Appendix A
CalEEMOD Air Quality and GHG Modeling
(Available for review at City Hall)

Ruppert Cannabis Palm Springs Detailed Report

Table of Contents

- 1. Basic Project Information
 - 1.1. Basic Project Information
 - 1.2. Land Use Types
 - 1.3. User-Selected Emission Reduction Measures by Emissions Sector
- 2. Emissions Summary
 - 2.1. Construction Emissions Compared Against Thresholds
 - 2.2. Construction Emissions by Year, Unmitigated
 - 2.4. Operations Emissions Compared Against Thresholds
 - 2.5. Operations Emissions by Sector, Unmitigated
- 3. Construction Emissions Details
 - 3.1. Site Preparation (2025) Unmitigated
 - 3.3. Grading (2025) Unmitigated
 - 3.5. Building Construction (2025) Unmitigated
 - 3.7. Paving (2025) Unmitigated

- 3.9. Architectural Coating (2025) Unmitigated
- 4. Operations Emissions Details
 - 4.1. Mobile Emissions by Land Use
 - 4.1.1. Unmitigated
 - 4.2. Energy
 - 4.2.1. Electricity Emissions By Land Use Unmitigated
 - 4.2.3. Natural Gas Emissions By Land Use Unmitigated
 - 4.3. Area Emissions by Source
 - 4.3.1. Unmitigated
 - 4.4. Water Emissions by Land Use
 - 4.4.1. Unmitigated
 - 4.5. Waste Emissions by Land Use
 - 4.5.1. Unmitigated
 - 4.6. Refrigerant Emissions by Land Use
 - 4.6.1. Unmitigated
 - 4.7. Offroad Emissions By Equipment Type
 - 4.7.1. Unmitigated

- 4.8. Stationary Emissions By Equipment Type
 - 4.8.1. Unmitigated
- 4.9. User Defined Emissions By Equipment Type
 - 4.9.1. Unmitigated
- 4.10. Soil Carbon Accumulation By Vegetation Type
 - 4.10.1. Soil Carbon Accumulation By Vegetation Type Unmitigated
 - 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type Unmitigated
 - 4.10.3. Avoided and Sequestered Emissions by Species Unmitigated
- 5. Activity Data
 - 5.1. Construction Schedule
 - 5.2. Off-Road Equipment
 - 5.2.1. Unmitigated
 - 5.3. Construction Vehicles
 - 5.3.1. Unmitigated
 - 5.4. Vehicles
 - 5.4.1. Construction Vehicle Control Strategies
 - 5.5. Architectural Coatings

- 5.6. Dust Mitigation
 - 5.6.1. Construction Earthmoving Activities
 - 5.6.2. Construction Earthmoving Control Strategies
- 5.7. Construction Paving
- 5.8. Construction Electricity Consumption and Emissions Factors
- 5.9. Operational Mobile Sources
 - 5.9.1. Unmitigated
- 5.10. Operational Area Sources
 - 5.10.1. Hearths
 - 5.10.1.1. Unmitigated
 - 5.10.2. Architectural Coatings
 - 5.10.3. Landscape Equipment
- 5.11. Operational Energy Consumption
 - 5.11.1. Unmitigated
- 5.12. Operational Water and Wastewater Consumption
 - 5.12.1. Unmitigated
- 5.13. Operational Waste Generation

- 5.13.1. Unmitigated
- 5.14. Operational Refrigeration and Air Conditioning Equipment
 - 5.14.1. Unmitigated
- 5.15. Operational Off-Road Equipment
 - 5.15.1. Unmitigated
- 5.16. Stationary Sources
 - 5.16.1. Emergency Generators and Fire Pumps
 - 5.16.2. Process Boilers
- 5.17. User Defined
- 5.18. Vegetation
 - 5.18.1. Land Use Change
 - 5.18.1.1. Unmitigated
 - 5.18.1. Biomass Cover Type
 - 5.18.1.1. Unmitigated
 - 5.18.2. Sequestration
 - 5.18.2.1. Unmitigated
- 6. Climate Risk Detailed Report

- 6.1. Climate Risk Summary
- 6.2. Initial Climate Risk Scores
- 6.3. Adjusted Climate Risk Scores
- 6.4. Climate Risk Reduction Measures
- 7. Health and Equity Details
 - 7.1. CalEnviroScreen 4.0 Scores
 - 7.2. Healthy Places Index Scores
 - 7.3. Overall Health & Equity Scores
 - 7.4. Health & Equity Measures
 - 7.5. Evaluation Scorecard
 - 7.6. Health & Equity Custom Measures
- 8. User Changes to Default Data

