

Appendix G Greenhouse Gas Assessment

Greenhouse Gas Emissions Assessment Miro Way and Ayala Drive Warehouse Project City of Rialto, California

Expect More. Experience Better.

Prepared by:

Kimley-Horn and Associates, Inc. 1100 W. Town and Country Road, Suite 700 Orange, California 92868 *Contact: Ms. Danielle Millar* 714.939.1030

December 2024

Greenhouse Gas Emissions Assessment

TABLE OF CONTENTS

1	INTRO	DUCTION	1
	1.1	Project Summary	1
2	ENVIR	ONMENTAL SETTING	6
	2.1	Greenhouse Gases and Climate Change	6
3	REGUL	ATORY SETTING	8
	3.1	Federal	8
	3.2	State of California	
	3.3	Regional	
	3.4	Local	
4	SIGNII	FICANCE CRITERIA AND METHODOLOGY	22
	4.1	Thresholds and Significance Criteria	22
	4.2	Methodology	
5	POTEN	ITIAL IMPACTS	24
	5.1	Greenhouse Gas Emissions	24
	5.2	Greenhouse Gas Reduction Plan Compliance	
	5.3	Cumulative Setting and Impacts	
6	REFERI	ENCES	37

TABLES

Table 1: Description of Greenhouse Gases	7
Table 2: Construction-Related Greenhouse Gas Emissions	24
Table 3: Project Greenhouse Gas Emissions	25
Table 4: Regional Transportation Plan/Sustainable Communities Strategy Consistency	33

EXHIBITS

Exhibit 1: Regional Vicinity	3
Exhibit 2: Site Vicinity	4
Exhibit 3: Site Plan	. 5

APPENDIX

Appendix A: Greenhouse Gas Emissions Data

Greenhouse Gas Emissions Assessment

LIST OF ABBREVIATED TERMS

AB	Assembly Bill
CARB	California Air Resource Board
CCR	California Code of Regulations
CalEEMod	California Emissions Estimator Model
CEQA	California Environmental Quality Act
CALGreen Code	California Green Building Standards Code
CPUC	California Public Utilities Commission
CO ₂	carbon dioxide
CO ₂ e	carbon dioxide equivalent
CFC	Chlorofluorocarbon
СРР	Clean Power Plan
CCSP	Climate Change Scoping Plan
су	cubic yard
EPA	Environmental Protection Agency
FCAA	Federal Clean Air Act
FR	Federal Register
GHG	greenhouse gas
HCFC	Hydrochlorofluorocarbon
HFC	Hydrofluorocarbon
LCFS	Low Carbon Fuel Standard
CH_4	Methane
MMTCO ₂ e	million metric tons of carbon dioxide equivalent
MTCO ₂ e	million tons of carbon dioxide equivalent
NHTSA	National Highway Traffic Safety Administration
NF ₃	nitrogen trifluoride
N ₂ O	nitrous oxide
PFC	Perfluorocarbon
RTP/SCS	Regional Transportation Plan/Sustainable Communities Strategy
SB	Senate Bill
SCAB	South Coast Air Basin
SCAQMD	South Coast Air Quality Management District
SCAG	Southern California Association of Government
Sf	square foot
SF ₆	sulfur hexafluoride
TAC	toxic air contaminants

1 INTRODUCTION

This report documents the results of a Greenhouse Gas (GHG) Emissions Assessment completed for the Miro Way and Ayala Drive Warehouse Project (Project). The purpose of this analysis is to identify the GHG emissions associated with construction and operations of the Project and determine the level of impact the Project would have on the environment. As the Project site is located within the Renaissance Specific Plan Amendment area, applicable mitigation measures from the certified *Renaissance Specific Plan Amendment Recirculated Draft Subsequent Environmental Impact Report* (September 2016) (2016 RSPA EIR) have been incorporated into this analysis.

1.1 Project Summary

The Project site is located in the City of Rialto, California (City). The City encompasses approximately 22 square miles in San Bernardino County. The Project site is in the western/central area of the City, approximately 0.65 miles south of State Route (SR) 210. Specifically, the Project site is located directly west of Ayala Drive, approximately 450 linear feet north of Baseline Road, and east of Linden Avenue within the Renaissance Specific Plan Amendment (RSPA) area; refer to **Exhibit 1: Regional Vicinity**.

The approximately 35-acre Project site is comprised of Planning Areas 123, 126, and 133. The Project would include the rezone of Planning Area 123 (north of Miro Way) from School to General Commercial with a Residential Overlay. The Project would also include the rezone of Planning Areas 126 and 133 (south of Miro Way) from Park and Employment (with a designated Park Overlay) to Business Center, to allow for the development of two industrial warehouses; refer to **Exhibit 2: Site Vicinity**. The majority of the Project site is vacant and undeveloped with ruderal vegetation. Gravel piles are located on the southern portion of the Project site. Sidewalks and street lights exist at the Project boundary along Ayala Drive and Linden Avenue. Overhead electric utilities are located along the Project boundary at Linden Avenue.

Lewis-Hillwood Rialto Company, LLC (Owner) and the City of Rialto are proposing to develop an existing vacant property that would include the construction of two industrial warehouse buildings ranging from approximately 53,640 square feet (sf) to 375,075 sf, for a total of approximately 399,715 sf of warehouse space and 29,000 sf of ancillary office space on approximately 20.76 acres; refer to **Exhibit 3: Site Plan**. The warehouse development would be located in Planning Areas 126 and 133 and would also include the reconfiguration and construction of Miro Way. Each building would be one level and would not exceed the maximum allowed building height of 75 feet or the maximum allowed Floor to Area ratio (FAR) of 0.50 of the Business Center District. Based on the uses being proposed, the Project would require 277 automobile parking spaces and the Project proposes 283 automobile parking spaces.

Construction and Off-Site Improvements

Access to the Project site would be provided via Miro Way and Ayala Drive. The Project would include the reconfiguration and construction of Miro Way and associated curb, gutter, and streetlight improvements. Sidewalks would be provided on the south side of Miro Way, along the Project frontage. The intersection at Ayala Drive and Miro Way would be signalized, and overhead utility lines along Linden Avenue, south of the existing signalized intersection at Miro Way and Linden Avenue, would be undergrounded.

Off-site utility and roadway improvements would extend slightly north of Miro Way and within the rightof-way of both Linden Avenue and Ayala Drive along the Project frontages. With off-site improvements, the total construction footprint is approximately 27.19 acres. Construction of the proposed Project is expected to commence in 2025 with a construction duration of approximately 13 months and would be completed in one phase of construction.

Hours of Operation

The tenant(s) of the warehouse facility has not been identified; therefore, the precise nature of facility operations cannot be determined at this time. Any future occupant would be required to adhere to the pertinent City regulations. For the purposes of this analysis, the hours of operation are assumed to be 7 days a week, 24 hours per day.

EXHIBIT 1: Regional Vicinity Miro Way and Ayala Drive Warehouse Project *City of Rialto*

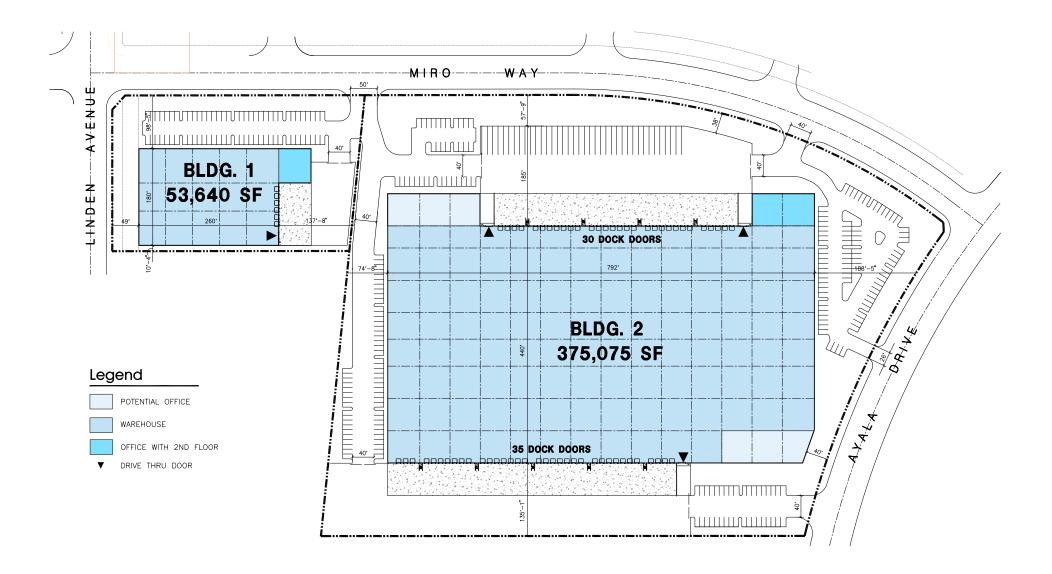


EXHIBIT 2: Site Vicinity Miro Way and Ayala Drive Warehouse Project *City of Rialto*

2 ENVIRONMENTAL SETTING

2.1 Greenhouse Gases and Climate Change

Certain gases in the earth's atmosphere classified as GHGs, play a critical role in determining the earth's surface temperature. Solar radiation enters the earth's atmosphere from space. A portion of the radiation is absorbed by the earth's surface and a smaller portion of this radiation is reflected back toward space. This absorbed radiation is then emitted from the earth as low-frequency infrared radiation. The frequencies at which bodies emit radiation are proportional to temperature. Because the earth has a much lower temperature than the sun, it emits lower-frequency radiation. Most solar radiation passes through GHGs; however, infrared radiation is absorbed by these gases. As a result, radiation that otherwise would have escaped back into space is instead "trapped," resulting in a warming of the atmosphere. This phenomenon, known as the greenhouse effect, is responsible for maintaining a habitable climate on earth.

The primary GHGs contributing to the greenhouse effect are carbon dioxide (CO_2), methane (CH_4), and nitrous oxide (N_2O). Fluorinated gases also make up a small fraction of the GHGs that contribute to climate change. Examples of fluorinated gases include chlorofluorocarbons (CFCs), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulfur hexafluoride (SF₆), and nitrogen trifluoride (NF₃); however, it is noted that these gases are not associated with typical land use development. Human-caused emissions of GHGs exceeding natural ambient concentrations are believed to be responsible for intensifying the greenhouse effect and leading to a trend of unnatural warming of the Earth's climate, known as global climate change or global warming.

GHGs are global pollutants, unlike criteria air pollutants and toxic air contaminants (TACs), which are pollutants of regional and local concern. Whereas pollutants with localized air quality effects have relatively short atmospheric lifetimes (about one day), GHGs have long atmospheric lifetimes (one to several thousand years). GHGs persist in the atmosphere for long enough time periods to be dispersed around the globe. Although the exact lifetime of a GHG molecule is dependent on multiple variables and cannot be pinpointed, more CO₂ is emitted into the atmosphere than is sequestered by ocean uptake, vegetation, or other forms of carbon sequestration. Of the total annual human-caused CO₂ emissions, approximately 55 percent is sequestered through ocean and land uptakes every year, averaged over the last 50 years, whereas the remaining 45 percent of human-caused CO₂ emissions remains stored in the atmosphere.¹ **Table 1: Description of Greenhouse Gases** describes the primary GHGs attributed to global climate change, including their physical properties.

¹ Intergovernmental Panel on Climate Change, *Carbon and Other Biogeochemical Cycles. In: Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 2013.* http://www.climatechange2013.org/ images/report/WG1AR5_ALL_FINAL.pdf.

Table 1: Description of Greenhouse Gases						
Greenhouse Gas	Description					
Carbon Dioxide (CO ₂)	CO ₂ is a colorless, odorless gas that is emitted naturally and through human activities. Natural sources include decomposition of dead organic matter; respiration of bacteria, plants, animals, and fungus; evaporation from oceans; and volcanic outgassing. Anthropogenic sources are from burning coal, oil, natural gas, and wood. The largest source of CO ₂ emissions globally is the combustion of fossil fuels such as coal, oil, and gas in power plants, automobiles, and industrial facilities. The atmospheric lifetime of CO ₂ is variable because it is readily exchanged in the atmosphere. CO ₂ is the most widely emitted GHG and is the reference gas (Global Warming Potential of 1) for determining Global Warming Potentials for other GHGs.					
Nitrous Oxide (N ₂ O)	N_2O is largely attributable to agricultural practices and soil management. Primary human-related sources of N_2O include agricultural soil management, sewage treatment, combustion of fossil fuels, and adipic and nitric acid production. N_2O is produced from biological sources in soil and water, particularly microbial action in wet tropical forests. The atmospheric lifetime of N_2O is approximately 120 years. The Global Warming Potential of N_2O is 298.					
Methane (CH₄)	CH ₄ , a highly potent GHG, primarily results from off-gassing (the release of chemicals from nonmetallic substances under ambient or greater pressure conditions) and is largely associated with agricultural practices and landfills. Methane is the major component of natural gas, about 87 percent by volume. Human-related sources include fossil fuel production, animal husbandry, rice cultivation, biomass burning, and waste management. Natural sources of CH ₄ include wetlands, gas hydrates, termites, oceans, freshwater bodies, non-wetland soils, and wildfires. The atmospheric lifetime of CH ₄ is about 12 years and the Global Warming Potential is 25.					
Hydrofluorocarbons (HFCs)	HFCs are typically used as refrigerants for both stationary refrigeration and mobile air conditioning. The use of HFCs for cooling and foam blowing is increasing, as the continued phase out of CFCs and HCFCs gains momentum. The 100-year Global Warming Potential of HFCs range from 124 for HFC-152 to 14,800 for HFC-23.					
Perfluorocarbons (PFCs)	PFCs have stable molecular structures and only break down by ultraviolet rays about 60 kilometers above Earth's surface. Because of this, they have long lifetimes, between 10,000 and 50,000 years. Two main sources of PFCs are primary aluminum production and semiconductor manufacturing. Global Warming Potentials range from 6,500 to 9,200.					
Chlorofluorocarbons (CFCs)	CFCs are gases formed synthetically by replacing all hydrogen atoms in methane or ethane with chlorine and/or fluorine atoms. They are nontoxic, nonflammable, insoluble, and chemically unreactive in the troposphere (the level of air at the earth's surface). CFCs were synthesized in 1928 for use as refrigerants, aerosol propellants, and cleaning solvents. The Montreal Protocol on Substances that Deplete the Ozone Layer prohibited their production in 1987. Global Warming Potentials for CFCs range from 3,800 to 14,400.					
Sulfur Hexafluoride (SF ₆)	SF_6 is an inorganic, odorless, colorless, and nontoxic, nonflammable gas. It has a lifetime of 3,200 years. This gas is manmade and used for insulation in electric power transmission equipment, in the magnesium industry, in semiconductor manufacturing, and as a tracer gas. The Global Warming Potential of SF_6 is 23,900.					
Hydrochlorofluorocar bons (HCFCs)	HCFCs are solvents, similar in use and chemical composition to CFCs. The main uses of HCFCs are for refrigerant products and air conditioning systems. As part of the Montreal Protocol, HCFCs are subject to a consumption cap and gradual phase out. The United States is scheduled to achieve a 100 percent reduction to the cap by 2030. The 100-year Global Warming Potentials of HCFCs range from 90 for HCFC-123 to 1,800 for HCFC-142b.					
Nitrogen Trifluoride (NF ₃)	NF_3 was added to Health and Safety Code section 38505(g)(7) as a GHG of concern. This gas is used in electronics manufacture for semiconductors and liquid crystal displays. It has a high global warming potential of 17,200.					
EPA, Inventory of U.S. Gre 2007: The Physical Science	EPA, Overview of Greenhouse Gases, (https://www.epa.gov/ghgemissions/overview-greenhouse-gases), 2018; U.S. enhouse Gas Emissions and Sinks: 1990-2016, 2018; Intergovernmental Panel on Climate Change, Climate Change e Basis, 2007; National Research Council, Advancing the Science of Climate Change, 2010; U.S. EPA, Methane and m Natural Sources, April 2010.					

3 REGULATORY SETTING

3.1 Federal

To date, national standards have not been established for nationwide GHG reduction targets, nor have any regulations or legislation been enacted specifically to address climate change and GHG emissions reduction at the Project level. Various efforts have been promulgated at the federal level to improve fuel economy and energy efficiency to address climate change and its associated effects.

Energy Independence and Security Act of 2007

The Energy Independence and Security Act of 2007 (December 2007), among other key measures, requires the following, which would aid in the reduction of national GHG emissions:

- Increase the supply of alternative fuel sources by setting a mandatory Renewable Fuel Standard requiring fuel producers to use at least 36 billion gallons of biofuel in 2022.
- Set a target of 35 miles per gallon for the combined fleet of cars and light trucks by model year 2020 and direct the National Highway Traffic Safety Administration (NHTSA) to establish a fuel economy program for medium- and heavy-duty trucks and create a separate fuel economy standard for work trucks.
- Prescribe or revise standards affecting regional efficiency for heating and cooling products and procedures for new or amended standards, energy conservation, energy efficiency labeling for consumer electronic products, residential boiler efficiency, electric motor efficiency, and home appliances.

U.S. Environmental Protection Agency Endangerment Finding

The U.S. Environmental Protection Agency (EPA) authority to regulate GHG emissions stems from the U.S. Supreme Court decision in *Massachusetts v. EPA* (2007). The Supreme Court ruled that GHGs meet the definition of air pollutants under the existing Federal Clean Air Act (FCAA) and must be regulated if these gases could be reasonably anticipated to endanger public health or welfare. Responding to the Court's ruling, the EPA finalized an endangerment finding in December 2009. Based on scientific evidence it found that six GHGs (CO₂, CH₄, N₂O, HFCs, PFCs, and SF₆) constitute a threat to public health and welfare. Thus, it is the Supreme Court's interpretation of the existing FCAA and the EPA's assessment of the scientific evidence that form the basis for the EPA's regulatory actions.

Federal Vehicle Standards

In response to the U.S. Supreme Court ruling discussed above, Executive Order 13432 was issued in 2007 directing the EPA, the Department of Transportation, and the Department of Energy to establish regulations that reduce GHG emissions from motor vehicles, non-road vehicles, and non-road engines by 2008. In 2009, the NHTSA issued a final rule regulating fuel efficiency and GHG emissions from cars and light-duty trucks for model year 2011, and in 2010, the EPA and NHTSA issued a final rule regulating cars and light-duty trucks for model years 2012–2016.

In 2010, an Executive Memorandum was issued directing the Department of Transportation, Department of Energy, EPA, and NHTSA to establish additional standards regarding fuel efficiency and GHG reduction,

December 2024

clean fuels, and advanced vehicle infrastructure. In response to this directive, the EPA and NHTSA proposed stringent, coordinated federal GHG and fuel economy standards for model years 2017–2025 light-duty vehicles. The proposed standards projected to achieve 163 grams per mile of CO₂ in model year 2025, on an average industry fleet-wide basis, which is equivalent to 54.5 miles per gallon if this level were achieved solely through fuel efficiency. The final rule was adopted in 2012 for model years 2017–2021, and NHTSA intends to set standards for model years 2022–2025 in a future rulemaking. On January 12, 2017, the EPA finalized its decision to maintain the current GHG emissions standards for model years 2022–2025 cars and light trucks.

In addition to the regulations applicable to cars and light-duty trucks described above, in 2011, the EPA and NHTSA announced fuel economy and GHG standards for medium- and heavy-duty trucks for model years 2014–2018. The standards for CO₂ emissions and fuel consumption are tailored to three main vehicle categories: combination tractors, heavy-duty pickup trucks and vans, and vocational vehicles. According to the EPA, this regulatory program will reduce GHG emissions and fuel consumption for the affected vehicles by 6 to 23 percent over the 2010 baselines.

In August 2016, the EPA and NHTSA announced the adoption of the phase two program related to the fuel economy and GHG standards for medium- and heavy-duty trucks. The phase two program will apply to vehicles with model year 2018 through 2027 for certain trailers, and model years 2021 through 2027 for semi-trucks, large pickup trucks, vans, and all types and sizes of buses and work trucks. The final standards are expected to lower CO_2 emissions by approximately 1.1 billion metric tons and reduce oil consumption by up to 2 billion barrels over the lifetime of the vehicles sold under the program.

In 2018, the President and the U.S. EPA stated their intent to halt various federal regulatory activities to reduce GHG emission, including the phase two program. California and other states have stated their intent to challenge federal actions that would delay or eliminate GHG reduction measures and have committed to cooperating with other countries to implement global climate change initiatives. On September 27, 2019, the U.S. EPA and the NHTSA published the "Safer Affordable Fuel-Efficient (SAFE) Vehicles Rule Part One: One National Program." (84 Fed. Reg. 51,310 (Sept. 27, 2019.) The Part One Rule revokes California's authority to set its own GHG emissions standards and set zero-emission vehicle mandates in California. On March 31, 2020, the U.S. EPA and NHTSA finalized rulemaking for SAFE Part Two which sets CO₂ emissions standards and corporate average fuel economy (CAFE) standards for passenger vehicles and light duty trucks, covering model years 2021-2026. The current U.S. EPA administration has repealed SAFE Rule Part One, effective January 28, 2022, and is reconsidering Part Two. As of April 1, 2022, the CAFE standards require an industry-wide fleet average of approximately 49 mpg for passenger cars and light trucks in model year 2026. The new CAFE standards for model year 2024-2026 will reduce fuel use by more than 200 billion gallons through 2050, as compared to continuing under the old standards.²

Presidential Executive Orders 13990 and 14008

On January 20, 2021, President Biden issued Executive Order 13990, "Protecting Public Health and the Environment and Restoring Science to Tackle the Climate Crisis". Executive Order 13990 directs Federal agencies to immediately review and take action to address the promulgation of Federal regulations and

² National Highway Traffic Safety Administration, USDOT Announces New Vehicle Fuel Economy Standards for Model Year 2024-2026, available at: https://www.nhtsa.gov/press-releases/usdot-announces-new-vehicle-fuel-economy-standards-modelyear-2024-2026

other actions that conflict with these important national objectives and to immediately commence work to confront the climate crisis. Executive Order 13990 directs the Council on Environmental Quality (CEQ) to review CEQ's 2020 regulations implementing the procedural requirements of the National Environmental Policy Act (NEPA) and identify necessary changes or actions to meet the objectives of Executive Order 13990.

On January 27, 2021, President Biden signed Executive Order 14008, "Tackling the Climate Crisis at Home and Abroad," to declare the Administration's policy to move quickly to build resilience, both at home and abroad, against the impacts of climate change that are already manifested and will continue to intensify according to current trajectories. In line with these Executive Order directives, CEQ is reviewing the 2020 NEPA regulations and plans to publish a notice of proposed rulemaking (NPRM) to identify necessary revisions in order to comply with the law; meet the environmental, climate change, and environmental justice objectives of Executive Orders 13990 and 14008; ensure full and fair public involvement in the NEPA process; provide regulatory certainty to stakeholders; and promote better decision making consistent with NEPA's statutory requirements. This phase 1 rulemaking will propose a narrow set of changes to the 2020 NEPA regulations to address these goals.

3.2 State of California

California Air Resources Board

The California Air Resources Board (CARB) is responsible for the coordination and oversight of State and local air pollution control programs in California. Various statewide and local initiatives to reduce California's contribution to GHG emissions have raised awareness about climate change and its potential for severe long-term adverse environmental, social, and economic effects. California is a significant emitter of CO₂ equivalents (CO₂e) in the world and produced 459 million gross metric tons of CO₂e in 2013. In the State, the transportation sector is the largest emitter of GHGs, followed by industrial operations such as manufacturing and oil and gas extraction.

The State of California legislature has enacted a series of bills that constitute the most aggressive program to reduce GHGs of any state in the nation. Some legislation, such as the landmark Assembly Bill (AB) 32, *California Global Warming Solutions Act of 2006*, was specifically enacted to address GHG emissions. Other legislation, such as Title 24 building efficiency standards and Title 20 appliance energy standards, were originally adopted for other purposes such as energy and water conservation, but also provide GHG reductions. This section describes the major provisions of the legislation.

Assembly Bill 32 (California Global Warming Solutions Act of 2006)

AB 32 instructs the CARB to develop and enforce regulations for the reporting and verification of statewide GHG emissions. AB 32 also directed CARB to set a GHG emissions limit based on 1990 levels, to be achieved by 2020. It set a timeline for adopting a scoping plan for achieving GHG reductions in a technologically and economically feasible manner.

2017 CARB Scoping Plan

CARB adopted the Scoping Plan to achieve the goals of AB 32. The Scoping Plan establishes an overall framework for the measures that would be adopted to reduce California's GHG emissions. CARB determined that achieving the 1990 emissions level would require a reduction of GHG emissions of

approximately 29 percent below what would otherwise occur in 2020 in the absence of new laws and regulations (referred to as "business-as-usual").³ The Scoping Plan evaluates opportunities for sector-specific reductions, integrates early actions and additional GHG reduction measures by both CARB and the State's Climate Action Team, identifies additional measures to be pursued as regulations, and outlines the adopted role of a cap-and-trade program.⁴ Additional development of these measures and adoption of the appropriate regulations occurred through the end of 2013. Key elements of the Scoping Plan include:

- Expanding and strengthening existing energy efficiency programs, as well as building and appliance standards.
- Achieving a statewide renewables energy mix of 33 percent by 2020.
- Developing a California cap-and-trade program that links with other programs to create a regional market system and caps sources contributing 85 percent of California's GHG emissions (adopted in 2011).
- Establishing targets for transportation-related GHG emissions for regions throughout California and pursuing policies and incentives to achieve those targets (several sustainable community strategies have been adopted).
- Adopting and implementing measures pursuant to existing State laws and policies, including California's clean car standards, heavy-duty truck measures, the Low Carbon Fuel Standard (amendments to the Pavley Standard adopted 2009; Advanced Clean Car standard adopted 2012), goods movement measures, and the Low Carbon Fuel Standard (adopted 2009).
- Creating targeted fees, including a public goods charge on water use, fees on gasses with high global warming potential, and a fee to fund the administrative costs of the State of California's long-term commitment to AB 32 implementation.
- The California Sustainable Freight Action Plan was developed in 2016 and provides a vision for California's transition to a more efficient, more economically competitive, and less polluting freight transport system. This transition of California's freight transport system is essential to supporting the State's economic development in coming decades while reducing pollution.
- CARB's Mobile Source Strategy demonstrates how the State can simultaneously meet air quality standards, achieve GHG emission reduction targets, decrease health risk from transportation emissions, and reduce petroleum consumption over the next fifteen years. The mobile Source Strategy includes increasing ZEV buses and trucks.

In 2012, CARB released revised estimates of the expected 2020 emissions reductions. The revised analysis relied on emissions projections updated in light of current economic forecasts that accounted for the economic downturn since 2008, reduction measures already approved and put in place relating to future fuel and energy demand, and other factors. This update reduced the projected 2020 emissions from 596

³ CARB defines business-as-usual (BAU) in its Scoping Plan as emissions levels that would occur if California continued to grow and add new GHG emissions but did not adopt any measures to reduce emissions. Projections for each emission-generating sector were compiled and used to estimate emissions for 2020 based on 2002–2004 emissions intensities. Under CARB's definition of BAU, new growth is assumed to have the same carbon intensities as was typical from 2002 through 2004.

⁴ The Climate Action Team, led by the secretary of the California Environmental Protection Agency, is a group of State agency secretaries and heads of agencies, boards, and departments. Team members work to coordinate statewide efforts to implement global warming emissions reduction programs and the State's Climate Adaptation Strategy.

million metric tons of CO₂e (MMTCO₂e) to 545 MMTCO₂e. The reduction in forecasted 2020 emissions means that the revised business-as-usual reduction necessary to achieve AB 32's goal of reaching 1990 levels by 2020 is now 21.7 percent, down from 29 percent. CARB also provided a lower 2020 inventory forecast that incorporated State-led GHG emissions reduction measures already in place. When this lower forecast is considered, the necessary reduction from business-as-usual needed to achieve the goals of AB 32 is approximately 16 percent.

CARB adopted the first major update to the Scoping Plan on May 22, 2014. The updated Scoping Plan summarizes the most recent science related to climate change, including anticipated impacts to California and the levels of GHG emissions reductions necessary to likely avoid risking irreparable damage. It identifies the actions California has already taken to reduce GHG emissions and focuses on areas where further reductions could be achieved to help meet the 2020 target established by AB 32.

