9½ to 10½	Bio-Retention Basin	North	Not Recommended		
"F″	I-18	71⁄2	Below-Grade Chamber	North	Not Recommended		
"G″	I-19 through I-22	3 to 4½	Bio-Retention Basin	South	Not Recommended		
"H″	I-23, I-24	9	Bio-Retention Basin	South	Not Recommended		
"I" & "J"	I-25 through I-33	5½ to 9	Bio-Retention Basin	Northeast	Not Recommended		
"К″	I-34 through I-36	41⁄2 to 51⁄2	Below-Grade Chamber	Southeast	Not Recommended		
٣μ″	I-37	6½	Below-Grade Chamber	Southeast	Not Recommended		
``М″	I-38, I-39	6½ to 7½	Below-Grade Chamber	Southeast	Not Recommended		
"N″	I-40	71⁄2	Below-Grade Chamber	Northeast	Not Recommended		
"O″	I-41	6	Below-Grade Chamber	Northeast	Not Recommended		
"P″	I-42	6	Below-Grade Chamber	Northeast	Not Recommended		
``Q″	I-43	6	Below-Grade Chamber	Northeast	Not Recommended		
"R″	I-44	41⁄2	Below-Grade Chamber	Northeast	Not Recommended*		
``S″	I-45	5	Below-Grade Chamber	Northeast	Not Recommended		
"T"	I-46	51⁄2	Below-Grade Chamber	Northeast	Not Recommended		
"U″	I-47	7	Below-Grade Chamber	Northeast	Not Recommended		

*Although the test results indicate an infiltration rate of 0.8 in/hr at this location, the subsurface soil profile at this site includes many soil layers with low permeability. Soil layers with some capacity for infiltration, such as the silty sand layer encountered at Infiltration test-location I-44, are generally interbedded between low permeability soil layers, based on our review of the boring logs for the overall site. Therefore, long-term infiltration is not considered to feasible.

Although infiltration is not considered feasible, the client may desire to use storm water disposal systems that do not rely on infiltration at this site. The design of the proposed storm water

SOUTHERN CALIFORNIA GEOTECHNICAL

disposal systems should be performed by the project civil engineer, in accordance with the City of Perris, and/or County of Riverside guidelines. However, it is recommended that the system be constructed so as to facilitate removal of silt and clay, or other deleterious materials from any water that may enter the system.

Infiltration Rate Considerations

The infiltration rates presented herein were determined in accordance with the Riverside County guidelines and are considered valid only for the time and place of the actual test. Varying subsurface conditions will exist in other areas of the site, which could alter the recommended infiltration rates presented above. The infiltration rates will decline over time between maintenance cycles as silt or clay particles accumulate on the BMP surface. The infiltration rate is highly dependent upon a number of factors, including density, silt and clay content, grainsize distribution throughout the range of particle sizes, and particle shape. Small changes in these factors can cause large changes in the infiltration rates.

Infiltration rates are based on unsaturated flow. As water is introduced into soils by infiltration, the soils become saturated and the wetting front advances from the unsaturated zone to the saturated zone. Once the soils become saturated, infiltration rates become zero, and water can only move through soils by hydraulic conductivity at a rate determined by pressure head and soil permeability. Changes in soil moisture content will affect the infiltration rate. Infiltration rates should be expected to decrease until the soils become saturated. Soil permeability values will then govern groundwater movement. Permeability values may be on the order of 10 to 20 times less than infiltration rates. The system designer should incorporate adequate factors of safety and allow for overflow design into appropriate traditional storm drain systems, which would transport storm water off-site.

Location of Infiltration Systems

The use of on-site storm water infiltration systems carries a risk of creating adverse geotechnical conditions. Increasing the moisture content of the soil can cause the soil to lose internal shear strength and increase its compressibility, resulting in a change in the designed engineering properties. Overlying structures and pavements in the infiltration area could potentially be damaged due to saturation of the subgrade soils. **Any proposed infiltration systems for this site should be located at least 25 feet away from any structures, including retaining walls.** Even with this provision of locating the infiltration system at least 25 feet from the building(s), it is possible that infiltrating water into the subsurface soils could have an adverse effect on the proposed or existing structures. It should also be noted that utility trenches which happen to collect storm water can also serve as conduits to transmit storm water toward the structure, depending on the slope of the utility trench. Therefore, consideration should also be given to the proposed locations of underground utilities which may pass near the proposed infiltration system.

The infiltration system designer should also give special consideration to the effect that the proposed infiltration systems may have on nearby subterranean structures, open excavations, or descending slopes. In particular, infiltration systems should not be located near the crest of descending slopes, particularly where the slopes are comprised of granular soils. Such systems will require specialized design and analysis to evaluate the potential for slope instability, piping failures and other phenomena that typically

apply to earthen dam design. This type of analysis is beyond the scope of this infiltration test report, but these factors should be considered by the infiltration system designer when locating the infiltration systems.

General Comments

This report has been prepared as an instrument of service for use by the client in order to aid in the evaluation of this property and to assist the architects and engineers in the design and preparation of the project plans and specifications. This report may be provided to the contractor(s) and other design consultants to disclose information relative to the project. However, this report is not intended to be utilized as a specification in and of itself, without appropriate interpretation by the project architect, structural engineer, and/or civil engineer. The design of the proposed storm water infiltration system is the responsibility of the civil engineer. The role of the geotechnical engineer is limited to determination of infiltration rate only. By using the design infiltration rate contained herein, the civil engineer agrees to indemnify, defend, and hold harmless the geotechnical engineer for all aspects of the design and performance of the proposed storm water infiltration system. The reproduction and distribution of this report must be authorized by the client and Southern California Geotechnical, Inc. Furthermore, any reliance on this report by an unauthorized third party is at such party's sole risk, and we accept no responsibility for damage or loss which may occur.

The analysis of this site was based on a subsurface profile interpolated from limited discrete soil samples. While the materials encountered in the project area are considered to be representative of the total area, some variations should be expected between boring locations and testing depths. If the conditions encountered during construction vary significantly from those detailed herein, we should be contacted immediately to determine if the conditions alter the recommendations contained herein.

This report has been based on assumed or provided characteristics of the proposed development. It is recommended that the owner, client, architect, structural engineer, and civil engineer carefully review these assumptions to ensure that they are consistent with the characteristics of the proposed development. If discrepancies exist, they should be brought to our attention to verify that they do not affect the conclusions and recommendations contained herein. We also recommend that the project plans and specifications be submitted to our office for review to verify that our recommendations have been correctly interpreted. The analysis, conclusions, and recommendations contained within this report have been promulgated in accordance with generally accepted professional geotechnical engineering practice. No other warranty is implied or expressed.

<u>Closure</u>

We sincerely appreciate the opportunity to be of service on this project. We look forward to providing additional consulting services during the course of the project. If we may be of further assistance in any manner, please contact our office.

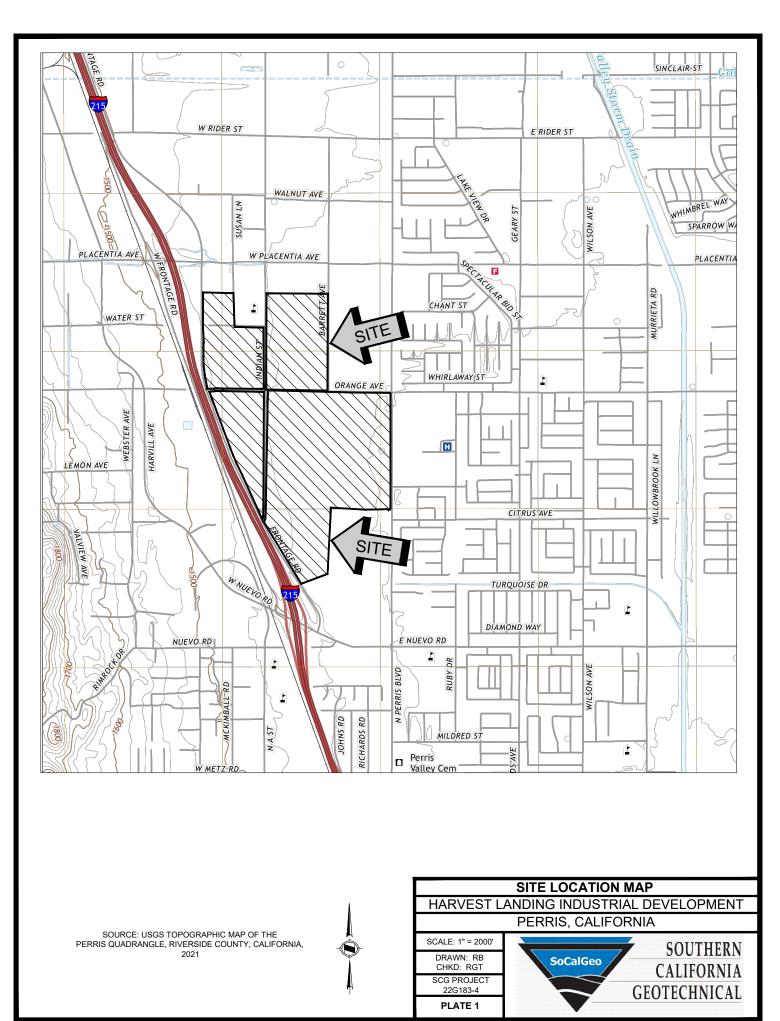
Respectfully Submitted,

SOUTHERN CALIFORNIA GEOTECHNICAL, INC.

2 la

Ryan Bremer Staff Geologist

Distribution: (1) Addressee


and W. Dak

Daniel W. Nielsen, GE 3166 Senior Engineer

Enclosures: Plate 1 - Site Location Map Plate 2 - Infiltration Test Location Plan Boring Log Legend and Logs (39 pages) Infiltration Test Results Spreadsheets (37 pages) Grain Size Distribution Graphs (37 pages)

NOTE: CONCEPTUAL GRADING PLAN PREPARED BY FMCIVIL ENGINEERING.

BORING LOG LEGEND

SAMPLE TYPE	GRAPHICAL SYMBOL	SAMPLE DESCRIPTION
AUGER		SAMPLE COLLECTED FROM AUGER CUTTINGS, NO FIELD MEASUREMENT OF SOIL STRENGTH. (DISTURBED)
CORE		ROCK CORE SAMPLE: TYPICALLY TAKEN WITH A DIAMOND-TIPPED CORE BARREL. TYPICALLY USED ONLY IN HIGHLY CONSOLIDATED BEDROCK.
GRAB	M	SOIL SAMPLE TAKEN WITH NO SPECIALIZED EQUIPMENT, SUCH AS FROM A STOCKPILE OR THE GROUND SURFACE. (DISTURBED)
CS		CALIFORNIA SAMPLER: 2-1/2 INCH I.D. SPLIT BARREL SAMPLER, LINED WITH 1-INCH HIGH BRASS RINGS. DRIVEN WITH SPT HAMMER. (RELATIVELY UNDISTURBED)
NSR	\bigcirc	NO RECOVERY: THE SAMPLING ATTEMPT DID NOT RESULT IN RECOVERY OF ANY SIGNIFICANT SOIL OR ROCK MATERIAL.
SPT		STANDARD PENETRATION TEST: SAMPLER IS A 1.4 INCH INSIDE DIAMETER SPLIT BARREL, DRIVEN 18 INCHES WITH THE SPT HAMMER. (DISTURBED)
SH		SHELBY TUBE: TAKEN WITH A THIN WALL SAMPLE TUBE, PUSHED INTO THE SOIL AND THEN EXTRACTED. (UNDISTURBED)
VANE		VANE SHEAR TEST: SOIL STRENGTH OBTAINED USING A 4 BLADED SHEAR DEVICE. TYPICALLY USED IN SOFT CLAYS-NO SAMPLE RECOVERED.

COLUMN DESCRIPTIONS

<u>DEPTH</u> :	Distance in feet below the ground surface.
<u>SAMPLE</u> :	Sample Type as depicted above.
BLOW COUNT:	Number of blows required to advance the sampler 12 inches using a 140 lb hammer with a 30-inch drop. 50/3" indicates penetration refusal (>50 blows) at 3 inches. WH indicates that the weight of the hammer was sufficient to push the sampler 6 inches or more.
POCKET PEN.:	Approximate shear strength of a cohesive soil sample as measured by pocket penetrometer.
GRAPHIC LOG :	Graphic Soil Symbol as depicted on the following page.
DRY DENSITY:	Dry density of an undisturbed or relatively undisturbed sample in lbs/ft ³ .
MOISTURE CONTENT:	Moisture content of a soil sample, expressed as a percentage of the dry weight.
LIQUID LIMIT:	The moisture content above which a soil behaves as a liquid.
PLASTIC LIMIT:	The moisture content above which a soil behaves as a plastic.
PASSING #200 SIEVE:	The percentage of the sample finer than the #200 standard sieve.
UNCONFINED SHEAR:	The shear strength of a cohesive soil sample, as measured in the unconfined state.

SOIL CLASSIFICATION CHART

м	AJOR DIVISI	ONS		BOLS	TYPICAL
			GRAPH	LETTER	DESCRIPTIONS
	GRAVEL AND	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES
	GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES
COARSE GRAINED SOILS	MORE THAN 50% OF COARSE	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES
	FRACTION RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES
MORE THAN 50% OF MATERIAL IS	SAND AND	CLEAN SANDS		SW	WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES
LARGER THAN NO. 200 SIEVE SIZE	SANDY SOILS	(LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SAND, LITTLE OR NO FINES
	MORE THAN 50% OF COARSE			SM	SILTY SANDS, SAND - SILT MIXTURES
	PASSING ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		SC	CLAYEY SANDS, SAND - CLAY MIXTURES
				ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY
FINE GRAINED SOILS	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
00120				OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
MORE THAN 50% OF MATERIAL IS SMALLER THAN NO. 200 SIEVE				МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SAND OR SILTY SOILS
SIZE	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY
				ОН	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
HI	GHLY ORGANIC S	SOILS		PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS

NOTE: DUAL SYMBOLS ARE USED TO INDICATE BORDERLINE SOIL CLASSIFICATIONS

PRC	JEC	Г: На			DRILLING DATE: 8/15/23 Industrial Development DRILLING METHOD: Hollow Stem Auger ia LOGGED BY: Michelle Krizek		CA	VE DI	DEPTI EPTH: G TAK			pletion
			JLTS			LA	30R/					
DEPTH (FEET)	SAMPLE	BLOW COUNT	POCKET PEN. (TSF)	GRAPHIC LOG	DESCRIPTION SURFACE ELEVATION: 1465.0 feet MSL	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	LIMIT LIMIT	PLASTIC LIMIT	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	COMMENTS
		21 18			YOUNGER ALLUVIUM: Brown Silty fine Sand, little medium Sand, trace coarse Sand, trace fine Gravel, trace fine root fibers, trace Clay, medium dense-dry to damp Brown Silty fine to coarse Sand, trace Clay, trace Calcareous	-	3			29		-
		10			veining, medium dense-dry to damp	-	0			20		-
2/23					Boring Terminated @ 4½ feet							
TBL 22G183-4.GPJ SOCALGEO.GDT 9/22/23												
		_	_		00						_	

PRC	JEC	Г: На			DRILLING DATE: 8/15/23 I Industrial Development DRILLING METHOD: Hollow Stem Auger ia LOGGED BY: Michelle Krizek		CA	VE DI	EPTH:			pletion
			JLTS			LA	BOR/					
DEPTH (FEET)	SAMPLE	BLOW COUNT	POCKET PEN. (TSF)	GRAPHIC LOG	DESCRIPTION SURFACE ELEVATION: 1464.0 feet MSL	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	COMMENTS
		33			<u>OLDER ALLUVIUM</u> : Brown Silty fine to medium Sand, trace Clay, trace coarse Sand, trace fine root fibers, dense-damp	-	4					
		32				-	3			41		-
					Boring Terminated @ 4½ feet							
122/23												
GEO.GDT 9.												
GPJ SOCAL												
TBL 226183-4.GPJ SOCALGEO.GDT 9/22/23												
					00							

PRO	JOB NO.:22G183-4DRILLING DATE:8/15/23WATER DEPTH:DryPROJECT:Harvest Landing Industrial DevelopmentDRILLING METHOD:Hollow Stem AugerCAVE DEPTH:LOCATION:Perris, CaliforniaLOGGED BY:Michelle KrizekREADING TAKEN:At Completion												
			erris, (JLTS		ia LOGGED BY: Michelle Krizek	Ι ΔΓ		EADIN ATOF				pletion	
DEPTH (FEET)	SAMPLE	BLOW COUNT	POCKET PEN. ((TSF)	GRAPHIC LOG	DESCRIPTION SURFACE ELEVATION: 1465.0 feet MSL		MOISTURE CONTENT (%)			PASSING #200 SIEVE (%)		COMMENTS	
		40			<u>OLDER ALLUVIUM</u> : Brown Silty fine to medium Sand to fine to medium Sandy Silt, little coarse Sand, little Clay, trace fine root fibers, dense-damp	-	4						
5		56			Brown Silty fine to medium Sand, little Clay, trace coarse Sand, little Calcareous veining, weakly cemented, very dense-damp	-	5			39		-	
					Boring Terminated @ 5½ feet								
GDT 9/22/23													
SOCALGEO.(
22G183-4.GPJ SOCALGEO.GDT 9/22/23													
TBL													

PRC	JOB NO.: 22G183-4DRILLING DATE: 8/14/23WATER DEPTH: DryPROJECT: Harvest Landing Industrial DevelopmentDRILLING METHOD: Hollow Stem AugerCAVE DEPTH:LOCATION: Perris, CaliforniaLOGGED BY: Michelle KrizekREADING TAKEN: At Completion											
			JLTS			LA	BOR					
DEPTH (FEET)	SAMPLE	BLOW COUNT	POCKET PEN. (TSF)	GRAPHIC LOG	DESCRIPTION SURFACE ELEVATION: 1471.2 feet MSL	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	COMMENTS
		44			OLDER ALLUVIUM: Brown Silty fine to medium Sand to fine to medium Sandy Silt, little coarse Sand, little Clay, trace to little Calcareous veining, trace fine root fibers, dense-damp	-	5					-
5		51			Brown Silty fine to medium Sand, little Clay, trace coarse Sand, very dense-damp	-	5			36		-
					Boring Terminated @ 71/2 feet							
LGEO.GDT 9/22/23												
TBL 22G183-4.GPJ SOCALGEO.GDT 9/22/23					06							

PRC	JEC		rvest L		DRILLING DATE: 8/14/23 Industrial Development DRILLING METHOD: Hollow Stem Auger		CA	AVE DI	DEPTI EPTH:			plotion
		ON: P RESU			ia LOGGED BY: Michelle Krizek	ΙAF			G TAK			pletion
DEPTH (FEET)	SAMPLE		POCKET PEN. (TSF)	GRAPHIC LOG	DESCRIPTION SURFACE ELEVATION: 1455.6 feet MSL		JRE NT (%)		PLASTIC LIMIT	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	COMMENTS
5		765/11' 790/10' 783/11'			OLDER ALLUVIUM: Brown Silty fine to medium Sand, little Clay, trace coarse Sand, little Calcareous veining, very dense-damp to moist		4			45		-
TBL 22G183-4.GPJ SOCALGEO.GDT 9/22/23					Boring Terminated @ 101/2 feet							
	СТ				06							IATE R_F

FIELD RESULTS LABORATORY RESULTS Image: Constraint of the second secon	PRO	JEC	T: Ha		anding	DRILLING DATE: 8/14/23 Industrial Development DRILLING METHOD: Hollow Stem Auger ia LOGGED BY: Michelle Krizek		CA	AVE DI	DEPT EPTH: G TAK		-	pletion
Image: Second							LAE						
35 2.5 OLDER ALLUVIUM: Brown Silty fine to medium Sand, trace to little Calcareous veining, dense-damp 4 5 35 2.5 4 5 56 4.0 4 5 56 4.0 4 6 2000 Silty fine to medium Sand, trace Clay, trace coarse Sand, trace to little Calcareous veining, very dense-moist 14 4 4 44 6 2000 Silty fine to medium Sand, trace Clay, trace coarse Sand, trace to little Calcareous veining, very dense-moist 14 4 44 44 6 0 0 0 7 56 4.0 14 44 8 0 0 14 44 14 44 14 44	DEPTH (FEET)	SAMPLE	BLOW COUNT	POCKET PEN. (TSF)	GRAPHIC LOG		DRY DENSITY (PCF)	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	COMMENTS
Image: Sector of the sector				2.5		little coarse Sand, little Clay, little Calcareous veining, dense-damp	-	4					-
		X	56	4.0				14			44		
	TBL 22G183-4.GPJ SOCALGEO.GDT 9/22/23					Boring Terminated @ 91/2 feet							

PRO	JEC	Г: На	183-4 rvest L erris, C		DRILLING DATE: 8/14/23 Industrial Development DRILLING METHOD: Hollow Stem Auger ia LOGGED BY: Michelle Krizek		CA	VE DI	EPTH:			npletion
			JLTS			LA	BOR					
DEPTH (FEET)	SAMPLE	BLOW COUNT	POCKET PEN. (TSF)	GRAPHIC LOG	DESCRIPTION SURFACE ELEVATION: 1455.0 feet MSL	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	COMMENTS
	X	32 26			OLDER ALLUVIUM: Brown Silty fine to medium Sand to fine to medium Sandy Silt, trace to little Clay, trace coarse Sand, trace to little Calcareous veining, medium dense to dense-damp to moist	-	6					-
- 	X	45			- - -	-	10			53		
					Boring Terminated @ 10 feet							
TBL 226183-4.GPJ SOCALGEO.GDT 9/22/23												

			3183-4 arvest L	.anding	DRILLING DATE: 8/14/23 Industrial Development DRILLING METHOD: Hollow Stem Auger				DEPTI EPTH:		у	
LOC	CATIC	N: P	erris, C	Californ		-	RE	ADIN	g tak	EN: /	At Com	pletion
FIE		RESL	JLTS			LAE	BOR/	\TOF	RY RI	ESUL	TS	
DEPTH (FEET)	SAMPLE	BLOW COUNT	POCKET PEN. (TSF)	GRAPHIC LOG	DESCRIPTION SURFACE ELEVATION: 1455.5 feet MSL	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	COMMENTS
		26			<u>OLDER ALLUVIUM:</u> Brown Silty fine to medium Sand, trace to little Clay, trace coarse Sand, trace Calcareous veining, medium dense-damp	-	5					-
5		38			@ 5½ feet, dense-moist	-	9			46		
					Boring Terminated @ 7½ feet							
22G183-4.GPJ SOCALGEO.GDT 9/22/23												
TBL					06							IATE DO

PRO	JEC	Г: На			DRILLING DATE: 8/14/23 Industrial Development DRILLING METHOD: Hollow Stem Auger ia LOGGED BY: Michelle Krizek		CA	VE DI	EPTH:			pletion
			JLTS			LAE	BORA					
DEPTH (FEET)	SAMPLE	BLOW COUNT	POCKET PEN. (TSF)	GRAPHIC LOG	DESCRIPTION SURFACE ELEVATION: 1450.5 feet MSL	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	COMMENTS
		43			<u>OLDER ALLUVIUM:</u> Brown Silty fine to medium Sand, trace Clay, trace coarse Sand, trace fine root fibers, trace Calcareous veining, dense-damp		4			37		-
TBL 22G183-4.GPJ SOCALGEO.GDT 9/22/23					Boring Terminated @ 3 feet							

PR	OJECT	Г: На	183-4 rvest L erris, C		DRILLING DATE: 8/14/23 I Industrial Development DRILLING METHOD: Hollow Stem Auger ia LOGGED BY: Michelle Krizek		CA	AVE DI	DEPT EPTH: G TAK			npletion
FIE		RESL	ILTS			LA	BORA					
DEPTH (FEET)	SAMPLE	BLOW COUNT	POCKET PEN. (TSF)	GRAPHIC LOG	DESCRIPTION SURFACE ELEVATION: 1450.5 feet MSL	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	COMMENTS
		55			<u>OLDER ALLUVIUM</u> : Brown Silty fine to medium Sand, little Clay, trace coarse Sand, trace Calcareous nodules, very dense-damp	-	4			45		-
TBL 22G183-4.GPJ SOCALGEO.GDT 9/22/23					Boring Terminated @ 3 feet							

PF	B NO. ROJEC	T: Ha	rvest L	anding	DRILLING DATE: 8/14/23 Industrial Development DRILLING METHOD: Hollow Stem Auger ia LOGGED BY: Michelle Krizek		CA	VE D	DEPT EPTH: G TAK			pletion	
	ELD F					LAE			RY RI				
DEDTH (FEET)	SAMPLE	BLOW COUNT	POCKET PEN. (TSF)	GRAPHIC LOG	DESCRIPTION SURFACE ELEVATION: 1451.0 feet MSL	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	COMMENTS	
		45			OLDER ALLUVIUM: Brown Silty fine to medium Sand, trace Clay, little coarse Sand, trace Calcareous veining, trace fine root fibers, dense-damp		4			36			-
TBL 22G183-4.GPJ SOCALGEO.GDT 9/22/23					Boring Terminated @ 31/2 feet								
T	EST	BC	RIN	IG L	.0G						PL	ATE	B-11

PRC	JEC	T: Ha			DRILLING DATE: 8/14/23 Industrial Development DRILLING METHOD: Hollow Stem Auger ia LOGGED BY: Michelle Krizek		CA	ATER Ave de Eading	EPTH:			pletion	
			JLTS			LA	BOR/					1	
DEPTH (FEET)	SAMPLE	BLOW COUNT	POCKET PEN. (TSF)	GRAPHIC LOG	DESCRIPTION SURFACE ELEVATION: 1452.0 feet MSL	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	LIQUID	PLASTIC LIMIT	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	COMMENTS	
	X	44			<u>OLDER ALLUVIUM</u> : Brown Silty fine to medium Sand, trace Clay, little coarse Sand, trace Calcareous veining, trace fine root fibers, dense-damp	-	3						-
		37				-	4			35			-
				<u>, 1, 1, 1, 1, 1</u>	Boring Terminated @ 4½ feet								
22/23													
ALGEO.GDT 9/													
TBL 22G183-4.GPJ SOCALGEO.GDT 9/22/23													
					00							ATE	

	READING TAKEN: A BORATORY RESUL MOILLING CONTENT (%) SUBJUE BORATORY RESUL MOILLING CONTENT (%) SUBJUE BORATORY RESUL (%) SUBJUE BORATORY RESUL (%) SUBJUE BORATORY RESUL (%) SUBJUE BORATORY RESUL (%) SUBJUE BORATORY RESUL (%) SUBJUE BORATORY RESUL (%) SUBJUE BORATORY RESUL (%) SUBJUE SUBU	
ALLUVIUM: Brown Silty fine to medium Sand, trace coarse Sand, trace Calcareous veining, trace fine root fibers, medium dense-damp 14 5 14 5 14 6 14 </td <td>© CONTENT (MOISTURE CONTENT (LIQUID LIMIT PLASTIC LIMIT PASSING #200 SIEVE</td> <td>ORGANIC CONTENT (%)</td>	© CONTENT (MOISTURE CONTENT (LIQUID LIMIT PLASTIC LIMIT PASSING #200 SIEVE	ORGANIC CONTENT (%)
ALLUVIUM: Brown Silty fine to medium Sand, trace coarse Sand, trace Calcareous veining, trace fine root fibers, medium dense-damp 14 5 14 5 14 6 14 </td <td>3</td> <td></td>	3	
Boring Terminated @ 9 feet		

			i183-4 irvest l		DRILLING DATE: 8/14/23 Industrial Development DRILLING METHOD: Hollow Stem Auger				DEPT EPTH:		у	
LOC	CATIC	N: P	erris, C	Californ			RE	ADIN	G TAK	EN: /		pletion
FIEI	LD F	RESL	JLTS	-		LAE	BOR/	ATOF	RY RI	ESUL	TS	
DEPTH (FEET)	SAMPLE	BLOW COUNT	POCKET PEN. (TSF)	GRAPHIC LOG	DESCRIPTION SURFACE ELEVATION: 1455.0 feet MSL	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	COMMENTS
5		43 20			OLDER ALLUVIUM: Brown Silty fine to medium Sand, little coarse Sand, little Clay, little Calcareous veining and nodules, dense-damp Brown Silty fine to coarse Sand, medium dense-damp	-	3			19		-
	\uparrow											
					CC Boring Terminated @ 9 feet							

PR	OJEC	T: Ha	6183-4 arvest L Perris, C	anding	DRILLING DATE: 8/16/23 Industrial Development DRILLING METHOD: Hollow Stem Auger ia LOGGED BY: Ryan Bremer		CA	AVE D	DEPT EPTH: G TAK			npletion
			JLTS			LAE			RY R			
DEPTH (FEET)	SAMPLE	BLOW COUNT	POCKET PEN. (TSF)	GRAPHIC LOG	DESCRIPTION SURFACE ELEVATION: 1445.2 feet MSL	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	COMMENTS
5		46			OLDER ALLUVIUM: Brown fine to medium Sandy Silt, trace Clay, dense-moist	-	8			46		
	\square											
TBL 22G183-4.GPJ SOCALGEO.GDT 9/22/23					Boring Terminated at 9'							
		_			00							

JOB NO.: 22G183-4 PROJECT: Harvest LOCATION: Perris,	anding Industrial Development DRILLING METHOD: Hollow Stem Auger		CA	VE DE	EPTH:			pletion
FIELD RESULTS		LAE						
DEPTH (FEET) SAMPLE BLOW COUNT POCKET PEN. (TSF)	DESCRIPTION DESCRIPTION SURFACE ELEVATION: 1446.0 feet MSL		JRE NT (%)			PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	COMMENTS
31 5 85/11"	OLDER ALLUVIUM: Brown Silty fine to medium Sand, dense-damp Brown Silty fine to medium Sand, little Clay, trace coarse Sand, weakly cemented, very dense-damp to moist		4			46		-
	Boring Terminated @ 7½ feet							

JOB NO.: 22G183- PROJECT: Harvest LOCATION: Perris,	Landing	DRILLING DATE: 8/16/23 Industrial Development DRILLING METHOD: Hollow Stem Auger a LOGGED BY: Ryan Bremer		CA	AVE D	DEPTI EPTH:		pletion
FIELD RESULTS			LAE			RYRI		 ipieuori
DEPTH (FEET) SAMPLE BLOW COUNT POCKET PEN.		DESCRIPTION SURFACE ELEVATION: 1445.3 feet MSL		MOISTURE CONTENT (%)	LIQUID LIMIT		PASSING #200 SIEVE (%)	COMMENTS
5 - 50/5"		OLDER ALLUVIUM: Brown fine Sandy Silt, trace medium Sand, very dense-damp Brown Silty fine to medium Sand, trace coarse Sand, very dense-damp		4			44	
		Boring Terminated @ 7 feet						

JOB NO.: 22G183-4DRILLING DATE: 8/16/23WATER DEPTH: DryPROJECT: Harvest Landing Industrial DevelopmentDRILLING METHOD: Hollow Stem AugerCAVE DEPTH:LOCATION: Perris, CaliforniaLOGGED BY: Ryan BremerREADING TAKEN: At Comp									
LOCATION: Perris, Californ	nia LOGGED BY: Ryan Bremer	LOGGED BY: Ryan Bremer READING TAKEN: A							
EET) DUNT PEN.	DESCRIPTION SURFACE ELEVATION: 1443.9 feet MSI	DRY DENSITY (PCF) MOISTURE			PASSING #200 SIEVE (%)		COMMENTS		
DEPTH(F BLOW CC 2 AMPLE 2 AMPLE 2 AMPLE 2 AMPLE 2 CCKET 71/11, 2 CCKET 7 CCKET	SURFACE ELEVATION: 1443.9 feet MSL OLDER ALLUVIUM: Brown Silty fine to medium Sand, trace Clay, trace coarse Sand, very dense-damp to moist Boring Terminated @ 5½ feet	DRY DEN (PCF)		PLASTIC	4 bASSING 44 #200 SIE	ORGANI	COMME		
							ATE		

JOB NO.: 22G183-4 DRILLING DATE: 8/16/23 WATER DEPTH: Dry PROJECT: Harvest Landing Industrial Development DRILLING METHOD: Hollow Stem Auger CAVE DEPTH: LOCATION: Perris, California LOGGED BY: Ryan Bremer READING TAKEN: At Completion													
	CATION: Perris, California LOGGED BY: Ryan Bremer READING ELD RESULTS LABORATOR											pletion	
			PEN.	IC LOG	DESCRIPTION							NTS	
DEPTH (FEET)	SAMPLE	BLOW COUNT	POCKET (TSF)	GRAPHIC LOG	SURFACE ELEVATION: 1444.5 feet MSL	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	LIQUID	PLASTIC LIMIT	PASSIN #200 SIE	ORGANIC CONTENT (%)	COMMENTS	
5		32			<u>OLDER ALLUVIUM</u> : Brown Silty fine to medium Sand, little Clay, trace coarse Sand, weakly cemented, dense-damp	-	5			38			-
					Boring Terminated @ 6 feet								
TBL 22G183-4.GPJ SOCALGEO.GDT 9/22/23													
					00							ATE	D 40

JOB NO.:22G183-4DRILLING DATE:8/16/23WATER DEPTH:DryPROJECT:Harvest Landing Industrial DevelopmentDRILLING METHOD:Hollow Stem AugerCAVE DEPTH:LOCATION:Perris, CaliforniaLOGGED BY:Ryan BremerREADING TAKEN:At Completion													
			^{lerris, C} JLTS		ia LOGGED BY: Ryan Bremer	LOGGED BY: Ryan Bremer READING TAKEN: A							
DEPTH (FEET)	SAMPLE	DUNT	POCKET PEN. (TSF)	GRAPHIC LOG	DESCRIPTION SURFACE ELEVATION: 1444.2 feet MSL		JRE NT (%)			PASSING #200 SIEVE (%)	()	COMMENTS	
5		68			OLDER ALLUVIUM: Brown Silty fine to medium Sand to fine to medium Sandy Silt, trace Clay, weakly cemented, very dense-damp	-	6			47			-
TBL 22G183-4.GPJ SOCALGEO.GDT 9/22/23					Boring Terminated at 6 feet								
	· • •				00								

JOB NO.: 22G183-4DRILLING DATE: 8/16/23WATER DEPTH: DryPROJECT: Harvest Landing Industrial DevelopmentDRILLING METHOD: Hollow Stem AugerCAVE DEPTH:LOCATION: Perris, CaliforniaLOGGED BY: Ryan BremerREADING TAKEN: At												
			erris, 0 JLTS	aliforn	ia LOGGED BY: Ryan Bremer	ΙΔF	RE 30R/					pletion
DEPTH (FEET)	SAMPLE	BLOW COUNT	POCKET PEN. (TSF)	GRAPHIC LOG	DESCRIPTION SURFACE ELEVATION: 1442.8 feet MSL		JRE NT (%)		PLASTIC	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	COMMENTS
5		62			<u>OLDER ALLUVIUM:</u> Brown Silty fine to medium Sand, trace Clay, trace coarse Sand, very dense-damp	-	6			50		
TBL 22G183-4.GPJ SOCALGEO.GDT 9/22/23					Boring Terminated @ 6 feet							
	от	D 0			00						Б	ATE D 24

	JOB NO.: 22G183-4 DRILLING DATE: 8/16/23 WATER DEPTH: Dry PROJECT: Harvest Landing Industrial Development DRILLING METHOD: Hollow Stem Auger CAVE DEPTH: LOCATION: Perris, California LOGGED BY: Ryan Bremer READING TAKEN: At Completion												
												pletion	
FIE		RESL	JLTS			LABORATORY RESULTS							
DEPTH (FEET)	SAMPLE	BLOW COUNT	POCKET PEN. (TSF)	GRAPHIC LOG	DESCRIPTION SURFACE ELEVATION: 1442.5 feet MSL	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	GENERAL	
5		42			OLDER ALLUVIUM: Brown Silty fine to medium Sand, trace Clay, trace coarse Sand, dense-damp	-	6						
TBL 22G183-4.GPJ SOCALGEO.GDT 9/22/23													B-22

PROJECT: Harvest Landing Industrial Development DRILLING METHOD: Hollow Stem Auger CAVE DEPTH: LOCATION: Perris, California LOGGED BY: Ryan Bremer READING TAKEN: At Completion									
	READING TAKEN: At Completion								
FIELD RESULTS LABORATORY RESULTS									
DEPTH (FEET) SAMPLE BLOW COUNT PPOCKET PEN. (TSF) GRAPHIC LOG GRAPHIC LOG GRAPHIC LOG DESCLIA DESCRID CONTENT (%) ORGANIC	COMMENTS								
5 50/5"	-								
Boring Terminated @ 6½ feet									
	E B-33								

	DB NO.: 22G183-4 DRILLING DATE: 8/16/23 WATER DEPTH: Dry ROJECT: Harvest Landing Industrial Development DRILLING METHOD: Hollow Stem Auger CAVE DEPTH:												
LOC	CATIC	DN: P	erris, C	Californ			RE	EADIN	G TAK	EN: /		pletion	
FIE		RESL	JLTS			LAE	BOR/	ATOF	RY RI	ESUL	TS		
DEPTH (FEET)	SAMPLE	BLOW COUNT	POCKET PEN. (TSF)	GRAPHIC LOG	DESCRIPTION SURFACE ELEVATION: 1440.2 feet MSL	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	COMMENTS	
5		61			<u>OLDER ALLUVIUM</u> : Brown Silty fine to medium Sand, trace Clay, trace coarse Sand, weakly cemented, very dense-damp to moist	-	6			44			-
TBL 22G183-4.GPJ SOCALGEO.GDT 9/22/23					Boring Terminated @ 5 feet								
_	~-	-			00						-	ATE	

JOB NO.: 22G183-4 DRILLING DATE: 8/16/23 WATER DEPTH: Dry PROJECT: Harvest Landing Industrial Development DRILLING METHOD: Hollow Stem Auger CAVE DEPTH: LOCATION: Perris, California LOGGED BY: Ryan Bremer READING TAKEN: At Completion FIELD RESULTS LABORATORY RESULTS LABORATORY RESULTS												pletion
					· · · · ·	LA						
DEPTH (FEET)	SAMPLE	BLOW COUNT	POCKET PEN. (TSF)	GRAPHIC LOG	DESCRIPTION SURFACE ELEVATION: 1439.7 feet MSL	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	COMMENTS
		57			<u>OLDER ALLUVIUM:</u> Light Brown Silty fine to medium Sand, trace Clay, trace coarse Sand, weakly cemented, very dense-damp	-	4			38		
					Boring Terminated @ 4½ feet							
LGEO.GDT 9/22/23												
TBL 22G183-4.GPJ SOCALGEO.GDT 9/22/23												

JOB NO.: 22G183-4 DRILLING DATE: 8/15/23 WATER DEPTH: Dry PROJECT: Harvest Landing Industrial Development DRILLING METHOD: Hollow Stem Auger CAVE DEPTH:												
LO	CATIC	DN: P	erris, C	Californ			RE	EADIN	g tak	EN: /		pletion
FIE		RESL	JLTS			LAE	BORA	ATOF	RY RI	ESUL	TS	
DEPTH (FEET)	SAMPLE	BLOW COUNT	POCKET PEN. (TSF)	GRAPHIC LOG	DESCRIPTION SURFACE ELEVATION: 1438.8 feet MSL	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	COMMENTS
		27			<u>OLDER ALLUVIUM</u> : Brown Silty fine to medium Sand, trace Clay, trace coarse Sand, trace Calcareous veining, weakly cemented, medium dense to dense-moist	-	10					
5		34				-	11			37		
					Boring Terminated @ 51/2 feet							
TBL 22G183-4.GPJ SOCALGEO.GDT 9/22/23												
TBL 22G183-4.GP												
_		-	_		00							ATE D 20

PRC	JEC	T: Ha			DRILLING DATE: 8/15/23 Industrial Development DRILLING METHOD: Hollow Stem Auger ia LOGGED BY: Michelle Krizek		CA	VE DI	DEPTI EPTH: G TAK		-	pletion
			JLTS			LAE			RYRI			
DEPTH (FEET)	SAMPLE	BLOW COUNT	POCKET PEN. (TSF)	GRAPHIC LOG	DESCRIPTION SURFACE ELEVATION: 1438.0 feet MSL	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	LIMIT LIMIT	PLASTIC LIMIT	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	COMMENTS
		44			<u>OLDER ALLUVIUM</u> : Brown Silty fine to medium Sand, trace Clay, trace to little coarse Sand, trace Calcareous veining, weakly cemented, dense-damp	-	4					
5		50			Brown Silty fine to medium Sand, little Clay, trace coarse Sand, trace to little Calcareous veining, weakly cemented, very dense-moist	-	10			43		-
					Boring Terminated @ 61/2 feet							
.GDT 9/22/23												
TBL 22G183-4.GPJ SOCALGEO.GDT 9/22/23												
L 22G183-4.GF												
			L		00							

	JOB NO.: 22G183-4 DRILLING DATE: 8/15/23 WATER DEPTH: Dry PROJECT: Harvest Landing Industrial Development DRILLING METHOD: Hollow Stem Auger CAVE DEPTH:												
LO	CATIC	N: P	erris, C	Californ			RE	EADIN	G TAK	EN: /		pletion	
FIE		RESL	JLTS			LAE	BORA	ATOF	RY RI	ESUL	TS		
DEPTH (FEET)	SAMPLE	BLOW COUNT	POCKET PEN. (TSF)	GRAPHIC LOG	DESCRIPTION SURFACE ELEVATION: 1438.6 feet MSL	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	COMMENTS	
		42			<u>OLDER ALLUVIUM</u> : Brown Silty fine to medium Sand, little Clay, trace coarse Sand, trace Calcareous veining, dense-damp	-	5						-
5		50			@ 4½ feet, weakly cemented, very dense		5			41			-
					Boring Terminated @ 6 feet								
22/23													
TBL 22G183-4.GPJ SOCALGEO.GDT 9/22/23													
4.GPJ SOCA													
TBL 22G183													
-					00								

PRO	JOB NO.: 22G183-4DRILLING DATE: 8/15/23WATER DEPTH: DryPROJECT: Harvest Landing Industrial DevelopmentDRILLING METHOD: Hollow Stem AugerCAVE DEPTH:LOCATION: Perris, CaliforniaLOGGED BY: Michelle KrizekREADING TAKEN: At Completion												
			JLTS			LAE			RYR				
DEPTH (FEET)	SAMPLE	BLOW COUNT	POCKET PEN. (TSF)	GRAPHIC LOG	DESCRIPTION SURFACE ELEVATION: 1438.6 feet MSL	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	COMMENTS	
5		16 37			<u>ALLUVIUM:</u> Dark Brown fine to medium Sandy Silt, little coarse Sand, medium dense-moist	-	10 9			39			
. 22G183-4.GPJ SOCALGEO.GDT 9/22/23					Boring Terminated @ 71/2 feet								
≓ TE	ST	BC) RIN	IG L	.OG					I	PL	ATE B-29	

JOB NO.: 22G183-4 DRILLING DATE: 8/16/23 WATER DEPTH: Dry PROJECT: Harvest Landing Industrial Development DRILLING METHOD: Hollow Stem Auger CAVE DEPTH:													
LOC	ATIC	N: P	erris, C	Californ			RE	EADIN	g tak	EN: /		pletion	
FIEL		RESL	JLTS				BOR	ATOF	RY RI	ESUL	TS		
DEPTH (FEET)	SAMPLE	BLOW COUNT	POCKET PEN. (TSF)	GRAPHIC LOG	DESCRIPTION SURFACE ELEVATION: 1441.5 feet MSL	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)		COMMENTS
5		42			OLDER ALLUVIUM: Brown Silty fine to medium Sand to fine to medium Sandy Silt, trace coarse Sand, dense-damp Brown Silty fine to medium Sand, trace Clay, trace coarse Sand, very dense-damp to moist	-	5			41			- - - - -
						-							
					Boring Terminated @ 7½ feet								
					06								B-30

FIELD RESULTS Use of the second sec		LABOR	EADIN(JOB NO.: 22G183-4 DRILLING DATE: 8/16/23 WATER DEPTH: Dry PROJECT: Harvest Landing Industrial Development DRILLING METHOD: Hollow Stem Auger CAVE DEPTH: LOCATION: Perris, California LOGGED BY: Ryan Bremer READING TAKEN: At Completion											
Ling Ling Visual Ling 1 1 1 1 1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>pletion</td>							pletion								
0 UDER ALLUVIUM. Brown Silty fine to medium Sand to fine to medium Sand Silt, trace Coarse Sand, weakly cemented, very dense-damp 5 73/11* 7 Boring Terminated at 6 feet		DRY DENSITY (PCF) MOISTURE CONTENT (%)		PLASTIC LIMIT		ORGANIC CONTENT (%)	COMMENTS								
	OLDER ALLUVIUM: Brown Silty fine to medium Sand to fine to medium Sandy Silt, trace Clay, trace coarse Sand, weakly	-			49		-								
	Boring Terminated at 6 feet														

JOB NO.: 22G183-4DRILLING DATE: 8/15/23WATER DEPTH: DryPROJECT: Harvest Landing Industrial DevelopmentDRILLING METHOD: Hollow Stem AugerCAVE DEPTH:LOCATION: Perris, CaliforniaLOGGED BY: Michelle KrizekREADING TAKEN: At Completion											
LOCATION: Perris, Ca	ifornia LOGGED BY: Michelle Krizek	I ARC				1	pletion				
DEPTH (FEET) SAMPLE BLOW COUNT POCKET PEN.	DESCRIPTION SURFACE ELEVATION: 1434.5 feet MSL		CONTENT (%)				COMMENTS				
31	OLDER ALLUVIUM: Brown Silty fine to medium Sand, little coarse Sand, trace Clay, trace fine root fibers, dense-damp to moist		7					-			
5 - 40	Brown Silty fine to medium Sand to fine to medium Sandy Silt, trace Clay, trace coarse Sand, trace Calcareous veining, dense-moist		9		52			-			
	Boring Terminated @ 6 feet						ATE				

JOB NO.: 22G183-4 DRILLING DATE: 8/15/23 WATER DEPTH: Dry PROJECT: Harvest Landing Industrial Development DRILLING METHOD: Hollow Stem Auger CAVE DEPTH:													
LOC	ATIO	N: P	erris, C	Californ			RE	EADIN	G TAK	EN: /		pletion	
FIEL		RESU	JLTS			LAE	BOR/		RY RI	ESUL	TS		
DEPTH (FEET)	SAMPLE	BLOW COUNT	POCKET PEN. (TSF)	GRAPHIC LOG	DESCRIPTION SURFACE ELEVATION: 1438.5 feet MSL	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	COMMENTS	
		46			<u>OLDER ALLUVIUM</u> : Brown Silty fine to medium Sand to fine to medium Sandy Silt, little Clay, trace to little coarse Sand, trace to little Calcareous veining, dense-damp	-	7						-
5 -		45			Brown Silty fine to medium Sand, little Clay, trace coarse Sand, dense-damp	-	8			46			-
					Boring Terminated @ 6 feet								
TBL 226183-4.GPJ SOCALGEO.GDT 9/22/23					06								

PRC	JOB NO.:22G183-4DRILLING DATE:8/15/23WATER DEPTH:DrPROJECT:Harvest Landing Industrial DevelopmentDRILLING METHOD:Hollow Stem AugerCAVE DEPTH:LOCATION:Perris, CaliforniaLOGGED BY:Michelle KrizekREADING TAKEN:A												
			JLTS			LAE	BOR/						
DEPTH (FEET)	SAMPLE	BLOW COUNT	POCKET PEN. (TSF)	GRAPHIC LOG	DESCRIPTION SURFACE ELEVATION: 1438.6 feet MSL	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	LIQUID	PLASTIC LIMIT	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	COMMENTS	
					<u>OLDER ALLUVIUM</u> : Brown Silty fine to medium Sand, trace coarse Sand, trace fine root fibers, dense-damp								
		39 40			@ 3 feet, trace Calcreous veining, little Clay	-	3 6			37			-
	X				· · · · · · · · · · · · · · · · · · ·								-
					Boring Terminated @ 41/2 feet								
T 9/22/23													
ALGEO.GD													
4.GPJ SOC													
TBL 226183-4.GPJ SOCALGEO.GDT 9/22/23													
					00								

	DRILLING DATE: 8/15/23 Ig Industrial Development DRILLING METHOD: Hollow Stem Auger	(WATER	EPTH:		
LOCATION: Perris, Califor	nia LOGGED BY: Michelle Krizek					 pletion
DEPTH (FEET) SAMPLE BLOW COUNT POCKET PEN. (TSF) GRAPHIC LOG	DESCRIPTION SURFACE ELEVATION: 1439.8 feet MSL	DRY DENSITY (PCF) MOISTURE			PASSING #200 SIEVE (%)	COMMENTS
29	<u>OLDER ALLUVIUM:</u> Brown Silty fine to medium Sand, little Clay, trace coarse Sand, trace Calcareous veining, trace fine root fibers, medium dense-damp	4				
53	@ 3½ feet, very dense	5			46	
	Boring Terminated @ 5 feet					

PRO	JEC.	T: Ha			DRILLING DATE: 8/15/23 Industrial Development DRILLING METHOD: Hollow Stem Auger ia LOGGED BY: Michelle Krizek		CA	AVE DI	DEPTI EPTH: G TAK		-	pletion	
			JLTS			LAE			RY RI				
DEPTH (FEET)	SAMPLE	BLOW COUNT	POCKET PEN. (TSF)	GRAPHIC LOG	DESCRIPTION SURFACE ELEVATION: 1439.5 feet MSL	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	LIQUID	PLASTIC LIMIT	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	COMMENTS	
		34			OLDER ALLUVIUM: Brown Silty fine to medium Sand, trace Clay, trace coarse Sand, trace fine root fibers, trace Calcareous veining, dense-damp to moist		7						-
5		43			@ 4 feet, trace to little Calcareous veining, little Clay, moist		9			34			-
					Boring Terminated @ 5½ feet								
TBL 22G183-4.GPJ SOCALGEO.GDT 9/22/23													

	JOB NO.:22G183-4DRILLING DATE:8/15/23WATER DEPTH:DryPROJECT:Harvest Landing Industrial DevelopmentDRILLING METHOD:Hollow Stem AugerCAVE DEPTH:LOCATION:Perris, CaliforniaLOGGED BY:Michelle KrizekREADING TAKEN:At Completion												
LO	CATIO	ON: F	Perris, C	Californ			RE	EADIN	g tak	EN: A		pletion	
FIE		RESL	JLTS	-			BORA	ATOF	RY RI	ESUL	TS		
DEPTH (FEET)	SAMPLE	BLOW COUNT	POCKET PEN. (TSF)	GRAPHIC LOG	DESCRIPTION SURFACE ELEVATION: 1440.0 feet MSL	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	COMMENTS	
		36			<u>OLDER ALLUVIUM</u> : Brown Silty fine to medium Sand to fine to medium Sandy Silt, trace Clay, trace to little Calcareous veining, trace to little coarse Sand, trace fine root fibers, dense-moist		9						-
5		29	2.5		Brown fine to medium Sandy Silt, little Clay, little Calcareous veining, medium dense-moist		12			59			-
	$-\!\!\!/$												
22G183-4.GPJ SOCALGEO.GDT 9/22/23					Boring Terminated @ 7 feet								
TBL 22G183-4.GPJ SC													
					00							ATE	

Project Name
Project Location
Project Number
Engineer

Harvest Landing Industrial Development Perris, California 22G183-4 Ryan Bremer

Test Hole Radius Test Depth 4 (in) 4.50 (ft)

Infiltration Test Hole

	Soil Criteria Test									
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (in)	Did 6 inches of water seep away in less than 25 minutes?	Sandy Soils or Non- Sandy Soils?			
1	Initial	11:50 AM	25.00	1.75	4.68	NO	NON-SANDY SOILS			
ļ	Final	12:15 PM	23.00	2.14		NO	NUN-SANDT SUILS			
2	Initial	12:15 PM	25.00	2.14	3.24	NO	NON-SANDY SOILS			
2	Final	12:40 PM	25.00	2.41	5.24	NO				

Test Data									
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (ft)	Average Head Height (ft)	Infiltration Rate Q (in/hr)		
1	Initial	12:40 PM	30.00	2.25	0.17	2.17	0.29		
	Final	1:10 PM	00.00	2.42	0.11	2	0.20		
2	Initial	1:10 PM	30.00	2.20	0.21	2.20	0.36		
	Final	1:40 PM		2.41					
3	Initial	1:40 PM	30.00	2.41	0.18	2.00	0.33		
	Final	2:10 PM		2.59					
4	Initial Final	2:10 PM 2:40 PM	30.00	2.23 2.41	0.18	2.18	0.31		
	Initial	2:40 PM	30.00	2.41	0.15				
5	Final	3:10 PM		2.41		2.02	0.28		
	Initial	2:40 PM	30.00	2.22	0.15				
6	Final	3:10 PM		2.37		2.21	0.25		
	Initial	3:10 PM		2.37	0.13	2.07	0.23		
7	Final	3:40 PM	30.00	2.50					
	Initial	3:40 PM		2.24					
8	Final	4:10 PM	30.00	2.24	0.13	2.20	0.22		
	Initial	4:10 PM		2.37					
9	Final	4:40 PM	30.00	2.49	0.12	2.07	0.21		
	Initial	4:40 PM		2.45					
10	Final	5:10 PM	30.00	2.23	0.13	2.19	0.22		
	Initial	5:10 PM		2.38					
11	Final	5:40 PM	30.00	2.50	0.12	2.06	0.22		
	Initial	5:40 PM		2.50					
12	Final	6:10 PM	30.00	2.61	0.11	1.95	0.21		

Per County Standards, Infiltration Rate calculated as follows:

Where: Q = Infiltration Rate (in inches per hour)

$$Q = \frac{\Delta H(60r)}{\Delta t(r+2H_{avg})}$$

 ΔH = Change in Height (Water Level) over the time interval

r = Test Hole (Borehole) Radius

 $\Delta t = Time Interval$

Project Name	Harvest Landing Industrial Development
Project Location	Perris, California
Project Number	22G183-4
Engineer	Ryan Bremer

Test Hole Radius Test Depth 4 (in) 4.50 (ft)

I-12

Infiltration Test Hole

	Soil Criteria Test									
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (in)	Did 6 inches of water seep away in less than 25 minutes?	Sandy Soils or Non- Sandy Soils?			
1	Initial	11:47 AM	25.00	1.96	3.72	NO				
I	Final	12:12 PM	25.00	2.27	3.72	NO	NON-SANDY SOILS			
2	Initial	12:12 PM	25.00	2.27	3.00	NO	NON-SANDY SOILS			
2	Final	12:37 PM	23.00	2.52	3.00	NO				

	Test Data								
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (ft)	Average Head Height (ft)	Infiltration Rate Q (in/hr)		
1	Initial Final	12:37 PM 1:07 PM	30.00	2.27 2.57	0.30	2.08	0.53		
2	Initial Final	1:07 PM 1:37 PM	30.00	2.31 2.51	0.20	2.09	0.35		
3	Initial Final	1:37 PM 2:07 PM	30.00	2.35 2.53	0.18	2.06	0.32		
4	Initial Final	2:07 PM 2:37 PM	30.00	2.53 2.69	0.16	1.89	0.31		
5	Initial Final	2:37 PM 3:07 PM	30.00	2.34 2.50	0.16	2.08	0.28		
6	Initial Final	2:37 PM 3:07 PM	30.00	2.50 2.66	0.16	1.92	0.31		
7	Initial Final	3:07 PM 3:37 PM	30.00	2.33 2.50	0.17	2.09	0.30		
8	Initial Final	3:37 PM 4:07 PM	30.00	2.50 2.65	0.15	1.93	0.29		
9	Initial Final	4:07 PM 4:37 PM	30.00	2.41 2.55	0.14	2.02	0.26		
10	Initial Final	4:37 PM 5:07 PM	30.00	2.55 2.69	0.14	1.88	0.27		
11	Initial Final	5:07 PM 5:37 PM	30.00	2.41 2.54	0.13	2.03	0.24		
12	Initial Final	5:37 PM 6:07 PM	30.00	2.26 2.40	0.14	2.17	0.24		

Per County Standards, Infiltration Rate calculated as follows:

Where: Q = Infiltration Rate (in inches per hour)

 ΔH = Change in Height (Water Level) over the time interval

r = Test Hole (Borehole) Radius

 $\Delta t = Time Interval$

$$Q = \frac{\Delta H(60r)}{\Delta t(r+2H_{avg})}$$

Project Name	Harvest Landing Industrial Development
Project Location	Perris, California
Project Number	22G183-4
Engineer	Ryan Bremer

Test Hole Radius Test Depth 4 (in) 5.59 (ft)

I-13

Infiltration Test Hole

	Soil Criteria Test									
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (in)	Did 6 inches of water seep away in less than 25 minutes?	Sandy Soils or Non- Sandy Soils?			
1	Initial	11:44 AM	25.00	2.51	5.28	NO	NON-SANDY SOILS			
1	Final	12:09 PM	23.00	2.95	5.20	NO				
2	Initial	12:09 PM	25.00	2.52	4.92	NO	NON-SANDY SOILS			
2	Final	12:34 PM	23.00	2.93	4.92	NO				

	Test Data								
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (ft)	Average Head Height (ft)	Infiltration Rate Q (in/hr)		
1	Initial Final	12:34 PM 1:04 PM	30.00	2.93 3.27	0.34	2.49	0.51		
2	Initial Final	1:04 PM 1:34 PM	30.00	2.74 2.99	0.25	2.73	0.35		
3	Initial Final	1:34 PM 2:04 PM	30.00	2.99 3.17	0.18	2.51	0.27		
4	Initial Final	2:04 PM 2:34 PM	30.00	3.17 3.31	0.14	2.35	0.22		
5	Initial Final	2:34 PM 3:04 PM	30.00	2.99 3.18	0.19	2.51	0.28		
6	Initial Final	2:34 PM 3:04 PM	30.00	3.18 3.34	0.16	2.33	0.26		
7	Initial Final	3:04 PM 3:34 PM	30.00	3.34 3.46	0.12	2.19	0.20		
8	Initial Final	3:34 PM 4:04 PM	30.00	2.78 2.92	0.14	2.74	0.19		
9	Initial Final	4:04 PM 4:34 PM	30.00	2.92 3.05	0.13	2.61	0.19		
10	Initial Final	4:34 PM 5:04 PM	30.00	3.05 3.18	0.13	2.48	0.20		
11	Initial Final	5:04 PM 5:34 PM	30.00	3.18 3.30	0.12	2.35	0.19		
12	Initial Final	5:34 PM 6:04 PM	30.00	3.04 3.17	0.13	2.49	0.20		

Per County Standards, Infiltration Rate calculated as follows:

Where: Q = Infiltration Rate (in inches per hour)

 ΔH = Change in Height (Water Level) over the time interval

r = Test Hole (Borehole) Radius

 $\Delta t = Time Interval$

$$Q = \frac{\Delta H(60r)}{\Delta t(r + 2H_{avg})}$$

Project Name	Harvest Landing Industrial Development
Project Location	Perris, California
Project Number	22G183-4
Engineer	Ryan Bremer

Test Hole Radius Test Depth 4 (in) 7.60 (ft)

I-14

Infiltration Test Hole

	Soil Criteria Test											
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (in)	Did 6 inches of water seep away in less than 25 minutes?	Sandy Soils or Non- Sandy Soils?					
1	Initial	11:39 AM	25.00	5.48	3.00	NO	NON-SANDY SOILS					
1	Final	12:04 PM	25.00	5.73	5.00	NO	NON-SANDT SOILS					
2	Initial	12:04 PM	25.00	5.49	1.68	NO	NON-SANDY SOILS					
2	Final	12:29 PM	23.00	5.63	1.00	NO	NON-SANDT SOILS					

	Test Data										
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (ft)	Average Head Height (ft)	Infiltration Rate Q (in/hr)				
1	Initial Final	12:29 PM 12:59 PM	30.00	5.63 5.76	0.13	1.91	0.25				
2	Initial Final	12:59 PM 1:29 PM	30.00	5.55 5.69	0.14	1.98	0.26				
3	Initial Final	1:29 PM 1:59 PM	30.00	5.52 5.65	0.13	2.02	0.24				
4	Initial Final	1:59 PM 2:29 PM	30.00	5.55 5.68	0.13	1.99	0.24				
5	Initial Final	2:29 PM 2:59 PM	30.00	5.50 5.60	0.10	2.05	0.18				
6	Initial Final	2:29 PM 2:59 PM	30.00	5.60 5.69	0.09	1.96	0.17				
7	Initial Final	2:59 PM 3:29 PM	30.00	5.64 5.73	0.09	1.92	0.17				
8	Initial Final	3:29 PM 3:59 PM	30.00	5.53 5.63	0.10	2.02	0.18				
9	Initial Final	3:59 PM 4:29 PM	30.00	5.63 5.72	0.09	1.93	0.17				
10	Initial Final	4:29 PM 4:59 PM	30.00	5.72 5.80	0.08	1.84	0.16				
11	Initial Final	4:59 PM 5:29 PM	30.00	5.61 5.70	0.09	1.95	0.17				
12	Initial Final	5:29 PM 5:59 PM	30.00	5.70 5.79	0.09	1.86	0.17				

Per County Standards, Infiltration Rate calculated as follows:

Where: Q = Infiltration Rate (in inches per hour)

 ΔH = Change in Height (Water Level) over the time interval

r = Test Hole (Borehole) Radius

 $\Delta t = Time Interval$

$$Q = \frac{\Delta H(60r)}{\Delta t(r + 2H_{avg})}$$

Project Name	Harvest Landing Industrial Development
Project Location	Perris, California
Project Number	22G183-4
Engineer	Ryan Bremer

Test Hole Radius Test Depth

4	(in)
10.51	(ft)

I-15

Infiltration Test Hole

	Soil Criteria Test											
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (in)	Did 6 inches of water seep away in less than 25 minutes?	Sandy Soils or Non- Sandy Soils?					
1	Initial	8:46 AM	25.00	7.50	4.80	NO	NON-SANDY SOILS					
1	Final	9:11 AM	25.00	7.90	4.00		NON-SANDT SOILS					
2	Initial	9:11 AM	25.00	7.60	0.00	NO	NON-SANDY SOILS					
2	Final	9:36 AM	23.00	7.60	0.00	NU						

	Test Data										
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (ft)	Average Head Height (ft)	Infiltration Rate Q (in/hr)				
1	Initial	9:37 AM	30.00	7.60	0.05	2.89	0.07				
	Final	10:07 AM	00.00	7.65	0.00	2.00	0.07				
2	Initial	10:07 AM	30.00	7.65	0.02	2.85	0.03				
	Final	10:37 AM		7.67							
3	Initial	10:37 AM	30.00	7.67	0.03	2.83	0.04				
	Final	11:07 AM		7.70							
4	Initial Final	11:07 AM 11:37 AM	30.00	7.70	0.01	2.81	0.01				
	Initial	11:37 AM		7.71		2.79	0.03				
5	Final	12:07 PM	30.00	7.73	0.02						
	Initial	11:37 AM		7.73							
6	Final	12:07 PM	30.00	7.75	0.02	2.77	0.03				
_	Initial	12:07 PM		7.75		0.75	0.00				
7	Final	12:37 PM	30.00	7.77	0.02	2.75	0.03				
0	Initial	12:37 PM	00.00	7.77	0.00		0.04				
8	Final	1:07 PM	30.00	7.80	0.03	2.73	0.04				
	Initial	1:07 PM		7.80	0.00	0.70	0.00				
9	Final	1:37 PM	30.00	7.82	0.02	2.70	0.03				
40	Initial	1:37 PM	00.00	7.71	0.04	0.00	0.01				
10	Final	2:07 PM	30.00	7.72	0.01	2.80	0.01				
11	Initial	2:07 PM	20.00	7.72	0.02	0.70	0.02				
11	Final	2:37 PM	30.00	7.74	0.02	2.78	0.03				
12	Initial	2:37 PM	30.00	7.74	0.01	2.77	0.01				
12	Final	3:07 PM	30.00	7.75	0.01	2.11	0.01				

Per County Standards, Infiltration Rate calculated as follows:

Where: Q = Infiltration Rate (in inches per hour)

(ΔH = Change in Height (Water Level) over the time interval

r = Test Hole (Borehole) Radius

 $\Delta t = Time Interval$

$$Q = \frac{\Delta H(60r)}{\Delta t(r + 2H_{avg})}$$

Project Name	Harvest Landing Industrial Development
Project Location	Perris, California
Project Number	22G183-4
Engineer	Ryan Bremer

Test Hole Radius Test Depth 4 (in) 9.50 (ft)

I-16

Infiltration Test Hole

	Soil Criteria Test										
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (in)	Did 6 inches of water seep away in less than 25 minutes?	Sandy Soils or Non- Sandy Soils?				
1	Initial	8:49 AM	25.00	6.24	1.92	NO	NON-SANDY SOILS				
1	Final	9:14 AM	23.00	6.40	1.92	NO	NON-SANDT SOILS				
2	Initial	9:14 AM	25.00	6.40	2.52	NO	NON-SANDY SOILS				
2	Final	9:39 AM	25.00	6.61	2.52						

	Test Data										
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (ft)	Average Head Height (ft)	Infiltration Rate Q (in/hr)				
1	Initial	9:40 AM	30.00	6.61	0.18	2.80	0.24				
	Final	10:10 AM	00.00	6.79	0.10	2.00	0.2 .				
2	Initial	10:10 AM	30.00	6.79	0.15	2.64	0.21				
	Final	10:40 AM		6.94			-				
3	Initial	10:40 AM	30.00	6.94	0.15	2.49	0.23				
	Final Initial	11:10 AM 11:10 AM		7.09 7.09							
4	Final	11:40 AM	30.00	7.09	0.12	2.35	0.19				
	Initial	11:40 AM		6.77		2.67	0.17				
5	Final	12:10 PM	30.00	6.89	0.12						
0	Initial	11:40 AM	20.00	6.89	0.12	2.55	0.18				
6	Final	12:10 PM	30.00	7.01							
7	Initial	12:10 PM	30.00	7.01	0.10	2.44	0.15				
'	Final	12:40 PM	30.00	7.11	0.10	2.44	0.15				
8	Initial	12:40 PM	30.00	7.11	0.12	2.33	0.19				
0	Final	1:10 PM	30.00	7.23	0.12	2.00	0.19				
9	Initial	1:10 PM	30.00	7.23	0.10	2.22	0.17				
9	Final	1:40 PM	30.00	7.33	0.10	2.22	0.17				
10	Initial	1:40 PM	30.00	7.01	0.10	2.44	0.15				
10	Final	2:10 PM	30.00	7.11	0.10	2.44	0.15				
11	Initial	2:10 PM	30.00	7.11	0.10	2.34	0.16				
	Final	2:40 PM	30.00	7.21	0.10	2.34	0.16				
12	Initial	2:40 PM	30.00	7.21	0.09	2.25	0.15				
14	Final	3:10 PM	30.00	7.30	0.03	2.25	0.15				

Per County Standards, Infiltration Rate calculated as follows:

Where: Q = Infiltration Rate (in inches per hour)

 ΔH = Change in Height (Water Level) over the time interval

r = Test Hole (Borehole) Radius

 $\Delta t = Time Interval$

$$Q = \frac{\Delta H(60r)}{\Delta t(r + 2H_{avg})}$$

Project Name	Harvest Landing Industrial Development
Project Location	Perris, California
Project Number	22G183-4
Engineer	Ryan Bremer

Test Hole Radius Test Depth 4 (in) 10.10 (ft)

I-17

Infiltration Test Hole

	Soil Criteria Test										
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (in)	Did 6 inches of water seep away in less than 25 minutes?	Sandy Soils or Non- Sandy Soils?				
1	Initial	9:52 AM	25.00	7.54	0.00	NO	NON-SANDY SOILS				
1	Final	10:17 AM	25.00	7.54	0.00	NO	NON-SANDT SOILS				
2	Initial	10:17 AM	25.00	7.54	0.48	NO	NON-SANDY SOILS				
	Final	10:42 AM	25.00	7.58	0.40						

	Test Data										
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (ft)	Average Head Height (ft)	Infiltration Rate Q (in/hr)				
1	Initial Final	10:43 AM 11:13 AM	30.00	7.58 7.63	0.05	2.50	0.08				
2	Initial Final	11:13 AM 11:43 AM	30.00	7.63 7.66	0.03	2.46	0.05				
3	Initial Final	11:43 AM 12:13 PM	30.00	7.66 7.69	0.03	2.43	0.05				
4	Initial Final	12:13 PM 12:43 PM	30.00	7.69 7.71	0.02	2.40	0.03				
5	Initial Final	12:43 PM 1:13 PM	30.00	7.71 7.73	0.02	2.38	0.03				
6	Initial Final	12:43 PM 1:13 PM	30.00	7.73 7.76	0.03	2.36	0.05				
7	Initial Final	1:13 PM 1:43 PM	30.00	7.76 7.80	0.04	2.32	0.06				
8	Initial Final	1:43 PM 2:13 PM	30.00	7.80 7.82	0.02	2.29	0.03				
9	Initial Final	2:13 PM 2:43 PM	30.00	7.64 7.67	0.03	2.45	0.05				
10	Initial Final	2:43 PM 3:13 PM	30.00	7.67 7.69	0.02	2.42	0.03				
11	Initial Final	3:13 PM 3:43 PM	30.00	7.69 7.71	0.02	2.40	0.03				
12	Initial Final	3:43 PM 4:13 PM	30.00	7.71 7.73	0.02	2.38	0.03				

Per County Standards, Infiltration Rate calculated as follows:

Where: Q = Infiltration Rate (in inches per hour)

 ΔH = Change in Height (Water Level) over the time interval

r = Test Hole (Borehole) Radius

 $\Delta t = Time Interval$

$$Q = \frac{\Delta H(60r)}{\Delta t(r+2H_{avg})}$$

Project Name	Harvest Landing Industrial Development
Project Location	Perris, California
Project Number	22G183-4
Engineer	Ryan Bremer

Test Hole Radius Test Depth 4 (in) 7.40 (ft)

I-18

Infiltration Test Hole

	Soil Criteria Test										
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (in)	Did 6 inches of water seep away in less than 25 minutes?	Sandy Soils or Non- Sandy Soils?				
1	Initial	8:55 AM	25.00	4.20	3.72	NO	NON-SANDY SOILS				
1	Final	9:20 AM	23.00	4.51	5.72	NO	NON-SANDT SOILS				
2	Initial	9:20 AM	25.00	4.14	0.84	NO	NON-SANDY SOILS				
2	Final	9:45 AM	23.00	4.21	0.84	NO	NON-SANDT SOILS				

	Test Data									
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (ft)	Average Head Height (ft)	Infiltration Rate Q (in/hr)			
1	Initial Final	9:46 AM 10:16 AM	30.00	4.21 4.24	0.03	3.18	0.04			
2	Initial Final	10:16 AM 10:46 AM	30.00	4.24 4.27	0.03	3.15	0.04			
3	Initial Final	10:46 AM 11:16 AM	30.00	4.27 4.30	0.03	3.12	0.04			
4	Initial Final	11:16 AM 11:46 AM	30.00	4.30 4.35	0.05	3.08	0.06			
5	Initial Final	11:46 AM 12:16 PM	30.00	4.35 4.38	0.03	3.04	0.04			
6	Initial Final	11:46 AM 12:16 PM	30.00	4.38 4.41	0.03	3.01	0.04			
7	Initial Final	12:16 PM 12:46 PM	30.00	4.41 4.43	0.02	2.98	0.03			
8	Initial Final	12:46 PM 1:16 PM	30.00	4.24 4.26	0.02	3.15	0.02			
9	Initial Final	1:16 PM 1:46 PM	30.00	4.26 4.29	0.03	3.13	0.04			
10	Initial Final	1:46 PM 2:16 PM	30.00	4.29 4.31	0.02	3.10	0.02			
11	Initial Final	2:16 PM 2:46 PM	30.00	4.31 4.35	0.04	3.07	0.05			
12	Initial Final	2:46 PM 3:16 PM	30.00	4.35 4.37	0.02	3.04	0.02			

Per County Standards, Infiltration Rate calculated as follows:

Where: Q = Infiltration Rate (in inches per hour)

 ΔH = Change in Height (Water Level) over the time interval

r = Test Hole (Borehole) Radius

 $\Delta t = Time Interval$

$$Q = \frac{\Delta H(60r)}{\Delta t(r+2H_{avg})}$$

Project Name	Harvest Landing Industrial Development
Project Location	Perris, California
Project Number	22G183-4
Engineer	Ryan Bremer

Test Hole Radius Test Depth 4 (in) 3.00 (ft)

I-19

Infiltration Test Hole

	Soil Criteria Test										
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (in)	Did 6 inches of water seep away in less than 25 minutes?	Sandy Soils or Non- Sandy Soils?				
1	Initial	9:02 AM	25.00	0.82	1.20	NO	NON-SANDY SOILS				
1	Final	9:27 AM	25.00	0.92	1.20	NO	NON-SANDT SOILS				
2	Initial	9:27 AM	25.00	0.92	0.72	NO	NON-SANDY SOILS				
2	Final	9:52 AM	23.00	0.98	0.72	NO	NON-SANDT SOILS				