1. Basic Project Information

1.1. Basic Project Information

Data Field	Value
Project Name	Ruppert Cannabis Palm Springs
Construction Start Date	1/1/2025
Operational Year	2025
Lead Agency	_
Land Use Scale	Project/site
Analysis Level for Defaults	County
Windspeed (m/s)	3.30
Precipitation (days)	11.2
Location	33.90944180205274, -116.55098530164209
County	Riverside-Salton Sea
City	Palm Springs
Air District	South Coast AQMD
Air Basin	Salton Sea
TAZ	5694
EDFZ	11
Electric Utility	Southern California Edison
Gas Utility	Southern California Gas
App Version	2022.1.1.23

1.2. Land Use Types

Land Use Subty	e Size	Unit	Lot Acreage	Building Area (sq ft)	Landscape Area (sq	Special Landscape	Population	Description
					ft)	Area (sq ft)		

General Light	11.7	1000sqft	0.70	11,691	6,000	_	_	_
Industry								

1.3. User-Selected Emission Reduction Measures by Emissions Sector

No measures selected

2. Emissions Summary

2.1. Construction Emissions Compared Against Thresholds

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Un/Mit.	ROG	NOx	со	SO2		PM2.5T	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_
Unmit.	15.6	5.23	7.44	0.01	0.42	0.23	1,446
Daily, Winter (Max)	_	_	_	_	_	_	_
Unmit.	1.12	10.1	10.5	0.02	2.64	1.45	1,844
Average Daily (Max)	_	_	_	_	_	_	_
Unmit.	0.47	1.58	2.11	< 0.005	0.15	0.10	401
Annual (Max)	_	_	_	_	_	_	_
Unmit.	0.09	0.29	0.38	< 0.005	0.03	0.02	66.4
Exceeds (Daily Max)	_	_	_	_	_	_	_
Threshold	75.0	100	550	150	150	55.0	_
Unmit.	No	No	No	No	No	No	_
Exceeds (Average Daily)	_	_	_	_	_	_	_
Threshold	75.0	100	550	150	150	55.0	_
Unmit.	No	No	No	No	No	No	_

2.2. Construction Emissions by Year, Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Year	ROG	NOx	со	SO2	PM10T	PM2.5T	CO2e
Daily - Summer (Max)	_	_	_	_	_	_	_
2025	15.6	5.23	7.44	0.01	0.42	0.23	1,446
Daily - Winter (Max)	_	_	_	_	_	_	_
2025	1.12	10.1	10.5	0.02	2.64	1.45	1,844
Average Daily	_	_	_	_	_	_	_
2025	0.47	1.58	2.11	< 0.005	0.15	0.10	401
Annual	_	_	_	_	_	_	_
2025	0.09	0.29	0.38	< 0.005	0.03	0.02	66.4

2.4. Operations Emissions Compared Against Thresholds

Un/Mit.	ROG	NOx	СО	SO2	PM10T	PM2.5T	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_
Unmit.	0.61	0.54	4.87	0.01	0.88	0.24	1,433
Daily, Winter (Max)	_	_	_	_	_	_	_
Unmit.	0.48	0.57	2.78	0.01	0.88	0.24	1,305
Average Daily (Max)	_	_	_	_	_	_	_
Unmit.	0.54	0.55	3.55	0.01	0.87	0.23	1,356
Annual (Max)	_	_	_	_	_	_	_
Unmit.	0.10	0.10	0.65	< 0.005	0.16	0.04	224
Exceeds (Daily Max)	_	_	_	_	_	_	_
Threshold	55.0	55.0	550	150	150	55.0	_
Unmit.	No	No	No	No	No	No	_
Exceeds (Average Daily)	_	_	_	_	_	_	_
Threshold	55.0	55.0	550	150	150	55.0	_

Unmit.	No	No	No	No	No	No	_
Exceeds (Annual)	_	_	_	_	_	_	_
Threshold	_	_	_	_	_	_	3,000
Unmit.	_	_	_	_	_	_	No

2.5. Operations Emissions by Sector, Unmitigated

Sector	ROG	NOx	со	SO2	PM10T	PM2.5T	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_
Mobile	0.24	0.40	4.25	0.01	0.87	0.23	1,097
Area	0.36	< 0.005	0.51	< 0.005	< 0.005	< 0.005	2.10
Energy	0.01	0.13	0.11	< 0.005	0.01	0.01	269
Water	_	_	_	_	_	_	34.9
Waste	_	_	_	_	_	_	27.3
Refrig.	_	_	_	_	_	_	3.04
Total	0.61	0.54	4.87	0.01	0.88	0.24	1,433
Daily, Winter (Max)	_	_	_	_	_	_	_
Mobile	0.20	0.43	2.67	0.01	0.87	0.23	971
Area	0.28	_	_	_	_	_	_
Energy	0.01	0.13	0.11	< 0.005	0.01	0.01	269
Water	_	_	_	_	_	_	34.9
Waste	_	_	_	_	_	_	27.3
Refrig.	_	_	_	_	_	_	3.04
Total	0.48	0.57	2.78	0.01	0.88	0.24	1,305
Average Daily	_	_	_	_	_	_	_
Mobile	0.21	0.42	3.18	0.01	0.86	0.22	1,021
Area	0.32	< 0.005	0.25	< 0.005	< 0.005	< 0.005	1.03

