

Appendix H Preliminary Drainage Report

1st Submittal

4/12/2024

Preliminary Drainage Report

Miro Way Industrial – Scheme 24 Rialto, California PPD# 2023-XXXX

Prepared for:

Lewis-Hillwood Rialto Company, LLC

MIRO WAY INDUSTRIAL

Preliminary Drainage Report PPD# 2023-XXXX

APRIL 2024 | FIRST SUBMITTAL

Prepared By:

Kimley Horn

This Preliminary Drainage Report has been prepared by Kimley-Horn and Associates, Inc. under the direct supervision of the following Registered Civil engineer. The undersigned attests to the technical data contained in this study, and to the qualifications of technical specialists providing engineering computations upon which the recommendations and conclusions are based.

CIVI OF CALL

04/12/2024

Date

Registered Civil Engineer

Table of Contents

1	Introdu	uction	1-1
	1.1	Project Description and Purpose	1-1
2	Projec	ct Setting	2-1
	2.1	Topography	2-1
	2.2	Precipitation	2-1
	2.3	Watershed Description	2-1
	2.4	Soil Types	2-1
	2.5	Land Use	2-1
	2.6	Groundwater	2-2
	2.7	FEMA Mapping	2-2
3	Site C	conditions	3-1
	3.1	Existing Site Conditions	3-1
	3.2	Proposed Site conditions	3-1
	3.3	Existing Offsite Conditions	3-1
4	Hydro	logic Analysis	4-1
	4.1	Methodology	4-1
		4.1.1 Geometry	4-1
		4.1.2 Intensity and Time of Concentration	4-1
		4.1.3 Curve Numbers and Loss Rates	4-2
	4.2	Hydrologic Results	4-2
5	Water	Quality and Low Impact Development Requirements	5-4
	5.1	Stormwater Mitigation	5-4
		5.1.1 Stormwater Treatment	5-4
		5.1.2 Stormwater Maintenance	5-4
	5.2	Underground Chamber	5-5
		5.2.1 Underground Chamber Standards	5-5
		5.2.2 Underground Chamber Analysis	5-5
		5.2.3 Underground Chamber Results	5-5

6	Hydrau	ulics An	alysis	6-6
	6.1	Hydrau	ılic Analysis	6-6
		6.1.1	Emergency Spillway	6-6
7	Conclu	usion		7-6

Figures

Figure 1–1 Project Location Map	1-1	1
---------------------------------	-----	---

Tables

Table 4–1 Existing Conditions Modified Rational Method Hydrology Results Summary	4-2
Table 4-2 Proposed Conditions Modified Rational Method Hydrology Results Summary	4-3
Table 4–3 Proposed Unit Hydrograph Method Loss Rate Estimation Summary	4-3
Table 4–3 Proposed Mitigated Outflow Summary	4-4
Table 5–1 Underground Chamber BMP 1 Results Summary (PondPack)	5-5

Appendices

Appendix A	NOAA Atlas 14 Precipitation Estimates
Appendix B	Hydrologic Soil Type Classification
Appendix C	FEMA FIRMette
Appendix D	Drainage Exhibits
Appendix E	Existing Conditions Hydrology AES Rational Method Results
Appendix F	Proposed Conditions Hydrology AES Rational Method Results
Appendix G	Proposed Conditions Hydrology AES Hydrograph Results
Appendix H	Underground Chamber Analysis, PondPack Hydrographs Results
Appendix I	FlowMaster Pipe and Inlet Sizing
Appendix J	StormCAD HGL Analysis
Appendix K	Results of Infiltration Testing
Appendix L	WQMP DCV Calculations
Appendix M	Storm Drain As-built

1 INTRODUCTION

1.1 PROJECT DESCRIPTION AND PURPOSE

This Drainage Report is provided in support of the grading permit submittal for the proposed Miro Way Industrial development in Rialto, California.

The proposed project is located between North Linden Avenue and West Ayala Drive (**See Figure 1-1**) and intends to develop three warehouse buildings totaling \pm 415,715 SF. The project site is approximately 23.90 acres and will include proposed landscaping, utilities, and offsite improvements. The site is currently undeveloped with an existing dirt road that will be improved as an extension of the public road, Miro Way, which is about 1,700 linear feet of planned development.

This drainage report includes the hydrologic analysis for the existing and proposed conditions, a hydraulic analysis of the onsite storm drain network, and an analysis of the proposed onsite underground chambers. The San Bernardino County Flood Control Hydrology Standards and CivilDesign (CivilD) software program will be used to analyze the site(s).

Figure 1-1 Project Location Map

2 PROJECT SETTING

2.1 TOPOGRAPHY

The existing topography generally drains from the northwest corner (elevation 1406') to the southeast corner (elevation 1383'), with approximately 23' of fall across the total portion of the site. Existing flows are conveyed towards North Ayala Drive where existing curb and gutter is present.

2.2 PRECIPITATION

Precipitation values for the hydrologic analysis were determined` from site specific precipitation frequency estimates published online in the NOAA Atlas 14. For this site (Rialto, California) the 100-year, 1-hour storm precipitation depth equal to 1.69 inches was used in both the storm water flow and volume calculations. The 100-year 24-hour and 2-year 24-hour Precipitation depths equal to 7.73 inches and 3.37 inches respectively were used in the volume calculations. **Appendix A** contains the site-specific tabular output from NOAA Atlas 14.

2.3 WATERSHED DESCRIPTION

The project is relatively flat, and the regional topography generally slopes from northwest to southeast. The project site is part of a larger drainage area tributary to the San Bernardino County Flood Control District Cactus Basin System and part of the Renaissance specific plan. The Cactus Basin System is a network of five detention basins that are located between Cactus Avenue and Ayala Drive. Runoff from this project will eventually flow into Cactus Basin #3. Additionally, the site is located in the East Etiwana Creek-Santa Ana River Watershed.

2.4 SOIL TYPES

The type of soil and soil conditions are major factors affecting infiltration and resultant storm water runoff. The Natural Resources Conservation Service (NRCS) has classified soils into four general hydrologic soil groups for comparing infiltration and runoff rates. The groups are based on properties that influence runoff, such as water infiltration rate, texture, natural discharge and moisture condition. The runoff potential is based on the amount of runoff at the end of a long duration storm that occurs after wetting and swelling of the soil not protected by vegetation.

Using the NRCS GIS soil data, this site was identified as predominately Tujunga loamy sand (TuB) and Tujunga gravelly loamy sand (TvC). Correlating this soil type name to the hydrologic classifications per San Bernardino Hydrology Manual Page C-48 the soil is classified as Type A soil. Group A soils typically have low runoff potential with high infiltration rates when thoroughly wetted and consist chiefly of deep, well-drained sands or gravels. **See Appendix B** for soil type classifications.

2.5 LAND USE

The project site is located within the City of Rialto's Renaissance Specific Plan and is designated as industrial/warehouse uses.

2.6 GROUNDWATER

According to Preliminary Geotechnical Investigation Report performed by Leighton and Associates, Inc., Project No. 021751-001, dated August 2006, groundwater is estimated at a depth between 300 feet and 450 feet below ground surface, and is not expected to be a concern for this project.

2.7 FEMA MAPPING

The project site is covered FEMA map number 06071C8657H. This map is generated by the FEMA Flood Insurance Rate Map (FIRM) for San Bernardino County, California, and Incorporated Areas. The site is classified as Zone X, which is an area of minimal flooding. The effective FEMA map is dated August 28, 2008, and is provided in **Appendix C**.

3 SITE CONDITIONS

3.1 EXISTING SITE CONDITIONS

Based upon survey and field observation, the vacant project site has two drainage areas with runoff generally flowing southeast towards North Ayala Drive. North Ayala Drive contains existing curb and gutter that conveys project runoff into the existing public storm drain network. Refer to the **Existing Drainage Exhibit**, provided within Appendix D, for more information.

3.2 PROPOSED SITE CONDITIONS

Two warehouse buildings are proposed as part of the project. Each building will have at least one subsurface infiltration basin that will be developed. As shown in the **Proposed Drainage Exhibit**, **included in Appendix D**, buildings 2 will be the only building that will utilize three subsurface infiltration basins. Stormwater will be captured and conveyed via roof drains, inlets, trench drains, and the proposed underground storm drain network that will treat and infiltrate runoff. The four proposed subsurface basins with risers/orifices will serve as a water quality BMPs and underground storage facility that will detain and mitigate peak flow rates.

BMP 1 and BMP 2, as shown in the proposed drainage exhibit, propose to discharge project 100-year overflows into the existing 78" RCP storm drain along the proposed extension of Miro Way. BMP 3 and 4, 100-year overflows will discharge into Ayala Drive via a bubbler system. Both conditions will discharge allowable flows as discussed in Section 4 below. For all water quality calculations and documentation refer to the Preliminary Water Quality Management Plan. The site hydrologic basins were delineated based on the proposed grading. Refer to the Proposed Drainage Exhibit, included within **Appendix D**.

3.3 EXISTING OFFSITE CONDITIONS

Existing sidewalk, landscape, curb and gutter, and hardscape are present in the existing offsite conditions along Linden Avenue and Ayala Drive. Both streets also contain existing catch basins that collect and convey stormwater. The project site does not collect any offsite flows from neighboring properties and are not accounted for in the provided calculations.

4 HYDROLOGIC ANALYSIS

4.1 METHODOLOGY

Runoff calculations were prepared for each Drainage Area (DA) using the Modified Rational Method and the methodology described in Section D of the San Bernardino County Hydrology Manual (August 1986). The CivilD hydrology software for San Bernardino County was used to estimate time of concentrations and 100 & 2-year peak flow rates generated from the existing and proposed conditions (see **Appendix E** and **Appendix F**).

Unit hydrographs were prepared for each DA using the methodology described in Section E of the San Bernardino County Hydrology Manual for determining the 100-year stormwater volumes. The CivilD hydrology software for San Bernardino County was used to estimate the 100-year peak flow rates and volumes over a 24-hour period for the proposed and existing conditions (see **Appendix G**). Since the existing conditions, DA 2 hydrograph comprises of the proposed DA 2, 3, and 4 hydrographs, a volume per acre and flow per acre calculation was performed to equate an accurate comparison of existing and proposed conditions. Refer to Section 5.2 for more information.

A stage-storage analysis in conjunction with the peak flow rates and volumes from CivilD hydrograph output was prepared for the purposes of sizing and analyzing the proposed underground chamber characteristics for each DA. The stage-storage analysis and the hydrographs from CivilD were imported into PondPack to determine the 100-year mitigated flow rate.

4.1.1 GEOMETRY

Drainage Basin Areas were delineated for the project site's existing and proposed drainage conditions. Existing elevations, slopes and flow paths were established from the topography available at the time of this drainage study. Proposed elevations, slopes and flow paths were based on the proposed site grading plan. These hydrologic parameters are shown for existing and proposed conditions on Hydrology Exhibits in **Appendix D**.

4.1.2 INTENSITY AND TIME OF CONCENTRATION

Rainfall depths were gathered from the NOAA Atlas 14 precipitation frequency table for the project site location. The existing conditions and proposed conditions time of concentrations were calculated within CivilD given the drainage areas characteristics. The time of concentration for proposed conditions with small drainage areas were assumed to be 5 minutes as a conservative approach which is a valid assumption given that the basins travel relatively short distances.

The time of concentration calculated from the Modified Rational Method was used to calculate the lag time necessary to develop the unit hydrographs within the CivilD software.

4.1.3 CURVE NUMBERS AND LOSS RATES

The Antecedent Moisture Condition (AMC) is a common index used to describe how saturated a soil is before the design storm occurs. AMC III, which assumes the watershed is already saturated, was used for the 100-year storm analysis. AMC I was used for the 2-year analysis and AMC II for the 10-year analysis. The San Bernardino County Hydrology Manual provides Curve Numbers of Hydrologic Soil-Cover for AMC II. These AMC II Curve Numbers can be converted to AMC III Curve Numbers manually by use of Table C.1 from the San Bernardino County Hydrology Manual. However, CivilD automatically does this conversion within the program analysis. The existing condition's land use consists of natural barren ground cover. The proposed condition's land use is predominantly impervious with some commercial landscaping.

Loss Rates were calculated by using the methodology presented in Section C.6 of the San Bernardino County Hydrology Manual. The Loss Rate calculation is a function of the Curve Number, Initial Abstraction and 24-hour rainfall depth, and was used to develop the unit hydrographs.

4.2 HYDROLOGIC RESULTS

Rational Method hydrologic results are summarized below for the existing conditions and proposed conditions in **Table 4-1** and **Table 4-2**. Refer to **Appendix E** and **Appendix F** for the existing and proposed conditions hydrology analysis, respectively.

Existing Conditions Rational Method Onsite Flow Rates							
DMA ID	Area (acre)	Q₂ (cfs)	Q ₁₀₀ (cfs)				
DA 1	3.85	1.33	10.24				
DA 2	1.07	0.57	3.36				
DA 2.1	0.00	46.97					
TOTAL 23.90 1.90 60.57							

 Table 4–1 Existing Condition Modified Rational Method Hydrology Results Summary

Proposed Conditions Rational Method Onsite Flow Rates						
DMA ID	Area (acre)	Q ₂ (cfs)	Q ₁₀₀ (cfs)			
DA 1.1	1.00	1.94	5.12			
DA 1.2	0.63	1.22	3.23			
DA 1.3	0.78	1.60	4.22			
DA 1.4	0.54	1.11	2.92			
DA 2.1	4.01	5.90	15.70			
DA 2.2	3.85	5.66	15.07			
DA 3.1	3.14	5.00	13.27			
DA 3.2	4.53	6.72	18.13			
DA 3.3	0.81	1.44	3.81			
DA 4.1	1.48	2.81	7.40			
DA 7.0	0.6	0.98	2.60			
DA 7.1	0.6	0.73	2.31			
DA 7.2	0.98	0.98	2.59			
DA 7.3	0.95	0.73	2.31			
Total	23.90	36.82	98.68			

Table 4-2 Proposed Conditions Modified Rational Method Hydrology Results Summary

*DA7 are flow rates from the proposed Miro Way project and is not included in onsite basin sizing

Below, results shown in Table 4-3 are the proposed loss rate estimation from the unit hydrograph method. Refer to Appendix G for the proposed conditions hydrology hydrograph method analysis. The CivilD computer program was used to develop these hydrographs based on the Rational Method analysis results, which was inputted into PondPack for detention routing. Table 4-4 summarizes the total mitigated outflow for the project. Refer to Section 5.2 of this report for further information on the PondPack results.

 Table 4–3 Proposed Unit Hydrograph Method Loss Rate Estimation Summary

Proposed Unit Hydrograph Method Loss Rate Estimation							
Storm Event	Average Loss Rate, Fm (in/hr)	Average Low Loss Fraction, प्र					
100 Year	0.157	0.166					

As aforementioned in Section 4.1, The existing conditions DA 2 which comprises of the proposed DA 2, 3, and 4 was broken down to a volume per acre calculation to equate an accurate comparison of existing and proposed conditions. As Seen in Table 4.4 below, the provided volume is less than the required volume. Thus, basin routing was performed to determine/prove that the current basin footprints and storage capacities are sufficient. Refer to Section 5.2.3 for more information.

DA #	BMP ID	Storm Event	Existing Unit Hydrograph Volume (CF)	Proposed Unit Hydrograph Volume (CF)	Incremental Difference (CF)	Provided Volume (CF)
DA 1	BMP 1	100 Year	38,860	70,306	31,446	22,060
DA 2	BMP 2	100 Year	79,287	187,121	107,833	38,160
DA 3	BMP 3	100 Year	85,542	201,927	116,385	44,772
DA 4	BMP 4	100 Year	14,929	35,271	20,341	8,761
-	Total	-	202,253	494,624	276,006	113,753

Table 4-4 Proposed and Existing Unit Hydrograph Results

5 WATER QUALITY AND LOW IMPACT DEVELOPMENT REQUIREMENTS

5.1 STORMWATER MITIGATION

5.1.1 STORMWATER TREATMENT

The proposed project will provide water quality by means of infiltration. Sediment bays are located within the underground chamber system for pretreatment of larger sediments and pollutants. The underground chambers will treat the remaining pollutants of concerns by means of infiltration. The site's 100-year peak volume will be detained by means of underground storage.

5.1.2 STORMWATER MAINTENANCE

Stormwater facilities require routine maintenance to operate efficiently. It is recommended that facilities be inspected prior to the rainy season (fall) and after each runoff producing storm event. Sediment and debris shall be removed from the pre-treatment system to maintain the systems effectiveness. The underground chambers shall be routinely inspected and sediment/debris build-up removed to maintain efficient operation of the basin.

5.2 UNDERGROUND CHAMBER

5.2.1 UNDERGROUND CHAMBER STANDARDS

The proposed underground chambers were designed using the methodology described in San Bernardino County's Technical Guidance Document for Water Quality Management Plans. This document states that:

- The Water Quality Design Capture Volume (DCV) must be drawn down within 48 hours after the basin is filled. See Appendix L for DCV calculations.
- An energy dissipating inlet must be provided.
- An emergency overflow pipe to control excess flows must be provided.
- A forebay settling basin or separate treatment control measure must be provided as pretreatment.

5.2.2 UNDERGROUND CHAMBER ANALYSIS

Basin Inflow Hydrographs were created using CivilD computer software for the 100-year storm events. The resulting hydrographs were manually imported into the PondPack computer software to be used for the underground chamber routing calculations. The underground chambers were sized taking underground infiltration into account.

The infiltration rate was not able in the Geotechnical Report prepared by Lewis Operating Corporation, Inc., dated August 2, 2006, see Appendix K, at the time of analysis. An infiltration rate of 2 in/hr was assumed for group A soils, resulting in design percolation rates ranging from 0.13 - 0.57 cfs as rates depend of basin footprints. With a favorable constant infiltration rate on the site, the project proposes to fully infiltrate the 100-year DCV for water quality and 100-year 24-hr volume via an underground infiltration basin. Refer to Appendix H for all chamber design details and analysis results from PondPack.

5.2.3 UNDERGROUND CHAMBER RESULTS

The proposed underground chambers will provide the entire infiltration volume required to retain the Design Capture Volume and the 100-year volume as discussed in **Section 5.2.1** above. **Table 5-1** below summarizes the four underground chambers and mitigated flows. See underground chamber routing calculations in **Appendix H** prepared with the PondPack Computer program.

BMP ID	Storm Event	Proposed Basin Inflow (cfs)	Proposed Basin Outflow (cfs)	Max Water Surface Elevation (ft)	Max Storage Required (cf)	Total Storage Provided (cf)
BMP 1	100 Year	7.39	2.29	4.01	15,805	22,060
BMP 2	100 Year	17.29	9.85	4.31	29,338	38,160
BMP 3	100 Year	18.86	9.51	4.36	34,795	44,772
BMP 4	100 Year	3.67	1.90	3.20	4,747	8,761
Total	100 Year	47.21	23.55	-	84,685	113,753

 Table 5–1 Underground Chamber BMP Results Summary (PondPack)

6 HYDRAULICS ANALYSIS

6.1 HYDRAULIC ANALYSIS

6.1.1 PIPE SIZING

Hydraulic calculations for pipe and inlet sizing are to be performed for the final submittal.

6.1.2 INLET SIZING

Hydraulic calculations for pipe and inlet sizing are to be performed for the final submittal.

6.1.3 HGL ANALYSIS

Hydraulic calculations for pipe and inlet sizing are to be performed for the final submittal.

6.1.4 EMERGENCY SPILLWAY

The underground chambers provide storage for flow attenuation in the 100-year storm event. The system will be designed to provide overland relief via a gravity overflow system. For storm events greater than the 100-year peak storm, the existing 78" RCP pipe collects excess stormwater from BMP 1 and 2 and BMP 3 and 4 will bubble out into Ayala drive and conveys runoff into the existing water body located northeast of the site.

7 CONCLUSION

Per the analysis, the project proposes to capture and detain the 100-year peak volume and mitigate project outflows into the existing storm drain in Linden Avenue and Ayala Drive. The project is consistent with the allowable discharge compared to the existing condition.

APPENDIX A

NOAA ALTAS 14 PRECIPITATION ESTIMATES

NOAA Atlas 14, Volume 6, Version 2 Location name: Rialto, California, USA* Latitude: 34.1252°, Longitude: -117.3979° Elevation: 1407 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

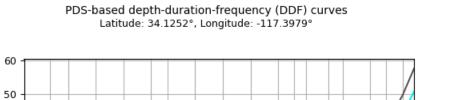
Sanja Perica, Sarah Dietz, Sarah Heim, Lillian Hiner, Kazungu Maitaria, Deborah Martin, Sandra Pavlovic, Ishani Roy, Carl Trypaluk, Dale Unruh, Fenglin Yan, Michael Yekta, Tan Zhao, Geoffrey Bonnin, Daniel Brewer, Li-Chuan Chen, Tye Parzybok, John Yarchoan

NOAA, National Weather Service, Silver Spring, Maryland

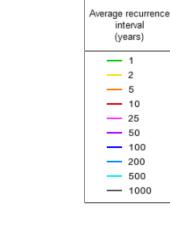
PF_tabular | PF_graphical | Maps_&_aerials

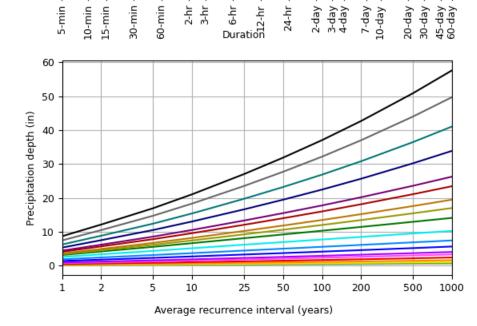
PF tabular

PD	DS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹									
Duration				Avera	ge recurren	ce interval (years)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.129 (0.107-0.156)	0.170 (0.141-0.207)	0.225 (0.186-0.274)	0.270 (0.222-0.332)	0.333 (0.265-0.424)	0.383 (0.298-0.498)	0.435 (0.329-0.579)	0.489 (0.360-0.671)	0.565 (0.399-0.809)	0.626 (0.426-0.928)
10-min	0.185 (0.154-0.224)	0.244 (0.203-0.296)	0.322 (0.267-0.393)	0.387 (0.318-0.476)	0.478 (0.379-0.608)	0.549 (0.427-0.713)	0.623 (0.472-0.830)	0.701 (0.516-0.961)	0.810 (0.571-1.16)	0.897 (0.611-1.33)
15-min	0.223 (0.186-0.271)	0.295 (0.245-0.358)	0.390 (0.323-0.475)	0.469 (0.385-0.576)	0.578 (0.459-0.735)	0.664 (0.516-0.863)	0.753 (0.571-1.00)	0.847 (0.624-1.16)	0.979 (0.691-1.40)	1.08 (0.739-1.61)
30-min	0.334 (0.278-0.406)	0.441 (0.367-0.536)	0.584 (0.484-0.711)	0.701 (0.577-0.862)	0.865 (0.687-1.10)	0.994 (0.773-1.29)	1.13 (0.855-1.50)	1.27 (0.934-1.74)	1.47 (1.03-2.10)	1.62 (1.11-2.41)
60-min	0.501 (0.417-0.608)	0.662 (0.550-0.804)	0.875 (0.725-1.07)	1.05 (0.865-1.29)	1.30 (1.03-1.65)	1.49 (1.16-1.94)	1.69 (1.28-2.25)	1.90 (1.40-2.61)	2.20 (1.55-3.15)	2.44 (1.66-3.61)
2-hr	0.754 (0.627-0.915)	0.979 (0.814-1.19)	1.28 (1.06-1.55)	1.52 (1.25-1.87)	1.85 (1.47-2.35)	2.11 (1.64-2.74)	2.38 (1.80-3.16)	2.65 (1.95-3.64)	3.03 (2.14-4.34)	3.33 (2.27-4.94)
3-hr	0.957 (0.796-1.16)	1.24 (1.03-1.50)	1.60 (1.33-1.95)	1.90 (1.56-2.33)	2.30 (1.83-2.93)	2.61 (2.03-3.39)	2.93 (2.22-3.90)	3.26 (2.40-4.47)	3.71 (2.62-5.31)	4.06 (2.76-6.02)
6-hr	1.40 (1.16-1.70)	1.80 (1.50-2.19)	2.32 (1.92-2.83)	2.74 (2.25-3.36)	3.30 (2.62-4.20)	3.73 (2.90-4.84)	4.16 (3.15-5.54)	4.60 (3.39-6.31)	5.20 (3.67-7.44)	5.66 (3.86-8.39)
12-hr	1.90 (1.58-2.30)	2.45 (2.04-2.98)	3.15 (2.61-3.84)	3.72 (3.06-4.57)	4.46 (3.54-5.67)	5.02 (3.90-6.52)	5.58 (4.23-7.43)	6.14 (4.52-8.42)	6.89 (4.86-9.86)	7.46 (5.08-11.1)
24-hr	2.58 (2.28-2.97)	3.37 (2.98-3.88)	4.36 (3.85-5.05)	5.16 (4.51-6.01)	6.19 (5.25-7.46)	6.97 (5.78-8.57)	7.73 (6.26-9.74)	8.50 (6.70-11.0)	9.51 (7.20-12.8)	10.3 (7.51-14.3)
2-day	3.15 (2.79-3.63)	4.21 (3.72-4.85)	5.56 (4.91-6.44)	6.65 (5.82-7.76)	8.11 (6.87-9.77)	9.21 (7.64-11.3)	10.3 (8.36-13.0)	11.4 (9.02-14.8)	12.9 (9.80-17.5)	14.1 (10.3-19.7)
3-day	3.37 (2.98-3.88)	4.58 (4.05-5.28)	6.16 (5.44-7.13)	7.46 (6.53-8.70)	9.23 (7.82-11.1)	10.6 (8.80-13.0)	12.0 (9.73-15.1)	13.5 (10.6-17.4)	15.4 (11.7-20.8)	17.0 (12.4-23.7)
4-day	3.60 (3.18-4.14)	4.94 (4.37-5.70)	6.73 (5.93-7.78)	8.20 (7.18-9.56)	10.2 (8.67-12.3)	11.8 (9.82-14.6)	13.5 (10.9-17.0)	15.2 (12.0-19.7)	17.6 (13.3-23.7)	19.5 (14.2-27.2)
7-day	4.10 (3.63-4.73)	5.70 (5.04-6.57)	7.82 (6.90-9.05)	9.59 (8.39-11.2)	12.1 (10.2-14.5)	14.0 (11.6-17.2)	16.0 (13.0-20.2)	18.1 (14.3-23.5)	21.1 (16.0-28.4)	23.4 (17.1-32.7)
10-day	4.44 (3.94-5.12)	6.20 (5.49-7.16)	8.57 (7.56-9.91)	10.5 (9.23-12.3)	13.3 (11.3-16.0)	15.5 (12.9-19.1)	17.8 (14.4-22.4)	20.2 (15.9-26.1)	23.6 (17.8-31.8)	26.3 (19.2-36.6)
20-day	5.34 (4.73-6.15)	7.53 (6.66-8.69)	10.5 (9.28-12.2)	13.0 (11.4-15.2)	16.6 (14.1-20.0)	19.4 (16.1-23.9)	22.4 (18.2-28.3)	25.7 (20.2-33.2)	30.2 (22.8-40.7)	33.9 (24.8-47.2)
30-day	6.25 (5.54-7.20)	8.84 (7.82-10.2)	12.4 (10.9-14.3)	15.4 (13.5-18.0)	19.7 (16.7-23.7)	23.2 (19.2-28.5)	26.9 (21.8-33.8)	30.8 (24.3-39.9)	36.4 (27.6-49.1)	41.0 (30.0-57.3)
45-day	7.46 (6.61-8.60)	10.5 (9.29-12.1)	14.7 (13.0-17.0)	18.3 (16.0-21.4)	23.5 (19.9-28.3)	27.7 (23.0-34.0)	32.2 (26.0-40.5)	37.0 (29.2-47.9)	44.0 (33.3-59.3)	49.7 (36.3-69.3)
60-day	8.69 (7.69-10.0)	12.1 (10.7-14.0)	16.9 (14.9-19.6)	21.0 (18.4-24.5)	27.0 (22.8-32.5)	31.8 (26.4-39.1)	37.0 (30.0-46.6)	42.7 (33.6-55.3)	50.8 (38.5-68.6)	57.6 (42.1-80.4)


¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.


Please refer to NOAA Atlas 14 document for more information.


Back to Top

PF graphical

24-hr

2-hr 3-hr

Dura	ation
5-min	2-day
10-min	— 3-day
15-min	- 4-day
— 30-min	— 7-day
- 60-min	— 10-day
2-hr	20-day
— 3-hr	— 30-day
— 6-hr	— 45-day
- 12-hr	— 60-day
- 24-hr	

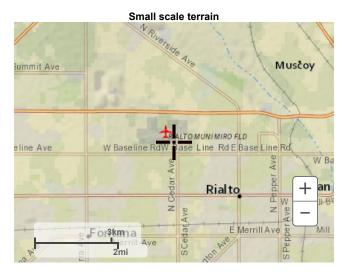
NOAA Atlas 14, Volume 6, Version 2

Precipitation depth (in)

40

30

20


10

0

Created (GMT): Tue Jul 11 16:27:32 2023

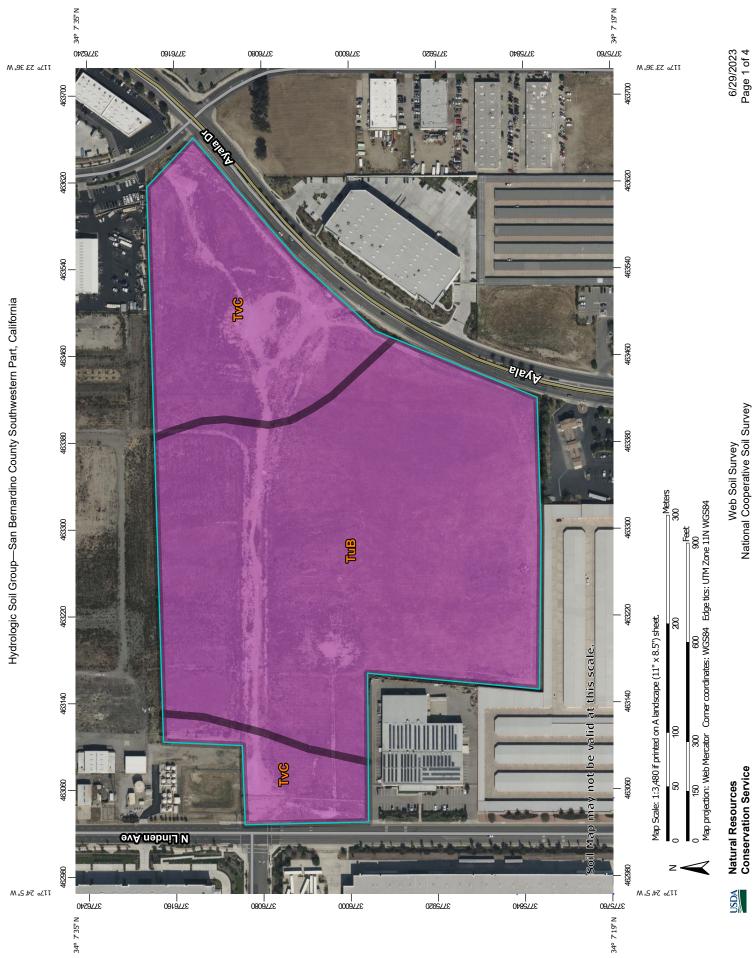
Maps & aerials

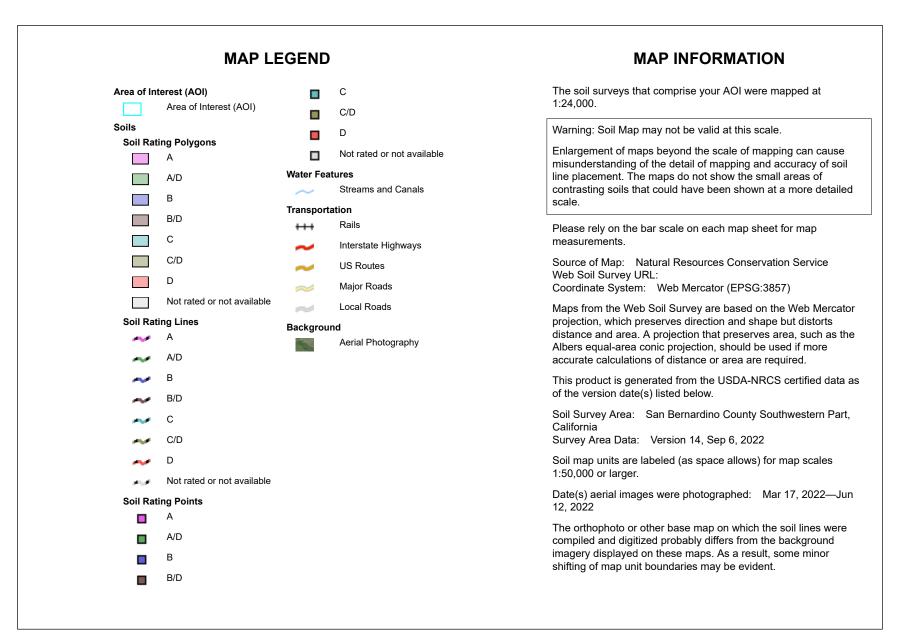
Large scale terrain

Large scale aerial

Back to Top

US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service National Water Center 1325 East West Highway Silver Spring, MD 20910 Questions?: <u>HDSC.Questions@noaa.gov</u>


Disclaimer


APPENDIX B

HYDROLOGIC SOIL TYPE CLASSIFICATION

		B	TENING	8	TIGERON	A	TOMERA	D	TRENTON	D
TA	LHAGE	A B	TENNO	a	TIGINON TIGRETI	8	IN31 NG1	A	TKEP	8
TA	LOKA	D	TENOT	a c	TIGUA	D	TOMOKA Tomasket	A/D B	TRES HERMANDS Tretten	B C
			TENRAG Tén sa s	8 D	TILFORD	8 8	TONA TA Tonahanda	c c	TREVIND TrexLer	D C
			TENSED TENSLEEF	C B	TILLEDA	6	TONEY TONGUE RIVER	D C	TRIAMI	č
TA	MBA	C/C	TEOCULLI	в	TILLMAN	c	TONINI	8	TRIASSIC TRICON	c
TA			TEPEE TEPETE	D B/D	TILMA TILSIT	с с	TONKA Tonkey	C D	TRIDELL Trident	8 D
			TERBIES TERESA	C C	TILTON TIMBERG	B	TONKIN TONKS	5 6/D	TRIGO	C
TA	MPICO	Б	TERINO	D	TIMBERLY	8	TONOPAH	8	TRIMBLE Trimmer	8 8
			TERMINAL TERMO	D C	TIMBLIN TIMENTWI	D B	TONOR Tonowek	C B	TRINCHERA Trinity	C D
			TEROUGE Terra ceia	D A/D	TIMKEN TIMMERMAN	DB	TONRA TONSINA	A	TRIBMAS	8
TA	NEUM	c	TERRAD	D	TIMMONS	в	TONUCO	B C	TRIPIT Triplen	C B
TĂ	NGAIR	c	TERRERA TERRETON	c c	TIMPAHUTE TIMPANOGOS	D B	TOOLE	و د	TRIPOLI Tripp	C B
			TERRIL TERRY	ສ B	TIMPER TIMPOONEKE	D B	TOP TOP IA	C D	TRITON TRIX	C
ŤA	NSEM	в	TERMILLIGER	c	TINULA	В	TOPPENISH	B/C	TROJAN	8 8
TA	NHAN	D	TESAJO TESCOTT	Ê.	TINA TIHDAHAY	С А	TOPTON Toquerville	C	TRDMHALD Trdmp	D C
			TESUQUE	B ▲	TINE TINGEY	A B	TUQUOP Torbuy	AB	TRONSEN TROOK	ç
TA	PIA	c	TEFONIA	в	TINSLEY	A	TORCHLIGHT	c	TROPAL	D
TA	RA	в	TETOTUM	c c	TINTON TINYTOWN	A B	TORHUNTA	c c	TRDSI TROUP	D A
			TEM Tex	B/D B	TIOCANO Tioga	D B	TORNING TORODA	8 8	TRDUT LREEK Trdutdale	C
			TEXLINE	B C	TIPPAH	Č B	TORONTO	Ċ	TROUT LAKE	C
TA	RRETE	D	THACKERY	8	TIPPECANDE TIPPER	Ā	TORPEDO LAKE Torreon	D	TROUT RIV er Troutville	A 8
			THADER THAGE	C C	TIPPERARY TIPPIPAH	A D	TORRES TORRINGTON	8 8	TROXEL TROY	B
			THANYON THATCHER	A 6	TIPPO TIPTON	C B	TORRO	C	TRUCE	č
TA	TIYEE	c	THATUNA	c	TIPTONVILLE	B	TORS I DO TORTUGAS	D	TRUCKEE Truckton	B
TA	TUM	c	THAYNE THEBES	В 6	TI RO TI SBURY	C B	TOSTON TOTELAKE	D A	TRUEFISSURE TRUESDALE	A C
			THEBO THEDALUND	D C	TISCH TISH T ang	C B	TOTEM	B	TRULL	c
TA	HAS a	A/D	THENAS	c	TITUSVILLE	c	TOUCHET	8	TRUMAN	6 8
TA	YLOR	c .	THED THERESA	с в	TIVER ON	A	TOULON	В В	TRUMBULL TRUMP	D
			THERIOT Thermal	D C	TIVY TDA	с с	TOURN TOURNOUIST	C B	TRYON TSCHIEDMA	D
			THERMOPOLIS THESS	D B	TOB)CO TOBIN	D B	TOURS	B	TUB	č
TA	ZLINA	A	THE TFORD	A	TUB1SH	c	TOUTLE	A D	TUBAC Yucannon	C C
	ALSON	c	THIEL THIOKOL	ĉ	TOBLER	8 D	TOWNEE	D B	TUCKERMAN TUCSON	D B
			THOENY THOMAS	D	TOBY	B	TOWNL EY TOWNSBURY	C B	TUCUNCART	в
TE	AP0 8	6	THORNDALE	D	TOOD	В	TOWNSEND	Ē	TUGHILL	D D
	ASDALE	в	THORNDIKE Thornock	C/D D	TODDLER TODDVILLE	8	TOWSON Toxanay	B D	TUJUNGA	A C
TE TE			THORNTON THORNHOOD	D B	TOEHEAD TUEJA	ċ.	TOY Toyah	D B	TUKNILA Tula	D
			THOROUGHFARE	8 C	TOEN	c	TOZE	в	TULANA	C/D
TE	DROW	6	THORR	8	TOGUS	B D	TRABUCO Track	С В/С	TULARE TULAROSA	C/D B
TE TE	HACHAPI	D .	THORREL Thom	8 8	TOHONA TOINE	C C	TRACY TRAER	B C	TULIA TULLAMASSEE	B C
TE			THREE MILE Throck		TOISNOT TOIYABE	D C	TRAIL Trail Creek	A B	TULLER TULLOCK	D
TE		в	THUNDERB LRD	D	TOKEEN	B	TRAM	в	TULLY	c
TE	LA E	в .	THURBER THURLONI	c	TOKUL TOLBY	с А	TRANSYLVANIA TRAPPER	B A	TULUKSAK TUMBEZ	D D
	LEFOND (LEPHONE D		THURLON Thurman		TOLEOD TOLICHA	ם ס	TRAPPIST TRAPPS	C B	TUMEY TUMITAS	D 8
			THURMONT THURSTON	8	TOLKE TOLL	8	TRASK TRAVELERS	Č D	TUNWATER	Ā
TE	LIDA (Ď.	TIAGOS	8	TOLLGATE	в	TRAVER	B/C	TUNICA	D
	LLER E	3	TIAK TIBAN		TOLLHOUSE TOLMAN	0	TRAVESS ILLA TRAVIS	D C	TUNIS TUNITAS	DB
			TIBBITTS TICA		TOLNA TOLO	8 8	TRAHICK Tray	B C	TUNKHANNDCK Tunnel	A B
		в 1	TICE TICHIGAN	c	TOLSONA	D	TREADWAY TREASURE	D	TUPELO	D
TE	MPLE E	5/5	TICHNOR	D	TOLT	Ď	TREBLOC	B D	TUPUKNUK TUQUE	D 8
TE	NA80 0	D .	TICKAPOO TICKASON		TOLTEC	C B	TREGO TRELDNA	C D	TURBEVILLE Turbotville	с с
	NAHA E NAS C				TOLVAR TOMAH	B	TREMANT TREMBLES	B	TURBYFILL	8
TE	NCEE D	· ·	TIETON	B	TOMAS	В	TREMPE	Ā	TURK	B D
TE	NERIFFE C		TIFFANY TIFTON		TOHAST TOME	C B	TREMPEALEAU TRENARY	B	TURKEYSPRINGS Turley	C C
TE	NIBAC E NDTES		TIGER CREEK Lank Hydrologic s		TOMEL FOUP INDICAT	ES THE SO	TRENT L GROUP HAS NO	B T BEEN I	TURLIN	В
NDTES A BLANK HYDROLOGIC SOIL GROUP INDICATES THE SOIL GROUP HAS NOT BEEN DETERMINED Tho Soil Groups such as 6/C indicates the drained/undrained situation										
SAN BERNARDINO COUNTY					S.C.S. SOIL NAMES					
FOR										
HYDROLOGY MANUAL HYDROLOGIC CLASSIFICATIONS										
					<u> </u>	48				(10 OF 2

(19 OF 21)

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
TuB	Tujunga loamy sand, 0 to 5 percent slopes	A	25.5	69.2%
TvC	Tujunga gravelly loamy sand, 0 to 9 percent slopes	A	11.3	30.8%
Totals for Area of Intere	est		36.8	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

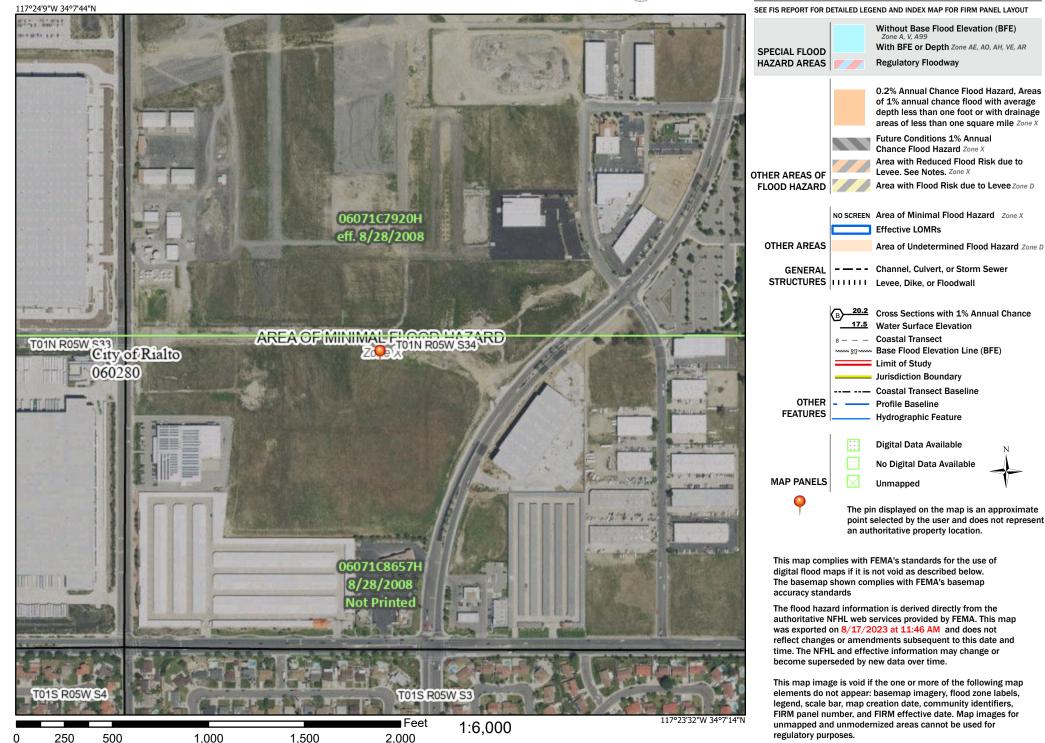
Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

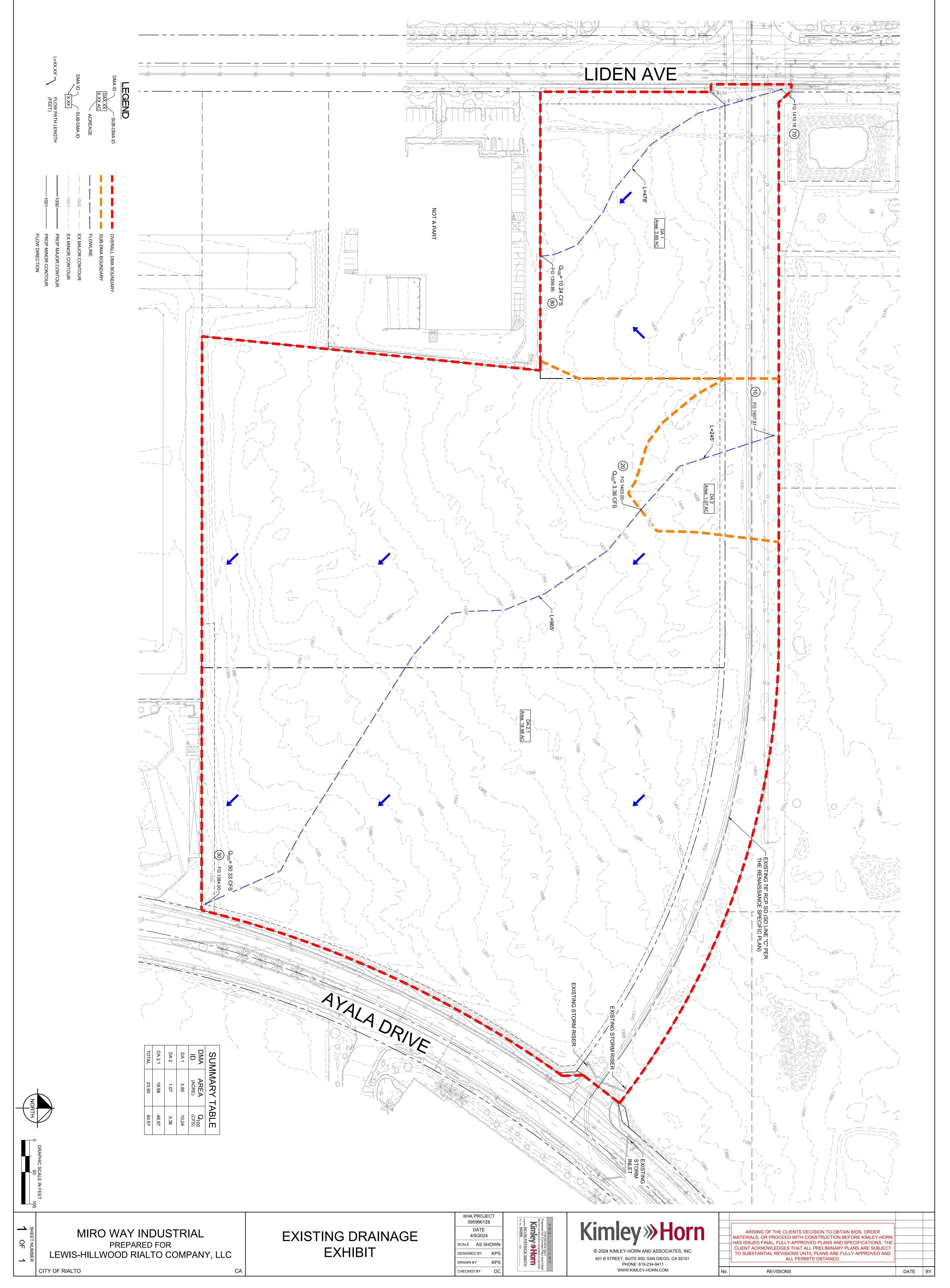
Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

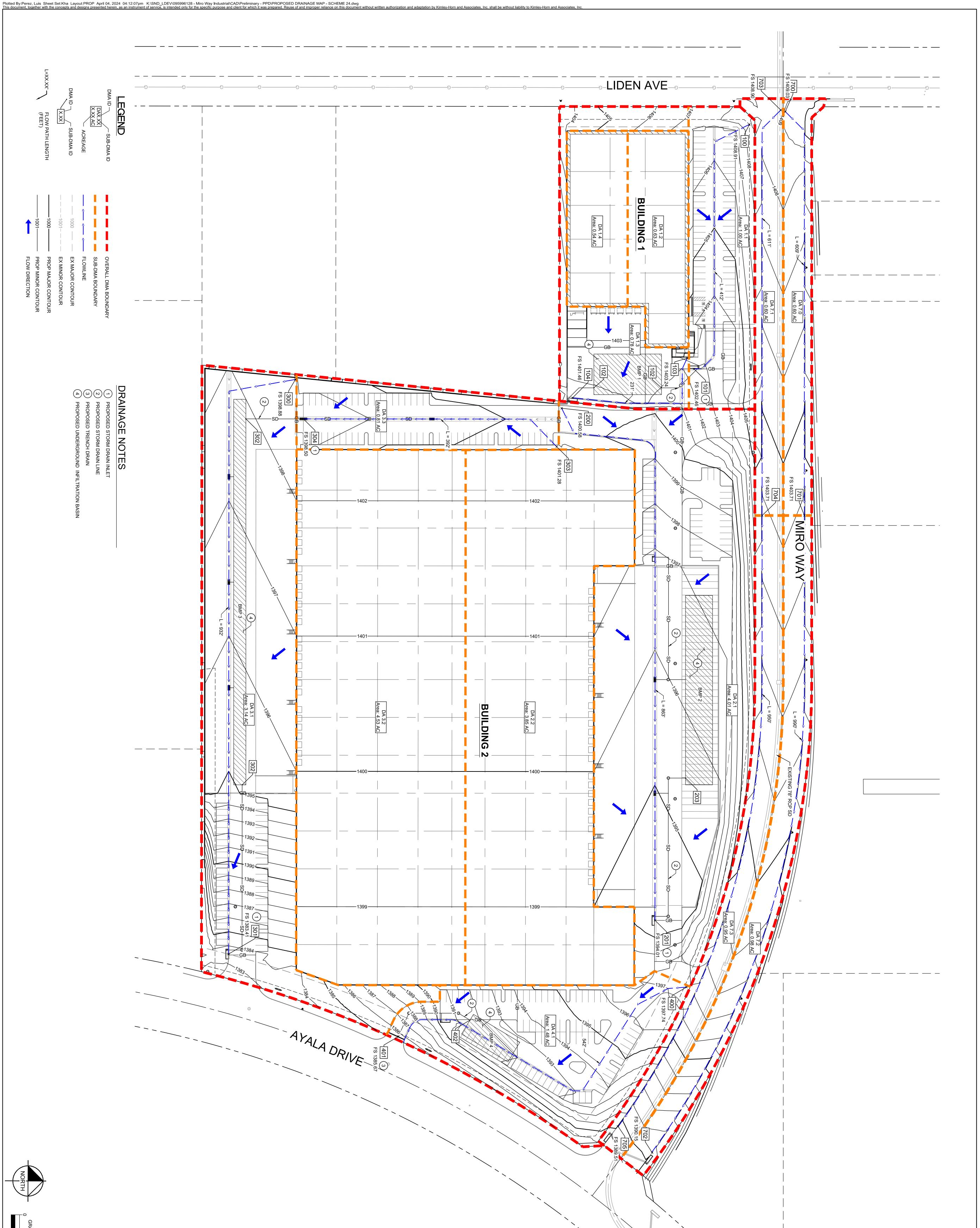

APPENDIX C

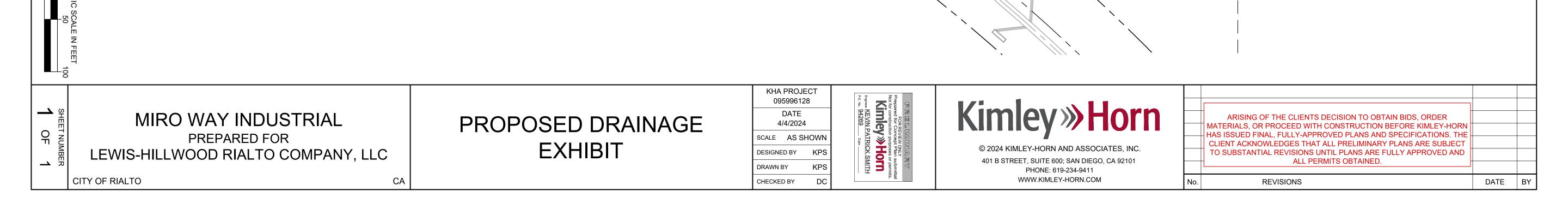
FEMA FIRMETTE

National Flood Hazard Layer FIRMette


Legend

Basemap Imagery Source: USGS National Map 2023


APPENDIX D


DRAINAGE EXHIBITS

Plotted By:Perez, Luis Sheet Set:Kha Layout:EX April 09, 2024 02:16:40pm K:\SND_LDEV\095996128 - Miro Way Industrial\CAD\Preliminary - PPD - Scheme 24\EXISTING DRAINAGE MAP - SCHEME 24.dwg This document, together with the concepts and designs presented herein, as an instrument of service, is intended only for the specific purpose and client for which it was prepared. Reuse of and improper reliance on this document without written authorization and adaptation by Kimley-Horn and Associates, Inc. shall be without liability to Kimley-Horn and Associates, Inc.

KYBW20巨子-HORN SHALL HAVE NO LIABILITY WHATSOEVER FOR ANY COST

MUMDEY-HORN SHALL HAVE NO LIABILITY WHATSOEVER FOR ANY COST

APPENDIX E

EXISITING CONDITIONS HYDROLOGY AES RATIONAL METHOD RESULTS

San Bernardino County Rational Hydrology Program (Hydrology Manual Date - August 1986) CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2018 Version 9.0 Rational Hydrology Study Date: 02/07/24 _____ MIRO WAY INDUSTRIAL PROJECT - RIALTO EXISTING CONDITION RATIONAL METHOD ANALYSIS 2-YR STORM DESIGN BY LP 02/07/24 _____ Program License Serial Number 6443 _____ ******** Hydrology Study Control Information ********* _____ Rational hydrology study storm event year is 2.0 Computed rainfall intensity: 1 hour rainfall = 0.662 (In.) Storm year = 2.00 Slope used for rainfall intensity curve b = 0.6000 Soil antecedent moisture condition (AMC) = 1 Process from Point/Station 10.000 to Point/Station 20.000 **** INITIAL AREA EVALUATION **** UNDEVELOPED (average cover) subarea Decimal fraction soil group A = 1.000Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 0.000SCS curve number for soil(AMC 2) = 50.00Adjusted SCS curve number for AMC 1 = 31.00Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.983(In/Hr) Initial subarea data: Initial area flow distance = 245.000(Ft.) Top (of initial area) elevation = 1407.570(Ft.) Bottom (of initial area) elevation = 1403.000(Ft.) Difference in elevation = 4.570(Ft.) Slope = 0.01865 s(%)= 1.87 TC = k(0.706)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 14.136 min. Rainfall intensity = 1.576(In/Hr) for a 2.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.339

```
Subarea runoff = 0.571(CFS)
Total initial stream area =
                             1.070(Ac.)
Pervious area fraction = 1.000
Initial area Fm value = 0.983(In/Hr)
Process from Point/Station 20.000 to Point/Station
                                                    30.000
**** IRREGULAR CHANNEL FLOW TRAVEL TIME ****
Estimated mean flow rate at midpoint of channel =
                                             0.000(CFS)
Depth of flow = 0.030(Ft.), Average velocity = 0.931(Ft/s)
      ****** Irregular Channel Data *********
  -
                                       Information entered for subchannel number 1 :
Point number 'X' coordinate 'Y' coordinate
                                 0.50
      1
                 0.00
      2
                40.00
                                 0.00
      3
                 60.00
                                 0.00
      4 100.00
                         0.50
Manning's 'N' friction factor = 0.020
_____
Sub-Channel flow = 0.615(CFS)
 .
     ' flow top width = 24.723(Ft.)
      .
 .
         velocity= 0.931(Ft/s)
      .
 .
           area = 0.660(Sq.Ft)
     .
              Froude number = 1.004
Upstream point elevation = 1403.000(Ft.)
Downstream point elevation = 1384.000(Ft.)
Flow length = 965.000(Ft.)
Travel time = 17.27 min.
Time of concentration = 31.41 min.
Depth of flow = 0.030(Ft.)
Average velocity = 0.931(Ft/s)
Total irregular channel flow = 0.615(CFS)
Irregular channel normal depth above invert elev. = 0.030(Ft.)
Average velocity of channel(s) = 0.931(Ft/s)
Adding area flow to channel
UNDEVELOPED (average cover) subarea
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 50.00
Adjusted SCS curve number for AMC 1 = 31.00
Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.983(In/Hr)
The area added to the existing stream causes a
a lower flow rate of Q = 0.000(CFS)
therefore the upstream flow rate of Q = 0.571(CFS) is being used
```

```
Rainfall intensity = 0.976(In/Hr) for a 2.0 year storm
Effective runoff coefficient used for area, (total area with modified
rational method)(Q=KCIA) is C = 0.000
Subarea runoff = 0.000(CFS) for
                                    18.980(Ac.)
Total runoff =
                  0.571(CFS)
Effective area this stream =
                               20.05(Ac.)
                                        20.05(Ac.)
Total Study Area (Main Stream No. 1) =
Area averaged Fm value = 0.983(In/Hr)
Depth of flow = 0.028(Ft.), Average velocity = 0.907(Ft/s)
70.000 to Point/Station
Process from Point/Station
                                                          80.000
**** INITIAL AREA EVALUATION ****
UNDEVELOPED (average cover) subarea
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 50.00
Adjusted SCS curve number for AMC 1 = 31.00
Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.983(In/Hr)
Initial subarea data:
Initial area flow distance = 478.000(Ft.)
Top (of initial area) elevation = 1410.160(Ft.)
Bottom (of initial area) elevation = 1399.860(Ft.)
Difference in elevation =
                           10.300(Ft.)
Slope =
         0.02155 s(%)=
                              2.15
TC = k(0.706)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 17.943 min.
Rainfall intensity =
                     1.366(In/Hr) for a
                                             2.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.252
Subarea runoff =
                    1.326(CFS)
Total initial stream area =
                                3.850(Ac.)
Pervious area fraction = 1.000
Initial area Fm value =
                         0.983(In/Hr)
End of computations, Total Study Area = 23.90 (Ac.)
The following figures may
be used for a unit hydrograph study of the same area.
Note: These figures do not consider reduced effective area
effects caused by confluences in the rational equation.
```

```
Area averaged pervious area fraction(Ap) = 1.000
Area averaged SCS curve number = 50.0
```

San Bernardino County Rational Hydrology Program (Hydrology Manual Date - August 1986) CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2018 Version 9.0 Rational Hydrology Study Date: 02/06/24 _____ MIRO WAY INDUSTRIAL PROJECT - RIALTO EXISTING CONDITION RATIONAL METHOD ANALYSIS 100-YR STORM DESIGN BY LP 02/06/24 _____ Program License Serial Number 6443 _____ ******** Hydrology Study Control Information ********* _____ Rational hydrology study storm event year is 100.0 Computed rainfall intensity: Storm year = 100.00 1 hour rainfall = 1.690 (In.) Slope used for rainfall intensity curve b = 0.6000 Soil antecedent moisture condition (AMC) = 3 Process from Point/Station 10.000 to Point/Station 20.000 **** INITIAL AREA EVALUATION **** UNDEVELOPED (average cover) subarea Decimal fraction soil group A = 1.000Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 0.000SCS curve number for soil(AMC 2) = 50.00Adjusted SCS curve number for AMC 3 = 70.00Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.532(In/Hr) Initial subarea data: Initial area flow distance = 245.000(Ft.) Top (of initial area) elevation = 1407.570(Ft.) Bottom (of initial area) elevation = 1403.000(Ft.) Difference in elevation = 4.570(Ft.) Slope = 0.01865 s(%)= 1.87 TC = k(0.706)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 14.136 min. Rainfall intensity = 4.023(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.781

```
Subarea runoff = 3.362(CFS)
Total initial stream area =
                             1.070(Ac.)
Pervious area fraction = 1.000
Initial area Fm value = 0.532(In/Hr)
Process from Point/Station 20.000 to Point/Station
                                                    30.000
**** IRREGULAR CHANNEL FLOW TRAVEL TIME ****
Estimated mean flow rate at midpoint of channel =
                                              0.000(CFS)
Depth of flow = 0.231(Ft.), Average velocity = 3.022(Ft/s)
      ******* Irregular Channel Data ********
  -
                                       Information entered for subchannel number 1 :
Point number 'X' coordinate 'Y' coordinate
                                 0.50
      1
                  0.00
      2
                 40.00
                                 0.00
      3
                 60.00
                                 0.00
                          0.50
      4 100.00
Manning's 'N' friction factor = 0.020
_____
Sub-Channel flow = 26.879(CFS)
     ' flow top width = 56.972(Ft.)
      .
 .
         velocity= 3.022(Ft/s)
      .
 .
           area = 8.893(Sq.Ft)
     .
              Froude number = 1.348
Upstream point elevation = 1403.000(Ft.)
Downstream point elevation = 1384.000(Ft.)
Flow length = 965.000(Ft.)
Travel time = 5.32 min.
Time of concentration = 19.46 min.
Depth of flow = 0.231(Ft.)
Average velocity = 3.022(Ft/s)
Total irregular channel flow = 26.879(CFS)
Irregular channel normal depth above invert elev. = 0.231(Ft.)
Average velocity of channel(s) = 3.022(Ft/s)
Adding area flow to channel
UNDEVELOPED (average cover) subarea
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 50.00
Adjusted SCS curve number for AMC 3 = 70.00
Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.532(In/Hr)
Rainfall intensity = 3.321(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area, (total area with modified
rational method)(Q=KCIA) is C = 0.756
```

```
Subarea runoff = 46.966(CFS) for 18.980(Ac.)
Total runoff =
                 50.327(CFS)
Effective area this stream =
                                20.05(Ac.)
Total Study Area (Main Stream No. 1) =
                                        20.05(Ac.)
Area averaged Fm value = 0.532(In/Hr)
Depth of flow = 0.313(Ft.), Average velocity = 3.577(Ft/s)
Process from Point/Station 70.000 to Point/Station
                                                           80.000
**** INITIAL AREA EVALUATION ****
UNDEVELOPED (average cover) subarea
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 50.00
Adjusted SCS curve number for AMC 3 = 70.00
Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.532(In/Hr)
Initial subarea data:
Initial area flow distance = 478.000(Ft.)
Top (of initial area) elevation = 1410.160(Ft.)
Bottom (of initial area) elevation = 1399.860(Ft.)
Difference in elevation =
                           10.300(Ft.)
Slope =
         0.02155 s(%)=
                              2.15
TC = k(0.706)*[(length^3)/(elevation change)]^{0.2}
Initial area time of concentration = 17.943 min.
Rainfall intensity =
                        3.487(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.763
Subarea runoff =
                   10.237(CFS)
Total initial stream area =
                                 3.850(Ac.)
Pervious area fraction = 1.000
Initial area Fm value =
                         0.532(In/Hr)
End of computations, Total Study Area =
                                              23.90 (Ac.)
The following figures may
be used for a unit hydrograph study of the same area.
Note: These figures do not consider reduced effective area
effects caused by confluences in the rational equation.
Area averaged pervious area fraction(Ap) = 1.000
```

```
Area averaged SCS curve number = 50.0
```

APPENDIX F

PROPOSED CONDITIONS HYDROLOGY AES RATIONAL METHOD RESULTS

San Bernardino County Rational Hydrology Program (Hydrology Manual Date - August 1986) CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2018 Version 9.0 Rational Hydrology Study Date: 04/04/24 _____ MIRO WAY INDUSTRIAL PROJECT - RILATO PROPOSED CONDITION RATIONAL METHOD ANALYSIS 2-YR DESIGN STORM BY LP 04/04/24 _____ Program License Serial Number 6443 _____ ******** Hydrology Study Control Information ********* _____ Rational hydrology study storm event year is 2.0 Computed rainfall intensity: Storm year = 2.00 1 hour rainfall = 0.662 (In.) Slope used for rainfall intensity curve b = 0.6000 Soil antecedent moisture condition (AMC) = 1Process from Point/Station 100.000 to Point/Station 101.000 **** INITIAL AREA EVALUATION **** COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000SCS curve number for soil(AMC 2) = 32.00Adjusted SCS curve number for AMC 1 = 16.60Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.100(In/Hr) Initial subarea data: Initial area flow distance = 412.000(Ft.) Top (of initial area) elevation = 1408.910(Ft.) Bottom (of initial area) elevation = 1402.460(Ft.) Difference in elevation = 6.450(Ft.) Slope = 0.01566 s(%)= 1.57 TC = k(0.304)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 7.761 min. Rainfall intensity = 2.258(In/Hr) for a 2.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.860

```
Subarea runoff = 1.943(CFS)
Total initial stream area =
                               1.000(Ac.)
Pervious area fraction = 0.100
Initial area Fm value = 0.100(In/Hr)
Process from Point/Station
                            101.000 to Point/Station
                                                       101.000
**** SUBAREA FLOW ADDITION ****
COMMERCIAL subarea type
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 32.00
Adjusted SCS curve number for AMC 1 = 16.60
Pervious ratio(Ap) = 0.1000
                            Max loss rate(Fm) = 0.100(In/Hr)
Time of concentration = 7.76 min.
                       2.258(In/Hr) for a 2.0 year storm
Rainfall intensity =
Effective runoff coefficient used for area, (total area with modified
rational method)(Q=KCIA) is C = 0.860
Subarea runoff =
                 1.224(CFS) for 0.630(Ac.)
Total runoff =
                 3.166(CFS)
Effective area this stream = 1.63(Ac.)
Total Study Area (Main Stream No. 1) =
                                        1.63(Ac.)
Area averaged Fm value = 0.100(In/Hr)
```

```
Upstream point/station elevation = 1399.460(Ft.)

Downstream point/station elevation = 1398.800(Ft.)

Pipe length = 66.00(Ft.) Manning's N = 0.012

No. of pipes = 1 Required pipe flow = 3.166(CFS)

Nearest computed pipe diameter = 12.00(In.)

Calculated individual pipe flow = 3.166(CFS)

Normal flow depth in pipe = 8.27(In.)

Flow top width inside pipe = 11.11(In.)

Critical Depth = 9.14(In.)

Pipe flow velocity = 5.48(Ft/s)

Travel time through pipe = 0.20 min.

Time of concentration (TC) = 7.96 min.
```

```
COMMERCIAL subarea type
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 32.00
Adjusted SCS curve number for AMC 1 = 16.60
Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.100(In/Hr)
Initial subarea data:
Initial area flow distance = 231.000(Ft.)
Top (of initial area) elevation = 1403.240(Ft.)
Bottom (of initial area) elevation = 1401.460(Ft.)
Difference in elevation = 1.780(Ft.)
Slope =
          0.00771 s(%)=
                               0.77
TC = k(0.304)*[(length^3)/(elevation change)]^{0.2}
Initial area time of concentration = 7.095 min.
Rainfall intensity = 2.383(In/Hr) for a 2.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.862
Subarea runoff =
                     1.603(CFS)
Total initial stream area =
                                  0.780(Ac.)
Pervious area fraction = 0.100
Initial area Fm value = 0.100(In/Hr)
```

```
COMMERCIAL subarea type
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 32.00
Adjusted SCS curve number for AMC 1 = 16.60
Pervious ratio(Ap) = 0.1000
                              Max loss rate(Fm) = 0.100(In/Hr)
Time of concentration = 7.10 min.
Rainfall intensity =
                         2.383(In/Hr) for a 2.0 year storm
Effective runoff coefficient used for area, (total area with modified
rational method)(Q=KCIA) is C = 0.862
Subarea runoff =
                     1.110(CFS) for
                                      0.540(Ac.)
Total runoff =
                   2.713(CFS)
                                  1.32(Ac.)
Effective area this stream =
Total Study Area (Main Stream No. 1) =
                                            2.95(Ac.)
Area averaged Fm value = 0.100(In/Hr)
```

**** PIPEFLOW TRAVEL TIME (Program estimated size) ****

```
Upstream point/station elevation = 1398.460(Ft.)
Downstream point/station elevation = 1398.021(Ft.)
Pipe length = 44.00(Ft.)
                           Manning's N = 0.012
No. of pipes = 1 Required pipe flow =
                                       2.713(CFS)
Nearest computed pipe diameter = 12.00(In.)
Calculated individual pipe flow = 2.713(CFS)
Normal flow depth in pipe = 7.42(In.)
Flow top width inside pipe =
                           11.66(In.)
Critical Depth =
                 8.47(In.)
Pipe flow velocity =
                       5.32(Ft/s)
Travel time through pipe = 0.14 min.
Time of concentration (TC) = 7.23 min.
Process from Point/Station
                            200.000 to Point/Station
                                                       201.000
**** INITIAL AREA EVALUATION ****
COMMERCIAL subarea type
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 32.00
Adjusted SCS curve number for AMC 1 = 16.60
Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.100(In/Hr)
Initial subarea data:
Initial area flow distance = 863.000(Ft.)
Top (of initial area) elevation = 1400.580(Ft.)
Bottom (of initial area) elevation = 1394.010(Ft.)
Difference in elevation =
                          6.570(Ft.)
Slope = 0.00761 s(%)=
                            0.76
TC = k(0.304)*[(length^3)/(elevation change)]^{0.2}
Initial area time of concentration = 12.049 min.
Rainfall intensity =
                       1.734(In/Hr) for a
                                          2.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.848
Subarea runoff =
                   5.899(CFS)
Total initial stream area =
                               4.010(Ac.)
Pervious area fraction = 0.100
Initial area Fm value = 0.100(In/Hr)
Process from Point/Station
                            201.000 to Point/Station
                                                       201.000
**** SUBAREA FLOW ADDITION ****
```

COMMERCIAL subarea type Decimal fraction soil group A = 1.000

Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 0.000SCS curve number for soil(AMC 2) = 32.00Adjusted SCS curve number for AMC 1 = 16.60Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.100(In/Hr) Time of concentration = 12.05 min. Rainfall intensity = 1.734(In/Hr) for a 2.0 year storm Effective runoff coefficient used for area, (total area with modified rational method)(Q=KCIA) is C = 0.848 Subarea runoff = 5.663(CFS) for 3.850(Ac.) Total runoff = 11.562(CFS) Effective area this stream = 7.86(Ac.) Total Study Area (Main Stream No. 1) = 10.81(Ac.) Area averaged Fm value = 0.100(In/Hr) Process from Point/Station 201.000 to Point/Station 203.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1391.010(Ft.) Downstream point/station elevation = 1388.485(Ft.) Pipe length = 253.00(Ft.) Manning's N = 0.012No. of pipes = 1 Required pipe flow = 11.562(CFS) Nearest computed pipe diameter = 21.00(In.) Calculated individual pipe flow = 11.562(CFS) Normal flow depth in pipe = 12.63(In.) Flow top width inside pipe = 20.56(In.) Critical Depth = 15.21(In.) Pipe flow velocity = 7.65(Ft/s) Travel time through pipe = 0.55 min. Time of concentration (TC) = 12.60 min. Process from Point/Station 300.000 to Point/Station 301.000 **** INITIAL AREA EVALUATION **** COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 0.000SCS curve number for soil(AMC 2) = 32.00Adjusted SCS curve number for AMC 1 = 16.60Pervious ratio(Ap) = 0.1000Max loss rate(Fm) = 0.100(In/Hr) Initial subarea data: Initial area flow distance = 932.000(Ft.) Top (of initial area) elevation = 1398.880(Ft.)

```
Bottom (of initial area) elevation = 1383.410(Ft.)
Difference in elevation =
                          15.470(Ft.)
         0.01660 s(%)=
                             1.66
Slope =
TC = k(0.304)*[(length^3)/(elevation change)]^{0.2}
Initial area time of concentration =
                                   10.632 min.
Rainfall intensity =
                       1.870(In/Hr) for a
                                         2.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.852
Subarea runoff =
                   5.001(CFS)
Total initial stream area =
                               3.140(Ac.)
Pervious area fraction = 0.100
Initial area Fm value = 0.100(In/Hr)
Process from Point/Station
                             301.000 to Point/Station
                                                        302.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation = 1380.410(Ft.)
Downstream point/station elevation = 1377.730(Ft.)
Pipe length = 267.00(Ft.)
                           Manning's N = 0.012
No. of pipes = 1 Required pipe flow =
                                        5.001(CFS)
Nearest computed pipe diameter = 15.00(In.)
Calculated individual pipe flow =
                                   5.001(CFS)
Normal flow depth in pipe =
                            9.36(In.)
Flow top width inside pipe =
                            14.53(In.)
Critical Depth =
                 10.89(In.)
Pipe flow velocity =
                      6.21(Ft/s)
Travel time through pipe = 0.72 min.
Time of concentration (TC) =
                          11.35 min.
Process from Point/Station
                             302.000 to Point/Station
                                                        302.000
**** SUBAREA FLOW ADDITION ****
COMMERCIAL subarea type
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 32.00
Adjusted SCS curve number for AMC 1 = 16.60
Pervious ratio(Ap) = 0.1000
                            Max loss rate(Fm) = 0.100(In/Hr)
Time of concentration =
                       11.35 min.
                       1.798(In/Hr) for a 2.0 year storm
Rainfall intensity =
Effective runoff coefficient used for area, (total area with modified
rational method)(Q=KCIA) is C = 0.850
Subarea runoff =
                   6.719(CFS) for
                                    4.530(Ac.)
Total runoff =
                 11.721(CFS)
Effective area this stream =
                              7.67(Ac.)
```

```
Total Study Area (Main Stream No. 1) =
                                         18.48(Ac.)
Area averaged Fm value = 0.100(In/Hr)
Process from Point/Station
                             303.000 to Point/Station
                                                        304.000
**** INITIAL AREA EVALUATION ****
COMMERCIAL subarea type
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 32.00
Adjusted SCS curve number for AMC 1 = 16.60
Pervious ratio(Ap) = 0.1000
                          Max loss rate(Fm) = 0.100(In/Hr)
Initial subarea data:
Initial area flow distance = 392.000(Ft.)
Top (of initial area) elevation = 1401.280(Ft.)
Bottom (of initial area) elevation = 1398.500(Ft.)
Difference in elevation =
                           2.780(Ft.)
Slope =
         0.00709 s(\%) =
                             0.71
TC = k(0.304)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration =
                                    8.913 min.
Rainfall intensity =
                       2.078(In/Hr) for a
                                            2.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.857
Subarea runoff =
                   1.442(CFS)
Total initial stream area =
                               0.810(Ac.)
Pervious area fraction = 0.100
Initial area Fm value =
                        0.100(In/Hr)
Process from Point/Station
                             304.000 to Point/Station
                                                        302.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation = 1395.500(Ft.)
Downstream point/station elevation = 1384.650(Ft.)
Pipe length = 85.00(Ft.)
                           Manning's N = 0.012
No. of pipes = 1 Required pipe flow =
                                        1.442(CFS)
Nearest computed pipe diameter =
                                 6.00(In.)
Calculated individual pipe flow =
                                   1.442(CFS)
Normal flow depth in pipe =
                            3.57(In.)
Flow top width inside pipe =
                            5.89(In.)
Critical depth could not be calculated.
Pipe flow velocity =
                      11.83(Ft/s)
Travel time through pipe = 0.12 min.
Time of concentration (TC) =
                          9.03 min.
```

```
COMMERCIAL subarea type
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 32.00
Adjusted SCS curve number for AMC 1 = 16.60
Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.100(In/Hr)
Initial subarea data:
Initial area flow distance = 542.000(Ft.)
Top (of initial area) elevation = 1397.740(Ft.)
Bottom (of initial area) elevation = 1385.670(Ft.)
Difference in elevation =
                            12.070(Ft.)
Slope =
          0.02227 s(%)=
                               2.23
TC = k(0.304)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 8.071 min.
Rainfall intensity = 2.206(In/Hr) for a 2.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.859
Subarea runoff =
                    2.805(CFS)
Total initial stream area =
                                  1.480(Ac.)
Pervious area fraction = 0.100
Initial area Fm value = 0.100(In/Hr)
```

```
Upstream point/station elevation = 1382.670(Ft.)

Downstream point/station elevation = 1381.361(Ft.)

Pipe length = 131.00(Ft.) Manning's N = 0.012

No. of pipes = 1 Required pipe flow = 2.805(CFS)

Nearest computed pipe diameter = 12.00(In.)

Calculated individual pipe flow = 2.805(CFS)

Normal flow depth in pipe = 7.59(In.)

Flow top width inside pipe = 11.57(In.)

Critical Depth = 8.62(In.)

Pipe flow velocity = 5.36(Ft/s)

Travel time through pipe = 0.41 min.

Time of concentration (TC) = 8.48 min.
```

```
COMMERCIAL subarea type
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 32.00
Adjusted SCS curve number for AMC 1 = 16.60
Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.100(In/Hr)
Initial subarea data:
Initial area flow distance = 609.000(Ft.)
Top (of initial area) elevation = 1409.030(Ft.)
Bottom (of initial area) elevation = 1403.710(Ft.)
Difference in elevation =
                      5.320(Ft.)
Slope = 0.00874 s(%)=
                           0.87
TC = k(0.304)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 10.197 min.
Rainfall intensity = 1.917(In/Hr) for a
                                          2.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.853
Subarea runoff =
                   0.981(CFS)
Total initial stream area =
                              0.600(Ac.)
Pervious area fraction = 0.100
Initial area Fm value = 0.100(In/Hr)
Process from Point/Station 701.000 to Point/Station
                                                     702.000
**** IRREGULAR CHANNEL FLOW TRAVEL TIME ****
Estimated mean flow rate at midpoint of channel =
                                                0.000(CFS)
Depth of flow = 0.290(Ft.), Average velocity =
                                            1.783(Ft/s)
       ******* Irregular Channel Data **********
    _____
Information entered for subchannel number 1 :
Point number 'X' coordinate 'Y' coordinate
                   0.00
                                   0.77
      1
       2
                   30.00
                                   0.17
      3
                  32.00
                                   0.00
      4
                   32.00
                                   0.50
      5
                   42.00
                                   0.70
Manning's 'N' friction factor = 0.020
_____
Sub-Channel flow =
                     1.376(CFS)
 . .
              flow top width =
                                 8.009(Ft.)
 .
       ı.
           velocity=
                      1.783(Ft/s)
 .
      .
              area =
                         0.771(Sq.Ft)
              Froude number = 1.013
Upstream point elevation = 1403.710(Ft.)
Downstream point elevation = 1390.150(Ft.)
Flow length = 990.000(Ft.)
```

```
Travel time =
                 9.25 min.
Time of concentration =
                        19.45 min.
Depth of flow =
                 0.290(Ft.)
Average velocity =
                    1.783(Ft/s)
Total irregular channel flow =
                                 1.376(CFS)
Irregular channel normal depth above invert elev. =
                                                   0.290(Ft.)
Average velocity of channel(s) =
                                 1.783(Ft/s)
Adding area flow to channel
COMMERCIAL subarea type
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 32.00
Adjusted SCS curve number for AMC 1 = 16.60
Pervious ratio(Ap) = 0.1000
                              Max loss rate(Fm)=
                                                    0.100(In/Hr)
Rainfall intensity =
                        1.301(In/Hr) for a
                                             2.0 year storm
Effective runoff coefficient used for area, (total area with modified
rational method)(Q=KCIA) is C = 0.831
Subarea runoff =
                     0.727(CFS) for
                                      0.980(Ac.)
Total runoff =
                   1.708(CFS)
                                  1.58(Ac.)
Effective area this stream =
Total Study Area (Main Stream No. 1) =
                                           22.35(Ac.)
Area averaged Fm value =
                         0.100(In/Hr)
Depth of flow =
                 0.307(Ft.), Average velocity = 1.869(Ft/s)
Process from Point/Station
                              703.000 to Point/Station
                                                           704.000
**** INITIAL AREA EVALUATION ****
COMMERCIAL subarea type
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 32.00
Adjusted SCS curve number for AMC 1 = 16.60
Pervious ratio(Ap) = 0.1000
                             Max loss rate(Fm)=
                                                    0.100(In/Hr)
Initial subarea data:
Initial area flow distance =
                             611.000(Ft.)
Top (of initial area) elevation = 1408.900(Ft.)
Bottom (of initial area) elevation = 1403.710(Ft.)
Difference in elevation =
                            5.190(Ft.)
          0.00849 s(%)=
Slope =
                              0.85
TC = k(0.304)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration =
                                     10.268 min.
Rainfall intensity =
                        1.909(In/Hr) for a
                                               2.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.853
Subarea runoff =
                     0.977(CFS)
```

```
Total initial stream area =
                                0.600(Ac.)
Pervious area fraction = 0.100
Initial area Fm value = 0.100(In/Hr)
Process from Point/Station 704.000 to Point/Station 705.000
**** IRREGULAR CHANNEL FLOW TRAVEL TIME ****
Estimated mean flow rate at midpoint of channel = 0.000(CFS)
Depth of flow = 0.287(Ft.), Average velocity = 1.844(Ft/s)
       ******* Irregular Channel Data *********
_____
Information entered for subchannel number 1 :
Point number 'X' coordinate 'Y' coordinate
                   0.00
       1
                                    0.77

        2
        30.00
        0.17

        3
        32.00
        0.00

        4
        32.00
        0.50

        5
        42.00
        0.70

Manning's 'N' friction factor = 0.020
_____
Sub-Channel flow = 1.372(CFS)
      ' flow top width = 7.835(Ft.)
      .
  .
          velocity= 1.844(Ft/s)
      .
 .
            area = 0.744(Sq.Ft)
      .
               Froude number = 1.055
Upstream point elevation = 1403.710(Ft.)
Downstream point elevation = 1389.510(Ft.)
Flow length = 950.000(Ft.)
Travel time = 8.58 min.
Time of concentration = 18.85 min.
Depth of flow = 0.287(Ft.)
Average velocity = 1.844(Ft/s)
Total irregular channel flow = 1.372(CFS)
Irregular channel normal depth above invert elev. = 0.287(Ft.)
Average velocity of channel(s) = 1.844(Ft/s)
Adding area flow to channel
COMMERCIAL subarea type
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 32.00
Adjusted SCS curve number for AMC 1 = 16.60
Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.100(In/Hr)
Rainfall intensity = 1.326(In/Hr) for a 2.0 year storm
Effective runoff coefficient used for area, (total area with modified
rational method)(Q=KCIA) is C = 0.832
```

Subarea runoff = 0.733(CFS) for 0.950(Ac.) Total runoff = 1.710(CFS) Effective area this stream = 1.55(Ac.) Total Study Area (Main Stream No. 1) = 23.90(Ac.) Area averaged Fm value = 0.100(In/Hr) Depth of flow = 0.304(Ft.), Average velocity = 1.934(Ft/s) End of computations, Total Study Area = 23.90 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Note: These figures do not consider reduced effective area effects caused by confluences in the rational equation.

```
Area averaged pervious area fraction(Ap) = 0.100
Area averaged SCS curve number = 32.0
```

San Bernardino County Rational Hydrology Program (Hydrology Manual Date - August 1986) CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2018 Version 9.0 Rational Hydrology Study Date: 04/04/24 _____ MIRO WAY INDUSTRIAL PROJECT - RILATO PROPOSED CONDITION RATIONAL METHOD ANALYSIS **100-YR DESIGN STORM** BY LP 04/04/24 _____ Program License Serial Number 6443 _____ ******** Hydrology Study Control Information ********* _____ Rational hydrology study storm event year is 100.0 Computed rainfall intensity: Storm year = 100.00 1 hour rainfall = 1.690 (In.) Slope used for rainfall intensity curve b = 0.6000 Soil antecedent moisture condition (AMC) = 3 Process from Point/Station 100.000 to Point/Station 101.000 **** INITIAL AREA EVALUATION **** COMMERCIAL subarea type Decimal fraction soil group A = 1.000Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000SCS curve number for soil(AMC 2) = 32.00Adjusted SCS curve number for AMC 3 = 52.00Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.079(In/Hr) Initial subarea data: Initial area flow distance = 412.000(Ft.) Top (of initial area) elevation = 1408.910(Ft.) Bottom (of initial area) elevation = 1402.460(Ft.) Difference in elevation = 6.450(Ft.) Slope = 0.01566 s(%)= 1.57 TC = k(0.304)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 7.761 min. Rainfall intensity = 5.766(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.888

```
Subarea runoff = 5.118(CFS)
Total initial stream area =
                               1.000(Ac.)
Pervious area fraction = 0.100
Initial area Fm value = 0.079(In/Hr)
Process from Point/Station
                            101.000 to Point/Station
                                                        101.000
**** SUBAREA FLOW ADDITION ****
COMMERCIAL subarea type
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 32.00
Adjusted SCS curve number for AMC 3 = 52.00
Pervious ratio(Ap) = 0.1000
                            Max loss rate(Fm) = 0.079(In/Hr)
Time of concentration = 7.76 min.
Rainfall intensity =
                       5.766(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area, (total area with modified
rational method)(Q=KCIA) is C = 0.888
Subarea runoff =
                 3.225(CFS) for
                                    0.630(Ac.)
Total runoff =
                  8.343(CFS)
Effective area this stream =
                              1.63(Ac.)
Total Study Area (Main Stream No. 1) =
                                         1.63(Ac.)
Area averaged Fm value = 0.079(In/Hr)
Process from Point/Station 101.000 to Point/Station
                                                        102.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation = 1399.460(Ft.)
Downstream point/station elevation = 1398.800(Ft.)
Pipe length = 66.00(Ft.) Manning's N = 0.012
No. of pipes = 1 Required pipe flow =
                                       8.343(CFS)
Nearest computed pipe diameter = 18.00(In.)
Calculated individual pipe flow = 8.343(CFS)
Normal flow depth in pipe = 11.45(In.)
Flow top width inside pipe =
                           17.32(In.)
```

Critical Depth = 13.43(In.) Pipe flow velocity = 7.03(Ft/s)

Travel time through pipe = 0.16 min.