In 2016, the Legislature passed Senate Bill (SB) 32, which codifies a 2030 GHG emissions reduction target of 40 percent below 1990 levels. With SB 32, the Legislature passed companion legislation, AB 197, which provides additional direction for developing the Scoping Plan. On December 14, 2017 CARB adopted a second update to the Scoping Plan⁵. The 2017 Scoping Plan details how the State will reduce GHG emissions to meet the 2030 target set by Executive Order B-30-15 and codified by SB 32. Other objectives listed in the 2017 Scoping Plan are to provide direct GHG emissions reductions; support climate investment in disadvantaged communities; and support other Federal actions.

2022 CARB Scoping Plan

Adopted December 15, 2022, CARB's 2022 Scoping Plan for Achieving Carbon Neutrality (2022 Scoping Plan) sets a path to achieve targets for carbon neutrality and reduce anthropogenic GHG emissions by 85 percent below 1990 levels by 2045 in accordance with AB 1279. To achieve the targets of AB 1279, the 2022 Scoping Plan relies on existing and emerging fossil fuel alternatives and clean technologies, as well as carbon capture and storage. Specifically, the 2022 Scoping Plan focuses on zero-emission transportation; phasing out use of fossil gas use for heating homes and buildings; reducing chemical and refrigerants with high GWP; providing communities with sustainable options for walking, biking, and public transit; displacement of fossil-fuel fired electrical generation through use of renewable energy alternatives (e.g., solar arrays and wind turbines); and scaling up new options such as green hydrogen. The 2022 Scoping Plan sets one of the most aggressive approaches to reach carbon neutrality in the world. Unlike the 2017 Scoping Plan, CARB no longer includes a numeric per capita threshold and instead advocates for compliance with a local GHG reduction strategy (i.e., Climate Action Plan) consistent with CEQA Guidelines section 15183.5.

The key elements of the 2022 CARB Scoping Plan focus on transportation. Specifically, the 2022 Scoping Plan aims to rapidly move towards zero-emission transportation (i.e., electrifying cars, buses, trains, and trucks), which constitutes California's single largest source of GHGs. The regulations that impact the transportation sector are adopted and enforced by CARB on vehicle manufacturers and are outside the jurisdiction and control of local governments. The 2022 Scoping Plan accelerates development of new regulations as well as amendments to strengthen regulations and programs already in place.

Included in the 2022 Scoping Plan is a set of Local Actions (2022 Scoping Plan Appendix D) aimed at providing local jurisdictions with tools to reduce GHGs and assist the state in meeting the ambitious

⁵ California Air Resources Board, *California's 2017 Climate Change Scoping Plan*, November 2017.

targets set forth in the 2022 Scoping Plan. Appendix D to the 2022 Scoping Plan includes a section on evaluating plan-level and project-level alignment with the State's Climate Goals in CEQA GHG analyses. In this section, CARB identifies several recommendations and strategies that should be considered for new development in order to determine consistency with the 2022 Scoping Plan. Notably, this section is focused on Residential and Mixed-Use Projects.⁶ CARB specifically states that Appendix D does not address other land uses (e.g., industrial).⁷ However, CARB plans to explore new approaches for other land use types in the future.⁸

As such, it would be inappropriate to apply the requirements contained in Appendix D of the 2022 Scoping Plan to any land use types other than residential or mixed-use residential development.

CARB Advanced Clean Truck Regulation

CARB adopted the Advanced Clean Truck Regulation in June 2020 requiring truck manufacturers to transition from diesel trucks and vans to electric zero-emission trucks beginning in 2024. By 2045, every new truck sold in California is required to be zero-emission. This rule directly addresses disproportionate risks and health and pollution burdens and puts California on the path for an all zero-emission short-haul drayage fleet in ports and railyards by 2035, and zero-emission "last-mile" delivery trucks and vans by 2040. The Advanced Clean Truck Regulation accelerates the transition of zero-emission medium-and heavy-duty vehicles from Class 2b to Class 8. The regulation has two components including a manufacturer sales requirement, and a reporting requirement:

- Zero-Emission Truck Sales: Manufacturers who certify Class 2b through 8 chassis or complete vehicles with combustion engines are required to sell zero-emission trucks as an increasing percentage of their annual California sales from 2024 to 2035. By 2035, zero-emission truck/chassis sales need to be 55 percent of Class 2b 3 truck sales, 75 percent of Class 4 8 straight truck sales, and 40 percent of truck tractor sales.
- Company and Fleet Reporting: Large employers including retailers, manufacturers, brokers and others would be required to report information about shipments and shuttle services. Fleet owners, with 50 or more trucks, would be required to report about their existing fleet operations. This information would help identify future strategies to ensure that fleets purchase available zero-emission trucks and place them in service where suitable to meet their needs.

Senate Bill 32 (California Global Warming Solutions Act of 2006: Emissions Limit)

Signed into law in September 2016, SB 32 codifies the 2030 GHG reduction target in Executive Order B-30-15 (40 percent below 1990 levels by 2030). The bill authorizes CARB to adopt an interim GHG emissions level target to be achieved by 2030. CARB also must adopt rules and regulations in an open public process to achieve the maximum, technologically feasible, and cost-effective GHG reductions.

⁶ California Air Resources Board, 2022 Scoping Plan for Achieving Carbon Neutrality, Appendix D: Local Actions, Page 21, November 2022.

⁷ California Air Resources Board, 2022 Scoping Plan for Achieving Carbon Neutrality, Appendix D: Local Actions, Page 4, November 2022.

⁸ California Air Resources Board, 2022 Scoping Plan for Achieving Carbon Neutrality, Appendix D: Local Actions, Page 21, November 2022.

SB 375 (The Sustainable Communities and Climate Protection Act of 2008)

Signed into law on September 30, 2008, SB 375 provides a process to coordinate land use planning, regional transportation plans, and funding priorities to help California meet the GHG reduction goals established by AB 32. SB 375 requires metropolitan planning organizations to include sustainable community strategies in their regional transportation plans for reducing GHG emissions, aligns planning for transportation and housing, and creates specified incentives for the implementation of the strategies.

AB 1493 (Pavley Regulations and Fuel Efficiency Standards)

AB 1493, enacted on July 22, 2002, required CARB to develop and adopt regulations that reduce GHGs emitted by passenger vehicles and light duty trucks. Implementation of the regulation was delayed by lawsuits filed by automakers and by the EPA's denial of an implementation waiver. The EPA subsequently granted the requested waiver in 2009, which was upheld by the by the U.S. District Court for the District of Columbia in 2011. The regulations establish one set of emission standards for model years 2009–2016 and a second set of emissions standards for model years 2017 to 2025. By 2025, when all rules will be fully implemented, new automobiles will emit 34 percent fewer CO₂e emissions and 75 percent fewer smogforming emissions. In 2018, the EPA proposed the SAFE Vehicles Rule, which would roll back fuel economy standards and revoke California's waiver. However, in December 2021, the NHTSA repealed the SAFE Vehicle Rule Part One.

SB 1368 (Emission Performance Standards)

SB 1368 is the companion bill of AB 32, which directs the California Public Utilities Commission (CPUC) to adopt a performance standard for GHG emissions for the future power purchases of California utilities. SB 1368 limits carbon emissions associated with electrical energy consumed in California by forbidding procurement arrangements for energy longer than 5 years from resources that exceed the emissions of a relatively clean, combined cycle natural gas power plant. The new law effectively prevents California's utilities from investing in, otherwise financially supporting, or purchasing power from new coal plants located in or out of the State. The CPUC adopted the regulations required by SB 1368 on August 29, 2007. The regulations implementing SB 1368 establish a standard for baseload generation owned by, or under long-term contract to publicly owned utilities, for 1,100 pounds of CO₂ per megawatt-hour.

SB 1078, SB 107, and SBX1-2 (Renewable Electricity Standards)

SB 1078 (2002) required California to generate 20 percent of its electricity from renewable energy by 2017. SB 107 (2006) changed the due date to 2010 instead of 2017. On November 17, 2008, Governor Arnold Schwarzenegger signed Executive Order S-14-08, which established a Renewable Portfolio Standard target for California requiring that all retail sellers of electricity serve 33 percent of their load with renewable energy by 2020. Executive Order S-21-09 also directed CARB to adopt a regulation by July 31, 2010, requiring the State's load serving entities to meet a 33 percent renewable energy target by 2020. CARB approved the Renewable Electricity Standard on September 23, 2010, by Resolution 10-23. SBX1-2 (2011) codified the 33 percent by 2020 goal.

SB 350 (Clean Energy and Pollution Reduction Act of 2015)

Signed into law on October 7, 2015, SB 350 implements the goals of Executive Order B-30-15. The objectives of SB 350 are to increase the procurement of electricity from renewable sources from 33

percent to 50 percent (with interim targets of 40 percent by 2024, and 25 percent by 2027) and to double the energy efficiency savings in electricity and natural gas end uses of retail customers through energy efficiency and conservation. SB 350 also reorganizes the Independent System Operator to develop more regional electricity transmission markets and improve accessibility in these markets, which will facilitate the growth of renewable energy markets in the western United States.

AB 398 (Market-Based Compliance Mechanisms)

Signed on July 25, 2017, AB 398 extended the duration of the Cap-and-Trade program from 2020 to 2030. AB 398 required CARB to update the Scoping Plan and for all GHG rules and regulations adopted by the State. It also designated CARB as the statewide regulatory body responsible for ensuring that California meets its statewide carbon pollution reduction targets, while retaining local air districts' responsibility and authority to curb toxic air contaminants and criteria pollutants from local sources that severely impact public health. AB 398 also decreased free carbon allowances over 40 percent by 2030 and prioritized Capand-Trade spending to various programs including reducing diesel emissions in impacted communities.

SB 150 (Regional Transportation Plans)

Signed on October 10, 2017, SB 150 aligns local and regional GHG reduction targets with State targets (i.e., 40 percent below their 1990 levels by 2030). SB 150 creates a process to include communities in discussions on how to monitor their regions' progress on meeting these goals. The bill also requires the CARB to regularly report on that progress, as well as on the successes and the challenges regions experience associated with achieving their targets. SB 150 provides for accounting of climate change efforts and GHG reductions and identify effective reduction strategies.

SB 100 (California Renewables Portfolio Standard Program: Emissions of Greenhouse Gases)

Signed into law in September 2018, SB 100 increased California's renewable electricity portfolio from 50 to 60 percent by 2030. SB 100 also established a further goal to have an electric grid that is entirely powered by clean energy by 2045.

AB 1346 (Air Pollution: Small Off-Road Engines)

Signed into law in October 2021, AB 1346 requires CARB, to adopt cost-effective and technologically feasible regulations to prohibit engine exhaust and evaporative emissions from new small off-road engines, consistent with federal law, by July 1, 2022. The bill requires CARB to identify and, to the extent feasible, make available funding for commercial rebates or similar incentive funding as part of any updates to existing applicable funding program guidelines to local air pollution control districts and air quality management districts to implement to support the transition to zero-emission small off-road equipment operations.

AB 1279 (The California Climate Crisis Act)

AB 1279 establishes the policy of the State to achieve carbon neutrality as soon as possible, but no later than 2045; to maintain net negative GHG emissions thereafter; and to ensure that by 2045 statewide anthropogenic GHG emissions are reduced at least 85 percent below 1990 levels. The bill requires CARB to ensure that Scoping Plan updates identify and recommend measures to achieve carbon neutrality, and

to identify and implement policies and strategies that enable CO² removal solutions and carbon capture, utilization, and storage technologies.

SB 1020 (100 Percent Clean Electric Grid)

Signed on September 16, 2022, SB 1020 provides additional goals for the path to the 2045 goal of 100 percent clean electricity retail sales. It creates a target of 90 percent clean electricity retail sales by 2035 and 95 percent clean electricity retail sales by 2040.

SB 905 (Carbon Sequestration Program)

Signed on September 16, 2022, SB 905 establishes regulatory framework and policies that involve carbon removal, carbon capture, utilization, and sequestration. It also prohibits the injecting of concentrated carbon dioxide fluid into a Class II injection well for the purpose of enhanced oil recovery.

AB 1757 (Nature-Based Solutions)

Signed on September 16, 2022, AB 1757 requires State agencies to develop a range of targets for natural carbon sequestration and nature-based climate solutions that reduce GHG emissions to meet the 2030, 2038, and 2045 goals which would be integrated into a scoping plan addressing natural and working lands.

Executive Orders Related to GHG Emissions

California's Executive Branch has taken several actions to reduce GHGs using executive orders. Although not regulatory, they set the tone for the State and guide the actions of state agencies.

Executive Order S-3-05. Executive Order S-3-05 was issued on June 1, 2005, which established the following GHG emissions reduction targets:

- By 2010, reduce GHG emissions to 2000 levels.
- By 2020, reduce GHG emissions to 1990 levels.
- By 2050, reduce GHG emissions to 80 percent below 1990 levels.

The 2050 reduction goal represents what some scientists believe is necessary to reach levels that will stabilize the climate. The 2020 goal was established to be a mid-term target. Because this is an executive order, the goals are not legally enforceable for local governments or the private sector.

Executive Order S-01-07. Issued on January 18, 2007, Executive Order S 01-07 mandates that a statewide goal shall be established to reduce the carbon intensity of California's transportation fuels by at least 10 percent by 2020. The executive order established a Low Carbon Fuel Standard (LCFS) and directed the Secretary for Environmental Protection to coordinate the actions of the California Energy Commission, CARB, the University of California, and other agencies to develop and propose protocols for measuring the "life-cycle carbon intensity" of transportation fuels. CARB adopted the LCFS on April 23, 2009.

Executive Order S-13-08. Issued on November 14, 2008, Executive Order S-13-08 facilitated the California Natural Resources Agency development of the 2009 California Climate Adaptation Strategy. Objectives

include analyzing risks of climate change in California, identifying and exploring strategies to adapt to climate change, and specifying a direction for future research.

Executive Order S-14-08. Issued on November 17, 2008, Executive Order S-14-08 expands the State's Renewable Energy Standard to 33 percent renewable power by 2020. Additionally, Executive Order S-21-09 (signed on September 15, 2009) directs CARB to adopt regulations requiring 33 percent of electricity sold in the State come from renewable energy by 2020. CARB adopted the Renewable Electricity Standard on September 23, 2010, which requires 33 percent renewable energy by 2020 for most publicly owned electricity retailers.

Executive Order S-21-09. Issued on July 17, 2009, Executive Order S-21-09 directs CARB to adopt regulations to increase California's RPS to 33 percent by 2020. This builds upon SB 1078 (2002), which established the California RPS program, requiring 20 percent renewable energy by 2017, and SB 107 (2006), which advanced the 20 percent deadline to 2010, a goal which was expanded to 33 percent by 2020 in the 2005 Energy Action Plan II.

Executive Order B-30-15. Issued on April 29, 2015, Executive Order B-30-15 established a California GHG reduction target of 40 percent below 1990 levels by 2030 and directs CARB to update the Climate Change Scoping Plan to express the 2030 target in terms of million metric tons of CO₂e (MMTCO2e). The 2030 target acts as an interim goal on the way to achieving reductions of 80 percent below 1990 levels by 2050, a goal set by Executive Order S-3-05. The executive order also requires the State's climate adaptation plan to be updated every three years and for the State to continue its climate change research program, among other provisions. With the enactment of SB 32 in 2016, the Legislature codified the goal of reducing GHG emissions by 2030 to 40 percent below 1990 levels.

Executive Order B-55-18. Issued on September 10, 2018, Executive Order B-55-18 establishes a goal to achieve carbon neutrality as soon as possible, and no later than 2045, and achieve and maintain net negative emissions thereafter. This goal is in addition to the existing statewide targets of reducing GHG emissions. The executive order requires CARB to work with relevant state agencies to develop a framework for implementing this goal. It also requires CARB to update the Scoping Plan to identify and recommend measures to achieve carbon neutrality. The executive order also requires state agencies to develop sequestration targets in the Natural and Working Lands Climate Change Implementation Plan.

Executive Order N-79-20. Signed in September 2020, Executive Order N-79-20 establishes as a goal that where feasible, all new passenger cars and trucks, as well as all drayage/cargo trucks and off-road vehicles and equipment, sold in California, will be zero-emission by 2035. The executive order sets a similar goal requiring that all medium and heavy-duty vehicles will be zero-emission by 2045 where feasible. It also directs CARB to develop and propose rulemaking for passenger vehicles and equipment "requiring increasing volumes" of new zero emission vehicles (ZEVs) "towards the target of 100 percent." The executive order directs the California Environmental Protection Agency, the California Geologic Energy Management Division (CalGEM), and the California Natural Resources Agency to transition and repurpose oil production facilities with a goal toward meeting carbon neutrality by 2045. Executive Order N-79-20 builds upon the CARB Advanced Clean Trucks regulation, which was adopted by CARB in July 2020.

California Regulations and Building Codes

California has a long history of adopting regulations to improve energy efficiency in new and remodeled buildings. These regulations have kept California's energy consumption relatively flat even with rapid population growth.

Title 20 Appliance Efficiency Regulations. The appliance efficiency regulations (California Code of Regulations [CCR] Title 20, Sections 1601-1608) include standards for new appliances. Twenty-three categories of appliances are included in the scope of these regulations. These standards include minimum levels of operating efficiency, and other cost-effective measures, to promote the use of energy- and water-efficient appliances.

Title 24 Building Energy Efficiency Standards. California's Energy Efficiency Standards for Residential and Nonresidential Buildings (CCR Title 24, Part 6), was first adopted in 1978 in response to a legislative mandate to reduce California's energy consumption. The standards are updated periodically to allow consideration and possible incorporation of new energy efficient technologies and methods. Energy efficient buildings require less electricity; therefore, increased energy efficiency reduces fossil fuel consumption and decreases GHG emissions. The California Energy Commission (CEC) adopted the 2022 Energy Code on August 11, 2021, which was subsequently approved by the California Building Standards Commission for inclusion into the California Building Standards Code. The 2022 Title 24 standards will result in less energy use, thereby reducing air pollutant emissions associated with energy consumption across California. For example, the 2022 Title 24 standards will require efficient electric heat pumps, establishes electric-ready requirements for new homes, expands solar photovoltaic and battery storage standards, and strengthens ventilation standards.

Title 24 California Green Building Standards Code. The California Green Building Standards Code (CCR Title 24, Part 11 code) commonly referred to as the CALGreen Code, is a statewide mandatory construction code developed and adopted by the California Building Standards Commission and the Department of Housing and Community Development. The CALGreen standards require new residential and commercial buildings to comply with mandatory measures under the topics of planning and design, energy efficiency, water efficiency/conservation, material conservation and resource efficiency, and environmental quality. CALGreen also provides voluntary tiers and measures that local governments may adopt that encourage or require additional measures in the five green building topics. The most recent update to the CALGreen Code went into effect January 1, 2023 (2022 CALGreen). The 2022 CALGreen standards continue to improve upon the existing standards for new construction of, and additions and alterations to, residential and nonresidential buildings.

3.3 Regional

South Coast Air Quality Management District Rule 2305 (Warehouse Indirect Source Rule)

Rule 2305 was adopted by the South Coast Air Quality Management District (SCAQMD) Governing Board on May 7, 2021, to reduce NO_x and particulate matter emissions associated with warehouses and mobile sources attracted to warehouses. However, Rule 2305 would also reduce GHG emissions. This rule applies to all existing and proposed warehouses over 100,000 square feet located in the SCAQMD. Rule 2305 requires warehouse operators to track annual vehicle miles traveled associated with truck trips to and from the warehouse. These trip miles are used to calculate the warehouses WAIRE (Warehouse Actions and Investments to Reduce Emissions) Points Compliance Obligation. WAIRE Points are earned based on emission reduction measures and warehouse operators are required to submit an annual WAIRE Report which includes truck trip data and emission reduction measures. Reduction strategies listed in the WAIRE menu include acquire zero emission (ZE) or near zero emission (NZE) trucks; require ZE/NZE truck visits; require ZE yard trucks; install on-site ZE charging/fueling infrastructure; install onsite energy systems; and install filtration systems in residences, schools, and other buildings in the adjacent community. Warehouse operators that do not earn a sufficient number of WAIRE points to satisfy the WAIRE Points Compliance Obligation would be required to pay a mitigation fee. Funds from the mitigation fee will be used to incentivize the purchase of cleaner trucks and charging/fueling infrastructure in communities nearby.

South Coast Air Quality Management District Thresholds

The SCAQMD formed a GHG California Environmental Quality Act (CEQA) Significance Threshold Working Group to provide guidance to local lead agencies on determining significance for GHG emissions in their CEQA documents. As of the last Working Group meeting (Meeting #15) held in September 2010, the SCAQMD is proposing to adopt a tiered approach for evaluating GHG emissions for development projects where SCAQMD is not the lead agency.

With the tiered approach, the Project is compared with the requirements of each tier sequentially and would not result in a significant impact if it complies with any tier. Tier 1 excludes projects that are specifically exempt from SB 97 from resulting in a significant impact. Tier 2 excludes projects that are consistent with a GHG reduction plan that has a certified final CEQA document and complies with AB 32 GHG reduction goals. Tier 3 excludes projects with annual emissions lower than a screening threshold. The SCAQMD has adopted a threshold of 10,000 metric tons of CO₂e (MTCO₂e) per year for industrial projects and a 3,000 MTCO₂e threshold was proposed for non-industrial projects but has not been adopted. During Working Group Meeting #7 it was explained that this threshold was derived using a 90 percent capture rate of a large sampling of industrial facilities. During Meeting #8, the Working Group defined industrial uses as production, manufacturing, and fabrication activities or storage and distribution (e.g., warehouse, transfer facility, etc.). The Working Group indicated that the 10,000 MTCO₂e per year threshold applies to both emissions from construction and operational phases plus indirect emissions (electricity, water use, etc.). The SCAQMD concluded that projects with emissions less than the screening threshold would not result in a significant cumulative impact.

Southern California Association of Governments

On April 4, 2024, SCAG's Regional Council adopted Connect SoCal (2024 - 2050 Regional Transportation *Plan/Sustainable Communities Strategy* [RTP/SCS]). The RTP/SCS charts a course for closely integrating land use and transportation so that the region can grow smartly and sustainably. The strategy was prepared through a collaborative, continuous, and comprehensive process with input from local governments, county transportation commissions, tribal governments, non-profit organizations, businesses and local stakeholders within the counties of Imperial, Los Angeles, Orange, Riverside, San Bernardino, and Ventura. The RTP/SCS is a long-range vision plan that balances future mobility and housing needs with economic, environmental, and public health goals. The SCAG region strives toward sustainability through integrated land use and transportation planning. The SCAG region must achieve specific federal air quality standards and is required by state law to lower regional GHG emissions.

3.4 Local

City of Rialto General Plan

Chapter 2, Managing Our Land Supply of the City's General Plan identifies goals related to greenhouse gas emissions within the City. Goals and policies that relate to air quality impacts include the following:

- Goal 2-30: Incorporate green building and other sustainable building practices into development projects.
 - Policy 2-30.1: Explore and adopt the use of green building standards and Leadership in Energy and Environmental Design (LEED) or similar in both private and public projects.
 - Policy 2-30.2: Promote sustainable building practices that go beyond the requirements of Title 24 of the California Administrative Code, and encourage energy-efficient design elements, as appropriate.
- Goal 2-31: Conserve energy resources.
 - Policy 2-31.1: Require the incorporation of energy conservation features into the design of all new construction and site development activities.
- Goal 2-34: Achieve waste recycling levels that meet or exceed State mandates. Achieve maximum waste recycling in all sectors of the community: residential, commercial, industrial, institutional, and construction.
 - Policy 2-34.2: Utilize source reduction, recycling, and other appropriate measures to reduce the amount of solid waste generated in Rialto that is disposed of in landfills.
 - Policy 2-31.3: Encourage the maximum diversion from landfills of construction and demolition materials through recycling and reuse programs.
- Goal 2-38: Mitigate against climate change.
 - Policy 2-38.1: Consult with State agencies, SCAG, and the San Bernardino Associated Governments (SANBAG) to implement AB32 and SB375 by utilizing incentives to facilitate infill and transit-oriented development.
 - Policy 2-38.2: Encourage development of transit-oriented and infill development, and encourage a mix of uses that foster walking and alternative transportation in Downtown and along Foothill Boulevard.
 - Policy 2-38.3: Provide enhanced bicycling and walking infrastructure, and support public transit, including public bus service, the Metrolink, and the potential for Bus Rapid Transit (BRT).

City of Rialto Climate Adaptation Plan

The City of Rialto Climate Adaptation Plan outlines goals to reduce energy consumption and GHG emissions to become a more sustainable community. Goals include:

- Prevent truck routes from disproportionately impacting disadvantaged communities;
- Create a clean air checklist for new development of sensitive land uses;
- Increase use of low-emission and electric vehicles where feasible;
- Adopt building and maintenance standards that reflect the regional best practices in reducing urban heat island effect.

4 SIGNIFICANCE CRITERIA AND METHODOLOGY

4.1 Thresholds and Significance Criteria

Addressing GHG emissions generation impacts requires an agency to determine what constitutes a significant impact. The amendments to the CEQA Guidelines specifically allow lead agencies to determine thresholds of significance that illustrate the extent of an impact and are a basis from which to apply mitigation measures. This means that each agency is left to determine whether a project's GHG emissions will have a "significant" impact on the environment. The guidelines direct that agencies are to use "careful judgment" and "make a good-faith effort, based to the extent possible on scientific and factual data, to describe, calculate or estimate" the project's GHG emissions.⁹

Based upon the criteria derived from Appendix G of the CEQA Guidelines, a project normally would have a significant effect on the environment if it would:

- Generate GHG emissions, either directly or indirectly, that may have a significant impact on the environment, based on any applicable threshold of significance; or
- Conflict with any applicable plan, policy or regulation of an agency adopted for the purpose of reducing the emissions of GHGs.

South Coast Air Quality Management District Thresholds

On December 5, 2008, the SCAQMD Governing Board adopted a 10,000 MTCO₂e industrial threshold for projects where the SCAQMD is lead agency. During the GHG CEQA Significance Threshold Working Group Meeting #15, the SCAQMD noted that it was considering extending the industrial GHG significance threshold for use by all lead agencies. This working group was formed to assist SCAQMD's efforts to develop a GHG significance threshold and is composed of a wide variety of stakeholders including the State Office of Planning and Research, CARB, the Attorney General's Office, a variety of city and county planning departments in the SCAB, various utilities such as sanitation and power companies throughout the SCAB, industry groups, and environmental and professional organizations. However, the SCAQMD has not announced when staff is expecting to present GHG thresholds for land use projects where the SCAQMD is not the lead agency to the governing board. During Meeting #8, the Working Group defined industrial uses as production, manufacturing, and fabrication activities or storage and distribution (e.g., warehouse, transfer facility, etc.). Additionally, the SCAQMD GHG Significance Threshold Stakeholder Working Group has specified that a warehouse is considered to be an industrial project.¹⁰ Furthermore, the Working Group indicated that the 10,000 MTCO₂e per year threshold applies to both emissions from construction and operational phases plus indirect emissions (electricity, water use, etc.).

Although the screening threshold for industrial projects is 10,000 MTCO₂e per year, this analysis conservatively utilizes 3,000 MTCO₂e per year as the Project GHG threshold.

⁹ 14 California Code of Regulations, Section 15064.4a

¹⁰ South Coast Air Quality Management District, *Minutes for the GHG CEQA Significance Threshold Stakeholder Working Group* #8, 2009.

4.2 Methodology

The Project's construction and operational emissions were calculated using the California Emissions Estimator Model version 2022.1.1 (CalEEMod). Details of the modeling assumptions and emission factors are provided in **Appendix A: Greenhouse Gas Emissions Data**. For construction, CalEEMod calculates emissions from off-road equipment usage and on-road vehicle travel associated with haul, delivery, and construction worker trips. GHG emissions during construction were forecasted based on the proposed construction schedule and applying the mobile-source and fugitive dust emissions factors derived from CalEEMod. The Project's construction-related GHG emissions would be generated from off-road construction equipment, on-road hauling and vendor (material delivery) trucks, and worker vehicles. The Project's operations-related GHG emissions would be generated by vehicular traffic, area sources (e.g. landscaping maintenance and consumer products), electrical generation, natural gas consumption, water supply and wastewater treatment, and solid waste.

5 POTENTIAL IMPACTS

5.1 Greenhouse Gas Emissions

Threshold 5.1 Would the Project generate GHG emissions, either directly or indirectly, that could have a significant impact on the environment?

PROPOSED WAREHOUSE DEVELOPMENT

Short-Term Construction Greenhouse Gas Emissions

The Project would result in direct emissions of GHGs from construction. The approximate quantity of daily GHG emissions generated by construction equipment utilized to build the Project is depicted in **Table 2: Construction-Related Greenhouse Gas Emissions**.