	Test Data									
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (ft)	Average Head Height (ft)	Infiltration Rate Q (in/hr)			
1	Initial Final	9:53 AM 10:23 AM	30.00	0.98 1.05	0.07	1.99	0.13			
2	Initial Final	10:23 AM 10:53 AM	30.00	1.05 1.13	0.08	1.91	0.15			
3	Initial Final	10:53 AM 11:23 AM	30.00	1.13 1.20	0.07	1.84	0.14			
4	Initial Final	11:23 AM 11:53 AM	30.00	1.01 1.08	0.07	1.96	0.13			
5	Initial Final	11:53 AM 12:23 PM	30.00	1.08 1.14	0.06	1.89	0.12			
6	Initial Final	11:53 AM 12:23 PM	30.00	1.14 1.21	0.07	1.83	0.14			
7	Initial Final	12:23 PM 12:53 PM	30.00	1.03 1.10	0.07	1.94	0.13			
8	Initial Final	12:53 PM 1:23 PM	30.00	1.10 1.18	0.08	1.86	0.16			
9	Initial Final	1:23 PM 1:53 PM	30.00	1.18 1.25	0.07	1.79	0.14			
10	Initial Final	1:53 PM 2:23 PM	30.00	1.02 1.08	0.06	1.95	0.11			
11	Initial Final	2:23 PM 2:53 PM	30.00	1.08 1.14	0.06	1.89	0.12			
12	Initial Final	2:53 PM 3:23 PM	30.00	1.14 1.19	0.05	1.84	0.10			

Per County Standards, Infiltration Rate calculated as follows:

Where: Q = Infiltration Rate (in inches per hour)

 ΔH = Change in Height (Water Level) over the time interval

r = Test Hole (Borehole) Radius

 $\Delta t = Time Interval$

$$Q = \frac{\Delta H(60r)}{\Delta t(r+2H_{avg})}$$

Project Name	Harvest Landing Industrial Development
Project Location	Perris, California
Project Number	22G183-4
Engineer	Ryan Bremer

Test Hole Radius Test Depth 4 (in) 3.00 (ft)

I-20

Infiltration Test Hole

	Soil Criteria Test										
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (in)	Did 6 inches of water seep away in less than 25 minutes?	Sandy Soils or Non- Sandy Soils?				
1	Initial	8:55 AM	25.00	0.95	3.84	NO	NON-SANDY SOILS				
1	Final	9:20 AM	25.00	1.27	5.64	NO	NON-SANDT SOILS				
2	Initial	9:20 AM	25.00	1.13	1.44	NO	NON-SANDY SOILS				
2	Final	9:45 AM	25.00	1.25	1.44	NO	NON-SANDI SOLS				

	Test Data									
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (ft)	Average Head Height (ft)	Infiltration Rate Q (in/hr)			
1	Initial Final	9:45 AM 10:15 AM	30.00	1.25 1.36	0.11	1.70	0.24			
2	Final Initial Final	10:15 AM 10:15 AM 10:45 AM	30.00	1.36 1.45	0.09	1.60	0.20			
3	Initial Final	10:45 AM 10:45 AM 11:15 AM	30.00	1.45 1.14 1.23	0.09	1.82	0.18			
4	Initial Final	11:15 AM 11:45 AM	30.00	1.15	0.07	1.82	0.14			
5	Initial Final	11:45 AM 12:15 PM	30.00	1.22	0.07	1.75	0.15			
6	Initial Final	11:45 AM 12:15 PM	30.00	1.13	0.08	1.83	0.16			
7	Initial Final	12:15 PM 12:45 PM	30.00	1.14 1.21	0.07	1.83	0.14			
8	Initial Final	12:45 PM 1:15 PM	30.00	1.21 1.27	0.06	1.76	0.12			
9	Initial Final	1:15 PM 1:45 PM	30.00	1.16	0.06	1.81	0.12			
10	Initial Final	1:45 PM 2:15 PM	30.00	1.22 1.29	0.07	1.75	0.15			
11	Initial Final	2:15 PM 2:45 PM	30.00	1.14 1.20	0.06	1.83	0.12			
12	Initial Final	2:45 PM 3:15 PM	30.00	1.20 1.25	0.05	1.78	0.10			

Per County Standards, Infiltration Rate calculated as follows:

Where: Q = Infiltration Rate (in inches per hour)

 ΔH = Change in Height (Water Level) over the time interval

r = Test Hole (Borehole) Radius

 $\Delta t = Time Interval$

$$Q = \frac{\Delta H(60r)}{\Delta t(r+2H_{avg})}$$

Project Name	Harvest Landing Industrial Development
Project Location	Perris, California
Project Number	22G183-4
Engineer	Ryan Bremer

Test Hole Radius Test Depth 4 (in) 3.50 (ft)

I-21

Infiltration Test Hole

	Soil Criteria Test										
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (in)	Did 6 inches of water seep away in less than 25 minutes?	Sandy Soils or Non- Sandy Soils?				
1	Initial	8:58 AM	25.00	0.87	5.88	NO	NON-SANDY SOILS				
	Final	9:23 AM	25.00	1.36	5.00	NO	NON-SANDT SOILS				
2	Initial	9:23 AM	25.00	1.10	4.32	NO	NON-SANDY SOILS				
2	Final	9:48 AM	25.00	1.46	4.32	NO	NON-SANDT SOILS				

	Test Data									
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (ft)	Average Head Height (ft)	Infiltration Rate Q (in/hr)			
1	Initial Final	9:48 AM 10:18 AM	30.00	1.46 1.97	0.51	1.79	1.05			
2	Initial Final	10:18 AM 10:48 AM	30.00	1.46 1.97	0.51	1.79	1.05			
3	Initial Final	10:48 AM 11:18 AM	30.00	1.23 1.74	0.51	2.02	0.94			
4	Initial Final	11:18 AM 11:48 AM	30.00	1.20 1.69	0.49	2.06	0.88			
5	Initial Final	11:48 AM 12:18 PM	30.00	1.40 1.88	0.48	1.86	0.95			
6	Initial Final	11:48 AM 12:18 PM	30.00	1.15 1.60	0.45	2.13	0.79			
7	Initial Final	12:18 PM 12:48 PM	30.00	1.14 1.61	0.47	2.13	0.82			
8	Initial Final	12:48 PM 1:18 PM	30.00	1.24 1.63	0.39	2.07	0.70			
9	Initial Final	1:18 PM 1:48 PM	30.00	1.25 1.61	0.36	2.07	0.64			
10	Initial Final	1:48 PM 2:18 PM	30.00	1.61 1.87	0.26	1.76	0.54			
11	Initial Final	2:18 PM 2:48 PM	30.00	1.41 1.66	0.25	1.97	0.47			
12	Initial Final	2:48 PM 3:18 PM	30.00	1.66 1.87	0.21	1.74	0.44			

Per County Standards, Infiltration Rate calculated as follows:

Where: Q = Infiltration Rate (in inches per hour)

 ΔH = Change in Height (Water Level) over the time interval

r = Test Hole (Borehole) Radius

 $\Delta t = Time Interval$

$$Q = \frac{\Delta H(60r)}{\Delta t(r + 2H_{avg})}$$

Project Name	Harvest Landing Industrial Development
Project Location	Perris, California
Project Number	22G183-4
Engineer	Ryan Bremer

Test Hole Radius Test Depth

4	(in)
4 4.50	(ft)

I-22

Infiltration Test Hole

	Soil Criteria Test								
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (in)	Did 6 inches of water seep away in less than 25 minutes?	Sandy Soils or Non- Sandy Soils?		
1	Initial	8:52 AM	25.00	2.17	4.08	NO	NON-SANDY SOILS		
1	Final	9:17 AM	25.00	2.51	4.00	NO	NON-SANDT SOILS		
2	Initial	9:17 AM	25.00	2.16	3.48	NO	NON-SANDY SOILS		
2	Final	9:42 AM	25.00	2.45	5.40	NO	NON-SANDI SOLS		

	Test Data								
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (ft)	Average Head Height (ft)	Infiltration Rate Q (in/hr)		
1	Initial Final	9:42 AM 10:12 AM	30.00	2.45 2.85	0.40	1.85	0.79		
2	Initial Final	10:12 AM 10:42 AM	30.00	2.28 2.63	0.35	2.05	0.63		
3	Initial Final	10:42 AM 11:12 AM	30.00	2.23 2.55	0.32	2.11	0.56		
4	Initial Final	11:12 AM 11:42 AM	30.00	2.30 2.58	0.28	2.06	0.50		
5	Initial Final	11:42 AM 12:12 PM	30.00	2.22 2.48	0.26	2.15	0.45		
6	Initial Final	11:42 AM 12:12 PM	30.00	2.48 2.69	0.21	1.92	0.40		
7	Initial Final	12:12 PM 12:42 PM	30.00	2.19 2.44	0.25	2.19	0.43		
8	Initial Final	12:42 PM 1:12 PM	30.00	2.44 2.67	0.23	1.95	0.44		
9	Initial Final	1:12 PM 1:42 PM	30.00	2.20 2.41	0.21	2.20	0.36		
10	Initial Final	1:42 PM 2:12 PM	30.00	2.41 2.61	0.20	1.99	0.37		
11	Initial Final	2:12 PM 2:42 PM	30.00	2.31 2.51	0.20	2.09	0.35		
12	Initial Final	2:42 PM 3:12 PM	30.00	2.51 2.68	0.17	1.91	0.33		

Per County Standards, Infiltration Rate calculated as follows:

Where: Q = Infiltration Rate (in inches per hour)

 ΔH = Change in Height (Water Level) over the time interval

r = Test Hole (Borehole) Radius

 $\Delta t = Time Interval$

$$Q = \frac{\Delta H(60r)}{\Delta t(r + 2H_{avg})}$$

Project Name	Harvest Landing Industrial Development
Project Location	Perris, California
Project Number	22G183-4
Engineer	Ryan Bremer

Test Hole Radius Test Depth 4 (in) 9.00 (ft)

I-23

Infiltration Test Hole

	Soil Criteria Test								
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (in)	Did 6 inches of water seep away in less than 25 minutes?	Sandy Soils or Non- Sandy Soils?		
1	Initial	8:49 AM	25.00	5.17	3.84	NO	NON-SANDY SOILS		
1	Final	9:14 AM	25.00	5.49	5.64	NO	NON-SANDT SOILS		
2	Initial	9:14 AM	25.00	5.05	2.40	NO	NON-SANDY SOILS		
2	Final	9:39 AM	25.00	5.25	2.40	NO	NON-SANDI SOLS		

	Test Data								
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (ft)	Average Head Height (ft)	Infiltration Rate Q (in/hr)		
1	Initial Final	9:39 AM 10:09 AM	30.00	5.24 5.37	0.13	3.70	0.13		
2	Initial Final	10:09 AM 10:39 AM	30.00	5.37 5.50	0.13	3.57	0.14		
3	Initial Final	10:39 AM 11:09 AM	30.00	5.50 5.61	0.11	3.45	0.12		
4	Initial Final	11:09 AM 11:39 AM	30.00	5.61 5.70	0.09	3.35	0.10		
5	Initial Final	11:39 AM 12:09 PM	30.00	5.31 5.42	0.11	3.64	0.12		
6	Initial Final	11:39 AM 12:09 PM	30.00	5.42 5.52	0.10	3.53	0.11		
7	Initial Final	12:09 PM 12:39 PM	30.00	5.52 5.60	0.08	3.44	0.09		
8	Initial Final	12:39 PM 1:09 PM	30.00	5.60 5.68	0.08	3.36	0.09		
9	Initial Final	1:09 PM 1:39 PM	30.00	5.68 5.76	0.08	3.28	0.09		
10	Initial Final	1:39 PM 2:09 PM	30.00	5.33 5.41	0.08	3.63	0.08		
11	Initial Final	2:09 PM 2:39 PM	30.00	5.41 5.48	0.07	3.56	0.08		
12	Initial Final	2:39 PM 3:09 PM	30.00	5.48 5.55	0.07	3.49	0.08		

Per County Standards, Infiltration Rate calculated as follows:

Where: Q = Infiltration Rate (in inches per hour)

 ΔH = Change in Height (Water Level) over the time interval

r = Test Hole (Borehole) Radius

 $\Delta t = Time Interval$

$$Q = \frac{\Delta H(60r)}{\Delta t(r+2H_{avg})}$$

Project Name	Harvest Landing Industrial Development
Project Location	Perris, California
Project Number	22G183-4
Engineer	Ryan Bremer

Test Hole Radius Test Depth 4 (in) 9.00 (ft)

I-24

Infiltration Test Hole

	Soil Criteria Test								
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (in)	Did 6 inches of water seep away in less than 25 minutes?	Sandy Soils or Non- Sandy Soils?		
1	Initial	8:46 AM	25.00	6.00	15 70	15.72	YES	SANDY SOILS	
1	Final	9:11 AM	23.00	7.31	15.72	TLS	SANDT SOILS		
2	Initial	9:11 AM	25.00	6.20	10.20	YES	SANDY SOILS		
2	Final	9:36: AM	23.00	7.05	10.20	TLS	SANDT SOILS		

	Test Data								
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (ft)	Average Head Height (ft)	Infiltration Rate Q (in/hr)		
1	Initial	11:16 AM	10.00	6.55	0.48	2.21	2.42		
	Final	11:26 AM	10.00	7.03	0.40	2.21	2.72		
2	Initial	11:27 AM	10.00	6.50	0.55	2.23	2.76		
2	Final	11:37 AM	10.00	7.05	0.00	2.20	2.10		
3	Initial	11:37 AM	10.00	6.50	0.47	2.27	2.32		
5	Final	11:47 AM	10.00	6.97					
4	Initial	11:48 AM	10.00	6.97	0.34	1.86	2.01		
4	Final	11:58 AM	10.00	7.31	0.34	1.00	2.01		
5	Initial	11:58 AM	10.00	6.58	0.39	2.23	1.96		
5	Final	12:08 PM	10.00	6.97	0.39	2.23	1.90		
6	Initial	12:08 PM	10.00	6.97	0.29	1.89	1.70		
0	Final	12:18 PM	10.00	7.26	0.29	1.09	1.70		

Per County Standards, Infiltration Rate calculated as follows:

$$Q = \frac{\Delta H(60r)}{\Delta t(r+2H_{avg})}$$

Where: Q = Infiltration Rate (in inches per hour)

- ΔH = Change in Height (Water Level) over the time interval
- r = Test Hole (Borehole) Radius
- $\Delta t = Time Interval$
- H_{avg} = Average Head Height over the time interval

Project Name	Harvest Landing Industrial Development
Project Location	Perris, California
Project Number	22G183-4
Engineer	Ryan Bremer

Test Hole Radius Test Depth 4 (in) 9.00 (ft)

I-25

Infiltration Test Hole

	Soil Criteria Test								
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (in)	Did 6 inches of water seep away in less than 25 minutes?	Sandy Soils or Non- Sandy Soils?		
1	Initial	8:49 AM	25.00	6.80	9.60	YES	SANDY SOILS		
I	Final	9:14 AM	25.00	7.60	9.60	TES	SANDT SUILS		
2	Initial	9:14 AM	25.00	6.50	2.16	NO	NON-SANDY SOILS		
2	Final	9:39 AM	25.00	6.68	2.10	NO	NON-SANDI SOLS		

	Test Data										
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (ft)	Average Head Height (ft)	Infiltration Rate Q (in/hr)				
1	Initial Final	9:39 AM 10:09 AM	30.00	6.68 6.86	0.18	2.23	0.30				
2	Initial Final	10:09 AM 10:39 AM	30.00	6.60 6.77	0.17	2.32	0.27				
3	Initial Final	10:39 AM 11:09 AM	30.00	6.77 6.91	0.14	2.16	0.24				
4	Initial Final	11:09 AM 11:39 AM	30.00	6.91 7.02	0.11	2.04	0.20				
5	Initial Final	11:39 AM 12:09 PM	30.00	6.75 6.88	0.13	2.19	0.22				
6	Initial Final	11:39 AM 12:09 PM	30.00	6.88 6.99	0.11	2.07	0.20				
7	Initial Final	12:09 PM 12:39 PM	30.00	6.99 7.07	0.08	1.97	0.15				
8	Initial Final	12:39 PM 1:09 PM	30.00	7.07 7.16	0.09	1.89	0.18				
9	Initial Final	1:09 PM 1:39 PM	30.00	6.77 6.86	0.09	2.19	0.15				
10	Initial Final	1:39 PM 2:09 PM	30.00	6.86 6.94	0.08	2.10	0.14				
11	Initial Final	2:09 PM 2:39 PM	30.00	6.94 7.02	0.08	2.02	0.15				
12	Initial Final	2:39 PM 3:09 PM	30.00	7.02 7.09	0.07	1.95	0.13				

Per County Standards, Infiltration Rate calculated as follows:

Where: Q = Infiltration Rate (in inches per hour)

 ΔH = Change in Height (Water Level) over the time interval

r = Test Hole (Borehole) Radius

 $\Delta t = Time Interval$

$$Q = \frac{\Delta H(60r)}{\Delta t(r+2H_{avg})}$$

Project Name	Harvest Landing Industrial Development
Project Location	Perris, California
Project Number	22G183-4
Engineer	Ryan Bremer

Test Hole Radius Test Depth 4 (in) 7.41 (ft)

I-26

Infiltration Test Hole

	Soil Criteria Test										
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (in)	Did 6 inches of water seep away in less than 25 minutes?	Sandy Soils or Non- Sandy Soils?				
1	Initial	12:07 PM	25.00	4.65	1.92	NO	NON-SANDY SOILS				
	Final	12:32 PM	25.00	4.81	1.92	NO	NUN-SANDT SULS				
2	Initial	12:32 PM	25.00	4.41	0.60	NO	NON-SANDY SOILS				
2	Final	12:57 PM	23.00	4.46	0.00	NO	NON-SANDT SOILS				

	Test Data										
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (ft)	Average Head Height (ft)	Infiltration Rate Q (in/hr)				
1	Initial Final	12:57 1:27 PM	30.00	4.46 4.53	0.07	2.92	0.09				
2	Initial Final	1:27 PM 1:57 PM	30.00	4.53 4.58	0.05	2.86	0.07				
3	Initial Final	1:57 PM 2:27 PM	30.00	4.58 4.62	0.04	2.81	0.05				
4	Initial Final	2:27 PM 2:57 PM	30.00	4.62 4.65	0.03	2.78	0.04				
5	Initial Final	2:57 PM 3:27 PM	30.00	4.65 4.68	0.03	2.75	0.04				
6	Initial Final	2:57 PM 3:27 PM	30.00	4.68 4.71	0.03	2.72	0.04				
7	Initial Final	3:27 PM 3:57 PM	30.00	4.71 4.74	0.03	2.69	0.04				
8	Initial Final	3:57 PM 4:27 PM	30.00	4.74 4.77	0.03	2.66	0.04				
9	Initial Final	4:27 PM 4:57 PM	30.00	4.77	0.01	2.64	0.01				
10	Initial Final	4:57 PM 5:27 PM	30.00	4.78 4.80	0.02	2.62	0.03				
11	Initial Final	5:27 PM 5:57 PM	30.00	4.80 4.83	0.03	2.60	0.04				
12	Initial Final	5:57 PM 6:27 PM	30.00	4.83 4.85	0.02	2.57	0.03				

Per County Standards, Infiltration Rate calculated as follows:

Where: Q = Infiltration Rate (in inches per hour)

 ΔH = Change in Height (Water Level) over the time interval

r = Test Hole (Borehole) Radius

 $\Delta t = Time Interval$

$$Q = \frac{\Delta H(60r)}{\Delta t(r + 2H_{avg})}$$

Project Name	Harvest Landing Industrial Development
Project Location	Perris, California
Project Number	22G183-4
Engineer	Ryan Bremer

Test Hole Radius Test Depth 4 (in) 7.00 (ft)

I-27

Infiltration Test Hole

	Soil Criteria Test										
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (in)	Did 6 inches of water seep away in less than 25 minutes?	Sandy Soils or Non- Sandy Soils?				
1	Initial	8:31 AM	25.00	4.15	3.36	NO	NON-SANDY SOILS				
1	Final	8:56 AM	25.00	4.43	5.50	NO	NON-SANDT SOILS				
2	Initial	8:56 AM	25.00	3.98	5.64	NO	NON-SANDY SOILS				
2	Final	9:21 AM	23.00	4.45	5.04	NO	NON-SANDT SOILS				

	Test Data										
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (ft)	Average Head Height (ft)	Infiltration Rate Q (in/hr)				
1	Initial Final	9:24 9:54 AM	30.00	4.45 4.72	0.27	2.42	0.42				
2	Initial Final	9:54 AM 10:24 AM	30.00	4.72 4.86	0.14	2.21	0.24				
3	Initial Final	10:24 AM 10:54 AM	30.00	4.86 4.93	0.07	2.11	0.12				
4	Initial Final	10:54 AM 11:24 AM	30.00	4.93 4.99	0.06	2.04	0.11				
5	Initial Final	11:24 AM 11:54 AM	30.00	4.99 5.04	0.05	1.99	0.09				
6	Initial Final	11:24 AM 11:54 AM	30.00	5.04 5.09	0.05	1.94	0.10				
7	Initial Final	11:54 AM 12:24 PM	30.00	5.09 5.13	0.04	1.89	0.08				
8	Initial Final	12:24 PM 12:54 PM	30.00	5.13 5.16	0.03	1.86	0.06				
9	Initial Final	12:54 PM 1:24 PM	30.00	4.66 4.72	0.06	2.31	0.10				
10	Initial Final	1:24 PM 1:54 PM	30.00	4.72 4.76	0.04	2.26	0.07				
11	Initial Final	1:54 PM 2:24 PM	30.00	4.76 4.80	0.04	2.22	0.07				
12	Initial Final	2:24 PM 2:54 PM	30.00	4.80 4.83	0.03	2.19	0.05				

Per County Standards, Infiltration Rate calculated as follows:

Where: Q = Infiltration Rate (in inches per hour)

 ΔH = Change in Height (Water Level) over the time interval

r = Test Hole (Borehole) Radius

 $\Delta t = Time Interval$

$$Q = \frac{\Delta H(60r)}{\Delta t(r + 2H_{avg})}$$

Project Name	Harvest Landing Industrial Development
Project Location	Perris, California
Project Number	22G183-4
Engineer	Ryan Bremer

Test Hole Radius Test Depth 4 (in) 5.51 (ft)

I-28

Infiltration Test Hole

	Soil Criteria Test										
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (in)	Did 6 inches of water seep away in less than 25 minutes?	Sandy Soils or Non- Sandy Soils?				
1	Initial	8:34 AM	25.00	3.40	2.64	NO	NON-SANDY SOILS				
1	Final	8:59 AM	23.00	3.62	2.04	NO	NON-SANDT SOILS				
2	Initial	8:59 AM	25.00	3.53	0.36	NO	NON-SANDY SOILS				
2	Final	9:24 AM	25.00	3.56	0.50	NO	NON-SANDI SOLS				

	Test Data										
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (ft)	Average Head Height (ft)	Infiltration Rate Q (in/hr)				
1	Initial Final	9:25 AM 9:55 AM	30.00	3.56 3.57	0.01	1.95	0.02				
2	Initial Final	9:55 AM 10:25 AM	30.00	3.57 3.58	0.01	1.94	0.02				
3	Initial Final	10:25 AM 10:55 AM	30.00	3.58 3.59	0.01	1.93	0.02				
4	Initial Final	10:55 AM 11:25 AM	30.00	3.59 3.60	0.01	1.92	0.02				
5	Initial Final	11:25 AM 11:55 AM	30.00	3.60 3.60	0.00	1.91	0.00				
6	Initial Final	11:25 AM 11:55 AM	30.00	3.60 3.61	0.01	1.91	0.02				
7	Initial Final	11:55 AM 12:25 PM	30.00	3.61 3.62	0.01	1.90	0.02				
8	Initial Final	12:25 PM 12:55 PM	30.00	3.62 3.62	0.00	1.89	0.00				
9	Initial Final	12:55 PM 1:25 PM	30.00	3.62 3.62	0.00	1.89	0.00				
10	Initial Final	1:25 PM 1:55 PM	30.00	3.62 3.63	0.01	1.89	0.02				
11	Initial Final	1:55 PM 2:25 PM	30.00	3.63 3.63	0.00	1.88	0.00				
12	Initial Final	2:25 PM 2:55 PM	30.00	3.63 3.63	0.00	1.88	0.00				

Per County Standards, Infiltration Rate calculated as follows:

Where: Q = Infiltration Rate (in inches per hour)

 ΔH = Change in Height (Water Level) over the time interval

r = Test Hole (Borehole) Radius

 $\Delta t = Time Interval$

$$Q = \frac{\Delta H(60r)}{\Delta t(r + 2H_{avg})}$$

Project Name	Harvest Landing Industrial Development
Project Location	Perris, California
Project Number	22G183-4
Engineer	Ryan Bremer

Test Hole Radius Test Depth 4 (in) 6.01 (ft)

I-29

Infiltration Test Hole

	Soil Criteria Test										
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (in)	Did 6 inches of water seep away in less than 25 minutes?	Sandy Soils or Non- Sandy Soils?				
1	Initial	12:11 PM	25.00	3.01	3.96	NO	NON-SANDY SOILS				
1	Final	12:36 PM	25.00	3.34	3.90	NO	NON-SANDT SOILS				
2	Initial	12:36 PM	25.00	3.15	1.56	NO	NON-SANDY SOILS				
2	Final	1:01 PM	25.00	3.28	1.50	NO	NON-SANDI SOLS				

Test Data								
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (ft)	Average Head Height (ft)	Infiltration Rate Q (in/hr)	
1	Initial Final	1:02 PM 1:32 PM	30.00	3.28 3.38	0.10	2.68	0.14	
2	Initial Final	1:32 PM 2:02 PM	30.00	3.38 3.44	0.06	2.60	0.09	
3	Initial Final	2:02 PM 2:32 PM	30.00	3.44 3.51	0.07	2.54	0.10	
4	Initial Final	2:32 PM 3:02 PM	30.00	3.51 3.56	0.05	2.48	0.08	
5	Initial Final	3:02 PM 3:32 PM	30.00	3.56 3.60	0.04	2.43	0.06	
6	Initial Final	3:02 PM 3:32 PM	30.00	3.60 3.65	0.05	2.39	0.08	
7	Initial Final	3:32 PM 4:02 PM	30.00	3.65 3.69	0.04	2.34	0.06	
8	Initial Final	4:02 PM 4:32 PM	30.00	3.69 3.71	0.02	2.31	0.03	
9	Initial Final	4:32 PM 5:02 PM	30.00	3.71 3.74	0.03	2.29	0.05	
10	Initial Final	5:02 PM 5:32 PM	30.00	3.74 3.77	0.03	2.26	0.05	
11	Initial Final	5:32 PM 6:02 PM	30.00	3.77 3.80	0.03	2.23	0.05	
12	Initial Final	6:02 PM 6:32 PM	30.00	3.80 3.82	0.02	2.20	0.03	

Per County Standards, Infiltration Rate calculated as follows:

Where: Q = Infiltration Rate (in inches per hour)

 ΔH = Change in Height (Water Level) over the time interval

r = Test Hole (Borehole) Radius

 $\Delta t = Time Interval$

$$Q = \frac{\Delta H(60r)}{\Delta t(r + 2H_{avg})}$$

Project Name	Harvest Landing Industrial Development
Project Location	Perris, California
Project Number	22G183-4
Engineer	Ryan Bremer

Test Hole Radius Test Depth 4 (in) 6.47 (ft)

I-30

Infiltration Test Hole

Soil Criteria Test								
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (in)	Did 6 inches of water seep away in less than 25 minutes?	Sandy Soils or Non- Sandy Soils?	
1	Initial	8:35 AM	25.00	3.35	0.96	NO	NON-SANDY SOILS	
1	Final	9:00 AM	25.00	3.43 0.96		NO	NON-SANDT SOILS	
2	Initial	al 9:00 AM 25.00 3.43 1.44		1.44	NO	NON-SANDY SOILS		
2	Final	9:25 AM	23.00	3.55	1.44	NO	NUN-SANDY SUILS	

	Test Data								
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (ft)	Average Head Height (ft)	Infiltration Rate Q (in/hr)		
1	Initial Final	9:26 AM 9:56 AM	30.00	3.55 3.72	0.17	2.84	0.23		
2	Initial Final	9:56 AM 10:26 AM	30.00	3.72 3.83	0.11	2.70	0.15		
3	Initial Final	10:26 AM 10:56 AM	30.00	3.83 3.93	0.10	2.59	0.15		
4	Initial Final	10:56 AM 11:26 AM	30.00	3.93 4.01	0.08	2.50	0.12		
5	Initial Final	11:26 AM 11:56 AM	30.00	4.01 4.08	0.07	2.43	0.11		
6	Initial Final	11:26 AM 11:56 AM	30.00	4.08 4.14	0.06	2.36	0.09		
7	Initial Final	11:56 AM 12:26 PM	30.00	4.14 4.20	0.06	2.30	0.10		
8	Initial Final	12:26 PM 12:56 PM	30.00	4.20 4.25	0.05	2.25	0.08		
9	Initial Final	12:56 PM 1:26 PM	30.00	4.25	0.05	2.20	0.08		
10	Initial Final	1:26 PM 1:56 PM	30.00	3.84 3.90	0.06	2.60	0.09		
11	Initial Final	1:56 PM 2:26 PM	30.00	3.90 3.95	0.05	2.55	0.07		
12	Initial Final	2:26 PM 2:56 PM	30.00	3.95 3.99	0.04	2.50	0.06		

Per County Standards, Infiltration Rate calculated as follows:

Where: Q = Infiltration Rate (in inches per hour)

 ΔH = Change in Height (Water Level) over the time interval

r = Test Hole (Borehole) Radius

 $\Delta t = Time Interval$

$$Q = \frac{\Delta H(60r)}{\Delta t(r + 2H_{avg})}$$

Project Name	Harvest Landing Industrial Development
Project Location	Perris, California
Project Number	22G183-4
Engineer	Ryan Bremer

Test Hole Radius Test Depth 4 (in) 6.00 (ft)

I-31

Infiltration Test Hole

Soil Criteria Test									
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (in)	Did 6 inches of water seep away in less than 25 minutes?	Sandy Soils or Non- Sandy Soils?		
1	Initial	8:39 AM	25.00	3.35	21.71	21.71 YES	SANDY SOILS		
1	Final	9:04 AM	23.00	5.16	21.71	TLS	SANDT SOILS		
2	Initial	9:04 AM	25.00	3.40	1.08	NO	NON-SANDY SOILS		
	Final	9:29 AM	23.00	3.49					

Test Data								
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (ft)	Average Head Height (ft)	Infiltration Rate Q (in/hr)	
1	Initial Final	9:31 AM 10:01 AM	30.00	3.49 3.63	0.14	2.44	0.21	
2	Initial Final	10:01 AM 10:31 AM	30.00	3.63 3.72	0.09	2.33	0.14	
3	Initial Final	10:31 AM 11:01 AM	30.00	3.72 3.83	0.11	2.23	0.18	
4	Initial Final	11:01 AM 11:31 AM	30.00	3.83 3.91	0.08	2.13	0.14	
5	Initial Final	11:31 AM 12:01 PM	30.00	3.91 4.00	0.09	2.05	0.16	
6	Initial Final	11:31 AM 12:01 PM	30.00	4.00 4.07	0.07	1.97	0.13	
7	Initial Final	12:01 PM 12:31 PM	30.00	4.07 4.14	0.07	1.90	0.14	
8	Initial Final	12:31 PM 1:01 PM	30.00	4.14 4.21	0.07	1.83	0.14	
9	Initial Final	1:01 PM 1:31 PM	30.00	3.84 3.92	0.08	2.12	0.14	
10	Initial Final	1:31 PM 2:01 PM	30.00	3.92 3.99	0.07	2.05	0.13	
11	Initial Final	2:01 PM 2:31 PM	30.00	3.99 4.06	0.07	1.98	0.13	
12	Initial Final	2:31 PM 3:01 PM	30.00	4.06 4.11	0.05	1.92	0.10	

Per County Standards, Infiltration Rate calculated as follows:

Where: Q = Infiltration Rate (in inches per hour)

 ΔH = Change in Height (Water Level) over the time interval

r = Test Hole (Borehole) Radius

 $\Delta t = Time Interval$

$$Q = \frac{\Delta H(60r)}{\Delta t(r + 2H_{avg})}$$

Project Name	Harvest Landing Industrial Development
Project Location	Perris, California
Project Number	22G183-4
Engineer	Ryan Bremer

Test Hole Radius Test Depth

	4	(in)
6.	53	(in) (ft)

I-32

Infiltration Test Hole

	Soil Criteria Test								
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (in)	Did 6 inches of water seep away in less than 25 minutes?	Sandy Soils or Non- Sandy Soils?		
1	Initial	12:14 PM	25.00	3.43	3.48	NO	NON-SANDY SOILS		
1	Final	12:39 PM	25.00	3.72	5.40	NO	NON-SANDT SOILS		
2	Initial	12:39 PM	25.00	3.23	2.16	NO	NON-SANDY SOILS		
2	Final	1:04 PM	23.00	3.41					

Test Data								
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (ft)	Average Head Height (ft)	Infiltration Rate Q (in/hr)	
1	Initial Final	1:05 PM 1:35 PM	30.00	3.47 3.60	0.13	3.00	0.16	
2	Initial Final	1:35 PM 2:05 PM	30.00	3.60 3.69	0.09	2.89	0.12	
3	Initial Final	2:05 PM 2:35 PM	30.00	3.69 3.77	0.08	2.80	0.11	
4	Initial Final	2:35 PM 3:05 PM	30.00	3.77 3.84	0.07	2.73	0.10	
5	Initial Final	3:05 PM 3:35 PM	30.00	3.84 3.91	0.07	2.66	0.10	
6	Initial Final	3:05 PM 3:35 PM	30.00	3.91 3.97	0.06	2.59	0.09	
7	Initial Final	3:35 PM 4:05 PM	30.00	3.97 4.02	0.05	2.54	0.07	
8	Initial Final	4:05 PM 4:35 PM	30.00	4.02 4.07	0.05	2.49	0.08	
9	Initial Final	4:35 PM 5:05 PM	30.00	4.07 4.12	0.05	2.44	0.08	
10	Initial Final	5:05 PM 5:35 PM	30.00	4.12 4.18	0.06	2.38	0.09	
11	Initial Final	5:35 PM 6:05 PM	30.00	4.18 4.22	0.04	2.33	0.06	
12	Initial Final	6:05 PM 6:35 PM	30.00	4.22 4.26	0.04	2.29	0.07	

Per County Standards, Infiltration Rate calculated as follows:

Where: Q = Infiltration Rate (in inches per hour)

 ΔH = Change in Height (Water Level) over the time interval

r = Test Hole (Borehole) Radius

 $\Delta t = Time Interval$

$$Q = \frac{\Delta H(60r)}{\Delta t(r + 2H_{avg})}$$

Project Name	Harvest Landing Industrial Development
Project Location	Perris, California
Project Number	22G183-4
Engineer	Ryan Bremer

Test Hole Radius Test Depth 4 (in) 6.60 (ft)

I-33

Infiltration Test Hole

	Soil Criteria Test										
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (in)	Did 6 inches of water seep away in less than 25 minutes?	Sandy Soils or Non- Sandy Soils?				
1	Initial	8:39 AM	25.00	4.20	1.68	NO	NON-SANDY SOILS				
1	Final	9:04 AM	23.00	4.34	1.00	NO	NON-SANDT SOILS				
2	Initial	9:04 AM	25.00	4.34	0.72	NO	NON-SANDY SOILS				
2	Final	9:29 AM	25.00	4.40	0.72	NO	NON-SANDI SOLS				

	Test Data									
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (ft)	Average Head Height (ft)	Infiltration Rate Q (in/hr)			
1	Initial	9:29 AM	30.00	4.40	0.03	2.19	0.05			
	Final	9:59 AM		4.43						
2	Initial	9:59 AM	30.00	4.43	0.08	2.13	0.14			
	Final	10:29 AM		4.51						
3	Initial Final	10:29 AM 10:59 AM	30.00	4.51 4.55	0.04	2.07	0.07			
	Initial	10:59 AM		4.55						
4	Final	11:29 AM	30.00	4.58	0.03	2.04	0.05			
_	Initial	11:29 AM		4.58	0.03	2.01	0.06			
5	Final	11:59 AM	30.00	4.61						
6	Initial	11:29 AM	30.00	4.61	0.03	1.98	0.06			
0	Final	11:59 AM	30.00	4.64						
7	Initial	11:59 AM	30.00	4.64	0.03	1.95	0.06			
'	Final	12:29 PM	30.00	4.67	0.05					
8	Initial	12:29 PM	30.00	4.44	0.04	2.14	0.07			
0	Final	12:59 PM	30.00	4.48	0.04	2.14				
9	Initial	12:59 PM	30.00	4.48	0.04	2.10	0.07			
9	Final	1:29 PM	30.00	4.52	0.04	2.10	0.07			
10	Initial	1:29 PM	30.00	4.52	0.04	2.06	0.07			
10	Final	1:59 PM	30.00	4.56	0.04	2.00	0.07			
11	Initial	1:59 PM	30.00	4.56	0.03	2.03	0.05			
11	Final	2:29 PM	50.00	4.59	0.05	2.03	0.05			
12	Initial	2:29 PM	30.00	4.59	0.03	2.00	0.06			
12	Final	2:59 PM	30.00	4.62	0.05	2.00	0.00			

Per County Standards, Infiltration Rate calculated as follows:

Where: Q = Infiltration Rate (in inches per hour)

 ΔH = Change in Height (Water Level) over the time interval

r = Test Hole (Borehole) Radius

 $\Delta t = Time Interval$

$$Q = \frac{\Delta H(60r)}{\Delta t(r + 2H_{avg})}$$

Project Name	Harvest Landing Industrial Development
Project Location	Perris, California
Project Number	22G183-4
Engineer	Ryan Bremer

Test Hole Radius Test Depth 4 (in) 5.00 (ft)

I-34

Infiltration Test Hole

	Soil Criteria Test										
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (in)	Did 6 inches of water seep away in less than 25 minutes?	Sandy Soils or Non- Sandy Soils?				
1	Initial	8:52 AM	25.00	2.97	0.72	NO	NON-SANDY SOILS				
1	Final	9:17 AM	23.00	3.03	0.72	NO	NON-SANDT SOILS				
2	Initial	9:17 AM	25.00	3.00	0.96	NO	NON-SANDY SOILS				
2	Final	9:42 AM	23.00	3.08	0.90	NO	NON-SANDT SOILS				

	Test Data									
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (ft)	Average Head Height (ft)	Infiltration Rate Q (in/hr)			
1	Initial Final	9:42 AM 10:12 AM	30.00	3.08 3.19	0.11	1.87	0.22			
2	Initial Final	10:12 AM 10:42 AM	30.00	3.19 3.28	0.09	1.77	0.19			
3	Initial Final	10:42 AM 11:12 AM	30.00	3.28 3.37	0.09	1.68	0.20			
4	Initial Final	11:12 AM 11:42 AM	30.00	3.04 3.13	0.09	1.92	0.17			
5	Initial Final	11:42 AM 12:12 PM	30.00	3.13 3.21	0.08	1.83	0.16			
6	Initial Final	11:42 AM 12:12 PM	30.00	3.21 3.27	0.06	1.76	0.12			
7	Initial Final	12:12 PM 12:42 PM	30.00	3.27 3.33	0.06	1.70	0.13			
8	Initial Final	12:42 PM 1:12 PM	30.00	3.11 3.18	0.07	1.86	0.14			
9	Initial Final	1:12 PM 1:42 PM	30.00	3.18 3.24	0.06	1.79	0.12			
10	Initial Final	1:42 PM 2:12 PM	30.00	3.24 3.29	0.05	1.74	0.11			
11	Initial Final	2:12 PM 2:42 PM	30.00	3.29 3.34	0.05	1.69	0.11			
12	Initial Final	2:42 PM 3:12 PM	30.00	3.15 3.21	0.06	1.82	0.12			

Per County Standards, Infiltration Rate calculated as follows:

Where: Q = Infiltration Rate (in inches per hour)

 ΔH = Change in Height (Water Level) over the time interval

r = Test Hole (Borehole) Radius

 $\Delta t = Time Interval$

$$Q = \frac{\Delta H(60r)}{\Delta t(r + 2H_{avg})}$$

Project Name	Harvest Landing Industrial Development
Project Location	Perris, California
Project Number	22G183-4
Engineer	Ryan Bremer

Test Hole Radius Test Depth 4 (in) 4.50 (ft)

I-35

Infiltration Test Hole

	Soil Criteria Test										
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (in)	Did 6 inches of water seep away in less than 25 minutes?	Sandy Soils or Non- Sandy Soils?				
1	Initial	10:31 AM	25.00	2.32	5.76	NO	NON-SANDY SOILS				
1	Final	10:56 AM	25.00	2.80	5.70	NO	NON-SANDT SOILS				
2	Initial	10:56 AM 25.00 2.33	2.33	4.44	NO	NON-SANDY SOILS					
2	Final	11:21 AM	23.00	2.70	4.44	NO	NON-SANDT SOILS				

	Test Data									
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (ft)	Average Head Height (ft)	Infiltration Rate Q (in/hr)			
1	Initial Final	11:24 AM 11:54 AM	30.00	2.41 2.66	0.25	1.97	0.47			
2	Initial Final	11:54 AM 12:24 PM	30.00	2.49 2.68	0.19	1.92	0.37			
3	Initial Final	12:24 PM 12:54 PM	30.00	2.68 2.83	0.15	1.75	0.31			
4	Initial Final	12:54 PM 1:24 PM	30.00	2.45 2.60	0.15	1.98	0.28			
5	Initial Final	1:24 PM 1:54 PM	30.00	2.60 2.73	0.13	1.84	0.26			
6	Initial Final	1:24 PM 1:54 PM	30.00	2.73 2.84	0.11	1.72	0.23			
7	Initial Final	1:54 PM 2:24 PM	30.00	2.46 2.56	0.10	1.99	0.19			
8	Initial Final	2:24 PM 2:54 PM	30.00	2.56 2.67	0.11	1.89	0.21			
9	Initial Final	2:54 PM 3:24 PM	30.00	2.67 2.75	0.08	1.79	0.16			
10	Initial Final	3:24 PM 3:54 PM	30.00	2.75 2.81	0.06	1.72	0.13			
11	Initial Final	3:54 PM 4:24 PM	30.00	2.40 2.49	0.09	2.06	0.16			
12	Initial Final	4:24 PM 4:54 PM	30.00	2.49 2.56	0.07	1.98	0.13			

Per County Standards, Infiltration Rate calculated as follows:

Where: Q = Infiltration Rate (in inches per hour)

 ΔH = Change in Height (Water Level) over the time interval

r = Test Hole (Borehole) Radius

 $\Delta t = Time Interval$

$$Q = \frac{\Delta H(60r)}{\Delta t(r+2H_{avg})}$$

Project Name	Harvest Landing Industrial Development
Project Location	Perris, California
Project Number	22G183-4
Engineer	Ryan Bremer

Test Hole Radius Test Depth 4 (in) 5.50 (ft)

I-36

Infiltration Test Hole

	Soil Criteria Test										
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (in)	Did 6 inches of water seep away in less than 25 minutes?	Sandy Soils or Non- Sandy Soils?				
1	Initial	10:31 AM	25.00	2.95	0.00	NO	NON-SANDY SOILS				
1	Final	10:56 AM	23.00	2.95	0.00	NO	NON-SANDT SOILS				
2	Initial	10:56 AM	25.00	2.95	0.00	NO	NON-SANDY SOILS				
2	Final	11:21 AM	25.00	2.95	0.00	NO	NON-SANDI SOLS				

	Test Data									
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (ft)	Average Head Height (ft)	Infiltration Rate Q (in/hr)			
1	Initial Final	11:22 AM 11:52 AM	30.00	2.95 2.95	0.00	2.55	0.00			
2	Initial Final	11:52 AM 12:22 PM	30.00	2.95 2.96	0.01	2.55	0.01			
3	Initial Final	12:22 PM 12:52 PM	30.00	2.96 2.96	0.00	2.54	0.00			
4	Initial Final	12:52 PM 1:22 PM	30.00	2.96 2.96	0.00	2.54	0.00			
5	Initial Final	1:22 PM 1:52 PM	30.00	2.96 2.97	0.01	2.54	0.01			
6	Initial Final	1:22 PM 1:52 PM	30.00	2.97 2.97	0.00	2.53	0.00			
7	Initial Final	1:52 PM 2:22 PM	30.00	2.97 2.97	0.00	2.53	0.00			
8	Initial Final	2:22 PM 2:52 PM	30.00	2.97 2.98	0.01	2.53	0.01			
9	Initial Final	2:52 PM 3:22 PM	30.00	2.98 2.98	0.00	2.52	0.00			
10	Initial Final	3:22 PM 3:52 PM	30.00	2.98 2.98	0.00	2.52	0.00			
11	Initial Final	3:52 PM 4:22 PM	30.00	2.98 2.99	0.01	2.52	0.01			
12	Initial Final	4:22 PM 4:52 PM	30.00	2.99 2.99	0.00	2.51	0.00			

Per County Standards, Infiltration Rate calculated as follows:

Where: Q = Infiltration Rate (in inches per hour)

 ΔH = Change in Height (Water Level) over the time interval

r = Test Hole (Borehole) Radius

 $\Delta t = Time Interval$

$$Q = \frac{\Delta H(60r)}{\Delta t(r+2H_{avg})}$$

Project Name	Harvest Landing Industrial Development
Project Location	Perris, California
Project Number	22G183-4
Engineer	Ryan Bremer

Test Hole Radius Test Depth 4 (in) 6.50 (ft)

I-37

Infiltration Test Hole

	Soil Criteria Test										
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (in)	Did 6 inches of water seep away in less than 25 minutes?	Sandy Soils or Non- Sandy Soils?				
1	Initial	9:00 AM	25.00	3.46	1.68	NO	NON-SANDY SOILS				
1	Final	9:25 AM	23.00	3.60	1.00	NO	NON-SANDT SOILS				
2	Initial	9:25 AM	25.00	3.40	1.44	NO	NON-SANDY SOILS				
2	Final	9:50 AM	23.00	3.52	1.44	NO	NON-SANDT SOILS				

	Test Data									
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (ft)	Average Head Height (ft)	Infiltration Rate Q (in/hr)			
1	Initial Final	9:51 AM 10:21 AM	30.00	3.52 3.63	0.11	2.93	0.14			
2	Initial Final	10:21 AM 10:51 AM	30.00	3.63 3.70	0.07	2.84	0.09			
3	Initial Final	10:51 AM 11:21 AM	30.00	3.70 3.75	0.05	2.78	0.07			
4	Initial Final	11:21 AM 11:51 AM	30.00	3.75 3.80	0.05	2.73	0.07			
5	Initial Final	11:51 AM 12:21 PM	30.00	3.80 3.86	0.06	2.67	0.08			
6	Initial Final	11:51 AM 12:21 PM	30.00	3.86 3.91	0.05	2.62	0.07			
7	Initial Final	12:21 PM 12:51 PM	30.00	3.91 3.95	0.04	2.57	0.06			
8	Initial Final	12:51 PM 1:21 PM	30.00	3.95 3.99	0.04	2.53	0.06			
9	Initial Final	1:21 PM 1:51 PM	30.00	3.99 4.03	0.04	2.49	0.06			
10	Initial Final	1:51 PM 2:21 PM	30.00	4.03 4.06	0.03	2.46	0.05			
11	Initial Final	2:21 PM 2:51 PM	30.00	4.06 4.10	0.04	2.42	0.06			
12	Initial Final	2:51 PM 3:21 PM	30.00	4.10 4.14	0.04	2.38	0.06			

Per County Standards, Infiltration Rate calculated as follows:

Where: Q = Infiltration Rate (in inches per hour)

 ΔH = Change in Height (Water Level) over the time interval

r = Test Hole (Borehole) Radius

 $\Delta t = Time Interval$

$$Q = \frac{\Delta H(60r)}{\Delta t(r+2H_{avg})}$$

Project Name	Harvest Landing Industrial Development
Project Location	Perris, California
Project Number	22G183-4
Engineer	Ryan Bremer

Test Hole Radius Test Depth 4 (in) 6.41 (ft)

I-38

Infiltration Test Hole

	Soil Criteria Test										
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (in)	Did 6 inches of water seep away in less than 25 minutes?	Sandy Soils or Non- Sandy Soils?				
1	Initial	10:24 AM	25.00	3.76	4.08	NO	NON-SANDY SOILS				
1	Final	10:49 AM	25.00	4.10	4.00	NO	NON-SANDT SOILS				
2	Initial	10:49 AM	25.00	3.86	1.92	NO	NON-SANDY SOILS				
2	Final	11:14 AM	25.00	4.02	1.92	NO	NON-SANDT SOILS				

	Test Data									
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (ft)	Average Head Height (ft)	Infiltration Rate Q (in/hr)			
1	Initial Final	11:17 AM 11:47 AM	30.00	3.90 4.03	0.13	2.45	0.20			
2	Initial Final	11:47 AM 12:17 PM	30.00	3.98 4.23	0.25	2.31	0.40			
3	Initial Final	12:17 PM 12:47 PM	30.00	4.02 4.25	0.23	2.28	0.38			
4	Initial Final	12:47 PM 1:17 PM	30.00	4.25 4.40	0.15	2.09	0.27			
5	Initial Final	1:17 PM 1:47 PM	30.00	4.01 4.13	0.12	2.34	0.19			
6	Initial Final	1:17 PM 1:47 PM	30.00	4.13 4.25	0.12	2.22	0.20			
7	Initial Final	1:47 PM 2:17 PM	30.00	4.25 4.34	0.09	2.12	0.16			
8	Initial Final	2:17 PM 2:47 PM	30.00	4.34 4.42	0.08	2.03	0.15			
9	Initial Final	2:47 PM 3:17 PM	30.00	4.12 4.21	0.09	2.25	0.15			
10	Initial Final	3:17 PM 3:47 PM	30.00	4.21 4.28	0.07	2.17	0.12			
11	Initial Final	3:47 PM 4:17 PM	30.00	4.28 4.35	0.07	2.10	0.12			
12	Initial Final	4:17 PM 4:47 PM	30.00	4.16 4.22	0.06	2.22	0.10			

Per County Standards, Infiltration Rate calculated as follows:

Where: Q = Infiltration Rate (in inches per hour)

 ΔH = Change in Height (Water Level) over the time interval

r = Test Hole (Borehole) Radius

 $\Delta t = Time Interval$

$$Q = \frac{\Delta H(60r)}{\Delta t(r+2H_{avg})}$$

Project Name	Harvest Landing Industrial Development
Project Location	Perris, California
Project Number	22G183-4
Engineer	Ryan Bremer

Test Hole Radius Test Depth 4 (in) 7.42 (ft)

I-39

Infiltration Test Hole

	Soil Criteria Test										
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (in)	Did 6 inches of water seep away in less than 25 minutes?	Sandy Soils or Non- Sandy Soils?				
1	Initial	10:42 AM	25.00	4.81	0.12	0.12 NO	NON-SANDY SOILS				
Ĩ	Final	11:07 AM	23.00	4.82	0.12	NO	NON-SANDT SOLS				
2	Initial	11:07 AM	25.00	4.82	0.24	NO	NON-SANDY SOILS				
² Final	Final	11:32 AM	23.00	4.84	0.24	NO					

	Test Data									
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (ft)	Average Head Height (ft)	Infiltration Rate Q (in/hr)			
1	Initial Final	11:32 AM 12:02 PM	30.00	4.84 4.86	0.02	2.57	0.03			
2	Initial Final	12:02 PM 12:32 PM	30.00	4.86 4.87	0.01	2.56	0.01			
3	Initial Final	12:32 PM 1:02 PM	30.00	4.87 4.89	0.02	2.54	0.03			
4	Initial Final	1:02 PM 1:32 PM	30.00	4.89 4.90	0.01	2.53	0.01			
5	Initial Final	1:32 PM 2:02 PM	30.00	4.90 4.91	0.01	2.52	0.01			
6	Initial Final	1:32 PM 2:02 PM	30.00	4.91 4.94	0.03	2.50	0.05			
7	Initial Final	2:02 PM 2:32 PM	30.00	4.94 4.95	0.01	2.48	0.02			
8	Initial Final	2:32 PM 3:02 PM	30.00	4.95 4.96	0.01	2.47	0.02			
9	Initial Final	3:02 PM 3:32 PM	30.00	4.96	0.01	2.46	0.02			
10	Initial Final	3:32 PM 4:02 PM	30.00	4.97 4.98	0.01	2.45	0.02			
11	Initial Final	4:02 PM 4:32 PM	30.00	4.98 5.00	0.02	2.43	0.03			
12	Initial Final	4:32 PM 5:02 PM	30.00	5.00 5.01	0.01	2.42	0.02			

Per County Standards, Infiltration Rate calculated as follows:

Where: Q = Infiltration Rate (in inches per hour)

 ΔH = Change in Height (Water Level) over the time interval

r = Test Hole (Borehole) Radius

 $\Delta t = Time Interval$

$$Q = \frac{\Delta H(60r)}{\Delta t(r + 2H_{avg})}$$

Project Name	Harvest Landing Industrial Development
Project Location	Perris, California
Project Number	22G183-4
Engineer	Ryan Bremer

Test Hole Radius Test Depth 4 (in) 7.40 (ft)

I-40

Infiltration Test Hole

	Soil Criteria Test										
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (in)	Did 6 inches of water seep away in less than 25 minutes?	Sandy Soils or Non- Sandy Soils?				
1	Initial	8:43 AM	25.00	4.86	2.24	3.24 NO	NON-SANDY SOILS				
1	Final	9:08 AM	25.00	5.13	5.24	NO	NON-SANDT SOILS				
2	Initial	9:08 AM	25.00	4.93	0.48	NO	NON-SANDY SOILS				
2	Final	9:33 AM	25.00	4.97	0.40	NO	NON-SANDI SOLS				

	Test Data									
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (ft)	Average Head Height (ft)	Infiltration Rate Q (in/hr)			
1	Initial Final	9:34 AM 10:04 AM	30.00	4.97 5.06	0.09	2.39	0.14			
2	Initial Final	10:04 AM 10:34 AM	30.00	5.06 5.10	0.04	2.32	0.06			
3	Initial Final	10:34 AM 11:04 AM	30.00	5.10 5.15	0.05	2.28	0.08			
4	Initial Final	11:04 AM 11:34 AM	30.00	5.15 5.19	0.04	2.23	0.07			
5	Initial Final	11:34 AM 12:04 PM	30.00	4.99 5.03	0.04	2.39	0.06			
6	Initial Final	11:34 AM 12:04 PM	30.00	5.03 5.06	0.03	2.36	0.05			
7	Initial Final	12:04 PM 12:34 PM	30.00	5.06 5.09	0.03	2.33	0.05			
8	Initial Final	12:34 PM 1:04 PM	30.00	5.09 5.13	0.04	2.29	0.07			
9	Initial Final	1:04 PM 1:34 PM	30.00	5.13 5.16	0.03	2.26	0.05			
10	Initial Final	1:34 PM 2:04 PM	30.00	5.01 5.04	0.03	2.38	0.05			
11	Initial Final	2:04 PM 2:34 PM	30.00	5.04 5.08	0.04	2.34	0.06			
12	Initial Final	2:34 PM 3:04 PM	30.00	5.08 5.11	0.03	2.31	0.05			

Per County Standards, Infiltration Rate calculated as follows:

Where: Q = Infiltration Rate (in inches per hour)

 ΔH = Change in Height (Water Level) over the time interval

r = Test Hole (Borehole) Radius

 $\Delta t = Time Interval$

$$Q = \frac{\Delta H(60r)}{\Delta t(r + 2H_{avg})}$$

Project Name	Harvest Landing Industrial Development
Project Location	Perris, California
Project Number	22G183-4
Engineer	Ryan Bremer

Test Hole Radius Test Depth 4 (in) 6.04 (ft)

I-41

Infiltration Test Hole

	Soil Criteria Test								
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (in)	Did 6 inches of water seep away in less than 25 minutes?	Sandy Soils or Non- Sandy Soils?		
1	Initial	8:43 AM	25.00	3.60	0.48	NO	NON-SANDY SOILS		
1	Final	9:08 AM	25.00	3.64	0.40	NO	NON-SANDT SOILS		
2	Initial	9:08 AM	25.00	3.50	0.48	NO	NON-SANDY SOILS		
2	Final	9:33 AM	23.00	3.54	0.40	NO	NON-SANDT SOILS		

	Test Data									
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (ft)	Average Head Height (ft)	Infiltration Rate Q (in/hr)			
1	Initial Final	9:33 AM 10:03 AM	30.00	3.54 3.61	0.07	2.47	0.11			
2	Initial Final	10:03 AM 10:33 AM	30.00	3.61 3.67	0.06	2.40	0.09			
3	Initial Final	10:33 AM 11:03 AM	30.00	3.67 3.71	0.04	2.35	0.06			
4	Initial Final	11:03 AM 11:33 AM	30.00	3.71 3.75	0.04	2.31	0.06			
5	Initial Final	11:33 AM 12:03 PM	30.00	3.75 3.79	0.04	2.27	0.07			
6	Initial Final	11:33 AM 12:03 PM	30.00	3.79 3.82	0.03	2.24	0.05			
7	Initial Final	12:03 PM 12:33 PM	30.00	3.82 3.85	0.03	2.21	0.05			
8	Initial Final	12:33 PM 1:03 PM	30.00	3.85 3.89	0.04	2.17	0.07			
9	Initial Final	1:03 PM 1:33 PM	30.00	3.89 3.92	0.03	2.14	0.05			
10	Initial Final	1:33 PM 2:03 PM	30.00	3.92 3.94	0.02	2.11	0.04			
11	Initial Final	2:03 PM 2:33 PM	30.00	3.94 3.97	0.03	2.09	0.05			
12	Initial Final	2:33 PM 3:03 PM	30.00	3.97 3.99	0.02	2.06	0.04			

Per County Standards, Infiltration Rate calculated as follows:

Where: Q = Infiltration Rate (in inches per hour)

 ΔH = Change in Height (Water Level) over the time interval

r = Test Hole (Borehole) Radius

 $\Delta t = Time Interval$

$$Q = \frac{\Delta H(60r)}{\Delta t(r + 2H_{avg})}$$

Project Name	Harvest Landing Industrial Development
Project Location	Perris, California
Project Number	22G183-4
Engineer	Ryan Bremer

Test Hole Radius Test Depth

4 6.10	(in)
6.10	(ft)

I-42

Infiltration Test Hole

	Soil Criteria Test								
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (in)	Did 6 inches of water seep away in less than 25 minutes?	Sandy Soils or Non- Sandy Soils?		
1	Initial	12:21 PM	25.00	3.50	1.68	NO	NON-SANDY SOILS		
I	Final	12:46 PM	25.00	3.64	1.00	NO	NON-SANDT SOILS		
2	Initial	12:46 PM	25.00	3.41	1.20	NO	NON-SANDY SOILS		
2	Final	1:11 PM	23.00	3.51	1.20	NO	NON-SANDT SOILS		

	Test Data									
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (ft)	Average Head Height (ft)	Infiltration Rate Q (in/hr)			
1	Initial Final	1:11 PM 1:41 PM	30.00	3.51 3.59	0.08	2.55	0.12			
2	Initial Final	1:41 PM 2:11 PM	30.00	3.59 3.65	0.06	2.48	0.09			
3	Initial Final	2:11 PM 2:41 PM	30.00	3.65 3.71	0.06	2.42	0.09			
4	Initial Final	2:41 PM 3:11 PM	30.00	3.71 3.75	0.04	2.37	0.06			
5	Initial Final	3:11 PM 3:41 PM	30.00	3.53 3.57	0.04	2.55	0.06			
6	Initial Final	3:11 PM 3:41 PM	30.00	3.57 3.61	0.04	2.51	0.06			
7	Initial Final	3:41 PM 4:11 PM	30.00	3.61 3.64	0.03	2.48	0.05			
8	Initial Final	4:11 PM 4:41 PM	30.00	3.64 3.67	0.03	2.45	0.05			
9	Initial Final	4:41 PM 5:11 PM	30.00	3.67 3.70	0.03	2.42	0.05			
10	Initial Final	5:11 PM 5:41 PM	30.00	3.70 3.73	0.03	2.39	0.05			
11	Initial Final	5:41 PM 6:11 PM	30.00	3.73 3.75	0.02	2.36	0.03			
12	Initial Final	6:11 PM 6:41 PM	30.00	3.75 3.78	0.03	2.34	0.05			

Per County Standards, Infiltration Rate calculated as follows:

Where: Q = Infiltration Rate (in inches per hour)

 ΔH = Change in Height (Water Level) over the time interval

r = Test Hole (Borehole) Radius

 $\Delta t = Time Interval$

$$Q = \frac{\Delta H(60r)}{\Delta t(r+2H_{avg})}$$

Project Name	Harvest Landing Industrial Development
Project Location	Perris, California
Project Number	22G183-4
Engineer	Ryan Bremer

Test Hole Radius Test Depth 4 (in) 6.09 (ft)

I-43

Infiltration Test Hole

	Soil Criteria Test								
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (in)	Did 6 inches of water seep away in less than 25 minutes?	Sandy Soils or Non- Sandy Soils?		
1	Initial	11:26 AM	25.00	4.01	0.72	NO	NON-SANDY SOILS		
1	Final	11:51 AM	25.00	4.07	0.72	NO	NON-SANDT SOILS		
2	Initial	11:51 AM	25.00	4.07	0.48	NO	NON-SANDY SOILS		
2	Final	12:16 PM	25.00	4.11	0.40	NO	NON-SANDI SOLS		

	Test Data									
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (ft)	Average Head Height (ft)	Infiltration Rate Q (in/hr)			
1	Initial	12:16 PM	30.00	4.11	0.03	1.97	0.06			
	Final	12:46 PM	00.00	4.14	0.00	1.07	0.00			
2	Initial	12:46 PM	30.00	4.14	0.03	1.94	0.06			
	Final	1:16 PM		4.17						
3	Initial	1:16 PM	30.00	4.17	0.03	1.91	0.06			
	Final	1:46 PM		4.20						
4	Initial Final	1:46 PM 2:16 PM	30.00	4.20 4.23	0.03	1.88	0.06			
	Initial	2:16 PM		4.23						
5	Final	2:46 PM	30.00	4.25	0.02	1.85	0.04			
	Initial	2:16 PM		4.25	0.01	1.84	0.02			
6	Final	2:46 PM	30.00	4.26						
_	Initial	2:46 PM		4.26	0.00	4.00	0.04			
7	Final	3:16 PM	30.00	4.28	0.02	1.82	0.04			
0	Initial	3:16 PM	00.00	4.28	0.00	1.80	0.04			
8	Final	3:46 PM	30.00	4.30	0.02					
	Initial	3:46 PM		4.30	0.00	4 70	0.04			
9	Final	4:16 PM	30.00	4.32	0.02	1.78	0.04			
40	Initial	4:16 PM	20.00	4.32	0.00	4.70	0.01			
10	Final	4:46 PM	30.00	4.34	0.02	1.76	0.04			
11	Initial	4:46 PM	30.00	4.34	0.02	1.74	0.04			
11	Final	5:16 PM	30.00	4.36	0.02	1.74	0.04			
12	Initial	5:16 PM	30.00	4.36	0.01	1.73	0.02			
12	Final	5:46 PM	30.00	4.37	0.01	1.75	0.02			

Per County Standards, Infiltration Rate calculated as follows:

Where: Q = Infiltration Rate (in inches per hour)

 ΔH = Change in Height (Water Level) over the time interval

r = Test Hole (Borehole) Radius

 $\Delta t = Time Interval$

$$Q = \frac{\Delta H(60r)}{\Delta t(r+2H_{avg})}$$

Project Name	Harvest Landing Industrial Development
Project Location	Perris, California
Project Number	22G183-4
Engineer	Ryan Bremer

Test Hole Radius Test Depth 4 (in) 4.50 (ft)

I-44

Infiltration Test Hole

	Soil Criteria Test								
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (in)	Did 6 inches of water seep away in less than 25 minutes?	Sandy Soils or Non- Sandy Soils?		
1	Initial	11:17 AM	25.00	1.92	3.84	NO	NON-SANDY SOILS		
1	Final	11:42 AM	25.00	2.24	5.64	NO	NON-SANDT SOILS		
2	Initial	11:42 AM	25.00	1.92	3.60	NO	NON-SANDY SOILS		
2	Final	12:07 PM	23.00	2.22	3.00	NO	NON-SANDT SOILS		

	Test Data								
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (ft)	Average Head Height (ft)	Infiltration Rate Q (in/hr)		
1	Initial Final	12:07 PM 12:37 PM	30.00	2.22 2.40	0.18	2.19	0.31		
2	Initial Final	12:37 PM 1:07 PM	30.00	2.40 2.51	0.11	2.05	0.20		
3	Initial Final	1:07 PM 1:37 PM	30.00	2.51 2.55	0.04	1.97	0.07		
4	Initial Final	1:37 PM 2:07 PM	30.00	2.55 2.62	0.07	1.92	0.13		
5	Initial Final	2:07 PM 2:37 PM	30.00	2.25 2.33	0.08	2.21	0.13		
6	Initial Final	2:07 PM 2:37 PM	30.00	2.33 2.39	0.06	2.14	0.10		
7	Initial Final	2:37 PM 3:07 PM	30.00	2.39 2.45	0.06	2.08	0.11		
8	Initial Final	3:07 PM 3:37 PM	30.00	2.45 2.50	0.05	2.03	0.09		
9	Initial Final	3:37 PM 4:07 PM	30.00	2.50 2.55	0.05	1.98	0.09		
10	Initial Final	4:07 PM 4:37 PM	30.00	2.55 2.59	0.04	1.93	0.08		
11	Initial Final	4:37 PM 5:07 PM	30.00	2.31 2.36	0.05	2.17	0.09		
12	Initial Final	5:07 PM 5:37 PM	30.00	2.36 2.40	0.04	2.12	0.07		

Per County Standards, Infiltration Rate calculated as follows:

Where: Q = Infiltration Rate (in inches per hour)

 ΔH = Change in Height (Water Level) over the time interval

r = Test Hole (Borehole) Radius

 $\Delta t = Time Interval$

$$Q = \frac{\Delta H(60r)}{\Delta t(r + 2H_{avg})}$$

Project Name	Harvest Landing Industrial Development
Project Location	Perris, California
Project Number	22G183-4
Engineer	Ryan Bremer

Test Hole Radius Test Depth 4 (in) 5.00 (ft)

I-45

Infiltration Test Hole

	Soil Criteria Test								
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (in)	Did 6 inches of water seep away in less than 25 minutes?	Sandy Soils or Non- Sandy Soils?		
1	Initial	11:13 AM	25.00	2.00	7.68	YES	SANDY SOILS		
1	Final	11:38 AM	25.00	2.64	7.00	TLS	SANDT SOILS		
2	Initial	11:38 AM	25.00	2.44	6.96	YES	SANDY SOILS		
2	Final	12:03 PM	25.00	3.02	0.90	TLS	SANDT SOILS		

	Test Data								
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (ft)	Average Head Height (ft)	Infiltration Rate Q (in/hr)		
1	Initial	12:33 PM	10.00	3.02	0.22	1.87	1.30		
1	Final	12:43 PM	10.00	3.24	0.22	1.07	1.50		
2	Initial	12:43 PM	10.00	3.24	0.18	1.67	1.18		
2	Final	12:53 PM	10.00	3.42					
3	Initial	12:53 PM	10.00	3.06	0.19	1.85	1.13		
5	Final	1:03 PM	10.00	3.25					
4	Initial	1:03 PM	10.00	3.25	0.15	1.68	0.98		
4	Final	1:13 PM	10.00	3.40					
5	Initial	1:13 PM	10.00	3.12	0.13	1.82	0.70		
5	Final	1:23 PM	10.00	3.25	0.13	1.02	0.79		
6	Initial	1:13 PM	10.00	3.25	0.12	1.69	0.78		
6 Final	Final	1:23 PM	10.00	3.37	0.12				

Per County Standards, Infiltration Rate calculated as follows:

Where: Q = Infiltration Rate (in inches per hour)

 ΔH = Change in Height (Water Level) over the time interval

r = Test Hole (Borehole) Radius

 $\Delta t = Time Interval$

$$Q = \frac{\Delta H(60r)}{\Delta t(r + 2H_{avg})}$$

Project Name	Harvest Landing Industrial Development
Project Location	Perris, California
Project Number	22G183-4
Engineer	Ryan Bremer

Test Hole Radius Test Depth 4 (in) 5.50 (ft)

I-46

Infiltration Test Hole

	Soil Criteria Test								
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (in)	Did 6 inches of water seep away in less than 25 minutes?	Sandy Soils or Non- Sandy Soils?		
1	Initial	11:09 AM	25.00	2.75	1.44	NO	NON-SANDY SOILS		
1	Final	11:34 AM	25.00	2.87	1.44	NO	NON-SANDT SOILS		
2	Initial	11:34 AM	25.00	2.87	2.40	NO	NON-SANDY SOILS		
2	Final	11:59 AM	25.00	3.07	2.40				

	Test Data								
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (ft)	Average Head Height (ft)	Infiltration Rate Q (in/hr)		
1	Initial	11:59 AM	30.00	3.07	0.15	2.36	0.24		
	Final	12:29 PM	00.00	3.22	0.10	2.00	0.21		
2	Initial	12:29 PM	30.00	3.03	0.15	2.40	0.23		
_	Final	12:59 PM		3.18					
3	Initial	12:59 PM	30.00	3.29	0.11	2.16	0.19		
	Final	1:29 PM 1:29 PM		3.40 3.11					
4	Initial Final	1:29 PM 1:59 PM	30.00	3.11	0.11	2.34	0.18		
	Initial	1:59 PM		3.22	0.09	2.24	0.15		
5	Final	2:29 PM	30.00	3.31					
0	Initial	1:59 PM		3.31	0.40	0.11	0.47		
6	Final	2:29 PM	30.00	3.41	0.10	2.14	0.17		
7	Initial	2:29 PM	30.00	3.41	0.09	2.05	0.16		
1	Final	2:59 PM	30.00	3.50	0.09	2.05	0.10		
8	Initial	2:59 PM	30.00	3.50	0.07	1.97	0.13		
0	Final	3:29 PM	30.00	3.57	0.07	1.97	0.15		
0	Initial	3:29 PM	20.00	3.57	0.07	1.90	0.14		
9	Final	3:59 PM	30.00	3.64	0.07				
10	Initial	3:59 PM	30.00	3.22	0.09	2.24	0.12		
10	Final	4:29 PM	30.00	3.30	0.08	2.24	0.13		
11	Initial	4:29 PM	30.00	3.30	0.08	2.16	0.14		
11	Final	4:59 PM	30.00	3.38	0.00	2.10	0.14		
12	Initial	4:59 PM	30.00	3.38	0.07	2.09	0.12		
12	Final	5:29 PM	30.00	3.45	0.07	2.03	0.12		

Per County Standards, Infiltration Rate calculated as follows:

Where: Q = Infiltration Rate (in inches per hour)

 ΔH = Change in Height (Water Level) over the time interval

r = Test Hole (Borehole) Radius

 $\Delta t = Time Interval$

$$Q = \frac{\Delta H(60r)}{\Delta t(r+2H_{avg})}$$

Project Name	Harvest Landing Industrial Development
Project Location	Perris, California
Project Number	22G183-4
Engineer	Ryan Bremer

Test Hole Radius Test Depth 4 (in) 6.94 (ft)