Time of concentration (TC) = 7.92 min.

```
COMMERCIAL subarea type
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 32.00
Adjusted SCS curve number for AMC 3 = 52.00
Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.079(In/Hr)
Initial subarea data:
Initial area flow distance = 231.000(Ft.)
Top (of initial area) elevation = 1403.240(Ft.)
Bottom (of initial area) elevation = 1401.460(Ft.)
Difference in elevation = 1.780(Ft.)
Slope =
          0.00771 s(%)=
                               0.77
TC = k(0.304)*[(length^3)/(elevation change)]^{0.2}
Initial area time of concentration = 7.095 min.
Rainfall intensity = 6.084(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.888
Subarea runoff =
                     4.216(CFS)
Total initial stream area =
                                  0.780(Ac.)
Pervious area fraction = 0.100
Initial area Fm value =
                         0.079(In/Hr)
```

```
COMMERCIAL subarea type
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 32.00
Adjusted SCS curve number for AMC 3 = 52.00
Pervious ratio(Ap) = 0.1000
                               Max loss rate(Fm) = 0.079(In/Hr)
Time of concentration =
                         7.10 min.
Rainfall intensity =
                         6.084(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area, (total area with modified
rational method)(Q=KCIA) is C = 0.888
Subarea runoff =
                     2.919(CFS) for
                                       0.540(Ac.)
Total runoff =
                   7.135(CFS)
                                   1.32(Ac.)
Effective area this stream =
Total Study Area (Main Stream No. 1) =
                                             2.95(Ac.)
Area averaged Fm value = 0.079(In/Hr)
```

**** PIPEFLOW TRAVEL TIME (Program estimated size) ****

```
Upstream point/station elevation = 1398.460(Ft.)
Downstream point/station elevation = 1398.021(Ft.)
Pipe length = 44.00(Ft.)
                           Manning's N = 0.012
No. of pipes = 1 Required pipe flow =
                                       7.135(CFS)
Nearest computed pipe diameter = 18.00(In.)
Calculated individual pipe flow = 7.135(CFS)
Normal flow depth in pipe = 10.34(In.)
Flow top width inside pipe =
                           17.80(In.)
Critical Depth =
                12.42(In.)
Pipe flow velocity =
                     6.79(Ft/s)
Travel time through pipe = 0.11 min.
Time of concentration (TC) = 7.20 min.
Process from Point/Station
                            200.000 to Point/Station
                                                       201.000
**** INITIAL AREA EVALUATION ****
COMMERCIAL subarea type
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 32.00
Adjusted SCS curve number for AMC 3 = 52.00
Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.079(In/Hr)
Initial subarea data:
Initial area flow distance = 863.000(Ft.)
Top (of initial area) elevation = 1400.580(Ft.)
Bottom (of initial area) elevation = 1394.010(Ft.)
Difference in elevation =
                          6.570(Ft.)
Slope = 0.00761 s(%)=
                            0.76
TC = k(0.304)*[(length^3)/(elevation change)]^{0.2}
Initial area time of concentration = 12.049 min.
Rainfall intensity =
                      4.428(In/Hr) for a
                                         100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.884
Subarea runoff =
                  15.697(CFS)
Total initial stream area =
                               4.010(Ac.)
Pervious area fraction = 0.100
Initial area Fm value = 0.079(In/Hr)
Process from Point/Station
                            201.000 to Point/Station
                                                       201.000
**** SUBAREA FLOW ADDITION ****
```

COMMERCIAL subarea type Decimal fraction soil group A = 1.000

```
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 32.00
Adjusted SCS curve number for AMC 3 = 52.00
Pervious ratio(Ap) = 0.1000
                            Max loss rate(Fm) = 0.079(In/Hr)
Time of concentration =
                        12.05 min.
Rainfall intensity =
                      4.428(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area, (total area with modified
rational method)(Q=KCIA) is C = 0.884
Subarea runoff =
                   15.071(CFS) for
                                    3.850(Ac.)
Total runoff =
                 30.768(CFS)
Effective area this stream =
                                7.86(Ac.)
Total Study Area (Main Stream No. 1) =
                                       10.81(Ac.)
Area averaged Fm value = 0.079(In/Hr)
Process from Point/Station
                             201.000 to Point/Station
                                                        203.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation = 1391.010(Ft.)
Downstream point/station elevation = 1388.485(Ft.)
Pipe length = 253.00(Ft.)
                            Manning's N = 0.012
No. of pipes = 1 Required pipe flow =
                                       30.768(CFS)
Nearest computed pipe diameter =
                                  27.00(In.)
Calculated individual pipe flow =
                                  30.768(CFS)
Normal flow depth in pipe = 20.37(In.)
Flow top width inside pipe =
                            23.25(In.)
Critical Depth = 23.01(In.)
                     9.56(Ft/s)
Pipe flow velocity =
Travel time through pipe = 0.44 min.
Time of concentration (TC) = 12.49 min.
Process from Point/Station
                             300.000 to Point/Station
                                                        301.000
**** INITIAL AREA EVALUATION ****
COMMERCIAL subarea type
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 32.00
Adjusted SCS curve number for AMC 3 = 52.00
Pervious ratio(Ap) = 0.1000
                           Max loss rate(Fm) = 0.079(In/Hr)
Initial subarea data:
Initial area flow distance = 932.000(Ft.)
Top (of initial area) elevation = 1398.880(Ft.)
```

```
Bottom (of initial area) elevation = 1383.410(Ft.)
Difference in elevation =
                          15.470(Ft.)
         0.01660 s(%)=
                             1.66
Slope =
TC = k(0.304)*[(length^3)/(elevation change)]^{0.2}
Initial area time of concentration =
                                   10.632 min.
Rainfall intensity =
                       4.773(In/Hr) for a
                                         100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.885
Subarea runoff =
                   13.267(CFS)
Total initial stream area =
                                3.140(Ac.)
Pervious area fraction = 0.100
Initial area Fm value =
                        0.079(In/Hr)
Process from Point/Station
                             301.000 to Point/Station
                                                        302.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation = 1380.410(Ft.)
Downstream point/station elevation = 1377.730(Ft.)
Pipe length = 267.00(Ft.)
                            Manning's N = 0.012
No. of pipes = 1 Required pipe flow =
                                       13.267(CFS)
Nearest computed pipe diameter = 21.00(In.)
Calculated individual pipe flow = 13.267(CFS)
Normal flow depth in pipe = 13.84(In.)
Flow top width inside pipe =
                            19.91(In.)
Critical Depth =
                 16.26(In.)
Pipe flow velocity =
                      7.89(Ft/s)
Travel time through pipe = 0.56 min.
Time of concentration (TC) =
                          11.20 min.
Process from Point/Station
                             302.000 to Point/Station
                                                        302.000
**** SUBAREA FLOW ADDITION ****
COMMERCIAL subarea type
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 32.00
Adjusted SCS curve number for AMC 3 = 52.00
Pervious ratio(Ap) = 0.1000
                             Max loss rate(Fm) = 0.079(In/Hr)
Time of concentration =
                        11.20 min.
                      4.627(In/Hr) for a 100.0 year storm
Rainfall intensity =
Effective runoff coefficient used for area, (total area with modified
rational method)(Q=KCIA) is C = 0.885
Subarea runoff =
                   18.134(CFS) for
                                    4.530(Ac.)
Total runoff =
                 31.401(CFS)
Effective area this stream =
                               7.67(Ac.)
```

```
Total Study Area (Main Stream No. 1) =
                                         18.48(Ac.)
Area averaged Fm value = 0.079(In/Hr)
Process from Point/Station
                             303.000 to Point/Station
                                                        304.000
**** INITIAL AREA EVALUATION ****
COMMERCIAL subarea type
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 32.00
Adjusted SCS curve number for AMC 3 = 52.00
Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.079(In/Hr)
Initial subarea data:
Initial area flow distance = 392.000(Ft.)
Top (of initial area) elevation = 1401.280(Ft.)
Bottom (of initial area) elevation = 1398.500(Ft.)
Difference in elevation =
                           2.780(Ft.)
Slope =
         0.00709 s(\%) =
                             0.71
TC = k(0.304)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration =
                                    8.913 min.
Rainfall intensity =
                       5.306(In/Hr) for a
                                          100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.887
Subarea runoff =
                   3.811(CFS)
Total initial stream area =
                               0.810(Ac.)
Pervious area fraction = 0.100
Initial area Fm value =
                        0.079(In/Hr)
Process from Point/Station
                             304.000 to Point/Station
                                                        302.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation = 1395.500(Ft.)
Downstream point/station elevation = 1384.650(Ft.)
Pipe length = 85.00(Ft.)
                           Manning's N = 0.012
No. of pipes = 1 Required pipe flow =
                                        3.811(CFS)
Nearest computed pipe diameter =
                                  9.00(In.)
Calculated individual pipe flow =
                                   3.811(CFS)
                            5.00(In.)
Normal flow depth in pipe =
Flow top width inside pipe = 8.94(In.)
Critical depth could not be calculated.
Pipe flow velocity =
                      15.12(Ft/s)
Travel time through pipe = 0.09 min.
Time of concentration (TC) =
                            9.01 min.
```

```
COMMERCIAL subarea type
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 32.00
Adjusted SCS curve number for AMC 3 = 52.00
Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.079(In/Hr)
Initial subarea data:
Initial area flow distance = 542.000(Ft.)
Top (of initial area) elevation = 1397.740(Ft.)
Bottom (of initial area) elevation = 1385.670(Ft.)
Difference in elevation =
                            12.070(Ft.)
Slope =
          0.02227 s(%)=
                               2.23
TC = k(0.304)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 8.071 min.
Rainfall intensity =
                         5.631(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.887
Subarea runoff =
                    7.396(CFS)
Total initial stream area =
                                  1.480(Ac.)
Pervious area fraction = 0.100
Initial area Fm value = 0.079(In/Hr)
```

```
Upstream point/station elevation = 1382.670(Ft.)

Downstream point/station elevation = 1381.361(Ft.)

Pipe length = 131.00(Ft.) Manning's N = 0.012

No. of pipes = 1 Required pipe flow = 7.396(CFS)

Nearest computed pipe diameter = 18.00(In.)

Calculated individual pipe flow = 7.396(CFS)

Normal flow depth in pipe = 10.57(In.)

Flow top width inside pipe = 17.72(In.)

Critical Depth = 12.64(In.)

Pipe flow velocity = 6.85(Ft/s)

Travel time through pipe = 0.32 min.

Time of concentration (TC) = 8.39 min.
```

```
COMMERCIAL subarea type
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 32.00
Adjusted SCS curve number for AMC 3 = 52.00
Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.079(In/Hr)
Initial subarea data:
Initial area flow distance = 609.000(Ft.)
Top (of initial area) elevation = 1409.030(Ft.)
Bottom (of initial area) elevation = 1403.710(Ft.)
Difference in elevation =
                      5.320(Ft.)
Slope = 0.00874 s(%)=
                           0.87
TC = k(0.304)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 10.197 min.
                                        100.0 year storm
Rainfall intensity = 4.894(In/Hr) for a
Effective runoff coefficient used for area (Q=KCIA) is C = 0.886
Subarea runoff =
                   2.601(CFS)
Total initial stream area =
                              0.600(Ac.)
Pervious area fraction = 0.100
Initial area Fm value = 0.079(In/Hr)
Process from Point/Station 701.000 to Point/Station
                                                     702.000
**** IRREGULAR CHANNEL FLOW TRAVEL TIME ****
Estimated mean flow rate at midpoint of channel =
                                               0.000(CFS)
Depth of flow = 0.380(Ft.), Average velocity =
                                            2.245(Ft/s)
       ******* Irregular Channel Data **********
    -----
Information entered for subchannel number 1 :
Point number 'X' coordinate 'Y' coordinate
                   0.00
                                   0.77
      1
      2
                   30.00
                                   0.17
      3
                  32.00
                                   0.00
      4
                   32.00
                                   0.50
      5
                   42.00
                                   0.70
Manning's 'N' friction factor = 0.020
_____
Sub-Channel flow =
                     3.792(CFS)
 . .
              flow top width =
                                 12.486(Ft.)
 .
       ı.
           velocity=
                      2.245(Ft/s)
 .
      .
              area =
                         1.689(Sq.Ft)
              Froude number = 1.076
Upstream point elevation = 1403.710(Ft.)
Downstream point elevation = 1390.150(Ft.)
Flow length = 990.000(Ft.)
```

```
Travel time =
                 7.35 min.
Time of concentration =
                        17.55 min.
Depth of flow =
                 0.380(Ft.)
Average velocity =
                    2.245(Ft/s)
Total irregular channel flow =
                                 3.792(CFS)
Irregular channel normal depth above invert elev. =
                                                    0.380(Ft.)
Average velocity of channel(s) = 2.245(Ft/s)
Adding area flow to channel
COMMERCIAL subarea type
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 32.00
Adjusted SCS curve number for AMC 3 = 52.00
Pervious ratio(Ap) = 0.1000
                              Max loss rate(Fm)=
                                                    0.079(In/Hr)
Rainfall intensity =
                         3.534(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area, (total area with modified
rational method)(Q=KCIA) is C = 0.880
Subarea runoff =
                     2.313(CFS) for
                                      0.980(Ac.)
Total runoff =
                   4.914(CFS)
                                  1.58(Ac.)
Effective area this stream =
Total Study Area (Main Stream No. 1) =
                                           22.35(Ac.)
Area averaged Fm value =
                         0.079(In/Hr)
Depth of flow =
                 0.408(Ft.), Average velocity = 2.388(Ft/s)
Process from Point/Station
                              703.000 to Point/Station
                                                           704.000
**** INITIAL AREA EVALUATION ****
COMMERCIAL subarea type
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 32.00
Adjusted SCS curve number for AMC 3 = 52.00
Pervious ratio(Ap) = 0.1000
                              Max loss rate(Fm)=
                                                    0.079(In/Hr)
Initial subarea data:
Initial area flow distance =
                             611.000(Ft.)
Top (of initial area) elevation = 1408.900(Ft.)
Bottom (of initial area) elevation = 1403.710(Ft.)
Difference in elevation =
                             5.190(Ft.)
          0.00849 s(%)=
Slope =
                              0.85
TC = k(0.304)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration =
                                     10.268 min.
Rainfall intensity =
                         4.874(In/Hr) for a
                                             100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.886
Subarea runoff =
                     2.590(CFS)
```

```
Total initial stream area =
                                0.600(Ac.)
Pervious area fraction = 0.100
Initial area Fm value = 0.079(In/Hr)
Process from Point/Station 704.000 to Point/Station 705.000
**** IRREGULAR CHANNEL FLOW TRAVEL TIME ****
Estimated mean flow rate at midpoint of channel = 0.000(CFS)
Depth of flow = 0.375(Ft.), Average velocity = 2.319(Ft/s)
       ******* Irregular Channel Data *********
_____
Information entered for subchannel number 1 :
Point number 'X' coordinate 'Y' coordinate
                   0.00
       1
                                    0.77

        2
        30.00
        0.17

        3
        32.00
        0.00

        4
        32.00
        0.50

        5
        42.00
        0.70

Manning's 'N' friction factor = 0.020
_____
Sub-Channel flow = 3.776(CFS)
      ' flow top width = 12.241(Ft.)
      .
  .
          velocity= 2.319(Ft/s)
      .
 .
            area = 1.628(Sq.Ft)
      .
               Froude number = 1.120
Upstream point elevation = 1403.710(Ft.)
Downstream point elevation = 1389.510(Ft.)
Flow length = 950.000(Ft.)
Travel time = 6.83 min.
Time of concentration = 17.10 min.
Depth of flow = 0.375(Ft.)
Average velocity = 2.319(Ft/s)
Total irregular channel flow = 3.776(CFS)
Irregular channel normal depth above invert elev. = 0.375(Ft.)
Average velocity of channel(s) = 2.319(Ft/s)
Adding area flow to channel
COMMERCIAL subarea type
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 32.00
Adjusted SCS curve number for AMC 3 = 52.00
Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.079(In/Hr)
Rainfall intensity = 3.590(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area, (total area with modified
rational method)(Q=KCIA) is C = 0.880
```

Subarea runoff = 2.308(CFS) for 0.950(Ac.) Total runoff = 4.898(CFS) Effective area this stream = 1.55(Ac.) Total Study Area (Main Stream No. 1) = 23.90(Ac.) Area averaged Fm value = 0.079(In/Hr) Depth of flow = 0.402(Ft.), Average velocity = 2.467(Ft/s) End of computations, Total Study Area = 23.90 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Note: These figures do not consider reduced effective area effects caused by confluences in the rational equation.

```
Area averaged pervious area fraction(Ap) = 0.100
Area averaged SCS curve number = 32.0
```

APPENDIX G

EXISTING/PROPOSED CONDITIONS HYDROLOGY AES HYDROGRAPH RESULTS

Unit Hydrograph Analysis Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2018, Version 9.0 Study date 04/08/24 _____ San Bernardino County Synthetic Unit Hydrology Method Manual date - August 1986 Program License Serial Number 6443 MIRO WAY INDUSTIAL PROJECT - RIALTO EXISTING CONDITION UH ANALYSIS 100YR 24HR DESIGN STORM (DA 1) BY LP 4/8/24 _____ Storm Event Year = 100 Antecedent Moisture Condition = 3 English (in-lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format Area averaged rainfall intensity isohyetal data: Sub-AreaDurationIsohyetal(Ac.)(hours)(In) Rainfall data for year 10 3.85 1 1.05 _____ Rainfall data for year 2 3.85 6 1.80 _____ Rainfall data for year 23.85243.37 _____ Rainfall data for year 100

3.85 1 1.69 _____ Rainfall data for year 100 6 4.16 3.85 -----Rainfall data for year 100 3.85 24 7.73 _____ ******* Area-averaged max loss rate, Fm *******
 SCS curve
 SCS curve
 Area
 Fp(Fig C6)
 Ap
 Fm

 No.(AMCII)
 NO.(AMC 3)
 (Ac.)
 Fraction
 (In/Hr)
 (dec.)
 (In/Hr)

 32.0
 52.0
 3.85
 1.000
 0.785
 1.000
 0.785
 Area-averaged adjusted loss rate Fm (In/Hr) = 0.785 ******* Area-Averaged low loss rate fraction, Yb ********* SCS CN S Area Area SCS CN Pervious) Fract (AMC2) 3.85 1.000 32.0 (Ac.) (AMC3) Yield Fr 52.0 9.23 0.296 Area-averaged catchment yield fraction, Y = 0.296Area-averaged low loss fraction, Yb = 0.704 Direct entry of lag time by user Watershed area = 3.85(Ac.) Catchment Lag time = 0.239 hours Unit interval = 15.000 minutes Unit interval percentage of lag time = 104.6025 Hydrograph baseflow = 0.00(CFS) Average maximum watershed loss rate(Fm) = 0.785(In/Hr)Average low loss rate fraction (Yb) = 0.704 (decimal) VALLEY DEVELOPED S-Graph Selected Computed peak 5-minute rainfall = 0.625(In) Computed peak 30-minute rainfall = 1.281(In) Specified peak 1-hour rainfall = 1.690(In) Computed peak 3-hour rainfall = 2.936(In) Specified peak 6-hour rainfall = 4.160(In) Specified peak 24-hour rainfall = 7.730(In) Rainfall depth area reduction factors: Using a total area of 3.85(Ac.) (Ref: fig. E-4) 5-minute factor = 1.000 Adjusted rainfall = 0.625(In) 30-minute factor = 1.000Adjusted rainfall = 1.281(In)

3-hc 6-hc	our factor = 1 our factor = 1 our factor = 1 nour factor = 1	.000 .000	Adjusted Adjusted	rainfall rainfall	= 1.690 = 2.936 = 4.160 = 7.730	(In) (In)	
Inte		++++++++++ 'S' Grapł	nit Hy +++++++++ n Jes	++++++++ Unit Hyd	+++++++++ rograph	++++++++	+++++++
1 2 3		18.706 81.990 98.296	15.52 (C	2. 9. 2.	903 822 531		
	al soil rain lo al effective ra				265		
Peak	<pre>c flow rate in</pre>	flood hyd +++++++++++ 24 - H	drograph = 	7.0 +++++++++ S T O R M	 ++++++++++++++++++++++++++++++++		 ++++++
			15 Minu			,))	
Time(h+m)	Volume Ac.Ft	Q(CFS)	0	2.5	5.0	7.5	10.0
0+15 0+30 0+45 1+0 1+15 1+30 1+45 2+0 2+15 2+30 2+45 3+0 3+15 3+30 3+45 4+0 4+15	0.0006 0.0035 0.0069 0.0104 0.0139 0.0174 0.0210 0.0247 0.0283 0.0320 0.0357 0.0395 0.0433 0.0472 0.0472 0.0511 0.0550 0.0590	0.03 Q 0.14 Q 0.16 Q 0.17 Q 0.17 Q 0.17 Q 0.17 Q 0.18 Q 0.18 Q 0.18 Q 0.18 Q 0.18 Q 0.18 Q 0.18 Q 0.18 Q 0.18 Q 0.19 Q 0.19 Q 0.19 Q 0.19 Q	/ 				

4+30	0.0630	0.19	Qν					
4+45	0.0671	0.20	Qν					
5+ 0	0.0712	0.20	QV					
5+15	0.0754	0.20	QV					
5+30	0.0796	0.20	QV					
5+45	0.0839	0.21	QV					
6+ 0	0.0882	0.21	QV					
6+15	0.0926	0.21	Q V					
6+30	0.0971	0.22	Q V					
6+45	0.1016	0.22	Q V					
7+ 0	0.1062	0.22	Q V					
7+15	0.1109	0.23	Q V					
7+30	0.1156	0.23	Q \	/				
7+45	0.1204	0.23	Q \	/				
8+ 0	0.1253	0.24	Q \	/				
8+15	0.1302	0.24	Q \	/				
8+30	0.1353	0.24	Q	V				
8+45	0.1404	0.25	Q	V				
9+ 0	0.1457	0.25	Q	V				
9+15	0.1510	0.26	Q	V				
9+30	0.1564	0.26	Q	V				
9+45	0.1620	0.27	Q	V				
10+ 0	0.1677	0.27	Q	V				
10+15	0.1735	0.28	Q	V				
10+30	0.1794	0.29	Q	V				
10+45	0.1855	0.29	Q	V				
11+ 0	0.1917	0.30	Q	V				
11+15	0.1981	0.31	Q	V				
11+30	0.2047	0.32	Q	V				
11+45	0.2115	0.33	Q	V				
12+ 0	0.2185	0.34	Q	V				
12+15	0.2259	0.36	Q	١	/			
12+30	0.2341	0.40	Q	١	/			
12+45	0.2427	0.42	Q	١	/			
13+ 0	0.2517	0.43	Q		V			
13+15	0.2610	0.45	Q		V			
13+30	0.2708	0.47	Q		V			
13+45	0.2809	0.49	Q		V			
14+ 0	0.2916	0.52	Q		V			
14+15	0.3029	0.55	Q		V			
14+30	0.3149	0.58	Q		V			
14+45	0.3278	0.62	Q		V			
15+ 0	0.3418	0.68	Q		V			
15+15	0.3573	0.75	Q		V			
15+30	0.3744	0.83	ÌQ		V			
15+45	0.3928	0.89	Q		V			
16+ 0	0.4251	1.56		Q	V			
16+15	0.5176	4.48			Q	V		
16+30	0.6622	7.00					Q V	
16+45	0.7111	2.37		Q			V	

17+ 00.72950.89Q17+150.74250.63Q17+300.75380.55Q17+450.76390.49Q	V V V V V V
17+30 0.7538 0.55 Q 17+45 0.7639 0.49 Q	
17+30 0.7538 0.55 Q 17+45 0.7639 0.49 Q	
	V
18+ 0 0.7732 0.45 Q	! !
18+15 0.7817 0.41 Q	
18+30 0.7891 0.36 Q	
18+45 0.7959 0.33 Q	i v
19+ 0 0.8023 0.31 Q	V
19+15 0.8083 0.29 Q	V
19+30 0.8141 0.28 Q	V
19+45 0.8197 0.27 Q	V
20+ 0 0.8250 0.26 Q	V
20+15 0.8301 0.25 Q	V
20+30 0.8351 0.24 Q	V
20+45 0.8399 0.23 Q	V
21+ 0 0.8445 0.23 Q	V
21+15 0.8490 0.22 Q	V
21+30 0.8534 0.21 Q	V
21+45 0.8577 0.21 Q	V
22+ 0 0.8619 0.20 Q	V
22+15 0.8659 0.20 Q	V
22+30 0.8699 0.19 Q	V
22+45 0.8738 0.19 Q	
23+ 0 0.8776 0.18 Q	
23+15 0.8813 0.18 Q	
23+30 0.8850 0.18 Q	
23+45 0.8886 0.17 Q	
24+ 0 0.8921 0.17 Q	

Unit Hydrograph Analysis Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2018, Version 9.0 Study date 04/08/24 San Bernardino County Synthetic Unit Hydrology Method Manual date - August 1986 Program License Serial Number 6443 MIRO WAY INDUSTIAL PROJECT - RIALTO EXISTING CONDITION UH ANALYSIS (DA 2) 100YR 24HR DESIGN STORM BY LP 4/8/24 _____ Storm Event Year = 100 Antecedent Moisture Condition = 3 English (in-lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format Area averaged rainfall intensity isohyetal data: Sub-AreaDurationIsohyetal(Ac.)(hours)(In) Rainfall data for year 10 20.05 1 1.05 _____ Rainfall data for year 2 20.05 6 1.80 _____ Rainfall data for year 2 20.05 24 3.37 _____ Rainfall data for year 100

20.05 1 1.69 _____ Rainfall data for year 100 6 4.16 20.05 -------_____ Rainfall data for year 100 20.05 24 7.73 _____ ******* Area-averaged max loss rate, Fm ******* AreaAreaFp(Fig C6)ApFm(Ac.)Fraction(In/Hr)(dec.)(In/Hr)20.051.0000.7851.0000.785 SCS curve SCS curve No.(AMCII) NO.(AMC 3) 32.0 52.0 Area-averaged adjusted loss rate Fm (In/Hr) = 0.785 ******* Area-Averaged low loss rate fraction, Yb ********* SCS CN S Area Area SCS CN Pervious (Ac.) Fract (AMC2) (AMC3) Yield Fr 20.05 1.000 32.0 52.0 9.23 0.296 Area-averaged catchment yield fraction, Y = 0.296Area-averaged low loss fraction, Yb = 0.704 Direct entry of lag time by user Watershed area = 20.05(Ac.) Catchment Lag time = 0.259 hours Unit interval = 15.000 minutes Unit interval percentage of lag time = 96.5251 Hydrograph baseflow = 0.00(CFS) Average maximum watershed loss rate(Fm) = 0.785(In/Hr)Average low loss rate fraction (Yb) = 0.704 (decimal) VALLEY DEVELOPED S-Graph Selected Computed peak 5-minute rainfall = 0.625(In) Computed peak 30-minute rainfall = 1.281(In) Specified peak 1-hour rainfall = 1.690(In) Computed peak 3-hour rainfall = 2.936(In) Specified peak 6-hour rainfall = 4.160(In) Specified peak 24-hour rainfall = 7.730(In) Rainfall depth area reduction factors: Using a total area of 20.05(Ac.) (Ref: fig. E-4) 5-minute factor = 0.999 Adjusted rainfall = 0.625(In) 30-minute factor = 0.999 Adjusted rainfall = 1.280(In)

3-hou 6-hou	ir factor = 0 ir factor = 1 ir factor = 1 our factor = 1	.000 .000	Adjuste Adjuste	d rainfa d rainfa	$ \begin{array}{rcl} 11 &=& 1.63 \\ 11 &=& 2.93 \\ 11 &=& 4.16 \\ 11 &=& 7.73 \\ \end{array} $	36(In) 60(In)	
		++++++++ 'S' Grap	nit H +++++++++ oh lues	+++++++++ Unit H	++++++++++ ydrograph	+++++++++++++++++++++++++++++++++++++++	+++++++
	(1	K =	80.83 (CFS))			
1 2 3 4		16.074 77.169 97.490 100.000		4 1	2.992 9.381 6.425 2.029		
Total	soil rain lo effective ra flow rate in	ainfall =	= 2.7	9(In)	.03(CFS)		
+++++	-+++++++++++++++++++++++++++++++++++++	24 - H	+++++++++ + OUR F Hy	STOR	Μ	+++++++++++++++++++++++++++++++++++++++	 ++++++
	Hydroį	graph in	15 Min	ute inte	rvals ((C	FS))	
 Time(h+m) V	/olume Ac.Ft	Q(CFS)	0	10.0	20.0	30.0	40.0
0+15 0+30 0+45 1+ 0 1+15 1+30 1+45 2+ 0 2+15 2+30 2+45 3+ 0 3+15 3+30 3+45 4+ 0 4+15	0.0029 0.0167 0.0343 0.0524 0.0708 0.0893 0.1080 0.1268 0.1459 0.1651 0.1845 0.2041 0.2240 0.2440 0.2643 0.2848 0.3055	0.67 (0.85 (0.88 (0.90 (0.90 (0.91 (0.92 (0.93 (0.94 (0.95 (0.96 (0.97 (0.98 (0.99 (2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				

4+30	0.3264	1.01	QV
4+45	0.3476	1.03	
5+ 0	0.3691	1.04	
5+15	0.3908	1.05	
5+30	0.4128	1.06	
5+45	0.4351	1.08	
6+ 0	0.4576	1.09	
6+15	0.4805	1.11	
6+30	0.5037	1.12	
6+45	0.5272	1.14	
7+ 0	0.5511	1.16	
7+15	0.5753	1.17	
7+30	0.5999	1.19	
7+45	0.6249	1.21	
8+ 0	0.6503	1.23	
8+15	0.6761	1.25	
8+30	0.7024	1.27	
8+45	0.7291	1.29	
9+ 0	0.7564	1.32	
9+15	0.7841	1.34	
9+30	0.8124	1.37	
9+45	0.8413	1.40	
10+ 0	0.8708	1.43	
10+15	0.9010	1.46	
10+30	0.9318	1.49	
10+45	0.9634	1.53	
11+ 0	0.9958	1.57	
11+15	1.0291	1.61	
11+30	1.0633	1.65	
11+45	1.0985	1.70	
12+ 0	1.1347	1.76	
12+15	1.1730	1.85	
12+30	1.2154	2.06	lõ v l
12+45	1.2603	2.17	lõ v i i i
13+ 0	1.3070	2.26	
13+15	1.3554	2.34	
13+30	1.4058	2.44	
13+45	1.4586	2.55	
14+ 0	1.5140	2.68	
14+15	1.5725	2.83	i ç i v i i i
14+30	1.6348	3.02	
14+45	1.7017	3.23	jų vi i
15+ 0	1.7742	3.51	
15+15	1.8543	3.87	
15+30	1.9427	4.28	
15+45	2.0379	4.61	Q V I I I
16+ 0	2.1967	7.69	
16+15	2.6463	21.76	QV
16+30	3.3907	36.03	
16+45	3.6866	14.32	
20.15	2.0000	252	I I K I K I

17+ 0	3.7917	5.09	Q		V
17+15	3.8601	3.31	Q		V
17+30	3.9196	2.88	Q		V
17+45	3.9729	2.58	Q		V
18+ 0	4.0218	2.36	Q	i i	V
18+15	4.0663	2.16	Q	i i	V
18+30	4.1051	1.88	Q	i i	V
18+45	4.1406	1.72	Q	i i	V
19+ 0	4.1740	1.62	Q	i i	V
19+15	4.2058	1.54	Q	i i	V
19+30	4.2360	1.47	Q	i i	V
19+45	4.2650	1.40	Q	i i	V
20+ 0	4.2928	1.35	Q	i i	V
20+15	4.3197	1.30	Q	i i	V
20+30	4.3455	1.25	Q	i i	V
20+45	4.3706	1.21	Q		V
21+ 0	4.3949	1.18	Q		V
21+15	4.4184	1.14	Q		V
21+30	4.4414	1.11	Q		V
21+45	4.4637	1.08	Q		V
22+ 0	4.4854	1.05	Q		V
22+15	4.5067	1.03	Q		V
22+30	4.5274	1.00	Q		V
22+45	4.5477	0.98	Q		V
23+ 0	4.5676	0.96	Q		V
23+15	4.5870	0.94	Q		V
23+30	4.6061	0.92	Q		V
23+45	4.6248	0.91	Q		V
24+ 0	4.6431	0.89	Q		V

Unit Hydrograph Analysis

Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2018, Version 9.0

Study date 04/04/24

San Bernardino County Synthetic Unit Hydrology Method Manual date - August 1986

Program License Serial Number 6443

MIRO WAY INDUSTRIAL PROJECT - RIALTO PROPOSED CONDITION UH ANALYSIS (DA 1) 100 YR 24HR DESIGN STORM BY LP 04/04/24

Storm Event Year = 100

Antecedent Moisture Condition = 3

English (in-lb) Input Units Used

English Rainfall Data (Inches) Input Values Used

English Units used in output format

Area averaged rainfall	intensity	isohyetal data:	
Sub-Area	Duration	Isohyetal	
(Ac.)	(hours)	(In)	
Rainfall data for year	10		
2.95	1	1.05	
Rainfall data for year	2		
2.95	6	1.80	
Rainfall data for year	2		
2.95	24	3.37	
Rainfall data for year	100		

Rainfall data for year 100

2.95 1 1.69 _____ Rainfall data for year 100 6 4.16 2.95 ----------Rainfall data for year 100 2.95 24 7.73 _____ ******* Area-averaged max loss rate, Fm ******* Area SCS curve SCS curve Area Fp(Fig C6) Ap Fm No.(AMCII) NO.(AMC 3) (Ac.) Fraction (In/Hr) (dec.) (In/Hr) 2.95 32.0 52.0 1.000 0.785 0.200 0.157 Area-averaged adjusted loss rate Fm (In/Hr) = 0.157 ******* Area-Averaged low loss rate fraction, Yb ********* SCS CN Area Area SCS CN S Pervious (Ac.) Fract (AMC2) (AMC3) Yield Fr 0.59 9.23 0.200 32.0 52.0 0.296 0.800 98.0 2.36 98.0 0.20 0.969 Area-averaged catchment yield fraction, Y = 0.834Area-averaged low loss fraction, Yb = 0.166 Direct entry of lag time by user Watershed area = 2.95(Ac.) Catchment Lag time = 0.103 hours Unit interval = 15.000 minutes Unit interval percentage of lag time = 241.5459 Hydrograph baseflow = 0.00(CFS) Average maximum watershed loss rate(Fm) = 0.157(In/Hr) Average low loss rate fraction (Yb) = 0.166 (decimal) VALLEY DEVELOPED S-Graph Selected Computed peak 5-minute rainfall = 0.625(In) Computed peak 30-minute rainfall = 1.281(In) Specified peak 1-hour rainfall = 1.690(In) Computed peak 3-hour rainfall = 2.936(In) Specified peak 6-hour rainfall = 4.160(In) Specified peak 24-hour rainfall = 7.730(In) Rainfall depth area reduction factors: Using a total area of 2.95(Ac.) (Ref: fig. E-4) 5-minute factor = 1.000 Adjusted rainfall = 0.625(In)

30-minute factor = 1.000Adjusted rainfall = 1.281(In) 1-hour factor = 1.000Adjusted rainfall = 1.690(In) 3-hour factor = 1.000Adjusted rainfall = 2.936(In) Adjusted rainfall = 4.160(In) 6-hour factor = 1.000 24-hour factor = 1.000 Adjusted rainfall = 7.730(In) _____ Unit Hydrograph Interval'S' GraphUnit HydrographNumberMean values((CFS)) _____ (K = 11.89 (CFS))56.617 6.733 1 2 100.000 5.159 _____ _____ Total soil rain loss = 1.15(In) Total effective rainfall = 6.58(In) Peak flow rate in flood hydrograph = 7.39(CFS) 24 - HOUR STORM Runoff Hydrograph _____ Hydrograph in 15 Minute intervals ((CFS)) _____ Time(h+m) Volume Ac.Ft Q(CFS) 0 2.5 5.0 7.5 10.0 _____ 0.20 Q 0+15 0.0042 0+30 0.0116 0.36 VQ 0+45 0.0191 0.36 VQ 0.37 VQ 1+ 0 0.0267 0.37 VQ 1+15 0.0344 0.37 1+30 0.0421 Q 1+45 0.0499 0.38 Q 0.38 Q 2+ 0 0.0577 2+15 0.0657 0.38 Q 0.39 Q 2+30 0.0737 0.0818 2+45 0.39 OV 3+ 0 0.0900 0.40 OV 3+15 0.0983 0.40 QV 0.40 OV 3+30 0.1066 0.41 |QV 3+45 0.1151 4+ 0 0.1236 0.41 |Q V 0.1323 0.42 QV 4+15 4+30 0.1410 0.42 Q V

4+45	0.1499	0.43	Q V	
5+ 0	0.1588	0.43	Q V	
5+15	0.1679	0.44	Q V	
5+30	0.1771	0.44	Q V	
5+45	0.1864	0.45	Q V	
6+ 0	0.1958	0.46	Q V	
6+15	0.2054	0.46	Q V	
6+30	0.2151	0.47	Q V	
6+45	0.2249	0.48	Į v į	i i
7+ 0	0.2349	0.48	jų v j	i i
7+15	0.2451	0.49	Į v į	i i
7+30	0.2554	0.50	Q V	i i
7+45	0.2658	0.51	Q V	i i
8+ 0	0.2765	0.51	Į ų v į	i i
8+15	0.2873	0.52	Į ų v į	i i
8+30	0.2983	0.53	Į ų v į	i i
8+45	0.3095	0.54	Į ų v į	i i
9+ 0	0.3209	0.55		
9+15	0.3326	0.56	Įų vį	i i
9+30	0.3445	0.58		
9+45	0.3566	0.59		
10+ 0	0.3690	0.60		
10+15	0.3817	0.61		
10+30	0.3947	0.63		
10+45	0.4080	0.64		
11+ 0	0.4216	0.66	Q V	
11+15	0.4356	0.68	Q V	
11+30	0.4501	0.70		V I I
11+45	0.4649	0.70		V I I
12+ 0	0.4803	0.72		v I I
12+15	0.4973	0.82	Q	v I I
12+30	0.5157	0.89	Q	v I I
12+45	0.5348	0.92	Q	V I I
13+ 0	0.5546	0.96	Q	V I I
13+15	0.5752	1.00	Q	V
13+30	0.5967	1.00		V I I
13+45	0.6192	1.04		V
13+45 14+ 0	0.6430	1.15		V I I
14+15	0.6682	1.22		V
14+15	0.6951	1.30		VI
14+30	0.7242	1.41	Q Q	V I I
14+43 15+ 0	0.7561	1.54		
			Q	
15+15	0.7918	1.73		VI I
15+30	0.8297	1.83		V
15+45	0.8733	2.11	Q	
16+ 0	0.9509	3.75		Q V
16+15	1.1036	7.39		
16+30	1.2102	5.16		Q V
16+45	1.2463	1.74	Q	
17+ 0	1.2760	1.44	Q	v

1.3016 1.3244	1.24	Q			l v
1.3244				1	-
	1.10	Q			V
1.3451	1.00	Q			V
1.3643	0.93	Q			V
1.3812	0.81	Q			V
1.3961	0.72	Q			V
1.4102	0.68	Q			V
1.4236	0.65	Q			V
1.4363	0.62	Q			V
1.4485	0.59	Q			V
1.4602	0.57	Q			V
1.4714	0.54	Q			V
1.4823	0.53	Q			V
1.4928	0.51	Q			V
1.5029	0.49	Q			V
1.5128	0.48	Q			V
1.5224	0.46	Q			V
1.5317	0.45	Q			V
1.5408	0.44	Q			V
1.5497	0.43	Q			V
1.5583	0.42	Q			V
1.5668	0.41	Q			V
1.5751	0.40	Q			V
1.5832	0.39	Q			V
1.5911	0.38	Q			V
1.5989	0.38	Q			V
1.6066	0.37	Q			V
1.6141	0.36	Q			V
	1.3643 1.3812 1.3961 1.4102 1.4236 1.4363 1.4485 1.4602 1.4714 1.4823 1.4928 1.5029 1.5128 1.5224 1.5317 1.5408 1.5497 1.5583 1.5668 1.5751 1.5832 1.5911 1.5989 1.6066	1.3643 0.93 1.3812 0.81 1.3961 0.72 1.4102 0.68 1.4236 0.65 1.4363 0.62 1.4485 0.59 1.4602 0.57 1.4714 0.54 1.4823 0.53 1.4928 0.51 1.5029 0.49 1.5128 0.48 1.5224 0.46 1.5317 0.45 1.5408 0.44 1.5583 0.42 1.5668 0.41 1.5751 0.40 1.5911 0.38 1.5989 0.38 1.6066 0.37	1.3643 0.93 Q 1.3812 0.81 Q 1.3961 0.72 Q 1.4102 0.68 Q 1.4236 0.65 Q 1.4363 0.62 Q 1.4485 0.59 Q 1.4602 0.57 Q 1.4714 0.54 Q 1.4928 0.51 Q 1.5029 0.49 Q 1.5128 0.48 Q 1.5224 0.46 Q 1.5408 0.44 Q 1.5408 0.44 Q 1.5583 0.42 Q 1.5668 0.41 Q 1.5751 0.40 Q 1.5911 0.38 Q 1.5989 0.38 Q 1.6066 0.37 Q	1.3643 0.93 Q 1.3812 0.81 Q 1.3961 0.72 Q 1.4102 0.68 Q 1.4236 0.65 Q 1.4363 0.62 Q 1.4363 0.62 Q 1.4485 0.59 Q 1.4485 0.57 Q 1.4602 0.57 Q 1.4714 0.54 Q 1.4928 0.51 Q 1.5029 0.49 Q 1.5128 0.48 Q 1.5317 0.45 Q 1.5408 0.44 Q 1.5408 0.44 Q 1.5583 0.42 Q 1.5583 0.42 Q 1.5751 0.40 Q 1.5911 0.38 Q 1.5989 0.38 Q 1.6066 0.37 Q	1.3643 0.93 Q 1.3812 0.81 Q 1.3961 0.72 Q 1.4102 0.68 Q 1.4236 0.65 Q 1.4236 0.62 Q 1.4363 0.62 Q 1.4485 0.59 Q 1.4485 0.59 Q 1.4485 0.57 Q 1.4602 0.57 Q 1.4714 0.54 Q 1.4928 0.51 Q 1.5029 0.49 Q 1.5128 0.48 Q 1.5224 0.46 Q 1.5317 0.45 Q 1.5408 0.44 Q 1.5583 0.42 Q 1.5583 0.42 Q 1.5583 0.42 Q 1.5832 0.39 Q 1.5911 0.38 Q 1.5989 0.38 Q 1.6066 0.37 Q

Unit Hydrograph Analysis

Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2018, Version 9.0

Study date 04/04/24

San Bernardino County Synthetic Unit Hydrology Method Manual date - August 1986

Program License Serial Number 6443

MIRO WAY INDUSTRIAL PROJECT - RIALTO PROPOSED CONDITION UH ANALYSIS (DA 2) 100 YR 24HR DESIGN STORM BY LP 04/04/24

Storm Event Year = 100

Antecedent Moisture Condition = 3

English (in-lb) Input Units Used

English Rainfall Data (Inches) Input Values Used

English Units used in output format

Area averaged rainfall	intensity	isohyetal data:	
Sub-Area	Duration	Isohyetal	
(Ac.)	(hours)	(In)	
Rainfall data for year	10		
7.86	1	1.05	
Rainfall data for year			
7.86	6	1.80	
Rainfall data for year			
7.86	24	3.37	
	100		
Rainfall data for year	TOO		

7.86 1 1.69 _____ Rainfall data for year 100 6 4.16 7.86 -----_____ Rainfall data for year 100 7.86 24 7.73 _____ ******* Area-averaged max loss rate, Fm ******* SCS curve SCS curve Area Area Fp(Fig C6) Ap Fm No.(AMCII) NO.(AMC 3) (Ac.) Fraction (In/Hr) (dec.) (In/Hr) 32.0 52.0 7.86 1.000 0.785 0.200 0.157 Area-averaged adjusted loss rate Fm (In/Hr) = 0.157 ******* Area-Averaged low loss rate fraction, Yb ********* SCS CN Area Area SCS CN S Pervious (Ac.) Fract (AMC2) (AMC3) Yield Fr 9.23 1.57 0.200 32.0 52.0 0.296 6.29 98.0 0.800 98.0 0.20 0.969 Area-averaged catchment yield fraction, Y = 0.834 Area-averaged low loss fraction, Yb = 0.166 Direct entry of lag time by user Watershed area = 7.86(Ac.) 0.161 hours Catchment Lag time = Unit interval = 15.000 minutes Unit interval percentage of lag time = 155.5694 Hydrograph baseflow = 0.00(CFS) Average maximum watershed loss rate(Fm) = 0.157(In/Hr) Average low loss rate fraction (Yb) = 0.166 (decimal) VALLEY DEVELOPED S-Graph Selected Computed peak 5-minute rainfall = 0.625(In) Computed peak 30-minute rainfall = 1.281(In) Specified peak 1-hour rainfall = 1.690(In) Computed peak 3-hour rainfall = 2.936(In) Specified peak 6-hour rainfall = 4.160(In) Specified peak 24-hour rainfall = 7.730(In) Rainfall depth area reduction factors: Using a total area of 7.86(Ac.) (Ref: fig. E-4) 5-minute factor = 1.000 Adjusted rainfall = 0.625(In)

30-minute factor = 1.000Adjusted rainfall = 1.280(In) 1-hour factor = 1.000Adjusted rainfall = 1.689(In) 3-hour factor = 1.000Adjusted rainfall = 2.936(In) Adjusted rainfall = 4.160(In) 6-hour factor = 1.000 24-hour factor = 1.000 Adjusted rainfall = 7.730(In) _____ Unit Hydrograph Interval'S' GraphUnit HydrographNumberMean values((CFS)) _____ (K = 31.69 (CFS)) 36.159 1 11.457 2 95.935 18.940 3 100.000 1.288 _____ Total soil rain loss = 1.15(In) Total effective rainfall = 6.58(In) Peak flow rate in flood hydrograph = 17.29(CFS) -----24 - HOUR STORM Runoff Hydrograph -----Hydrograph in 15 Minute intervals ((CFS)) _____ Time(h+m) Volume Ac.Ft Q(CFS) 0 5.0 10.0 15.0 20.0 -----_____ 0+15 0.0071 0.35 Q 0+30 0.0261 0.92 VQ 0.97 VQ 0+45 0.0461 1+ 0 0.97 VO 0.0662 0.98 VQ 1+15 0.0865 1+30 0.1070 0.99 VQ 0.1278 1+45 1.00 VQ 2+ 0 0.1487 1.01 VQ 1.02 VO 2+15 0.1698 0.1911 2+30 1.03 VQ 2+45 0.2126 1.04 VQ 3+ 0 1.05 | Q 0.2344 1.06 | Q 3+15 0.2564 0.2786 1.08 | Q 3+30 3+45 0.3010 1.09 | Q 0.3238 1.10 | QV 4+ 0 0.3467 4+15 1.11 QV

4 3 5	0 0700	4 4 5	
4+30	0.3700	1.13	QV
4+45	0.3935	1.14	
5+ 0	0.4173	1.15	
5+15	0.4414	1.17	
5+30	0.4658	1.18	
5+45	0.4905	1.20	
6+ 0	0.5156	1.21	
6+15	0.5410	1.23	
6+30	0.5667	1.25	
6+45	0.5929	1.26	
7+ 0	0.6194	1.28	
7+15	0.6463	1.30	
7+30	0.6736	1.32	
7+45	0.7014	1.34	
8+ 0	0.7296	1.37	QV
8+15	0.7583	1.39	
8+30	0.7875	1.41	
8+45	0.8173	1.44	
9+ 0	0.8476	1.47	
9+15	0.8784	1.49	
9+30	0.9100	1.53	Q V
9+45	0.9421	1.56	Q V
10+ 0	0.9750	1.59	Q V
10+15	1.0086	1.63	Q V
10+30	1.0430	1.66	Q V
10+45	1.0782	1.71	Q V
11+ 0	1.1144	1.75	Q V
11+15	1.1515	1.80	Q V
11+30	1.1897	1.85	
11+45	1.2290	1.90	
12+ 0	1.2696	1.96	ję įv į į
12+15	1.3134	2.12	ję v j j
12+30	1.3619	2.35	j ų įv į į
12+45	1.4123	2.44	
13+ 0	1.4646	2.53	
13+15	1.5189	2.63	
13+30	1.5756	2.74	
13+45	1.6349	2.87	
14+ 0	1.6974	3.02	
14+15	1.7636	3.20	
14+30	1.8342	3.42	
14+45	1.9102	3.68	
15+ 0	1.9932	4.02	
15+15	2.0856	4.47	
15+15	2.1858	4.47	
15+36	2.2968	4.85 5.37	
15+45 16+ 0	2.2968	5.37 8.57	
16+ 0 16+15			
	2.8244	16.97	
16+30	3.1816	17.29	
16+45	3.2982	5.65	Q V

21+ 0 4.0242 1.28 Q V 21+15 4.0499 1.24 Q V 21+30 4.0749 1.21 Q V 21+45 4.0993 1.18 Q V 21+45 4.0993 1.18 Q V 22+ 0 4.1231 1.15 Q V 22+15 4.1463 1.12 Q V 22+30 4.1690 1.10 Q V						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17+ 0	3.3812	4.02	Q		V
17+30 3.5141 3.02 Q V $17+45$ 3.5707 2.74 Q V $18+0$ 3.6228 2.52 Q V $18+0$ 3.6228 2.52 Q V $18+15$ 3.6695 2.26 Q V $18+30$ 3.7102 1.97 Q V $18+30$ 3.7102 1.97 Q V $18+45$ 3.7483 1.84 Q V $19+0$ 3.7843 1.75 Q V $19+30$ 3.8514 1.59 Q V $19+45$ 3.8829 1.52 Q V $20+6$ 3.9131 1.46 Q V $20+6$ 3.9131 1.46 Q V $20+30$ 3.9705 1.36 Q V $20+45$ 3.9977 1.32 Q V $20+45$ 3.9977 1.32 Q V $21+6$ 4.0242 1.28 Q V $21+45$ 4.0993 1.18 Q V $21+45$ 4.1630 1.10 Q V $22+6$ 4.1231 1.15 Q V $22+45$ 4.1912 1.07 Q V $22+45$ 4.1912 1.07 Q V $23+45$ 4.2551 1.01 Q V $23+45$ 4.2756 0.99 Q V	17+15	3.4518	3.41	Q		V
18+0 3.6228 2.52 Q V $18+15$ 3.6695 2.26 Q V $18+30$ 3.7102 1.97 Q V $18+30$ 3.7102 1.97 Q V $18+45$ 3.7483 1.84 Q V $19+0$ 3.7843 1.75 Q V $19+30$ 3.8186 1.66 Q V $19+30$ 3.8514 1.59 Q V $19+45$ 3.8829 1.52 Q V $20+0$ 3.9131 1.46 Q V $20+15$ 3.9423 1.41 Q V $20+30$ 3.9705 1.36 Q V $20+45$ 3.9977 1.32 Q V $21+6$ 4.0749 1.21 Q V $21+45$ 4.0993 1.18 Q V $21+45$ 4.1690 1.10 Q V $22+45$ 4.1690 <td>17+30</td> <td>3.5141</td> <td>3.02</td> <td></td> <td>i i</td> <td>V</td>	17+30	3.5141	3.02		i i	V
18+0 3.6228 2.52 Q V $18+15$ 3.6695 2.26 Q V $18+30$ 3.7102 1.97 Q V $18+30$ 3.7102 1.97 Q V $18+45$ 3.7483 1.84 Q V $19+0$ 3.7843 1.75 Q V $19+30$ 3.8514 1.59 Q V $19+30$ 3.8514 1.59 Q V $19+45$ 3.8829 1.52 Q V $20+0$ 3.9131 1.46 Q V $20+30$ 3.9705 1.36 Q V $20+45$ 3.9977 1.32 Q V $20+45$ 3.9977 1.32 Q V $21+30$ 4.0749 1.21 Q V $21+45$ 4.0993 1.18 Q V $22+40$ 4.1231 1.15 Q V $22+45$ 4.1912 1.07 Q V $22+45$ 4.1912 1.07 Q V $23+40$ 4.2551 1.01 Q V $23+45$ 4.2756 0.99 Q V	17+45	3.5707	2.74	Q		V
18+30 3.7102 1.97 Q V $18+45$ 3.7483 1.84 Q V $19+0$ 3.7843 1.75 Q V $19+0$ 3.7843 1.75 Q V $19+0$ 3.7843 1.75 Q V $19+15$ 3.8186 1.66 Q V $19+30$ 3.8514 1.59 Q V $19+45$ 3.8829 1.52 Q V $20+0$ 3.9131 1.46 Q V $20+45$ 3.9705 1.36 Q V $20+45$ 3.9977 1.32 Q V $20+45$ 3.9977 1.32 Q V $21+6$ 4.0242 1.28 Q V $21+45$ 4.0993 1.18 Q V $21+45$ 4.0993 1.18 Q V $22+40$ 4.1231 1.15 Q V $22+45$ 4.1690 <td>18+ 0</td> <td>3.6228</td> <td>2.52</td> <td></td> <td>i i</td> <td>V</td>	18+ 0	3.6228	2.52		i i	V
18+45 3.7483 1.84 Q V $19+0$ 3.7843 1.75 Q V $19+15$ 3.8186 1.66 Q V $19+30$ 3.8514 1.59 Q V $19+45$ 3.8829 1.52 Q V $19+45$ 3.8829 1.52 Q V $20+0$ 3.9131 1.46 Q V $20+0$ 3.9131 1.46 Q V $20+30$ 3.9705 1.36 Q V $20+45$ 3.9977 1.32 Q V $20+45$ 3.9977 1.32 Q V $21+0$ 4.0242 1.28 Q V $21+40$ 4.0749 1.21 Q V $21+45$ 4.0993 1.18 Q V $22+40$ 4.1231 1.15 Q V $22+45$ 4.1690 1.10 Q V 2	18+15	3.6695	2.26	Q		V
19+0 3.7843 1.75 Q $ $ V $19+15$ 3.8186 1.66 Q $ $ V $19+30$ 3.8514 1.59 Q $ $ V $19+45$ 3.8829 1.52 Q $ $ V $20+0$ 3.9131 1.46 Q $ $ V $20+15$ 3.9423 1.41 Q $ $ V $20+30$ 3.9705 1.36 Q $ $ V $20+45$ 3.9977 1.32 Q $ $ V $20+45$ 3.9977 1.32 Q $ $ V $21+6$ 4.0242 1.28 Q $ $ V $21+15$ 4.0499 1.24 Q $ $ V $21+45$ 4.0993 1.18 Q $ $ V $22+40$ 4.1231 1.15 Q $ $ $ $ $22+15$ 4.1463 1.12 Q $ $ $ $ $22+30$ 4.1690 1.10 Q $ $ $ $ $22+45$ 4.1912 1.07 Q $ $ $ $ $23+0$ 4.2551 1.01 Q $ $ $ $ $23+30$ 4.2551 1.01 Q $ $ $ $ $23+45$ 4.2756 0.99 $ $ $ $ $ $	18+30	3.7102	1.97	Q		V
19+15 3.8186 1.66 Q $ $ V $19+30$ 3.8514 1.59 Q $ $ V $19+45$ 3.8829 1.52 Q $ $ V $20+0$ 3.9131 1.46 Q $ $ V $20+15$ 3.9423 1.41 Q $ $ V $20+30$ 3.9705 1.36 Q $ $ V $20+45$ 3.9705 1.36 Q $ $ V $20+45$ 3.9977 1.32 Q $ $ V $20+45$ 3.9977 1.32 Q $ $ V $21+45$ 4.0242 1.28 Q $ $ V $21+15$ 4.0499 1.24 Q $ $ V $21+30$ 4.0749 1.21 Q $ $ V $21+45$ 4.0993 1.18 Q $ $ $ $ $22+0$ 4.1231 1.15 Q $ $ $ $ $22+30$ 4.1690 1.10 Q $ $ $ $ $22+45$ 4.1912 1.07 Q $ $ $ $ $23+0$ 4.2129 1.05 Q $ $ $ $ $23+30$ 4.2551 1.01 Q $ $ $ $ $23+45$ 4.2756 0.99 Q $ $ $ $	18+45	3.7483	1.84	Q		V
19+30 3.8514 1.59 Q $ $ V $19+45$ 3.8829 1.52 Q $ $ V $20+0$ 3.9131 1.46 Q $ $ V $20+15$ 3.9423 1.41 Q $ $ V $20+30$ 3.9705 1.36 Q $ $ V $20+45$ 3.9977 1.32 Q $ $ V $20+45$ 3.9977 1.32 Q $ $ V $20+45$ 3.9977 1.22 Q $ $ V $21+0$ 4.0242 1.28 Q $ $ V $21+30$ 4.0749 1.21 Q $ $ V $21+45$ 4.0993 1.18 Q $ $ V $22+0$ 4.1231 1.15 Q $ $ V $22+45$ 4.1690 1.10 Q $ $ $ $ $22+45$ 4.1912 1.07 Q $ $ $ $ $23+0$ 4.2129 1.05 Q $ $ $ $ $23+30$ 4.2551 1.01 Q $ $ $ $ $23+45$ 4.2756 0.99 Q $ $ $ $	19+ 0	3.7843	1.75	Q		V
$19+45$ 3.8829 1.52 Q \vee $20+0$ 3.9131 1.46 Q \vee $20+15$ 3.9423 1.41 Q \vee $20+30$ 3.9705 1.36 Q \vee $20+45$ 3.9977 1.32 Q \vee $20+45$ 3.9977 1.32 Q \vee $21+0$ 4.0242 1.28 Q \vee $21+30$ 4.0749 1.21 Q \vee $21+45$ 4.0993 1.18 Q \vee $21+45$ 4.1231 1.15 Q \vee $22+0$ 4.1231 1.15 Q \vee $22+30$ 4.1690 1.00 Q \vee $22+45$ 4.1912 1.07 Q \vee $23+0$ 4.2129 1.05 Q \vee $23+30$ 4.2551 1.01 Q \vee $23+45$ 4.2756 0.99 Q \vee	19+15	3.8186	1.66	Q		V
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	19+30	3.8514	1.59	Q		V
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	19+45	3.8829	1.52	Q		V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20+ 0	3.9131	1.46	Q		V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20+15	3.9423	1.41	Q		V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20+45	3.9977	1.32	Q		V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21+ 0	4.0242	1.28	Q		V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		4.0499				V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		4.0749				V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21+45	4.0993	1.18	Q		V
22+30 4.1690 1.10 Q 22+45 4.1912 1.07 Q 23+0 4.2129 1.05 Q 23+15 4.2342 1.03 Q 23+30 4.2551 1.01 Q 23+45 4.2756 0.99 Q		4.1231				V
22+45 4.1912 1.07 Q 23+0 4.2129 1.05 Q 23+15 4.2342 1.03 Q 23+30 4.2551 1.01 Q 23+45 4.2756 0.99 Q						V
23+ 0 4.2129 1.05 Q 23+15 4.2342 1.03 Q 23+30 4.2551 1.01 Q 23+45 4.2756 0.99 Q						V
23+15 4.2342 1.03 Q 23+30 4.2551 1.01 Q 23+45 4.2756 0.99 Q	22+45	4.1912	1.07			V
23+30 4.2551 1.01 Q 23+45 4.2756 0.99 Q				Q		V
23+45 4.2756 0.99 Q						V
						V
24+ 0 4.2957 0.97 Q	23+45		0.99	Q		V
	24+ 0	4.2957	0.97	Q		V

Unit Hydrograph Analysis

Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2018, Version 9.0

Study date 04/04/24

San Bernardino County Synthetic Unit Hydrology Method Manual date - August 1986

Program License Serial Number 6443

MIRO WAY INDUSTRIAL PROJECT - RIALTO PROPOSED CONDITION UH ANALYSIS (DA 3) 100 YR 24HR DESIGN STORM BY LP 04/04/24

Storm Event Year = 100

Antecedent Moisture Condition = 3

English (in-lb) Input Units Used

English Rainfall Data (Inches) Input Values Used

English Units used in output format

Area averaged rainfal	1 intensity	isohyetal data:	
Sub-Area	Duration	Isohyetal	
(Ac.)	(hours)	(In)	
Rainfall data for yea	r 10		
8.48	1	1.05	
Rainfall data for yea	r 2		
8.48	6	1.80	
Rainfall data for yea	r 2		
8.48	24	3.37	
Rainfall data for yea	r 100		

8.48 1 1.69 _____ Rainfall data for year 100 6 4.16 8.48 Rainfall data for year 100 8.48 24 7.73 _____ ******* Area-averaged max loss rate, Fm ******* SCS curve SCS curve Area Area Fp(Fig C6) Ap Fm No.(AMCII) NO.(AMC 3) (Ac.) Fraction (In/Hr) (dec.) (In/Hr) 32.0 52.0 8.48 1.000 0.785 0.200 0.157 Area-averaged adjusted loss rate Fm (In/Hr) = 0.157 ******* Area-Averaged low loss rate fraction, Yb ********* SCS CN Area Area SCS CN S Pervious (Ac.) Fract (AMC2) (AMC3) Yield Fr 1.70 9.23 0.200 32.0 52.0 0.296 0.800 98.0 6.78 98.0 0.20 0.969 Area-averaged catchment yield fraction, Y = 0.834 Area-averaged low loss fraction, Yb = 0.166 Direct entry of lag time by user Watershed area = 8.48(Ac.) 0.149 hours Catchment Lag time = Unit interval = 15.000 minutes Unit interval percentage of lag time = 167.4481 Hydrograph baseflow = 0.00(CFS) Average maximum watershed loss rate(Fm) = 0.157(In/Hr) Average low loss rate fraction (Yb) = 0.166 (decimal) VALLEY DEVELOPED S-Graph Selected Computed peak 5-minute rainfall = 0.625(In) Computed peak 30-minute rainfall = 1.281(In) Specified peak 1-hour rainfall = 1.690(In) Computed peak 3-hour rainfall = 2.936(In) Specified peak 6-hour rainfall = 4.160(In) Specified peak 24-hour rainfall = 7.730(In) Rainfall depth area reduction factors: Using a total area of 8.48(Ac.) (Ref: fig. E-4) 5-minute factor = 1.000 Adjusted rainfall = 0.625(In)

30-minute factor = 1.000Adjusted rainfall = 1.280(In) 1-hour factor = 1.000 Adjusted rainfall = 1.689(In) 3-hour factor = 1.000Adjusted rainfall = 2.936(In) Adjusted rainfall = 4.160(In) 6-hour factor = 1.000 24-hour factor = 1.000 Adjusted rainfall = 7.730(In) _____ Unit Hydrograph Interval'S' GraphUnit HydrographNumberMean values((CFS)) _____ (K = 34.19 (CFS)) 39.792 1 13.603 2 97.064 19.579 3 100.000 1.004 _____ Total soil rain loss = 1.15(In) Total effective rainfall = 6.58(In) Peak flow rate in flood hydrograph = 18.86(CFS) -----24 - HOUR STORM Runoff Hydrograph Hydrograph in 15 Minute intervals ((CFS)) _____ Time(h+m) Volume Ac.Ft Q(CFS) 0 5.0 10.0 15.0 20.0 ------_____ 0+15 0.0085 0.41 Q 1.00 VQ 0+30 0.0292 1.04 VQ 0.0507 0+45 0.0725 1+ 0 1.05 V Q 1.06 V Q 1.07 VQ 0.0944 1+15 1+30 0.1166 0.1389 1+45 1.08 VQ 1.09 VQ 2+ 0 0.1615 1.10 VQ 2+15 0.1842 0.2073 2+30 1.11 VQ 1.12 |VQ 2+45 0.2305 1.14 | Q 3+ 0 0.2540 1.15 | 0 3+15 0.2777 0.3017 1.16 | Q 3+30 0.3260 3+45 1.17 | Q 1.19 | QV 4+ 0 0.3505 0.3753 4+15 1.20 QV

4+30	0.4004	1.21	QV
4+45	0.4258	1.23	QV
5+ 0	0.4515	1.24	QV
5+15	0.4775	1.26	Q V
5+30	0.5038	1.28	Q V
5+45	0.5305	1.29	Q V
6+ 0	0.5576	1.31	Q V
6+15	0.5850	1.33	
6+30	0.6128	1.35	
6+45	0.6410	1.36	
7+ 0	0.6696	1.39	
7+15	0.6987	1.41	
7+30	0.7282	1.43	jų vi i i
7+45	0.7581	1.45	
8+ 0	0.7886	1.48	
8+15	0.8196	1.50	
8+30	0.8512	1.53	
8+45	0.8833	1.55	
9+ 0	0.9160	1.58	
9+15	0.9493	1.61	
9+30	0.9834	1.65	
9+45	1.0181	1.68	
10+ 0	1.0536	1.72	
10+15	1.0899	1.76	
10+30	1.1270	1.80	
10+45	1.1651	1.84	
10++5 11+ 0	1.2042	1.89	
11+15	1.2443	1.94	
11+30	1.2855	2.00	
11+45	1.3280	2.00	
12+ 0	1.3718	2.00	
12+15	1.4194	2.30	
12+15	1.4719	2.50	
12+30 12+45	1.5263	2.64	
12+43 13+ 0			
13+ 0 13+15	1.5828 1.6415	2.73 2.84	
13+13 13+30	1.7028	2.84	
13+30 13+45	1.7670	3.11	
13+45 14+ 0	1.8346	3.27	
14+ 0 14+15	1.9062	3.46	Q V Q V
14+13 14+30	1.9826	3.70	
14+50 14+45	2.0650		
		3.99	
15+ 0	2.1549	4.35	
15+15	2.2551	4.85	
15+30	2.3635	5.24	
15+45	2.4842	5.84	
16+ 0	2.6809	9.52	
16+15	3.0706	18.86	
16+30	3.4430	18.02	
16+45	3.5631	5.81	Q V

23+30 4.5918 1.09 Q V 23+45 4.6139 1.07 Q V						
17+30 3.7944 3.24 Q V $17+45$ 3.8551 2.94 Q V $18+0$ 3.9111 2.71 Q V $18+15$ 3.9611 2.42 Q V $18+30$ 4.0048 2.11 Q V $18+45$ 4.0458 1.98 Q V $19+0$ 4.0846 1.88 Q V $19+15$ 4.1216 1.79 Q V $19+45$ 4.1907 1.64 Q V $19+45$ 4.1907 1.64 Q V $20+0$ 4.2233 1.58 Q V $20+45$ 4.3145 1.42 Q V $20+45$ 4.3145 1.42 Q V $20+45$ 4.3145 1.42 Q V $21+16$ 4.3976 1.30 Q V $21+45$ 4.4239 1.27 Q V $22+60$ 4.4495 1.24 Q V $22+60$ 4.4495 1.24 Q V $22+60$ 4.4996 1.18 Q V $22+60$ 4.5463 1.13 Q V $22+15$ 4.563 1.13 Q V $22+45$ 4.5633 1.11 Q V $22+45$ 4.5918 1.09 Q V $23+45$ 4.6139 1.07 Q V	17+ 0	3.6519	4.30	Q		V
17+45 3.8551 2.94 Q V $18+0$ 3.9111 2.71 Q V $18+15$ 3.9611 2.42 Q V $18+30$ 4.0048 2.11 Q V $18+30$ 4.0048 2.11 Q V $18+45$ 4.0458 1.98 Q V $19+46$ 4.0846 1.88 Q V $19+15$ 4.1216 1.79 Q V $19+30$ 4.1569 1.71 Q V $19+45$ 4.1907 1.64 Q V $20+6$ 4.2233 1.58 Q V $20+45$ 4.3145 1.47 Q V $20+45$ 4.3145 1.42 Q V $21+46$ 4.3976 1.30 Q V $21+45$ 4.4239 1.27 Q V $21+45$ 4.4239 1.27 Q V $22+6$ 4.4495 1.24 Q V $22+46$ 4.4990 1.18 Q V $22+45$ 4.529 1.16 Q V $22+45$ 4.563 1.13 Q V $23+6$ 4.5918 1.09 Q V $23+45$ 4.6139 1.07 Q V	17+15	3.7274	3.66	Q		V
18+0 3.9111 2.71 0 V $18+15$ 3.9611 2.42 Q V $18+30$ 4.0048 2.11 Q V $18+45$ 4.0458 1.98 Q V $19+0$ 4.0846 1.88 Q V $19+0$ 4.0846 1.88 Q V $19+30$ 4.1266 1.71 Q V $19+45$ 4.1907 1.64 Q V $19+45$ 4.1907 1.64 Q V $20+0$ 4.2233 1.58 Q V $20+15$ 4.2547 1.52 Q V $20+30$ 4.2851 1.47 Q V $21+46$ 4.3430 1.38 Q V $21+45$ 4.3976 1.30 Q V $21+45$ 4.4239 1.27 Q V $22+0$ 4.4495 1.24 Q V $22+46$ 4.4495 1.24 Q V $22+45$ 4.5229 1.16 Q V $22+45$ 4.5229 1.16 Q V $23+6$ 4.563 1.13 Q V $23+45$ 4.6139 1.07 Q V	17+30	3.7944	3.24	Q		V
18+0 3.9111 2.71 Q V $18+15$ 3.9611 2.42 Q V $18+30$ 4.0048 2.11 Q V $18+30$ 4.0048 2.11 Q V $18+45$ 4.0458 1.98 Q V $19+0$ 4.0846 1.88 Q V $19+15$ 4.1216 1.79 Q V $19+30$ 4.1569 1.71 Q V $19+45$ 4.1907 1.64 Q V $20+0$ 4.2233 1.58 Q V $20+15$ 4.2547 1.52 Q V $20+45$ 4.3145 1.47 Q V $20+45$ 4.3145 1.42 Q V $21+46$ 4.3976 1.30 Q V $21+45$ 4.4239 1.27 Q V $22+46$ 4.4495 1.24 Q V $22+45$ 4.5229 1.16 Q V $22+45$ 4.5229 1.16 Q V $22+45$ 4.563 1.13 Q V $23+6$ 4.5918 1.09 Q V $23+45$ 4.6139 1.07 Q V	17+45	3.8551	2.94	Q		V
18+30 4.0048 2.11 0 V $18+45$ 4.0458 1.98 Q V $19+0$ 4.0846 1.88 Q V $19+15$ 4.1216 1.79 Q V $19+30$ 4.1569 1.71 Q V $19+45$ 4.1907 1.64 Q V $20+0$ 4.2233 1.58 Q V $20+45$ 4.2547 1.52 Q V $20+30$ 4.2851 1.47 Q V $20+45$ 4.3145 1.42 Q V $20+45$ 4.3145 1.42 Q V $21+6$ 4.3430 1.38 Q V $21+45$ 4.4239 1.27 Q V $21+45$ 4.4495 1.24 Q V $22+45$ 4.5229 1.16 Q V $22+45$ 4.5299 1.18 Q V $22+45$ 4.5693 1.11 Q V $23+45$ 4.6139 1.07 Q V	18+ 0	3.9111	2.71			V
18+30 4.0048 2.11 Q V $18+45$ 4.0458 1.98 Q V $19+0$ 4.0846 1.88 Q V $19+15$ 4.1216 1.79 Q V $19+30$ 4.1569 1.71 Q V $19+45$ 4.1907 1.64 Q V $20+0$ 4.2233 1.58 Q V $20+15$ 4.2547 1.52 Q V $20+30$ 4.2851 1.47 Q V $20+45$ 4.3145 1.42 Q V $20+45$ 4.3145 1.42 Q V $21+6$ 4.3430 1.38 Q V $21+45$ 4.3976 1.30 Q V $21+45$ 4.4239 1.27 Q V $22+0$ 4.4495 1.24 Q V $22+45$ 4.5229 1.16 Q V $22+45$ 4.5229 1.16 Q V $23+46$ 4.5918 1.09 Q V	18+15	3.9611	2.42	Q		V
19+0 4.0846 1.88 Q V $19+15$ 4.1216 1.79 Q V $19+30$ 4.1569 1.71 Q V $19+45$ 4.1907 1.64 Q V $20+0$ 4.2233 1.58 Q V $20+15$ 4.2547 1.52 Q V $20+30$ 4.2851 1.47 Q V $20+45$ 4.3145 1.42 Q V $20+45$ 4.3145 1.42 Q V $21+0$ 4.3430 1.38 Q V $21+15$ 4.3707 1.34 Q V $21+30$ 4.3976 1.30 Q V $21+45$ 4.4239 1.27 Q V $22+0$ 4.4495 1.24 Q V $22+30$ 4.4990 1.18 Q V $22+45$ 4.5229 1.16 Q V $23+0$ 4.5918 1.09 Q V $23+45$ 4.6139 1.07 Q V	18+30	4.0048	2.11	Q		V
19+15 4.1216 1.79 Q V $19+30$ 4.1569 1.71 Q V $19+45$ 4.1907 1.64 Q V $20+0$ 4.2233 1.58 Q V $20+15$ 4.2547 1.52 Q V $20+30$ 4.2851 1.47 Q V $20+45$ 4.3145 1.42 Q V $20+45$ 4.3145 1.42 Q V $21+0$ 4.3430 1.38 Q V $21+15$ 4.3707 1.34 Q V $21+30$ 4.3976 1.30 Q V $21+45$ 4.4239 1.27 Q V $22+0$ 4.4495 1.24 Q V $22+30$ 4.4990 1.18 Q V $22+45$ 4.5229 1.16 Q V $23+6$ 4.5918 1.09 Q V $23+45$ 4.6139 1.07 Q V	18+45	4.0458	1.98	Q		V
19+30 4.1569 1.71 Q V $19+45$ 4.1907 1.64 Q V $20+0$ 4.2233 1.58 Q V $20+15$ 4.2547 1.52 Q V $20+30$ 4.2851 1.47 Q V $20+45$ 4.3145 1.42 Q V $21+0$ 4.3430 1.38 Q V $21+5$ 4.3707 1.34 Q V $21+45$ 4.3976 1.30 Q V $21+45$ 4.4239 1.27 Q V $22+0$ 4.4495 1.24 Q V $22+15$ 4.4745 1.21 Q V $22+30$ 4.4990 1.18 Q V $22+45$ 4.5229 1.16 Q V $23+0$ 4.5918 1.09 Q V $23+45$ 4.6139 1.07 Q V	19+ 0	4.0846	1.88	Q		V
$19+45$ 4.1907 1.64 Q \vee $20+0$ 4.2233 1.58 Q \vee $20+15$ 4.2547 1.52 Q \vee $20+30$ 4.2851 1.47 Q \vee $20+45$ 4.3145 1.42 Q \vee $20+45$ 4.3145 1.42 Q \vee $21+0$ 4.3430 1.38 Q \vee $21+15$ 4.3707 1.34 Q \vee $21+30$ 4.3976 1.30 Q \vee $21+45$ 4.4239 1.27 Q \vee $22+0$ 4.4495 1.24 Q \vee $22+30$ 4.4990 1.18 Q \vee $22+45$ 4.5229 1.16 Q \vee $23+0$ 4.5463 1.13 Q \vee $23+30$ 4.5918 1.09 Q \vee $23+45$ 4.6139 1.07 Q \vee	19+15	4.1216	1.79	Q		V
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	19+30	4.1569	1.71	Q		V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19+45	4.1907	1.64	Q		V
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20+ 0	4.2233	1.58	Q		V
20+45 4.3145 1.42 Q V $21+0$ 4.3430 1.38 Q V $21+15$ 4.3707 1.34 Q V $21+30$ 4.3976 1.30 Q V $21+45$ 4.4239 1.27 Q V $22+0$ 4.4495 1.24 Q V $22+15$ 4.4745 1.21 Q V $22+30$ 4.4990 1.18 Q V $22+45$ 4.5229 1.16 Q V $23+0$ 4.5463 1.13 Q V $23+30$ 4.5918 1.09 Q V $23+45$ 4.6139 1.07 Q V	20+15	4.2547	1.52	Q		V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20+30	4.2851	1.47	Q		V
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20+45	4.3145	1.42	Q		V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21+ 0	4.3430	1.38	Q		V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21+15	4.3707	1.34	Q		V
22+ 0 4.4495 1.24 Q I V 22+15 4.4745 1.21 Q I V 22+30 4.4990 1.18 Q I V 22+45 4.5229 1.16 Q I V 23+ 0 4.5463 1.13 Q I V 23+15 4.5693 1.11 Q I V 23+30 4.5918 1.09 Q I V 23+45 4.6139 1.07 Q I V	21+30	4.3976	1.30	Q		V
22+15 4.4745 1.21 Q V 22+30 4.4990 1.18 Q V 22+45 4.5229 1.16 Q V 23+0 4.5463 1.13 Q V 23+15 4.5693 1.11 Q V 23+30 4.5918 1.09 Q V 23+45 4.6139 1.07 Q V	21+45	4.4239	1.27	Q		V
22+30 4.4990 1.18 Q I V 22+45 4.5229 1.16 Q I V 23+0 4.5463 1.13 Q I V 23+15 4.5693 1.11 Q I V 23+30 4.5918 1.09 Q I V 23+45 4.6139 1.07 Q I V	22+ 0	4.4495	1.24	Q		V
22+45 4.5229 1.16 Q I V 23+0 4.5463 1.13 Q I V 23+15 4.5693 1.11 Q I V 23+30 4.5918 1.09 Q I V 23+45 4.6139 1.07 Q I V	22+15	4.4745	1.21	Q		V
23+ 0 4.5463 1.13 Q N 23+15 4.5693 1.11 Q N 23+30 4.5918 1.09 Q N 23+45 4.6139 1.07 Q N	22+30	4.4990	1.18	Q		V
23+15 4.5693 1.11 Q V 23+30 4.5918 1.09 Q V 23+45 4.6139 1.07 Q V	22+45	4.5229	1.16	Q		V
23+30 4.5918 1.09 Q V 23+45 4.6139 1.07 Q V	23+ 0	4.5463	1.13	Q		V
23+45 4.6139 1.07 Q V	23+15		1.11	Q		V
			1.09			V
24+ 0 4.6356 1.05 Q V	23+45	4.6139	1.07	Q		V
	24+ 0	4.6356	1.05	Q		V

Unit Hydrograph Analysis

Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2018, Version 9.0

Study date 04/04/24

San Bernardino County Synthetic Unit Hydrology Method Manual date - August 1986

Program License Serial Number 6443

MIRO WAY INDUSTRIAL PROJECT - RIALTO PROPOSED CONDITION UH ANALYSIS (DA 4) 100 YR 24HR DESIGN STORM BY LP 04/04/24

Storm Event Year = 100

Antecedent Moisture Condition = 3

English (in-lb) Input Units Used

English Rainfall Data (Inches) Input Values Used

English Units used in output format

Area averaged rainf	all intensity	isohyetal data:	
Sub-Area	Duration	Isohyetal	
(Ac.)	(hours)	(In)	
Rainfall data for y	/ear 10		
1.48	1	1.05	
Rainfall data for y	/ear 2		
1.48	6	1.80	
Rainfall data for y	/ear 2		
1.48	24	3.37	
Rainfall data for y	/ear 100		

1.48 1 1.69 _____ Rainfall data for year 100 6 4.16 1.48 -------Rainfall data for year 100 1.48 24 7.73 _____ ******* Area-averaged max loss rate, Fm ******* Area SCS curve SCS curve Area Fp(Fig C6) Ap Fm No.(AMCII) NO.(AMC 3) (Ac.) Fraction (In/Hr) (dec.) (In/Hr) 32.0 52.0 1.48 1.000 0.785 0.200 0.157 Area-averaged adjusted loss rate Fm (In/Hr) = 0.157 ******* Area-Averaged low loss rate fraction, Yb ********* SCS CN Area Area SCS CN S Pervious (Ac.) Fract (AMC2) (AMC3) Yield Fr 0.30 0.200 9.23 32.0 52.0 0.296 98.0 1.18 0.800 98.0 0.20 0.969 Area-averaged catchment yield fraction, Y = 0.834 Area-averaged low loss fraction, Yb = 0.166 Direct entry of lag time by user Watershed area = 1.48(Ac.) Catchment Lag time = 0.108 hours Unit interval = 15.000 minutes Unit interval percentage of lag time = 232.3420 Hydrograph baseflow = 0.00(CFS) Average maximum watershed loss rate(Fm) = 0.157(In/Hr) Average low loss rate fraction (Yb) = 0.166 (decimal) VALLEY DEVELOPED S-Graph Selected Computed peak 5-minute rainfall = 0.625(In) Computed peak 30-minute rainfall = 1.281(In) Specified peak 1-hour rainfall = 1.690(In) Computed peak 3-hour rainfall = 2.936(In) Specified peak 6-hour rainfall = 4.160(In) Specified peak 24-hour rainfall = 7.730(In) Rainfall depth area reduction factors: Using a total area of 1.48(Ac.) (Ref: fig. E-4) 5-minute factor = 1.000 Adjusted rainfall = 0.625(In)

30-minute factor = 1.000Adjusted rainfall = 1.281(In) 1-hour factor = 1.000Adjusted rainfall = 1.690(In) 3-hour factor = 1.000Adjusted rainfall = 2.936(In) Adjusted rainfall = 4.160(In) 6-hour factor = 1.000 24-hour factor = 1.000 Adjusted rainfall = 7.730(In) _____ Unit Hydrograph Interval'S' GraphUnit HydrographNumberMean values((CFS)) _____ (K = 5.97 (CFS)) 54.980 1 3.280 2 100.000 2.686 _____ _____ _____ Total soil rain loss = 1.15(In) Total effective rainfall = 6.58(In) Peak flow rate in flood hydrograph = 3.67(CFS) _____ 24 - HOUR STORM Runoff Hydrograph _____ Hydrograph in 15 Minute intervals ((CFS)) Time(h+m) Volume Ac.Ft Q(CFS) 0 2.5 5.0 7.5 10.0 _____ 0.10 Q 0+15 0.0020 0+30 0.0058 0.18 Q 0.18 Q 0+45 0.0095 0.18 Q 1+ 0 0.0133 1+15 0.0172 0.19 Q 0.19 QV 1+30 0.0210 1+45 0.0250 0.19 QV 2+ 0 0.0289 0.19 QV 0.19 QV 2+15 0.0329 0.19 QV 2+30 0.0369 0.20 Q V 2+45 0.0410 0.20 Q V 3+ 0 0.0451 0.20 Q V 3+15 0.0492 0.20 Q V 3+30 0.0534 0.0577 0.21 Q V 3+45 0.0619 0.21 Q V 4+ 0 0.21 Q V 4+15 0.0663 4+30 0.0707 0.21 Q V

4+45	0.0751	0.21	Q V				1
5+ 0	0.0796	0.22	Q V		l		
5+15	0.0842	0.22	Q V				
5+30	0.0888	0.22	Q V				
5+45	0.0934	0.23	Q V				
6+ 0	0.0982	0.23	Q V				
6+15	0.1030	0.23	Q V				
6+30	0.1078	0.24	Q V				
6+45	0.1128	0.24	Q V				
7+ 0	0.1178	0.24	Q V				
7+15	0.1229	0.25	Q V	v			
7+30	0.1280	0.25	Q V	v			
7+45	0.1333	0.25	Q \	v İ	ĺ		1
8+ 0	0.1386	0.26		v İ	ĺ		1
8+15	0.1440	0.26	Q	V İ	ĺ		1
8+30	0.1496	0.27	Q	V İ	ĺ		i
8+45	0.1552	0.27	ĮQ	vi	İ		i
9+ 0	0.1609	0.28	ĮQ	vi	i		i
9+15	0.1668	0.28	ĮQ	vi	i		i
9+30	0.1727	0.29	ĮQ	vi	i		i
9+45	0.1788	0.29	ĮQ	vi	i		i
10+ 0	0.1850	0.30	ĮQ	vi	i		i
10+15	0.1914	0.31	ĮQ	vi	i		i
10+30	0.1979	0.32	ĮQ	vi	İ		1
10+45	0.2046	0.32	ĮQ	v	, i		1
11+ 0	0.2114	0.33	Į	V			i
11+15	0.2184	0.34	ĮQ	V			1
11+30	0.2257	0.35	ĮQ		v İ		i
11+45	0.2331	0.36	ĮQ	- T	v i		i
12+ 0	0.2408	0.37	ĮQ		v İ		i
12+15	0.2493	0.41	ĮQ	i	v i		i
12+30	0.2586	0.45	ĮQ	i	v i		i
12+45	0.2681	0.46	ĮQ	i	vİ		i
13+ 0	0.2781	0.48	ĮQ	i	vİ		1
13+15	0.2884	0.50	Q	i	vi		1
13+30	0.2992	0.52	ĮQ	i	vi		1
13+45	0.3105	0.55	ĮQ	i	vi		1
14+ 0	0.3224	0.58	ĮQ	i	vi		1
14+15	0.3350	0.61	Į	i	v		i
14+30	0.3485	0.65	ĮQ	i	v		i
14+45	0.3631	0.71	ĮQ	i	v		i
15+ 0	0.3790	0.77	ĮQ	i	v		i
15+15	0.3969	0.86	Į	i	v		i
15+30	0.4159	0.92	Q		• I \		i
15+45	0.4378	1.06	Q	ļ	•	V	i
16+ 0	0.4762	1.86	*	Q	I	v	i
16+15	0.5521	3.67	ł	× 	Q	v	i
16+30	0.6068	2.65	i	Q			/
16+45	0.6250	0.88	Q	l I		,	V
17+ 0	0.6399	0.72	Q				Īv
-/	0.0000	0.72	I Y	I	I		1 *

17+15	0.6528	0.62	Q	I	1	l v
17+30	0.6643	0.55	Q	I	ł	l v
17+45	0.6747	0.50	Q		ł	l v
18+ 0	0.6843	0.47				l v
18+15	0.6928	0.47			ł	
18+13	0.7003	0.41			ł	
			Q		ł	
18+45	0.7074	0.34	Q			!
19+ 0	0.7141	0.32	Q		ļ	
19+15	0.7205	0.31	Q		ļ	
19+30	0.7266	0.30	Q		ļ	
19+45	0.7325	0.28	ĮQ	ļ	ļ	V
20+ 0	0.7381	0.27	ĮQ		ļ	V
20+15	0.7436	0.26	Q			V
20+30	0.7488	0.25	Q			V
20+45	0.7539	0.25	Q			V
21+ 0	0.7589	0.24	Q			V
21+15	0.7637	0.23	Q			V
21+30	0.7684	0.23	Q			V
21+45	0.7729	0.22	Q			V
22+ 0	0.7774	0.22	Q	ĺ	Í	V
22+15	0.7817	0.21	Q	ĺ	Í	V
22+30	0.7860	0.21	Q	İ	İ	V
22+45	0.7901	0.20	Q	İ	i	V
23+ 0	0.7942	0.20	Q	İ	İ	V
23+15	0.7982	0.19	Q	i	i	i v
23+30	0.8021	0.19	Q	i	i	V
23+45	0.8060	0.19	Q	i	i	V
24+ 0	0.8097	0.18	Q	i	i	V

APPENDIX H

UNDERGROUND CHAMBER ANALYSIS, PONDPACK HYDROGRAPH RESULTS

Project Summary Title Stream Rialto Engineer Company Kimley-Horn Date 11/2/2021

Notes

MiroWayDA1_1.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 1 of 21

Table of Contents

	User Notifications	2
	Master Network Summary	3
DA 1	Read Hydrograph	4
0-1	Addition Summary	5
BMP 1 (IN)	Time vs. Elevation	6
BMP 1	Time vs. Volume	7
BMP 1	Elevation vs. Volume Curve	8
Composite Outlet Structure - 1		
	Outlet Input Data	9
	Individual Outlet Curves	11
	Composite Rating Curve	14
BMP 1		
	Elevation-Volume-Flow Table (Pond)	15
BMP 1 (INF)		
	Pond Infiltration Hydrograph	16
BMP 1 (IN)		
	Level Pool Pond Routing Summary	17
BMP 1 (OUT)		
	Pond Routed Hydrograph (total out)	18
BMP 1 (IN)		
	Pond Inflow Summary	19
Outlet-1		
	Diverted Hydrograph	20

Subsection: User Notifications

User Notifications?