Table 2: Construction-Related Greenhouse Gas Emissions			
Category	MTCO ₂ e		
Construction	1,266		
30-Year Amortized Construction	42		
ource: CalEEMod version 2022.1.1. Refer to Appendix A for model outputs.			

As shown in **Table 2**, the Project would result in the generation of approximately 1,266 MTCO₂e over the course of construction. Construction GHG emissions are typically summed and amortized over a 30-year period, then added to the operational emissions.¹¹ The amortized Project construction emissions would be 42 MTCO₂e per year. Once construction is complete, the generation of these GHG emissions would cease.

Long-Term Operational Greenhouse Gas Emissions

Operational or long-term emissions occur over the life of the Project. GHG emissions would result from direct emissions such as Project generated vehicular traffic, on-site combustion of natural gas, and operation of any landscaping equipment. Operational GHG emissions would also result from indirect sources, such as off-site generation of electrical power, solid waste generation, and the energy required to convey water to, and wastewater from the Project. Total GHG emissions associated with the Project are summarized in **Table 3: Project Greenhouse Gas Emissions**.

¹¹ The amortization period of 30-years is based on the standard assumption of the South Coast Air Quality Management District (South Coast Air Quality Management District, *Minutes for the GHG CEQA Significance Threshold Stakeholder Working Group* #13, August 26, 2009).

Greenhouse Gas Emissions Assessment

Table 3: Project Greenhouse Gas Emissions				
	MTCO ₂ e per Year			
Emissions Source	Unmitigated	Mitigated		
Construction Amortized Over 30 Years	42	42		
Area Source ¹	9	0		
Energy ²	981	436		
Mobile – Trucks	5,174	5,174		
Mobile – Passenger Cars	737	737		
Off-Road – Forklifts ³	2,082	86		
Off-Road – Yard Trucks ³	1,325	97		
Emergency Generators ³	39	39		
Waste	126	126		
Water and Wastewater	302	302		
Refrigerants	0	0		
Total Project Emissions	10,817	7,039		
Threshold	3,000	3,000		
Exceeds Threshold?	Yes	Yes		

Notes:

1. Mitigation Measure GHG-4 requires 100 percent electric landscaping equipment, which would reduce area source emissions.

2. Mitigation Measure GHG-1 requires the installation of photovoltaic solar panels to offset energy emissions and Mitigation Measure GHG-2 requires buildings to meet or exceed CALGreen Tier 2 standards.

3. Mitigated emissions include operation of electric forklifts and yard trucks, as well as Tier 4 certified standard emergency generators, pursuant to AIR-7 (refer to the Projects Air Quality Assessment).

Source: CalEEMod version 2022.1.1. Refer to **Appendix A** for model outputs.

Below is a description of the primary sources of operational emissions:

- Area Sources. Area source emissions occur from architectural coatings, landscaping equipment, and consumer products. Landscaping is anticipated to occur throughout the Project site. Additionally, the primary emissions from architectural coatings are volatile organic compounds, which are relatively insignificant as direct GHG emissions.
- **Energy Consumption**. Energy consumption consists of emissions from Project consumption of electricity and natural gas.
- **Off-Road Equipment.** Operational off-road emissions would be generated by off-road cargo handling equipment used during operational activities. For this Project it was assumed that the warehouses would include 9 forklifts and two yard trucks per SCAQMD data.¹² The forklifts and yard trucks GHG emissions were based on CARB OFFROAD emissions data.

¹² SCAQMD, *High Cube Warehouse Truck Trip Study White Paper Summary of Business Survey Results*, June 2014.

- Emergency Backup Generators. As the Project warehouse is speculative, it is unknown whether emergency backup generators would be used. Backup generators would only be used in the event of a power failure and would not be part of the Project's normal daily operations. Nonetheless, emissions associated with this equipment were included to be conservative. Emissions from an emergency backup generator for each warehouse building were calculated separately from CalEEMod; refer to Appendix A. However, CalEEMod default emissions rates were used. If backup generators are required, the end user would be required to obtain a permit from the SCAQMD prior to installation. Emergency backup generators must meet SCAQMD's Best Available Control Technology (BACT) requirements and comply with SCAQMD Rule 1470 (Requirements for Stationary Diesel-Fueled Internal Combustion and Other Compression Ignition Engines), which would minimize emissions.
- **Mobile Sources**. Mobiles sources from the Project were calculated with CalEEMod based on the trip generation from the *Traffic Study for the Miro Way and Ayala Drive Warehouse Project in the City of Rialto* (Traffic Study), prepared by Kimley-Horn (May 2024). According to the Traffic Study, the Project would generate 733 total daily vehicle trips, which includes 293 daily truck trips.
- **Solid Waste**. Solid waste releases GHG emissions in the form of methane when these materials decompose.
- Water and Wastewater. GHG emissions from water demand would occur from electricity consumption associated with water conveyance and treatment.
- **Refrigerants**. Air conditioning and refrigerator equipment typically generate GHG emissions. The proposed Project would not include cold storage. Per 17 CCR 95371, new facilities with refrigeration equipment containing more than 50 pounds of refrigerant are prohibited from utilizing refrigerants with a GWP of 150 or greater as of January 1, 2022. Additionally, the Project is anticipated to utilize R-717¹³ refrigerants in any potential air conditioning and refrigerator equipment.

Table 3 shows that the Project's unmitigated emissions would be approximately 10,817 MTCO₂e annually from operations with amortized construction. Project-related GHG emissions would exceed the 3,000 MTCO₂e per year threshold. It should be noted that the majority of the unmitigated GHG emissions (55 percent) are associated with non-construction related mobile sources. Emissions of motor vehicles are controlled by State and Federal standards, and the Project has no control over these standards.

Furthermore, the Project's Air Quality Assessment includes numerous mitigation measures that would also reduce GHG emissions. For example, Mitigation Measure **AIR-2** through **AIR-7** have been identified to reduce operational emissions. Mitigation Measure **AIR-2** requires the implementation of a Transportation Demand Management (TDM) program to reduce single-occupant vehicle trips and encourage public transit. Mitigation Measure **AIR-3** requires the buildings' electrical room to be sufficiently sized to hold additional panels that may be needed to supply power for the future installation of electric vehicle (EV) truck charging stations on the site. Mitigation Measure **AIR-4** requires that all truck access gates and loading docks within the Project site shall have a sign posted that requires drivers to turn off their engines when not in use. Mitigation Measure **AIR-5** requires that vendor trucks for the industrial buildings include energy efficiency improvement features through the Carl Moyer Program. Mitigation

¹³ R-717 is refrigerant grade anhydrous ammonia, normally used in large industrial refrigeration applications.

Measure AIR-6 requires staff to be trained on compliance with CARB regulations. Mitigation Measure AIR-7 requires all outdoor cargo handling equipment shall be zero emission/powered by electricity and standard emergency generators to be Tier 4 certified. It should be noted that GHG emissions depicted in Table 3 conservatively do not include emissions reduction credits from Mitigation Measures AIR-2, AIR-3, AIR-4, and AIR-5.

In addition, the Project would implement Mitigation Measures **GHG-1** thorough **GHG-4**. Mitigation Measure **GHG-1** requires the installation of photovoltaic solar panels to offset energy emissions. Mitigation Measure **GHG-2** requires the Project to meet or exceed CALGreen Tier 2 standards to further improve energy efficiency. Mitigation Measure **GHG-3** requires the Project to divert 75 percent of waste from landfills. It should be noted that GHG emissions shown in **Table 3** conservatively do not include emissions reduction credits from Mitigation Measure **GHG-3**. Mitigation Measure **GHG-4** requires landscape equipment to be 100 percent electric. The Project would also be required to comply with Laws, Ordinances, and Regulations (LOR) GHG-1 through LOR GHG-8 which would be required by local, State, or federal regulations or laws.

Table 3 shows that implementation of these mitigation measures would reduce GHG emissions to 7,039 MTCO₂e. The majority of the Project's GHG emissions are generated by mobile emissions. The TDM program required by Mitigation Measure **AIR-2** would reduce GHG emissions from commuting. Additional mitigation to reduce the Project's mobile emissions is not feasible due to the limited ability of the City to address emissions resulting from mobile sources and/or emissions generated by cars and trucks outside of the City's limits. As with all land use projects, the Project's mobile and transportation related GHG emissions are a function of two parameters: emissions control technology and vehicle miles traveled (VMT).

CARB is directly responsible for regulating mobile and transportation source emissions in the State. Regarding the first parameter, California addresses emissions control technology through a variety of legislation and regulatory schemes, including the State's Low Carbon Fuel Standard (Executive Order S-01-07) (LCFS), a regulatory program designed to encourage the use of cleaner low-carbon transportation fuels in California, encourage the production of those fuels, and therefore, reduce GHG emissions and decrease petroleum dependence in the transportation sector. The regulatory standards are expressed in terms of the "carbon intensity" of gasoline and diesel fuel and their substitutes. Different types of fuels are evaluated to determine their "life cycle emissions" which include the emissions associated with producing, transporting, and using the fuels. Each fuel is then given a carbon intensity score and compared against a declining carbon intensity benchmark for each year. Providers of transportation fuels must demonstrate that the mix of fuels they supply for use in California meets these declining benchmarks for each annual compliance period.

In 2018, CARB approved amendments to the LCFS, which strengthened the carbon intensity benchmarks through 2030 to ensure they are in-line with California's 2030 GHG emission reduction target enacted through SB 32. CARB is also implementing additional transportation sector regulations such as Advanced Clean Cars II, Advanced Clean Trucks, and Advanced Clean Fleets. This ensures that the transportation sector is meeting its obligations to achieve California's GHG reduction targets. The Project would be required to comply with these regulations through vehicle manufacturer compliance. The State is also implementing legislation and regulations to address the second parameter affecting transportation related GHG emissions by controlling for VMT. Examples of this include SB 375, which links land use and transportation funding and provides one incentive for regions to achieve reductions in VMT, and SB 743, which discourages VMT increases for passenger car trips above a region-specific benchmark.

Additional mitigation to further reduce the Project's non-mobile emissions would be speculative. The Project's mitigation measures and LORs address non-mobile emissions to the extent possible, by designing buildings to provide environmental design features, incorporate energy and water conservation measures, and provide electrical, heating, ventilation, lighting, and power systems that meet CALGreen Standards (Mitigation Measure **GHG-1** requires the installation of photovoltaic solar panels to offset energy emissions. Mitigation Measure **GHG-2** requires the Project to meet or exceed CALGreen Tier 2 standards, which exceeds code requirements). Further, the project would be required to divert 75 percent of solid waste from landfills (Mitigation Measure **GHG-3**) and require landscape equipment to be 100 percent electric (Mitigation Measure **GHG-4**). The State is addressing the remaining energy-related GHG emissions through SB 100 and SB 1020, which requires 100 percent clean electricity retail sales by 2045. Additionally, SB 905 requires the State to use carbon removal, carbon capture, utilization, and sequestration technologies and AB 1757 requires nature-based sequestration in natural working lands.

As shown in **Table 3**, mitigated GHG emissions would exceed the $3,000 \text{ MTCO}_2$ e per year threshold despite implementation of all feasible mitigation. Therefore, Project-related GHG emissions would be significant and unavoidable.

PROPOSED PA 123 REZONE

Development of PA 123 is not proposed as part of the Project. Future development projects related to PA 123 would be evaluated on a project-specific level in compliance with CEQA, as applicable.

Laws, Ordinances, and Regulations:

LORs are existing requirements that are based on local, state, or federal regulations or laws that are frequently required independently of CEQA review. Typical LORs and requirements include compliance with the provisions of the Building Code, SCAQMD Rules, etc. The City may impose additional conditions during the approval process, as appropriate. Because LORs are neither Project specific nor a result of development of the Project, they are not considered to be either Project Design Features or Mitigation Measures.

- **LOR GHG-1** Require diesel powered construction equipment to turn off when not in use per Title 13 of the California Code of Regulations, Section 2449.
- **LOR GHG-2** Limit idling time for commercial vehicles to no more than five minutes per Title 13 of the California Code of Regulations, Section 2485.
- LOR GHG-3 In accordance with California Title 24 Standards, buildings will be designed to have 15 percent of the roof area "solar ready" that will structurally accommodate later installation of rooftop solar panels. If future building operators pursue providing rooftop solar panels, they will submit plans for solar panels prior to occupancy.
- LOR GHG-4 Install water-efficient irrigation systems and devices, such as soil moisture-based irrigation controls and sensors for landscaping, according to the City's Water Efficient Landscape requirements (Chapter 12.50 of the City's Municipal Code).
- **LOR GHG-5** Design buildings to be water-efficient. Install water-efficient fixtures in accordance with Section 5.303 of the California Green Building Standards Code Part 11.

- LOR GHG-6 Recycle and/or salvage for reuse a minimum of 65 percent of the nonhazardous construction and demolition waste in accordance with Section 5.408.1 of the California Green Building Standards Code Part 11.
- LOR GHG-7 Provide storage areas for recyclables and green waste and adequate recycling containers located in readily accessible areas in accordance with Section 5.410 of the California Green Building Standards Code Part 11.
- **LOR GHG-8** To facilitate future installation of electric vehicle supply equipment (EVSE), construction shall comply with Section 5.106.5.3 (nonresidential electric vehicle charging) of the California Green Building Standards Code Part 11.

Mitigation Measures: Refer to 2016 RSPA EIR Mitigation Measure **AQ-14** and Mitigation Measure **AIR-2** through **AIR-7** in the Air Quality Assessment. The following additional mitigation is also required.

GHG-1 Prior to issuance of a Certificate of Occupancy for Tenant Improvements, not building shell, the project shall install solar photovoltaic (PV) panels or other source of renewable energy generation on-site, or otherwise acquire energy from the local utility that has been generated by renewable sources, that would provide 100 percent of the expected building load (i.e., the Title 24 electricity demand and the plug-load, anticipated to be approximately 4.62 kilowatt hours per year [kWh/year] per square foot¹⁴), as feasible, based on the maximum net roof area available for solar (i.e., solar-ready zone). The solar-ready zone shall comply with Section 110.10 of the 2022 California Energy Code and shall comply with access, pathway, ventilation, and spacing requirements, and exclude skylight area.

With expected energy consumption at 4.62 kWh/sf, a PV panel array covering approximately one quarter of the proposed roof space would provide sufficient on-site renewable energy generation to offset consumption. The final PV generation facility size requires approval by Southern California Edison (SCE). SCE's Rule 21 governs operating and metering requirements for any facility connected to SCE's distribution system. Should SCE limit the off-site export, the proposed Project may utilize a battery energy storage system (BESS) to lower off-site export while maintaining on-site renewable generation to off-set consumption. If the Project cannot generate enough renewable energy to cover 100 percent of the building load, renewable energy may be acquired from the local utility.

This mitigation measure applies only to tenant improvements and not the building shell approvals.

¹⁴ The expected electricity demand is based on CalEEMod; refer to **Appendix A**.

- **GHG-2** Prior to the issuance of a building permit, the Project Applicant or successor in interest shall provide documentation to the City demonstrating the following:
 - The Project shall be designed to meet or exceed CALGreen Tier 2 standards in effect at the time of building permit application in order to exceed 2022 Title 24 energy efficiency standards by at least 15 percent.
 - The Project shall provide conduits to support electric charging stations per the Tier 2 standards in Section A5.106.5.3 (Nonresidential Voluntary Measures) of the 2022 CALGreen Code.
- GHG-3 The development shall divert a minimum of 75 percent of landfill waste. Prior to issuance of certificate of tenant occupancy permits, a recyclables collection and load area shall be constructed in compliance with City standards for recyclable collection and loading areas. This mitigation measure applies only to tenant permits and not the building shell approvals. The diversion plan shall also comply with the established solid waste and recycling laws including AB 939 and AB 341.
- GHG-4 Prior to the issuance of tenant occupancy permits, the Planning Department shall confirm that tenant lease agreements include contractual language that all handheld landscaping equipment used onsite shall be 100 percent electrically powered. This mitigation measure applies only to tenant permits and not the building shell approvals.

Level of Significance: Significant and unavoidable impact. No additional feasible mitigation measures are available that can reduce impacts to less than significant. As explained above, the Project incorporates all feasible mitigation measures that could be implemented to further reduce the Project's GHG emissions. There are no additional measures available that would further reduce emissions because the majority of the Project's emissions come from mobile sources which are regulated by the State and not the City of Rialto.

5.2 Greenhouse Gas Reduction Plan Compliance

Threshold 5.2 Would the Project conflict with an applicable plan, policy, or regulation of an agency adopted for the purpose of reducing GHG emissions?

PROPOSED WAREHOUSE DEVELOPMENT

Consistency with the City of Rialto Climate Adaptation Plan

The Rialto Climate Adaptation Plan outlines goals to reduce energy consumption and GHG emissions to become a more sustainable community. The proposed Project would be required to comply with all building codes in effect at the time of construction which include energy conservation measures mandated by Title 24 of the California Building Standards Code – Energy Efficiency Standards and the California Green Building Standards. Because Title 24 standards require energy conservation features in new construction (e.g., high-efficiency lighting, high-efficiency heating, ventilating, and air-conditioning [HVAC] systems, thermal insulation, double-glazed windows, water-conserving plumbing fixtures), these standards indirectly regulate and reduce GHG emissions. California's Building Energy Efficiency Standards are updated on an approximately three-year cycle. The most recent 2022 standards went into effect January 1, 2023. Project construction would be consistent with the Rialto Climate Adaptation Plan goals to reduce GHG emissions.

December 2024

Further, the Project would comply with the City's General Plan policies and State Building Code provisions designed to reduce GHG emissions. The proposed Project would also comply with all SCAQMD applicable rules and regulations during construction and operation and would not interfere with the State's AB 32 goals.

Consistency with the 2022 CARB Scoping Plan

Adopted December 15, 2022, CARB's 2022 Scoping Plan for Achieving Carbon Neutrality (2022 Scoping Plan) sets a path to achieve targets for carbon neutrality and reduce anthropogenic GHG emissions by 85 percent below 1990 levels by 2045 in accordance with AB 1279. To achieve the targets of AB 1279, the 2022 Scoping Plan relies on existing and emerging fossil fuel alternatives and clean technologies, as well as carbon capture and storage. Specifically, the 2022 Scoping Plan focuses on zero-emission transportation; phasing out use of fossil gas use for heating homes and buildings; reducing chemical and refrigerants with high GWP; providing communities with sustainable options for walking, biking, and public transit; displacement of fossil-fuel fired electrical generation through use of renewable energy alternatives (e.g., solar arrays and wind turbines); and scaling up new options such as green hydrogen. The 2022 Scoping Plan sets one of the most aggressive approaches to reach carbon neutrality in the world. Unlike the 2017 Scoping Plan, CARB no longer includes a numeric per capita threshold and instead advocates for compliance with a local GHG reduction strategy (i.e., Climate Action Plan) consistent with CEQA Guidelines section 15183.5.

The key elements of the 2022 CARB Scoping Plan focus on transportation. Specifically, the 2022 Scoping Plan aims to rapidly move towards zero-emission (ZE) transportation (i.e., electrifying cars, buses, trains, and trucks), which constitutes California's single largest source of GHGs. The regulations that impact the transportation sector are adopted and enforced by CARB on vehicle manufacturers and are outside the jurisdiction and control of local governments. The 2022 Scoping Plan accelerates development of new regulations as well as amendments to strengthen regulations and programs already in place. Statewide strategies to reduce GHG emissions in the latest 2022 Scoping Plan include:

- Implementing SB 100 (achieve 100 percent clean electricity by 2045);
- Achieving 100 percent zero emission vehicle sales in 2035 through Advanced Clean Cars II; and
- Implementing the Advanced Clean Fleets regulation to deploy zero-emission vehicle (ZEV) buses and trucks.

Additional transportation policies include the Off-Road Zero-Emission Targeted Manufacturer rule, Clean Off-Road Fleet Recognition Program, In-use Off-Road Diesel-Fueled Fleets Regulation, Clean Off-Road Fleet Recognition Program, and Amendments to the In-use Off-Road Diesel-Fueled Fleets Regulation. The 2022 Scoping Plan would continue to implement SB 375. GHGs would be further reduced through the Capand-Trade Program carbon pricing and SB 905. SB 905 requires CARB to create the Carbon Capture, Removal, Utilization, and Storage Program to evaluate, demonstrate, and regulate carbon dioxide removal projects and technology.

As shown in **Table 3**, approximately 90 percent of the Project's mitigated GHG emissions are from energy and mobile sources which would be further reduced by the 2022 Scoping Plan measures described above. The Project would implement various mitigation measures to reduce energy and mobile source emissions including **MM GHG-2**, which requires CALGreen Tier 2 electric vehicle charging stations. Additionally, the Project would result in a less than significant impact concerning the Project's effect on VMT.¹⁵ It should be noted that the City has no control over vehicle emissions (approximately 84 percent of the Project's total emissions). However, these emissions would decline in the future due to Statewide measures discussed above, as well as cleaner technology and fleet turnover.

The Project would not impede the State's progress towards carbon neutrality by 2045 under the 2022 Scoping Plan. The Project would be required to comply with applicable current and future regulatory requirements promulgated through the 2022 Scoping Plan.

SCAG RTP/SCS Consistency

On April 4, 2024, SCAG's Regional Council adopted Connect SoCal (*2024 - 2050 Regional Transportation Plan/Sustainable Communities Strategy* [RTP/SCS]). The RTP/SCS is a long-range visioning plan that balances future mobility and housing needs with economic, environmental, and public health goals. The RTP/SCS embodies a collective vision for the region's future and is developed with input from local governments, county transportation commissions, tribal governments, nonprofit organizations, businesses, and local stakeholders in the counties of Imperial, Los Angeles, Orange, Riverside, San Bernardino, and Ventura. Under Senate Bill (SB) 375, SCAG's RTP/SCS establishes GHG emissions goals to reduce GHG emissions in the region by eight percent from 2005 levels by 2020 and 19 percent by 2035.¹⁶

Implementation of the RTP/SCS would add 181,200 new miles of transit revenue service, 4,000 new miles of bike lanes and 869 new miles to the Regional Express Lane Network. Strategic investments in infrastructure and transportation would improve access to employment centers and stimulate regional economic growth and opportunity in historically underserved areas. Connect SoCal is an important planning document for the region, allowing public agencies to implement transportation projects in a coordinated manner while qualifying for federal and state funding. Connect SoCal also supports local jurisdictions in making informed land use planning and housing development decisions.

The RTP/SCS plans account for operations and maintenance costs to ensure reliability, longevity, and cost effectiveness. The RTP/SCS are also supported by a combination of transportation and land use strategies that help the region achieve state GHG emissions reduction goals and Federal Clean Air Act (FCAA) requirements, increased housing production, improved equity and resilience, the preservation of natural lands, improvement of public health, increased transportation safety, support for the region's vital goods movement industries and more efficient use of resources. GHG emissions resulting from development-related mobile sources are the most potent source of emissions, and therefore project comparison to the RTP/SCS is an appropriate indicator of whether the project would inhibit the post-2020 GHG reduction goals promulgated by the state. The project's consistency with the RTP/SCS goals is analyzed in detail in **Table 4: Regional Transportation Plan/Sustainable Communities Strategy Consistency**.

Compliance with applicable State standards would ensure consistency with State and regional GHG reduction planning efforts. The goals stated in the RTP/SCS were used to determine consistency with the planning efforts previously stated. As shown in **Table 4**, the proposed Project would be consistent with the stated goals of the RTP/SCS. Therefore, the proposed Project would not result in any significant

¹⁵ Kimley-Horn and Associates, Inc., *Traffic Study for Miro Way and Ayala Drive Warehouse Project*, May 2024.

¹⁶ California Air Resources Board, *SB 375 Regional Targets*, https://ww2.arb.ca.gov/our-work/programs/sustainablecommunities-program/sb-375-regional-targets, accessed September 2024.

impacts or interfere with SCAG's ability to achieve the region's GHG emission reduction target of 19 percent by the year 2035 or the post-2020 mobile source GHG reduction targets.

Table 4: Regional Transportation Plan/Sustainable Communities Strategy Consistency				
SCAG Goals	Compliance			
Mobility: Build and maintain an integrated multimodal tra	ansportation network.			
Support investments that are well-maintained and operated, coordinated, resilient and result in improved safety, improved air quality and minimized greenhouse gas emissions	N/A. This is not a project-specific policy and is therefore not applicable.			
Ensure that reliable, accessible, affordable, and appealing travel options are readily available, while striving to enhance equity in the offerings in high-need communities	N/A. This is not a project-specific policy and is therefore not applicable.			
Support planning for people of all ages, abilities, and backgrounds	N/A. This is not a project-specific policy and is therefore not applicable.			
Communities: Develop, connect, and sustain communities	that are livable and thriving			
Create human-centered communities in urban, suburban, and rural settings to increase mobility options and reduce travel distances	Consistent . The Project is located in an urban area in proximity to existing community services. Additionally, the Project is located near existing transit routes and access to Interstate 210 (I-210).			
Produce and preserve diverse housing types in an effort to improve affordability, accessibility, and opportunities for all households	N/A. The Project does not propose residential uses.			
Environment: Create a healthy region for the people of to	day and tomorrow			
Develop communities that are resilient and can mitigate, adapt to, and respond to chronic and acute stresses and disruptions, such as climate change	Consistent . As discussed in the Project's Air Quality Assessment, the Project would not exceed SCAQMD's regional or localized thresholds. Based on the Friant Ranch decision, projects that do not exceed the SCAQMD's localized significance thresholds (LSTs) would not violate any air quality standards or contribute substantially to an existing or projected air quality violation and result in no criteria pollutant health impacts. Additionally, the Project's Health Risk Assessment determined potential health risks associated with Toxic Air Contaminants resulting from implementation of the proposed Project would be less than significant. As discussed under Threshold 5.1, above, the Project would require all feasible mitigation to reduce GHG emissions. In addition to Mitigation Measures AIR-2 through AIR-7 from the Project's Air Quality Assessment, the Project would implement Mitigation Measures GHG-1 thorough GHG-4. Mitigation Measure GHG-1 requires the installation of photovoltaic solar panels to offset energy emissions. Mitigation Measure GHG-2 requires the Project to divert 75 percent of waste from landfills. Mitigation Measure GHG-4 requires landscape equipment to be 100 percent electric. Therefore, the Project would not result in health impacts and would implement all feasible mitigation to reduce GHG emissions.			
Integrate the region's development pattern and transportation network to improve air quality, reduce greenhouse gas emissions and enable more sustainable use of energy and water	Consistent . While the Project is not a transportation improvement Project, location of the Project within a developed area would reduce trip lengths, which would reduce GHG and air quality emissions. Additionally, the reduction of energy use, improvement			

Greenhouse Gas Emissions Assessment

Table 4: Regional Transportation Plan/Sustainable Communities Strategy Consistency				
SCAG Goals	Compliance			
	of air quality, and promotion of more environmentally sustainable development are encouraged through the development of alternative transportation methods, green design techniques for buildings, and other energy-reducing techniques such as compliance with the provisions of the California Building Energy Efficiency Standards and the Green Building Standards Code (CALGreen).			
Conserve the region's resources	Consistent . The proposed Project is located on vacant land that is not designated for agricultural uses, natural resources, or conservation. Therefore, Project development would not result in a loss of the region's resources.			
Economy: Support a sustainable, efficient, and productiv people in the region	e regional economic environment that provides opportunities for all			
Improve access to jobs and educational resources	Consistent . The Project proposes a warehouse development within an urban area, in close proximity to residential uses. Therefore, the location of the Project would improve access to jobs opportunities.			
Advance a resilient and efficient goods movement system that supports the economic vitality of the region, attainment of clean air and quality of life for our communities				
N/A = Not Applicable Source: Southern California Association of Governments, <i>Connect SoCal</i> (2024 – 2050 Regional Transportation Plan/Sustainable Communities Strategy), 2024.				

Conclusion

The proposed Project would be consistent with the Rialto Climate Adaptation Plan, the CARB Scoping Plan, and SCAG's RTP/SCS, and would be required to comply with existing regulations, including applicable measures from the City's General Plan. The Project would be directly affected by the outcomes (vehicle trips and energy consumption would be less carbon intensive due to statewide compliance with future low carbon fuel standard amendments and increasingly stringent Renewable Portfolio Standards). As such, the Project would not conflict with any other State-level regulations pertaining to GHGs.