Energy	0.01	0.13	0.11	< 0.005	0.01	0.01	269
Water	_	_	_	_	_	_	34.9
Waste	_	_	_	_	_	_	27.3
Refrig.	_	_	_	_	_	_	3.04
Total	0.54	0.55	3.55	0.01	0.87	0.23	1,356
Annual	_	_	_	_	_	_	_
Mobile	0.04	0.08	0.58	< 0.005	0.16	0.04	169
Area	0.06	< 0.005	0.05	< 0.005	< 0.005	< 0.005	0.17
Energy	< 0.005	0.02	0.02	< 0.005	< 0.005	< 0.005	44.5
Water	_	_	_	_	_	_	5.77
Waste	_	_	_	_	_	_	4.53
Refrig.	_	_	_	_	_	_	0.50
Total	0.10	0.10	0.65	< 0.005	0.16	0.04	224

3. Construction Emissions Details

3.1. Site Preparation (2025) - Unmitigated

Location	ROG	NOx	со	SO2	PM10T	PM2.5T	CO2e
Onsite	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_
Off-Road Equipment	0.47	4.16	5.57	0.01	0.21	0.20	862
Dust From Material Movement	_	_	_	_	0.21	0.02	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_

Off-Road Equipment	< 0.005	0.01	0.02	< 0.005	< 0.005	< 0.005	2.36
Dust From Material Movement	_	_	_	_	< 0.005	< 0.005	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_
Off-Road Equipment	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.39
Dust From Material Movement	_	_	_	_	< 0.005	< 0.005	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_
Worker	0.02	0.03	0.27	0.00	0.07	0.02	64.0
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.00	< 0.005	< 0.005	0.19
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.00	< 0.005	< 0.005	0.03
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.3. Grading (2025) - Unmitigated

Location	ROG	NOx	со	SO2	PM10T	PM2.5T	CO2e
Onsite	_	_	_	_	_	_	_

Daily, Summer (Max)	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_
Off-Road Equipment	1.09	10.1	10.0	0.02	0.46	0.43	1,720
Dust From Material Movement	_	_	_	_	2.07	1.00	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_
Off-Road Equipment	0.03	0.28	0.28	< 0.005	0.01	0.01	47.1
Dust From Material Movement	_	_	_	_	0.06	0.03	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_
Off-Road Equipment	0.01	0.05	0.05	< 0.005	< 0.005	< 0.005	7.80
Dust From Material Movement	_	_	_	_	0.01	0.01	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_
Vorker	0.03	0.04	0.41	0.00	0.10	0.02	96.0
/endor	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	< 0.005	0.03	0.01	< 0.005	0.01	< 0.005	28.6
Average Daily	_	_	_	_	_	_	_
Vorker	< 0.005	< 0.005	0.01	0.00	< 0.005	< 0.005	2.81
/endor	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.78
Annual	_	_	_	_	_	_	_
Vorker	< 0.005	< 0.005	< 0.005	0.00	< 0.005	< 0.005	0.47
/endor							

Hauling	< 0.005	< 0.00E	< 0.005	< 0.005	< 0.005	< 0.005	O 12
riauling	< 0.003	< 0.005	< 0.003	< 0.003	< 0.003	< 0.005	0.13

3.5. Building Construction (2025) - Unmitigated

	riteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)											
Location	ROG	NOx	со	SO2	PM10T	PM2.5T	CO2e					
Onsite	_	_	_	_	_	_	_					
Daily, Summer (Max)	_	_	_	_	_	_	_					
Off-Road Equipment	0.52	5.14	6.94	0.01	0.22	0.20	1,309					
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00					
Daily, Winter (Max)	_	_	_	_	_	_	_					
Off-Road Equipment	0.52	5.14	6.94	0.01	0.22	0.20	1,309					
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00					
Average Daily	_	_	_	_	_	_	_					
Off-Road Equipment	0.11	1.13	1.52	< 0.005	0.05	0.04	287					
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00					
Annual	_	_	_	_	_	_	_					
Off-Road Equipment	0.02	0.21	0.28	< 0.005	0.01	0.01	47.5					
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00					
Offsite	_	_	_	_	_	_	_					
Daily, Summer (Max)	_	_	_	_	_	_	_					
Worker	0.03	0.03	0.47	0.00	0.06	0.02	74.0					
Vendor	< 0.005	0.06	0.03	< 0.005	0.02	0.01	63.3					
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00					
Daily, Winter (Max)	_	_	_	_	_	_	_					
Worker	0.02	0.03	0.27	0.00	0.06	0.02	62.8					
Vendor	< 0.005	0.07	0.03	< 0.005	0.02	0.01	63.1					
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00					