I-47

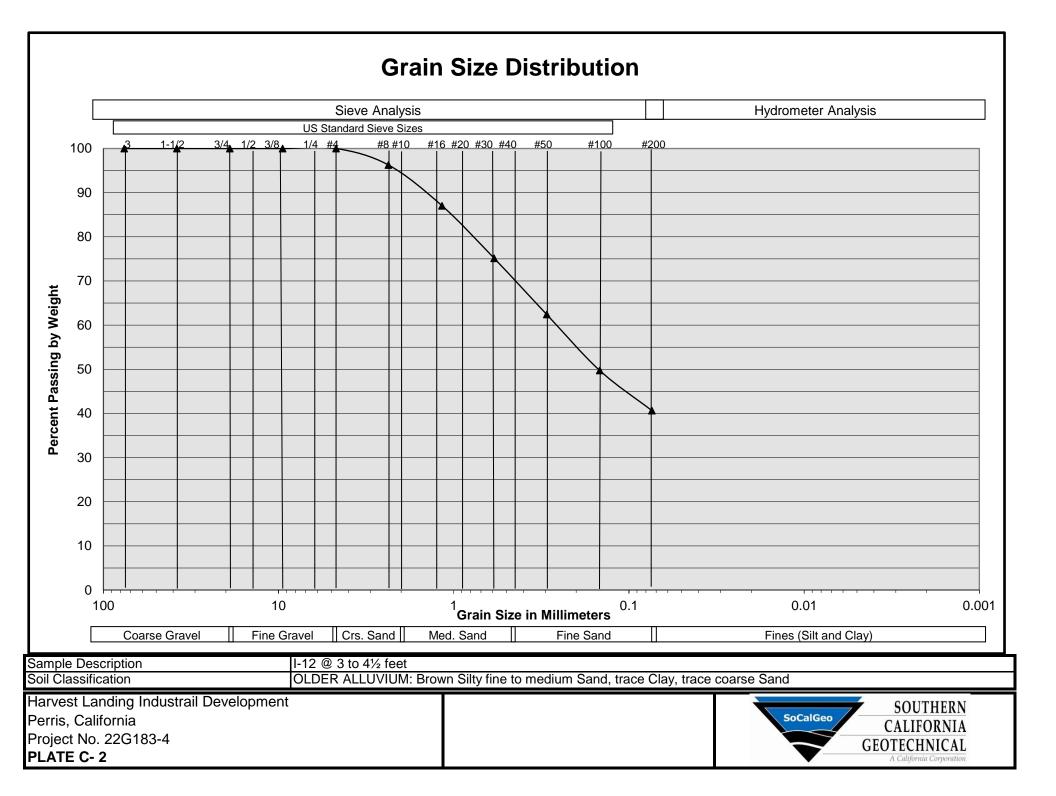
Infiltration Test Hole

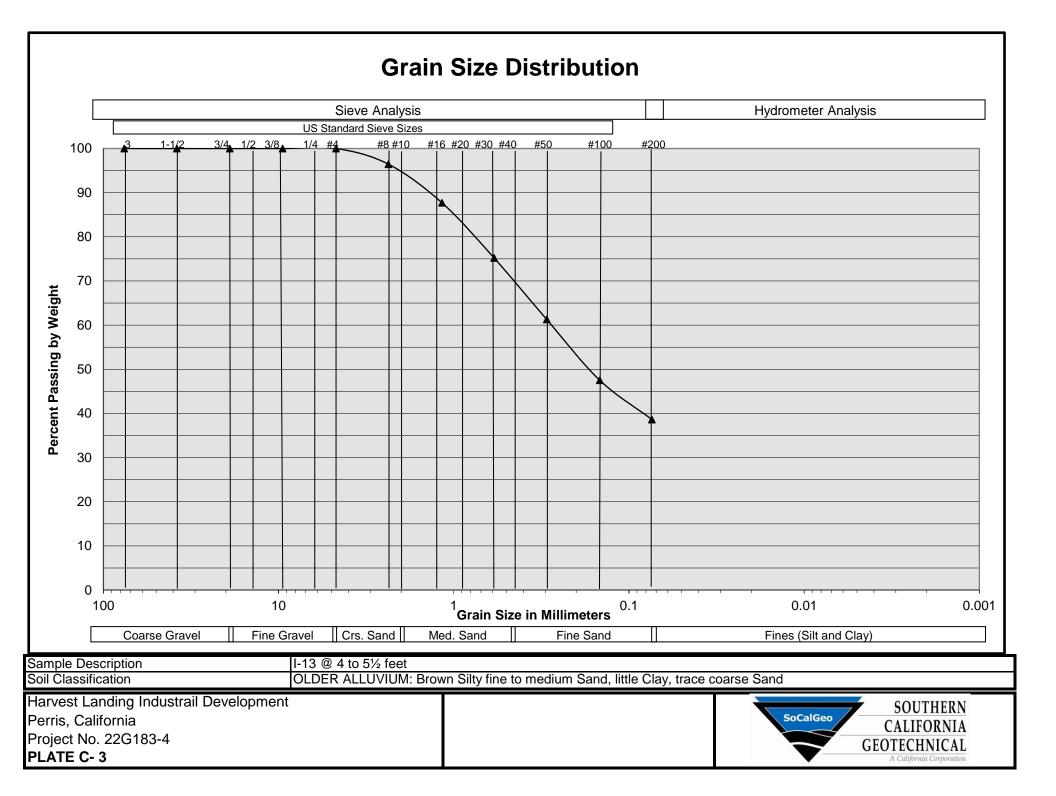
	Soil Criteria Test								
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (in)	Did 6 inches of water seep away in less than 25 minutes?	Sandy Soils or Non- Sandy Soils?		
1	Initial	8:49 AM	25.00	4.65	0.84	NO	NON-SANDY SOILS		
1	Final	9:14 AM	25.00	4.72	0.84	NO	NON-SANDT SOILS		
2	Initial	9:14 AM	25.00	4.72	0.60	NO	NON-SANDY SOILS		
2	Final	9:39 AM	25.00	4.77	0.00	NO	NON-SANDI SOLS		

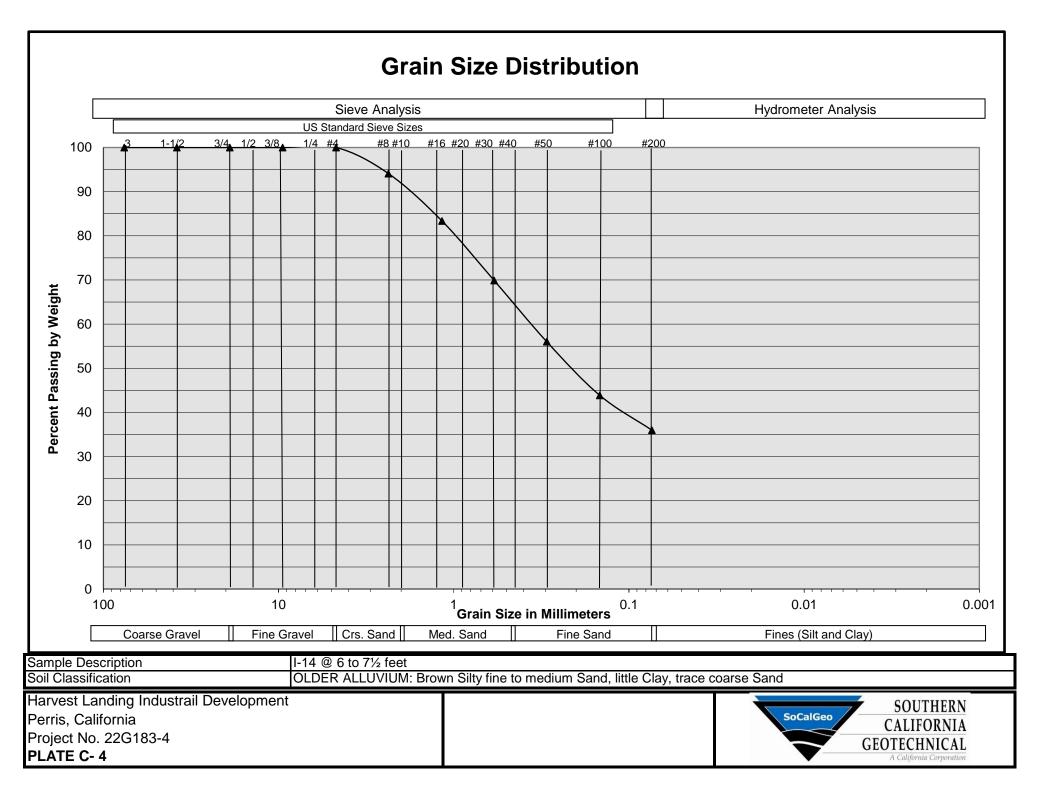
Test Data								
Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (ft)	Average Head Height (ft)	Infiltration Rate Q (in/hr)	
1	Initial Final	9:39 AM 10:09 AM	30.00	4.77 4.98	0.21	2.07	0.38	
2	Initial Final	10:09 AM 10:39 AM	30.00	4.72 4.80	0.08	2.18	0.14	
3	Initial Final	10:39 AM 11:09 AM	30.00	4.80 4.92	0.12	2.08	0.21	
4	Initial Final	11:09 AM 11:39 AM	30.00	4.92 5.04	0.12	1.96	0.23	
5	Initial Final	11:39 AM 12:09 PM	30.00	5.04 5.13	0.09	1.86	0.18	
6	Initial Final	11:39 AM 12:09 PM	30.00	5.13 5.22	0.09	1.77	0.19	
7	Initial Final	12:09 PM 12:39 PM	30.00	5.22 5.28	0.06	1.69	0.13	
8	Initial Final	12:39 PM 1:09 PM	30.00	5.28 5.34	0.06	1.63	0.13	
9	Initial Final	1:09 PM 1:39 PM	30.00	5.34 5.41	0.07	1.57	0.16	
10	Initial Final	1:39 PM 2:09 PM	30.00	5.41 5.46	0.05	1.51	0.12	
11	Initial Final	2:09 PM 2:39 PM	30.00	5.46 5.51	0.05	1.46	0.12	
12	Initial Final	2:39 PM 3:09 PM	30.00	5.51 5.56	0.05	1.41	0.13	

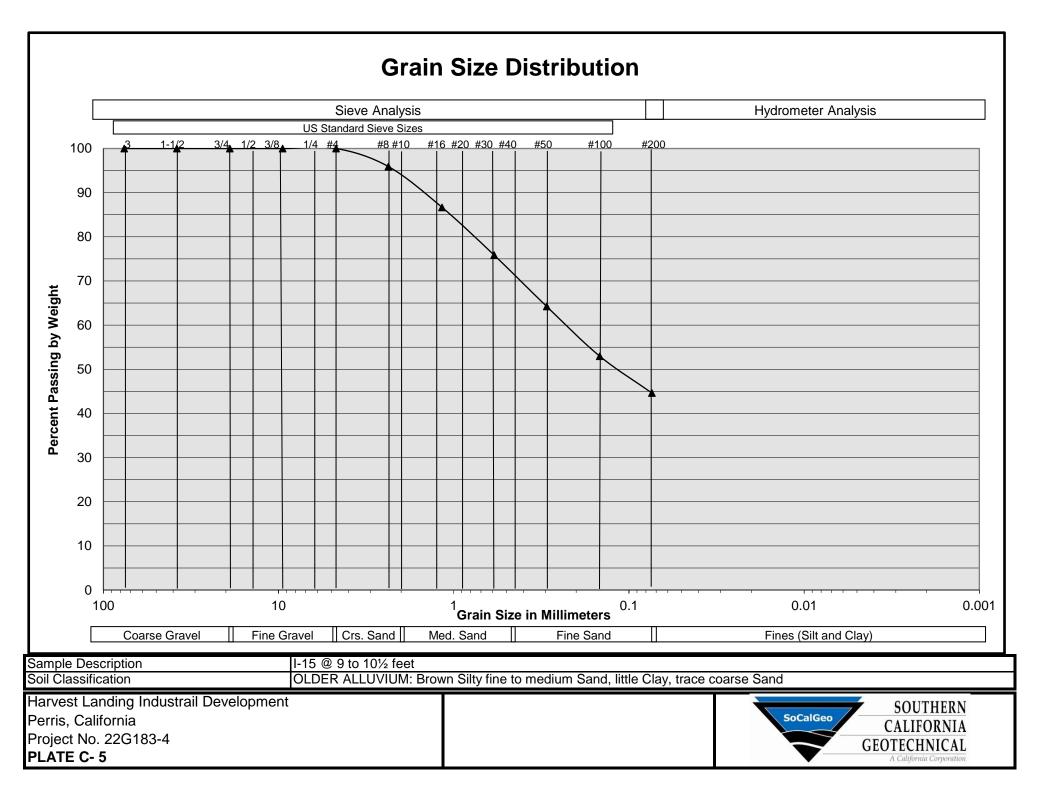
Per County Standards, Infiltration Rate calculated as follows:

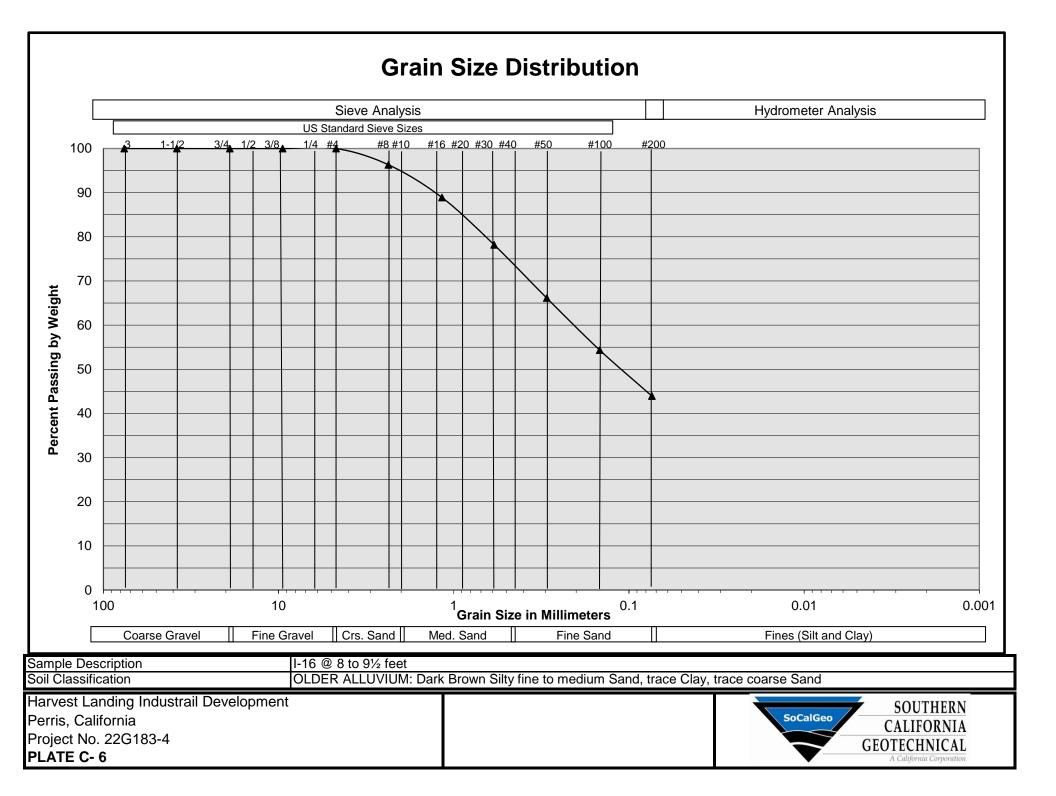
Where: Q = Infiltration Rate (in inches per hour)

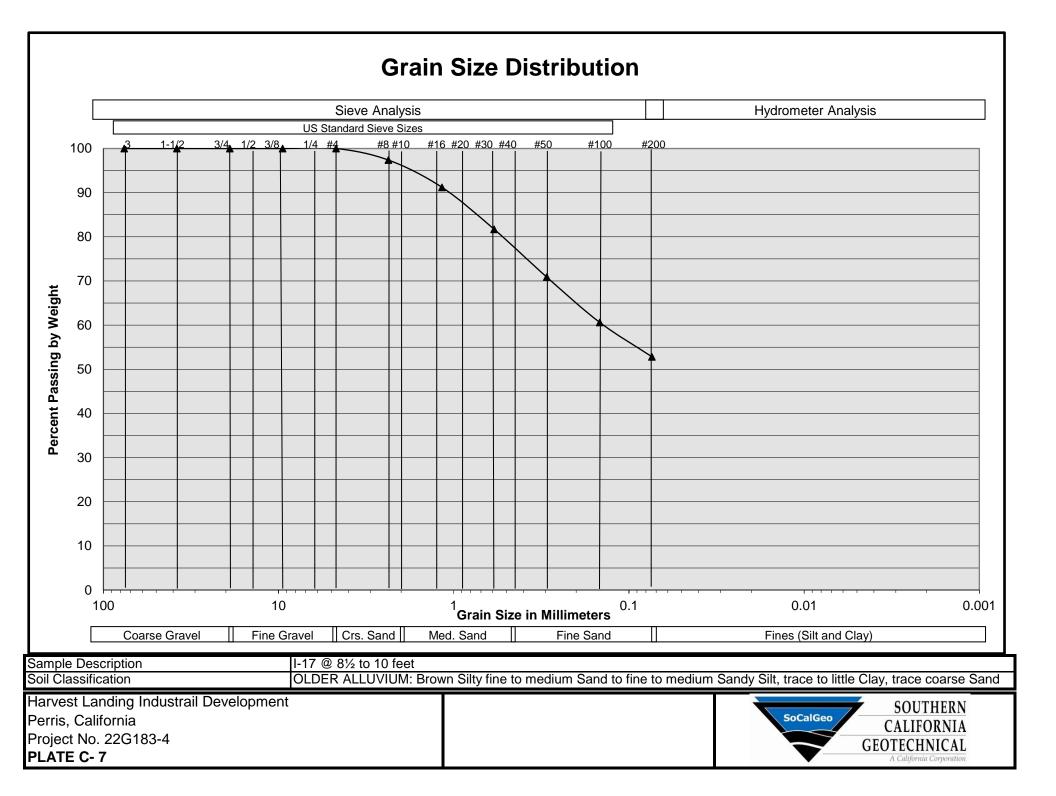

 ΔH = Change in Height (Water Level) over the time interval

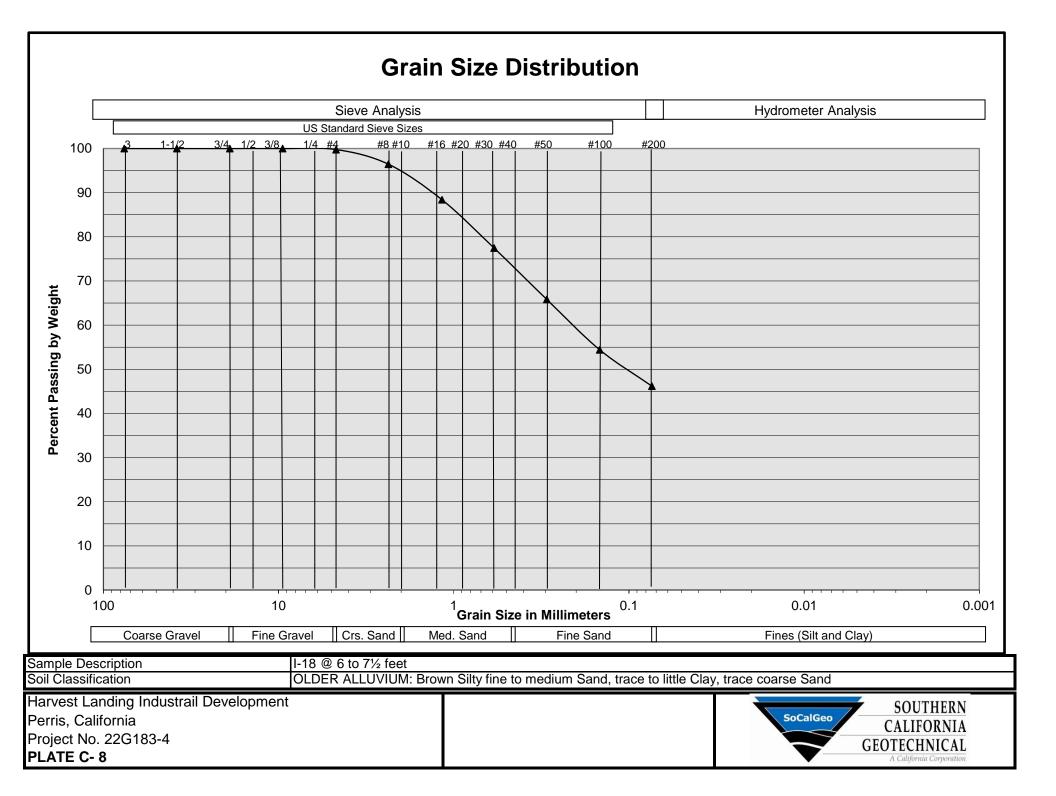

r = Test Hole (Borehole) Radius

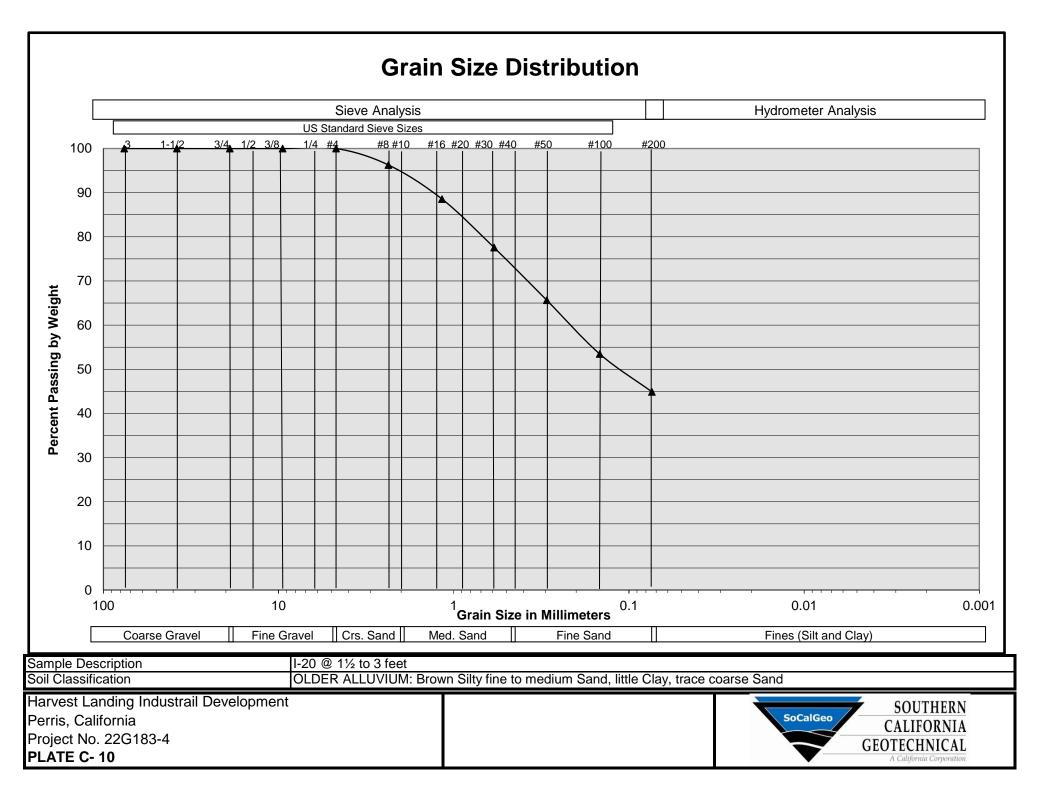

 $\Delta t = Time Interval$

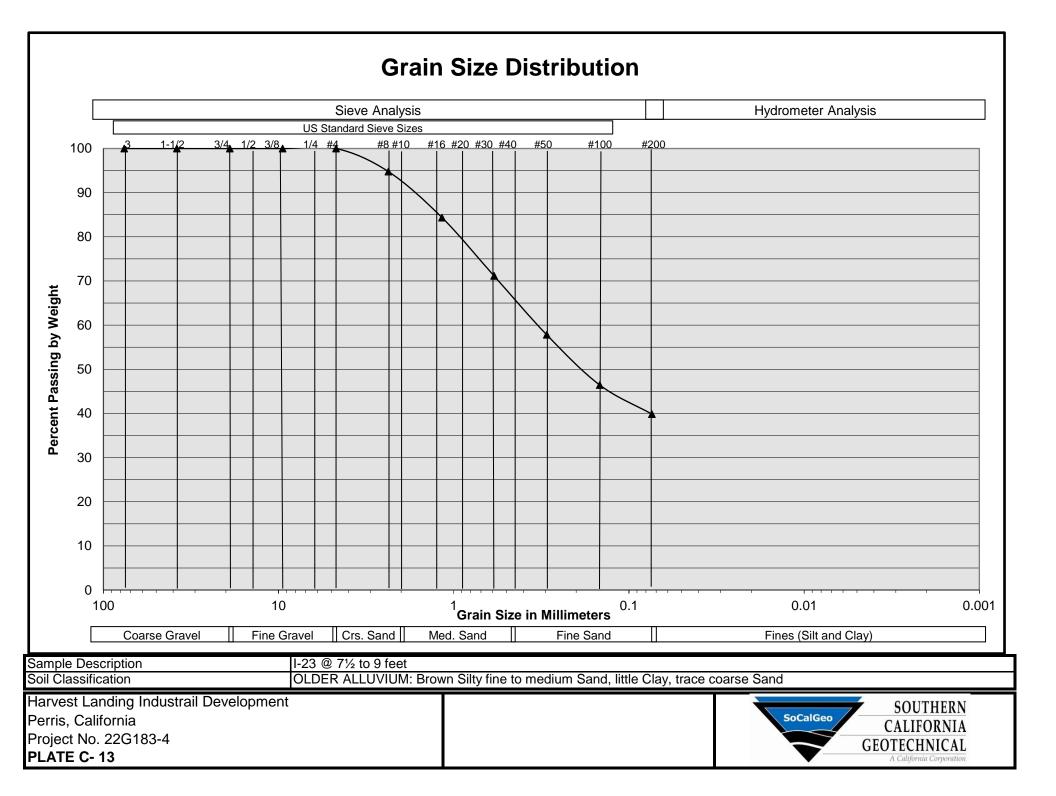

$$Q = \frac{\Delta H(60r)}{\Delta t(r + 2H_{avg})}$$


Grain Size Distribution Sieve Analysis Hydrometer Analysis US Standard Sieve Sizes 1-1/2 3/4 1/2 3/8 1/4 #4 #8 #10 #16 #20 #30 #40 #50 #100 #200 100 90 80 70 **Percent Passing by Weight** 60 50 40 30 20 10 0 100 10 ¹Grain Size in Millimeters 0.1 0.01 0.001 **Coarse Gravel** Fine Gravel Crs. Sand Med. Sand Fine Sand Fines (Silt and Clay) Sample Description I-11 @ 3 to 41/2 feet YOUNGER ALLUVIUM: Brown Silty fine to coarse Sand, trace Clay Soil Classification Harvest Landing Industrail Development **SOUTHERN** SoCalGeo Perris, California **CALIFORNIA** Project No. 22G183-4 **GEOTECHNICAL** PLATE C-1 A California Corporation

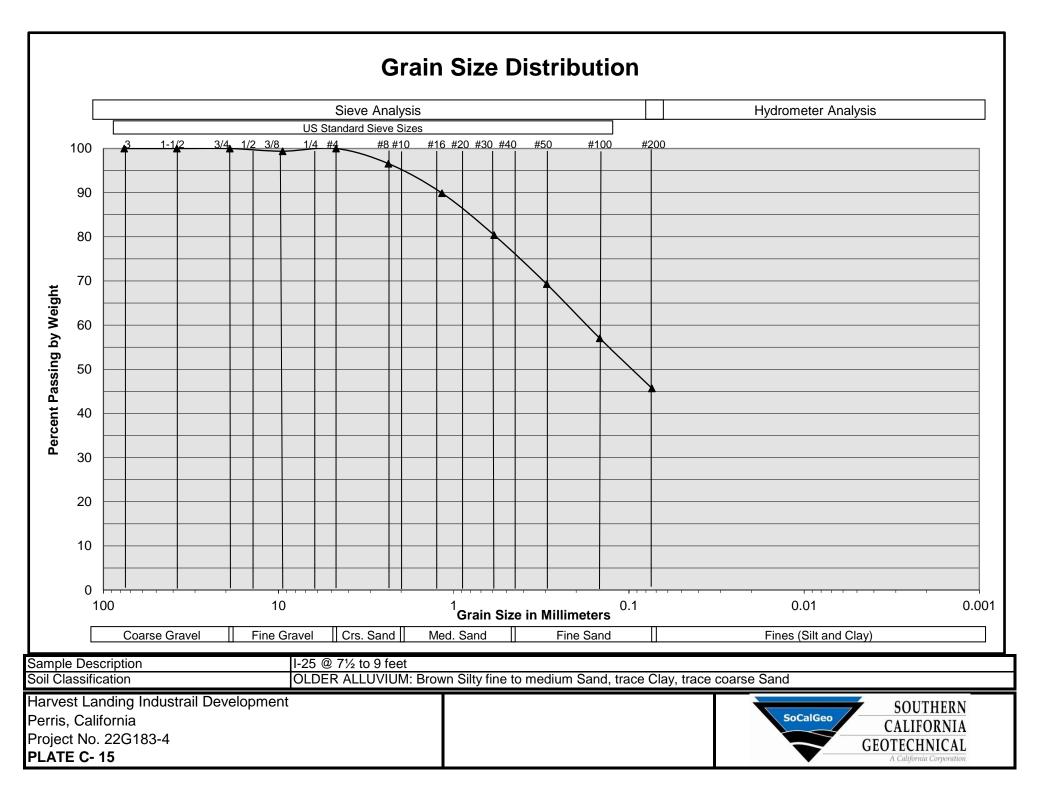


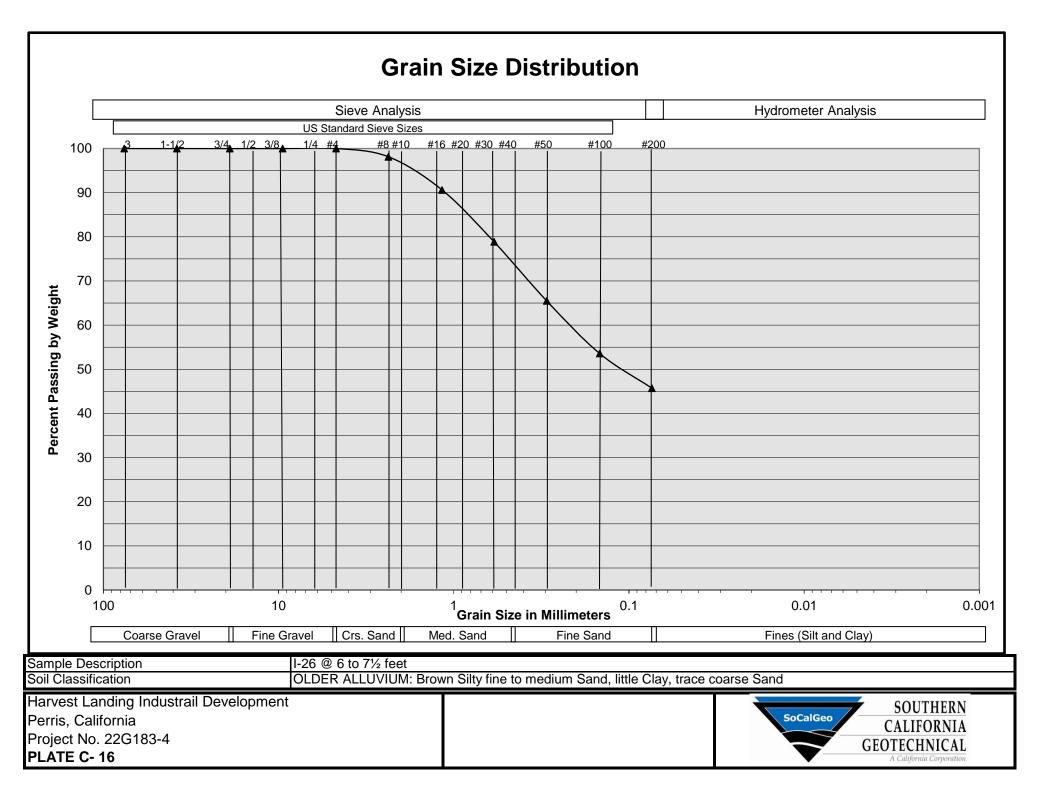


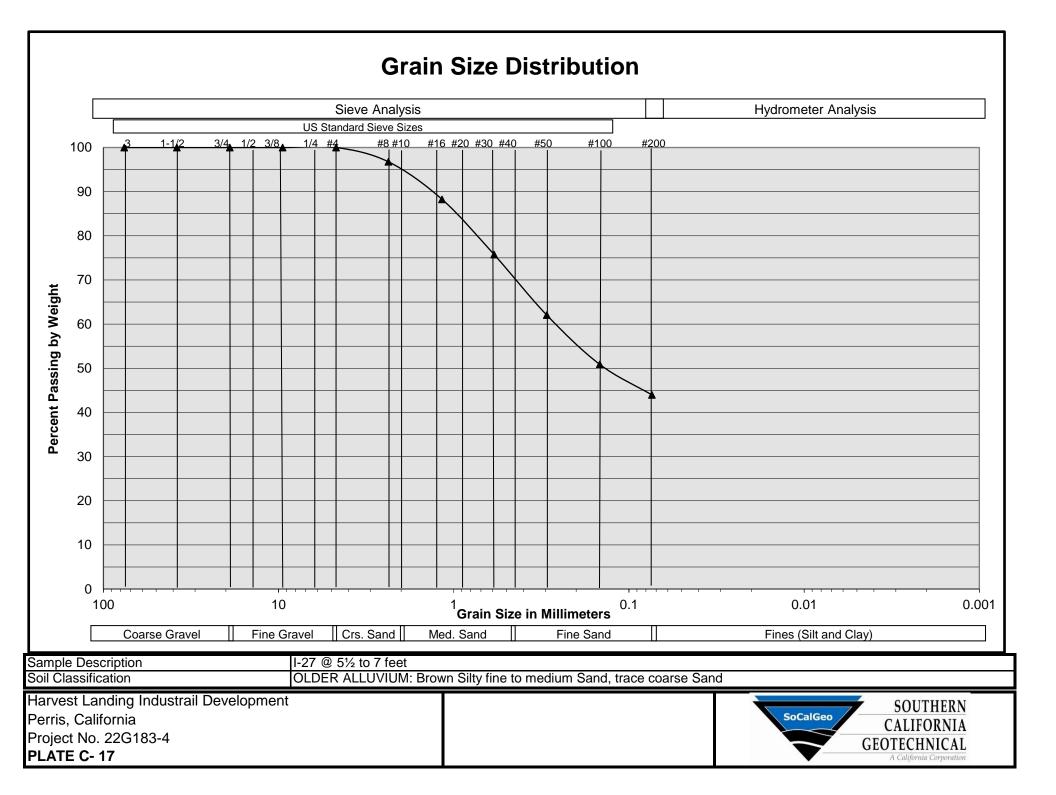


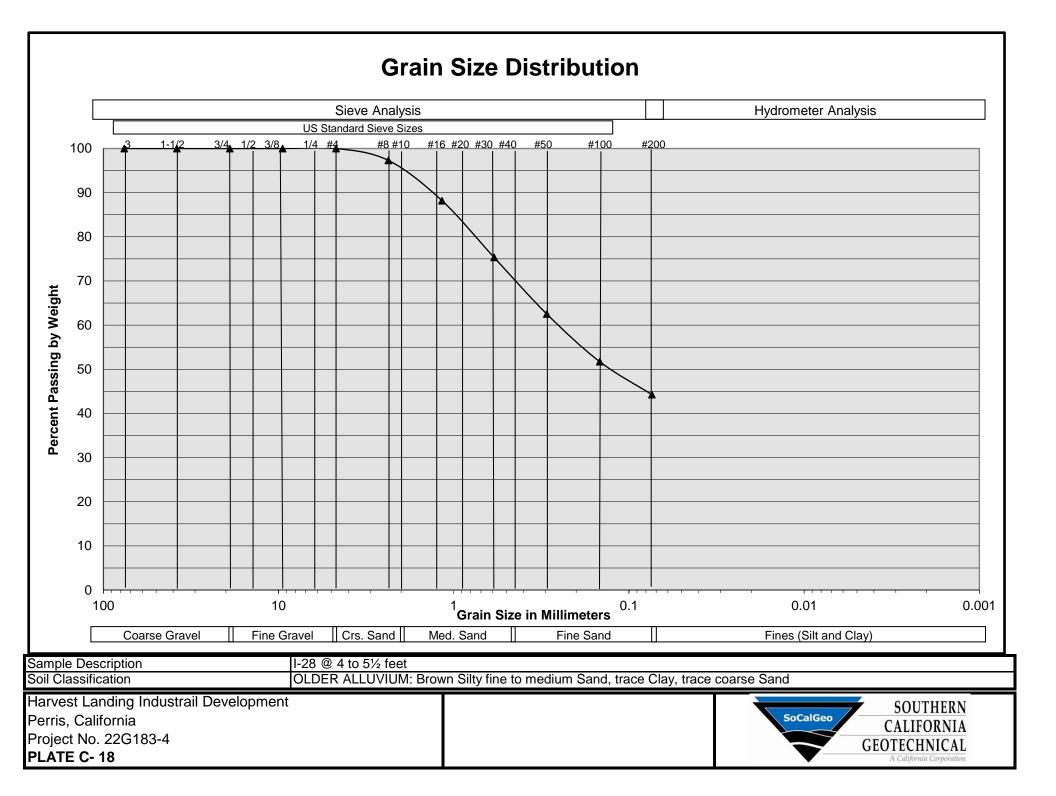


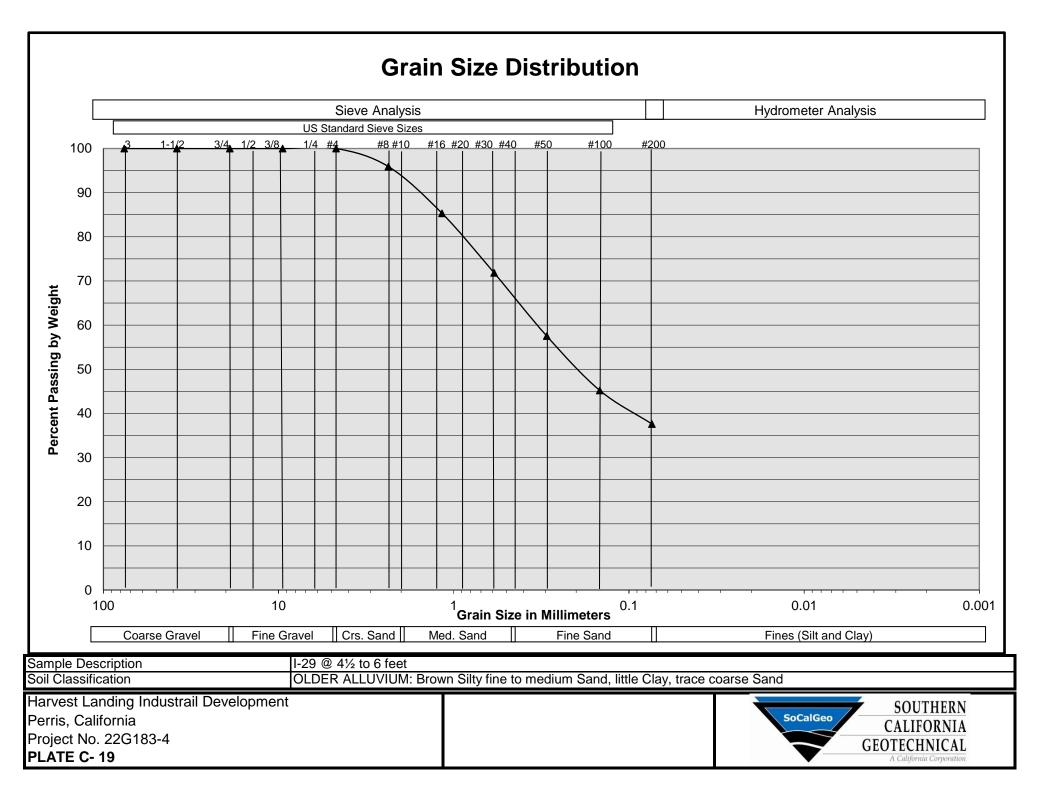
Grain Size Distribution Sieve Analysis Hydrometer Analysis US Standard Sieve Sizes 1-1/2 3/4 1/2 3/8 1/4 #4 #8 #10 #16 #20 #30 #40 #50 #100 #200 100 90 80 70 Percent Passing by Weight 60 50 40 30 20 10 0 100 10 ¹Grain Size in Millimeters 0.1 0.01 0.001 **Coarse Gravel** Fine Gravel Crs. Sand Med. Sand Fine Sand Fines (Silt and Clay) Sample Description I-19 @ 11/2 to 3 feet OLDER ALLUVIUM: Brown Silty fine to medium Sand, trace Clay, trace coarse Sand Soil Classification Harvest Landing Industrail Development **SOUTHERN** SoCalGeo Perris, California **CALIFORNIA** Project No. 22G183-4 **GEOTECHNICAL** PLATE C-9 A California Corporation

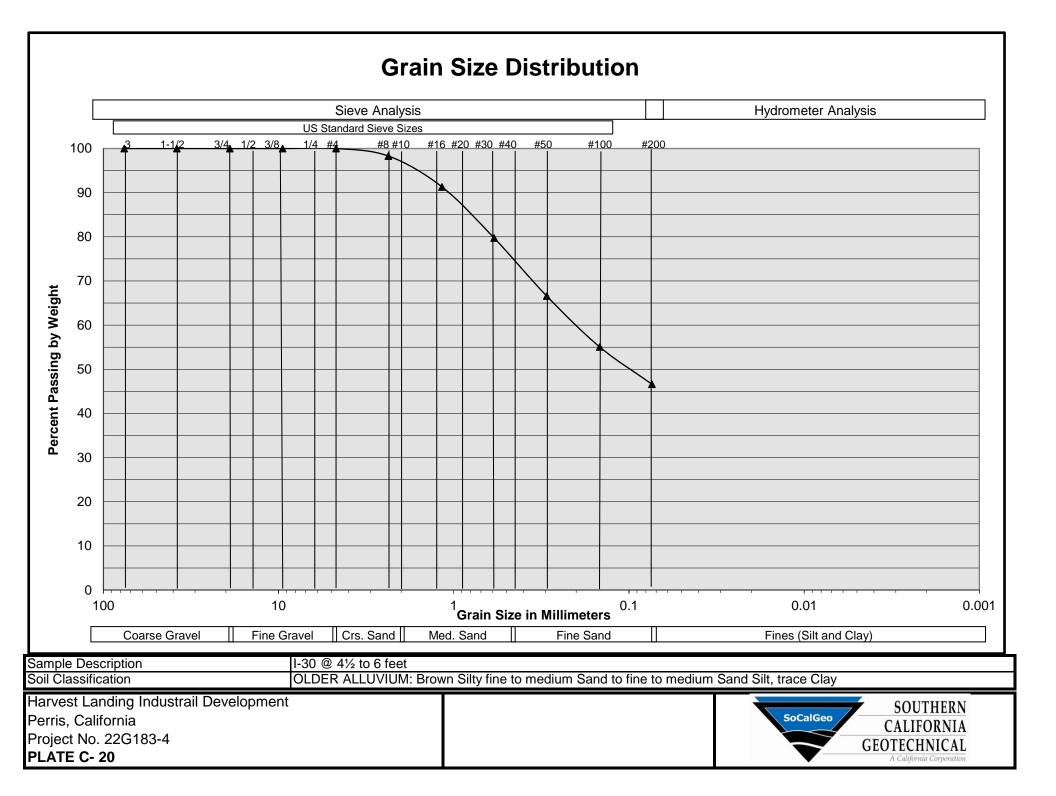


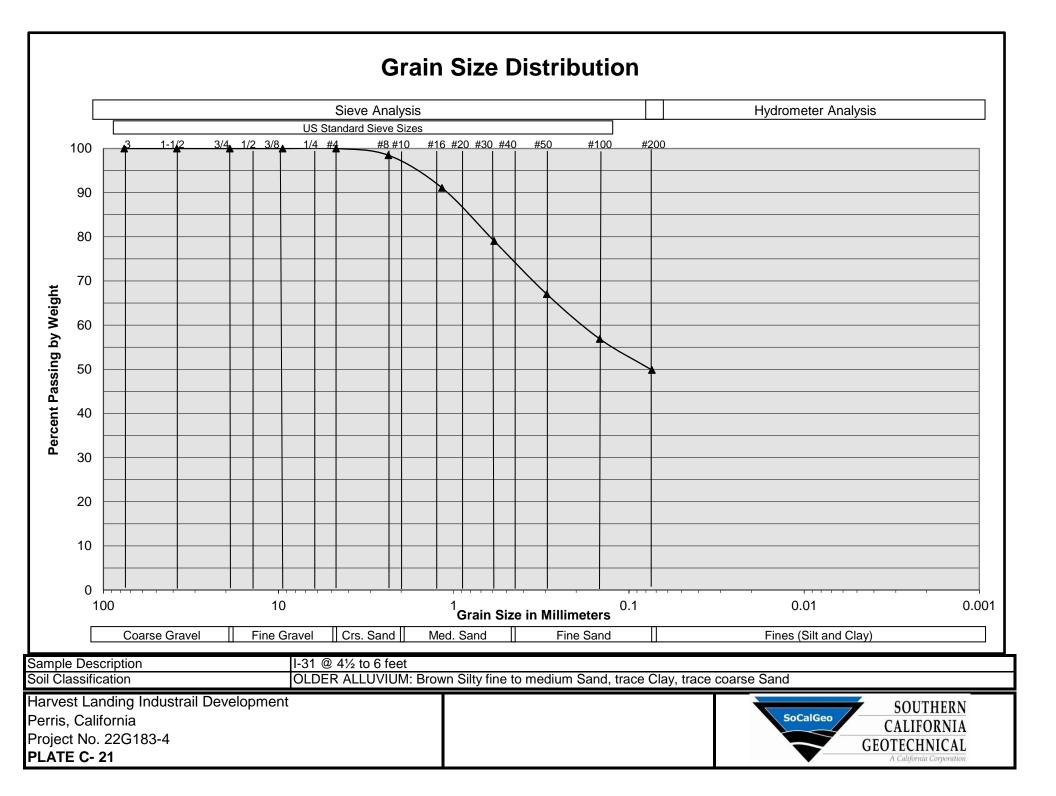

Grain Size Distribution Sieve Analysis Hydrometer Analysis US Standard Sieve Sizes 1-1/2 3/4 1/2 3/8 1/4 #4 #8 #10 #16 #20 #30 #40 #50 #100 #200 100 90 80 70 Percent Passing by Weight 60 50 40 30 20 10 0 100 10 ¹Grain Size in Millimeters 0.1 0.01 0.001 **Coarse Gravel** Fine Gravel Crs. Sand Med. Sand Fine Sand Fines (Silt and Clay) Sample Description I-21 @ 2 to 31/2 feet OLDER ALLUVIUM: Brown Silty fine to medium Sand, trace Clay, little coarse Sand Soil Classification Harvest Landing Industrail Development **SOUTHERN** SoCalGeo Perris, California **CALIFORNIA** Project No. 22G183-4 **GEOTECHNICAL** PLATE C-11 A California Corporation

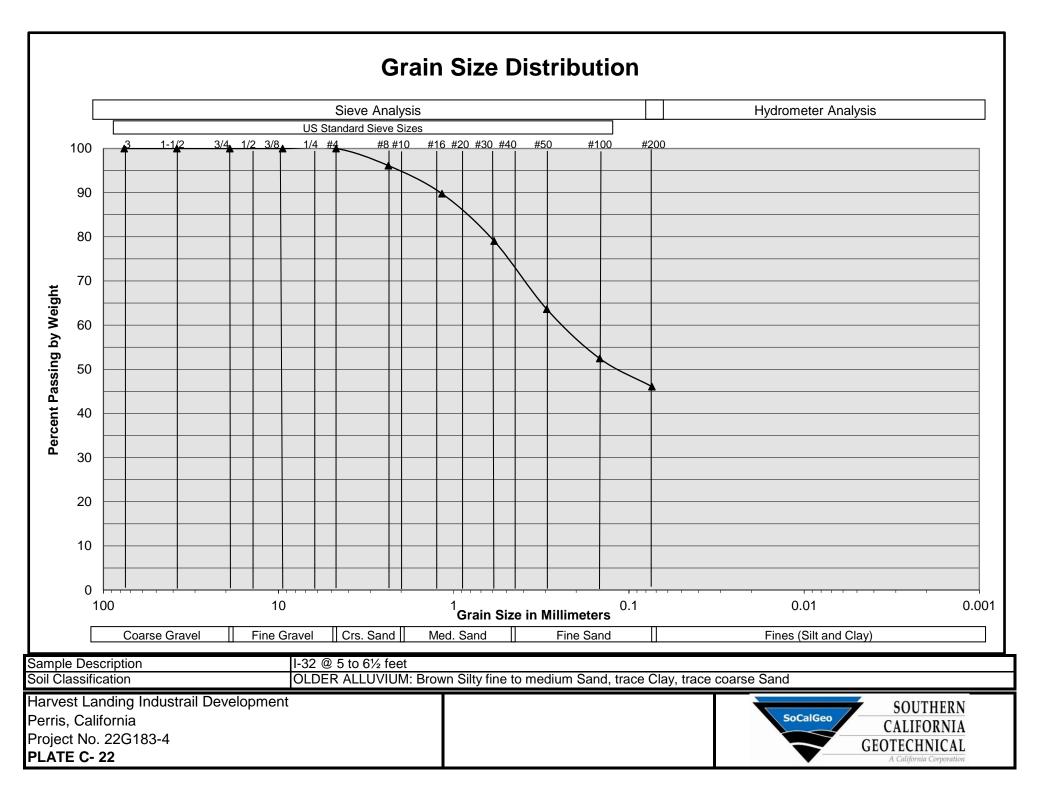

Grain Size Distribution Sieve Analysis Hydrometer Analysis US Standard Sieve Sizes 1-1/2 3/4 1/2 3/8 1/4 #4 #8 #10 #16 #20 #30 #40 #50 #100 #200 100 90 80 70 Percent Passing by Weight 60 50 40 30 20 10 0 100 10 ¹Grain Size in Millimeters 0.1 0.01 0.001 **Coarse Gravel** Fine Gravel Crs. Sand Med. Sand Fine Sand Fines (Silt and Clay) Sample Description I-22 @ 3 to 41/2 feet OLDER ALLUVIUM: Brown Silty fine to medium Sand, trace Clay, little coarse Sand Soil Classification Harvest Landing Industrail Development **SOUTHERN** SoCalGeo Perris, California **CALIFORNIA** Project No. 22G183-4 **GEOTECHNICAL** PLATE C- 12 A California Corporation

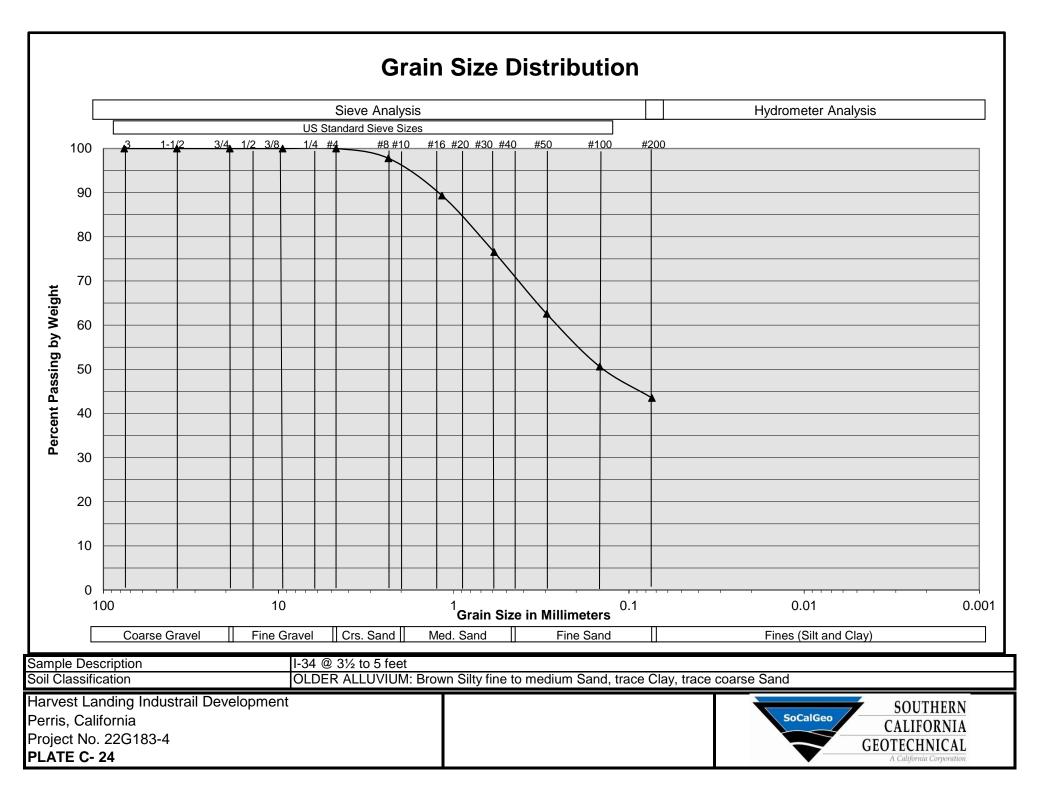


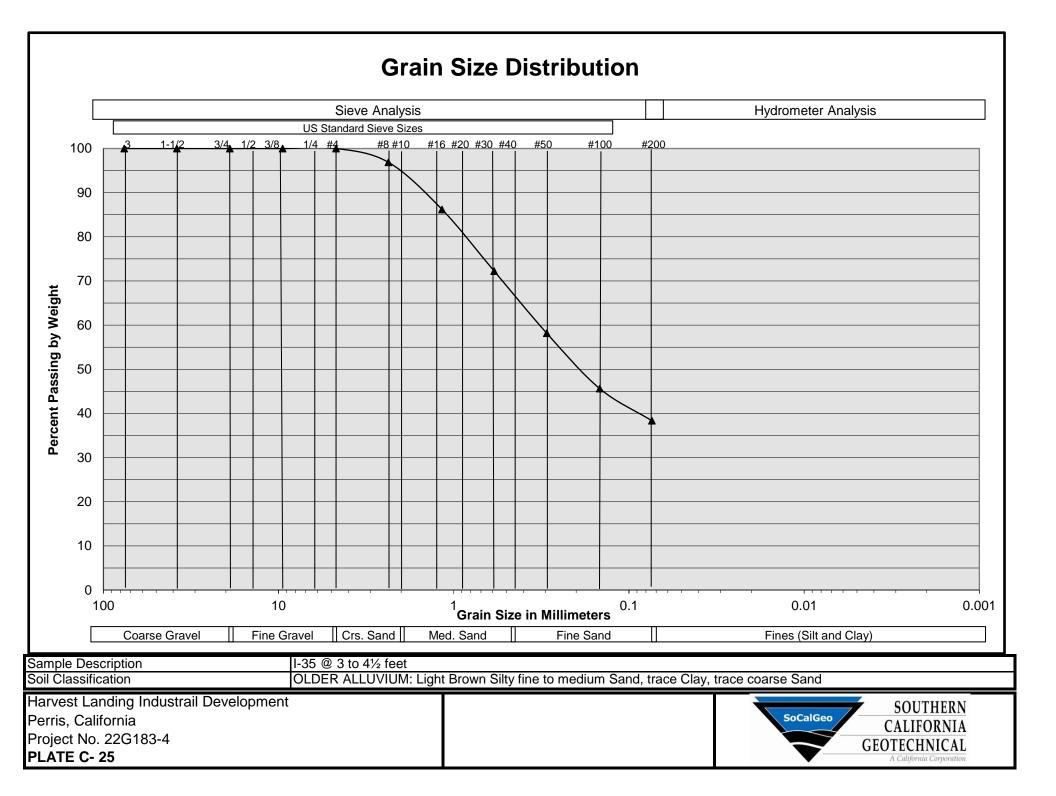

Grain Size Distribution Sieve Analysis Hydrometer Analysis US Standard Sieve Sizes 1-1/2 3/4 1/2 3/8 1/4 #4 #8 #10 #16 #20 #30 #40 #50 #100 #200 100 90 80 70 **Percent Passing by Weight** 60 50 40 30 20 10 0 100 10 ¹Grain Size in Millimeters 0.1 0.01 0.001 **Coarse Gravel** Fine Gravel Crs. Sand Med. Sand Fine Sand Fines (Silt and Clay) Sample Description I-24 @ 71/2 to 9 feet Soil Classification OLDER ALLUVIUM: Brown Silty fine to coarse Sand Harvest Landing Industrail Development **SOUTHERN** SoCalGeo Perris, California **CALIFORNIA** Project No. 22G183-4 **GEOTECHNICAL** PLATE C-14 A California Corporation

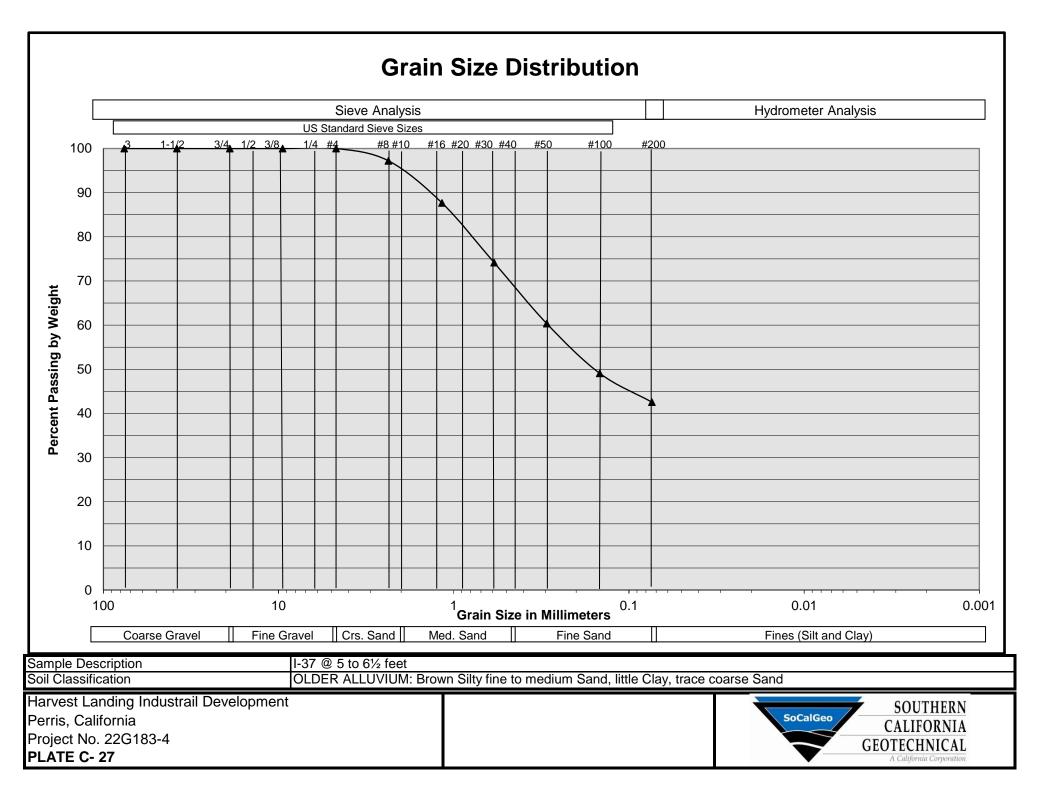


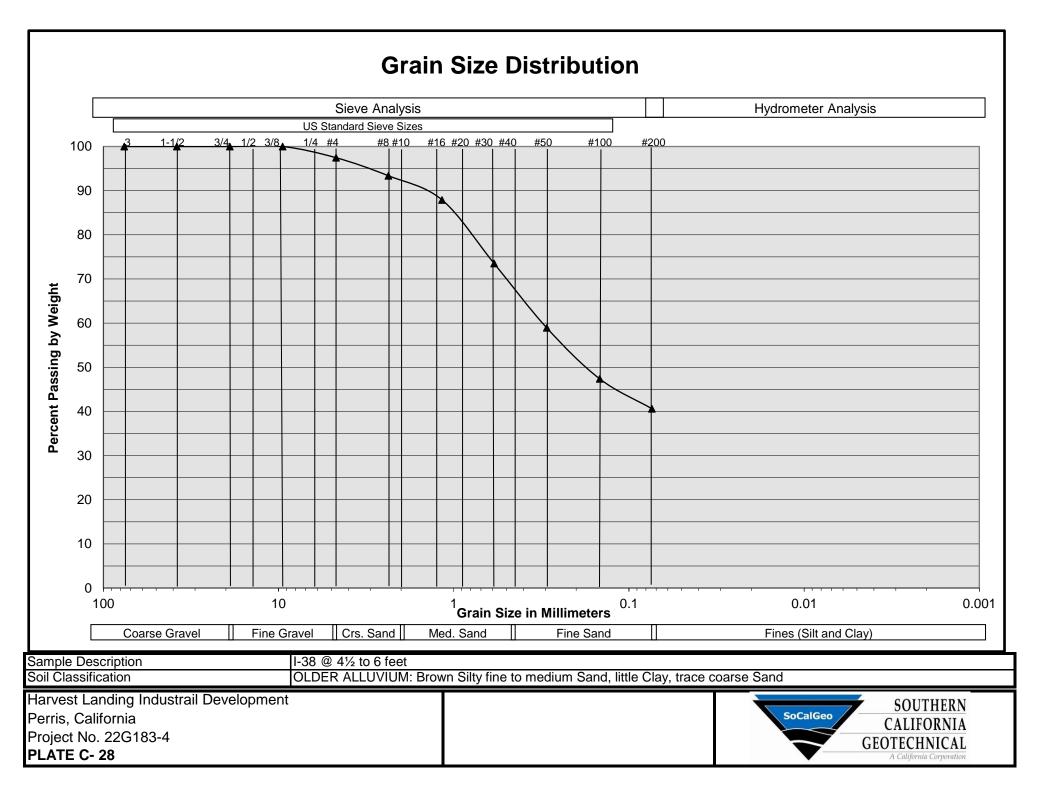


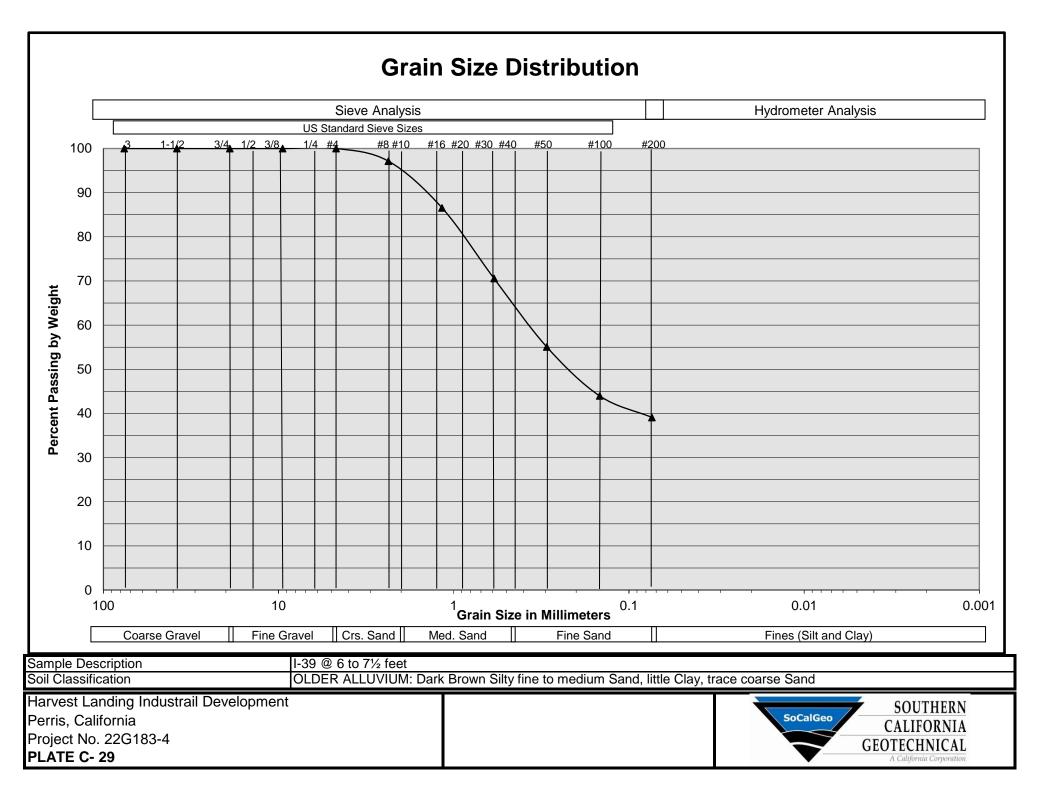


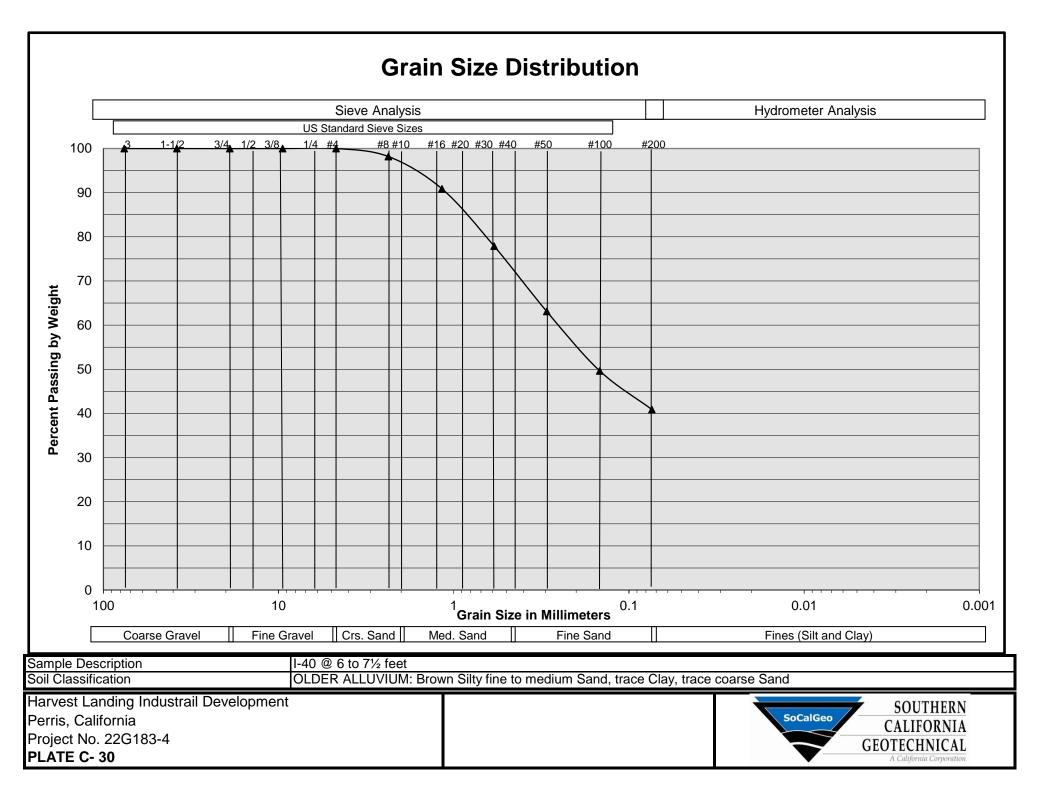




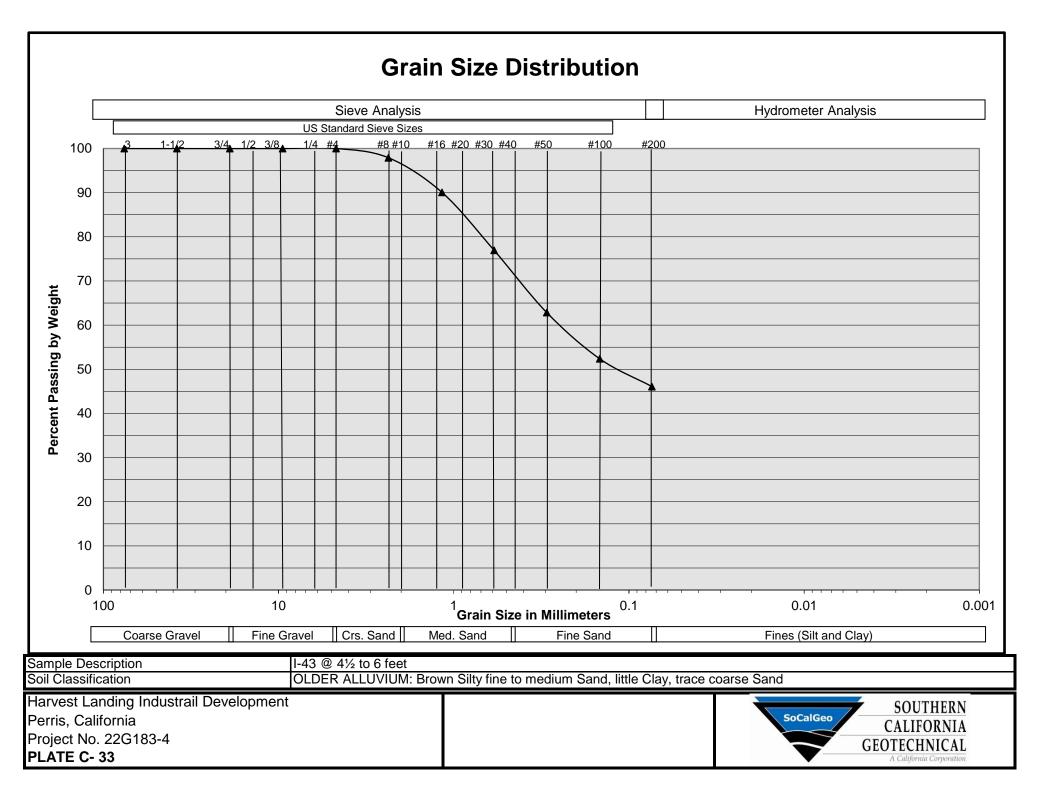


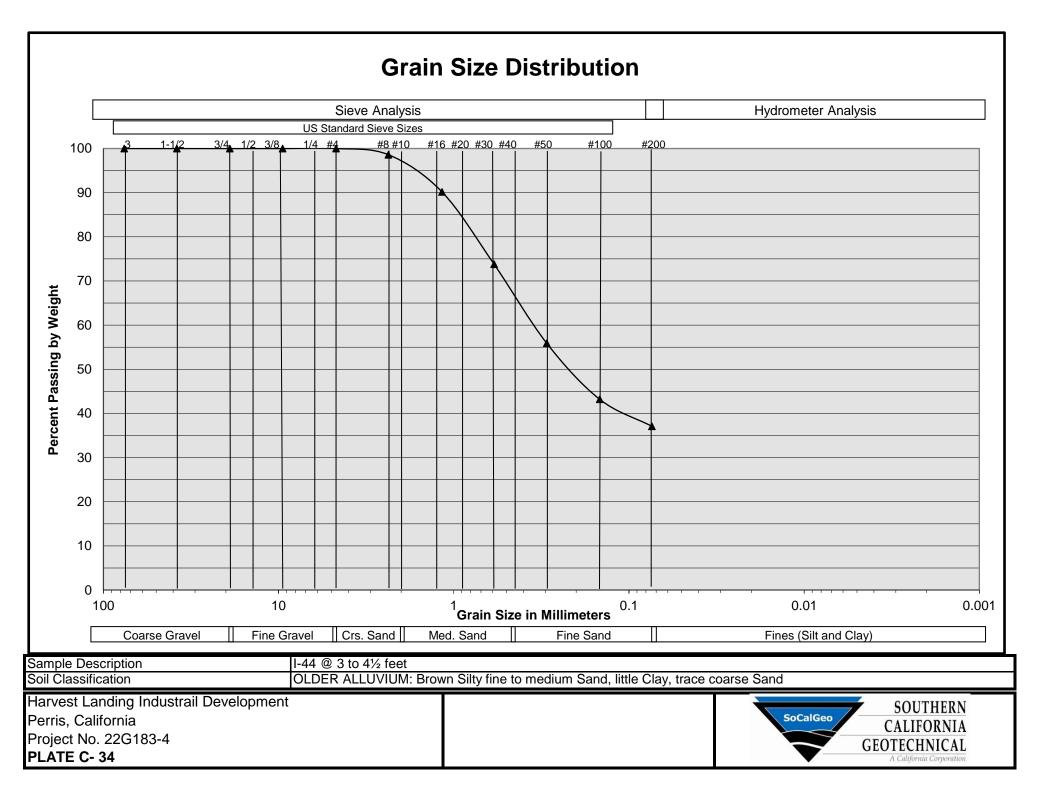

Grain Size Distribution Sieve Analysis Hydrometer Analysis US Standard Sieve Sizes 1-1/2 3/4 1/2 3/8 1/4 #4 #8 #10 #16 #20 #30 #40 #50 #100 #200 100 90 80 70 Percent Passing by Weight 60 50 40 30 20 10 0 100 10 ¹Grain Size in Millimeters 0.1 0.01 0.001 **Coarse Gravel** Fine Gravel Crs. Sand Med. Sand Fine Sand Fines (Silt and Clay) Sample Description I-33 @ 5 to 61/2 feet Soil Classification OLDER ALLUVIUM: Brown fine to medium Sandy Silt to Silty fine to medium Sand, trace Clay Harvest Landing Industrail Development **SOUTHERN** SoCalGeo Perris, California **CALIFORNIA** Project No. 22G183-4 **GEOTECHNICAL** PLATE C-23 A California Corporation





Grain Size Distribution Sieve Analysis Hydrometer Analysis US Standard Sieve Sizes 1-1/2 3/4 1/2 3/8 1/4 #4 #8 #10 #16 #20 #30 #40 #50 #100 #200 100 90 80 70 Percent Passing by Weight 60 50 40 30 20 10 0 100 10 ¹Grain Size in Millimeters 0.1 0.01 0.001 **Coarse Gravel** Fine Gravel Crs. Sand Med. Sand Fine Sand Fines (Silt and Clay) Sample Description I-36 @ 4 to 51/2 feet OLDER ALLUVIUM: Brown Silty fine to medium Sand, trace Clay, trace coarse Sand Soil Classification Harvest Landing Industrail Development **SOUTHERN** SoCalGeo Perris, California **CALIFORNIA** Project No. 22G183-4 **GEOTECHNICAL** PLATE C-26 A California Corporation





Grain Size Distribution Sieve Analysis Hydrometer Analysis US Standard Sieve Sizes 1-1/2 3/4 1/2 3/8 1/4 #4 #8 #10 #16 #20 #30 #40 #50 #100 #200 100 90 80 70 Percent Passing by Weight 60 50 40 30 20 10 0 100 10 ¹Grain Size in Millimeters 0.01 0.001 0.1 **Coarse Gravel** Fine Gravel Crs. Sand Med. Sand Fine Sand Fines (Silt and Clay) I-41 @ 41/2 to 6 feet Sample Description Soil Classification OLDER ALLUVIUM: Brown Silty fine to medium Sand to fine to medium Sandy Silt, trace Clay, trace coarse Sand Harvest Landing Industrail Development SOUTHERN SoCalGeo Perris, California **CALIFORNIA** Project No. 22G183-4 **GEOTECHNICAL** PLATE C- 31 A California Corporation

Grain Size Distribution Sieve Analysis Hydrometer Analysis US Standard Sieve Sizes 1-1/2 3/4 1/2 3/8 1/4 #4 #8 #10 #16 #20 #30 #40 #50 #100 #200 100 90 80 70 Percent Passing by Weight 60 50 40 30 20 10 0 100 10 ¹Grain Size in Millimeters 0.01 0.001 0.1 **Coarse Gravel** Fine Gravel Crs. Sand Med. Sand Fine Sand Fines (Silt and Clay) I-42 @ 41/2 to 6 feet Sample Description Soil Classification OLDER ALLUVIUM: Brown Silty fine to medium Sand to fine to medium Sandy Silt, trace Clay, trace coarse Sand Harvest Landing Industrail Development SOUTHERN SoCalGeo Perris, California **CALIFORNIA** Project No. 22G183-4 **GEOTECHNICAL** PLATE C- 32 A California Corporation

Grain Size Distribution Sieve Analysis Hydrometer Analysis US Standard Sieve Sizes 1-1/2 3/4 1/2 3/8 1/4 #4 #8 #10 #16 #20 #30 #40 #50 #100 #200 100 90 80 70 Percent Passing by Weight 60 50 40 30 20 10 0 100 10 ¹Grain Size in Millimeters 0.1 0.01 0.001 **Coarse Gravel** Fine Gravel Crs. Sand Med. Sand Fine Sand Fines (Silt and Clay) Sample Description I-45 @ 31/2 to 5 feet OLDER ALLUVIUM: Brown Silty fine to medium Sand, little Clay, trace coarse Sand Soil Classification Harvest Landing Industrail Development **SOUTHERN** SoCalGeo Perris, California **CALIFORNIA** Project No. 22G183-4 **GEOTECHNICAL** PLATE C-35 A California Corporation

Grain Size Distribution Sieve Analysis Hydrometer Analysis US Standard Sieve Sizes 1-1/2 3/4 1/2 3/8 1/4 #4 #8 #10 #16 #20 #30 #40 #50 #100 #200 100 90 80 70 Percent Passing by Weight 60 50 40 30 20 10 0 100 10 ¹Grain Size in Millimeters 0.1 0.01 0.001 **Coarse Gravel** Fine Gravel Crs. Sand Med. Sand Fine Sand Fines (Silt and Clay) Sample Description I-46 @ 4 to 51/2 feet OLDER ALLUVIUM: Brown Silty fine to medium Sand, little Clay, trace coarse Sand Soil Classification Harvest Landing Industrail Development **SOUTHERN** SoCalGeo Perris, California **CALIFORNIA** Project No. 22G183-4 **GEOTECHNICAL** PLATE C- 36 A California Corporation

Grain Size Distribution Sieve Analysis Hydrometer Analysis US Standard Sieve Sizes 1-1/2 3/4 1/2 3/8 1/4 #4 #8 #10 #16 #20 #30 #40 #50 #100 #200 100 90 80 70 **Percent Passing by Weight** 60 50 40 30 20 10 0 100 10 ¹Grain Size in Millimeters 0.1 0.01 0.001 **Coarse Gravel** Fine Gravel Crs. Sand Med. Sand Fine Sand Fines (Silt and Clay) Sample Description I-47 @ 51/2 to 7 feet Soil Classification OLDER ALLUVIUM: Brown fine to medium Sandy Silt, little Clay Harvest Landing Industrail Development **SOUTHERN** SoCalGeo Perris, California **CALIFORNIA** Project No. 22G183-4 **GEOTECHNICAL** PLATE C- 37 A California Corporation

July 1, 2022

Howard Industrial Partners 1944 North Tustin Street, Suite 122 Orange, California 92865

- Attention: Mr. Mike Tunney Vice President
- Project No.: **22G183-2**
- Subject: **Results of Infiltration Testing** Proposed Harvest Landing Industrial Development Indian Avenue and Orange Avenue Perris, California
- Reference: <u>Geotechnical Investigation, Proposed Harvest Landing Industrial Development,</u> <u>Indian Avenue and Orange Avenue, Perris, California</u>, prepared by Southern California Geotechnical, Inc. (SCG) for Howard Industrial Partners, SCG Project No. 22G183-1, dated June 13, 2022.
- Mr. Tunney:

In accordance with your request, we have conducted infiltration testing at the subject site. We are pleased to present this report summarizing the results of the infiltration testing and our design recommendations.