As shown in **Table 3**, approximately 90 percent of the Project's mitigated GHG emissions are from energy and mobile sources which would be further reduced by the 2022 Scoping Plan goals described above (including achieve 100 percent clean electricity by 2045 [SB 100], achieving 100 percent zero emission vehicle sales in 2035 [Advanced Clean Cars II], and implementing the Advanced Clean Fleets regulation [ZEV buses and trucks]). The City has no control over vehicle emissions (approximately 80 percent of the Project's total emissions), with the exception of land use decisions that could reduce VMT. However, these emissions would decline in the future due to statewide measures discussed above (including the reduction in fuels' carbon content, CARB's Advanced Clean Car Program, CARB's Mobile Source Strategy, fuel efficiency standards, etc.), as well as cleaner technology and fleet turnover. SCAG's RTP/SCS is also expected to help California reach its GHG reduction goals, with reductions in per capita transportation emissions of 19 percent by 2035.¹⁷

At this time it is not possible to quantify the emissions savings from future regulatory measures that have not yet been developed; nevertheless, it can be anticipated that Project operations would benefit from applicable measures are enacted to meet State GHG reduction goals. The Project would not impede the State's progress towards carbon neutrality by 2045 under the 2022 Scoping Plan. The Project would be required to comply with applicable current and future regulatory requirements promulgated through the 2022 Scoping Plan.

As discussed above, Mitigation Measure **AIR-2** as identified in the Project's Air Quality Assessment, would reduce mobile source emissions through the implementation of a TDM program. LOR GHG-1 through LOR GHG-8, as required by the California Building Code, would provide designated parking to promote the use of alternative fuels and clean fleets, water-efficient irrigation systems and devices, recycle and/or salvage for reuse a minimum of 65 percent of the nonhazardous construction and demolition waste, facilitate future installation of electric vehicle supply equipment, and limit idling times. Furthermore, Mitigation Measure **GHG-1** requires the Project to install solar photovoltaic systems, Mitigation Measure **GHG-2** requires the Project to divert 75 percent of waste from landfills; and Mitigation Measure **GHG-4** requires landscape equipment to be 100 percent electric. The Project would also implement 2016 RSPA EIR Mitigation Measure **AQ-14** and Mitigation Measures **AIR-2** through **AIR-7** in the Air Quality Assessment, as well as Mitigation Measures **GHG-1** through **GHG-4**. As discussed above, the Project would not conflict with an applicable plan, policy, or regulation for the purposes of reducing GHG emissions. Therefore, impacts would be less than significant.

PROPOSED PA 123 REZONE

Development of PA 123 is not proposed as part of the Project. Future development projects related to PA 123 would be evaluated on a project-specific level in compliance with CEQA, as applicable.

Mitigation Measures: Refer to 2016 RSPA EIR Mitigation Measure **AQ-14** and Mitigation Measures **AIR-2** through **AIR-7** in the Air Quality Assessment, as well as Mitigation Measures **GHG-1** through **GHG-4** (refer to Impact Threshold 5.1, above).

Level of Significance: Less than significant impact.

¹⁷ California Air Resources Board, SCAG Releases Draft Connect SoCal 2024, https://scag.ca.gov/press-release/scag-releasesdraft-connect-socal-2024.

5.3 Cumulative Setting and Impacts

Cumulative Setting

Climate change is a global problem. GHGs are global pollutants, unlike criteria air pollutants and TACs, which are pollutants of regional and local concern. Whereas pollutants with localized air quality effects have relatively short atmospheric lifetimes (about 1 day), GHGs have much longer atmospheric lifetimes of 1 year to several thousand years that allow them to be dispersed around the globe.

Cumulative Impacts

It is generally the case that an individual project of this size and nature is of insufficient magnitude by itself to influence climate change or result in a substantial contribution to the global GHG inventory.¹⁸ The State CEQA Guidelines generally address GHG emissions as a cumulative impact because of the global nature of climate change.¹⁹ As the California Supreme Court explained, "because of the global scale of climate change, any one project's contribution is unlikely to be significant by itself".²⁰ As such, GHG impacts are recognized as exclusively cumulative impacts; there are no non-cumulative GHG emission impacts from a climate change perspective. The additive effect of Project-related GHGs would not result in a reasonably foreseeable cumulative related projects would also be subject to all applicable regulatory requirements, which would further reduce GHG emissions. As discussed above, Project-related GHG emissions would exceed the 3,000 MTCO₂e threshold of significance despite implementation of 2016 RSPA EIR Mitigation Measure **AQ-14** and Mitigation Measures **AIR-2** through **AIR-7** in the Air Quality Assessment, as well as Mitigation Measures **GHG-1** through **GHG-4**, and could impede statewide 2030 and 2045 GHG emission reduction targets. As such, the Project would result in a potentially significant cumulative GHG impact.

Mitigation Measures: Refer to 2016 RSPA EIR Mitigation Measure **AQ-14** and Mitigation Measures **AIR-2** through **AIR-7** in the Air Quality Assessment, as well as Mitigation Measures **GHG-1** through **GHG-4** (refer to Impact Threshold 5.1, above).

Level of Significance: Significant and unavoidable impact. No additional feasible mitigation measures are available that can reduce impacts to less than significant.

¹⁸ California Air Pollution Control Officers Association, CEQA and Climate Change White Paper, 2008.

¹⁹ Pub. Resources Code, § 21083, subd. (b)(2)

²⁰ Cleveland National Forest Foundation v. San Diego Assn. of Governments (2017) 3 Cal.5th 497, 512.

6 **REFERENCES**

- 1. California Air Pollution Control Officers Association, CEQA and Climate Change White Paper, 2008.
- 2. California Air Resources Board, 2022 Scoping Plan for Achieving Carbon Neutrality, November 2022.
- 3. California Air Resources Board, *California's 2017 Climate Change Scoping Plan*, November 2017.
- 4. California Air Resources Board, *SB 375 Regional Plan Climate Targets*, https://ww2.arb.ca.gov/our-work/programs/sustainable-communities-program/regional-plan-targets
- 5. California Energy Commission, 2019 Building Energy Efficiency Standards, 2018. Available at: https://www.energy.ca.gov/programs-and-topics/programs/building-energy-efficiencystandards/2019-building-energy-efficiency
- 6. California Energy Commission, 2022 Building Energy Efficiency Standards, 2022. Available at: https://www.energy.ca.gov/programs-and-topics/programs/building-energy-efficiency-standards/2022-building-energy-efficiency
- 7. City of Rialto, *City of Rialto General Plan*, 2010.
- 8. HPA Architecture, *Conceptual Site Plan Miro Way and Ayala Dr.*, January 8, 2024.
- 9. Intergovernmental Panel on Climate Change, *Climate Change 2007: The Physical Science Basis*, 2007.
- 10. Intergovernmental Panel on Climate Change, Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 2013.
- 11. Intergovernmental Panel on Climate Change, Climate Change 2014 Mitigation of Climate Change Working Group III Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 2014.
- 12. National Highway Traffic Safety Administration, USDOT Announces New Vehicle Fuel Economy Standards for Model Year 2024-2026, available at: https://www.nhtsa.gov/press-releases/usdot-announces-new-vehicle-fuel-economy-standards-model-year-2024-2026
- 13. National Research Council, Advancing the Science of Climate Change, 2010.
- 14. Southern California Association of Governments, 2024 2050 Regional Transportation *Plan/Sustainable Communities Strategy*, April 4, 2024.
- 15. South Coast Air Quality Management District, *High Cube Warehouse Truck Trip Study White Paper Summary of Business Survey Results*, June 2014.
- 16. South Coast Air Quality Management District, *Minutes for the GHG CEQA Significance Threshold Stakeholder Working Group #8*, 2009.
- 17. South Coast Air Quality Management District, *Minutes for the GHG CEQA Significance Threshold Stakeholder Working Group #13*, 2009.
- 18. South Coast Air Quality Management District, *Staff Report: Interim CEQA GHG Significance Threshold for Stationary Sources, Rules and Plans,* December 5, 2008, Attachment E: *Draft Guidance Document Interim CEQA Greenhouse Gas (GHG) Significance Threshold,* October 2008.
- 19. U.S. EPA, Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2016, 2018.
- 20. U.S. EPA, Methane and Nitrous Oxide Emission from Natural Sources, 2010.

Greenhouse Gas Emissions Assessment

21. U.S. EPA, Overview of Greenhouse Gases, 2018.

Appendix A

Greenhouse Gas Emissions Data

Miro Way and Ayala Drive Warehouse CalEEMod Assumptions

Land Use

Land Use	Size	Metric
Unrefrigerated Warehouse-No Rail	428.715	KSF
Parking Lot	283	Space
Other Non-Asphalt Surfaces	6.43	Acre
KSF = thousand square feet: DU = dwelling unit	·	·

Construction

Schedule

Phase Name	Start Date	End Date	Workdays
Site Preparation	5/1/2025	6/1/2025	22
Grading	6/2/2025	9/1/2025	66
Building Construction	10/1/2025	6/1/2026	174
Paving	2/3/2026	3/1/2026	19
Architectural Coating	5/1/2026	6/1/2026	22
Infrastructure Improvements	9/2/2025	2/2/2026	110

Equipment

Construction Phase	Equipment	Number per Day	Hours Per Day
Cita Dranaratian	Rubber Tired Dozers	3	8
Site Preparation	Tractors/Loaders/Backhoes	4	8
	Excavators	2	8
	Graders	1	8
Grading	Rubber Tired Dozers	1	8
	Scrapers	2	8
	Tractors/Loaders/Backhoes	2	8
	Cranes	1	7
	Forklifts	3	8
Building Construction	ling Construction Generator Sets		8
	Tractors/Loaders/Backhoes	3	7
	Welders	1	8
	Pavers	2	8
Paving	Paving Equipment	2	8
	Rollers	2	8
Architectural Coating	Air Compressors	1	6
Infrastructure	Tractors/Loaders/Backhoes	1	8
Improvements	Rubber Tired Dozers	1	8

Grading/Earthwork

Phase	Import (CY)	Export (CY)	Haul Distance (mi)
Grading	82,880	0	20
CY = cubic yards; mi = miles			

Тгір Туре	# One-Way Trips/Day	Trip Length (miles)		
Site Preparation	· · · · ·			
Worker	17.5	18.5		
Vendor	0	10.2		
Hauling	0	20		
On-Site Truck	0	0		
Grading				
Worker	20	18.5		
Vendor	0	10.2		
Hauling	156.96	20		
On-Site Truck	0	0		
Building Construction				
Worker	180.06	18.5		
Vendor	70.26	10.2		
Hauling	0	20		
On-Site Truck	0	0		
Paving				
Worker	15	18.5		
Vendor	00	10.2		
Hauling	0	20		
On-Site Truck	0	0		
Architectural Coating				
Worker	36.01	18.5		
Vendor	0	10.2		
Hauling	0	20		
On-Site Truck	0	0		
Infrastructure Improvement	ts			
Worker	5	18.5		
Vendor	0	10.2		
Hauling	0	20		
On-Site Truck	0	0		

Operations

Vehicle Data

Land Use ¹	Size	Metric	Trip Rate	Daily Trip Generation
Unrefrigerated Warehouse-No Rail	428.715	KSF	0.6834	293
Parking Lot	283	Space	1.5548	440
Other Non-Asphalt Surfaces	6.43	Acre	0	0

Total Daily Trips	-	-	-	733		
KSF = thousand square feet; DU = dwelling unit						
1. Trucks were modeled under the Unrefrigerated Warehouse land use and passenger cars were modeled under the						

Parking Lot land use.

100% primary trips; trip lengths and trip type distributions are CalEEMod defaults

Trip Length

	Trip Length (miles)				
Land Use ¹	Non-Res H-W	Non-Res W-O	Non-Res O-O		
	/ Res H-W	/ Res H-S	/ Res H-O		
Unrefrigerated Warehouse-No Rail	0/0	0/0	33.2 / 0		
Parking Lot	18.85083406 / 0	9.274156342 / 0	5.679184463 / 0		
Other Non-Asphalt Surfaces	18.85083406 / 0	9.274156342/0	5.679184463 / 0		
1. Trucks were modeled under the Unrefrigerated Warehouse land use and passenger cars were modeled under the Parking Lot land use.					

Trip Purpose and Percent

	Trip Percent (%)			Trip Purpose (%)		
Land Use ¹	Primary	Diverted	Pass-By	Non-Res H-W / Res H-W	Non-Res W-O / Res H-S	Non-Res O-O / Res H-O
Unrefrigerated Warehouse-No Rail	100	0	0	0/0	0/0	100/0
Parking Lot	100	0	0	67.1/0	32.9/0	0/0
1. Trucks were modeled under the Unrefrigerated Warehouse land use and passenger cars were modeled under the Parking Lot land use.						

Fleet Mix

Land Use ¹	HHD %	LDA %	LDT1 %	LDT2 %	LHD1 %	LHD2 %	MCY %	MDV %	MH %	MHD %	OBUS %	SBUS %	UBUS %
Unrefrigerated Warehouse-No Rail	70	0	0	0	0	2	0	0	0	28	0	0	0
Parking Lot	0	71.51	2.61	12.88	1.88	0	1.39	9.73	0	0	0	0	0
1. Trucks were mo Parking Lot land u		der the Un	refrigerate	d Wareho	use land ı	ise and pa	ssenger c	ars were n	nodeled u	nder the			

Stationary Sources

Stationary sources were modeled outside of CalEEMod. Refer to Equipment Emissions modeling detail in Appendix A.

Quantified Measures

#	Measure	Notes
Constru	ction	•
C-5	Use Advanced Engine Tiers	Tier 4 equipment use for all construction equipment greater than 50 horsepower
C-13	Use Low-VOC Paints For Construction	VOC content shall not exceed 10 g/L
Operatio	ns	
T-5	Implement Commute Trip Reduction Program (Voluntary)	100% of employees eligible for program
E-1	Buildings Exceed Title 24 Energy Efficiency Standards	15% improvement beyond 2019 Title 24 standards
E-10-B	Establish On-Site Renewable Energy Systems (Solar Power)	Provide 100% of electricity demand
S-1/S-2	Implement Waste Reduction Plan	75% reduction to landfilled waste
LL-1	Replace Gas Powered Landscape Equipment with Zero-Emission Landscape Equipment	-

Miro Way and Ayala Drive Warehouse Detailed Report

Table of Contents

- 1. Basic Project Information
 - 1.1. Basic Project Information
 - 1.2. Land Use Types
 - 1.3. User-Selected Emission Reduction Measures by Emissions Sector
- 2. Emissions Summary
 - 2.1. Construction Emissions Compared Against Thresholds
 - 2.2. Construction Emissions by Year, Unmitigated
 - 2.3. Construction Emissions by Year, Mitigated
 - 2.4. Operations Emissions Compared Against Thresholds
 - 2.5. Operations Emissions by Sector, Unmitigated
 - 2.6. Operations Emissions by Sector, Mitigated
- 3. Construction Emissions Details
 - 3.1. Site Preparation (2025) Unmitigated
 - 3.2. Site Preparation (2025) Mitigated

- 3.3. Grading (2025) Unmitigated
- 3.4. Grading (2025) Mitigated
- 3.5. Building Construction (2025) Unmitigated
- 3.6. Building Construction (2025) Mitigated
- 3.7. Building Construction (2026) Unmitigated
- 3.8. Building Construction (2026) Mitigated
- 3.9. Paving (2026) Unmitigated
- 3.10. Paving (2026) Mitigated
- 3.11. Architectural Coating (2026) Unmitigated
- 3.12. Architectural Coating (2026) Mitigated
- 3.13. Infrastructure Improvements (2025) Unmitigated
- 3.14. Infrastructure Improvements (2025) Mitigated
- 3.15. Infrastructure Improvements (2026) Unmitigated
- 3.16. Infrastructure Improvements (2026) Mitigated
- 4. Operations Emissions Details
 - 4.1. Mobile Emissions by Land Use
 - 4.1.1. Unmitigated

4.1.2. Mitigated

4.2. Energy

- 4.2.1. Electricity Emissions By Land Use Unmitigated
- 4.2.2. Electricity Emissions By Land Use Mitigated
- 4.2.3. Natural Gas Emissions By Land Use Unmitigated
- 4.2.4. Natural Gas Emissions By Land Use Mitigated

4.3. Area Emissions by Source

- 4.3.1. Unmitigated
- 4.3.2. Mitigated
- 4.4. Water Emissions by Land Use
 - 4.4.1. Unmitigated
 - 4.4.2. Mitigated
- 4.5. Waste Emissions by Land Use
 - 4.5.1. Unmitigated
 - 4.5.2. Mitigated
- 4.6. Refrigerant Emissions by Land Use
 - 4.6.1. Unmitigated

4.6.2. Mitigated

- 4.7. Offroad Emissions By Equipment Type
 - 4.7.1. Unmitigated
 - 4.7.2. Mitigated
- 4.8. Stationary Emissions By Equipment Type
 - 4.8.1. Unmitigated
 - 4.8.2. Mitigated
- 4.9. User Defined Emissions By Equipment Type
 - 4.9.1. Unmitigated
 - 4.9.2. Mitigated
- 4.10. Soil Carbon Accumulation By Vegetation Type
 - 4.10.1. Soil Carbon Accumulation By Vegetation Type Unmitigated
 - 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type Unmitigated
 - 4.10.3. Avoided and Sequestered Emissions by Species Unmitigated
 - 4.10.4. Soil Carbon Accumulation By Vegetation Type Mitigated
 - 4.10.5. Above and Belowground Carbon Accumulation by Land Use Type Mitigated
 - 4.10.6. Avoided and Sequestered Emissions by Species Mitigated

5. Activity Data

- 5.1. Construction Schedule
- 5.2. Off-Road Equipment
 - 5.2.1. Unmitigated
 - 5.2.2. Mitigated
- 5.3. Construction Vehicles
 - 5.3.1. Unmitigated
 - 5.3.2. Mitigated
- 5.4. Vehicles
 - 5.4.1. Construction Vehicle Control Strategies
- 5.5. Architectural Coatings
- 5.6. Dust Mitigation
 - 5.6.1. Construction Earthmoving Activities
 - 5.6.2. Construction Earthmoving Control Strategies
- 5.7. Construction Paving
- 5.8. Construction Electricity Consumption and Emissions Factors
- 5.9. Operational Mobile Sources

5.9.1. Unmitigated

5.9.2. Mitigated

5.10. Operational Area Sources

5.10.1. Hearths

5.10.1.1. Unmitigated

5.10.1.2. Mitigated

- 5.10.2. Architectural Coatings
- 5.10.3. Landscape Equipment
- 5.10.4. Landscape Equipment Mitigated
- 5.11. Operational Energy Consumption
 - 5.11.1. Unmitigated
 - 5.11.2. Mitigated
- 5.12. Operational Water and Wastewater Consumption
 - 5.12.1. Unmitigated
 - 5.12.2. Mitigated
- 5.13. Operational Waste Generation
 - 5.13.1. Unmitigated

5.13.2. Mitigated

- 5.14. Operational Refrigeration and Air Conditioning Equipment
 - 5.14.1. Unmitigated
 - 5.14.2. Mitigated
- 5.15. Operational Off-Road Equipment
 - 5.15.1. Unmitigated
 - 5.15.2. Mitigated
- 5.16. Stationary Sources
 - 5.16.1. Emergency Generators and Fire Pumps
 - 5.16.2. Process Boilers
- 5.17. User Defined
- 5.18. Vegetation
- 5.18.1. Land Use Change
 - 5.18.1.1. Unmitigated
 - 5.18.1.2. Mitigated
- 5.18.1. Biomass Cover Type
 - 5.18.1.1. Unmitigated

5.18.1.2. Mitigated

5.18.2. Sequestration

5.18.2.1. Unmitigated

5.18.2.2. Mitigated

- 6. Climate Risk Detailed Report
 - 6.1. Climate Risk Summary
 - 6.2. Initial Climate Risk Scores
 - 6.3. Adjusted Climate Risk Scores
 - 6.4. Climate Risk Reduction Measures
- 7. Health and Equity Details
 - 7.1. CalEnviroScreen 4.0 Scores
 - 7.2. Healthy Places Index Scores
 - 7.3. Overall Health & Equity Scores
 - 7.4. Health & Equity Measures
 - 7.5. Evaluation Scorecard
 - 7.6. Health & Equity Custom Measures
- 8. User Changes to Default Data

1. Basic Project Information

1.1. Basic Project Information

Data Field	Value
Project Name	Miro Way and Ayala Drive Warehouse
Construction Start Date	5/1/2025
Operational Year	2026
Lead Agency	
Land Use Scale	Project/site
Analysis Level for Defaults	County
Windspeed (m/s)	2.80
Precipitation (days)	6.40
Location	O N Ayala Dr, Rialto, CA 92376, USA
County	San Bernardino-South Coast
City	Rialto
Air District	South Coast AQMD
Air Basin	South Coast
TAZ	5331
EDFZ	10
Electric Utility	Southern California Edison
Gas Utility	Southern California Gas
App Version	2022.1.1.23

1.2. Land Use Types

Land Use Su	ıbtype	Size	Unit	Lot Acreage	Building Area (sq ft)		Special Landscape Area (sq ft)	Population	Description
-------------	--------	------	------	-------------	-----------------------	--	-----------------------------------	------------	-------------

Unrefrigerated Warehouse-No Rail	429	1000sqft	13.4	428,715	154,929	0.00		—
Parking Lot	283	Space	7.36	0.00	0.00	0.00	—	—
Other Non-Asphalt Surfaces	6.43	Acre	6.43	0.00	0.00	0.00		_

1.3. User-Selected Emission Reduction Measures by Emissions Sector

Sector	#	Measure Title
Construction	C-5	Use Advanced Engine Tiers
Construction	C-13	Use Low-VOC Paints for Construction
Transportation	T-5	Implement Commute Trip Reduction Program (Voluntary)
Energy	E-1	Buildings Exceed 2019 Title 24 Building Envelope Energy Efficiency Standards
Energy	E-10-B	Establish Onsite Renewable Energy Systems: Solar Power
Waste	S-1/S-2	Implement Waste Reduction Plan
Area Sources	LL-1	Replace Gas Powered Landscape Equipment with Zero-Emission Landscape Equipment

2. Emissions Summary

2.1. Construction Emissions Compared Against Thresholds

Un/Mit.	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)		-		_	-						-	-			-		-	_
Unmit.	5.29	190	42.8	37.2	0.13	1.37	7.89	9.26	1.27	3.99	5.25	_	17,735	17,735	1.42	1.84	24.1	18,342
Mit.	2.48	27.3	32.0	44.3	0.13	0.31	7.89	7.99	0.31	3.99	4.09	_	17,735	17,735	1.42	1.84	24.1	18,342

% Reduced	53%	86%	25%	-19%	—	77%	—	14%	76%	—	22%	_	—	_	—	-	—	-
Daily, Winter (Max)	_	-		-	-	-	_	-	-	-	-	_	-	_	-	-	-	-
Unmit.	3.72	3.67	24.0	34.8	0.05	0.90	3.15	3.92	0.83	0.76	1.57	—	8,626	8,626	0.45	0.46	0.41	8,772
Mit.	2.20	2.84	19.2	37.4	0.05	0.24	3.15	3.39	0.22	0.76	0.99	—	8,626	8,626	0.45	0.46	0.41	8,772
% Reduced	41%	23%	20%	-8%	-	74%	-	14%	73%	-	37%	-	—	—	—	-	—	—
Average Daily (Max)	—	-	_	-	_			-	-	—	-	—	_	—	-	—	-	-
Unmit.	1.94	12.1	14.7	15.4	0.04	0.52	2.25	2.77	0.48	0.79	1.27	—	5,194	5,194	0.35	0.42	3.15	5,331
Mit.	0.85	2.05	10.2	16.8	0.04	0.10	2.25	2.34	0.09	0.79	0.88	_	5,194	5,194	0.35	0.42	3.15	5,331
% Reduced	56%	83%	31%	-9%	-	82%	-	15%	80%	-	30%	-	—	-	-	-	—	-
Annual (Max)	-	-	-	-	_	-	-	-	-	-	—	-	-	-	-	-	—	-
Unmit.	0.35	2.20	2.68	2.82	0.01	0.09	0.41	0.50	0.09	0.14	0.23	_	860	860	0.06	0.07	0.52	883
Mit.	0.15	0.37	1.86	3.07	0.01	0.02	0.41	0.43	0.02	0.14	0.16	_	860	860	0.06	0.07	0.52	883
% Reduced	56%	83%	31%	-9%	—	82%	—	15%	80%	—	30%	-	-	-	—	_	_	_

2.2. Construction Emissions by Year, Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Year	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily - Summer (Max)	_					-									-			—
2025	5.29	3.52	42.8	37.2	0.13	1.37	7.89	9.26	1.27	3.99	5.25	—	17,735	17,735	1.42	1.84	24.1	18,342
2026	2.68	190	13.9	30.9	0.04	0.43	3.43	3.86	0.40	0.83	1.23	_	7,645	7,645	0.38	0.45	15.8	7,804

Daily - Winter (Max)	_	-	-	-	-	_		_	_	-	-	_	-	-		-	-	_
2025	3.72	3.05	24.0	34.6	0.05	0.90	3.02	3.92	0.83	0.73	1.57	_	8,626	8,626	0.45	0.45	0.41	8,772
2026	3.54	3.67	22.4	34.8	0.05	0.81	3.15	3.88	0.75	0.76	1.48	_	8,542	8,542	0.35	0.46	0.38	8,686
Average Daily	-	—	—	—	—	-	-	-	—	-	—	—	—	—	-	-	—	-
2025	1.94	1.45	14.7	15.4	0.04	0.52	2.25	2.77	0.48	0.79	1.27	_	5,194	5,194	0.35	0.42	3.15	5,331
2026	0.84	12.1	4.95	8.65	0.01	0.17	0.92	1.08	0.15	0.22	0.38	_	2,271	2,271	0.09	0.13	1.88	2,315
Annual	_	—	—	-	—	_	—	_	—	—	—	-	—	—	_	_	—	—
2025	0.35	0.26	2.68	2.82	0.01	0.09	0.41	0.50	0.09	0.14	0.23	_	860	860	0.06	0.07	0.52	883
2026	0.15	2.20	0.90	1.58	< 0.005	0.03	0.17	0.20	0.03	0.04	0.07	_	376	376	0.02	0.02	0.31	383

2.3. Construction Emissions by Year, Mitigated

Year	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily - Summer (Max)	—	—	_	_	—	-	-	—	-	-	-	—	-	—	-	_	-	_
2025	2.48	1.28	32.0	44.3	0.13	0.31	7.89	7.99	0.31	3.99	4.09	—	17,735	17,735	1.42	1.84	24.1	18,342
2026	2.00	27.3	13.2	32.9	0.04	0.16	3.43	3.59	0.15	0.83	0.98	—	7,645	7,645	0.38	0.45	15.8	7,804
Daily - Winter (Max)	_	-	-	_	-	-	-	-	-	-	-	-	-	_	-	-	-	
2025	1.92	1.62	17.1	35.9	0.05	0.18	3.02	3.20	0.17	0.73	0.90	-	8,626	8,626	0.45	0.45	0.41	8,772
2026	2.20	2.84	19.2	37.4	0.05	0.24	3.15	3.39	0.22	0.76	0.99	_	8,542	8,542	0.35	0.46	0.38	8,686
Average Daily	_	—	_	_	_	_	_	-	_	_	_		-	_	-	_	—	_
2025	0.85	0.57	10.2	16.8	0.04	0.10	2.25	2.34	0.09	0.79	0.88	_	5,194	5,194	0.35	0.42	3.15	5,331
2026	0.55	2.05	4.41	9.26	0.01	0.05	0.92	0.97	0.05	0.22	0.27	_	2,271	2,271	0.09	0.13	1.88	2,315

Annual	_	—	—	_	—	_	_	_	_	_	_	_	_	_	—	_	_	—
2025	0.15	0.10	1.86	3.07	0.01	0.02	0.41	0.43	0.02	0.14	0.16	—	860	860	0.06	0.07	0.52	883
2026	0.10	0.37	0.81	1.69	< 0.005	0.01	0.17	0.18	0.01	0.04	0.05	_	376	376	0.02	0.02	0.31	383