No user notifications generated.

MiroWayDA1_1.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 2 of 21

Subsection: Master Network Summary

Catchments Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ft³)	Time to Peak (min)	Peak Flow (ft ³ /s)
DA 1	Post-Development 100 YEAR	0	69,993.000	975.000	7.39

Node Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ft ³)	Time to Peak (min)	Peak Flow (ft ³ /s)
0-1	Post-Development 100 YEAR	0	44,107.000	1,005.000	2.12

Pond Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ft³)	Time to Peak (min)	Peak Flow (ft³/s)	Maximum Water Surface Elevation (ft)	Maximum Pond Storage (ft ³)
BMP 1 (IN)	Post- Development 100 YEAR	0	70,083.000	975.000	7.39	(N/A)	(N/A)
BMP 1 (OUT)	Post- Development 100 YEAR	0	44,107.000	1,005.000	2.12	4.01	15,805.000

Subsection: Read Hydrograph Label: DA 1 Scenario: Post-Development 100 YEAR

Peak Discharge	7.39 ft ³ /s
Time to Peak	975.000 min
Hydrograph Volume	69,993.000 ft ³

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 15.000 min Time on left represents time for first value in each row.

Time (min)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
15.000	0.20	0.36	0.36	0.37	0.37
90.000	0.37	0.38	0.38	0.38	0.39
165.000	0.39	0.40	0.40	0.40	0.41
240.000	0.41	0.42	0.42	0.43	0.43
315.000	0.44	0.44	0.45	0.46	0.46
390.000	0.47	0.48	0.48	0.49	0.50
465.000	0.51	0.51	0.52	0.53	0.54
540.000	0.55	0.56	0.58	0.59	0.60
615.000	0.61	0.63	0.64	0.66	0.68
690.000	0.70	0.72	0.74	0.82	0.89
765.000	0.92	0.96	1.00	1.04	1.09
840.000	1.15	1.22	1.30	1.41	1.54
915.000	1.73	1.83	2.11	3.75	7.39
990.000	5.16	1.74	1.44	1.24	1.10
1,065.000	1.00	0.93	0.81	0.72	0.68
1,140.000	0.65	0.62	0.59	0.57	0.54
1,215.000	0.53	0.51	0.49	0.48	0.46
1,290.000	0.45	0.44	0.43	0.42	0.41
1,365.000	0.40	0.39	0.38	0.38	0.37
1,440.000	0.36	(N/A)	(N/A)	(N/A)	(N/A)

MiroWayDA1_1.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 4 of 21

Subsection: Addition Summary Label: O-1 Scenario: Post-Development 100 YEAR

Summary for Hydrograph Addition at 'O-1'

	Upstream Link		Upstream Node
Outlet-1		BMP 1	

Node Inflows

Inflow Type	Element	Volume (ft³)	Time to Peak (min)	Flow (Peak) (ft³/s)
Flow (From)	Outlet-1	44,107.160	1,005.000	2.12
Flow (In)	0-1	44,107.160	1,005.000	2.12

MiroWayDA1_1.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 5 of 21

Subsection: Time vs. Elevation Label: BMP 1 (IN) Scenario: Post-Development 100 YEAR

Time vs. Elevation (ft)

Time on left represents time for first value in each row.							
Time	Elevation	Elevation	Elevation	Elevation	Elevation		
(min)	(ft)	(ft)	(ft)	(ft)	(ft)		
0.000	0.00	0.03	0.12	0.22	0.30		
75.000	0.37	0.43	0.47	0.51	0.55		
150.000	0.59	0.63	0.67	0.72	0.76		
225.000	0.81	0.86	0.91	0.96	1.01		
300.000	1.04	1.06	1.07	1.08	1.09		
375.000	1.10	1.11	1.12	1.12	1.13		
450.000	1.13	1.14	1.14	1.15	1.16		
525.000	1.16	1.17	1.17	1.18	1.19		
600.000	1.20	1.20	1.21	1.22	1.23		
675.000	1.24	1.25	1.27	1.28	1.30		
750.000	1.33	1.36	1.38	1.41	1.44		
825.000	1.47	1.50	1.54	1.58	1.64		
900.000	1.71	1.81	1.92	2.04	2.30		
975.000	3.02	3.80	4.01	3.86	3.68		
1,050.000	3.47	3.26	3.06	2.85	2.64		
1,125.000	2.44	2.26	2.08	1.91	1.75		
1,200.000	1.61	1.49	1.40	1.33	1.27		
1,275.000	1.23	1.20	1.18	1.16	1.14		
1,350.000	1.13	1.11	1.10	1.10	1.09		
1,425.000	1.08	1.07	(N/A)	(N/A)	(N/A)		

Output Time increment = 15.000 min Time on left represents time for first value in each row.

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 6 of 21

Subsection: Time vs. Volume Label: BMP 1 Scenario: Post-Development 100 YEAR

Time vs. Volume (ft³)

Output Time increment = 15.000 min			
Time on left represents time for first value in each row.			

Time (min)	Volume (ft³)	Volume (ft³)	Volume (ft³)	Volume (ft³)	Volume (ft³)
0.000	0.000	81.000	294.000	531.000	728.000
75.000	891.000	1,023.000	1,134.000	1,231.000	1,321.000
150.000	1,415.000	1,514.000	1,618.000	1,726.000	1,834.000
225.000	1,946.000	2,063.000	2,185.000	2,311.000	2,435.000
300.000	2,541.000	2,620.000	2,680.000	2,726.000	2,767.000
375.000	2,800.000	2,828.000	2,855.000	2,878.000	2,899.000
450.000	2,921.000	2,944.000	2,965.000	2,984.000	3,005.000
525.000	3,027.000	3,051.000	3,076.000	3,105.000	3,137.000
600.000	3,168.000	3,197.000	3,230.000	3,265.000	3,301.000
675.000	3,342.000	3,387.000	3,435.000	3,484.000	3,557.000
750.000	3,667.000	3,784.000	3,895.000	4,004.000	4,113.000
825.000	4,225.000	4,347.000	4,493.000	4,675.000	4,902.000
900.000	5,187.000	5,552.000	5,971.000	6,479.000	7,735.000
975.000	11,123.000	14,827.000	15,805.000	15,098.000	14,225.000
1,050.000	13,268.000	12,281.000	11,299.000	10,317.000	9,333.000
1,125.000	8,386.000	7,506.000	6,697.000	5,964.000	5,326.000
1,200.000	4,781.000	4,319.000	3,952.000	3,675.000	3,466.000
1,275.000	3,306.000	3,180.000	3,083.000	3,006.000	2,943.000
1,350.000	2,891.000	2,846.000	2,806.000	2,770.000	2,741.000
1,425.000	2,716.000	2,691.000	(N/A)	(N/A)	(N/A)

MiroWayDA1_1.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 7 of 21

Subsection: Elevation vs. Volume Curve Label: BMP 1

Scenario: Post-Development 100 YEAR

Pond Elevation Pond Volume (ft) (ft3) 0.00 0.000 2,400.000 1.00 2.00 6,297.600 3.00 11,030.200 4.00 15,762.800 19,660.500 5.00 6.00 22,060.500

Elevation-Volume

MiroWayDA1_1.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 8 of 21

Subsection: Outlet Input Data

Scenario: Post-Development 100 YEAR

Label: Composite Outlet Structure - 1

Requested Pond Water Surface Elevations			
Minimum (Headwater)	0.00 ft		
Increment (Headwater)	0.50 ft		
Maximum (Headwater)	6.00 ft		

Outlet Connectivity

Structure Type	Outlet ID	Direction	Outfall	E1 (ft)	E2 (ft)
Stand Pipe	Riser - 1	Forward	TW	6.00	6.00
Orifice-Circular	Orifice - 1	Forward	TW	1.00	6.00
Tailwater Settings	Tailwater			(N/A)	(N/A)

MiroWayDA1_1.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 9 of 21

Subsection: Outlet Input Data Label: Composite Outlet Structure - 1 Scenario: Post-Development 100 YEAR

Structure ID: Riser - 1 Structure Type: Stand Pipe 1 Number of Openings Elevation 6.00 ft Diameter 36.0 in Orifice Area 7.1 ft² **Orifice Coefficient** 0.600 Weir Length 9.42 ft Weir Coefficient 3.00 (ft^0.5)/s K Reverse 1.000 0.000 Manning's n Kev, Charged Riser 0.000 Weir Submergence False Orifice H to crest True Structure ID: Orifice - 1 Structure Type: Orifice-Circular Number of Openings 3 Elevation 1.00 ft **Orifice Diameter** 4.0 in **Orifice Coefficient** 0.600 Structure ID: TW Structure Type: TW Setup, DS Channel Free Outfall Tailwater Type **Convergence Tolerances** 30 Maximum Iterations Tailwater Tolerance 0.01 ft (Minimum) Tailwater Tolerance 0.50 ft (Maximum) Headwater Tolerance 0.01 ft (Minimum) Headwater Tolerance 0.50 ft (Maximum) Flow Tolerance (Minimum) 0.001 ft³/s Flow Tolerance (Maximum) 10.000 ft³/s

MiroWayDA1_1.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 10 of 21

Subsection: Individual Outlet Curves Label: Composite Outlet Structure - 1 Scenario: Post-Development 100 YEAR

RATING TABLE FOR ONE OUTLET TYPE Structure ID = Riser - 1 (Stand Pipe)

Upstream ID = (Pond Water Surface) Downstream ID = Tailwater (Pond Outfall)

Water Surface Elevation (ft)	Flow (ft³/s)	Tailwater Elevation (ft)	Convergence Error (ft)
0.00	0.00	(N/A)	0.00
0.50	0.00	(N/A)	0.00
1.00	0.00	(N/A)	0.00
1.50	0.00	(N/A)	0.00
2.00	0.00	(N/A)	0.00
2.50	0.00	(N/A)	0.00
3.00	0.00	(N/A)	0.00
3.50	0.00	(N/A)	0.00
4.00	0.00	(N/A)	0.00
4.50	0.00	(N/A)	0.00
5.00	0.00	(N/A)	0.00
5.50	0.00	(N/A)	0.00
6.00	0.00	(N/A)	0.00
Computation Messages	S		
HW & TW <			
Inv.El.=6.000			
HW & TW <			
Inv.El.=6.000			
HW & TW <			
Inv.El.=6.000			
HW & TW <			
Inv.El.=6.000			
HW & TW < Inv.El.=6.000			
HW & TW <			
Inv.El.=6.000			
HW & TW <			
Inv.El.=6.000			
HW & TW <			
Inv.El.=6.000			
HW & TW <			
Inv.El.=6.000			
HW & TW <			
Inv.El.=6.000			
HW & TW <			
Inv.El.=6.000			
HW & TW < Inv.El.=6.000			
Weir: $H = 0ft$			

MiroWayDA1_1.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 11 of 21

Subsection: Individual Outlet Curves Label: Composite Outlet Structure - 1 Scenario: Post-Development 100 YEAR

MiroWayDA1_1.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 12 of 21

Subsection: Individual Outlet Curves Label: Composite Outlet Structure - 1 Scenario: Post-Development 100 YEAR

RATING TABLE FOR ONE OUTLET TYPE Structure ID = Orifice - 1 (Orifice-Circular)

·····

Upstream ID = (Pond Water Surface) Downstream ID = Tailwater (Pond Outfall)

Water Surface Elevation (ft)	Flow (ft³/s)	Tailwater Elevation (ft)	Convergence Error (ft)
0.00	0.00	(N/A)	0.00
0.50	0.00	(N/A)	0.00
1.00	0.00	(N/A)	0.00
1.50	0.73	(N/A)	0.00
2.00	1.15	(N/A)	0.00
2.50	1.45	(N/A)	0.00
3.00	1.71	(N/A)	0.00
3.50	1.92	(N/A)	0.00
4.00	2.12	(N/A)	0.00
4.50	2.30	(N/A)	0.00
5.00	2.47	(N/A)	0.00
5.50	2.62	(N/A)	0.00
6.00	2.77	(N/A)	0.00
Computation Messages	5		
HW & TW below invert			
HW & TW below invert			
Upstream HW &			
DNstream TW < Inv.El			
H =.33			
H =.83			
H =1.33			
H =1.83			
H =2.33			

MiroWayDA1_1.ppc 4/9/2024

H =2.83 H =3.33 H =3.83 H =4.33 H =4.83

> Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

PondPack CONNECT Edition [10.02.00.01] Page 13 of 21

Subsection: Composite Rating Curve Label: Composite Outlet Structure - 1 Scenario: Post-Development 100 YEAR

Composite Outflow Summary

Water Surface Elevation (ft)	Flow (ft³/s)	Tailwater Elevation (ft)	Convergence Error (ft)
0.00	0.00	(N/A)	0.00
0.50	0.00	(N/A)	0.00
1.00	0.00	(N/A)	0.00
1.50	0.73	(N/A)	0.00
2.00	1.15	(N/A)	0.00
2.50	1.45	(N/A)	0.00
3.00	1.71	(N/A)	0.00
3.50	1.92	(N/A)	0.00
4.00	2.12	(N/A)	0.00
4.50	2.30	(N/A)	0.00
5.00	2.47	(N/A)	0.00
5.50	2.62	(N/A)	0.00
6.00	2.77	(N/A)	0.00
Contributing Structures			
None Contributing	7		

MiroWayDA1_1.ppc 4/9/2024

None Contributing None Contributing Orifice - 1 Orifice - 1 Orifice - 1 Orifice - 1 Orifice - 1 Orifice - 1 Orifice - 1 Orifice - 1 Orifice - 1

Riser - 1 + Orifice - 1

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 14 of 21

Subsection: Elevation-Volume-Flow Table (Pond) Label: BMP 1

Scenario: Post-Development 100 YEAR

Infiltration	
Infiltration Method (Computed)	Constant
Infiltration Rate (Constant)	0.28 ft³/s
Initial Conditions	
Elevation (Water Surface, Initial)	0.00 ft
Volume (Initial)	0.000 ft ³
Flow (Initial Outlet)	0.00 ft ³ /s
Flow (Initial Infiltration)	0.00 ft ³ /s
Flow (Initial, Total)	0.00 ft ³ /s
Time Increment	15.000 min

Elevation (ft)	Outflow (ft³/s)	Storage (ft ³)	Area (acres)	Infiltration (ft³/s)	Flow (Total) (ft ³ /s)	2S/t + 0 (ft³/s)
0.00	0.00	0.000	0.000	0.00	0.00	0.00
0.50	0.00	1,200.000	0.000	0.28	0.28	2.95
1.00	0.00	2,400.000	0.000	0.28	0.28	5.61
1.50	0.73	4,348.800	0.000	0.28	1.01	10.67
2.00	1.15	6,297.600	0.000	0.28	1.43	15.42
2.50	1.45	8,663.900	0.000	0.28	1.73	20.99
3.00	1.71	11,030.200	0.000	0.28	1.99	26.50
3.50	1.92	13,396.500	0.000	0.28	2.20	31.97
4.00	2.12	15,762.800	0.000	0.28	2.40	37.43
4.50	2.30	17,711.650	0.000	0.28	2.58	41.94
5.00	2.47	19,660.500	0.000	0.28	2.75	46.44
5.50	2.62	20,860.500	0.000	0.28	2.90	49.26
6.00	2.77	22,060.500	0.000	0.28	3.05	52.07

Subsection: Pond Infiltration Hydrograph Label: BMP 1 (INF) Scenario: Post-Development 100 YEAR

Peak Discharge	0.28 ft ³ /s
Time to Peak	555.000 min
Hydrograph Volume	23,285.197 ft ³

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 15.000 min Time on left represents time for first value in each row.

Time (min)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
0.000	0.00	0.02	0.07	0.12	0.17
75.000	0.21	0.24	0.26	0.28	0.28
150.000	0.28	0.28	0.28	0.28	0.28
225.000	0.28	0.28	0.28	0.28	0.28
300.000	0.28	0.28	0.28	0.28	0.28
375.000	0.28	0.28	0.28	0.28	0.28
450.000	0.28	0.28	0.28	0.28	0.28
525.000	0.28	0.28	0.28	0.28	0.28
600.000	0.28	0.28	0.28	0.28	0.28
675.000	0.28	0.28	0.28	0.28	0.28
750.000	0.28	0.28	0.28	0.28	0.28
825.000	0.28	0.28	0.28	0.28	0.28
900.000	0.28	0.28	0.28	0.28	0.28
975.000	0.28	0.28	0.28	0.28	0.28
1,050.000	0.28	0.28	0.28	0.28	0.28
1,125.000	0.28	0.28	0.28	0.28	0.28
1,200.000	0.28	0.28	0.28	0.28	0.28
1,275.000	0.28	0.28	0.28	0.28	0.28
1,350.000	0.28	0.28	0.28	0.28	0.28
1,425.000	0.28	0.28	(N/A)	(N/A)	(N/A)

MiroWayDA1_1.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 16 of 21

Subsection: Level Pool Pond Routing Summary Label: BMP 1 (IN) Scenario: Post-Development 100 YEAR

Infiltration			
Infiltration Method (Computed)	Constant		
Infiltration Rate (Constant)	0.28 ft³/s		
Initial Conditions			
Elevation (Water Surface, Initial)	0.00 ft		
Volume (Initial)	0.000 ft ³		
Flow (Initial Outlet)	0.00 ft ³ /s		
Flow (Initial Infiltration)	0.00 ft ³ /s		
Flow (Initial, Total)	0.00 ft ³ /s		
Time Increment	15.000 min		
Inflow/Outflow Hydrograph Sur	nmary		
	•	Times to Deals (Flass, In)	075 000 min
Flow (Peak In) Infiltration (Peak)	7.39 ft³/s 0.28 ft³/s	Time to Peak (Flow, In) Time to Peak (Infiltration)	975.000 min 120.000 min
Flow (Peak Outlet)	2.12 ft ³ /s	Time to Peak (Flow, Outlet)	1,005.000 min
		=	
Elevation (Water Surface, Peak)	4.01 ft		
Volume (Peak)	15,804.736 ft ³		
Mass Balance (ft ³)			
Volume (Initial)	0.000 ft ³		
Volume (Total Inflow)	70,083.000 ft ³		
Volume (Total Infiltration)	23,537.000 ft ³		
Volume (Total Outlet Outflow)	44,107.000 ft ³		
Volume (Retained)	2,390.000 ft ³		
Volume (Unrouted)	-49.000 ft ³		
Error (Mass Balance)	0.1 %		

MiroWayDA1_1.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 17 of 21

Subsection: Pond Routed Hydrograph (total out) Label: BMP 1 (OUT) Scenario: Post-Development 100 YEAR

Peak Discharge	2.12 ft ³ /s
Time to Peak	1,005.000 min
Hydrograph Volume	44,107.160 ft ³

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 15.000 min Time on left represents time for first value in each row.

Time (min)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
270.000	0.00	0.01	0.05	0.08	0.10
345.000	0.12	0.14	0.15	0.16	0.17
420.000	0.18	0.19	0.19	0.20	0.21
495.000	0.22	0.23	0.23	0.24	0.25
570.000	0.26	0.28	0.29	0.30	0.31
645.000	0.32	0.34	0.35	0.37	0.39
720.000	0.40	0.43	0.47	0.52	0.56
795.000	0.60	0.64	0.68	0.73	0.76
870.000	0.80	0.85	0.91	0.99	1.08
945.000	1.17	1.34	1.71	2.04	2.12
1,020.000	2.07	1.99	1.91	1.82	1.73
1,095.000	1.63	1.53	1.42	1.31	1.20
1,170.000	1.08	0.94	0.82	0.72	0.58
1,245.000	0.48	0.40	0.34	0.29	0.25
1,320.000	0.23	0.20	0.18	0.17	0.15
1,395.000	0.14	0.13	0.12	0.11	(N/A)

Subsection: Pond Inflow Summary Label: BMP 1 (IN) Scenario: Post-Development 100 YEAR

Summary for Hydrograph Addition at 'BMP 1'

Upstream Link		Upstream Node
<catchment node="" outflow="" to=""></catchment>	DA 1	

Node Inflows

Inflow Type	Element	Volume (ft³)	Time to Peak (min)	Flow (Peak) (ft ³ /s)
Flow (From)	DA 1	69,993.000	975.000	7.39
Flow (In)	BMP 1	70,083.000	975.000	7.39

MiroWayDA1_1.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 19 of 21

Subsection: Diverted Hydrograph Label: Outlet-1 Scenario: Post-Development 100 YEAR

Peak Discharge	2.12 ft ³ /s
Time to Peak	1,005.000 min
Hydrograph Volume	44,107.160 ft ³

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 15.000 min Time on left represents time for first value in each row.

Time (min)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
270.000	0.00	0.01	0.05	0.08	0.10
345.000	0.12	0.14	0.15	0.16	0.17
420.000	0.18	0.19	0.19	0.20	0.21
495.000	0.22	0.23	0.23	0.24	0.25
570.000	0.26	0.28	0.29	0.30	0.31
645.000	0.32	0.34	0.35	0.37	0.39
720.000	0.40	0.43	0.47	0.52	0.56
795.000	0.60	0.64	0.68	0.73	0.76
870.000	0.80	0.85	0.91	0.99	1.08
945.000	1.17	1.34	1.71	2.04	2.12
1,020.000	2.07	1.99	1.91	1.82	1.73
1,095.000	1.63	1.53	1.42	1.31	1.20
1,170.000	1.08	0.94	0.82	0.72	0.58
1,245.000	0.48	0.40	0.34	0.29	0.25
1,320.000	0.23	0.20	0.18	0.17	0.15
1,395.000	0.14	0.13	0.12	0.11	(N/A)

Index

В BMP 1 (Elevation vs. Volume Curve)... BMP 1 (Elevation-Volume-Flow Table (Pond))... BMP 1 (IN) (Level Pool Pond Routing Summary)... BMP 1 (IN) (Pond Inflow Summary)... BMP 1 (IN) (Time vs. Elevation)... BMP 1 (INF) (Pond Infiltration Hydrograph)... BMP 1 (OUT) (Pond Routed Hydrograph (total out))... BMP 1 (Time vs. Volume)... С Composite Outlet Structure - 1 (Composite Rating Curve)... Composite Outlet Structure - 1 (Individual Outlet Curves)... Composite Outlet Structure - 1 (Outlet Input Data)... Composite Rating Curve...14 D DA 1 (Read Hydrograph)... Diverted Hydrograph...20 Μ Master Network Summary...3 0 O-1 (Addition Summary)... Outlet Input Data...9, 10 Outlet-1 (Diverted Hydrograph)... U User Notifications...2

MiroWayDA1_1.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 21 of 21

Project Summary Title Stream Rialto Engineer Company Kimley-Horn Date 11/2/2021

Notes

MiroWayDA2.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 1 of 23

Table of Contents

	User Notifications	2
	Master Network Summary	3
DA 2	Read Hydrograph	4
0-2	Addition Summary	5
BMP 2 (IN)	Time vs. Elevation	6
BMP 2	Time vs. Volume	7
BMP 2	Elevation vs. Volume Curve	8
Composite Outlet Structure - 1		
	Outlet Input Data	9
	Individual Outlet Curves	12
	Composite Rating Curve	16
BMP 2		
	Elevation-Volume-Flow Table (Pond)	17
BMP 2 (INF)		
	Pond Infiltration Hydrograph	18
BMP 2 (IN)		
	Level Pool Pond Routing Summary	19
BMP 2 (OUT)		
	Pond Routed Hydrograph (total out)	20
BMP 2 (IN)		
	Pond Inflow Summary	21
Outlet-2		
	Diverted Hydrograph	22

Subsection: User Notifications

User Notifications?

No user notifications generated.

MiroWayDA2.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 2 of 23

Subsection: Master Network Summary

Catchments Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ft³)	Time to Peak (min)	Peak Flow (ft ³ /s)
DA 2	Post-Development 100 YEAR	0	186,498.000	990.000	17.29

Node Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ft³)	Time to Peak (min)	Peak Flow (ft ³ /s)
0-2	Post-Development 100 YEAR	0	136,288.000	1,005.000	9.32

Pond Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ft³)	Time to Peak (min)	Peak Flow (ft ³ /s)	Maximum Water Surface Elevation (ft)	Maximum Pond Storage (ft ³)
BMP 2 (IN)	Post- Development 100 YEAR	0	186,656.000	990.000	17.29	(N/A)	(N/A)
BMP 2 (OUT)	Post- Development 100 YEAR	0	136,288.000	1,005.000	9.32	4.31	29,338.000

Subsection: Read Hydrograph Label: DA 2 Scenario: Post-Development 100 YEAR

Peak Discharge	17.29 ft ³ /s
Time to Peak	990.000 min
Hydrograph Volume	186,498.000 ft ³

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 15.000 min Time on left represents time for first value in each row.

Time (min)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
15.000	0.35	0.92	0.97	0.97	0.98
90.000	0.99	1.00	1.01	1.02	1.03
165.000	1.04	1.05	1.06	1.08	1.09
240.000	1.10	1.11	1.13	1.14	1.15
315.000	1.17	1.18	1.20	1.21	1.23
390.000	1.25	1.26	1.28	1.30	1.32
465.000	1.34	1.37	1.39	1.41	1.44
540.000	1.47	1.49	1.53	1.56	1.59
615.000	1.63	1.66	1.71	1.75	1.80
690.000	1.85	1.90	1.96	2.12	2.35
765.000	2.44	2.53	2.63	2.74	2.87
840.000	3.02	3.20	3.42	3.68	4.02
915.000	4.47	4.85	5.37	8.57	16.97
990.000	17.29	5.65	4.02	3.41	3.02
1,065.000	2.74	2.52	2.26	1.97	1.84
1,140.000	1.75	1.66	1.59	1.52	1.46
1,215.000	1.41	1.36	1.32	1.28	1.24
1,290.000	1.21	1.18	1.15	1.12	1.10
1,365.000	1.07	1.05	1.03	1.01	0.99
1,440.000	0.97	(N/A)	(N/A)	(N/A)	(N/A)

MiroWayDA2.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 4 of 23

Subsection: Addition Summary Label: O-2

Scenario: Post-Development 100 YEAR

Summary for Hydrograph Addition at 'O-2'

	Upstream Link		Upstream Node
Outlet-2		BMP 2	

Node Inflows

Inflow Type	Element	Volume (ft³)	Time to Peak (min)	Flow (Peak) (ft ³ /s)
Flow (From)	Outlet-2	136,287.722	1,005.000	9.32
Flow (In)	0-2	136,287.722	1,005.000	9.32

MiroWayDA2.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 5 of 23

Subsection: Time vs. Elevation Label: BMP 2 (IN) Scenario: Post-Development 100 YEAR

Time vs. Elevation (ft)

Time on left represents time for first value in each row.							
Time	Elevation	Elevation	Elevation	Elevation	Elevation		
(min)	(ft)	(ft)	(ft)	(ft)	(ft)		
0.000	0.00	0.03	0.15	0.30	0.43		
75.000	0.53	0.62	0.72	0.82	0.92		
150.000	1.01	1.06	1.09	1.11	1.12		
225.000	1.13	1.14	1.14	1.15	1.15		
300.000	1.15	1.16	1.16	1.17	1.17		
375.000	1.17	1.18	1.18	1.19	1.19		
450.000	1.20	1.20	1.21	1.21	1.22		
525.000	1.23	1.23	1.24	1.25	1.25		
600.000	1.26	1.27	1.28	1.29	1.30		
675.000	1.31	1.32	1.33	1.35	1.37		
750.000	1.40	1.44	1.47	1.50	1.53		
825.000	1.56	1.60	1.65	1.70	1.76		
900.000	1.84	1.94	2.04	2.15	2.38		
975.000	3.09	4.07	4.31	3.76	3.25		
1,050.000	2.82	2.46	2.19	2.00	1.81		
1,125.000	1.65	1.53	1.44	1.38	1.34		
1,200.000	1.30	1.28	1.25	1.24	1.22		
1,275.000	1.21	1.20	1.19	1.18	1.17		
1,350.000	1.16	1.16	1.15	1.14	1.14		
1,425.000	1.13	1.12	(N/A)	(N/A)	(N/A)		

Output Time increment = 15.000 min Time on left represents time for first value in each row.

MiroWayDA2.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 6 of 23

Subsection: Time vs. Volume Label: BMP 2 Scenario: Post-Development 100 YEAR

Time vs. Volume (ft³)

Output Time increment = 15.000 min
Time on left represents time for first value in each row.

Time (min)	Volume (ft³)	Volume (ft³)	Volume (ft³)	Volume (ft³)	Volume (ft³)
0.000	0.000	141.000	624.000	1,255.000	1,776.000
75.000	2,204.000	2,604.000	3,014.000	3,432.000	3,860.000
150.000	4,272.000	4,589.000	4,785.000	4,910.000	4,995.000
225.000	5,056.000	5,100.000	5,134.000	5,164.000	5,193.000
300.000	5,218.000	5,243.000	5,269.000	5,296.000	5,322.000
375.000	5,349.000	5,379.000	5,408.000	5,436.000	5,467.000
450.000	5,500.000	5,534.000	5,572.000	5,613.000	5,652.000
525.000	5,693.000	5,739.000	5,784.000	5,833.000	5,887.000
600.000	5,941.000	5,998.000	6,058.000	6,122.000	6,193.000
675.000	6,267.000	6,347.000	6,431.000	6,521.000	6,653.000
750.000	6,873.000	7,119.000	7,330.000	7,524.000	7,726.000
825.000	7,954.000	8,218.000	8,524.000	8,887.000	9,319.000
900.000	9,844.000	10,506.000	11,269.000	12,111.000	14,046.000
975.000	19,842.000	27,691.000	29,338.000	25,279.000	21,155.000
1,050.000	17,571.000	14,674.000	12,492.000	10,886.000	9,604.000
1,125.000	8,563.000	7,763.000	7,166.000	6,740.000	6,436.000
1,200.000	6,207.000	6,032.000	5,891.000	5,774.000	5,676.000
1,275.000	5,589.000	5,511.000	5,444.000	5,382.000	5,323.000
1,350.000	5,270.000	5,221.000	5,173.000	5,131.000	5,091.000
1,425.000	5,052.000	5,015.000	(N/A)	(N/A)	(N/A)

Subsection: Elevation vs. Volume Curve Label: BMP 2 Scenario: Post-Development 100 YEAR

Pond Elevation (ft)	Pond Volume (ft ³)
0.0	0.000
1.0	4,176.000
2.0	0 10,913.900
3.0	0 19,080.100
4.0	0 27,246.300
5.0	0 33,984.200
6.0	0 38,160.200

Elevation-Volume

MiroWayDA2.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 8 of 23

Subsection: Outlet Input Data

Scenario: Post-Development 100 YEAR

Label: Composite Outlet Structure - 1

Requested Pond Water Surface Elevations				
Minimum (Headwater)	0.00 ft			
Increment (Headwater)	0.50 ft			
Maximum (Headwater) 6.00 ft				

Outlet Connectivity

Structure Type	Outlet ID	Direction	Outfall	E1 (ft)	E2 (ft)
Orifice-Circular	Orifice - 2	Forward	TW	2.00	6.00
Stand Pipe	Riser - 1	Forward	TW	6.00	6.00
Orifice-Circular	Orifice - 1	Forward	TW	1.00	6.00
Tailwater Settings	Tailwater			(N/A)	(N/A)

MiroWayDA2.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 9 of 23

Subsection: Outlet Input Data Label: Composite Outlet Structure - 1 Scenario: Post-Development 100 YEAR

Structure ID: Riser - 1 Structure Type: Stand Pipe 1 Number of Openings Elevation 6.00 ft Diameter 36.0 in Orifice Area 7.1 ft² **Orifice Coefficient** 0.600 Weir Length 9.42 ft Weir Coefficient 3.00 (ft^0.5)/s K Reverse 1.000 0.000 Manning's n Kev, Charged Riser 0.000 Weir Submergence False Orifice H to crest True Structure ID: Orifice - 1 Structure Type: Orifice-Circular Number of Openings 4 Elevation 1.00 ft Orifice Diameter 6.0 in **Orifice Coefficient** 0.600 Structure ID: Orifice - 2 Structure Type: Orifice-Circular 2 Number of Openings 2.00 ft Elevation **Orifice Diameter** 6.0 in Orifice Coefficient 0.600 Structure ID: TW Structure Type: TW Setup, DS Channel Free Outfall Tailwater Type **Convergence Tolerances** Maximum Iterations 30 Tailwater Tolerance 0.01 ft (Minimum) Tailwater Tolerance 0.50 ft (Maximum) Headwater Tolerance 0.01 ft (Minimum) Headwater Tolerance 0.50 ft (Maximum) Bentley Systems, Inc. Haestad Methods Solution Center

MiroWayDA2.ppc 4/9/2024

27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

PondPack CONNECT Edition [10.02.00.01] Page 10 of 23

Subsection: Outlet Input Data Label: Composite Outlet Structure - 1 Scenario: Post-Development 100 YEAR

Convergence Tolerances

Flow Tolerance (Minimum)	0.001 ft ³ /s
Flow Tolerance (Maximum)	10.000 ft ³ /s

MiroWayDA2.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 11 of 23

Subsection: Individual Outlet Curves Label: Composite Outlet Structure - 1 Scenario: Post-Development 100 YEAR

RATING TABLE FOR ONE OUTLET TYPE Structure ID = Riser - 1 (Stand Pipe)

Upstream ID = (Pond Water Surface) Downstream ID = Tailwater (Pond Outfall)

Water Surface Elevation (ft)	Flow (ft³/s)	Tailwater Elevation (ft)	Convergence Error (ft)
0.00	0.00	(N/A)	0.00
0.50	0.00	(N/A)	0.00
1.00	0.00	(N/A)	0.00
1.50	0.00	(N/A)	0.00
2.00	0.00	(N/A)	0.00
2.50	0.00	(N/A)	0.00
3.00	0.00	(N/A)	0.00
3.50	0.00	(N/A)	0.00
4.00	0.00	(N/A)	0.00
4.50	0.00	(N/A)	0.00
5.00	0.00	(N/A)	0.00
5.50	0.00	(N/A)	0.00
6.00	0.00	(N/A)	0.00
Computation Messages	S		
HW & TW <			
Inv.El.=6.000			
HW & TW <			
Inv.El.=6.000			
HW & TW <			
Inv.El.=6.000			
HW & TW <			
Inv.El.=6.000			
HW & TW < Inv.El.=6.000			
HW & TW <			
Inv.El.=6.000			
HW & TW <			
Inv.El.=6.000			
HW & TW <			
Inv.El.=6.000			
HW & TW <			
Inv.El.=6.000			
HW & TW <			
Inv.El.=6.000			
HW & TW <			
Inv.El.=6.000			
HW & TW < Inv.El.=6.000			
Weir: $H = 0ft$			

MiroWayDA2.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 12 of 23

Subsection: Individual Outlet Curves Label: Composite Outlet Structure - 1 Scenario: Post-Development 100 YEAR

MiroWayDA2.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 13 of 23

Subsection: Individual Outlet Curves Label: Composite Outlet Structure - 1 Scenario: Post-Development 100 YEAR

RATING TABLE FOR ONE OUTLET TYPE Structure ID = Orifice - 1 (Orifice-Circular)

·····

Upstream ID = (Pond Water Surface) Downstream ID = Tailwater (Pond Outfall)

Water Surface Elevation (ft)	Flow (ft³/s)	Tailwater Elevation (ft)	Convergence Error (ft)
0.00	0.00	(N/A)	0.00
0.50	0.00	(N/A)	0.00
1.00	0.00	(N/A)	0.00
1.50	1.89	(N/A)	0.00
2.00	3.27	(N/A)	0.00
2.50	4.23	(N/A)	0.00
3.00	5.00	(N/A)	0.00
3.50	5.67	(N/A)	0.00
4.00	6.27	(N/A)	0.00
4.50	6.81	(N/A)	0.00
5.00	7.32	(N/A)	0.00
5.50	7.79	(N/A)	0.00
6.00	8.24	(N/A)	0.00
Computation Messages			
HW & TW below invert			
HW & TW below invert			
Upstream HW &			
DNstream TW < Inv.El			
H =.25			
H =.75			
H =1.25			
H =1.75			

MiroWayDA2.ppc 4/9/2024

H =2.25 H =2.75 H =3.25 H =3.75 H =4.25 H =4.75

> Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

PondPack CONNECT Edition [10.02.00.01] Page 14 of 23

Subsection: Individual Outlet Curves Label: Composite Outlet Structure - 1 Scenario: Post-Development 100 YEAR

RATING TABLE FOR ONE OUTLET TYPE Structure ID = Orifice - 2 (Orifice-Circular)

Upstream ID = (Pond Water Surface) Downstream ID = Tailwater (Pond Outfall)

Water Surface Elevation (ft)	Flow (ft³/s)	Tailwater Elevation (ft)	Convergence Error (ft)
0.00	0.00	(N/A)	0.00
0.50	0.00	(N/A)	0.00
1.00	0.00	(N/A)	0.00
1.50	0.00	(N/A)	0.00
2.00	0.00	(N/A)	0.00
2.50	0.95	(N/A)	0.00
3.00	1.64	(N/A)	0.00
3.50	2.11	(N/A)	0.00
4.00	2.50	(N/A)	0.00
4.50	2.84	(N/A)	0.00
5.00	3.13	(N/A)	0.00
5.50	3.41	(N/A)	0.00
6.00	3.66	(N/A)	0.00
Computation Messages	5		
HW & TW below invert			
HW & TW below invert			
HW & TW below invert			
HW & TW below invert			
Upstream HW & DNstream TW < Inv.El			
H =.25			
H =.75			
H =1.25			
H =1.75			
H =2.25			

MiroWayDA2.ppc 4/9/2024

H =2.75 H =3.25 H =3.75

> Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

PondPack CONNECT Edition [10.02.00.01] Page 15 of 23

Subsection: Composite Rating Curve Label: Composite Outlet Structure - 1

Scenario: Post-Development 100 YEAR

Composite Outflow Summary

None Contributing None Contributing Orifice - 1 Orifice - 1

Orifice - 2 + Orifice - 1 Orifice - 2 + Orifice - 1 Orifice - 2 + Orifice - 1 Orifice - 2 + Orifice - 1 Orifice - 2 + Orifice - 1 Orifice - 2 + Orifice - 1 Orifice - 2 + Orifice - 1 Orifice - 2 + Riser - 1 +

Orifice - 1

Water Surface Elevation (ft)	Flow (ft³/s)	Tailwater Elevation (ft)	Convergence Error (ft)
0.00	0.00	(N/A)	0.00
0.50	0.00	(N/A)	0.00
1.00	0.00	(N/A)	0.00
1.50	1.89	(N/A)	0.00
2.00	3.27	(N/A)	0.00
2.50	5.17	(N/A)	0.00
3.00	6.64	(N/A)	0.00
3.50	7.78	(N/A)	0.00
4.00	8.77	(N/A)	0.00
4.50	9.65	(N/A)	0.00
5.00	10.45	(N/A)	0.00
5.50	11.20	(N/A)	0.00
6.00	11.90	(N/A)	0.00
Contributing Structures			
None Contributing			

MiroWayDA2.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 16 of 23

Subsection: Elevation-Volume-Flow Table (Pond) Label: BMP 2

Scenario: Post-Development 100 YEAR

Infiltration	
Infiltration Method (Computed)	Constant
Infiltration Rate (Constant)	0.54 ft ³ /s
Initial Conditions	
Elevation (Water Surface, Initial)	0.00 ft
Volume (Initial)	0.000 ft ³
Flow (Initial Outlet)	0.00 ft ³ /s
Flow (Initial Infiltration)	0.00 ft ³ /s
Flow (Initial, Total)	0.00 ft ³ /s
Time Increment	15.000 min

Elevation (ft)	Outflow (ft³/s)	Storage (ft ³)	Area (acres)	Infiltration (ft³/s)	Flow (Total) (ft ³ /s)	2S/t + 0 (ft³/s)
0.00	0.00	0.000	0.000	0.00	0.00	0.00
0.50	0.00	2,088.000	0.000	0.54	0.54	5.18
1.00	0.00	4,176.000	0.000	0.54	0.54	9.82
1.50	1.89	7,544.950	0.000	0.54	2.43	19.20
2.00	3.27	10,913.900	0.000	0.54	3.81	28.07
2.50	5.17	14,997.000	0.000	0.54	5.71	39.04
3.00	6.64	19,080.100	0.000	0.54	7.18	49.58
3.50	7.78	23,163.200	0.000	0.54	8.32	59.80
4.00	8.77	27,246.300	0.000	0.54	9.31	69.86
4.50	9.65	30,615.250	0.000	0.54	10.19	78.22
5.00	10.45	33,984.200	0.000	0.54	10.99	86.51
5.50	11.20	36,072.200	0.000	0.54	11.74	91.90
6.00	11.90	38,160.200	0.000	0.54	12.44	97.24

MiroWayDA2.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 17 of 23

Subsection: Pond Infiltration Hydrograph Label: BMP 2 (INF) Scenario: Post-Development 100 YEAR

Peak Discharge	0.54 ft ³ /s
Time to Peak	525.000 min
Hydrograph Volume	45,352.493 ft ³

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 15.000 min Time on left represents time for first value in each row.

Time (min)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
0.000	0.00	0.04	0.16	0.32	0.46
75.000	0.54	0.54	0.54	0.54	0.54
150.000	0.54	0.54	0.54	0.54	0.54
225.000	0.54	0.54	0.54	0.54	0.54
300.000	0.54	0.54	0.54	0.54	0.54
375.000	0.54	0.54	0.54	0.54	0.54
450.000	0.54	0.54	0.54	0.54	0.54
525.000	0.54	0.54	0.54	0.54	0.54
600.000	0.54	0.54	0.54	0.54	0.54
675.000	0.54	0.54	0.54	0.54	0.54
750.000	0.54	0.54	0.54	0.54	0.54
825.000	0.54	0.54	0.54	0.54	0.54
900.000	0.54	0.54	0.54	0.54	0.54
975.000	0.54	0.54	0.54	0.54	0.54
1,050.000	0.54	0.54	0.54	0.54	0.54
1,125.000	0.54	0.54	0.54	0.54	0.54
1,200.000	0.54	0.54	0.54	0.54	0.54
1,275.000	0.54	0.54	0.54	0.54	0.54
1,350.000	0.54	0.54	0.54	0.54	0.54
1,425.000	0.54	0.54	(N/A)	(N/A)	(N/A)

MiroWayDA2.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 18 of 23

Subsection: Level Pool Pond Routing Summary Label: BMP 2 (IN) Scenario: Post-Development 100 YEAR

Infiltration			
Infiltration Method (Computed)	Constant		
Infiltration Rate (Constant)	0.54 ft³/s		
Initial Conditions			
Elevation (Water Surface, Initial)	0.00 ft		
Volume (Initial)	0.000 ft ³		
Flow (Initial Outlet)	0.00 ft ³ /s		
Flow (Initial Infiltration)	0.00 ft³/s		
Flow (Initial, Total)	0.00 ft ³ /s		
Time Increment	15.000 min		
Inflow/Outflow Hydrograph Su	mmary		
Flow (Peak In)	17.29 ft ³ /s	Time to Peak (Flow, In)	990.000 min
Infiltration (Peak)	0.54 ft ³ /s	Time to Peak (Infiltration)	75.000 min
Flow (Peak Outlet)	9.32 ft ³ /s	Time to Peak (Flow, Outlet)	1,005.000 min
Elevation (Water Surface, Peak)	4.31 ft		
Volume (Peak)	29,337.730 ft ³		
Mass Balance (ft³)			
Volume (Initial)	0.000 ft ³		
Volume (Total Inflow)	186,656.000 ft ³		
Volume (Total Infiltration)	45,838.000 ft ³		
Volume (Total Outlet Outflow)	136,288.000 ft ³		
Volume (Retained)	4,289.000 ft ³		
Volume (Unrouted)	-240.000 ft ³		
Error (Mass Balance)	0.1 %		

MiroWayDA2.ppc 4/9/2024 PondPack CONNECT Edition [10.02.00.01] Page 19 of 23

Subsection: Pond Routed Hydrograph (total out) Label: BMP 2 (OUT) Scenario: Post-Development 100 YEAR

Peak Discharge	9.32 ft³/s
Time to Peak	1,005.000 min
Hydrograph Volume	136,287.721 ft ³

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 15.000 min Time on left represents time for first value in each row.

Time (min)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
135.000	0.00	0.05	0.23	0.34	0.41
210.000	0.46	0.49	0.52	0.54	0.55
285.000	0.57	0.58	0.60	0.61	0.63
360.000	0.64	0.66	0.67	0.69	0.71
435.000	0.72	0.74	0.76	0.78	0.81
510.000	0.83	0.85	0.88	0.90	0.93
585.000	0.96	0.99	1.02	1.06	1.09
660.000	1.13	1.17	1.22	1.27	1.32
735.000	1.39	1.51	1.65	1.77	1.88
810.000	1.96	2.06	2.17	2.29	2.44
885.000	2.62	2.83	3.11	3.44	3.83
960.000	4.73	6.85	8.89	9.32	8.29
1,035.000	7.22	6.10	5.02	4.01	3.26
1,110.000	2.74	2.31	1.98	1.68	1.44
1,185.000	1.27	1.14	1.04	0.96	0.90
1,260.000	0.84	0.79	0.75	0.71	0.68
1,335.000	0.64	0.61	0.59	0.56	0.54
1,410.000	0.51	0.49	0.47	(N/A)	(N/A)

MiroWayDA2.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 20 of 23

Subsection: Pond Inflow Summary Label: BMP 2 (IN) Scenario: Post-Development 100 YEAR

Summary for Hydrograph Addition at 'BMP 2'

Upstream Link		Upstream Node
<catchment node="" outflow="" to=""></catchment>	DA 2	

Node Inflows

Inflow Type	Element	Volume (ft³)	Time to Peak (min)	Flow (Peak) (ft ³ /s)
Flow (From)	DA 2	186,498.000	990.000	17.29
Flow (In)	BMP 2	186,655.500	990.000	17.29

MiroWayDA2.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 21 of 23

Subsection: Diverted Hydrograph Label: Outlet-2 Scenario: Post-Development 100 YEAR

Peak Discharge	9.32 ft ³ /s
Time to Peak	1,005.000 min
Hydrograph Volume	136,287.721 ft ³

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 15.000 min Time on left represents time for first value in each row.

Time (min)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
135.000	0.00	0.05	0.23	0.34	0.41
210.000	0.46	0.49	0.52	0.54	0.55
285.000	0.57	0.58	0.60	0.61	0.63
360.000	0.64	0.66	0.67	0.69	0.71
435.000	0.72	0.74	0.76	0.78	0.81
510.000	0.83	0.85	0.88	0.90	0.93
585.000	0.96	0.99	1.02	1.06	1.09
660.000	1.13	1.17	1.22	1.27	1.32
735.000	1.39	1.51	1.65	1.77	1.88
810.000	1.96	2.06	2.17	2.29	2.44
885.000	2.62	2.83	3.11	3.44	3.83
960.000	4.73	6.85	8.89	9.32	8.29
1,035.000	7.22	6.10	5.02	4.01	3.26
1,110.000	2.74	2.31	1.98	1.68	1.44
1,185.000	1.27	1.14	1.04	0.96	0.90
1,260.000	0.84	0.79	0.75	0.71	0.68
1,335.000	0.64	0.61	0.59	0.56	0.54
1,410.000	0.51	0.49	0.47	(N/A)	(N/A)

MiroWayDA2.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 22 of 23

Index

В BMP 2 (Elevation vs. Volume Curve)... BMP 2 (Elevation-Volume-Flow Table (Pond))... BMP 2 (IN) (Level Pool Pond Routing Summary)... BMP 2 (IN) (Pond Inflow Summary)... BMP 2 (IN) (Time vs. Elevation)... BMP 2 (INF) (Pond Infiltration Hydrograph)... BMP 2 (OUT) (Pond Routed Hydrograph (total out))... BMP 2 (Time vs. Volume)... С Composite Outlet Structure - 1 (Composite Rating Curve)... Composite Outlet Structure - 1 (Individual Outlet Curves)... Composite Outlet Structure - 1 (Outlet Input Data)... Composite Rating Curve...16 D DA 2 (Read Hydrograph)... Diverted Hydrograph...22 Μ Master Network Summary...3 0 O-2 (Addition Summary)... Outlet Input Data...9, 10, 11 Outlet-2 (Diverted Hydrograph)... U User Notifications...2

MiroWayDA2.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 23 of 23

Project Summary Title Stream Rialto Engineer Company Kimley-Horn Date 11/2/2021

Notes

MiroWayDA3.0.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 1 of 23

Table of Contents

	User Notifications	2
	Master Network Summary	3
DA 3	Read Hydrograph	4
0-3	Addition Summary	5
BMP 3 (IN)	Time vs. Elevation	6
BMP 3	Time vs. Volume	7
BMP 3	Elevation vs. Volume Curve	8
Composite Outlet Structure - 1		
	Outlet Input Data	9
	Individual Outlet Curves	12
	Composite Rating Curve	16
BMP 3		
	Elevation-Volume-Flow Table (Pond)	17
BMP 3 (INF)		
	Pond Infiltration Hydrograph	18
BMP 3 (IN)		
	Level Pool Pond Routing Summary	19
BMP 3 (OUT)		
	Pond Routed Hydrograph (total out)	20
BMP 3 (IN)		
	Pond Inflow Summary	21
Outlet-3		
	Diverted Hydrograph	22

Subsection: User Notifications

User Notifications?

No user notifications generated.

MiroWayDA3.0.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 2 of 23

Subsection: Master Network Summary

Catchments Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ft³)	Time to Peak (min)	Peak Flow (ft ³ /s)
DA 3	Post-Development 100 YEAR	0	201,240.000	975.000	18.86

Node Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ft³)	Time to Peak (min)	Peak Flow (ft ³ /s)
0-3	Post-Development 100 YEAR	0	147,585.000	1,005.000	9.40

Pond Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ft³)	Time to Peak (min)	Peak Flow (ft³/s)	Maximum Water Surface Elevation (ft)	Maximum Pond Storage (ft ³)
BMP 3 (IN)	Post- Development 100 YEAR	0	201,424.000	975.000	18.86	(N/A)	(N/A)
BMP 3 (OUT)	Post- Development 100 YEAR	0	147,585.000	1,005.000	9.40	4.36	34,795.000

Subsection: Read Hydrograph Label: DA 3 Scenario: Post-Development 100 YEAR

Peak Discharge	18.86 ft³/s
Time to Peak	975.000 min
Hydrograph Volume	201,240.000 ft ³

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 15.000 min Time on left represents time for first value in each row.

Time (min)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
15.000	0.41	1.00	1.04	1.05	1.06
90.000	1.07	1.08	1.09	1.10	1.11
165.000	1.12	1.14	1.15	1.16	1.17
240.000	1.19	1.20	1.21	1.23	1.24
315.000	1.26	1.28	1.29	1.31	1.33
390.000	1.35	1.36	1.39	1.41	1.43
465.000	1.45	1.48	1.50	1.53	1.55
540.000	1.58	1.61	1.65	1.68	1.72
615.000	1.76	1.80	1.84	1.89	1.94
690.000	2.00	2.06	2.12	2.30	2.54
765.000	2.64	2.73	2.84	2.97	3.11
840.000	3.27	3.46	3.70	3.99	4.35
915.000	4.85	5.24	5.84	9.52	18.86
990.000	18.02	5.81	4.30	3.66	3.24
1,065.000	2.94	2.71	2.42	2.11	1.98
1,140.000	1.88	1.79	1.71	1.64	1.58
1,215.000	1.52	1.47	1.42	1.38	1.34
1,290.000	1.30	1.27	1.24	1.21	1.18
1,365.000	1.16	1.13	1.11	1.09	1.07
1,440.000	1.05	(N/A)	(N/A)	(N/A)	(N/A)

MiroWayDA3.0.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 4 of 23

Subsection: Addition Summary Label: O-3

Scenario: Post-Development 100 YEAR

Summary for Hydrograph Addition at 'O-3'

	Upstream Link		Upstream Node
Outlet-3		BMP 3	

Node Inflows

Inflow Type	Element	Volume (ft³)	Time to Peak (min)	Flow (Peak) (ft ³ /s)
Flow (From)	Outlet-3	147,584.591	1,005.000	9.40
Flow (In)	0-3	147,584.591	1,005.000	9.40

MiroWayDA3.0.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 5 of 23

Subsection: Time vs. Elevation Label: BMP 3 (IN) Scenario: Post-Development 100 YEAR

Time vs. Elevation (ft)

ni T	Time on left represents time for first value in each row.								
Time	Elevation	Elevation	Elevation	Elevation	Elevation				
(min)	(ft)	(ft)	(ft)	(ft)	(ft)				
0.000	0.00	0.03	0.14	0.29	0.41				
75.000	0.51	0.60	0.69	0.78	0.88				
150.000	0.98	1.04	1.08	1.10	1.12				
225.000	1.13	1.14	1.15	1.16	1.16				
300.000	1.17	1.17	1.18	1.18	1.19				
375.000	1.19	1.19	1.20	1.20	1.21				
450.000	1.22	1.22	1.23	1.23	1.24				
525.000	1.24	1.25	1.26	1.27	1.27				
600.000	1.28	1.29	1.30	1.31	1.32				
675.000	1.33	1.35	1.36	1.38	1.40				
750.000	1.43	1.47	1.50	1.53	1.57				
825.000	1.61	1.65	1.70	1.75	1.82				
900.000	1.90	2.00	2.10	2.20	2.45				
975.000	3.16	4.11	4.36	3.87	3.44				
1,050.000	3.03	2.69	2.40	2.18	2.00				
1,125.000	1.82	1.68	1.57	1.48	1.42				
1,200.000	1.37	1.33	1.30	1.27	1.26				
1,275.000	1.24	1.22	1.21	1.20	1.19				
1,350.000	1.18	1.17	1.17	1.16	1.15				
1,425.000	1.15	1.14	(N/A)	(N/A)	(N/A)				

Output Time increment = 15.000 min Time on left represents time for first value in each row.

MiroWayDA3.0.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 6 of 23

Subsection: Time vs. Volume Label: BMP 3 Scenario: Post-Development 100 YEAR

Time vs. Volume (ft³)

Output Time increment = 15.000 min
Time on left represents time for first value in each row.

Time (min)	Volume (ft³)	Volume (ft³)	Volume (ft³)	Volume (ft³)	Volume (ft³)
0.000	0.000	167.000	710.000	1,406.000	1,991.000
75.000	2,475.000	2,921.000	3,375.000	3,839.000	4,311.000
150.000	4,793.000	5,214.000	5,516.000	5,723.000	5,863.000
225.000	5,961.000	6,036.000	6,095.000	6,141.000	6,181.000
300.000	6,219.000	6,254.000	6,292.000	6,327.000	6,361.000
375.000	6,398.000	6,436.000	6,472.000	6,510.000	6,553.000
450.000	6,596.000	6,638.000	6,684.000	6,732.000	6,782.000
525.000	6,832.000	6,884.000	6,939.000	7,001.000	7,066.000
600.000	7,135.000	7,208.000	7,286.000	7,365.000	7,450.000
675.000	7,542.000	7,642.000	7,751.000	7,866.000	8,029.000
750.000	8,289.000	8,584.000	8,844.000	9,098.000	9,377.000
825.000	9,684.000	10,024.000	10,408.000	10,854.000	11,386.000
900.000	12,025.000	12,824.000	13,735.000	14,748.000	17,090.000
975.000	23,955.000	32,848.000	34,795.000	30,768.000	26,565.000
1,050.000	22,700.000	19,375.000	16,670.000	14,523.000	12,796.000
1,125.000	11,399.000	10,293.000	9,414.000	8,715.000	8,181.000
1,200.000	7,788.000	7,490.000	7,256.000	7,068.000	6,914.000
1,275.000	6,784.000	6,671.000	6,572.000	6,486.000	6,408.000
1,350.000	6,335.000	6,270.000	6,209.000	6,152.000	6,100.000
1,425.000	6,051.000	6,005.000	(N/A)	(N/A)	(N/A)

Subsection: Elevation vs. Volume Curve Label: BMP 3

Scenario: Post-Development 100 YEAR

Pond Elevation Pond Volume (ft) (ft3) 0.00 0.000 1.00 4,896.000 2.00 12,802.000 3.00 22,386.200 31,970.300 4.00 39,876.300 5.00 6.00 44,772.300

Elevation-Volume

MiroWayDA3.0.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 8 of 23

Subsection: Outlet Input Data

Scenario: Post-Development 100 YEAR

Label: Composite Outlet Structure - 1

Requested Pond Water Surface Elevations			
Minimum (Headwater)	0.00 ft		
Increment (Headwater)	0.50 ft		
Maximum (Headwater)	6.00 ft		

Outlet Connectivity

Structure Type	Outlet ID	Direction	Outfall	E1 (ft)	E2 (ft)
Orifice-Circular	Orifice - 2	Forward	TW	2.00	6.00
Stand Pipe	Riser - 1	Forward	TW	6.00	6.00
Orifice-Circular	Orifice - 1	Forward	TW	1.00	6.00
Tailwater Settings	Tailwater			(N/A)	(N/A)

MiroWayDA3.0.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 9 of 23

Subsection: Outlet Input Data Label: Composite Outlet Structure - 1 Scenario: Post-Development 100 YEAR

Structure ID: Riser - 1 Structure Type: Stand Pipe 1 Number of Openings Elevation 6.00 ft Diameter 36.0 in Orifice Area 7.1 ft² **Orifice Coefficient** 0.600 Weir Length 9.42 ft Weir Coefficient 3.00 (ft^0.5)/s K Reverse 1.000 0.000 Manning's n Kev, Charged Riser 0.000 Weir Submergence False Orifice H to crest True Structure ID: Orifice - 1 Structure Type: Orifice-Circular Number of Openings 4 Elevation 1.00 ft Orifice Diameter 6.0 in **Orifice Coefficient** 0.600 Structure ID: Orifice - 2 Structure Type: Orifice-Circular 2 Number of Openings 2.00 ft Elevation **Orifice Diameter** 6.0 in Orifice Coefficient 0.600 Structure ID: TW Structure Type: TW Setup, DS Channel Free Outfall Tailwater Type **Convergence Tolerances** Maximum Iterations 30 Tailwater Tolerance 0.01 ft (Minimum) Tailwater Tolerance 0.50 ft (Maximum) Headwater Tolerance 0.01 ft (Minimum) Headwater Tolerance 0.50 ft (Maximum) Bentley Systems, Inc. Haestad Methods Solution Center

MiroWayDA3.0.ppc 4/9/2024

27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

PondPack CONNECT Edition [10.02.00.01] Page 10 of 23

Subsection: Outlet Input Data Label: Composite Outlet Structure - 1 Scenario: Post-Development 100 YEAR

Convergence Tolerances

Flow Tolerance (Minimum)	0.001 ft ³ /s
Flow Tolerance (Maximum)	10.000 ft ³ /s

MiroWayDA3.0.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 11 of 23

Subsection: Individual Outlet Curves Label: Composite Outlet Structure - 1 Scenario: Post-Development 100 YEAR

RATING TABLE FOR ONE OUTLET TYPE Structure ID = Riser - 1 (Stand Pipe)

Upstream ID = (Pond Water Surface) Downstream ID = Tailwater (Pond Outfall)

Water Surface Elevation (ft)	Flow (ft³/s)	Tailwater Elevation (ft)	Convergence Error (ft)
0.00	0.00	(N/A)	0.00
0.50	0.00	(N/A)	0.00
1.00	0.00	(N/A)	0.00
1.50	0.00	(N/A)	0.00
2.00	0.00	(N/A)	0.00
2.50	0.00	(N/A)	0.00
3.00	0.00	(N/A)	0.00
3.50	0.00	(N/A)	0.00
4.00	0.00	(N/A)	0.00
4.50	0.00	(N/A)	0.00
5.00	0.00	(N/A)	0.00
5.50	0.00	(N/A)	0.00
6.00	0.00	(N/A)	0.00
Computation Messages	S		
HW & TW <			
Inv.El.=6.000			
HW & TW <			
Inv.El.=6.000			
HW & TW <			
Inv.El.=6.000			
HW & TW <			
Inv.El.=6.000			
HW & TW < Inv.El.=6.000			
HW & TW <			
Inv.El.=6.000			
HW & TW <			
Inv.El.=6.000			
HW & TW <			
Inv.El.=6.000			
HW & TW <			
Inv.El.=6.000			
HW & TW <			
Inv.El.=6.000			
HW & TW <			
Inv.El.=6.000			
HW & TW < Inv.El.=6.000			
Weir: $H = 0ft$			

MiroWayDA3.0.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 12 of 23

Subsection: Individual Outlet Curves Label: Composite Outlet Structure - 1 Scenario: Post-Development 100 YEAR

MiroWayDA3.0.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 13 of 23

Subsection: Individual Outlet Curves Label: Composite Outlet Structure - 1 Scenario: Post-Development 100 YEAR

RATING TABLE FOR ONE OUTLET TYPE Structure ID = Orifice - 1 (Orifice-Circular)

·····

Upstream ID = (Pond Water Surface) Downstream ID = Tailwater (Pond Outfall)

Water Surface Elevation (ft)	Flow (ft³/s)	Tailwater Elevation (ft)	Convergence Error (ft)
0.00	0.00	(N/A)	0.00
0.50	0.00	(N/A)	0.00
1.00	0.00	(N/A)	0.00
1.50	1.89	(N/A)	0.00
2.00	3.27	(N/A)	0.00
2.50	4.23	(N/A)	0.00
3.00	5.00	(N/A)	0.00
3.50	5.67	(N/A)	0.00
4.00	6.27	(N/A)	0.00
4.50	6.81	(N/A)	0.00
5.00	7.32	(N/A)	0.00
5.50	7.79	(N/A)	0.00
6.00	8.24	(N/A)	0.00
Computation Messages			
HW & TW below invert			
HW & TW below invert			
Upstream HW &			
DNstream TW < Inv.El			
H =.25			
H =.75			
H =1.25			
H =1.75			

MiroWayDA3.0.ppc 4/9/2024

H =2.25 H =2.75 H =3.25 H =3.75 H =4.25 H =4.75

> Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

PondPack CONNECT Edition [10.02.00.01] Page 14 of 23

Subsection: Individual Outlet Curves Label: Composite Outlet Structure - 1 Scenario: Post-Development 100 YEAR

RATING TABLE FOR ONE OUTLET TYPE Structure ID = Orifice - 2 (Orifice-Circular)

Upstream ID = (Pond Water Surface) Downstream ID = Tailwater (Pond Outfall)

Water Surface Elevation (ft)	Flow (ft³/s)	Tailwater Elevation (ft)	Convergence Error (ft)
0.00	0.00	(N/A)	0.00
0.50	0.00	(N/A)	0.00
1.00	0.00	(N/A)	0.00
1.50	0.00	(N/A)	0.00
2.00	0.00	(N/A)	0.00
2.50	0.95	(N/A)	0.00
3.00	1.64	(N/A)	0.00
3.50	2.11	(N/A)	0.00
4.00	2.50	(N/A)	0.00
4.50	2.84	(N/A)	0.00
5.00	3.13	(N/A)	0.00
5.50	3.41	(N/A)	0.00
6.00	3.66	(N/A)	0.00
Computation Messages			
HW & TW below invert			
HW & TW below invert			
HW & TW below invert			
HW & TW below invert			
Upstream HW &			
DNstream TW < Inv.El			
H =.25			
H =.75			
H =1.25			
H =1.75			
H =2.25			

MiroWayDA3.0.ppc 4/9/2024

H =2.75 H =3.25 H =3.75

> Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

PondPack CONNECT Edition [10.02.00.01] Page 15 of 23

Subsection: Composite Rating Curve Label: Composite Outlet Structure - 1

Scenario: Post-Development 100 YEAR

Composite Outflow Summary

None Contributing None Contributing Orifice - 1 Orifice - 1

Orifice - 2 + Orifice - 1 Orifice - 2 + Orifice - 1 Orifice - 2 + Orifice - 1 Orifice - 2 + Orifice - 1 Orifice - 2 + Orifice - 1 Orifice - 2 + Orifice - 1 Orifice - 2 + Orifice - 1 Orifice - 2 + Riser - 1 +

Orifice - 1

Water Surface Elevation (ft)	Flow (ft³/s)	Tailwater Elevation (ft)	Convergence Error (ft)
0.00	0.00	(N/A)	0.00
0.50	0.00	(N/A)	0.00
1.00	0.00	(N/A)	0.00
1.50	1.89	(N/A)	0.00
2.00	3.27	(N/A)	0.00
2.50	5.17	(N/A)	0.00
3.00	6.64	(N/A)	0.00
3.50	7.78	(N/A)	0.00
4.00	8.77	(N/A)	0.00
4.50	9.65	(N/A)	0.00
5.00	10.45	(N/A)	0.00
5.50	11.20	(N/A)	0.00
6.00	11.90	(N/A)	0.00
Contributing Structures			
None Contributing			

MiroWayDA3.0.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 16 of 23

Subsection: Elevation-Volume-Flow Table (Pond) Label: BMP 3

Scenario: Post-Development 100 YEAR

Infiltration	
Infiltration Method (Computed)	Constant
Infiltration Rate (Constant)	0.57 ft ³ /s
Initial Conditions	
Elevation (Water Surface, Initial)	0.00 ft
Volume (Initial)	0.000 ft ³
Flow (Initial Outlet)	0.00 ft ³ /s
Flow (Initial Infiltration)	0.00 ft ³ /s
Flow (Initial, Total)	0.00 ft ³ /s
Time Increment	15.000 min

Elevation (ft)	Outflow (ft³/s)	Storage (ft ³)	Area (acres)	Infiltration (ft³/s)	Flow (Total) (ft ³ /s)	2S/t + 0 (ft³/s)
0.00	0.00	0.000	0.000	0.00	0.00	0.00
0.50	0.00	2,448.000	0.000	0.57	0.57	6.01
1.00	0.00	4,896.000	0.000	0.57	0.57	11.45
1.50	1.89	8,849.000	0.000	0.57	2.46	22.12
2.00	3.27	12,802.000	0.000	0.57	3.84	32.29
2.50	5.17	17,594.100	0.000	0.57	5.74	44.84
3.00	6.64	22,386.200	0.000	0.57	7.21	56.95
3.50	7.78	27,178.250	0.000	0.57	8.35	68.75
4.00	8.77	31,970.300	0.000	0.57	9.34	80.38
4.50	9.65	35,923.300	0.000	0.57	10.22	90.05
5.00	10.45	39,876.300	0.000	0.57	11.02	99.64
5.50	11.20	42,324.300	0.000	0.57	11.77	105.82
6.00	11.90	44,772.300	0.000	0.57	12.47	111.96

MiroWayDA3.0.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 17 of 23

Subsection: Pond Infiltration Hydrograph Label: BMP 3 (INF) Scenario: Post-Development 100 YEAR

Peak Discharge	0.57 ft³/s
Time to Peak	525.000 min
Hydrograph Volume	47,834.987 ft ³

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 15.000 min Time on left represents time for first value in each row.

Time (min)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
0.000	0.00	0.04	0.17	0.33	0.46
75.000	0.57	0.57	0.57	0.57	0.57
150.000	0.57	0.57	0.57	0.57	0.57
225.000	0.57	0.57	0.57	0.57	0.57
300.000	0.57	0.57	0.57	0.57	0.57
375.000	0.57	0.57	0.57	0.57	0.57
450.000	0.57	0.57	0.57	0.57	0.57
525.000	0.57	0.57	0.57	0.57	0.57
600.000	0.57	0.57	0.57	0.57	0.57
675.000	0.57	0.57	0.57	0.57	0.57
750.000	0.57	0.57	0.57	0.57	0.57
825.000	0.57	0.57	0.57	0.57	0.57
900.000	0.57	0.57	0.57	0.57	0.57
975.000	0.57	0.57	0.57	0.57	0.57
1,050.000	0.57	0.57	0.57	0.57	0.57
1,125.000	0.57	0.57	0.57	0.57	0.57
1,200.000	0.57	0.57	0.57	0.57	0.57
1,275.000	0.57	0.57	0.57	0.57	0.57
1,350.000	0.57	0.57	0.57	0.57	0.57
1,425.000	0.57	0.57	(N/A)	(N/A)	(N/A)

MiroWayDA3.0.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 18 of 23

Subsection: Level Pool Pond Routing Summary Label: BMP 3 (IN) Scenario: Post-Development 100 YEAR

Infiltration			
Infiltration Method (Computed)	Constant		
Infiltration Rate (Constant)	0.57 ft³/s		
Initial Conditions			
Elevation (Water Surface, Initial)	0.00 ft		
Volume (Initial)	0.000 ft ³		
Flow (Initial Outlet)	0.00 ft ³ /s		
Flow (Initial Infiltration)	0.00 ft³/s		
Flow (Initial, Total)	0.00 ft ³ /s		
Time Increment	15.000 min		
Inflow/Outflow Hydrograph Su	mmary		
Flow (Peak In)	18.86 ft ³ /s	Time to Peak (Flow, In)	975.000 min
Infiltration (Peak)	0.57 ft ³ /s	Time to Peak (Infiltration)	75.000 min
Flow (Peak Outlet)	9.40 ft ³ /s	Time to Peak (Flow, Outlet)	1,005.000 min
Elevation (Water Surface, Peak)	4.36 ft		
Volume (Peak)	34,795.398 ft ³		
Mass Balance (ft ³)			
Volume (Initial)	0.000 ft ³		
Volume (Total Inflow)	201,424.000 ft ³		
Volume (Total Infiltration)	48,348.000 ft ³		
Volume (Total Outlet Outflow)	147,585.000 ft ³		
Volume (Retained)	5,190.000 ft ³		
Volume (Unrouted)	-302.000 ft ³		
Error (Mass Balance)	0.1 %		

MiroWayDA3.0.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 19 of 23

Subsection: Pond Routed Hydrograph (total out) Label: BMP 3 (OUT) Scenario: Post-Development 100 YEAR

Peak Discharge	9.40 ft ³ /s
Time to Peak	1,005.000 min
Hydrograph Volume	147,584.592 ft ³

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 15.000 min Time on left represents time for first value in each row.