Average Daily	_	_	_	_	_	_	_
Worker	< 0.005	0.01	0.07	0.00	0.01	< 0.005	14.7
Vendor	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	13.8
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	0.01	0.00	< 0.005	< 0.005	2.44
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	2.29
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.7. Paving (2025) - Unmitigated

Location	ROG	NOx	со	SO2	PM10T	PM2.5T	CO2e
Onsite	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_
Off-Road Equipment	0.51	4.37	5.31	0.01	0.19	0.18	826
Paving	0.02	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	_	_
Average Daily	_	_	_	_	_	_	_
Off-Road Equipment	0.01	0.12	0.15	< 0.005	0.01	< 0.005	22.6
Paving	< 0.005	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_
Off-Road Equipment	< 0.005	0.02	0.03	< 0.005	< 0.005	< 0.005	3.75
Paving	< 0.005	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_

Daily, Summer (Max)	_	_	_	_	_	_	_
Worker	0.09	0.09	1.67	0.00	0.23	0.05	264
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	_	_
Average Daily	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	0.03	0.00	0.01	< 0.005	6.56
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	0.01	0.00	< 0.005	< 0.005	1.09
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.9. Architectural Coating (2025) - Unmitigated

Location	ROG	NOx	со	SO2	PM10T	PM2.5T	CO2e
Onsite	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_
Off-Road Equipment	0.13	0.88	1.14	< 0.005	0.03	0.03	134
Architectural Coatings	15.5	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	_	_
Average Daily	_	_	_	_	_	_	_
Off-Road Equipment	< 0.005	0.02	0.02	< 0.005	< 0.005	< 0.005	2.57
Architectural Coatings	0.30	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Annual	_	_	_	_	_	_	_
Off-Road Equipment	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.43
Architectural Coatings	0.05	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_
Worker	0.01	0.01	0.09	0.00	0.01	< 0.005	14.8
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	_	_
Average Daily	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.00	< 0.005	< 0.005	0.26
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.00	< 0.005	< 0.005	0.04
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00

4. Operations Emissions Details

4.1. Mobile Emissions by Land Use

4.1.1. Unmitigated

Land Use	ROG	NOx	СО	SO2	PM10T	PM2.5T	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_

General Light Industry	0.24	0.40	4.25	0.01	0.87	0.23	1,097
Total	0.24	0.40	4.25	0.01	0.87	0.23	1,097
Daily, Winter (Max)	_	_	_	_	_	_	_
General Light Industry	0.20	0.43	2.67	0.01	0.87	0.23	971
Total	0.20	0.43	2.67	0.01	0.87	0.23	971
Annual	_	_	_	_	_	_	_
General Light Industry	0.04	0.08	0.58	< 0.005	0.16	0.04	169
Total	0.04	0.08	0.58	< 0.005	0.16	0.04	169

4.2. Energy

4.2.1. Electricity Emissions By Land Use - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	ROG	NOx	со	SO2	PM10T	PM2.5T	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_
General Light Industry	_	_	_	_	_	_	107
Total	_	_	_	_	_	_	107
Daily, Winter (Max)	_	_	_	_	_	_	_
General Light Industry	_	_	_	_	_	_	107
Total	_	_	_	_	_	_	107
Annual	_	_	_	_	_	_	_
General Light Industry	_	_	_	_	_	_	17.8
Total	_	_	_	_	_	_	17.8

4.2.3. Natural Gas Emissions By Land Use - Unmitigated

	<u> </u>	<i>y</i> /		J' J	<u> </u>		
The second secon	I DOO	Luo.	100	000	DIMAGE	DMO ET	000
Land Use	ROG	NOx	ICO	SO2	PM10T	PM2.5T	CO2e
		1			1		00_0

Daily, Summer (Max)	_	_	_	_	_	_	_
General Light Industry	0.01	0.13	0.11	< 0.005	0.01	0.01	161
Total	0.01	0.13	0.11	< 0.005	0.01	0.01	161
Daily, Winter (Max)	_	_	_	_	_	_	_
General Light Industry	0.01	0.13	0.11	< 0.005	0.01	0.01	161
Total	0.01	0.13	0.11	< 0.005	0.01	0.01	161
Annual	_	_	_	_	_	_	_
General Light Industry	< 0.005	0.02	0.02	< 0.005	< 0.005	< 0.005	26.7
Total	< 0.005	0.02	0.02	< 0.005	< 0.005	< 0.005	26.7