Scope of Services

The scope of services performed for this project was in general accordance with our Proposal No. 22P206R, dated April 28, 2022 and Change Order No. 22G183-CO, dated June 8, 2022. The scope of services included visual site reconnaissance, subsurface exploration, field testing, and engineering analysis to determine the infiltration rates of the on-site soils for the stormwater disposal systems. The infiltration borings were tested using a modified constant-head infiltration test as requested by the project civil engineer. The double ring infiltration testing was performed in general accordance with ASTM Test Method D-3385-03, <u>Standard Test Method for Infiltration Rate of Soils in Field Using Double Ring Infiltrometer</u>.

Site and Project Description

The site is located at the northwest and southwest corners of Indian Avenue and Orange Avenue in Perris, California. The site is bounded to the north by Val Verde Elementary School, to the west and south by Interstate 215 Frontage Road, and to the east by Indian Avenue. The general location of the site is illustrated on the Site Location Map, enclosed as Plate 1 of this report.

The site consists of several parcels, which total $73.68 \pm$ acres in size. The east-central area of the site is developed with four (4) single-family residences. These residences are assumed to be single-story structures of wood frame and stucco construction and supported on conventional

shallow foundations with concrete slab-on-grade floors. The residences are surrounded by concrete flatwork, turf grass, exposed soil, and trees. The remaining areas of the site are vacant and undeveloped. The ground surface in these areas consists of exposed soil with sparse to moderate native grass and weed growth.

Detailed topographic information was not available at the time of this report. Based on elevations obtained from Google Earth, and visual observations made at the time of the subsurface investigation, the overall site topography is generally flat and moderately slopes to the east at a gradient of approximately 2± percent.

Proposed Development

Based on the conceptual site plan provided to our office by the client, the site will be developed with five (5) industrial buildings:

Building No.	Location	Size (ft ²)
1	North	647,000
2	North-Central	389,000
3	Central	91,000
4	South-Central	52,000
5	South	22,000

Each building includes a mezzanine and dock-high doors will be constructed along a portion of at least one building wall for each of the buildings. The building is anticipated to be surrounded by asphaltic concrete pavements in the parking and drive lanes, Portland cement concrete pavements in the loading dock areas, and limited areas of concrete flatwork and landscape planters throughout.

The proposed development will include on-site infiltration for stormwater disposal. Based on the information provided by representatives of FMCivil Engineers, Inc., the project civil engineer, the infiltration systems will consist of four (4) shallow below-grade chamber systems (identified as Infiltration System "A" through Infiltration System "D") and/or four (4) deep dry-well systems (identified as Infiltration System "E" thought Infiltration System "H"). The infiltration systems will be located in the eastern area of the site. The bottoms of the below-grade chamber systems will extend to depths of $7\pm$ feet below existing site grades and the dry wells will extend to a depth of $50\pm$ feet below existing site grades.

Concurrent Studies

SCG performed a geotechnical investigation at the subject site, referenced above. As a part of this investigation, twenty-three (23) borings were advanced to depths of 15 to $25\pm$ feet below the previously existing site grades. Native alluvium was encountered at each boring location, extending to at least the maximum depth explored of $25\pm$ feet below existing site grades. The alluvium generally consists of medium dense to very dense silty sands to sandy silts, with trace to little clay content.

Free water was not encountered during the drilling of the borings. Based on the lack of water within the borings and the moisture contents of the recovered soil samples, the static groundwater is considered to have existed at a depth in excess of $25\pm$ feet at the time of the

subsurface exploration. Recent water level data was obtained from the California Department of Water Resources website, <u>http://www.water.ca.gov/waterdatalibrary/</u>. The nearest monitoring well is located approximately 0.5 miles east from the site. Water level readings within this monitoring well indicates a groundwater level of $44\pm$ feet below the ground surface in March 2022.

Subsurface Exploration

Scope of Exploration

The subsurface exploration performed for the infiltration testing consisted of six (6) shallow infiltration trenches (identified as Infiltration Trench Nos. I-1 through I-6) and four (4) deep infiltration borings (identified as Infiltration Boring Nos. I-7 through I-10). The infiltration trenches were excavated using a rubber-tire backhoe to a depth of $7\pm$ feet. The infiltration borings were extended to a depth of $50\pm$ feet below existing site grades. In addition to the infiltration testing, one (1) exploratory boring was extended to a depth of $60\pm$ feet below site grades to confirm the underlying soil types and verify that groundwater was at a depth greater than $10\pm$ feet below the bottom of the proposed dry well infiltration systems. The borings were advanced using a truck-mounted drilling rig, equipped with 8-inch-diameter hollow-stem augers and were logged during drilling by a member of our staff. The approximate locations of the boring, infiltration borings, and infiltration trenches are indicated on the Infiltration Test Location Plan, enclosed as Plate 2 of this report.

Geotechnical Conditions

Artificial fill soils were encountered at the ground surface at Infiltration Test No. I-3, extending to a depth of $1\pm$ foot below existing site grades. The fill soils consist of medium dense fine to medium sandy silts with trace quantities of clay and fine gravel. Native alluvium was encountered at the ground surface at all of the remaining boring and trench locations, extending to at least the maximum explored depth of $60\pm$ feet below existing site grades. The near-surface alluvium encountered at depths less than $25\pm$ feet below existing site grades consists of medium dense to very dense fine to medium sandy silts, silty fine to medium sands, clayey fine to coarse sands, and hard fine to coarse sandy clays. At depths greater than $25\pm$ feet, the alluvium consists of medium dense to very dense fine sandy silts, fine to medium sands, and hard fine to medium sandy clays. The Boring Logs and Trench Logs, which illustrate the conditions encountered at each of the borings, are included with this report.

Free water was not encountered during drilling of any of the borings. Based on the lack of water within the borings, the static groundwater table was considered to have existed at a depth in excess of $60\pm$ feet at the time of our subsurface exploration.

Shallow Infiltration Testing – Double Ring Infiltration

The infiltration testing for the proposed shallow infiltration chambers was performed in general accordance with ASTM Test Method D-3385-03, <u>Standard Test Method for Infiltration Rate of Soils in Field Using Double Ring Infiltrometer</u>.

Two stainless steel infiltration rings were used for the infiltration testing. The outer infiltration ring is 2 feet in diameter and 20 inches in height. The inner infiltration ring is 1 foot in diameter

and 20 inches in height. At the test locations, the outer ring was driven $3\pm$ inches into the soil at the base of each trench. The inner ring was centered inside the outer ring and subsequently driven $3\pm$ inches into the soil at the base of the trench. The rings were driven into the soil using a ten-pound sledge hammer. The soil surrounding the wall of the infiltration rings was only slightly disturbed during the driving process.

Infiltration Testing Procedure

Infiltration testing was performed at all of the trench locations. The infiltration testing consisted of filling the inner ring and the annular space (the space between the inner and outer rings) with water, approximately 3 to 4 inches above the soil. To prevent the flow of water from one ring to the other, the water level in both the inner ring and the annular space between the rings was maintained using constant-head float valves. The volume of water that was added to maintain a constant head in the inner ring and the annular space during each time interval was determined and recorded. A cap was placed over the rings to minimize the evaporation of water during the tests.

The schedule for readings was determined based on the observed soil type at the base of each backhoe-excavated trench. Based on the existing soils at the trench locations, the volumetric measurements were made at 10-minute intervals at Infiltration Trench No I-3 and 15-minute increments at the remaining trench locations. The water volume measurements are presented on the spreadsheets enclosed with this report. The infiltration rates for each of the timed intervals are also tabulated on these spreadsheets.

The infiltration rates for the infiltration tests are calculated in centimeters per hour and then converted to inches per hour. The rates are summarized below:

Infiltration Test No.	<u>Depth</u> (feet)							
I-1	7	Brown Silty fine to medium Sand, trace Clay, trace coarse Sand	0.8					
I-2	7	Brown Silty fine to medium Sand, trace coarse Sand, trace Clay	1.0					
I-3	7	Brown Silty fine to medium Sand, little coarse Sand	6.8					
I-4	7	Brown Silty fine to medium Sand, trace to little coarse Sand, trace Clay	0.3					
I-5	7	Brown Silty fine to medium Sand, trace coarse Sand, trace Clay	0.9					
I-6	7	Brown Silty fine to medium Sand, trace Clay, trace coarse Sand	1.3					

Percolation Testing – Dry Wells

The dry well infiltration testing was performed in accordance with a modified constant-head infiltration test as requested by the project civil engineer, the designer of the proposed dry well system.

Upon the completion of the drilling for the infiltration borings, a sufficient length of 3-inchdiameter perforated PVC casing was then placed into each test hole so that the PVC casing extended from the bottom of the test hole to the ground surface. Clean ³/₄-inch gravel was installed in the annulus surrounding the PVC casing.

Pre-soaking

The pre-soaking process consisted of filling the test borings with water to approximately $10\pm$ feet below the ground surface. The pre-soaking was completed after all of the water had percolated through the test hole, at least 15 hours since initiating the pre-soak.

Infiltration Testing Procedure

Following the pre-soaking process, the constant-head infiltration test method was utilized to test the infiltration rates of deeper soils. This method consisted of filling the borings to a maximum water level of $10\pm$ feet below the ground surface, based on the soil conditions encountered. Once the hole was filled, the inflow of water was controlled via a ball valve in order to maintain the water level constant below ground surface. It was necessary to constantly monitor this depth due to varying inflows from the water source and the change in infiltration rate with time. Readings were taken every ten minutes using a water level meter. The ball valve was used to make adjustments by increasing or decreasing the inflow of water when slight changes in depth occurred. The water level readings are presented on the spreadsheets enclosed with this report. The infiltration rates for each of the timed intervals are also tabulated on the spreadsheets.

The infiltration rates from the deep infiltration tests are tabulated in gallons per square foot per day.

Infiltration Test No.	<u>Depth</u> (feet)	<u>Measured Infiltration Rate</u> (Inches per Hour)
I-7	51	<0.1
I-8	49	0.2
<u>I</u> -9	51	0.1
I-10	51	0.3

Laboratory Testing

Moisture Content

The moisture contents for the recovered soil samples within the borings were determined in accordance with ASTM D-2216 and are expressed as a percentage of the dry weight. These test results are presented on the Boring Logs.

Grain Size Analysis

The grain size distribution of selected soils collected from each infiltration test boring have been determined using a range of wire mesh screens. These tests were performed in general accordance with ASTM D-422 and/or ASTM D-1140. The weight of the portion of the sample retained on each screen is recorded and the percentage finer or coarser of the total weight is calculated. The results of these tests are presented on Plates C-1 through C-41 of this report.

Design Recommendations

A total of ten (10) total infiltration tests were performed at the subject site. As noted above, the double ring infiltration testing resulted in measured infiltration rates ranging from 0.3 to 6.8 inches per hour. The dry well infiltration testing resulted in measured infiltration rates ranging from 0.0 to 0.3 inches per hour. The primary factors affecting the infiltration rates are the silt content of the encountered soils, which vary at different depths and locations at the subject site. Based on the results of the infiltration testing, we recommend the following infiltration rates to be utilized for the design of the proposed infiltration systems:

Infiltration Test No.	Infiltration System	<u>Infiltration</u> System Type	<u>Depth</u> (feet)	<u>Location</u>	<u>Infiltration</u> <u>Rate (inches</u> <u>per hour)</u>
I-1 and I-2*	A	Chamber System	7	Northeast	0.9
I-3 and I-4*	В	Chamber System	7	Central-East	3.6
I-5	С	Chamber System	7	South-Central	0.9
I-6	D	Chamber System	7	Southeast	1.3

Infiltration Test No.	Infiltration System	<u>Infiltration</u> System Type	<u>Depth</u> (feet)	<u>Location</u>	<u>Infiltration</u> <u>Rate (inches</u> per hour)
I-7	E	Dry Well	50	Northeast	0.0
I-8	F	Dry Well	50	Central-East	0.2
I-9	G	Dry Well	50	Central-East	0.1
I-10	Н	Dry Well	50	Southeast	0.3

NOTE: *Indicates an average infiltration rate was used in the design infiltration rate.

Due to the low infiltration rates for the deep dry well infiltration systems, dry well infiltration is not recommended for this project.

The design of the proposed storm water infiltration system should be performed by the project civil engineer, in accordance with the City of Perris and/or County of Riverside guidelines. However, it is recommended that the system be constructed so as to facilitate removal of silt and clay, or other deleterious materials from any water that may enter the system. The presence of such materials would decrease the effective infiltration rate. **It is recommended that the project civil engineer apply an appropriate factor of safety. The infiltration rates recommended above are based on the assumption that only clean water will be introduced to the subsurface profile. Any fines, debris, or organic materials could significantly impact the infiltration rates.** It should be noted that the recommended infiltration rates are based on infiltration systems could vary considerably.

Infiltration Rate Considerations

The infiltration rates presented herein was determined in accordance with the Riverside County guidelines and are considered valid only for the time and place of the actual test. Varying subsurface conditions will exist in other areas of the site, which could alter the recommended infiltration rates presented above. The infiltration rates will decline over time between maintenance cycles as silt or clay particles accumulate on the BMP surface. The infiltration rate is highly dependent upon a number of factors, including density, silt and clay content, grainsize distribution throughout the range of particle sizes, and particle shape. Small changes in these factors can cause large changes in the infiltration rates.

Infiltration rates are based on unsaturated flow. As water is introduced into soils by infiltration, the soils become saturated and the wetting front advances from the unsaturated zone to the saturated zone. Once the soils become saturated, infiltration rates become zero, and water can only move through soils by hydraulic conductivity at a rate determined by pressure head and soil permeability. Changes in soil moisture content will affect the infiltration rate. Infiltration rates should be expected to decrease until the soils become saturated. Soil permeability values will then govern groundwater movement. Permeability values may be on the order of 10 to 20 times less than infiltration rates. The system designer should incorporate adequate factors of safety and allow for overflow design into appropriate traditional storm drain systems, which would transport storm water off-site.

Construction Considerations

The infiltration rates presented in this report are specific to the tested locations and tested depths. Infiltration rates can be significantly reduced if the soils are exposed to excessive disturbance or compaction during construction. Compaction of the soils at the bottom of the infiltration system can significantly reduce the infiltration ability of the basins. Therefore, the subgrade soils within proposed infiltration system areas should not be over-excavated, undercut or compacted in any significant manner. **It is recommended that a note to this effect be added to the project plans and/or specifications.**

We recommend that a representative from the geotechnical engineer be on-site during the construction of the proposed infiltration systems to identify the soil classification at the base of each system. It should be confirmed that the soils at the base of the proposed infiltration systems correspond with those presented in this report to ensure that the performance of the systems will be consistent with the rates reported herein.

We recommend that scrapers and other rubber-tired heavy equipment not be operated on the basin bottom, or at levels lower than 2 feet above the bottom of the system, particularly within basins. As such, the bottom 24 inches of the infiltration systems should be excavated with non-rubber-tired equipment, such as excavators.

Infiltration Chamber Maintenance

The proposed project may include infiltration chambers. Water flowing into chambers will carry some level of sediment. This layer has the potential to significantly reduce the infiltration rate of the chamber subgrade soils. Therefore, a formal chamber maintenance program should be established to ensure that these silt and clay deposits are removed from the chamber on a regular basis.

Location of Infiltration Systems

The use of on-site storm water infiltration systems carries a risk of creating adverse geotechnical conditions. Increasing the moisture content of the soil can cause the soil to lose internal shear strength and increase its compressibility, resulting in a change in the designed engineering properties. Overlying structures and pavements in the infiltration area could potentially be damaged due to saturation of the subgrade soils. **The proposed infiltration systems for this site should be located at least 25 feet away from any structures, including retaining walls.** Even with this provision of locating the infiltration system at least 25 feet from the building(s), it is possible that infiltrating water into the subsurface soils could have an adverse effect on the proposed or existing structures. It should also be noted that utility trenches which happen to collect storm water can also serve as conduits to transmit storm water toward the structure, depending on the slope of the utility trench. Therefore, consideration should also be given to the proposed locations of underground utilities which may pass near the proposed infiltration system.

The infiltration system designer should also give special consideration to the effect that the proposed infiltration systems may have on nearby subterranean structures, open excavations, or descending slopes. In particular, infiltration systems should not be located near the crest of descending slopes, particularly where the slopes are comprised of granular soils. Such systems will require specialized design and analysis to evaluate the potential for slope instability, piping failures and other phenomena that typically apply to earthen dam design. This type of analysis is beyond the scope of this infiltration test report, but these factors should be considered by the infiltration system designer when locating the infiltration systems.

General Comments

This report has been prepared as an instrument of service for use by the client in order to aid in the evaluation of this property and to assist the architects and engineers in the design and preparation of the project plans and specifications. This report may be provided to the contractor(s) and other design consultants to disclose information relative to the project. However, this report is not intended to be utilized as a specification in and of itself, without appropriate interpretation by the project architect, structural engineer, and/or civil engineer. The design of the infiltration system is the responsibility of the civil engineer. The role of the geotechnical engineer is limited to determination of infiltration rate only. By using the design infiltration rates contained herein, the civil engineer agrees to indemnify, defend, and hold harmless the geotechnical engineer for all aspects of the design and performance of the infiltration system. The reproduction and distribution of this report must be authorized by the client and Southern California Geotechnical, Inc. Furthermore, any reliance on this report by an unauthorized third party is at such party's sole risk, and we accept no responsibility for damage or loss which may occur. The analysis of this site was based on a subsurface profile interpolated from limited discrete soil samples. While the materials encountered in the project area are considered to be representative of the total area, some variations should be expected between trench locations and testing depths. If the conditions encountered during construction vary significantly from those detailed herein, we should be contacted immediately to determine if the conditions alter the recommendations contained herein.

This report has been based on assumed or provided characteristics of the proposed development. It is recommended that the owner, client, architect, structural engineer, and civil engineer carefully review these assumptions to ensure that they are consistent with the characteristics of the proposed development. If discrepancies exist, they should be brought to

our attention to verify that they do not affect the conclusions and recommendations contained herein. We also recommend that the project plans and specifications be submitted to our office for review to verify that our recommendations have been correctly interpreted. The analysis, conclusions, and recommendations contained within this report have been promulgated in accordance with generally accepted professional geotechnical engineering practice. No other warranty is implied or expressed.

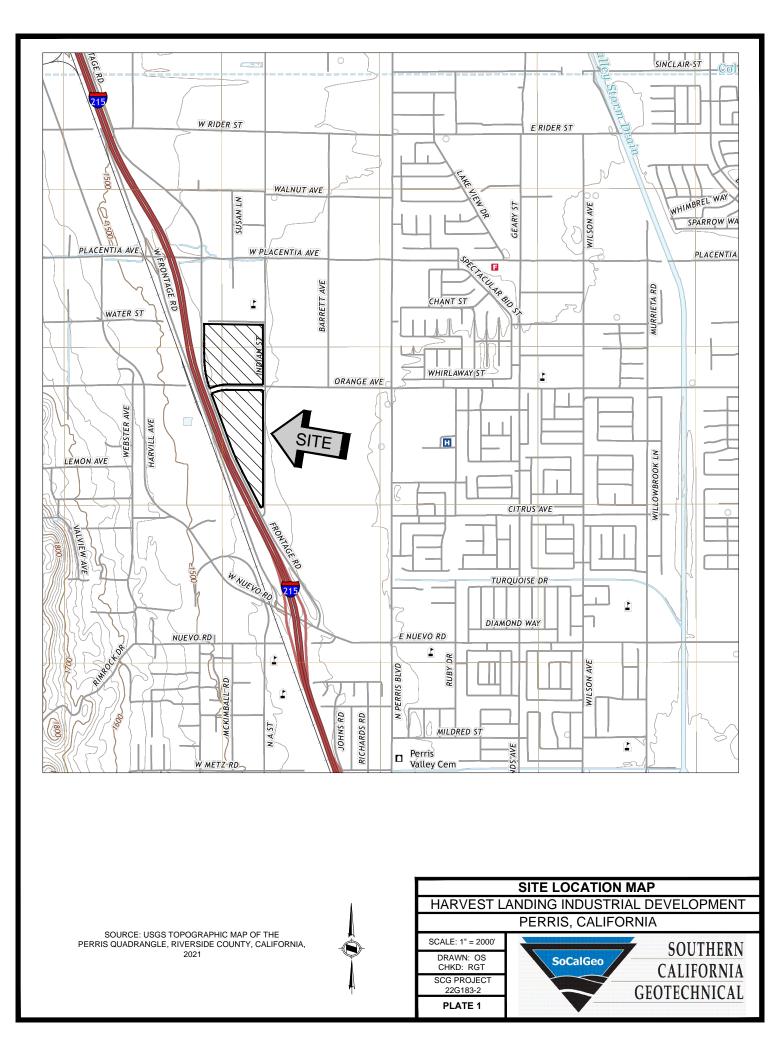
<u>Closure</u>

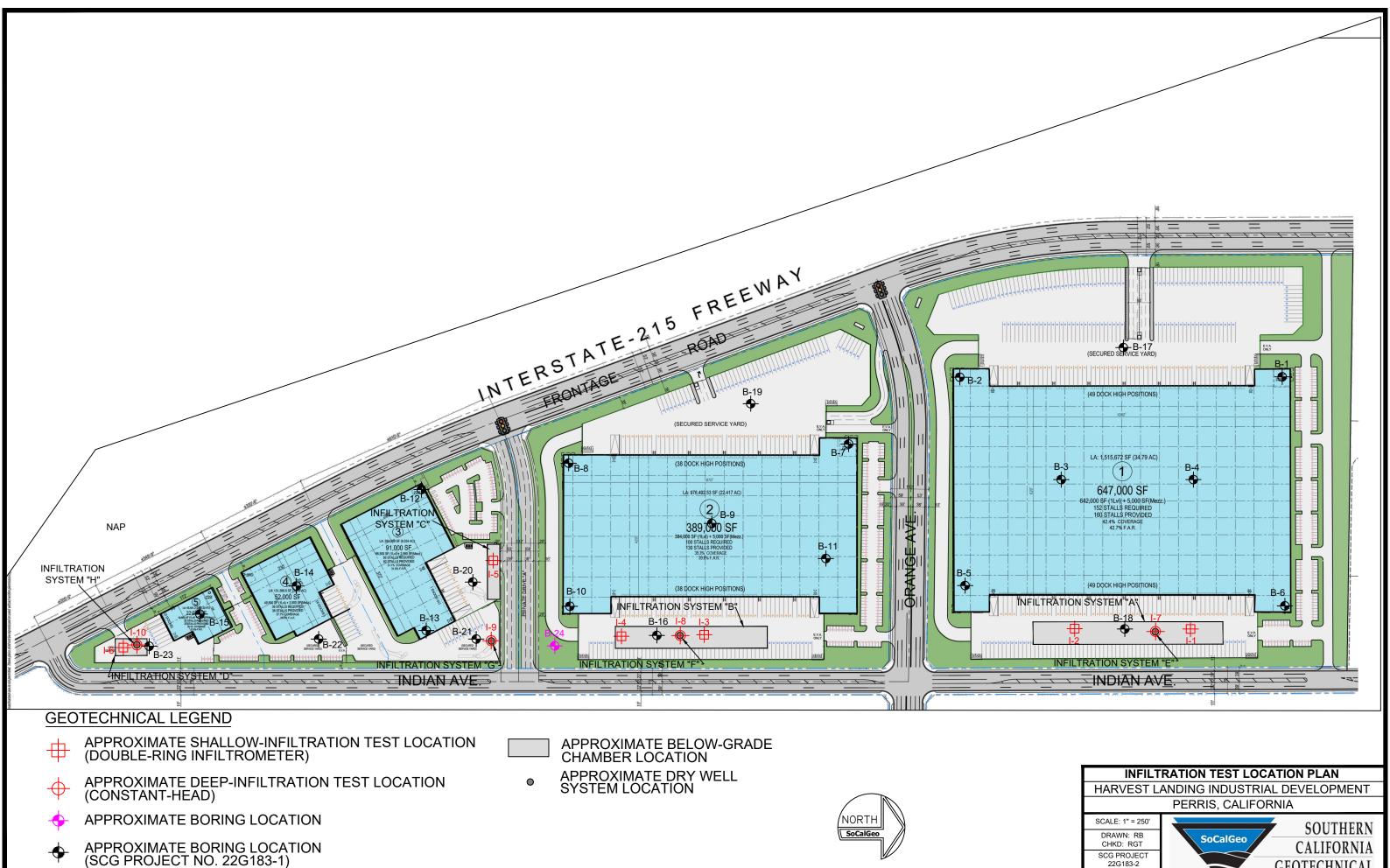
We sincerely appreciate the opportunity to be of service on this project. We look forward to providing additional consulting services during the course of the project. If we may be of further assistance in any manner, please contact our office.

No. 2655

Respectfully Submitted,

SOUTHERN CALIFORNIA GEOTECHNICAL, INC.


Ryan Bremer Staff Geologist


Robert G. Trazo, GE 2655 Principal Engineer

Distribution: (1) Addressee

Enclosures: Plate 1 - Site Location Map Plate 2 - Infiltration Test Location Plan Trench Log Legend and Logs (8 pages) Boring Log Legend and Logs (12 pages) Infiltration Test Results Spreadsheets (10 pages) Grain Size Distribution Graphs (41 pages)

- APPROXIMATE BORING LOCATION (SCG PROJECT NO. 22G183-1)

GEOTECHNICAL

PLATE 2

TRENCH LOG LEGEND

SAMPLE TYPE	GRAPHICAL SYMBOL	SAMPLE DESCRIPTION
AUGER		SAMPLE COLLECTED FROM AUGER CUTTINGS, NO FIELD MEASUREMENT OF SOIL STRENGTH. (DISTURBED)
CORE		ROCK CORE SAMPLE: TYPICALLY TAKEN WITH A DIAMOND-TIPPED CORE BARREL. TYPICALLY USED ONLY IN HIGHLY CONSOLIDATED BEDROCK.
GRAB	- MA	SOIL SAMPLE TAKEN WITH NO SPECIALIZED EQUIPMENT, SUCH AS FROM A STOCKPILE OR THE GROUND SURFACE. (DISTURBED)
CS		CALIFORNIA SAMPLER: 2-1/2 INCH I.D. SPLIT BARREL SAMPLER, LINED WITH 1-INCH HIGH BRASS RINGS. DRIVEN WITH SPT HAMMER. (RELATIVELY UNDISTURBED)
NSR	\bigcirc	NO RECOVERY: THE SAMPLING ATTEMPT DID NOT RESULT IN RECOVERY OF ANY SIGNIFICANT SOIL OR ROCK MATERIAL.
SPT		STANDARD PENETRATION TEST: SAMPLER IS A 1.4 INCH INSIDE DIAMETER SPLIT BARREL, DRIVEN 18 INCHES WITH THE SPT HAMMER. (DISTURBED)
SH		SHELBY TUBE: TAKEN WITH A THIN WALL SAMPLE TUBE, PUSHED INTO THE SOIL AND THEN EXTRACTED. (UNDISTURBED)
VANE		VANE SHEAR TEST: SOIL STRENGTH OBTAINED USING A 4 BLADED SHEAR DEVICE. TYPICALLY USED IN SOFT CLAYS-NO SAMPLE RECOVERED.

COLUMN DESCRIPTIONS

<u>DEPTH</u> :	Distance in feet below the ground surface.
SAMPLE:	Sample Type as depicted above.
BLOW COUNT:	Number of blows required to advance the sampler 12 inches using a 140 lb hammer with a 30-inch drop. 50/3" indicates penetration refusal (>50 blows) at 3 inches. WH indicates that the weight of the hammer was sufficient to push the sampler 6 inches or more.
POCKET PEN.:	Approximate shear strength of a cohesive soil sample as measured by pocket penetrometer.
GRAPHIC LOG :	Graphic Soil Symbol as depicted on the following page.
DRY DENSITY:	Dry density of an undisturbed or relatively undisturbed sample in lbs/ft ³ .
MOISTURE CONTENT:	Moisture content of a soil sample, expressed as a percentage of the dry weight.
LIQUID LIMIT:	The moisture content above which a soil behaves as a liquid.
PLASTIC LIMIT:	The moisture content above which a soil behaves as a plastic.
PASSING #200 SIEVE:	The percentage of the sample finer than the #200 standard sieve.
UNCONFINED SHEAR:	The shear strength of a cohesive soil sample, as measured in the unconfined state.

SOIL CLASSIFICATION CHART

м	AJOR DIVISI	ONS		BOLS	TYPICAL
			GRAPH	LETTER	DESCRIPTIONS
	GRAVEL AND	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES
	GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES
COARSE GRAINED SOILS	MORE THAN 50% OF COARSE	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES
	FRACTION RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES
MORE THAN 50% OF MATERIAL IS	SAND AND	CLEAN SANDS		SW	WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES
LARGER THAN NO. 200 SIEVE SIZE	SANDY SOILS	(LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SAND, LITTLE OR NO FINES
	MORE THAN 50% OF COARSE FRACTION	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES
	PASSING ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		SC	CLAYEY SANDS, SAND - CLAY MIXTURES
				ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY
FINE GRAINED SOILS	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
00120				OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
MORE THAN 50% OF MATERIAL IS SMALLER THAN NO. 200 SIEVE				МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SAND OR SILTY SOILS
SIZE	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY
				ОН	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
HI	GHLY ORGANIC S	SOILS		PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS

NOTE: DUAL SYMBOLS ARE USED TO INDICATE BORDERLINE SOIL CLASSIFICATIONS

			i183-2 irvest L		EXCAVATION DATE: 5/4/22 Industrial Development EXCAVATION METHOD: Backhoe				DEPT EPTH:		у	
LOC	ATIC	N: P	erris, C	Californ			RE	EADIN	G TAK	EN: /		pletion
FIEI		RESL	JLTS	-		LA	BORA	ATOF	RY RI	ESUL		
DEPTH (FEET)	SAMPLE	BLOW COUNT	POCKET PEN. (TSF)	GRAPHIC LOG	DESCRIPTION SURFACE ELEVATION: MSL	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	COMMENTS
					ALLUVIUM: Brown fine to medium Sandy Silt, trace Clay, trace							_
	-				coarse Sand, trace fine root fibers, dense-dry	1						
	-				Brown Silty fine to medium Sand, trace coarse Sand, trace Clay, trace Calcareous nodules, dense-dry							
5	m M				-	-	2					-
					Trench Terminated at 7'							
24/22												
DT 6/2												
10.GL												
ALGE												
soc												
).GPJ												
ICHES												
TREN												
INFIL												
83-2 (
TBL 22G183-2 (INFIL TRENCHES) GPJ SOCALGEO.GDT 6/24/22												
					00							

PR	JOB NO.: 22G183-2EXCAVATION DATE: 5/5/22WATER DEPTH: DryPROJECT: Harvest Landing Industrial DevelopmentEXCAVATION METHOD: BackhoeCAVE DEPTH:LOCATION: Perris, CaliforniaLOGGED BY: Joey HernandezREADING TAKEN: At Completion									pletion		
FIE	LD F	RESL	JLTS			LA	BORA	ATOF	RY RI	ESUL	TS	
DEPTH (FEET)	SAMPLE	BLOW COUNT	POCKET PEN. (TSF)	GRAPHIC LOG	DESCRIPTION SURFACE ELEVATION: MSL	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	COMMENTS
5		-			ALLUVIUM: Brown fine Sandy Silt, trace medium to coarse Sand, trace Clay, trace fine root fibers, trace Calcareous nodules, dense-dry Brown Silty fine to medium Sand, trace Clay, trace coarse Sand, little Calcareous nodules, dense-dry Trench Terminated at 7'		1					-
TBL 22G183-2 (INFIL TRENCHES).GPJ SOCALGEO.GDT 6/24/22												
		I			22							

JOB NO.: 22G183-2 EXCAVATION DATE: 5/4/22 WATER DEPTH: Dry PROJECT: Harvest Landing Industrial Development EXCAVATION METHOD: Backhoe CAVE DEPTH: LOCATION: Perris, California LOGGED BY: Caleb Brackett READING TAKEN: At Completion								pletion
FIELD RESUL			LAB	ORATO				
DEPTH (FEET) SAMPLE BLOW COUNT	(TSF) GRAPHIC LOG	DESCRIPTION SURFACE ELEVATION: MSL	DRY DENSITY (PCF)	MOISTURE CONTENT (%) LIQUID	LIMIT PLASTIC LIMIT	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	COMMENTS
		FILL: Brown fine to medium Sandy Silt, trace Clay, trace coarse Sand, trace fine Gravel, trace fine root fibers, medium dense-damp <u>ALLUVIUM:</u> Brown Silty fine to medium Sand, little coarse Sand, trace Calcareous nodules, medium dense to dense-dry to damp						-
Sent 1				3				
		Trench Terminated at 7'						
IBL 226183-2 (INFIL IKENCHES).GPU 50CALGEU.GDI 6/24/22								

JOB NO.: 22G PROJECT: Ha LOCATION: P	rvest Landing	EXCAVATION DATE: 5/4/22 I Industrial Development EXCAVATION METHOD: Backhoe ia LOGGED BY: Joey Hernandez		CA	VE DI	EPTH:		-	pletion
FIELD RESU	ILTS		LAE	30R/	ATOF	RY RI	ESUL	TS	
DEPTH (FEET) SAMPLE BLOW COUNT	POCKET PEN. (TSF) GRAPHIC LOG	DESCRIPTION SURFACE ELEVATION: MSL	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	COMMENTS
		ALLUVIUM: Brown fine to medium Sandy Silt, trace Clay, trace					- +		
5 -		coarse Sand, trace fine root fibers, medium dense-dry to damp Brown Silty fine to medium Sand, trace Clay, trace to little coarse Sand, trace Calcareous nodules, dense to very dense-dry							- - - -
m s				2					-
		Trench Terminated at 7'							
TBL 22G183-2 (INFIL TRENCHES).GPJ SOCALGEO.GDT 6/24/22									

PF	JOB NO.: 22G183-2 EXCAVATION DATE: 5/5/22 WATER DEPTH: Dry PROJECT: Harvest Landing Industrial Development EXCAVATION METHOD: Backhoe CAVE DEPTH: LOCATION: Perris, California LOGGED BY: Joey Hernandez READING TAKEN: At Completion							pletion					
FIE	FIELD RESULTS						LA	BORA		RY RI	ESUL	TS	
DEPTH (FFFT)	SAMPI F	SAMPLE	BLOW COUNT	POCKET PEN. (TSF)	GRAPHIC LOG	DESCRIPTION SURFACE ELEVATION: MSL	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	COMMENTS
						<u>ALLUVIUM</u> : Brown fine Sandy Silt, trace Clay, trace medium to coarse Sand, little fine root fibers, dense-dry							
Ę	5 -					Brown Silty fine to medium Sand, trace coarse Sand, trace Clay, little Calcareous nodules, very dense-damp	-						-
	m	m						4					
						Trench Terminated at 7'							
24/22													
TBL 22G183-2 (INFIL TRENCHES) GPJ SOCALGEO.GDT 6/24/22													
IL TRENCHES).GPJ													
BL 22G183-2 (INF													
					<u></u>	<u>00</u>		-				-	

PR(LO(JOB NO.: 22G183-2 EXCAVATION DATE: 5/5/22 WATER DEPTH: Dry PROJECT: Harvest Landing Industrial Development EXCAVATION METHOD: Backhoe CAVE DEPTH: LOCATION: Perris, California LOGGED BY: Joey Hernandez READING TAKEN: At Completion							pletion		
рертн (FEET)	A DI SAMPLE	RESU BLOW COUNT	POCKET PEN. TT (TSF)	GRAPHIC LOG	DESCRIPTION SURFACE ELEVATION: MSL		MOISTURE CONTENT (%)			COMMENTS
5					ALLUVIUM: Brown fine to medium Sandy Silt, trace coarse Sand, trace Clay, trace Calcareous nodules, trace fine root fibers, porous, dense-damp Brown Silty fine to medium Sand, trace Clay, trace coarse Sand, little Calcareous nodules, dense to very dense-dry		2			-
TBL 22G183-2 (INFIL TRENCHES).GPJ SOCALGEO.GDT 6/24/22					Trench Terminated at 7'					

BORING LOG LEGEND

SAMPLE TYPE	GRAPHICAL SYMBOL	SAMPLE DESCRIPTION
AUGER		SAMPLE COLLECTED FROM AUGER CUTTINGS, NO FIELD MEASUREMENT OF SOIL STRENGTH. (DISTURBED)
CORE		ROCK CORE SAMPLE: TYPICALLY TAKEN WITH A DIAMOND-TIPPED CORE BARREL. TYPICALLY USED ONLY IN HIGHLY CONSOLIDATED BEDROCK.
GRAB	M	SOIL SAMPLE TAKEN WITH NO SPECIALIZED EQUIPMENT, SUCH AS FROM A STOCKPILE OR THE GROUND SURFACE. (DISTURBED)
CS		CALIFORNIA SAMPLER: 2-1/2 INCH I.D. SPLIT BARREL SAMPLER, LINED WITH 1-INCH HIGH BRASS RINGS. DRIVEN WITH SPT HAMMER. (RELATIVELY UNDISTURBED)
NSR	\bigcirc	NO RECOVERY: THE SAMPLING ATTEMPT DID NOT RESULT IN RECOVERY OF ANY SIGNIFICANT SOIL OR ROCK MATERIAL.
SPT		STANDARD PENETRATION TEST: SAMPLER IS A 1.4 INCH INSIDE DIAMETER SPLIT BARREL, DRIVEN 18 INCHES WITH THE SPT HAMMER. (DISTURBED)
SH		SHELBY TUBE: TAKEN WITH A THIN WALL SAMPLE TUBE, PUSHED INTO THE SOIL AND THEN EXTRACTED. (UNDISTURBED)
VANE		VANE SHEAR TEST: SOIL STRENGTH OBTAINED USING A 4 BLADED SHEAR DEVICE. TYPICALLY USED IN SOFT CLAYS-NO SAMPLE RECOVERED.

COLUMN DESCRIPTIONS

<u>DEPTH</u> :	Distance in feet below the ground surface.
<u>SAMPLE</u> :	Sample Type as depicted above.
BLOW COUNT:	Number of blows required to advance the sampler 12 inches using a 140 lb hammer with a 30-inch drop. 50/3" indicates penetration refusal (>50 blows) at 3 inches. WH indicates that the weight of the hammer was sufficient to push the sampler 6 inches or more.
POCKET PEN.:	Approximate shear strength of a cohesive soil sample as measured by pocket penetrometer.
GRAPHIC LOG :	Graphic Soil Symbol as depicted on the following page.
DRY DENSITY:	Dry density of an undisturbed or relatively undisturbed sample in lbs/ft ³ .
MOISTURE CONTENT:	Moisture content of a soil sample, expressed as a percentage of the dry weight.
LIQUID LIMIT:	The moisture content above which a soil behaves as a liquid.
PLASTIC LIMIT:	The moisture content above which a soil behaves as a plastic.
PASSING #200 SIEVE:	The percentage of the sample finer than the #200 standard sieve.
UNCONFINED SHEAR:	The shear strength of a cohesive soil sample, as measured in the unconfined state.

SOIL CLASSIFICATION CHART

м	AJOR DIVISI	ONS		BOLS	TYPICAL
			GRAPH	LETTER	DESCRIPTIONS
	GRAVEL AND	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES
	GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES
COARSE GRAINED SOILS	MORE THAN 50% OF COARSE	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES
	FRACTION RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES
MORE THAN 50% OF MATERIAL IS	SAND AND	CLEAN SANDS		SW	WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES
LARGER THAN NO. 200 SIEVE SIZE	SANDY SOILS	(LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SAND, LITTLE OR NO FINES
	MORE THAN 50% OF COARSE FRACTION	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES
	PASSING ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		SC	CLAYEY SANDS, SAND - CLAY MIXTURES
				ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY
FINE GRAINED SOILS	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
00120				OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
MORE THAN 50% OF MATERIAL IS SMALLER THAN NO. 200 SIEVE				МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SAND OR SILTY SOILS
SIZE	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY
				ОН	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
HI	GHLY ORGANIC S	SOILS		PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS

NOTE: DUAL SYMBOLS ARE USED TO INDICATE BORDERLINE SOIL CLASSIFICATIONS

JOB NO.: 22	26183	3-2	DRILLING DATE: 6/9/22		۱۸/			<u>ц.</u> р.	7)/	
PROJECT: I	Harves	st Landing	Industrial Development DRILLING METHOD: Hollow Stem Auger		CA	ATER AVE DI	EPTH:			
LOCATION:			a LOGGED BY: Michelle Esparza							npletion
FIELD RES	SULI	<u> </u>		LA	BOR/	AT UF	KT KI	⊏ວ∪I 	_15	
DEPTH (FEET) SAMPLE BLOW COUNT	POCKET PEN.	(TSF) GRAPHIC LOG	DESCRIPTION SURFACE ELEVATION: MSL	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	LIQUID	PLASTIC LIMIT	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	COMMENTS
			ALLUVIUM: Brown Silty fine to medium Sand, dense-damp							
5	6			-	5					
10 - 30	0		Brown fine to medium Sandy Silt, trace Clay, dense to very dense-damp to moist	-	4					
15	/5"			-	9			57		
20 50/	/5"		@ 18½', little Clay	-	10			54		
25	0		@ 23½', little Calcareous veining, no Clay	-	4			62		
30 42	2		Brown Silty fine to medium Sand, trace to little coarse Sand, dense-moist	-	9			42		
50/		INGI	Brown fine Sandy Silt, trace medium Sand, very dense-dry to damp	-	3			64		ATE B-22

PRC	JOB NO.: 22G183-2 DRILLING DATE: 6/9/22 WATER DEPTH: Dry PROJECT: Harvest Landing Industrial Development DRILLING METHOD: Hollow Stem Auger CAVE DEPTH: LOCATION: Perris, California LOGGED BY: Michelle Esparza READING TAKEN: At Completion												
FIEI	LD F	RESL	JLTS	-		LA		ATOF					
DEPTH (FEET)	SAMPLE	BLOW COUNT	POCKET PEN. (TSF)	GRAPHIC LOG	DESCRIPTION (Continued)	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)		COMMENIS
					(continuou)		20			<u> </u>			<u> </u>
40-		45			Brown fine to medium Sandy Silt, dense to very dense-moist	-	10			54			-
45		50/5"				-						@ 43½', sample r	no . ecovery _
		250/4"			Brown fine Sandy Silt, trace medium Sand, very dense-damp	-	5			67			-
- 50 -					Boring Terminated at 50'								
5EO.GDT 7/1/22													
22G183-2 (BORINGS),GPJ SOCALGEO.GDT 7/1/22													
TBL	<u>ет</u>	PC			.OG								B-2b

	T: Ha	arvest L		DRILLING DATE: 6/9/22 Industrial Development DRILLING METHOD: Hollow Stem Auger		CA	VE D	DEPT EPTH:			
			Californ	ia LOGGED BY: Michelle Esparza							npletion
DEPTH (FEET)	BLOW COUNT	POCKET PEN.	GRAPHIC LOG	DESCRIPTION	DRY DENSITY (PCF)	MOISTURE CONTENT (%)		PLASTIC LIMIT	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	COMMENTS
DEPTH (I SAMPLE	ΓΟ	OCK SF)	RAF		RY I	IOIS	LIQUID	LAS.	ASS 200 (NG/	WNO
o N	B	a C	0 	SURFACE ELEVATION: MSL ALLUVIUM: Brown fine to medium Sandy Silt, medium		≥υ			Ľ₩	00	<u>о</u>
5	19			dense-damp	-	5					
10	42			Brown fine Sandy Silt, trace Clay, trace Calcareous veining, dense-damp	-	9					
15	34			Brown Silty fine to medium Sand, trace coarse Sand, dense-damp to moist	-	11			35		
20	46			@ 18½', little coarse Sand	-	9			39		
25	38			- - - -	-	8			35		
30	47			. @ 28½', trace Clay 	-	10			34		
	38				-	9			37		

JOB NO.: 22G183-2 PROJECT: Harvest Landing LOCATION: Perris, Californi	DRILLING DATE: 6/9/22 Industrial Development DRILLING METHOD: Hollow Stem Auger a LOGGED BY: Michelle Esparza		CA	ATER AVE DI EADIN	EPTH:			npletion
FIELD RESULTS	· · ·	LA		ATOF				
DEPTH (FEET) SAMPLE BLOW COUNT POCKET PEN. (TSF) GRAPHIC LOG	DESCRIPTION (Continued)	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	COMMENTS
40 34	@ 38½', no coarse Sand	-	8			35		
45 54	Brown fine to medium Sandy Silt, very dense-very moist	-	17			53		
50/5"	Brown Silty fine to medium Sand, very dense-moist		12			43		
	Boring Terminated at 50'							
TEST BORING L	OG						PL	ATE B-3

JOB NO.: 2 PROJECT:			nding	DRILLING DATE: 6/9/22 Industrial Development DRILLING METHOD: Hollow Stem Auger			ATER			ry	
LOCATION:	Perr	ris, Ca				R	EADIN	g tak	EN:		npletion
FIELD RES	SUL	TS			LAE	BOR/	ATOF	RYR	ESUI	LTS	-
DEPTH (FEET) SAMPLE BLOW COLINT	POCKET PEN	(TSF)	GRAPHIC LOG	DESCRIPTION SURFACE ELEVATION: MSL	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	COMMENTS
5 2				<u>ALLUVIUM:</u> Brown Silty fine to medium Sand, trace fine root fibers, medium dense-damp	-	3					
10 5	8 4	4.5		Brown fine to coarse Sandy Clay, hard-damp	-	7					
15	3			Brown Clayey fine to coarse Sand, trace Silt, dense-dry to damp	-	3			23		
20 22	3 4	4.0		Brown fine to medium Sandy Clay, trace coarse Sand, very stiff to hard-damp to moist	-	13			40		
25	3 3	3.5		· · ·	-	8			42		
30 32	2			Brown fine to medium Sandy Silt, trace Clay, dense-moist	-	10			53		
				Brown Silty fine to medium Sand, trace coarse Sand, trace Clay, dense-damp to moist	-	9			28		ATE B-4

PRO	JOB NO.: 22G183-2 DRILLING DATE: 6/9/22 WATER DEPTH: Dry PROJECT: Harvest Landing Industrial Development DRILLING METHOD: Hollow Stem Auger CAVE DEPTH: LOCATION: Perris, California LOGGED BY: Michelle Esparza READING TAKEN: At Completion												
			JLTS			LA	BORA						
DEPTH (FEET)	SAMPLE	BLOW COUNT	POCKET PEN. (TSF)	GRAPHIC LOG	DESCRIPTION (Continued)	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)		COMMENIS
40-		38				-	7			37			-
45 ·		43			- - -	-	7			31			-
-50-		34			@ 48½', trace to little coarse Sand, no Clay	-	9			26			-
E0.6DT 7/1/22					Boring Terminated at 50'								
TBL 226183-2 (BORINGS), GPJ SOCALGEO.GDT 7/1/22	ST	BO)RIN		.0G						PI	ΔΤΕ	B-4b

JOB NO.: 22G183-2 PROJECT: Harvest Landing	DRILLING DATE: 6/9/22 Industrial Development DRILLING METHOD: Hollow Stem Auger				EPTH PTH:		у	
LOCATION: Perris, Californi		_					At Com	pletion
FIELD RESULTS		LAE	BORAT	OR	YRE	SUL	TS	
DEPTH (FEET) SAMPLE BLOW COUNT POCKET PEN. (TSF) GRAPHIC LOG	DESCRIPTION SURFACE ELEVATION: MSL	DRY DENSITY (PCF)	MOISTURE CONTENT (%) LIQUID		LIMIT	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	COMMENTS
	ALLUVIUM: Brown Silty fine to medium Sand, dense to very							
5	dense-damp to moist @ 3½ to 5', medium dense	-	3					
38	@ 8½', trace coarse Sand, trace Clay	-	5					
39	@ 13½ to 47', no Clay	-	9			43		
20 38		-	6			35		
25 59			5			42		
30 59			5			30		
52 TEST BORING L		-	5			45		ATE B-

PRC	JOB NO.: 22G183-2DRILLING DATE: 6/9/22WATER DEPTH: DryPROJECT: Harvest Landing Industrial DevelopmentDRILLING METHOD: Hollow Stem AugerCAVE DEPTH:LOCATION: Perris, CaliforniaLOGGED BY: Michelle EsparzaREADING TAKEN: At Completion												
FIEI	LD F	RESU	JLTS			LA	BOR/	ATOF	RY RI	ESUL	TS		
DEPTH (FEET)	SAMPLE	BLOW COUNT	POCKET PEN. (TSF)	GRAPHIC LOG	DESCRIPTION (Continued)	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)		COMMENIS
40-		27			@ 43½', trace to little coarse Sand 	-	5 4 7			27 21			- - - - - - - - - - - - - - - - - - -
22G183-2 (BORINGS).GPJ SOCALGEO.GDT 7/1/22					Boring Terminated at 50'								
TBL	ST	RC	RIN		.OG						PI	ΔΤΕ	B-5b

		000	400.0										
PRO	JECT	Г: На			DRILLING DATE: 6/9/22 Industrial Development DRILLING METHOD: Hollow Stem Auger		C	ATER	EPTH:	48 fe	eet		
			erris, C	aliforn	ia LOGGED BY: Michelle Esparza							npletion	
FIEL	U R	ESL	JLTS				SOK'	atof 	KY RI	ESUI			
DEPTH (FEET)	SAMPLE	BLOW COUNT	POCKET PEN. (TSF)	GRAPHIC LOG	DESCRIPTION SURFACE ELEVATION: MSL	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	COMMENTS	
					<u>ALLUVIUM:</u> Brown fine to medium Sandy Silt, trace fine root fibers, dense-dry								
	X	48					2						
	X	50/5"			Brown fine Sandy Silt, trace medium Sand, dense to very dense-damp	-	6						
	\times	45			@ 18½', little medium Sand, trace Clay	-	7			57			
					Brown Silty fine to medium Sand, medium dense to dense-damp								
30-	X	20			@ 28½, trace coarse Sand	-	7			39			
TES	ST	BO	RIN	IG L	.OG						PL	ATE B-	-1a

	- - · · · ·							
JOB NO.: 22G183-2 PROJECT: Harvest Landir	DRILLING DATE: 6/9/22 g Industrial Development DRILLING METHOD: Hollow Stem Auger			ATER AVE DI				
LOCATION: Perris, Califor								pletion
FIELD RESULTS		LAE	BOR/	ATOF	RYR	ESUL	TS	
DEPTH (FEET) SAMPLE BLOW COUNT POCKET PEN. (TSF) GRAPHIC LOG	DESCRIPTION (Continued)	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	LIQUID	PLASTIC LIMIT	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	COMMENTS
40		-	7			34		
45 - 40	@ 48½', trace Clay, trace coarse Sand, trace Calcareous veining, dense-moist		9			33		
	Light Brown fine to medium Sandy Clay, trace Silt, hard-very moist	-	21			59		
	Boring Terminated at 60'							
TEST BORING	LOG						PL	ATE B-1b

Project Name	Proposed Harvest Landing
Project Location	Perris, CA
Project Number	22G183-2
Engineer	СВ

Infiltration Test No

I-1

<u>Constants</u>								
	Diameter	Area	Area					
	(ft)	(ft^2)	(cm ²)					
Inner	1	0.79	730					
Anlr. Spac	2	2.36	2189					

					Flow	Readings			Infiltrati	on Rates	
			Interval	Inner	Ring	Annular	Space	Inner	Annular	Inner	Annular
Test			Elapsed	Ring	Flow	Ring	Flow	Ring*	Space*	Ring*	Space*
Interval		Time (hr)	(min)	(ml)	(cm ³)	(ml)	(cm ³)	(cm/hr)	(cm/hr)	(in/hr)	(in/hr)
1	Initial	11:25 AM	15	0	450	0	3000	2.47	5.48	0.97	2.16
Ţ	Final	11:40 AM	15	450	430	3000	3000	2.47	J.40	0.97	2.10
2	Initial	11:40 AM	15	0	400	0	1600	2.19	2.92	0.86	1.15
2	Final	11:55 AM	30	400	400	1600	1000	2.19	2.92	0.80	1.15
3	Initial	11:55 AM	15	0	350	0	1200	1.92	2.19	0.76	0.86
5	Final	12:10 PM	45	350	330	1200	1200	1.92	2.19	0.70	0.80
4	Initial	12:10 PM	15	0	400	0	1500	2.19	2.74	0.86	1.08
4	Final	12:25 PM	60	400	400	1500	1300	2.19	2.74	0.80	1.00
5	Initial	12:25 PM	15	0	400	0	1300	2.19	2.38	0.86	0.94
5	Final	12:40 PM	75	400	400	1300	1300	2.19	2.30	0.00	0.94
6	Initial	12:40 PM	15	0	350	0	1500	1.92	2.74	0.76	1.08
0	Final	12:55 PM	90	350	350	1500	1300	1.92	2.74	0.70	1.00

Project Name	Proposed Harvest Landing
Project Location	Perris, CA
Project Number	22G183-2
Engineer	СВ

Infiltration Test No

I-2

<u>Constants</u>								
	Diameter	Area	Area					
	(ft)	(ft^2)	(cm ²)					
Inner	1	0.79	730					
Anlr. Spac	2	2.36	2189					

					Flow Readings			Infiltration Rates			
			Interval	Inner	Ring	Annular	Space	Inner	Annular	Inner	Annular
Test			Elapsed	Ring	Flow	Ring	Flow	Ring*	Space*	Ring*	Space*
Interval		Time (hr)	(min)	(ml)	(cm ³)	(ml)	(cm ³)	(cm/hr)	(cm/hr)	(in/hr)	(in/hr)
1	Initial	12:00 PM	15	0	950	0	3000	5.21	5.48	2.05	2.16
T	Final	12:15 PM	15	950	920	3000	3000	5.21	J.40	2.05	2.10
2	Initial	12:15 PM	15	0	550	0	2000	3.02	3.65	1.19	1.44
Z	Final	12:30 PM	30	550	330	2000	2000	5.02	5.05	1.19	1.44
3	Initial	12:30 PM	15	0	450	0	1500	2.47	2.74	0.97	1.08
5	Final	12:45 PM	45	450	430	1500	1300	2.47	2.74	0.97	1.00
4	Initial	12:45 PM	15	0	450	0	1200	2.47	2.19	0.97	0.86
4	Final	1:00 PM	60	450	430	1200	1200	2.47	2.19	0.97	0.80
5	Initial	1:00 PM	15	0	450	0	1400	2.47	2.56	0.97	1.01
5	Final	1:15 PM	75	450	430	1400	1400	2.47	2.30	0.97	1.01
6	Initial	1:15 PM	15	0	450	0	1200	2.47	2.19	0.97	0.86
0	Final	1:30 PM	90	450	430	1200	1200	2.47	2.19	0.97	0.00

Project Name	Proposed Harvest Landing
Project Location	Perris, CA
Project Number	22G183-2
Engineer	CB

Infiltration Test No

I-3

Constants								
	Diameter	Area	Area					
	(ft)	(ft^2)	(cm ²)					
Inner	1	0.79	730					
Anlr. Spac	2	2.36	2189					

					Flow	Readings			Infiltrati	on Rates	
			Interval	Inner	Ring	Annular	Space	Inner	Annular	Inner	Annular
Test			Elapsed	Ring	Flow	Ring	Flow	Ring*	Space*	Ring*	Space*
Interval		Time (hr)	(min)	(ml)	(cm ³)	(ml)	(cm ³)	(cm/hr)	(cm/hr)	(in/hr)	(in/hr)
1	Initial	8:19 AM	10	0	4000	0	13000	32.89	35.63	12.95	14.03
L	Final	8:29 AM	10	4000	4000	13000	12000	32.09	55.05	12.95	14.05
2	Initial	8:30 AM	10	0	3500	0	12000	28.78	32.89	11.33	12.95
Z	Final	8:40 AM	21	3500	3300	12000	12000	20.70	32.09	11.55	12.95
3	Initial	8:42 AM	10	0	2850	0	10500	23.44	28.78	9.23	11.33
5	Final	8:52 AM	33	2850	2050	10500	10200	23.44	20.70	9.25	11.55
4	Initial	8:53 AM	10	0	2500	0	9800	20.56	26.86	8.09	10.58
4	Final	9:03 AM	44	2500	2300	9800	9000	20.30	20.00	0.09	10.50
5	Initial	9:05 AM	10	0	2100	0	8500	17.27	23.30	6.80	9.17
5	Final	9:15 AM	56	2100	2100	8500	8300	17.27	23.30	0.00	9.17
6	Initial	9:20 AM	10	0	2200	0	8300	18.09	22.75	7.12	8.96
0	Final	9:30 AM	71	2200	2200	8300	0300	10.09	22.75	/.12	0.90
7	Initial	9:45 AM	10	0	2100		8500	17.27	23.30	6.80	9.17
	Final	9:55 AM	96	2100	2100	8500	0300	17.27	23.30	0.80	9.17

Project Name	Proposed Harvest Landing
Project Location	Perris, CA
Project Number	22G183-2
Engineer	CB

Infiltration Test No

I-4

Constants			
	Diameter	Area	Area
	(ft)	(ft^2)	(cm ²)
Inner	1	0.79	730
Anlr. Spac	2	2.36	2189

					Flow	Readings			Infiltration Rates			
			Interval	Inner	Ring	Annular	Space	Inner	Annular	Inner	Annular	
Test			Elapsed	Ring	Flow	Ring		Ring*	•	Ring*	Space*	
Interval		Time (hr)	(min)	(ml)	(cm ³)	(ml)	(cm ³)	(cm/hr)	(cm/hr)	(in/hr)	(in/hr)	
1	Initial	9:40 AM	15	0	250	0	1000	1.37	1.83	0.54	0.72	
Ţ	Final	9:55 AM	15	250	230	1000	1000	1.57	1.05	0.54	0.72	
2	Initial	10:00 AM	15	0	300	0	700	1.64	1.28	0.65	0.50	
2	Final	10:15 AM	35	300	300	700	700	1.04	1.20	0.05	0.50	
3	Initial	10:15 AM	15	0	150	0	800	0.82	1.46	0.32	0.58	
5	Final	10:30 AM	50	150	130	800	800	0.02	1.40	0.52	0.50	
4	Initial	10:31 AM	15	0	150	0	850	0.82	1.55	0.32	0.61	
4	Final	10:46 AM	66	150	130	850	830	0.02	1.55	0.52	0.01	
5	Initial	10:47 AM	15	0	150	0	700	0.82	1.28	0.32	0.50	
5	Final	11:02 AM	82	150	130	700	700	0.02	1.20	0.52	0.30	
6	Initial	11:03 AM	15	0	150	0	700	0.82	1.28	0.32	0.50	
U	Final	11:18 AM	98	150	130	700	700	0.02	1.20	0.32	0.50	

Project Name	Proposed Harvest Landing
Project Location	Perris, CA
Project Number	22G183-2
Engineer	СВ

Infiltration Test No

I-5

Constants									
	Diameter	Area	Area						
	(ft)	(ft^2)	(cm ²)						
Inner	1	0.79	730						
Anlr. Spac	2	2.36	2189						

					Flow	Readings			Infiltrati	on Rates	
			Interval	Inner	Ring	Annular	Space	Inner	Annular	Inner	Annular
Test			Elapsed	Ring	Flow	Ring		Ring*	•	Ring*	Space*
Interval		Time (hr)	(min)	(ml)	(cm ³)	(ml)	(cm ³)	(cm/hr)	(cm/hr)	(in/hr)	(in/hr)
1	Initial	8:50 AM	15	0	500	0	2300	2.74	4.20	1.08	1.65
Ţ	Final	9:05 AM	15	500	300	2300	2300	2.74	4.20	1.00	1.05
2	Initial	9:06 AM	15	0	500	0	1100	2.74	2.01	1.08	0.79
2	Final	9:21 AM	31	500	500	1100	1100	2.74	2.01	1.00	0.79
3	Initial	9:22 AM	15	0	450	0	1300	2.47	2.38	0.97	0.94
5	Final	9:37 AM	47	450	430	1300	1300	2.47	2.30	0.97	0.94
4	Initial	9:38 AM	15	0	400	0	1200	2.19	2.19	0.86	0.86
4	Final	9:53 AM	63	400	400	1200	1200	2.19	2.19	0.00	0.80
5	Initial	9:54 AM	15	0	400	0	1300	2.19	2.38	0.86	0.94
5	Final	10:09 AM	79	400	400	1300	1200	2.19	2.30	0.00	0.94
6	Initial	10:10 AM	15	0	400	0	1300	2.19	2.38	0.86	0.94
U	Final	10:25 AM	95	400	400	1300	1300	2.19	2.30	0.00	0.94

Project Name	Proposed Harvest Landing
Project Location	Perris, CA
Project Number	22G183-2
Engineer	СВ

Infiltration Test No

I-6

Constants								
Diameter	Area	Area						
(ft)	(ft ²)	(cm^2)						
1	0.79	730						
2	2.36	2189						
	(ft) 1	1 0.79						

					Flow Readings				Infiltrati	on Rates	
			Interval	Inner	Ring	Annular	Space	Inner	Annular	Inner	Annular
Test			Elapsed	Ring	Flow	Ring	Flow	Ring*	Space*	Ring*	Space*
Interval		Time (hr)	(min)	(ml)	(cm ³)	(ml)	(cm ³)	(cm/hr)	(cm/hr)	(in/hr)	(in/hr)
1	Initial	10:15 AM	15	0	1450	0	3700	7.95	6.76	3.13	2.66
L	Final	10:30 AM	15	1450	1430	3700	3700	7.95	0.70	5.15	2.00
2	Initial	10:31 AM	15	0	850	0	3400	4.66	6.21	1.83	2.45
2	Final	10:46 AM	31	850	830	3400	5400	4.00	0.21	1.05	2.43
3	Initial	10:46 AM	15	0	650	0	3000	3.56	5.48	1.40	2.16
5	Final	11:01 AM	46	650	050	3000	3000	5.50	5.40	1.40	2.10
4	Initial	11:02 AM	15	0	650	0	2900	3.56	5.30	1.40	2.09
4	Final	11:17 AM	62	650	050	2900	2900	5.50	5.50	1.40	2.09
5	Initial	11:18 AM	15	0	650	0	3000	3.56	5.48	1.40	2.16
5	Final	11:33 AM	78	650	030	3000	5000	5.50	5.40	1.40	2.10
6	Initial	11:34 AM	15	0	600	0	3000	3.29	5.48	1.30	2.16
0	Final	11:49 AM	94	600	000	3000	3000	5.29	5.40	1.30	2.10

Project Name Project Location Project Number Engineer

Harvest Landing Industrial Development	
Perris, CA	
22G183-2	
JJH/OS	

Borehole Diameter Borehole Depth Water Depth from Ground Surface

8
51
9.9

Percolation Boring No.

Interval Number		Time	Time Interval (hrs)	Avergae Wetted Depth for Interval (ft)	Inflow Meter Readings (gallons)	Volume of Outflow (gallons)	Percolation Rate Q (gallons/minute)	Percolation Rate Q (gal/ft²/day)						
1	Initial Final	8:50 AM 9:00 AM	0.1667	41.10	3582.1 3582.7	0.6	0.06	1.00						
	Initial	9:00 AM			3582.7									
2	Final	9:10 AM	0.1667 41.	41.10	3583.4	0.7	0.07	1.17						
3	Initial	9:10 AM	0.4667	41.10	3583.4	0.6	0.06	1.00						
3	Final	9:20 AM	0.1667	0.1007	0.1007	0.1007	0.1007	0.1007	0.1007	0.1007 41.10	3584.0	0.6	0.06	1.00
4	Initial	9:20 AM	0.1667	41.10	3584.0	0.5	0.05	0.84						
4	Final	9:30 AM	0.1007	41.10	3584.5	0.5	0.05	0.84						
5	Initial	9:30 AM	0.1667	41.10	3584.5	0.5	0.05	0.84						
5	Final	9:40 AM	0.1007	41.10	3585.0	0.5	0.05	0.04						
6	Initial	9:40 AM	0.1667	41.10	3585.0	0.4	0.04	0.67						
0	Final	9:50 AM	0.1007	41.10	3585.4	0.4	0.04	0.07						

Rate	2.4 gal/hr
Rate	0.32 ft3/hr
Surface Area	86.78 ft2
Rate/Surface Area	0.00 ft/hr
Rate	0.04 in/hr

Project Name Project Location Project Number Engineer

Harvest	Landing Industrial Development
Perris, C	A
22G183	-2
JJH/OS	

Borehole Diameter Borehole Depth Water Depth from Ground Surface

8	
49	
10.6	

Percolation Boring No.

Interval Number		Time	Time Interval (hrs)	Avergae Wetted Depth for Interval (ft)	Inflow Meter Readings (gallons)	Volume of Outflow (gallons)	Percolation Rate Q (gallons/minute)	Percolation Rate Q (gal/ft²/day)
1	Initial	2:33 PM	0.1667	38.40	3674.0	2.9	0.29	5.19
	Final	2:43 PM	0.1007	00.40	3676.9	2.0	0.20	0.10
2	Initial	2:43 PM	0.1667	38.40	3676.9	2.9	0.29	5.19
2	Final	2:53 PM	0.1007	50.40	3679.8	2.9	0.29	5.19
3	Initial	2:53 PM	0 1667	29.40	3679.8	2.1	0.21	3.76
3	Final	3:03 PM	0.1667	38.40	3681.9	2.1	0.21	3.76
4	Initial	3:03 PM	0.4667	38.40	3681.9	1.9	0.19	3.40
4	Final	3:13 PM	0.1667	36.40	3683.8	1.9	0.19	3.40
F	Initial	3:13 PM	0.4667	29.40	3683.8	1 5	0.15	2.60
5	Final	3:23 PM	0.1667	38.40	3685.3	1.5	0.15	2.69
6	Initial	3:23 PM	0.4667	38.40	3685.5	1.4	0.14	2.51
6	Final	3:33 PM	0.1667	36.40	3686.9	1.4	0.14	2.51
7	Initial	3:33 PM	0.4667	29.40	3686.9	1.4	0.14	0.51
	Final	3:43 PM	0.1667	38.40	3688.3	1.4	0.14	2.51

Rate	8.4 gal/hr
Rate	1.12 ft3/hr
Surface Area	81.12 ft2
Rate/Surface Area	0.01 ft/hr
Rate	0.17 in/hr

Project Name Project Location Project Number Engineer

Harvest Landing Industrial Development	
Perris, CA	
22G183-2	
JJH/OS	

Borehole Diameter Borehole Depth Water Depth from Ground Surface

8
51
9.9

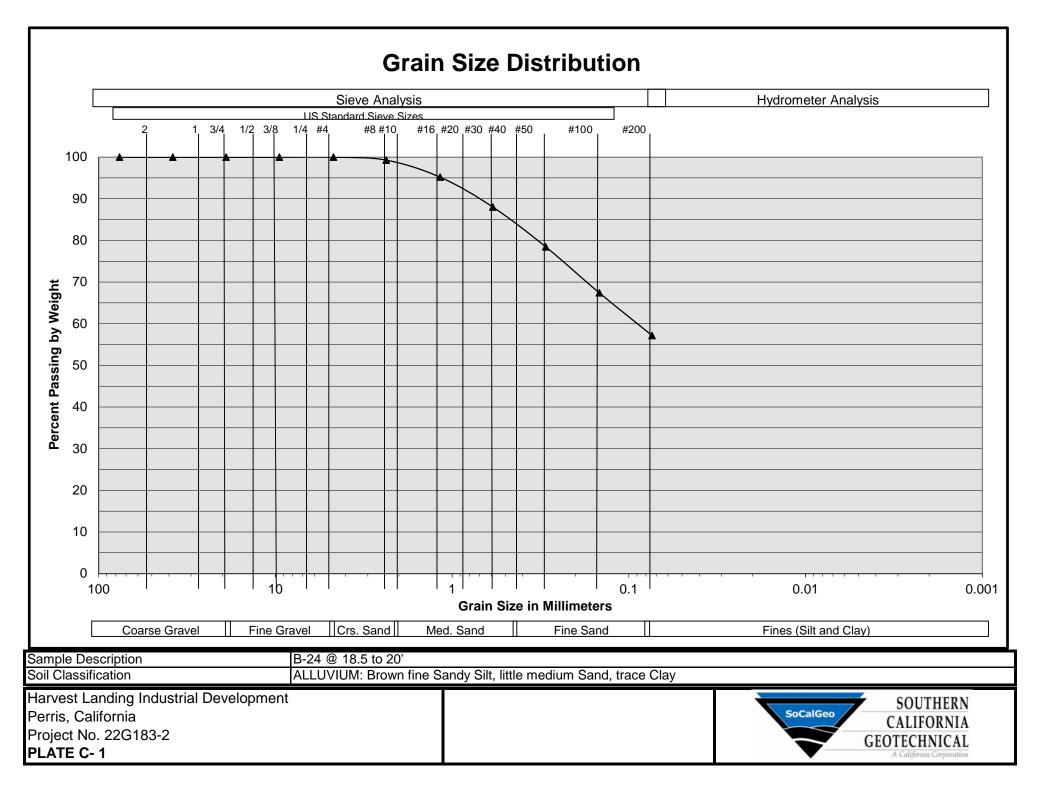
Percolation Boring No.