Time (min)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
150.000	0.00	0.15	0.30	0.40	0.46
225.000	0.51	0.55	0.57	0.60	0.61
300.000	0.63	0.65	0.67	0.68	0.70
375.000	0.72	0.74	0.75	0.77	0.79
450.000	0.81	0.83	0.85	0.88	0.90
525.000	0.93	0.95	0.98	1.01	1.04
600.000	1.07	1.11	1.14	1.18	1.22
675.000	1.27	1.31	1.36	1.42	1.50
750.000	1.62	1.76	1.89	1.98	2.07
825.000	2.18	2.30	2.44	2.59	2.78
900.000	3.00	3.28	3.64	4.04	4.97
975.000	7.01	8.96	9.40	8.52	7.64
1,050.000	6.71	5.72	4.81	3.96	3.27
1,125.000	2.78	2.40	2.09	1.83	1.57
1,200.000	1.38	1.24	1.13	1.04	0.96
1,275.000	0.90	0.85	0.80	0.76	0.72
1,350.000	0.69	0.66	0.63	0.60	0.58
1,425.000	0.55	0.53	(N/A)	(N/A)	(N/A)

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Subsection: Pond Inflow Summary Label: BMP 3 (IN) Scenario: Post-Development 100 YEAR

Summary for Hydrograph Addition at 'BMP 3'

Upstream Link		Upstream Node
<catchment node="" outflow="" to=""></catchment>	DA 3	

Node Inflows

Inflow Type	Element	Volume (ft³)	Time to Peak (min)	Flow (Peak) (ft ³ /s)
Flow (From)	DA 3	201,240.000	975.000	18.86
Flow (In)	BMP 3	201,424.500	975.000	18.86

MiroWayDA3.0.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 21 of 23

Subsection: Diverted Hydrograph Label: Outlet-3 Scenario: Post-Development 100 YEAR

Peak Discharge	9.40 ft ³ /s
Time to Peak	1,005.000 min
Hydrograph Volume	147,584.592 ft ³

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 15.000 min Time on left represents time for first value in each row.

Time (min)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
150.000	0.00	0.15	0.30	0.40	0.46
225.000	0.51	0.55	0.57	0.60	0.61
300.000	0.63	0.65	0.67	0.68	0.70
375.000	0.72	0.74	0.75	0.77	0.79
450.000	0.81	0.83	0.85	0.88	0.90
525.000	0.93	0.95	0.98	1.01	1.04
600.000	1.07	1.11	1.14	1.18	1.22
675.000	1.27	1.31	1.36	1.42	1.50
750.000	1.62	1.76	1.89	1.98	2.07
825.000	2.18	2.30	2.44	2.59	2.78
900.000	3.00	3.28	3.64	4.04	4.97
975.000	7.01	8.96	9.40	8.52	7.64
1,050.000	6.71	5.72	4.81	3.96	3.27
1,125.000	2.78	2.40	2.09	1.83	1.57
1,200.000	1.38	1.24	1.13	1.04	0.96
1,275.000	0.90	0.85	0.80	0.76	0.72
1,350.000	0.69	0.66	0.63	0.60	0.58
1,425.000	0.55	0.53	(N/A)	(N/A)	(N/A)

MiroWayDA3.0.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 22 of 23

Index

В BMP 3 (Elevation vs. Volume Curve)... BMP 3 (Elevation-Volume-Flow Table (Pond))... BMP 3 (IN) (Level Pool Pond Routing Summary)... BMP 3 (IN) (Pond Inflow Summary)... BMP 3 (IN) (Time vs. Elevation)... BMP 3 (INF) (Pond Infiltration Hydrograph)... BMP 3 (OUT) (Pond Routed Hydrograph (total out))... BMP 3 (Time vs. Volume)... С Composite Outlet Structure - 1 (Composite Rating Curve)... Composite Outlet Structure - 1 (Individual Outlet Curves)... Composite Outlet Structure - 1 (Outlet Input Data)... Composite Rating Curve...16 D DA 3 (Read Hydrograph)... Diverted Hydrograph...22 Μ Master Network Summary...3 0 O-3 (Addition Summary)... Outlet Input Data...9, 10, 11 Outlet-3 (Diverted Hydrograph)... U User Notifications...2

MiroWayDA3.0.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 23 of 23

Project Summary Title Stream Rialto Engineer Company Kimley-Horn Date 11/2/2021

Notes

MiroWayDA3.1.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 1 of 21

Table of Contents

	User Notifications	2
	Master Network Summary	3
DA 4	Read Hydrograph	4
0-4	Addition Summary	5
BMP 4 (IN)	Time vs. Elevation	6
BMP 4	Time vs. Volume	7
BMP 4	Elevation vs. Volume Curve	8
Composite Outlet Structure - 1		
	Outlet Input Data	9
	Individual Outlet Curves	11
	Composite Rating Curve	14
BMP 4		
	Elevation-Volume-Flow Table (Pond)	15
BMP 4 (INF)		
	Pond Infiltration Hydrograph	16
BMP 4 (IN)		
	Level Pool Pond Routing Summary	17
BMP 4 (OUT)		
	Pond Routed Hydrograph (total out)	18
BMP 4 (IN)		
	Pond Inflow Summary	19
Outlet-4		
	Diverted Hydrograph	20

Subsection: User Notifications

User Notifications?

No user notifications generated.

MiroWayDA3.1.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 2 of 21

Subsection: Master Network Summary

Catchments Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ft ³)	Time to Peak (min)	Peak Flow (ft ³ /s)
DA 4	Post-Development 100 YEAR	0	35,118.000	975.000	3.67

Node Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ft³)	Time to Peak (min)	Peak Flow (ft ³ /s)
0-4	Post-Development 100 YEAR	0	23,260.000	990.000	1.79

Pond Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ft³)	Time to Peak (min)	Peak Flow (ft³/s)	Maximum Water Surface Elevation (ft)	Maximum Pond Storage (ft ³)
BMP 4 (IN)	Post- Development 100 YEAR	0	35,163.000	975.000	3.67	(N/A)	(N/A)
BMP 4 (OUT)	Post- Development 100 YEAR	0	23,260.000	990.000	1.79	3.20	4,747.000

Subsection: Read Hydrograph Label: DA 4 Scenario: Post-Development 100 YEAR

Peak Discharge	3.67 ft ³ /s
Time to Peak	975.000 min
Hydrograph Volume	35,118.000 ft ³

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 15.000 min Time on left represents time for first value in each row.

Time (min)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
15.000	0.10	0.18	0.18	0.18	0.19
90.000	0.19	0.19	0.19	0.19	0.19
165.000	0.20	0.20	0.20	0.20	0.21
240.000	0.21	0.21	0.21	0.21	0.22
315.000	0.22	0.22	0.23	0.23	0.23
390.000	0.24	0.24	0.24	0.25	0.25
465.000	0.25	0.26	0.26	0.27	0.27
540.000	0.28	0.28	0.29	0.29	0.30
615.000	0.31	0.32	0.32	0.33	0.34
690.000	0.35	0.36	0.37	0.41	0.45
765.000	0.46	0.48	0.50	0.52	0.55
840.000	0.58	0.61	0.65	0.71	0.77
915.000	0.86	0.92	1.06	1.86	3.67
990.000	2.65	0.88	0.72	0.62	0.55
1,065.000	0.50	0.47	0.41	0.36	0.34
1,140.000	0.32	0.31	0.30	0.28	0.27
1,215.000	0.26	0.25	0.25	0.24	0.23
1,290.000	0.23	0.22	0.22	0.21	0.21
1,365.000	0.20	0.20	0.19	0.19	0.19
1,440.000	0.18	(N/A)	(N/A)	(N/A)	(N/A)

MiroWayDA3.1.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 4 of 21

Subsection: Addition Summary Label: O-4

Scenario: Post-Development 100 YEAR

Summary for Hydrograph Addition at 'O-4'

	Upstream Link		Upstream Node	
Outlet-4		BMP 4		

Node Inflows

Inflow Type	Element	Volume (ft³)	Time to Peak (min)	Flow (Peak) (ft³/s)
Flow (From)	Outlet-4	23,259.565	990.000	1.79
Flow (In)	0-4	23,259.565	990.000	1.79

MiroWayDA3.1.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 5 of 21

Subsection: Time vs. Elevation Label: BMP 4 (IN) Scenario: Post-Development 100 YEAR

Time vs. Elevation (ft)

Time on left represents time for first value in each row.						
Time (min)	Elevation (ft)	Elevation (ft)	Elevation (ft)	Elevation (ft)	Elevation (ft)	
0.000	0.00	0.04	0.15	0.27	0.36	
75.000	0.44	0.50	0.56	0.61	0.67	
150.000	0.73	0.79	0.85	0.92	0.98	
225.000	1.02	1.04	1.05	1.05	1.05	
300.000	1.06	1.06	1.06	1.06	1.07	
375.000	1.07	1.07	1.07	1.07	1.08	
450.000	1.08	1.08	1.08	1.09	1.09	
525.000	1.09	1.10	1.10	1.10	1.11	
600.000	1.11	1.12	1.12	1.13	1.13	
675.000	1.14	1.14	1.15	1.16	1.17	
750.000	1.19	1.21	1.22	1.24	1.25	
825.000	1.27	1.29	1.31	1.33	1.36	
900.000	1.39	1.44	1.49	1.56	1.82	
975.000	2.52	3.20	3.13	2.66	2.24	
1,050.000	1.87	1.57	1.38	1.28	1.22	
1,125.000	1.18	1.15	1.14	1.13	1.12	
1,200.000	1.11	1.10	1.09	1.09	1.08	
1,275.000	1.08	1.07	1.07	1.06	1.06	
1,350.000	1.06	1.05	1.05	1.05	1.04	
1,425.000	1.04	1.04	(N/A)	(N/A)	(N/A)	

Output Time increment = 15.000 min Time on left represents time for first value in each row.

MiroWayDA3.1.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 6 of 21

Subsection: Time vs. Volume Label: BMP 4 Scenario: Post-Development 100 YEAR

Time vs. Volume (ft³)

Time on left represents time for first value in each row.					
Time (min)	Volume (ft³)	Volume (ft³)	Volume (ft³)	Volume (ft³)	Volume (ft³)
0.000	0.000	40.000	144.000	257.000	345.000
75.000	419.000	480.000	534.000	588.000	642.000
150.000	696.000	755.000	818.000	881.000	944.000
225.000	996.000	1,025.000	1,037.000	1,042.000	1,044.000
300.000	1,048.000	1,052.000	1,054.000	1,058.000	1,063.000
375.000	1,065.000	1,069.000	1,074.000	1,076.000	1,080.000
450.000	1,084.000	1,086.000	1,090.000	1,095.000	1,100.000
525.000	1,105.000	1,111.000	1,116.000	1,121.000	1,126.000
600.000	1,132.000	1,140.000	1,150.000	1,157.000	1,163.000
675.000	1,172.000	1,182.000	1,192.000	1,203.000	1,223.000
750.000	1,256.000	1,285.000	1,307.000	1,328.000	1,349.000
825.000	1,374.000	1,403.000	1,433.000	1,468.000	1,514.000
900.000	1,570.000	1,640.000	1,716.000	1,821.000	2,222.000
975.000	3,486.000	4,747.000	4,619.000	3,739.000	2,952.000
1,050.000	2,309.000	1,842.000	1,555.000	1,397.000	1,298.000
1,125.000	1,236.000	1,198.000	1,174.000	1,157.000	1,141.000
1,200.000	1,125.000	1,112.000	1,101.000	1,093.000	1,087.000
1,275.000	1,078.000	1,071.000	1,065.000	1,059.000	1,054.000
1,350.000	1,049.000	1,043.000	1,038.000	1,033.000	1,027.000
1,425.000	1,025.000	1,021.000	(N/A)	(N/A)	(N/A)

Output Time increment = 15.000 min ime on left represents time for first value in each row.

MiroWayDA3.1.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 7 of 21

Subsection: Elevation vs. Volume Curve Label: BMP 4

Scenario: Post-Development 100 YEAR

Pond Elevation (ft)	Pond Volume (ft ³)
0.00	0.000
1.00	960.000
2.00	2,506.700
3.00	4,380.400
4.00	6,254.200
5.00	7,800.800
6.00	8,760.800

Elevation-Volume

MiroWayDA3.1.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 8 of 21

Subsection: Outlet Input Data

Scenario: Post-Development 100 YEAR

Label: Composite Outlet Structure - 1

Requested Pond Water Surface Elevations				
Minimum (Headwater) 0.00 ft				
Increment (Headwater) 0.50 ft				
Maximum (Headwater) 6.00 ft				

Outlet Connectivity

Structure Type	Outlet ID	Direction	Outfall	E1 (ft)	E2 (ft)
Stand Pipe	Riser - 1	Forward	TW	6.00	6.00
Orifice-Circular	Orifice - 1	Forward	TW	1.00	6.00
Tailwater Settings	Tailwater			(N/A)	(N/A)

MiroWayDA3.1.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 9 of 21

Subsection: Outlet Input Data Label: Composite Outlet Structure - 1 Scenario: Post-Development 100 YEAR

Structure ID: Riser - 1 Structure Type: Stand Pipe 1 Number of Openings Elevation 6.00 ft Diameter 36.0 in Orifice Area 7.1 ft² **Orifice Coefficient** 0.600 Weir Length 9.42 ft Weir Coefficient 3.00 (ft^0.5)/s K Reverse 1.000 0.000 Manning's n Kev, Charged Riser 0.000 Weir Submergence False Orifice H to crest True Structure ID: Orifice - 1 Structure Type: Orifice-Circular Number of Openings 3 Elevation 1.00 ft **Orifice Diameter** 4.0 in **Orifice Coefficient** 0.600 Structure ID: TW Structure Type: TW Setup, DS Channel Free Outfall Tailwater Type **Convergence Tolerances** 30 Maximum Iterations Tailwater Tolerance 0.01 ft (Minimum) Tailwater Tolerance 0.50 ft (Maximum) Headwater Tolerance 0.01 ft (Minimum) Headwater Tolerance 0.50 ft (Maximum) Flow Tolerance (Minimum) 0.001 ft³/s Flow Tolerance (Maximum) 10.000 ft³/s

MiroWayDA3.1.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 10 of 21

Subsection: Individual Outlet Curves Label: Composite Outlet Structure - 1 Scenario: Post-Development 100 YEAR

RATING TABLE FOR ONE OUTLET TYPE Structure ID = Riser - 1 (Stand Pipe)

Upstream ID = (Pond Water Surface) Downstream ID = Tailwater (Pond Outfall)

Water Surface Elevation (ft)	Flow (ft³/s)	Tailwater Elevation (ft)	Convergence Error (ft)
0.00	0.00	(N/A)	0.00
0.50	0.00	(N/A)	0.00
1.00	0.00	(N/A)	0.00
1.50	0.00	(N/A)	0.00
2.00	0.00	(N/A)	0.00
2.50	0.00	(N/A)	0.00
3.00	0.00	(N/A)	0.00
3.50	0.00	(N/A)	0.00
4.00	0.00	(N/A)	0.00
4.50	0.00	(N/A)	0.00
5.00	0.00	(N/A)	0.00
5.50	0.00	(N/A)	0.00
6.00	0.00	(N/A)	0.00
Computation Messages	S		
HW & TW <			
Inv.El.=6.000			
HW & TW <			
Inv.El.=6.000			
HW & TW <			
Inv.El.=6.000			
HW & TW <			
Inv.El.=6.000			
HW & TW < Inv.El.=6.000			
HW & TW <			
Inv.El.=6.000			
HW & TW <			
Inv.El.=6.000			
HW & TW <			
Inv.El.=6.000			
HW & TW <			
Inv.El.=6.000			
HW & TW <			
Inv.El.=6.000			
HW & TW <			
Inv.El.=6.000			
HW & TW < Inv.El.=6.000			
Weir: $H = 0ft$			

MiroWayDA3.1.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 11 of 21

Subsection: Individual Outlet Curves Label: Composite Outlet Structure - 1 Scenario: Post-Development 100 YEAR

MiroWayDA3.1.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 12 of 21

Subsection: Individual Outlet Curves Label: Composite Outlet Structure - 1 Scenario: Post-Development 100 YEAR

RATING TABLE FOR ONE OUTLET TYPE Structure ID = Orifice - 1 (Orifice-Circular)

·····

Upstream ID = (Pond Water Surface) Downstream ID = Tailwater (Pond Outfall)

Water Surface Elevation (ft)	Flow (ft³/s)	Tailwater Elevation (ft)	Convergence Error (ft)
0.00	0.00	(N/A)	0.00
0.50	0.00	(N/A)	0.00
1.00	0.00	(N/A)	0.00
1.50	0.73	(N/A)	0.00
2.00	1.15	(N/A)	0.00
2.50	1.45	(N/A)	0.00
3.00	1.71	(N/A)	0.00
3.50	1.92	(N/A)	0.00
4.00	2.12	(N/A)	0.00
4.50	2.30	(N/A)	0.00
5.00	2.47	(N/A)	0.00
5.50	2.62	(N/A)	0.00
6.00	2.77	(N/A)	0.00
Computation Messages	5		
HW & TW below invert			
HW & TW below invert			
Upstream HW &			
DNstream TW < Inv.El			
H =.33			
H =.83			
H =1.33			
H =1.83			
H =2.33			

MiroWayDA3.1.ppc 4/9/2024

H =2.83 H =3.33 H =3.83 H =4.33 H =4.83

> Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

PondPack CONNECT Edition [10.02.00.01] Page 13 of 21

Subsection: Composite Rating Curve Label: Composite Outlet Structure - 1 Scenario: Post-Development 100 YEAR

Composite Outflow Summary

Water Surface Elevation (ft)	Flow (ft³/s)	Tailwater Elevation (ft)	Convergence Error (ft)
0.00	0.00	(N/A)	0.00
0.50	0.00	(N/A)	0.00
1.00	0.00	(N/A)	0.00
1.50	0.73	(N/A)	0.00
2.00	1.15	(N/A)	0.00
2.50	1.45	(N/A)	0.00
3.00	1.71	(N/A)	0.00
3.50	1.92	(N/A)	0.00
4.00	2.12	(N/A)	0.00
4.50	2.30	(N/A)	0.00
5.00	2.47	(N/A)	0.00
5.50	2.62	(N/A)	0.00
6.00	2.77	(N/A)	0.00
Contributing Structures			
None Contributing	7		

MiroWayDA3.1.ppc 4/9/2024

None Contributing None Contributing Orifice - 1 Orifice - 1 Orifice - 1 Orifice - 1 Orifice - 1 Orifice - 1 Orifice - 1 Orifice - 1 Orifice - 1

Riser - 1 + Orifice - 1

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 14 of 21

Subsection: Elevation-Volume-Flow Table (Pond) Label: BMP 4

Scenario: Post-Development 100 YEAR

Infiltration	
Infiltration Method (Computed)	Constant
Infiltration Rate (Constant)	0.13 ft³/s
Initial Conditions	
Elevation (Water Surface, Initial)	0.00 ft
Volume (Initial)	0.000 ft ³
Flow (Initial Outlet)	0.00 ft ³ /s
Flow (Initial Infiltration)	0.00 ft ³ /s
Flow (Initial, Total)	0.00 ft ³ /s
Time Increment	15.000 min

Elevation (ft)	Outflow (ft³/s)	Storage (ft ³)	Area (acres)	Infiltration (ft³/s)	Flow (Total) (ft ³ /s)	2S/t + 0 (ft³/s)
0.00	0.00	0.000	0.000	0.00	0.00	0.00
0.50	0.00	480.000	0.000	0.13	0.13	1.20
1.00	0.00	960.000	0.000	0.13	0.13	2.26
1.50	0.73	1,733.350	0.000	0.13	0.86	4.71
2.00	1.15	2,506.700	0.000	0.13	1.28	6.85
2.50	1.45	3,443.550	0.000	0.13	1.58	9.24
3.00	1.71	4,380.400	0.000	0.13	1.84	11.57
3.50	1.92	5,317.300	0.000	0.13	2.05	13.87
4.00	2.12	6,254.200	0.000	0.13	2.25	16.15
4.50	2.30	7,027.500	0.000	0.13	2.43	18.05
5.00	2.47	7,800.800	0.000	0.13	2.60	19.93
5.50	2.62	8,280.800	0.000	0.13	2.75	21.15
6.00	2.77	8,760.800	0.000	0.13	2.90	22.37

Subsection: Pond Infiltration Hydrograph Label: BMP 4 (INF) Scenario: Post-Development 100 YEAR

Peak Discharge	0.13 ft³/s
Time to Peak	540.000 min
Hydrograph Volume	10,882.219 ft ³

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 15.000 min Time on left represents time for first value in each row.

Time (min)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
0.000	0.00	0.01	0.04	0.07	0.09
75.000	0.11	0.13	0.13	0.13	0.13
150.000	0.13	0.13	0.13	0.13	0.13
225.000	0.13	0.13	0.13	0.13	0.13
300.000	0.13	0.13	0.13	0.13	0.13
375.000	0.13	0.13	0.13	0.13	0.13
450.000	0.13	0.13	0.13	0.13	0.13
525.000	0.13	0.13	0.13	0.13	0.13
600.000	0.13	0.13	0.13	0.13	0.13
675.000	0.13	0.13	0.13	0.13	0.13
750.000	0.13	0.13	0.13	0.13	0.13
825.000	0.13	0.13	0.13	0.13	0.13
900.000	0.13	0.13	0.13	0.13	0.13
975.000	0.13	0.13	0.13	0.13	0.13
1,050.000	0.13	0.13	0.13	0.13	0.13
1,125.000	0.13	0.13	0.13	0.13	0.13
1,200.000	0.13	0.13	0.13	0.13	0.13
1,275.000	0.13	0.13	0.13	0.13	0.13
1,350.000	0.13	0.13	0.13	0.13	0.13
1,425.000	0.13	0.13	(N/A)	(N/A)	(N/A)

MiroWayDA3.1.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 16 of 21

Subsection: Level Pool Pond Routing Summary Label: BMP 4 (IN) Scenario: Post-Development 100 YEAR

Infiltration			
Infiltration Method (Computed)	Constant		
Infiltration Rate (Constant)	0.13 ft³/s		
Initial Conditions			
Elevation (Water Surface, Initial)	0.00 ft		
Volume (Initial)	0.000 ft ³		
Flow (Initial Outlet)	0.00 ft ³ /s		
Flow (Initial Infiltration)	0.00 ft ³ /s		
Flow (Initial, Total)	0.00 ft ³ /s		
Time Increment	15.000 min		
Inflow/Outflow Hydrograph Sur	nmary		
	•	Time to Deals (Flaus In)	075 000 min
Flow (Peak In) Infiltration (Peak)	3.67 ft³/s 0.13 ft³/s	Time to Peak (Flow, In) Time to Peak (Infiltration)	975.000 min 90.000 min
Flow (Peak Outlet)	1.79 ft ³ /s	Time to Peak (Flow, Outlet)	990.000 min
		_	
Elevation (Water Surface, Peak)	3.20 ft		
Volume (Peak)	4,746.763 ft ³		
Mass Balance (ft ³)			
Volume (Initial)	0.000 ft ³		
Volume (Total Inflow)	35,163.000 ft ³		
Volume (Total Infiltration)	10,999.000 ft ³		
Volume (Total Outlet Outflow)	23,260.000 ft ³		
Volume (Retained)	878.000 ft ³		
Volume (Unrouted)	-26.000 ft ³		
Error (Mass Balance)	0.1 %		

MiroWayDA3.1.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 17 of 21

Subsection: Pond Routed Hydrograph (total out) Label: BMP 4 (OUT) Scenario: Post-Development 100 YEAR

Peak Discharge	1.79 ft³/s
Time to Peak	990.000 min
Hydrograph Volume	23,259.565 ft ³

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 15.000 min Time on left represents time for first value in each row.

Time (min)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
210.000	0.00	0.03	0.06	0.07	0.08
285.000	0.08	0.08	0.09	0.09	0.09
360.000	0.10	0.10	0.10	0.11	0.11
435.000	0.11	0.12	0.12	0.12	0.13
510.000	0.13	0.14	0.14	0.15	0.15
585.000	0.16	0.16	0.17	0.18	0.19
660.000	0.19	0.20	0.21	0.22	0.23
735.000	0.25	0.28	0.31	0.33	0.35
810.000	0.37	0.39	0.42	0.45	0.48
885.000	0.52	0.57	0.64	0.71	0.78
960.000	0.99	1.47	1.79	1.76	1.53
1,035.000	1.30	1.04	0.79	0.56	0.41
1,110.000	0.32	0.26	0.22	0.20	0.19
1,185.000	0.17	0.16	0.14	0.13	0.13
1,260.000	0.12	0.11	0.10	0.10	0.09
1,335.000	0.09	0.08	0.08	0.07	0.07
1,410.000	0.06	0.06	0.06	(N/A)	(N/A)

MiroWayDA3.1.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 18 of 21

Subsection: Pond Inflow Summary Label: BMP 4 (IN) Scenario: Post-Development 100 YEAR

Summary for Hydrograph Addition at 'BMP 4'

Upstream Link	Upstr	ream Node
<catchment node="" outflow="" to=""></catchment>	DA 4	

Node Inflows

Inflow Type	Element	Volume (ft³)	Time to Peak (min)	Flow (Peak) (ft ³ /s)
Flow (From)	DA 4	35,118.000	975.000	3.67
Flow (In)	BMP 4	35,163.000	975.000	3.67

MiroWayDA3.1.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 19 of 21

Subsection: Diverted Hydrograph Label: Outlet-4 Scenario: Post-Development 100 YEAR

Peak Discharge	1.79 ft³/s
Time to Peak	990.000 min
Hydrograph Volume	23,259.565 ft ³

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 15.000 min Time on left represents time for first value in each row.

Time (min)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
210.000	0.00	0.03	0.06	0.07	0.08
285.000	0.08	0.08	0.09	0.09	0.09
360.000	0.10	0.10	0.10	0.11	0.11
435.000	0.11	0.12	0.12	0.12	0.13
510.000	0.13	0.14	0.14	0.15	0.15
585.000	0.16	0.16	0.17	0.18	0.19
660.000	0.19	0.20	0.21	0.22	0.23
735.000	0.25	0.28	0.31	0.33	0.35
810.000	0.37	0.39	0.42	0.45	0.48
885.000	0.52	0.57	0.64	0.71	0.78
960.000	0.99	1.47	1.79	1.76	1.53
1,035.000	1.30	1.04	0.79	0.56	0.41
1,110.000	0.32	0.26	0.22	0.20	0.19
1,185.000	0.17	0.16	0.14	0.13	0.13
1,260.000	0.12	0.11	0.10	0.10	0.09
1,335.000	0.09	0.08	0.08	0.07	0.07
1,410.000	0.06	0.06	0.06	(N/A)	(N/A)

MiroWayDA3.1.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 20 of 21

Index

В BMP 4 (Elevation vs. Volume Curve)... BMP 4 (Elevation-Volume-Flow Table (Pond))... BMP 4 (IN) (Level Pool Pond Routing Summary)... BMP 4 (IN) (Pond Inflow Summary)... BMP 4 (IN) (Time vs. Elevation)... BMP 4 (INF) (Pond Infiltration Hydrograph)... BMP 4 (OUT) (Pond Routed Hydrograph (total out))... BMP 4 (Time vs. Volume)... С Composite Outlet Structure - 1 (Composite Rating Curve)... Composite Outlet Structure - 1 (Individual Outlet Curves)... Composite Outlet Structure - 1 (Outlet Input Data)... Composite Rating Curve...14 D DA 4 (Read Hydrograph)... Diverted Hydrograph...20 Μ Master Network Summary...3 0 O-4 (Addition Summary)... Outlet Input Data...9, 10 Outlet-4 (Diverted Hydrograph)... U User Notifications...2

MiroWayDA3.1.ppc 4/9/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 21 of 21

Date: 4/4/2024 Project Name: BMP 1 - 49295 (4-4-2024 16-42-19)

CMP: Underground Detention System Storage Volume Estimation

City / County: State:

=Adjustable Input Cells

Designed By: Company: Telephone:

Contech Engineered Solutions, LLC is pleased to offer the following estimate of storage volume for the above named project. The results are submitted as an estimate only, without liability on the part of Contech Engineered Solutions, LLC for accuracy or suitability to any particular application and are subject to verification of the Engineer of Record. This tool is only applicable for rectangular shaped systems.

Summary of Inputs						
System Information		Backfill Information		Pipe & Analysis Information		
Out-to-out length (ft):	98.0	Backfill Porosity (%):	40%	System Diameter (in):	48	
Out-to-out width (ft):	58.0	Depth Above Pipe (in):	12.0	Pipe Spacing (in):	24	
Number of Manifolds (ea):	2.0	Depth Below Pipe (in):	12.0	Incremental Analysis (in):	12	
Number of Barrels (ea):	10.0	Width At Ends (ft):	1.0	System Invert (Elevation):	0.2	
_		Width At Sides (ft):	1.0			

Storage Volume Estimation System Pipe Stone **Total System** Miscellaneous Percent Open Ave. Surface Incremental Cumulative Incremental Cumulative Incremental Cumulative Depth (ft) Elevation (ft) Storage (cf) Storage (cf) Storage (cf) Storage (cf) Storage (cf) Storage (cf) Storage (%) Area (sf) 0.00 0.20 2,400.0 0.0 0.0 0.0% 0.0 0.0 0.0 0.0 1.00 1.20 0.0 0.0 2,400.0 2,400.0 2,400.0 2,400.0 0.0% 2,400.0 2.00 2.20 2,496.0 2,496.0 1,401.6 3,801.6 3,897.6 6,297.6 39.6% 4,511.7 3.00 3.20 3,887.7 6,383.7 844.9 4,646.5 4,732.6 11,030.2 57.9% 4,838.4 4.00 4.20 3,887.7 10,271.4 844.9 5,491.4 4,732.6 15,762.8 65.2% 4,511.7 5.00 5.20 2,496.0 12,767.4 1,401.6 6,893.0 3,897.6 19,660.5 64.9% 2,400.0 6.00 6.20 0.0 12,767.4 2,400.0 9,293.0 2,400.0 22,060.5 57.9% 2,400.0

Date: 4/5/2024 Project Name: BMP 2 - 49298 (4-5-2024 15-28-32)

CMP: Underground Detention System Storage Volume Estimation

City / County: State:

=Adjustable Input Cells

Designed By: Company: Telephone:

Contech Engineered Solutions, LLC is pleased to offer the following estimate of storage volume for the above named project. The results are submitted as an estimate only, without liability on the part of Contech Engineered Solutions, LLC for accuracy or suitability to any particular application and are subject to verification of the Engineer of Record. This tool is only applicable for rectangular shaped systems.

Summary of Inputs						
System Information		Backfill Information Pipe & Analysis Ir		Pipe & Analysis Informa	Information	
Out-to-out length (ft):	288.0	Backfill Porosity (%):	40%	System Diameter (in):	48	
Out-to-out width (ft):	34.0	Depth Above Pipe (in):	12.0	Pipe Spacing (in):	24	
Number of Manifolds (ea):	1.0	Depth Below Pipe (in):	12.0	Incremental Analysis (in):	12	
Number of Barrels (ea):	6.0	Width At Ends (ft):	1.0	System Invert (Elevation):	0	
		Width At Sides (ft):	1.0			

Storage Volume Estimation System Pipe Stone **Total System** Miscellaneous Cumulative Cumulative Percent Open Ave. Surface Incremental Cumulative Incremental Incremental Depth (ft) Elevation (ft) Storage (cf) Storage (cf) Storage (cf) Storage (cf) Storage (cf) Storage (cf) Storage (%) Area (sf) 0.00 0.00 4,176.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0% 4,176.0 1.00 1.00 0.0 0.0 4,176.0 4,176.0 4,176.0 0.0% 4,176.0 2.00 2.00 4,269.8 4,269.8 2,468.1 6,644.1 6,737.9 10,913.9 39.1% 7,788.4 3.00 3.00 6,650.4 10,920.2 1,515.9 8,159.9 8,166.2 19,080.1 57.2% 8,347.2 4.00 4.00 6,650.4 17,570.5 9,675.8 8,166.2 27,246.3 64.5% 7,788.4 1,515.9 5.00 5.00 4,269.8 21,840.4 2,468.1 12,143.9 6,737.9 33,984.2 64.3% 4,176.0 6.00 6.00 0.0 21,840.4 4,176.0 16,319.9 4,176.0 38,160.2 57.2% 4,176.0

Date: 4/5/2024 Project Name: BMP 3 - 49348 (4-5-2024 15-41-21)

CMP: Underground Detention System Storage Volume Estimation

City / County: State:

=Adjustable Input Cells

Designed By: Company: Telephone:

Contech Engineered Solutions, LLC is pleased to offer the following estimate of storage volume for the above named project. The results are submitted as an estimate only, without liability on the part of Contech Engineered Solutions, LLC for accuracy or suitability to any particular application and are subject to verification of the Engineer of Record. This tool is only applicable for rectangular shaped systems.

Summary of Inputs						
System Information		Backfill Information		Pipe & Analysis Information		
Out-to-out length (ft):	678.0	Backfill Porosity (%):	40%	System Diameter (in):	48	
Out-to-out width (ft):	16.0	Depth Above Pipe (in):	12.0	Pipe Spacing (in):	24	
Number of Manifolds (ea):	2.0	Depth Below Pipe (in):	12.0	Incremental Analysis (in):	12	
Number of Barrels (ea):	3.0	Width At Ends (ft):	1.0	System Invert (Elevation):	0	
		Width At Sides (ft):	1.0			

Storage Volume Estimation System Pipe Stone **Total System** Miscellaneous Cumulative Cumulative Percent Open Ave. Surface Incremental Cumulative Incremental Incremental Depth (ft) Elevation (ft) Storage (cf) Storage (cf) Storage (cf) Storage (cf) Storage (cf) Storage (cf) Storage (%) Area (sf) 0.00 0.00 4,896.0 0.0 0.0 0.0% 0.0 0.0 0.0 0.0 4,896.0 1.00 1.00 0.0 0.0 4,896.0 4,896.0 4,896.0 0.0% 4,896.0 2.00 2.00 5,016.7 5,016.7 2,889.3 7,785.3 7,906.0 12,802.0 39.2% 9,140.2 3.00 3.00 7,813.6 12,830.3 1,770.6 9,555.9 9,584.2 22,386.2 57.3% 9,796.8 4.00 4.00 20,643.9 1,770.6 11,326.5 9,584.2 31,970.3 64.6% 9,140.2 7,813.6 5.00 5.00 5,016.7 25,660.5 2,889.3 14,215.8 7,906.0 39,876.3 64.4% 4,896.0 6.00 6.00 0.0 25,660.5 4,896.0 19,111.8 4,896.0 44,772.3 57.3% 4,896.0

Date: 4/4/2024 Project Name: BMP 4 - 49301 (4-4-2024 16-54-16)

CMP: Underground Detention System Storage Volume Estimation

City / County: State:

=Adjustable Input Cells

Designed By: Company: Telephone:

Contech Engineered Solutions, LLC is pleased to offer the following estimate of storage volume for the above named project. The results are submitted as an estimate only, without liability on the part of Contech Engineered Solutions, LLC for accuracy or suitability to any particular application and are subject to verification of the Engineer of Record. This tool is only applicable for rectangular shaped systems.

Summary of Inputs						
System Information		Backfill Information		Pipe & Analysis Information		
Out-to-out length (ft):	78.0	Backfill Porosity (%):	40%	System Diameter (in):	48	
Out-to-out width (ft):	28.0	Depth Above Pipe (in):	12.0	Pipe Spacing (in):	24	
Number of Manifolds (ea):	1.0	Depth Below Pipe (in):	12.0	Incremental Analysis (in):	12	
Number of Barrels (ea):	5.0	Width At Ends (ft):	1.0	System Invert (Elevation):	0	
		Width At Sides (ft):	1.0			

Storage Volume Estimation System Pipe Stone **Total System** Miscellaneous Cumulative Percent Open Ave. Surface Incremental Cumulative Incremental Incremental Cumulative Depth (ft) Elevation (ft) Storage (cf) Storage (cf) Storage (cf) Storage (cf) Storage (cf) Storage (cf) Storage (%) Area (sf) 0.00 0.00 960.0 0.0 0.0 0.0% 0.0 0.0 0.0 0.0 1.00 1.00 0.0 0.0 960.0 960.0 960.0 960.0 0.0% 960.0 2.00 2.00 977.8 977.8 568.9 1,528.9 1,546.7 2,506.7 39.0% 1,787.2 3.00 3.00 1,522.9 2,500.7 350.8 1,879.7 1,873.8 4,380.4 57.1% 1,915.2 4.00 4.00 1,522.9 4,023.6 350.8 2,230.5 1,873.8 6,254.2 64.3% 1,787.2 5.00 5.00 977.8 5,001.4 568.9 2,799.4 1,546.7 7,800.8 64.1% 960.0 6.00 6.00 0.0 5,001.4 960.0 3,759.4 960.0 8,760.8 57.1% 960.0

PROJECT SUMMARY

CALCULATION DETAILS • LOADING = HS20/HS25

• APPROX. LINEAR FOOTAGE = 1,016 LF

STORAGE SUMMARY

- STORAGE VOLUME REQUIRED = N/A
- PIPE STORAGE VOLUME = 12,767 CF
- BACKFILL STORAGE VOLUME = 9,293 CF
- TOTAL STORAGE PROVIDED = 22,060 CF

PIPE DETAILS

- DIAMETER = 48"
- CORRUGATION = 22/3x1/2
- GAGE = 16
- COATING = ALT2
- WALL TYPE = SOLID
- BARREL SPACING = 24"

BACKFILL DETAILS

- WIDTH AT ENDS = 12"
- ABOVE PIPE = 12"
- WIDTH AT SIDES = 12"
- BELOW PIPE = 12"

<u>NOTES</u>

Ņ

- ALL RISER AND STUB DIMENSIONS ARE TO CENTERLINE. ALL ELEVATIONS, DIMENSIONS, AND LOCATIONS OF RISERS AND INLETS, SHALL BE VERIFIED BY THE ENGINEER OF RECORD PRIOR TO RELEASING FOR FABRICATION.
- ALL FITTINGS AND REINFORCEMENT COMPLY WITH ASTM A998.
- ALL RISERS AND STUBS ARE $2\frac{2}{3}$ " x $\frac{1}{2}$ " Corrugation AND 16 GAGE UNLESS OTHERWISE NOTED.
- RISERS TO BE FIELD TRIMMED TO GRADE. • QUANTITY OF PIPE SHOWN DOES NOT PROVIDE
- EXTRA PIPE FOR CONNECTING THE SYSTEM TO EXISTING PIPE OR DRAINAGE STRUCTURES. OUR SYSTEM AS DETAILED PROVIDES NOMINAL INLET AND/OR OUTLET PIPE STUB FOR CONNECTION TO EXISTING DRAINAGE FACILITIES. IF ADDITIONAL PIPE IS NEEDED IT IS THE RESPONSIBILITY OF THE CONTRACTOR.
- BAND TYPE TO BE DETERMINED UPON FINAL DESIGN. • THE PROJECT SUMMARY IS REFLECTIVE OF THE
- DYODS DESIGN, QUANTITIES ARE APPROX. AND SHOULD BE VERIFIED UPON FINAL DESIGN AND APPROVAL. FOR EXAMPLE, TOTAL EXCAVATION DOES NOT CONSIDER ALL VARIABLES SUCH AS SHORING AND ONLY ACCOUNTS FOR MATERIAL WITHIN THE ESTIMATED EXCAVATION FOOTPRINT.
- THESE DRAWINGS ARE FOR CONCEPTUAL PURPOSES AND DO NOT REFLECT ANY LOCAL PREFERENCES OR REGULATIONS. PLEASE CONTACT YOUR LOCAL CONTECH REP FOR MODIFICATIONS.

58'-0"		
22		

The design and information shown on this drawing is provided as a service to the project owner, engineer and contractor by				
Contech Engineered Solutions LLC ("Contech"). Neither this drawing, nor any part thereof, may be used, reproduced or modified in any manner without the prior written consent of				
Contech. Failure to comply is done at the user's own risk and Contech expressly disclaims any liability or responsibility for such use.				
If discrepancies between the supplied information upon which the drawing is based and actual field conditions are encountered				0005
as site work progresses, these discrepancies must be reported to Contech immediately for re-evaluation of the design. Contech				9025
accepts no liability for designs based on missing, incomplete or inaccurate information supplied by others.	DATE	REVISION DESCRIPTION	ΒY	800-3

CINTECH

ENGINEERED SOLUTIONS LLC www.ContechES.com

DYO49295 Miro BMP 1 Rialto, CA **DETENTION SYS**

Way	PROJECT No.: 34165	SEQ. 1 492	295	DATE: 4/4/2024	
	DESIGNED: DYO		DRAW	N: DYO	
	CHECKED: DYO		APPROVED: DYO		
STEM	SHEET NO .:			1	

TA	вı	F	1	,
18	DL			,

DIAMETER, D	MIN. COVER	CORR. PROFILE			
6"-10"	12"	1 1/2" x 1/4"			
12"-48"	12"	2 2/3" x 1/2"			
>48"-96"	12"	3" x 1", 5" x 1"			
>96"	D/8	3" x 1", 5" x 1"			

STRUCTURAL BACKFILL MUST EXTEND TO • LIMITS OF THE TABLE

- TOTAL HEIGHT OF COMPACTED COVER FOR CONVENTIONAL HIGHWAY LOADS IS MEASURED FROM TOP OF PIPE TO BOTTOM OF FLEXIBLE PAVEMENT OR TOP OF RIGID PAVEMENT ULTRAFLO ALSO AVAILABLE FOR SIZES 18" - 120"
- WITH 3/4"x 3/4"x 7 1/2" CORRUGATION

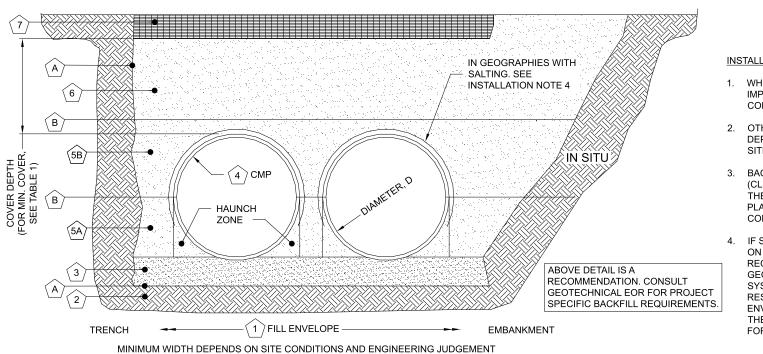


TABLE 2: SOLID STANDARD

		CMP DETENTIO	N AND CMP DRAINAGE STANDARD BACKFILL SPECIFICATIO	NS			
	MATERIAL LOCATION	MATERIAL SPECIFICATION	DESCRIPTION				
	FILL ENVELOPE WIDTH	PER ENGINEER OF RECORD	MINIMUM TRENCH WIDTH MUST ALLOW ROOM FOR PROPER COMPACTION OF HAUNCH MATERIALS UNDER THE PIPE. THE SUGGESTED MINIMUM TRENCH WIDTH, OR EOR RECOMMENDATION: PIPE ≤ 12": D + 16" PIPE > 12": 1.5D + 12"	MINIMUM EMBANKMENT WIDTH (PIPE PIPE 24" PIPE 21			
2	FOUNDATION	AASHTO 26.5.2 OR PER ENGINEER OF RECORD	PRIOR TO PLACING THE BEDDING, THE FOUNDATION MUST BE CONSTRUCTED FOUNDATION MATERIALS ARE ENCOUNTERED DURING EXCAVATION, THEY SHALL MATERIAL APPROVED BY THE E	BE REMOVED AND FOUNDATION BR			
3	BEDDING AASHTO M 43: 3, 357, 4, 467, 5, 56, 57 (APPROVED REGIONAL EQUIVALENTS INCLUDE CA-7) (APPROVED REGIONAL EQUIVALENTS INCLUDE CA-7)						
4	CORRUGATED METAL PIPE						
(5A)	CRITICAL BACKFILL AASHTO M 145: A-1, A-2, A-3 * CRITICAL BACKFILL AASHTO M 145: A-1, A-2, A-3 * HAUNCH ZONE MATERIAL SHALL BE HAND SHOVELED OR SHOVEL SLICED INTO PLACE TO ALLOW FOR P BACKFILL SHALL BE PLACED IN 8" +/- LOOSE LIFTS AND COMPACTED TO 90% STANDARD PROCTOR PER AASH THERE IS NO MORE THAN A THREE LIFT (24") DIFFERENTIAL BETWEEN ANY OF THE PIPES AT ANY TIME DU SHOULD BE ADVANCED ALONG THE LENGTH OF THE SYSTEM TO AVOID DIFFERENTIAL LOADING. GRADED GRANULAR MATERIAL WHICH MAY CONTAIN SMALL AMOUNTS OF SILT OR CLAY AND MAXIMUM P						
(5B)	BACKFILL	AASHTO M 145: A-1, A-2, A-3	12.4-1.3).				
6	COVER MATERIAL	UP TO MIN. COVER - SEE 5A AND 5B ABOVE ABOVE MIN. COVER - PER ENGINEER OF RECORD	COVER MATERIAL MAY INCLUDE NON-BITUMINOUS, GRANULA	AR ROAD BASE MATERIAL WITHIN MI			
$\langle 7 \rangle$	RIGID OR FLEXIBLE PAVEMENT (IF APPLICABLE)	PER ENGINEER OF RECORD	FLEXIBLE PAVEMENT SHOULD NOT BE COUNTED AS PART OF THE FILL HEIGHT O' REQUIREMENTS SHALL FOLLOW THE PROJECT PLANS AND				
$\langle \widehat{A} \rangle$	OPTIONAL SIDE GEOTEXTILE	NONE	GEOTEXTILE LAYER IS RECOMMENDED ON SIDES OF	EXCAVATION TO PREVENT SOIL MIG			
B	OPTIONAL GEOTEXTILE BETWEEN LAYERS	NONE	IF SOIL TYPES DIFFER AT ANY POINT ABOVE PIPE INVERT, A GEOTEXTILE LAYER IS I MIGRATION				
	NOTES:						

• FOR MULTIPLE BARREL INSTALLATIONS, THE RECOMMENDED STANDARD SPACING BETWEEN PARALLEL PIPE RUNS SHALL BE THE PIPE DIAMETER /2 BUT NO LESS THAN 12" FOR DIAMETERS <72". FOR 72" AND LARGER DIAMETERS, THE MINIMUM SPACING IS 36". CONTACT YOUR CONTECH REPRESENTATIVE FOR NONSTANDARD SPACING. APPROVED REGIONAL EQUIVALENTS FOR SECTION 5A INCLUDE CA-7, MIDOT 2G, 34G, OR 21AA STONE OR GRAVEL; #8; #57; MIDOT 6A, 2G, 3G, 34G.

MANUFACTURER RECOMMENDED BACKFILL

NOT TO SCALE

and information shown on this drawing is provided to the project owner, engineer and contractor by gineered Solutions LLC ("Contech"). Neither this				ANTEAL!	∎∎®
r any part thereof, may be used, reproduced or any manner without the prior written consent of					
ailure to comply is done at the user's own risk and pressly disclaims any liability or responsibility for				ENGINEERED SOLUTIONS LLC CMP DETENTION SYSTE	EMS
cies between the supplied information upon which				www.ContechES.com	1
is based and actual field conditions are encountered progresses, these discrepancies must be reported mmediately for re-evaluation of the design. Contech				9025 Centre Pointe Dr., Suite 400, West Chester, OH 45069 DYODS	1
iability for designs based on missing, incomplete or formation supplied by others.	DATE	REVISION DESCRIPTION	BY	W 800-338-1122 513-645-7000 513-645-7993 FAX DRAWING	

DYO49295 Miro BMP 1 Rialto, CA DETENTION SYS

If discrepar the drawing as site wor

INSTALLATION NOTES

WHEN PLACING THE FIRST LIFTS OF BACKFILL IT IS IMPORTANT TO MAKE SURE THAT THE BACKFILL IS PROPERLY COMPACTED UNDER AND AROUND THE PIPE HAUNCHES.

OTHER ALTERNATE BACKFILL MATERIAL MAY BE ALLOWED DEPENDING ON SITE SPECIFIC CONDITIONS, AS APPROVED BY SITE ENGINEER.

BACKFILL USING CONTROLLED LOW-STRENGTH MATERIAL (CLSM, "FLASH FILL" OR "FLOWABLE FILL") MAY BE USED WHEN THE SPACING BETWEEN THE PIPES WILL NOT ALLOW FOR PLACEMENT AND ADEQUATE COMPACTION OF THE BACKFILL. CONTACT CONTECH FOR FURTHER EVALUATION.

4. IF SALTING AGENTS FOR SNOW AND ICE REMOVAL ARE USED ON OR NEAR THE PROJECT, A GEOMEMBRANE BARRIER IS RECOMMENDED OVER THE UPPER HALF OF THE PIPE. THE GEOMEMBRANE LINER IS INTENDED TO HELP PROTECT THE SYSTEM FROM THE POTENTIAL ADVERSE EFFECTS THAT MAY RESULT FROM A CHANGE IN THE SURROUNDING ENVIRONMENT OVER A PERIOD OF TIME. PLEASE REFER TO THE CORRUGATED METAL PIPE DETENTION DESIGN GUIDE FOR ADDITIONAL INFORMATION.

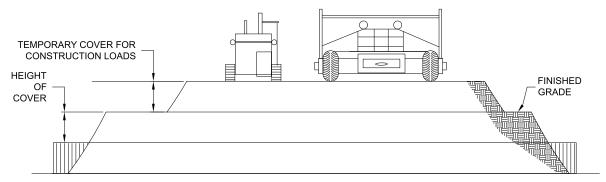
TH (IN FEET) FOR INITIAL FILL ENVELOPE:
PE < 24": 3.0D
24" - 144": D + 4'0"
> 144": D + 10'0"

DE. IN THE EVENT THAT UNSUITABLE BROUGHT BACK TO GRADE WITH A FILL

A RELATIVELY LOOSE, NATIVE SUITABLE HE BEDDING MATERIAL MAY BE SUITABLE E SIZE OF 3" PER AASHTO 26.3.8.1

COMPACTION WITHOUT SOFT SPOTS. BACKFILL SHALL BE PLACED SUCH THAT HE BACKFILL PROCESS. THE BACKFILL WELL

SIZE OF 3" (PER AASHTO 26.3.8.1 AND


MIN COVER LIMITS

ATERIAL SELECTION AND COMPACTION IEER OF RECORD.

IIGRATION.

BETWEEN THE LAYERS TO PREVENT SOIL

	PROJECT No.: SEQ.			DATE:
Way	34165	492	295	4/4/2024
- y	DESIGNED:		DRAW	'N:
	DYO			DYO
	CHECKED:		APPR	OVED:
	DYO			DYO
STEM	SHEET NO .:			
				1

CONSTRUCTION LOADS

FOR TEMPORARY CONSTRUCTION VEHICLE LOADS, AN EXTRA AMOUNT OF COMPACTED COVER MAY BE REQUIRED OVER THE TOP OF THE PIPE. THE HEIGHT-OF-COVER SHALL MEET THE MINIMUM REQUIREMENTS SHOWN IN THE TABLE BELOW. THE USE OF HEAVY CONSTRUCTION EQUIPMENT NECESSITATES GREATER PROTECTION FOR THE PIPE THAN FINISHED GRADE COVER MINIMUMS FOR NORMAL HIGHWAY TRAFFIC.

	PIPE SPAN, INCHES	A	XLE LO	ADS (kips	6)	
	INCHES	18-50	50-75	75-110	110-150	
MINIMUM COVER (FT						
	12-42	2.0	2.5	3.0	3.0	
	48-72	3.0	3.0	3.5	4.0	
	78-120	3.0	3.5	4.0	4.0	
	126-144	3.5	4.0	4.5	4.5	

*MINIMUM COVER MAY VARY, DEPENDING ON LOCAL CONDITIONS. THE CONTRACTOR MUST PROVIDE THE ADDITIONAL COVER REQUIRED TO AVOID DAMAGE TO THE PIPE. MINIMUM COVER IS MEASURED FROM THE TOP OF THE PIPE TO THE TOP OF THE MAINTAINED CONSTRUCTION ROADWAY SURFACE.

CONSTRUCTION LOADING DIAGRAM

SCALE: N.T.S.

SPECIFICATION FOR DESIGNED DETENTION SYSTEM:

SCOPE

THIS SPECIFICATION COVERS THE MANUFACTURE AND INSTALLATION OF THE DESIGNED DETENTION SYSTEM DETAILED IN THE PROJECT PLANS.

MATERIAI

THE MATERIAL SHALL CONFORM TO THE APPLICABLE REQUIREMENTS LISTED BELOW

ALUMINIZED TYPE 2 STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-274 OR ASTM A-92.

THE GALVANIZED STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-218 OR ASTM A-929.

THE POLYMER COATED STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-246 OR ASTM A-742.

THE ALUMINUM COILS SHALL CONFORM TO THE APPLICABLE OF AASHTO M-197 OR ASTM B-744.

CONSTRUCTION LOADS

CONSTRUCTION LOADS MAY BE HIGHER THAN FINAL LOADS. FOLLOW THE MANUFACTURER'S OR NCSPA GUIDELINES.

NOTE:
THESE DRAWINGS ARE FOR CONCEPTUAL
PURPOSES AND DO NOT REFLECT ANY LOCAL
PREFERENCES OR REGULATIONS. PLEASE
CONTACT YOUR LOCAL CONTECH REP FOR
MODIFICATIONS.

WODIT IOATIONO.		
The design and information shown on this drawing is provided		
as a service to the project owner, engineer and contractor by		
Contech Engineered Solutions LLC ("Contech"). Neither this		
drawing, nor any part thereof, may be used, reproduced or		
modified in any manner without the prior written consent of		
Contech. Failure to comply is done at the user's own risk and		
Contech expressly disclaims any liability or responsibility for		
such use.		
If discrepancies between the supplied information upon which		
the drawing is based and actual field conditions are encountered		
as site work progresses, these discrepancies must be reported		
to Contech immediately for re-evaluation of the design. Contech		
accepts no liability for designs based on missing, incomplete or inaccurate information supplied by others,	DATE	REVISION DESCRIPTION
maccurate information supplied by others.		

THE PIPE SHALL BE MANUFACTURED IN ACCORDANCE TO THE APPLICABLE REQUIREMENTS LISTED BELOW:

ALUMINIZED TYPE 2: AASHTO M-36 OR ASTM A-760

GALVANIZED: AASHTO M-36 OR ASTM A-760

AFFOLIZATELE COATED: AASHTO M-245 OR ASTM A-762

ALUMINUM: AASHTO M-196 OR ASTM B-745

APPLICABLE HANDLING AND ASSEMBLY

SHALL BE IN ACCORDANCE WITH NCSP'S (NATIONAL CORRUGATED STEEL AFPRECABSECIATION) FOR ALUMINIZED TYPE 2. GALVANIZED OR POLYMER COATED STEEL. SHALL BE IN ACCORDANCE WITH THE MANUFACTURER'S RECOMMENDATIONS FOR ALUMINUM PIPE.

REQUIREMENTS

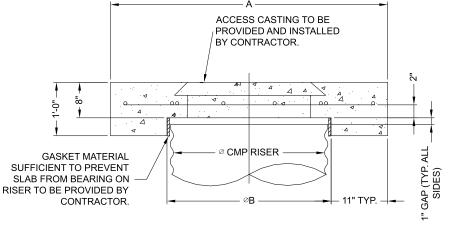
INSTALLATION

ΒY

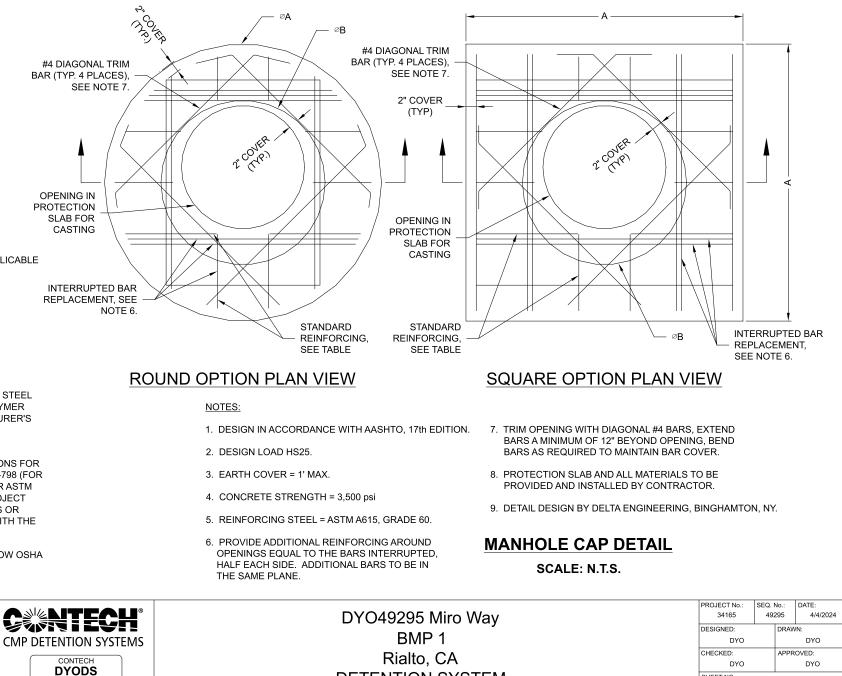
SHALL BE IN ACCORDANCE WITH AASHTO STANDARD SPECIFICATIONS FOR HIGHWAY BRIDGES, SECTION 26, DIVISION II DIVISION II OR ASTM A-798 (FOR ALUMINIZED TYPE 2, GALVANIZED OR POLYMER COATED STEEL) OR ASTM B-788 (FOR ALUMINUM PIPE) AND IN CONFORMANCE WITH THE PROJECT PLANS AND SPECIFICATIONS. IF THERE ARE ANY INCONSISTENCIES OR CONFLICTS THE CONTRACTOR SHOULD DISCUSS AND RESOLVE WITH THE SITE ENGINEER.

IT IS ALWAYS THE RESPONSIBILITY OF THE CONTRACTOR TO FOLLOW OSHA GUIDELINES FOR SAFE PRACTICES.

> ENGINEERED SOLUTIONS LLC www.ContechES.com


9025 Centre Pointe Dr., Suite 400, West Chester, OH 45069

513-645-7993 FAX


DRAWING

513-645-7000

800-338-1122

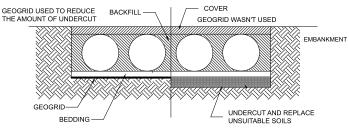
SECTION VIEW

DETENTION SYSTEM

REINFORCING TABLE									
Ø CMP RISER	A	Ø₿	REINFORCING	**BEARING PRESSURE (PSF)					
24"	⊗ 4' 4'X4'	26"	#5 @ 12" OCEW #5 @ 12" OCEW	2,410 1,780					
30"	∞ 4'-6" 4'-6" X 4'-6"	32"	#5 @ 12" OCEW #5 @ 12" OCEW	2,120 1,530					
36"	∞ 5' 5' X 5'	38"	#5 @ 10" OCEW #5 @ 10" OCEW	1,890 1,350					
42"	∞ 5'-6" 5'-6" X 5'-6"	44"	#5 @ 10" OCEW #5 @ 9" OCEW	1,720 1,210					
48"	∞ 6' 6' X 6'	50"	#5 @ 9" OCEW #5 @ 8" OCEW	1,600 1,100					

** ASSUMED SOIL BEARING CAPACITY

SHEET NO.


CMP DETENTION INSTALLATION GUIDE

PROPER INSTALLATION OF A FLEXIBLE UNDERGROUND DETENTION SYSTEM WILL ENSURE LONG-TERM PERFORMANCE. THE CONFIGURATION OF THESE SYSTEMS OFTEN REQUIRES SPECIAL CONSTRUCTION PRACTICES THAT DIFFER FROM CONVENTIONAL FLEXIBLE PIPE CONSTRUCTION. CONTECH ENGINEERED SOLUTIONS STRONGLY SUGGESTS SCHEDULING A PRE-CONSTRUCTION MEETING WITH YOUR LOCAL SALES ENGINEER TO DETERMINE IF ADDITIONAL MEASURES, NOT COVERED IN THIS GUIDE, ARE APPROPRIATE FOR YOUR SITE.

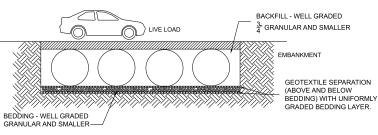
FOUNDATION

CONSTRUCT A FOUNDATION THAT CAN SUPPORT THE DESIGN LOADING APPLIED BY THE PIPE AND ADJACENT BACKFILL WEIGHT AS WELL AS MAINTAIN ITS INTEGRITY DURING CONSTRUCTION.

IF SOFT OR UNSUITABLE SOILS ARE ENCOUNTERED, REMOVE THE POOR SOILS DOWN TO A SUITABLE DEPTH AND THEN BUILD UP TO THE APPROPRIATE FLEVATION WITH A COMPETENT BACKEILL MATERIAL. THE STRUCTURAL FILL MATERIAL GRADATION SHOULD NOT ALLOW THE MIGRATION OF FINES, WHICH CAN CAUSE SETTLEMENT OF THE DETENTION SYSTEM OR PAVEMENT ABOVE. IF THE STRUCTURAL FILL MATERIAL IS NOT COMPATIBLE WITH THE UNDERLYING SOILS AN ENGINEERING FABRIC SHOULD BE USED AS A SEPARATOR IN SOME CASES, USING A STIFE REINFORCING GEOGRIF REDUCES OVER EXCAVATION AND REPLACEMENT FILL QUANTITIES.

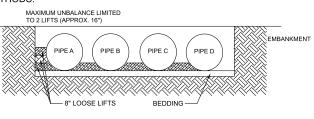
GRADE THE FOUNDATION SUBGRADE TO A UNIFORM OR SLIGHTLY SLOPING GRADE. IF THE SUBGRADE IS CLAY OR RELATIVELY NON-POROUS AND THE CONSTRUCTION SEQUENCE WILL LAST FOR AN EXTENDED PERIOD OF TIME. IT IS BEST TO SLOPE THE GRADE TO ONE END OF THE SYSTEM. THIS WILL ALLOW EXCESS WATER TO DRAIN QUICKLY, PREVENTING SATURATION OF THE SUBGRADE

GEOMEMBRANE BARRIER


A SITE'S RESISTIVITY MAY CHANGE OVER TIME WHEN VARIOUS TYPES OF SALTING AGENTS ARE USED, SUCH AS ROAD SALTS FOR DEICING AGENTS. IF SALTING AGENTS ARE USED ON OR NEAR THE PROJECT SITE, A GEOMEMBRANE THE ENTIRE WIDTH OF THE SYSTEM IS REACHED, ADVANCE THE EQUIPMENT BARRIER IS RECOMMENDED WITH THE SYSTEM. THE GEOMEMBRANE LINER IS INTENDED TO HELP PROTECT THE SYSTEM FROM THE POTENTIAL ADVERSE EFFECTS THAT MAY RESULT FROM THE USE OF SUCH AGENTS INCLUDING PREMATURE CORROSION AND REDUCED ACTUAL SERVICE LIFE.

THE PROJECT'S ENGINEER OF RECORD IS TO EVALUATE WHETHER SALTING AGENTS WILL BE USED ON OR NEAR THE PROJECT SITE, AND USE HIS/HER BEST JUDGEMENT TO DETERMINE IF ANY ADDITIONAL PROTECTIVE MEASURES ARE REQUIRED. BELOW IS A TYPICAL DETAIL SHOWING THE PLACEMENT OF A GEOMEMBRANE BARRIER FOR PROJECTS WHERE SALTING AGENTS ARE USED ON OR NEAR THE PROJECT SITE.

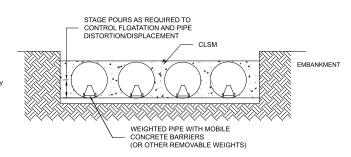
IN-SITU TRENCH WALL


IF EXCAVATION IS REQUIRED, THE TRENCH WALL NEEDS TO BE CAPABLE OF SUPPORTING THE LOAD THAT THE PIPE SHEDS AS THE SYSTEM IS LOADED. IF SOILS ARE NOT CAPABLE OF SUPPORTING THESE LOADS, THE PIPE CAN DEFLECT PERFORM A SIMPLE SOIL PRESSURE CHECK USING THE APPLIED LOADS TO DETERMINE THE LIMITS OF EXCAVATION BEYOND THE SPRING LINE OF THE OUTER MOST PIPES

IN MOST CASES THE REQUIREMENTS FOR A SAFE WORK ENVIRONMENT AND PROPER BACKFILL PLACEMENT AND COMPACTION TAKE CARE OF THIS CONCERN.

BACKFILL PLACEMENT

MATERIAL SHALL BE WORKED INTO THE PIPE HAUNCHES BY MEANS OF SHOVEL-SLICING, RODDING, AIR TAMPER, VIBRATORY ROD, OR OTHER EFFECTIVE METHODS

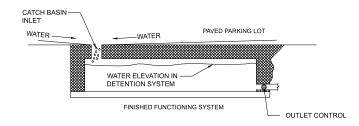

IF AASHTO T99 PROCEDURES ARE DETERMINED INFEASIBLE BY THE GEOTECHNICAL ENGINEER OF RECORD. COMPACTION IS CONSIDERED ADEQUATE WHEN NO FURTHER YIELDING OF THE MATERIAL IS OBSERVED. UNDER THE COMPACTOR, OR UNDER FOOT, AND THE GEOTECHNICAL ENGINEER OF RECORD (OR REPRESENTATIVE THEREOF) IS SATISFIED WITH THE LEVEL OF COMPACTION.

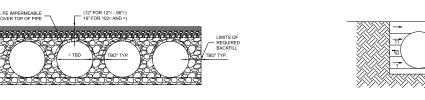
FOR LARGE SYSTEMS, CONVEYOR SYSTEMS, BACKHOES WITH LONG REACHES OR DRAGLINES WITH STONE BUCKETS MAY BE USED TO PLACE BACKFILL, ONCE MINIMUM COVER FOR CONSTRUCTION LOADING ACROSS TO THE END OF THE RECENTLY PLACED FILL, AND BEGIN THE SEQUENCE AGAIN UNTIL THE SYSTEM IS COMPLETELY BACKFILLED. THIS TYPE OF CONSTRUCTION SEQUENCE PROVIDES ROOM FOR STOCKPILED BACKFILL DIRECTLY BEHIND THE BACKHOE AS WELL AS THE MOVEMENT OF CONSTRUCTION TRAFFIC, MATERIAL STOCKPILES ON TOP OF THE BACKFILLED DETENTION SYSTEM SHOULD BE LIMITED TO 8- TO 10-FEET HIGH AND MUST PROVIDE BALANCED LOADING ACROSS ALL BARRELS. TO DETERMINE THE PROPER COVER OVER THE PIPES TO ALLOW THE MOVEMENT OF CONSTRUCTION EQUIPMENT SEE TABLE 1, OR CONTACT YOUR LOCAL CONTECH SALES ENGINEER.

TYPICAL BACKFILL SEQUENCE

EMBANKMEN[®]

WHEN FLOWABLE FILL IS USED, YOU MUST PREVENT PIPE FLOATATION TYPICALLY, SMALL LIFTS ARE PLACED BETWEEN THE PIPES AND THEN ALLOWED TO SET-UP PRIOR TO THE PLACEMENT OF THE NEXT LIFT. THE ALLOWABLE THICKNESS OF THE CLSM LIFT IS A FUNCTION OF A PROPER BALANCE BETWEEN THE UPLIFT FORCE OF THE CLSM, THE OPPOSING WEIGHT OF THE PIPE, AND THE EFFECT OF OTHER RESTRAINING MEASURES. THE PIPE CAN CARRY LIMITED FLUID PRESSURE WITHOUT PIPE DISTORTION OR DISPLACEMENT, WHICH ALSO AFFECTS THE CLSM LIFT THICKNESS. YOUR LOCAL CONTECH SALES ENGINEER CAN HELP DETERMINE THE PROPER LIFT THICKNESS.




CONSTRUCTION LOADING

ACCUMULATED SEDIMENT AND TRASH CAN TYPICALLY BE EVACUATED TYPICALLY, THE MINIMUM COVER SPECIFIED FOR A PROJECT ASSUMES H-20 THROUGH THE MANHOLE OVER THE OUTLET ORIFICE. IF MAINTENANCE IS NOT LIVE LOAD. BECAUSE CONSTRUCTION LOADS OFTEN EXCEED DESIGN LIVE PERFORMED AS RECOMMENDED, SEDIMENT AND TRASH MAY ACCUMULATE IN LOADS, INCREASED TEMPORARY MINIMUM COVER REQUIREMENTS ARE FRONT OF THE OUTLET ORIFICE. MANHOLE COVERS SHOULD BE SECURELY SEATED FOLLOWING CLEANING ACTIVITIES. CONTECH SUGGESTS THAT ALL NECESSARY. SINCE CONSTRUCTION EQUIPMENT VARIES FROM JOB TO JOB, SYSTEMS BE DESIGNED WITH AN ACCESS/INSPECTION MANHOLE SITUATED AT IT IS BEST TO ADDRESS EQUIPMENT SPECIFIC MINIMUM COVER OR NEAR THE INLET AND THE OUTLET ORIFICE. SHOULD IT BE NECESSARY TO REQUIREMENTS WITH YOUR LOCAL CONTECH SALES ENGINEER DURING GET INSIDE THE SYSTEM TO PERFORM MAINTENANCE ACTIVITIES, ALL APPROPRIATE PRECAUTIONS REGARDING CONFINED SPACE ENTRY AND OSHA YOUR PRE-CONSTRUCTION MEETING. REGULATIONS SHOULD BE FOLLOWED.

ADDITIONAL CONSIDERATIONS

BECAUSE MOST SYSTEMS ARE CONSTRUCTED BELOW-GRADE, RAINFALL AS PART OF THE MAINTENANCE PROGRAM FOR THE SYSTEM CAN RAPIDLY FILL THE EXCAVATION; POTENTIALLY CAUSING FLOATATION MAINTAINING AN UNDERGROUND DETENTION OR INFILTRATION SYSTEM IS AND MOVEMENT OF THE PREVIOUSLY PLACED PIPES. TO HELP MITIGATE EASIEST WHEN THERE IS NO FLOW ENTERING THE SYSTEM. FOR THIS POTENTIAL PROBLEMS, IT IS BEST TO START THE INSTALLATION AT THE REASON. IT IS A GOOD IDEA TO SCHEDULE THE CLEANOUT DURING DRY DOWNSTREAM END WITH THE OUTLET ALREADY CONSTRUCTED TO ALLOW WEATHER A ROUTE FOR THE WATER TO ESCAPE. TEMPORARY DIVERSION MEASURES MAY BE REQUIRED FOR HIGH FLOWS DUE TO THE RESTRICTED NATURE OF THE OUTLET PIPE

			ANK NITEALI	Askitcali®	
			C NTECH		
			ENGINEERED SOLUTIONS LLC	CMP DETENTION SYSTEMS	
			www.ContechES.com	CONTECH	
			9025 Centre Pointe Dr., Suite 400, West Chester, OH 45069	DYODS	
ATE	REVISION DESCRIPTION	BY	800-338-1122 513-645-7000 513-645-7993 FAX	DRAWING	

DYO49295 Miro BMP 1 Rialto, CA DETENTION SYS

The design and information shown on this drawing is pr is a service to the project owner, engineer and contractor by Contech Engineered Solutions LLC ("Contech"). Neither this

ancies between the supplied information upon whic e drawing is based and actual field conditions are enc as site work progresses, these discrepancies must be n to Contech immediately for re-evaluation of the design. accepts no liability for designs based on missing, incom naccurate information supplied by others.

rawing, nor any part thereof, may be used, repro modified in any manner without the prior written consent of Contech. Failure to comply is done at the user's own risk an Contech expressly disclaims any liability or responsibility for

CMP DETENTION SYSTEM INSPECTION AND MAINTENANCE

UNDERGROUND STORMWATER DETENTION AND INFILTRATION SYSTEMS MUST BE INSPECTED AND MAINTAINED AT REGULAR INTERVALS FOR PURPOSES OF PERFORMANCE AND LONGEVITY.

INSPECTION

INSPECTION IS THE KEY TO EFFECTIVE MAINTENANCE OF CMP DETENTION SYSTEMS AND IS EASILY PERFORMED. CONTECH RECOMMENDS ONGOING. ANNUAL INSPECTIONS. SITES WITH HIGH TRASH LOAD OR SMALL OUTLET CONTROL ORIFICES MAY NEED MORE FREQUENT INSPECTIONS. THE RATE AT WHICH THE SYSTEM COLLECTS POLLUTANTS WILL DEPEND MORE ON SITE SPECIFIC ACTIVITIES RATHER THAN THE SIZE OR CONFIGURATION OF THE SYSTEM.

INSPECTIONS SHOULD BE PERFORMED MORE OFTEN IN EQUIPMENT WASHDOWN AREAS. IN CLIMATES WHERE SANDING AND/OR SALTING OPERATIONS TAKE PLACE AND IN OTHER VARIOUS INSTANCES IN WHICH ONE WOULD EXPECT HIGHER ACCUMULATIONS OF SEDIMENT OR ABRASIVE/ CORROSIVE CONDITIONS. A RECORD OF EACH INSPECTION IS TO BE MAINTAINED FOR THE LIFE OF THE SYSTEM

MAINTENANCE

CMP DETENTION SYSTEMS SHOULD BE CLEANED WHEN AN INSPECTION REVEALS ACCUMULATED SEDIMENT OR TRASH IS CLOGGING THE DISCHARGE ORIFICE

ANNUAL INSPECTIONS ARE BEST PRACTICE FOR ALL UNDERGROUND SYSTEMS. DURING THIS INSPECTION, IF EVIDENCE OF SALTING/DE-ICING AGENTS IS OBSERVED WITHIN THE SYSTEM, IT IS BEST PRACTICE FOR THE SYSTEM TO BE RINSED, INCLUDING ABOVE THE SPRING LINE SOON AFTER THE SPRING THAW

THE FOREGOING INSPECTION AND MAINTENANCE EFFORTS HELP ENSURE UNDERGROUND PIPE SYSTEMS USED FOR STORMWATER STORAGE CONTINUE TO FUNCTION AS INTENDED BY IDENTIFYING RECOMMENDED REGULAR INSPECTION AND MAINTENANCE PRACTICES. INSPECTION AND MAINTENANCE RELATED TO THE STRUCTURAL INTEGRITY OF THE PIPE OR THE SOUNDNESS OF PIPE JOINT CONNECTIONS IS BEYOND THE SCOPE OF THIS GUIDE.

	PROJECT No.:	SEQ. I	No.:	DATE:
Way	34165	492	295	4/4/2024
	DESIGNED:		DRAW	N:
	DYO			DYO
	CHECKED:		APPR	OVED:
	DYO			DYO
STEM	SHEET NO .:			
				1

PROJECT SUMMARY

CALCULATION DETAILS • LOADING = HS20/HS25

• APPROX. LINEAR FOOTAGE = 1,738 LF

STORAGE SUMMARY

- STORAGE VOLUME REQUIRED = N/A
- PIPE STORAGE VOLUME = 21,840 CF
- BACKFILL STORAGE VOLUME = 16,320 CF
- TOTAL STORAGE PROVIDED = 38,160 CF

PIPE DETAILS

- DIAMETER = 48"
- CORRUGATION = 2 2/3x1/2
- GAGE = 16
- COATING = ALT2
- WALL TYPE = PERFORATED
- BARREL SPACING = 24"

BACKFILL DETAILS

- WIDTH AT ENDS = 12"
- ABOVE PIPE = 12"

• WIDTH AT SIDES = 12"

• BELOW PIPE = 12"

ł	4					288'-0"					
	\ \ `		10			l				U U	ů
	\ \										u
						1				UU	u
34											1
		Ψ				u					
											1
+											1
<u> </u>	2 10	-w	w	W	w	u	 u	u	W	u u	

ASSEMBLY

SCALE: 1" = 30'

<u>NOTES</u>

- ALL RISER AND STUB DIMENSIONS ARE TO CENTERLINE. ALL ELEVATIONS, DIMENSIONS, AND LOCATIONS OF RISERS AND INLETS, SHALL BE VERIFIED BY THE ENGINEER OF RECORD PRIOR TO RELEASING FOR FABRICATION.
- ALL FITTINGS AND REINFORCEMENT COMPLY WITH ASTM A998.
- ALL RISERS AND STUBS ARE $2\frac{2}{3}$ " x $\frac{1}{2}$ " Corrugation AND 16 GAGE UNLESS OTHERWISE NOTED. • RISERS TO BE FIELD TRIMMED TO GRADE.
- QUANTITY OF PIPE SHOWN DOES NOT PROVIDE EXTRA PIPE FOR CONNECTING THE SYSTEM TO EXISTING PIPE OR DRAINAGE STRUCTURES. OUR SYSTEM AS DETAILED PROVIDES NOMINAL INLET AND/OR OUTLET PIPE STUB FOR CONNECTION TO EXISTING DRAINAGE FACILITIES. IF ADDITIONAL PIPE IS NEEDED IT IS THE RESPONSIBILITY OF THE CONTRACTOR.
- BAND TYPE TO BE DETERMINED UPON FINAL DESIGN. • THE PROJECT SUMMARY IS REFLECTIVE OF THE
- DYODS DESIGN, QUANTITIES ARE APPROX. AND SHOULD BE VERIFIED UPON FINAL DESIGN AND APPROVAL. FOR EXAMPLE, TOTAL EXCAVATION DOES NOT CONSIDER ALL VARIABLES SUCH AS SHORING AND ONLY ACCOUNTS FOR MATERIAL WITHIN THE ESTIMATED EXCAVATION FOOTPRINT.
- THESE DRAWINGS ARE FOR CONCEPTUAL PURPOSES AND DO NOT REFLECT ANY LOCAL PREFERENCES OR REGULATIONS. PLEASE CONTACT YOUR LOCAL CONTECH REP FOR MODIFICATIONS.

The design and information shown on this drawing is provided as a service to the project owner, engineer and contractor by Contech Engineered Solutions LLC ("Contech"). Neither this drawing, nor any part thereof, may be used, reproduced or modified in any manner without the prior written consent of Contech. Failure to comply is done at the user's own risk and					C NTECH®	DYO49298 Miro V BMP 2
Contech expressly disclaims any liability or responsibility for such use				ENGINEERED SOLUTIONS LLC	CMP DETENTION SYSTEMS	BIVIP Z
If discrepancies between the supplied information upon which the drawing is based and actual field conditions are encountered				www.ContechES.com	CONTECH	Rialto, CA
as site work progresses, these discrepancies must be reported to Contech immediately for re-evaluation of the design. Contech				9025 Centre Pointe Dr., Suite 400, West Chester, OH 45069	DYODS	DETENTION SYS
accepts no liability for designs based on missing, incomplete or inaccurate information supplied by others.	DATE	REVISION DESCRIPTION	BY	800-338-1122 513-645-7000 513-645-7993 FAX		BETEINIONOTO

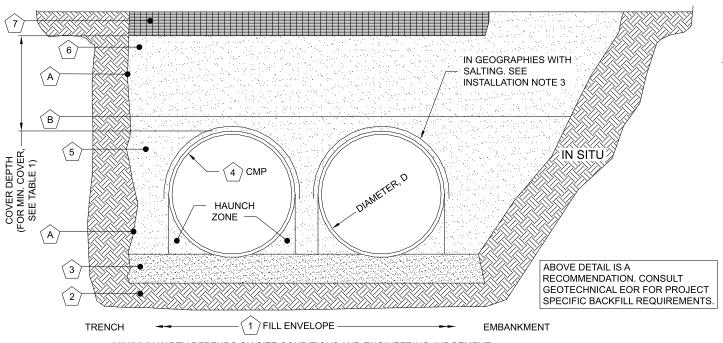

					L
	PROJECT No.:	SEQ. I	No.:	DATE:	1
Way	34168	49:	298	4/5/2024	
	DESIGNED:		DRAW	'N:	1
	DYO			DYO	
	CHECKED:		APPR	OVED:	1
	DYO			DYO	
STEM	SHEET NO .:				1
				1	

	TABLE 1:		
	DIAMETER, D	MIN. COVER	CORR. PROFILE
	6"-10"	12"	1 1/2" x 1/4"
	12"-48"	12"	2 2/3" x 1/2"
	>48"-96"	12"	3" x 1", 5" x 1"
	>96"	D/8	3" x 1", 5" x 1"
,	STRUCTURAL BAC	KFILL MUST E	EXTEND TO

 STRUCTURAL BACKFILL MUST EXTEND TO LIMITS OF THE TABLE

• TOTAL HEIGHT OF COMPACTED COVER FOR CONVENTIONAL HIGHWAY LOADS IS MEASURED FROM TOP OF PIPE TO BOTTOM OF FLEXIBLE PAVEMENT OR TOP OF RIGID PAVEMENT.