4.3. Area Emissions by Source

4.3.1. Unmitigated

Source	ROG	NOx	со	SO2	PM10T	PM2.5T	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_
Consumer Products	0.25	_	_	_	_	_	_
Architectural Coatings	0.03	_	_	_	_	_	_
Landscape Equipment	0.08	< 0.005	0.51	< 0.005	< 0.005	< 0.005	2.10
Total	0.36	< 0.005	0.51	< 0.005	< 0.005	< 0.005	2.10
Daily, Winter (Max)	_	_	_	_	_	_	_
Consumer Products	0.25	_	_	_	_	_	_
Architectural Coatings	0.03	_	_	_	_	_	_
Total	0.28	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_
Consumer Products	0.05	_	_	_	_	_	_
Architectural Coatings	0.01	_	_	_	_	_	_

Landscape Equipment	0.01	< 0.005	0.05	< 0.005	< 0.005	< 0.005	0.17
Total	0.06	< 0.005	0.05	< 0.005	< 0.005	< 0.005	0.17

4.4. Water Emissions by Land Use

4.4.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

	ROG		со			PM2.5T	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_
General Light Industry	_	_	_	_	_	_	34.9
Total	_	_	_	_	_	_	34.9
Daily, Winter (Max)	_	_	_	_	_	_	_
General Light Industry	_	_	_	_	_	_	34.9
Total	_	_	_	_	_	_	34.9
Annual	_	_	_	_	_	_	_
General Light Industry	_	_	_	_	_	_	5.77
Total	_	_	_	_	_	_	5.77

4.5. Waste Emissions by Land Use

4.5.1. Unmitigated

Land Use	ROG	NOx	со	SO2	PM10T	PM2.5T	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_
General Light Industry	_	_	_	_	_	_	27.3
Total	_	_	_	_	_	_	27.3
Daily, Winter (Max)	_	_	_	_	_	_	_

General Light Industry	_	_	_	_	_	_	27.3
Total	_	_	_	_	_	_	27.3
Annual	_	_	_	_	_	_	_
General Light Industry	_	_	_	_	_	_	4.53
Total	_	_	_	_	_	_	4.53

4.6. Refrigerant Emissions by Land Use

4.6.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	ROG	NOx	со	SO2		PM2.5T	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_
General Light Industry	_	_	_	_	_	_	3.04
Total	_	_	_	_	_	_	3.04
Daily, Winter (Max)	_	_	_	_	_	_	_
General Light Industry	_	_	_	_	_	_	3.04
Total	_	_	_	_	_	_	3.04
Annual	_	_	_	_	_	_	_
General Light Industry	_	_	_	_	_	_	0.50
Total	_	_	_	_	_	_	0.50

4.7. Offroad Emissions By Equipment Type

4.7.1. Unmitigated

Equipment Type	ROG	NOx	СО	SO2	PM10T	PM2.5T	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_

Total	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_

4.8. Stationary Emissions By Equipment Type

4.8.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Equipment Type	ROG	NOx	со	SO2	PM10T	PM2.5T	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_

4.9. User Defined Emissions By Equipment Type

4.9.1. Unmitigated

Equipment Type	ROG	NOx	со	SO2	PM10T	PM2.5T	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_

Annual	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_

4.10. Soil Carbon Accumulation By Vegetation Type

4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Vegetation	ROG	NOx	со	SO2	PM10T	PM2.5T	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_

4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

	J ,	,		J, J	<i>l</i>		
Land Use	ROG	NOx	со	SO2	PM10T	PM2.5T	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_

4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated

Species	ROG	NOx	со	SO2	PM10T	PM2.5T	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_
Avoided	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_
Sequestered	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_
Removed	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_
Avoided	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_
Sequestered	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_
Removed	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_
Avoided	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_
Sequestered	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_
Removed	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_
	_	_	_	_	_	_	_

5. Activity Data

5.1. Construction Schedule

Phase Name	Phase Type	Start Date	End Date	Days Per Week	Work Days per Phase	Phase Description
Site Preparation	Site Preparation	1/1/2025	1/1/2025	5.00	1.00	_
Grading	Grading	1/2/2025	1/15/2025	5.00	10.0	_
Building Construction	Building Construction	1/16/2025	5/7/2025	5.00	80.0	_
Paving	Paving	5/8/2025	5/21/2025	5.00	10.0	_
Architectural Coating	Architectural Coating	5/22/2025	6/1/2025	5.00	7.00	_