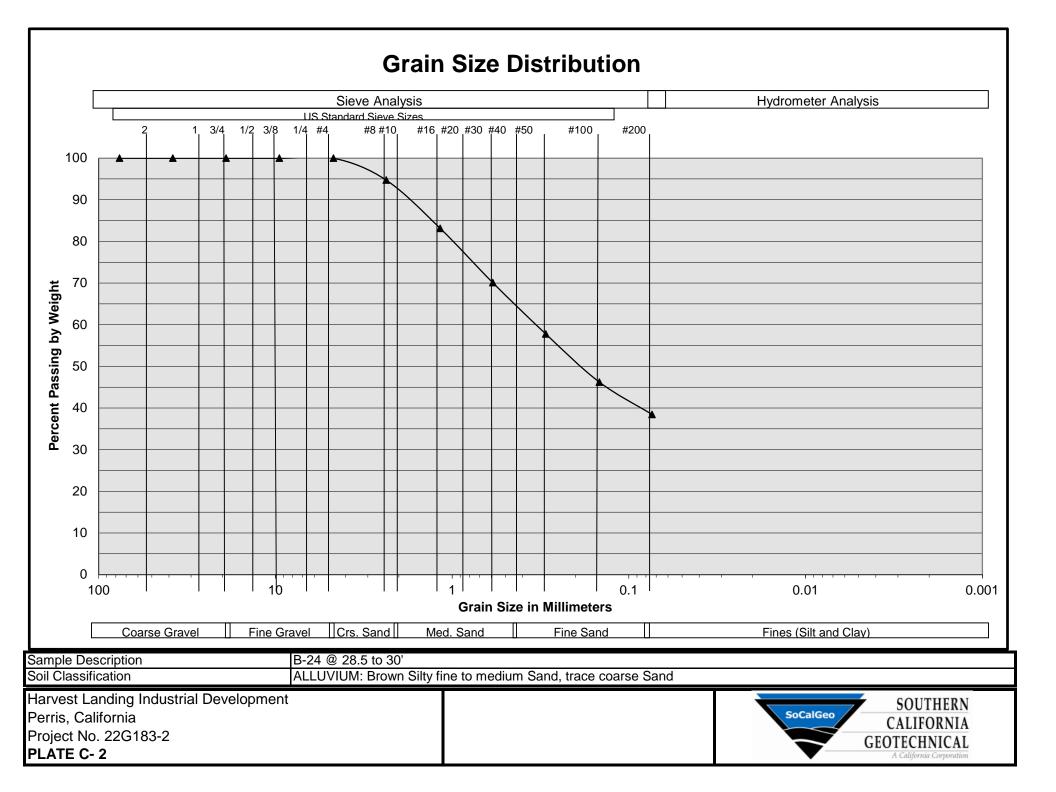
Interval Number		Time	Time Interval (hrs)	Avergae Wetted Depth for Interval (ft)	Inflow Meter Readings (gallons)	Volume of Outflow (gallons)	Percolation Rate Q (gallons/minute)	Percolation Rate Q (gal/ft²/day)									
1	Initial Final	11:50 AM 12:00 PM	0.1667	41.10	3619.0 3622.0	3.0	0.30	5.02									
2	Initial	12:00 PM	0.1667	0.1667	41.10	3622.0	2.5	0.25	4.18								
	Final	12:10 PM				-	3624.5		0.20								
3	Initial	12:10 PM	0.1667	41.10	3624.5	2.0	0.20	2.25									
3	Final	12:20 PM		0.1007	0.1007	0.1007	0.1007	0.1007	0.1667	0.1667	0.1007	0.1007	0.1007	41.10	3626.5	2.0	0.20
4	Initial	12:20 PM	0.4667	0.1667 41.10	3626.5	4.4	0.14	2.34									
4	Final	12:30 PM	0.1667	41.10	3627.9	1.4	0.14	2.34									
5	Initial	12:30 PM	0.4007	41.10	3627.9	1.0	0.12	2.01									
5	Final	12:40 PM	0.1667	41.10	3629.1	1.2	0.12	2.01									
<u>^</u>	Initial	12:40 PM	0.1667	0.4007	0.4007	0.4007	44.40	3629.1	3629.1	0.40	4.07						
6	Final	12:50 PM		0.1667 41.10	3630.1	1.0	0.10	1.67									

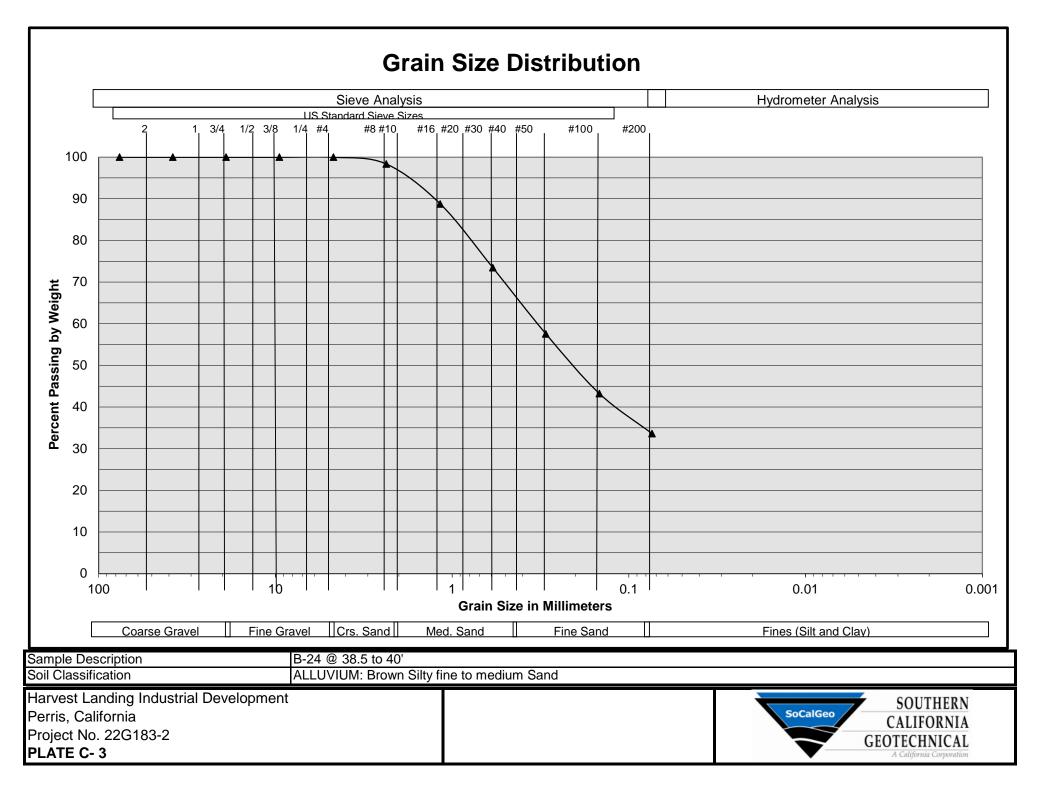
Rate	6.0 gal/hr
Rate	0.80 ft3/hr
Surface Area	86.78 ft2
Rate/Surface Area	0.01 ft/hr
Rate	0.11 in/hr

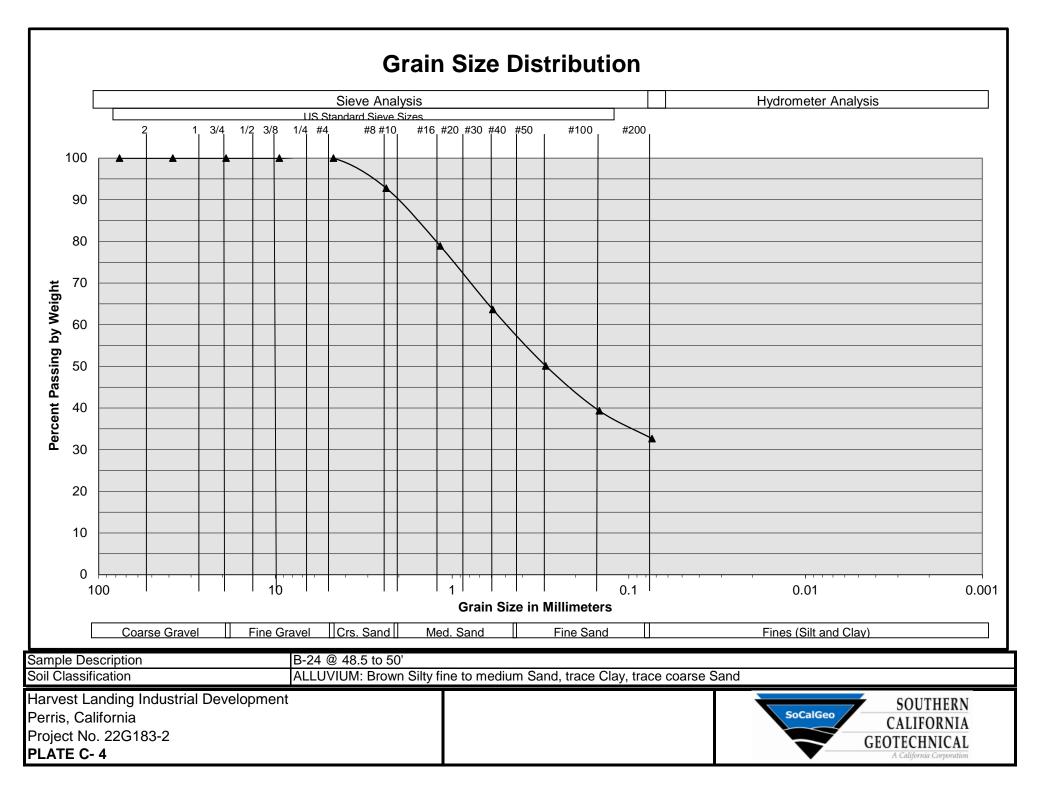
Project Name Project Location Project Number Engineer

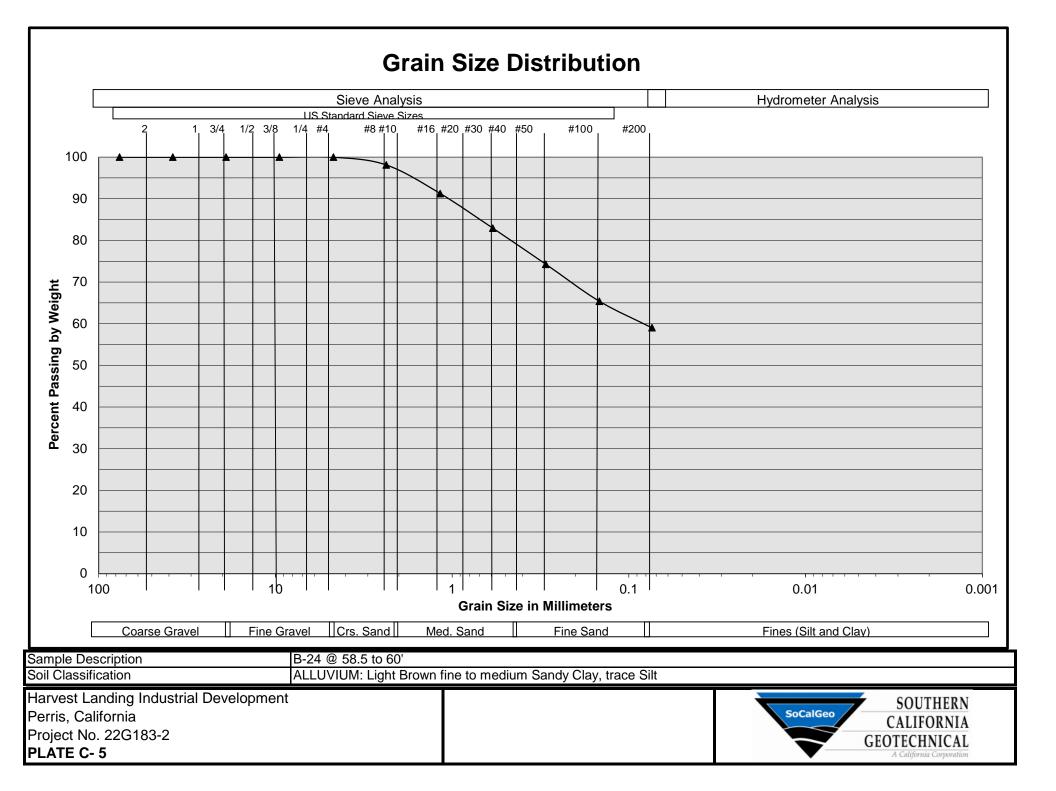
Harvest Landing Industrial Development
Perris, CA
22G183-2
JJH/OS

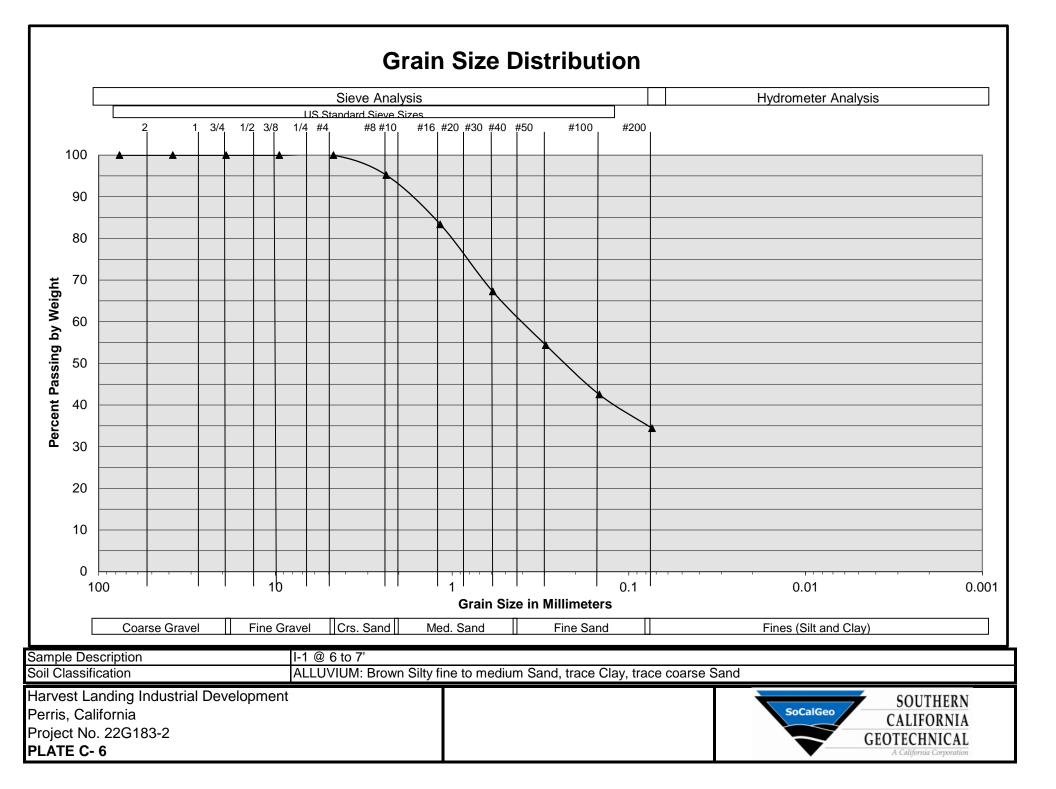

Borehole Diameter Borehole Depth Water Depth from Ground Surface

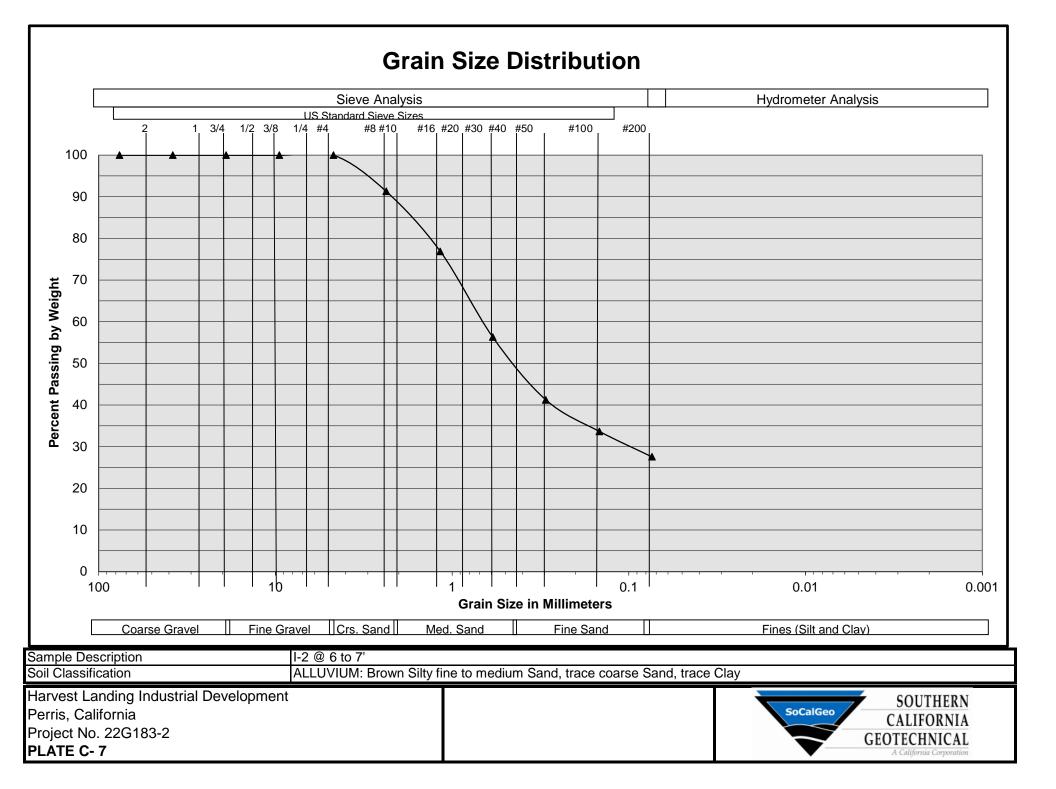

8
51
9.9

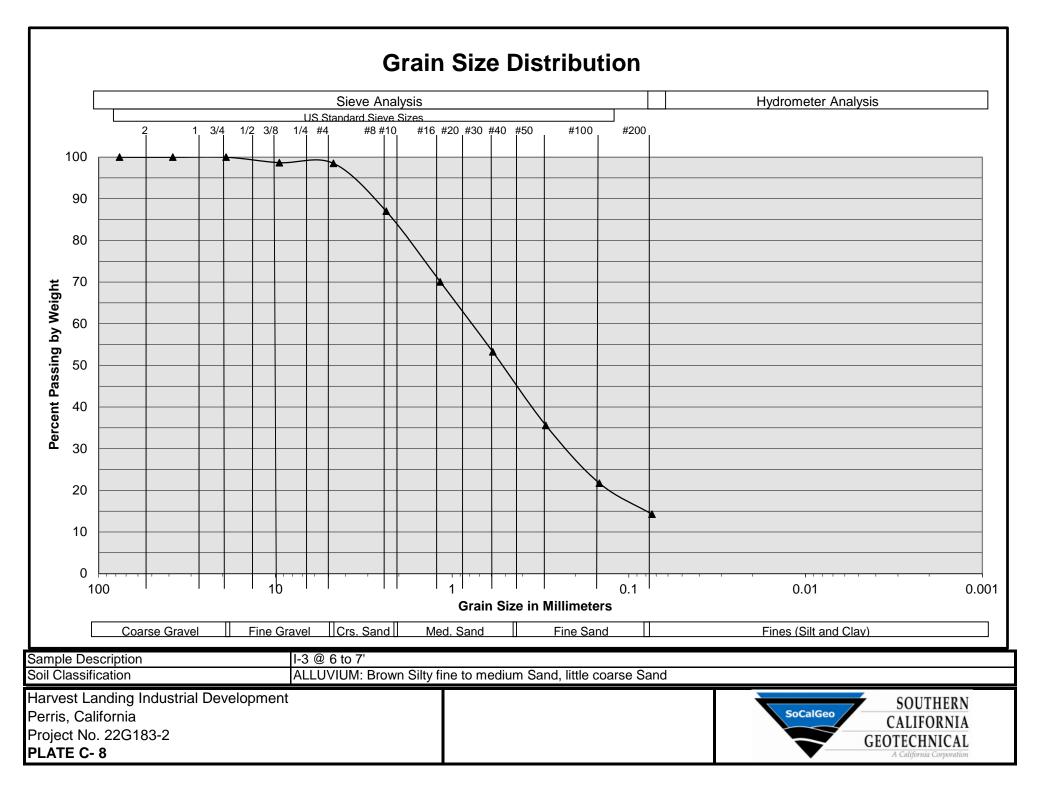

Percolation Boring No.

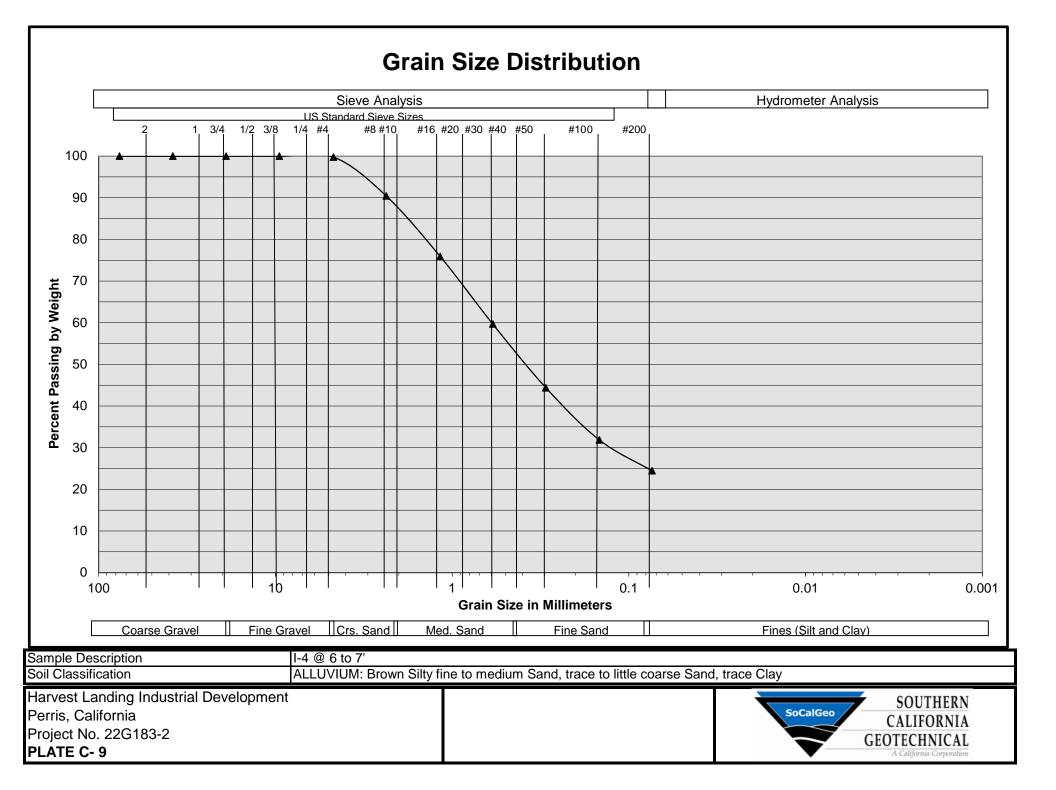

Interval Number		Time	Time Interval (hrs)	Avergae Wetted Depth for Interval (ft)	Inflow Meter Readings (gallons)	Volume of Outflow (gallons)	Percolation Rate Q (gallons/minute)	Percolation Rate Q (gal/ft²/day)			
1	Initial Final	8:54 AM 9:04 AM	0.1667	41.10	3487.0 3490.4	3.4	0.34	5.69			
2	Initial	9:04 AM	0.1667	0.1667	11.10	3490.4		0.00	4.60		
2	Final	9:14 AM			0.1667 41.10	41.10	3493.2	2.8	0.28	4.68	
3	Initial	9:14 AM	0.1667	41.10	3493.2	2.6	0.26	4.35			
5	Final	9:24 AM	0.1007	41.10	3495.8	2.0	0.20	4.55			
4	Initial	9:24 AM	0.1667	41.10	3495.8	2.4	0.24	4.01			
7	Final	9:34 AM	0.1007	41.10	3498.2	2.4	0.24	4.01			
5	Initial	9:34 AM	0.1667	41.10	3498.2	2.4	0.24	4.01			
5	Final	9:44 AM		41.10	3500.6	2.4	0.24	4.01			
6	Initial	9:44 AM	0.1667 41.10	0 1667	0 1667	0 1667	1667 41.10	3500.6	2.3	0.23	3.85
Ŭ	Final	9:54 AM		3502.9	2.3	0.23	3.85				

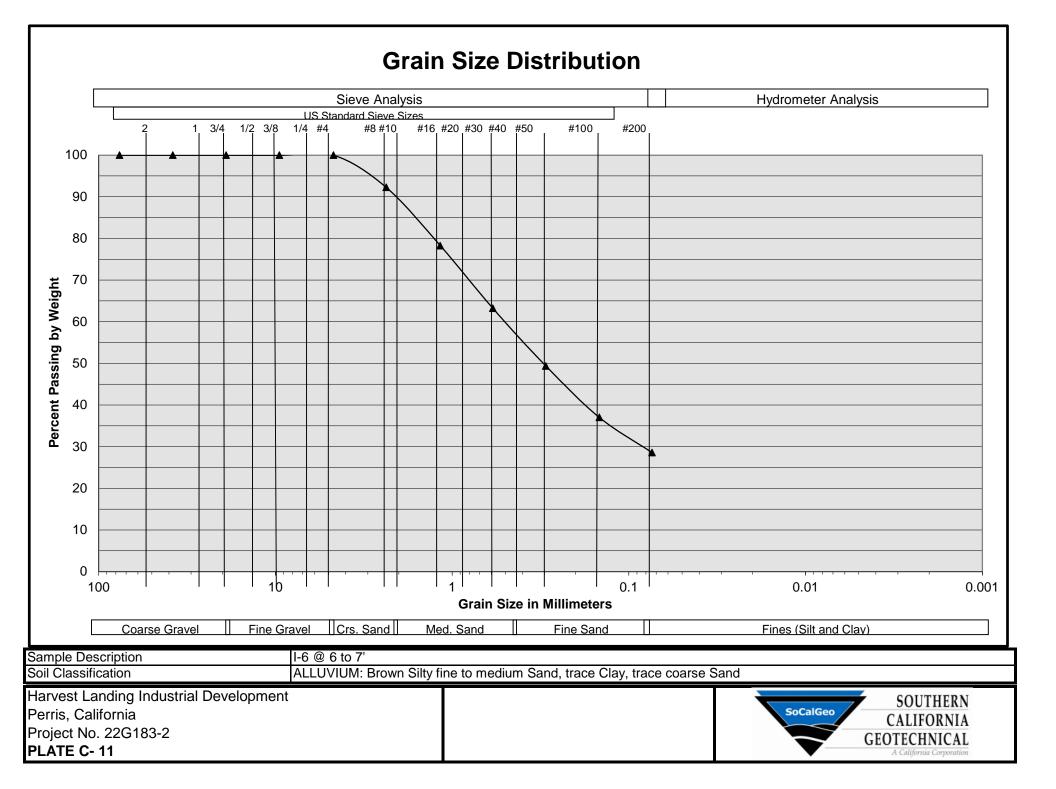

Rate	13.8 gal/hr
Rate	1.84 ft3/hr
Surface Area	86.78 ft2
Rate/Surface Area	0.02 ft/hr
Rate	0.26 in/hr

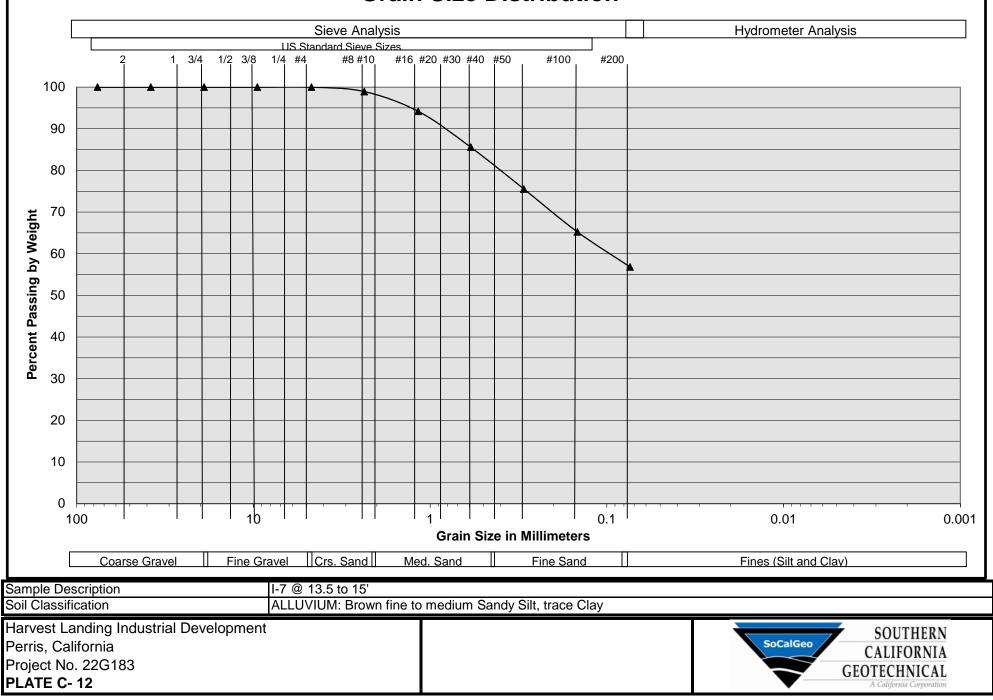


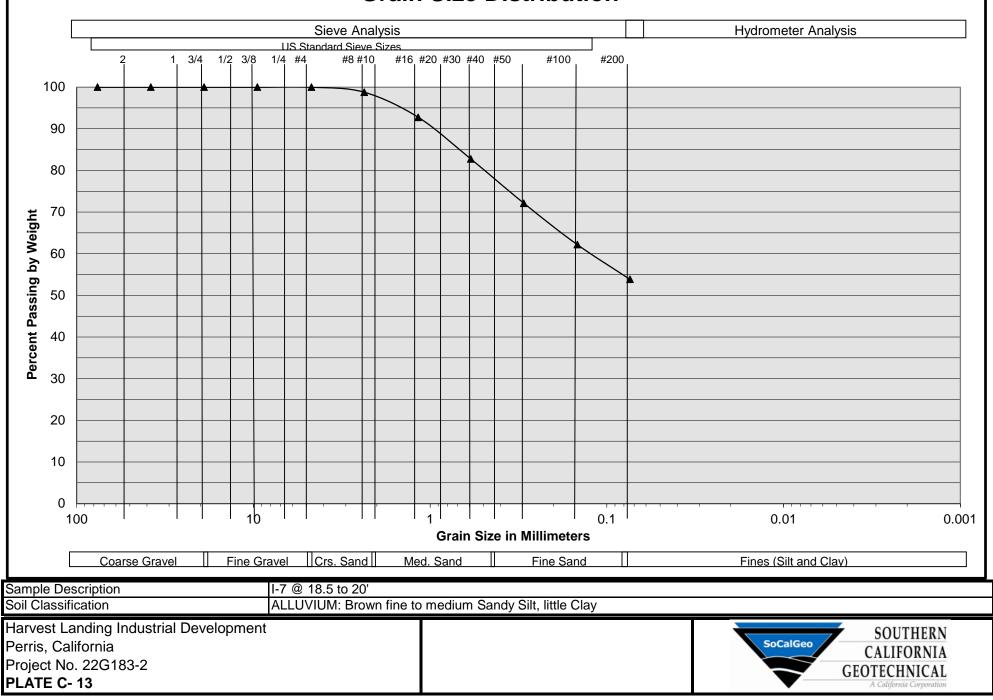


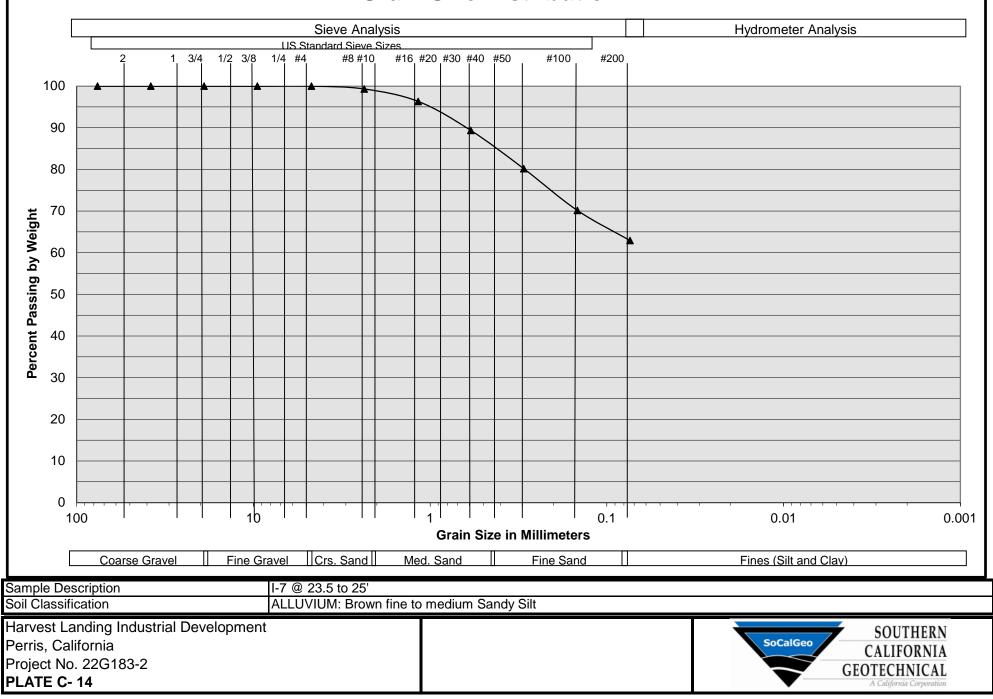


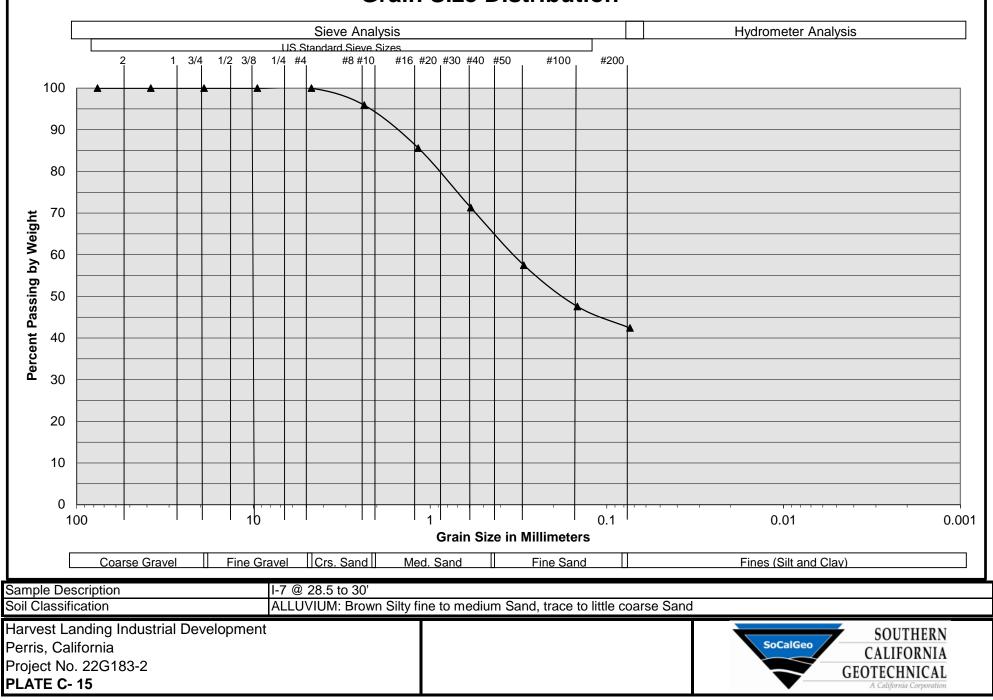


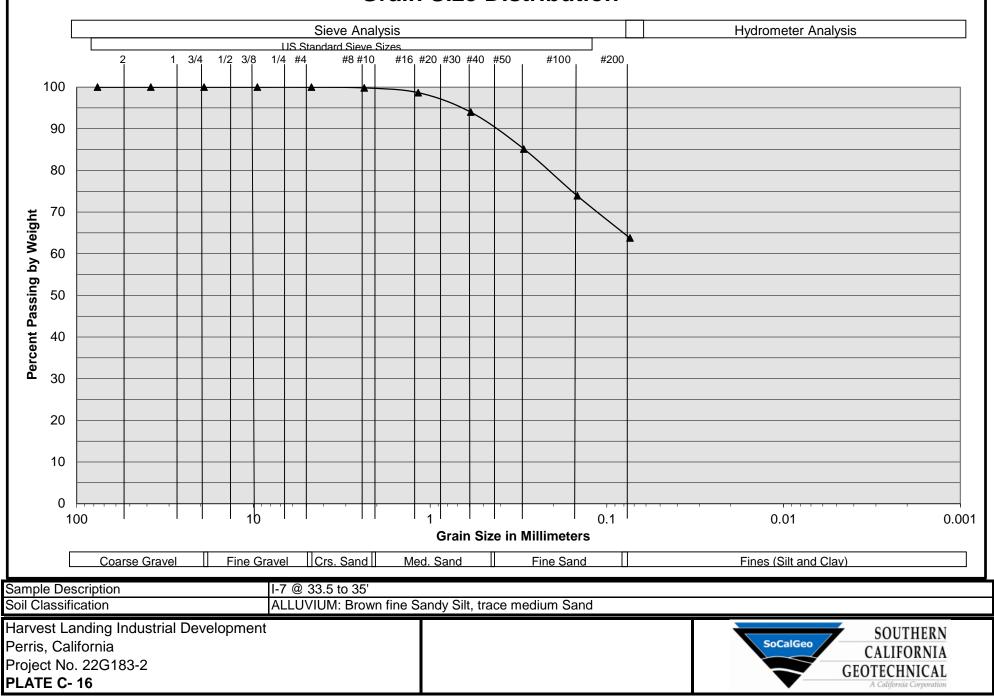


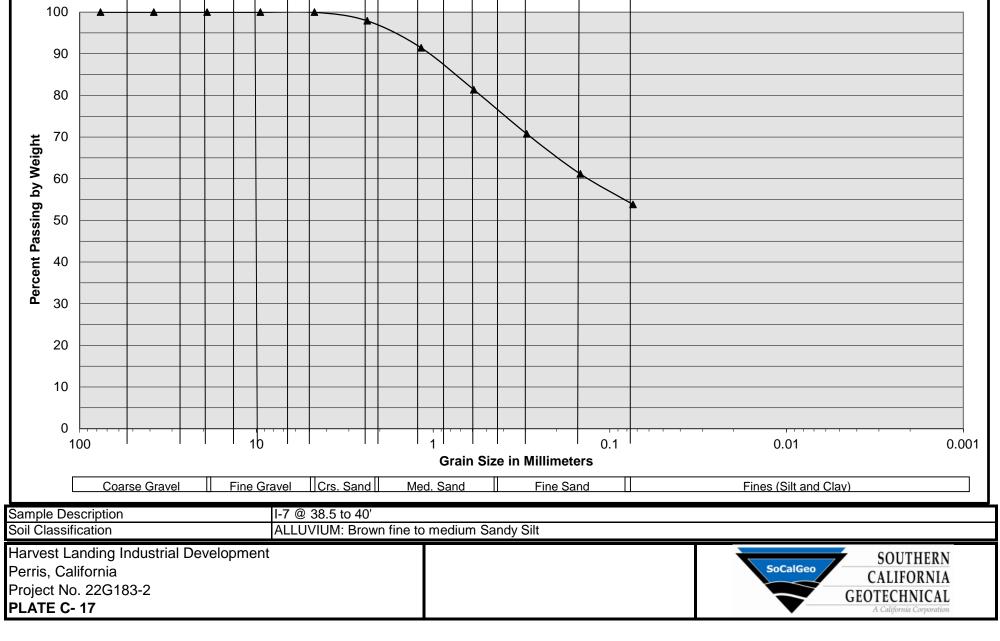


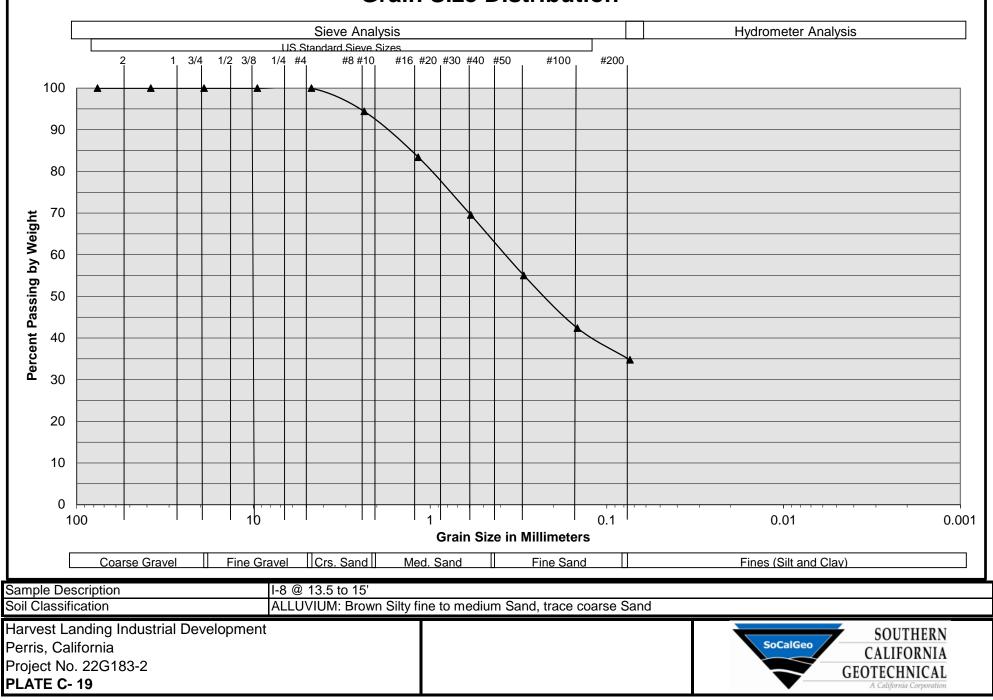


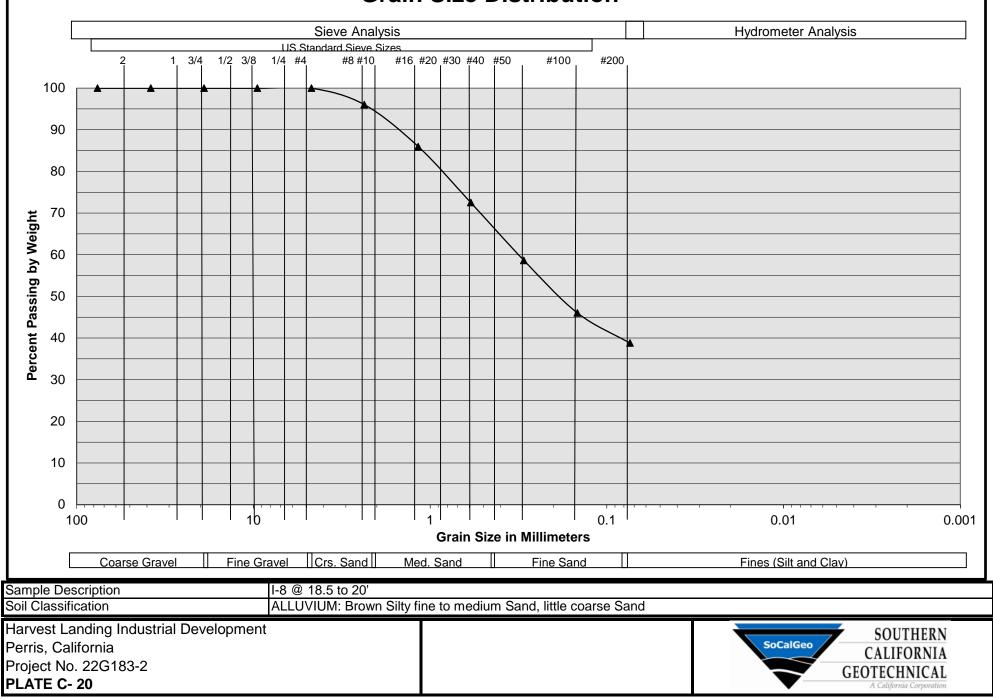


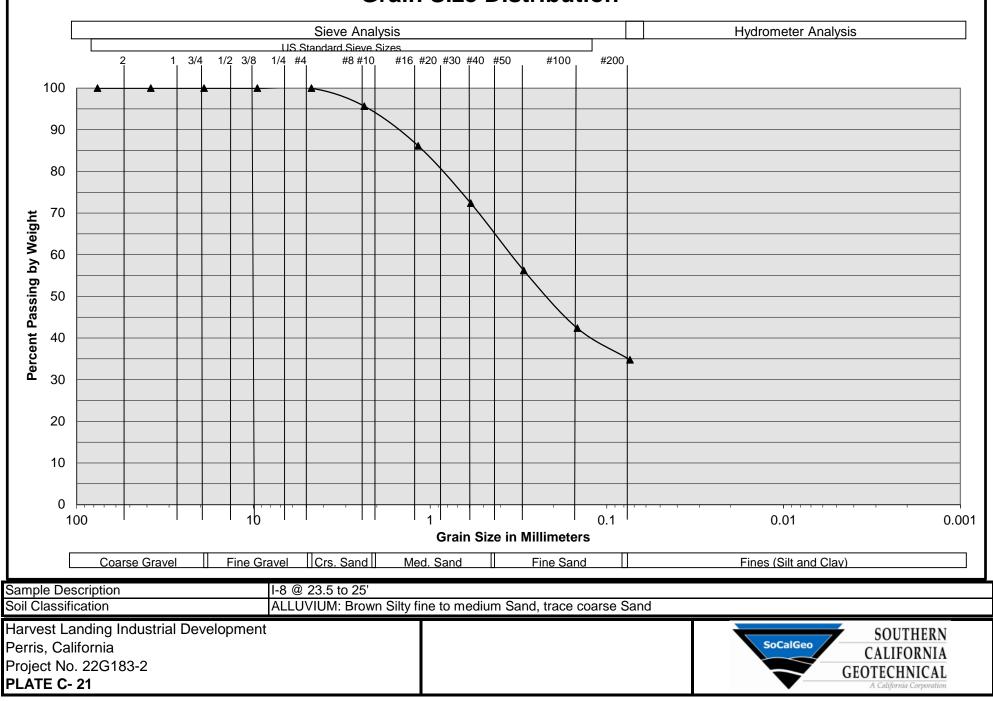

Grain Size Distribution Sieve Analysis Hydrometer Analysis US Standard Sieve Sizes 3/4 1/2 3/8 1/4 #4 #8 #10 #16 #20 #30 #40 #50 #100 2 1 #200 100 90 80 70 **Percent Passing by Weight** 60 50 40 30 20 10 0 0.1 0.01 0.001 100 10 1 **Grain Size in Millimeters** Coarse Gravel Fine Gravel Crs. Sand Med. Sand Fine Sand Fines (Silt and Clay) I-5 @ 6 to 7' Sample Description ALLUVIUM: Brown Silty fine to medium Sand, trace coarse Sand, trace Clay Soil Classification Harvest Landing Industrial Development SOUTHERN Perris, California SoCalGeo CALIFORNIA Project No. 22G183-2 GEOTECHNICAL PLATE C-10

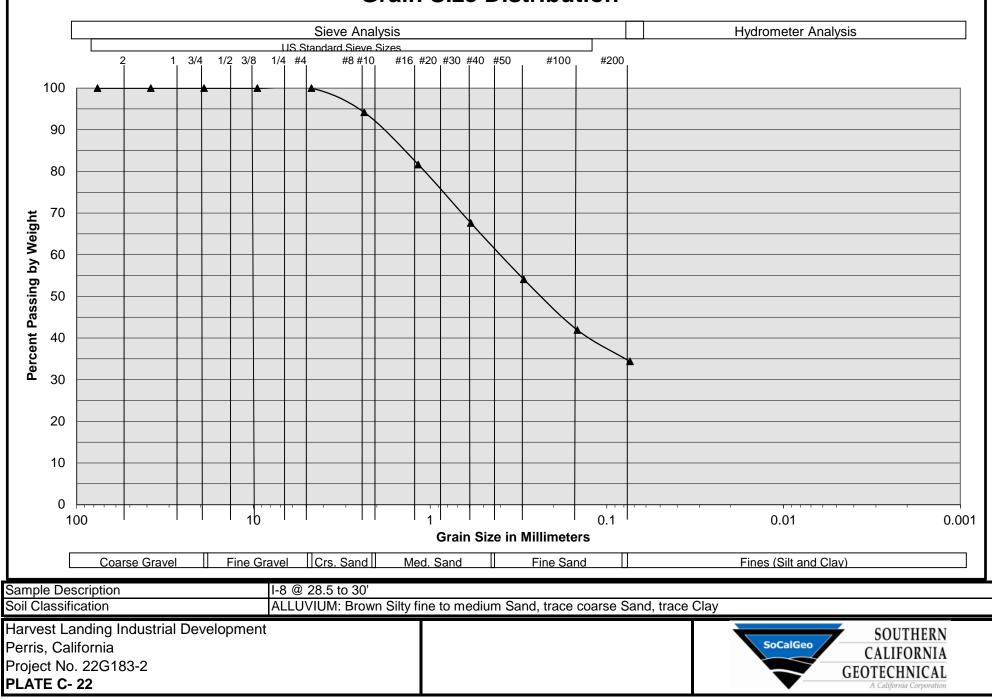


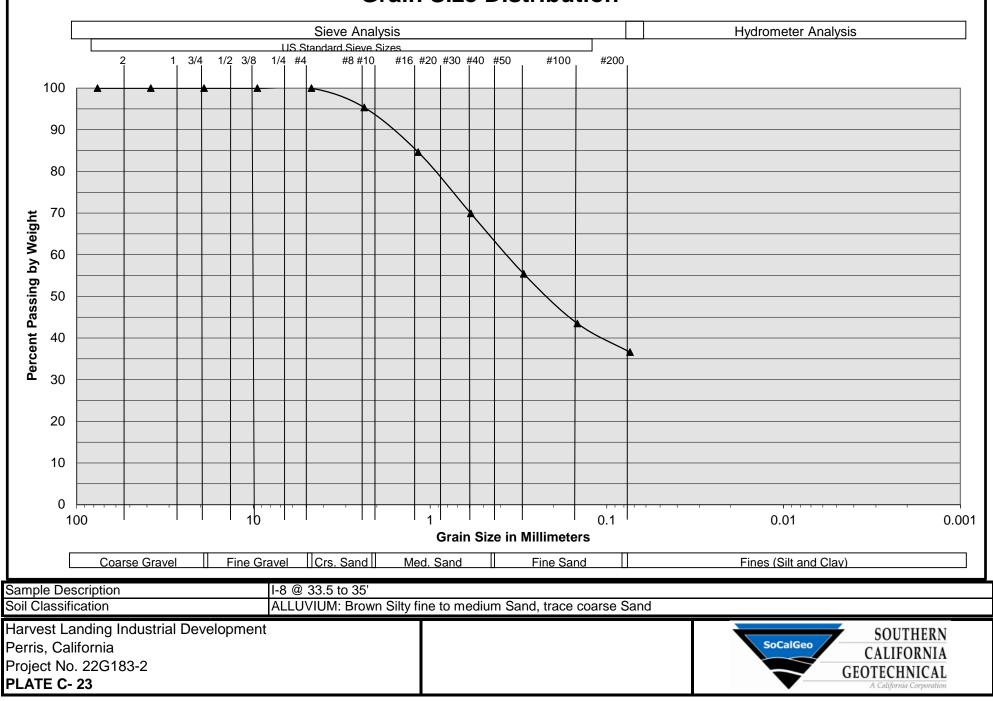


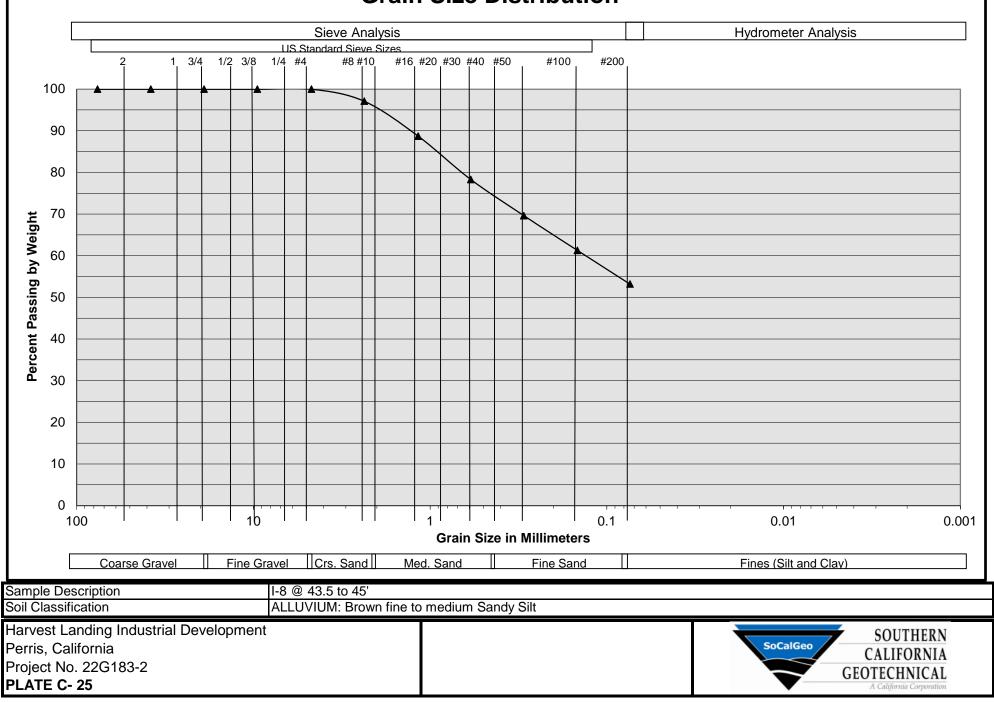


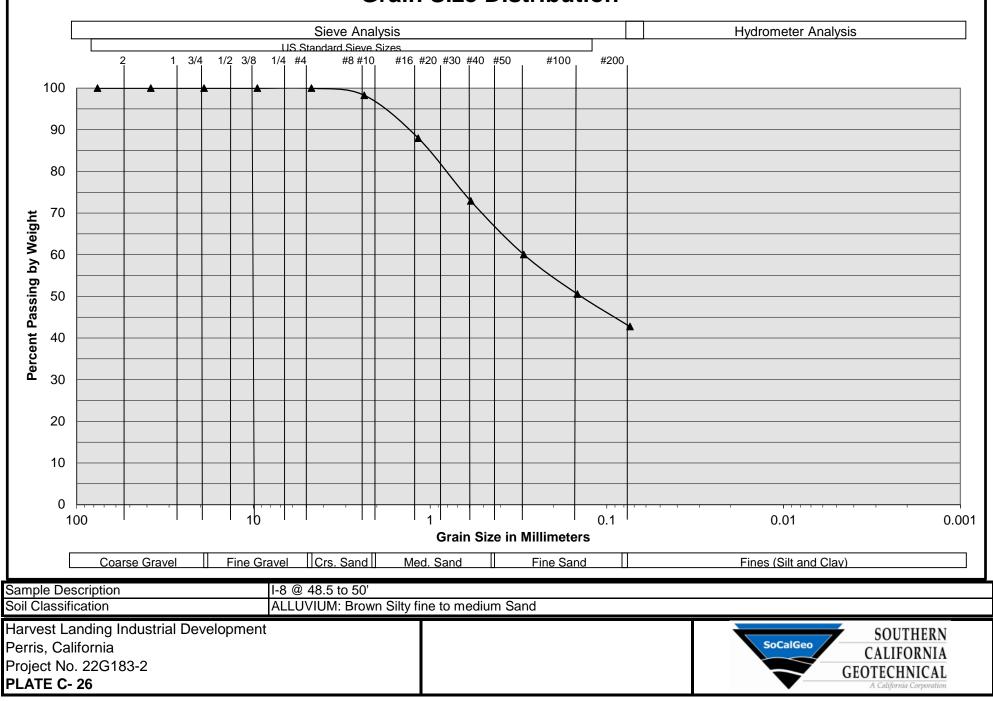

Grain Size Distribution Sieve Analysis Hydrometer Analysis US Standard Sieve Sizes 3/4 1/2 3/8 1/4 #4 #8 #10 #16 #20 #30 #40 #50 #100 #200 1

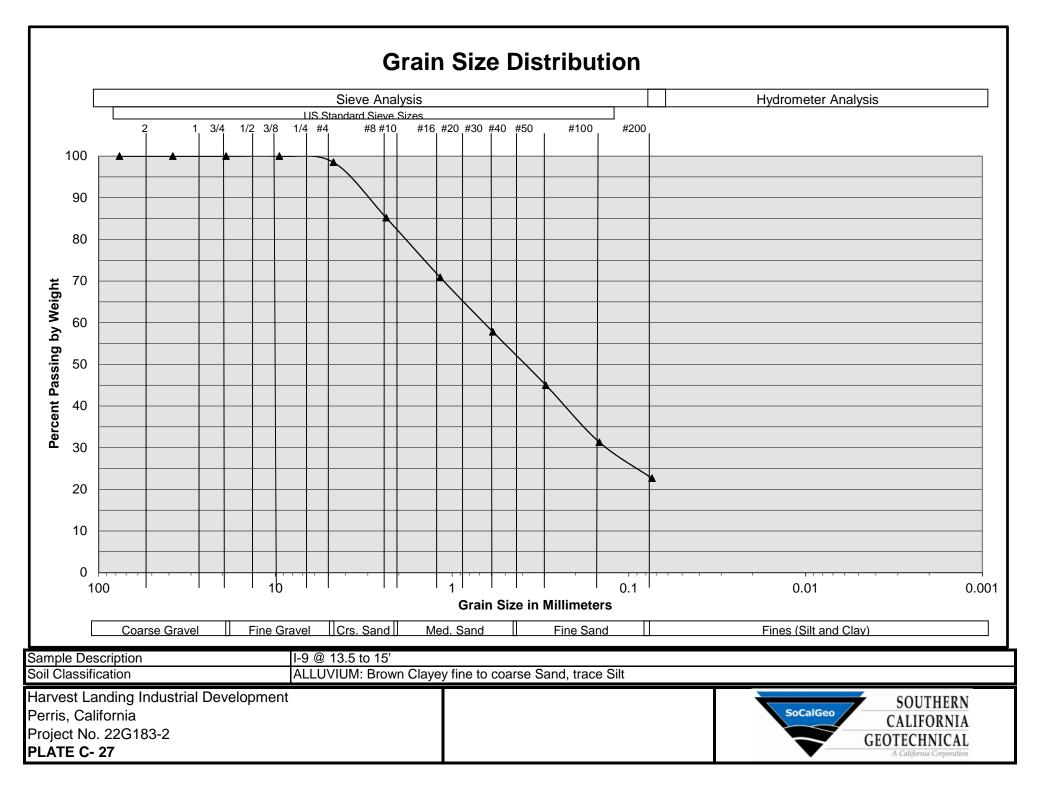

2




Grain Size Distribution Sieve Analysis Hydrometer Analysis US Standard Sieve Sizes 2 3/4 1/2 3/8 1/4 #4 #8 #10 #16 #20 #30 #40 #50 #100 #200 1 100 90 80 70 **Percent Passing by Weight** 60 50 40 30 20 10 0 0.1 0.01 0.001 100 10 1 **Grain Size in Millimeters** Coarse Gravel Fine Gravel Crs. Sand Med. Sand Fine Sand Fines (Silt and Clay) Sample Description I-7 @ 48.5 to 50' ALLUVIUM: Brown fine Sandy Silt, trace medium Sand Soil Classification Harvest Landing Industrial Development SOUTHERN Perris, California SoCalGeo CALIFORNIA Project No. 22G183-2 GEOTECHNICAL PLATE C- 18







Grain Size Distribution Sieve Analysis Hydrometer Analysis US Standard Sieve Sizes 2 3/4 1/2 3/8 1/4 #4 #8 #10 #16 #20 #30 #40 #50 #100 #200 1 100 90 80 70 **Percent Passing by Weight** 60 50 40 30 20 10 0 0.1 0.01 0.001 100 10 1 **Grain Size in Millimeters** Coarse Gravel Fine Gravel Crs. Sand Med. Sand Fine Sand Fines (Silt and Clay) Sample Description I-8 @ 38.5 to 40' ALLUVIUM: Brown Silty fine to medium Sand Soil Classification Harvest Landing Industrial Development SOUTHERN Perris, California SoCalGeo CALIFORNIA Project No. 22G183-2 GEOTECHNICAL PLATE C- 24

Grain Size Distribution Sieve Analysis Hydrometer Analysis US Standard Sieve Sizes #8 #10 2 1 3/4 1/2 3/8 1/4 #4 #16 #20 #30 #40 #50 #100 #200 -

100

90

80

70

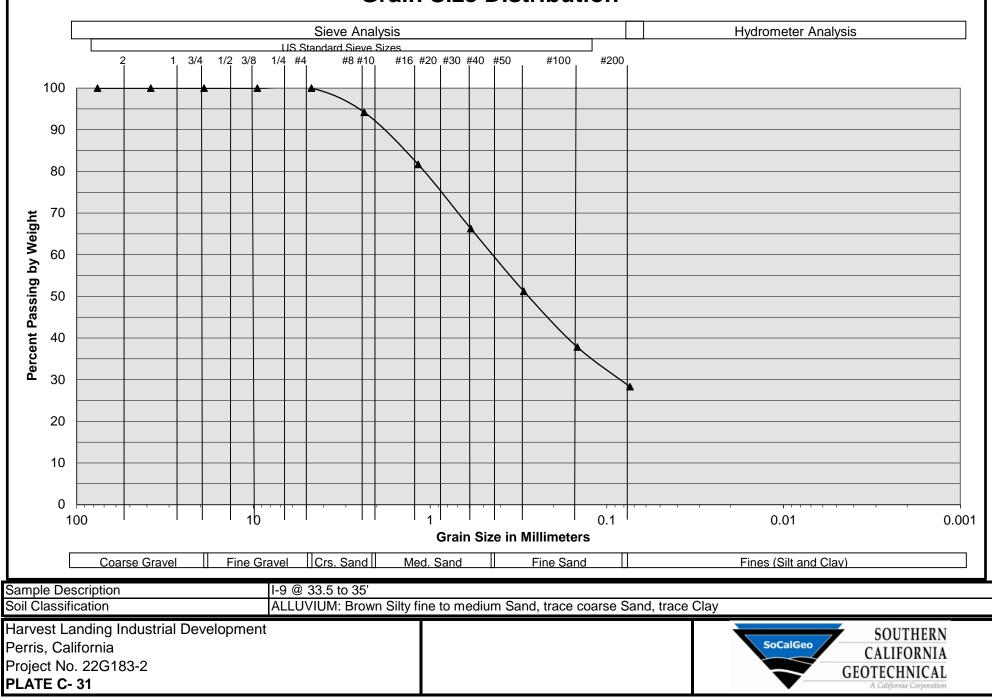
60

50

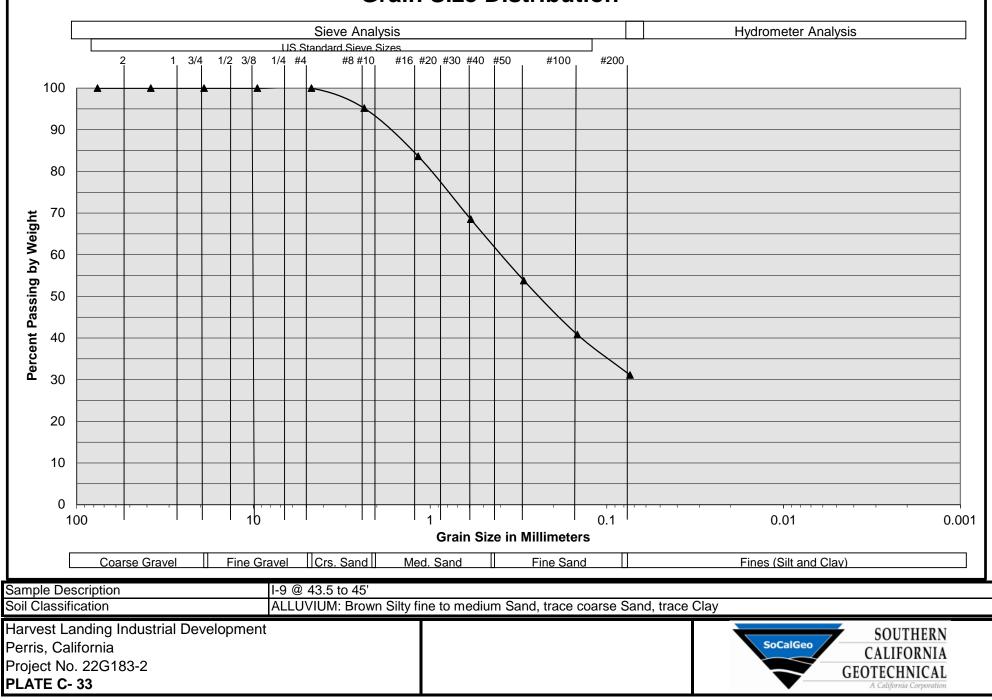
40

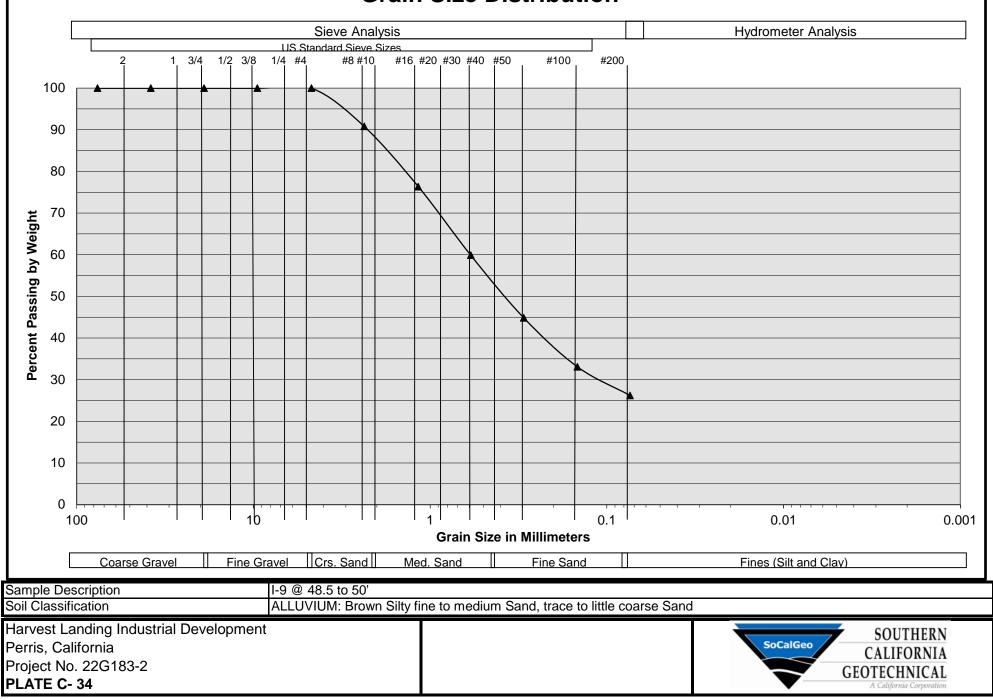
30

20

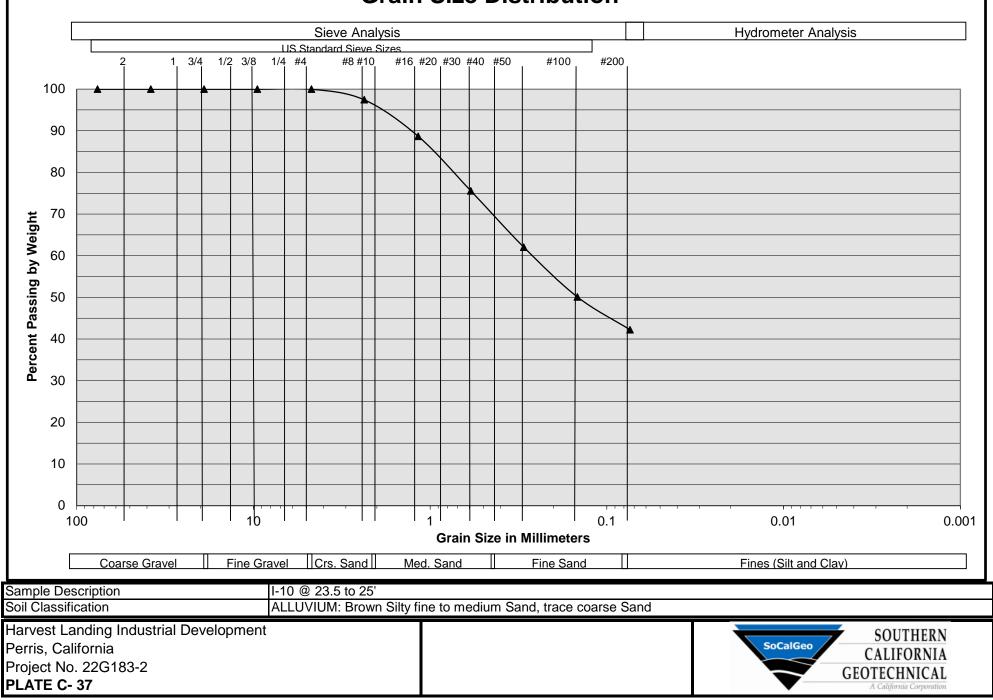

10

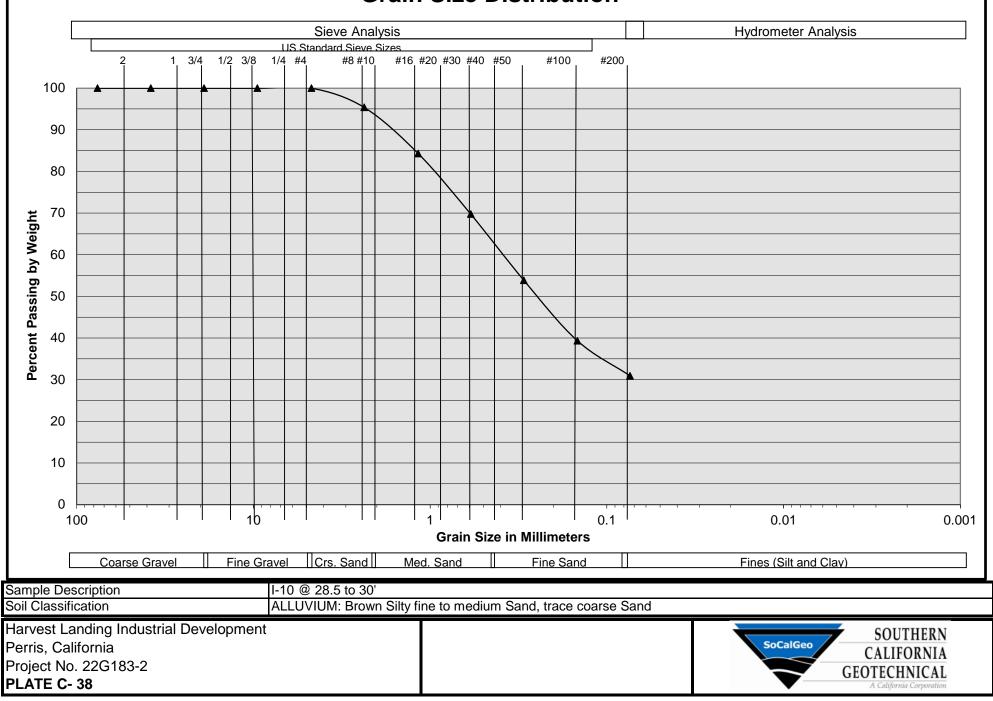
Percent Passing by Weight

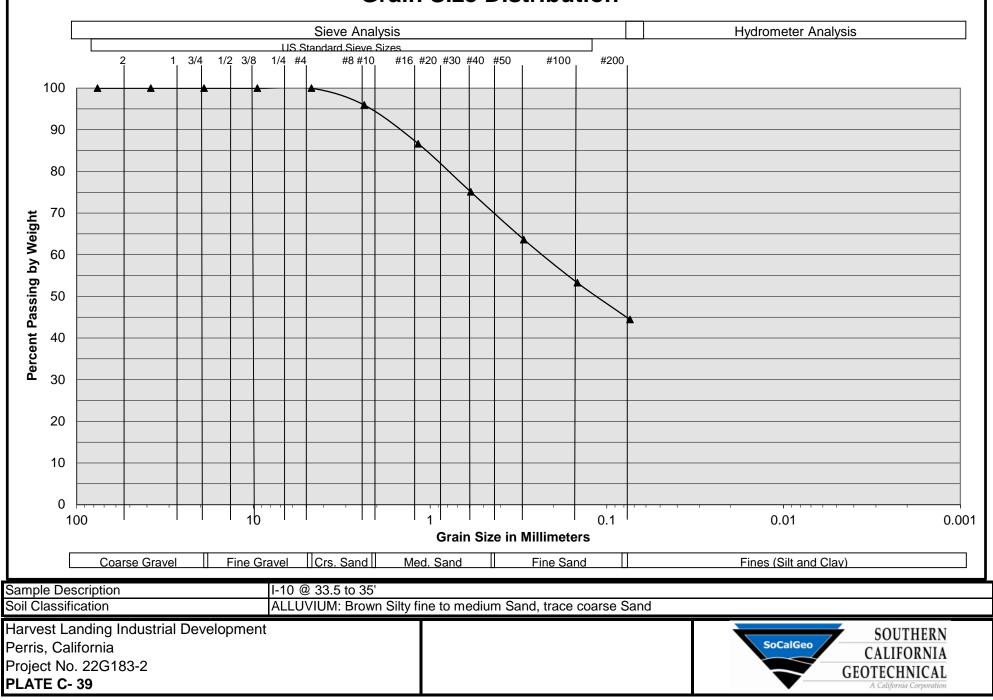

		0.1	0.01	0.001			
Grain Size in Millimeters							
Coarse Gravel Fine Gravel Crs. Sand	Med. Sand	Fine Sand	Fines (Silt and Clay)				
Sample Description I-9 @ 18.5 to 20							
Soil Classification ALLUVIUM: Bro	wn fine to medium Sand	ly Clay, trace coarse Sand					
Harvest Landing Industrial Development			SOUT	HERN			
Perris, California			SoCalGeo CALIFO				
Project No. 22G183-2			GEOTECHN				
PLATE C- 28			A California				