TABLE 2: PERFORATED STANDARD

MINIMUM WIDTH DEPENDS ON SITE CONDITIONS AND ENGINEERING JUDGEMENT

			CMP RETENTION STANDARD BACKFILL SPECIFICATION	ONS			
-	MATERIAL LOCATION	MATERIAL SPECIFICATION	DESCRIPTION				
	FILL ENVELOPE WIDTH	PER ENGINEER OF RECORD	MINIMUM TRENCH WIDTH MUST ALLOW ROOM FOR PROPER COMPACTION OF HAUNCH MATERIALS UNDER THE PIPE. THE SUGGESTED MINIMUM TRENCH WIDTH, OR EOR RECOMMENDATION: PIPE $\leq 12"$: D + 16" PIPE $> 12"$: 1.5D + 12"	MINIMUM EMBANKMENT WID P PIPE PIPE PIPE			
2	FOUNDATION AASHTO 26.5.2 - PER ENGINEER OF RECORD		PRIOR TO PLACING THE BEDDING, THE FOUNDATION MUST BE CONSTRUCTED ENCOUNTERED DURING EXCAVATION, THEY SHALL BE REMOVED AND FOUNDA				
3	BEDDING	AASHTO M 43: 3, 357, 4, 467, 5, 56, 57	ENGINEER OF RECORD TO DETERMINE IF BEDDING IS REQUIRED. PIPE MAY BE PLACED ON THE TRENCH BOTTOM OF A RELATIVEI MATERIAL THAT IS ROUGHLY SHAPED TO FIT THE BOTTOM OF THE PIPE, 2" MIN DEPTH. THE BEDDING MATERIAL MAY BE SUITABLE AASHTO SOIL CLASSIFICATIONS A1, A2, OR A3 WITH MAXIMUM PARTICLE SIZE OF 3" PER A				
4			CORRUGATED METAL PIPE				
5	BACKFILL	FREE-DRAINING, ANGULAR, NATURALLY OCCURRING WASHED-STONE PER AASHTO M 43: 3, 357, 4, 467, 5, 56, 57 OR APPROVED EQUAL *	HAUNCH ZONE MATERIAL SHALL BE HAND SHOVELED OR SHOVEL SLICED INTO PLA LOOSE LIFTS AND COMPACTED TO 90% STANDARD PROCTOR PER AASHTO T 99. BAC ANY OF THE PIPES AT ANY TIME DURING THE BACKFILL PROCESS. THE BACKFILL S CONVENTIONAL COMPACTION TESTING IS NOT PRACTICAL, THE MATERIAL SHALL I COMPACTOR. AREAS WITH HIGH WATER TABLE FLUCTUATIONS THAT INTERACT WITH THE PI	CKFILL SHALL BE PLACED SUCH THAT THERE IS SHOULD BE ADVANCED ALONG THE LENGTH OF BE MECHANICALLY COMPACTED UNTIL NO FURT			
6	COVER MATERIAL UP	TO MIN. COVER - AASHTO M 145: A-1, A-2, A-3 ABC MIN. COVER - PER ENGINEER OF RECORD	OVE COVER MATERIAL MAY INCLUDE NON-BITUMIN	IOUS, GRANULAR ROADBASE MATERIAL WITHIN			
	RIGID OR FLEXIBLE PAVEMENT (IF APPLICABLE)	PER ENGINEER OF RECORD	FLEXIBLE PAVEMENT SHOULD NOT BE COUNTED AS PART OF THE FILL HEIGHT OVER PROJECT PLANS AND SPE	THE CMP. FINAL BACKFILL MATERIAL SELECTIO CIFICATIONS PER THE ENGINEER OF RECORD.			
(A)	OPTIONAL SIDE GEOTEXTILE	NONE	GEOTEXTILE LAYER IS RECOMMENDED	D ON SIDES OF EXCAVATION TO PREVENT SOIL I			
B	GEOTEXTILE BETWEEN LAYERS	NONE	IF SOIL TYPES DIFFER AT ANY POINT ABOVE PIPE INVERT, A GEOTEXTILE L	AYER IS RECOMMENDED TO BE PLACED BETWE			

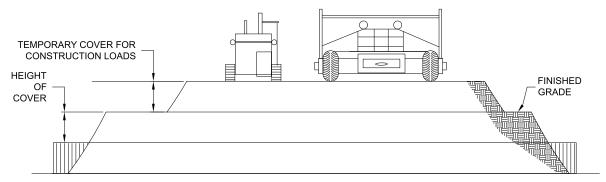
NOTES:

*

• FOR MULTIPLE BARREL INSTALLATIONS, THE RECOMMENDED STANDARD SPACING BETWEEN PARALLEL PIPE RUNS SHALL BE THE PIPE DIAMETER /2 BUT NO LESS THAN 12" FOR DIAMETERS <72". FOR 72" AND LAF YOUR CONTECH REPRESENTATIVE FOR NONSTANDARD SPACING.

APPROVED REGIONAL EQUIVALENTS FOR SECTION 5 INCLUDE CA-7, MIDOT 6AA, 6A, OR 5G, PROVIDED THEY MEET THE PARTICLE SIZES INDICATED.

MANUFACTURER RECOMMENDED BACKFILL


NOT TO SCALE

The design and information shown on this drawing is provided as a service to the project owner, engineer and contractor by Contech Engineered Solutions LLC ("Contech"). Neither this drawing, nor any part thereof, may be used, reproduced or modified in any manner without the prior written consent of				C NTECH	CENTECH	DYO49298 Miro
Contech. Failure to comply is done at the user's own risk and Contech expressly disclaims any liability or responsibility for such use.				ENGINEERED SOLUTIONS LLC	CMP DETENTION SYSTEMS	BMP 2
If discrepancies between the supplied information upon which the drawing is based and actual field conditions are encountered				www.ContechES.com 9025 Centre Pointe Dr., Suite 400, West Chester, OH 45069	CONTECH	Rialto, CA
as site work progresses, these discrepancies must be reported to Contech immediately for re-evaluation of the design. Contech accepts no liability for designs based on missing, incomplete or				800-338-1122 513-645-7000 513-645-7993 FAX	DYODS	DETENTION SY
inaccurate information supplied by others.	DATE	REVISION DESCRIPTION	BY			

INSTALLATION NOTES

- 1. WHEN PLACING THE FIRST LIFTS OF BACKFILL IT IS IMPORTANT TO MAKE SURE THAT THE BACKFILL IS PROPERLY COMPACTED UNDER AND AROUND THE PIPE HAUNCHES.
- 2. OTHER ALTERNATE BACKFILL MATERIAL MAY BE ALLOWED DEPENDING ON SITE SPECIFIC CONDITIONS, AS APPROVED BY SITE ENGINEER.
- 3. IF SALTING AGENTS FOR SNOW AND ICE REMOVAL ARE USED ON OR NEAR THE PROJECT, A GEOMEMBRANE BARRIER IS RECOMMENDED OVER THE UPPER HALF OF THE PIPE. THE GEOMEMBRANE LINER IS INTENDED TO HELP PROTECT THE SYSTEM FROM THE POTENTIAL ADVERSE EFFECTS THAT MAY RESULT FROM A CHANGE IN THE SURROUNDING ENVIRONMENT OVER A PERIOD OF TIME. PLEASE REFER TO THE CORRUGATED METAL PIPE DETENTION DESIGN GUIDE FOR ADDITIONAL INFORMATION.

MENT WIDTH (IN FEET) FOR INITIAL FILL ENVELOPE: PIPE < 24": 3.0D PIPE 24" - 144": D + 4'0" PIPE > 144": D + 10'0"			
N THE EVENT THAT UNSUITABLE FOUNDATION MATERIA H A FILL MATERIAL APPROVED BY THE ENGINEER OF RE			
RELATIVELY LOOSE, NATIVE SUITABLE WELL GRADED G SUITABLE OPEN GRADED GRANULAR BEDDING CONFO F 3" PER AASHTO 26.3.8.1			
TION WITHOUT SOFT SPOTS. BACKFILL SHALL BE PLAC THERE IS NO MORE THAN A TWO LIFT (16") DIFFERENTI NGTH OF THE SYSTEM TO AVOID DIFFERENTIAL LOADIN L NO FURTHER YIELDING OF MATERIAL IS OBSERVED U	AL BETWEEI NG. WHERE	N	
OTEXTILE SEPARATION LAYER TO PREVENT SOIL MIGR			
AL WITHIN MIN COVER LIMITS			
SELECTION AND COMPACTION REQUIREMENTS SHALL RECORD.	FOLLOW THI	E	
ENT SOIL MIGRATION.			
ED BETWEEN THE LAYERS TO PREVENT SOIL MIGRATIO	N.		
) LARGER DIAMETERS, THE MINIMUM SPACING IS 36". C	ONTACT		
	PROJECT No.:	SEQ. No.:	DATE:
iro Way	34168 DESIGNED:	49298	4/5/2024 AWN:
	DYO		DYO
CA	CHECKED: DYO		PROVED: DYO
SYSTEM	SHEET NO .:		1

CONSTRUCTION LOADS

FOR TEMPORARY CONSTRUCTION VEHICLE LOADS, AN EXTRA AMOUNT OF COMPACTED COVER MAY BE REQUIRED OVER THE TOP OF THE PIPE. THE HEIGHT-OF-COVER SHALL MEET THE MINIMUM REQUIREMENTS SHOWN IN THE TABLE BELOW. THE USE OF HEAVY CONSTRUCTION EQUIPMENT NECESSITATES GREATER PROTECTION FOR THE PIPE THAN FINISHED GRADE COVER MINIMUMS FOR NORMAL HIGHWAY TRAFFIC.

PIPE SPAN, INCHES	AXLE LOADS (kips)						
INCHES	18-50	50-75	75-110	110-150			
	MINIMUM COVER (FT)						
12-42	2.0	2.5	3.0	3.0			
48-72	3.0	3.0	3.5	4.0			
78-120	3.0	3.5	4.0	4.0			
126-144	3.5	4.0	4.5	4.5			

*MINIMUM COVER MAY VARY, DEPENDING ON LOCAL CONDITIONS. THE CONTRACTOR MUST PROVIDE THE ADDITIONAL COVER REQUIRED TO AVOID DAMAGE TO THE PIPE. MINIMUM COVER IS MEASURED FROM THE TOP OF THE PIPE TO THE TOP OF THE MAINTAINED CONSTRUCTION ROADWAY SURFACE.

CONSTRUCTION LOADING DIAGRAM

SCALE: N.T.S.

SPECIFICATION FOR DESIGNED DETENTION SYSTEM:

SCOPE

THIS SPECIFICATION COVERS THE MANUFACTURE AND INSTALLATION OF THE DESIGNED DETENTION SYSTEM DETAILED IN THE PROJECT PLANS.

MATERIAI

THE MATERIAL SHALL CONFORM TO THE APPLICABLE REQUIREMENTS LISTED BELOW

ALUMINIZED TYPE 2 STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-274 OR ASTM A-92.

THE GALVANIZED STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-218 OR ASTM A-929.

THE POLYMER COATED STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-246 OR ASTM A-742.

THE ALUMINUM COILS SHALL CONFORM TO THE APPLICABLE OF AASHTO M-197 OR ASTM B-744.

CONSTRUCTION LOADS

CONSTRUCTION LOADS MAY BE HIGHER THAN FINAL LOADS. FOLLOW THE MANUFACTURER'S OR NCSPA GUIDELINES.

<u>NOTE:</u>
THESE DRAWINGS ARE FOR CONCEPTUAL
PURPOSES AND DO NOT REFLECT ANY LOCAL
PREFERENCES OR REGULATIONS. PLEASE
CONTACT YOUR LOCAL CONTECH REP FOR
MODIFICATIONS.

5	accepts no liability for designs based on missing, incomplete or inaccurate information supplied by others.	DATE	REVISION DESCRIPTION
Š	the drawing is based and actual field conditions are encountered as site work progresses, these discrepancies must be reported to Contech immediately for re-evaluation of the design. Contech		
5	If discrepancies between the supplied information upon which		
	such use.		
	Contech expressly disclaims any liability or responsibility for		
3	Contech. Failure to comply is done at the user's own risk and		
2	modified in any manner without the prior written consent of		
í	drawing, nor any part thereof, may be used, reproduced or		
Ś	Contech Engineered Solutions LLC ("Contech"). Neither this		
	as a service to the project owner, engineer and contractor by		

THE PIPE SHALL BE MANUFACTURED IN ACCORDANCE TO THE APPLICABLE REQUIREMENTS LISTED BELOW:

ALUMINIZED TYPE 2: AASHTO M-36 OR ASTM A-760

GALVANIZED: AASHTO M-36 OR ASTM A-760

AFFOLIZATELE COATED: AASHTO M-245 OR ASTM A-762

ALUMINUM: AASHTO M-196 OR ASTM B-745

APPLICABLE HANDLING AND ASSEMBLY

SHALL BE IN ACCORDANCE WITH NCSP'S (NATIONAL CORRUGATED STEEL AFPRECABSECIATION) FOR ALUMINIZED TYPE 2. GALVANIZED OR POLYMER COATED STEEL. SHALL BE IN ACCORDANCE WITH THE MANUFACTURER'S RECOMMENDATIONS FOR ALUMINUM PIPE.

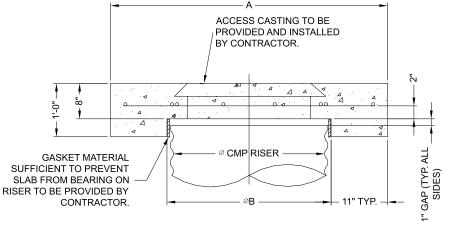
- REQUIREMENTS
- INSTALLATION

SHALL BE IN ACCORDANCE WITH AASHTO STANDARD SPECIFICATIONS FOR HIGHWAY BRIDGES, SECTION 26, DIVISION II DIVISION II OR ASTM A-798 (FOR ALUMINIZED TYPE 2, GALVANIZED OR POLYMER COATED STEEL) OR ASTM B-788 (FOR ALUMINUM PIPE) AND IN CONFORMANCE WITH THE PROJECT PLANS AND SPECIFICATIONS. IF THERE ARE ANY INCONSISTENCIES OR CONFLICTS THE CONTRACTOR SHOULD DISCUSS AND RESOLVE WITH THE SITE ENGINEER.

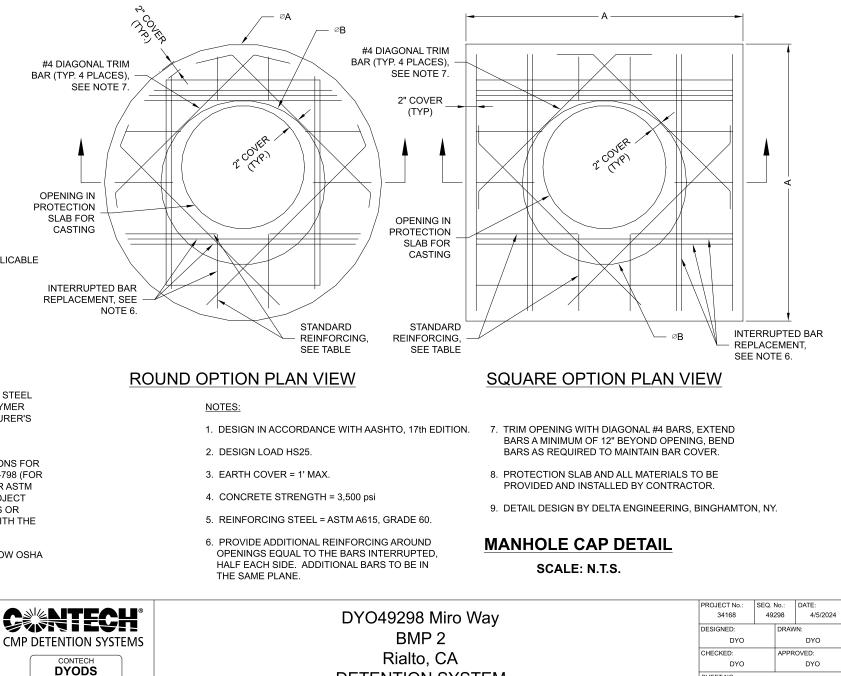
IT IS ALWAYS THE RESPONSIBILITY OF THE CONTRACTOR TO FOLLOW OSHA **GUIDELINES FOR SAFE PRACTICES.**

> ENGINEERED SOLUTIONS LLC www.ContechES.com

9025 Centre Pointe Dr., Suite 400, West Chester, OH 45069


513-645-7993 FAX

DRAWING


513-645-7000

800-338-1122

BY

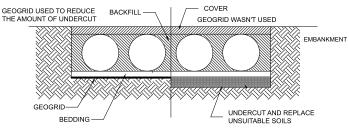
SECTION VIEW

Rialto, CA DETENTION SYSTEM

REINFORCING TABLE								
Ø CMP RISER	A	Ø₿	REINFORCING	**BEARING PRESSURE (PSF)				
24"	⊗ 4' 4'X4'	26"	#5 @ 12" OCEW #5 @ 12" OCEW	2,410 1,780				
30"	∞ 4'-6" 4'-6" X 4'-6"	32"	#5 @ 12" OCEW #5 @ 12" OCEW	2,120 1,530				
36"	∞ 5' 5' X 5'	38"	#5 @ 10" OCEW #5 @ 10" OCEW	1,890 1,350				
42"	∞ 5'-6" 5'-6" X 5'-6"	44"	#5 @ 10" OCEW #5 @ 9" OCEW	1,720 1,210				
48"	∞ 6' 6' X 6'	50"	#5 @ 9" OCEW #5 @ 8" OCEW	1,600 1,100				

SHEET NO.

** ASSUMED SOIL BEARING CAPACITY


CMP DETENTION INSTALLATION GUIDE

PROPER INSTALLATION OF A FLEXIBLE UNDERGROUND DETENTION SYSTEM WILL ENSURE LONG-TERM PERFORMANCE. THE CONFIGURATION OF THESE SYSTEMS OFTEN REQUIRES SPECIAL CONSTRUCTION PRACTICES THAT DIFFER FROM CONVENTIONAL FLEXIBLE PIPE CONSTRUCTION. CONTECH ENGINEERED SOLUTIONS STRONGLY SUGGESTS SCHEDULING A PRE-CONSTRUCTION MEETING WITH YOUR LOCAL SALES ENGINEER TO DETERMINE IF ADDITIONAL MEASURES, NOT COVERED IN THIS GUIDE, ARE APPROPRIATE FOR YOUR SITE.

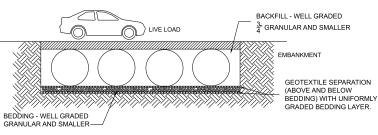
FOUNDATION

CONSTRUCT A FOUNDATION THAT CAN SUPPORT THE DESIGN LOADING APPLIED BY THE PIPE AND ADJACENT BACKFILL WEIGHT AS WELL AS MAINTAIN ITS INTEGRITY DURING CONSTRUCTION.

IF SOFT OR UNSUITABLE SOILS ARE ENCOUNTERED, REMOVE THE POOR SOILS DOWN TO A SUITABLE DEPTH AND THEN BUILD UP TO THE APPROPRIATE FLEVATION WITH A COMPETENT BACKEILL MATERIAL. THE STRUCTURAL FILL MATERIAL GRADATION SHOULD NOT ALLOW THE MIGRATION OF FINES, WHICH CAN CAUSE SETTLEMENT OF THE DETENTION SYSTEM OR PAVEMENT ABOVE. IF THE STRUCTURAL FILL MATERIAL IS NOT COMPATIBLE WITH THE UNDERLYING SOILS AN ENGINEERING FABRIC SHOULD BE USED AS A SEPARATOR IN SOME CASES, USING A STIFE REINFORCING GEOGRIF REDUCES OVER EXCAVATION AND REPLACEMENT FILL QUANTITIES.

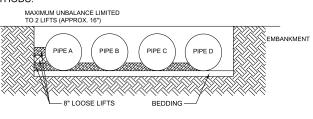
GRADE THE FOUNDATION SUBGRADE TO A UNIFORM OR SLIGHTLY SLOPING GRADE. IF THE SUBGRADE IS CLAY OR RELATIVELY NON-POROUS AND THE CONSTRUCTION SEQUENCE WILL LAST FOR AN EXTENDED PERIOD OF TIME. IT IS BEST TO SLOPE THE GRADE TO ONE END OF THE SYSTEM. THIS WILL ALLOW EXCESS WATER TO DRAIN QUICKLY, PREVENTING SATURATION OF THE SUBGRADE

GEOMEMBRANE BARRIER


A SITE'S RESISTIVITY MAY CHANGE OVER TIME WHEN VARIOUS TYPES OF SALTING AGENTS ARE USED, SUCH AS ROAD SALTS FOR DEICING AGENTS. IF SALTING AGENTS ARE USED ON OR NEAR THE PROJECT SITE, A GEOMEMBRANE THE ENTIRE WIDTH OF THE SYSTEM IS REACHED, ADVANCE THE EQUIPMENT BARRIER IS RECOMMENDED WITH THE SYSTEM. THE GEOMEMBRANE LINER IS INTENDED TO HELP PROTECT THE SYSTEM FROM THE POTENTIAL ADVERSE EFFECTS THAT MAY RESULT FROM THE USE OF SUCH AGENTS INCLUDING PREMATURE CORROSION AND REDUCED ACTUAL SERVICE LIFE.

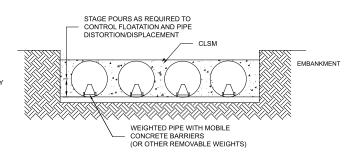
THE PROJECT'S ENGINEER OF RECORD IS TO EVALUATE WHETHER SALTING AGENTS WILL BE USED ON OR NEAR THE PROJECT SITE, AND USE HIS/HER BEST JUDGEMENT TO DETERMINE IF ANY ADDITIONAL PROTECTIVE MEASURES ARE REQUIRED. BELOW IS A TYPICAL DETAIL SHOWING THE PLACEMENT OF A GEOMEMBRANE BARRIER FOR PROJECTS WHERE SALTING AGENTS ARE USED ON OR NEAR THE PROJECT SITE.

IN-SITU TRENCH WALL


IF EXCAVATION IS REQUIRED, THE TRENCH WALL NEEDS TO BE CAPABLE OF SUPPORTING THE LOAD THAT THE PIPE SHEDS AS THE SYSTEM IS LOADED. IF SOILS ARE NOT CAPABLE OF SUPPORTING THESE LOADS, THE PIPE CAN DEFLECT PERFORM A SIMPLE SOIL PRESSURE CHECK USING THE APPLIED LOADS TO DETERMINE THE LIMITS OF EXCAVATION BEYOND THE SPRING LINE OF THE OUTER MOST PIPES

IN MOST CASES THE REQUIREMENTS FOR A SAFE WORK ENVIRONMENT AND PROPER BACKFILL PLACEMENT AND COMPACTION TAKE CARE OF THIS CONCERN.

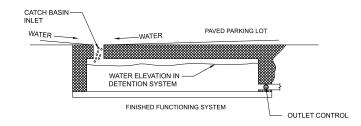
BACKFILL PLACEMENT

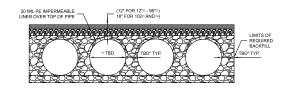

MATERIAL SHALL BE WORKED INTO THE PIPE HAUNCHES BY MEANS OF SHOVEL-SLICING, RODDING, AIR TAMPER, VIBRATORY ROD, OR OTHER EFFECTIVE METHODS

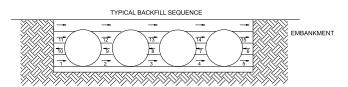
IF AASHTO T99 PROCEDURES ARE DETERMINED INFEASIBLE BY THE GEOTECHNICAL ENGINEER OF RECORD. COMPACTION IS CONSIDERED ADEQUATE WHEN NO FURTHER YIELDING OF THE MATERIAL IS OBSERVED. UNDER THE COMPACTOR, OR UNDER FOOT, AND THE GEOTECHNICAL ENGINEER OF RECORD (OR REPRESENTATIVE THEREOF) IS SATISFIED WITH THE LEVEL OF COMPACTION.

FOR LARGE SYSTEMS, CONVEYOR SYSTEMS, BACKHOES WITH LONG REACHES OR DRAGLINES WITH STONE BUCKETS MAY BE USED TO PLACE BACKFILL, ONCE MINIMUM COVER FOR CONSTRUCTION LOADING ACROSS TO THE END OF THE RECENTLY PLACED FILL, AND BEGIN THE SEQUENCE AGAIN UNTIL THE SYSTEM IS COMPLETELY BACKFILLED. THIS TYPE OF CONSTRUCTION SEQUENCE PROVIDES ROOM FOR STOCKPILED BACKFILL DIRECTLY BEHIND THE BACKHOE AS WELL AS THE MOVEMENT OF CONSTRUCTION TRAFFIC, MATERIAL STOCKPILES ON TOP OF THE BACKFILLED DETENTION SYSTEM SHOULD BE LIMITED TO 8- TO 10-FEET HIGH AND MUST PROVIDE BALANCED LOADING ACROSS ALL BARRELS. TO DETERMINE THE PROPER COVER OVER THE PIPES TO ALLOW THE MOVEMENT OF CONSTRUCTION EQUIPMENT SEE TABLE 1, OR CONTACT YOUR LOCAL CONTECH SALES ENGINEER.

WHEN FLOWABLE FILL IS USED, YOU MUST PREVENT PIPE FLOATATION TYPICALLY, SMALL LIFTS ARE PLACED BETWEEN THE PIPES AND THEN ALLOWED TO SET-UP PRIOR TO THE PLACEMENT OF THE NEXT LIFT. THE ALLOWABLE THICKNESS OF THE CLSM LIFT IS A FUNCTION OF A PROPER BALANCE BETWEEN THE UPLIFT FORCE OF THE CLSM, THE OPPOSING WEIGHT OF THE PIPE, AND THE EFFECT OF OTHER RESTRAINING MEASURES. THE PIPE CAN CARRY LIMITED FLUID PRESSURE WITHOUT PIPE DISTORTION OR DISPLACEMENT, WHICH ALSO AFFECTS THE CLSM LIFT THICKNESS. YOUR LOCAL CONTECH SALES ENGINEER CAN HELP DETERMINE THE PROPER LIFT THICKNESS.




CONSTRUCTION LOADING


ACCUMULATED SEDIMENT AND TRASH CAN TYPICALLY BE EVACUATED TYPICALLY, THE MINIMUM COVER SPECIFIED FOR A PROJECT ASSUMES H-20 THROUGH THE MANHOLE OVER THE OUTLET ORIFICE. IF MAINTENANCE IS NOT LIVE LOAD. BECAUSE CONSTRUCTION LOADS OFTEN EXCEED DESIGN LIVE PERFORMED AS RECOMMENDED, SEDIMENT AND TRASH MAY ACCUMULATE IN LOADS, INCREASED TEMPORARY MINIMUM COVER REQUIREMENTS ARE FRONT OF THE OUTLET ORIFICE. MANHOLE COVERS SHOULD BE SECURELY SEATED FOLLOWING CLEANING ACTIVITIES. CONTECH SUGGESTS THAT ALL NECESSARY. SINCE CONSTRUCTION EQUIPMENT VARIES FROM JOB TO JOB, SYSTEMS BE DESIGNED WITH AN ACCESS/INSPECTION MANHOLE SITUATED AT IT IS BEST TO ADDRESS EQUIPMENT SPECIFIC MINIMUM COVER OR NEAR THE INLET AND THE OUTLET ORIFICE. SHOULD IT BE NECESSARY TO REQUIREMENTS WITH YOUR LOCAL CONTECH SALES ENGINEER DURING GET INSIDE THE SYSTEM TO PERFORM MAINTENANCE ACTIVITIES, ALL APPROPRIATE PRECAUTIONS REGARDING CONFINED SPACE ENTRY AND OSHA YOUR PRE-CONSTRUCTION MEETING. REGULATIONS SHOULD BE FOLLOWED.

ADDITIONAL CONSIDERATIONS

BECAUSE MOST SYSTEMS ARE CONSTRUCTED BELOW-GRADE, RAINFALL AS PART OF THE MAINTENANCE PROGRAM FOR THE SYSTEM CAN RAPIDLY FILL THE EXCAVATION; POTENTIALLY CAUSING FLOATATION MAINTAINING AN UNDERGROUND DETENTION OR INFILTRATION SYSTEM IS AND MOVEMENT OF THE PREVIOUSLY PLACED PIPES. TO HELP MITIGATE EASIEST WHEN THERE IS NO FLOW ENTERING THE SYSTEM. FOR THIS POTENTIAL PROBLEMS, IT IS BEST TO START THE INSTALLATION AT THE REASON. IT IS A GOOD IDEA TO SCHEDULE THE CLEANOUT DURING DRY DOWNSTREAM END WITH THE OUTLET ALREADY CONSTRUCTED TO ALLOW WEATHER A ROUTE FOR THE WATER TO ESCAPE. TEMPORARY DIVERSION MEASURES MAY BE REQUIRED FOR HIGH FLOWS DUE TO THE RESTRICTED NATURE OF THE OUTLET PIPE

is provided ntractor by leither this			ANTEAN	AsieNiteali®	
luced or nsent of					
wn risk and sibility for			ENGINEERED SOLUTIONS LLC	CMP DETENTION SYSTEMS	
upon which			www.ContechES.com	CONTECH	
e encountered be reported sign. Contech			9025 Centre Pointe Dr., Suite 400, West Chester, OH 45069	DYODS	
ncomplete or	DATE	REVISION DESCRIPTION B		DRAWING	

DYO49298 Miro BMP 2 Rialto, CA DETENTION SYS

The design and information shown on this drawing is as a service to the project owner, engineer and contra Contech Engineered Solutions LLC ("Contech"). Net

discrepancies between the supplied information up In disciplinations between the adjusted information upper the drawing is based and actual field conditions are er as site work progresses, these discrepancies must be to Contech immediately for re-evaluation of the design accepts no liability for designs based on missing, inco naccurate information supplied by others.

rawing, nor any part thereof, may be used, repr modified in any manner without the prior written conse Contech. Failure to comply is done at the user's own Contech expressly disclaims any liability or responsib

CMP DETENTION SYSTEM INSPECTION AND MAINTENANCE

UNDERGROUND STORMWATER DETENTION AND INFILTRATION SYSTEMS MUST BE INSPECTED AND MAINTAINED AT REGULAR INTERVALS FOR PURPOSES OF PERFORMANCE AND LONGEVITY.

INSPECTION

INSPECTION IS THE KEY TO EFFECTIVE MAINTENANCE OF CMP DETENTION SYSTEMS AND IS EASILY PERFORMED. CONTECH RECOMMENDS ONGOING. ANNUAL INSPECTIONS. SITES WITH HIGH TRASH LOAD OR SMALL OUTLET CONTROL ORIFICES MAY NEED MORE FREQUENT INSPECTIONS. THE RATE AT WHICH THE SYSTEM COLLECTS POLLUTANTS WILL DEPEND MORE ON SITE SPECIFIC ACTIVITIES RATHER THAN THE SIZE OR CONFIGURATION OF THE SYSTEM.

INSPECTIONS SHOULD BE PERFORMED MORE OFTEN IN EQUIPMENT WASHDOWN AREAS. IN CLIMATES WHERE SANDING AND/OR SALTING OPERATIONS TAKE PLACE AND IN OTHER VARIOUS INSTANCES IN WHICH ONE WOULD EXPECT HIGHER ACCUMULATIONS OF SEDIMENT OR ABRASIVE/ CORROSIVE CONDITIONS. A RECORD OF EACH INSPECTION IS TO BE MAINTAINED FOR THE LIFE OF THE SYSTEM

MAINTENANCE

CMP DETENTION SYSTEMS SHOULD BE CLEANED WHEN AN INSPECTION REVEALS ACCUMULATED SEDIMENT OR TRASH IS CLOGGING THE DISCHARGE ORIFICE

ANNUAL INSPECTIONS ARE BEST PRACTICE FOR ALL UNDERGROUND SYSTEMS. DURING THIS INSPECTION, IF EVIDENCE OF SALTING/DE-ICING AGENTS IS OBSERVED WITHIN THE SYSTEM, IT IS BEST PRACTICE FOR THE SYSTEM TO BE RINSED, INCLUDING ABOVE THE SPRING LINE SOON AFTER THE SPRING THAW

THE FOREGOING INSPECTION AND MAINTENANCE EFFORTS HELP ENSURE UNDERGROUND PIPE SYSTEMS USED FOR STORMWATER STORAGE CONTINUE TO FUNCTION AS INTENDED BY IDENTIFYING RECOMMENDED REGULAR INSPECTION AND MAINTENANCE PRACTICES. INSPECTION AND MAINTENANCE RELATED TO THE STRUCTURAL INTEGRITY OF THE PIPE OR THE SOUNDNESS OF PIPE JOINT CONNECTIONS IS BEYOND THE SCOPE OF THIS GUIDE.

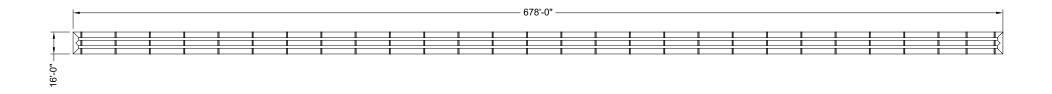
	PROJECT No.:	SEQ. I	No.:	DATE:
Way	34168	492	298	4/5/2024
	DESIGNED:		DRAW	'N:
	DYO			DYO
	CHECKED:		APPR	OVED:
	DYO			DYO
STEM	SHEET NO .:			
				1

PROJECT SUMMARY

CALCULATION DETAILS • LOADING = HS20/HS25

• APPROX. LINEAR FOOTAGE = 2,042 LF

STORAGE SUMMARY


- STORAGE VOLUME REQUIRED = N/A
- PIPE STORAGE VOLUME = 25,661 CF
- BACKFILL STORAGE VOLUME = 19,112 CF
- TOTAL STORAGE PROVIDED = 44,772 CF

PIPE DETAILS

- DIAMETER = 48"
- CORRUGATION = 2 2/3x1/2
- GAGE = 16
- COATING = ALT2
- WALL TYPE = PERFORATED
- BARREL SPACING = 24"

BACKFILL DETAILS

- WIDTH AT ENDS = 12"
- ABOVE PIPE = 12"
- WIDTH AT SIDES = 12"
- BELOW PIPE = 12"

<u>NOTES</u>

- ALL RISER AND STUB DIMENSIONS ARE TO CENTERLINE. ALL ELEVATIONS, DIMENSIONS, AND LOCATIONS OF RISERS AND INLETS, SHALL BE VERIFIED BY THE ENGINEER OF RECORD PRIOR TO RELEASING FOR FABRICATION.
- ALL FITTINGS AND REINFORCEMENT COMPLY WITH ASTM A998.
- ALL RISERS AND STUBS ARE $2\frac{2}{3}$ " x $\frac{1}{2}$ " Corrugation AND 16 GAGE UNLESS OTHERWISE NOTED. • RISERS TO BE FIELD TRIMMED TO GRADE.
- QUANTITY OF PIPE SHOWN DOES NOT PROVIDE EXTRA PIPE FOR CONNECTING THE SYSTEM TO EXISTING PIPE OR DRAINAGE STRUCTURES. OUR SYSTEM AS DETAILED PROVIDES NOMINAL INLET AND/OR OUTLET PIPE STUB FOR CONNECTION TO EXISTING DRAINAGE FACILITIES. IF ADDITIONAL PIPE IS NEEDED IT IS THE RESPONSIBILITY OF THE CONTRACTOR.
- BAND TYPE TO BE DETERMINED UPON FINAL DESIGN. • THE PROJECT SUMMARY IS REFLECTIVE OF THE
- DYODS DESIGN, QUANTITIES ARE APPROX. AND SHOULD BE VERIFIED UPON FINAL DESIGN AND APPROVAL. FOR EXAMPLE, TOTAL EXCAVATION DOES NOT CONSIDER ALL VARIABLES SUCH AS SHORING AND ONLY ACCOUNTS FOR MATERIAL WITHIN THE ESTIMATED EXCAVATION FOOTPRINT.
- THESE DRAWINGS ARE FOR CONCEPTUAL PURPOSES

AND DO NOT REFLECT ANY I REGULATIONS. PLEASE CON CONTECH REP FOR MODIFIC	ITACT YOUR					ASSEMBLY SCALE: 1" = 70'
The design and information shown on this drawing is provided as a service to the project owner, engineer and contractor by Other Share and the service of the service of the service drawing, nor any part thereof, may be used, reproduced or Contech. Failure to comple is done at the user's own risk and such use. If discregancies between the supplied information upon which the drawing is based and actual field conditions are encountered as sile work progresses, these discregancies must be reported to contech. Interpretation of the design. Contect as the more discretion of the design. Contect as contents on biolity for designs based on missing, incomplete or inaccurate information supplied by others.	h	REVISION DESCRIPTION	BY	Openation State	CMP DETENTION SYSTEMS CMP DETENTION SYSTEMS CONTECH DYODS DRAWING	DYO49348 Miro V BMP 3 Rialto, CA DETENTION SYS

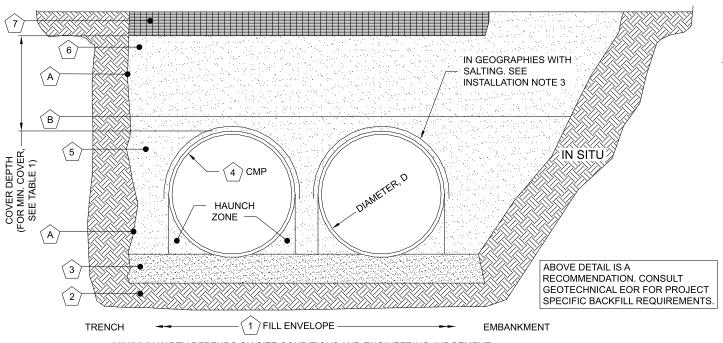

	PROJECT No.:	SEQ. I	No.:	DATE:	
Way	34169	493	348	4/5/2024	
	DESIGNED:		DRAW	N:	
	DYO			DYO	
	CHECKED:		APPR	OVED:	
	DYO			DYO	
STEM	SHEET NO .:				
5 ·				1	

	TABLE 1:		
	DIAMETER, D	MIN. COVER	CORR. PROFILE
	6"-10"	12"	1 1/2" x 1/4"
	12"-48"	12"	2 2/3" x 1/2"
	>48"-96"	12"	3" x 1", 5" x 1"
	>96"	D/8	3" x 1", 5" x 1"
,	STRUCTURAL BAC	KFILL MUST E	EXTEND TO

 STRUCTURAL BACKFILL MUST EXTEND TO LIMITS OF THE TABLE

• TOTAL HEIGHT OF COMPACTED COVER FOR CONVENTIONAL HIGHWAY LOADS IS MEASURED FROM TOP OF PIPE TO BOTTOM OF FLEXIBLE PAVEMENT OR TOP OF RIGID PAVEMENT.

TABLE 2: PERFORATED STANDARD

MINIMUM WIDTH DEPENDS ON SITE CONDITIONS AND ENGINEERING JUDGEMENT

	CMP RETENTION STANDARD BACKFILL SPECIFICATIONS						
	MATERIAL LOCATION	MATERIAL SPECIFICATION	DESCRIPTION				
	FILL ENVELOPE WIDTH	PER ENGINEER OF RECORD	MINIMUM TRENCH WIDTH MUST ALLOW ROOM FOR PROPER COMPACTION OF HAUNCH MATERIALS UNDER THE PIPE. THE SUGGESTED MINIMUM TRENCH WIDTH, OR EOR RECOMMENDATION: PIPE $\leq 12"$: D + 16" PIPE $> 12"$: 1.5D + 12"	MINIMUM EMBANKMENT WID P PIPE PIPI			
2	FOUNDATION	AASHTO 26.5.2 - PER ENGINEER OF RECORD	PRIOR TO PLACING THE BEDDING, THE FOUNDATION MUST BE CONSTRUCTED ENCOUNTERED DURING EXCAVATION, THEY SHALL BE REMOVED AND FOUNDA				
3	BEDDING	AASHTO M 43: 3, 357, 4, 467, 5, 56, 57	ENGINEER OF RECORD TO DETERMINE IF BEDDING IS REQUIRED. PIPE MAY BE PL MATERIAL THAT IS ROUGHLY SHAPED TO FIT THE BOTTOM OF THE PIPE, 2" MIN DEF AASHTO SOIL CLASSIFICATIONS A1, A2, OF				
4			CORRUGATED METAL PIPE				
5	BACKFILL	FREE-DRAINING, ANGULAR, NATURALLY OCCURRING WASHED-STONE PER AASHTO M 43: 3, 357, 4, 467, 5, 56, 57 OR APPROVED EQUAL *	HAUNCH ZONE MATERIAL SHALL BE HAND SHOVELED OR SHOVEL SLICED INTO PLA LOOSE LIFTS AND COMPACTED TO 90% STANDARD PROCTOR PER AASHTO T 99. BAC ANY OF THE PIPES AT ANY TIME DURING THE BACKFILL PROCESS. THE BACKFILL S CONVENTIONAL COMPACTION TESTING IS NOT PRACTICAL, THE MATERIAL SHALL I COMPACTOR. AREAS WITH HIGH WATER TABLE FLUCTUATIONS THAT INTERACT WITH THE PI	CKFILL SHALL BE PLACED SUCH THAT THERE IS SHOULD BE ADVANCED ALONG THE LENGTH OF BE MECHANICALLY COMPACTED UNTIL NO FUR			
6	COVER MATERIAL UP	TO MIN. COVER - AASHTO M 145: A-1, A-2, A-3 ABC MIN. COVER - PER ENGINEER OF RECORD	OVE COVER MATERIAL MAY INCLUDE NON-BITUMIN	IOUS, GRANULAR ROADBASE MATERIAL WITHIN			
$\overline{7}$	RIGID OR FLEXIBLE PAVEMENT (IF APPLICABLE)	PER ENGINEER OF RECORD	FLEXIBLE PAVEMENT SHOULD NOT BE COUNTED AS PART OF THE FILL HEIGHT OVER PROJECT PLANS AND SPE	THE CMP. FINAL BACKFILL MATERIAL SELECTIC CIFICATIONS PER THE ENGINEER OF RECORD.			
$\langle A \rangle$	OPTIONAL SIDE GEOTEXTILE	NONE	GEOTEXTILE LAYER IS RECOMMENDED	O ON SIDES OF EXCAVATION TO PREVENT SOIL			
B	GEOTEXTILE BETWEEN LAYERS	NONE	IF SOIL TYPES DIFFER AT ANY POINT ABOVE PIPE INVERT, A GEOTEXTILE L	AYER IS RECOMMENDED TO BE PLACED BETWE			

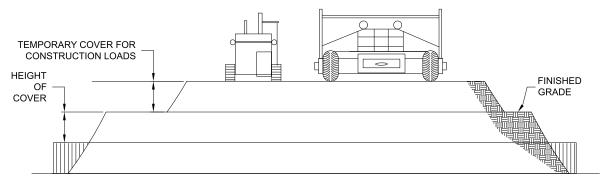
NOTES:

*

• FOR MULTIPLE BARREL INSTALLATIONS, THE RECOMMENDED STANDARD SPACING BETWEEN PARALLEL PIPE RUNS SHALL BE THE PIPE DIAMETER /2 BUT NO LESS THAN 12" FOR DIAMETERS <72". FOR 72" AND LAF YOUR CONTECH REPRESENTATIVE FOR NONSTANDARD SPACING.

APPROVED REGIONAL EQUIVALENTS FOR SECTION 5 INCLUDE CA-7, MIDOT 6AA, 6A, OR 5G, PROVIDED THEY MEET THE PARTICLE SIZES INDICATED.

MANUFACTURER RECOMMENDED BACKFILL


NOT TO SCALE

1						
The design and information shown on this drawing is provided as a service to the project owner, engineer and contractor by Contech Engineered Solutions LLC ("Contech"). Neither this drawing, nor any part thereof, may be used, reproduced or modified in any manner without the prior written consent of				C INTECH	CENTECH	DYO49348 Miro
Contech. Failure to comply is done at the user's own risk and Contech expressly disclaims any liability or responsibility for such use.				ENGINEERED SOLUTIONS LLC	CMP DETENTION SYSTEMS	BMP 3
If discrepancies between the supplied information upon which the drawing is based and actual field conditions are encountered				www.ContechES.com	CONTECH	Rialto, CA
as site work progresses, these discrepancies must be reported to Contech immediately for re-evaluation of the design. Contech				9025 Centre Pointe Dr., Suite 400, West Chester, OH 45069 800-338-1122 513-645-7000 513-645-7993 FAX	DYODS	DETENTION SY
accepts no liability for designs based on missing, incomplete or inaccurate information supplied by others.	DATE	REVISION DESCRIPTION	BY			

INSTALLATION NOTES

- 1. WHEN PLACING THE FIRST LIFTS OF BACKFILL IT IS IMPORTANT TO MAKE SURE THAT THE BACKFILL IS PROPERLY COMPACTED UNDER AND AROUND THE PIPE HAUNCHES.
- 2. OTHER ALTERNATE BACKFILL MATERIAL MAY BE ALLOWED DEPENDING ON SITE SPECIFIC CONDITIONS, AS APPROVED BY SITE ENGINEER.
- 3. IF SALTING AGENTS FOR SNOW AND ICE REMOVAL ARE USED ON OR NEAR THE PROJECT, A GEOMEMBRANE BARRIER IS RECOMMENDED OVER THE UPPER HALF OF THE PIPE. THE GEOMEMBRANE LINER IS INTENDED TO HELP PROTECT THE SYSTEM FROM THE POTENTIAL ADVERSE EFFECTS THAT MAY RESULT FROM A CHANGE IN THE SURROUNDING ENVIRONMENT OVER A PERIOD OF TIME. PLEASE REFER TO THE CORRUGATED METAL PIPE DETENTION DESIGN GUIDE FOR ADDITIONAL INFORMATION.

/ENT WIDTH (IN FEET) FOR INITIAL FILL ENVELOPE: PIPE < 24": 3.0D PIPE 24" - 144": D + 4'0" PIPE > 144": D + 10'0"			
N THE EVENT THAT UNSUITABLE FOUNDATION MATERIA H A FILL MATERIAL APPROVED BY THE ENGINEER OF RE			
RELATIVELY LOOSE, NATIVE SUITABLE WELL GRADED G SUITABLE OPEN GRADED GRANULAR BEDDING CONFC F 3" PER AASHTO 26.3.8.1			
TION WITHOUT SOFT SPOTS. BACKFILL SHALL BE PLAC THERE IS NO MORE THAN A TWO LIFT (16") DIFFERENTI NGTH OF THE SYSTEM TO AVOID DIFFERENTIAL LOADIN L NO FURTHER YIELDING OF MATERIAL IS OBSERVED U	AL BETWEEI IG. WHERE	N	
OTEXTILE SEPARATION LAYER TO PREVENT SOIL MIGR			
AL WITHIN MIN COVER LIMITS			
SELECTION AND COMPACTION REQUIREMENTS SHALL I RECORD.	FOLLOW TH	E	
ENT SOIL MIGRATION.			
ED BETWEEN THE LAYERS TO PREVENT SOIL MIGRATIO	N.		
) LARGER DIAMETERS, THE MINIMUM SPACING IS 36". C	ONTACT		
	PROJECT No.:	SEQ. No.:	DATE:
iro Way	34169 DESIGNED:	49348	4/5/2024
	DYO CHECKED:	APP	DYO ROVED:
CA SVSTEM	DYO SHEET NO.:		DYO
SYSTEM	GREET NO.		1

CONSTRUCTION LOADS

FOR TEMPORARY CONSTRUCTION VEHICLE LOADS, AN EXTRA AMOUNT OF COMPACTED COVER MAY BE REQUIRED OVER THE TOP OF THE PIPE. THE HEIGHT-OF-COVER SHALL MEET THE MINIMUM REQUIREMENTS SHOWN IN THE TABLE BELOW. THE USE OF HEAVY CONSTRUCTION EQUIPMENT NECESSITATES GREATER PROTECTION FOR THE PIPE THAN FINISHED GRADE COVER MINIMUMS FOR NORMAL HIGHWAY TRAFFIC.

PIPE SPAN, INCHES							
INCHES	18-50	50-75	75-110	110-150			
	MI	NIMUM C	OVER (F	-T)			
12-42	2.0	2.5	3.0	3.0			
48-72	3.0	3.0	3.5	4.0			
78-120	3.0	3.5	4.0	4.0			
126-144	3.5	4.0	4.5	4.5			

*MINIMUM COVER MAY VARY, DEPENDING ON LOCAL CONDITIONS. THE CONTRACTOR MUST PROVIDE THE ADDITIONAL COVER REQUIRED TO AVOID DAMAGE TO THE PIPE. MINIMUM COVER IS MEASURED FROM THE TOP OF THE PIPE TO THE TOP OF THE MAINTAINED CONSTRUCTION ROADWAY SURFACE.

CONSTRUCTION LOADING DIAGRAM

SCALE: N.T.S.

SPECIFICATION FOR DESIGNED DETENTION SYSTEM:

SCOPE

THIS SPECIFICATION COVERS THE MANUFACTURE AND INSTALLATION OF THE DESIGNED DETENTION SYSTEM DETAILED IN THE PROJECT PLANS.

MATERIA

THE MATERIAL SHALL CONFORM TO THE APPLICABLE REQUIREMENTS LISTED BELOW

ALUMINIZED TYPE 2 STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-274 OR ASTM A-92.

THE GALVANIZED STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-218 OR ASTM A-929.

THE POLYMER COATED STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-246 OR ASTM A-742.

THE ALUMINUM COILS SHALL CONFORM TO THE APPLICABLE OF AASHTO M-197 OR ASTM B-744.

CONSTRUCTION LOADS

CONSTRUCTION LOADS MAY BE HIGHER THAN FINAL LOADS. FOLLOW THE MANUFACTURER'S OR NCSPA GUIDELINES.

<u>NOTE:</u>
THESE DRAWINGS ARE FOR CONCEPTUAL
PURPOSES AND DO NOT REFLECT ANY LOCAL
PREFERENCES OR REGULATIONS. PLEASE
CONTACT YOUR LOCAL CONTECH REP FOR
MODIFICATIONS.

5	accepts no liability for designs based on missing, incomplete or inaccurate information supplied by others.	DATE	REVISION DESCRIPTION
Š	the drawing is based and actual field conditions are encountered as site work progresses, these discrepancies must be reported to Contech immediately for re-evaluation of the design. Contech		
5	If discrepancies between the supplied information upon which		
	such use.		
	Contech expressly disclaims any liability or responsibility for		
3	Contech. Failure to comply is done at the user's own risk and		
2	modified in any manner without the prior written consent of		
í	drawing, nor any part thereof, may be used, reproduced or		
Ś	Contech Engineered Solutions LLC ("Contech"). Neither this		
	as a service to the project owner, engineer and contractor by		

THE PIPE SHALL BE MANUFACTURED IN ACCORDANCE TO THE APPLICABLE REQUIREMENTS LISTED BELOW:

ALUMINIZED TYPE 2: AASHTO M-36 OR ASTM A-760

GALVANIZED: AASHTO M-36 OR ASTM A-760

AFFOLIZATELE COATED: AASHTO M-245 OR ASTM A-762

ALUMINUM: AASHTO M-196 OR ASTM B-745

APPLICABLE HANDLING AND ASSEMBLY

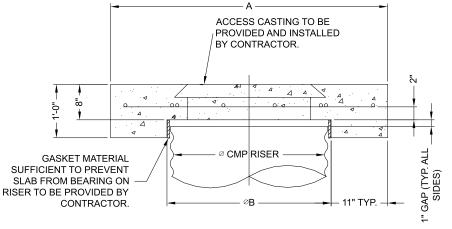
SHALL BE IN ACCORDANCE WITH NCSP'S (NATIONAL CORRUGATED STEEL AFPRECABSECIATION) FOR ALUMINIZED TYPE 2. GALVANIZED OR POLYMER COATED STEEL. SHALL BE IN ACCORDANCE WITH THE MANUFACTURER'S RECOMMENDATIONS FOR ALUMINUM PIPE.

REQUIREMENTS

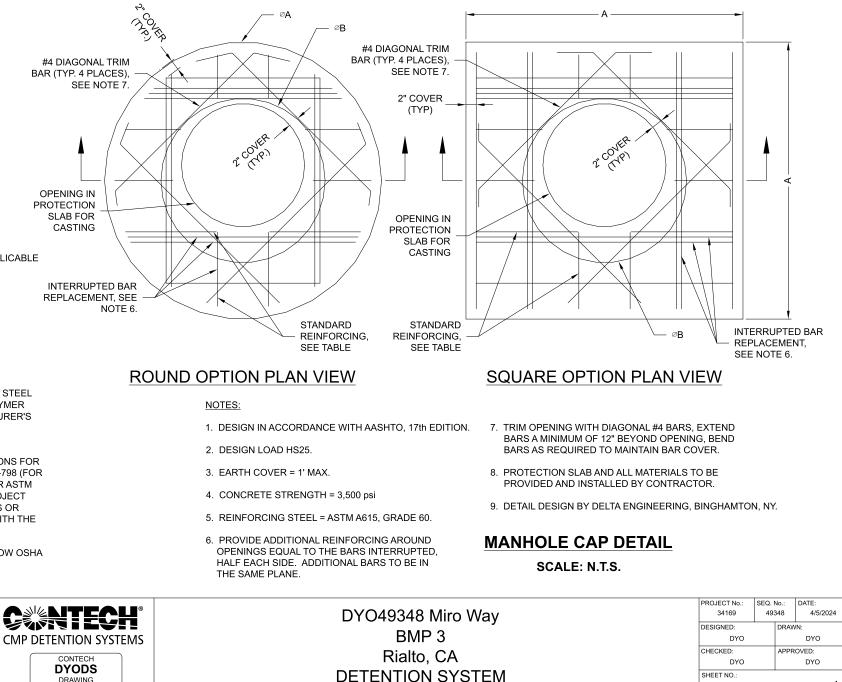
INSTALLATION SHALL BE IN ACCORDANCE WITH AASHTO STANDARD SPECIFICATIONS FOR HIGHWAY BRIDGES, SECTION 26, DIVISION II DIVISION II OR ASTM A-798 (FOR ALUMINIZED TYPE 2, GALVANIZED OR POLYMER COATED STEEL) OR ASTM B-788 (FOR ALUMINUM PIPE) AND IN CONFORMANCE WITH THE PROJECT PLANS AND SPECIFICATIONS. IF THERE ARE ANY INCONSISTENCIES OR CONFLICTS THE CONTRACTOR SHOULD DISCUSS AND RESOLVE WITH THE SITE ENGINEER.

IT IS ALWAYS THE RESPONSIBILITY OF THE CONTRACTOR TO FOLLOW OSHA **GUIDELINES FOR SAFE PRACTICES.**

> ENGINEERED SOLUTIONS LLC www.ContechES.com


9025 Centre Pointe Dr., Suite 400, West Chester, OH 45069

513-645-7993 FAX


513-645-7000

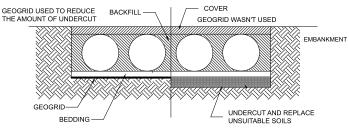
800-338-1122

BY

SECTION VIEW

REINFORCING TABLE						
Ø CMP RISER	A	ØB	REINFORCING	**BEARING PRESSURE (PSF)		
24"	⊘ 4' 4'X4'	26"	#5 @ 12" OCEW #5 @ 12" OCEW	2,410 1,780		
30"	∞ 4'-6" 4'-6" X 4'-6"	32"	#5 @ 12" OCEW #5 @ 12" OCEW	2,120 1,530		
36"	∞ 5' 5' X 5'	38"	#5 @ 10" OCEW #5 @ 10" OCEW	1,890 1,350		
42"	∅ 5'-6" 5'-6" X 5'-6"	44"	#5 @ 10" OCEW #5 @ 9" OCEW	1,720 1,210		
48"	∞ 6' 6' X 6'	50"	#5 @ 9" OCEW #5 @ 8" OCEW	1,600 1,100		

** ASSUMED SOIL BEARING CAPACITY


CMP DETENTION INSTALLATION GUIDE

PROPER INSTALLATION OF A FLEXIBLE UNDERGROUND DETENTION SYSTEM WILL ENSURE LONG-TERM PERFORMANCE. THE CONFIGURATION OF THESE SYSTEMS OFTEN REQUIRES SPECIAL CONSTRUCTION PRACTICES THAT DIFFER FROM CONVENTIONAL FLEXIBLE PIPE CONSTRUCTION. CONTECH ENGINEERED SOLUTIONS STRONGLY SUGGESTS SCHEDULING A PRE-CONSTRUCTION MEETING WITH YOUR LOCAL SALES ENGINEER TO DETERMINE IF ADDITIONAL MEASURES, NOT COVERED IN THIS GUIDE, ARE APPROPRIATE FOR YOUR SITE.

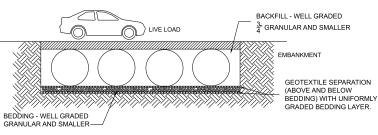
FOUNDATION

CONSTRUCT A FOUNDATION THAT CAN SUPPORT THE DESIGN LOADING APPLIED BY THE PIPE AND ADJACENT BACKFILL WEIGHT AS WELL AS MAINTAIN ITS INTEGRITY DURING CONSTRUCTION.

IF SOFT OR UNSUITABLE SOILS ARE ENCOUNTERED, REMOVE THE POOR SOILS DOWN TO A SUITABLE DEPTH AND THEN BUILD UP TO THE APPROPRIATE FLEVATION WITH A COMPETENT BACKEILL MATERIAL. THE STRUCTURAL FILL MATERIAL GRADATION SHOULD NOT ALLOW THE MIGRATION OF FINES, WHICH CAN CAUSE SETTLEMENT OF THE DETENTION SYSTEM OR PAVEMENT ABOVE. IF THE STRUCTURAL FILL MATERIAL IS NOT COMPATIBLE WITH THE UNDERLYING SOILS AN ENGINEERING FABRIC SHOULD BE USED AS A SEPARATOR IN SOME CASES, USING A STIFE REINFORCING GEOGRIF REDUCES OVER EXCAVATION AND REPLACEMENT FILL QUANTITIES.

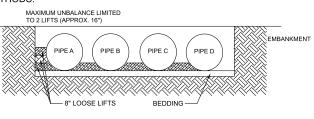
GRADE THE FOUNDATION SUBGRADE TO A UNIFORM OR SLIGHTLY SLOPING GRADE. IF THE SUBGRADE IS CLAY OR RELATIVELY NON-POROUS AND THE CONSTRUCTION SEQUENCE WILL LAST FOR AN EXTENDED PERIOD OF TIME. IT IS BEST TO SLOPE THE GRADE TO ONE END OF THE SYSTEM. THIS WILL ALLOW EXCESS WATER TO DRAIN QUICKLY, PREVENTING SATURATION OF THE SUBGRADE

GEOMEMBRANE BARRIER


A SITE'S RESISTIVITY MAY CHANGE OVER TIME WHEN VARIOUS TYPES OF SALTING AGENTS ARE USED, SUCH AS ROAD SALTS FOR DEICING AGENTS. IF SALTING AGENTS ARE USED ON OR NEAR THE PROJECT SITE, A GEOMEMBRANE THE ENTIRE WIDTH OF THE SYSTEM IS REACHED, ADVANCE THE EQUIPMENT BARRIER IS RECOMMENDED WITH THE SYSTEM. THE GEOMEMBRANE LINER IS INTENDED TO HELP PROTECT THE SYSTEM FROM THE POTENTIAL ADVERSE EFFECTS THAT MAY RESULT FROM THE USE OF SUCH AGENTS INCLUDING PREMATURE CORROSION AND REDUCED ACTUAL SERVICE LIFE.

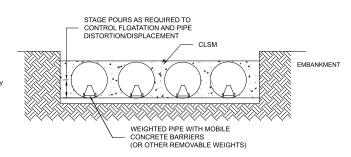
THE PROJECT'S ENGINEER OF RECORD IS TO EVALUATE WHETHER SALTING AGENTS WILL BE USED ON OR NEAR THE PROJECT SITE, AND USE HIS/HER BEST JUDGEMENT TO DETERMINE IF ANY ADDITIONAL PROTECTIVE MEASURES ARE REQUIRED. BELOW IS A TYPICAL DETAIL SHOWING THE PLACEMENT OF A GEOMEMBRANE BARRIER FOR PROJECTS WHERE SALTING AGENTS ARE USED ON OR NEAR THE PROJECT SITE.

IN-SITU TRENCH WALL


IF EXCAVATION IS REQUIRED, THE TRENCH WALL NEEDS TO BE CAPABLE OF SUPPORTING THE LOAD THAT THE PIPE SHEDS AS THE SYSTEM IS LOADED. IF SOILS ARE NOT CAPABLE OF SUPPORTING THESE LOADS, THE PIPE CAN DEFLECT PERFORM A SIMPLE SOIL PRESSURE CHECK USING THE APPLIED LOADS TO DETERMINE THE LIMITS OF EXCAVATION BEYOND THE SPRING LINE OF THE OUTER MOST PIPES

IN MOST CASES THE REQUIREMENTS FOR A SAFE WORK ENVIRONMENT AND PROPER BACKFILL PLACEMENT AND COMPACTION TAKE CARE OF THIS CONCERN.

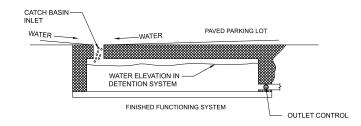
BACKFILL PLACEMENT

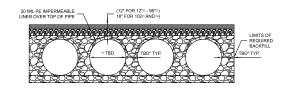

MATERIAL SHALL BE WORKED INTO THE PIPE HAUNCHES BY MEANS OF SHOVEL-SLICING, RODDING, AIR TAMPER, VIBRATORY ROD, OR OTHER EFFECTIVE METHODS

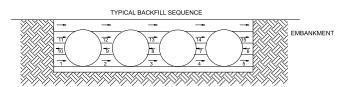
IF AASHTO T99 PROCEDURES ARE DETERMINED INFEASIBLE BY THE GEOTECHNICAL ENGINEER OF RECORD. COMPACTION IS CONSIDERED ADEQUATE WHEN NO FURTHER YIELDING OF THE MATERIAL IS OBSERVED. UNDER THE COMPACTOR, OR UNDER FOOT, AND THE GEOTECHNICAL ENGINEER OF RECORD (OR REPRESENTATIVE THEREOF) IS SATISFIED WITH THE LEVEL OF COMPACTION.

FOR LARGE SYSTEMS, CONVEYOR SYSTEMS, BACKHOES WITH LONG REACHES OR DRAGLINES WITH STONE BUCKETS MAY BE USED TO PLACE BACKFILL, ONCE MINIMUM COVER FOR CONSTRUCTION LOADING ACROSS TO THE END OF THE RECENTLY PLACED FILL, AND BEGIN THE SEQUENCE AGAIN UNTIL THE SYSTEM IS COMPLETELY BACKFILLED. THIS TYPE OF CONSTRUCTION SEQUENCE PROVIDES ROOM FOR STOCKPILED BACKFILL DIRECTLY BEHIND THE BACKHOE AS WELL AS THE MOVEMENT OF CONSTRUCTION TRAFFIC, MATERIAL STOCKPILES ON TOP OF THE BACKFILLED DETENTION SYSTEM SHOULD BE LIMITED TO 8- TO 10-FEET HIGH AND MUST PROVIDE BALANCED LOADING ACROSS ALL BARRELS. TO DETERMINE THE PROPER COVER OVER THE PIPES TO ALLOW THE MOVEMENT OF CONSTRUCTION EQUIPMENT SEE TABLE 1, OR CONTACT YOUR LOCAL CONTECH SALES ENGINEER.

WHEN FLOWABLE FILL IS USED, YOU MUST PREVENT PIPE FLOATATION TYPICALLY, SMALL LIFTS ARE PLACED BETWEEN THE PIPES AND THEN ALLOWED TO SET-UP PRIOR TO THE PLACEMENT OF THE NEXT LIFT. THE ALLOWABLE THICKNESS OF THE CLSM LIFT IS A FUNCTION OF A PROPER BALANCE BETWEEN THE UPLIFT FORCE OF THE CLSM, THE OPPOSING WEIGHT OF THE PIPE, AND THE EFFECT OF OTHER RESTRAINING MEASURES. THE PIPE CAN CARRY LIMITED FLUID PRESSURE WITHOUT PIPE DISTORTION OR DISPLACEMENT, WHICH ALSO AFFECTS THE CLSM LIFT THICKNESS. YOUR LOCAL CONTECH SALES ENGINEER CAN HELP DETERMINE THE PROPER LIFT THICKNESS.




CONSTRUCTION LOADING


ACCUMULATED SEDIMENT AND TRASH CAN TYPICALLY BE EVACUATED TYPICALLY, THE MINIMUM COVER SPECIFIED FOR A PROJECT ASSUMES H-20 THROUGH THE MANHOLE OVER THE OUTLET ORIFICE. IF MAINTENANCE IS NOT LIVE LOAD. BECAUSE CONSTRUCTION LOADS OFTEN EXCEED DESIGN LIVE PERFORMED AS RECOMMENDED, SEDIMENT AND TRASH MAY ACCUMULATE IN LOADS, INCREASED TEMPORARY MINIMUM COVER REQUIREMENTS ARE FRONT OF THE OUTLET ORIFICE. MANHOLE COVERS SHOULD BE SECURELY SEATED FOLLOWING CLEANING ACTIVITIES. CONTECH SUGGESTS THAT ALL NECESSARY. SINCE CONSTRUCTION EQUIPMENT VARIES FROM JOB TO JOB, SYSTEMS BE DESIGNED WITH AN ACCESS/INSPECTION MANHOLE SITUATED AT IT IS BEST TO ADDRESS EQUIPMENT SPECIFIC MINIMUM COVER OR NEAR THE INLET AND THE OUTLET ORIFICE. SHOULD IT BE NECESSARY TO REQUIREMENTS WITH YOUR LOCAL CONTECH SALES ENGINEER DURING GET INSIDE THE SYSTEM TO PERFORM MAINTENANCE ACTIVITIES, ALL APPROPRIATE PRECAUTIONS REGARDING CONFINED SPACE ENTRY AND OSHA YOUR PRE-CONSTRUCTION MEETING. REGULATIONS SHOULD BE FOLLOWED.

ADDITIONAL CONSIDERATIONS

BECAUSE MOST SYSTEMS ARE CONSTRUCTED BELOW-GRADE, RAINFALL AS PART OF THE MAINTENANCE PROGRAM FOR THE SYSTEM CAN RAPIDLY FILL THE EXCAVATION; POTENTIALLY CAUSING FLOATATION MAINTAINING AN UNDERGROUND DETENTION OR INFILTRATION SYSTEM IS AND MOVEMENT OF THE PREVIOUSLY PLACED PIPES. TO HELP MITIGATE EASIEST WHEN THERE IS NO FLOW ENTERING THE SYSTEM. FOR THIS POTENTIAL PROBLEMS, IT IS BEST TO START THE INSTALLATION AT THE REASON. IT IS A GOOD IDEA TO SCHEDULE THE CLEANOUT DURING DRY DOWNSTREAM END WITH THE OUTLET ALREADY CONSTRUCTED TO ALLOW WEATHER A ROUTE FOR THE WATER TO ESCAPE. TEMPORARY DIVERSION MEASURES MAY BE REQUIRED FOR HIGH FLOWS DUE TO THE RESTRICTED NATURE OF THE OUTLET PIPE

is provided htractor by leither this						
luced or insent of				C INTECH	Gamilyn	
wn risk and sibility for				ENGINEERED SOLUTIONS LLC	CMP DETENTION SYSTEMS	
upon which				www.ContechES.com	CONTECH	
e encountered be reported sign. Contech				9025 Centre Pointe Dr., Suite 400, West Chester, OH 45069	DYODS	
ncomplete or	DATE	REVISION DESCRIPTION	BY	800-338-1122 513-645-7000 513-645-7993 FAX	DRAWING	

DYO49348 Miro BMP 3 Rialto, CA DETENTION SYS

The design and information shown on this drawing is as a service to the project owner, engineer and contre Contech Engineered Solutions LLC ("Contech"). Neit

rawing, nor any part thereof, may be used, repr modified in any manner without the prior written cons Contech. Failure to comply is done at the user's owr Contech expressly disclaims any liability or responsil

discrepancies between the supplied information up In additional actual field conditions are easily the drawing is based and actual field conditions are easily work progresses, these discrepancies must be to Contech immediately for re-evaluation of the design accepts no liability for designs based on missing, inconaccurate information supplied by others.

CMP DETENTION SYSTEM INSPECTION AND MAINTENANCE

UNDERGROUND STORMWATER DETENTION AND INFILTRATION SYSTEMS MUST BE INSPECTED AND MAINTAINED AT REGULAR INTERVALS FOR PURPOSES OF PERFORMANCE AND LONGEVITY.

INSPECTION

INSPECTION IS THE KEY TO EFFECTIVE MAINTENANCE OF CMP DETENTION SYSTEMS AND IS EASILY PERFORMED. CONTECH RECOMMENDS ONGOING. ANNUAL INSPECTIONS. SITES WITH HIGH TRASH LOAD OR SMALL OUTLET CONTROL ORIFICES MAY NEED MORE FREQUENT INSPECTIONS. THE RATE AT WHICH THE SYSTEM COLLECTS POLLUTANTS WILL DEPEND MORE ON SITE SPECIFIC ACTIVITIES RATHER THAN THE SIZE OR CONFIGURATION OF THE SYSTEM.

INSPECTIONS SHOULD BE PERFORMED MORE OFTEN IN EQUIPMENT WASHDOWN AREAS. IN CLIMATES WHERE SANDING AND/OR SALTING OPERATIONS TAKE PLACE AND IN OTHER VARIOUS INSTANCES IN WHICH ONE WOULD EXPECT HIGHER ACCUMULATIONS OF SEDIMENT OR ABRASIVE/ CORROSIVE CONDITIONS. A RECORD OF EACH INSPECTION IS TO BE MAINTAINED FOR THE LIFE OF THE SYSTEM

MAINTENANCE

CMP DETENTION SYSTEMS SHOULD BE CLEANED WHEN AN INSPECTION REVEALS ACCUMULATED SEDIMENT OR TRASH IS CLOGGING THE DISCHARGE ORIFICE

ANNUAL INSPECTIONS ARE BEST PRACTICE FOR ALL UNDERGROUND SYSTEMS. DURING THIS INSPECTION, IF EVIDENCE OF SALTING/DE-ICING AGENTS IS OBSERVED WITHIN THE SYSTEM, IT IS BEST PRACTICE FOR THE SYSTEM TO BE RINSED, INCLUDING ABOVE THE SPRING LINE SOON AFTER THE SPRING THAW

THE FOREGOING INSPECTION AND MAINTENANCE EFFORTS HELP ENSURE UNDERGROUND PIPE SYSTEMS USED FOR STORMWATER STORAGE CONTINUE TO FUNCTION AS INTENDED BY IDENTIFYING RECOMMENDED REGULAR INSPECTION AND MAINTENANCE PRACTICES. INSPECTION AND MAINTENANCE RELATED TO THE STRUCTURAL INTEGRITY OF THE PIPE OR THE SOUNDNESS OF PIPE JOINT CONNECTIONS IS BEYOND THE SCOPE OF THIS GUIDE.

	PROJECT No.:	SEQ. I	No.:	DATE:
Way	34169	493	348	4/5/2024
	DESIGNED:		DRAW	'N:
	DYO			DYO
	CHECKED:		APPR	OVED:
	DYO			DYO
STEM	SHEET NO .:			
				1

PROJECT SUMMARY

CALCULATION DETAILS

• LOADING = HS20/HS25 • APPROX. LINEAR FOOTAGE = 398 LF

STORAGE SUMMARY

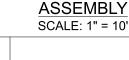
- STORAGE VOLUME REQUIRED = N/A
- PIPE STORAGE VOLUME = 5,001 CF
- BACKFILL STORAGE VOLUME = 3,759 CF
- TOTAL STORAGE PROVIDED = 8,761 CF

PIPE DETAILS

- DIAMETER = 48"
- CORRUGATION = 2 2/3x1/2
- GAGE = 16
- COATING = ALT2
- WALL TYPE = SOLID
- BARREL SPACING = 24"

BACKFILL DETAILS

- WIDTH AT ENDS = 12"
- ABOVE PIPE = 12"
- WIDTH AT SIDES = 12"
- BELOW PIPE = 12"


<u>NOTES</u>

Z

- ALL RISER AND STUB DIMENSIONS ARE TO CENTERLINE. ALL ELEVATIONS, DIMENSIONS, AND LOCATIONS OF RISERS AND INLETS, SHALL BE VERIFIED BY THE ENGINEER OF RECORD PRIOR TO RELEASING FOR FABRICATION.
- ALL FITTINGS AND REINFORCEMENT COMPLY WITH ASTM A998.
- ALL RISERS AND STUBS ARE $2\frac{2}{3}$ " x $\frac{1}{2}$ " Corrugation AND 16 GAGE UNLESS OTHERWISE NOTED.
- RISERS TO BE FIELD TRIMMED TO GRADE.
- QUANTITY OF PIPE SHOWN DOES NOT PROVIDE EXTRA PIPE FOR CONNECTING THE SYSTEM TO EXISTING PIPE OR DRAINAGE STRUCTURES. OUR SYSTEM AS DETAILED PROVIDES NOMINAL INLET AND/OR OUTLET PIPE STUB FOR CONNECTION TO EXISTING DRAINAGE FACILITIES. IF ADDITIONAL PIPE IS NEEDED IT IS THE RESPONSIBILITY OF THE CONTRACTOR.
- BAND TYPE TO BE DETERMINED UPON FINAL DESIGN. • THE PROJECT SUMMARY IS REFLECTIVE OF THE
- DYODS DESIGN, QUANTITIES ARE APPROX. AND SHOULD BE VERIFIED UPON FINAL DESIGN AND APPROVAL. FOR EXAMPLE, TOTAL EXCAVATION DOES NOT CONSIDER ALL VARIABLES SUCH AS SHORING AND ONLY ACCOUNTS FOR MATERIAL WITHIN THE ESTIMATED EXCAVATION FOOTPRINT.
- THESE DRAWINGS ARE FOR CONCEPTUAL PURPOSES AND DO NOT REFLECT ANY LOCAL PREFERENCES OR REGULATIONS. PLEASE CONTACT YOUR LOCAL CONTECH REP FOR MODIFICATIONS.

I		
- 28'-0" -		

- 78'-0" -

DYO49301 Miro BMP 4 Rialto, CA **DETENTION SYS**

ENGIN ^w	EERED SOLUT	CONS LLC
9025 Centre Point	e Dr., Suite 400, W	est Chester, OH 45
800-338-1122	513-645-7000	513-645-7993 F

Contech expressly disclaims any liability or responsibility for such use.	
If discrepancies between the supplied information upon which the drawing is based and actual field conditions are encountered	
as site work progresses, these discrepancies must be reported to Contech immediately for re-evaluation of the design. Contech	
accepts no liability for designs based on missing, incomplete or inaccurate information supplied by others.	DATE

DATE	REV

REVISION DESCRIPTION	

ΒY

	PROJECT No.:	SEQ. I	No.:	DATE:
Way	34171	493	301	4/4/2024
	DESIGNED:		DRAW	N:
	DYO			DYO
	CHECKED:		APPR	OVED:
	DYO			DYO
STEM	SHEET NO .:			
				1

TA	вı	F	1	,
18	DL			,

NOLE I.					
DIAMETER, D	MIN. COVER	CORR. PROFILE			
6"-10"	12"	1 1/2" x 1/4"			
12"-48"	12"	2 2/3" x 1/2"			
>48"-96"	12"	3" x 1", 5" x 1"			
>96"	D/8	3" x 1", 5" x 1"			

STRUCTURAL BACKFILL MUST EXTEND TO • LIMITS OF THE TABLE

- TOTAL HEIGHT OF COMPACTED COVER FOR CONVENTIONAL HIGHWAY LOADS IS MEASURED FROM TOP OF PIPE TO BOTTOM OF FLEXIBLE PAVEMENT OR TOP OF RIGID PAVEMENT ULTRAFLO ALSO AVAILABLE FOR SIZES 18" - 120"
- WITH 3/4"x 3/4"x 7 1/2" CORRUGATION

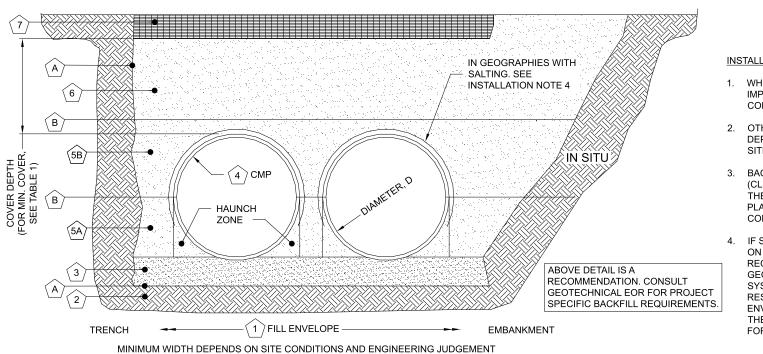


TABLE 2: SOLID STANDARD

	CMP DETENTION AND CMP DRAINAGE STANDARD BACKFILL SPECIFICATIONS					
	MATERIAL LOCATION	MATERIAL SPECIFICATION	DESCRIPTION			
	FILL ENVELOPE WIDTH	PER ENGINEER OF RECORD	MINIMUM TRENCH WIDTH MUST ALLOW ROOM FOR PROPER COMPACTION OF HAUNCH MATERIALS UNDER THE PIPE. THE SUGGESTED MINIMUM TRENCH WIDTH, OR EOR RECOMMENDATION: PIPE $\leq 12": D + 16"$ PIPE $\geq 12": 1.5D + 12"$	MINIMUM EMBANKMENT WIDTH (I PIPE PIPE 24" PIPE 2 1		
2	FOUNDATION	AASHTO 26.5.2 OR PER ENGINEER OF RECORD	PRIOR TO PLACING THE BEDDING, THE FOUNDATION MUST BE CONSTRUCTED FOUNDATION MATERIALS ARE ENCOUNTERED DURING EXCAVATION, THEY SHALL MATERIAL APPROVED BY THE E	BE REMOVED AND FOUNDATION BR		
3	Image: Second constraints AASHTO M 43: 3, 357, 4, 467, 5, 56, 57 ENGINEER OF RECORD TO DETERMINE IF BEDDING IS REQUIRED. PIPE MAY BE PLACED ON THE TRENC Image: Second constraints (APPROVED REGIONAL EQUIVALENTS INCLUDE CA-7) ENGINEER OF RECORD TO DETERMINE IF BEDDING IS REQUIRED. PIPE MAY BE PLACED ON THE TRENC Image: Second constraints (APPROVED REGIONAL EQUIVALENTS INCLUDE CA-7) ENGINEER OF RECORD TO DETERMINE IF BEDDING IS REQUIRED. PIPE MAY BE PLACED ON THE TRENC Image: Second constraints (APPROVED REGIONAL EQUIVALENTS INCLUDE CA-7) ENGINEER OF RECORD TO DETERMINE IF BEDDING IS REQUIRED. PIPE MAY BE PLACED ON THE TRENC Image: Second constraints (APPROVED REGIONAL EQUIVALENTS INCLUDE CA-7) ENGINEER OF RECORD TO DETERMINE IF BEDDING IS REQUIRED. PIPE MAY BE PLACED ON THE TRENC Image: Second constraints (APPROVED REGIONAL EQUIVALENTS INCLUDE CA-7) ENGINEER OF RECORD TO DETERMINE IF BEDDING IS REQUIRED. PIPE MAY BE PLACED ON THE TRENC Image: Second constraints (APPROVED REGIONAL EQUIVALENTS INCLUDE CA-7) ENGINEER OF RECORD TO DETERMINE IF BEDDING TO AASHTO SOIL CLASSIFICATIONS A1, A2, OR A3 WITH MAXI					
4	CORRUGATED METAL PIPE					
(5A)	CRITICAL BACKFILL	AASHTO M 145: A-1, A-2, A-3 * HAUNCH ZONE MATERIAL SHALL BE HAND SHOVELED OR SHOVEL SLICED INTO PLACE TO ALLOW FOF BACKFILL SHALL BE PLACED IN 8" +/- LOOSE LIFTS AND COMPACTED TO 90% STANDARD PROCTOR PER AA THERE IS NO MORE THAN A THREE LIFT (24") DIFFERENTIAL BETWEEN ANY OF THE PIPES AT ANY TIME SHOULD BE ADVANCED ALONG THE LENGTH OF THE SYSTEM TO AVOID DIFFERENTIAL LOADING. GRADED GRANULAR MATERIAL WHICH MAY CONTAIN SMALL AMOUNTS OF SILT OR CLAY AND MAXIMUM				
5B)	BACKFILL	AASHTO M 145: A-1, A-2, A-3				
6	COVER MATERIAL	UP TO MIN. COVER - SEE 5A AND 5B ABOVE ABOVE MIN. COVER - PER ENGINEER OF RECORD	COVER MATERIAL MAY INCLUDE NON-BITUMINOUS, GRANUL	AR ROAD BASE MATERIAL WITHIN MI		
7	RIGID OR FLEXIBLE PAVEMENT (IF APPLICABLE)	PER ENGINEER OF RECORD	FLEXIBLE PAVEMENT SHOULD NOT BE COUNTED AS PART OF THE FILL HEIGHT O REQUIREMENTS SHALL FOLLOW THE PROJECT PLANS AND			
Â	OPTIONAL SIDE GEOTEXTILE	NONE	GEOTEXTILE LAYER IS RECOMMENDED ON SIDES OF	EXCAVATION TO PREVENT SOIL MIG		
B	OPTIONAL GEOTEXTILE BETWEEN LAYERS	NONE	IF SOIL TYPES DIFFER AT ANY POINT ABOVE PIPE INVERT, A GEOTEXTILE LAYER IS MIGRATIO			
	NOTES:					

• FOR MULTIPLE BARREL INSTALLATIONS, THE RECOMMENDED STANDARD SPACING BETWEEN PARALLEL PIPE RUNS SHALL BE THE PIPE DIAMETER /2 BUT NO LESS THAN 12" FOR DIAMETERS <72". FOR 72" AND LARGER DIAMETERS, THE MINIMUM SPACING IS 36". CONTACT YOUR CONTECH REPRESENTATIVE FOR NONSTANDARD SPACING. APPROVED REGIONAL EQUIVALENTS FOR SECTION 5A INCLUDE CA-7, MIDOT 2G, 34G, OR 21AA STONE OR GRAVEL; #8; #57; MIDOT 6A, 2G, 3G, 34G.