5.2. Off-Road Equipment

5.2.1. Unmitigated

Phase Name	Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor
Site Preparation	Graders	Diesel	Average	1.00	8.00	148	0.41
Site Preparation	Tractors/Loaders/Backh oes	Diesel	Average	1.00	8.00	84.0	0.37
Grading	Graders	Diesel	Average	1.00	6.00	148	0.41
Grading	Rubber Tired Dozers	Diesel	Average	1.00	6.00	367	0.40
Grading	Tractors/Loaders/Backh oes	Diesel	Average	1.00	7.00	84.0	0.37
Building Construction	Cranes	Diesel	Average	1.00	4.00	367	0.29
Building Construction	Forklifts	Diesel	Average	2.00	6.00	82.0	0.20
Building Construction	Tractors/Loaders/Backh oes	Diesel	Average	2.00	8.00	84.0	0.37
Paving	Cement and Mortar Mixers	Diesel	Average	4.00	6.00	10.0	0.56
Paving	Pavers	Diesel	Average	1.00	7.00	81.0	0.42
Paving	Rollers	Diesel	Average	1.00	7.00	36.0	0.38

Paving	Tractors/Loaders/Backh oes	Diesel	Average	1.00	7.00	84.0	0.37
Architectural Coating	Air Compressors	Diesel	Average	1.00	6.00	37.0	0.48

5.3. Construction Vehicles

5.3.1. Unmitigated

Phase Name	Trip Type	One-Way Trips per Day	Miles per Trip	Vehicle Mix
	пір туре			VEHICLE IVIIX
Site Preparation	_	-	_	-
Site Preparation	Worker	5.00	18.5	LDA,LDT1,LDT2
Site Preparation	Vendor	_	10.2	HHDT,MHDT
Site Preparation	Hauling	0.00	20.0	HHDT
Site Preparation	Onsite truck	_	_	HHDT
Grading	_	_	_	_
Grading	Worker	7.50	18.5	LDA,LDT1,LDT2
Grading	Vendor	_	10.2	HHDT,MHDT
Grading	Hauling	0.40	20.0	HHDT
Grading	Onsite truck	_	_	HHDT
Building Construction	_	_	_	_
Building Construction	Worker	4.91	18.5	LDA,LDT1,LDT2
Building Construction	Vendor	1.92	10.2	HHDT,MHDT
Building Construction	Hauling	0.00	20.0	HHDT
Building Construction	Onsite truck	_	_	HHDT
Paving	_	_	_	_
Paving	Worker	17.5	18.5	LDA,LDT1,LDT2
Paving	Vendor	_	10.2	HHDT,MHDT
Paving	Hauling	0.00	20.0	HHDT
Paving	Onsite truck	_	_	HHDT

Architectural Coating	_	_	_	_
Architectural Coating	Worker	0.98	18.5	LDA,LDT1,LDT2
Architectural Coating	Vendor	_	10.2	HHDT,MHDT
Architectural Coating	Hauling	0.00	20.0	HHDT
Architectural Coating	Onsite truck	_	_	HHDT

5.4. Vehicles

5.4.1. Construction Vehicle Control Strategies

Non-applicable. No control strategies activated by user.

5.5. Architectural Coatings

Phase Name	Residential Interior Area Coated (sq ft)	Residential Exterior Area Coated (sq ft)		Non-Residential Exterior Area Coated (sq ft)	Parking Area Coated (sq ft)
Architectural Coating	0.00	0.00	17,537	5,846	_

5.6. Dust Mitigation

5.6.1. Construction Earthmoving Activities

Phase Name	Material Imported (cy)	Material Exported (cy)	Acres Graded (acres)	Material Demolished (sq. ft.)	Acres Paved (acres)
Site Preparation	_	_	0.50	0.00	_
Grading	26.0	_	7.50	0.00	_
Paving	0.00	0.00	0.00	0.00	0.20

5.6.2. Construction Earthmoving Control Strategies

Control Strategies Applied	Frequency (per day)	PM10 Reduction	PM2.5 Reduction
Water Exposed Area	2	61%	61%

5.7. Construction Paving

Land Use	Area Paved (acres)	% Asphalt
General Light Industry	0.20	40%

5.8. Construction Electricity Consumption and Emissions Factors

kWh per Year and Emission Factor (lb/MWh)

Year	kWh per Year	CO2	CH4	N2O
2025	0.00	349	0.03	< 0.005

5.9. Operational Mobile Sources

5.9.1. Unmitigated

Land Use Type	Trips/Weekday	Trips/Saturday	Trips/Sunday	Trips/Year	VMT/Weekday	VMT/Saturday	VMT/Sunday	VMT/Year
General Light Industry	45.0	45.0	45.0	16,425	1,219	1,219	1,219	444,862

5.10. Operational Area Sources

5.10.1. Hearths

5.10.1.1. Unmitigated

5.10.2. Architectural Coatings

Residential Interior Area Coated (sq ft)	Residential Exterior Area Coated (sq ft)	Non-Residential Interior Area Coated (sq ft)	Non-Residential Exterior Area Coated (sq ft)	Parking Area Coated (sq ft)
0	0.00	17,537	5,846	_