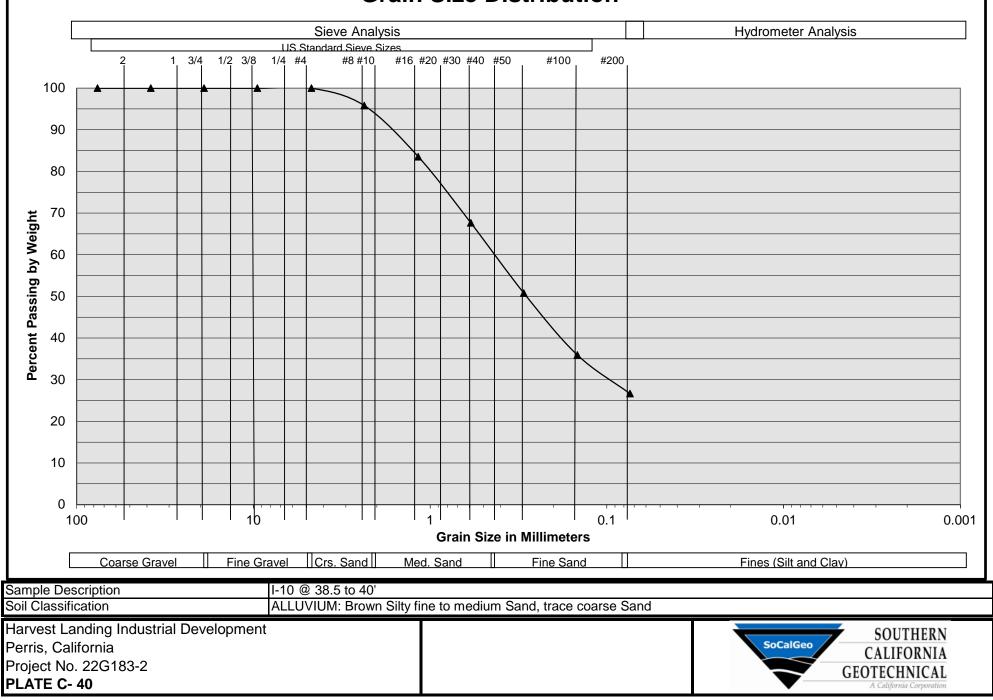

Grain Size Distribution Sieve Analysis Hydrometer Analysis US Standard Sieve Sizes 2 3/4 1/2 3/8 1/4 #4 #8 #10 #16 #20 #30 #40 #50 #100 #200 1 100 90 80 70 **Percent Passing by Weight** 60 50 40 30 20 10 0 0.1 0.01 0.001 100 10 1 **Grain Size in Millimeters** Coarse Gravel Fine Gravel Crs. Sand Med. Sand Fine Sand Fines (Silt and Clay) Sample Description I-9 @ 23.5 to 25' ALLUVIUM: Brown fine to medium Sandy Clay, trace coarse Sand Soil Classification Harvest Landing Industrial Development SOUTHERN Perris, California SoCalGeo CALIFORNIA Project No. 22G183-2 GEOTECHNICAL PLATE C- 29

Grain Size Distribution Sieve Analysis Hydrometer Analysis US Standard Sieve Sizes 2 3/4 1/2 3/8 1/4 #4 #8 #10 #16 #20 #30 #40 #50 #100 #200 1 100 90 80 70 **Percent Passing by Weight** 60 50 40 30 20 10 0 0.1 0.01 0.001 100 10 1 **Grain Size in Millimeters** Coarse Gravel Fine Gravel Crs. Sand Med. Sand Fine Sand Fines (Silt and Clay) Sample Description I-9 @ 28.5 to 30' ALLUVIUM: Brown fine to medium Sandy Silt, trace Clay Soil Classification Harvest Landing Industrial Development SOUTHERN Perris, California SoCalGeo CALIFORNIA Project No. 22G183-2 GEOTECHNICAL PLATE C- 30


Grain Size Distribution Sieve Analysis Hydrometer Analysis US Standard Sieve Sizes 2 3/4 1/2 3/8 1/4 #4 #8 #10 #16 #20 #30 #40 #50 #100 #200 1 100 90 80 70 **Percent Passing by Weight** 60 50 40 30 20 10 0 0.1 0.01 0.001 100 10 1 **Grain Size in Millimeters** Coarse Gravel Fine Gravel Crs. Sand Med. Sand Fine Sand Fines (Silt and Clay) Sample Description I-9 @ 38.5 to 40' ALLUVIUM: Brown Silty fine to medium Sand, trace coarse Sand, trace Clay Soil Classification Harvest Landing Industrial Development SOUTHERN Perris, California SoCalGeo CALIFORNIA Project No. 22G183-2 GEOTECHNICAL PLATE C- 32






Grain Size Distribution Sieve Analysis Hydrometer Analysis US Standard Sieve Sizes 2 3/4 1/2 3/8 1/4 #4 #8 #10 #16 #20 #30 #40 #50 #100 #200 1 100 90 80 70 **Percent Passing by Weight** 60 50 40 30 20 10 0 0.1 0.01 0.001 100 10 1 **Grain Size in Millimeters** Coarse Gravel Fine Gravel Crs. Sand Med. Sand Fine Sand Fines (Silt and Clay) Sample Description I-10 @ 13.5 to 15' ALLUVIUM: Brown Silty fine to medium Sand, trace coarse Sand Soil Classification Harvest Landing Industrial Development SOUTHERN Perris, California SoCalGeo CALIFORNIA Project No. 22G183-2 GEOTECHNICAL PLATE C- 35

Grain Size Distribution Sieve Analysis Hydrometer Analysis US Standard Sieve Sizes 2 3/4 1/2 3/8 1/4 #4 #8 #10 #16 #20 #30 #40 #50 #100 #200 1 100 90 80 70 **Percent Passing by Weight** 60 50 40 30 20 10 0 0.1 0.01 0.001 100 10 1 **Grain Size in Millimeters** Coarse Gravel Fine Gravel Crs. Sand Med. Sand Fine Sand Fines (Silt and Clay) Sample Description I-10 @ 18.5 to 20' ALLUVIUM: Brown Silty fine to medium Sand, trace coarse Sand Soil Classification Harvest Landing Industrial Development SOUTHERN Perris, California SoCalGeo CALIFORNIA Project No. 22G183-2 GEOTECHNICAL PLATE C- 36

Grain Size Distribution Sieve Analysis Hydrometer Analysis US Standard Sieve Sizes 2 3/4 1/2 3/8 1/4 #4 #8 #10 #16 #20 #30 #40 #50 #100 #200 1 100 90 80 70 **Percent Passing by Weight** 60 50 40 30 20 10 0 0.1 0.01 0.001 100 10 1 **Grain Size in Millimeters** Coarse Gravel Fine Gravel Crs. Sand Med. Sand Fine Sand Fines (Silt and Clay) Sample Description I-10 @ 43.5 to 45' ALLUVIUM: Brown Silty fine to medium Sand, trace to little coarse Sand Soil Classification Harvest Landing Industrial Development SOUTHERN Perris, California SoCalGeo CALIFORNIA Project No. 22G183-2 GEOTECHNICAL PLATE C-41

Appendix 4: Historical Site Conditions

Phase I Environmental Site Assessment or Other Information on Past Site Use

Phase I Environmental Site Assessment

Proposed Harvest Landing Project Area 325-Acre Site Near Indian Avenue and Orange Avenue Perris, California 92571

Howard Industrial Partners 1944 North Tustin Street, #122 Orange, California 92865 (949)338-9007

SCS ENGINEERS

Project No. 01219066.00 | May 2019

3900 Kilroy Airport Way, Suite 100 Long Beach, California 90806 (562) 426-9544

Table of Contents

Sect	ion Pa	ge
EXEC	UTIVE SUMMARY	iv
1		
2	PURPOSE	
3	SCOPE OF SERVICES	
4	SPECIAL TERMS AND CONDITIONS	
5	LIMITATIONS AND ASSUMPTIONS	
6	GENERAL SITE CHARACTERISTICS	
Ū	Site Location	
	General Site Description	
	Adjoining Property Use	
7	PHYSICAL SETTING	
•	Physiographic Setting	
	Geology and Soils	
	Groundwater	
	Radon	
8	SITE INSPECTION	
0	Hazardous Substances	
	Natural Drainage	
	Disturbed Areas	
	Elevators and Other Hydraulic Equipment	
	Wells	
	Electrical Equipment	
	Wastewater	
	Drinking Water	
	Storage Tanks	
•	Visual Inspection of Adjoining Sites	
9		
10	SITE HISTORY	
	Historical Use Summary	
	Historical Use of Adjoining Sites	
11	COMMONLY KNOWN OR REASONABLY ASCERTAINABLE INFORMATION	
	Previous Environmental Reports	
	Regulatory Agency Records	
	California Environmental Protection Agency Files	
	Santa Ana Regional Water Quality Control Board Files	
	Department of Toxic Substances Control Files	
	South Coast Air Quality Management District Files	
12	REVIEW OF FEDERAL, STATE, TRIBAL, AND LOCAL GOVERNMENT DATABASES	
	Property Listings	
	Adjacent Site Listings	16

	Other Database Sites	17
	Unmappable or Orphan Sites	18
	Landfills	
	Oil and Gas Wells	18
	National Pipeline Mapping System	18
13	USER PROVIDED INFORMATION	
	Title Records	19
	Environmental Liens or Activity and Use Limitations	19
	Specialized Knowledge	
	Valuation Reduction for Environmental Issues	
14	DEGREE OF OBVIOUSNESS OF THE PRESENCE/LIKELY PRESENCE OF CONTAMINATION ON	
	THE PROPERTY	19
15	DATA GAPS	19
16	FINDINGS AND OPINIONS	19
17	REFERENCES	21
18	GLOSSARY/DEFINITIONS	22

Appendices

- Appendix A Figures and Parcel Information
- Appendix B Aerial Image and Site Photographs
- Appendix C Historical Site Use Information
- Appendix D Regulatory Agency Review Information
- Appendix E EDR Database Report
- Appendix F Resumes of Project Personnel

This Phase I Environmental Site Assessment Report for the Harvest Landing Project area, a 325-Acre assemblage of land parcels near Indian Avenue and Orange Avenue in Perris, California, dated May 2019, was prepared by Justin Rauzon and reviewed by Kevin Green.

We declare that, to the best of our professional knowledge and belief, we meet the definition of Environmental Professional as defined in §312.10 of 40 CFR 312. The resumes for the individuals below are included in **Appendix F**. We have the specific qualifications based on education, training, and experience to assess a property of the nature, history, and setting of the subject property. We have developed and performed the all appropriate inquiries in conformance with the standards and practices set forth in 40 CFR Part 312.

Justin Rauzon, R.E.P.A. Project Manager SCS ENGINEERS

Kevin W. Green, P.G. Project Director SCS ENGINEERS

EXECUTIVE SUMMARY

SCS Engineers (SCS) was retained by Howard Industrial Partners (the "User") to prepare a Phase I Environmental Site Assessment (Phase I ESA) of the Harvest Landing Project area located near the intersection of Indian Avenue and Orange Avenue, in Perris, California (the "Property"). This assessment was performed in conformance with 40 CFR 312, Standards for Conducting All Appropriate Inquiries, and in general conformance with ASTM E1527-13.

The Property comprises 105 contiguous land parcels situated near the intersection of Indian Avenue and Orange Avenue. It is bounded to the west by Interstate 215 and its Frontage Road and to the east by North Perris Boulevard and Barnett Avenue. Indian Avenue, Orange Avenue, and some dirt roads cross and border the Property. It comprises 325.45 acres of primarily vacant farmland. A single-story residence and associated garage (2364 Indian Avenue) are located at the southwestern corner of the intersection between Indian Avenue and Orange Avenue. Concrete pads associated with former farmhouse/dairy buildings are located at the northeastern corner of the intersection between Indian Avenue.

As early as 1901, the Property was developed with agricultural land and a few rural structures, likely small farmhouses. Since that time, most of the Property has been cultivated farmland. Various small residential-type structures and farm outbuildings have been located on the Property. The single-family residence at the southwestern corner of Indian and Orange Avenues (2364 Indian Avenue) was developed in the mid-1960s. A small cluster of structures was located across the street to the southeast of this residence from at least 1938 to the mid-1990s. City directories indicated that between at least 1975 and 1992, this address (21580 Indian Avenue) was occupied by Dick Evans Transportation. A small cluster of buildings located at the northeastern corner of Indian Avenue and Orange Avenue between the 1930s and 1990s was reportedly a small family-run dairy. Only the concrete pads from the former dairy buildings remain. At times there were unnamed dirt roads and small irrigation ponds on parts of the Property.

Most of the Property is currently fallow agricultural land. A vacant fenced area at the northeastern portion of the Property was historically used by a nearby business to store finished modular structures (offices, portable classrooms, etc.). Other than common household chemicals stored in the garage and residence, no hazardous materials or hazardous wastes were observed at during the site inspection. No indications of landfilled materials were noted on the Property. No storage tanks are currently located on the Property. The owner reported that bulk pesticide/herbicide storage containers have never been stored on the Property.

Evans Transportation, a small business historically located at 1936 Indian Street, near the center of the Property was identified in regulatory databases and regulatory agency files as the location of two former fuel underground storage tanks (USTs), one that stored gasoline and the other diesel. The USTs were removed in 1992 and initial testing indicated the presence of total petroleum hydrocarbons (TPH) and fuel-related volatile organic compounds (VOCs) in soil samples collected from beneath the tanks. Approximately 100 tons of soil were subsequently excavated and removed from the former tank pit area to a landfill. Confirmation soil sampling showed remaining TPH concentrations from 15 to 28 milligrams per kilogram and no detectable concentrations of fuel-related VOCs. The remaining TPH concentrations are far below current regulatory screening levels. On June 17, 1993, the Riverside County Department of Environmental Health closed the case file related to the leaking UST. Based on the information reviewed and the case status, the past release

of TPH from the USTs at the Evans Transportation facility constitutes a historical recognized environmental condition REC (HREC).

Regulatory database information identified few known and suspected contamination sites in the area surrounding the Property. It is unlikely that any of these sites have negatively affected the environmental condition of the Property.

Conclusions

In the opinion of the Environmental Professionals, this assessment has revealed evidence of conditions indicative of a historical recognized environmental conditions in connection with the Property, as discussed above. Additional investigation of the Property is not warranted or recommended.

1 INTRODUCTION

SCS Engineers (SCS) was retained by Howard Industrial Partners (the "User") to prepare a Phase I Environmental Site Assessment (Phase I ESA) of the Harvest Landing Project area located near the intersection of Indian Avenue and Orange Avenue, in Perris, California (the "Property"). The Property comprises 105 land parcels totaling approximately 325 acres. A location map for the Property is presented as **Figure 1** in **Appendix A**. This assessment was performed in conformance with 40 CFR 312, Standards for Conducting All Appropriate Inquiries (AAI), and in general conformance with ASTM E1527-13.

2 PURPOSE

This Phase I ESA is intended to constitute appropriate inquiry into the previous ownership and uses of the Property, as required to support the assertion of the innocent landowner, contiguous property owner, and/or bona fide prospective purchaser defenses to liability (collectively the landowner liability protections, or LLPs) under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA a.k.a. Superfund), as amended by the Superfund Amendments and Reauthorization Act of 1986 (SARA), and the Small Business Liability Relief and Brownfields Revitalization Act of 2002.

The purpose of this investigation was to identify conditions indicative of releases or threatened releases of hazardous substances as defined in CERCLA Section 101, and petroleum products, on, at, in, or to the Property.

If known or suspected contamination is identified, Users seeking to maintain LLPs have responsibilities in addition to completion of an AAI-compliant Phase I ESA. These "continuing obligations" include taking "appropriate care" and "reasonable steps" with respect to known or suspected releases of hazardous substances during the term of property ownership. In addition to these requirements under federal law, there are different requirements under state law with respect to liability protections. On request, SCS can provide support for clients with continuing obligations, as appropriate.

3 SCOPE OF SERVICES

This Phase I ESA is based on:

- Interviews with past and/or present owners, operators, and/or occupants of the Property.
- Reviews of federal, tribal, state, and local government records.
- Visual inspections of the Property and adjoining properties performed on March 15, 2019.
- Review of historical Property use information (topographic maps, aerial photographs, fire insurance maps, existing reports, etc.).
- Commonly known or reasonably ascertainable information about the Property (e.g., interviews with appropriate regulatory agency personnel and review of agency files review of available documents, interviews with other knowledgeable persons).
- Degree of obviousness of the presence or likely presence of contamination at the Property, and the ability to detect the contamination by appropriate investigation.

• Information provided as a result of the additional inquiries conducted by the User.

4 SPECIAL TERMS AND CONDITIONS

This Phase I ESA for the Harvest Landing Project area, located in Perris, California, has been prepared specifically for Howard Industrial Partners. The report has been prepared in accordance with the care and skill generally exercised by reputable professionals, under similar circumstances, in this or similar localities. No other warranty, express or implied, is made as to the professional opinions presented herein.

No other party, known or unknown to SCS, is intended as a beneficiary of this work product, its content, or information embedded therein. Third parties use this report at their own risk. Third party reliance letters may be issued on request to SCS subject to approval of Howard Industrial Partners and payment to SCS of a fee for such letters.

5 LIMITATIONS AND ASSUMPTIONS

The investigation focuses on releases and threatened releases of hazardous substances or petroleum products that could be considered a recognized environmental condition (REC) and/or a liability due to their possible presence in significant concentrations (e.g., above acceptable limits set by the federal or state government) or due to the potential for contaminant migration through exposure pathways (e.g., soil vapor migration or groundwater ingestion). Materials that may contain substances which are not currently deemed hazardous by the U.S. Environmental Protection Agency (EPA) or California Environmental Protection Agency (CalEPA) were not considered as part of this study.

Unless specifically included in our scope of services, formal surveys for asbestos-containing materials, lead-based paints, fire safety, vapor intrusion, indoor air quality, mold, and similar matters were not part of this assessment. The Property was not evaluated for compliance with land use, zoning, wetlands, or similar laws. This report is not intended to be an environmental compliance audit.

Hazardous substances naturally occurring in plants, soils, and rocks (e.g., heavy metals, naturally occurring asbestos, or radon) are not typically considered in these investigations. Similarly, construction debris (e.g., discarded concrete, asphalt, etc.) is not considered to be of concern unless observations suggest that hazardous substances are likely to be present in significant concentrations.

Unless otherwise noted, sampling and laboratory analyses of soil, water, air, building materials, or other media, were not performed as part of this investigation. Positive identification of hazardous substances can only be accomplished through sampling and appropriate laboratory analysis.

SCS Engineers assumes no responsibility for the accuracy of information obtained from, compiled by, or provided by third-party sources, such as regulatory agency listings. Unless obviously inaccurate or if information exists to the contrary, SCS Engineers assumes that information collected during this environmental site assessment is accurate and correct. Unless warranted, information collected has not been independently validated as part of this assessment.

The following information is the responsibility of the User (40 CFR 312.22) and is not included in this Phase I ESA:

- Specialized knowledge or experience of the User.
- The relationship of the purchase price to the fair market value of the Property. The purchaser of a Property is required to consider whether any differential between the purchase price and the fair market value of the Property is due to the presence of releases or potential releases of hazardous substances at the Property.

Certain other limitations could affect the accuracy and completeness of this report, as follows:

- Site Access Limitations None.
- Physical Obstructions to Observations None.
- Outstanding Information Requests None.
- Historical Data Sources Failure None.
- Other Limitations None.

6 GENERAL SITE CHARACTERISTICS

SITE LOCATION

The Property comprises 105 contiguous land parcels situated near the intersection of Indian Avenue and Orange Avenue. It is bounded to the west by Interstate 215 and its Frontage Road and to the east by North Perris Boulevard and Barnett Avenue. Indian Avenue, Orange Avenue, and some dirt roads cross and border the Property. A list of the assessor's parcel numbers (APNs) and associated areas in acres is provided in **Appendix A**. A Google Earth aerial image showing the Property area is provided as **Figure 2** in **Appendix A**. Note that there are three residential enclave parcels located near the intersection of Indian Avenue and Orange Avenue that are not part of the Property.

GENERAL SITE DESCRIPTION

The Property comprises 325.45 acres of primarily vacant farmland. It includes one single-story residence and associated garage (2364 Indian Avenue) located at the southwestern corner of the intersection between Indian Avenue and Orange Avenue. Concrete pads associated with former farmhouse/dairy buildings are located at the northeastern corner of the intersection between Indian Avenue.

ADJOINING PROPERTY USE

 North – Val Verde Elementary School is located to the north of the western portion of the Property (2656 Indian Avenue). Single-family residences (2756 and 2726 Indian Avenue) are also located to the northwest of the Property. West Placentia Avenue adjoins the northern end of the Property to the north. Silver Creek Industries, Inc. occupies a complex of industrial buildings across the street to the north (2830 Barrett Avenue). This company manufactures modular buildings. Some of the modular structures are stored across the street.

- South Undeveloped land and a Regency movie theater (1688 North Perris Boulevard) adjoin the Property to the south.
- East Barrett Avenue adjoins the northern half of the Property to the east. Scrap metal and equipment are stored across the street from the northern end of the Property. Undeveloped land and the Spectrum commercial shopping center (2560 North Perris Boulevard) are also located to the east of the northern half of the Property. North Perris Boulevard adjoins the southern half of the Property to the east. Undeveloped land, a carwash and auto service center (2252 through 2309 North Perris Boulevard), a retirement home (2225 North Perris Boulevard), another carwash (2131 North Perris Boulevard), and a medical clinic (2055 North Perris Boulevard) are located across the street to the east of the southern half of the Property. Undeveloped land and a Walmart Supercenter (1800 North Perris Boulevard) are located to the east of the southern end of the Property.
- West Interstate 215 and the I-215 Frontage Road adjoin the Property immediately to the west. Undeveloped land is located across the frontage road to the west of the northern end of the Property (still on the eastern side of the freeway). A railroad right-of-way and commercial business buildings are located across the freeway to the west. The businesses include El Dorado Stone, The Salvation Army, Luxury Mattress Outlet, and self-storage buildings.
- Enclave Parcels Three single-family residential sites are situated on enclave parcels located within the exterior boundary of the Property. One is located at the northwestern corner of Indian and Orange Avenues (2411 Indian Avenue) and two are located to the south of the residence that is on the Property (2334 and 2304 Indian Avenue).

7 PHYSICAL SETTING

PHYSIOGRAPHIC SETTING

According to the U.S. Geological Survey (USGS), Perris, California 7.5-minute topographic maps, the Property is located at an elevation of approximately 1,460 feet above mean sea level in Rancho las Perris. Site topography is generally flat with a slight regional slope to the east-southeast. The Property is situated approximately 3.25 miles northeast of the foothills of the Santa Ana Mountains and approximately 3.5 miles southwest of the Perris Lake reservoir.

GEOLOGY AND SOILS

The Property is situated within the Peninsular Ranges geomorphic province of southern California, which is primarily characterized by northwest trending mountain ranges. Surficial sediments in the Property area have been mapped as alluvial/fluvial deposits consisting of sand, silt, and clay (California Groundwater Bulletin 118).

GROUNDWATER

The Property is located within the Perris South Groundwater Management Zone (GMZ) of the San Jacinto Groundwater Basin. There are four groundwater wells located on the Property. According to the site contact, the water supply well located at 2364 Indian Avenue is drilled to a depth of 240 feet below ground surface (bgs). Based on a review of information on the State Water Resources Control Board (SWRCB) GeoTracker website for the Nuevo AM/PM Arco service station site located

approximately 0.35 miles south of the Property, first groundwater is estimated to occur approximately 75 feet bgs (GeoTracker ID: T0606568183). The anticipated flow direction is to the east-southeast, following the natural surface topography, however, regional groundwater pumping and the Perris Lake reservoir are known to affect groundwater flow direction in the valley. Groundwater flow direction at the Nuevo AM/PM Arco site has been determined to be towards the south-southwest.

RADON

According to the California Department of Public Health's February 2016 Radon Program report, screening in the area of the Property (92571 zip code and nearby zip code 92570) found no locations (out of six) where buildings had radon levels greater than or equal to 4 picocuries per liter (pCi/L), the EPA action level. The maximum radon result for the Property's zip code was 2.8 pCi/L. The alluvial geology of the Perris area is not normally associated with elevated radon levels. Note that elevated radon levels may also be attributed to other radon sources such as leaking natural gas or numerous building products such as drywall, cinderblock, concrete floors, brick, or stone products. Based on the available information, therefore, elevated radon gas is not expected in the area of the Property.

8 SITE INSPECTION

Justin Rauzon of SCS conducted an inspection of the Property and surrounding area on March 15, 2019. Photographs of the Property are provided in **Appendix B**.

Mr. Darrell Smith, whose wife's family has owned the Property for several generations, provided access to the residence located at 2364 Indian Avenue and provided historical information about the Property. Most of the Property is fallow agricultural land. The residence and garage are the only structures currently on the Property. Mr. Smith reported that concrete foundations located to the northeast of the intersection between Indian and Orange Avenues were part of a small, family-run dairy. A fenced area at the northeastern corner of the Property, along the western side of Barrett Avenue, was historically used by an adjoining business to store modular buildings (offices, portable classrooms, etc.). No manufacturing operations reportedly occurred at this area. It was partially covered with more native vegetation.

HAZARDOUS SUBSTANCES

Small quantities of household hazardous materials in the garage and house at 2364 Indian Avenue. No other hazardous materials or hazardous wastes were observed on the Property. According to the site contact, pesticides and herbicides were not historically stored or mixed on the Property.

NATURAL DRAINAGE

Remnants of small historical water courses are present on the southern half of the Property. Heavy rains reportedly lead to pooling at a few areas, with limited water flow in these otherwise dry former creek beds. Pooled water was observed to the south of the intersection of Orange and Barrett Avenues at the time of the site inspection.

DISTURBED AREAS

No obvious disturbed areas were noted. There was no evidence of landfilled materials.

ELEVATORS AND OTHER HYDRAULIC EQUIPMENT

No elevators or other hydraulic equipment are located on the Property.

WELLS

There are four groundwater supply wells located on the Property. One active well is located on the southeastern portion of the 2364 Indian Avenue parcel. This well is drilled to a depth of 240 feet bgs and provides drinking water to the residence. Three irrigation wells (one active and two inactive) are located on the central-eastern portion of the Property. One is located on the eastern side of a dirt road extending south from Barrett Avenue. The other two irrigation wells are located to the west of North Perris Boulevard, south of Orange Avenue. Mr. Smith did not know the depths of these wells, but indicated that they were drilled deeper than the drinking water well.

ELECTRICAL EQUIPMENT

Two pole-mounted Southern California Edison (SCE) electrical transformers are located along the southern boundary of the Property between 2334 and 2364 Indian Avenue. SCE has stated that they have never specified the purchase of distribution transformers utilizing PCBs as the insulating/cooling fluid. SCE transformers utilize mineral oil exclusively. In a statistically valid test of over 20,000 SCE distribution transformers, SCE determined that the concentrations of PCBs in the mineral oils was less than 50 parts per million (ppm) in over 96 percent of the units. Based on the available information, no significant environmental impact to the Property is anticipated from this transformer.

WASTEWATER

Industrial wastewater is not generated at the Property. Sanitary wastewater from the residence at 2364 Indian Avenue is directed to a septic system located outside the southeastern corner of the residence.

DRINKING WATER

Drinking water is not supplied to the Property. As noted above, a private drinking water supply well is located on the residential parcel. The well is reportedly drilled to a depth of 240 feet bgs.

STORAGE TANKS

No evidence (fill ports, vent lines, or dispensers) of underground storage tanks (USTs) was observed on the Property. No aboveground storage tanks (ASTs) were observed on the Property.

A discussion of two fuel USTs removed from a historical address located on the Property is presented in Sections 11 and 12.

VISUAL INSPECTION OF ADJOINING SITES

No obvious evidence of a REC or indications of contamination (e.g. remediation equipment, staining, underground storage tanks, etc.), were observed on adjoining sites during the site inspection.

9 INTERVIEWS

SCS interviewed Mr. Smith during the site inspection. Mr. Smith indicated that the single-family residence at 2364 Indian Avenue was constructed in 1965 and that his family sold the adjoining enclave parcels to friends in the ensuing years. Information provided during the interview is discussed in the appropriate section of this report.

10 SITE HISTORY

Site history was evaluated from the following sources:

- Historical USGS topographic maps provided by Environmental Data Resources (EDR) (February 25, 2019).
- Historical aerial photographs provided by EDR (February 27, 2019).
- A search was made of EDR-Sanborn collection and no maps of the Property were found (February 25, 2019).
- A City Directory review report provided by EDR (February 28, 2019).

Copies of topographic maps, historical aerial photographs, city directories, and the Sanborn map report showing no coverage are included in **Appendix C**.

Year	Description	Source
	The Property was largely undeveloped land located in Rancho las Perris. A few rural structures were located on the central portions of the Property, near the intersection of dirt roads that would become Indian and Orange Avenues.	
1901	Indian Avenue, Orange Avenue, and a former road (crossing the northern end) were present within the exterior boundary of the Property. A few rural structures were also depicted on adjoining sites. Other rural roads were also developed in the immediately surrounding area. A railroad right-of-way adjoined the Property to the west.	Topographic map

Year	Description	Source
1938	The Property was mostly cultivated agricultural land covered with row crops. Dirt roads corresponding to Orange and Indian Avenues, as well as smaller dirt pathways, were located within the exterior boundary of the Property. Two small, rural residential-type structures were located near the center of the Property, to the north of Orange Avenue west of Indian Avenue and on the eastern side of Indian Avenue, south of Orange Avenue. A cluster of farmhouse buildings was located at the northeastern corner of Orange and Indian Avenues. Another farm- related structure was located on the central-eastern portion of the Property. Irrigation ponds were noted on the northern and central portions of the Property.	Aerial photo
	The railroad right-of-way adjoined the Property to the west. The rest of the surrounding area was developed with agricultural land and sporadic rural structures (residences and small farm buildings).	
1942 and 1943	Most of the Property was depicted as undeveloped land, likely agricultural. Two irrigation ponds and three structures (to the north of Orange Avenue west and east of Indian Avenue) were depicted on the Property. A dirt road was located on the southeastern portion of the Property. Highway 395 and the Atchison, Topeka, and Santa Fe railroad right of way adjoined the Property to the west	Topographic maps and Aerial photos
	railroad right-of-way adjoined the Property to the west. A few additional structures, dirt roads, and irrigation ponds were developed on adjoining sites.	
	No significant changes from the 1938 aerial photos was noted on the Property.	
1949	A few farm-related equipment storage areas (with small structures) were added offsite to the south-southwest of the Property.	Aerial photo

Year	Description	Source
1953	No significant changes from the 1949 aerial photo were noted on the Property or adjoining sites. A few residential structures were removed from on the Property. The topographic map showed one irrigation pond on the north-central portion of the Property, a few structures near the intersection of Orange and Indian Avenues, and a few structures on the southern portion of the Property.	Aerial photo
	A few additional structures and water tanks were depicted on adjoining sites. Otherwise, no significant changes from the 1943 topographic map were noted in the immediately surrounding area.	
1961	No significant changes from the 1953 aerial photo were noted on the Property or adjoining sites. Mr. Smith indicated that the cluster of buildings at the northeastern corner of the intersection between Orange and Indian Avenues was a small dairy.	Aerial photo
	A few more structures on the Property were removed and a few new dirt roads and farm-related structures were added. The residence at 2364 Indian Avenue was developed. A well was depicted on the eastern side of the Property.	Apriolucito
1967	Two enclave residences were developed at the northwestern corner of Indian and Orange Avenues and immediately to the south of 2364 Indian Avenue (2334 and 2411 Indian Avenue). Some of the dairy buildings were removed. The Val Verde School was constructed to the north of the Property. The rest of the surrounding area remained agricultural land with a few structures, water wells, and a water tank.	Aerial photo and Topographic map
1973	With the exception of the addition of a few small structures, no significant changes from the 1967 topographic map were noted on the Property or adjoining sites.	Topographic map

Year	Description	Source
1974	A few new, small, farm-related buildings were added on or near the southern portion of the Property. Otherwise no significant changes were noted on the Property.	Aerial photo
	A new residence was added to the enclave located to the south of 2364 Indian Avenue (2304 Indian Avenue).	
	John Coudures was listed at 21011 Indian Avenue on the Property. Dick Evans Diesel & Trucking was located at 21580 Indian Avenue, a historical address located on the eastern side of Indian Avenue, to the south of Orange Avenue.	
1975	Private individuals were listed at addresses possibly associated with the enclave parcels (20890, 21020, 21031, and 21101 Indian Avenue). Val Verde School District and Val Verde School were listed at 20751 Indian Avenue, north of the Property. Harvill Machine Inc. was listed at 24201 Orange Avenue, across the freeway to the west of the Property.	City directories
1979	No significant changes from the 1973 topographic map were noted on the Property or adjoining sites.	Topographic map
	John Coudures was listed at 21011 Indian Avenue, a historical address associated with the residence on the Property. Dick Evans Transportation was still located at 21580 Indian Avenue.	
1980	Harvill Machine Inc. and Lomas Industries were listed across the freeway to the west of the Property (24201 Orange Avenue). Val Verde School District and Val Verde School were listed at 20751 Indian Avenue, north of the Property.	City directories
1985	No significant changes from the 1974 aerial photo were noted on the Property. Navajo Trailer Sales was listed at 21555 Indian Avenue, which may have been associated with the Property. Dick Evans Transportation was still located at 21580 Indian Avenue.	Aerial photo and City directories
	A residential neighborhood was developed across the street to the southeast of the Property.	

Year	Description	Source
1989	No significant changes from the 1985 aerial photo were noted on the Property. An industrial building was developed to the north of the Property (2830 Barrett Avenue). An outdoor storage yard associated with some industrial-type buildings was located to the east of the northern end of the Property. Otherwise, much of the surrounding area remained agricultural with limited residential development.	Aerial photo
1992	John Coudures was listed at 2364 Indian Street (<i>sic</i>), the current address associated with the single-family residence on the Property. Dick Evans Transportation was still located at 21580 Indian Avenue. Private individuals were listed at the enclave residential parcel addresses (2304, 2334, and 2411 Indian Street). A private individual was also listed at 2416 Indian Street, which may have been an address associated with the former dairy at the northeastern corner of Orange and Indian Avenues.	City directories
1995	John Coudures was listed at 2364 Indian Street (<i>sic</i>). Private individuals were still listed at the enclave addresses. Modtech Inc. was listed at 2830 Barrett Avenue, to the north of the Property.	City directories
1997	No significant changes from the 1989 aerial photo were noted on the Property. The freeway was expanded to the west of the Property. Commercial buildings were developed to the northeast of the Property (2560 North Perris Boulevard). A retirement home, carwash, and medical building were developed to the east of the Property (2225, 2131, and 2055 North Perris Boulevard). A movie theater was developed to the south- southeast of the Property (1688 North Perris Boulevard).	Aerial photo
2000	John Coudures was listed at 2364 Indian Street (<i>sic</i>). Val Verde Unified School District was listed at 2656 Indian Street and Modtech Hodlings Inc. was listed at 2830 Barrett Avenue.	City directories

Year	Description	Source
2002	The northeastern portion of the Property was being used to store modular buildings. According to Mr. Smith, no manufacturing activities were done on this portion of the Property, only finished product storage. Some of the former dairy structures located at the northeastern portion of Indian and Orange Avenues were demolished, leaving behind only concrete pads. Otherwise no significant changes were noted on the Property or immediately adjoining sites.	Aerial photo
	There was no listing for 2364 Indian Avenue.	
2005	Arizona Millwork Inc., Pacific Continental Modulars, QED Industries, and Modtech Holdings Inc. were listed at 2830 Barrett Avenue.	City directories
2006	The rest of the former dairy structures were demolished, leaving behind only the concrete pads. No significant changes from the 2002 aerial photo were noted on the Property or adjoining sites.	Aerial photo
2009	No significant changes from the 2009 aerial photo were noted on the Property or adjoining sites.	Aerial photo
2010	John Coudures was again listed at 2364 Indian Avenue. Private individuals were still listed at the enclave parcels and the school was listed at 2656 Indian Avenue. Ecocore LLC, Pacific Continental Modulars, and Southern Modular Industries were listed at 2830 Barrett Avenue.	City directories
2012	No significant changes from the 2009 aerial photo were noted on the Property or adjoining sites. The 2012 topographic map does not include site-specific details. A few named dirt roads are depicted on the Property, including Arnold Avenue and Barrett Avenue.	Topographic Maps
2014	John Coudures was listed at the Property address. Silver Creek Construction, Silver Creek Industries, Inc., and Southern Modular Industries were listed at 2830 Barrett Avenue, to the north of the Property.	City directories

Year	Description	Source
	The modular buildings were no longer being stored on the northeastern portion of the Property.	
2016	A Walmart Supercenter was constructed to the east of the southern end of the Property (1800 North Perris Boulevard).	Aerial photo

HISTORICAL USE SUMMARY

As early as 1901, the Property was developed with agricultural land and a few rural structures, likely small farmhouses. Since that time, most of the Property has been cultivated farmland. Various small residential-type structures and farm outbuildings have been located on the Property. The single-family residence at the southwestern corner of Indian and Orange Avenues (2364 Indian Avenue) was developed in the mid-1960s. A small cluster of structures was located across the street to the southeast of this residence from at least 1938 to the mid-1990s. City directories indicated that between at least 1975 and 1992, this address (21580 Indian Avenue) was occupied by Dick Evans Transportation. A small cluster of buildings located at the northeastern corner of Indian Avenue and Orange Avenue between the 1930s and 1990s was reportedly a small family-run dairy. Only the concrete pads from the former dairy buildings remain. At times there were unnamed dirt roads and small irrigation ponds on parts of the Property.

The existence of past agricultural activities on the Property and in adjacent areas indicates a potential for pesticide and/or heavy metal (associated with dusting powders) contamination. In SCS's experience, it is not uncommon to find trace levels of pesticides in soils at former agricultural areas in Southern California. However, these trace concentrations are rarely cause for environmental concern. It is our opinion that, without specific evidence of pesticide storage or mismanagement on the Property, past use for agricultural purposes is considered to be a *de minimis condition* and collection and analysis of soil samples for pesticides is unwarranted.

HISTORICAL USE OF ADJOINING SITES

As early as 1901 most of the immediately surrounding area was also undeveloped or agricultural land, with sparse residential/farmhouse development. A frontage road, a highway (later expanded to Interstate 215), and a railroad right-of-way have adjoined the Property to the west since the early 1900s. The Val Verde School was developed to the north in the mid-1960s. In the 1960s and 1970s, the enclave parcels near the center of the Property were developed with single-family residences. Commercial/industrial buildings were developed across the highway to the west beginning in the 1970s. A modular building construction company has occupied the site to the north (2830 Barrett Avenue) since at least 1989. A commercial shopping center and other commercial buildings were developed to the 2000s. A Walmart Supercenter was constructed to the southeast in 2016.

11 COMMONLY KNOWN OR REASONABLY ASCERTAINABLE INFORMATION

In order to identify commonly known or reasonably ascertainable information about the Property, SCS attempted to review previous environmental reports and various regulatory agency files and interviewed regulatory agency personnel. The following information was identified.

PREVIOUS ENVIRONMENTAL REPORTS

No previous environmental reports were provided to SCS for review.

REGULATORY AGENCY RECORDS

Regulatory agencies and other sources were contacted in an effort to identify any known or suspected contamination sites or incidents of hazardous waste storage or disposal which might have resulted in soil and/or groundwater contamination, or VOC (volatile organic compound) vapor migration to the Property. Generally, this includes records for the Property and adjacent parcels, although relevant information for other sites of possible interest in the area (up to one mile) may also be included. Within the City of Perris, the Riverside County Department of Environmental Health (RCDEH) generally acts as the lead enforcement agency for UST compliance. If a tank has leaked and groundwater contamination is suspected, the Santa Ana Regional Water Quality Control Board (SARWQCB) generally becomes the lead agency in supervising contaminant characterization and cleanup.

California Environmental Protection Agency Files

One address associated with the Property appears as a listed site on the California Environmental Protection Agency (CalEPA) Regulated Site Portal website (**Appendix D**). Evans Transport (1936 Indian Street [*sic*]) is listed as a Leaking Underground Storage Tank (LUST) site. This listing is discussed in greater detail below.

Santa Ana Regional Water Quality Control Board Files

Evans Transport (1936 Indian Street) appears in the SWRCB's GeoTracker website. The listing contains copies of RCDEH files that are included in **Appendix D**. According to the information in the file, the RCDEH was notified of an unauthorized release from USTs at the Evans Transport site in October 1992. Environmental Profiles, Inc. (EPI) prepared a site remediation work plan in November 1992, which showed that a 2,000-gallon gasoline UST and 8,000-gallon diesel UST were removed from an area to the north of the Evans Transportation maintenance area in August 1992. At the time the tanks were removed, soil samples were collected 2 and 6 feet below the bottoms of both tanks. Laboratory analytical results showed total petroleum hydrocarbons (TPH; EPA Method 8015M) in four of six soil samples at concentrations ranging from 1.2 to 131 milligrams per kilogram (mg/kg), equivalent to parts per million (ppm). Using EPA Method 418.1, the TPH concentrations ranged from 72 to 21,700 mg/kg in four of six samples. Benzene was not detected in any of the soil samples analyzed using EPA Method 8020. Toluene, ethylbenzene, and/or total xylenes were detected in four of six soil samples at concentrations ranging from 18 to 3,110 micrograms per kilogram (µg/kg), equivalent to parts per billion (ppb).

In March 1993, EPI implemented the work plan, excavating approximately 100 tons of soil at the Property. TPH was detected in five of six confirmation soil samples at concentrations ranging from

15 to 28 mg/kg. Fuel-related VOCs were not detected in any of the confirmation soil samples. Composite soil samples of the excavated stockpile of soil had TPH concentrations of 81 and 426 mg/kg and total xylenes detected at 1,790 mg/kg. The excavated soil was reportedly transported to the Lamb Canyon Sanitary Landfill for disposal. On June 17, 1993, the RCDEH closed the case file related to this LUST investigation/remediation. The analytical results meet current regulatory screening levels for soil. Based on the information reviewed and the case status, the past release of TPH from the USTs at the Evans Transportation facility constitutes a historical REC (HREC).

Department of Toxic Substances Control Files

The Property does not appear in the California Department of Toxic Substances Control (DTSC) EnviroStor website. Recent DTSC case files, if any, would be listed on this website (**Appendix D**).

South Coast Air Quality Management District Files

The Property does not appear as a listed facility on the South Coast Air Quality Management District (AQMD) online Facility INformation Detail (FIND) website.

12 REVIEW OF FEDERAL, STATE, TRIBAL, AND LOCAL GOVERNMENT DATABASES

A database search for sites listed on various federal, state, tribal, and local databases in the area around the Property was obtained from EDR (February 27, 2019). A description of each of the databases searched is included in the report, which is attached as **Appendix E**. Among the databases included in the EDR report are NPL (federal, tribal, and state-equivalent), proposed and delisted NPL, CORRACTS (RCRA facilities subject to corrective actions), hazardous waste sites identified for investigation or remediation (SEMS [Superfund Enterprise Management System, formerly known as CERCLIS], State CERCLIS, VCP, Brownfields Calsites, etc.), LUST, sites with engineering controls, former CERCLIS (NFRAP), RCRA and state hazardous waste generators, ERNS, SWLF, USTs, and Toxic Pits.

Review of these records satisfies all requirements as set forth in 40 CFR Section 312.26 (b) and (c) with regard to the review of federal, tribal, and state government records of databases of such government records and local government records and databases of such records pertaining to both the Property and the nearby or adjoining properties. Further, the search distances for each particular database are as specified in 40 CFR 312.26 and ASTM E1527-13.

Any known or suspected contaminated sites included on these lists within 0.25 miles of the Property are discussed in the following text. As a general rule, sites beyond 0.25 miles are not anticipated to impact a site significantly. Any sites beyond 0.25 miles with a high potential to impact the Property are also discussed. (Please note: the distances and directions listed in this report have been field verified and might not always match those in the EDR report.)

Sites such as TSD facilities, hazardous waste generators, HAZNET, FINDS, SQGs, LQGs, USTs, HIST UST, RCRA violations, and TRIS facilities with toxic chemical releases (generally in accordance with permitting requirements - into the air, water, or land as reported under SARA Title III) use or store hazardous materials and thus may pose a potential problem in the event of a spill or leak. However, unless these sites also appear in an agency list of contaminated sites, there is no evidence of any problems at this time. Therefore, sites on these lists will not be discussed unless on or in close proximity to the Property.

Please refer to Appendix E for further information on these sites.

PROPERTY LISTINGS

John Coudures Company (2634 Indian Avenue) appears in the CIWQS, SWEEPS UST, and CA FID UST databases. The CIWQS listing is associated with a former storm water construction permit. The UST database listings refer to one 550-gallon gasoline UST and two 10,000-gallon diesel USTs that were active in 1992. Mr. Smith indicated that these listings pertained to USTs stored at a ranch on Morgan Street, three miles from the Property, but were identified with the Property because the mailing address for the ranch was the residence located on the Property. Based on the available information, these listings are not indicative of a REC.

Evans Transport (1936 Indian Street) was listed in the LUST and HIST CORTESE databases. As discussed above, this case was closed on June 17, 1993. Based on the case status, fall under the category of HREC.

ADJACENT SITE LISTINGS

The following adjacent sites appear in the EDR database report:

Val Verde Elementary School Addition, 2656 Indian Avenue (adjacent to the north) – ENVIROSTOR, SCH, HAZNET, FINDS, FTTS, and HIST FTTS – This school site has operated since 1959. Two 1,000-gallon fuel USTs (one gasoline and one diesel) were removed from this site in 1993. Following excavation and remediation activities conducted in 2000, RCDEH and DTSC concurred that no further action was necessary at the site. The HAZNET listings are related to asbestos-containing waste, waste oil and mixed oil, empty containers, inorganic solid waste, PCB-containing waste, and other unspecified hazardous wastes removed from the school site between 1993 and 2013.

Christine Leinen, 2304 Indian Avenue (adjacent enclave site) – HAZNET – According to this HAZNET listing, asbestos containing waste was removed from this site in 2015.

Econo Lube N' Tune #97/Meineke Econo Lube #4097, 2309 Perris Boulevard (adjacent to the east) – UST, SWEEPS UST, RCRA-SQG, FINDS, and ECHO – This facility is listed as a current UST site with one 500-gallon waste oil UST. There are no indications of known past releases from the UST. The facility also generates small quantities of ignitable hazardous waste. Based on the available information, it is unlikely that this site has negatively affected the environmental condition of the Property.

Golden Star Dry Cleaners, 2131 North Perris Boulevard (adjacent to the east) – EDR Hist Cleaner – This facility was listed as dry cleaners between 2006 and 2013. It is situated downgradient of the Property and there are no reported releases from the facility. Based on the available information, SCS considers it unlikely that this site has negatively affected the environmental condition of the Property.

Modtech, Inc./Silver Creek Ind. Inc., 2830 Barrett Avenue (adjacent to the north) – RCRA-SQG, EMI, NPDES, WDS, and CIWQS – These facilities have manifested various hazardous wastes including: ignitable wastes, aqueous solutions with organic residues, waste oil and mixed oil, oil/water separation sludge, acidic waste, and mercury. Silver Creek has also reported generating air emissions and has an active stormwater permit. None of these listings are indicative of a chemical release and, based on the available information, this site is not considered an environmental risk to the Property.

Harvill Machine Inc./The Salvation Army, 24201 Orange Avenue (adjacent to the west) – HIST UST and RCRA-LQG – Harvill is listed as the historical location of two USTs installed in 1966. No information about their status is reported, but there was no report of a release from these tanks. Based on the absence of a reported release and distance, SCS considers it unlikely that this site poses an environmental risk to the Property. The Salvation Army has reported generating ignitable and mercury wastes and is also not considered an environmental risk to the Property.

Walmart Store #1747/Spectrum Cleaners/Dryclean Express, 2560 North Perris Boulevard (adjacent to the east) – AST, SWEEPS UST, CA FID UST, and DRYCLEANERS – The Walmart listing is associated with a 2,400-gallon AST of unspecified contents. It contains no indications of a past release. The Spectrum Cleaners listing is associated with a drycleaner facility with active permits to use perchloroethylene (PCE) as part of its dry cleaning process. This facility is listed downgradient, approximately 250 feet across Barrett Avenue to the east of the northern portion of the Property. There are no reported releases of dry cleaning solvent from this facility. Based on the available information, SCS considers it unlikely that this site has negatively affected the environmental condition of the Property. Its distance and location relatively downgradient imply the risk of vapor intrusion at the Property, in the event of a solvent release, is low.

Dollar Tree #02980, 2560 North Perris Boulevard (adjacent to the east) – RCRA NonGen/NLR, FINDS, SWRCY, HAZNET, and NPDES – This business has manifested numerous hazardous wastes, including chlorinated solvents like PCE. However, these database listings are not associated with documented chemical releases and this business is not expected to affect the environmental condition of the Property.

Walmart Supercenter #1747, 1800 North Perris Boulevard (adjacent to the south) – RCRA-SQG – This facility has generated numerous hazardous wastes, including chlorinated solvents like PCE. However, this listing contains no information about documented chemical releases and this business is not expected to affect the environmental condition of the Property.

Other Database Sites

The EDR report provides a summary table of regulatory database sites within specified distances of the Property, including standard environmental records, additional environmental records, high risk historical records, and recovered governmental records. This summary table is provided beginning on Page 4 of the EDR report (**Appendix E**). In addition to the Property and adjacent site listings discussed above, SCS identified the following sites of concern within 0.25 miles of the Property:

Other sites located within 0.25 miles of the Property with known releases of hazardous substances such as LUST and ENVIROSTOR sites are located cross- or downgradient, or based on case status and/or distance, are not anticipated to negatively affect the environmental condition of the Property. Several sites located within 0.25 miles appear in databases not typically associated with documented releases, such as AST, EMI, NPDES, WDS, CIWQS, HIST UST, RCRA-SQG, RCRA NonGen/NLR, SWEEPS UST, CA FID UST, FINDS, ECHO, EMI, HAZNET, and DRYCLEANERS. Based on a review of the database information, none of these sites are known to have any contamination at this time; therefore, none are anticipated to have negatively affected the environmental condition of the Property. Similarly, none of the sites situated beyond 0.25 miles are anticipated to have impacted the Property.

Unmappable or Orphan Sites

Two unmappable sites were identified in the EDR report. Unmappable sites cannot be plotted due to inaccurate or incomplete addresses. Based on review of the provided data, including the estimated locations of the unmappable sites in relation to the Property, it appears unlikely that the unmappable sites have adversely affected the environmental condition of the Property.

LANDFILLS

According to the EDR-provided review of the California Department of Resources Recycling and Recovery (CalRecycle) Solid Waste Information System, no active or inactive landfills were identified within 0.5 miles of the Property. Based on the available information, it is unlikely that landfills have adversely affected the environmental condition of the Property.

OIL AND GAS WELLS

Available oil and gas well maps from the California Department of Conservation, Division of Oil, Gas and Geothermal Resources (DOGGR) were reviewed to identify oil and gas wells on the Property or in the nearby area. According to the DOGGR Well Finder online database, the property is not located within the boundaries of a delineated oil and gas field. A DOGGR map showing that the Property is not located within one mile of any oil or gas wells is provided in **Appendix D**.

NATIONAL PIPELINE MAPPING SYSTEM

SCS reviewed the National Pipeline Mapping System (NPMS) website for the Property and surrounding area to identify any hazardous materials pipelines. The NPMS is a geographic information system (GIS) created by the U.S. Department of Transportation, Pipeline and Hazardous Materials Safety Administration (PHMSA), and Office of Pipeline Safety (OPS) in cooperation with other federal and state governmental agencies and the pipeline industry. The NPMS consists of geospatial data, attribute data, public contact information, and metadata pertaining to the interstate and intrastate hazardous liquid trunklines and hazardous liquid low-stress lines as well as gas transmission pipelines, liquefied natural gas (LNG) plants, and hazardous liquid breakout tanks (tanks that receive and store liquids transported by pipeline) jurisdictional to PHMSA. The nominal accuracy of geospatial data in the NPMS is +/-500 feet. The NPMS does not contain information on interconnects, pump and compressor stations, valves, direction of flow, capacity, throughput, or operating pressure. In addition, distribution and gathering pipelines are not included in the NPMS.

The NPMS is built from data submitted by pipeline, LNG plant, and breakout tank facility operators. Since 2002, transmission pipeline and LNG plant facility operators are required to submit mapping information to the NPMS and to update their submissions annually. Breakout tank operators are able to submit data to the NPMS on a voluntary basis.

Based on review of the NPMS website, there are no hazardous materials pipelines within one mile of the Property.

13 USER PROVIDED INFORMATION

A User Questionnaire was not returned to SCS for inclusion in the report. The User provided no information beyond what is discussed above.

TITLE RECORDS

No title report was provided to SCS for review.

ENVIRONMENTAL LIENS OR ACTIVITY AND USE LIMITATIONS

No information regarding environmental liens or activity and use limitations was provided to SCS. No environmental liens or activity/use limitations were identified by SCS during the course of this assessment.

SPECIALIZED KNOWLEDGE

No specialized knowledge regarding the Property was provided to SCS by the User.

VALUATION REDUCTION FOR ENVIRONMENTAL ISSUES

No property valuation information was provided to SCS.

14 DEGREE OF OBVIOUSNESS OF THE PRESENCE/LIKELY PRESENCE OF CONTAMINATION ON THE PROPERTY

As discussed above, most of the Property has been agricultural land since at least 1901. A few historical residences, farm-related structures, and a small dairy have been located on the Property, mostly near the intersection of Indian and Orange Avenues. The historical presence of these structures and activities are not anticipated to negatively affect the environmental condition of the Property. As noted above, a small transportation business historically operated at 1936 Indian Avenue, near the center of the Property. Two USTs were removed from the area along with approximately 100 tons of affected soil in the early 1990s. Based on the confirmation analytical results reviewed and regulatory closure, the former USTs represent an HREC. Additional investigation of this area is not warranted or recommended.

15 DATA GAPS

A data gap represents an inability on the part of the environmental professional to obtain information required by the standards and practices of 40 CFR 312 to fully identify conditions indicative of releases or threatened releases of hazardous substances on, at, in, or to the Property.

No data gaps were identified during the preparation of this Phase I ESA.

16 FINDINGS AND OPINIONS

Based on the scope of work performed, SCS finds the following:

The Property comprises 105 contiguous land parcels situated near the intersection of Indian Avenue and Orange Avenue. It is bounded to the west by Interstate 215 and its Frontage Road and to the east by North Perris Boulevard and Barnett Avenue. Indian Avenue, Orange Avenue, and some dirt roads cross and border the Property. It comprises 325.45 acres of primarily vacant farmland. A single-story residence and associated garage (2364 Indian Avenue) are located at the southwestern corner of the intersection between Indian Avenue and Orange Avenue. Concrete pads associated with former farmhouse/dairy buildings are located at the northeastern corner of the intersection between Indian Avenue.

As early as 1901, the Property was developed with agricultural land and a few rural structures, likely small farmhouses. Since that time, most of the Property has been cultivated farmland. Various small residential-type structures and farm outbuildings have been located on the Property. The single-family residence at the southwestern corner of Indian and Orange Avenues (2364 Indian Avenue) was developed in the mid-1960s. A small cluster of structures was located across the street to the southeast of this residence from at least 1938 to the mid-1990s. City directories indicated that between at least 1975 and 1992, this address (21580 Indian Avenue) was occupied by Dick Evans Transportation. A small cluster of buildings located at the northeastern corner of Indian Avenue and Orange Avenue between the 1930s and 1990s was reportedly a small family-run dairy. Only the concrete pads from the former dairy buildings remain. At times there were unnamed dirt roads and small irrigation ponds on parts of the Property.

Most of the Property is currently fallow agricultural land. A vacant fenced area at the northeastern portion of the Property was historically used by a nearby business to store finished modular structures (offices, portable classrooms, etc.). Other than common household chemicals stored in the garage and residence, no hazardous materials or hazardous wastes were observed at during the site inspection. No indications of landfilled materials were noted on the Property. No storage tanks are currently located on the Property. The owner reported that bulk pesticide/herbicide storage containers have never been stored on the Property.

Evans Transportation, a small business historically located at 1936 Indian Street, near the center of the Property was identified in regulatory databases and regulatory agency files as the location of two former fuel underground storage tanks (USTs), one that stored gasoline and the other diesel. The USTs were removed in 1992 and initial testing indicated the presence of total petroleum hydrocarbons (TPH) and fuel-related volatile organic compounds (VOCs) in soil samples collected from beneath the tanks. Approximately 100 tons of soil were subsequently excavated and removed from the former tank pit area to a landfill. Confirmation soil sampling showed remaining TPH concentrations from 15 to 28 milligrams per kilogram and no detectable concentrations of fuel-related VOCs. The remaining TPH concentrations are far below current regulatory screening levels. On June 17, 1993, the Riverside County Department of Environmental Health closed the case file related to the leaking UST. Based on the information reviewed and the case status, the past release of TPH from the USTs at the Evans Transportation facility constitutes a historical recognized environmental condition REC (HREC).

Regulatory database information identified few known and suspected contamination sites in the area surrounding the Property. It is unlikely that any of these sites have negatively affected the environmental condition of the Property.

In the opinion of the Environmental Professionals, this assessment has revealed evidence of conditions indicative of a historical recognized environmental conditions in connection with the Property, as discussed above. Additional investigation of the Property is not warranted or recommended.

17 REFERENCES

- ASTM International, November 1, 2013. Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process, Designation: E1527-13.
- California Department of Conservation, Division of Oil, Gas, and Geothermal Resources (DOGGR) Website: <u>http://www.conservation.ca.gov/dog/Pages/Index.aspx</u>.
- California Department of Health Services (CDHS), Updated February 2016. California Indoor Radon Test Results: <u>https://www.cdph.ca.gov/Programs/CEH/DRSEM/CDPH%20Document%20Library/EMB/Ra</u>
- California Department of Toxic Substance Control (DTSC) EnviroStor Website: https://www.envirostor.dtsc.ca.gov/public/.
- California Department of Water Resources (CDWR), Updated 2003. South Coast Hydrologic Region, Los Angeles Subregion. Bulletin No. 118.
- California Environmental Protection Agency (CalEPA), Site Portal Website: <u>https://siteportal.calepa.ca.gov/nsite/</u>.
- California Environmental Protection Agency, State Water Resources Control Board (SWRCB), GeoTracker Website: <u>http://geotracker.waterboards.ca.gov/</u>.

Environmental Data Resources, Inc. (EDR), www.edrnet.com, (800) 352-0050.

- Federal Register, The Daily Journal of the United States Government, November 1, 2005. Part III, Environmental Protection Agency, 40 CFR Part 312, Standards and Practices for All Appropriate Inquiry. Volume 70, No. 210. Amended December 30, 2013, Volume 78, No. 250.
- National Pipeline Mapping System (NPMS) Website: <u>https://www.npms.phmsa.dot.gov/PublicViewer/</u>.

don/Radon%20Test%20Results.pdf

South Coast Air Quality Management District (AQMD), Facility INformation Detail (FIND) website: <u>http://www3.aqmd.gov/webappl/fim/prog/search.aspx</u>.