MANUFACTURER RECOMMENDED BACKFILL

NOT TO SCALE

 design and information shown on this drawing is provided a service to the project owner, engineer and contractor by ttech Engineered Solutions LLC ("Contech"). Neither this 				A sk Niteali	Asteru®
wing, nor any part thereof, may be used, reproduced or dified in any manner without the prior written consent of				C NTECH	
tech. Failure to comply is done at the user's own risk and tech expressly disclaims any liability or responsibility for h use.				ENGINEERED SOLUTIONS LLC	CMP DETENTION SYSTEMS
screpancies between the supplied information upon which				www.ContechES.com	CONTECH
drawing is based and actual field conditions are encountered site work progresses, these discrepancies must be reported			_	9025 Centre Pointe Dr., Suite 400, West Chester, OH 45069	DYODS
contech immediately for re-evaluation of the design. Contech				800-338-1122 513-645-7000 513-645-7993 FAX	DRAWING
epts no liability for designs based on missing, incomplete or curate information supplied by others.	DATE	REVISION DESCRIPTION	BY		

DYO49301 Miro BMP 4 Rialto, CA DETENTION SYS

INSTALLATION NOTES

WHEN PLACING THE FIRST LIFTS OF BACKFILL IT IS IMPORTANT TO MAKE SURE THAT THE BACKFILL IS PROPERLY COMPACTED UNDER AND AROUND THE PIPE HAUNCHES.

OTHER ALTERNATE BACKFILL MATERIAL MAY BE ALLOWED DEPENDING ON SITE SPECIFIC CONDITIONS, AS APPROVED BY SITE ENGINEER.

BACKFILL USING CONTROLLED LOW-STRENGTH MATERIAL (CLSM, "FLASH FILL" OR "FLOWABLE FILL") MAY BE USED WHEN THE SPACING BETWEEN THE PIPES WILL NOT ALLOW FOR PLACEMENT AND ADEQUATE COMPACTION OF THE BACKFILL. CONTACT CONTECH FOR FURTHER EVALUATION.

IF SALTING AGENTS FOR SNOW AND ICE REMOVAL ARE USED ON OR NEAR THE PROJECT, A GEOMEMBRANE BARRIER IS RECOMMENDED OVER THE UPPER HALF OF THE PIPE. THE GEOMEMBRANE LINER IS INTENDED TO HELP PROTECT THE SYSTEM FROM THE POTENTIAL ADVERSE EFFECTS THAT MAY RESULT FROM A CHANGE IN THE SURROUNDING ENVIRONMENT OVER A PERIOD OF TIME. PLEASE REFER TO THE CORRUGATED METAL PIPE DETENTION DESIGN GUIDE FOR ADDITIONAL INFORMATION.

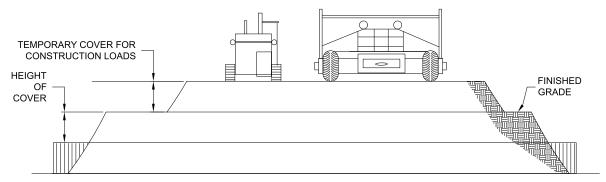
TH (IN FEET) FOR INITIAL FILL ENVELOPE:
PE < 24": 3.0D
24" - 144": D + 4'0"
> 144": D + 10'0"

DE. IN THE EVENT THAT UNSUITABLE ROUGHT BACK TO GRADE WITH A FILL

A RELATIVELY LOOSE, NATIVE SUITABLE E BEDDING MATERIAL MAY BE SUITABLE SIZE OF 3" PER AASHTO 26.3.8.1

COMPACTION WITHOUT SOFT SPOTS. BACKFILL SHALL BE PLACED SUCH THAT E BACKFILL PROCESS. THE BACKFILL WELL

SIZE OF 3" (PER AASHTO 26.3.8.1 AND


MIN COVER LIMITS

TERIAL SELECTION AND COMPACTION EER OF RECORD.

IGRATION.

ETWEEN THE LAYERS TO PREVENT SOIL

	PROJECT No.:	SEQ. I	No.:	DATE:	
Way	34171	493	301	4/4/2024	
	DESIGNED:		DRAW	'N:	
	DYO			DYO	
	CHECKED:		APPR	OVED:	
	DYO			DYO	
STEM	SHEET NO .:				
				1	

CONSTRUCTION LOADS

FOR TEMPORARY CONSTRUCTION VEHICLE LOADS, AN EXTRA AMOUNT OF COMPACTED COVER MAY BE REQUIRED OVER THE TOP OF THE PIPE. THE HEIGHT-OF-COVER SHALL MEET THE MINIMUM REQUIREMENTS SHOWN IN THE TABLE BELOW. THE USE OF HEAVY CONSTRUCTION EQUIPMENT NECESSITATES GREATER PROTECTION FOR THE PIPE THAN FINISHED GRADE COVER MINIMUMS FOR NORMAL HIGHWAY TRAFFIC.

AXLE LOADS (kips)			
18-50	50-75	75-110	, 110-150
MI		OVER (F	-T)
2.0	2.5	3.0	3.0
3.0	3.0	3.5	4.0
3.0	3.5	4.0	4.0
3.5	4.0	4.5	4.5
	18-50 MI 2.0 3.0 3.0	18-50 50-75 MINIMUM (2.0 2.5 3.0 3.0 3.0 3.5	18-50 50-75 75-110 MINIMUM COVER (F 2.0 2.5 3.0 3.0 3.0 3.5 3.0 3.5 4.0

*MINIMUM COVER MAY VARY, DEPENDING ON LOCAL CONDITIONS. THE CONTRACTOR MUST PROVIDE THE ADDITIONAL COVER REQUIRED TO AVOID DAMAGE TO THE PIPE. MINIMUM COVER IS MEASURED FROM THE TOP OF THE PIPE TO THE TOP OF THE MAINTAINED CONSTRUCTION ROADWAY SURFACE.

CONSTRUCTION LOADING DIAGRAM

SCALE: N.T.S.

SPECIFICATION FOR DESIGNED DETENTION SYSTEM:

SCOPE

THIS SPECIFICATION COVERS THE MANUFACTURE AND INSTALLATION OF THE DESIGNED DETENTION SYSTEM DETAILED IN THE PROJECT PLANS.

MATERIA

THE MATERIAL SHALL CONFORM TO THE APPLICABLE REQUIREMENTS LISTED BELOW

ALUMINIZED TYPE 2 STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-274 OR ASTM A-92.

THE GALVANIZED STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-218 OR ASTM A-929.

THE POLYMER COATED STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-246 OR ASTM A-742.

THE ALUMINUM COILS SHALL CONFORM TO THE APPLICABLE OF AASHTO M-197 OR ASTM B-744.

CONSTRUCTION LOADS

CONSTRUCTION LOADS MAY BE HIGHER THAN FINAL LOADS. FOLLOW THE MANUFACTURER'S OR NCSPA GUIDELINES.

NOTE:
THESE DRAWINGS ARE FOR CONCEPTUAL
PURPOSES AND DO NOT REFLECT ANY LOCAL
PREFERENCES OR REGULATIONS. PLEASE
CONTACT YOUR LOCAL CONTECH REP FOR
MODIFICATIONS.

WODIT IOATIONO.		
The design and information shown on this drawing is provided		
as a service to the project owner, engineer and contractor by		
Contech Engineered Solutions LLC ("Contech"). Neither this		
drawing, nor any part thereof, may be used, reproduced or		
modified in any manner without the prior written consent of		
Contech. Failure to comply is done at the user's own risk and		
Contech expressly disclaims any liability or responsibility for		
such use.		
If discrepancies between the supplied information upon which		
the drawing is based and actual field conditions are encountered		
as site work progresses, these discrepancies must be reported		
to Contech immediately for re-evaluation of the design. Contech		
accepts no liability for designs based on missing, incomplete or inaccurate information supplied by others,	DATE	REVISION DESCRIPTION
maccurate information supplied by others.		

THE PIPE SHALL BE MANUFACTURED IN ACCORDANCE TO THE APPLICABLE REQUIREMENTS LISTED BELOW:

ALUMINIZED TYPE 2: AASHTO M-36 OR ASTM A-760

GALVANIZED: AASHTO M-36 OR ASTM A-760

AFFOLIZATELE COATED: AASHTO M-245 OR ASTM A-762

ALUMINUM: AASHTO M-196 OR ASTM B-745

APPLICABLE HANDLING AND ASSEMBLY

SHALL BE IN ACCORDANCE WITH NCSP'S (NATIONAL CORRUGATED STEEL AFPRECABSECIATION) FOR ALUMINIZED TYPE 2. GALVANIZED OR POLYMER COATED STEEL. SHALL BE IN ACCORDANCE WITH THE MANUFACTURER'S RECOMMENDATIONS FOR ALUMINUM PIPE.

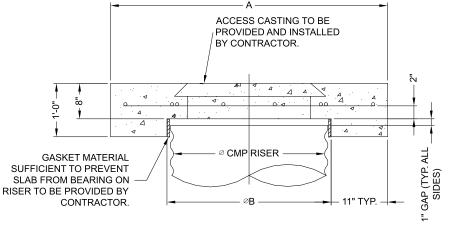
REQUIREMENTS

INSTALLATION

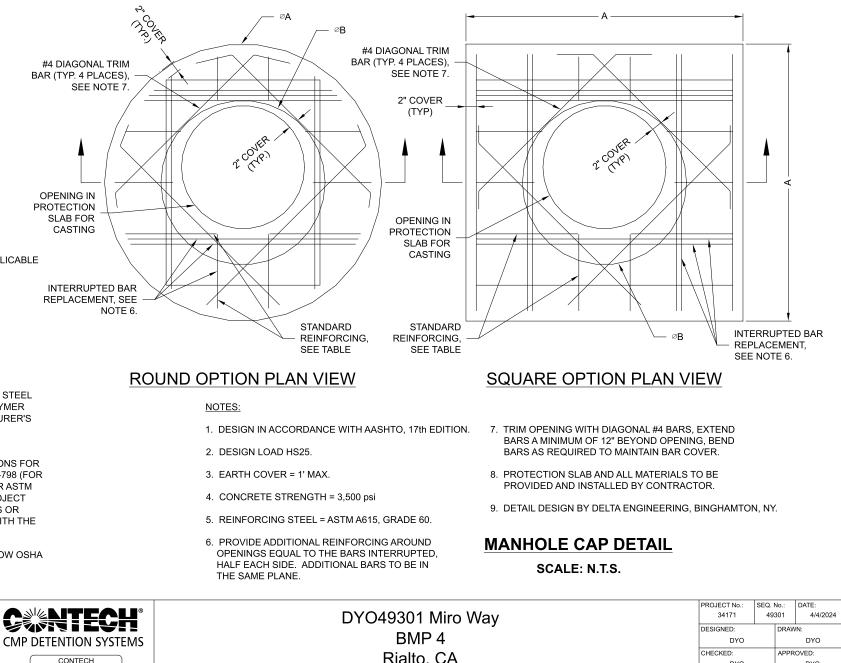
ΒY

SHALL BE IN ACCORDANCE WITH AASHTO STANDARD SPECIFICATIONS FOR HIGHWAY BRIDGES, SECTION 26, DIVISION II DIVISION II OR ASTM A-798 (FOR ALUMINIZED TYPE 2, GALVANIZED OR POLYMER COATED STEEL) OR ASTM B-788 (FOR ALUMINUM PIPE) AND IN CONFORMANCE WITH THE PROJECT PLANS AND SPECIFICATIONS. IF THERE ARE ANY INCONSISTENCIES OR CONFLICTS THE CONTRACTOR SHOULD DISCUSS AND RESOLVE WITH THE SITE ENGINEER.

IT IS ALWAYS THE RESPONSIBILITY OF THE CONTRACTOR TO FOLLOW OSHA GUIDELINES FOR SAFE PRACTICES.


> ENGINEERED SOLUTIONS LLC www.ContechES.com

9025 Centre Pointe Dr., Suite 400, West Chester, OH 45069


513-645-7993 FAX

513-645-7000

800-338-1122

SECTION VIEW

DYODS

DRAWING

Rialto, CA DETENTION SYSTEM

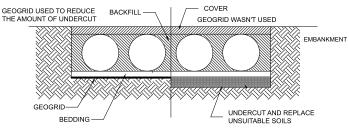
REINFORCING TABLE				
Ø CMP RISER	A	ØB	REINFORCING	**BEARING PRESSURE (PSF)
24"	⊘ 4' 4'X4'	26"	#5 @ 12" OCEW #5 @ 12" OCEW	2,410 1,780
30"	∞ 4'-6" 4'-6" X 4'-6"	32"	#5 @ 12" OCEW #5 @ 12" OCEW	2,120 1,530
36"	∞ 5' 5' X 5'	38"	#5 @ 10" OCEW #5 @ 10" OCEW	1,890 1,350
42"	∅ 5'-6" 5'-6" X 5'-6"	44"	#5 @ 10" OCEW #5 @ 9" OCEW	1,720 1,210
48"	∞ 6' 6' X 6'	50"	#5 @ 9" OCEW #5 @ 8" OCEW	1,600 1,100

DYO

SHEET NO.

DYO

** ASSUMED SOIL BEARING CAPACITY


CMP DETENTION INSTALLATION GUIDE

PROPER INSTALLATION OF A FLEXIBLE UNDERGROUND DETENTION SYSTEM WILL ENSURE LONG-TERM PERFORMANCE. THE CONFIGURATION OF THESE SYSTEMS OFTEN REQUIRES SPECIAL CONSTRUCTION PRACTICES THAT DIFFER FROM CONVENTIONAL FLEXIBLE PIPE CONSTRUCTION. CONTECH ENGINEERED SOLUTIONS STRONGLY SUGGESTS SCHEDULING A PRE-CONSTRUCTION MEETING WITH YOUR LOCAL SALES ENGINEER TO DETERMINE IF ADDITIONAL MEASURES, NOT COVERED IN THIS GUIDE, ARE APPROPRIATE FOR YOUR SITE.

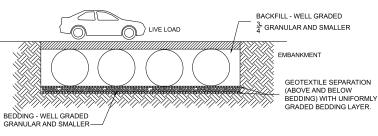
FOUNDATION

CONSTRUCT A FOUNDATION THAT CAN SUPPORT THE DESIGN LOADING APPLIED BY THE PIPE AND ADJACENT BACKFILL WEIGHT AS WELL AS MAINTAIN ITS INTEGRITY DURING CONSTRUCTION.

IF SOFT OR UNSUITABLE SOILS ARE ENCOUNTERED, REMOVE THE POOR SOILS DOWN TO A SUITABLE DEPTH AND THEN BUILD UP TO THE APPROPRIATE FLEVATION WITH A COMPETENT BACKEILL MATERIAL. THE STRUCTURAL FILL MATERIAL GRADATION SHOULD NOT ALLOW THE MIGRATION OF FINES, WHICH CAN CAUSE SETTLEMENT OF THE DETENTION SYSTEM OR PAVEMENT ABOVE. IF THE STRUCTURAL FILL MATERIAL IS NOT COMPATIBLE WITH THE UNDERLYING SOILS AN ENGINEERING FABRIC SHOULD BE USED AS A SEPARATOR IN SOME CASES, USING A STIFE REINFORCING GEOGRIF REDUCES OVER EXCAVATION AND REPLACEMENT FILL QUANTITIES.

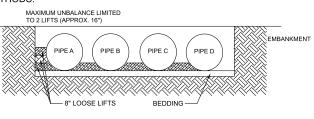
GRADE THE FOUNDATION SUBGRADE TO A UNIFORM OR SLIGHTLY SLOPING GRADE. IF THE SUBGRADE IS CLAY OR RELATIVELY NON-POROUS AND THE CONSTRUCTION SEQUENCE WILL LAST FOR AN EXTENDED PERIOD OF TIME. IT IS BEST TO SLOPE THE GRADE TO ONE END OF THE SYSTEM. THIS WILL ALLOW EXCESS WATER TO DRAIN QUICKLY, PREVENTING SATURATION OF THE SUBGRADE

GEOMEMBRANE BARRIER


A SITE'S RESISTIVITY MAY CHANGE OVER TIME WHEN VARIOUS TYPES OF SALTING AGENTS ARE USED, SUCH AS ROAD SALTS FOR DEICING AGENTS. IF SALTING AGENTS ARE USED ON OR NEAR THE PROJECT SITE, A GEOMEMBRANE THE ENTIRE WIDTH OF THE SYSTEM IS REACHED, ADVANCE THE EQUIPMENT BARRIER IS RECOMMENDED WITH THE SYSTEM. THE GEOMEMBRANE LINER IS INTENDED TO HELP PROTECT THE SYSTEM FROM THE POTENTIAL ADVERSE EFFECTS THAT MAY RESULT FROM THE USE OF SUCH AGENTS INCLUDING PREMATURE CORROSION AND REDUCED ACTUAL SERVICE LIFE.

THE PROJECT'S ENGINEER OF RECORD IS TO EVALUATE WHETHER SALTING AGENTS WILL BE USED ON OR NEAR THE PROJECT SITE, AND USE HIS/HER BEST JUDGEMENT TO DETERMINE IF ANY ADDITIONAL PROTECTIVE MEASURES ARE REQUIRED. BELOW IS A TYPICAL DETAIL SHOWING THE PLACEMENT OF A GEOMEMBRANE BARRIER FOR PROJECTS WHERE SALTING AGENTS ARE USED ON OR NEAR THE PROJECT SITE.

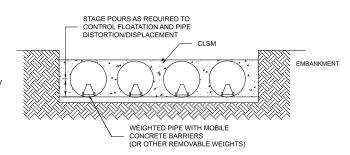
IN-SITU TRENCH WALL


IF EXCAVATION IS REQUIRED, THE TRENCH WALL NEEDS TO BE CAPABLE OF SUPPORTING THE LOAD THAT THE PIPE SHEDS AS THE SYSTEM IS LOADED. IF SOILS ARE NOT CAPABLE OF SUPPORTING THESE LOADS, THE PIPE CAN DEFLECT PERFORM A SIMPLE SOIL PRESSURE CHECK USING THE APPLIED LOADS TO DETERMINE THE LIMITS OF EXCAVATION BEYOND THE SPRING LINE OF THE OUTER MOST PIPES

IN MOST CASES THE REQUIREMENTS FOR A SAFE WORK ENVIRONMENT AND PROPER BACKFILL PLACEMENT AND COMPACTION TAKE CARE OF THIS CONCERN.

BACKFILL PLACEMENT

MATERIAL SHALL BE WORKED INTO THE PIPE HAUNCHES BY MEANS OF SHOVEL-SLICING, RODDING, AIR TAMPER, VIBRATORY ROD, OR OTHER EFFECTIVE METHODS

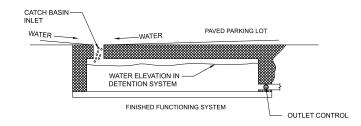


IF AASHTO T99 PROCEDURES ARE DETERMINED INFEASIBLE BY THE GEOTECHNICAL ENGINEER OF RECORD. COMPACTION IS CONSIDERED ADEQUATE WHEN NO FURTHER YIELDING OF THE MATERIAL IS OBSERVED. UNDER THE COMPACTOR, OR UNDER FOOT, AND THE GEOTECHNICAL ENGINEER OF RECORD (OR REPRESENTATIVE THEREOF) IS SATISFIED WITH THE LEVEL OF COMPACTION.

FOR LARGE SYSTEMS, CONVEYOR SYSTEMS, BACKHOES WITH LONG REACHES OR DRAGLINES WITH STONE BUCKETS MAY BE USED TO PLACE BACKFILL, ONCE MINIMUM COVER FOR CONSTRUCTION LOADING ACROSS TO THE END OF THE RECENTLY PLACED FILL, AND BEGIN THE SEQUENCE AGAIN UNTIL THE SYSTEM IS COMPLETELY BACKFILLED. THIS TYPE OF CONSTRUCTION SEQUENCE PROVIDES ROOM FOR STOCKPILED BACKFILL DIRECTLY BEHIND THE BACKHOE AS WELL AS THE MOVEMENT OF CONSTRUCTION TRAFFIC, MATERIAL STOCKPILES ON TOP OF THE BACKFILLED DETENTION SYSTEM SHOULD BE LIMITED TO 8- TO 10-FEET HIGH AND MUST PROVIDE BALANCED LOADING ACROSS ALL BARRELS. TO DETERMINE THE PROPER COVER OVER THE PIPES TO ALLOW THE MOVEMENT OF CONSTRUCTION EQUIPMENT SEE TABLE 1, OR CONTACT YOUR LOCAL CONTECH SALES ENGINEER.

EMBANKMEN[®]

WHEN FLOWABLE FILL IS USED, YOU MUST PREVENT PIPE FLOATATION TYPICALLY, SMALL LIFTS ARE PLACED BETWEEN THE PIPES AND THEN ALLOWED TO SET-UP PRIOR TO THE PLACEMENT OF THE NEXT LIFT. THE ALLOWABLE THICKNESS OF THE CLSM LIFT IS A FUNCTION OF A PROPER BALANCE BETWEEN THE UPLIFT FORCE OF THE CLSM, THE OPPOSING WEIGHT OF THE PIPE, AND THE EFFECT OF OTHER RESTRAINING MEASURES. THE PIPE CAN CARRY LIMITED FLUID PRESSURE WITHOUT PIPE DISTORTION OR DISPLACEMENT, WHICH ALSO AFFECTS THE CLSM LIFT THICKNESS. YOUR LOCAL CONTECH SALES ENGINEER CAN HELP DETERMINE THE PROPER LIFT THICKNESS.



CONSTRUCTION LOADING

ACCUMULATED SEDIMENT AND TRASH CAN TYPICALLY BE EVACUATED TYPICALLY, THE MINIMUM COVER SPECIFIED FOR A PROJECT ASSUMES H-20 THROUGH THE MANHOLE OVER THE OUTLET ORIFICE. IF MAINTENANCE IS NOT LIVE LOAD. BECAUSE CONSTRUCTION LOADS OFTEN EXCEED DESIGN LIVE PERFORMED AS RECOMMENDED, SEDIMENT AND TRASH MAY ACCUMULATE IN LOADS, INCREASED TEMPORARY MINIMUM COVER REQUIREMENTS ARE FRONT OF THE OUTLET ORIFICE. MANHOLE COVERS SHOULD BE SECURELY SEATED FOLLOWING CLEANING ACTIVITIES. CONTECH SUGGESTS THAT ALL NECESSARY. SINCE CONSTRUCTION EQUIPMENT VARIES FROM JOB TO JOB, SYSTEMS BE DESIGNED WITH AN ACCESS/INSPECTION MANHOLE SITUATED AT IT IS BEST TO ADDRESS EQUIPMENT SPECIFIC MINIMUM COVER OR NEAR THE INLET AND THE OUTLET ORIFICE. SHOULD IT BE NECESSARY TO REQUIREMENTS WITH YOUR LOCAL CONTECH SALES ENGINEER DURING GET INSIDE THE SYSTEM TO PERFORM MAINTENANCE ACTIVITIES, ALL APPROPRIATE PRECAUTIONS REGARDING CONFINED SPACE ENTRY AND OSHA YOUR PRE-CONSTRUCTION MEETING. REGULATIONS SHOULD BE FOLLOWED.

ADDITIONAL CONSIDERATIONS

BECAUSE MOST SYSTEMS ARE CONSTRUCTED BELOW-GRADE, RAINFALL AS PART OF THE MAINTENANCE PROGRAM FOR THE SYSTEM CAN RAPIDLY FILL THE EXCAVATION; POTENTIALLY CAUSING FLOATATION MAINTAINING AN UNDERGROUND DETENTION OR INFILTRATION SYSTEM IS AND MOVEMENT OF THE PREVIOUSLY PLACED PIPES. TO HELP MITIGATE EASIEST WHEN THERE IS NO FLOW ENTERING THE SYSTEM. FOR THIS POTENTIAL PROBLEMS, IT IS BEST TO START THE INSTALLATION AT THE REASON. IT IS A GOOD IDEA TO SCHEDULE THE CLEANOUT DURING DRY DOWNSTREAM END WITH THE OUTLET ALREADY CONSTRUCTED TO ALLOW WEATHER A ROUTE FOR THE WATER TO ESCAPE. TEMPORARY DIVERSION MEASURES MAY BE REQUIRED FOR HIGH FLOWS DUE TO THE RESTRICTED NATURE OF THE OUTLET PIPE

				ANTEALI®	
				CANTECH ®	
			ENGINEERED SOLUTIONS LLC	CMP DETENTION SYSTEMS	
			www.ContechES.com	CONTECH	
			9025 Centre Pointe Dr., Suite 400, West Chester, OH 45069	DYODS	
DATE	REVISION DESCRIPTION	BY	800-338-1122 513-645-7000 513-645-7993 FAX	DRAWING	

DYO49301 Miro BMP 4 Rialto, CA DETENTION SYS

The design and information shown on this drawing is pro s a service to the project owner, engineer and contractor by ontech Engineered Solutions LLC ("Contech"). Neither this

ancies between the supplied information upon whic e drawing is based and actual field conditions are end as site work progresses, these discrepancies must be n to Contech immediately for re-evaluation of the design. accepts no liability for designs based on missing, incom naccurate information supplied by others.

rawing, nor any part thereof, may be used, repro modified in any manner without the prior written consent of Contech. Failure to comply is done at the user's own risk an Contech expressly disclaims any liability or responsibility for

CMP DETENTION SYSTEM INSPECTION AND MAINTENANCE

UNDERGROUND STORMWATER DETENTION AND INFILTRATION SYSTEMS MUST BE INSPECTED AND MAINTAINED AT REGULAR INTERVALS FOR PURPOSES OF PERFORMANCE AND LONGEVITY.

INSPECTION

INSPECTION IS THE KEY TO EFFECTIVE MAINTENANCE OF CMP DETENTION SYSTEMS AND IS EASILY PERFORMED. CONTECH RECOMMENDS ONGOING. ANNUAL INSPECTIONS. SITES WITH HIGH TRASH LOAD OR SMALL OUTLET CONTROL ORIFICES MAY NEED MORE FREQUENT INSPECTIONS. THE RATE AT WHICH THE SYSTEM COLLECTS POLLUTANTS WILL DEPEND MORE ON SITE SPECIFIC ACTIVITIES RATHER THAN THE SIZE OR CONFIGURATION OF THE SYSTEM.

INSPECTIONS SHOULD BE PERFORMED MORE OFTEN IN EQUIPMENT WASHDOWN AREAS. IN CLIMATES WHERE SANDING AND/OR SALTING OPERATIONS TAKE PLACE AND IN OTHER VARIOUS INSTANCES IN WHICH ONE WOULD EXPECT HIGHER ACCUMULATIONS OF SEDIMENT OR ABRASIVE/ CORROSIVE CONDITIONS. A RECORD OF EACH INSPECTION IS TO BE MAINTAINED FOR THE LIFE OF THE SYSTEM

MAINTENANCE

CMP DETENTION SYSTEMS SHOULD BE CLEANED WHEN AN INSPECTION REVEALS ACCUMULATED SEDIMENT OR TRASH IS CLOGGING THE DISCHARGE ORIFICE

ANNUAL INSPECTIONS ARE BEST PRACTICE FOR ALL UNDERGROUND SYSTEMS. DURING THIS INSPECTION, IF EVIDENCE OF SALTING/DE-ICING AGENTS IS OBSERVED WITHIN THE SYSTEM, IT IS BEST PRACTICE FOR THE SYSTEM TO BE RINSED, INCLUDING ABOVE THE SPRING LINE SOON AFTER THE SPRING THAW

THE FOREGOING INSPECTION AND MAINTENANCE EFFORTS HELP ENSURE UNDERGROUND PIPE SYSTEMS USED FOR STORMWATER STORAGE CONTINUE TO FUNCTION AS INTENDED BY IDENTIFYING RECOMMENDED REGULAR INSPECTION AND MAINTENANCE PRACTICES. INSPECTION AND MAINTENANCE RELATED TO THE STRUCTURAL INTEGRITY OF THE PIPE OR THE SOUNDNESS OF PIPE JOINT CONNECTIONS IS BEYOND THE SCOPE OF THIS GUIDE.

	PROJECT No.: SEQ.		. No.: DATE:		
Way	34171	49301		4/4/2024	
	DESIGNED:	IGNED: DRAV		WN:	
	DYO			DYO	
	CHECKED:		APPR	APPROVED:	
	DYO		DYO		
STEM	SHEET NO .:				
				1	

APPENDIX I

FLOWMASTER PIPE AND INLET SIZING RESULTS

TBD

APPENDIX J

STORMCAD HGL ANALYSIS

TBD

APPENDIX K

RESULTS OF INFILTRATION TESTING

PRELIMINARY GEOTECHNICAL INVESTIGATION FOR DUE DILIGENCE PURPOSES, PROPOSED 600-ACRE RESIDENTIAL AND COMMERCIAL DEVELOPMENT, RIALTO AIRPORT AND ADJACENT PROPERTY TO THE NORTH AND EAST, EAST OF ALDER AVENUE AND SOUTH OF THE 210 FREEWAY, RIALTO, CALIFORNIA

Prepared for:

LEWIS OPERATING CORPORATION

1156 North Mountain Avenue Upland, California 91785-0670

Project No. 021751-001

August 2, 2006

_eighton and Associates, Inc.

Leighton and Associates, Inc.

August 2, 2006

Project No. 021751-001

To: Lewis Operating Corporation 1156 North Mountain Avenue Upland, California 91785-0670

Attention: Mr. Isaac Shikuma

Subject: Preliminary Geotechnical Investigation for Due Diligence Purposes, Proposed 600-Acre Residential and Commercial Development, Rialto Airport and Adjacent Property to the North and East, East of Alder Avenue and South of the 210 Freeway, Rialto, California

In accordance with your authorization, Leighton and Associates, Inc. has conducted this duediligence-level preliminary geotechnical investigation for the proposed 600-acre combined residential and commercial development at the Rialto Municipal Airport and adjoining private property to the northwest and east, located east of Alder Avenue and south of the 210 Freeway in Rialto, California. The purpose of this investigation was to evaluate the general geotechnical conditions at the site, to evaluate whether there are major geotechnical or geologic issues at the site that would have significant impact to site development, and to provide preliminary geotechnical recommendations for design and construction for due diligence purposes. We have used the APN maps and detailed air photos provided by you in preparation of this report.

Our original field investigation at the Rialto Airport and adjacent property was conducted in August of 2005. However, at that time approximately 60 acres of private property were not accessible to us. Recently, 50 acres of that property (the Leiske and FJA Winery Properties) became accessible for field investigation. At the time of this report, one 10-acre parcel is not yet available for access (the area shaded in green on Figure 2). Interpolation of site conditions in this non-accessible area, based on data obtained from nearby borings and test pits, has been performed for due-diligence purposes. However, to confirm that our findings are representative,

for this 10-acre parcel, additional borings and/or test pits should be performed when site access becomes available.

Based upon our investigation, the proposed development is feasible from a geotechnical viewpoint, provided our recommendations are incorporated in the design and construction of the project. The most significant geotechnical issues at the site are related to compressible soils and strong seismic shaking. Partial removal of the upper compressible soil will be required to provide uniform support of the proposed improvements. This report presents our findings, conclusions, and preliminary geotechnical recommendations for the project. Additional geotechnical review, evaluation and/or investigation may be required based on final development plans.

We appreciate the opportunity to work with you on this project. If you have any questions, or if we can be of further service, please call us at your convenience.

- 2 -

Respectfully submitted,

LEIGHTON AND ASSOCIATES, INC.

Siva K. Sivathasan, Ph. D., GE 2708 Associate Engineer

Philip A. Buchiarelli, CEG 1715 Principal Geologist

~~. C.

David C. Smith, RCE 46222 Vice President/Principal Engineer

CERTIFIED

Reviewed by:

DAG/KS/PB/DCS/anl

Distribution: (4) Addressee

(1) Madole and Associates Attention: Mr. Tom Miketree

Leighton

TABLE OF CONTENTS

Sect:	ion	<u> </u>	Page
1.0	INTE	RODUCTION	. 1
	1.1 1.2 1.3	Site Location and Project Description Purpose of Investigation Scope of Investigation	. 1
2.0	FIND	DINGS	. 5
	2.1 2.2 2.3 2.4	Site Conditions Air Photo Review Site Geology Subsurface Soil Conditions	. 5 . 6
		 2.4.1 Compressible and Collapsible Soil 2.4.2 Expansive Soils 2.4.3 Sulfate Content 2.4.4 Resistivity, Chloride and pH 	. 8 . 8
	2.5	Groundwater	. 9
	2.6	Faulting and Seismicity	. 9
	2.7	Secondary Seismic Hazards	
3.0	CON	CLUSIONS AND RECOMMENDATIONS	. 12
	3.1 3.2 3.3	General Earthwork and Grading Foundations Slab-On-Grade	. 14
	3.4	Seismic Design Parameters	. 17
	3.5	Retaining Walls	
	3.6	Pavement Design	. 19
	3.7	Temporary Excavations	
	3.8	Trench Backfill	. 20
	3.9	Surface Drainage	. 20
	3.10		
	3.11	Additional Geotechnical Investigation and Services	. 21

TABLE OF CONTENTS

Appendices

Appendix A - References Appendix B - Geotechnical Boring Logs and Test Pit Logs Appendix C - Laboratory Test Results Appendix D - General Earthwork and Grading Specifications

List of Illustrations

- Figure 1 Site Location Map Page 2
- Figure 2 Geotechnical Map Rear of Text
- Figure 3 Retaining Wall Backfill and Subdrain Detail Rear of Text

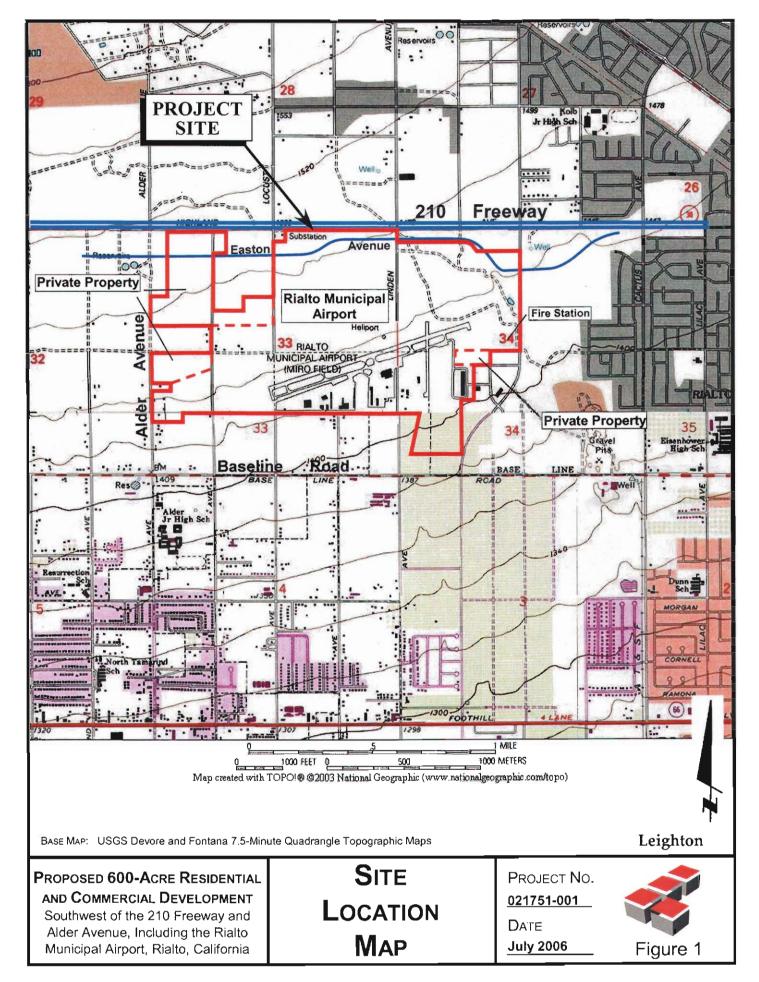
1.0 INTRODUCTION

1.1 <u>Site Location and Project Description</u>

The site is comprised of the existing Rialto Municipal Airport property, largely undeveloped private property to the northwest, and an approximately 5-acre parcel to the east. The site is roughly bounded on the north by the 210 Freeway (currently under construction, formerly Highland Avenue), mostly undeveloped land to the south, Ayala Drive to the east, and Alder Avenue to the west. A few commercial buildings border the site to the south and southeast, including a large commercial storage facility east of Linden Avenue and a furniture warehouse east of Laurel lane, among others. Miro Way to the south forms part of the southern site boundary.

We understand that the Rialto Airport property as well as the subject adjacent private property will be developed for a mixed-use residential and commercial development. No development plans are available at this time, however, we anticipate that the project will include single-family and/or multi-family residential housing, commercial warehousetype structures similar to other commercial structures recently completed in the area, and perhaps retail development.

1.2 <u>Purpose of Investigation</u>


The purpose of this study has been to evaluate the general geotechnical conditions at the site, to identify significant geotechnical or geologic issues that would impact site development, and to provide preliminary geotechnical recommendations for design and construction.

1.3 Scope of Investigation

Approximately 60 acres of private property were not accessible to us during our initial investigation in 2005. Recently, 50 acres of that property (the Leiske and FJA Winery Properties) became accessible for field investigation (the recently accessible areas are shaded in yellow on the *Geotechnical Map*, Figure 2). At the time of this report, one 10-acre parcel is not yet available for access (the area shaded in green on Figure 2). The scope of our investigation has included the following tasks:

• <u>Background Review</u> - A background review of readily available, relevant, in-house geotechnical literature, and aerial photographs was performed.

- <u>Pre-field Investigation Activities</u> We coordinated with airport officials and Underground Service Alert (USA) to have existing underground utilities located and marked prior to our subsurface investigation.
- <u>Field Investigation</u> Our field investigation consisted of borings and test pit excavations. Due to restricted site access, our 2005 field investigation was limited to the airport property and approximately 23 acres of private property. In July of 2006, an additional 50 acres of private property became accessible for field work (the area shaded in yellow on Figure 2, *Geotechnical Map*). At the time of this report, one 10-acre parcel (APN 0240-22-08) was not yet accessible (the area shaded in green on Figure 2).

Hollow-stem Auger Borings

A total of twenty-four hollow-stem auger borings (B-1 through B-24) were drilled, logged, and sampled at representative locations throughout the site. Eighteen of these borings (B-1 through B-18) were drilled in late 2005, and the remaining six borings (B-19 through B-24) were drilled in July 2006 after additional site access was granted. The borings were excavated to depths ranging from 3 to 21½ feet below the existing ground surface. Each boring was logged by a member of our technical staff. Relatively undisturbed soil samples were obtained at selected depth intervals within most of the borings using a Modified California Ring Sampler (obtaining relatively undisturbed ring samples was not always feasible due to the coarse, dry nature of the soil encountered). Standard Penetration Tests (SPT) were conducted at selected depths within the borings and samples were obtained. Bulk samples of representative soil types were also obtained from the borings. Logs of the geotechnical borings are provided in Appendix B. Boring locations are shown on the accompanying *Geotechnical Map*, Figure 2.

<u>Backhoe Test Pits</u>

Twenty backhoe test pits were excavated and logged at representative locations throughout the site to a maximum depth of 12 feet below the existing ground surface. Each test pit was logged by a member of our technical staff. Representative bulk samples of soil were obtained from the test pits. Approximate test pit locations are shown on the accompanying *Geotechnical Map*, Figure 2.

• <u>Laboratory Tests</u> - Laboratory tests were conducted on selected relatively undisturbed and bulk soil samples obtained during our field investigation. The laboratory testing program was designed to evaluate the engineering characteristics of the onsite soil.

Results of the laboratory testing are presented in Appendix C. The laboratory tests conducted during this investigation include:

- In situ moisture content and dry density
- Sieve analysis
- Consolidation
- R-value
- Maximum dry density and optimum moisture content
- Water-soluble sulfate
- Resistivity, chloride content and pH
- <u>Engineering Analysis</u> The data obtained from our background review and field exploration was evaluated and analyzed in order to provide the conclusions and preliminary recommendations in the following sections.
- <u>Report Preparation</u> The results of our geotechnical investigation have been summarized in this report, presenting our findings, conclusions and preliminary recommendations.

2.0 FINDINGS

2.1 Site Conditions

The roughly 509-acre Rialto Municipal Airport is currently an operational airport serving mostly small, private aircraft. The airport is largely undeveloped in the northern region (north, west, and east of the runway), with some westerly areas regularly being used for off-road racing. The runway and associated taxiways run diagonally through the lower 1/3 of the site. South of the runway are several paved areas with buildings, hangars, and warehouses. We understand that many of these southerly areas are currently leased by both private and public entities. In addition, a County Fire Station is located on airport property, west of Ayala Drive and north of Leiske Drive. The southernmost portion of the site has recently been used for agriculture.

The majority of the approximately 88 acres of private property is located to the north and west of the airport; a 5-acre private parcel is located east of the airport, north of Leiske Drive. The northeastern private properties are largely undeveloped and are currently covered with a thick cover of native grasses, brush, and mature trees, particularly heavy in the north. Illegal dumping has been rampant in northeastern areas, as attested to by the abundance of trash and debris scattered throughout the properties. Numerous dirt roads cross these private properties, which presumably function as firebreaks. These dirt roads have allowed for heavy vehicle access in areas that would have otherwise been inaccessible due to heavy concentrations of brush and trees. Compared to the northeast properties, the eastern 5-acre parcel is sparsely vegetated.

Taken as a whole, the roughly 600-acre site is relatively flat, draining gently to the south. Plant growth currently consists of an assortment of native grasses and brush, very heavy in some areas, as well as a fair number of mature trees occurring mostly in the north and west (off the airport property). Easton Avenue runs east-west through the northern quarter of the site.

2.2 <u>Air Photo Review</u>

We have reviewed historic aerial photographs for evidence of previous site use. In 1938, the site was essentially undeveloped and in a relatively natural state, with the exception of a few dirt roads crossing the site (including what would later become Linden Avenue). Much of the area surrounding the site appears to have been used for agriculture at that time. By 1953, a rough dirt runway appears at the southeast portion of the site. Some of the site was being used for agriculture at this time, and a few small structures were

present on what are now known as Alder Avenue and Laurel Avenue. Several structures were present in the southern-most portion of the site on what would later become a vineyard. These structures are assumed to be associated with the then fledgling airport. In 1977, the runway had been moved to its present location and paved. Agriculture in the northern portion of the site had ceased. Additionally, the buildings in the southern-most area had been replaced with vineyards. Several new hangar-type buildings were present at the airport, and the areas outside of the airport had been extensively plowed. Several more structures were present near Alder Avenue and Laurel Avenuc, although the area was still largely vacant. A small house was present at the northeast corner of the site, surrounded by trees. During this time, the area surrounding the site was still dominated by agriculture, although some tract housing can be seen to the east. Ayala Drive was also present at this time. In 1985, several new buildings were present on the airport property, including the Sheriff's facility, and the runway had been extended somewhat. The power station just south of Highland Avenue was also present, and additional dirt roads had been cut on the western portion of the site. In 1995, the runway had been modified to include an additional taxiway. Several new hangars had been constructed on the eastern portion of the site. The house on the northeastern portion of the site was gone, although the trees remained. The southern portion of the site continued to be used for agriculture. In 2002, the site appeared much as it does today. By this time, most of the surrounding area to the north, south, and east had been converted to tract housing. Easton Street and the 210 Freeway are not present in the air photographs until sometime after 2002.

2.3 <u>Site Geology</u>

The site is located in the northern Peninsular Ranges Geomorphic Province of southern California within the central portion of the San Bernardino Valley. This is a geologically complex area where the relatively northwest-moving Peninsular Range Province meets the relatively south-moving Transverse Ranges Province. The San Bernardino Valley in the site vicinity is underlain by alluvial sediments eroded from granitic rocks in the local mountains. Strike-slip faults, such as the San Jacinto Fault Zone, dominate the structure of the Peninsular Ranges. The trace of the active San Andreas Fault System, approximately 10½ kilometers to the northeast, separates the valley from the rugged San Bernardino Mountains. The active San Jacinto Fault Zone is present about 2 kilometers to the northwest. The San Andreas, San Jacinto, and Cucamonga faults have experienced significant activity in the recent geologic past.

Based on available regional geologic maps, the site and surroundings are underlain by young alluvial fan deposits of the Lytle Creek fan, consisting of unconsolidated, gray,

sand and silty sand with cobbles and boulders (Morton, 2003, Morton and Matti, 2001). These deposits have been eroded from the adjacent mountains and have been transported to the site. Cretaceous-age granitic basement rock is expected to underlay the alluvial soil at depth.

2.4 <u>Subsurface Soil Conditions</u>

Based upon our review of pertinent geotechnical literature and our current subsurface exploration, the site is underlain by alluvial fan deposits. The soil encountered within our exploratory borings and test pits generally consisted of loose to medium dense sand with non-plastic silt and gravel, and occasional cobble- and boulder-size constituents. Rock greater than 8 inches in largest dimension comprised roughly 5 to 10 percent of the soil mass encountered across the site, and comprised as much as 15 to 20 percent locally. Rocks greater than 12 inches generally comprise less than 2 percent of the soil mass across the site. Very little soil variability was observed across the site, although the soils encountered do appear to become slightly coarser toward the north and the east. We expect the soil will increase in density with depth. Soils were generally dry to slightly moist. The near-surface soils encountered had relatively low moisture content (dry to damp) which did not increase significantly with depth. The moisture content of the upper 10 feet ranged from less than 1 percent to 4 percent, and was typically on the order of 2 percent.

Approximately 2 to 3 feet of artificial fill was identified in Test Pit TP-12 (just east of the north-south runway), but was not encountered in any of our other borings or test pits. The fill in this area is probably associated with construction of nearby flatwork (runways, tarmac, etc.). Artificial fill is likely to be present locally throughout the site, particularly near developed areas and other areas that have been subject to grading in the past. Relatively deep artificial fill will likely be associated with buried underground structures such as septic systems and underground storage tanks. In addition, we understand that a relatively deep excavation (on the order of 20 to 30 feet) was excavated as part of an environmental investigation of suspected leaking underground fuel tanks (Richard Scanlan, 2005, personal communication). This excavation resulted in the removal of the tanks. The exact depth and lateral extent of this excavation is not known, however the approximate location of the deep removals is indicated on the *Geotechnical Map*, Figure 2.

2.4.1 Compressible and Collapsible Soil

Soil compressibility refers to a soil's potential for settlement when subjected to increased loads, such as from a fill surcharge or structures. Based on our investigation, the upper 5 feet of soil is generally considered to be slightly compressible.

Collapse potential refers to the potential settlement of a soil under existing loads upon being wetted. The coarse, loose nature of the subsurface soil precluded us from obtaining a relatively undisturbed soil sample suitable for collapse testing. However, based on the type of soil encountered and our experience in the area, the potential for significant collapse is considered low.

2.4.2 Expansive Soils

Based on the type of encountered soil (sand and gravel with trace non-plastic silt) and our experience in the area, the soils exposed at pad grade are expected to exhibit a very low expansion potential.

2.4.3 Sulfate Content

Water-soluble sulfates in soil can react adversely with concrete. However, concrete in contact with soil containing sulfate concentrations of less than 0.10 percent are considered to have negligible sulfate exposure (UBC, 1997 edition, Chapter 19).

Five near-surface soil samples were tested for soluble sulfate content. The result of these tests indicated a sulfate content of 0.01 or less percent by weight, indicating negligible sulfate exposure. As such, the soils exposed at pad grade are not expected to pose a significant potential for sulfate reaction with concrete.

2.4.4 Resistivity, Chloride and pH

Soil corrosivity to ferrous metals can be estimated by the soil's pH level, electrical resistivity, and chloride content. In general, soil having a minimum resistivity less than 2,000 ohm-cm is considered corrosive. Soil with a chloride content of 500 ppm or more is considered corrosive to ferrous metals.

As a screening for potentially corrosive soil, five representative soil samples were tested for minimum resistivity, chloride content, and pH level. The tests indicated chloride contents generally on the order of 51 ppm, pH values ranging from 5.3 to 5.9, and minimum resistivities ranging from 6,200 to 35,000 ohm-cm. Based on the test results, the majority of the onsite soil is considered mildly corrosive to ferrous metals. However, laboratory test results for one sample collected from the EJA property (Boring B-20, Bag-1 at 0-5 feet) indicated a chloride content of 730 ppm, indicating that the soil tested is severely corrosive to ferrous metals.

2.5 <u>Groundwater</u>

Based on our review of regional groundwater **data** (CDWR, 2000), groundwater is expected to be on the order of 300 feet below the ground surface in the general site vicinity. USGS groundwater monitoring wells located nearby have recently recorded groundwater depths on the order of 450 feet below existing grade (Richard Scanlan, 2005, Personal Communication). As such, groundwater is not expected to be a constraint to the proposed development.

2.6 Faulting and Seismicity

The two principal seismic considerations for most sites in southern California are surface rupture along active fault traces and damage to structures due to seismically induced ground shaking. An active fault is one that has moved in the Holocene (last 11,000 years). The closest mapped potentially active fault is the San Jacinto Fault Zone, located approximately 2 kilometers northeast of the site. The San Jacinto Fault Zone is a right-lateral, strike-slip fault with an average slip rate of 12 mm pear year (± 6 mm) and a maximum moment magnitude of 6.7 Mw (Cao et al, 2003). Other known regional active faults that could affect the site include the Cucamonga, San Andreas, and Cleghorn, among others. The largest and most active fault in southern California, the San Andreas Fault System, is located approximately 10½ kilometers northeast of the site.

No active or potentially active faults have been previously mapped across the project site and the site is not located within a current Alquist-Priolo Earthquake Fault Zone (CGS, 2000). The potential for fault ground rupture at the site is considered very low.

The site is likely to be subjected to strong ground shaking during the life of the project (Petersen and Wesnousky, 1994, Petersen et al., 1996). To evaluate the ground motion and a peak level of ground acceleration that the project is likely to experience, we utilized a probabilistic analysis approach. The probabilistic approach to forecasting future ground

motion at the site estimates the expected peak ground acceleration level that has a 10 percent probability of exceedance over the approximate lifetime of the project (commonly assumed at 50 years). This approach takes into account the historical seismicity of the region, the nature of nearby active faults, their distance to the site, records of previous historical earthquakes, and the site-specific response characteristics (Petersen et al., 1996).

The computer program FRISKSP (Blake, 2000) was used for the analysis. Attenuation relationships used in the computer analysis were developed by Abrahamson and Silva (1997) for soil, Campbell (1997 and 2000) for alluvium, and Sadigh et al. (1997) for deep soil deposits. The analysis indicated an average value for peak horizontal ground acceleration (PHGA) with a 10 percent probability of exceedance in 50 years of 0.96g. Hazard deaggregation indicates that the predominant earthquake magnitude is approximately 6.5 (Mw) at a distance on the order of 2 kilometers.

PHGA for the site was also estimated using California Geologic Survey (CGS) Probabilistic Seismic Hazards Mapping Ground Motion data (CGS, 2003), which utilizes a probabilistic seismic hazard analysis approach based on currently available earthquake and fault information. Based on information from the CGS, the PHGA with a 10 percent probability of being exceeded in 50 years is estimated to be approximately 0.86g.

2.7 Secondary Seismic Hazards

Liquefaction Potential

Liquefaction is the loss of soil strength or stiffness due to a buildup of excess pore-water pressure during strong ground shaking. Liquefaction is associated primarily with loose (low density), granular, saturated soil. Effects of severe liquefaction can include sand boils, excessive settlement, bearing capacity failures, and lateral spreading.

Regional groundwater maps and groundwater data indicate that shallow groundwater conditions do not exist locally, nor have they existed historically. As such, the site is not considered susceptible to liquefaction.

Seismically Induced Settlement

During a strong seismic event, seismically induced settlement can occur within loose to moderately dense, dry or saturated granular soil. Settlement caused by ground shaking can be non-uniformly distributed, resulting in differential settlement.

We have evaluated the potential for seismically induced settlement using the simplified method set forth by Tokimatsu and Seed (1987). Based on this preliminary study, the potential total settlement resulting from seismic loading is estimated to be less than 1 inch. Differential settlement due to seismic loading is expected to be on the order of $\frac{1}{2}$ inch over a horizontal distance of 40 feet.

3.0 CONCLUSIONS AND RECOMMENDATIONS

Based upon this study, we conclude that the proposed residential and commercial development is feasible from a geotechnical standpoint. No severe geologic or soil-related hazards or constraints that would preclude development of the site have been found during the course of this study. However, additional geotechnical review, evaluation and investigation may be required based on the final development plans.

3.1 General Earthwork and Grading

All grading should be performed in accordance with the General Earthwork and Grading Specifications presented in Appendix D, unless specifically revised or amended below or by future recommendations based on final development plans.

Site Preparation

Prior to construction, the site should be cleared of vegetation, trash, and debris. Trees and heavy brush should be removed and grubbed out, and the excavations should be backfilled with compacted fill. Any underground obstructions onsite should be removed. The resulting cavities should be properly backfilled and compacted. Efforts should be made to locate any existing utility lines. Those lines should be removed or rerouted if they interfere with the proposed construction, and the resulting cavities should be properly backfilled and compacted. A high-pressure jet fuel line and several water lines presently cross the site; we assume that these lines will be protected in place. In addition, any uncontrolled or undocumented artificial fill should be removed.

Overexcavation and Recompaction

To reduce the potential for adverse differential settlement of the proposed structures, the underlying subgrade soil should be prepared in such a manner that a uniform response to the applied loads is achieved. The soil within residential pads should be overexcavated and recompacted to a minimum depth of 2 feet below the bottom of footings or 3 feet below the existing grade, whichever is greater. Remedial grading in areas where commercial/retail structures are planned should be based on the size and types of structures planned. However, for initial planning purposes the soil within pads intended to support commercial/retail structures should be overexcavated and recompacted to a minimum depth of 3 feet below the bottom of footings or 4 feet below the existing grade, whichever is greater. The overexcavation and recompaction should extend a minimum lateral distance of 4 feet from the footings. Local conditions may require that deeper

overexcavation be performed; such areas should be evaluated by Leighton and Associates during grading.

Areas outside the overexcavation limits of the pads planned for asphalt or concrete pavement and flatwork and areas to receive fill should be overexcavated or scarified to a minimum depth of 12 inches below the existing ground surface or 12 inches below the proposed finish grade, whichever is deeper.

After completion of the overexcavation, and prior to fill placement, the exposed surfaces should be scarified to a minimum depth of 6 inches, moisture-conditioned to or slightly above optimum moisture content, and recompacted to a minimum 90 percent relative compaction.

Fill Placement and Compaction

The onsite soil is generally suitable for use as compacted structural fill, provided it is free of debris, significant organic material, and oversized material. Any soil to be placed as fill, whether onsite or imported material, should be accepted by Leighton and Associates.

All fill soil should be placed in thin, loose lifts, moisture-conditioned, as necessary, to optimum moisture content or slightly above, and compacted to a minimum 90 percent relative compaction as determined by ASTM Test Method D1557. Aggregate base for pavement should be compacted to a minimum of 95 percent relative compaction.

Oversized Materials

It is anticipated that significant quantities of oversized material (particles greater than 12 inches) requiring special handling for disposal may be encountered locally during construction. Oversize material between 12 inches and 24 inches may be placed in areas of deep fill at depths below anticipated excavations (i.e. footings, pools, utility trenches, future developments, etc). Material greater than 24 inches should be disposed of, either as landscape material or by removal from the site. Alternatively, oversize material may be crushed and mixed with soil to be used as fill. Specific recommendations for placing oversized material should be provided during the grading and foundation plan review stage and again during grading based on field conditions.

When placing fill with significant quantities or rock, it is essential that complete flooding occurs during grading to wash finer particles of soil into the voids between the rock.

Shrinkage and Subsidence

The change in volume of excavated and recompacted soil varies according to soil type and location. This volume change is represented as a percentage increase (bulking) or decrease (shrinkage) in volume of fill after removal and recompaction. Subsidence occurs as natural ground is moisture-conditioned and densified to receive fill. Field and laboratory data used in our calculations included laboratory-measured maximum dry densities for soil types encountered at the subject site and the measured in-place densities of soils encountered. We estimate the following earth volume changes will occur during grading:

Shrinkage	Approximately 5 to 10 percent
Subsidence	Approximately 0.1 foot

The level of fill compaction, variations in the dry density of the existing soils and other factors influence the amount of volume change. Some adjustments to earthwork volume should be anticipated during grading of the site.

3.2 Foundations

Based on our preliminary investigation and our experience in the region, conventional shallow or post-tensioned slab foundations may be used to support the loads of one- to three-story, frame-type structures. Commercial/retail structures may be supported on conventional shallow spread footings. Overexcavation and recompaction of the footing subgrade soil should be performed as detailed in Scction 3.1. For planning purposes, a very low soil expansion potential may be assumed. The soil Expansion Index should be evaluated near the end of grading.

Conventional Shallow Foundations

Based on our preliminary investigation, the footings for 1-story residential structures should have a minimum embedment depth of 12 inches, with a minimum width of 24 and 12 inches for isolated and continuous footings, respectively. The footings for 2- to 3-story residential structures and commercial/retail buildings should have a minimum embedment depth of 18 inches, with a minimum width of 24 and 15 inches for isolated and continuous footings, respectively.

An allowable bearing capacity of 2,500 psf may be used for preliminary design, based on the minimum embedment depth and width. The allowable bearing value may be increased by 300 psf per foot increase in depth or width to a maximum allowable bearing

pressure of 4,500 psf. The allowable bearing pressure is for the total dead load and frequently applied live loads.

The soil resistance available to withstand lateral loads on a shallow foundation is a function of the frictional resistance along the base of the footing and the passive resistance that may develop as the face of the structure tends to move into the soil. The frictional resistance between the base of the foundation and the subgrade soil may be computed using a coefficient of friction of 0.35. The passive resistance may be computed using an equivalent fluid pressure of 350 pounds per cubic foot (pcf), assuming there is constant contact between the footing and undisturbed soil.

The allowable bearing pressure and coefficient of friction values may be increased by one third when considering loads of short duration, such as those imposed by wind and seismic forces.

Footing reinforcement should be designed by the structural engineer.

Post-Tensioned Slab Foundations

As an alternative to conventional spread footings, post-tension slab foundation systems can be used. Post-tension slab foundations should be designed by the project structural engineer. The following table provides post-tension slab design information for soil with a very low expansion potential.

Post-Tension Foundat	ion Design Recommen	idations						
Very Low Expansion								
Edge Moisture Variation Distance	Center Lift	5.5 feet						
Edge Moisture Variation Distance, em	Edge Lift	2.5 feet						
Differential Small V	Center Lift	1.0 inch						
Differential Swell, Y _m	Edge Lift	0.4 inch						
Modulus of subgrade Reaction		120 pci						

Exterior footings (thickened edges) should have a minimum depth of 12 inches below the lowest adjacent soil grade and a minimum width of 12 inches. These footings may be designed for a maximum allowable bearing pressure of 2,500 pounds per square foot. The allowable bearing capacity may be increased by one-third for short-term loading.

These recommendations are based on preliminary data. Additional testing of the soil present near finish grade should be conducted near the end of grading for final foundation design information. Local agencies, the structural engineer or the Uniform Building Code may have requirements that are more stringent.

Foundation Settlement

The recommended allowable bearing capacity is generally based on a total allowable, post construction settlement of 1 inch. Differential settlement is estimated at ¹/₂ inch over a horizontal distance of 30 feet. Since settlement is a function of footing size and contact bearing pressure, differential settlement can be expected between adjacent columns or walls where a large differential loading condition exists. These settlement estimates should be reevaluated by Leighton and Associates when foundation plans for the proposed structures become available.

3.3 <u>Slab-On-Grade</u>

Concrete slabs subjected to special loads should be designed by the structural engineer. Where conventional light floor loading conditions exist, the following minimum recommendations, which are based on a very low soil expansion potential, should be used:

- A minimum slab thickness of 4 inches (nominal). Reinforcement steel should be designed by the structural engineer, but as a minimum should be No. 3 rebar placed at 24 inches on center for conventional slabs-on-grade. Reinforcement should be positioned within the middle third of the slab thickness.
- A moisture barrier consisting of 10-mil Visqueen (or equivalent) placed below slabs where moisture-sensitive floor coverings or equipment is planned. The moisture barrier should be covered with a minimum of 2 inches of sand.
- The subgrade soil should be moisture conditioned to at least optimum moisture content to a minimum depth of 12 inches prior to placing the moisture barrier, steel, post-tensioned cables, or concrete.

The use of reinforcement or post-tensioned cables in slabs and foundations can generally reduce the potential for concrete cracking. However, minor cracking of the concrete as it cures, due to drying and shrinkage, is normal and should be expected. Cracking is often aggravated by a high water/cement ratio, high concrete temperature at the time of

placement, small nominal aggregate size, and rapid moisture loss due to hot, dry, and/or windy weather conditions during placement and curing. Cracking due to temperature and moisture fluctuations can also be expected. The use of low slump concrete can reduce the potential for shrinkage cracking.

Moisture barriers can retard, but not eliminate moisture vapor movement from the underlying soils up through the slab. Floor covering manufacturers should be consulted for specific recommendations.

3.4 <u>Seismic Design Parameters</u>

Seismic parameters presented in this report should be considered during project design. In order to reduce the effects of ground shaking produced by regional seismic events, seismic design should be performed in accordance with the most recent edition of the Uniform Building Code (UBC). The following data should be considered for the seismic analysis of the subject site:

Seismic Design I	Parameters
Seismic Source	San Jacinto Fault
Distance	Approximately 2 km
Seismic Source Type (UBC, Table 16-U):	В
Seismic Zone Factor, Z (UBC, Table 16-I):	0.4
Soil Profile Type (UBC, 16-J):	S _D
Near-Source Factor N _a (UBC, Table 16-S):	1.3
Source Factor N _v (UBC, Table 16-T):	1.6

3.5 Retaining Walls

We recommend that retaining walls be backfilled with onsite, low expansive soil and constructed with a backdrain in accordance with the recommendations provided on Figure 3 (rear of text). Using expansive soil as retaining wall backfill will result in higher lateral earth pressures exerted on the wall. Based on these recommendations, the following parameters may be used for the design of conventional retaining walls up to 6 feet tall:

Static Equiva	lent Fluid Weight (pcf)					
Conditions Level Backfil						
Active	35					
At-Rest	55					
Passive	350					
	(Maximum of 3,500 psf)					

The above values do not contain an appreciable factor of safety, so the structural engineer should apply the applicable factors of safety and/or load factors during design.

Cantilever walls that are designed to yield at least 0.001H, where H is equal to the wall height, may be designed using the active condition. Rigid walls and walls braced at the top should be designed using the at-rest condition.

Passive pressure is used to compute soil resistance to lateral structural movement. In addition, for sliding resistance, a frictional resistance coefficient of 0.35 may be used at the concrete and soil interface. The lateral passive resistance should be taken into account only if it is ensured that the soil providing passive resistance, embedded against the foundation elements, will remain intact with time.

In addition to the above lateral forces due to retained earth, surcharge due to improvements, such as an adjacent structure or traffic loading, should be considered in the design of the retaining wall. Loads applied within a 1:1 projection from the surcharging structure on the stem of the wall should be considered in the design.

A soil unit weight of 120 pcf may be assumed for calculating the actual weight of the soil over the wall footing.

Retaining wall footings should have a minimum width of 12 inches and a minimum embedment of 12 inches below the lowest adjacent grade. An allowable bearing capacity of 2,500 psf may be used for retaining wall footing design, based on the minimum footing width and depth. This bearing value may be increased by 300 psf per foot increase in width or depth to a maximum allowable bearing pressure of 4,500 psf. Retaining walls constructed at, or near the top of slopes, or mid-slope walls should have minimum depth of embedment such that there is a minimum of 7 feet (measured horizontally) between the bottom, outside edge of the footing and the face of the descending slope.

3.6 <u>Pavement Design</u>

Based on the design procedures outlined in the current Caltrans Highway Design Manual, and a preliminary design R-value of 60 for the subgrade, preliminary flexible pavement section recommendations are presented in the following table for the Traffic Indices indicated. Final pavement design should be based on the Traffic Index determined by the project civil engineer and R-value testing conducted near the completion of street grading.

	PAVEMENT SECTION THICKNESS											
Asphaltic Concrete (AC) Class 2 Aggregate Base (AB												
Traffic Index	Thickness (feet)	Thickness (feet)										
6 or less	0.25	0.35										
7	0.30	0.35										

If the pavement is to be constructed prior to construction of the structures, we recommend that the full depth of the pavement section be placed in order to support heavy construction traffic.

All pavement construction should be performed in accordance with the Standard Specifications for Public Works Construction. Field inspection and periodic testing, as needed during placement of the base course materials, should be undertaken to ensure that the requirements of the standard specifications are fulfilled. Prior to placement of aggregate base, the subgrade soil should be processed to a minimum depth of 6 inches, moisture-conditioned, as necessary, and recompacted to a minimum of 90 percent relative compaction. Aggregate base should be moisture conditioned, as necessary, and compacted to a minimum of 95 percent relative compaction.

3.7 <u>Temporary Excavations</u>

All temporary excavations, including utility trenches, retaining wall excavations, etc. should be performed in accordance with project plans, specifications and all OSHA requirements.

No surcharge loads should be permitted within a horizontal distance equal to the height of cut or 5 feet, whichever is greater from the top of the slope, unless the cut is shored appropriately. Excavations that extend below an imaginary plane inclined at 45 degrees below the edge of any adjacent existing structure should be properly shored to maintain support of the structure.

Typical cantilever shoring should be designed based on the active fluid pressure presented in the retaining wall section. If excavations are braced at the top and at specific design intervals, the active pressure may then be approximated by a rectangular soil pressure distribution with the pressure per foot of width equal to 21H, where H is equal to the depth of the excavation being shored.

During construction, the soil conditions should be regularly evaluated to verify that conditions are as anticipated. The contractor should be responsible for providing the "competent person" required by OSHA standards to evaluate soil conditions. Close coordination between the competent person and the geotechnical engineer should be maintained to facilitate construction while providing safe excavations.

3.8 Trench Backfill

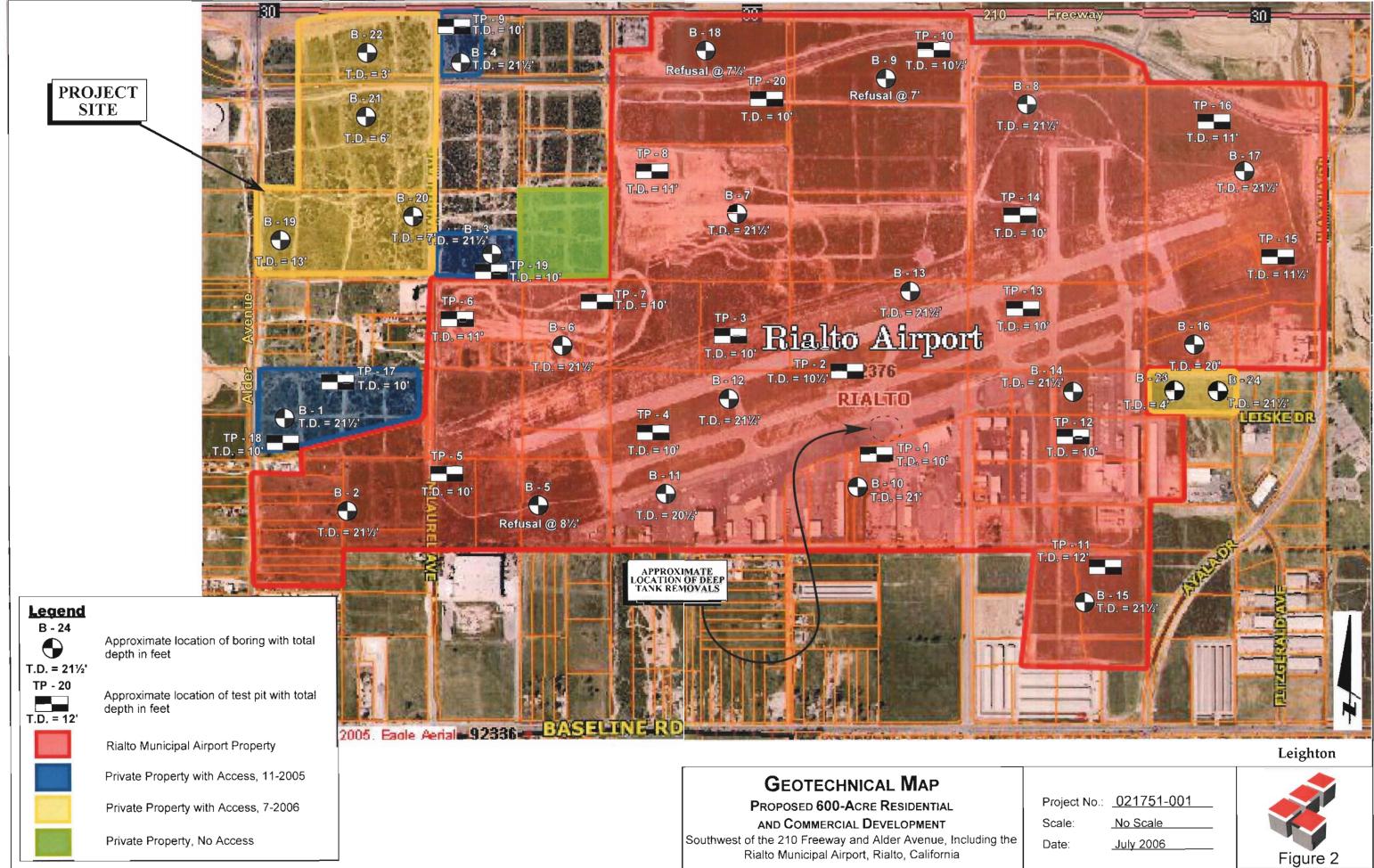
Utility-type trenches onsite can be backfilled with the onsite material, provided it is free of debris and oversized material. Prior to backfilling the trench, pipes should be bedded and shaded in a granular material that has a sand equivalent of 30 or greater. The sand should extend 12 inches above the top of the pipe. The bedding/shading sand should be densified in-place by jetting. The native backfill should be placed in loose layers, moisture conditioned, as necessary, and mechanically compacted using a minimum standard of 90 percent relative compaction.

3.9 Surface Drainage

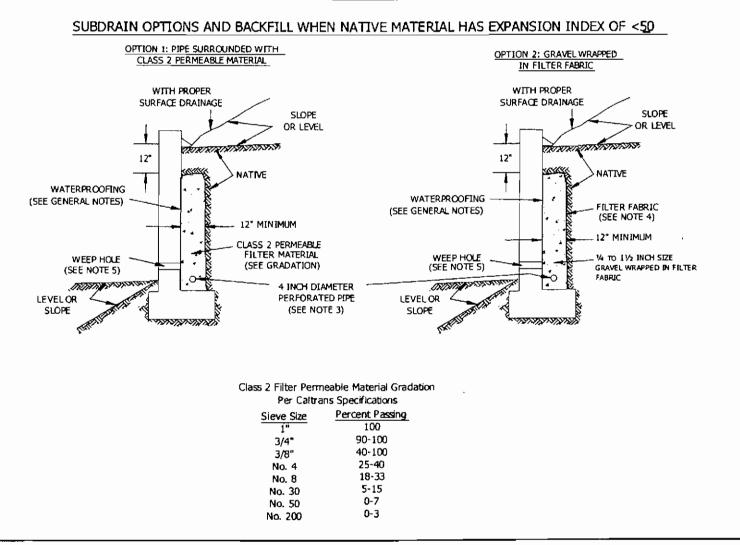
Surface drainage should be designed to be directed away from foundations and toward approved drainage devices or streets. Irrigation of landscaping should be controlled to maintain, as much as possible, a consistent moisture content sufficient to provide healthy plant growth without overwatering.

3.10 Cement Type and Corrosion Protection

Based on the results of laboratory testing, concrete structures in contact with the onsite soil will have negligible exposure to water-soluble sulfates in the soil. Common Type II cement may be used for concrete construction onsite and the concrete should be designed in accordance with Table 19-A-4 of the Uniform Building Code.


Based on our laboratory testing, the onsite soil is considered mildly corrosive to ferrous metals. The corrosion information presented in this report should be provided to your underground utility subcontractors.

3.11 Additional Geotechnical Investigation and Services


The preliminary geotechnical recommendations presented in this report are based on subsurface conditions as interpreted from limited subsurface explorations and limited laboratory testing. The preliminary geotechnical recommendations provided in this report are based on information available at the time the report was prepared and may change as plans are developed. In addition, approximately 65 acres were not accessible to us during this investigation. As such, additional geotechnical investigation and analysis will be required based on final development plans and available site access. Leighton and Associates should review the site and grading plans when available and comment further on the geotechnical aspects of the project. Geotechnical observation and testing should be conducted during excavation and all phases of grading operations. The conclusions and preliminary recommendations presented herein should be reviewed and verified by Leighton and Associates during construction and revised accordingly if geotechnical conditions encountered vary from our preliminary findings and interpretations. Geotechnical observation and testing should be provided:

- After completion of site clearing.
- During overexcavation of compressible soil.
- During compaction of all fill materials.
- After excavation of all footings and prior to placement of concrete.
- During utility trench backfilling and compaction.
- During pavement subgrade and base preparation.
- When any unusual conditions are encountered.

Project No.: <u>021751-001</u>
Scale: <u>No Scale</u>
Date: <u>July 2006</u>

GENERAL NOTES:

* Waterproofing should be provided where moisture nuisance problem through the wall is undesirable.

* Water proofing of the walls is not under purview of the geotechnical engineer

* All drains should have a gradient of 1 percent minimum

*Outlet portion of the subdrain should have a 4-inch diameter solid pipe discharged into a suitable disposal area designed by the project engineer. The subdrain pipe should be accessible for maintenance (rodding)

*Other subdrain backfill options are subject to the review by the geotechnical engineer and modification of design parameters.

Notes:

1) Sand should have a sand equivalent of 30 or greater and may be densified by water jetting.

2) 1 Cu. ft. per ft. of 1/4- to 1 1/2-inch size gravel wrapped in filter fabric

3) Pipe type should be ASTM D1527 Acrylonitrile Butadiene Styrene (ABS) SDR35 or ASTM D1785 Polyvinyl Chloride plastic (PVC), Schedule 40, Armco A2000 PVC, or approved equivalent. Pipe should be installed with perforations down. Perforations should be 3/8 inch in diameter placed at the ends of a 120-degree arc in two rows at 3-inch on center (staggered)

Filter fabric should be Mirafi 140NC or approved equivalent.

5) Weephole should be 3-inch minimum diameter and provided at 10-foot maximum intervals. If exposure is permitted, weepholes should be located 12 inches above finished grade. If exposure is not permitted such as for a wall adjacent to a sidewalk/curb, a pipe under the sidewalk to be discharged through the curb face or equivalent should be provided. For a basement-type wall, a proper subdrain outlet system should be provided.

6) Retaining wall plans should be reviewed and approved by the geotechnical engineer.

7) Walls over six feet in height are subject to a special review by the geotechnical engineer and modifications to the above requirements.

RETAINING WALL BACKFILL AND SUBDRAIN DETAIL FOR WALLS 6 FEET OR LESS IN HEIGHT

WHEN NATIVE MATERIAL HAS EXPANSION INDEX OF <50

APPENDIX A

· ·

APPENDIX A

References

- Abrahamson, N. A. and Silva, W. J., 1997, Empirical Response Spectral Attenuation Relations for Shallow Crustal Earthquakes: Seismological Research Letters, Volume 68, No. 1, pp. 94-127.
- Blake, T. F., 2000, FRISKSP, A Computer Program for the Probabilistic Estimation of Peak Acceleration and Uniform Hazard Spectra Using 3-D Faults as Earthquake Sources, Version 4.00, User's Manual.
- California Division of Mines and Geology (CDMG), 1998, Maps of Known Active Fault Near-Source Zones in California and Adjacent Portions of Nevada, to be used with the 1997 Uniform Building Code, International Conference of Building Officials, February 1998.
- ______, 2000, CD-ROM containing digital images of Official Maps of Alquist-Priolo Earthquake Fault Zones that affect the Southern Region, DMG CD 2000-003 2000.
- California Department of Water Resources (CDWR), 2000, Water Data Library (WDL) home page, http://well.water.ca.gov/.
- Campbell, K. W., 1997, Empirical Near-Source Attenuation Relationships for Horizontal and Vertical Components of Peak Ground Acceleration, Peak Ground Velocity, and Pseudo-Absolute Acceleration Response Spectra: Seismological Research Letters, Volume 68, No. 1, pp. 154-179.
 - _____, 2000, Erratum, Empirical Near-Source Attenuation Relationships for Horizontal and Vertical Components of Peak Ground Acceleration, Peak Ground Velocity, and Pseudo-Absolute Acceleration Response Spectra: Seismological Research Letters, Volume 71, No. 3, pp. 352-354.
 - _____, 2003, Seismic Shaking Hazards in California, Based on the USGS/CGS Probabilistic Seismic Hazards Assessment (PSHA) Model, 2002 (revised April 2003), CGS website, http://www.consrv.ca.gov/cgs/rghm/pshamap/pshamain.html.
- Cao, T., Bryant, W.A., Rowshandel, B., Branum, D., and Wills, C.J., 2003, The Revised 2002 California Probabilistic Seismic Hazard Maps, dated June 2003, 11p. Accessible at <u>http://www.consrv.ca.gov/cgs/rghm/psha/index.htm</u>

- International Conference of Building Officials (ICBO), 1997, Uniform Building Code, Volume II - Structural Engineering Design Provisions.
- Morton, D.M., 2003, Preliminary Geologic Map of the Fontana 7.5' Quadrangle, San Bernardino County, California, U.S. Geological Survey Open-File Report 03-418, digital version 1.0.
- Morton, D. M., and Matti, J. C., 2001, Geologic Map of the Devore 7.5' Quadrangle, San Bernardino County, California, USGS Open File Report 01-173, digital version 1.0.
- Morton, D. M., and Miller, F. K., 2003, Preliminary digital geologic map of the San Bernardino 30' x 60' Quadrangle, Southern California, version 1.0: U.S. Geological Survey Open-File Report 03-293.
- Petersen, M. D., Bryant, W. A., Cramer, C. H., Cao, T., Reichle, M. S., Frankel, A. D., Lienkaemper, J. J., McCrory, P. A., and Schwartz, D. P., 1996, Probabilistic Seismic Hazard Assessment for the State of California: California Division of Mines and Geology Open-File Report 96-08; U.S. Geological Survey Open File-Report 96-706.
- Petersen, M. D. and Wesnousky, S. G., 1994, Fault Slip Rates and Earthquake Histories for Active Faults in Southern California: Seismological Society of America Bulletin, Volume 84, No. 5, pp. 1608-1649.
- Public Works Standard, Inc., 2002, Greenbook, Standard Specifications for Public Works Construction: BNI Building News, Anaheim, California, 471 p.
- Sadigh, K., Chang, C. Y., Egan, J. A., Makdisi, F., and Young R. R., 1997, "Attenuation Relations for Shallow Crustal Earthquakes Based on California Strong Motion Data" Seismological Research Letters, Vol 68, No. 1, January/February, pp. 180-189.
- Tokimatsu, K., Seed, H. B., 1987, "Evaluation of Settlements in Sands Due to Earthquake Shaking," *Journal of the Geotechnical Engineering*, American Society of Civil Engineers, Vol. 113, No. 8, pp. 861-878.

,

Uniform Building Code (UBC), 1997 Edition.

United States Geologic Survey (USGS), 1980, Topographic Map of the Fontana 7.5-Minute Quadrangle, San Bernardino County, California, released 1967, photo-revised 1980.