2.4. Operations Emissions Compared Against Thresholds

omonia	l onata		y lor dai	iy, toi <i>i</i> , yi			01100 (10, day 10	r aany, n	11/91 101	annaarj							
Un/Mit.	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	_	_			_	-	_		_	_		-	_	-	-	-	—
Unmit.	7.93	15.4	32.9	55.0	0.33	0.65	13.4	14.1	0.62	3.53	4.15	407	41,505	41,912	44.1	5.22	88.3	44,658
Mit.	4.61	12.4	32.8	36.4	0.33	0.61	13.4	14.0	0.59	3.53	4.12	407	38,150	38,557	43.9	5.19	88.3	41,291
% Reduced	42%	20%	< 0.5%	34%	< 0.5%	5%	-	< 0.5%	4%	-	1%	-	8%	8%	< 0.5%	< 0.5%	-	8%
Daily, Winter (Max)	—	-	-	-	-	-	-	_	_	-	-	-	-	—	-	-	-	-
Unmit.	4.52	12.3	34.2	32.6	0.32	0.61	13.4	14.0	0.59	3.53	4.12	407	41,051	41,459	44.1	5.23	2.29	44,122
Mit.	4.52	12.3	34.2	32.5	0.32	0.61	13.4	14.0	0.59	3.53	4.12	407	37,755	38,163	43.9	5.20	2.29	40,813
% Reduced	—	—	-	-	-	—	—	—	—	—	_	-	8%	8%	< 0.5%	< 0.5%	—	7%
Average Daily (Max)	_	-	-	-	-	-	-			-	_	_	-	-	-	-	-	-
Unmit.	6.79	14.4	34.6	46.0	0.33	0.64	13.4	14.0	0.61	3.52	4.13	407	41,160	41,567	44.1	5.23	38.1	44,267
Mit.	4.52	12.3	34.5	33.2	0.32	0.61	13.4	14.0	0.59	3.52	4.11	407	37,823	38,231	43.9	5.21	38.1	40,918
% Reduced	33%	15%	< 0.5%	28%	_	4%	_	< 0.5%	3%	-	< 0.5%	_	8%	8%	< 0.5%	< 0.5%	-	8%
Annual (Max)	_	_	_	_	_	-	_		_	-	-	_		_	_	_	_	_
Unmit.	1.24	2.62	6.32	8.39	0.06	0.12	2.44	2.56	0.11	0.64	0.75	67.4	6,815	6,882	7.30	0.87	6.31	7,329

Mit.	0.82	2.24	6.30	6.06	0.06	0.11	2.44	2.56	0.11	0.64	0.75	67.4	6,262	6,330	7.27	0.86	6.31	6,774
% Reduced	33%	15%	< 0.5%	28%	< 0.5%	4%	-	< 0.5%	3%	-	< 0.5%	-	8%	8%	< 0.5%	< 0.5%	—	8%

2.5. Operations Emissions by Sector, Unmitigated

Sector	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—		—	_	—	_					-	_	_	_	-		_	_
Mobile	4.37	1.88	30.6	34.5	0.31	0.45	13.4	13.9	0.43	3.53	3.95	_	34,518	34,518	2.42	4.72	88.3	36,073
Area	3.32	13.4	0.16	18.6	< 0.005	0.03	—	0.03	0.03	—	0.03	—	76.7	76.7	< 0.005	< 0.005	—	77.0
Energy	0.24	0.12	2.19	1.84	0.01	0.17	—	0.17	0.17	—	0.17	_	5,907	5,907	0.44	0.03	_	5,927
Water	_	—	-	—	-	—	—	—	—	—	-	190	1,003	1,193	19.5	0.47	_	1,822
Waste	_	—	-	—	—	—	—	—	—	_	-	217	0.00	217	21.7	0.00	_	760
Refrig.	_	—	-	—	—	—	—	—	—	—	-	_	—	_	—	—	0.00	0.00
Total	7.93	15.4	32.9	55.0	0.33	0.65	13.4	14.1	0.62	3.53	4.15	407	41,505	41,912	44.1	5.22	88.3	44,658
Daily, Winter (Max)	-	_	-	-	-	-	-	_	_	-	_	-	_	-	-	-	-	-
Mobile	4.27	1.79	32.0	30.7	0.31	0.45	13.4	13.9	0.43	3.53	3.95	_	34,141	34,141	2.43	4.73	2.29	35,613
Area	_	10.4	-	—	_	_	—	—	—	_	-	_	_	_	-	_	_	—
Energy	0.24	0.12	2.19	1.84	0.01	0.17	—	0.17	0.17	_	0.17	_	5,907	5,907	0.44	0.03	_	5,927
Water	_	—	-	—	—	—	—	—	—	—	-	190	1,003	1,193	19.5	0.47	_	1,822
Waste	_	-	-	-	-	_	—	-	—	—	-	217	0.00	217	21.7	0.00	_	760
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00
Total	4.52	12.3	34.2	32.6	0.32	0.61	13.4	14.0	0.59	3.53	4.12	407	41,051	41,459	44.1	5.23	2.29	44,122
Average Daily	_	-	_	_	_	_	_	_	-	_		_	_	-	_	_	_	-

Mobile	4.28	1.79	32.3	31.4	0.31	0.45	13.4	13.8	0.43	3.52	3.94	-	34,197	34,197	2.43	4.73	38.1	35,706
Area	2.27	12.5	0.11	12.8	< 0.005	0.02	—	0.02	0.02	—	0.02	—	52.5	52.5	< 0.005	< 0.005	—	52.7
Energy	0.24	0.12	2.19	1.84	0.01	0.17	—	0.17	0.17	—	0.17	—	5,907	5,907	0.44	0.03	—	5,927
Water	—	—	—	—	—	—	—	—	—	—	—	190	1,003	1,193	19.5	0.47	—	1,822
Waste	_	—	—	—	—	—	_	—	—	_	—	217	0.00	217	21.7	0.00	_	760
Refrig.	_	—	—	—	—	—	_	—	_	_	_	-	—	—	—	—	0.00	0.00
Total	6.79	14.4	34.6	46.0	0.33	0.64	13.4	14.0	0.61	3.52	4.13	407	41,160	41,567	44.1	5.23	38.1	44,267
Annual	_	—	_	_	-	—	_	_	_	_	-	-	-	_	-	-	-	—
Mobile	0.78	0.33	5.90	5.72	0.06	0.08	2.44	2.52	0.08	0.64	0.72	-	5,662	5,662	0.40	0.78	6.31	5,911
Area	0.41	2.27	0.02	2.33	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	-	8.69	8.69	< 0.005	< 0.005	_	8.73
Energy	0.04	0.02	0.40	0.34	< 0.005	0.03	_	0.03	0.03	_	0.03	-	978	978	0.07	< 0.005	_	981
Water	_	_	_	_	_	_	_	_	_	_	_	31.5	166	197	3.24	0.08	_	302
Waste	_	_	_	_	_	_	_	_	_	_	_	36.0	0.00	36.0	3.59	0.00	_	126
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00
Total	1.24	2.62	6.32	8.39	0.06	0.12	2.44	2.56	0.11	0.64	0.75	67.4	6,815	6,882	7.30	0.87	6.31	7,329

2.6. Operations Emissions by Sector, Mitigated

Sector	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	-	-	_	_	_	-	_	-	_	-	_	-	_	-	_	-	_
Mobile	4.37	1.88	30.6	34.5	0.31	0.45	13.4	13.9	0.43	3.53	3.95	—	34,518	34,518	2.42	4.72	88.3	36,073
Area	_	10.4	—	-	-	_	—	—	—	—	_	—	—	—	_	—	—	_
Energy	0.24	0.12	2.19	1.84	0.01	0.17	—	0.17	0.17	_	0.17	—	2,629	2,629	0.23	0.01	—	2,636
Water	_	—	—	-	—	—	—	—	—	—	—	190	1,003	1,193	19.5	0.47	—	1,822
Waste	_	—	_	-	_	_	_	_	_	_	_	217	0.00	217	21.7	0.00	_	760
Refrig.	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00

Total	4.61	12.4	32.8	36.4	0.33	0.61	13.4	14.0	0.59	3.53	4.12	407	38,150	38,557	43.9	5.19	88.3	41,291
Daily, Winter (Max)	_	_	—	—	_	_	_	—	_	—	—	_	—	—	_	_	_	—
Mobile	4.27	1.79	32.0	30.7	0.31	0.45	13.4	13.9	0.43	3.53	3.95	—	34,141	34,141	2.43	4.73	2.29	35,613
Area	—	10.4	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Energy	0.24	0.12	2.19	1.84	0.01	0.17	—	0.17	0.17	—	0.17	—	2,611	2,611	0.23	< 0.005	—	2,619
Water	—	—	—	—	—	—	—	—	—	—	—	190	1,003	1,193	19.5	0.47	—	1,822
Waste	_	_	_	_	_	_	_	_	_	_	_	217	0.00	217	21.7	0.00	_	760
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00
Total	4.52	12.3	34.2	32.5	0.32	0.61	13.4	14.0	0.59	3.53	4.12	407	37,755	38,163	43.9	5.20	2.29	40,813
Average Daily	_	-	—	-	—	-	_	—	_	—	—	_	—	-	—	—	-	—
Mobile	4.28	1.79	32.3	31.4	0.31	0.45	13.4	13.8	0.43	3.52	3.94	—	34,197	34,197	2.43	4.73	38.1	35,706
Area	_	10.4	—	—	_	_	—	_	—	—	—	—	_	_	_	_	_	_
Energy	0.24	0.12	2.19	1.84	0.01	0.17	—	0.17	0.17	_	0.17	—	2,623	2,623	0.23	0.01	_	2,631
Water	_	_	_	_	_	_	_	_	_	_	_	190	1,003	1,193	19.5	0.47	_	1,822
Waste	_	_	_	_	_	_	_	_	_	_	_	217	0.00	217	21.7	0.00	_	760
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00
Total	4.52	12.3	34.5	33.2	0.32	0.61	13.4	14.0	0.59	3.52	4.11	407	37,823	38,231	43.9	5.21	38.1	40,918
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Mobile	0.78	0.33	5.90	5.72	0.06	0.08	2.44	2.52	0.08	0.64	0.72	_	5,662	5,662	0.40	0.78	6.31	5,911
Area	_	1.89	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Energy	0.04	0.02	0.40	0.34	< 0.005	0.03	_	0.03	0.03	_	0.03	_	434	434	0.04	< 0.005	_	436
Water	_	_	_	_	_	_	_	_	_	_	_	31.5	166	197	3.24	0.08	_	302
Waste	_	_	_	_	_	_	_	_	_	_	_	36.0	0.00	36.0	3.59	0.00	_	126
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00
Total	0.82	2.24	6.30	6.06	0.06	0.11	2.44	2.56	0.11	0.64	0.75	67.4	6,262	6,330	7.27	0.86	6.31	6,774

3. Construction Emissions Details

3.1. Site Preparation (2025) - Unmitigated

	i enerei		y let da	,, tor., ji) 55116	ne, day re	i ddiny, i	i i i ji i oi	earning early							
Location	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	—	_	—	—	-	-	_	—	—	—	—	—	-	—	_	-
Daily, Summer (Max)			_	-	_	_	_	_	_	_	_	_	_	_	-	_	_	_
Off-Road Equipmen		3.31	31.6	30.2	0.05	1.37	—	1.37	1.26	—	1.26	-	5,295	5,295	0.21	0.04	-	5,314
Dust From Material Movemen	 T	_					7.67	7.67		3.94	3.94				_			
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	-	-	_	-		_	-	_	_	-	_	-	-	-	-	-
Average Daily	_	—	-	-	-	-	_	-	-	-	-	-	-	_	_	-	_	_
Off-Road Equipmen		0.20	1.91	1.82	< 0.005	0.08	_	0.08	0.08	-	0.08	-	319	319	0.01	< 0.005	_	320
Dust From Material Movemen	 T	-					0.46	0.46	-	0.24	0.24				_			_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.04	0.35	0.33	< 0.005	0.02	—	0.02	0.01	—	0.01	_	52.8	52.8	< 0.005	< 0.005	_	53.0

Dust From Material Movemen	 rt	_	_		_	_	0.08	0.08		0.04	0.04	_			_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	—	_	_	-	—	_	_	-	-	—	-	-	-	-	-	-	-	_
Daily, Summer (Max)	—	-	_	_		_	-	_	_	_		_	-	_	_	_	_	_
Worker	0.09	0.08	0.08	1.36	0.00	0.00	0.23	0.23	0.00	0.05	0.05	—	247	247	0.01	0.01	0.91	250
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	—	—	—	_		—	-	_	_	_	_	_	—	_	_	_	—	_
Average Daily	_	_	_	_	_	_	_	_	_	-				_	_			—
Worker	0.01	< 0.005	0.01	0.07	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	-	13.8	13.8	< 0.005	< 0.005	0.02	14.0
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	—	_	_	—	-	_	_	_	_	_	—	_	_	—
Worker	< 0.005	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	2.29	2.29	< 0.005	< 0.005	< 0.005	2.32
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.2. Site Preparation (2025) - Mitigated

Location	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—

Daily, Summer (Max)		_	_	_	_		_				_		_	_		_		_
Off-Road Equipmen		0.64	14.7	28.3	0.05	0.10	-	0.10	0.10	-	0.10	-	5,295	5,295	0.21	0.04	_	5,314
Dust From Material Movemen	 ':	_	_	_	—		7.67	7.67		3.94	3.94	_	_	_		_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	-	—	_	_	_	_	_	-	_	_	_	—	_	_	-
Average Daily	_	_	-	_	—	—	-	—	—	_	_	-	_	_	—	—	_	—
Off-Road Equipmen		0.04	0.89	1.71	< 0.005	0.01	—	0.01	0.01	—	0.01	-	319	319	0.01	< 0.005	—	320
Dust From Material Movemen	 .:	-	-		-	_	0.46	0.46		0.24	0.24		-	-		-	-	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	-	_	_	-	-	-	-	_	-	_	-	-	-	-	_
Off-Road Equipmen		0.01	0.16	0.31	< 0.005	< 0.005	-	< 0.005	< 0.005	-	< 0.005	-	52.8	52.8	< 0.005	< 0.005	-	53.0
Dust From Material Movemen	 't	-			_		0.08	0.08		0.04	0.04					_		
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	-	-	-	_	-	—	-	_	-	-	_	-	_

Daily, Summer (Max)	-	-	-	_	-	-	_	_			_		-	_	-	_	_	-
Worker	0.09	0.08	0.08	1.36	0.00	0.00	0.23	0.23	0.00	0.05	0.05	_	247	247	0.01	0.01	0.91	250
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	-	—	_	-	-			—				-	_	-			-
Average Daily	—	_	—	_	_	_	—	-	_	—	_	-	—	—	—	_	-	-
Worker	0.01	< 0.005	0.01	0.07	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	—	13.8	13.8	< 0.005	< 0.005	0.02	14.0
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	-	_	—	_	—	—	_	—	-	-	—	-	—	—	—	_
Worker	< 0.005	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	2.29	2.29	< 0.005	< 0.005	< 0.005	2.32
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.3. Grading (2025) - Unmitigated

Location	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)																	—	—
Off-Road Equipmer		3.20	29.7	28.3	0.06	1.23	_	1.23	1.14	—	1.14	_	6,599	6,599	0.27	0.05	_	6,622

Dust							3.62	3.62		1.43	1.43							
From Material Movemen							3.02	3.02		1.43	1.43							
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)		-		_		_		—				—	-	-	_	-	_	_
Average Daily		—	—	—	—	-	—	-	—	—	—	—	—	—	-	—	-	_
Off-Road Equipmen		0.58	5.37	5.12	0.01	0.22	-	0.22	0.21	—	0.21	-	1,193	1,193	0.05	0.01	-	1,197
Dust From Material Movemen ⁻		-	-	-	_		0.65	0.65	-	0.26	0.26	_		-	_			
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	-	—	—	-	_	-	-	_	_	_	_	-	_	_	—	_	_
Off-Road Equipmen		0.11	0.98	0.93	< 0.005	0.04	-	0.04	0.04	-	0.04	-	198	198	0.01	< 0.005	-	198
Dust From Material Movemen ⁻		-	-	-	-		0.12	0.12	-	0.05	0.05	-	-	-	-	_		-
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	—	—	—	—	—	_	—	—	—	—	—	—	—	—	—	-	_	—
Daily, Summer (Max)		-		_	_	-	_	_		_		-	-	-	_	-	-	_
Worker	0.10	0.09	0.09	1.56	0.00	0.00	0.26	0.26	0.00	0.06	0.06	_	282	282	0.01	0.01	1.05	286
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	1.38	0.23	13.0	7.31	0.07	0.14	2.91	3.05	0.14	0.80	0.94	_	10,854	10,854	1.14	1.78	23.1	11,435

Daily, Winter (Max)	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-
Average Daily	_	_	_	_	-	_	-	-	_	-	-	_	_	-	_	_	_	-
Worker	0.02	0.02	0.02	0.22	0.00	0.00	0.05	0.05	0.00	0.01	0.01	—	47.4	47.4	< 0.005	< 0.005	0.08	48.1
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.25	0.04	2.48	1.32	0.01	0.03	0.52	0.55	0.03	0.14	0.17	-	1,963	1,963	0.21	0.32	1.81	2,066
Annual	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.04	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	_	7.84	7.84	< 0.005	< 0.005	0.01	7.96
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.05	0.01	0.45	0.24	< 0.005	< 0.005	0.10	0.10	< 0.005	0.03	0.03	_	325	325	0.03	0.05	0.30	342

3.4. Grading (2025) - Mitigated

Location	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Location	100				002					1 102.50	1 1012.01	0002		0021		1120		0026
Onsite	_	-	-	-	-	—	—	-	—	—	—	-	—	—	—	_	—	—
Daily, Summer (Max)	—	_	_	—	_	_	—	—	_	_	—	_	—	—	—	_	_	_
Off-Road Equipmen		0.95	18.9	35.4	0.06	0.17	-	0.17	0.17	—	0.17	—	6,599	6,599	0.27	0.05	—	6,622
Dust From Material Movemen	 :	_	_		_		3.62	3.62		1.43	1.43							
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_		_	_	_		_			_

Average Daily	—	—	-	-	—	—	—	-	_	-	-	—	_	_	_	-	—	—
Off-Road Equipmen		0.17	3.42	6.40	0.01	0.03	_	0.03	0.03	-	0.03	-	1,193	1,193	0.05	0.01	_	1,197
Dust From Material Movemen	 t	_	_	_	_		0.65	0.65	_	0.26	0.26		_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	—	-	—	—	—	-	—	-	—	—	—	-	—	-	-	-	-
Off-Road Equipmen		0.03	0.62	1.17	< 0.005	0.01	—	0.01	0.01	_	0.01	—	198	198	0.01	< 0.005	—	198
Dust From Material Movemen	 t		_	_	_		0.12	0.12	_	0.05	0.05			_		_		
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	—	_	-	_	_	—	-	_	_	-	-	_	_	_		_		_
Worker	0.10	0.09	0.09	1.56	0.00	0.00	0.26	0.26	0.00	0.06	0.06	—	282	282	0.01	0.01	1.05	286
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	1.38	0.23	13.0	7.31	0.07	0.14	2.91	3.05	0.14	0.80	0.94	—	10,854	10,854	1.14	1.78	23.1	11,435
Daily, Winter (Max)	—	_	_	-	_		_	-	-	-	-	_	_	_		_		_
Average Daily	—	-	-	-	_	_	_	-	_	-	-	_	-	_	_	_	_	_
Worker	0.02	0.02	0.02	0.22	0.00	0.00	0.05	0.05	0.00	0.01	0.01	-	47.4	47.4	< 0.005	< 0.005	0.08	48.1
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00

Hauling	0.25	0.04	2.48	1.32	0.01	0.03	0.52	0.55	0.03	0.14	0.17	_	1,963	1,963	0.21	0.32	1.81	2,066
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	-
Worker	< 0.005	< 0.005	< 0.005	0.04	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	_	7.84	7.84	< 0.005	< 0.005	0.01	7.96
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.05	0.01	0.45	0.24	< 0.005	< 0.005	0.10	0.10	< 0.005	0.03	0.03	_	325	325	0.03	0.05	0.30	342

3.5. Building Construction (2025) - Unmitigated

			<i>,</i>	.,, .e.,		,	(· • • • • · · · · · · · · · · · · · · ·	, j	 ,							
Location	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	_	—	_	_	_	—	—	—	—	—	—	_	—	_	—	—	—
Daily, Summer (Max)	—	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_
Daily, Winter (Max)	—	-	-	-	_	_	_	_	_	_	_	_	_	-	-	_	_	_
Off-Road Equipmer		1.13	10.4	13.0	0.02	0.43	—	0.43	0.40	-	0.40	_	2,398	2,398	0.10	0.02	_	2,406
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	-	—	-	-	—	—	-	—	—	-	-	-	—	-	—	-	-	—
Off-Road Equipmer		0.20	1.88	2.35	< 0.005	0.08	-	0.08	0.07	-	0.07	-	432	432	0.02	< 0.005	_	433
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipmer		0.04	0.34	0.43	< 0.005	0.01	-	0.01	0.01	-	0.01	-	71.5	71.5	< 0.005	< 0.005	_	71.7
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00

Offsite	_	—	—	_	_	_	_	_	_	_	_	_	_	_	_	—	_	_
Daily, Summer (Max)	—	-	—	—	-	—	—	-		_	-	-			-	_	_	-
Daily, Winter (Max)	_	_	—	_	—	—	_	_		_	—	_	_	_	_	—	_	—
Worker	0.86	0.77	0.87	10.6	0.00	0.00	2.35	2.35	0.00	0.55	0.55	_	2,326	2,326	0.11	0.09	0.24	2,356
Vendor	0.21	0.06	2.51	1.31	0.02	0.03	0.60	0.63	0.03	0.17	0.20	—	2,169	2,169	0.17	0.33	0.16	2,271
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	—	-	-	—	—	_	-	-	-	—	_	-	-	-	_	-	—
Worker	0.15	0.14	0.17	2.01	0.00	0.00	0.42	0.42	0.00	0.10	0.10	—	425	425	0.02	0.02	0.73	431
Vendor	0.04	0.01	0.46	0.23	< 0.005	0.01	0.11	0.11	0.01	0.03	0.04	—	390	390	0.03	0.06	0.48	409
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	-	_	_	-	_	_	_	_	_	_	-	_	_	-	_	_
Worker	0.03	0.03	0.03	0.37	0.00	0.00	0.08	0.08	0.00	0.02	0.02	_	70.3	70.3	< 0.005	< 0.005	0.12	71.3
Vendor	0.01	< 0.005	0.08	0.04	< 0.005	< 0.005	0.02	0.02	< 0.005	0.01	0.01	_	64.6	64.6	0.01	0.01	0.08	67.7
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.6. Building Construction (2025) - Mitigated

	-	· · · · · · · · · · · · · · · · · · ·	,	<i>J</i> , <i>J</i>		,	```		,	,	,							
Location	тод	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	—	—	_	_	_	_	_	_	_	_	—	—	—	_	_	—	—
Daily, Summer (Max)																		_
Daily, Winter (Max)		_	_	_	_				_			_					_	_

Off-Road Equipmen		0.56	9.21	15.0	0.02	0.11	-	0.11	0.11	-	0.11	—	2,398	2,398	0.10	0.02	-	2,406
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	-	—	—		-	-	—	-	-		-	—	—	—	-	-	—
Off-Road Equipmen		0.10	1.66	2.70	< 0.005	0.02	-	0.02	0.02	-	0.02	—	432	432	0.02	< 0.005	-	433
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	—	—	—	—	—	_	—	—	_	—	-	—	-	—	—	_	—
Off-Road Equipmen		0.02	0.30	0.49	< 0.005	< 0.005	-	< 0.005	< 0.005	-	< 0.005	-	71.5	71.5	< 0.005	< 0.005	-	71.7
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)		_	-	_	-	_	_	_	-	-	-	-	-	-	-	-	_	-
Daily, Winter (Max)	_	_	-	_	-	_	-	_	-	-	-	-	-	-	-	-	-	-
Worker	0.86	0.77	0.87	10.6	0.00	0.00	2.35	2.35	0.00	0.55	0.55	-	2,326	2,326	0.11	0.09	0.24	2,356
Vendor	0.21	0.06	2.51	1.31	0.02	0.03	0.60	0.63	0.03	0.17	0.20	-	2,169	2,169	0.17	0.33	0.16	2,271
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	-	_	-	_	-	-	-	-	-	_	-	—	-	-	-	-	_
Worker	0.15	0.14	0.17	2.01	0.00	0.00	0.42	0.42	0.00	0.10	0.10	_	425	425	0.02	0.02	0.73	431
Vendor	0.04	0.01	0.46	0.23	< 0.005	0.01	0.11	0.11	0.01	0.03	0.04	-	390	390	0.03	0.06	0.48	409
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	-	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_
Worker	0.03	0.03	0.03	0.37	0.00	0.00	0.08	0.08	0.00	0.02	0.02	_	70.3	70.3	< 0.005	< 0.005	0.12	71.3

Vendor	0.01	< 0.005	0.08	0.04	< 0.005	< 0.005	0.02	0.02	< 0.005	0.01	0.01	—	64.6	64.6	0.01	0.01	0.08	67.7
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00

3.7. Building Construction (2026) - Unmitigated

Location	TOG	ROG	NOx	co	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	—	—	_	_	_	_	_	_	_	_	_	—	_	—	_	_	—
Daily, Summer (Max)		_		-	-	-	-	-	-	-	-		-	-	-	_		-
Off-Road Equipmer	1.28 nt	1.07	9.85	13.0	0.02	0.38	-	0.38	0.35	—	0.35	-	2,397	2,397	0.10	0.02	—	2,405
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	-		_		-	-	_	-	-	-	_	-	_	-		_	-
Off-Road Equipmer		1.07	9.85	13.0	0.02	0.38	-	0.38	0.35	_	0.35	-	2,397	2,397	0.10	0.02	-	2,405
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	-	—	_	—	-	_	-	_	-	-	-	_	-	-	-	—
Off-Road Equipmer		0.32	2.93	3.86	0.01	0.11	-	0.11	0.10	_	0.10	-	713	713	0.03	0.01	-	716
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmer		0.06	0.53	0.70	< 0.005	0.02	-	0.02	0.02	_	0.02	_	118	118	< 0.005	< 0.005	-	118
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	—	_	_	_	-	_	—	_	-	_	—	-	_	—	-
Worker	0.86	0.78	0.71	13.0	0.00	0.00	2.35	2.35	0.00	0.55	0.55	—	2,485	2,485	0.11	0.09	8.51	2,522
Vendor	0.21	0.04	2.30	1.25	0.02	0.03	0.60	0.63	0.03	0.17	0.20	—	2,131	2,131	0.15	0.33	5.63	2,239
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	—		-			_	_					-	-		-			-
Worker	0.82	0.73	0.79	9.79	0.00	0.00	2.35	2.35	0.00	0.55	0.55	—	2,279	2,279	0.04	0.09	0.22	2,307
Vendor	0.21	0.04	2.40	1.27	0.02	0.03	0.60	0.63	0.03	0.17	0.20	—	2,133	2,133	0.15	0.33	0.15	2,234
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	-	—	-	-	-	-	-	-	-	-	-	—	-	-	-	-	-	-
Worker	0.24	0.22	0.26	3.06	0.00	0.00	0.70	0.70	0.00	0.16	0.16	_	687	687	0.01	0.03	1.09	697
Vendor	0.06	0.01	0.72	0.37	< 0.005	0.01	0.18	0.19	0.01	0.05	0.06	_	634	634	0.04	0.10	0.72	665
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.04	0.04	0.05	0.56	0.00	0.00	0.13	0.13	0.00	0.03	0.03	_	114	114	< 0.005	< 0.005	0.18	115
Vendor	0.01	< 0.005	0.13	0.07	< 0.005	< 0.005	0.03	0.03	< 0.005	0.01	0.01	_	105	105	0.01	0.02	0.12	110
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.8. Building Construction (2026) - Mitigated

Location	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)								_								_		

Off-Road Equipmen		0.55	9.17	15.0	0.02	0.11		0.11	0.10	—	0.10	_	2,397	2,397	0.10	0.02	_	2,405
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	—	-	_	_		_	-		-	-	-	—		-	-	-	_	
Off-Road Equipmen		0.55	9.17	15.0	0.02	0.11	—	0.11	0.10	—	0.10	-	2,397	2,397	0.10	0.02	-	2,405
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	-	-	-	-	-	-	-	-	_	-	-	-	-	_	-	_	-	-
Off-Road Equipmen		0.16	2.73	4.45	0.01	0.03	-	0.03	0.03	_	0.03	-	713	713	0.03	0.01	_	716
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.03	0.50	0.81	< 0.005	0.01	-	0.01	0.01	—	0.01	-	118	118	< 0.005	< 0.005	-	118
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)		-	-	-	_	-	-	-	-	_	-	-	_	-	-	-	-	_
Worker	0.86	0.78	0.71	13.0	0.00	0.00	2.35	2.35	0.00	0.55	0.55	_	2,485	2,485	0.11	0.09	8.51	2,522
Vendor	0.21	0.04	2.30	1.25	0.02	0.03	0.60	0.63	0.03	0.17	0.20	_	2,131	2,131	0.15	0.33	5.63	2,239
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)		_	_	-		-	-	-	_		-	-	_		-	_	-	
Worker	0.82	0.73	0.79	9.79	0.00	0.00	2.35	2.35	0.00	0.55	0.55	_	2,279	2,279	0.04	0.09	0.22	2,307