18 GLOSSARY/DEFINITIONS

- AAI -- All Appropriate Inquiry
- AUL -- Activity and Use Limitations
- BTEX -- Benzene, toluene, ethylbenzene, and total xylenes
- CERCLA -- Comprehensive, Environmental Response, Compensation, and Liability Act
- <u>CERCLIS</u> -- Comprehensive Environmental Response, Compensation, and Liability Information System
- CFR -- Code of Federal Regulations
- CORRACTS -- Corrective Action Against Responsible Parties at a RCRA site
- <u>CREC</u> A recognized environmental condition resulting from a past release of hazardous substances or petroleum products that has been addressed to the satisfaction of the applicable regulatory authority (for example, as evidenced by the issuance of a no further action letter or equivalent, or meeting risk-based criteria established by regulatory authority), with hazardous substances or petroleum products allowed to remain in place subject to the implementation of required controls (e.g., property use restrictions, AULs, or institutional or engineering controls).
- DOGGR -- Department of Oil, Gas, and Geothermal Resources
- <u>De Minimis Condition</u> -- A condition that generally does not present a threat to human health or the environment and that generally would not be the subject of an enforcement action if brought to the attention of appropriate governmental agencies. Conditions determined to be *de minimis conditions* are not RECs or CRECs.
- DTSC -- California EPA Department of Toxic Substances Control
- EDR -- Environmental Data Resources, Inc.
- <u>EPA</u> -- Environmental Protection Agency
- ERNS -- Emergency Response Notification System
- ESA -- Environmental Site Assessment
- FINDS -- Facility Index System
- HAZNET -- California EPA Hazardous Waste Facility and Manifest Data
- <u>HREC</u> Historical Recognized Environmental Condition: A past release of any hazardous substances or petroleum products that has occurred in connection with the property and has been addressed to the satisfaction of the applicable regulatory authority or meeting unrestricted use criteria established by a regulatory authority, without subjecting the property to any required controls

- LQG -- Large Quantity Hazardous Waste Generator
- LUST -- Leaking Underground Storage Tank
- MCL -- Maximum contaminant level
- MTBE -- Methyl-tert-butyl-ether
- <u>NFA</u> -- No Further Action determination
- NFRAP -- No Further Remedial Action Planned
- <u>NPL</u> -- National Priority List (Superfund)
- PAHs -- Polynuclear aromatic hydrocarbons
- PCBs -- Polychlorinated biphenyls
- RCRA -- Resource Conservation and Recovery Act
- **RCRIS** -- Resource Conservation and Recovery Information System
- <u>REC</u> Recognized environmental condition is defined by ASTM E 1527-13 as: "The presence or likely presence of any hazardous substances or petroleum products in, on, or at a property: (1) due to release to the environment; (2) under conditions indicative of a release to the environment; or (3) under conditions that pose a material threat of a future release to the environment. *De minimis conditions* are not recognized environmental conditions."
- ROD -- Record of Decision
- **<u>RBSLs</u>** -- Risk-based Screening Levels
- RSLs Regional Screening Levels
- RWQCB -- Regional Water Quality Control Board
- SARA -- Superfund Amendments and Reauthorization Act
- SLIC -- Spills, Leaks, Investigations, and Cleanups database
- SQG -- Small Quantity Hazardous Waste Generator
- SWIS -- Solid Waste Information System
- SWLF -- Solid Waste Facility/Landfills
- <u>TPH</u> -- Total Petroleum Hydrocarbons
- TRIS -- Toxic Release Inventory System
- TSD -- Treatment, Storage, and/or Disposal Facility

- <u>User</u> -- The person or persons seeking to establish the innocent landowner defense, bona fide prospective purchaser liability protection, and/or contiguous property owner liability protection pursuant to CERCLA sections 101 and 107.
- USGS -- United States Geologic Survey
- UST -- Underground Storage Tank
- VCP -- Voluntary Cleanup Program
- VOCs -- Volatile organic compounds

Figures and Appendices omitted from Phase 1 ESA Report for the Preliminary WQMP, will provided if requested

Appendix 5: LID Infeasibility

LID Technical Infeasibility Analysis

Section not applicable

Appendix 6: BMP Design Details

BMP Sizing, Design Details and other Supporting Documentation

Operation Calculated Cell Impairy Name PMCivil Engineers Inc. Date		Santa A	Ana Water	rshed - BMP I	Design Flo	w Rate, (Q _{BMP}	Legend:		Required Entrie	
mpany may EMCivil Engineers Inc. Date Io/14/2024 signed by Hector Pazz 20-001 - Site 1 mpany Project Number/Name 20-001 - Site 1 PNAME / ID 5.11 Modular Wetlands Mast match Name/ID used on BMP Design Calculation Sheet IP Sign Rainfall Intensity 1 = 0.20 modr Sign Rainfall Intensity 1 = 0.20 modr Mast match Name/ID used on BMP Design Calculation Sheet Barge Management Area Tabulation Intert additional rows if needed to accommodate all DMAs draining to the BMP Mast match Name/ID MAA frags X intensity Dispace Additional rows if needed to accommodate all DMAs draining to the BMP Intensity Design Rainfall Intensity Si 1.4 405262/9 Roofs 1 0.89 36149.5 Si 1.1C 277973.32 Concrete or Aspholt 1 0.892 247952.7 Si 1.1 Concrete or Aspholt 1 0.892 247952.7 Image Image Image Image Image Image Image Image Image Image <td></td> <td></td> <td></td> <td>(Rev. 10-2011)</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td>				(Rev. 10-2011)				-			
Name Lector Page Case No mmany Project Number/Name 20-001 - Site 1 BMP Identification PROVE Set Number/Name BMP Identification PROVE Set Number/Name Design Calculation Sheet Design Rainfall Depth Image Mangement Area Tabulation Set colspan="2">Case No Datage Mangement Area Tabulation Design Calculation Sheet Datage Mangement Area Tabulation Design Calculation (set Bable) Datage Mangement Area Tabulation Design Calculation (set Bable) Datage Mangement Area Tabulation	omnai				d in conjunctio	on with BMP	designs from the	e <u>LID BMP</u>			
BMP Identification PPOND IS 1-1 Modular Wetlands Mate match Name/D used on BMP Design Calculation Sheet Design Rainfall December Image metal Action Sheet Design Rainfall Intensity I = 0.20 m/m Drainage metal Actional Sheet Design Drainage metal Actional Sheet Design Flow Proposed Flow DMAA Area Sources of needed to accommodate all DMAA Areas Number of Sheet effect for Rate (cfs) Dest-oraging Tester of Man Areas Number of Sheet effect for Rate (cfs) St 51-1A 40525629 Roops 1 0.89 36149.5 5 1 1 0.892 247952.7 1 1 1 1 0.892 247952.7 1 1 1 0.892 247952.7 1 1 1 0.892 247952.7 1 1 1 1 0.892 247952.7 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 <td< td=""><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			-								
IP NAME / 10 Set 1 Modular Wetlands Material Depth I = 0.20 in/r Datage Management Area Tabulation Total Add/total colspan="2">Datage Management Area Tabulation Total Add/total colspan="2">Datage Management Area Tabulation Total Add/total colspan="2">Concrete or Aspholt 1 O.899 36149.5 S1-14 Add/total colspan="2">Concrete or Aspholt 1 O.892 247952.7 S1-16 Concrete or Aspholt 1 0.892 247952.7 List dott colspan= 2 Concrete or Aspholt 2 200 1.30 <th col<="" td=""><td></td><td></td><td>Number/Name</td><td>e</td><td></td><td>20-001 - 5</td><td>Site 1</td><td></td><td></td><td></td></th>	<td></td> <td></td> <td>Number/Name</td> <td>e</td> <td></td> <td>20-001 - 5</td> <td>Site 1</td> <td></td> <td></td> <td></td>			Number/Name	e		20-001 - 5	Site 1			
Must match Dused on BMP Design Cloudedoon Beed gen Kainfall Ditensity 1 - 0.20 mm Segn Kainfall Ditensity Colspan="2">Colspan="2">Colspan="2">Colspan="2" Diset additionation for set of the Colspan="2">Colspan="2" Total Colspan="2" Colspan="2" Colspan="2" Colspan="2" <th cols<="" td=""><td></td><td></td><td></td><td></td><td>BMP</td><td>Identificat</td><td>ion</td><td></td><td></td><td></td></th>	<td></td> <td></td> <td></td> <td></td> <td>BMP</td> <td>Identificat</td> <td>ion</td> <td></td> <td></td> <td></td>					BMP	Identificat	ion			
Image: I	BMP N	AME / ID	S1-1 Modula	r Wetlands							
Sign Rainfal Intensity I 0.0 mhr Diage Mangement Area Tabulation Intensity intensits intensits intensits intensity intensity intensity intensits int				Mu	ist match Na	me/ID used	on BMP Design	Calculation	n Sheet		
Originate Management Area Tabulation Insert additional rows if needed to accommodate all DMAs draining to the BMP. DMA DMA Area Surface Type Effective DMA DMA Proposed Flow Proposed Flow S1-1A 40526.29 Roofs 1 0.89 36149.5 Intensity Design Flow Rate (cfs) Rate (cfs) Rate (cfs) Rate (cfs) Rate (cfs) S1-1C 277973.92 Concrete or Aspholt 1 0.892 247952.7 Imagement					Design	Rainfall D	epth				
Sect additional rows if needed to accommodate all DMAs draining to the BMP Image: marked background backgr	Design	Rainfall In	tensity					I =	0.20	in/hr	
DMA DMA Area Type/ID Post-Project (square feet) Effective Surface Type (use put-down mou) DMA Imperivous Fraction, I, Factor DMA Areas x Runoff DMA Areas x Runoff Design Rainfall (intensity) Design Flow Rate (cfs) 51-1A 40526.29 Roofs 1 0.89 36149.5											
DMA DMA Area Surface Type (usquare feet) Imperivous (usquare faet) Runoff DMA Area x Runoff Factor Intensity Design Flow Rate (cfs) Proposed Flow Rate (cfs) S1-1A 40526.29 Roofs 1 0.89 36149.5 S1-1C 277973.92 Concrete or Asphalt 1 0.892 247952.7 S1-1C 277973.92 Concrete or Asphalt 1 0.892 247952.7 Image: S1-1C 277973.92 Concrete or Asphalt 1 0.892 247952.7 Image: S1-1C 277973.92 Concrete or Asphalt 1 0.892 247952.7 Image: S1-1C 277973.92 Concrete or Asphalt 1 0.892 247952.7 Image: S1-1C 277973.92 Concrete or Asphalt 1 0.892 247952.7 Image: S1-1C 277973.92 Concrete or Asphalt 1 0.892 247952.7 Image: S1-1C 277973.92 Concrete or Asphalt 1 0.892 1 Image: S1-1C 2740 Image: S1 Image: S1 Imag			In:	sert additional rows	if needed to	ассоттоа	late all DMAs di		ne BMP		
Type/ID (square feet) (use pull-down mem) Fraction, Ir Factor Runoff Factor (in/hr) Rate (cfs) Rate (cfs) \$1-1A 40526.29 Roofs 1 0.89 36149.5 \$1-1C 277973.92 Concrete or Asphalt 1 0.892 247952.7 \$1-1C 2770 2 0.20 1.30 1.44 \$1-1C 2770 2 0.20 1.30 1.386								-	Design Flow	Proposed Flow	
S1-1C 277973.92 Concrete or Asphalt 1 0.892 247952.7 Image: S1-1C 277973.92 Concrete or Asphalt 1 0.892 247952.7 Image: S1-1C 277973.92 Concrete or Asphalt 1 0 992 247952.7 Image: S1-1C 277973.92 Concrete or Asphalt 1 0 992 247952.7 Image: S1-1C 277973.92 Concrete or Asphalt 1 0 990 990 Image: S1-1C 277973.92 Concrete or Asphalt 1 0 990 990 990 Image: S1-1C 279973.92 Concrete or Asphalt 1 0 990 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td></t<>									-		
Image: Normal state in the		\$1-1A	40526.29	Roofs	1	0.89	36149.5				
Image: Normal state in the											
Image: Solution of the second seco		\$1-1C	277973.92	Concrete or Asphalt	1	0.892	247952.7				
Image: Solution of the second seco											
Image: Solution of the second seco											
Image: Solution of the second seco											
Image: Solution of the second seco		<u> </u>									
Image: Solution of the second seco		<u> </u>									
Image: Solution of the second seco											
Image: Solution of the second seco	MAs										
	ā										
		<u> </u>									
			318500 21		Total		284102.2	0.20	1 20	1 386	
tes:			516500.21	1	, otur		204102.2	0.20	1.50	1.580	
tes:										-	
	Notes:										

(Be: 10-101) Calculated Cells March is worksheet shall ungty be used in conjunction with BMP designs from the LD BMP designs from the LD BMP cells Date 10/14/2024 signed hy Hector Paez 20-001 - Site 1 mpmy Nome EMC with signed hy Get method BMP description 20-001 - Site 1 BMP description BMA for the service of second colspan="2">Colspan="2" Description Mark additional rows if needed to accommodate all DMAs drains to the BMP Service top Mark additional rows if needed to accommodate all DMAs drains to the BMP Service top Mark additional rows if needed to accommodate all DMAs drains to the BMP Service top Mark additional rows if needed to accommodate all DMAs drains to the BMP Service top Mark additional rows if needed to accommo		Santa A	Ana Water	rshed - BMP I	Design Flo	w Rate, (Q _{RMP}	Legend:		Required Entrie
mpmaps EMCIVIE Ingringers Inc Date 10/14/2024 igned by Hector Pac Case No mpmaps Project Number/Name 20-001 - Site 1 PNAME / ID S1-2 Modular Wetlands The match Name/D used on BMP Design Calculation Sheet To ange Rainfall Depth Targe Name / ID S1-2 Modular Wetlands Targe Name / ID S1-2 Modular Wetlands Targe Name / ID To ange Cancer Area Tabulation To ange Cance				(Rev. 10-2011)				-		
Nome Case No mpany Project Number/Name 20-001 - Site 1 Case No BMP Identification PROMOUNDER/Name BMP Identification Project Number/Name BMP Identification Project Number/Name Project Number/Name BMP Identification Project Number/Name Design Calculation Street Impany Project Number/Name Impany Project Number/Name Case No Impany Project Number/Name Impany Project Number Numer Number Numer Number Number Numer Number Number Number Number Nu	omnar				d in conjunctio	on with BMF	designs from the	e <u>LID BMP</u>		
BMP Identification PNAME / ID_S1-2 Modular Wetlands But match Name//D used on BMP Design Calculation Sheet Design Rainfall Decesity Image R			-							
97 NAME/10 S1-2 Modular Wetlands Mate match Name/10 used on BMP Design Calculation Sheet Design Rainfall Density 1 - 0.00 m/m Totage Management Area Tabulation Datage Management Area Tabulation Datage Management Area Tabulation Datage Management Area Tabulation Data dditional rows (f needed to accommodate all DMAs draining to the BMP MMA DMA Area Surface Type Imperivous Runoff DMA Areas (infinit) Design Flow Proposed Flow S1-2.0 53325.38 Roofs 1 0.892 211563.4 Imperivous Runoff Factor (in/hr/h) Run off	Compar	ny Project	Number/Nam	e		20-001 - 5	Site 1			
Must match Name/ID used on BMP Design Calculation Sheet Design Rainfall Depsit I = 0.20 infr Data Management Area Tabulation Data dational rows if needed to accommodate all DMAs draining to the BMP DMAA Rea Surface Type timperivous if needed to accommodate all DMA Area Surface Type (meetivous Runoff Eator (m/n/n/) Rate (cfs)) Design Flow Proposed Flow Rate (cfs) \$1:-24 \$3:15:33 Roofs 1 0.89 49341.3 Immensity Res (cfs) Rate (cfs) \$1:-24 \$3:27:38 Roofs 1 0.892 211563.4 Immensity Immensity Rate (cfs) \$1:-26 237178.68 Concrete or Aspholt 1 0.892 211563.4 Immensity					BMP	Identificat	ion			
Open and provide the provided of th	BMP N	AME / ID	S1-2 Modula							
Sign Rainfall Intensity 1 0.20 nhr Diage Mangement Area Tabulation Design Flow Diage Mangement Area Saulitation Intensity Diage Mangement Area Saulitation Intensity One Area Saulitation Intensity One Area Saulitation Intensity One Area Saulitation Intensity Saulitatintensity <td< td=""><td></td><td></td><td></td><td>Mu</td><td>ist match Na</td><td>me/ID used</td><td>on BMP Design</td><td>Calculation</td><td>n Sheet</td><td></td></td<>				Mu	ist match Na	me/ID used	on BMP Design	Calculation	n Sheet	
Orinage Management Area Tabulation Data ditional rows if needed to accommodate all DMAs draining to the BMP DMA DMA Area Post-Project Effective DMA DMA Areas Rinnshity Design flow Proposed flow Str2A 5335.38 Roofs 1 0.89 49341.3 Image and the strate (cfs) Rate (cfs) Image and the strate in th					Design	Rainfall D	Depth			
Insert additional rows if needed to accommodate all DMAs draining to the BMP DMA DMA area Post-Project Effective DMA Runoff DMA Areasx Intensity Design flow Proposed Flow S1-2A 55315.38 Roofs 1 0.89 49341.3 Rate (cfs)	esign	Rainfall In	itensity					I =	0.20	in/hr
DMA DMA Area Post-Project Effective DMA Runoff DMA Reinful Design Rainful Design Rainful <thdesign <th="" <thdesign="" rainful="">Design Rainful <t< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td></t<></thdesign>						-				
DMA DMA Area Surface Type (use pull-down men) Imperivous Fraction, Ir Runoff DMA Area x Runoff Factor Intensity Design Flow Rate (cfs) Proposed Flow Rate (cfs) \$1-2A \$5315.38 Roofs 1 0.89 49341.3 Rate (cfs) <			In	sert additional rows	if needed to	ассоттос	late all DMAs di		ne BMP	
Type/ID (square feet) (use pulk-down mem) Fraction, I, Factor Runoff Factor (in/hr) Rate (cfs) Rate (cfs) \$1-2A \$5315.38 Roofs 1 0.89 49341.3		DMA					DMA Δτρος γ	-	Design Flow	Proposed Flow
S00 S1-2C 237178.68 Concrete or Asphalt 1 0.892 211563.4 I <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td></t<>									-	
200 1		\$1-2A	55315.38	Roofs	1	0.89	49341.3			
200 1										
Image: series of the series		\$1-2C	237178.68	Concrete or Asphalt	1	0.892	211563.4			
Image: series of the series										
Image: series of the series										
Image: series of the series										
Image: state stat										
Image: state stat										
Image: Second		<u> </u>								
Image: Second	١As									
	D									
			202424.00		Tetel		20000	0.00		4.25
			292494.06	1	iotal		260904.7	0.20	1.20	1.27
				•						
tes:	Notes:									

	Santa A	Ana Water	rshed - BMP E	Design Flo	w Rate, (Q _{BMP}	Legend:		Required Entries
			(Rev. 10-2011)				-		Calculated Cells
Compar	.) 1y Name	<i>Note this worksh</i> FMCivil Eng	<i>eet shall <u>only</u> be used</i> gineers Inc	d in conjunctio	on with BMP	designs from the	e <u>LID BMP .</u>		<u>k</u>) 2 10/14/2024
Designe	ed by	Hector Paez						Case No)
Compan	ny Project	Number/Name	e		20-001 - 5	Site 1			
				BMP	Identificat	ion			
BMP N.	AME / ID	S1-3 Modula							
			Ми	st match Na	me/ID used	on BMP Design	Calculatior	n Sheet	
				Design	Rainfall D	lepth			
Design 1	Rainfall In	tensity					I =	0.20	in/hr
						ea Tabulation			
I		Ins	sert additional rows	if needed to	ассоттоа	late all DMAs di	raining to th Design	ne BMP	
	DMA	DMA Area	Post-Project	Effective	DMA Runoff	DMA Areas x	Rainfall Intensity	Design Flow	Proposed Flow
	Type/ID	(square feet)	Surface Type (use pull-down menu)	Imperivous Fraction, I _f	Factor	Runoff Factor	(in/hr)	Rate (cfs)	Rate (cfs)
	\$1-3A	95990.6	Roofs	1	0.89	85623.6			
		254404.0	Constant of the literature		0.000	226722.0			
	\$1-3C	254184.8	Concrete or Asphalt	1	0.892	226732.8			
DMAs									
D									
		350175.4		Total		312356.4	0.20	1.43	1.501

Open of the second se		Santa A	Ana Water	rshed - BMP I	Design Flo	w Rate, (Legend:		Required Entries
mpmany Pame FMC (n) Engineers Inc Date 10/14/2024 igned by Hector Paez 20-001 - Site 1 IP NAME / ID S1-4 Modular Wetlands IP NAME / ID S1-4 Modular Wetlands IP NAME / ID S1-4 Modular Wetlands IP S1-4 Modular Wetlands IP S1-4 Modul				(Rev. 10-2011)				-		Calculated Cells
BMP Hector Pacz Case No mpany Project Number/Name 20-001 - Site 1 BMP Identification IP NAME / ID S1-4 Modular Wetlands Must match Name//D used on BMP Design Calculation Sheet Design Rainfall Depth Image Management Area Tabulation Image Management Area Tabulation Data additional rows (I needed to accommodate all DMAs draining to the BMP Image Management Area Tabulation Image Management Area Tabulation Data additional rows (I needed to accommodate all DMAs draining to the BMP Image Management Area Tabulation Surface Type Manoffall Depth Surface Type Surface Type Surface Type Surface Type Surface Type Surface Type Sur	omnar				d in conjunctio	on with BMP	designs from the	e <u>LID BMP</u>		
BMP Identification P NAME / ID_S1-4 Modular Wetlands Must match Name/ID used on BMP Design Calculation Sheet Design Rainfall Depth I =			-							
S1-4 Modular Wetlands Must match Name/ID used on BMP Design Calculation Sheet Design Rainfall Depth I = 0.20 in/hr Drainage Management Area Tabulation Design Rainfall Intensity I = 0.20 in/hr Drainage Management Area Tabulation Drainage Management Area Tabulation DMA DMA drass frage Tope Post-Pope Proposed Flow Tope/ID [square feet] Oncerete or Aspholt 1 0.899 O S1-4C 264175.33 Concrete or Aspholt 1 0.892 235644.4 Imperivous Data I and colspan="2">Concrete or Aspholt 1 0.892 235644.4 Imperivous Colspan="2">Imperivous Colspan="2" I and colspan="2"			Number/Name	e		20-001 - 5	Site 1			
Must match Name/ID used on BMP Design Calculation Sheet Design Rainfall Depth I = 0.00 m/r Datage Management Area Tabulation DMA DMA Area Post-Project DMA Trans x Program Tareator (r/h) Program Tareator (r/h) S1-4A 0 Roofs 1 0.892 235644.4 Imperivous Imperivous <td></td> <td></td> <td></td> <td></td> <td>BMP</td> <td>Identificat</td> <td>ion</td> <td></td> <td></td> <td></td>					BMP	Identificat	ion			
age Rainfall Intensity 1 = 0.0 in/r Intersection of the section	BMP N	AME / ID	S1-4 Modula							
Sign Rainfall Intensity I 0.00 in/hr Datage Management Area Tabulation Dest additional rows if needed to accommodate all DMAs dress x Rainfall Design Flow Proposed Flow MMA DMA Post-Project Effective DMA Naka seas Rainfall Design Flow Proposed Flow S1-44 0 Roofs 1 0.89 0 Intensity S1-4C 264175.33 Concrete or Aspholt 1 0.892 235644.4 Intensity Rate (cfs) Rate (cfs) Rate (cfs) Rate (cfs) Rate (cfs) Intensity Intensity<				Мı	ist match Nai	me/ID used	on BMP Design	Calculatior	n Sheet	
Control C		D : 0111			Design	Rainfall D	epth	-	0.00	
Insert additional rows if needed to accommodate all DMAs draining to the BMP DMA DMA Area Surface Type Effective DMA PMA DMA Areas X Versign Rinoff Intensity Design Flow Proposed Flow S1-4A 0 Roofs 1 0.89 0 0 Rate (cfs)	Design	Rainfall In	tensity					I =	0.20	in/hr
DMA Type/ID DMA Area (square feet) Post-Project Surface Type (use pull-down menu) Effective mperivous Fraction, It DMA Runoff Factor DMA Areas Runoff Design Rainfall (n/hr) Proposed Flow Rate (cfs) 51-4A 0 Roofs 1 0.89 0 51-4C 264175.33 Concrete or Asphalt 1 0.892 235644.4										
DMA Type/ID DMA Area (square feet) Surface Type (seguil-downmenu) Imperivous Fraction, I, Runoff DMA Areas x Intensity (in/hr) Design Flow Rate (cfs) Proposed Flow Rate (cfs) S1-4A 0 Roofs 1 0.89 0 0 0 0 S1-4A 0 Roofs 1 0.89 0			In:	sert additional rows	if needed to	ассоттоа	late all DMAs di		ne BMP	
Type/ID(square feet)(use pull-down menu)Fraction, IrFactorRunoff Factor(in/n)Rate (cfs)Rate (cfs)\$1-4A0Roofs10.890		DMA					DMA Areas y	-	Design Flow	Proposed Flow
S1-4C 264175.33 Concrete or Asphalt 1 0.892 235644.4 Image: S1-4C 264175.33 Concrete or Asphalt 1 0.892 235644.4 Image: S1-4C 264175.33 Concrete or Asphalt 1 0.892 235644.4 Image: S1-4C Image: S1-4C Image: S1-4C Image: S1-4C Image: S1-4C Image: S1-4C Image: S1-4C Image: S1-4C Image: S1-4C Image: S1-4C Image: S1-4C Image: S1-4C Image: S1-4C Image: S1-4C Image: S1-4C Image: S1-4C Image: S1-4C Image: S1-4C Image: S1-4C Image: S1-4C Image: S1-4C Image: S1-4C Image: S1-4C Image: S1-4C Image: S1-4C Image: S1-4C Image: S1-4C Image: S1-4C Image: S1-4C Image: S1-4C Image: S1-4C Image: S1-4C Image: S1-4C Image: S1-4C Image: S1-4C Image: S1-4C Image: S1-4C Image: S1-4C Image: S1-4C Image: S1-4C Image: S1-4C Image: S1-4C Image: S1-4C Image: S1-4C Image: S1-4C Image: S1-4C Image: S1-4C Image: S1-4C Image: S1-4C									-	
		S1-4A	0	Roofs	1	0.89	0			
				-						
Image: series of the series		\$1-4C	264175.33	Concrete or Asphalt	1	0.892	235644.4			
Image: series of the series										
Image: series of the series										
Image: series of the series										
Image: series of the series										
Image: series of the series		<u> </u>								
Image: series of the series	~									
Image: series of the series	DMAs									
Image: second										
Image: state s										
264175.33 Total 235644.4 0.20 1.08 1.154			264175.33		Total		235644.4	0.20	1.08	1.154
				-						
ies:	lotes:									

5	Santa A	na Water	<u>shed</u> - BMP E	Design Flo	w Rate, (2 _{BMP}	Legend:		Required Entri
			(Rev. 10-2011)						Calculated Cel
ompan		<i>Vote this worksh</i> FMCivil Eng	<i>eet shall <u>only</u> be used</i>	d in conjunctio	on with BMP	designs from the	e <u>LID BMP I</u>		<u>ok</u>) e 10/14/2024
esigne	d by	Hector Paez						Case No	
mpan	y Project 1	Number/Name	e		20-001 - S	lite 1	-		
				BMP	Identificat	ion			
MP NA	AME / ID	S1-5 Modula							
			Mu	ist match Nai	me/ID used	on BMP Design	Calculation	Sheet	
				Design	Rainfall D	epth			
sign F	Rainfall In	tensity					I =	0.20	in/hr
			Drai	nage Manag	gement Are	ea Tabulation			
I		Ins	sert additional rows	if needed to	accommod	ate all DMAs di	raining to th Design	e BMP	
	D 141		Post-Project	Effective	DMA	DMA A	Rainfall	Dations	Dran en 151
	DMA Type/ID	DMA Area (square feet)	Surface Type (use pull-down menu)	Imperivous Fraction, I _f	Runoff Factor	DMA Areas x Runoff Factor	Intensity (in/hr)	Design Flow Rate (cfs)	Proposed Flow Rate (cfs)
	S1-5A	0	Roofs	1	0.89	0			
	\$1-5C	117505	Concrete or Asphalt	1	0.892	104814.5			
DMAs									
		117505		Total		104814.5	0.20	0.48	0.577
			1						

Santa Ana Watershed - BMP Design Flow Rate, Q _{BMP} (Rev. 10-2011) (Note this worksheet shall <u>only</u> be used in conjunction with BMP designs from the									Required Entrie
									Calculated Cell
Compar	y Name	<i>Note this worksh</i> FMCivil Eng		d in conjunctio	on with BMP	designs from the	e <u>LID BMP I</u>		<u>ok</u>) e 10/14/2024
Designe	ed by	Hector Paez						Case No	
Compar	ny Project 1	Number/Name	e		20-001 - S	site 1			
				BMP	Identificat	ion			
MP N	AME / ID	S1-6 Modula							
			Mu			on BMP Design	Calculation	n Sheet	
				Design	Rainfall D	epth			
esign	Rainfall In	tensity					I =	0.20	in/hr
			Drai	nage Manag	gement Are	ea Tabulation			
		Ins	sert additional rows	if needed to	accommod	ate all DMAs di	raining to th Design	ie BMP	
	DMA Type/ID	DMA Area (square feet)	Post-Project Surface Type (use pull-down menu)	Effective Imperivous Fraction, I _f	DMA Runoff Factor	DMA Areas x Runoff Factor	Rainfall Intensity (in/hr)	Design Flow Rate (cfs)	Proposed Flow Rate (cfs)
	S1-6A	0	Roofs	1	0.89	0	(,)		
	\$1-6C	130304.77	Concrete or Asphalt	1	0.892	116231.9			
DMAs									
ā									
		130304.77		Total		116231.9	0.20	0.53	0.577
otes:									

Santa Ana Watershed - BMP Design Flow Rate, Q _{BMP} (Rev. 10-2011) (Note this worksheet shall <u>only</u> be used in conjunction with BMP designs from the									Required Entries
									Calculated Cells
Compar	y Name	<i>Note this worksh</i> FMCivil Eng		d in conjunctio	on with BMP	designs from the	e <u>LID BMP</u>		<u>k</u>) 10/14/2024
Designe	ed by	Hector Paez						Case No	
Compar	ny Project 1	Number/Name	e		20-001 - 5	Site 1			
				BMP	Identificat	ion			
BMP N.	AME / ID	S1-7 Modula							
			Mu	st match Na	me/ID used	on BMP Design	Calculation	n Sheet	
				Design	Rainfall D	lepth			
Design	Rainfall In	tensity					I =	0.20	in/hr
			Drai	nage Manag	gement Are	ea Tabulation			
		In:	sert additional rows	if needed to	ассоттоа	late all DMAs di	raining to th Design	ne BMP	
			Post-Project	Effective	DMA		Rainfall		
	DMA Type/ID	DMA Area (square feet)	Surface Type (use pull-down menu)	Imperivous Fraction, I _f	Runoff Factor	DMA Areas x Runoff Factor	Intensity (in/hr)	Design Flow Rate (cfs)	Proposed Flow Rate (cfs)
	S1-7A	0	Roofs	1	0.89	0			
	\$1-7C	140627.27	Concrete or Asphalt	1	0.892	125439.5			
S									
DMAs									
		140627.27		Total		125439.5	0.20	0.58	0.577
		140027.27	1			123435.3	0.20	0.58	0.377
			Proposed Volun	ne must be g	reater than	the Design Cap	oture Volum	e	
Notes:									

Santa Ana Watershed - BMP Design Flow Rate, Q _{BMP} (Rev. 10-2011)									Required Entries
			Legend:		Calculated Cells				
omnar	1y Name	<i>Note this worksh</i> FMCivil Eng	eet shall <u>only</u> be used	d in conjunctio	on with BMP	designs from the	e <u>LID BMP -</u>		<u>ok</u>) e 10/14/2024
Designe		Hector Paez						Case No	
		Number/Name	e		20-001 - S	Site 1			
				BMP	Identificat	ion			
BMP N	AME / ID	S1-8 Modula	r Wetlands						
			Ми	ist match Nai	me/ID used	on BMP Design	Calculatior	n Sheet	
				Design	Rainfall D	epth			
Design	Rainfall In	tensity					I =	0.20	in/hr
						ea Tabulation			
		In	sert additional rows	if needed to	accommod	ate all DMAs di	raining to th Design	ne BMP	
	DMA	DMA Area	Post-Project	Effective	DMA Runoff	DMA Areas x	Rainfall Intensity	Design Flow	Proposed Flow
	Type/ID	(square feet)	Surface Type (use pull-down menu)	Imperivous Fraction, I _f	Factor	Runoff Factor	(in/hr)	Rate (cfs)	Rate (cfs)
	S1-8A	0	Roofs	1	0.89	0			
	\$1-8C	124278.2	Concrete or Asphalt	1	0.892	110856.2			
DMAs									
ā									
		124270.0		Total		110050 0	0.00	0.54	0.577
		124278.2	I	Total		110856.2	0.20	0.51	0.577
otes:									

	Santa A	Ana Water	<u>shed</u> - BMP I	Design Flo	w Rate, () _{rmp}	Lagandu		Required Entries
			(Rev. 10-2011)	U		CDMI	Legend:		Calculated Cells
C			eet shall <u>only</u> be use	d in conjunctio	on with BMP	designs from the	e <u>LID BMP</u>		
Compai Designe	ny Name ed by	FMCivil Eng Hector Paez	gineers Inc					Case No	e <u>10/14/2024</u>
		Number/Name	e		20-001 - S	Site 1		Cuberte	·
				D 1 (D	- 1 - 1 - 2				
				BMP	Identificat	10n			
BMP N	AME / ID	S1-9 Modula			<i>t</i> =				
			Mu	ist match Nai	me/ID used	on BMP Design	Calculation	n Sheet	
				Design	Rainfall D	epth			
Design	Rainfall In	tensity					I =	0.20	in/hr
			Drai	nage Manag	gement Are	ea Tabulation			
		In	sert additional rows	if needed to	accommod	late all DMAs di		ne BMP	
			Post-Project	Effective	DMA		Design Rainfall		
	DMA	DMA Area	Surface Type	Imperivous	Runoff	DMA Areas x	Intensity	Design Flow	Proposed Flow
	Type/ID S1-9A	(square feet)	(use pull-down menu) Roofs	Fraction, I _f	Factor 0.89	Runoff Factor	(in/hr)	Rate (cfs)	Rate (cfs)
	A	0	Roojs	1	0.89	0			
	S1-9C	38340	Concrete or Asphalt	1	0.892	34199.3			
٩s									
DMAs									
	<u> </u>								
		38340	l	Total		34199.3	0.20	0.16	0.175
NT - 4									
Notes:									

<u>Santa Ana Watershed</u> - BMP Design Flow Rate, Q _{BMP} (Rev. 10-2011)									Required Entries
			Legend:		Calculated Cells				
omnar	ny Name	<i>Note this worksh</i> FMCivil Eng	eet shall <u>only</u> be used	d in conjunctio	on with BMP	designs from the	e <u>LID BMP I</u>		<u>k</u>) 10/14/2024
Designe		Hector Paez						Case No	
Compar	ny Project 1	Number/Nam	e		20-001 - S	Site 1			
				BMP	Identificat	ion			
BMP N.	AME / ID	S1-10 Modu							
			Mu	ist match Nai	me/ID used	on BMP Design	Calculation	Sheet	
				Design	Rainfall D	lepth			
esign l	Rainfall In	tensity					I =	0.20	in/hr
						ea Tabulation			
I		In	sert additional rows	if needed to	accommod	ate all DMAs di	raining to th Design	e BMP	
			Post-Project	Effective	DMA		Rainfall		
	DMA Type/ID	DMA Area (square feet)	Surface Type (use pull-down menu)	Imperivous Fraction, I _f	Runoff Factor	DMA Areas x Runoff Factor	Intensity (in/hr)	Design Flow Rate (cfs)	Proposed Flow Rate (cfs)
	S1-10A	36878.51	Roofs	1	0.89	32895.6			
	S1-10C	60733.1	Concrete or Asphalt	1	0.892	54173.9			
DMAs									
ā									
		07644.64		Total		07000 5	0.22	0.40	0.452
		97611.61		Total		87069.5	0.20	0.40	0.462

<u>Santa Ana Watershed</u> - BMP Design Flow Rate, Q _{BMP} (Rev. 10-2011)									Required Entries
			Legend:		Calculated Cells				
Compar	ny Name (.	<i>Note this worksh</i> FMCivil Eng	<i>eet shall <u>only</u> be use</i>	d in conjunctio	on with BMP	designs from the	e <u>LID BMP</u>		<u>ok</u>) e 10/14/2024
Designe		Hector Paez						Case No	
Compar	ny Project	Number/Nam	e		20-001 - 5	Site 1			
				BMP	Identificat	ion			
BMP N	AME / ID	S1-11 Modul							
			Mu	ist match Na	me/ID used	on BMP Design	n Calculatior	n Sheet	
				Design	Rainfall D	Depth			
Design	Rainfall In	tensity					I =	0.20	_in/hr
						ea Tabulation			
		In:	sert additional rows	if needed to	ассоттоа	late all DMAs di	raining to th Design	ie BMP	
	DMA	DMA Area	Post-Project Surface Type	Effective Imperivous	DMA Runoff	DMA Areas x	Rainfall Intensity	Design Flow	Proposed Flow
	Type/ID	(square feet)	(use pull-down menu)	Fraction, I _f	Factor	Runoff Factor	(in/hr)	Rate (cfs)	Rate (cfs)
	S1-11A	70795.56	Roofs	1	0.89	63149.6			
		20502.24	Constant of the last		0.000	26207.2			
	\$1-11C	29593.31	Concrete or Asphalt	1	0.892	26397.2			
st									
DMAs									
		100388.87		Total		89546.8	0.20	0.41	0.462
		100308.87	1			05540.0	0.20	0.41	0.402
lotes:									

	Santa A	Ana Water	rshed - BMP I	Design Flo	w Rate, (2 _{BMP}	Legend:		Required Entries
			(Rev. 10-2011)	-			-		Calculated Cells
omnai	ny Name (.	<i>Note this worksh</i> FMCivil Eng	<i>eet shall <u>only</u> be use</i>	d in conjunctio	on with BMP	designs from the	e <u>LID BMP</u>		<u>ok</u>) e 10/14/2024
Designe		Hector Paez						Case No	
		Number/Name	e		20-001 - 5	Site 1			
				BMP	Identificat	ion			
BMP N	AME / ID	S1-12 Modul							
			Мı	ist match Na	me/ID used	on BMP Design	Calculatior	n Sheet	
	D ' C II I			Design	Rainfall D	epth	Ŧ	0.00	
Jesign	Rainfall In	tensity					I =	0.20	in/hr
						ea Tabulation			
		In	sert additional rows	if needed to	ассоттоа	late all DMAs di	raining to th Design	ne BMP	
	DMA Type/ID	DMA Area (square feet)	Post-Project Surface Type (use pull-down menu)	Effective Imperivous Fraction, I _f	DMA Runoff Factor	DMA Areas x Runoff Factor	Rainfall Intensity (in/hr)	Design Flow Rate (cfs)	Proposed Flow Rate (cfs)
	\$1-12A	0	Roofs	1	0.89	0			
	\$1-12C	23273.88	Concrete or Asphalt	1	0.892	20760.3			
Ŋ									
DMAs	<u> </u>								
_									
	<u> </u>								
				.					
		23273.88	1	Total		20760.3	0.20	0.10	0.115
Notes:									
oies.									

	Santa A	Ana Water	rshed - BMP I	Design Flo	w Rate, (2 _{BMP}	Legend:		Required Entrie
			(Rev. 10-2011)	-			-		Calculated Cells
Compai	ny Name (.	<i>Note this worksh</i> FMCivil Eng	<i>eet shall <u>only</u> be use</i> vineers Inc	d in conjunctio	on with BMP	designs from the	e <u>LID BMP</u>		<u>ok</u>) e 10/14/2024
Designe		Hector Paez						Case No	
		Number/Name	e		20-001 - 5	Site 1			
				BMP	Identificat	ion			
BMP N	AME / ID	S1-13 Modu	lar Wetlands						
			Мı	ist match Na	me/ID used	on BMP Design	Calculatior	n Sheet	
	D : 0111			Design	Rainfall D	epth		0.00	
esign	Rainfall In	itensity					I =	0.20	_in/hr
						ea Tabulation			
		In	sert additional rows	if needed to	ассоттоа	late all DMAs di	raining to th Design	ne BMP	
	DMA Type/ID	DMA Area (square feet)	Post-Project Surface Type (use pull-down menu)	Effective Imperivous Fraction, I _f	DMA Runoff Factor	DMA Areas x Runoff Factor	Rainfall Intensity (in/hr)	Design Flow Rate (cfs)	Proposed Flow Rate (cfs)
	S1-13A	0	Roofs	1	0.89	0			
	\$1-13C	28300.75	Concrete or Asphalt	1	0.892	25244.3			
Ś									
DMAs	<u> </u>								
				.					
		28300.75	1	Total		25244.3	0.20	0.12	0.144
otes:									
nes:									

	<u>Santa A</u>	na Water	<u>shed</u> - BMP I	Design Flo	w Rate, (2 _{BMP}	Legend:		Required Entri
			(Rev. 10-2011)	1					Calculated Cel
ompar	1y Name	FMCivil Eng	<i>eet shall <u>only</u> be used</i> ineers Inc	a in conjunctio	on with BMP	designs from the	E <u>LID BMP I</u>		<u>e 10/14/2024</u>
esigne		Hector Paez	,					Case No	
ompar	ny Project	Number/Name	e		20-001 - S	Site 1			
				BMP	Identificat	ion			
MP N	AME / ID	S1-14 Modul	lar Wetlands						
			Ми	ist match Na	me/ID used	on BMP Design	Calculation	n Sheet	
				Design	Rainfall D	epth			
sign	Rainfall In	tensity					I =	0.20	in/hr
			Drai	nage Manag	gement Are	ea Tabulation			
		Ins	sert additional rows	if needed to	accommod	ate all DMAs di	raining to th Design	e BMP	
	DMA	DMA Area	Post-Project Surface Type	Effective Imperivous	DMA Runoff Factor	DMA Areas x Runoff Factor	Rainfall Intensity	Design Flow	Proposed Flow
	Type/ID S1-14A	(square feet)	(use pull-down menu) Roofs	Fraction, I _f	0.89	0	(in/hr)	Rate (cfs)	Rate (cfs)
					0.05				
	S1-14C	8629.3	Concrete or Asphalt	1	0.892	7697.3			
٩s									
DMAs									
				Total			0.20	0.04	0.052

	<u>Santa A</u>	na Water	r <u>shed</u> - BMP I	Design Flo	w Rate, (Q _{BMP}	Legend:		Required Entrie
			(Rev. 10-2011)				-		Calculated Cells
Compar		<i>Vote this worksh</i> FMCivil Eng	<i>eet shall <u>only</u> be used</i>	d in conjunctio	on with BMP	designs from the	e <u>LID BMP</u> .		<u>ek</u>) 2 10/14/2024
Designe		Hector Paez						Case No	
Compar	ny Project	Number/Nam	e		20-001 - S	Site 1			
				BMP	Identificat	ion			
BMP N	AME / ID	S1-15 Modul	lar Wetlands						
			Ми	st match Na	me/ID used	on BMP Design	Calculatior	n Sheet	
				Design	Rainfall D	lepth			
Design	Rainfall In	tensity					I =	0.20	in/hr
			Drai	nage Manag	gement Are	ea Tabulation			
		In	sert additional rows	if needed to	accommod	late all DMAs di		ie BMP	
	DMA Type/ID	DMA Area (square feet)	Post-Project Surface Type (use pull-down menu)	Effective Imperivous Fraction, I _f	DMA Runoff Factor	DMA Areas x Runoff Factor	Design Rainfall Intensity (in/hr)	Design Flow Rate (cfs)	Proposed Flow Rate (cfs)
	S1-15A	0	Roofs	1	0.89	0	,		
	S1-15C	0	Concrete or Asphalt	1	0.892	0			
٩s									
DMAs									
		0		Total		0	0.20		
			-						
Notes:									

	Santa A	Ana Water	·shed - BMP [Design Flo	w Rate, (2 _{BMP}	Legend:		Required Entries
			(Rev. 10-2011)	-			_		Calculated Cells
Compar	1y Name	Note this worksh FMCivil Eng	eet shall <u>only</u> be used	d in conjunctio	on with BMP	designs from the	e <u>LID BMP I</u>		<u>ok</u>) e 10/14/2024
Designe		Hector Paez						Case No	
Compar	ny Project I	Number/Nam	2		20-001 - S	ite 1			
				BMP	Identificat	ion			
BMP N	AME / ID	S1-16 Modul							
			Mu	ist match Nai	me/ID used	on BMP Design	Calculation	Sheet	
				Design	Rainfall D	epth			
Design	Rainfall In	tensity					I =	0.20	in/hr
			Drai	nage Manag	gement Are	a Tabulation			
		Ins	sert additional rows	if needed to	accommod	ate all DMAs di	raining to th Design	e BMP	
	DMA	DMA Area	Post-Project Surface Type	Effective Imperivous	DMA Runoff	DMA Areas x	Rainfall Intensity	Design Flow	Proposed Flow
	Type/ID	(square feet)	(use pull-down menu)	Fraction, I _f	Factor	Runoff Factor	(in/hr)	Rate (cfs)	Rate (cfs)
	S1-16A	19615	Roofs	1	0.89	17496.6			
	\$1-16C	337.89	Concrete or Asphalt	1	0.892	301.4			
(0									
DMAs									
		19952.89		Total		17798	0.20	0.08	0.115
		13332.83		10101		17798	0.20	0.08	0.115
Notes:									

(Rev. 10-2011) Calculated ote this worksheet shall only be used in conjunction with BMP designs from the LID BMP Design Handbook / Date 10/14/2024 FMCivil Engineers Inc Date 20/001 - Site 2 Hector Paez 20-001 - Site 2 'umber/Name 20-001 - Site 2 BMP Identification S2-1 Modular Wetlands S2-1 Modular Wetlands Must match Name/ID used on BMP Design Calculation Sheet Design Rainfall Depth I = 0.20 in/hr Post-Project Effective DMA Post-Project Effective DMA	Sar	nta A	na Water	<u>shed</u> - BMP E	Design Flo	w Rate. ()pmp	Laganda		Required Entrie
Date 10/14/2024 Case No Case No				(Rev. 10-2011)						Calculated Cell
Hector Paez Case No umber/Name 20-001 - Site 2 BMP Identification S2-1 Modular Wetlands Must match Name/ID used on BMP Design Calculation Sheet Design Rainfall Depth snsity I = 0.20 in/hr Drainage Management Area Tabulation Insert additional rows if needed to accommodate all DMAs draining to the BMP DMA Area Surface Type (use pull-down menu) Effective Protoct Runoff Factor Rainfall 0 Roofs 1 0.892 166239 0 Rate (rfs) Proposed Flow Rate (rfs) 186366.61 Concrete or Aspholt 1 0.892 166239 1	Company Na				d in conjunctio	on with BMP	designs from the	e <u>LID BMP I</u>		
S2-1 Modular Wetlands EMP Identification Subset of the second	Designed by		Hector Paez							
S2-1 Modular Wetlands Must match Name/ID used on BMP Design Calculation Sheet Design Rainfall Depth I = 0.20 in/hr Drainage Management Area Tabulation Insert additional rows if needed to accommodate all DMAs draining to the BMP MAArea Surface Type (square feet) (use pull-down menu) Fraction, I ₁ Factor Numoff Factor B6356.61 Concrete or Asphalt 1 0.892 166239 B6366.61 Concrete or Asphalt 1 0.892 166239 B66239 B6623 B66239 B6623 B66239 B6623 B66239 B6623 B662 B662			Number/Name	9		20-001 - 5	Site 2			
S2-1 Modular Wetlands Must match Name/ID used on BMP Design Calculation Sheet Design Rainfall Depth I = 0.20 in/hr Drainage Management Area Tabulation Insert additional rows if needed to accommodate all DMAs draining to the BMP MAArea Surface Type (square feet) (use pull-down menu) Fraction, I ₁ Factor Numoff Factor B6356.61 Concrete or Asphalt 1 0.892 166239 B6366.61 Concrete or Asphalt 1 0.892 166239 B66239 B6623 B66239 B6623 B66239 B6623 B66239 B6623 B662 B662					BMP	Identificat	ion			
Design Rainfall Depth I = 0.20 in/hr Drainage Management Area Tabulation Design Rainfall Depth Insert additional rows if needed to accommodate all DMAs draining to the BMP DMA Area Surface Type (see puil down menu) (see puil down menu) Concrete or Asphalt 1 0.892 166239 0 Roofs 1 0.892 166239 186366.61 Concrete or Asphalt 1 0.892 166239 1 1 0.892 166239 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<	MP NAMF	E / ID	S2-1 Modula	r Wetlands	2					
ensity I = 0.20 in/hr Drainage Management Area Tabulation Insert additional rows If needed to accommodate all DMAs drainants to the BMP DMA Area Variace Type Effective Menerology DMA Runoff Runof			52 T 1104414		st match Na	me/ID used	on BMP Design	Calculation	Sheet	
Drainage Management Area Tabulation Insert additional rows if needed to accommodate all DMAs draining to the BMP DMA Area Surface Type Effective Imperivous Post-Project Surface Type Insert additional rows if needed to accommodate all DMAs draining to the BMP DMA Area Surface Type Imperivous Post-Project Surface Type Surface Type Imperivous Post-Project Surface Type Proposed Flow (use pull-down menu) Fraction, I DMA DMA Areas X Runoff DMA Areas X Runoff Factor Intensity Design Flow Proposed Flow 0 Roofs 1 0.892 166239 Intensity <					Design	Rainfall D	epth			
Insert additional rows if needed to accommodate all DMAs draining to the BMP DMA Area Post-Project Surface Type Effective Iffective DMA Runoff Max Areas x Runoff Factor Disign Rainight Intensity Design Flow Proposed Flow 0 Roofs 1 0.89 0 Rate (cfs) Rate (cfs) 1 0.89 0 0 Rate (cfs) Rate (cfs) Rate (cfs) 1 0.892 166239 0 0 Rate (cfs) 0 Rate (cfs) 1 0.892 166239 0 0 0 Rate (cfs) 0 0 186366.61 Concrete or Aspholt 1 0.892 166239 0 <td< td=""><td>esign Rain</td><td>fall In</td><td>tensity</td><td></td><td></td><td></td><td></td><td>I =</td><td>0.20</td><td>in/hr</td></td<>	esign Rain	fall In	tensity					I =	0.20	in/hr
DMA Area (square feet)Post-Project Surface Type (use puil-down menu)Effective Imperivous Fraction, Ir Proposed Flox RanoffDMA Areas x Runoff Factor Runoff Factor Runoff Factor Runoff Factor Runoff FactorDesign Flow Rate (cfs)Proposed Flox Rate (cfs)0Roofs10.8900 <td></td> <td></td> <td></td> <td>Drai</td> <td>nage Manag</td> <td>gement Ar</td> <td>ea Tabulation</td> <td></td> <td></td> <td></td>				Drai	nage Manag	gement Ar	ea Tabulation			
DMA Area (square feet)Post-Project (supare Type)Effective imperivous Fraction, IrDMA Runoff FactorRainfall Intensity (in/hr)Design Flow Rate (cfs)Proposed Flor Rate (cfs)0Roofs10.89000	_		Ins	sert additional rows	if needed to	ассоттоа	ate all DMAs di		e BMP	
0 Roofs 1 0.89 0 186366.61 Concrete or Asphalt 1 0.892 166239 186366.61 Concrete or Asphalt 1 0.892 166239 1 0.892 166239 1 1 186366.61 Concrete or Asphalt 1 0.892 166239 1 0.892 166239 1 1 1 1 0.892 166239 1)MA pe/ID		Surface Type	Imperivous	Runoff		Rainfall Intensity	-	Proposed Flow Rate (cfs)
		2-1A						(,)		
Image: section of the section of th	S2	2-1C	186366.61	Concrete or Asphalt	1	0.892	166239			
Image: second										
Image: second										
Image: section of the section of th										
Image: Normal synthety of the synthe synthety of the synthety of the synthety of the sy										
Image: second										
Image: second										
Image: state in the state	DMAs									
Image: second										
Image: state in the s										
Image: second										
Image: second										
Image: state										
Image: state										
Image: Constraint of the system of										
Image: 186366.61 Total Image: 166239 0.20 0.76 0.808										
186366.61 Total 166239 0.20 0.76 0.808										
			186366.61		Total		166239	0.20	0.76	0.808
			186366.61			Total	Image: state	Image: state	Image: state stat	Image: state stat

Operation Operation <t< th=""><th></th><th>Santa A</th><th>Ana Water</th><th><u>shed</u> - BMP E</th><th>Design Flo</th><th>w Rate, (</th><th></th><th>Legend:</th><th></th><th>Required Entries</th></t<>		Santa A	Ana Water	<u>shed</u> - BMP E	Design Flo	w Rate, (Legend:		Required Entries
mpany may EMCivit Rugineers Inc Date [0/14/2024] signed by Hetor Paz 0.001 - Site 2 0.001 - Site 2 BMP Identification BMP Identification Total S22 Modular Wetlands Total Colspan="2">Case No Case No Case No Case No Case No Total Colspan="2">Case No Total Colspan="2">Case No Total Colspan="2">Case No Case No				(Rev. 10-2011)						
Signed by Hector Paez Case No mmany Project Number/Name 20-001 - Site 2 BMP Identification PROMODE S22 Modular Wetlands Must match Name/ID used on BMP Design Colculation Sheet Design Rainfall Design Image Management Area Tabulation In 0.20 Infr Datage Management Area Tabulation Insert additional rows if needed to accommodate all DMAs dramas Rainfall Intensity Insert additional rows if needed to accommodate all DMAs dramas Rainfall Intensity Design flow Proposed flow Insert additional rows if needed to accommodate all DMAs dramas Rainfall Intensity Design flow Proposed flow The distribution rows if needed to accommodate all DMAs dramas Imperivous Rainfall Intensity Searce 2 Searce 3 Searce 3 Searce 4 Searce 4 Searce 4 Searce 4<	Compor				d in conjunctio	on with BMP	designs from the	e <u>LID BMP .</u>		
Main Document BMP Identification IP NAME / ID S2-2 Modular Wetlands IP NAME / ID S2-2 Modular Wetlands IP NAME / ID S2-2 Modular Wetlands IP S2-2 Modular Wetlands Big Rainfall Depth Sign Rainfall Intensity 1 = 0.20 infr Inter additional rows if needed to accommodate all DMAs draining to the BMP Inter additional rows if needed to accommodate all DMA acroax x intensity Design Flow Proposed flow Rainfall Rainfall Proposed flow Rainfall Rainfall Proposed flow Rainfall Proposed flow Rainfall Rainfall Proposed flow Rainfall Rainfall Proposed flow Rainfall Rainfall Proposed flow Rainfall Rainfall Rainfall Rainfall Rainfall Rainfall </td <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			-							
S22 Modular Wetlands Mate match Name/ID used on BMP Design Calculation Sheet Sign Rainfall Intensity I =				e		20-001 - 5	Site 2			
S22 Modular Wetlands Mate match Name/ID used on BMP Design Calculation Sheet Sign Rainfall Intensity I =					BMP	Identificat	ion			
Must match Name/ID used on BMP Design Calculation Sheet gen Rainfall Ditexts 1 - 0.0 or Sign Rainfall Intensity Datage Management Area Tabulation Datage Management Area Tabulation Datage Management Area Tabulation Datage additional rows if needed to accommodate all DMAs dressing One to accommodate all DMAs dressing One to accommodate all DMAs dressing Segret additional rows if needed to accommodate all DMAs dressing Segret additional rows if needed to accommodate all DMAs areas x Segret additional rows if needed to accommodate all DMAs areas x Segret additional rows if needed to accommodate all DMAs areas x Segret additional rows if needed to accommodate all DMAs areas x Segret additional rows if needed to accommodate all DMAs areas x Segret additional rows if needed to accommodate all DMAs areas x Segret additional rows if needed to accommodate all DMAs areas x Segret additional rows if needed to accommodate all DMAs areas x Segret additional rows if needed to accommodate all DMAs areas x Segret additin the segret rows if needed to accommodate all DMAs areas x	BMP N	AME / ID	S2-2 Modula	r Wetlands						
age Rainfall Intensity 1 0.00 n/m Diage Constrained and the cons					ist match Na	me/ID used	on BMP Design	Calculatior	n Sheet	
Orinage Management Area Tabulation Design divisional colspan="2">Design from proposed flow for proposed					Design	Rainfall D	epth			
Yardi Disk area Post-Project Effective DMA Pactor Runoff DMA Area Proposed flow Proposed flow Yippe/ID (square feet) (use pull down menu) Fraction, / Pactor Runoff DMA Areas Proposed flow Ret (rfs) S2-2A 190057.62 Roofs 1 0.89 169531.4 Fraction, // Fractor	Design	Rainfall In	tensity					I =	0.20	in/hr
DMA DMA Area Type/ID Post-Project (square feet) Effective (use pull down meu) DMA (mperivous) DMA Runoff Factor DMA Runoff Infensiti Practor Design Rainfall Infensiti Infensi Infensiti Infensi Infensiti Infensiti Infensiti I				Drai	nage Manag	gement Ar	ea Tabulation			
DMA Type/ID DMA Area (square feet) Post-Project (use pulcowneen) Effective imperivaue DMA Runoff Factor Dum Areas Runoff Factor Runoff Factor Design Flow (n/n/n) Proposed Flow Rate (s/s) 52-24 190057.62 Roofs 1 0.89 169531.4 Imperivaue Imperivaue </td <td></td> <td></td> <td>In</td> <td>sert additional rows</td> <td>if needed to</td> <td>ассоттоа</td> <td>ate all DMAs di</td> <td></td> <td>ne BMP</td> <td></td>			In	sert additional rows	if needed to	ассоттоа	ate all DMAs di		ne BMP	
S2-2A 190057.62 Roofs 1 0.89 169531.4 S2-2C 23066.2 Concrete or Aspholt 1 0.892 20575.1 Image: S2-2C 23066.2 Concrete or Aspholt 1 0.892 20575.1 Image: S2-2C 23066.2 Concrete or Aspholt 1 0.892 20575.1 Image: S2-2C 23066.2 Concrete or Aspholt 1 0.892 20575.1 Image: S2-2C 23066.2 Concrete or Aspholt 1 0.892 20575.1 Image: S2-2C 23066.2 Concrete or Aspholt 1 0.892 20575.1 Image: S2-2C Image: S2-2C Image: S2-2C Image: S2-2C Image: S2-2C Image: S2-2C Image: S2-2C Image: S2-2C Image: S2-2C Image: S2-2C Image: S2-2C Image: S2-2C Image: S2-2C Image: S2-2C Image: S2-2C Image: S2-2C Image: S2-2C Image: S2-2C Image: S2-2C Image: S2-2C Image: S2-2C Image: S2-2C Image: S2-2C Image: S2-2C Image:				Surface Type	Imperivous	Runoff		Rainfall Intensity	-	
Image:								(,)		
Image:										
Image: state stat		\$2-2C	23066.2	Concrete or Asphalt	1	0.892	20575.1			
Image: state stat										
Image: state stat										
Image: state stat										
Image: state stat										
Image: state stat										
Image: state stat	st									
	DMA									
tes.			213123.82		Total		190106.5	0.20	0.87	0.924
tes.				•						
tes:										
	lotes:									

	Santa A	Ana Water	rshed - BMP I	Design Flo	w Rate, (2 _{BMP}	Legend:		Required Entrie
			(Rev. 10-2011)						Calculated Cells
omnar	ny Name	Note this worksh FMCivil Eng	eet shall <u>only</u> be use	d in conjunctio	on with BMP	designs from the	e <u>LID BMP -</u>		<u>ok</u>) e 10/14/2024
Designe		Hector Paez						Case No	
Compar	ny Project	Number/Nam	e		20-001 - 5	Site 2			
				BMP	Identificat	ion			
BMP N	AME / ID	S2-3 Modula							
			Mu	ist match Na	me/ID used	on BMP Design	Calculatior	Sheet	
				Design	Rainfall D	epth			
esign	Rainfall In	tensity					I =	0.20	in/hr
						ea Tabulation			
		In.	sert additional rows	if needed to	ассоттоа	ate all DMAs di	raining to th Design	e BMP	
	DMA	DMA Area	Post-Project Surface Type	Effective	DMA Runoff	DMA Areas x	Rainfall Intensity	Design Flow	Proposed Flow
	Type/ID	(square feet)	(use pull-down menu)	Imperivous Fraction, I _f	Factor	Runoff Factor	(in/hr)	Rate (cfs)	Rate (cfs)
	S2-3A	194209.17	Roofs	1	0.89	173234.6			
	S2-3C	44222.67	Concrete or Asphalt	1	0.892	39446.6			
DMAs									
ō									
	<u> </u>								
		238431.84		Total		212681.2	0.20	0.98	1.154
		230431.04	1			212001.2	0.20	0.50	1.1.54
otes:									
les:									

	Santa A	ana Water	rshed - BMP D	Design Flo	w Rate, (Legend:		Required Entries
			(Rev. 10-2011)	-					Calculated Cells
Tommor		<i>Note this worksh</i> FMCivil Eng	eet shall <u>only</u> be used	d in conjunctio	on with BMP	designs from the	e <u>LID BMP I</u>		<u>k</u>) 2 10/14/2024
Designe		Hector Paez						Case No	
		Number/Nam	e		20-001 - S	Site 2			
				BMP	Identificat	ion			
RMP N	AME / ID	S2-4 Modula	r Wetlands	Din	Identificat				
				st match Na	me/ID used	on BMP Design	Calculation	n Sheet	
				Design	Rainfall D	epth			
Design I	Rainfall In	tensity					I =	0.20	in/hr
			Drai	nage Manag	gement Are	ea Tabulation			
ſ		In:	sert additional rows	if needed to	accommod	ate all DMAs di	raining to th Design	ne BMP	
			Post-Project	Effective	DMA		Rainfall		
	DMA Type/ID	DMA Area (square feet)	Surface Type (use pull-down menu)	Imperivous Fraction, I _f	Runoff Factor	DMA Areas x Runoff Factor	Intensity (in/hr)	Design Flow Rate (cfs)	Proposed Flow Rate (cfs)
	S2-4A	0	Roofs	1	0.89	0	(,)	1412 (0)3)	
	S2-4C	129874.52	Concrete or Asphalt	1	0.892	115848.1			
DMAs									
D									
				.					
		129874.52		Total		115848.1	0.20	0.53	0.577

	Santa A	Ana Water	<u>shed</u> - BMP I	Design Flo	w Rate, () _{rmp}	Lagandu		Required Entries
			(Rev. 10-2011)				Legend:		Calculated Cells
ompar	ny Name	Note this worksh FMCivil Eng	eet shall <u>only</u> be use	d in conjunctio	on with BMP	designs from the	e <u>LID BMP</u>		<u>k</u>) 2 10/14/2024
Designe		Hector Paez						Case No	
		Number/Nam	e		20-001 - S	Site 2			
				BMP	Identificat	ion			
BMP N	AME / ID	S2-5 Modula	r Wetlands						
				ist match Nai	me/ID used	on BMP Design	Calculatior	n Sheet	
				Design	Rainfall D	epth			
Design	Rainfall In	tensity					I =	0.20	in/hr
			Drai	nage Manag	gement Are	ea Tabulation			
		Ins	sert additional rows	if needed to	accommod	ate all DMAs di	raining to th Design	ne BMP	
	DMA Type/ID	DMA Area (square feet)	Post-Project Surface Type (use pull-down menu)	Effective Imperivous Fraction, I _f	DMA Runoff Factor	DMA Areas x Runoff Factor	Rainfall Intensity (in/hr)	Design Flow Rate (cfs)	Proposed Flow Rate (cfs)
	\$2-25	0	Roofs	1	0.89	0	(11) 11)	1400 (0)37	
	\$2-5C	17428.74	Concrete or Asphalt	1	0.892	15546.4			
st									
DMAs									
		17428.74		Total		15546.4	0.20	0.07	0.073
			•						
Notes:									

	Santa A	Ana Water	<u>shed</u> - BMP E	Design Flo	w Rate, () _{rmp}	Legend:		Required Entries
			(Rev. 10-2011)						Calculated Cells
Compo	ny Name	Note this worksh FMCivil Eng	eet shall <u>only</u> be used	d in conjunctio	on with BMP	designs from the	e <u>LID BMP i</u>		<u>k</u>) 2 10/14/2024
Designe		Hector Paez						Case No	
		Number/Nam	e		20-001 - S	Site 2			
				BMP	Identificat	ion			
SMP N	AME / ID	S2-6 Modula	r Wetlands						
				ist match Na	me/ID used	on BMP Design	Calculation	n Sheet	
				Design	Rainfall D	epth			
Design	Rainfall In	tensity					I =	0.20	in/hr
			Drai	nage Manag	gement Are	ea Tabulation			
		In	sert additional rows	if needed to	accommod	ate all DMAs di	raining to th Design	ne BMP	
	DMA Type/ID	DMA Area (square feet)	Post-Project Surface Type (use pull-down menu)	Effective Imperivous Fraction, I _f	DMA Runoff Factor	DMA Areas x Runoff Factor	Rainfall Intensity (in/hr)	Design Flow Rate (cfs)	Proposed Flow Rate (cfs)
	S2-6A	0	Roofs	1	0.89	0	(11) 11)	<i>hute</i> (0,5)	Nuce (0)37
	S2-6C	31142.53	Concrete or Asphalt	1	0.892	27779.1			
	<u> </u>								
st									
DMAs									
	I	31142.53		Total		27779.1	0.20	0.13	0.144
lotes:									

9	Santa A	na Water	<u>shed</u> - BMP E	Design Flo	w Rate. () _{DMB}	T 1.		Required Entries
			(Rev. 10-2011)	-			Legend:		Calculated Cells
omnan		Vote this worksh FMCivil Eng	eet shall <u>only</u> be used	d in conjunctio	on with BMP	designs from the	e <u>LID BMP I</u>		<u>ok</u>) e 10/14/2024
esigned		Hector Paez						Case No	
ompan	y Project 1	Number/Nam	e		20-001 - S	Site 3			
				BMP	Identificat	ion			
MP NA	AME / ID	S3-1 Modula	r Wetlands						
			Ми	ist match Nai	me/ID used	on BMP Design	Calculation	Sheet	
				Design	Rainfall D	epth			
esign F	Rainfall In	tensity					I =	0.20	in/hr
						a Tabulation			
Г		In	sert additional rows	if needed to	accommod	ate all DMAs di	raining to th Design	e BMP	
	DMA Type/ID	DMA Area (square feet)	Post-Project Surface Type (use pull-down menu)	Effective Imperivous Fraction, I _f	DMA Runoff Factor	DMA Areas x Runoff Factor	Rainfall Intensity (in/hr)	Design Flow Rate (cfs)	Proposed Flow Rate (cfs)
	S3-1A	82323.47	Roofs	1	0.89	73432.5	(, ,	(-)-/	
-									
	S3-1C	49531.63	Concrete or Asphalt	1	0.892	44182.2			
-									
-									
-									
-									
As -									
DMAs									
-									
-									
-									
ŀ									
-									
		131855.1		Total		117614.7	0.20	0.54	0.577
			-						
otes:									

	Santa A	Ana Water	rshed - BMP I	Design Flo	w Rate. ()pmp	Lagandu		Required Entrie
			(Rev. 10-2011)	-			Legend:		Calculated Cells
Compar	ny Name (.	Note this worksh FMCivil Eng	eet shall <u>only</u> be use	d in conjunctio	on with BMP	designs from the	e <u>LID BMP</u>		<u>ok</u>) e 10/14/2024
Designe		Hector Paez						Case No	
		Number/Nam	e		20-001 - 5	Site 3			
				BMP	Identificat	ion			
SMP N	AME / ID	S3-2 Modula	r Wetlands						
		55 2 module		ist match Na	me/ID used	on BMP Design	Calculatior	n Sheet	
				Design	Rainfall D	epth			
Design	Rainfall In	tensity					I =	0.20	in/hr
			Drai	nage Manag	gement Ar	ea Tabulation			
		In.	sert additional rows	if needed to	ассоттоа	ate all DMAs di	raining to th Design	ne BMP	
	DMA Type/ID	DMA Area (square feet)	Post-Project Surface Type (use pull-down menu)	Effective Imperivous Fraction, I _f	DMA Runoff Factor	DMA Areas x Runoff Factor	Rainfall Intensity (in/hr)	Design Flow Rate (cfs)	Proposed Flow Rate (cfs)
	\$3-2A	28787.68	Roofs	1	0.89	25678.6	,		
	\$3-2C	43453.31	Concrete or Asphalt	1	0.892	38760.4			
st									
DMAs									
	<u> </u>								
		72240.99		Total		64439	0.20	0.30	0.346
			4						
otes:									
tes:									

	<u>Santa A</u>	Ana Water	r <mark>shed</mark> - BMP I	Design Flo	w Rate, (Q _{BMP}	Legend:		Required Entries
		Mada di succelati	(Rev. 10-2011) eet shall <u>only</u> be used	J :) Inima Com di		Desire Handler	Calculated Cells
Compar	ny Name	FMCivil Eng		a in conjunctio	on with BMF	' designs from the	E <u>LID BMP .</u>		10/14/2024
Designe	ed by	Hector Paez						Case No	
Compar	ny Project	Number/Name	e		20-001 - 5	Site 3			
				BMP	Identificat	ion			
BMP N	AME / ID	S3-3 Modula		ist match Na	ma/ID usad	on BMP Design	Calculation	Shoot	
			IVIU		Rainfall D	-	Culculation	I SHEEL	
Design	Rainfall In	itensity		Design	Rainfall L	o ptil	I =	0.20	in/hr
			Drai	nage Manag	gement Ar	ea Tabulation			
		In	sert additional rows	if needed to	ассоттос	late all DMAs di		ne BMP	
			Post-Project	Effective	DMA		Design Rainfall		
	DMA	DMA Area	Surface Type	Imperivous	Runoff	DMA Areas x	Intensity	Design Flow	Proposed Flow
	Type/ID S3-3A	(square feet)	(use pull-down menu) Roofs	Fraction, I _f	Factor 0.89	Runoff Factor	(in/hr)	Rate (cfs)	Rate (cfs)
		0	10033		0.05	0			
	\$3-3C	116.28	Concrete or Asphalt	1	0.892	103.7			
٩s									
DMAs									
		116.28	l	Total		103.7	0.20	0.00	0
			Proposed Volun	ne must be g	reater than	the Design Cap	oture Volum	e	
Notes:									

	<u>Santa A</u>	ana Water	rshed - BMP I	Design Flo	w Rate, (2 _{BMP}	Legend:		Required Entri
		Note this worksh	(Rev. 10-2011) eet shall <u>only</u> be used	d in conjuncti	on with DMD	designs from the		Design Handhoe	Calculated Cel
ompai	1y Name	FMCivil Eng		a in conjunctio	on with BMP	aesigns from the	E LID BMP		<u>k</u>) 10/14/2024
esigne		Hector Paez	,					Case No	
ompar	ny Project I	Number/Nam	e		20-001 - S	Site 3			
				BMP	Identificat	ion			
MP N	AME / ID	S3-4 Modula	r Wetlands						
			Mu	st match Na	me/ID used	on BMP Design	Calculatior	n Sheet	
				Design	Rainfall D	epth			
esign	Rainfall In	tensity					I =	0.20	in/hr
			Drai	nage Manag	gement Are	ea Tabulation			
		In	sert additional rows	if needed to	accommod	ate all DMAs di	raining to th Design	ne BMP	
	DMA	DMA Area	Post-Project Surface Type	Effective Imperivous	DMA Runoff	DMA Areas x	Rainfall Intensity	Design Flow	Proposed Flow
	Type/ID S3-4A	(square feet)	(use pull-down menu)	Fraction, I _f	Factor 0.89	Runoff Factor	(in/hr)	Rate (cfs)	Rate (cfs)
		0	Roofs	1	0.89	0			
	S3-4C	4363.5	Concrete or Asphalt	1	0.892	3892.2			
SF									
DMAs									
l									
				Total		3892.2	0.20	0.02	0.052

	Santa A	na Water	r <mark>shed</mark> - BMP E	Design Flo	w Rate. (Demp	Laganda		Required Entrie
			(Rev. 10-2011)				Legend:		Calculated Cell
ompor		<i>Note this worksh</i> FMCivil Eng	eet shall <u>only</u> be used	d in conjunctio	on with BMP	designs from the	e <u>LID BMP I</u>		<u>k</u>) 2 10/14/2024
Designe		Hector Paez						Case No	
		Number/Nam	e		20-001 - S	Site 3			
				BMP	Identificat	ion			
MP N.	AME / ID	S3-5 Modula	r Wetlands	Dill	Identificat				
				ıst match Na	me/ID used	on BMP Design	Calculation	Sheet	
				Design	Rainfall D	lepth			
esign]	Rainfall In	tensity					I =	0.20	in/hr
			Drai	nage Manag	gement Are	ea Tabulation			
1		In:	sert additional rows	if needed to	accommod	late all DMAs di	raining to th Design	e BMP	
	DMA Type/ID	DMA Area (square feet)	Post-Project Surface Type (use pull-down menu)	Effective Imperivous Fraction, I _f	DMA Runoff Factor	DMA Areas x Runoff Factor	Rainfall Intensity (in/hr)	Design Flow Rate (cfs)	Proposed Flow Rate (cfs)
	\$3-5A	0	Roofs	1	0.89	0	(, ,	(-)-/	
	\$3-5C	28679.95	Concrete or Asphalt	1	0.892	25582.5			
S									
DMAs									
-									
		28670.05		Total		25592 E	0.20	0.12	0.144
		28679.95	I	iotui		25582.5	0.20	0.12	0.144

			ershed - BMP I	Jesign Vo	lume, V _B	MP	Legend:		Required Entr
			(Rev. 10-2011)						Calculated Ce
mnon	ny Name	(Note this works) FMCivil Eng	heet shall <u>only</u> be used	in conjunction	n with BMP	designs from the	<u>LID BMP L</u>) 10/14/2024
esigne		Hector Paez						Case No	
		Number/Name	e		20-001 - 5	lite 4		Case No	
mpun	19 110 0000		-		20 001 2				
				BMP I	dentificati	on			
MP NA	AME / ID	S4 Onsite Bi	oretention Basin						
			Mus	t match Nan	ne/ID used o	on BMP Design	Calculation	Sheet	
				Design I	Rainfall De	epth			
th Per	rcentile, 24	l-hour Rainfal	l Depth,				D ₈₅ =	0.60	inches
om the	e Isohyetal	Map in Hand	book Appendix E						-
			Ducia			Tabulation			
						a Tabulation			
		Ir	nsert additional rows	if needed to a	accommodo	ite all DMAs dri	aining to the	e BMP	
				Effective	DMA		Design	Design Capture	Proposed Volume on
	DMA	DMA Area	Post-Project Surface	Imperivous	Runoff	DMA Areas x	Storm	Volume, V _{BMP}	Plans (cubic
	Type/ID	(square feet)	Туре	Fraction, I _f	Factor	Runoff Factor	Depth (in)	(cubic feet)	feet)
	4-1A	57919.51	Roofs	1	0.89	51664.2			
	4-1C	56064.51	Concrete or Asphalt	1	0.89	50009.5			
		113984.02	7	otal		101673.7	0.60	5083.7	5498
			1						
otes:									

<u>Santa</u>	a Ana Wat	(Rev. 10-2011)	Design Vo	olume, V _E	BMP	Legend:		Required Ent Calculated Co
		heet shall <u>only</u> be used	' in conjunctio	n with BMP	designs from the	LID BMP L		
company Name	FMCivil Eng							10/14/2024
esigned by	Hector Paez					Case No		
ompany Project	Number/Nam	e		20-001 - 5	Site 5 DMA 1			
			BMP I	dentificati	on			
MP NAME / ID	Onsite Biore	tention Basin 5-1						
		Mus			on BMP Design	Calculation	Sheet	
54 D (1)	41 D : CI	11D 4	Design l	Rainfall De	epth			
5th Percentile, 2 om the Isohyeta		ll Depth, lbook Appendix E				D ₈₅ =	0.60	inches
		Drain	nage Manag	ement Are	a Tabulation			
	li	nsert additional rows	if needed to	accommode	ate all DMAs dr	aining to the	e BMP	
			Effective	DMA		Design	Design Capture Volume, V_{BMP}	Proposed Volume on
DMA Type/ID	DMA Area (square feet)	Post-Project Surface Type	Imperivous Fraction, I _f	Runoff Factor	DMA Areas x Runoff Factor	Storm Depth (in)	(cubic feet)	Plans (cubic feet)
5-1A	18981.97	Roofs	1	0.89	16931.9			
	20716 40	Concepto on Assekalt	1	0.00	24525.4			
5-1C	38716.49	Concrete or Asphalt	1	0.89	34535.1			
	57698.46	1	otal		51467	0.60	2573.4	4321

	a Ana Wat	ershed (Rev. 10-2011)	Design Vo	olume, V _B	SMP	Legend:		Required Ent Calculated C
	Note this works	heet shall only be used	in conjunctio	n with RMP	designs from the	LID RMP I	Design Handbook	
ompany Name	FMCivil Eng		in conjunctio		aesigns from the			10/14/2024
esigned by	Hector Paez						Case No	
	Number/Name	e		20-001 - 5	Site 5 DMA 2		Cuserto	
inpuny roject	i (unio en i (uni	-						
			BMP I	Identificati	on			
MP NAME / II	Onsite Biore	tention Basin 5-2	st match Nan	ne/ID used (on BMP Design	Calculation	Sheet	
		10103		Rainfall De	-	culculation	Sheet	
th Percentile	4-hour Rainfal	1 Depth	Design		2ptil	D ₈₅ =	0.60	See all see
		book Appendix E				D ₈₅	0.00	inches
		Drain	nage Manag	ement Are	a Tabulation			
	Ir	nsert additional rows	if needed to	accommodo	ate all DMAs dr	aining to th	e BMP	
				514		Desta	Design Capture	Proposed
DMA	DMA Area	Post-Project Surface	Effective	DMA Runoff	DMA Areas x	Design Storm	Volume, V _{BMP}	Volume on Plans (cubic
Type/ID	(square feet)	Туре	Imperivous Fraction, I _f	Factor	Runoff Factor	Depth (in)	(cubic feet)	feet)
5-2A	3619.4	Roofs	1	0.89	3228.5	Deptil (III)	(cubic feet)	Jeely
	3019.4	ROOJS	1	0.89	5220.5			
5-2C	19057.84	Concrete or Asphalt	1	0.89	16999.6			
520	15057.01	concrete of hispitule	-	0.05	10555.0			

	Santa A	Ana Water	rshed - BMP E	Design Flo	w Rate, (2 _{BMP}	Legend:		Required Entrie
			(Rev. 10-2011)						Calculated Cells
omnar	ny Name	<i>Note this worksh</i> FMCivil Eng	eet shall <u>only</u> be used	d in conjunctio	on with BMF	designs from the	e <u>LID BMP I</u>		<u>ok</u>) e 10/14/2024
)esigne		Hector Paez						Case No	
ompar	ny Project	Number/Nam	e		20-001 - 5	Site 6			
				BMP	Identificat	ion			
MP N	AME / ID	S6-1 Modula	r Wetlands						
			Ми	ist match Nai	me/ID used	on BMP Design	Calculation	Sheet	
				Design	Rainfall D	epth			
esign	Rainfall In	tensity					I =	0.20	in/hr
						ea Tabulation			
		In:	sert additional rows	if needed to	ассоттос	ate all DMAs di	raining to th Design	e BMP	
	DMA	DMA Area	Post-Project Surface Type	Effective	DMA Runoff	DMA Areas x	Rainfall Intensity	Design Flow	Proposed Flow
	Type/ID	(square feet)	(use pull-down menu)	Imperivous Fraction, I _f	Factor	Runoff Factor	(in/hr)	Rate (cfs)	Rate (cfs)
	S6-1A	142737.57	Roofs	1	0.89	127321.9			
						402050 7			
	\$6-1C	114415.59	Concrete or Asphalt	1	0.892	102058.7			
S									
DMAs									
	<u> </u>								
		257152.16	1	Total		229380.6	0.20	1.05	1.154
		257153.16	1	iotui		229380.0	0.20	1.05	1.134