5.10.3. Landscape Equipment

Season	Unit	Value
Snow Days	day/yr	0.00
Summer Days	day/yr	180

5.11. Operational Energy Consumption

5.11.1. Unmitigated

Electricity (kWh/yr) and CO2 and CH4 and N2O and Natural Gas (kBTU/yr)

Land Use	Electricity (kWh/yr)	CO2	CH4	N2O	Natural Gas (kBTU/yr)
General Light Industry	111,872	349	0.0330	0.0040	502,132

5.12. Operational Water and Wastewater Consumption

5.12.1. Unmitigated

Land Use	Indoor Water (gal/year)	Outdoor Water (gal/year)
General Light Industry	2,703,544	112,594

5.13. Operational Waste Generation

5.13.1. Unmitigated

Land Use	Waste (ton/year)	Cogeneration (kWh/year)
General Light Industry	14.5	_

5.14. Operational Refrigeration and Air Conditioning Equipment

5.14.1. Unmitigated

Land Use Type	Equipment Type	Refrigerant	GWP	Quantity (kg)	Operations Leak Rate	Service Leak Rate	Times Serviced
General Light Industry	Other commercial A/C and heat pumps	R-410A	2,088	0.30	4.00	4.00	18.0

5.15. Operational Off-Road Equipment

5.15.1. Unmitigated

Equipment Type Fuel Type Engine Tier Number per Day Hours Per D	Day Horsepower Load Factor
---	----------------------------

5.16. Stationary Sources

5.16.1. Emergency Generators and Fire Pumps

Equipment Type	Fuel Type	Number per Day	Hours per Day	Hours per Veer	Horsonowor	Load Factor
Equipment Type	Fuel Type	Number per Day	Hours per Day	Hours per Year	Horsepower	Load Factor

5.16.2. Process Boilers

Equipment Type Fuel Type Number	Boiler Rating (MMBtu/hr)	Daily Heat Input (MMBtu/day)	Annual Heat Input (MMBtu/yr)
---------------------------------	--------------------------	------------------------------	------------------------------

5.17. User Defined

Equipment Type Fuel Type

5.18. Vegetation

5.18.1. Land Use Change

5.18.1.1. Unmitigated

 Vegetation Land Use Type
 Vegetation Soil Type
 Initial Acres
 Final Acres

5.18.1. Biomass Cover Type

5.18.1.1. Unmitigated

Biomass Cover Type Initial Acres Final Acres

5.18.2. Sequestration

5.18.2.1. Unmitigated

Tree Type Number Electricity Saved (kWh/year) Natural Gas Saved (btu/year)

6. Climate Risk Detailed Report

6.1. Climate Risk Summary

Cal-Adapt midcentury 2040–2059 average projections for four hazards are reported below for your project location. These are under Representation Concentration Pathway (RCP) 8.5 which assumes GHG emissions will continue to rise strongly through 2050 and then plateau around 2100.

Climate Hazard	Result for Project Location	Unit
Temperature and Extreme Heat	24.8	annual days of extreme heat
Extreme Precipitation	0.20	annual days with precipitation above 20 mm
Sea Level Rise	_	meters of inundation depth
Wildfire	3.09	annual hectares burned

Temperature and Extreme Heat data are for grid cell in which your project are located. The projection is based on the 98th historical percentile of daily maximum/minimum temperatures from observed historical data (32 climate model ensemble from Cal-Adapt, 2040–2059 average under RCP 8.5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

Extreme Precipitation data are for the grid cell in which your project are located. The threshold of 20 mm is equivalent to about ¾ an inch of rain, which would be light to moderate rainfall if received over a full day or heavy rain if received over a period of 2 to 4 hours. Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

Sea Level Rise data are for the grid cell in which your project are located. The projections are from Radke et al. (2017), as reported in Cal-Adapt (Radke et al., 2017, CEC-500-2017-008), and consider inundation location and depth for the San Francisco Bay, the Sacramento-San Joaquin River Delta and California coast resulting different increments of sea level rise coupled with extreme storm events. Users may select from four scenarios to view the range in potential inundation depth for the grid cell. The four scenarios are: No rise, 0.5 meter, 1.41 meters

Wildfire data are for the grid cell in which your project are located. The projections are from UC Davis, as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider historical data of climate, vegetation, population density, and large (> 400 ha) fire history. Users may select from four model simulations to view the range in potential wildfire probabilities for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

6.2. Initial Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Temperature and Extreme Heat	N/A	N/A	N/A	N/A
Extreme Precipitation	N/A	N/A	N/A	N/A
Sea Level Rise	N/A	N/A	N/A	N/A
Wildfire	N/A	N/A	N/A	N/A
Flooding	N/A	N/A	N/A	N/A
Drought	N/A	N/A	N/A	N/A
Snowpack Reduction	N/A	N/A	N/A	N/A
Air Quality Degradation	N/A	N/A	N/A	N/A

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores do not include implementation of climate risk reduction measures.