Vendor	0.21	0.04	2.40	1.27	0.02	0.03	0.60	0.63	0.03	0.17	0.20	—	2,133	2,133	0.15	0.33	0.15	2,234
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	_	—	—		_	-	_	-	-	-	—	-	—	_	-	—
Worker	0.24	0.22	0.26	3.06	0.00	0.00	0.70	0.70	0.00	0.16	0.16	_	687	687	0.01	0.03	1.09	697
Vendor	0.06	0.01	0.72	0.37	< 0.005	0.01	0.18	0.19	0.01	0.05	0.06	-	634	634	0.04	0.10	0.72	665
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	-	_	-	-	-	-	—	_	—	_	_	—	—	-	_	_
Worker	0.04	0.04	0.05	0.56	0.00	0.00	0.13	0.13	0.00	0.03	0.03	_	114	114	< 0.005	< 0.005	0.18	115
Vendor	0.01	< 0.005	0.13	0.07	< 0.005	< 0.005	0.03	0.03	< 0.005	0.01	0.01	_	105	105	0.01	0.02	0.12	110
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.9. Paving (2026) - Unmitigated

Location	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	_	_	_	—	—	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	—	_			_												—	
Off-Road Equipmer		0.76	7.12	9.94	0.01	0.32		0.32	0.29	—	0.29		1,511	1,511	0.06	0.01		1,516
Paving	—	1.01	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily		_	_	—	_	_	_	_		_	_	_	_	_		_		—

Off-Road Equipmen		0.04	0.37	0.52	< 0.005	0.02		0.02	0.02		0.02	_	78.6	78.6	< 0.005	< 0.005	_	78.9
Paving	_	0.05	—	_	—	—	—	—	—	—	—	-	—	-	—	—	—	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	-	_	-	_	_	_	_
Off-Road Equipmen		0.01	0.07	0.09	< 0.005	< 0.005	_	< 0.005	< 0.005	-	< 0.005	-	13.0	13.0	< 0.005	< 0.005	-	13.1
Paving	_	0.01	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	-	_	-	_	_	_	_
Daily, Summer (Max)	_	-	-	-	-			-		-	_	_	-	-	_	-	-	-
Daily, Winter (Max)	_	-	-	-	-	_	_	_	_	-	_	-	-	-	_	-	-	-
Worker	0.07	0.06	0.07	0.82	0.00	0.00	0.20	0.20	0.00	0.05	0.05	_	190	190	< 0.005	0.01	0.02	192
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily		_	_	_	_	_	_	_	_	_	-	-	_	-	-	-	-	-
Worker	< 0.005	< 0.005	< 0.005	0.04	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	-	10.0	10.0	< 0.005	< 0.005	0.02	10.2
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	-	_	-	_	-	-	-
Worker	< 0.005	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	-	1.66	1.66	< 0.005	< 0.005	< 0.005	1.68
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.10. Paving (2026) - Mitigated

Location	TOG	ROG	NOx	co	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	—	_	_	—	_	—	_	-	—	—	—	_	_	_	—	—
Daily, Summer (Max)			-		-	-	-	-	-	-	-	-	-	-		-	-	_
Daily, Winter (Max)	_	-	-	-	-	_	-	-	_	-	-	-	-	-	_	-	-	_
Off-Road Equipmen		0.45	6.75	10.6	0.01	0.10	_	0.10	0.09	_	0.09	_	1,511	1,511	0.06	0.01	_	1,516
Paving	_	1.01	—	—	—	—	—	—	—	—	—	—	—	—	-	—	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	-	_	-	_	_	_	-	_	_	-	_	_	_	_	_	_	-
Off-Road Equipmen		0.02	0.35	0.55	< 0.005	0.01	_	0.01	< 0.005	_	< 0.005	_	78.6	78.6	< 0.005	< 0.005	—	78.9
Paving	_	0.05	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		< 0.005	0.06	0.10	< 0.005	< 0.005	-	< 0.005	< 0.005	_	< 0.005	_	13.0	13.0	< 0.005	< 0.005	-	13.1
Paving	_	0.01	_	_	_	_	_	_	-	_	_	_	_	-	-	_	_	-
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	-	_	_	-	-	_	_	_	-	_	_	_	_

Daily, Winter (Max)	-		-	_	-	-	-	_	_	-	_	_	-	-	-	-	_	_
Worker	0.07	0.06	0.07	0.82	0.00	0.00	0.20	0.20	0.00	0.05	0.05	_	190	190	< 0.005	0.01	0.02	192
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	-	-	-	-	—	_	-	-	-	-	-	-	-	-	-	-	-	-
Worker	< 0.005	< 0.005	< 0.005	0.04	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	_	10.0	10.0	< 0.005	< 0.005	0.02	10.2
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	1.66	1.66	< 0.005	< 0.005	< 0.005	1.68
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.11. Architectural Coating (2026) - Unmitigated

Location	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—											_			_		—	_
Off-Road Equipmen		0.12	0.86	1.13	< 0.005	0.02		0.02	0.02		0.02	—	134	134	0.01	< 0.005	—	134
Architect ural Coatings	—	188										_			_		—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00

Daily, Winter (Max)		_	_	_	—	-	_	-	_	_	-	_	_	_	-	_	_	_
Average Daily	_	_	_	-	—	_	_	-	_	-		-	—	_	-	_	_	—
Off-Road Equipmer		0.01	0.05	0.07	< 0.005	< 0.005	_	< 0.005	< 0.005	-	< 0.005	-	8.05	8.05	< 0.005	< 0.005	—	8.07
Architect ural Coatings	_	11.3	_	_	_	_	_	-	_	_	-	_	-	_	-	_	_	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmer		< 0.005	0.01	0.01	< 0.005	< 0.005	_	< 0.005	< 0.005	-	< 0.005	-	1.33	1.33	< 0.005	< 0.005	_	1.34
Architect ural Coatings	—	2.07	—	_	-		_	-			-	—	—	-	-		—	
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	-	-	-	—	—	-	_	-	—	-	_	—	_	—	-	-	—
Daily, Summer (Max)				_	-		_	_			-		_	-	_		—	
Worker	0.17	0.16	0.14	2.59	0.00	0.00	0.47	0.47	0.00	0.11	0.11	—	497	497	0.02	0.02	1.70	504
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	—	_	—	—	—	-	—	-		_	_	—	—	_	-	_	_	_
Average Daily	_		_	_	_	-	_	_		_		_	_	_	-	_	_	_
Worker	0.01	0.01	0.01	0.12	0.00	0.00	0.03	0.03	0.00	0.01	0.01	_	27.9	27.9	< 0.005	< 0.005	0.04	28.2

Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	—	—	-	—	_	—	_	—	_	_	_	—	_	—	—	—	-
Worker	< 0.005	< 0.005	< 0.005	0.02	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	—	4.61	4.61	< 0.005	< 0.005	0.01	4.68
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00

3.12. Architectural Coating (2026) - Mitigated

				<i>y</i> ,, <i>y</i> .														
Location	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	—	_	-	_	_	_	_	—	_	_	_	_	_	-	—	—
Daily, Summer (Max)		_	_	_	_	_									_	_	_	_
Off-Road Equipmen		0.12	0.86	1.13	< 0.005	0.02	_	0.02	0.02	—	0.02	_	134	134	0.01	< 0.005	—	134
Architect ural Coatings	_	25.7	_		—	_				_						_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	_				—						_	_	_
Average Daily	—	—	—	—	—	—									_	—	—	—
Off-Road Equipmen		0.01	0.05	0.07	< 0.005	< 0.005		< 0.005	< 0.005		< 0.005		8.05	8.05	< 0.005	< 0.005	—	8.07
Architect ural Coatings		1.55			_	_										_		_

Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	—	_	_	_	_	—	_	_	_	_	_
Off-Road Equipmer		< 0.005	0.01	0.01	< 0.005	< 0.005	—	< 0.005	< 0.005	-	< 0.005	-	1.33	1.33	< 0.005	< 0.005	—	1.34
Architect ural Coatings	_	0.28		—	-	_	—	_		_		—	-	—	_	_	—	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	—	-	—	_	-	—	—	—	—	-	—	—	_	—	_	—
Daily, Summer (Max)	—	—			-	—		—					—	-	—			_
Worker	0.17	0.16	0.14	2.59	0.00	0.00	0.47	0.47	0.00	0.11	0.11	—	497	497	0.02	0.02	1.70	504
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	-	-	-	_	-	-	_	-	_	-	-	_	-	-	_	_	_	-
Average Daily	—	_	_	-	_		_	-	_	_	_	-	—	-	_	-	-	_
Worker	0.01	0.01	0.01	0.12	0.00	0.00	0.03	0.03	0.00	0.01	0.01	—	27.9	27.9	< 0.005	< 0.005	0.04	28.2
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	-	-	-	-	—	-	-	—	-	-	-	-	—	-	_	-	-	-
Worker	< 0.005	< 0.005	< 0.005	0.02	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	-	4.61	4.61	< 0.005	< 0.005	0.01	4.68
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00

3.13. Infrastructure Improvements (2025) - Unmitigated

ontena	onatai		y loi dui	iy, toin yi		aur) unu	01103 (10/ duy 10	r aany, n	11/91 101	unnuurj							
Location	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	-	_	_	-	-	_	-	_	-	-	-	_	-	-	-	_	-
Daily, Summer (Max)		_	_	-	_	_	_	_	_	_	-		-	_	-	_		-
Off-Road Equipmen		1.07	10.2	9.42	0.02	0.44	-	0.44	0.41	—	0.41	-	1,668	1,668	0.07	0.01	-	1,674
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_		_	_	_	_	_		_			_	-	_	-	_	_	_
Off-Road Equipmen		1.07	10.2	9.42	0.02	0.44	_	0.44	0.41	_	0.41	-	1,668	1,668	0.07	0.01	_	1,674
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	-	-	-	_	-	-	_	-	-	_	-	-	-	-	-	-	_
Off-Road Equipmen		0.25	2.41	2.23	< 0.005	0.10	-	0.10	0.10	_	0.10	-	395	395	0.02	< 0.005	-	396
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.05	0.44	0.41	< 0.005	0.02	-	0.02	0.02	_	0.02	-	65.4	65.4	< 0.005	< 0.005	_	65.6
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	-	_	_	_	_	-	_	_	-	_	-	_	-	_	_
Daily, Summer (Max)			_	-	_	_	_		_	-	_	_	-	_	-			_
Worker	0.03	0.02	0.02	0.39	0.00	0.00	0.07	0.07	0.00	0.02	0.02	_	70.5	70.5	< 0.005	< 0.005	0.26	71.5

Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_		_			—	-		—	—		_	-	-	-			
Worker	0.02	0.02	0.02	0.29	0.00	0.00	0.07	0.07	0.00	0.02	0.02	—	64.6	64.6	< 0.005	< 0.005	0.01	65.4
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	-	—	—	—	—	—	—	—	-	—	—		—	—	-
Worker	0.01	0.01	0.01	0.07	0.00	0.00	0.02	0.02	0.00	< 0.005	< 0.005	—	15.5	15.5	< 0.005	< 0.005	0.03	15.7
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	< 0.005	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	-	2.57	2.57	< 0.005	< 0.005	< 0.005	2.60
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.14. Infrastructure Improvements (2025) - Mitigated

Location	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)			_		_	_									_			—
Off-Road Equipmer		0.20	4.52	8.76	0.02	0.03	—	0.03	0.03	—	0.03	—	1,668	1,668	0.07	0.01		1,674
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00

Daily, Winter (Max)	_	-	-	_	_	_	_	_	_	_	_	_	_	-	-	_	-	-
Off-Road Equipmen		0.20	4.52	8.76	0.02	0.03	-	0.03	0.03	-	0.03	-	1,668	1,668	0.07	0.01	-	1,674
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	-	_	-	-	-	-	-	-	-	—	-	—	-	-	-	-	—
Off-Road Equipmen		0.05	1.07	2.07	< 0.005	0.01	-	0.01	0.01	-	0.01	-	395	395	0.02	< 0.005	-	396
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.01	0.20	0.38	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	-	65.4	65.4	< 0.005	< 0.005	-	65.6
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	-	_	_	-	-	_	_	_	-	_	_
Daily, Summer (Max)	_	-	-	-	_	-	_	_	_	_	_	_	-	-	-	_	-	-
Worker	0.03	0.02	0.02	0.39	0.00	0.00	0.07	0.07	0.00	0.02	0.02	-	70.5	70.5	< 0.005	< 0.005	0.26	71.5
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)		_	—	—	_					_	-		-	—	-		—	-
Worker	0.02	0.02	0.02	0.29	0.00	0.00	0.07	0.07	0.00	0.02	0.02	_	64.6	64.6	< 0.005	< 0.005	0.01	65.4
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily		-	-	-	—	_	_	-	_	_	—	-		_	-	_	-	-

Worker	0.01	0.01	0.01	0.07	0.00	0.00	0.02	0.02	0.00	< 0.005	< 0.005	_	15.5	15.5	< 0.005	< 0.005	0.03	15.7
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	_	—	—	—	—	—	—	—	—	—	-	—	—	_
Worker	< 0.005	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	—	2.57	2.57	< 0.005	< 0.005	< 0.005	2.60
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.15. Infrastructure Improvements (2026) - Unmitigated

Location	TOG	ROG	NOx		SO2	PM10E	PM10D	PM10T		PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	-	-	—	—	—	-	-	-	-	-	-	-	-	-	-	-	—
Daily, Summer (Max)		_	-	-	_	_	-	-	_	—	-	_	_	—		_	—	_
Daily, Winter (Max)			_	-	-	-	-	_	_	_	-	_	_	—	_	_	_	_
Off-Road Equipmen		1.01	9.38	8.97	0.02	0.40		0.40	0.37	—	0.37	_	1,669	1,669	0.07	0.01	—	1,675
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	—	—	—	—	—	_	_	—	—	_	_	_	_	—	_	—	—
Off-Road Equipmen		0.07	0.61	0.58	< 0.005	0.03	_	0.03	0.02	—	0.02	_	108	108	< 0.005	< 0.005	—	108
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.01	0.11	0.11	< 0.005	< 0.005	-	< 0.005	< 0.005	_	< 0.005	_	17.8	17.8	< 0.005	< 0.005	_	17.9

Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	—		-	—	_		_		_		-	_	_	_
Daily, Winter (Max)	_		_	_	-		-	—	_		_		_		-	_	_	_
Worker	0.02	0.02	0.02	0.27	0.00	0.00	0.07	0.07	0.00	0.02	0.02	—	63.3	63.3	< 0.005	< 0.005	0.01	64.1
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	—	_	_	_	—	_	_	_	—	_	_	_	_	_	_	_	—
Worker	< 0.005	< 0.005	< 0.005	0.02	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	—	4.14	4.14	< 0.005	< 0.005	0.01	4.20
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	< 0.005	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	—	0.69	0.69	< 0.005	< 0.005	< 0.005	0.70
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00

3.16. Infrastructure Improvements (2026) - Mitigated

Location	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)														_				—

Daily, Winter (Max)			_	_		_	_	_	_	_	_		_	_	_	_	_	_
Off-Road Equipmen		0.20	4.52	8.76	0.02	0.03	—	0.03	0.03	—	0.03	_	1,669	1,669	0.07	0.01	—	1,675
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	_	-
Off-Road Equipmen		0.01	0.29	0.57	< 0.005	< 0.005	—	< 0.005	< 0.005	-	< 0.005	-	108	108	< 0.005	< 0.005	-	108
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	-	_	-	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		< 0.005	0.05	0.10	< 0.005	< 0.005	-	< 0.005	< 0.005	-	< 0.005	-	17.8	17.8	< 0.005	< 0.005	-	17.9
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	-	_	_	-	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)		_	_	_	_	_	_	_		_	-	_	-	_	_	-	_	-
Daily, Winter (Max)	_	-	_	-	-	_	_	_	_	-	-	-	-	-	_	-	-	-
Worker	0.02	0.02	0.02	0.27	0.00	0.00	0.07	0.07	0.00	0.02	0.02	_	63.3	63.3	< 0.005	< 0.005	0.01	64.1
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_			_	—	_	_	_	_	-	-	_	_	_	—	-	-	—
Worker	< 0.005	< 0.005	< 0.005	0.02	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	4.14	4.14	< 0.005	< 0.005	0.01	4.20
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

Annual	—	_	_	_	_	—	—	_	_	_	_	_	_	_	—	_	—	_
Worker	< 0.005	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	—	0.69	0.69	< 0.005	< 0.005	< 0.005	0.70
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

4. Operations Emissions Details

4.1. Mobile Emissions by Land Use

4.1.1. Unmitigated

Land Use	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	_	_		-		—	—	—		—	_	—	—	—	—	—
Unrefrige rated Warehou se-No Rail	2.82	0.47	29.5	15.3	0.27	0.42	8.60	9.03	0.41	2.31	2.71		29,787	29,787	2.30	4.61	70.9	31,290
Parking Lot	1.54	1.41	1.04	19.2	0.05	0.02	4.83	4.85	0.02	1.22	1.24	-	4,731	4,731	0.12	0.11	17.4	4,783
Other Non-Asph Surfaces	0.00 alt	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Total	4.37	1.88	30.6	34.5	0.31	0.45	13.4	13.9	0.43	3.53	3.95	_	34,518	34,518	2.42	4.72	88.3	36,073
Daily, Winter (Max)		_	_	_		_		_	_			_	_	—	—	—		—

Unrefrige rated Warehou se-No	2.81	0.45	30.8	15.4	0.27	0.42	8.60	9.03	0.41	2.31	2.71	-	29,793	29,793	2.30	4.61	1.84	31,228
Parking Lot	1.47	1.34	1.14	15.3	0.04	0.02	4.83	4.85	0.02	1.22	1.24	—	4,348	4,348	0.13	0.11	0.45	4,386
Other Non-Asph Surfaces	0.00 alt	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Total	4.27	1.79	32.0	30.7	0.31	0.45	13.4	13.9	0.43	3.53	3.95	_	34,141	34,141	2.43	4.73	2.29	35,613
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	-	—	—	—
Unrefrige rated Warehou se-No Rail	0.51	0.08	5.69	2.80	0.05	0.08	1.57	1.64	0.07	0.42	0.49		4,932	4,932	0.38	0.76	5.07	5,174
Parking Lot	0.27	0.24	0.21	2.92	0.01	< 0.005	0.88	0.88	< 0.005	0.22	0.23	—	730	730	0.02	0.02	1.24	737
Other Non-Asph Surfaces	0.00 alt	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Total	0.78	0.33	5.90	5.72	0.06	0.08	2.44	2.52	0.08	0.64	0.72	_	5,662	5,662	0.40	0.78	6.31	5,911

4.1.2. Mitigated

Land Use	TOG	ROG		со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Unrefrige rated Warehou se-No Rail	2.82	0.47	29.5	15.3	0.27	0.42	8.60	9.03	0.41	2.31	2.71	_	29,787	29,787	2.30	4.61	70.9	31,290

Parking Lot	1.54	1.41	1.04	19.2	0.05	0.02	4.83	4.85	0.02	1.22	1.24	-	4,731	4,731	0.12	0.11	17.4	4,783
Other Non-Asph Surfaces	0.00 nalt	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Total	4.37	1.88	30.6	34.5	0.31	0.45	13.4	13.9	0.43	3.53	3.95	-	34,518	34,518	2.42	4.72	88.3	36,073
Daily, Winter (Max)	—	_	-	_	—	-	_	_	—	-	-	—	-	_	_	_	_	—
Unrefrige rated Warehou se-No Rail	2.81	0.45	30.8	15.4	0.27	0.42	8.60	9.03	0.41	2.31	2.71	_	29,793	29,793	2.30	4.61	1.84	31,228
Parking Lot	1.47	1.34	1.14	15.3	0.04	0.02	4.83	4.85	0.02	1.22	1.24	-	4,348	4,348	0.13	0.11	0.45	4,386
Other Non-Asph Surfaces	0.00 nalt	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Total	4.27	1.79	32.0	30.7	0.31	0.45	13.4	13.9	0.43	3.53	3.95	-	34,141	34,141	2.43	4.73	2.29	35,613
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	0.51	0.08	5.69	2.80	0.05	0.08	1.57	1.64	0.07	0.42	0.49	_	4,932	4,932	0.38	0.76	5.07	5,174
Parking Lot	0.27	0.24	0.21	2.92	0.01	< 0.005	0.88	0.88	< 0.005	0.22	0.23	-	730	730	0.02	0.02	1.24	737
Other Non-Asph Surfaces	0.00 nalt	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Total	0.78	0.33	5.90	5.72	0.06	0.08	2.44	2.52	0.08	0.64	0.72	_	5,662	5,662	0.40	0.78	6.31	5,911

4.2. Energy

4.2.1. Electricity Emissions By Land Use - Unmitigated

Land Use	TOG	ROG	NOx	CO	SO2	PM10E		PM10T		PM2.5D		BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	-	-	-	_	—	-	-	-	_	—	—	—	-	_	_	-	—
Unrefrige rated Warehou se-No Rail		_	_	_	_	-	_	_	_	_		_	2,886	2,886	0.18	0.02	_	2,897
Parking Lot	-	-	-	_	-	-	_	_	_	_	-	-	409	409	0.03	< 0.005	-	411
Other Non-Asph Surfaces	 alt	—	-	-	_		_	-	—	-	-	—	0.00	0.00	0.00	0.00	-	0.00
Total	_	_	-	_	_	_	_	_	_	_	_	_	3,295	3,295	0.20	0.02	_	3,308
Daily, Winter (Max)			-	-	_	_	_	-	_	_	-	-		-	_	_	-	_
Unrefrige rated Warehou se-No Rail		_		-	_	-	_	_	_	_			2,886	2,886	0.18	0.02	_	2,897
Parking Lot	—	-	-	_	-	-	_	-	_	-	-	_	409	409	0.03	< 0.005	-	411
Other Non-Asph Surfaces	 alt		-	-	_		_	-	_	_	-	-	0.00	0.00	0.00	0.00	-	0.00
Total	_	_	-	_	_	_	-	_	-	_	_	_	3,295	3,295	0.20	0.02	_	3,308
Annual	—	_	-	—	_	—	_	_	_	_	_	_	-	_	_	_	_	—

Unrefrige rated	_					 	 _		 	478	478	0.03	< 0.005		480
Parking Lot	_	—	—	—		 —	 —	_	 	67.8	67.8	< 0.005	< 0.005	—	68.0
Other Non-Asph Surfaces	 alt				—	 	 		 	0.00	0.00	0.00	0.00	—	0.00
Total	_	_	—	_	—	 —	 —	—	 	546	546	0.03	< 0.005	_	548

4.2.2. Electricity Emissions By Land Use - Mitigated

Land Use	TOG	ROG	NOx	СО	SO2				PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	_	—	—	—	_	_	_	_	_	_	_	—	—	—	—	—
Unrefrige rated Warehou se-No Rail		-					_			_			17.5	17.5	< 0.005	< 0.005		17.6
Parking Lot	_	-	-	_	-	—	_	—	_	—	_	_	< 0.005	< 0.005	< 0.005	< 0.005	-	< 0.005
Other Non-Asph Surfaces	 alt		_	—	—			_			_	_	0.00	0.00	0.00	0.00	—	0.00
Total	—	—	—	—	—	—	—	—	—	—	—	—	17.5	17.5	< 0.005	< 0.005	—	17.6
Daily, Winter (Max)	—	_	-		_										_	_	_	-
Unrefrige rated Warehou se-No Rail		_					_	_		_			< 0.005	< 0.005	< 0.005	< 0.005		< 0.005

Parking Lot	—	—	—	—	—	—	—	—	—	—	—	—	< 0.005	< 0.005	< 0.005	< 0.005	—	< 0.005
Other Non-Asph Surfaces	alt												0.00	0.00	0.00	0.00		0.00
Total	—	—	—	—	—	—	—	—	—	—	—	—	< 0.005	< 0.005	< 0.005	< 0.005	—	< 0.005
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	_	—	—	—	—
Unrefrige rated Warehou se-No Rail													1.99	1.99	< 0.005	< 0.005		1.99
Parking Lot	_	_	_	_	_	_	_	_	_	_	_	_	< 0.005	< 0.005	< 0.005	< 0.005	_	< 0.005
Other Non-Asph Surfaces	 alt									_			0.00	0.00	0.00	0.00		0.00
Total	_	_	_	_	_	_	_	_	_	_	_	_	1.99	1.99	< 0.005	< 0.005	_	1.99

4.2.3. Natural Gas Emissions By Land Use - Unmitigated

Land Use	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_		—			—			—	—		—	—	—			-
Unrefrige rated Warehou se-No Rail	0.24	0.12	2.19	1.84	0.01	0.17	_	0.17	0.17	_	0.17	_	2,612	2,612	0.23	< 0.005	_	2,619
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00		0.00	_	0.00	0.00	0.00	0.00		0.00

Other Non-Asph Surfaces	0.00 alt	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00		0.00	0.00	0.00	0.00	_	0.00
Total	0.24	0.12	2.19	1.84	0.01	0.17	—	0.17	0.17	_	0.17	-	2,612	2,612	0.23	< 0.005	—	2,619
Daily, Winter (Max)	—	-		-		_	_	-	_	—	_	—	_	_	-	-	-	-
Unrefrige rated Warehou se-No Rail	0.24	0.12	2.19	1.84	0.01	0.17		0.17	0.17		0.17		2,612	2,612	0.23	< 0.005		2,619
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	_	0.00	-	0.00	0.00	0.00	0.00	-	0.00
Other Non-Asph Surfaces	0.00 alt	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	-	0.00	_	0.00	0.00	0.00	0.00	-	0.00
Total	0.24	0.12	2.19	1.84	0.01	0.17	_	0.17	0.17	_	0.17	_	2,612	2,612	0.23	< 0.005	_	2,619
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	0.04	0.02	0.40	0.34	< 0.005	0.03		0.03	0.03		0.03		432	432	0.04	< 0.005		434
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	-	0.00	-	0.00	0.00	0.00	0.00	-	0.00
Other Non-Asph Surfaces	0.00 alt	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	-	0.00	_	0.00	0.00	0.00	0.00	-	0.00
Total	0.04	0.02	0.40	0.34	< 0.005	0.03	_	0.03	0.03	_	0.03	_	432	432	0.04	< 0.005	_	434

4.2.4. Natural Gas Emissions By Land Use - Mitigated

Land Use	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	-	-	—	_	—	—	-	—	—	—	-	-	-	-	-	—	—
Unrefrige rated Warehou se-No Rail	0.24	0.12	2.19	1.84	0.01	0.17		0.17	0.17		0.17		2,611	2,611	0.23	< 0.005		2,619
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	—	0.00	—	0.00	0.00	0.00	0.00	—	0.00
Other Non-Asph Surfaces	0.00 alt	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	-	0.00	-	0.00	0.00	0.00	0.00	_	0.00
Total	0.24	0.12	2.19	1.84	0.01	0.17	—	0.17	0.17	—	0.17	—	2,611	2,611	0.23	< 0.005	—	2,619
Daily, Winter (Max)	—					—		-	_	_	—	-	—	-	_	—		_
Unrefrige rated Warehou se-No Rail	0.24	0.12	2.19	1.84	0.01	0.17		0.17	0.17		0.17	_	2,611	2,611	0.23	< 0.005		2,619
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	-	0.00	-	0.00	0.00	0.00	0.00	-	0.00
Other Non-Asph Surfaces	0.00 alt	0.00	0.00	0.00	0.00	0.00		0.00	0.00	-	0.00	-	0.00	0.00	0.00	0.00	—	0.00
Total	0.24	0.12	2.19	1.84	0.01	0.17	—	0.17	0.17	—	0.17	—	2,611	2,611	0.23	< 0.005	—	2,619
Annual	—	-	_	-	-	_	-	-	_	_	_	_	_	_	_	_	_	—
Unrefrige rated Warehou se-No Rail	0.04	0.02	0.40	0.34	< 0.005	0.03		0.03	0.03		0.03		432	432	0.04	< 0.005		434

Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Other Non-Asph Surfaces		0.00	0.00	0.00	0.00	0.00		0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00		0.00
Total	0.04	0.02	0.40	0.34	< 0.005	0.03	_	0.03	0.03	_	0.03	_	432	432	0.04	< 0.005	_	434

4.3. Area Emissions by Source

4.3.1. Unmitigated

		(1.07 0.10				,				,								
Source	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	-	-		_	-	-	-	-	-	-	-	-	_	-	-	-	_
Consum er Products		9.22	-				—	-	_	_	-	_	_	_	-	_	—	—
Architect ural Coatings		1.13	-			_	—	-	_	_	-	_	_	—	-	_	—	—
Landsca pe Equipme nt		3.06	0.16	18.6	< 0.005	0.03	_	0.03	0.03	-	0.03	_	76.7	76.7	< 0.005	< 0.005	_	77.0
Total	3.32	13.4	0.16	18.6	< 0.005	0.03	-	0.03	0.03	-	0.03	_	76.7	76.7	< 0.005	< 0.005	-	77.0
Daily, Winter (Max)	_	-	-			_	_	-	_	_	-	_	-	_	-	_	_	_
Consum er Products	-	9.22	-	_	_	_	-	-	_	_	_	_	_	_	_	_	-	-

Architect ural Coatings		1.13	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	10.4	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Annual	—	—	-	_	—	—	—	_	—	—	-	-	—	—	—	-	—	—
Consum er Products		1.68	_	-	—	-		_	_	_		_	-	-	_	_	_	_
Architect ural Coatings	_	0.21	—	_	_	_		_	_	—		_	_	_	_			_
Landsca pe Equipme nt	0.41	0.38	0.02	2.33	< 0.005	< 0.005		< 0.005	< 0.005	_	< 0.005		8.69	8.69	< 0.005	< 0.005		8.73
Total	0.41	2.27	0.02	2.33	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	—	8.69	8.69	< 0.005	< 0.005	—	8.73

4.3.2. Mitigated

Source	TOG	ROG	NOx	co				PM10T		PM2.5D		BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	-	_	_	-	_	_			_	_	_	_	_	_	—	_
Consum er Products		9.22	_	_		_	—		—						_	_		—
Architect ural Coatings		1.13	-	-		_									_	_		_
Total	_	10.4	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)		-	-	-		-			_					_	_	-		

Consum er	—	9.22	—	—	—	—	—	—	—	—	—	—		—	—	—		—
Architect ural Coatings		1.13																_
Total	—	10.4	—	—	_	—	—	—	—	—	—	—	—	—	—	—	—	_
Annual	—	—	—	—	_	—	—	_	—	—	—	-	_	—	—	—	—	_
Consum er Products	_	1.68	_	-		_			_	_		_		_				_
Architect ural Coatings		0.21	_	_		_				_		_		_		_		_
Total	_	1.89	_	_	_	_	_	_	_	_	_	_		_	_	_		

4.4. Water Emissions by Land Use

4.4.1. Unmitigated

Land Use	TOG	ROG		СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	—	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail											_	190	1,003	1,193	19.5	0.47		1,822
Parking Lot	_	—	—	_	—	—	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Other Non-Asph Surfaces	 alt											0.00	0.00	0.00	0.00	0.00		0.00

Total		_	_	_	_	—		_		_	_	190	1,003	1,193	19.5	0.47	_	1,822
Daily, Winter (Max)						—									-	_		_
Unrefrige rated Warehou se-No Rail												190	1,003	1,193	19.5	0.47		1,822
Parking Lot		—	—	—	—	—		_		—		0.00	0.00	0.00	0.00	0.00	—	0.00
Other Non-Asph Surfaces	 alt											0.00	0.00	0.00	0.00	0.00		0.00
Total	—	_	—	_	—	—	—	—	—	_	—	190	1,003	1,193	19.5	0.47	—	1,822
Annual	—	—	—	—	—	—	—	—	—	—	—	-	—	—	—	—	—	—
Unrefrige rated Warehou se-No Rail												31.5	166	197	3.24	0.08		302
Parking Lot	—	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	0.00	—	0.00
Other Non-Asph Surfaces	 alt			_						_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total		_	_	_	_	_		_	_	_	_	31.5	166	197	3.24	0.08	_	302

4.4.2. Mitigated

Lar	nd	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Use	e																		

Daily, Summer	—	_	_	-	-	_	—	—	—	—	—	-	—	—	—	—	—	_
(Max)																		
Unrefrige rated Warehou se-No Rail	_	_	_	_	_	_						190	1,003	1,193	19.5	0.47		1,822
Parking Lot		—	—	_	_	—	—	_	—	—		0.00	0.00	0.00	0.00	0.00	—	0.00
Other Non-Asph Surfaces	 alt		_	_	_	_						0.00	0.00	0.00	0.00	0.00		0.00
Total	_	—	—	—	—	—	—	—	—	—	—	190	1,003	1,193	19.5	0.47	—	1,822
Daily, Winter (Max)	_	_	-	-	-	-	_	_	_	_	_	-	_	_	-	_	_	-
Unrefrige rated Warehou se-No Rail	_	_	_	_	-	_		-	_	-	_	190	1,003	1,193	19.5	0.47		1,822
Parking Lot	_	_	-	-	-	-	_	_	—	-	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Other Non-Asph Surfaces	 alt	_	_	-	-	-	_	_	_	_		0.00	0.00	0.00	0.00	0.00		0.00
Total	—	—	—	—	—	—	—	—	—	—	—	190	1,003	1,193	19.5	0.47	—	1,822
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Unrefrige rated Warehou se-No Rail		_	_	_		_				_		31.5	166	197	3.24	0.08		302
Parking Lot		-	-	_	_	—	—	—	—	—	—	0.00	0.00	0.00	0.00	0.00	—	0.00

Other	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Non-Asph	alt																	
Surfaces																		
Total	—	-	-	-	-	—	-	—	—	—	—	31.5	166	197	3.24	0.08	-	302

4.5. Waste Emissions by Land Use

4.5.1. Unmitigated

									1	1		D 000						
Land Use	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.51	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	-	_	_	_	_	-	_	—	—	—	-	-	_	_	_	_	_
Unrefrige rated Warehou se-No Rail		_	_	_	_	_	_	_			_	217	0.00	217	21.7	0.00	_	760
Parking Lot	—	_	_	—	_	—	_	—			—	0.00	0.00	0.00	0.00	0.00	—	0.00
Other Non-Asph Surfaces	 alt	-	_	_		_	-				_	0.00	0.00	0.00	0.00	0.00		0.00
Total	—	—	—	—	—	—	_	—	_	_	_	217	0.00	217	21.7	0.00	—	760
Daily, Winter (Max)	_	_	_	_	-	-	_	—	_	_	—	_	_	_	_	_	-	_
Unrefrige rated Warehou se-No Rail		_	_	_	_	_	—	—	_	—	—	217	0.00	217	21.7	0.00	_	760
Parking Lot	_		_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00

Other Non-Asph Surfaces	 alt											0.00	0.00	0.00	0.00	0.00		0.00
Total	—	—	—	—	—	—	—	_	—	—	—	217	0.00	217	21.7	0.00	—	760
Annual	—		—	—	—		—	—	—		—	—	—	—	—	—	—	—
Unrefrige rated Warehou se-No Rail												36.0	0.00	36.0	3.59	0.00		126
Parking Lot		—	—	—	—	—	_	—	—	_	_	0.00	0.00	0.00	0.00	0.00		0.00
Other Non-Asph Surfaces	 alt				_				_	—		0.00	0.00	0.00	0.00	0.00		0.00
Total	—	_	_	_	_	_	_	_	_	—	—	36.0	0.00	36.0	3.59	0.00	_	126

4.5.2. Mitigated

Land Use	TOG	ROG		СО	PM10E			PM2.5D		BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	—		 —	—	—	 	_							
Unrefrige rated Warehou se-No Rail					 			 		217	0.00	217	21.7	0.00		760
Parking Lot		—	_	—	 —			 		0.00	0.00	0.00	0.00	0.00	—	0.00
Other Non-Asph Surfaces	 alt				 _			 		0.00	0.00	0.00	0.00	0.00		0.00

Total	—	_	_	_	_	—	_	_	_	_	_	217	0.00	217	21.7	0.00	_	760
Daily, Winter (Max)													—	-	-	-		_
Unrefrige rated Warehou se-No Rail												217	0.00	217	21.7	0.00		760
Parking Lot			—			—	_	_			_	0.00	0.00	0.00	0.00	0.00	—	0.00
Other Non-Asph Surfaces	 alt											0.00	0.00	0.00	0.00	0.00	—	0.00
Total	—	—	—	—	—	—	—	—	—	—	—	217	0.00	217	21.7	0.00	—	760
Annual	—	—	—	—	—	—	—	—	—	—	—	-	—	—	—	—	—	—
Unrefrige rated Warehou se-No Rail												36.0	0.00	36.0	3.59	0.00		126
Parking Lot	—	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	0.00	—	0.00
Other Non-Asph Surfaces	 alt		_			_					_	0.00	0.00	0.00	0.00	0.00		0.00
Total	_	_	_	_	_	_	_	_	_	_	_	36.0	0.00	36.0	3.59	0.00	_	126

4.6. Refrigerant Emissions by Land Use

4.6.1. Unmitigated

Land	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Use																		

Daily, Summer (Max)										_								
Unrefrige rated Warehou se-No Rail																	0.00	0.00
Total	—	—	—	—	—	—	—	—	_	—	—	—	—	—	—	—	0.00	0.00
Daily, Winter (Max)		—			_	_			_	_		_		_				—
Unrefrige rated Warehou se-No Rail	_	_	_		_					—		_		_			0.00	0.00
Total	—	—	—	—	—	—	—	—		—	—	—	—	—	—	—	0.00	0.00
Annual	—	_	_	—	—	—	_	_	—	—	_	_	—	—	_	_	—	—
Unrefrige rated Warehou se-No Rail		_				-	_		_		-	_	_		-	_	0.00	0.00
Total	—	—	—	—	_	—	—	—	—	—	—	—	—	—	—	—	0.00	0.00

4.6.2. Mitigated

Land Use	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	_	—	—	—	—	—	—	—	_	—	_

Unrefrige rated Warehou Rail					—							—					0.00	0.00
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0.00	0.00
Daily, Winter (Max)	—				_							_	_	—				—
Unrefrige rated Warehou se-No Rail	_	_				_					_			_	_		0.00	0.00
Total	_	—	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00
Annual	_	—	_	_	_	—	_	—	—	—	—	_	—	—	—	—	—	—
Unrefrige rated Warehou se-No Rail	_	_	_			_	_		_	_	_			_	_	_	0.00	0.00
Total	_	_	—	_	_	_	—	_	_	_	_	_	_	_	_	_	0.00	0.00

4.7. Offroad Emissions By Equipment Type

4.7.1. Unmitigated

Equipme nt Type	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)		—	—	—	—		—	_	—	—	—	—	—	—	—	—	—	—
Total	—	-	—	—	—	—	—	—	—	_	_	—	—	—	—	—	—	—

Daily, Winter (Max)		_			_				_	_		_						
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Annual	—	—	—	—	—	—	—	_	—	—	—	—	—	—	—	—	—	—
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_

4.7.2. Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

		· · ·		<i>,</i> , ,			<u> </u>		,		,							
Equipme nt Type	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	_	—	—	—	—	—	—	—	—		_	—	—		_	—	_
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)					_	—	—										—	
Total	_	_	_	_	_	—	—	_	—	—	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	—	_	—	_	_		_	_	_	_	_	_	_
Total	_	—	_	_	_	_	_	_	—	—		_	_	_		_	_	_

4.8. Stationary Emissions By Equipment Type

4.8.1. Unmitigated

Equipme	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
nt																		
Туре																		

Daily, Summer (Max)		-			_					_		_						_
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	_	—	—	—	—
Daily, Winter (Max)		_			_		_			-		_						—
Total	—	—	—	—	—	—	—	—		—	—	—	_	—	—	—	—	-
Annual	_	_	_	—	_	—	_	-	_	_	_	_	_	_	_	_	—	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—

4.8.2. Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Equipme nt Type	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	-	—	—	—	—	—	—	_	—	—	—	—	—	—	—	—	—
Total	_	_	—	—	_	—	—	—	_	_	—	—	—	_	—	—	—	_
Daily, Winter (Max)		_	_	_														—
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.9. User Defined Emissions By Equipment Type

4.9.1. Unmitigated

Equipme Type	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)				_						—		_		—				—
Total	—	—	—	—	—	—	—	_	—	—	—	—		—	—	—		—
Daily, Winter (Max)				_								_						_
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_

4.9.2. Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Equipme nt Type	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)																		
Total	_	_	_	_	_	—	—	_	_	—	_	_	—	_	_	_	—	_
Daily, Winter (Max)				-								_			_			_
Total	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_		_		_	_	_	_	_	_	_
Total	_	_	_	_	_	_	—	_	_	_		_	_	_	_	_	—	_

4.10. Soil Carbon Accumulation By Vegetation Type

4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated

Vegetatio n	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	—	—	—		—	_	—			—	_		—			—	—
Total	—	—	—	—	—	—	—	—	_	_	—	—	_	—	—	—	—	—
Daily, Winter (Max)						_												
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Annual	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated

Land Use	TOG	ROG				PM10E			PM2.5E			BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—		_	—	_	—	_	_	_	_	_	_		—	_	_		
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	_	—	—
Daily, Winter (Max)																		
Total	—	_	_	_	_	—		—		_	_		_	_	_	_		_
Annual	_	_	_	_	_	_		_		_	_	_	_	_	_	_		_
Total	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_		_

4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated

enteria	- on area		y iei aai	.,			000 (annaan							
Species	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	-	-	-	-	_	-	_	-	-	-	-	-	-	-	-	-	-	-
Avoided	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	_	_	_	-	_	_	-	_	_	-	_	_	-	_	_	_	_	-
Sequest ered	-	—	—	—	—	—	—	-	—	—	—	—	—	—	-	-	-	—
Subtotal	_	_	_	-	_	_	-	_	_	-	_	_	-	_	_	_	_	-
Remove d	-	_	-	_	-	_	-	-	_	_	_	_	_	_	-	-	-	-
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
Daily, Winter (Max)	_		_					_				-				-		
Avoided	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
Subtotal	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
Sequest ered	_	_	-	_	-	_	-	-	_	_	_	_	_	_	-	-	-	_
Subtotal	_	_	_	-	_	_	_	_	_	-	_	_	_	_	_	_	_	-
Remove d	-	_	-	_	-	-	-	-	-	_	_	_	_	_	-	-	-	-
Subtotal	_	_	_	_	_	_	-	_	_	—	_	_	_	_	-	_	_	-
_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
Annual	_	_	_	_	-	_	_	_	_	-	_	_	_	_	_	_	_	_
Avoided	_	_	-	_	-	_	_	_	_	_	_	_	_	_	-	_	_	-
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Sequest	—	_	—	_	_	_	—	_	—	_	_	_	_	_	_	—		_
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—	-	—	—	—
Remove d	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_		
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—		_
—	—	_	-	—	_	—	_	_	_	—	_	_	_	_	_	—	—	—

4.10.4. Soil Carbon Accumulation By Vegetation Type - Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Vegetatio n	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	—	—		—	—		—	—	—	—	—	—	—	_	_	—	—
Total	—	—	—	—	—	—	—	—	_	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—					—			—									
Total	—		—	—	_	—	—	_	—	—	—	_	—	—	—	_	—	—
Annual	_	_	_	—	_	—		_	_	_	_	_	_	_	_	_	_	_
Total	_		_	_	_	—		—	_	_	_	—	_	_	_		_	_

4.10.5. Above and Belowground Carbon Accumulation by Land Use Type - Mitigated

Land Use	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—		—	_	—	—
Total	_	_	_	_	_	_	_	_		_	_	_			_			_

Daily, Winter (Max)	_	_	_		_	_			_			_						
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Annual	—	—	-	-	—	—	—	_	—	—	—	-	—	_	-	—	—	_
Total	_	_	_	_	_	_	_	_	_	_	_	—	_	_	_	—	_	—

4.10.6. Avoided and Sequestered Emissions by Species - Mitigated

			,	J , J -		,,		o, day 101	,		,							
Species	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	—	_	_	_	_	_	_	_	_	_	_	_	—	_	—	_	_
Avoided		—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	_	_
Subtotal	_	_	—	—	—	—	_	_	_	_	—	—	—	—	_	_	—	—
Sequest ered	—	—	—		—	—					—	—		—			—	—
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Remove d	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	—
Subtotal	_	—	—	—	—	—	—	—	_	_	—	—	—	—	—	—	—	—
—	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	_	_	_	—	-	_	—	—	—	—	_	_		_		_	_	—
Avoided	_	_	—	—	—	—	—	_		_	—	—	—	—	—	—	—	—
Subtotal	_	—	—	_	_	—	—	_	_	_	—	—	—	—	—	—	_	—
Sequest ered	_	_	_	_	_	—	_	_	_	_	_	_	_	_	_	_	_	—
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Remove d	—	—	—	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Avoided	—	—	—	—	—	—	—	—	—	—	—	—	—	_	—	—	—	—
Subtotal	_	—	_	-	_	_	—	—	—	_	_	_	_	_	_	-	—	_
Sequest ered	_	—	_	—	_	—	_	_	_	—	_	—	—	—	_	—	—	_
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Remove d		—		—				_	—	_		—	_		_	_	—	
Subtotal	_	-	_	_	—	—	—	-	-	_	—	-	_	_	_	_	-	_
—	—	-	-	-	—	—	—	-	-	—	—	-	—	_	-	-	-	-

5. Activity Data

5.1. Construction Schedule

Phase Name	Phase Type	Start Date	End Date	Days Per Week	Work Days per Phase	Phase Description
Site Preparation	Site Preparation	5/1/2025	6/1/2025	5.00	22.0	—
Grading	Grading	6/2/2025	9/1/2025	5.00	66.0	—
Building Construction	Building Construction	10/1/2025	6/1/2026	5.00	174	—
Paving	Paving	2/3/2026	3/1/2026	5.00	19.0	—
Architectural Coating	Architectural Coating	5/1/2026	6/1/2026	5.00	22.0	_
Infrastructure Improvements	Trenching	9/2/2025	2/2/2026	5.00	110	_

5.2. Off-Road Equipment

5.2.1. Unmitigated

Phase Name	Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor
Site Preparation	Rubber Tired Dozers	Diesel	Average	3.00	8.00	367	0.40
Site Preparation	Tractors/Loaders/Backh oes	Diesel	Average	4.00	8.00	84.0	0.37
Grading	Excavators	Diesel	Average	2.00	8.00	36.0	0.38
Grading	Graders	Diesel	Average	1.00	8.00	148	0.41
Grading	Rubber Tired Dozers	Diesel	Average	1.00	8.00	367	0.40
Grading	Scrapers	Diesel	Average	2.00	8.00	423	0.48
Grading	Tractors/Loaders/Backh oes	Diesel	Average	2.00	8.00	84.0	0.37
Building Construction	Cranes	Diesel	Average	1.00	7.00	367	0.29
Building Construction	Forklifts	Diesel	Average	3.00	8.00	82.0	0.20
Building Construction	Generator Sets	Diesel	Average	1.00	8.00	14.0	0.74
Building Construction	Tractors/Loaders/Backh oes	Diesel	Average	3.00	7.00	84.0	0.37
Building Construction	Welders	Diesel	Average	1.00	8.00	46.0	0.45
Paving	Pavers	Diesel	Average	2.00	8.00	81.0	0.42
Paving	Paving Equipment	Diesel	Average	2.00	8.00	89.0	0.36
Paving	Rollers	Diesel	Average	2.00	8.00	36.0	0.38
Architectural Coating	Air Compressors	Diesel	Average	1.00	6.00	37.0	0.48
Infrastructure Improvements	Tractors/Loaders/Backh oes	Diesel	Average	1.00	8.00	84.0	0.37
Infrastructure Improvements	Rubber Tired Dozers	Diesel	Average	1.00	8.00	367	0.40

5.2.2. Mitigated

Phase Name	Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor

Site Preparation	Rubber Tired Dozers	Diesel	Tier 4 Interim	3.00	8.00	367	0.40
Site Preparation	Tractors/Loaders/Backh oes	Diesel	Tier 4 Interim	4.00	8.00	84.0	0.37
Grading	Excavators	Diesel	Average	2.00	8.00	36.0	0.38
Grading	Graders	Diesel	Tier 4 Interim	1.00	8.00	148	0.41
Grading	Rubber Tired Dozers	Diesel	Tier 4 Interim	1.00	8.00	367	0.40
Grading	Scrapers	Diesel	Tier 4 Interim	2.00	8.00	423	0.48
Grading	Tractors/Loaders/Backh oes	Diesel	Tier 4 Interim	2.00	8.00	84.0	0.37
Building Construction	Cranes	Diesel	Tier 4 Interim	1.00	7.00	367	0.29
Building Construction	Forklifts	Diesel	Tier 4 Interim	3.00	8.00	82.0	0.20
Building Construction	Generator Sets	Diesel	Average	1.00	8.00	14.0	0.74
Building Construction	Tractors/Loaders/Backh oes	Diesel	Tier 4 Interim	3.00	7.00	84.0	0.37
Building Construction	Welders	Diesel	Average	1.00	8.00	46.0	0.45
Paving	Pavers	Diesel	Tier 4 Interim	2.00	8.00	81.0	0.42
Paving	Paving Equipment	Diesel	Tier 4 Interim	2.00	8.00	89.0	0.36
Paving	Rollers	Diesel	Average	2.00	8.00	36.0	0.38
Architectural Coating	Air Compressors	Diesel	Average	1.00	6.00	37.0	0.48
Infrastructure Improvements	Tractors/Loaders/Backh oes	Diesel	Tier 4 Interim	1.00	8.00	84.0	0.37
Infrastructure Improvements	Rubber Tired Dozers	Diesel	Tier 4 Interim	1.00	8.00	367	0.40

5.3. Construction Vehicles

5.3.1. Unmitigated

Phase Name	Тгір Туре	One-Way Trips per Day	Miles per Trip	Vehicle Mix
Site Preparation	_	_	—	_

Site Preparation	Worker	17.5	18.5	LDA,LDT1,LDT2
· · · · · · · · · · · · · · · · · · ·				
Site Preparation	Vendor	-	10.2	HHDT,MHDT
Site Preparation	Hauling	0.00	20.0	HHDT
Site Preparation	Onsite truck	-	_	HHDT
Grading	-	-	-	-
Grading	Worker	20.0	18.5	LDA,LDT1,LDT2
Grading	Vendor	_	10.2	HHDT,MHDT
Grading	Hauling	157	20.0	HHDT
Grading	Onsite truck	—	—	HHDT
Building Construction	—	—	—	_
Building Construction	Worker	180	18.5	LDA,LDT1,LDT2
Building Construction	Vendor	70.3	10.2	HHDT,MHDT
Building Construction	Hauling	0.00	20.0	HHDT
Building Construction	Onsite truck	—	—	HHDT
Paving	—	—	—	—
Paving	Worker	15.0	18.5	LDA,LDT1,LDT2
Paving	Vendor	—	10.2	HHDT,MHDT
Paving	Hauling	0.00	20.0	HHDT
Paving	Onsite truck	—	—	HHDT
Architectural Coating	—	—	—	_
Architectural Coating	Worker	36.0	18.5	LDA,LDT1,LDT2
Architectural Coating	Vendor	—	10.2	HHDT,MHDT
Architectural Coating	Hauling	0.00	20.0	HHDT
Architectural Coating	Onsite truck	-		HHDT
Infrastructure Improvements		—		_
Infrastructure Improvements	Worker	5.00	18.5	LDA,LDT1,LDT2
Infrastructure Improvements	Vendor	_	10.2	HHDT,MHDT

Infrastructure Improvements	Hauling	0.00	20.0	HHDT
Infrastructure Improvements	Onsite truck	—	—	HHDT

5.3.2. Mitigated

Phase Name	Тгір Туре	One-Way Trips per Day	Miles per Trip	Vehicle Mix
Site Preparation	—	—	—	-
Site Preparation	Worker	17.5	18.5	LDA,LDT1,LDT2
Site Preparation	Vendor	_	10.2	HHDT,MHDT
Site Preparation	Hauling	0.00	20.0	HHDT
Site Preparation	Onsite truck	_	_	HHDT
Grading	_	_	—	—
Grading	Worker	20.0	18.5	LDA,LDT1,LDT2
Grading	Vendor	_	10.2	HHDT,MHDT
Grading	Hauling	157	20.0	HHDT
Grading	Onsite truck	_	_	HHDT
Building Construction	_	_	_	—
Building Construction	Worker	180	18.5	LDA,LDT1,LDT2
Building Construction	Vendor	70.3	10.2	HHDT,MHDT
Building Construction	Hauling	0.00	20.0	HHDT
Building Construction	Onsite truck	_	—	HHDT
Paving	_	_	—	—
Paving	Worker	15.0	18.5	LDA,LDT1,LDT2
Paving	Vendor	_	10.2	HHDT,MHDT
Paving	Hauling	0.00	20.0	HHDT
Paving	Onsite truck	—	—	HHDT
Architectural Coating	_	_	_	
Architectural Coating	Worker	36.0	18.5	LDA,LDT1,LDT2

Architectural Coating	Vendor		10.2	HHDT,MHDT
Architectural Coating	Hauling	0.00	20.0	HHDT
Architectural Coating	Onsite truck	_	_	HHDT
Infrastructure Improvements	—	_	_	_
Infrastructure Improvements	Worker	5.00	18.5	LDA,LDT1,LDT2
Infrastructure Improvements	Vendor	_	10.2	HHDT,MHDT
Infrastructure Improvements	Hauling	0.00	20.0	HHDT
Infrastructure Improvements	Onsite truck	_	_	HHDT

5.4. Vehicles

5.4.1. Construction Vehicle Control Strategies

Non-applicable. No control strategies activated by user.