FMCivil Eng Hector Paez t Number/Nam D S6-2 Modula	e ar Wetlands Mu	BMP Ist match National Design inage Manage if needed to Effective Imperivous Fraction, I _f 1	20-001 - S Identificat me/ID used Rainfall D gement Ar	Site 6 ion on BMP Design Depth ea Tabulation	calculation	Design Handboo Date Case No a Sheet 0.20	10/14/2024
FMCivil Eng Hector Paez t Number/Nam D S6-2 Modula Intensity Intensity Intensity Intensity Intensity Intensity	gineers Inc gineer	BMP Ist match National Design inage Manage if needed to Effective Imperivous Fraction, I _f 1	20-001 - S Identificat me/ID used Rainfall D gement Arr accommod DMA Runoff Factor	Site 6 ion on BMP Design Depth ea Tabulation late all DMAs di DMA Areas x Runoff Factor	I =	Date Case No a Sheet 0.20	in/hr
Hector Paez t Number/Nam	e ar Wetlands Mu Drai sert additional rows Post-Project Surface Type (use pull-down menu) Roofs	BMP Ist match National Design inage Manage in f needed to Effective Imperivous Fraction, I _f 1	Identificat me/ID used Rainfall D gement Arr accommod DMA Runoff Factor	ion on BMP Design Depth ea Tabulation late all DMAs di DMA Areas x Runoff Factor	[= raining to tł Design Rainfall Intensity	Case No Sheet 0.20	in/hr
D S6-2 Modula Intensity Intensity Intensity Intensity Intensity Intensity Intensity Intensity	ar Wetlands Mu Drai Drai sert additional rows Post-Project Surface Type (use pull-down menu) <i>Roofs</i>	BMP Ist match National Design inage Manage in f needed to Effective Imperivous Fraction, I _f 1	Identificat me/ID used Rainfall D gement Arr accommod DMA Runoff Factor	ion on BMP Design Depth ea Tabulation late all DMAs di DMA Areas x Runoff Factor	[= raining to tł Design Rainfall Intensity	0.20 ne BMP Design Flow	Proposed Flow
Intensity Intensity Intensity Intensity Intensity Intensity Intensity Intensity Intensity Intensity Intensity Intensity Intensity	Mu Drai sert additional rows Post-Project Surface Type (use pull-down menu) Roofs	inage Manage inage Manage in f needed to Effective Imperivous Fraction, I _f 1	me/ID used Rainfall D gement Ar accommod DMA Runoff Factor	on BMP Design Depth ea Tabulation late all DMAs du DMA Areas x Runoff Factor	[= raining to tł Design Rainfall Intensity	0.20 ne BMP Design Flow	Proposed Flow
Intensity Intensity Intensity Intensity Intensity Intensity Intensity Intensity Intensity Intensity Intensity Intensity Intensity	Mu Drai sert additional rows Post-Project Surface Type (use pull-down menu) Roofs	Design inage Manage if needed to Effective Imperivous Fraction, I _f 1	Rainfall D gement Arr accommod DMA Runoff Factor	ea Tabulation late all DMAs di DMA Areas x Runoff Factor	[= raining to tł Design Rainfall Intensity	0.20 ne BMP Design Flow	Proposed Flow
In DMA Area (square feet) 143823.86	Drai sert additional rows Post-Project Surface Type (use pull-down menu) Roofs	Design inage Manage if needed to Effective Imperivous Fraction, I _f 1	Rainfall D gement Arr accommod DMA Runoff Factor	ea Tabulation late all DMAs di DMA Areas x Runoff Factor	[= raining to tł Design Rainfall Intensity	0.20 ne BMP Design Flow	Proposed Flow
In DMA Area (square feet) 143823.86	Post-Project Surface Type (use pull-down menu) Roofs	inage Manaş 5 if needed to Effective Imperivous Fraction, I _f 1	gement Ar accommod DMA Runoff Factor	ea Tabulation late all DMAs di DMA Areas x Runoff Factor	raining to th Design Rainfall Intensity	ne BMP Design Flow	Proposed Flow
In DMA Area (square feet) 143823.86	Post-Project Surface Type (use pull-down menu) Roofs	Effective Imperivous Fraction, I _f 1	DMA Runoff Factor	late all DMAs di DMA Areas x Runoff Factor	raining to th Design Rainfall Intensity	ne BMP Design Flow	Proposed Flow
DMA Area (square feet) 143823.86	Post-Project Surface Type (use pull-down menu) Roofs	Effective Imperivous Fraction, I _f 1	DMA Runoff Factor	late all DMAs di DMA Areas x Runoff Factor	Design Rainfall Intensity	Design Flow	
DMA Area (square feet) 143823.86	Post-Project Surface Type (use pull-down menu) <i>Roofs</i>	Effective Imperivous Fraction, I _f 1	DMA Runoff Factor	DMA Areas x Runoff Factor	Design Rainfall Intensity	Design Flow	
(square feet) 143823.86	Surface Type (use pull-down menu) Roofs	Imperivous Fraction, I _f 1	Runoff Factor	Runoff Factor	Intensity		
(square feet) 143823.86	(use pull-down menu) Roofs	Fraction, I _f	Factor	Runoff Factor			
			0.89	128290.9			
127078.39	Concrete or Asphalt						
127078.39	Concrete or Asphalt		0.000	442252.0			
		1	0.892	113353.9			
		Total		241644.8	0.20	1.11	1.154
	270902.25	270902.25	Image: Constraint of the second se	Image: state stat	Image: Constraint of the second of the se	Image:	Image:

	Santa A	Ana Water	<u>shed</u> - BMP D	Design Flo	w Rate, (2 _{BMP}	Legend:		Required Entrie
			(Rev. 10-2011)	-					Calculated Cells
omnar	1y Name	<i>Note this worksh</i> FMCivil Eng	eet shall <u>only</u> be used	d in conjunctio	on with BMP	designs from the	e <u>LID BMP -</u>		<u>ok</u>) e 10/14/2024
)esigne		Hector Paez						Case No	
Compar	ny Project	Number/Nam	e		20-001 - 5	Site 6			
				BMP	Identificat	ion			
MP N	AME / ID	S6-3 Modula	r Wetlands						
			Mu	ist match Na	me/ID used	on BMP Design	Calculatior	n Sheet	
				Design	Rainfall D	epth			
Design	Rainfall In	tensity					I =	0.20	_in/hr
					-	ea Tabulation			
		In:	sert additional rows	if needed to	ассоттоа	ate all DMAs di	raining to th Design	ne BMP	
	DMA Type/ID	DMA Area (square feet)	Post-Project Surface Type (use pull-down menu)	Effective Imperivous Fraction, I _f	DMA Runoff Factor	DMA Areas x Runoff Factor	Rainfall Intensity (in/hr)	Design Flow Rate (cfs)	Proposed Flow Rate (cfs)
	S6-3A	88575.34	Roofs	1	0.89	79009.2			
	S6-3C	60762.75	Concrete or Asphalt	1	0.892	54200.4			
As									
DMAs									
		149338.09		Total		133209.6	0.20	0.61	0.693
otes:									

	Santa A	Ana Water	rshed - BMP I	Design Flo	w Rate, (2 _{BMP}	Legend:		Required Entrie
			(Rev. 10-2011)	-			-		Calculated Cells
omnai	ny Name (.	Note this worksh FMCivil Eng	<i>eet shall <u>only</u> be use</i>	d in conjunctio	on with BMP	designs from the	e <u>LID BMP</u>		<u>ok</u>) e 10/14/2024
Designe		Hector Paez						Case No	
		Number/Nam	e		20-001 - 5	Site 6			
				BMP	Identificat	ion			
BMP N	AME / ID	S6-4 Modula	r Wetlands						
			Mı	ist match Na	me/ID used	on BMP Design	Calculatior	n Sheet	
				Design	Rainfall D	epth			
Design	Rainfall In	itensity					I =	0.20	in/hr
						ea Tabulation			
		In:	sert additional rows	if needed to	ассоттоа	late all DMAs di	raining to th Design	ne BMP	
	DMA Type/ID	DMA Area (square feet)	Post-Project Surface Type (use pull-down menu)	Effective Imperivous Fraction, I _f	DMA Runoff Factor	DMA Areas x Runoff Factor	Rainfall Intensity (in/hr)	Design Flow Rate (cfs)	Proposed Flow Rate (cfs)
	S6-4A	87541.33	Roofs	1	0.89	78086.9			
	S6-4C	60000.62	Concrete or Asphalt	1	0.892	53520.6			
	<u> </u>								
SI									
DMAs									
		147541.95		Total		131607.5	0.20	0.6	0.693
		14/041.00	4			101007.5	0.20	0.0	0.055
otes:									

	Santa A	Ana Water	rshed - BMP D	Design Flo	w Rate, (Legend:		Required Entrie
			(Rev. 10-2011)	-					Calculated Cells
Compor	y Name	Note this worksh FMCivil Eng	eet shall <u>only</u> be used	d in conjunctio	on with BMP	designs from the	e <u>LID BMP .</u>		<u>)</u> 2 10/14/2024
Designe		Hector Paez						Case No	
		Number/Name	e		20-001 - 5	Site 6			
				BMP	Identificat	ion			
MDN	AME / ID	S6-5 Modula	vr Watlanda	Divit	Identificat				
IVIE IN.	AME / ID	S0-5 Wiodula		ist match Na	me/ID used	on BMP Design	Calculatior	Sheet	
				Design	Rainfall D	epth			
Design	Rainfall In	tensity				*	I =	0.20	in/hr
			Drai	nage Manag	gement Ar	ea Tabulation			
1		Ins	sert additional rows	if needed to	ассоттоа	ate all DMAs di		e BMP	
	DMA	DMA Area	Post-Project Surface Type	Effective Imperivous	DMA Runoff	DMA Areas x	Design Rainfall Intensity	Design Flow	Proposed Flow
	Type/ID	(square feet)	(use pull-down menu)	Fraction, I _f	Factor	Runoff Factor	(in/hr)	Rate (cfs)	Rate (cfs)
	S6-5A	20936.36	Roofs	1	0.89	18675.2			
	\$6-5C	47001.96	Concrete or Asphalt	1	0.892	41925.7			
DMAs									
DM									
		67938.32		Total		60600.9	0.20	0.28	0.346
		0.050.02	4				0.20	0.20	0.070
otes:									

	Santa A	ana Water	<u>shed</u> - BMP I	Design Flo	w Rate. ()pmp	Laganda		Required Entries
			(Rev. 10-2011)	-			Legend:		Calculated Cells
Tompor			eet shall <u>only</u> be use	d in conjunctio	on with BMP	designs from the	E <u>LID BMP</u>		<u>)</u> e 10/14/2024
Compar Designe	ny Name ed by	FMCivil Eng Hector Paez	gineers inc					Case No	
		Number/Nam	e		20-001 - 5	Site 6			
				DMD	Identificat	ion			
				DIVIF	Identificat	1011			
3MP N	AME / ID	S6-6 Modula		ist match Na	me/ID used	on BMP Design	Calculation	sheet	
			1010			-	culculation	I SHEEL	
				Design	Rainfall D	epth			
Design	Rainfall In	tensity					I =	0.20	in/hr
			Drai	nage Manag	gement Ar	ea Tabulation			
		In:	sert additional rows	if needed to	ассоттоа	ate all DMAs di	raining to th Design	ne BMP	
			Post-Project	Effective	DMA		Rainfall		
	DMA Type/ID	DMA Area (square feet)	Surface Type (use pull-down menu)	Imperivous Fraction, I _f	Runoff Factor	DMA Areas x Runoff Factor	Intensity (in/hr)	Design Flow Rate (cfs)	Proposed Flow Rate (cfs)
	S6-6A	20934.5	Roofs	1	0.89	18673.6			
	S6-6C	52272.3	Concrete or Asphalt	1	0.892	46626.9			
As									
DMAs									
		73206.8		Total		65300.5	0.20	0.30	0.346
Tater									
Notes:									

	Santa A	Ana Water	<u>shed</u> - BMP D) _{rmp}	Legend:		Required Entries		
			(Rev. 10-2011)	-			-		Calculated Cells
Compar	1y Name	<i>Note this worksh</i> FMCivil Eng	eet shall <u>only</u> be used	d in conjunctio	on with BMP	designs from the	e <u>LID BMP</u>		<u>k</u>) 10/14/2024
Designe		Hector Paez						Case No	
		Number/Name	9		20-001 - 5	Site 7			
				BMP	Identificat	ion			
BMP N	AME / ID	S7-1 Modula	r Wetlands						
			Mu	st match Na	me/ID used	on BMP Design	Calculatior	n Sheet	
				Design	Rainfall D	epth			-
Design	Rainfall In	tensity					I =	0.20	in/hr
						ea Tabulation			
		In	sert additional rows	if needed to	ассоттоа	ate all DMAs di	raining to th Design	ne BMP	
	5144		Post-Project	Effective	DMA		Rainfall		
	DMA Type/ID	DMA Area (square feet)	Surface Type (use pull-down menu)	Imperivous Fraction, I _f	Runoff Factor	DMA Areas x Runoff Factor	Intensity (in/hr)	Design Flow Rate (cfs)	Proposed Flow Rate (cfs)
	\$7-1A	57309.9	Roofs	1	0.89	51120.4			
	S7-1C	67852.19	Concrete or Asphalt	1	0.892	60524.2			
As									
DMAs									
		125162.09		Total		111644.6	0.20	0.51	0.577
Notes:									

	<u>Santa A</u>	Ana Water	rshed - BMP D	2 _{BMP}	Legend:		Required Entries		
			(Rev. 10-2011)	-					Calculated Cells
Compar		Note this worksh FMCivil Eng	<i>eet shall <u>only</u> be used</i>	d in conjunctio	on with BMP	designs from the	e <u>LID BMP .</u>		<u>ok</u>) e 10/14/2024
Designe	ed by	Hector Paez						Case No	
Compar	ny Project I	Number/Nam	e		20-001 - 5	Site 7			
				BMP	Identificat	ion			
BMP N	AME / ID	S7-2 Modula							
			Mu			on BMP Design	Calculatior	n Sheet	
	D ' C 11 I			Design	Rainfall D	epth		0.00	
Design	Rainfall In	tensity					I =	0.20	_in/hr
			Drai	nage Manag	gement Are	ea Tabulation			
		In.	sert additional rows	if needed to	ассоттоа	late all DMAs di	raining to th Design	ne BMP	
	DMA	DMA Area	Post-Project Surface Type	Effective Imperivous	DMA Runoff	DMA Areas x	Rainfall Intensity	Design Flow	Proposed Flow
	Type/ID S7-2A	(square feet) 17606	(use pull-down menu)	Fraction, I _f	Factor 0.89	Runoff Factor 15704.6	(in/hr)	Rate (cfs)	Rate (cfs)
		17000	Roofs	1	0.89	15704.0			
	\$7-2C	11967.73	Concrete or Asphalt	1	0.892	10675.2			
٩s									
DMAs									
		29573.73		Total		26379.8	0.20	0.12	0.144
Notes:									

Santa Ana Watershed - BMP Design Flow Rate, QBMP Legend: (Rev. 10-2011) (Rev. 10-2011) Legend: (Note this worksheet shall only be used in conjunction with BMP designs from the LID BMP Design Hu LID BMP Design Hu Company Name FMCivil Engineers Inc Ca Designed by Hector Paez Ca Company Project Number/Name 20-001 - Site 7 Ca	Calculated Cells <u>undbook</u>) Date 10/14/2024
Company NameFMCivil Engineers IncDesigned byHector PaezCa	
Designed by Hector Paez Ca	Date 10/14/2024
	se No
BMP Identification	
3MP NAME / ID S7-3 Modular Wetlands	
Must match Name/ID used on BMP Design Calculation Sheet	
Design Rainfall Depth	
Design Rainfall Intensity $I = 0.2$	0in/hr
Drainage Management Area Tabulation	
Insert additional rows if needed to accommodate all DMAs draining to the BMP Design	
Post-Project Effective DMA Rainfall	
DMADMA AreaSurface TypeImperivousRunoffDMA Areas xIntensityDesignType/ID(square feet)(use pull-down menu)Fraction, IfFactorRunoff Factor(in/hr)Rate (
S7-3A 54098.5 Roofs 1 0.89 48255.9	
S7-3C 32139.36 Concrete or Asphalt 1 0.892 28668.3	
DMAS	
86237.86 Total 76924.2 0.20 0.3	5 0.346
Proposed Volume must be greater than the Design Capture Volume	

		Shea Dhin L	Jesign Flo	w Rate, (2 _{BMP}	Legend:		Required Entrie
		(Rev. 10-2011)	-					Calculated Cell
(ompany Name	Note this worksh FMCivil Eng	eet shall <u>only</u> be used	d in conjunctio	on with BMP	designs from the	e <u>LID BMP I</u>		<u>ok</u>) e 10/14/2024
esigned by	Hector Paez						Case No	
ompany Project	Number/Name	e		20-001 - 5	Site 7			
			BMP	Identificat	ion			
MP NAME / ID	S7-4 Modula	r Wetlands						
		Ми	ist match Nai	me/ID used	on BMP Design	Calculatior	n Sheet	
			Design	Rainfall D	epth			
esign Rainfall Ir	itensity					I =	0.20	_in/hr
					ea Tabulation			
	In	sert additional rows	if needed to	ассоттоа	ate all DMAs di	Design	ne BMP	
DMA	DMA Area	Post-Project Surface Type	Effective Imperivous	DMA Runoff	DMA Areas x	Rainfall Intensity	Design Flow	Proposed Flow
Type/ID	(square feet)	(use pull-down menu)	Fraction, I _f	Factor	Runoff Factor	(in/hr)	Rate (cfs)	Rate (cfs)
S7-4A	98582.75	Roofs	1	0.89	87935.8			
	93880.34	Concrete or Asphalt	1	0.892	83741.3			
	55000.54		-	0.052	03741.5			
As								
DMAs								
	192463.09		Total		171677.1	0.20	0.79	0.808
		•						
otes:								

Open of the source data source data and and and and and and and and and an		Santa A	Ana Water	rshed - BMP I	2 _{BMP}	Legend:		Required Entries		
ampany Parage Date Dot / 10/14/2024 esigned by Hector Parz 0:001 - Site 7 ampany Project Number/Name 0:001 - Site 7 BMP Identification MMP Identification MPNAME / ID S7-5M doular Wetlands Materature Name / Duesd on BMP Design Calculation Sheet Exign Rainfall Intensity I =				(Rev. 10-2011)	-					
Case No One of the term of the term of the term of te	Compar				d in conjunctio	on with BMP	designs from the	e <u>LID BMP I</u>		
BMP Identification MP NAME / 10 S7-5 Modular Wetlands Mat match Name/ID used on BMP Design Calculation Sheet Design Rainfall Intensity I			-							
MP NAME / 10 Standalan State Design Rainfall Intensity 1 =	Compar	ny Project I	Number/Nam	e		20-001 - S	ite 7			
Wat match Duesde DBMP Design Cloudation Sheet gen Call Design Cloud Desi					BMP	Identificat	ion			
YM I 0.0 Infr	BMP N	AME / ID	S7-5 Modula							
age and all motions 1 0.20 intr brace deliberator of the second contract				Mu	ist match Nai	me/ID used	on BMP Design	Calculation	n Sheet	
Open distribution of the series of the seri					Design	Rainfall D	epth			
Synthesis Display Display Post-Project Surface Type Effective Imperivous Fraction, I DMA Runoff DMA MA Areas x Runoff Design Flow Reinfall Proposed Flow Rate (cfs) 57-5A 6184.36 Roofs 1 0.89 50116.4 57-5C 43500.29 Concrete or Asphalt 1 0.892 38802.3 1 1 0.892 38802.3 Imperivous Imperivous <td>Design</td> <td>Rainfall In</td> <td>tensity</td> <td></td> <td></td> <td></td> <td></td> <td>I =</td> <td>0.20</td> <td>in/hr</td>	Design	Rainfall In	tensity					I =	0.20	in/hr
DMA DMA Area Type/ID Post-Project Surface Type Effective Lingerivous DMA Runoff DMA Runoff Design Bainfall Intensity Design Flow Rate (cfs) Proposed Flow Rate (cfs) \$7-5A \$6184.36 Roofs 1 0.89 \$0116.4 Imperivational Intensity Design Flow Rate (cfs) Proposed Flow Rate (cfs) \$7-5A \$6184.36 Roofs 1 0.89 \$0116.4 Imperivation Imperiv				Drai	nage Manag	gement Are	a Tabulation			
DMA Type/D DMA Area Surface Type (square feet) Post-Project Surface Type (square feet) Effective Surface Type (square feet) DMA Areas Surface Type (n/n/n) Rainfoll Design Flow Rate (c/s) Proposed Flow Rate (c/s) \$7-5A \$6184.36 Roofs 1 0.89 \$0116.4 \$7-5C 43500.29 Concrete or Asphalt 1 0.892 38802.3 \$7-5C 43500.29 Concrete or Asphalt 1 0.892 50116.4 \$7-5C 43500.29 Concrete or Asphalt 1 0.892 50116.4 \$7-5C 43500.29 Concrete or Asphalt 1 0.892 50116.4			Ins	sert additional rows	if needed to	accommod	ate all DMAs di		ne BMP	
Type/ID (sequare feet) (use pul-down menu) Fraction, I, Factor Runoff Factor (in/hr) Rate (cfs) Rate (cfs) \$7:5A 56184.36 Roofs 1 0.89 50116.4 \$7:5C 43500.29 Concrete or Asphalt 1 0.892 38802.3 \$1 0.49 38802.3 1 0.892 38802.3 \$1 0.492 38802.3 1 1 0.892 \$1 0.492 38802.3 1 1 1 1 \$1 0.492 38802.3 1 1 1 1 \$1 0.492 38802.3 1 1 1 1 \$1 0.492 1 1 1 1 1 1 \$1 0.493 1		DMA	DMA Area				DMA Areas x	Rainfall	Design Flow	Proposed Flow
S7-5C 4350.29 Concrete or Asphalt 1 0.892 38802.3 I				(use pull-down menu)	Fraction, I _f			(in/hr)	Rate (cfs)	Rate (cfs)
Model Model Model Model Model Model Model Model Model Model Model Model Model Model Model Model Model Model Model Model Model Model Model Model Model Model Model Model Model Model Model Model Model Model Model Model Model Model Model Model Model Model <td></td> <td>\$7-5A</td> <td>56184.36</td> <td>Roofs</td> <td>1</td> <td>0.89</td> <td>50116.4</td> <td></td> <td></td> <td></td>		\$7-5A	56184.36	Roofs	1	0.89	50116.4			
Image: Second		\$7-5C	43500.29	Concrete or Asphalt	1	0.892	38802.3			
Image: Second										
Image: Second										
Image: Second										
Image: Second										
Image: Second										
Image: Second	As									
	DM									
otes:			99684.65		Total		88918.7	0.20	0.41	0.462
otes:										
otes:										
	Notes:									

	Santa A	ana Water	<u>shed</u> - BMP E	Design Flo	w Rate. (Demp	Laganda		Required Entrie
			(Rev. 10-2011)				Legend:		Calculated Cell
Compar	ny Name	Note this worksh FMCivil Eng	eet shall <u>only</u> be used	d in conjunctio	on with BMP	designs from the	e <u>LID BMP I</u>		<u>ok</u>) e 10/14/2024
Designe		Hector Paez						Case No	
		Number/Name	e		20-001 - 5	Site 7			
				BMP	Identificat	ion			
MP N	AME / ID	S7-6 Modula	r Wetlands	Diff	Identifiedt				
		57 0 Modulu		st match Na	me/ID used	on BMP Design	Calculation	Sheet	
				Design	Rainfall D	epth			
esign	Rainfall In	tensity					I =	0.20	in/hr
			Drai	nage Manag	gement Ar	ea Tabulation			
		Ins	sert additional rows	if needed to	ассоттоа	late all DMAs di	raining to th Design	e BMP	
	DMA Type/ID	DMA Area (square feet)	Post-Project Surface Type (use pull-down menu)	Effective Imperivous Fraction, I _f	DMA Runoff Factor	DMA Areas x Runoff Factor	Rainfall Intensity (in/hr)	Design Flow Rate (cfs)	Proposed Flow Rate (cfs)
	S7-6A	6528.45	Roofs	1	0.89	5823.4	(,)		
	S7-6C	1757.82	Concrete or Asphalt	1	0.892	1568			
(0									
DMAs									
				T					
		8286.27		Total		7391.4	0.20	0.03	0.052

Open bits Open bits Calculated Cells impany Name PMC/virl Rigineers Inc. Date 101/42024 Case No impany Name PMC/virl Rigineers Inc. 20:001 - Site 7 Case No Case No impany Name PMC/virl Rigineers Inc. 20:001 - Site 7 Case No Case No IBMP Identification Market / ID 57:7 Modular Wetlands Market // ID Sign Rainfall Depth Market // ID Sign Rainfall Depth Barket additional rows if needed to accommodate all DMAs dreams to the BMF Market additional rows if needed to accommodate all DMAs dreams to the BMF Intert additional rows if needed to accommodate all DMAs dreams to the BMF Market additional rows if needed to accommodate all DMAs dreams to the BMF Market additional rows if needed to accommodate all DMAs dreams to the BMF Sign colspan="2">Sign Rainfall Depth Tester additional rows if needed to accommodate all DMAs dreams Sign Rainfall Depth Sign Rainfall Depth Sign Rainfall Depth Sign Rainfa		<u>Santa A</u>	Ana Water	<u>shed</u> - BMP I	2 _{BMP}	Legend:		Required Entries		
Impany Project Number / Numer / Number / Number / Number / Number / Number / Nu				(Rev. 10-2011)	-			-		
signed by Hector Paez Case No mpmpy Project Number/Name 20-001 - Site 7 BMP Identification MP Identification MP Identification MP Identification Mate match Name/ID used on BMP Design Colculation Sheet Design Rainfall Intensity I = 0.20 inftr Drainage Management Area Tabulation Design Roinfall Domos IF needed to accommodate all DMAs draining to the BMP OMA OMA Topology Proposed Flow Prost-Projecting for the SMP Strice Type Imperiods fractor Strice Type OMA Topology Proposed Flow Strice Type	Compar				d in conjunctio	on with BMP	designs from the	e <u>LID BMP .</u>		
BMP Identification MP NAME / ID_S7-7 Modular Wetands Mat match Name//D used on BMP Design Calculation Sheet Design Rainfall Ditensity I =			-							
MP NAME / ID S7.7 Modular Wethands Bust match Rame/ID used on BMP Design Claubation Sheet Image Rame ID Image Rame I	Compar	ny Project I	Number/Nam	e		20-001 - S	ite 7			
Must match Duesden DBMP Design Calculation Sheet gen gainsful Intensity gen gainsful Intensity gen gainsful Intensity Totage Management Area Tabulation Totage And Calculation State Area Totage And Calculation State Area Totage And Calculation State Area Totage Area Totage Area Totage Area Calculation Totage Area Calculation Totage Area Totage Area Totage Area Totage Area Calculation Area So Acods 1 Aleas Area					BMP	Identificat	ion			
egg Rainfall Intensity I	BMP N	AME / ID	S7-7 Modula							
Yegin Rainfall Intensity 1 0.20 m/m Caling Colspan=10 Cols				Mu	ist match Nai	me/ID used	on BMP Design	Calculatior	n Sheet	
Origination of the service of the serv					Design	Rainfall D	epth			
YPO DMA Post-Project Effective DMA Factor Runoff Runoff<	Design	Rainfall In	tensity					I =	0.20	in/hr
DMA Type/ID DMA Area (square feet) Post-Project Surface Type (use pull-down menu) Effective Fraction, I, Fraction, I, Fractor DMA Runoff Pactor DMA Runoff Intensity (n/hr) Design Rainfall Intensity (n/hr) Design Rainfall Intensity (n/hr) Design Rainfall Intensity (n/hr) Proposed Flow Rate (cfs) 57-7C 126.23 Concrete or Asphalt 1 0.892 112.6 57-7C 126.23 Concrete or Asphalt 1 0.892 112.6 1 1 0.892 112.6 1 1 0.892 1 1 0.892 112.6 1 1 0.892 1 1 1 0.892 1 1 0.892 1 1 1 1 0.892 1 1 0 1 1 1 1 0.892 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 </td <td></td> <td></td> <td></td> <td>Drai</td> <td>nage Manag</td> <td>gement Are</td> <td>a Tabulation</td> <td></td> <td></td> <td></td>				Drai	nage Manag	gement Are	a Tabulation			
DMA DMA Area Type/D DMA Area Surface Type (equare feet) Effective Surface Type (equare feet) Effective Surface Type (equare feet) Effective Surface Type (equare feet) DMA Area Imperivo Runoff Factor Intensity Runoff Factor Design Flow Runoff Factor Proposed Flow Runoff Factor 57-7A 13853.76 Roofs 1 0.89 12357.6 <			Ins	sert additional rows	if needed to	accommod	ate all DMAs di		ne BMP	
Type/ID (sequare feet) (use pull-down memo) Fraction, I, Factor Runoff Factor (in/hr) Rate (cfs) Rate (cfs) \$7-7A 13853.76 Roofs 1 0.89 12357.6 \$7-7A 13853.76 Roofs 1 0.89 12357.6 \$7-7C 126.23 Concrete or Asphalt 1 0.892 112.6 \$7-7C 126.23 Concrete or Asphalt 1 0.892 112.6 \$7-7C 126.23 Concrete or Asphalt 1 0.892 112.6 \$100 \$110 \$110 \$126 \$110 \$110 \$110 \$110 \$110 \$110 \$110 \$110 \$111 \$126.23 Concrete or Asphalt \$1 \$110 \$110 \$111 \$126.23 Concrete or Asphalt \$1 \$110 \$110 \$111 \$110 \$110 \$110 \$110 \$110 \$110 \$111 \$110 \$110 \$110 \$110 \$110 </td <td></td> <td>DMA</td> <td>DMA Area</td> <td></td> <td></td> <td></td> <td>DMA Areas x</td> <td>Rainfall</td> <td>Design Flow</td> <td>Proposed Flow</td>		DMA	DMA Area				DMA Areas x	Rainfall	Design Flow	Proposed Flow
S7-7C 126.23 Concrete or Asphalt 1 0.892 112.6 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I <td></td> <td></td> <td></td> <td></td> <td>Fraction, I_f</td> <td></td> <td></td> <td>(in/hr)</td> <td>Rate (cfs)</td> <td>Rate (cfs)</td>					Fraction, I _f			(in/hr)	Rate (cfs)	Rate (cfs)
MO MO<		\$7-7A	13853.76	Roofs	1	0.89	12357.6			
Image: state stat		\$7-7C	126.23	Concrete or Asphalt	1	0.892	112.6			
Image: state stat										
Image: state stat										
Image: state stat										
Image: state stat										
Image: state stat										
Image: state stat	As									
	MD									
ites:			13979.99		Total		12470.2	0.20	0.06	0.073
otes:										
otes:										
	Notes:									

	<u>Santa A</u>	na Water	<u>shed</u> - BMP E	2 _{BMP}	Legend:		Required Entrie		
			(Rev. 10-2011)						Calculated Cell
ompar		Vote this worksh FMCivil Eng	<i>eet shall <u>only</u> be used</i> gineers Inc	d in conjunctio	on with BMP	designs from the	e <u>LID BMP I</u>		e 10/14/2024
esigne	ed by	Hector Paez						Case No	
ompar	ny Project 1	Number/Name	e		20-001 - S	Site 7			
				BMP	Identificat	ion			
MP N.	AME / ID	S7-8 Modula							
			Ми			on BMP Design	Calculation	Sheet	
	Dainfall In	t : t		Design	Rainfall D	epth	T	0.20	
esign	Rainfall In	tensity					I =	0.20	in/hr
			Drai	nage Manag	gement Are	ea Tabulation			
I		Ins	sert additional rows	if needed to	accommod	ate all DMAs di	raining to th Design	e BMP	
			Post-Project	Effective	DMA		Rainfall		
	DMA Type/ID	DMA Area (square feet)	Surface Type (use pull-down menu)	Imperivous Fraction, I _f	Runoff Factor	DMA Areas x Runoff Factor	Intensity (in/hr)	Design Flow Rate (cfs)	Proposed Flow Rate (cfs)
	S7-8A	0	Roofs	1	0.89	0	())	(
	S7-8C	87.08	Concrete or Asphalt	1	0.892	77.7			
(0									
DMAs									
				Total		77.7	0.20	0	0

Santa A	<u>na Wat</u>	ershed (Rev. 10-2011)	Design Vo	olume, V _B	SMP	Legend:		Required Ent Calculated C
(No	te this works	heet shall <u>only</u> be used	in conjunctio	n with RMP	designs from the		Design Handbook	
	MCivil Eng		in conjunctio		aesigns from the			10/14/2024
· ·	ector Paez						Case No	
npany Project Nu		2		20-001 - S	Site 8		Cuse 110	
ipany riojeeria	ino en rivunit	-						
			BMP I	Identificati	on			
P NAME / ID O	ffsite Biore		t match Nan	ne/ID used (on BMP Design	Calculation	Sheet	
		14103		Rainfall De		culculation	Sheet	
n Percentile, 24-ho	our Rainfal	l Denth	Design		-pui	D ₈₅ =	0.60	
n the Isohyetal Ma						D 85	0.00	inches
		Drair	nage Manag	ement Are	a Tabulation			
	In	sert additional rows	if needed to	accommoda	ate all DMAs dr	aining to th	e BMP	
				514		Desta	Design Capture	Proposed
DMA	DMA Area	Post-Project Surface	Effective	DMA Runoff	DMA Areas x	Design Storm	Volume, V _{BMP}	Volume on Plans (cubic
	square feet)	Туре	Imperivous Fraction, I _f	Factor	Runoff Factor	Depth (in)	(cubic feet)	feet)
	252423.02	Roofs	1	0.89	225161.3	Deptil (III)	(cubic jeet)	,,
8-1A 2	252423.02	ROOJS	1	0.89	225101.5			
8-1C 6	601813.44	Concrete or Asphalt	1	0.89	536817.6			
010	501015.77	concrete or rispitale	-	0.05	550017.0			
	854236.46	7	otal		761978.9	0.60	38098 9	137,907
	38098.9							

	<u>ıta Ana Wat</u>	(Rev. 10-2011)	Design Vo	olume, V _B	BMP	Legend:		Required Ent Calculated C	
	Note this works	heet shall only be used	in coniunctio	n with RMP	designs from the	LID RMP I	Design Handbook		
ompany Nan			. in conjunctio		aesigns from the			10/14/2024	
esigned by	Hector Paez				Case No				
	ect Number/Nam			20-001 - S	Site 9		0.000 110		
1 5 5									
			BMP	Identificati	on				
MP NAME /	ID Offsite Biore		st match Nar	ne/ID used o	on BMP Design	Calculation	Sheet		
			Design	Rainfall De	epth				
5th Percentile	e, 24-hour Rainfal	ll Depth,	0		1	D ₈₅ =	0.60	inches	
om the Isohy	etal Map in Hand	lbook Appendix E						-	
					a Tabulation				
	11	nsert additional rows	if needed to	accommodo	ate all DMAs dr	aining to th	e BMP		
				DMA		Desim	Design Capture	Proposed Volume on	
DM	A DMA Area	Post-Project Surface	Effective	DMA Runoff	DMA Areas x	Design Storm	Volume, V _{BMP}	Volume on Plans (cubic	
Type		Туре	Imperivous Fraction, I _f	Factor	Runoff Factor	Depth (in)	(cubic feet)	feet)	
9-1		Roofs	1	0.89	148666.2	2 cp ci (iii)	(00010)000)	,,	
9-1/	1 100000.11	ROOJS	1	0.89	148000.2				
9-1	C 629913.07	Concrete or Asphalt	1	0.89	561882.5				
9-1	. 029913.07		1	0.89	501882.5				
							1		
	796579.18	-	otal		710548.7	0.60	35527.4	137,907	

	Santa A	Ana Water	<u>shed</u> - BMP E) _{RMP}	Legend:		Required Entries		
			(Rev. 10-2011)				-		Calculated Cells
omnar	ny Name	Note this worksh FMCivil Eng	eet shall <u>only</u> be used	d in conjunctio	on with BMP	designs from the	e <u>LID BMP I</u>		<u>ok</u>) e 10/14/2024
Designe		Hector Paez						Case No	
Compar	ny Project 1	Number/Name	e		20-001 - S	Site 9			
				BMP	Identificat	ion			
BMP N	AME / ID	S9-2 Modula	r Wetlands						
			Ми	ist match Nai	me/ID used	on BMP Design	Calculation	n Sheet	
				Design	Rainfall D	epth			
esign	Rainfall In	tensity					I =	0.20	_in/hr
			Drai	nage Manag	gement Are	ea Tabulation			
		In:	sert additional rows	if needed to	accommod	ate all DMAs di	raining to th Design	ne BMP	
	DMA Type/ID	DMA Area (square feet)	Post-Project Surface Type (use pull-down menu)	Effective Imperivous	DMA Runoff Factor	DMA Areas x Runoff Factor	Rainfall Intensity (in/hr)	Design Flow Rate (cfs)	Proposed Flow Rate (cfs)
	S9-2A	0	Roofs	Fraction, I _f	0.89	0	(11)/11/)	<i>Nuce</i> (0)37	Nuce (c)3)
	S9-2C	87575.2	Concrete or Asphalt	1	0.892	78117.1			
(0									
DMAs									
		87575.2	l	Total		78117.1	0.20	0.36	0.462
lotes:									
oies.									

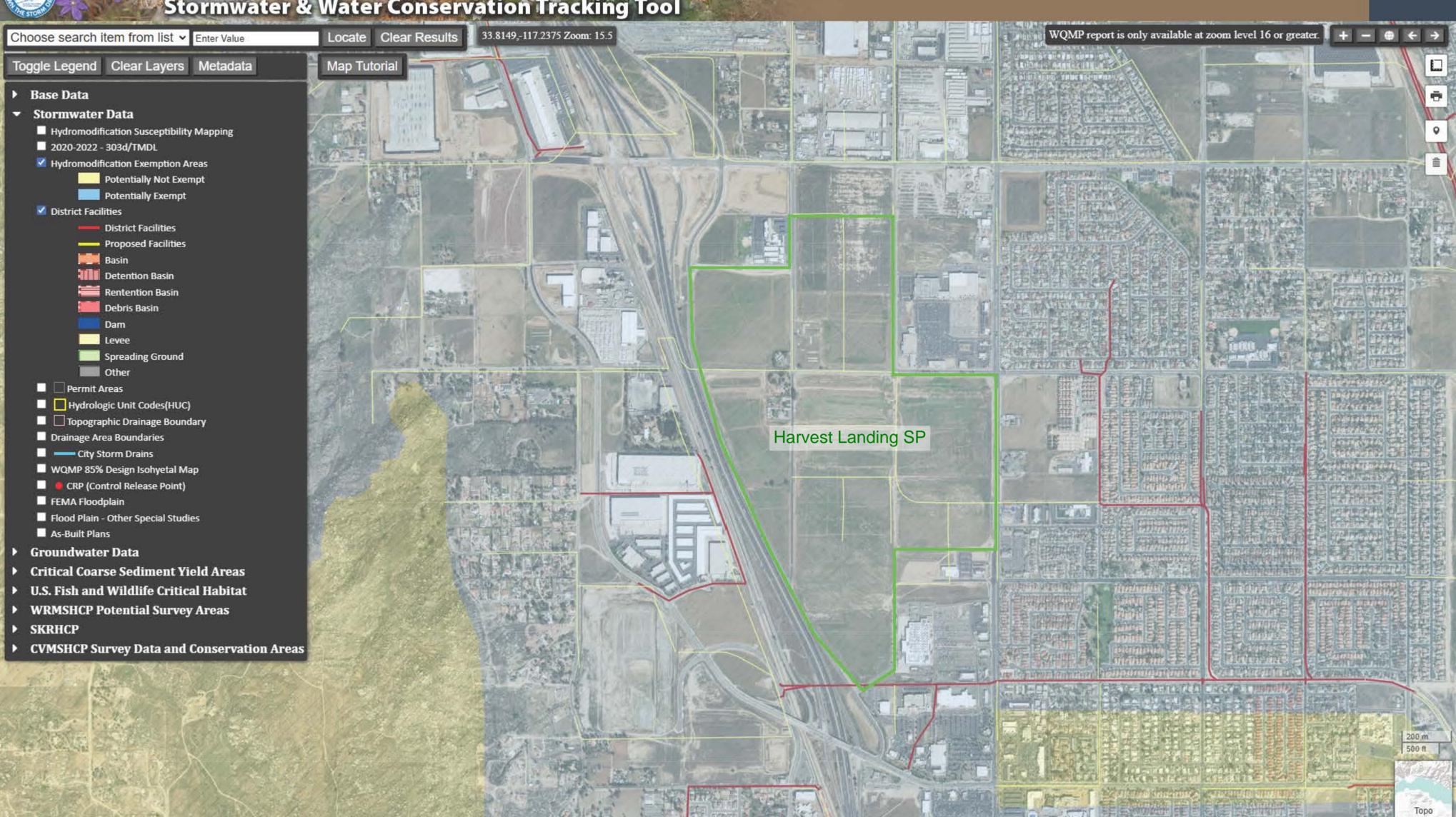
	Santa A	ana Water	rshed - BMP D		Legend:		Required Entries		
			(Rev. 10-2011)	-			-		Calculated Cells
C			eet shall <u>only</u> be used	d in conjunctio	on with BMP	designs from the	E <u>LID BMP</u>		
Designe		FMCivil Eng Hector Paez	gineers Inc					Date Case No	10/14/2024
		Number/Name	e		20-001 - H	Barrett and Da	niela	Cuberre	
				BMP	Identificat	1011			
BMP N	AME / ID	Streets Modu			4.5			et	
			Mu	st match Nai	me/ID used	on BMP Design	Calculation	n Sheet	
				Design	Rainfall D	lepth			
Design	Rainfall In	tensity					I =	0.20	in/hr
			Drai	nage Manag	gement Ar	ea Tabulation			
		In	sert additional rows	if needed to	ассоттос	late all DMAs di		ne BMP	
			Post-Project	Effective	DMA		Design Rainfall		
	DMA Type/ID	DMA Area (square feet)	Surface Type (use pull-down menu)	Imperivous	Runoff Factor	DMA Areas x Runoff Factor	Intensity (in/hr)	Design Flow Rate (cfs)	Proposed Flow Rate (cfs)
	Турель	(square reet)	(use pull-down mend)	Fraction, I _f	1 40101	Runon ractor	(117111)	hule (CJS)	Nuce (cjs)
	Streets 1C	346032.58	Concrete or Asphalt	1	0.892	308661.1			
DMAs									
ā									
	B	346032.58		Total		308661.1	0.20	1.42	1.73
Notes:									

e this worksheet ICivil Engines ctor Paez nber/Name site Treatmen ur Rainfall De p in Handboo Insert MA Area paguare feet)	nt (TBD) Mus epth, ok Appendix E	age Manage	20-001 - P dentification ne/ID used of Rainfall De ement Area	designs from the Phase II West on on BMP Design epth	Calculation D ₈₅ =	Pesign Handbook Date Case No Sheet 0.60	10/14/2024
1Civil Engines ctor Paez nber/Name nber/Name site Treatmen ur Rainfall De up in Handbook Insert pMA Area quare feet)	ers Inc at (TBD) Mus epth, ok Appendix E Drain t additional rows f st-Project Surface Type	BMP I at match Nam Design F bage Manag if needed to c Effective Imperivous Fraction, I _f	20-001 - P dentification ne/ID used of Rainfall De ement Area accommodo DMA Runoff Factor	Phase II West on on BMP Design opth a Tabulation ate all DMAs dro DMA Areas x	Calculation D ₈₅ =	Date Case No Sheet 0.60	10/14/2024
ctor Paez nber/Name site Treatmen ur Rainfall De p in Handboo Insert MA Area guare feet)	nt (TBD) Mus epth, sk Appendix E Drain t additional rows f st-Project Surface Type	BMP I BMP I Design F Design F	dentification ne/ID used of Rainfall De ement Area accommodo DMA Runoff Factor	on on BMP Design epth a Tabulation ate all DMAs dro DMA Areas x	D ₈₅ =	Case No Case N	inches
nber/Name site Treatmen ur Rainfall De p in Handboo Insert MA Area quare feet)	Mus epth, ok Appendix E Drain t additional rows i st-Project Surface Type	BMP I BMP I Design F Design F	dentification ne/ID used of Rainfall De ement Area accommodo DMA Runoff Factor	on on BMP Design epth a Tabulation ate all DMAs dro DMA Areas x	D ₈₅ =	Sheet 0.60	inches
ur Rainfall De ur Rainfall De p in Handboo Insert	Mus epth, ok Appendix E Drain t additional rows i st-Project Surface Type	BMP I BMP I Design F Design F	dentification ne/ID used of Rainfall De ement Area accommodo DMA Runoff Factor	on on BMP Design epth a Tabulation ate all DMAs dro DMA Areas x	D ₈₅ =	0.60 e BMP Design Capture	Proposed
ur Rainfall De p in Handboo Insert OMA Area quare feet)	Mus epth, ok Appendix E Drain t additional rows i st-Project Surface Type	it match Nam Design F nage Manag if needed to o Effective Imperivous Fraction, I _f	ement Area accommodo DMA Runoff Factor	on BMP Design opth a Tabulation ate all DMAs dro DMA Areas x	D ₈₅ =	0.60 e BMP Design Capture	Proposed
ur Rainfall De p in Handboo Insert OMA Area quare feet)	Mus epth, ok Appendix E Drain t additional rows i st-Project Surface Type	Design I nage Manag if needed to c Effective Imperivous Fraction, I _f	ement Area accommodo DMA Runoff Factor	a Tabulation ate all DMAs dro DMA Areas x	D ₈₅ =	0.60 e BMP Design Capture	Proposed
DMA Area Quare feet)	epth, ok Appendix E <u>Drain</u> t additional rows i ost-Project Surface Type	Design I nage Manag if needed to c Effective Imperivous Fraction, I _f	ement Area accommodo DMA Runoff Factor	a Tabulation ate all DMAs dro DMA Areas x	D ₈₅ =	0.60 e BMP Design Capture	Proposed
DMA Area Quare feet)	ok Appendix E Drain t additional rows i st-Project Surface Type	nage Manag if needed to o Effective Imperivous Fraction, I _f	ement Area accommodo DMA Runoff Factor	a Tabulation ate all DMAs dro DMA Areas x	aining to the Design	e BMP Design Capture	Proposed
DMA Area Quare feet)	ok Appendix E Drain t additional rows i st-Project Surface Type	if needed to of Effective Imperivous Fraction, I _f	DMA Runoff Factor	nte all DMAs dro DMA Areas x	aining to the Design	e BMP Design Capture	Proposed
OMA Area Pos quare feet)	t additional rows i st-Project Surface Type	if needed to of Effective Imperivous Fraction, I _f	DMA Runoff Factor	nte all DMAs dro DMA Areas x	Design	Design Capture	
OMA Area Pos quare feet)	st-Project Surface Type	Effective Imperivous Fraction, I _f	DMA Runoff Factor	DMA Areas x	Design	Design Capture	
quare feet)	Туре	Imperivous Fraction, I _f	Runoff Factor		-		
quare feet)	Туре	Imperivous Fraction, I _f	Runoff Factor		-		
quare feet)	Туре	Fraction, I _f	Factor			Volume, V_{BMP}	Volume on Plans (cubic
	oncrete or Asphalt		0.89		Depth (in)	(cubic feet)	feet)
				1442396.8			
	Τ	otal		1442396.8	0.60	72119.8	N/A
	036.74	036.74	036.74	0.36.74 Total	Image: Constraint of the second se	Image: state stat	Image: state of the state

	Santa Ana Watershed - BMP Design Volume, V _{BMP}								Required Entries	
	<u> </u>		(Rev. 10-2011)	0		1	Legend:		Calculated Ce	
			heet shall <u>only</u> be used	' in conjunction	n with BMP	designs from the	LID BMP L			
-		FMCivil Eng	ineers Inc						10/14/2024	
esigne		Hector Paez			20.001 -			Case No		
mpai	ny Project	Number/Name	5		20-001 - F	hase II East				
				BMP I	dentificati	on				
1P N	AME / ID	Onsite Treat	ment (TBD)							
			Mus	st match Nan	ne/ID used o	on BMP Design	Calculation	Sheet		
				Design l	Rainfall De	epth				
		I-hour Rainfal					D ₈₅ =	0.60	inches	
n the	e Isohyetal	Map in Hand	book Appendix E						-	
			Drair	nage Manag	ement Are	a Tabulation				
	•	Ir	sert additional rows	if needed to a	accommodo	nte all DMAs dr	aining to the	e BMP		
								Design Conture	Proposed	
	DMA	DMA Area	Post-Project Surface	Effective	DMA Runoff	DMA Areas x	Design Storm	Design Capture Volume, V _{ВМР}	Volume on Plans (cubic	
	Type/ID	(square feet)	Type	Imperivous Fraction, I _f	Factor	Runoff Factor	Depth (in)	(cubic feet)	feet)	
	P2-2A	2093617.786	Concrete or Asphalt	1	0.89	1867507.1		(0000)000	, <u>, , , , , , , , , , , , , , , , , , </u>	
	L									
	<u> </u>									
		2093617.786	7	otal		1867507.1	0.60	93375.4	N/A	
							0.00			

Bioretention East	ility - Design Procedure	BMP ID	Legend:	Require	ed Entries				
Bioretention raci		Bioret Basin 4-1	Legend.		ted Cells				
Company Name:	FMCivil Engin			-	10/1/2024				
Designed by:		Hector Paez County/City C							
		Design Volume				_			
Enter the are	ea tributary to this feature			$A_T =$	3.6	acres			
Enter V _{BMP}	5,084	ft^3							
	Type of B	ioretention Facility	Design						
Side slopes re	equired (parallel to parking spaces or	adjacent to walkways)							
	es required (perpendicular to parking								
	Bioretent	tion Facility Surface	Area						
Depth of So	il Filter Media Layer			$d_{S} =$	3.0	ft			
Top Width c	of Bioretention Facility, exc	luding curb		$\mathbf{w}_{\mathrm{T}} =$	13.8	ft			
	Total Effective Depth, d_E $d_E = (0.3) \times d_S + (0.4) \times 1 - (0.7/w_T) + 0.5$ $d_E = 1.75$ ft								
	$\frac{V_{BMP} (ft^{3})}{d_{E} (ft)}$	_		A _M =	2,907	ft			
Proposed Su	irface Area			A=	3,142	ft ²			
	Bioreter	ntion Facility Prope	rties						
<u>C: 1. C1</u>		7 1			4	.1			
Side Slopes	in Bioretention Facility			Z =	4	:1			
Diameter of	Underdrain			1	6	inches			
Longitudina	Longitudinal Slope of Site (3% maximum)								
6" Check Da	6" Check Dam Spacing 0 feet								
Describe Ve	getation:								
Notes:									

Bioretention East	ility - Design Procedure	BMP ID	Legend:	Require	ed Entries			
Bioretention raci	Bioret Basin 3		Legenu.		ated Cells			
Company Name:	FMCivil Engin			-	10/3/2024			
Designed by:	Hector Pa		County/City (Case No.:				
		Design Volume				_		
Enter the are	ea tributary to this feature			$A_T =$	2.9	acres		
Enter V _{BMP}	2,574	ft^3						
	Type of B	ioretention Facility	Design					
Side slopes re	equired (parallel to parking spaces or	adjacent to walkways)						
	es required (perpendicular to parking							
	Bioretent	tion Facility Surface	Area					
Depth of So	il Filter Media Layer			$d_{S} =$	3.0	ft		
					2.0			
Top Width o	of Bioretention Facility, exc	luding curb		$w_T =$	10.3	ft		
Total Effecti	ive Depth, d _E							
) x d _S + (0.4) x 1 - (0.7/w _T)	+0.5		$d_{\rm E} =$	1.73	ft		
E ()				L				
	urface Area, A _m							
$\Delta_{\rm rec}({\rm ft}^2) =$	$\frac{V_{BMP}(ft^3)}{d_E(ft)}$	_		$A_{M} =$	1,487	ft		
$A_{\rm M}({\rm It})$	$d_{E}(ft)$					a?		
Proposed Su	irface Area			A=	2,498	ft^2		
	Biorete	ntion Facility Prope	rties					
		ittoir raenity riope.						
Side Slopes	in Bioretention Facility			z =	4	:1		
Diameter of	Underdrain				6	inches		
Diameter of	ondordram				0	menes		
Longitudinal Slope of Site (3% maximum) 0								
6" Check Dam Spacing 0 feet								
Describe Ve	getation:							
Notes:								


Bioretention Fasi	lity - Design Procedure	BMP ID	Legend:	Require	d Entries					
Bioretention Fact		Bioret Basin 5-2	Legend.		ted Cells					
Company Name:	FMCivil Engin			_	10/3/2024					
Designed by:	Hector Pa		County/City (Case No.:						
		Design Volume								
Enter the are	a tributary to this feature			$A_T =$	0.57	acres				
Enter V_{BMP} determined from Section 2.1 of this Handbook $V_{BMP} = 1,012$ ft ³										
	Type of B	ioretention Facility	Design							
Side slopes re	equired (parallel to parking spaces or	adjacent to walkways)								
	s required (perpendicular to parking									
	Bioretent	tion Facility Surface	Area							
Depth of Soi	il Filter Media Layer			$d_s =$	3.0	ft				
1	5			5						
Top Width o	of Bioretention Facility, exc	luding curb		$w_T =$	7.0	ft				
Tatal Effect:	an Danth 1									
	ive Depth, d_E) x d _S + (0.4) x 1 - (0.7/w _T)	+0.5		$d_{\rm E} =$	1.70	ft				
$u_{\rm E}^{-} = (0.5)$	$f x u_{S} + (0.4) x 1 - (0.7) w_{T}$	1 0.5		чE	1.70	11				
Minimum Su	urfago Aron A									
	urface Area, A_m			$A_{M} =$	596	ft-				
$A_{\rm M}({\rm ft}^2) =$	$\frac{V_{BMP} (ft^3)}{d_E (ft)}$	_		I IM	590					
Proposed Su	rface Area			A=	1,005	ft^2				
				-						
	Diorata	ntion Facility Prope	rtios							
	DIOICIC	intion Facility Flope								
Side Slopes	in Bioretention Facility			z =	4	:1				
Diameter of	Undordroin				6	inches				
Diameter of	Underdram			_	0	menes				
Longitudinal	Longitudinal Slope of Site (3% maximum)									
6" Check Da	m Spacing			I	0	feet				
Describe Ve	getation:									
Notes:										

Biorotantian Faci	ility - Design Procedure	BMP ID	Legend:	Require	ed Entries					
Bioretention raci		Offsite Basin			ted Cells					
Company Name:	FMCivil Engin		~ (~)	-	10/3/2024 Harvest					
Designed by:										
		Design Volume								
Enter the are	ea tributary to this feature			$A_T =$	37.9	acres				
Enter V _{BMP}	determined from Section 2.	1 of this Handbook		V _{BMP} =	73,626	ft ³				
	Type of B	ioretention Facility	Design							
Side slopes re	equired (parallel to parking spaces or	adjacent to walkways)								
	es required (perpendicular to parking									
	Bioretent	ion Facility Surface	Area							
Depth of So	il Filter Media Layer	<u>_</u>		$d_{S} =$	3.0	ft				
Top Width c	of Bioretention Facility, exc	luding curb		$w_{T} =$	220.0	ft				
Total Effecti	ive Depth, d _E									
$d_{\rm E} = (0.3)$) x d _S + (0.4) x 1 - (0.7/w _T)	+0.5		$d_{\rm E} =$	1.80	ft				
	urface Area, A _m									
$A_{\rm M}({\rm ft}^2) =$	$\frac{V_{BMP} (ft^3)}{d_E (ft)}$	_		$A_M =$	40,976	ft				
	$d_{\rm E}({\rm ft})$					o ²				
Proposed Su	irtace Area			A=	76,615	ft^2				
	Bioreter	ntion Facility Prope	rties							
C' 1 C1					4					
Side Slopes	in Bioretention Facility			Z =	4	:1				
Diameter of	Underdrain				6	inches				
Longitudina	Longitudinal Slope of Site (3% maximum) 0 %									
6" Check Da	am Spacing			<u> </u>	0	feet				
Describe Ve	getation:									
Notes:										

Appendix 7: Hydromodification

Supporting Detail Relating to Hydrologic Conditions of Concern

Riverside County SWCT² Stormwater & Water Conservation Tracking Tool

Appendix 8: Source Control

Pollutant Sources/Source Control Checklist

How to use this worksheet (also see instructions in Section G of the WQMP Template):

- 1. Review Column 1 and identify which of these potential sources of stormwater pollutants apply to your site. Check each box that applies.
- 2. Review Column 2 and incorporate all of the corresponding applicable BMPs in your WQMP Exhibit.
- 3. Review Columns 3 and 4 and incorporate all of the corresponding applicable permanent controls and operational BMPs in your WQMP. Use the format shown in Table G.1on page 23 of this WQMP Template. Describe your specific BMPs in an accompanying narrative, and explain any special conditions or situations that required omitting BMPs or substituting alternative BMPs for those shown here.

	E SOURCES WILL BE PROJECT SITE	THEN YOUR WOMP SHO	OUL) INCLUDE THESE SOURCE CONT	ROL	. BMPs, AS APPLICABLE	
1 Potential Sources of Runoff Pollutants		2 Permanent Controls—Show on WQMP Drawings		3 Permanent Controls—List in WQMP Table and Narrative		4 Operational BMPs—Include in WQMF Table and Narrative	
	A. On-site storm drain inlets	Locations of inlets.		Mark all inlets with the words "Only Rain Down the Storm Drain" or similar. Catch Basin Markers may be available from the Riverside County Flood Control and Water Conservation District, call 951.955.1200 to verify.		Maintain and periodically repaint or replace inlet markings. Provide stormwater pollution prevention information to new site owners, lessees, or operators. See applicable operational BMPs in Fact Sheet SC-44, "Drainage System Maintenance," in the CASQA Stormwater Quality Handbooks at www.cabmphandbooks.com Include the following in lease agreements: "Tenant shall not allow anyone to discharge anything to storm drains or to store or deposit materials so as to create a potential discharge to storm drains."	
	B . Interior floor drains and elevator shaft sump pumps			State that interior floor drains and elevator shaft sump pumps will be plumbed to sanitary sewer.		Inspect and maintain drains to prevent blockages and overflow.	
	C. Interior parking garages			State that parking garage floor drains will be plumbed to the sanitary sewer.		Inspect and maintain drains to prevent blockages and overflow.	

E SOURCES WILL BE PROJECT SITE	THEN YOUR WOMP SHOULD INCLUDE THESE SOURCE CONTROL BMPS, AS APPLICABLE							
1 Itential Sources of Runoff Pollutants	2 Permanent Controls—Show on WQMP Drawings		3 Permanent Controls—List in WQMP Table and Narrative		4 Derational BMPs—Include in WQMP Table and Narrative			
D1. Need for future indoor & structural pest control			Note building design features that discourage entry of pests.		Provide Integrated Pest Management information to owners, lessees, and operators.			
D2. Landscape/ Outdoor Pesticide Use	 Show locations of native trees or areas of shrubs and ground cover to be undisturbed and retained. Show self-retaining landscape areas, if any. Show stormwater treatment and hydrograph modification management BMPs. (See instructions in Chapter 3, Step 5 and guidance in Chapter 5.) 		State that final landscape plans will accomplish all of the following. Preserve existing native trees, shrubs, and ground cover to the maximum extent possible. Design landscaping to minimize irrigation and runoff, to promote surface infiltration where appropriate, and to minimize the use of fertilizers and pesticides that can contribute to stormwater pollution. Where landscaped areas are used to retain or detain stormwater, specify plants that are tolerant of saturated soil conditions. Consider using pest-resistant plants, especially adjacent to hardscape. To insure successful establishment, select plants appropriate to site soils, slopes, climate, sun, wind, rain, land use, air movement, ecological consistency, and plant interactions.		Maintain landscaping using minimum or no pesticides. See applicable operational BMPs in "What you should know forLandscape and Gardening" at http://rcflood.org/stormwater/Error! Hyperlink reference not valid. Provide IPM information to new owners, lessees and operators.			

	E SOURCES WILL BE PROJECT SITE		THEN YOUR WOMP SHO	JULE	D INCLUDE THESE SOURCE CONT	ROL	BMPs, AS APPLICABLE		
_	1 tential Sources of Sunoff Pollutants	2 Permanent Controls—Show on WQMP Drawings		Per	3 Permanent Controls—List in WQMP Table and Narrative		4 Operational BMPs—Include in WQMP Table and Narrative		
	E. Pools, spas, ponds, decorative fountains, and other water features.		Show location of water feature and a sanitary sewer cleanout in an accessible area within 10 feet. (Exception: Public pools must be plumbed according to County Department of Environmental Health Guidelines.)		If the Co-Permittee requires pools to be plumbed to the sanitary sewer, place a note on the plans and state in the narrative that this connection will be made according to local requirements.		See applicable operational BMPs in "Guidelines for Maintaining Your Swimming Pool, Jacuzzi and Garden Fountain" at http://rcflood.org/stormwater/		
	F. Food service		For restaurants, grocery stores, and other food service operations, show location (indoors or in a covered area outdoors) of a floor sink or other area for cleaning floor mats, containers, and equipment. On the drawing, show a note that this drain will be connected to a grease interceptor before discharging to the sanitary sewer.		Describe the location and features of the designated cleaning area. Describe the items to be cleaned in this facility and how it has been sized to insure that the largest items can be accommodated.		See the brochure, "The Food Service Industry Best Management Practices for: Restaurants, Grocery Stores, Delicatessens and Bakeries" at http://rcflood.org/stormwater/ Provide this brochure to new site owners, lessees, and operators.		
	G. Refuse areas		Show where site refuse and recycled materials will be handled and stored for pickup. See local municipal requirements for sizes and other details of refuse areas. If dumpsters or other receptacles are outdoors, show how the designated area will be covered, graded, and paved to prevent run- on and show locations of berms to prevent runoff from the area. Any drains from dumpsters, compactors, and tallow bin areas shall be connected to a grease removal device before discharge to sanitary sewer.		State how site refuse will be handled and provide supporting detail to what is shown on plans. State that signs will be posted on or near dumpsters with the words "Do not dump hazardous materials here" or similar.		State how the following will be implemented: Provide adequate number of receptacles. Inspect receptacles regularly; repair or replace leaky receptacles. Keep receptacles covered. Prohibit/prevent dumping of liquid or hazardous wastes. Post "no hazardous materials" signs. Inspect and pick up litter daily and clean up spills immediately. Keep spill control materials available on-site. See Fact Sheet SC-34, "Waste Handling and Disposal" in the CASQA Stormwater Quality Handbooks at www.cabmphandbooks.com		

	SE SOURCES WILL BE E PROJECT SITE	THEN YOUR WOMP SH	OULI	D INCLUDE THESE SOURCE CONT	ROL	. BMPs, AS APPLICABLE	
1 Potential Sources of Runoff Pollutants		2 Permanent Controls—Show on WQMP Drawings		3 Permanent Controls—List in WQMP Table and Narrative		4 Operational BMPs—Include in WQMP Table and Narrative	
X	H. Industrial processes.	Show process area.		If industrial processes are to be located on site, state: "All process activities to be performed indoors. No processes to drain to exterior or to storm drain system."		See Fact Sheet SC-10, "Non- Stormwater Discharges" in the CASQA Stormwater Quality Handbooks at www.cabmphandbooks.com See the brochure "Industrial &	
						See the brochure "Industrial & Commercial Facilities Best Management Practices for: Industrial, Commercial Facilities" at http://rcflood.org/stormwater/	

IF THESE SOURCES WILL BE ON THE PROJECT SITE	THEN YOUR WOMP SHO	OULD INCLUDE THESE SOURCE CONT	ROL BMPS, AS APPLICABLE
1 Potential Sources of Runoff Pollutants	2 Permanent Controls—Show on WQMP Drawings	3 Permanent Controls—List in WQMP Table and Narrative	4 Operational BMPs—Include in WQMP Table and Narrative
I. Outdoor storage of equipment or materials. (See rows J and K for source control measures for vehicle cleaning, repair, and maintenance.)	 Show any outdoor storage areas, including how materials will be covered. Show how areas will be graded and bermed to prevent runon or run-off from area. Storage of non-hazardous liquids shall be covered by a roof and/or drain to the sanitary sewer system, and be contained by berms, dikes, liners, or vaults. Storage of hazardous materials and wastes must be in compliance with the local hazardous materials ordinance and a Hazardous Materials Management Plan for the site. 	 Include a detailed description of materials to be stored, storage areas, and structural features to prevent pollutants from entering storm drains. Where appropriate, reference documentation of compliance with the requirements of Hazardous Materials Programs for: Hazardous Waste Generation Hazardous Materials Release Response and Inventory California Accidental Release (CalARP) Aboveground Storage Tank Uniform Fire Code Article 80 Section 103(b) & (c) 1991 Underground Storage Tank 	See the Fact Sheets SC-31, "Outdoor Liquid Container Storage" and SC-33 "Outdoor Storage of Raw Materials" in the CASQA Stormwater Quality Handbooks at www.cabmphandbooks.com

IF THESE SOURCES WILL BE ON THE PROJECT SITE	THEN YOUR WOMP SHO	YOUR WOMP SHOULD INCLUDE THESE SOURCE CONTROL BMPS, AS APPLICABLE						
1 Potential Sources of Runoff Pollutants	2 Permanent Controls—Show on WQMP Drawings	3 Permanent Controls—List in WQMP Table and Narrative	4 Operational BMPs—Include in WQMP Table and Narrative					
J. Vehicle and Equipment Cleaning	 Show on drawings as appropriate: (1) Commercial/industrial facilities having vehicle/equipment cleaning needs shall either provide a covered, bermed area for washing activities or discourage vehicle/equipment washing by removing hose bibs and installing signs prohibiting such uses. (2) Multi-dwelling complexes shall have a paved, bermed, and covered car wash area (unless car washing is prohibited on-site and hoses are provided with an automatic shutoff to discourage such use). (3) Washing areas for cars, vehicles, and equipment shall be paved, designed to prevent run-on to or runoff from the area, and plumbed to drain to the sanitary sewer. (4) Commercial car wash facilities shall be designed such that no runoff from the facility is discharged to the storm drain system. Wastewater from the facility shall discharge to the sanitary sewer, or a wastewater reclamation system shall be installed. 	□ If a car wash area is not provided, describe any measures taken to discourage on-site car washing and explain how these will be enforced.	 Describe operational measures to implement the following (if applicable): Washwater from vehicle and equipment washing operations shall not be discharged to the storm drain system. Refer to "Outdoor Cleaning Activities and Professional Mobile Service Providers" for many of the Potential Sources of Runoff Pollutants categories below. Brochure can be found at http://rcflood.org/stormwater/ Car dealerships and similar may rinse cars with water only. 					

IF THESE SOURCES WILL BE ON THE PROJECT SITE	THEN YOUR WOMP SHO	OULD INCLUDE THESE SOURCE CONT	ROL BMPS, AS APPLICABLE
1 Potential Sources of Runoff Pollutants	2 Permanent Controls—Show on WQMP Drawings	3 Permanent Controls—List in WQMP Table and Narrative	4 Operational BMPs—Include in WQMP Table and Narrative
K. Vehicle/Equipment Repair and Maintenance	 Accommodate all vehicle equipment repair and maintenance indoors. Or designate an outdoor work area and design the area to prevent run-on and runoff of stormwater. Show secondary containment for exterior work areas where motor oil, brake fluid, gasoline, diesel fuel, radiator fluid, acid-containing batteries or other hazardous materials or hazardous wastes are used or stored. Drains shall not be installed within the secondary containment areas. Add a note on the plans that states either (1) there are no floor drains, or (2) floor drains are connected to wastewater pretreatment systems prior to discharge to the sanitary sewer and an industrial waste discharge permit will be obtained. 	 State that no vehicle repair or maintenance will be done outdoors, or else describe the required features of the outdoor work area. State that there are no floor drains or if there are floor drains, note the agency from which an industrial waste discharge permit will be obtained and that the design meets that agency's requirements. State that there are no tanks, containers or sinks to be used for parts cleaning or rinsing or, if there are, note the agency from which an industrial waste discharge permit will be obtained and that the design meets that agency's requirements. 	 In the Stormwater Control Plan, note that all of the following restrictions apply to use the site: No person shall dispose of, nor permit the disposal, directly or indirectly of vehicle fluids, hazardous materials, or rinsewater from parts cleaning into storm drains. No vehicle fluid removal shall be performed outside a building, nor on asphalt or ground surfaces, whether inside or outside a building, except in such a manner as to ensure that any spilled fluid will be in an area of secondary containment. Leaking vehicle fluids shall be contained or drained from the vehicle immediately. No person shall leave unattended drip parts or other open containers containing vehicle fluid, unless such containers are in use or in an area of secondary containment. Refer to "Automotive Maintenance & Car Care Best Management Practices for Auto Body Shops, Auto Repair Shops, Car Dealerships, Gas Stations and Fleet Service Operations". Brochure can be found at http://rcflood.org/stormwater/ Refer to Outdoor Cleaning Activities and Professional Mobile Service Providers for many of the Potential Sources of Runoff Pollutants categories below. Brochure can be found at http://rcflood.org/stormwater/

IF THESE SOURCES WILL BE ON THE PROJECT SITE	THEN YOUR WOMP SHOULD INCLUDE THESE SOURCE CONTROL BMPS, AS APPLICABLE				
1 Potential Sources of Runoff Pollutants	2 Permanent Controls—Show on WQMP Drawings	3 Permanent Controls—List in WQMP Table and Narrative	4 Operational BMPs—Include in WQMP Table and Narrative		
L. Fuel Dispensing Areas	 Fueling areas⁶ shall have impermeable floors (i.e., portland cement concrete or equivalent smooth impervious surface) that are: a) graded at the minimum slope necessary to prevent ponding; and b) separated from the rest of the site by a grade break that prevents run-on of stormwater to the maximum extent practicable. Fueling areas shall be covered by a canopy that extends a minimum of ten feet in each direction from each pump. [Alternative: The fueling area must be covered and the cover's minimum dimensions must be equal to or greater than the area within the grade break or fuel dispensing area¹.] The canopy [or cover] shall not drain onto the fueling area. 		 The property owner shall dry sweep the fueling area routinely. See the Fact Sheet SD-30, "Fueling Areas" in the CASQA Stormwater Quality Handbooks at www.cabmphandbooks.com 		

⁶ The fueling area shall be defined as the area extending a minimum of 6.5 feet from the corner of each fuel dispenser or the length at which the hose and nozzle assembly may be operated plus a minimum of one foot, whichever is greater.

IF THESE SOURCES WILL BE ON THE PROJECT SITE	THEN YOUR WOMP SHOULD INCLUDE THESE SOURCE CONTROL BMPs, AS APPLICABLE				
1 Potential Sources of Runoff Pollutants	2 Permanent Controls—Show on WQMP Drawings	3 Permanent Controls—List in WQMP Table and Narrative	4 Operational BMPs—Include in WQMP Table and Narrative		
M. Loading Docks	Show a preliminary design for the loading dock area, including roofing and drainage. Loading docks shall be covered and/or graded to minimize run-on to and runoff from the loading area. Roof downspouts shall be positioned to direct stormwater away from the loading area. Water from loading dock areas shall be drained to the sanitary sewer, or diverted and collected for ultimate discharge to the sanitary sewer.		 Move loaded and unloaded items indoors as soon as possible. See Fact Sheet SC-30, "Outdoor Loading and Unloading," in the CASQA Stormwater Quality Handbooks at www.cabmphandbooks.com 		
	 Loading dock areas draining directly to the sanitary sewer shall be equipped with a spill control valve or equivalent device, which shall be kept closed during periods of operation. Provide a roof overhang over the loading area or install door skirts (cowling) at each bay that enclose the end of the trailer. 				

	SE SOURCES WILL BE E PROJECT SITE	I THEN YOUR WOMP SHOULD INCLUDE THESE SOURCE CONTROL BMPS, AS APPLICABLE			. BMPs, AS APPLICABLE	
	1 otential Sources of Runoff Pollutants	2 Permanent Controls—Show on WQMP Drawings	Pei	3 manent Controls—List in WQMP Table and Narrative	Op	4 perational BMPs—Include in WQMP Table and Narrative
X	N. Fire Sprinkler Test Water			Provide a means to drain fire sprinkler test water to the sanitary sewer.		See the note in Fact Sheet SC-41, "Building and Grounds Maintenance," in the CASQA Stormwater Quality Handbooks at www.cabmphandbooks.com
	O. Miscellaneous Drain or Wash Water or Other Sources Boiler drain lines Condensate drain lines Rooftop equipment Drainage sumps			Boiler drain lines shall be directly or indirectly connected to the sanitary sewer system and may not discharge to the storm drain system. Condensate drain lines may discharge to landscaped areas if the flow is small enough that runoff will not occur. Condensate drain		
	Roofing, gutters, and trim. Other sources			lines may not discharge to the storm drain system. Rooftop equipment with potential to produce pollutants shall be roofed and/or have secondary containment.		
				Any drainage sumps on-site shall feature a sediment sump to reduce the quantity of sediment in pumped water.		
				Avoid roofing, gutters, and trim made of copper or other unprotected metals that may leach into runoff.		
				Include controls for other sources as specified by local reviewer.		

IF THESE SOURCES WILL BE ON THE PROJECT SITE	THEN YOUR WOMP SHOULD INCLUDE THESE SOURCE CONTROL BMPS, AS APPLICABLE			
1 Potential Sources of Runoff Pollutants	2 Permanent Controls—Show on WQMP Drawings	3 Permanent Controls—List in WQMP Table and Narrative	4 Operational BMPs—Include in WQMP Table and Narrative	
P. Plazas, sidewalks, and parking lots.			Sweep plazas, sidewalks, and parking lots regularly to prevent accumulation of litter and debris. Collect debris from pressure washing to prevent entry into the storm drain system. Collect washwater containing any cleaning agent or degreaser and discharge to the sanitary sewer not to a storm drain.	

Appendix 9: O&M

Operation and Maintenance Plan and Documentation of Finance, Maintenance and Recording Mechanisms

Section to be completed during the Final WQMP

Appendix 10: Educational Materials

BMP Fact Sheets, Maintenance Guidelines and Other End-User BMP Information

Section to be completed during the Final WQMP