6.3. Adjusted Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Temperature and Extreme Heat	N/A	N/A	N/A	N/A
Extreme Precipitation	N/A	N/A	N/A	N/A
Sea Level Rise	N/A	N/A	N/A	N/A
Wildfire	N/A	N/A	N/A	N/A
Flooding	N/A	N/A	N/A	N/A
Drought	N/A	N/A	N/A	N/A
Snowpack Reduction	N/A	N/A	N/A	N/A

Air Quality Degradation	N/A	N/A	N/A	N/A
-------------------------	-----	-----	-----	-----

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores include implementation of climate risk reduction measures.

6.4. Climate Risk Reduction Measures

7. Health and Equity Details

7.1. CalEnviroScreen 4.0 Scores

The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.		
Indicator	Result for Project Census Tract	
Exposure Indicators	_	
AQ-Ozone	91.1	
AQ-PM	4.06	
AQ-DPM	14.0	
Drinking Water	25.8	
Lead Risk Housing	39.6	
Pesticides	14.3	
Toxic Releases	3.98	
Traffic	59.9	
Effect Indicators		
CleanUp Sites	0.00	
Groundwater	0.00	
Haz Waste Facilities/Generators	26.7	
Impaired Water Bodies	0.00	
Solid Waste	54.8	

Sensitive Population	_
Asthma	50.6
Cardio-vascular	58.7
Low Birth Weights	13.9
Socioeconomic Factor Indicators	_
Education	73.8
Housing	59.7
Linguistic	48.7
Poverty	95.2
Unemployment	55.0

7.2. Healthy Places Index Scores

Indicator	Result for Project Census Tract
Economic	_
Above Poverty	25.81804183
Employed	23.88040549
Median HI	16.89978186
Education	_
Bachelor's or higher	26.08751444
High school enrollment	2.489413576
Preschool enrollment	1.873476197
Transportation	_
Auto Access	42.71782369
Active commuting	10.08597459
Social	_
2-parent households	35.96817657

Voting	48.09444373
Neighborhood	_
Alcohol availability	80.90594123
Park access	8.340818683
Retail density	1.745155909
Supermarket access	5.864237136
Tree canopy	1.308866932
Housing	
Homeownership	80.90594123
Housing habitability	65.12254587
Low-inc homeowner severe housing cost burden	43.62889773
Low-inc renter severe housing cost burden	64.41678429
Uncrowded housing	45.28422944
Health Outcomes	_
Insured adults	2.55357372
Arthritis	0.0
Asthma ER Admissions	54.0
High Blood Pressure	0.0
Cancer (excluding skin)	0.0
Asthma	0.0
Coronary Heart Disease	0.0
Chronic Obstructive Pulmonary Disease	0.0
Diagnosed Diabetes	0.0
Life Expectancy at Birth	24.6
Cognitively Disabled	43.0
Physically Disabled	5.4
Heart Attack ER Admissions	51.2

Mental Health Not Good	0.0
Chronic Kidney Disease	0.0
Obesity	0.0
Pedestrian Injuries	91.1
Physical Health Not Good	0.0
Stroke	0.0
Health Risk Behaviors	_
Binge Drinking	0.0
Current Smoker	0.0
No Leisure Time for Physical Activity	0.0
Climate Change Exposures	_
Wildfire Risk	0.0
SLR Inundation Area	0.0
Children	67.0
Elderly	5.7
English Speaking	42.6
Foreign-born	50.4
Outdoor Workers	10.8
Climate Change Adaptive Capacity	_
Impervious Surface Cover	84.9
Traffic Density	32.5
Traffic Access	23.0
Other Indices	_
Hardship	74.8
Other Decision Support	_
2016 Voting	47.2

7.3. Overall Health & Equity Scores

Metric	Result for Project Census Tract
CalEnviroScreen 4.0 Score for Project Location (a)	33.0
Healthy Places Index Score for Project Location (b)	8.00
Project Located in a Designated Disadvantaged Community (Senate Bill 535)	No
Project Located in a Low-Income Community (Assembly Bill 1550)	Yes
Project Located in a Community Air Protection Program Community (Assembly Bill 617)	No

a: The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

7.4. Health & Equity Measures

No Health & Equity Measures selected.

7.5. Evaluation Scorecard

Health & Equity Evaluation Scorecard not completed.

7.6. Health & Equity Custom Measures

No Health & Equity Custom Measures created.

8. User Changes to Default Data

Screen	Justification
Land Use	Cannabis facility. Assumes 20% of site is landscaped.
Construction: Construction Phases	Assumes a 6-month build out.
Construction: Paving	Project improvements include hardscapes and parking lot paving.
Operations: Vehicle Data	45 daily trips.

b: The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.