United States Geologic Survey (USGS), 1988, Topographic Map of the Devore 7.5-Minute Quadrangle, San Bernardino County, California, released 1966, photo-revised 1988.

Aerial Photographs Reviewed

Date	<u>Flight</u>	Frame	Scale	Agency
06/03/1938	AXL-42	N/A	N/A	USDA
01/31/1953	N/A	N/A	N/A	USDA
09/19/1977	N/A	N/A	N/A	Teledyne
01/18/1985	N/A	N/A	N/A	Aerial Map Industries
02/25/1986	C-450	151	1:24,000	SBCFC
10/07/1995	N/A	N/A	N/A	USGS
06/06/2002	N/A	N/A	N/A	USGS

· · ·

.

APPENDIX B

					GEC	TE	CHN		L BORING			
	te oject					ا م	is / Ri	alto		Sheet <u>1</u> o Project No.	f <u>1</u> 02175	1-001
	illing (r					illing		Type of Rig		E 75
Hole Diameter				8"						Automatic Hammer		p 30"
Ele	vatio	n Top of	Hole	1		ocatio				See Geotechnical Map		
Elevation Feet	Depth Feet	Graphic Log	Attitudes	Sample No.	Blows Six Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	Logged By	DESCRIPTION		Type of Tests
ш			•	Ň	Рег	ā	ĒŬ	s.	Sampled By			Tyr
	0			B-1					@ 0' Silty SAND. In	ght brown, dry, fine grained, non-plastic 3 inches, trace cobble to 10 inches	s, scattered	SA 44:44:12 MD CR
		0 0 0 0 0 0		R-1	20 30 33		1 .1	SW-SM		silt and gravel, light brown, dry, fine to o ubangular gravel to 2 inches, rock fragm	coarse ents,	
	5			R-2	14 32 50/6"		1.1	SW-SM	@ 5' SAND with silt coarse grained, verticed	t and gravel, light brown, slightly moist, ery dense	fine to	
	10			R-3	25 13 50/4½"	118.9	2.3	SW-SM	@ 10' SAND with si coarse grained, ve non-plastic silt	ilt and gravel, moderate brown, moist, fi ery dense, gravel to 3 inches, cobble fra	ne to gments,	
	15			S-1	15 33 40			sw	(a) 15' SAND with gr coarse grained, vo non-plastic silt	ravel, moderate yellowish brown, moist ery dense, rounded gravel to 1 inch, som	, fine to e	
	20			S-2	10 12 14			SW-SM	fine to coarse gra	ilt and gravel, moderate yellowish brown ined, dense, gravel to 1 inch, non-plastic	n, moist, e silt	
									Total depth 21½ fect No groundwater Boring backfilled wi			
S SF R RI B BL	LE TYPE PLIT SPC NG SAM JLK SAM IBE SAM	DON IPLE MPLE						DS DI MD N CN C Coi C	OF TESTS: IRECT SHEAR MAXIMUM DENSITY CONSOLIDATION COLLAPSE	CR CORROSION SA SIEVE ANALYSIS AL ATTERBERG LIMITS EI EXPANSION INDEX RV R-VALUE	\$	
				LE	IGH'	ron	I AN	ND A	SSOCIAT	ES, INC.		

				(GEC	TE		NICA	AL BORING LOG B-2			
Da	te		8-26-05						Sheet <u>1</u> of <u>1</u>			
	oject						is / Ri		Project No021751 Type of Rig CME			
	illing (le Dia	o. meter		8"	r)rive W	2R Dr Ieiaht		Type of Rig CME 75 140 lb Automatic Hammer Drop 3			
		n Top of	Hole	- 1		ocatio	_	·	See Geotechnical Map			
Elevation Feet	Depth Feet	Graphic Log	Attitudes	Sample No.	Blows Six Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	DESCRIPTION	lype of lests		
Еle Т	۵	Gra	Atti	ami	ЦЩ, С,	2	<u>Š</u> Š	Soil-	Logged By DAG	, pe i		
		N S		S S	Per			0 , -	Sampled By DAG	<u>-</u>		
	0								@ 0' Silty SAND, light brown, dry, fine grained, non-plastic silt, scattered gravel on surface			
				R-1	10 14 16	117.9	1.9	sw	@ 2½' SAND with gravel, light brown, slightly moist, fine to coarse grained, medium dense, rounded gravel to 1 inch, trace non-plastic silt			
	5			R-2	25 45 50/5½"	135.6	3.2	sw	@ 5' SAND with gravel, light brown, slightly moist, fine to coarse grained, very dense, rounded gravel to 3 inches, trace clay			
				R-3	20 43 50/4"		2.5	SW-SM	 (a) 10' SAND with silt and gravel, moderate yellowish brown, moist, fine to coarse grained very dense, subrounded gravel to ½ inch, non-plastic silt 			
				S-1	9 24 45			SW-SM	 @ 15' SAND with silt and gravel, moderate yellowish brown, moist, fine to coarse grained, very dense, rounded gravel to 1 inch, non-plastic silt, some fractured gravel 			
	 20			8-2	15 18 26			SW-SM	 @ 20' SAND with silt and gravel, moderate yellowish brown, moist, fine to coarse grained, very dense, rounded gravel to 1 inch, non-plastic silt 			
					-				Total depth 21½ feet No groundwater Boring backfilled with soil cuttings			
	-											
S 54 R R B B	30 PLE TYPI PLIT SPO ING SAN ULK SAJ JBE SAN	DON APLE MPLE						DS D MD M CN C Col C	OF TESTS: CR CORROSION DIRECT SHEAR SA SIEVE ANALYSIS MAXIMUM DENSITY AL ATTERBERG LIMITS CONSOLIDATION EI EXPANSION INDEX COLLAPSE RV R-VALUE	i		
				LE	IGH	TON	I AI	ND A	ASSOCIATES, INC.			

Project			8-26-05				is / Ria		Sheet 1 of 1 Project No. 021751-	
Drilling Co. Hole Diameter			8")rive V		illing		75 30"	
		n Top of	Hole	· ·		ocatio	_		See Geotechnical Map	
Elevation Feet	epth Feet	Graphic Log	Attitudes	Sample No.	Blows Six Inches	Dry Density pcf	Moisture Content, %	Class. S.C.S.)	DESCRIPTION	Type of Tests
Ť		Ū N S	Att	San	Per Si	D Z	Ř	Soil U.	Logged By DAG Sampled By DAG	Type
	0				-				@ 0' Silty SAND, light brown, dry, fine grained, non-plastic silt, trace gravel to 1 inch	
	-	° () ° ∂ 0 · 0 ₀ 0 · C		R-1	8 12 19				@ 21/2' No recovery	
	5			R-2	16 43 50/6"				@ 5' No recovery	
	10			R-3	50/5"				@ 10' No recovery	
	15-			S-1	5 5 3			SM	@ 15' Silty SAND, moderate brown, moist, fine grained, medium dcnse, low to non-plastic silt, some medium and coarse sand, trace fine gravel	
	20-			S-2	10 33 41			SP-SM	@ 20' SAND with silt and gravel, moderate brown, moist, fine to medium grained, very dense, gravel to 1 inch, some coarse sand, fractured rock, non-plastie silt	
				-	-				Total depth 21½ feet No groundwater Boring back filled with soil cuttings	
	25 —									
	30									
S SP R RIN B BU	LE TYPE LIT SPO NG SAMI ILK SAM BE SAM	ion Ple IPle						DS DI MD M CN C	DF TESTS: RECT SHEAR SA SIEVE ANALYSIS MAXIMUM DENSITY AL ATTERBERG LIMITS ONSOLIDATION EI EXPANSION INDEX OLLAPSE RV R-VALUE	

					GEC	TE	CHN	NICA	L BORING	LOG B-4			
Da			8-26-05							Sheet 1_o			
	oject		-				is / Ri			Project No021751-001 Type of Rig CME 75			
	illing (Jo Dia	∍o. meter		8")rive V		<u>illing</u>	140 lb /	Type of Rig		. 75 > 30"	
		n Top of	Hole	<u> </u>		ocatio	_	L	140_107	See Geotechnical Map		J <u>30</u>	
•				.oN	Blows Six Inches	Density pcf	Moisture Content, %	i).		DESCRIPTION		Type of Tests	
Elevation Feet	Depth Feet	Graphic Log	Attitudes	Sample No.	Ň	cen	stu	Class C.C.S.)				of T	
Ē	ĞШ	5	Atti	am	២ភូ	D	Mo	Soil CU.S.	Logged By	DAG		be	
		N 9		N N	Per		0	0,-	Sampled By	DAG		Ţ	
	0			-					@ 0' Silty SAND, lig	ht brown, slightly moist, fine grained, r	on-plastic.	 RV	
				B-1				SM	some medium sand	d, scattered gravel on surface			
	_			R-1	17 19 46		2.1	SW-SM	@ 21/3' SAND with sil grained, dense, gra	It and gravel, light brown, moist, fine to wel to 3 inches, non-plastic silt	o coarse		
	5			R-2	36 50/5"		1.7	SW-SM	@ 5' SAND with silt a grained, very dense	and gravel, light brown, moist, fine to o e, gravel to 3 inches, non-plastic silt	coarse		
	10			R-3	23 50/6"	126.8	1.9	sw-sm	@ 10' SAND with sile grained, very dense	t and gravel, light brown, moist, fine to e, angular gravel to 3 inches, non-plast:	coarse ic silt		
	15			S-1	5 13 7			SW-SM ML		t and gravel, light brown, moist, fine to gular gravel to 3 inches, non-plastic silt moderate brown, moist, low to non-pla us			
	20			S-2	17 24 50/6"			SW-SM	@ 20' SAND with silt coarse grained, ver inch, non-plastic si	t and gravel, moderate brown, moist, fi y dense, subrounded to subangular gra it	ne to vel to 1		
	_				-				Total depth 21½ feet No groundwater Boring backfilled with	n soil cuttings	ţ		
	25 				-								
					1								
SAMP	30 <u>LE_</u> TYPE	: <u>S:</u>		<u> </u>	I			<u>.</u> <u></u>	DF TESTS:	CR CORROSION			
R RI B BL	ALIT SPO NG SAM JLK SAN IBE SAM	PLE IPLE				•		MD N CN C	RECT SHEAR MAXIMUM DENSITY ONSOLIDATION OLLAPSE	SA SIEVE ANALYSIS AL ATTERBERG LIMITS EI EXPANSION INDEX RV R-VALUE	S.		
				LE	IGH ⁻	TON	I AI	ND A	SSOCIATE	S, INC.			

Da Pro	te oject		8-26-05			Lew	is <u>/ Ria</u>	alto	Sheet 1 of 1 Project No. 021751	
Drilling Co. Hole Diameter 8"							2R Dri		Type of Rig CME	
Hole Diameter 8" Elevation Top of Hole			8	A ** A ** A	orive V .ocatio	-		140 lb Automatic Hammer Drop See Geotechnical Map	op <u>30"</u>	
Elevation Feet	Depth Feet	Graphic Log	Attitudes	Sample No.	Blows Per Six Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)		Type of Tests
	0 			B-1 R-1 R-2	7 20 24 32 26 31		1.8	SM SW	 @ 0' Silty SAND, light brown, slightly moist, fine grained, non-plastic silt @ 2^{1/2} Silty SAND, light brown, slightly moist, fine grained, dense, non-plastic silt @ 5' SAND with gravel, pale brown, dry, fine to coarse grained, gravel to 2 inches, dense, cobble fragments 	
									Refusal at 8½ feet No groundwater Boring backfilled with soil cuttings	
	20				-					
S SF R RI B BI	25 	DON IPLE MPLE			-			DS D MD	OF TESTS: DIRECT SHEAR MAXIMUM DENSITY CONSOLIDATION EI EXPANSION INDEX	
<u>ן ד דו</u>	JBE SAN	APLE		LE	IGH [.]	TON	I AN		ASSOCIATES, INC.	*

Date Project Drilling Co.			8-26-05	• = - *			is / Ri		Sheet <u>1</u> of <u>1</u> Project No. <u>021751-</u>	-
Ho	le Dia	zo. meter n Top of		8")rive V .ocatio	-		Type of Rig CME 140 lb Automatic Hammer Drop See Geotechnical Map	
Elevation Feet	Depth Feet	Graphic Log	Attitudes	Sample No.	Blows Per Six Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	DESCRIPTION Logged By TDL Sampled By TDL	Type of Tests
	0 			R-1 R-2 R-3	27 22 39 14 20 16 48 36 50/6"	124.3		SW-SM SW-SM	 @ 0' Silty SAND, light brown, moist, fine grained, non-plastic silt @ 2½' SAND with silt and gravel, moderate yellowish brown, moist, fine to coarse grained, dense, gravel to 3 inches, non-plastic silt @ 5' SAND with silt and gravel, moderate yellowish brown, moist, fine 	
	15 			S-1 S-2	6 14 15 12 21 50/5½"		2.7	sw sw	 @ 15' SAND with gravel, brown, moist, fine to coarse grained, dense, angular gravel to 1 inch @ 20' SAND with gravel, brown, moist, fine to coarse grained, very dense, gravel up to 2 inches Total depth 21½ feet No groundwater 	
S SF R RI B BI	25	IPLE IPLE						DS DI MD N CN C	DF TESTS: RECT SHEAR TAXIMUM DENSITY ONSOLIDATION CR CORROSION RECT SHEAR SA SIEVE ANALYSIS MAXIMUM DENSITY AL ATTERBERG LIMITS ONSOLIDATION EI EXPANSION INDEX ONSOLIDATION ONSOLIDATION CR CORROSION RECT SHEAR CR CORROSION CR CR CR CR CR CR CR CR CR CR CR CR CR C	

GEOTECHNICAL BORING LOG B-7										
Date Project Drilling Co. Hole Diameter									Sheet 1 of 1	
						Lew	is / Ri		Project No. 021751-00	
				8"		rivo M	2R Dr	illing	Type of Rig CME 75 140 lb Automatic Hammer Drop 3	
	Elevation Top of								See Geotechnical Map	<u></u>
Elevation Feet	Depth Feet	Graphic Log	Attitudes	Sample No.	Blows Six Inches	Dry Density pcf Moieture	Moisture Content, %	Class. C.S.)	DESCRIPTION	type of tests
Ц. ТСК			Atti	Samp	Blo Per Six		Contin	Soil (U.S	Logged By TDL Sampled By TDL	iype o
	0								@ 0' Silty SAND, yellowish brown, slightly moist, fine grained, non-plastic silt	
	-			R-1	10 13 16				@ 21/2' No recovery	
	5			R-2	19 25 30		1.5	sw	@ 5' SAND with gravel, dark yellowish brown, slightly moist, fine to coarse grained, dense, gravel to 3 inches, cobble fragments	
	10			R-3	 50/5½"		0.7	sw	@ 10' SAND with gravel, dark brown, slight moist, fine to coarse grained, very dense, gravel to 3 inches	
				S-1	18 32 20			sw	@ 15' SAND with gravel, dark brown, moist, fine to coarse grained, dense, angular gravel to 1 inch	
	20			S-2	13 23 50/5"		~	SW-SM	Coarse grained, very dense, gravel to 1 inch	
									Boring backfilled with soil cuttings	
30- SAMPLE TYPES: S SPLIT SPOON R RING SAMPLE B BULK SAMPLE T TUBE SAMPLE					IGH	ΓΟΝ		DS DI MD N CN C Col C	OF TESTS: DIRECT SHEAR MAXIMUM DENSITY CONSOLIDATION COLLAPSE COLLAPSE COLLATES, INC.	

Date Project Drilling Co.			8-26-05				is / Ria 2R Dr				751-001 ME 75	
Ho	le Dia	meter n Top of	f Hole	8"	2R Drilling Drive Weight Location				140 lb Automatic Hammer Drop See Geotechnical Map			
Feet	Depth Feet	raphic Log	Attitudes	Sample No.	Blows Six Inches	Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	DESCRI			Type of Tests
	-	U N S	At	Sar	Per S	Dry	žö	So.		DL	-	Type
T	0]				@ 0' Silty SAND, light brown, dry, non-plastic silt	fine grained, some gravel,		-
	-			R-1	16 27 27			SW-SM	@ 2½' SAND with silt and gravel, p fine to coarse grained, dense, grav	ale brown, dry to slightly vel to 3 inches	moist,	
	5			R-2	9 25 25		1.7	SW-SM	② 5' SAND with silt and gravel, mo slightly moist, fine to coarse grain	derate yellowish brown, d ned, dense, gravel to 3 inc	ry to hes	
				R-3	4 6 12		4.0	SW-SM	(a) 10' SAND with silt and gravel, me fine to coarse grained, dense, grav	oderate yellowish brown, vel to 2 inches	moist,	
				S-1	8 10 19		4.6	SW-SM	@ 15' SAND with silt and gravel, m fine to coarse grained, dense, fine	oderate yellowish brown, gravel	moist,	
	 20			S-2	15 20 24			SM	@ 20' Silty SAND, moderate brown, dense, some gravel, non-plastic si	, moist, fine to coarse grai lt	ned, very	
				- - -	× ³ 				Total depth 21 ¹ /2 feet No groundwater Boring backfilled with soil cuttings			
					-							
SP Ril BU	<u>LE TYPI</u> LIT SPO NG SAN JLK SAN BE SAN	NON PLE MPLE						DS DI MD N CN C Col C		ANALYSIS RBERG LIMITS SION INDEX UE	A A A	

GEOTECHNICAL BORING LOG B-9

Pro Dri Ho	Drilling Co. Hole Diameter Elevation Top (/eight	lling	Sheet 1 of 1 Project No. 021 Type of Rig C 140 lb Automatic Hammer C See Geotechnical Map			<u>)"</u>
Elevation Feet	Depth Feet	z Graphic « Log	Attitudes	Sample No.	Blows Per Six Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	DESCRIPTIO	N	Type of Tests	
B-1 B-1 R-1 R-2 B-1 R-1 R-2 B-1 R-2 R-2 R-2 R-2 R-2 R-2 R-2 R-2 R-2 R-2							1.4	SM SM	 @ 0' Silty SAND, dark brown, dry to slightly non-plastic silt @ 2½' Silty SAND with gravel, brown, slight grained, dense, gravel to 1 inch @ 5' Silty SAND with gravel, moderate brow grained, very dense, gravel to 2 inches Refusal at 7 feet No groundwater Boring backfilled with soil cuttings 	tly moist, fine to co	7:64 RV CF	4:29 V
S SI R Ri B B	B BULK SAMPLE T TUBE SAMPLE				IGH	TON		DS D MD CN C Col C	DF TESTS: IRECT SHEAR SA SIEVE ANALYSI MAXIMUM DENSITY AL ATTERBERG LI CONSOLIDATION EI EXPANSION IND COLLAPSE RV R-VALUE ASSOCIATES, INC.	MITS		

GEOTECHNICAL BORING LOG B-1

Da Pre	te oject		8-29-05		_	Lew	is / Ria	alto	Sheet <u>1</u> of <u>1</u> Project No. <u>021751-00</u>)1 ·
	illing (_			_			Type of Rig CME 75	
	-	meter		8"		~			140 lb Automatic Hammer Drop 3	
Ele	evatio	n Top of	Hole	I.		ocatio	-		See Geotechnical Map	
Elevation Feet	epth Feet	aphic Log	Attitudes	Sample No.	Blows Six Inches	Dry Density pcf	Moisture Content, %	l Class. S.C.S.)	DESCRIPTION	Type of Tests
Ē	0	Ō	Ati	San	ш <u>о</u>	ξ	Ž ∂	Soi.	Logged By DAG	ype
		N S			Per				Sampled By DAG	Ë.
	0— — —	20.0		R-1	4	115.3	2.2	SW-SM	 @ 0' Silty SAND, moderate yellowish brown, slightly moist, fine grained, non-plastic silt, scattered gravel to 2 inches on surface @ 21/2' SAND with silt and gravel, moderate yellowish brown, moist, fine to medium grained, dense, rounded gravel to 3 inches, 	
	_	0.0			25				non-plastic silt	
	5			R-2	13 20 35		2.3	sw	@ 5' SAND with gravel, moderate yellowish brown, moist, fine to coarsc grained, dense, rounded gravel to 3 inches	
				R-3	21 34 40	128.5	2.2	sw	@ 10' SAND with gravel, moderate brown, moist, fine to coarse grained, rounded gravel to 2 inches, very dense, trace non-plastic silt	
			S-1	2 5 6			SM	@ 15' Silty SAND, moderate brown, moist, fine grained, trace rounded gravel to ½ inch, medium dense, non-plastic silt		
	20			S-2	8 50/6"			sw-sm	@ 20' SAND with silt and gravel, moderate yellowish brown, moist, fine to medium grained, very dense, subangular gravel to 2 inches, non-plastic silt	
						Total depth 21 feet No groundwater Boring backfilled with soil cuttings				
25								TYPE		
S SI R RI B Bi	PLIT SPO ING SAN ULK SAN JBE SAN	NON MPLE MPLE						DS D MD M CN C	IRECT SHEAR SA SIEVE ANALYSIS MAXIMUM DENSITY AL ATTERDERG LIMITS CONSOLIDATION EI EXPANSION INDEX COLLAPSE RV R-VALUE	
<u>, </u>	JOC OAN			LE	IGH	TON			ASSOCIATES, INC.	

Date 8-29-05 Beet 1 of 1													
										Sheet <u>1</u> o		.	
	oject Illing (Co.		_			is / Ria		ration	Project No Type of Rig	021751- CME		
	-	meter		8"					140 lb Automa			30"	
Ele	vatio	n Top of	Hole			ocatio	-		See Geotechnical Map				
Elevation Feet	epth Feet	raphic Log	Attitudes	Sample No. Blows er Six Inches Dry Density pcf Content, %				Soil Class. (U.S.C.S.)	DES	DESCRIPTION		Type of Tests	
	0	ື	Att	Sam	B Per Si	ΓΩ	M Sono Sono Sono Sono Sono Sono Sono Son	Soil (U.5	Logged By Sampled By		_	Type	
	0	<u>N S</u>											
	_								 @0' ASPHALT, 1½ inches as @ 1½" Silty SAND, dark yell non-plastic silt, trace grave 	phalt (poor condition), no base owish brown, moist, fine grain I to 1 inch	ned,		
				R-1	12 17 18		2.2	SW-SM	@ 2½' SAND with silt and gr. fine to coarse grained, med cobble fragments, non-plas	D with silt and gravel, moderate vellowish brown, moist, arse grained, medium dense, subangular gravel to 3 inches, agments, non-plastic silt			
	5			R-2	9 17 29		1.3	sw	@ 5' SAND with gravel, mod coarse grained, dense, rour	medium to			
			R-3	50/3" 				@ 10' No recovery					
	15			S-1	29 50/5½"		3.1	sw	@ 15' SAND with gravel, abu	indant fractured gravel and col	oble		
	 20	0 0		S-2	50/6"			sw	@ 20' SAND with gravel, ligh	ıt brown, moist, abundant grav	/el		
	20						Total depth 20½ feet No groundwater Boring backfilled with soil cu	ttings and patched with cold a	sphalt				
	25—												
	-												
	30-												
S SF R Ri B BA	<u>LE TYPE</u> PLIT SPO NG SAN JLK SAN IBE SAN	DON IPLE MPLE						DS D MD / CN C Col C	AAXIMUM DENSITY AL CONSOLIDATION EI OLLAPSE RV	CORROSION SIEVE ANALYSIS ATTERBERG LIMITS EXPANSION INDEX R-VALUE	See.		
				LE	IGH	TON	I AI	ND A	ASSOCIATES, I	NC.			

	Date Project Drilling Co.		8-29-05	*		Lew	is / Ri	alto	Sheet <u>1</u> of Project No.	<u>1</u> 021751-001			
Dri	illing (Co.			M			Согро		CME 75			
	-	meter		8"		rive V			140 lb Automatic Hammer	Drop 30"			
Ele	vatio	1 Top of	Hole	1		ocatio	-		See Geotechnical Map				
Elevation Feet	Depth Feet	Braphic Log	Attitudes	Sampie No.	Blows Six Inches	/ Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	DESCRIPTION Logged By DAG				
ш		N S	A	Sa	Per	D	≥ິ	Se	Logged By DAG Sampled By DAG	Type of Tests			
	0			B-1				SM	@ 0' Silty SAND, moderate yellowish brown, moist, fine graine non-plastic silt	d, MD			
				R-1	11 29 50/6"	29 SM SM SM SMALL, inductionally services in the service service service service services and se							
	5			R-2	23 29 27	122.4	1.7	sw	@ 5' SAND with gravel, light brown, moist, fine to coarse grain dense, grades to gravel	ed,			
	но с с с канала и кана И канала и канала и канала и канала и канала и канала и канала и канала и канала и канала и канала и канала и к				16 50/6"		1.9	SW-SM	@ 10' SAND with silt and gravel, light brown, moist, fine to coarse grained, very dense, subrounded gravel to 4 inches, non-plastic silt				
				S-1	5 0/5½"		1.1	SW	@ 15' SAND with gravel, light brown, fine grained, very dense, fragments	rock			
	 20			S-2	22 25 29			SW-SM	@ 20' SAND with silt and gravel, light brown, moist, fine to coa grained, very dense, gravel to ½ inches, trace cobble fragmen non-plastic silt	rse tts,			
								Total depth 211/2 feet No groundwater Boring backfilled with soil cuttings					
					-								
S SF R RI B BI	30 LE TYPE PLIT SPO NG SAM JLK SAM BE SAM	IPLE IPLE			L			DS DI MD N CN C Col C	E TESTS: RECT SHEAR SA SIEVE ANALYSIS AXIMUM DENSITY AL ATTERBERG LIMITS DNSOLIDATION EI EXPANSION INDEX DLLAPSE RV R-VALUE SSOCIATES, INC.				

GEOTECHNICAL	BORING LOG	B-13

	e ject		8-29-05				is / Ri		Sheet <u>1</u> of <u>1</u> Project No. 021751-0	001
Drill Hole	ling C e Dia	Co. meter		8"	M	lartin E Drive V	Drilling Veight	Corpo	Type of Rig CME 7 140 lb Automatic Hammer Drop	′5
Feet		iraphic Log do do Lu	Attitudes	Sample No.	Blows Six Inches	Density pcf pcf	Moisture Content, %	il Class. S.C.S.)	DESCRIPTION	Type of Tests
	_	เว N S	A	Sai	Per S	Dry	≅ც	Soil (U.S.	Logged By DAG Sampled By DAG	Typ
	0								@ 0' Silty SAND, moderate orange brown, slightly moist, fine grained, non-plastic silt, scattered gravel to 4 inches on surface	
				R-1	23 50/5½"		1.1	SW-SM	@ 2 ¹ / ₂ ' SAND with silt and gravel, light brown, slightly moist, fine to coarse grained, very dense, angular gravel to 3 inches, non-plastic silt	
	5			R-2	11 26 43		1.2	SW-SM	@ 5' SAND with silt and gravel, light brown, moist, fine to medium grained, some coarse sand, very dense, abundant rounded gravel to 2 inches, non-plastie silt	
10			6 14 17	126.6	3.4	sw	@ 10' SAND with gravel, moderate brown, moist, fine to medium grained, some coarse sand, medium dense, gravel to 2 inches			
				S-1	12 14 19			SW	@ 15' SAND with gravel, moderate yellowish brown, moist, fine to medium grained, some coarse sand, very dense, rounded gravel to 1 inch, trace non-plastie silt	
	 20	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		S-2	18 20 26			sw	20' SAND with gravel, moderate yellowish brown, moist, fine to medium grained, some coarse sand, very dense, rounded gravel to 1 inch, trace non-plastic silt	
	 								Total depth 21½ feet No groundwater Boring backfilled with soil cuttings	
MPLI SPL RIN BUL	30 E TYPE IT SPO G SAM K SAM	iple Iple						DS DI MD A CN C Col C	DE TESTS: IRECT SHEAR SA SIEVE ANALYSIS MAXIMUM DENSITY AL ATTERBERG LIMITS CONSOLIDATION EI EXPANSION INDEX COLLAPSE RV R-VALUE ASSOCIATES, INC.	

Pre Dri Ho	oject illing (le Dia	Co. meter n Top of			C	Lew	is / Ria Drilling Veight	alto Corpo	L BORING LOG B-14 Sheet 1 of 1 Project No. 021751 oration Type of Rig CME 140 lb Automatic Hammer Drop See Geotechnical Map				
Elevation Feet	Depth Feet	z Graphic v Log v	Attitudes	Sample No.	Blows Per Six Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	DESCRIPTION Logged By DAG Sampled By DAG	Type of Tests			
	0 5 10			R-1 R-2 R-3	7 18/6" 23 32 49 50/6"		0.7	SW-SM	 @ 0' SAND with silt and gravel, light brown, dry, fine grained, gravel to 2 inches, non-plastic silt, scattered gravel and cobble to 6 inches @ 21/2' No recovery @ 5' SAND with silt and gravel, light brown, moist, fine to medium grained, some coarse sand, very dense, non-plastic silt, rounded gravel and fractured rock to 3 inches @ 10' No recovery 				
				S-1 S-2	33 50/6" 17 33 35			SW-SM SP-SM	 @ 20' SAND with silt and gravel, light brown, moist, fine to coarse grained very dense, gravel and fractured rock to 2 inches. 				
25 25 30 30 <u>SAMPLE TYPES:</u> S SPLIT SPOON R RING SAMPLE B BULK SAMPLE T TUBE SAMPLE				LE	IGH	TON		DS DI MD M CN C Col C	OF TESTS: CR CORROSION IRECT SHEAR SA SIEVE ANALYSIS WAXIMUM DENSITY AL ATTERBERG LIMITS CONSOLIDATION EI EXPANSION INDEX CONSOCIATES, INC. CONSOCIATES, INC.				

GEOTECHNICAL BORING LOG B-15

			8-29-05		_		is / Ri		Sheet <u>1</u> of <u>1</u> Project No. <u>02</u> 1	1751-001	
Dri	lling (Co				lartin D	Drilling	Corpo	ration Type of Rig C	CME 75	
		meter		8"				:		Drop _30"	
Ele	vatio	n Top of	f Hole		L	ocatio	n	-/	See Geotechnical Map		
Elevation Feet	epth Feet	Graphic Log	Attitudes	Sample No.	Blows Six Inches	Density	Moisture Content, %	C.a.	DESCRIPTION	Type of Tests	
Ē	0-	Ū	Att	Sarr	ыS						
		N S		07	Per				Sampled By DAG	Γ	
	0			B-1	[@ 0' Silty SAND, light brown, dry, fine grained, non-plasticity silt, some fine gravel	SA 30:56:14 CR	
	-	0 0 0 0 0 0		R-1	8 20 32		1.1	SM	@ 2½' Silty SAND with gravel, moderate yellowish brown, slightly moist, fine to medium grained, some coarse sand, dense, gravel u to 1½ inch, non-plastic silt	p	
	5			R-2	19 26 27		J.2	SW-SM	@ 5' SAND with silt and gravel, moderate yellowish brown, slightly moist, fine to medium grained, some coarse sand, dense, gravel to inches, non-plastic silt	5.3	
	10			R-3	11 25 37	131.3	1.8	sw	@ 10' SAND with gravel, moderate yellowish brown, moist, fine to coarse grained, dense, rounded gravel to 2 inches, trace non-plasti silt	ic	
	$ \begin{array}{c} - & \cdot & \cdot & \cdot \\ - & \cdot & \cdot & \cdot \\ 15 - & \cdot & \cdot & \cdot \\ - & \cdot & \cdot & \cdot \\ 15 - & \cdot & \cdot & \cdot \\ - & \cdot & \cdot & \cdot \\ 30 - & \cdot & \cdot \\ - & \cdot & \cdot & \cdot \\ -$			5	SW-SM	@ 15' SAND with silt and gravel, light brown, moist, fine to coarse grained, very dense, gravel to 1 inch, fractured rock					
	20 - S-2 27 28			sw	@ 20' SAND with gravel, moderate yellowish brown, moist, fine to medium grained, some coarse sand, very dense, gravel to ½ inch, trace non-plastic silt	,					
					-				Total depth 21½ fect No groundwater Boring backfilled with soil cuttings		
	25										
S SF R RJ S BL	LE TYPI PLIT SPO NG SAN JLK SAN	NON IPLE MPLE						DS D MD M CN C	DF TESTS: CR CORROSION IRECT SHEAR SA SIEVE ANALYSIS MAXIMUM DENSITY AL ATTERBERG LIMITS CONSOLIDATION EI EXPANSION INDEX DV DV DV DV DV DV	Ż	
ΤTU	IBE SAN	17LE		LE	IGH	ASSOCIATES, INC.					

	GEOTECHNICAL	BORING	LOG	B-16
--	--------------	--------	-----	------

Da			8-29-05									of 1	
	oject						is / Ria				roject No.	021751	
	illing (Io Dia	⊭o. meter		8"					ration 140 lb /	Automatic Hamme	/pe of Rig		p 30"
		n Top of	Hole	<u>ہ</u>		orive V .ocatio	-		140 lb /	See Geotechni		Dro	p <u>30</u>
Elevation Feet	Depth Feet	raphic Log	Attitudes	Sample No.	Blows Six Inches	Density pcf	Moisture Content, %	il Class. S.C.S.)	DESCRIPTION				Type of Tests
ū	-	U	A	Sar	Per S	Dry	Ξō	Soil (U.)	Logged By	DAG			ýpe
		N S			<u>م</u>			~	Sampled By	DAG			- -
	0				9				moist, fine to medi and boulder to 2 fe @ 21/2' SAND with sil	and gravel, moderate y jum grained, gravel to set dia. on surface It and gravel, moderate	2 inches, scatter	ed cobble	
	- -			R-1	9 14 19		1.6	SW-SM		ned, medium dense, rou	unded gravel to	2 inches,	
	-			R-2	17 23 26	125.5	1.6	' SW	@ 5' SAND with grav coarse grained, der	vel, moderate yellowisł nse, subrounded gravel	h brown, moist, to 3 inches	fine to	
	10			R-3	5 0/4"				@ 10' No recovery				
	15			S-1	\$ 50/5½*				@ 15' No recovery				
	20			<u>8-2</u>	≭ <u>25/2</u> "			- <u> </u>	@ 20' No recovery				
									Total depth 20 feet No groundwater Boring backfilled with	n soil cuttings			
	25												
	_												
	30												
S SP R Rii B Bu	LE TYPE LIT SPO NG SAM ILK SAM BE SAM	PON PLE IPLE						DS D MD M CN C Col C	DF TESTS: IRECT SHEAR MAXIMUM DENSITY CONSOLIDATION COLLAPSE	CR CORROSION SA SIEVE ANALYS AL ATTERBERG L EI EXPANSION INI RV R-VALUE	IMITS	36	*
				LE	IGH	TON	I AN	ID A	ASSOCIATE	ES, INC.			

				5			:HN is / Ri		L BORING LOG B	5-17 Sheet <u>1</u> o Project No.	f <u>1</u> 021751	-001
Dr	illing	Co			M		746		oration	Type of Rig	CME	75
		meter		8"					140 lb Automatic H		Dгор	30"
Ele	vatio	n Top of	Hole		L	ocatio	on –		See Ge	otechnical Map		
Elevation Feet	Depth Feet	Graphic Log	Attitudes	Sample No.	Blows Six Inches	y Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)				Type of Tests
ш			٩	S	Рег	ΡŪ	- ŭ	se.		DAG	—	Ţ
	0	N S						<u> </u>				
	_				-				@ 0' SAND with gravel, abundant s surface to 8 inches	ubrounded gravel and co	obble on	
	-			R-1	25 50/4½"		1.0	GW	@ 2 ¹ / ₂ ' Sandy GRAVEL, subrounde fine to medium grained sandy m fractured rock, very dense	d to subangular gravel to atrix, decomposed granit	3 inches, ic clast,	
	5			R-2	18 28 36		2.2	sw	@ 5' SAND with gravel, moderate y coarse grained, dense, gravel to	/ellowish brown, moist, i 1½ inches	fine to	
				R-3	16 50/6"	121.3	2.8	sw	@ 10' SAND with gravel, moderate coarse grained, very dense, round	yellowish brown, moist, ded gravel to 2 inches	fine to	
	 15 			S-1	10 17 24			SW-SM	(a) 15' SAND with silt and gravel, m fine to medium grained, some co inch, fractured rocks, non-plastic	noderate yellowish brown arse sand, very dense, gi c silt	n, moist, avel to 1	
	 20			S-2	18 34 32			sw-sm	@ 20' SAND with silt and gravel, m fine to medium grained, some co inch, fractured rocks, non-plastic	arse sand, very dense, gr	n, moist, avel to ½	
									Total depth 21½ feet No groundwater Boring backfilled with soil euttings			
					-							
S SF R Ri B Bi	<u>LE TYP</u> LIT SPO NG SAN JLK SAN BE SAN	DON IPLE IPLE						DS DA MD M CN C Col C	KAXIMUM DENSITY AL ATTEI CONSOLIDATION EI EXPAN COLLAPSE RV R-VAI	E ANALYSIS RBERG LIMITS ISION INDEX LUE	×	
				LE	IGH	TON		ND A	ASSOCIATES, INC			

Da	te		8-29-05		GEO	TEC	HN	ICA	L BORING LOG B-18 Sheet 1 of 1	
	oject					Lew	is / Ria	alto	Project No. 021751-	
	illing (Co			M				Type of Rig CME	
		meter 1 Top of		8"		ocatio			140 Ib Automatic Hammer Drop See Geotechnical Map	30"
	valio							}		
Elevation Feet	Depth Feet	Graphic Log	Attitudes	Sample No.	Blows Six Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	DESCRIPTION Logged By DAG	Type of Tests
		N S		S	Per		0	<u>س</u>	Sampled By DAG	Ļ
				R-1 R-2	9 17 24 50/6"			SW	 @ 0' SAND with gravel, light brown, dry, scattered rounded gravel and cobble to 12 inches, most < 8 inches @ 2½' SAND with gravel, light brown, slightly moist, fine to coarse grained, dense, rounded gravel to 2 inches @ 5½' Refusal (move hole 3 feet over) @ 7' Refusal Refusal at 5½ feet, move hole over 3 feet Refusal at 7 feet No groundwater Boring backfilled with soil euttings 	
S SI R R B B	30 PLIT SPO ING SAN ULK SAI JBE SAN	DON NPLE WPLE						DS D MD CN (Col (OF TESTS: DIRECT SHEAR SA SIEVE ANALYSIS MAXIMUM DENSITY AL ATTERBERG LIMITS CONSOLIDATION EI EXPANSION INDEX COLLAPSE RV R-VALUE	
				LE	IGH	ΤΟΝ	I AN	ND A	ASSOCIATES, INC.	

Da	te		7-12-06)EO	IEC		СA	Sheet 1 of 1	
	oject					_	FJA R		Project No. 021751-	
	lling C le Dia			8"			dman /eight		g Type of Rig CME-7 140 lbs. Automatic Hammer Drop	
		Top of	Hole	,		ocatio	-		See Geotechnical Map	
Elevation Feet	Depth Feet	raphic Log	Attitudes	Sample No.	Blows Six Inches	Density	Moisture Content, %	Soil Class. (U.S.C.S.)	DESCRIPTION	Type of Tests
<u>э</u> т	쓰다	C D	Attit	amp	Six	ο Δ Δ	Moi	U.S.	Logged By Kaustav Bose	b e d
		N 6		S	Per	Δ	-0	s)	Sampled By Kaustav Bose	ту
		N S		R-1 R-2 R-3	a . 19 32 50/1" 15 17 24 16 34 50/2"	131.0	0.7	SM SM SP	General Solution of the set	SA
	25			-	-					
S SF R Ri B Bl	30 LE TYPE PLIT SPC NG SAM JLK SAM IBE SAM	ION PLE IPLE						DS D MD H CN C Col C	OF TESTS: DIRECT SHEAR SA SIEVE ANALYSIS MAXIMUM DENSITY AL ATTERBERG LIMITS CONSOLIDATION EI EXPANSION INDEX COLLAPSE RV R-VALUE	j

Da	te		7-12-06				••••		Sheet <u>1</u> of <u>1</u>	
Pre	oject					Lewis			Project No. 021751	
	illing (0.11					Type of Rig CME-	
		meter n Top of		8"		ocatio	-		140 lbs. Automatic Hammer Drop See Geotechnical Map	30
	valioi		nole			UCALIU				
Elevation Feet	Depth Feet	z Graphic v	Attitudes	Sample No.	Blows Per Six Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	DESCRIPTION Logged By Kaustav Bose Sampled By Kaustav Bose	Type of Tests
				Bag-1 R-1 R-2	13 10 10 32 50/2"		0.6	SM	 Ø O' Alluvium (Qal): Sifty SAND, fine to coarse sand, trace sub-rounded gravel to 1½ inch, non-plastic fines, loose, dry, very pale orange Ø 2½' Silty SAND with gravel, trace non-plastic fines, fine to coarse grained, fine to medium sub-rounded gravel to 1½ inches, medium dense, dry, yellowish gray Ø 5' No Recovery, coarse angular gravel greater than 3 inches blocked sampler at the tip Ø 7' Gravel to 2 inches in cuttings, difficult drilling, refusal at 7 feet No Groundwater Encountered Boring Backfilled With Soil Cuttings 	MDCR
S S R R B B	30 PLE TYP PLIT SPO ING SAN ULK SAI JBE SAN	DON MPLE MPLE					L	DS D MD I CN C Col C	OF TESTS: CR CORROSION IRECT SHEAR SA SIEVE ANALYSIS MAXIMUM DENSITY AL ATTERBERG LIMITS CONSOLIDATION EI EXPANSION INDEX COLLAPSE RV R-VALUE	

GEOTECHNICAL BORING LOG B-20

					GEO	TEC	HN	CA	L BORING LOG B-21	
	te oject					L Owie	FJA R	ialto	Sheet <u>1</u> of <u>1</u> Project No. <u>021751</u> -	002
	Ject Iling C								Project No021751- g Type of RigCME-7	
	-	meter		8"	D	rive W	/eight		140 lbs. Automatic Hammer Drop	
Ele	vation	n Top of	Hole			ocatio			See Geotechnical Map	
Elevation Feet	Depth Feet	Graphic Log	Attitudes	Sampte No.	Blows Per Six Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	DESCRIPTION Logged By Kaustav Bose Sampled By Kaustav Bose	Type of Tests
				B-1 R-1 R-2	13 10 10 32 50/2"		1.3	SM SM	 @ O' Alluvium (Oal): Silty SAND, fine to coarse sand, trace sub-rounded gravel to 1½ inch, non-plastic fines, loose, dry, very pale orange @ 2½' Silty SAND with gravel, non-plastic fines, fine to medium grained, trace coarse sand, fine to medium rounded gravel to 1½ inches, medium dense, dry, greenish gray @ 3' to 4' Fine to medium rounded gravel to 2½ inches, drilling get tougher @ 5' Silty SAND with gravel, non-plastic fines, fine to coarse grained, fine to medium rounded gravel to 1 inch, medium dense, dry, greenish gray @ 7' Fine to medium angular gravel to 2 inches in cuttings, difficult drilling, refusal at 8 feet Refusal at 8 Feet No Groundwater Encountered Boring Backfilled With Soil Cuttings 	
S SI R R B B	30 PLE TYPI PLIT SPC ING SAN ULK SAN JBE SAN	DON IPLE WPLE			-		L	DS D MD CN (Col (OF TESTS: DIRECT SHEAR SA SIEVE ANALYSIS MAXIMUM DENSITY AL ATTERBERG LIMITS CONSOLIDATION EI EXPANSION INDEX COLLAPSE RV R-VALUE	i

Da	te		7-12-06		DD0	IEU	- FIN	ICA	L BORING LOG B-22 Sheet 1 of 1	
Pro	oject _						FJA R		Project No. 021751	
	lling C le Diai	≎o. meter		8"			dman /eight		Type of Rig CME- 140 lbs. Automatic Hammer Drop	
		1 Top of	Hole			ocatio	-	_	See Geotechnical Map	
Elevation Feet	Depth Feet	Craphic Log	Attitudes	Sample No.	Blows Per Six Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	DESCRIPTION Logged By Kaustav Bose Sampled By Kaustav Bose	Type of Tests
				B-1 R-1 R-2	17 34 29 15 50/2"		1.4	SM	 ^(e) 0' <u>Allevium (Oal):</u> Sifty SAND, fine to coarse sand, trace sub-rounded gravel to 1½ inch, non-plastic fines, loose, dry, very pale orange ^(e) 2½ Silty SAND with gravel, trace non-plastic fines, fine to medium grained, some coarse sand, fine to medium sub-angular gravel to 1½ inches, dense, dry, greenish yellowish gray ^(e) 5' No Recovery, soil too gravelly to be retained in sampler ^(e) 7 Angular chips of basaltic rock in cutting to 3 inches, difficult drilling, refusal at 6 feet Refusal at 7 Feet No Groundwater Encountered Boring Backfilled With Soil Cuttings 	
S SF R RI B BL	30 LE TYPE LIT SPO NG SAM JLK SAN BE SAM	PLE IPLE					L	DS DI MD M CN C Col C	DF TESTS: RECT SHEAR SA SIEVE ANALYSIS MAXIMUM DENSITY AL ATTERBERG LIMITS ONSOLIDATION EI EXPANSION INDEX OLLAPSE RV R-VALUE HTON	

Da	te		7-12-06		SEO	TEC	HN	ICA	L BORING LOG B-23 Sheet 1 of 1	
			1-12-00			.ewis L	.eiske	Rialto		003
Dri	Iling C	o							g Type of Rig CME-7	
Ho	le Diar	neter		8"	_ D				140 lbs. Automatic Hammer Drop	30"
Ele	vatior	n Top of	Hole	'	_ L	ocatio	п		See Geotechnical Map	
Elevation Feet	Depth Feet	z Graphic v	Attitudes	Sample No.	Blows Per Six Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	DESCRIPTION Logged By Kaustav Bose Sampled By Kaustav Bose	Type of Tests
				Bag-1 R-1			1.1	SM	 (@ 0' Alluvium (Oal): Silty SAND, fine to coarse sand, trace rounded gravel to 4 inches, non-plastic fines, loose, dry, pale gravish brown (@ 2) Silty SAND with gravel, non-plastic fines, fine to medium angular gravel to 2 inches, medium dense, dry, vellowish grav (@ 3' Fine to medium angular gravel to 2 inches in cuttings, broken pieces of basaltic rock to 6 inches, difficult drilling, refusal at 3 feet Totai Depth = 4 feet No Groundwater Encountered Boring Backfilled With Soil Cuttings 	MD
S SA R RI B B	30 LE TYPE PLIT SPC NG SAM JLK SAM IBE SAM	IPLE MPLE						DS D MD I CN C Col C	OF TESTS: DIRECT SHEAR SA SIEVE ANALYSIS MAXIMUM DENSITY AL ATTERBERG LIMITS CONSOLIDATION EI EXPANSION INDEX COLLAPSE RV R-VALUE	j
							L			

ο.			7 4 9 90		SEO	TEC	HN	ICA	AL BORING LOG B-24	
)		_ewis L	eiske	Rialto	Sheet 1 of 1 o Project No. 021751-00	13
	illing C	Co.							ng Type of Rig CME-75	
		meter		8"	C				140 lbs. Automatic Hammer Drop 3	
Ele	evation	1 Top of	Hole	· ·		ocatio			See Geotechnical Map	
Elevation Feet	epth -eet	raphic Log	Attitudes	Sample No.	Blows Six Inches	Density	Moisture Content, %	Class. S.C.S.)	DESCRIPTION	Type of Tests
Ele	0	5	Atti	an	BS		Mo	Soil (U.S.	Logged By Kaustav Bose	be
		N 6		S	Per		0	0.0	Sampled By Kaustav Bose	<u>≻</u>
	0			Bag-1					@ 0' <u>Alluvium (Qal):</u> Silty SAND, fine to coarse sand, trace rounded gravel to 4 inches, non-plastic fines, loose, dry, pale grayish brown	CR
	-			R-1	18 26 35	112.2	2.0	SM		DS
	5			R-2	20 30 37			SM	@ 5' Silty SAND with gravel, fine to medium sand, trace coarse sand, non-plastic, fine to medium rounded gravel less than 1½ inch, medium dense, light yellowish brown, gray	
				R-3	24 36 41	116.9	3.9	SM	@ 10' Silty SAND with gravel, fine to medium grained, trace coarse sand, non-plastic fines, rounded gravel to 1 inch, dense, tan, dry	
				R-4	23 50/4"	122.5	4.1	SM	@ 15' Silty SAND with gravel, fine to coarse sand, traces of broken pieces of gravel, fragmented granite, fine to medium rounded gravel to 1½ inches, very dense, yellow grayish brown, dry	
	20			R-5	13 50/5"	126.8	3.5	ML	@20' Sandy SILT, fine to medium sand, trace coarse sand, non-plastic fines, trace fine to medium sub-rounded gravel to 1 inch, very dense, light greenish brown, dry to slightly moist	
	25				- - -				Total Depth = 21¼ feet No Groundwater Encountered Boring Backfilled With Soil Cuttings	
S SP R Ril B BL	30 LE TYPE PLIT SPO NG SAMI JLK SAM	IPLE						DS DI MD M CN C Col C	OF TESTS: DIRECT SHEAR SA SIEVE ANALYSIS MAXIMUM DENSITY AL ATTERBERG LIMITS CONSOLIDATION EI EXPANSION INDEX COLLAPSE RV R-VALUE	

Date	Excava	ted: Sep		Logged	Вү:	TDL		
Loca	tion: Le	ewis / Ri	alto Airport			Sample	d By:	TDL
Dep	th (fect)	Soil				Test Results		
Тор	Bottom	symbol (USCS)	Description	Geologic Unit	Sample Number		Density, Dry (pef)	
0.0	1.0	SM	Silty SAND, olive brown, slightly moist, fine to medium		B-1	0-1		
			grained, slightly cemented, gravel to 2.5 inches, rootlets.		B-2	1-5	ana an an an an an an an an an an an an	lanantai välis v sosana pageljan
					rhainya dinakanka Qiana Kalanbi Kalabi	*****	600.004.0000.000.000.000	2m24-61083-82977452m2482m2680
1.0	10.0	SW	Gravelly SAND with cobble and boulder, yellowish		98899999-0294-028-98-9995-		n di Militia (aktore n. normagnaj poj	
			brown, dry to slightly moist, fine to coarse grained,	En	กรากและเวลาสราชสายการการการกำลังการก	un della ner delman arbetella ha	- Managaran an an an an an an an an an an an an a	100-1011/001/2/12/07/1001000
			subrounded gravel up to 3 inches, become moist below 5 feet.	Alluvium	anguntuntyat tunta tuntut antai 1824 173 1	W 7**2*24(7*2)*24(1)******	**********	136 34706 01373 08-78-8888 -
			Matrix:	All	1999-1999-1999-1999 - Million Bargerson		Marconnective/addition	a Allan Dalam dan Kita a sa kanita dala
			30% - 40% 3" - 8"		antarian Minerana di Amerika		(After an one for an oral and an	allenderhaust behalte salten er anvället.
			10% - 15% 8" - 12"			numerour our an amountainer	Yazaanyyaanun viniilii tuk	ANY 6 YOR CO. C. C. C. C. C. C. C.
			1% - 5% 12" - 18"		ANNUA ANNUALANNA A CAMPAGA			NOLADINO DO E VEDERAL DARD
						THE PERSON CONTRACTOR OF A	Contraction of the second second	
	Total D	epth: 10) feet					
	-		encountered.					
	Test pit	backfill	ed, tamped with bucket, wheel rolled at surface.					

Test Pit TP-2

Date	Excava	ted: Sep	otember 1, 2005			Logged	By:	TDL
Locat	tion: Le	ewis / Ri	ialto Airport			Sample	d By:	TDL
Dept	h (feet)	Soil				Test	Results	
Тор	Bottom	symbol (USCS)	Description	Geologic Unit	Sample Number	Depth (feet)	Density, Dry (pcf)	Moisture (%)
0.0	2.0	SM	Silty SAND, olive brown, dry to slightly moist, fine to		B-1	2-6	and the state of t	1994 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
			medium grained, some subrounded gravel to 3 inches, slightly cemented, trace cobble, rootlets.				1.00.00 ¹ 8.40 .0000 8 001100000000000000000000000000000	ومۇرمەردە، مەتەر مەتەر مەتەر مەتەر مەرەر مەرەر مەرەر مەرەر مەرەر مەرەر مەرەر مەرەر مەرەر مەرەر مەرەر مەرەر مەر
2.0	6.5	SM	Silty SAND, olive brown, moist, fine grained, trace		na se sana ang sana ang sanain s	yn minin anno manachdd	bine in an an air a she an air an air air air air air air air air air air	na naithnai ni an thaith
			coarse subrounded gravel to 3.5 inches, slightly cemented, rootlets.	E			1	
6.5	10.5	SW	SAND with gravel, brown, moist, fine to coarse grained,	Alluvium		Colonalistic columbia	waamaaanaa ahebaadde W	ust withheld when us draw with the
			subrounded gravel to 3 inches, subrounded cobble to 8	Allu	1.000000000000000000000000000000000000	//www.www.www.www.w		
			inches.			· · · · · · · · · · · · · · · · · · ·	2000.00° - 40° 40° 50° 50° 50° 50° 50° 50° 50° 50° 50° 5	
			Matrix: 30% - 40% 3" - 8"					
			10% - 15% 8" - 12"			ristationen en andere	979299896949494944 April 2010	a farances accesses and
			1% - 5% 12" - 18"		1. (2012) 2012 (2012) 2012 (2012) 2012 (2012) 2012 (2012) 2012 (2012) 2012 (2012) 2012 (2012) 2012 (2012) 2012			foli-skalified Longitum and Arlan
 	Total D	epth: 10).5 feet					
		-	r encountered.					
	Test pit	backfill	ed, tamped with bucket, wheel rolled at surface.					

Project No. 021751-001

Test	t P	it	T	Ρ-	3
------	-----	----	---	----	---

Date	Excava	ted: Se	ptember 1, 2005			Logged	By:	TDL
Loca	tion: Le	ewis / R	ialto Airport			Sample	d By:	TDŁ
Dept	h (feet)	Soil				Test	Results	
Төр	Bottom	symbol (USCS)	Description	Geologic Unit	Sample Number		Density, Dry (pef)	Moisture (%)
4.5	8.5	SW-SM	SAND with gravel, brown, dry, fine to coarse grained, fine to eoarse subrounded gravel, weakly cemented, rootlets. Matrix: 40% - 45% 3"- 8" 15% - 25% 8" - 12" 5% - 10% 12" - 18" SAND with silt and gravel, brown, dry, fine to coarse grained, fine to coarse subrounded gravel, weakly cemented, rootlets. Matrix: 40% - 45% 3"- 8" 15% - 25% 8" - 12" 5% - 10% 12" - 18" SAND with silt and gravel, brown, dry to slightly moist, fine to coarse grained, slightly cemented, fine to coarse gravel.	Alluvium				
	No grou		feet r encountered. ed, tamped with bucket, wheel rolled at surface.					

Date	Excava	ted: Se	ptember 1, 2005			Logged	Βγ:	TDL	
Loca	tion: Le	ewis / R	ialto Airport			Sample	d By:	TDL	
Dept	h (feet)	Suil				Test	Test Results		
Тор	Bottom	symbol (USCS)	Description	Geologic Unit	Sample Number		Density, Dry (pef)	Moisture (%)	
3.5	3.5 		Silty SAND with Gravel, brown, dry, fine to medium grained, some coarse grained, gravel up to 3 inches, rootlets. Matrix: 5% - 10% 3"- 8" 0% - 1% 8" - 12" 0% - 1% 12" - 18" Gravelly SAND, yellowish brown, slightly moist, fine to coarse grained, fine to coarse subrounded gravel, some silt. Matrix: 30% - 40% 3"- 8" 5% - 10% 8" - 12" 0% - 5% 12" - 18"	Alluvium		3.5-10			
	Total Depth: 10 feet No groundwater encountered. Test pit backfilled, tamped with bucket, wheel rolled at surface.								

Project No. 021751-001

Date	Excava	ted: Sep	otember 1, 2005			Logged	By:	TDL		
Locat	tion: Le	ewis / Ri	ialto Airport			Sample	d By:	TDL		
Dept	h (feet)	Soil		.		Test	Results			
Тор	Bottom	symbol (USCS)	Description	Geologic Unit	Sample Number	Depth (feet)	Density, Dry (pcf)	Moisture (%)		
0.0	2.0	SP-SM	SAND with silt and gravel, brown, dry, fine grained,				nterrora can scan an effectuar	10.00.000.000.000.000.00		
			medium to coarse subrounded gravel, some cobbles,			application from its in a support source		JALANTAN IN JALALAN MUMUMU V.		
2.0	10.0	SW	some boulders, rootlets. Gravelly SAND with trace silt, light brown, slightly		.994 Nin 194 Annu 10-198 in	1049-49289-4949-1448-1947	****	1-1-1400-1-14		
2.0	10.0	5.	moist to dry, fine to coarse grained, fine to coarse	Alluvium		seldala et bris ell'abditane	het maar an aakan are on alman almite			
			subrouned gravel, rootlets.			addaaraa addaardaar daadd ardinddaa	nyang analnyanyagana mwa na si sis	. 18. 1. 19 19. 19. 19. 19. 19. 19. 19. 19.		
			Matrix:	ΑII		41-1500-046-81-21-05-06-06-05-		Soun Trounderstandings		
			20% - 35% 3"- 8"			jaganna sanasanan ana anasahan,		Nårrarländralandsförr alladist		
			10% - 15% 8" - 12" 1% - 5% 12" - 18"		01140000000 00 00000000000		ng ganga sanar gangaran fanang dingdaka bita.	Salary and the second of the second second second second second second second second second second second second		
						er en Tennanne en ander ante	an danaan in dha tana birtini namina tan tar	en anterin e norm name nat, se het han s		
	Total Depth: 10 feet									
	-		cncountered.							
	Test pit backfilled, tamped with bucket, wheel rolled at surface.									

Test Pit TP-6

Date Excavated: September 1, 2005 Logged By: TDL Location: Lewis / Rialto Airport Sampled By: TDL Depth (feet) Soil Test Results Geologie Description symbol Depth Density, Moisture Sample Тор Bottom Unit (USCS) Number (feet) Dry (pef) (%) 0.0 4.5 SM Silty SAND, brown, dry, fine to medium grained, some coarse grained, trace gravel to 2 inches, non-plastic silt, rootlets. 4.5 SW-SM SAND wit silt and gravel, yellowish brown, slightly 6.0 moist, fine to coarse grained, fine to coarse subrounded gravel, some silt. Matrix: 20% - 30% 3"- 8" Alluvium 5% - 10% 8" - 12" 0% - 2% 12" - 18" 6.0 11.0 SW SAND with gravet, yellowish brown, slightly moist, fine to coarse grained, fine to coarse gravel. Matrix: 20% - 30% 3"- 8" 5% - 10% 8" - 12" 0% - 2% 12" - 18" Total Depth: 11 feet No groundwater encountered. Test pit backfilled, tamped with bucket, wheel rolled at surface.

Leighton and Associates, Inc.

Project No. 021751-001

Date	Excava	ted: Sep	otember 1, 2005			Logged By:		TDL	
Locat	tion: Le	ewis / Ri	ialto Airport			Sample	d By:	TDL	
Dept	lı (fcet)	Soil		C		Test			
Тор	Bottom	symbol (USCS)	Description	Geologic Unit	Sample Nømber	Depth (feet)	Density, Dry (pcf)		
0.0	2.0	SM	Silty SAND, brown, dry, fine to medium grained, some			a manananananananananan			
			subrounded gravel to 3 inches, some cobbles to 8 inches, some boulder to 18 inches, rootlets.	-	ana ana ina mana kaonina dia minina dia minina dia minina dia minina dia minina dia minina dia minina dia minin				
2.0	10.0	SW	SAND with gravel, yellowish brown, slightly moist, fine						
		to coarse grained, fine to coarse subrounded gravel, become moist below 5 feet.	Alluvium	en hande førse annan som svædet som er			* ******		
		-	Matrix:	Allu	36943404.04?APT0404534	URLPEY AN YURLAN ANALEY V	AND A COLORADORA	en aleman va malen va anangajen.	
			20% - 30% 3"- 8"		2004 - 2014 - 2014 - 2014 - 2014 - 2014 - 2014 - 2014 - 2014 - 2014 - 2014 - 2014 - 2014 - 2014 - 2014 - 2014	99999999999999999999999999999999999999	nii aasaani oli dahadaa iyo a	a nya asarikati kuti kuti silama mbaljasarma. Manyar Canaya Minyay (Jinya Ayi (Majaby ()	
			10% - 15% 8" - 12" 1% - 5% 12" - 18"	-	-1	70.	Annon and decodents in Addition Article	1	
							a dara dalah karang sebagai karang sebagai karang sebagai karang sebagai karang sebagai karang sebagai karang s	-0-10-02 03020-0408000000	
	Total Depth: 10 feet								
			encountered. ed, tamped with bucket, wheel rolled at surface.						
					_				

Test Pit TP-8

Date	Excava	ted: Sep	otember 1, 2005			Logged	By:	TDL
Locat	tion: Le	ewis / Ri	alto Airport			Sample	d By:	TDL
Dept	h (feet)	Soil				Test	Results	
Top	Bottom	symbol (USCS)	Description	Geologic Unit	Sample Number	Depth (feet)	Density, Dry (pcf)	
0.0	0.8	SM	Silty SAND, brown, dry, fine to medium grained, some		B-1	0.8-6		
0.8	6.0	SW	gravel to 3 inches, trace cobble, rootlets. SAND with gravel, brown, moist, fine to coarse grained,		COLUMN 1 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -			
			fine to coarse gravel, rootlets.		2	o deter and an and a standard of the	1	
			Matrix:			a in mitaliaide acta		
			20% - 25% 3"- 8"	5	ananan ana ana ana panya	ala manana ang ang ang ang ang ang ang ang an	4 ₄₄ 444834144444443444	odial-loge-flageric-saracteria,
			5% - 10% 8" - 12"	Allavium	-		ง่างการสำนาจทำงารให้การจาก	
6.0	11.0	sw	0% - 2% 12" - 18"	lkuv				
0.0	11.0	<u> </u>	SAND wit gravel, brown, highly moist, fine to coarse grained, fine to coarse gravel, rootlets.	A	3.000000000000000000000000000000000000		Ward, 1997, -1, -19, -19, 19, 19, 19, 19, 19, 19, 19, 19, 19,	1949-197-197-197-19-19-19-19-19-19-19-19-19-19-19-19-19-
			Matrix:					
			20% - 25% 3"- 8"				174,000,000,000,000,000,000,000,000,000,0	
<u> </u>			5% - 10% 8" - 12"		disinionar en en en en en en en en en en en en en	s-la ero anne chann aire daoin		anon an an an an an an an an an an an an an
		_	0% - 2% 12" - 18"		ANTER STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, S	1.0 10.000.000.000.000.000.000.000.000.0	.00-0198-0-00096-0-Augustationades	੶₩₩ĸ੶ĸħĸġŦĬ <u>Ţ</u> ĸĊĊĸġ ĸĸĸ ₩Ŕġ Ŗĸ ŔŗŶĔĬŔ
							an an an an an an an an an an an an an a	
	Total D	epin: 10	feet					
	No grou	indwater	encountered.					
	Test pit	backfille	ed, tamped with bucket, wheel rolled at surface.					

Project No. 021751-001

Date	Excava	ted: Sep	otember 1, 2005			Logged	By:	TDL			
Locat	ion: Le	ewis / Ri	ialto Airport			Sample	d By:	TDL			
Dept	h (feet)	Soil		Contente		Test Results					
Тар	Bottom	symbol (USCS)	Description	Geologic Unit	Sample Number	Depth (feet)	Density, Dry (pcf)	Moisture (%)			
0.0	2.0	SM	Silty SAND, brown, dry, fine to medium grained, trace subrounded gravel to 3 inches, weakly cemented, rootlets.	Alluvium	B-1	0-2	9, 10, 20, 20, 20, 20, 20, 20, 20, 20, 20, 2				
2.0	3.0	SM	Silty SAND, brown, dry, fine to medium grained, some coarse grained, weakly cemented, some coarse gravel, some cobbles to 8 inches, rootlets.) - Co-CECCARTON TOCARTON TOCARTON	1999 - 1999 -	er of shall a survey and the			
3.0	10.0	SW	SAND with gravel, moderate brown, slightly moist to dry, fine to coarse grained, fine to coarse gravel. Matrix: 20% - 30% 3" - 8" 10% - 15% 8" 12" 1% - 5% 12" - 18"					na ana mang mang mang mang mang mang man			
	Total Depth: 10 feet No groundwater encountered. Test pit backfilled, tamped with bucket, wheel rolled at surface.										

Test Pit TP-10

Date	Excava	ted: Sep	otember 1, 2005			Logged	By:	TDL
Locat	ion: Le	ewis / R	ialto Airport			Sample	d By:	TDL
Dept	h (feet)	Soil				Test	Results	
Тор	Bottom	symbol (USCS)	Description	Geologic Unit	Sample Number	Depth (feet)	Density, Dry (pcf)	Moisture (%)
0.0	4.5	SM	Silty SAND, brown, dry, fine to medium grained, trace coarse gravel to 3 inches, rootlets.			Scheme for the second manageme		
4.5	6.5	SW	SAND with gravel, moderate brown, slightly moist, fine to coarse grained, fine to coarse subrounded gravel. Matrix: 10% - 15% 3" - 8" 1% - 2% 8" - 12"	vium	1		9 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -	
6.5	10.5	SW	SAND with gravel, moderate brown, moist to highly moist, fine to coarse grained, fine to coarse subrounded Matrix: 10% - 15% 3" - 8" 1% - 2% 8" - 12"	Alluvium				
	No grou		0.5 feet encountered. ed, tamped with bucket, wheel rolled at surface.					

Project No. 021751-001

Test Pit TP-11	Test	Pit	TP-	11
----------------	------	-----	-----	----

Date	Excava	ted: Sep	otember 2, 2005			Logged	By:	TDL
Locat	ion: Le	ewis / R	alto Airport			Sample	d By:	TDL
Dept	h (feet)	Sail				Test	Results	
Тор	Bottom	symbol (USCS)	Description	Geologie Unit	Sample Number	Depth (fect)	Density, Dry (pcf)	Moisture (%)
0.0	2.0	SM	Silty SAND, brown, dry, fine to medium grained, some		B-1	10-12		
			subrounded gravel to 3 inches, non-plastic silt, rootlets.		-0.000000000000000000000000000000000000			
2.0	3.5	SW-SM	SAND with silt and gravel, dry, fine to coarse grained, brown, fine to coarse gravel, some cobble to 5 inches.			99999999999999999999999999999999999999	-1	1,
			Matrix: 10% - 1.5% 3" - 8"	8			unanoraa any sojarya dagaga Culor dabat bour dababa	1999 - 2010 - 20
		0.71	2% - 5% 8" 12" 0% - 2% 12" - 18"	Alluvium	*****	**************************************	505-0 ¹ -01 ⁻⁰ -	******
3.5	10.0	SW	SAND with gravel, yellowish brown, moist, fine to coarse grained, fine to coarse gravel. Matrix:	A		0004 400 00 0 ,	1991 - 1997 - 1992 - 1993 - 1993 - 1993 Carlo - Carlo - 1993 - 1993 - 1993 - 1993	
			10% - 15% 3" - 8" 2% - 5% 8" 12"				1489-49 am 1699 (1490) (1490) (1490)	9999 (jung my , m , january 1400) (stra 1994 - Maria Maria Mandalah (stra
			0% - 2% 12" - 18"					
10.0	12.0	SC	Clayey SAND, brown, wet, fine grained, trace coarse grained, non-plastic clay.				880 vit milit militär dir forsta	a a sanggangangan angganaga
	No grou		encountered. ed, tamped with bucket, wheel rolled at surface.					

			otember 2, 2005			Logged	-	TDL
	10⊓: L(fi (feet)	1	alto Airport			Sample	a by: Results	TDL
	Bottom	Soil symbol (USCS)	Description	Geologic Unit	Sample Number	Depth (feet)		Moisture (%)
0.0	2.5	SM	Silty SAND, brown, dry, fine to medium grained, some gravel to 3 inches, 0.5 inch of asphalt, 1 inch of base, rootlets.	Afu	B-1 B-2	6-10 6-10		
2.5	6.0	SW	SAND with gravel, pale brown, dry, fine to medium grained, fine to coarse gravel. Matrix: 20% - 25% 3" - 8" 5% - 15% 8" - 12"	Е				
6.0	10.0	SP SC-SM	WEST: SAND, pale brown, highly moist, fine to medium grained, some coarse grained, some gravel to 2 inches. EAST: Silty SAND / Clayey SAND, reddish brown, very	Alluvüum				
			moist, fine to medium grained, trace coarse grained, some gravel up to 2 inches.					
	No gro) fect r encountercd. ed, tamped with bucket, wheel rolled at surface.					

.

Project No. 021751-001

Date	Excava	ted: Sep	otember 2, 2005			Logged	By:	TDL		
Locat	tion: Le	ewis / R	ialto Airport			Sample	d By:	TDL		
Dept	th (fect)	Soil				Test	Results			
Тор	Bottom	symbol (USCS)	Description	Geologic Unit	Sample Number		Density, Dry (pcf)	Moisture (%)		
0.0	2.0	SM	Silty SAND, brown, dry, fine to medium grained, some subrounded gravel to 3 inches, some cobbles to 8 inches, rootlets.		ana ana amin'ny tanàna mandritry mandritry na hara-amin'ny tanàna mandritry dia mandritry			44-4		
2.0	9.0	SW	SAND with gravel, gray brown, slightly moist to moist, fine to coarse grained, fine to coarse gravel, become moist below 6 feet. Matrix: 30% - 35% 3" - 8" 10% - 15% 8" - 12" 1% - 2% 12" - 18"	Alluvium	Alluvium					
9.0	10.0	SM	Silty SAND, reddish brown, highly moist, fine to coarse grained, some gravel to 2 inches, some cobble to 8 inches.			nanna an an san san san san san Sadarda da sa sa sa sa sa sa sa San san sa sa sa sa sa sa sa sa sa		21-10-20-20-20-20-20-20-20-20-20-20-20-20-20		
	Total Depth: 10 feet No groundwater encountered. Test pit backfilled, tamped with bucket, wheel rolled at surface.									

Test Pit TP-14

		ewis / Ri	alto Airport			Sample		TDL
Dept	h (feet)	Soil		Geologic		Test	Results	
Тор	Bottom	symbol (USCS)	Description	Cnit	Sample Number	Depth (feet)	Density, Dry (pef)	
0.0	2.5	SM	Silty SAND, brown, dry, weakly cemented, fine to			1420-1433-1498-1422-1428-1734		
			medium grained, some subrounded gravel to 2 inches, rootlets.					
2.5	4.0	SW-SM	SAND with silt and gravel, brown, dry, fine to medium				-1	
			grained, fine to coarse subrounded gravel, some cobbles.	En En				
4.0	10.0	SW	SAND with gravel, gray brown, dry, fine to coarse	Alluvium				
			grained, fine to coarse gravel, subangular to subrounded gravel.	Al		****		
			Matrix:	1				
			20% - 30% 3" - 8" 1% - 5% 8" - 12"					
	Total D	epth: 10) feet					
	No gro	undwater	encountered.					

Project No. 021751-001

Date	Excava	ited: Sep	otember 2, 2005			Logged	By:	TDL			
Locat	tion: L	ewis / Ri	alto Airport			Sample	d By:	TDL			
Dept	th (feet)	Soil		Cului		Test Results					
Төр	Bottom	symbol (USCS)	Description	Geologic Unit	Sample Number	Depth (feet)	Density, Dry (pef)	Moisture (%)			
0.0	2.0	SM	Silty SAND, brown, dry, fine to medium grained, some coarse grained, some subrounded gravel to 2 inches, rootlets.	Alluvium	anan amanan munan anan munan anan Aardama (Maanisi (Aadabar) 7 m			2000-000-000-00-00-00-00-00-00-00-00-00-			
2.0	3.5	SW-SM	SAND with silt and gravel, moderate brown, dry, fine to coarse grained, fine to coarse gravel, some cobbles to 5 inches.		nan ar maantan ar ar an an an an an an an an an an an an an			200			
3.5	11.5	SW	SAND with gravel, brown, dry, fine to coarse grained, fine to coarse gravel, bccome moist below 5 feet. Matrix: 10% - 15% 3" - 8" 1% - 5% 8" - 12"			a popular					
	Total Depth: 11.5 feet No groundwater encountered. Test pit backfilled, tamped with bucket, wheel rolled at surface.										

Test Pit TP-16

Date	Excava	ted: Sep	otember 2, 2005			Logged	By:	TDL	
Locat	ion: Le	ewis / Ri	alto Airport			Sample	d By:	TDL	
Dept	h (feet)	Soil				Test	Results		
Тор	Bottom	symbol (USCS)	Description	Geologic Unit	Sample Number	•	Density, Dry (pcf)	Moisture (%)	
0.0	2.5	SW-SM	SAND with silt and gravel, brown, dry, fine to coarse			****			
			grained, fine to coarse gravel, rootlets.	1					
2.5	11.0	SW	SAND with gravel, gray brown, dry to slightly moist,						
			fine to coarse grained, fine to coarse subrounded gravel,	R					
			rootlets, become moist below 6 feet.	Alluvium					
			Matrix:	IIn		*********			
			15% - 20% 3" - 8"	¥	/au destination des states and donates have be			******	
			2% - 5% 8" - 12"		-Maradonikan Desteru (Maradonia)	* 1995) an e - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 -		auffallefinite.er/aumit/allialite	
			0% - 1% 12" - 18"						
	Total Depth: 11 feet								
No groundwater encountered.									
	Test pi	t backfill	ed, tamped with bucket, wheel rolled at surface.						
			· · · · · · · · · · · · · · · · · · ·						

Project No. 021751-001

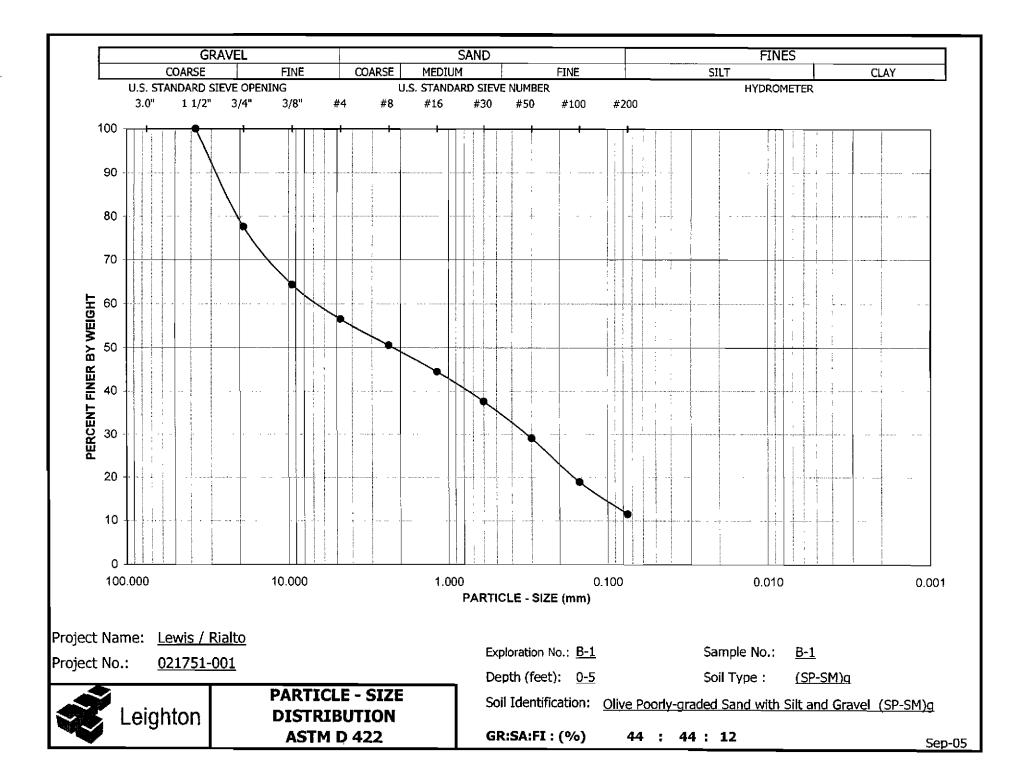
Date	Excava	ited: Se	ptember 2, 2005			Logged	Вү:	TDL
Locat	lon: L	ewis / R	ialto Airport			Sample	d By:	TDL
Dept	h (feet)	Sail				Test	Results	
Төр	Bottom	symbol (USCS)	Description	Geologie Unit	Sample Number	Depth (feet)	Density, Dry (pcf)	Moisture (%)
2.0	2.0	SW	SAND with silt and gravel, gray brown, dry, fine to medium grained, some coarse sand, medium to coarse subrounded gravel, rootlets. Matrix: 15% - 20% 3" - 8" 5% - 10% 8" - 12" 1% - 2% 12" - 18" SAND with gravel, brown, slightly moist to moist, fine to coarse grained, fine to coarse gravel, become moist below 3 feet. Matrix: 15% - 25% 3" - 8" 5% - 10% 8" - 12" 1% - 2% 12" - 18"	<u> </u>				
	No gro) feet r encountered. ed, tamped with bucket, wheel rolled at surface.					

ale	Excava	tea: Se	ptember 2, 2005			Logged	вү:	TDL
		ewis / R	lalto Airport			Sample	'	TDL
Dept	h (feet)	Soil		Geologic		Test	Results	
Top	Botiom	symbol (USCS)	Description	Unit	Sample Number	Depth (feet)	Density, Dry (pcf)	Maistu (%)
0.0	2.5	SM	Silty SAND with gravel, dark brown, dry, fine to					
			medium grained, some coarse grained, gravel up to 3					
			inches, rootlets.					
2.5	7.0	SW	SAND with gravel, gray brown to brown, dry to slightly		6	44.44 Storigery Country		
			moist, fine to coarse grained, fine to coarse subrounded			100 CONTRACT CONTRACT VICE		
			gravel.					
			Matrix:	шn				
			20% - 25% 3" - 8" 5% - 10% 8" - 12"	ivi	Alluvium			
			0% -2% 12" - 18"	All				
7.0	10.0	SW-SM	SAND with silt and gravel, light brown, moist, fine to					
	10.0	0.0.0.0	coarse grained, fine to coarse gravel, non-plastic silt.				······································	
			Matrix:					
			20% - 25% 3" - 8"					, annald ann à stàit i adhràit i
			1% - 5% 8" - 12"					

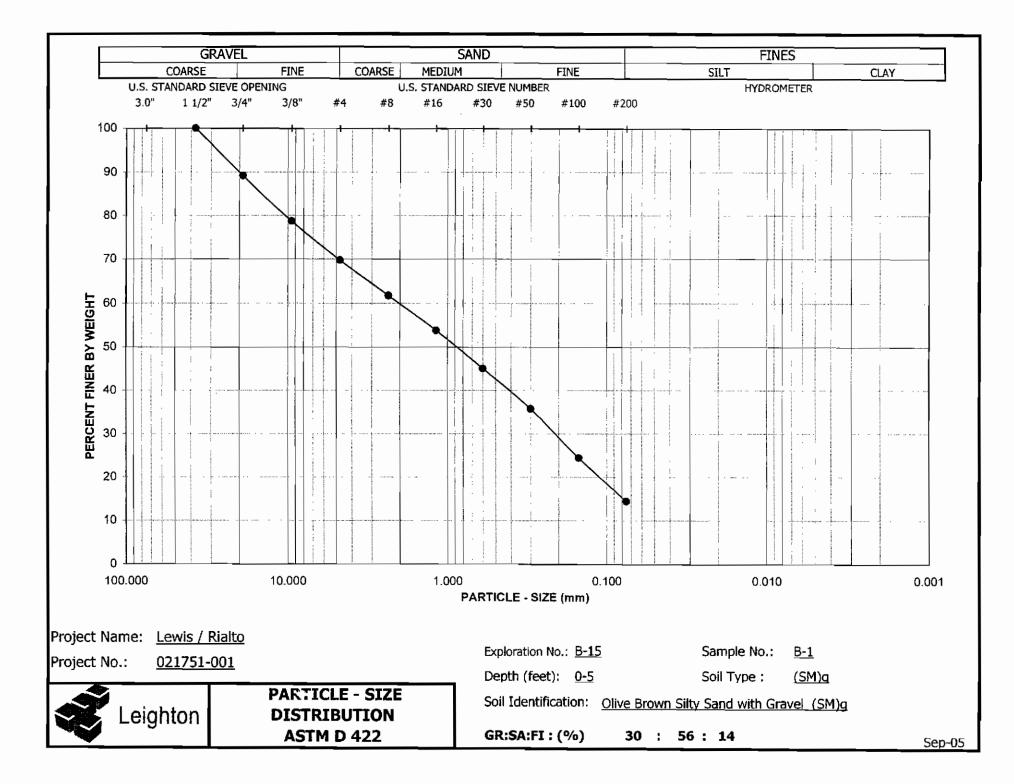
Project No. 021751-001

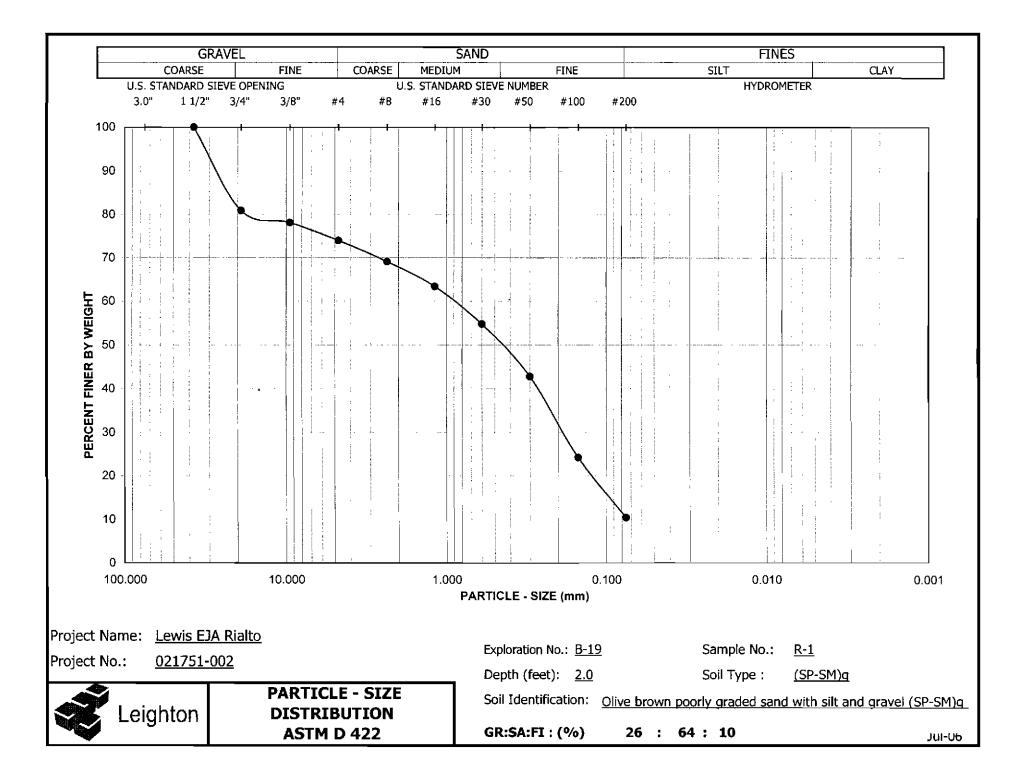
Date Excavated: September 2, 2005							Logged By:		
Locat	ion: Le	ewis / Ri	alto Airport			Sample	d By:	TDL	
Dept	h (feet)	Soil				Test	Results		
Тор	Bottom	symbol (USCS)	Description	Geologic Unit	Sample Number		Density, Dry (pcf)		
0.0	2.5	SM	Silty SAND, brown, dry, fine to medium grained, some			manine weensow weiwelde			
			subrounded gravel to 3 inches, few cobbles to 8 inches, rootlets.				aansaa waxaa ahadadhadhadhadhadha	194963 2000 No. 1960 No. 1960 No. 1	
2.5	10.0	SW	SAND with gravel, gray brown, dry, fine to coarse		To 470390-0003-00-0808-0-0	vezateronaceroaxole	#1818.5.5.95+7.5.0000888848948547	*****	
			grained, fine to coarse gravel, become moist below 7.5	ium	1				
			feet.	Alluvium		layaqdaq, uqdaraqayla kabiqaraa	MILLION M. ROOMERSHOP NO.		
			Matrix: 20% - 25% 3" - 8"	A	and in the increase contraction and			uje miletar uparan transference	
			5 % - 10% 8" - 12"		taraala Madadhar Walitska aan a ki	er officielet de southe de van die ser	risteniones tinintenen ti	hill an an an an an an an an an an an an an	
			0% - 1% 12" - 18"						
	TetalD	10							
	Total Depth: 10 feet No groundwater encountered.								
	Test pit backfilled, tamped with bucket, wheel rolled at surface.								