5.5. Architectural Coatings

Phase Name	Residential Interior Area Coated (sq ft)	Residential Exterior Area Coated (sq ft)	Non-Residential Interior Area Coated (sq ft)	Non-Residential Exterior Area Coated (sq ft)	Parking Area Coated (sq ft)
Architectural Coating	0.00	0.00	643,073	214,358	36,042

5.6. Dust Mitigation

5.6.1. Construction Earthmoving Activities

Phase Name	Material Imported (Cubic Yards)	Material Exported (Cubic Yards)	Acres Graded (acres)	Material Demolished (sq. ft.)	Acres Paved (acres)
Site Preparation	0.00	0.00	64.5	0.00	_
Grading	82,880	0.00	594	0.00	_
Paving	0.00	0.00	0.00	0.00	13.8

5.6.2. Construction Earthmoving Control Strategies

Control Strategies Applied	Frequency (per day)	PM10 Reduction	PM2.5 Reduction
Water Exposed Area	2	61%	61%

5.7. Construction Paving

Land Use	Area Paved (acres)	% Asphalt
Unrefrigerated Warehouse-No Rail	0.00	0%
Parking Lot	7.36	100%
Other Non-Asphalt Surfaces	6.43	0%

5.8. Construction Electricity Consumption and Emissions Factors

kWh per Year and Emission Factor (lb/MWh)

Year	kWh per Year	CO2	CH4	N2O
2025	0.00	532	0.03	< 0.005
2026	0.00	532	0.03	< 0.005

5.9. Operational Mobile Sources

5.9.1. Unmitigated

Land Use Type	Trips/Weekday	Trips/Saturday	Trips/Sunday	Trips/Year	VMT/Weekday	VMT/Saturday	VMT/Sunday	VMT/Year
Unrefrigerated Warehouse-No Rail	293	293	293	106,939	9,727	9,727	9,727	3,550,378
Parking Lot	440	440	440	160,600	6,908	6,908	6,908	2,521,437
Other Non-Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

5.9.2. Mitigated

Land Use Type	Trips/Weekday	Trips/Saturday	Trips/Sunday	Trips/Year	VMT/Weekday	VMT/Saturday	VMT/Sunday	VMT/Year
				74 / 86				

Miro Way and Ayala Drive Warehouse Detailed Report, 5/22/2024

Unrefrigerated Warehouse-No Rail	293	293	293	106,939	9,727	9,727	9,727	3,550,378
Parking Lot	440	440	440	160,600	6,908	6,908	6,908	2,521,437
Other Non-Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

5.10. Operational Area Sources

5.10.1. Hearths

5.10.1.1. Unmitigated

5.10.1.2. Mitigated

5.10.2. Architectural Coatings

Residential Interior Area Coated (sq ft)	Residential Exterior Area Coated (sq ft)	Non-Residential Interior Area Coated (sq ft)	Non-Residential Exterior Area Coated (sq ft)	Parking Area Coated (sq ft)
0	0.00	643,073	214,358	36,042

5.10.3. Landscape Equipment

Season	Unit	Value
Snow Days	day/yr	0.00
Summer Days	day/yr	250

5.10.4. Landscape Equipment - Mitigated

Season	Unit	Value
Snow Days	day/yr	0.00
Summer Days	day/yr	250

5.11. Operational Energy Consumption

5.11.1. Unmitigated

Electricity (kWh/yr) and CO2 and CH4 and N2O and Natural Gas (kBTU/yr)

Land Use	Electricity (kWh/yr)	CO2	CH4	N2O	Natural Gas (kBTU/yr)
Unrefrigerated Warehouse-No Rail	1,980,107	532	0.0330	0.0040	8,150,163
Parking Lot	280,847	532	0.0330	0.0040	0.00
Other Non-Asphalt Surfaces	0.00	532	0.0330	0.0040	0.00

5.11.2. Mitigated

Electricity (kWh/yr) and CO2 and CH4 and N2O and Natural Gas (kBTU/yr)

Land Use	Electricity (kWh/yr)	CO2	CH4	N2O	Natural Gas (kBTU/yr)
Unrefrigerated Warehouse-No Rail	< 0.005	532	0.0330	0.0040	8,147,954
Parking Lot	< 0.005	532	0.0330	0.0040	0.00
Other Non-Asphalt Surfaces	0.00	532	0.0330	0.0040	0.00

5.12. Operational Water and Wastewater Consumption

5.12.1. Unmitigated

Land Use	Indoor Water (gal/year)	Outdoor Water (gal/year)
Unrefrigerated Warehouse-No Rail	99,140,344	2,488,024
Parking Lot	0.00	0.00
Other Non-Asphalt Surfaces	0.00	0.00

5.12.2. Mitigated

Land Use	Indoor Water (gal/year)	Outdoor Water (gal/year)
Unrefrigerated Warehouse-No Rail	99,140,344	2,488,024
Parking Lot	0.00	0.00
Other Non-Asphalt Surfaces	0.00	0.00

5.13. Operational Waste Generation

5.13.1. Unmitigated

Land Use	Waste (ton/year)	Cogeneration (kWh/year)
Unrefrigerated Warehouse-No Rail	403	
Parking Lot	0.00	_
Other Non-Asphalt Surfaces	0.00	_

5.13.2. Mitigated

Land Use	Waste (ton/year)	Cogeneration (kWh/year)
Unrefrigerated Warehouse-No Rail	403	_
Parking Lot	0.00	_
Other Non-Asphalt Surfaces	0.00	_

5.14. Operational Refrigeration and Air Conditioning Equipment

5.14.1. Unmitigated

Land Use Type	Equipment Type	Refrigerant	GWP	Quantity (kg)	Operations Leak Rate	Service Leak Rate	Times Serviced
Unrefrigerated Warehouse-No Rail	Other commercial A/C and heat pumps	R-717	0.00	7.50	7.50	7.50	25.0

Land Use Type	Equipment Type	Refrigerant	GWP	Quantity (kg)	Operations Leak Rate	Service Leak Rate	Times Serviced
Unrefrigerated Warehouse-No Rail	Other commercial A/C and heat pumps	R-717	0.00	7.50	7.50	7.50	25.0

5.15. Operational Off-Road Equipment

5.15.1. Unmitigated

Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor
5.15.2. Mitigated						

Equipment Type Fuel Type Engine Tier Number p	r per Day Hours Per Day	Horsepower	Load Factor
---	-------------------------	------------	-------------

5.16. Stationary Sources

5.16.1. Emergency Generators and Fire Pumps

	Equipment Type	Fuel Type	Number per Day	Hours per Day	Hours per Year	Horsepower	Load Factor
--	----------------	-----------	----------------	---------------	----------------	------------	-------------

5.16.2. Process Boilers

Equipment Type Fue	ие! Туре	Number	Boiler Rating (MMBtu/hr)	Daily Heat Input (MMBtu/day)	Annual Heat Input (MMBtu/yr)
--------------------	----------	--------	--------------------------	------------------------------	------------------------------

5.17. User Defined

Equipment Type	Fuel Type

5.18. Vegetation

5.18.1. Land Use Change

5.18.1.1. Unmitigated

Vegetation Land Use Type	Vegetation Soil	Гуре	Initial Acres		Final Acres
5.18.1.2. Mitigated					
Vegetation Land Use Type	Vegetation Soil	Гуре	Initial Acres		Final Acres
5.18.1. Biomass Cover Type					
5.18.1.1. Unmitigated					
Biomass Cover Type		Initial Acres		Final Acres	
5.18.1.2. Mitigated					
Biomass Cover Type		Initial Acres		Final Acres	
5.18.2. Sequestration					
5.18.2.1. Unmitigated					
Тгее Туре	Number		Electricity Saved (kWh/year)		Natural Gas Saved (btu/year)
5.18.2.2. Mitigated					
Тгее Туре	Number		Electricity Saved (kWh/year)		Natural Gas Saved (btu/year)

6. Climate Risk Detailed Report

6.1. Climate Risk Summary

Cal-Adapt midcentury 2040–2059 average projections for four hazards are reported below for your project location. These are under Representation Concentration Pathway (RCP) 8.5 which assumes GHG emissions will continue to rise strongly through 2050 and then plateau around 2100.

Climate Hazard	Result for Project Location	Unit
Temperature and Extreme Heat	26.4	annual days of extreme heat
Extreme Precipitation	4.90	annual days with precipitation above 20 mm
Sea Level Rise	0.00	meters of inundation depth
Wildfire	0.00	annual hectares burned

Temperature and Extreme Heat data are for grid cell in which your project are located. The projection is based on the 98th historical percentile of daily maximum/minimum temperatures from observed historical data (32 climate model ensemble from Cal-Adapt, 2040–2059 average under RCP 8.5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

Extreme Precipitation data are for the grid cell in which your project are located. The threshold of 20 mm is equivalent to about $\frac{3}{4}$ an inch of rain, which would be light to moderate rainfall if received over a full day or heavy rain if received over a period of 2 to 4 hours. Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

Sea Level Rise data are for the grid cell in which your project are located. The projections are from Radke et al. (2017), as reported in Cal-Adapt (Radke et al., 2017, CEC-500-2017-008), and consider inundation location and depth for the San Francisco Bay, the Sacramento-San Joaquin River Delta and California coast resulting different increments of sea level rise coupled with extreme storm events. Users may select from four scenarios to view the range in potential inundation depth for the grid cell. The four scenarios are: No rise, 0.5 meter, 1.0 meter, 1.41 meters

Wildfire data are for the grid cell in which your project are located. The projections are from UC Davis, as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider historical data of climate, vegetation, population density, and large (> 400 ha) fire history. Users may select from four model simulations to view the range in potential wildfire probabilities for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

6.2. Initial Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Temperature and Extreme Heat	3	0	0	N/A
Extreme Precipitation	N/A	N/A	N/A	N/A
Sea Level Rise	1	0	0	N/A
Wildfire	1	0	0	N/A
Flooding	N/A	N/A	N/A	N/A
Drought	N/A	N/A	N/A	N/A
Snowpack Reduction	N/A	N/A	N/A	N/A
Air Quality Degradation	0	0	0	N/A

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores do not include implementation of climate risk reduction measures. 6.3. Adjusted Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Temperature and Extreme Heat	3	1	1	3
Extreme Precipitation	N/A	N/A	N/A	N/A
Sea Level Rise	1	1	1	2
Wildfire	1	1	1	2
Flooding	N/A	N/A	N/A	N/A
Drought	N/A	N/A	N/A	N/A
Snowpack Reduction	N/A	N/A	N/A	N/A
Air Quality Degradation	1	1	1	2

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores include implementation of climate risk reduction measures.

6.4. Climate Risk Reduction Measures

7. Health and Equity Details

7.1. CalEnviroScreen 4.0 Scores

The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

Indicator	Result for Project Census Tract
Exposure Indicators	
AQ-Ozone	98.7

AQ-PM	72.3
AQ-DPM	60.5
Drinking Water	92.8
Lead Risk Housing	26.3
Pesticides	0.00
Toxic Releases	67.4
Traffic	33.7
Effect Indicators	_
CleanUp Sites	71.6
Groundwater	0.00
Haz Waste Facilities/Generators	37.9
Impaired Water Bodies	0.00
Solid Waste	52.9
Sensitive Population	_
Asthma	83.6
Cardio-vascular	95.1
Low Birth Weights	86.3
Socioeconomic Factor Indicators	_
Education	74.2
Housing	40.9
Linguistic	46.5
Poverty	61.9
Unemployment	92.2

7.2. Healthy Places Index Scores

The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

	Indicator		Result for Project Census Tract
_			

_ · · ·	
Economic	—
Above Poverty	37.04606698
Employed	39.71512896
Median HI	45.59219813
Education	
Bachelor's or higher	20.96753497
High school enrollment	5.042987296
Preschool enrollment	9.842166046
Transportation	
Auto Access	77.83908636
Active commuting	9.200564609
Social	
2-parent households	39.31733607
Voting	28.60259207
Neighborhood	
Alcohol availability	77.24881304
Park access	44.57846786
Retail density	14.08956756
Supermarket access	8.674451431
Tree canopy	29.84729886
Housing	
Homeownership	86.14140896
Housing habitability	26.21583472
Low-inc homeowner severe housing cost burden	5.82574105
Low-inc renter severe housing cost burden	5.671756705
Uncrowded housing	27.15257282
Health Outcomes	_

Insured adults	16.74579751
Arthritis	55.6
Asthma ER Admissions	12.8
High Blood Pressure	49.4
Cancer (excluding skin)	77.2
Asthma	25.7
Coronary Heart Disease	69.4
Chronic Obstructive Pulmonary Disease	50.7
Diagnosed Diabetes	31.9
Life Expectancy at Birth	32.6
Cognitively Disabled	64.4
Physically Disabled	38.4
Heart Attack ER Admissions	1.7
Mental Health Not Good	32.6
Chronic Kidney Disease	45.1
Obesity	23.9
Pedestrian Injuries	43.2
Physical Health Not Good	35.8
Stroke	45.2
Health Risk Behaviors	_
Binge Drinking	43.3
Current Smoker	37.8
No Leisure Time for Physical Activity	39.9
Climate Change Exposures	_
Wildfire Risk	0.0
SLR Inundation Area	0.0
Children	65.5

Elderly	86.8
English Speaking	50.6
Foreign-born	52.7
Outdoor Workers	79.1
Climate Change Adaptive Capacity	—
Impervious Surface Cover	61.2
Traffic Density	23.1
Traffic Access	23.0
Other Indices	—
Hardship	66.5
Other Decision Support	—
2016 Voting	36.2

7.3. Overall Health & Equity Scores

Metric	Result for Project Census Tract
CalEnviroScreen 4.0 Score for Project Location (a)	84.0
Healthy Places Index Score for Project Location (b)	20.0
Project Located in a Designated Disadvantaged Community (Senate Bill 535)	Yes
Project Located in a Low-Income Community (Assembly Bill 1550)	No
Project Located in a Community Air Protection Program Community (Assembly Bill 617)	No

a: The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

b: The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

7.4. Health & Equity Measures

No Health & Equity Measures selected.

7.5. Evaluation Scorecard

Health & Equity Evaluation Scorecard not completed.

7.6. Health & Equity Custom Measures

No Health & Equity Custom Measures created.

8. User Changes to Default Data

Screen	Justification
Land Use	Per site plan.
Construction: Construction Phases	Per construction questionnaire.
Operations: Vehicle Data	Unrefrigerated Warehouse = trucks Parking Lot = passenger cars
Operations: Fleet Mix	Traffic study fleet mix. Warehouse = trucks Parking Lot = passenger cars
Operations: Refrigerants	Project does not have cold storage. Refrigerant would comply with 17 CCR § 95374.
Construction: Off-Road Equipment	Anticipated construction equipment.
Construction: Dust From Material Movement	Per grading plans.

	Project KSF	Forklifts	Hostlers
Project	428.715	8.6	1

Statistical Measure	Number of Pallet Jacks/Forklifts at Facility per Thousand Square Feet of
	Building Area
Minimum	0.02
Maximum	0.4
Average	0.12

Source: SCAQMD High Cube Warehouse Truck Trip Study White Paper Summary of Business Survey Results, June 2014, Table 9 Pallet Jack/Forklift Usage, page 9. http://www.aqmd.gov/docs/default-source/ceqa/handbook/high-cube-warehouse-trip-rate-study-for-air-quality-analysis/business-survey-summary.pdf

Hostlers

3.6 hostlers per million sf

Emergency Backup Generator Emissions

					UNMITIGAT			Total by by				
	Fuel Type	Quantity	НР	LF	Hours/Year per Unit	Day	day	Total hp-hr per year				
Standard Generator	Diesel	2	750	0.74	50	1	1,500	75,000				
	Emissions Ra	ates (g/hp-h	r)									
	HC	ROG	TOG	со	NO _x	CO2	PM ₁₀	PM _{2.5}	PM	SOx	CH4	
Standard Warehouse	0.140	1.020	1.120	2.600	2.850	521.640	0.150	0.150	0.150	0.005	0.021	
ce: User Guide for CalEEMod Version 7	2022.1, Append Emissions (p).									
	НС	ROG	TOG	со	NO _x	CO2	PM ₁₀	PM _{2.5}	ΡΜ	SO _x	CH ₄	
Standard Warehouse	0.46	3.37	3.70	8.60	9.42	1725.03	0.50	0.50	0.50	0.02	0.00	
Total	0.46	3.37	3.70	8.60	9.42	1725.03	0.50	0.50	0.50	0.02	0.00	
	Emissions (t	ons/year)										
	HC	ROG	TOG	со	NO _x	CO2	PM ₁₀	PM _{2.5}	PM	SOx	CH₄	
Standard Warehouse	0.01	0.08	0.09	0.21	0.24	43.13	0.01	0.01	0.01	0.00	0.00	_
Total	0.01	0.08	0.09	0.21	0.24	43.13	0.01	0.01	0.01	0.00	0.00	
6 Emissions (metric tons)	CO₂										СН₄	

					MITIGATE	C		
					Hours/Year	Hours per	HP-hr per	Total hp-hr
	Fuel Type	Quantity	HP	LF	per Unit	Day	day	per year
Standard Generator	Diesel	2	750	0.74	50	1	1,500	75,000

	Emissions Ra	ates (g/hp-h	r)								
	HC1	ROG ¹	TOG ¹	CO1	NO _x ²	CO21	PM ₁₀ ²	PM _{2.5} ²	PM ²	SOx1	CH41
Standard Warehouse	0.140	1.020	1.120	2.600	0.500	521.640	0.020	0.020	0.020	0.005	0.021

Source:

1. User Guide for CalEEMod Version 2022.1, Appendix G, Table G-40. 2. Final Rule for Control of Emissions of Air Pollution From Nonroad Diesel Engines and Fuel, Table II.A-4.4 (Available at: https://www.epa.gov/regulations-emissions-vehicles-and-engines/final-rule-control-emissions-airpollution-nonroad).

Emissions (p	ounds/day)										
HC	ROG	TOG	со	NO _x	CO2	PM ₁₀	PM _{2.5}	PM	SOx	CH₄	
0.46	3.37	3.70	8.60	1.65	1725.03	0.07	0.07	0.07	0.02	0.00	
0.46	3.37	3.70	8.60	1.65	1725.03	0.07	0.07	0.07	0.02	0.00	
Emissions (t	ons/year)										
нс	ROG	TOG	со	NO _x	CO2	PM ₁₀	PM _{2.5}	PM	SOx	CH₄	
0.01	0.08	0.09	0.21	0.04	43.13	0.00	0.00	0.00	0.00	0.00	
0.01	0.08	0.09	0.21	0.04	43.13	0.00	0.00	0.00	0.00	0.00	
CO2										CH₄	CO ₂ e
39.12										0.00	39.12
	HC 0.46 0.46 Emissions (tr HC 0.01 0.01 CO ₂	0.46 3.37 0.46 3.37 Emissions (tors/year) HC ROG 0.01 0.08 0.08 CO₂	HC ROG TOG 0.46 3.37 3.70 0.46 3.37 3.70 0.46 3.37 3.70 Emissions (tons/year) TOG HC ROG TOG 0.01 0.08 0.09 0.01 0.08 0.09 CO₂ CO₂	HC ROG TOG CO 0.46 3.37 3.70 8.60 0.46 3.37 3.70 8.60 0.46 3.37 3.70 8.60 Emissions (tons/year) HC ROG TOG CO 0.01 0.08 0.09 0.21 0.01 0.08 0.09 0.21 CO₂ CO₂ CO₂ CO	HC ROG TOG CO NO _x 0.46 3.37 3.70 8.60 1.65 0.46 3.37 3.70 8.60 1.65 0.46 3.37 3.70 8.60 1.65 Emissions (tons/year) HC ROG TOG CO NO _x 0.01 0.08 0.09 0.21 0.04 CO₂ CO₂ CO₂ CO NO₂	HC ROG TOG CO NO _x CO ₂ 0.46 3.37 3.70 8.60 1.65 1725.03 0.46 3.37 3.70 8.60 1.65 1725.03 0.46 3.37 3.70 8.60 1.65 1725.03 Emissions (tons/year) TOG CO NO _x CO ₂ 0.01 0.08 0.09 0.21 0.04 43.13 0.01 0.08 0.09 0.21 0.04 43.13 CO ₂ CO ₂ 0.01 0.08 0.09 0.21 0.04 43.13	HC ROG TOG CO NOx CO2 PM10 0.46 3.37 3.70 8.60 1.65 1725.03 0.07 0.46 3.37 3.70 8.60 1.65 1725.03 0.07 0.46 3.37 3.70 8.60 1.65 1725.03 0.07 Emissions (tons/year) HC ROG TOG CO NOx CO2 PM10 0.01 0.08 0.09 0.21 0.04 43.13 0.00 0.01 0.08 0.09 0.21 0.04 43.13 0.00 CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2	HC ROG TOG CO NOx CO2 PM10 PM2.5 0.46 3.37 3.70 8.60 1.65 1725.03 0.07 0.07 0.46 3.37 3.70 8.60 1.65 1725.03 0.07 0.07 0.46 3.37 3.70 8.60 1.65 1725.03 0.07 0.07 0.46 3.37 3.70 8.60 1.65 1725.03 0.07 0.07 Emissions (tons/year) TOG CO NOx CO2 PM10 PM2.5 0.01 0.08 0.09 0.21 0.04 43.13 0.00 0.00 CO2 CO2 PM10 PM2.5 PM2.5 PM2.5 PM2.5 PM2.5 PM2.5 0.01 0.08 0.09 0.21 0.04 43.13 0.00 0.00 CO2 CO2 PM2.5 PM2.5 PM2.5 PM2.5 PM2.5 PM2.5 0.01 0.08 0.09 0.21 0.04 43.13 0.00 0.00 CO2 <t< td=""><td>HC ROG TOG CO NOx CO2 PM10 PM2.5 PM 0.46 3.37 3.70 8.60 1.65 1725.03 0.07 0.07 0.07 0.46 3.37 3.70 8.60 1.65 1725.03 0.07 0.07 0.07 0.46 3.37 3.70 8.60 1.65 1725.03 0.07 0.07 0.07 Emissions (tons/year) HC ROG TOG CO NOx CO2 PM10 PM2.5 PM 0.01 0.08 0.09 0.21 0.04 43.13 0.00 0.00 0.00 0.01 0.08 0.09 0.21 0.04 43.13 0.00 0.00 0.00 CO2</td><td>HC ROG TOG CO NOx CO2 PM10 PM2.5 PM SOx 0.46 3.37 3.70 8.60 1.65 1725.03 0.07 0.07 0.07 0.02 0.46 3.37 3.70 8.60 1.65 1725.03 0.07 0.07 0.07 0.02 MC ROG TOG CO NOx CO2 PM10 PM2.5 PM SOx HC ROG TOG CO NOx CO2 PM10 PM2.5 PM SOx 0.01 0.08 0.09 0.21 0.04 43.13 0.00 0.00 0.00 0.00 0.01 0.08 0.09 0.21 0.04 43.13 0.00 0.00 0.00 0.00 CO2 CO2 PM10 PM2.5 PM SOX 0.01 0.08 0.09 0.21 0.04 43.13 0.00 0.00 0.00 0.00 CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2 <</td><td>HC ROG TOG CO NOx CO2 PM10 PM2.5 PM SOx CH4 0.46 3.37 3.70 8.60 1.65 1725.03 0.07 0.07 0.07 0.02 0.00 0.46 3.37 3.70 8.60 1.65 1725.03 0.07 0.07 0.07 0.02 0.00 0.46 3.37 3.70 8.60 1.65 1725.03 0.07 0.07 0.07 0.02 0.00 Emissions (tons/year) HC ROG TOG CO NOx CO2 PM10 PM2.5 PM SOx CH4 0.01 0.08 0.09 0.21 0.04 43.13 0.00</td></t<>	HC ROG TOG CO NOx CO2 PM10 PM2.5 PM 0.46 3.37 3.70 8.60 1.65 1725.03 0.07 0.07 0.07 0.46 3.37 3.70 8.60 1.65 1725.03 0.07 0.07 0.07 0.46 3.37 3.70 8.60 1.65 1725.03 0.07 0.07 0.07 Emissions (tons/year) HC ROG TOG CO NOx CO2 PM10 PM2.5 PM 0.01 0.08 0.09 0.21 0.04 43.13 0.00 0.00 0.00 0.01 0.08 0.09 0.21 0.04 43.13 0.00 0.00 0.00 CO2	HC ROG TOG CO NOx CO2 PM10 PM2.5 PM SOx 0.46 3.37 3.70 8.60 1.65 1725.03 0.07 0.07 0.07 0.02 0.46 3.37 3.70 8.60 1.65 1725.03 0.07 0.07 0.07 0.02 MC ROG TOG CO NOx CO2 PM10 PM2.5 PM SOx HC ROG TOG CO NOx CO2 PM10 PM2.5 PM SOx 0.01 0.08 0.09 0.21 0.04 43.13 0.00 0.00 0.00 0.00 0.01 0.08 0.09 0.21 0.04 43.13 0.00 0.00 0.00 0.00 CO2 CO2 PM10 PM2.5 PM SOX 0.01 0.08 0.09 0.21 0.04 43.13 0.00 0.00 0.00 0.00 CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2 <	HC ROG TOG CO NOx CO2 PM10 PM2.5 PM SOx CH4 0.46 3.37 3.70 8.60 1.65 1725.03 0.07 0.07 0.07 0.02 0.00 0.46 3.37 3.70 8.60 1.65 1725.03 0.07 0.07 0.07 0.02 0.00 0.46 3.37 3.70 8.60 1.65 1725.03 0.07 0.07 0.07 0.02 0.00 Emissions (tons/year) HC ROG TOG CO NOx CO2 PM10 PM2.5 PM SOx CH4 0.01 0.08 0.09 0.21 0.04 43.13 0.00

Model Output: OFFROAD2021 (v1.0.5) Emissions Inventory Region Type: Sub-Area Region: Riverside (SC), San Bernardino (SC) Calendar Year: 2026 Scenario: All Adopted Rules - Exhaust Vehicle Classification: OFFROAD2021 Equipment Types Units: tons/day for Emissions, gallons/year for Fuel, hours/year for Activity, Horsepower-hours/year for Horsepower-hours

Region Cale	endar Yea Vehicle Category	Model Year Hors	sepower Fuel	HC_tpd	ROG_tpd	TOG_tpd	CO_tpd	NOx_tpd	CO2_tpd	PM10_tpd	PM2.5_tpd	SOx_tpd	NH3_tpd	Fu	el Consumption	rotal_Activit	Total_Popul၊ Ho	rsepower_Hours_
San Bernar	2026 Airport Ground Support - Cargo Tractor	Aggregate	175 Diesel	8.99203E-06	5 1.08804E-05	1.29485E-05	0.000165	8.03E-05	0.028513	3.85712E-06	3.54855E-06	2.70097E-07	7	0	926.5314647	364.3109	0.495316	18475.20009
San Bernar	2026 Airport Ground Support - Cargo Tractor	Aggregate	300 Diesel	2.05447E-05	5 2.48591E-05	2.95843E-05	0.000126	0.000194	0.052606	9.28525E-06	8.54243E-06	4.98323E-07	7	0	1709.429146	441.7298	0.792144	33887.03681

£	g/hph											
	HC	ROG	TOG	CO	Nox	CO2	PM10	PM2_5	Sox	NH3		Fuel_gphr
2026	0.161162663	0.195006822	0.232074235	2.951897	1.4389987	511.03195	0.069130559	0.063600115	0.004840907		0	16606072.43
	0.200752787	0.242910873	0.289084014	1.2278915	1.8958223	514.03719	0.090731006	0.083472525	0.004869375		0	16703728.25
	0.361915451	0.437917695	0.521158249	4.1797884	3.334821	1025.0691	0.159861565	0.14707264	0.009710281		0	33309800.68
	0.281108191	0.340140911	0.404795795	3.2465394	2.5902335	796.19517	0.124168215	0.114234758	0.007542202		0	25872500.9

Project Yard Trucks	2					
НР	190					
Hours per Day	12					
Days per Year	365					
1 pound =	453.5924	grams				
Emissions Source	ROG	NOX	CO	SO2	PM10	PM2.5
Project Yard Trucks	3.42	26.04	32.64	0.08	1.25	1.15

Based on aggregated emission rates obtained from CARB OFFROAD Version 1.0.5. Number of yard trucks/hostlers per SCAQMD High Cube Warehouse Truck Trip Study White Paper Summary of Business Survey Results, June 2014. CO2 MT/yr 8004.21 1,325.19

PM10 tons/yr 0.228 Model Output: OFFROAD2021 (v1.0.5) Emissions Inventory Region Type: Sub-Area Region: Riverside (SC), San Bernardino (SC) Calendar Year: 2026 Scenario: All Adopted Rules - Exhaust Vehicle Classification: OFFROAD2021 Equipment Types Units: tons/day for Emissions, gallons/year for Fuel, hours/year for Activity, Horsepower-hours/year for Horsepower-hours

Region San Bernardino (SC)	Calendar Ye; Vehicle Category 2026 Industrial - Forklifts	Model Year Horsepower Fe Aggregate 100 D			PM10_tpd PM2.5_tpd SOx_tpd NH3_tpd 1 0.000452 0.000416 1.63217E-05	Fuel Consumption Total_Activit Total_PopulationHorsepower_Hour055989.5364157052.75139.519439961480.3662
			g/hph HC ROG 2026 0.1978762 0.2394302	TOG CO Nox CO2 02 0.2849417 3.4295478 2.1667746 593.3944	PM10 PM2_5 Sox NH3 6 0.1557927 0.1433293 0.005621111	Fuel_gphr 0 19282456.37
	Project Forklifts	9				
	HP Hours per Day Days per Year 1 pound =	89 12 365 453.5924 grams				
	Emissions Source Project Forklifts	ROG NOX 5.07 45.92	CO SO2 PM10 72.67 0.12 3.30	PM2.5 CO2 3.04 12,575	MT/yr PM10 tons/yr 2,081.85 0.603	

Based on aggregated emission rates obtained from CARB OFFROAD Version 1.0.5.

Number of forklifts per SCAQMD High Cube Warehouse Truck Trip Study White Paper Summary of Business Survey Results, June 2014.

Electric Equipment Emissions

Equipment	Number of Equipment ¹	Hours per Day ¹	Days per Year ¹	Equipment Size ² (hp)	Equipment Size (kW)	Load Factor ²	SCE electricity emission factor ³ (MT CO ₂ e/MWh)	Emissions (MT CO2e/year)
Phase 1								
Forklift	9	12	365	82	61.1	0.20	0.178	86
Yard Truck	2	12	365	190	141.7	0.44	0.178	97

Notes:

¹ Project-specific data.

² Equipment size and load factors based on CalEEMod v2020 Appendix D, Table 3.3 and CalEEMod v2022 Appendix G, Table G-12.

 3 CO₂e intensity factor for SCE accounts for the projected RPS improvements consistent with SB 100.