Test Pit TP-20

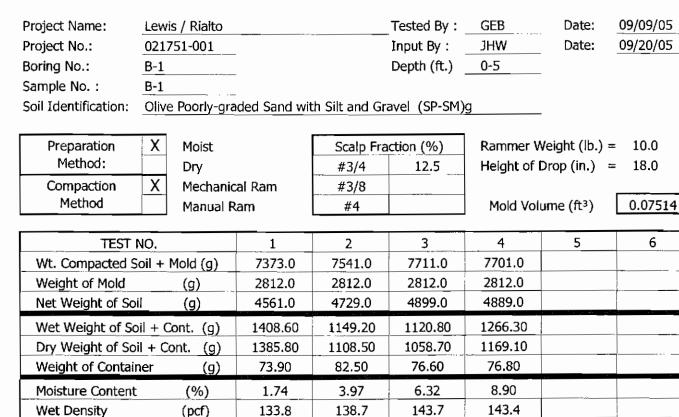

Location: Lewis / Rialto Airport Sampled By: TDL Depth (feet) Soil (USCS) Description Geologic Unit Test Results 1.5 S.M Silty SAND, brown, dry, fine to medium grained, some gravel up to 3 inches, rootlets. Image: Soil gravel up to 3 inches, rootlets. Moisture (feet) Depth (feet) Depth (feet) Depth (feet) Depth (feet) Dry (pet) Moisture (%) 1.5 3.5 SW SAND with gravel, gray brown, dry, fine to coarse grained, fine to coarse gravel, subangular to subrounded gravel. Image: Soil gravel, subangular to subrounded gravel. Image: Soil gravel, sold subrounded gravel, sold subrounded gravel, become highly moist to wet below 7 feet. Image: Soil gravel, subangular to subrounded gravel, become highly moist to wet below 7 feet. Image: Soil gravel, sold subrounded gravel, become highly moist to wet below 7 feet. Image: Soil gravel, sold subrounded gravel, become highly moist to wet below 7 feet. Image: Soil gravel, sold subrounded gravel, become highly moist to wet below 7 feet. Image: Soil gravel, sold subrounded gravel, become highly moist to wet below 7 feet. Image: Soil gravel, sold subrounded gravel, sold subrounded gravel, sold subrounded gravel, become highly moist to wet below 7 feet. Image: Soil gravel, sold subrounded gravel, sold subrounded gravel, sold subrounded gravel, become highly moist to wet below 7 feet. Image: Soil gravel, sold subrounded gravel, sold subrounded gravel, sold subrounded gravel, become highly moist to wet poled at surface. </th <th>Date</th> <th>Excava</th> <th>ted: Sep</th> <th>otember 2, 2005</th> <th></th> <th></th> <th>Logged</th> <th>By:</th> <th>TDL</th>	Date	Excava	ted: Sep	otember 2, 2005			Logged	By:	TDL
Top Bottom Symbol (USCS) Description Geologic Unit Sample Number Depth (feet) Density, Dry (pc) Moistur (%) 0.0 1.5 SM Silty SAND, brown, dry, fine to medium grained, some gravel up to 3 inches, rootlets. Image: Sample Sa	Locat	ion: Le	ewis / Ri	ialto Airport			Sample	d By:	TDL
Top Bottom Symbol (USCS) Description Unit Sample Number Depth (feet) Density, Dry (pcf) Moistur (%) 0.0 1.5 SM Silty SAND, brown, dry, fine to medium grained, some gravel up to 3 inches, rootlets. Image: Silty SAND with gravel, gray brown, dry, fine to coarse grained, fine to coarse gravel, subangular to subrounded gravel. Image: Silty SAND with gravel, gray brown, dry, fine to coarse grained, fine to coarse gravel, subangular to subrounded gravel, become highly moist to wet below 7 feet. Image: Silty SAND with gravel, gray brown, moist, fine to coarse gravel, become highly moist to wet below 7 feet. Image: Silty SAND with gravel, gray brown, moist, fine to coarse gravel, become highly moist to wet below 7 feet. Image: Silty SAND with gravel, gray brown, moist, fine to coarse gravel, become highly moist to wet below 7 feet. Image: Silty SAND with gravel, gray brown, moist, fine to coarse gravel, become highly moist to wet below 7 feet. Image: Silty SAND with gravel, gray brown, moist, fine to coarse gravel, become highly moist to wet below 7 feet. Image: Silty Sand Sand Sand Sand Sand Sand Sand Sand	Dept	h (feet)	Soil				Test		
Image: starting of the second startin	Тор	Bottom		Description					
1.5 3.5 SW SAND with gravel, gray brown, dry, fine to coarse grained, fine to coarse gravel, subangular to subrounded gravel. Matrix: 10% - 15% 3" - 8" 1% - 5% 8" - 12" 0% -1% 12" - 18" 7.0 10.0 SW SAND with gravel, gray brown, moist, fine to coarse grained, fine to coarse gravel, subangular to subrounded gravel, become highly moist to wet below 7 feet. <td>0.0</td> <td>1.5</td> <td>SM</td> <td>Silty SAND, brown, dry, fine to medium grained, some</td> <td></td> <td></td> <td>an an an an an an an an an an an an an a</td> <td></td> <td></td>	0.0	1.5	SM	Silty SAND, brown, dry, fine to medium grained, some			an an an an an an an an an an an an an a		
grained, fine to coarse gravel, subangular to subrounded gravel. Matrix: 10% - 15% 3" - 8" 1% - 5% 8" - 12" 0% -1% 12" - 18" 7.0 10.0 grained, fine to coarse gravel, subangular to subrounded grained, fine to coarse gravel, gray brown, moist, fine to coarse grained, fine to coarse gravel, subangular to subrounded grained, fine to coarse gravel, subangular to subrounded gravel, become highly moist to wet below 7 feet. Matrix: 10% - 15% 3" - 8" 10% - 15% 3" - 8" 10% - 15% 3" - 8" 10% - 15% 8" - 12" 0% -1% 12" - 18" Total Depth: 10 feet No groundwater encountered.				gravel up to 3 inches, rootlets.					
gravel. Matrix: 10% - 15% 3" - 8" 1% - 5% 8" - 12" 0% - 1% 12" - 18" 7.0 10.0 SW SAND with gravel, gray brown, moist, fine to coarse grained, fine to coarse gravel, subangular to subrounded gravel, become highly moist to wet below 7 feet. Matrix: 10% - 15% 3" - 8" 10% - 15% 3" - 8" 1% - 5% 8" - 12" 0% -1% 12" - 18" Total Depth: 10 feet No groundwater encountered.	1.5	3.5	SW	SAND with gravel, gray brown, dry, fine to coarse					
Matrix: Matrix: 10% - 15% 3" - 8" 1% - 5% 8" - 12" 0% - 1% 12" - 18" 7.0 10.0 SW SAND with gravel, gray brown, moist, fine to coarse gravel, subangular to subrounded gravel, become highly moist to wet below 7 feet. Matrix: 10% - 15% 3" - 8" 10% - 15% 3" - 8" 10% - 15% 3" - 8" 10% - 15% 3" - 8" 1% - 5% 8" - 12" 0% -1% 12" - 18" Total Depth: 10 feet No groundwater encountered.				grained, fine to coarse gravel, subangular to subrounded					
10% - 15% 3" - 8" 1% - 5% 8" - 12" 0% -1% 12" - 18" 7.0 10.0 SW SAND with gravel, gray brown, moist, fine to coarse grained, fine to coarse gravel, subangular to subrounded gravel, become highly moist to wet below 7 feet. Matrix: 10% - 15% 3" - 8" 10% - 15% 3" - 8" 10% - 15% 3" - 8" 1% - 5% 8" - 12" 0% -1% 12" - 18" Total Depth: 10 feet No groundwater encountered.				gravel.					
1% - 5% 8" - 12" 1% 0% -1% 12" - 18" 0% 7.0 10.0 SW SAND with gravel, gray brown, moist, fine to coarse grained, fine to coarse gravel, subangular to subrounded gravel, become highly moist to wet below 7 feet. 10% 10% - 15% 3" - 8" 10% - 15% 3" - 8" 10% - 15% 8" - 12" 0% -1% 12" - 18" Total Depth: 10 feet 0% -1% 12" - 18" No groundwater encountered. 10%				Matrix:		in an an an an an an an an an an an an an			
7.0 10.0 SW SAND with gravel, gray brown, moist, fine to coarse grained, fine to coarse gravel, subangular to subrounded gravel, become highly moist to wet below 7 feet. Matrix: 10% - 15% 3" - 8" 10% - 15% 3" - 8" 1% - 5% 8" - 12" 0% -1% 12" - 18" 0% -1% 12" - 18" Total Depth: 10 feet No groundwater encountered.				10% - 15% 3" - 8"	vium				
7.0 10.0 SW SAND with gravel, gray brown, moist, fine to coarse grained, fine to coarse gravel, subangular to subrounded gravel, become highly moist to wet below 7 feet. Matrix: 10% - 15% 3" - 8" 10% - 15% 3" - 8" 1% - 5% 8" - 12" 0% -1% 12" - 18" 0% -1% 12" - 18" Total Depth: 10 feet No groundwater encountered.				1%-5% 8"-12"					
7.0 10.0 SW SAND with gravel, gray brown, moist, fine to coarse grained, fine to coarse gravel, subangular to subrounded gravel, become highly moist to wet below 7 feet. Matrix: 10% - 15% 3" - 8" 10% - 15% 3" - 8" 1% - 5% 8" - 12" 0% -1% 12" - 18" 0% -1% 12" - 18" Total Depth: 10 feet No groundwater encountered.				0% -1% 12" - 18"	11m	-00-004 -9-96 018-00 9-0 0 9-00-009 0-000			a landarana dan kataran yang dan kataran yang dan kataran kataran yang dan kataran yang dan kataran yang dan ka
gravel, become highly moist to wet below 7 feet. Matrix: 10% - 15% 3" - 8" 1% - 5% 8" - 12" 0% -1% 12" - 18" Total Depth: 10 feet No groundwater encountered.	7.0	10.0	SW	SAND with gravel, gray brown, moist, fine to coarsc	× ∣	an an an thank to be the second second second	of Anishe outles and an and	uisian continue defense	httere (1940) 13/10/10/14 energy 4
Matrix: 10% - 15% 3" - 8" 10% - 15% 3" - 8" 1% - 5% 8" - 12" 0% - 1% 12" - 18" 0% - 1% 12" - 18" Total Depth: 10 feet 10 feet No groundwater encountered. 10 feet				grained, fine to coarse gravel, subangular to subrounded					
Matrix: 10% - 15% 3" - 8" 1% - 5% 8" - 12" 0% - 1% 12" - 18" Total Depth: 10 feet No groundwater encountered.				gravel, become highly moist to wet below 7 feet.		*******	, "Adaption in the second second second second second second second second second second second second second s		
1% - 5% 8" - 12" 0% - 1% 12" - 18" Total Depth: 10 feet No groundwater encountered.				÷ -		343141142443430484433433430444443444	00.000 // 110 / 100 /		a dana a filosi kananga Jawa mananga mananga kananga.
0% -1% 12" - 18" Total Depth: 10 feet No groundwater encountered.				10% - 15% 3" - 8"			extrementation (2010)	hänistärkerkerkerkerkerkerkerkerkerkerkerkerker	ቂሳት።ቶድብታ ላቂ ማካ ት ር አስት የ
Total Depth: 10 feet No groundwater encountered.				1% - 5% 8" - 12"					. 300 Classification in a section sector
No groundwater encountered.				0% -1% 12" - 18"				Contractor and an example of the contract	
-		Total D	epth: 10) feet					
Test pit backfilled, tamped with bucket, wheel rolled at surface.		No gro	undwater	encountered.					
		Test pit	backfill	ed, tamped with bucket, wheel rolled at surface.					




Project No. 021751-001


APPENDIX C

ſ



MODIFIED PROCTOR COMPACTION TEST Leighton **ASTM D 1557**

133.5

131.5

135.0 138.5

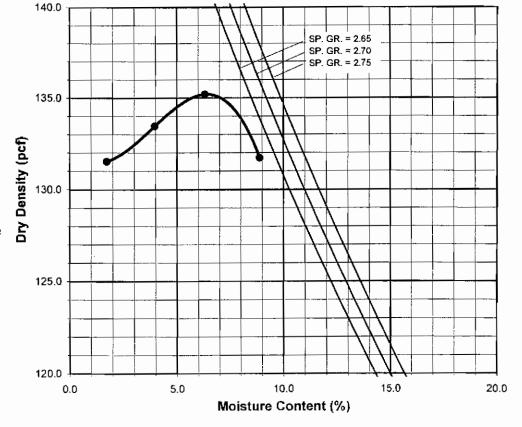
(pcf)

Maximum Dry Density (pcf) Corrected Dry Density (pcf)

Procedure A

Dry Density

Soil Passing No. 4 (4.75 mm) Sieve Mold : 4 in. (101.6 mm) diameter Layers: 5 (Five) Blows per layer: 25 (twenty-five) May be used if +#4 is 20% or less

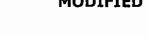

Procedure B

Soil Passing 3/8 in. (9.5 mm) Sieve Mold: 4 in. (101.6 mm) diameter Layers: 5 (Five) Blows per layer: 25 (twenty-five) Use if +#4 is >20% and +3/8 in. is 20% or less

X Procedure C

Soil Passing 3/4 in. (19.0 mm) Sieve Mold: 6 in. (152.4 mm) diameter Layers: 5 (Five) Blows per layer : 56 (fifty-six) Use if +3/8 in. is >20% and +34 in. is <30%

Particle-Size Distribution: 44:44:12 GR:SA:FI Atterberg Limits: LL,PL,PI


Optimum Moisture Content (%)

135.2

Corrected Moisture Content (%)

131.7

MODIFIED PROCTOR COMPACTION TEST ASTM D 1557

Date: 09/19/05 Project Name: Tested By : GEB Lewis / Rialto JHW Date: 09/20/05 Project No.: 021751-001 Input By : 0-5 Boring No.: B-12 Depth (ft.) Sample No. : **B**-1 Soil Identification: Brown Silty Sand with Gravel (SM)g Х Rammer Weight (lb.) = Preparation Moist Scalp Fraction (%) 10.0 Method: Height of Drop (in.) =18.0 10.9 Dry #3/4 Х Compaction Mechanical Ram #3/8 Method 0.07514 #4 Mold Volume (ft³) Manual Ram TEST NO. 1 2 3 4 5 6 Wt. Compacted Soil + Mold (g) 7495.0 7713.0 7613.0 Weight of Mold 2812.0 2812.0 2812.0 (g) Net Weight of Soil 4683.0 4901.0 4801.0 (g) Wet Weight of Soil + Cont. (g) 1124.10 1138.30 1236,10 Dry Weight of Soil + Cont. (g) 1076.20 1065.40 1135.60 Weight of Container 76.00 73.40 74.50 (g) (%) Moisture Content 4.79 7.35 9.47 Wet Density 137.4 143.8 140.9 (pcf)

Maximum Dry Density (pcf) Corrected Dry Density (pcf)

(pcf)

Procedure A

Dry Density

Soil Passing No. 4 (4.75 mm) Sieve Mold: 4 in. (101.6 mm) diameter Layers : 5 (Five) Blows per layer : 25 (twenty-five) May be used if +#4 is 20% or less

Procedure B

Soil Passing 3/8 in. (9.5 mm) Sieve Mold : 4 in. (101.6 mm) diameter Layers: 5 (Five) Blows per layer : 25 (twenty-five) Use if +#4 is >20% and +3/8 in. is 20% or less

X Procedure C

Soil Passing 3/4 in. (19.0 mm) Sieve Mold: 6 in. (152.4 mm) diameter Layers: 5 (Five) Blows per layer: 56 (fifty-six) Use if +3/8 in. is >20% and +34 in. is <30%

Particle-Size Distribution: GR:SA:FI Atterberg Limits:

LL,PL,PI

140.0 SP. GR. = 2.65 SP. GR. = 2.70 SP. GR. = 2.75 135.0 Density (pcf) 130.0 μ 125.0 120.0 5.0 10.0 15.0 20.0 0.0

Moisture Content (%)

Optimum Moisture Content (%) 134.0 137.0

134.0

131.1

Corrected Moisture Content (%)

128.7

7.0 6.5

Elighton

MODIFIED PROCTOR COMPACTION TEST ASTM D 1557

Project Name:	Lewis EJA Rialto	Tested By :	GEB	Date:	07/24/06
Project No.:	021751-002	Input By :	LF	Date:	07/25/06
Boring No.:	B-20	Depth (ft.)	0-5		
Sample No. :	Bag-1				
Soil Identification:	Brown silty sand with gravel (SM)g				

Preparation X	Moist	Scalp Fra	ction (%)	Rammer Weight (lb.) =	10.0
Method:	Dry	#3/4	23.0	Height of Drop (in.) =	18.0
Compaction X	Mechanical Ram	#3/8			
Method	Manual Ram	#4		Mold Volume (ft ³)	0.07514

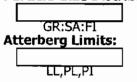
TEST NO.		1	2	3	4	5	6
Wt. Compacted Soil +	Mold (g)	7017.0	7285.0	7486.0	7417.0		1
Weight of Mold	(g)	2812.0	2812.0	2812.0	2812.0		
Net Weight of Soil	(g)	4205.0	4473.0	4674.0	4605.0		1
Wet Weight of Soil +	Cont. (g)	547.20	599.60	656.10	862.80		
Dry Weight of Soil +	Cont. (g)	532.80	570.50	611.30	789.90		
Weight of Container	(g)	77.10	75.90	76.50	76.20		
Moisture Content	(%)	3.16	5.88	8.38	10.21		
Wet Density	(pcf)	123.4	131.2	137.1	135.1		
Dry Density	(pcf)	119.6	123.9	126.5	122.6		

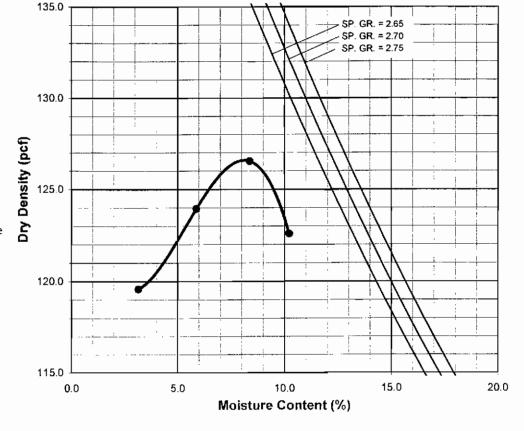
126.5

134

Maximum Dry Density (pcf) Corrected Dry Density (pcf)

Procedure A


Soil Passing No. 4 (4.75 mm) Sieve Mold : 4 in. (101.6 mm) diameter Layers : 5 (Five) Blows per layer : 25 (twenty-five) May be used if +#4 is 20% or less


Procedure B

Soil Passing 3/8 in. (9.5 mm) Sieve Mold : 4 in. (101.6 mm) diameter Layers : 5 (Five) Blows per layer : 25 (twenty-five) Use if +#4 is >20% and +3/8 in. is 20% or less

Soil Passing 3/4 in. (19.0 mm) Sieve Mold : 6 in. (152.4 mm) diameter Layers : 5 (Five) Blows per layer : 56 (fifty-six) Use if +3/8 in. is >20% and +3/4 in.

is <30%
Particle-Size Distribution:

Optimum Moisture Content (%)

Corrected Moisture Content (%)

8.0 6.5

MODIFIED PROCTOR COMPACTION TEST ASTM D 1557

Project Name: Project No.: Boring No.: Sample No. : Soil Identification:	Lewis EJA Rialto 021751-003 B-23 Bag-1 Brown silty sand	· · · · · · · · · · · · · · · · · · ·	(SM)g	Tested By : Input By : Depth (ft.)	GEB LF 0-5	Date: Date:	07/24/06 07/25/06
Preparation	X Moist		Scalp Fra	action (%)	Rammer W	/eight (lb.) =	= 10.0
Method:	Dry		#3/4	35.0	Height of I	Drop (in.) =	= 18.0
Compaction	X Mechanic	al Ram	#3/8				
Method	Manual R	am	#4		Mold Volu	ume (ft³)	0.07514
				1		_	-
TEST		1	2	3	4	5	6
Wt. Compacted S	oil + Mold (g)	7297.0	7503.0	7427.0			1
Weight of Mold	(g)	2812.0	2812.0	2812.0			
Net Weight of So	il (g)	4485.0	4691.0	4615.0			
Wet Weight of So	il + Cont. (g)	822.90	760.40	782.70			
Dry Weight of So	il + Cont. (g)	782.10	709.60	715.30	•		
Weight of Contain		72.80	75.10	76.80			
Moisture Content	· · · · · · · · · · · · · · · · · · ·	5.75	8.01	10.56			
Wet Density	(pcf)	131.6	137.6	135.4	m.1 %		
Dry Density	(pcf)	124.4	127.4	122.5			

127.5

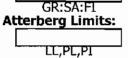
139.5

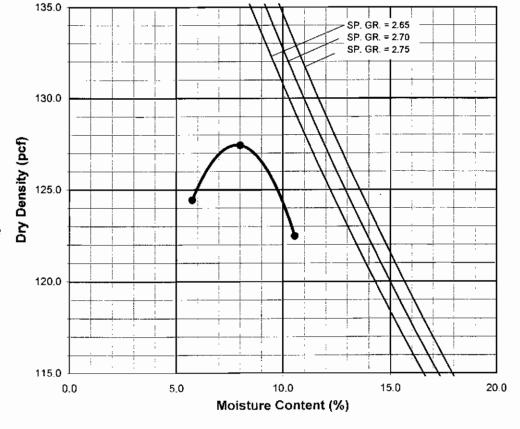
Maximum Dry Density (pcf) Corrected Dry Density (pcf)

Procedure A

Leighton

Soil Passing No. 4 (4.75 mm) Sieve Mold : 4 in. (101.6 mm) diameter Layers : 5 (Five) Blows per layer : 25 (twenty-five) May be used if +#4 is 20% or less

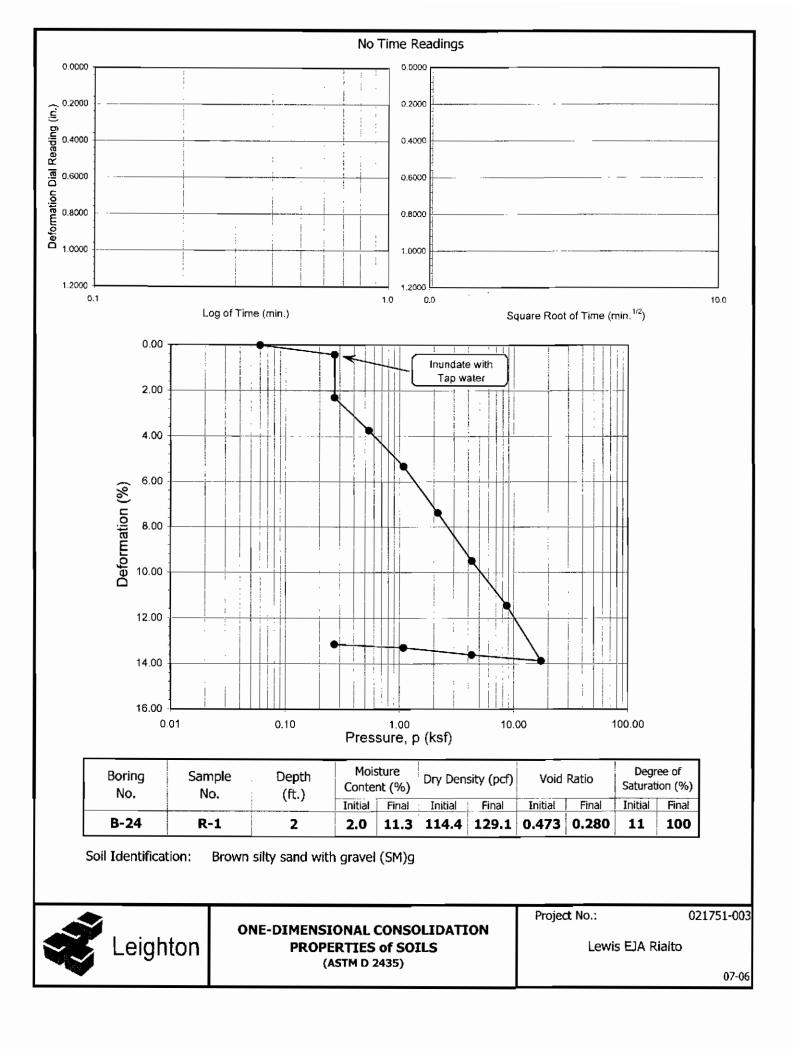

Procedure B


Soil Passing 3/8 in. (9.5 mm) Sieve Mold : 4 in. (101.6 mm) diameter Layers : 5 (Five) Blows per layer : 25 (twenty-five) Use if +#4 is >20% and +3/8 in. is 20% or less

X Procedure C

Soil Passing 3/4 in. (19.0 mm) Sieve Mold : 6 in. (152.4 mm) diameter Layers : 5 (Five) Blows per layer : 56 (fifty-six) Use if +3/8 in. is >20% and +3/4 in. is <30%

Particle-Size Distribution:

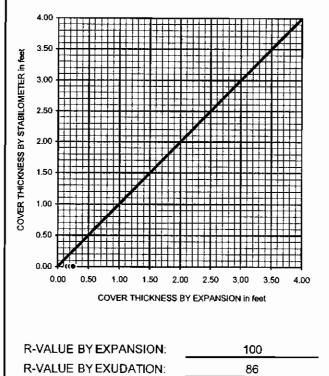


Optimum Moisture Content (%)

Corrected Moisture Content (%)

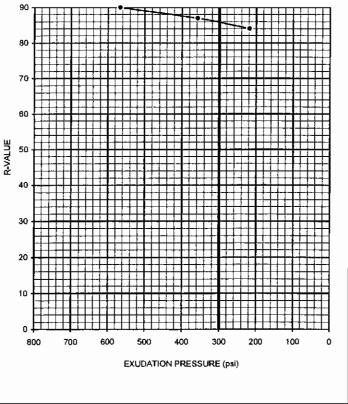
8.0 5.5

R-VALUE TEST RESULTS


PROJECT NAME:	Lewis / Rialto	PROJECT NUMBER:	021751-001
SAMPLE NUMBER:	B-1	SAMPLE LOCATION:	B-4 0-5'
SAMPLE DESCRIPTION:	SM	TECHNICIAN:	SCF
		DATE SAMPLED	8/26/2005

TEST SPECIMEN	а	b	с
MOISTURE AT COMPACTION %	7.7	8.1	8.5
HEIGHT OF SAMPLE, Inches	2.45	2.50	2.51
DRY DENSITY, pcf	129.4	130.7	130.7
COMPACTOR PRESSURE, psi	350	350	350
EXUDATION PRESSURE, psi	566	357	218
EXPANSION, Inches x 10exp-4	0	0	D
STABILITY Ph 2,000 lbs (160 psi)	12	15	18
TURNS DISPLACEMENT	3.52	3.59	3.69
R-VALUE UNCORRECTED	90	87	84
R-VALUE CORRECTED	90	87	84

DESIGN CALCULATION DATA	a	b	С
GRAVEL EQUIVALENTFACTOR	1.0	1.0	1.0
TRAFFIC INDEX	5.0	5.0	5.0
STABILOMETER THICKNESS, ft.	0.16	0.21	0.26
EXPANSION PRESSURE THICKNESS, tt.	0.00	0.00	0.00



EXUDATION PRESSURE CHART

86

EQUILIBRIUM R-VALUE:

R-VALUE TEST RESULTS

PROJECT NAME:	Lewis / Rialto	PROJECT NUMBER:	021751-001
SAMPLE NUMBER:	B-1	SAMPLE LOCATION:	B-9 0-5'
SAMPLE DESCRIPTION:	SM	TECHNICIAN:	SCF
		DATE SAMPLED	8/26/2005

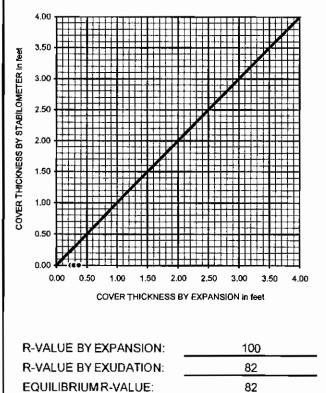
TEST SPECIMEN	а	b	С
MOISTURE AT COMPACTION %	10.1	10.5	11.0
HEIGHT OF SAMPLE, Inches	2.45	2.57	2.43
DRY DENSITY, pcf	119.7	119.7	120.2
COMPACTOR PRESSURE, psi	350	350	350
EXUDATION PRESSURE, psi	530	304	160
EXPANSION, Inches x 10exp-4	0	0	0
STABILITY Ph 2,000 lbs (160 psi)	17	20	24
TURNS DISPLACEMENT	3.62	3.79	3.93
R-VALUE UNCORRECTED	85	82	78
R-VALUE CORRECTED	85	82	77
DESIGN CALCULATION DATA	а	b	C
GRAVEL EQUIVALENT FACTOR	1.0	1.0	1.0
TRAFFIC INDEX	5.0	5.0	5.0

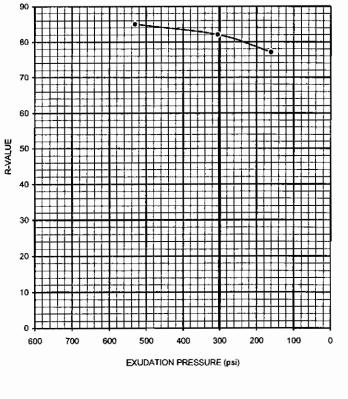
0.24

0.00

STABILOMETER THICKNESS, ft.

EXPANSION PRESSURE THICKNESS, ft.



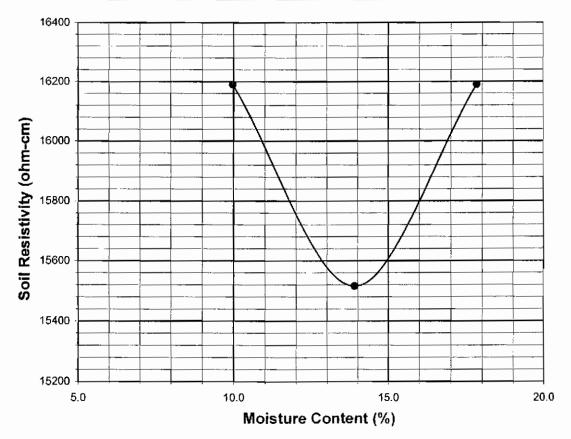

0.37

0.00

0.29

0.00

SOIL RESISTIVITY TEST DOT CA TEST 532 / 643


Project Name: Lewis / Rialto Tested By : VJ Project No. : 021751-001 Data Input By: JH Boring No.: B-1 Depth (ft.) : 0-5 Sample No. : B-1 Olv (SP-SM)g State

Adjusted Soil Water Resistance Specimen Moisture Added (ml) Reading Resistivity No. Content (Wa) (ohm) (ohm-cm) (MC) 1 100 9.97 2400 16190 2 150 13.90 2300 15516 3 200 17.83 2400 16190 4 5

Fested By :	<u>VJ</u>	Date:_	09/09/05	
Data Input By:	JHW	Date:_	09/20/05	
Depth (ft.):	0-5	·		

Moisture Content (%) (MCi)	2.12			
Wet Wt. of Soil + Cont. (g)	230.18			
Dry Wt. of Soil + Cont. (g)	226.80			
Wt. of Container (g)	67.26			
Container No.				
Initial Soil Wt. (g) (Wt)	1300.00			
Box Constant	6,746			
MC =(((1+Mci/100)x(Wa/Wt+	MC =(((1+Mci/100)x(Wa/Wt+1))-1)x100			

Min. Resistivity	Moisture Content	Sulfate Content	Chloride Content	Soil pH	
(ohm-cm)	(%)	(ppm)	(ppm)	pН	Temp. (°C)
	est 532 / 643	DOT CA Test 417 Part II	DOT CA Test 422	1	est 532 / 643
15516	13.9	88	51	5.90	21.2

SOIL RESISTIVITY TEST DOT CA TEST 532 / 643

Project Name:	Lewis / Rialto	Tested By :	VJ	Date: 09/13/05
Project No. :	021751-001	Data Input By:	JHW	Date: 09/20/05
Boring No.:	<u>B-9</u>	Depth (ft.) :	0-5	
Sample No. :	<u>B-1</u>			

Soil

Resistivity

(ohm-cm)

14841

11468

9444

10119

Soil Identification:

Specimen

No.

1

2

3

4

5

Water

Added (ml)

(Wa)

100

200

300

400

Olv Brn (SM)

Resistance

Reading

(ohm)

2200

1700

1400

1500

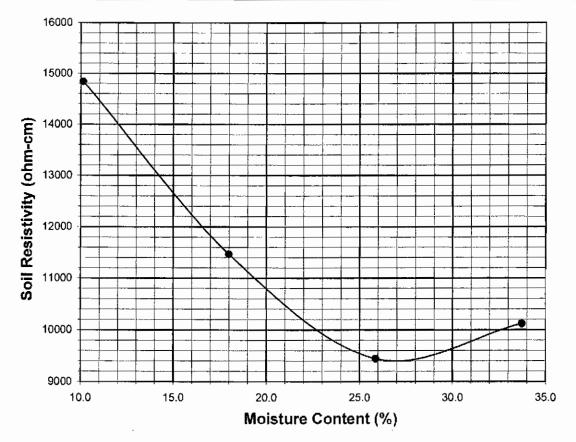
Adjusted

Moisture

Content

(MC)

10.13


18.00

25.87

33.74

Moisture Content (%) (MCi)	2.27		
Wet Wt. of Soil + Cont. (g)	219.61		
Dry Wt. of Soil + Cont. (g)	216.23		
Wt. of Container (g)	67.21		
Container No.			
Initial Soil Wt. (g) (Wt)	1300.00		
Box Constant	6.746		
MC =(((1+Mci/100)x(Wa/Wt+1))-1)x100			

Min. Resistivity (ohm-cm)	Moisture Content (%)	Sulfate Content (ppm)	Chloride Content (ppm)	pН	il pH Temp. (°C)
	≘st 532 / 643	DOT CA Test 417 Part II	DOT CA Test 422	532	CA Test / 643
9400	27.0	80	51	5.59	21.1

SOIL RESISTIVITY TEST DOT CA TEST 532 / 643

Project Name:	Lewis / Rialto	Tested By :	VJ	Date: 09/13/05
Project No. :	021751-001	Data Input By:	JHW	Date: 09/20/05
Boring No.:	B-15	Depth (ft.) :	0-5	
Sample No. :	B-1			

Soil

Resistivity

(ohm-cm)

46547

35<u>75</u>4

35754

36428

Soil Identification:

Specimen

No.

1

2

3

4

5

Water

Added (ml)

(Wa)

100

200

300

400

Olv Brn (SM)g

Resistance

Reading

(ohm)

6900

5300

5300

5400

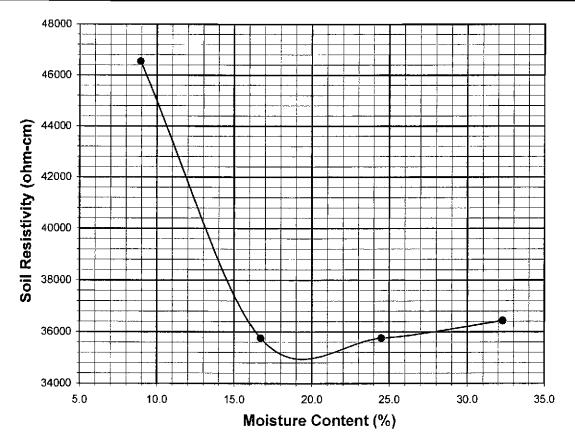
Adjusted

Moisture

Content

(MC)

8.94


16.72

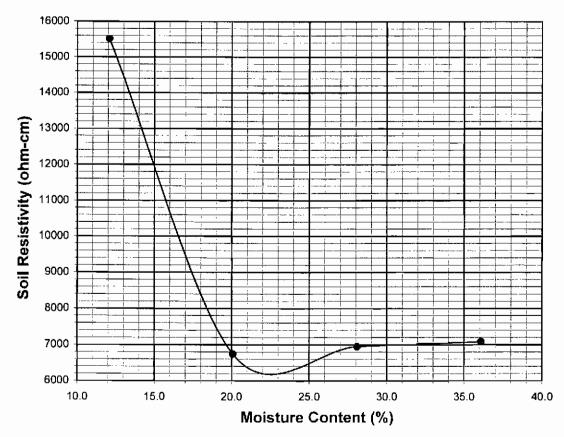
24.50

32.29

Moisture Content (%) (MCi)	1.16
Wet Wt. of Soil + Cont. (g)	234.50
Dry Wt. of Soil + Cont. (g)	232.69
Wt. of Container (g)	76.59
Container No.	
Initial Soil Wt. (g) (Wt)	1300.00
Box Constant	6.746
MC =(((1+Mci/100)x(Wa/Wt+	1))-1)x100

Min. Resistivity	Moisture Content	Sulfate Content	Chloride Content	So	il pH
(ohm-cm)	(%)	(ppm)	(ppm)	pН	Temp. (°C)
	est 532 / 643	DOT CA Test 417 Part II	DOT CA Test 422	532	CA Test / 643
35000	19.5	75	51	5.77	20.8

SOIL RESISTIVITY TEST


DOT CA TEST 532 / 643

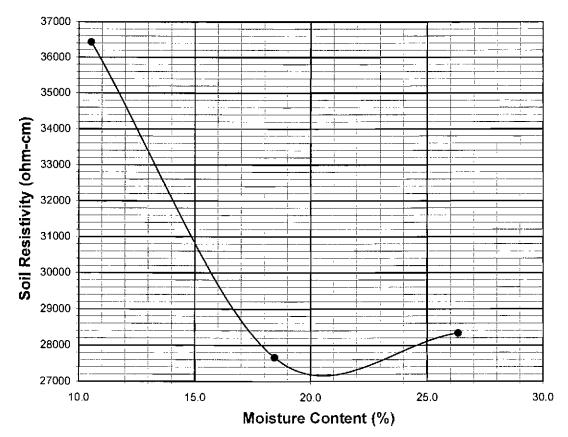
Project Name:	Lewis EJA Rialto	Tested By :	VJ	Date: 07/24/06
Project No. :	021751-002	Data Input By:	LF	Date: 07/26/06
Boring No.:	B-20	Depth (ft.) :	0-5	<u>_</u> _
Sample No. :	Bag-1			
Soil Identification	n: (SM)g			

Specimen No.	Water Added (ml) (Wa)	Adjusted Moisture Content (MC)	Resistance Reading (ohm)	Soil Resistivity (ohm-cm)
1	100	12.08	2300	15516
· 2	200	20.09	1000	67 4 6
3	300	28.09	1030	6948
4	400	36.10	1050	7083
5				

Moisture Content (%) (MCi)	4.08
Wet Wt. of Soil + Cont. (g)	235.88
Dry Wt. of Soil + Cont. (g)	228.98
Wt. of Container (g)	59.66
Container No.	
Initial Soil Wt. (g) (Wt)	1300.00
Box Constant	6.746
MC =(((1+Mci/100)x(Wa/Wt+	1))-1)x100

Min. Resistivity	Moisture Content	Sulfate Content	Chloride Content	So	il pH
(ohm-cm)	(%)	(ppm)	(ppm)	рН	Temp. (°C)
	≘st 532 / 643	DOT CA Test 417 Part II	DOT CA Test 422		est 532 / 643
6200	22.5	94	730	5.79	21.0

SOIL RESISTIVITY TEST


DOT CA TEST 532 / 643

Project Name:	Lewis EJA Rialto	Tested By :	VJ	Date: 07/18/06
Project No. :	021751-003	Data Input By:	LF	Date: 07/21/06
Boring No.:	B-24	Depth (ft.) :	0-5	
Sample No. :	Bag-1			
Soil Identification	n: (GP-GM)s			

Specimen No.	Water Added (ml) (Wa)	Adjusted Moisture Content (MC)	Resistance Reading (ohm)	Soil Resistivity (ohm-cm)
1	100	10.54	5400	36428
2	200	18.44	4100	27659
3	300	26.33	4200	28333
4				
5				

Moisture Content (%) (MCi)	2.64
Wet Wt. of Soil + Cont. (g)	200.26
Dry Wt. of Soil + Cont. (g)	196.63
Wt. of Container (g)	59.34
Container No.	
Initial Soil Wt. (g) (Wt)	1300.00
Box Constant	6.746
MC =(((1+Mci/100)x(Wa/Wt+	1))-1)x100

Min. Resistivity (ohm-cm)	Moisture Content (%)	Sulfate Content (ppm)	Chloride Content (ppm)	Soil pH pH Temp. (°C)
DOT CA T	est 532 / 643	DOT CA Test 417 Part II	DOT CA Test 422	DOT CA Test 532 / 643
27200	20.5	106	51	5.32 20.8

APPENDIX D

APPENDIX D

LEIGHTON AND ASSOCIATES, INC.

•

GENERAL EARTHWORK AND GRADING SPECIFICATIONS FOR ROUGH GRADING

		Table of Contents	_
<u>Secti</u>	on		Page
1.0	GEN	JERAL	1
	1.1	Intent	1
	1.2	The Geotechnical Consultant of Record	1
	1.3	The Earthwork Contractor	2
2.0	PRE	PARATION OF AREAS TO BE FILLED	2
	2.1	Clearing and Grubbing	2
	2.2	Processing	3 3 3 3
	2.3	Overexcavation	3
	2.4	Benching	3
	2.5	Evaluation/Acceptance of Fill Areas	3
3.0	FILI	MATERIAL	4
	3.1	General	4
	3.2	Oversize	4
	3.3	Import	4
4.0	FILI	L PLACEMENT AND COMPACTION	4
	4.1	Fill Layers	4
	4.2	Fill Moisture Conditioning	4
	4.3	Compaction of Fill	5
	4.4	Compaction of Fill Slopes	5 5 5
	4.5	Compaction Testing	5
	4.6	Frequency of Compaction Testing	5
	4.7	Compaction Test Locations	5
5.0	SUE	BDRAIN INSTALLATION	6
6.0	EXC	CAVATION	6
7.0	TRE	ENCH BACKFILLS	6
	7.1	Safety	6
	7.2	Bedding and Backfill	6
	7.3	Lift Thickness	6
	7.4	Observation and Testing	6

1.0 <u>General</u>

- 1.1 <u>Intent</u>: These General Earthwork and Grading Specifications are for the grading and earthwork shown on the approved grading plan(s) and/or indicated in the geotechnical report(s). These Specifications are a part of the recommendations contained in the geotechnical report(s). In case of conflict, the specific recommendations in the geotechnical report shall supersede these more general Specifications. Observations of the earthwork by the project Geotechnical Consultant during the course of grading may result in new or revised recommendations that could supersede these specifications or the recommendations in the geotechnical report(s).
- 1.2 <u>The Geotechnical Consultant of Record</u>: Prior to commencement of work, the owner shall employ the Geotechnical Consultant of Record (Geotechnical Consultant). The Geotechnical Consultants shall be responsible for reviewing the approved geotechnical report(s) and accepting the adequacy of the preliminary geotechnical findings, conclusions, and recommendations prior to the commencement of the grading.

Prior to commencement of grading, the Geotechnical Consultant shall review the "work plan" prepared by the Earthwork Contractor (Contractor) and schedule sufficient personnel to perform the appropriate level of observation, mapping, and compaction testing.

During the grading and earthwork operations, the Geotechnical Consultant shall observe, map, and document the subsurface exposures to verify the geotechnical design assumptions. If the observed conditions are found to be significantly different than the interpreted assumptions during the design phase, the Geotechnical Consultant shall inform the owner, recommend appropriate changes in design to accommodate the observed conditions, and notify the review agency where required. Subsurface areas to be geotechnically observed, mapped, elevations recorded, and/or tested include natural ground after it has been cleared for receiving fill but before fill is placed, bottoms of all "remedial removal" areas, all key bottoms, and benches made on sloping ground to receive fill.

The Geotechnical Consultant shall observe the moisture-conditioning and processing of the subgrade and fill materials and perform relative compaction testing of fill to determine the attained level of compaction. The Geotechnical Consultant shall provide the test results to the owner and the Contractor on a routine and frequent basis.

1.3 <u>The Earthwork Contractor</u>: The Earthwork Contractor (Contractor) shall be qualified, experienced, and knowledgeable in earthwork logistics, preparation and processing of ground to receive fill, moisture-conditioning and processing of fill, and compacting fill. The Contractor shall review and accept the plans, geotechnical report(s), and these Specifications prior to commencement of grading. The

Contractor shall be solely responsible for performing the grading in accordance with the plans and specifications.

The Contractor shall prepare and submit to the owner and the Geotechnical Consultant a work plan that indicates the sequence of earthwork grading, the number of "spreads" of work and the estimated quantities of daily earthwork contemplated for the site prior to commencement of grading. The Contractor shall inform the owner and the Geotechnical Consultant of changes in work schedules and updates to the work plan at least 24 hours in advance of such changes so that appropriate observations and tests can be planned and accomplished. The Contractor shall not assume that the Geotechnical Consultant is aware of all grading operations.

The Contractor shall have the sole responsibility to provide adequate equipment and methods to accomplish the earthwork in accordance with the applicable grading codes and agency ordinances, these Specifications, and the recommendations in the approved geotechnical report(s) and grading plan(s). If, in the opinion of the Geotechnical Consultant, unsatisfactory conditions, such as unsuitable soil, improper moisture condition, inadequate compaction, insufficient buttress key size, adverse weather, etc., are resulting in a quality of work less than required in these specifications, the Geotechnical Consultant shall reject the work and may recommend to the owner that construction be stopped until the conditions are rectified.

2.0 <u>Preparation of Areas to be Filled</u>

2.1 <u>Clearing and Grubbing</u>: Vegetation, such as brush, grass, roots, and other deleterious material shall be sufficiently removed and properly disposed of in a method acceptable to the owner, governing agencies, and the Geotechnical Consultant.

The Geotechnical Consultant shall evaluate the extent of these removals depending on specific site conditions. Earth fill material shall not contain more than 1 percent of organic materials (by volume). No fill lift shall contain more than 5 percent of organic matter. Nesting of the organic materials shall not be allowed. If potentially hazardous materials are encountered, the Contractor shall stop work in the affected area, and a hazardous material specialist shall be informed immediately for proper evaluation and handling of these materials prior to continuing to work in that area.

As presently defined by the State of California, most refined petroleum products (gasoline, diesel fuel, motor oil, grease, coolant, etc.) have chemical constituents that are considered to be hazardous waste. As such, the indiscriminate dumping or spillage of these fluids onto the ground may constitute a misdemeanor, punishable by fines and/or imprisonment, and shall not be allowed.

- 2.2 <u>Processing</u>: Existing ground that has been declared satisfactory for support of fill by the Geotechnical Consultant shall be scarified to a minimum depth of 6 inches. Existing ground that is not satisfactory shall be overexcavated as specified in the following section. Scarification shall continue until soils are broken down and free of large clay lumps or clods and the working surface is reasonably uniform, flat, and free of uneven features that would inhibit uniform compaction.
- 2.3 <u>Overexcavation</u>: In addition to removals and overexcavations recommended in the approved geotechnical report(s) and the grading plan, soft, loose, dry, saturated, spongy, organic-rich, highly fractured or otherwise unsuitable ground shall be overexcavated to competent ground as evaluated by the Geotechnical Consultant during grading.
- 2.4 <u>Benching</u>: Where fills are to be placed on ground with slopes steeper than 5:1 (horizontal to vertical units), the ground shall be stepped or benched. Please see the Standard Details for a graphic illustration. The lowest bench or key shall be a minimum of 15 feet wide and at least 2 feet deep, into competent material as evaluated by the Geotechnical Consultant. Other benches shall be excavated a minimum height of 4 feet into competent material or as otherwise recommended by the Geotechnical Consultant. Fill placed on ground sloping flatter than 5:1 shall also be benched or otherwise overexcavated to provide a flat subgrade for the fill.
- 2.5 <u>Evaluation/Acceptance of Fill Areas</u>: All areas to receive fill, including removal and processed areas, key bottoms, and benches, shall be observed, mapped, elevations recorded, and/or tested prior to being accepted by the Geotechnical Consultant as suitable to receive fill. The Contractor shall obtain a written acceptance from the Geotechnical Consultant prior to fill placement. A licensed surveyor shall provide the survey control for determining elevations of processed areas, keys, and benches.

3.0 <u>Fill Material</u>

- 3.1 <u>General</u>: Material to be used as fill shall be essentially free of organic matter and other deleterious substances evaluated and accepted by the Geotechnical Consultant prior to placement. Soils of poor quality, such as those with unacceptable gradation, high expansion potential, or low strength shall be placed in areas acceptable to the Geotechnical Consultant or mixed with other soils to achieve satisfactory fill material.
- 3.2 <u>Oversize</u>: Oversize material defined as rock, or other irreducible material with a maximum dimension greater than 8 inches, shall not be buried or placed in fill unless location, materials, and placement methods are specifically accepted by the Geotechnical Consultant. Placement operations shall be such that nesting of oversized material does not occur and such that oversize material is completely surrounded by compacted or densified fill. Oversize material shall not be placed within 10 vertical feet of finish grade or within 2 feet of future utilities or underground construction.
- 3.3 <u>Import</u>: If importing of fill material is required for grading, proposed import material shall meet the requirements of Section 3.1. The potential import source shall be given to the Geotechnical Consultant at least 48 hours (2 working days) before importing begins so that its suitability can be determined and appropriate tests performed.

4.0 Fill Placement and Compaction

- 4.1 <u>Fill Layers</u>: Approved fill material shall be placed in areas prepared to receive fill (per Section 3.0) in near-horizontal layers not exceeding 8 inches in loose thickness. The Geotechnical Consultant may accept thicker layers if testing indicates the grading procedures can adequately compact the thicker layers. Each layer shall be spread evenly and mixed thoroughly to attain relative uniformity of material and moisture throughout.
- 4.2 <u>Fill Moisture Conditioning</u>: Fill soils shall be watered, dried back, blended, and/or mixed, as necessary to attain a relatively uniform moisture content at or slightly over optimum. Maximum density and optimum soil moisture content tests shall be performed in accordance with the American Society of Testing and Materials (ASTM Test Method D1557-91).

- 4.3 <u>Compaction of Fill</u>: After each layer has been moisture-conditioned, mixed, and evenly spread, it shall be uniformly compacted to not less than 90 percent of maximum dry density (ASTM Test Method D1557-91). Compaction equipment shall be adequately sized and be either specifically designed for soil compaction or of proven reliability to efficiently achieve the specified level of compaction with uniformity.
- 4.4 <u>Compaction of Fill Slopes</u>: In addition to normal compaction procedures specified above, compaction of slopes shall be accomplished by backrolling of slopes with sheepsfoot rollers at increments of 3 to 4 feet in fill elevation, or by other methods producing satisfactory results acceptable to the Geotechnical Consultant. Upon completion of grading, relative compaction of the fill, out to the slope face, shall be at least 90 percent of maximum density per ASTM Test Method D1557-91.
- 4.5 <u>Compaction Testing</u>: Field tests for moisture content and relative compaction of the fill soils shall be performed by the Geotechnical Consultant. Location and frequency of tests shall be at the Consultant's discretion based on field conditions encountered. Compaction test locations will not necessarily be selected on a random basis. Test locations shall be selected to verify adequacy of compaction levels in areas that are judged to be prone to inadequate compaction (such as close to slope faces and at the fill/bedrock benches).
- 4.6 <u>Frequency of Compaction Testing</u>: Tests shall be taken at intervals not exceeding 2 feet in vertical rise and/or 1,000 cubic yards of compacted fill soils embankment. In addition, as a guideline, at least one test shall be taken on slope faces for each 5,000 square feet of slope face and/or each 10 feet of vertical height of slope. The Contractor shall assure that fill construction is such that the testing schedule can be accomplished by the Geotechnical Consultant. The Contractor shall stop or slow down the earthwork construction if these minimum standards are not met.
- 4.7 <u>Compaction Test Locations</u>: The Geotechnical Consultant shall document the approximate elevation and horizontal coordinates of each test location. The Contractor shall coordinate with the project surveyor to assure that sufficient grade stakes are established so that the Geotechnical Consultant can determine the test locations with sufficient accuracy. At a minimum, two grade stakes within a horizontal distance of 100 feet and vertically less than 5 feet apart from potential test locations shall be provided.

5.0 <u>Subdrain Installation</u>

Subdrain systems shall be installed in accordance with the approved geotechnical report(s), the grading plan, and the Standard Details. The Geotechnical Consultant may recommend additional subdrains and/or changes in subdrain extent, location, grade, or material depending on conditions encountered during grading. All subdrains shall be surveyed by a land surveyor/civil engineer for line and grade after installation and prior to burial. Sufficient time should be allowed by the Contractor for these surveys.

6.0 <u>Excavation</u>

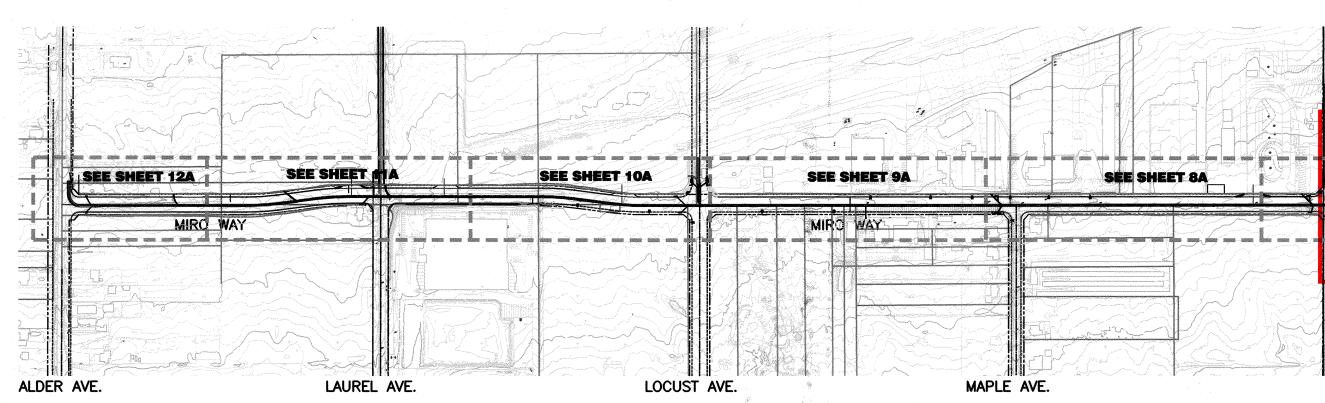
Excavations, as well as over-excavation for remedial purposes, shall be evaluated by the Geotechnical Consultant during grading. Remedial removal depths shown on geotechnical plans are estimates only. The actual extent of removal shall be determined by the Geotechnical Consultant based on the field evaluation of exposed conditions during grading. Where fill-over-cut slopes are to be graded, the cut portion of the slope shall be made, evaluated, and accepted by the Geotechnical Consultant prior to placement of materials for construction of the fill portion of the slope, unless otherwise recommended by the Geotechnical Consultant.

7.0 <u>Trench Backfills</u>

- 7.1 <u>Safety</u>: The Contractor shall follow all OHSA and Cal/OSHA requirements for safety of trench excavations.
- 7.2 <u>Bedding and Backfill</u>: All bedding and backfill of utility trenches shall be done in accordance with the applicable provisions of Standard Specifications of Public Works Construction. Bedding material shall have a Sand Equivalent greater than 30 (SE>30). The bedding shall be placed to 1 foot over the top of the conduit and densified by jetting. Backfill shall be placed and densified to a minimum of 90 percent of maximum from 1 foot above the top of the conduit to the surface.

The Geotechnical Consultant shall test the trench backfill for relative compaction. At least one test should be made for every 300 feet of trench and 2 feet of fill.

- 7.3 <u>Lift Thickness</u>: Lift thickness of trench backfill shall not exceed those allowed in the Standard Specifications of Public Works Construction unless the Contractor can demonstrate to the Geotechnical Consultant that the fill lift can be compacted to the minimum relative compaction by his alternative equipment and method.
- 7.4 <u>Observation and Testing</u>: The jetting of the bedding around the conduits shall be observed by the Geotechnical Consultant.


APPENDIX L

WQMP DCV CALCULATIONS

		Miro Way Industr	ial (Scheme 24) - Design Capture Volume	e (DCV) Calculations	
DMA 1	Total Site (SF)	Total Pervious Area (SF)	Total Impervious Area (SF)	Imp% (Total Site)	Rainfall depth (2 yr - 1 hr)
	128502	30414	98088	0.76	0.662
	Runoff Coefficient (RC)	6 hours precipitation (P6)	Design Capture Volume (ft^3)		
	0.56	0.980	11496		
DMA 2	Total Site (SF)	Total Pervious Area (SF)	Total Impervious Area (SF)	Imp% (Total Site)	Rainfall depth (2 yr - 1 hr)
	342381.6	47,756	294625.6	0.86	0.662
	Runoff Coefficient (RC)	6 hours precipitation (P6)	Design Capture Volume (ft^3)		
	Runoff Coefficient (RC) 0.68	6 hours precipitation (P6) 0.980	Design Capture Volume (ft^3) 37068		
DMA 3				Imp% (Total Site) 0.90	Rainfall depth (2 yr - 1 hr) 0.662
DMA 3	0.68 Total Site (SF) 369388.8	0.980 Total Pervious Area (SF) 37,308	37068 Total Impervious Area (SF) 332080.8		
DMA 3	0.68 Total Site (SF)	0.980 Total Pervious Area (SF)	37068 Total Impervious Area (SF)		
DMA 3	0.68 Total Site (SF) 369388.8 Runoff Coefficient (RC)	0.980 Total Pervious Area (SF) 37,308 6 hours precipitation (P6)	37068 Total Impervious Area (SF) 332080.8 Design Capture Volume (ft^3)		
	0.68 Total Site (SF) 369388.8 Runoff Coefficient (RC) 0.73	0.980 Total Pervious Area (SF) 37,308 6 hours precipitation (P6) 0.980	37068 Total Impervious Area (SF) 332080.8 Design Capture Volume (ft^3) 43169	0.90	0.662
DMA 3	0.68 Total Site (SF) 369388.8 Runoff Coefficient (RC)	0.980 Total Pervious Area (SF) 37,308 6 hours precipitation (P6)	37068 Total Impervious Area (SF) 332080.8 Design Capture Volume (ft^3)		
	0.68 Total Site (SF) 369388.8 Runoff Coefficient (RC) 0.73 Total Site (SF) 64468.8	0.980 Total Pervious Area (SF) 37,308 6 hours precipitation (P6) 0.980 Total Pervious Area (SF) 25889	37068 Total Impervious Area (SF) 332080.8 Design Capture Volume (ft^3) 43169 Total Impervious Area (SF) 38579.8	0.90 Imp% (Total Site)	0.662 Rainfall depth (2 yr - 1 hr)
	0.68 Total Site (SF) 369388.8 Runoff Coefficient (RC) 0.73 Total Site (SF)	0.980 Total Pervious Area (SF) 37,308 6 hours precipitation (P6) 0.980 Total Pervious Area (SF)	37068 Total Impervious Area (SF) 332080.8 Design Capture Volume (ft^3) 43169 Total Impervious Area (SF)	0.90 Imp% (Total Site)	0.662 Rainfall depth (2 yr - 1 hr)

APPENDIX M

STORM DRAIN AS-BUILT

GENERAL STORM DRAIN NOTES

- THE CONSTRUCTION OF ALL IMPROVEMENTS SHALL CONFORM TO THESE PLANS, THE REQUIREMENTS OF THE CITY OF RIALTO STANDARD SPECIFICATIONS AND TO THE STANDARD SPECIFICATIONS FOR PUBLIC WORKS CONSTRUCTION "GREEN BOOK", LATEST EDITION.
- CONSTRUCTION PERMITS SHALL BE OBTAINED FROM THE CITY OF RIALTO PUBLIC WORKS DEPARTMENT PRIOR TO START OF ANY WORK WITHIN THE CITY LIMITS.
- STATIONING REFERS TO THE CENTERLINES OF STORM DRAINS EXCEPT WHERE NOTED OTHERWISE.
- I. CONSTRUCTION INSPECTION WILL BE PERFORMED BY THE CITY OF RIALTO. THE CONTRACTOR SHALL OBTAIN ALL NECESSARY PERMITS AND SHALL NOTIFY THE CITY INSPECTORS (909) 820-2532 HOURS PRIOR TO STARTING EACH PHASE OF CONSTRUCTIONS AND PRIOR TO REQUIRING INSPECTION.
- ALL EXPOSED CONCRETE SURFACES SHALL CONFORM IN GRADE, COLOR AND FINISH TO ALL ADJOINING CURBS AND SIDEWALK
- STATIONING FOR LATERALS AND CONNECTOR PIPE REFER TO THE CENTERLINE - CENTERLINE INTERSECTION STATION.
- 3019) REQUIRES THE CONTRACTOR TO CONTACT UNDERGROUND SERVICE ALERT AND OBTAIN AN IDENTIFICATION NUMBER PRIOR TO THE ISSUANCE OF THE CITY'S ENCROACHMENT PERMIT. THE CONTRACTOR SHALL NOTIFY UNDERGROUND SERVICE ALERT TWO FULL WORKING DAYS (48 HOURS MINIMUM) IN ADVANCE OF ANY CONSTRUCTION ACTIVITIES, INCLUDING PAVEMENT REMOVAL, EXCAVATION AND AC OVERLAY, WHICH COULD AFFECT ANY UNDERGROUND UTILITY.
- ALL ELEVATIONS SHOWN ARE IN FEET AND DECIMALS THEREOF BASED ON CITY OF RIALTO BENCH MARK AND DATUM.
- 10. ELEVATIONS OF UTILITIES ARE APPROXIMATE UNLESS OTHERWISE NOTED.
- 11. IF ANY EXISTING UTILITIES OR ANY OTHER FACILITIES CONFLICT WITH THE PROPOSED IMPROVEMENTS, WORK SHALL STOP AND THE ENGINEER OF RECORD NOTIFIED IMMEDIATELY.
- 12. CONTRACTOR SHALL POTHOLE AT TIE-IN STATIONS AND AT ANY OTHER POINTS OF POTENTIAL CONFLICTS WITH UNDERGROUND FACILITIES BEFORE STARTING CONSTRUCTION.
- 13. BACKFILL MATERIAL TO HAVE A SAND EQUIVALENT (S.E.) OF 30 (MIN.) AND MINIMUM COMPACTION OF 90%. ALL TRENCH BACKFILL SHALL BE DONE IN ACCORDANCE WITH THE STANDARD SPECIFICATIONS OF THE CITY OF RIALTO AND STANDARD DRAWING NO. 64.
- 14. BACKFILL TO BE IN 8" LIFTS IF TRENCH BOTTOM AND SIDES HAVE A S.E. LESS THAN 20.
- \$5. NO TRENCH MAY BE LEFT OPEN OVERNIGHT UNLESS AUTHORIZED IN WRITING BY THE CITY ENGINEER.
- 16. TRENCHES SHALL HAVE SHAPED BEDDING WITH THE TOP 12" OVER PIPE BEING COLORED SAND, UNLESS OTHERWISE NOTED ON PLANS. COLOR TO BE APPROVED BY THE FIELD INSPECTOR.
- 17. NO CONCRETE SHALL BE PLACED UNTIL THE FORMS AND REINFORCING STEEL HAS BEEN PLACED, INSPECTED AND APPROVED.
- 18. EXISTING UNDERGROUND UTILITIES ARE AS PER THE AVAILABLE RECORDS. THE CONTRACTOR SHALL BE RESPONSIBLE FOR VERIFYING THE ACTUAL LOCATION AND ELEVATION IN THE FIELD.
- 19. THE WALL AND FACES OF ALL EXCAVATIONS GREATER THAN FIVE (5) FEET IN DEPTH SHALL BE EFFECTIVELY GUARDED BY A SHORING SYSTEM, SLOPING OF THE GROUND OR OTHER EQUIVALENT MEANS. TRENCHES LESS THAN FIVE (5) FEET IN DEPTH SHALL ALSO BE GUARDED WHEN EXAMINATION INDICATES HAZARDOUS GROUND MOVEMENT MAY BE EXPECTED.
- 20. THE CONTRACTOR(S) SHALL ALSO OBTAIN A PERMIT TO PERFORM EXCAVATION OR TRENCH WORK AS DESCRIBED IN NOTE 18 ABOVE FROM CAL/OSHA.
- 21. "V" IS THE DEPTH OF INLET OF CATCH BASINS MEASURED FROM THE TOP OF CURB TO INVERT OUTLET OF CONNECTOR PIPE.
- 22. THE CONTRACTOR SHALL DETERMINE THE TRUE LOCATION OF ANY UNDERGROUND UTILITY PRIOR TO LAYING ANY LINES WHICH ARE TO CONNECT TO THE EXISTING SEWER OR STORM DRAINS.
- 23. IF CAST IN PLACE PIPE (CIPP) WERE USED IN LIEU OF R.C.P. A SOILS REPORT MUST BE SUBMITTED TO THE CITY OF RIALTO.
- 24. CATCH BASINS SHALL BE LOCATED SO THAT LOCAL DEPRESSIONS SHALL BEGIN AT EXISTING CURB RETURN OR JOINT UNLESS OTHERWISE SPECIFIED.
- 25. ALL MANHOLES SHALL BE CONSTRUCTED 6" BELOW PAVEMENT GRADE AND BROUGHT TO FINISH GRADE BY THE PAVING CONTRACTOR AFTER PAVEMENT IS IN PLACE. ELEVATIONS SHOWN ON PROFILE AS TOP OF MANHOLE (RIM) ARE APPROXIMATE ONLY AND NOT TO BE USED FOR SETTING OF MANHOLE RING.
- 26. IMMEDIATELY FOLLOWING REMOVAL OF EXISTING PAVEMENT OR DIKE OR CURB AND/OR GUTTER, THE CONTRACTOR SHALL DILIGENTLY PURSUE THAT PORTION OF WORK TO COMPLETION.

(CONTINUED) GENERAL STORM DRAIN NOTES

- OR NOT SHOWN ON THESE PLANS.

- AS-BUILT PLANS SHALL BE PROVIDED TO THE CITY BY THE CONTRACTO 30.
- EQUAL.

CONSTRUCTION INSPECTION HOURS 7:00 A.M. TO 5:00 P.M. MONDAY THROUGH THURSDAY

PRIVATE ENGINEER'S NOTICE TO CONTRACTOR

- HEREON.

- EXISTING SURVEY MONUMENTS.
- ON THIS PROJECT.

- OF RECORD.
- IMPLEMENTATION.
- APPROVED BY THE PREPARER OF THESE PLANS.

$\frac{1}{2}$ (b) $\frac{1}{2}$ (b) $\frac{1}{2}$ (c)				2 000 000 000 000 000 000 000 000 000 0	
UNDERGROUND SERVICE ALERT CALL:TOLL FREE 1-800 227-2600		PROFESSION PROFES	CHARLES WILBUR LOCKMAN, RCE 42485, EXP. 03/31/16 RECOMMENDED FOR APPROVAL BY LOCKWOOD ENGINEERING:	7/1/2015 DATE 7/2/15	901 Via Piemor Ontario, Califor Phone: 909.477. Www.ttgcorp.com
TWO WORKING DAYS BEFORE YOU DIG	Revised quantifies and added construction notes 12, 29 and 35. Revised sheet index number. Revised quantifies and added construction notes 12, 29 and 35. Revised sheet index number. Revised quantifies and added construction notes 12, 29 and 35. Revised sheet index number. Revised quantifies and added construction notes 12, 29 and 35. Revised sheet index number. Revised quantifies and added construction notes 12, 29 and 35. Revised sheet index number. Revised quantifies and added construction notes 12, 29 and 35. Revised sheet index number. Revised quantifies and added construction notes 12, 29 and 35. Revised sheet index number. Revised quantifies and added construction notes 12, 29 and 35. Revised sheet index number. Revised quantifies and added construction notes 12, 29 and 35. Revised sheet index number. Revised quantifies and added construction notes 12, 29 and 35. Revised sheet index number. Revised quantifies and added construction notes 12, 29 and 35. Revised sheet index number. Revised quantifies and added construction notes 12, 29 and 35. Revised sheet index number. Revised quantifies and added construction notes 12, 29 and 35. Revised sheet index number. Revised quantifies and added construction notes 12, 29 and 35. Revised sheet index number. Revised quantifies and added construction notes 12, 29 and 35. Revised sheet index number. Revised quantifies and added construction notes 12, 29 and 35. Revised sheet index number. Revised quantifies and added construction notes 12, 29 and 35. Revised sheet index number. Revised quantifies and added construction notes 12, 29 and 35. Revised sheet index number. Revised quantifies and 35. Revised sheet index number. Revised quantifies and 35. Revised sh	2015 TTE OF CALIFORNIX	CARLETON W. LOCKWOOD, JR, RCE 45935 APPROVED BY: HGL ROBERT G. EISENBEISZ, PUBLIC WORKS DIRECTOR/ CITY ENGINEER, RCE-54931		BENCH MARK: CITY B.M. No. 061-88, CAL TRANS B.M. No. 19-C- DESCRIPTION: FD CAL-TRANS BRASS DISC SET IN TOP OF CURB @ 1 NORTH OF CENTERLINE CASMALIA STREET 67 FT. WEST (USG&SG DATUM OF 1929)

CITY OF RIALTO MIRO WAY STORM DRAIN IMPROVEMENT PLAN

. NOTICE TO CONTRACTOR: THE EXISTENCE AND LOCATION OF ANY UNDERGROUND UTILITY PIPES OR STRUCTURES SHOWN ON THESE PLANS ARE OBTAINED BY A SEARCH OF THE AVAILABLE RECORDS. APPROVAL OF THESE PLANS BY THE CITY OF RIALTO DOES NOT CONSTITUTE A REPRESENTATION AS TO THE ACCURACY OR COMPLETENESS OF THE LOCATION OR EXISTENCE OR NON-EXISTENCE OF ANY UNDERGROUND UTILITY PIPES OR STRUCTURES WITHIN THE LIMITS OF THIS PROJECT. THE CONTRACTOR IS REQUIRED TO TAKE ALL DUE PRECAUTIONARY MEANS TO PROTECT THE UTILITY LINES NOT OF RECORD

28. IF DURING CONSTRUCTION, GROUND WATER IS ENCOUNTERED, A SYSTEM APPROVED BY THE CITY ENGINEER SHALL BE INSTALLED TO DEWATER SAID AREA AT THE DIRECTION OF THE SOILS ENGINEER

29. NO TRENCH BACKFILL SHALL TAKE PLACE WITHOUT PRIOR APPROVAL OF THE CITY'S INSPECTOR

31. ALL CATCH BASINS WITHIN THE TRACT BOUNDARY WHERE STORM WATER IS AN INFLOW TO THE BASIN SHALL HAVE A WATER QUALITY INSERT INSTALLED AS PART OF THE CATCH BASIN. THE INSERT SHALL BE A FLO-GAR +PLUS CATCH BASIN FILTER INSERT BY KRISTAR ENTERPRISES INC. OR APPROVAL

ALL AVAILABLE RECORDS FROM THE CITY AND UTILITY COMPANIES INVOLVED HAVE BEEN INVESTIGATED AND ALL KNOWN UTILITY CONDUITS AND SUBSTRUCTURES ARE SHOWN IT SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR TO LOCATE ALL UTILITY CONDUITS AND SUBSTRUCTURES SHOWN OR NOT SHOWN ON THESE PLANS BY "POT HOLING" PRIOR TO CONSTRUCTION. THE CONTRACTOR SHALL BEAR THE TOTAL EXPENSE OF REPAIR AND/OR REPLACEMENT OF SAID UTILITY CONDUITS AND SUBSTRUCTURES DAMAGED BY HIS OPERATION IN CONNECTION WITH THE LIMITS OF THIS PROJECT. THE CONTRACTOR IS TO NOTIFY THE ENGINEER OF OR RECORD IMMEDIATELY WITH ANY DISCREPANCIES. COMMENCEMENT OF WORK INDICATES ACCEPTANCE OF ALL EXISTING UTILITIES SHOWN OR NOT SHOW BY THE CONTRACTOR.

2. EXISTING UTILITIES SHALL BE MAINTAINED IN-PLACE BY THE CONTRACTOR, UNLESS OTHERWISE NOTED. RELOCATION OR REMOVAL OF ANY EXISTING UTILITIES NOT COVERED BY THESE PLANS SHALL BE PERFORMED BY OR UNDER THE DIRECTION OF THE RESPECTIVE UTILITY OWNERS AT THE EXPENSE OF THE DEVELOPER.

3. THE CONTRACTOR SHALL BE RESPONSIBLE FOR THE PRESERVATION OF ALL, IF ANY,

4. THE CONTRACTOR SHALL POSSESS A VALID STATE CONTRACTOR'S LICENSE AND SHALL BE REQUIRED TO POSSESS A VALID CITY BUSINESS LICENSE WHILE PERFORMING WORK

5. THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING ALL REQUIRED PERMITS PRIOR TO COMMENCEMENT OF ANY WORK COVERED BY THESE PLANS.

6. THE CONTRACTOR(S) AGREES THAT HE SHALL ASSUME SOLE AND COMPLETE RESPONSIBILITY FOR JOB SITE CONDITIONS DURING THE COURSE OF CONSTRUCTION OF THIS PROJECT, INCLUDING THE SAFETY OF ALL PERSONS AND PROPERTY. THIS REQUIREMENT SHALL APPLY CONTINUOUSLY AND NOT BE LIMITED TO WORKING HOURS.

7. THE CONTRACTOR SHALL DEFEND, INDEMNIFY, AND HOLD THE OWNER AND ENGINEER OF RECORD HARMLESS FROM ANY AND ALL LIABILITY, REAL OR ALLEGED, IN CONNECTION WITH THE PERFORMANCE OF WORK ON THIS PROJECT, EXCEPT FOR LIABILITY ARISING FROM THE SOLE NEGLIGENCE OF THE OWNER AND/OR THE ENGINEER

8. IT SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR TO VERIFY ALL DIMENSIONS AND CONDITIONS SHOWN HEREON AT THE JOB SITE PRIOR TO ANY CONSTRUCTION. THE ENGINEER OF RECORD SHALL BE NOTIFIED OF ANY DISCREPANCIES. REVISIONS TO THE PLAN SHALL BE APPROVED BY THE ENGINEER IN WRITING PRIOR TO

9. UNAUTHORIZED CHANGES & USES: THE ENGINEER PREPARING THESE PLANS WILL NOT BE RESPONSIBLE FOR, OR LIABLE FOR, UNAUTHORIZED CHANGES TO OR USES OF THESE PLANS. ALL CHANGES TO THE PLANS MUST BE IN WRITING AND MUST BE

CITY AGENCY

CITY OF RIALTO ROBERT G. EISENBEISZ 335 W. RIALTO AVE. **RIALTO, CA 92376**

SEE SHEET 7A

MIRO WAY

TEL: 909.421.4986 FAX: 909.421.7204

GEOTECHNICAL ENGINEER

LEIGHTON AND ASSOCIATES, INC A LEIGHTON GROUP COMPANY 10532 ACACIA STREET SUITE B-6 RANCHO CUCAMONGA, CA, 91730 TEL: 909.484.2205

FAX: 909.484.2170

CIVIL ENGINEER

TMAD TAYLOR & GAINES 901 VIA PIEMONTE SUITE 400

ONTARIO, CA 91764

TEL: 909.477.6915 FAX: 909.477.6916

SURVEYOR'S NOTE:

THE BEARING SHOWN HEREON ARE BASED ON THE LINE BETWEEN THE C 1/4 CORNER & S 1/4 CORNER OF SECTION 34, T1N, R5W, SBM, BEING NORTH 00'03'40" WEST AS SHOWN ON PARCEL MAP NO. 5020, PMB 47/74-76, [R1], RECORDS OF SAN BERNARDINO COUNTY

UTILITES

TIME WARNER	.888.892.2253
AT&T UVERSE	.888.511.1885
SOUTHERN CALIFORNIA EDISON	.800.684.8123
SOUTHERN CALIFORNIA GAS COMPANY	.800.427.2000
AT&T	.888.507.8853
EDCO DISPOSAL.	.909.877.1596
VEOLIA – WATER	.909.820.0400
VEOLIA – SEWER	.909.820.0400
WEST VALLEY WATER DISTRICT	.909.875.1804

EMERGENCY NUMBERS

TOPOGRAPHY SURVEY

DON READ CORPORATION 501 MERCURY LANE BREA, CA 92821

TEL: 714.529.9599 FAX: 714.529.2537

DATE FLOWN: 11-17-2004

NUMBER: 04138

N	OTE:	
1.	STORM WORK S	

DENSITY OF 140 PCF PER L.A. COUNTY FLOOD CONTROL DISTRICT STRUCTURAL DESIGN MANUAL

NO WORK TO BE COMPLETED WITHIN SAN BERNARDINO COUNTY FLOOD CONTROL DISTRICT (SBCFCD) RIGHT OF WAY UNTIL SUCH TIME THAT SBCFCD HAS REVIEWED AND APPROVED THE PROPOSED CONNECTION AND ISSUED A SBCFCD SIGNED PERMIT.

LIST OF ABBREVIATIONS

ASSESSORS PARCEL NUMBER **BEGIN CURVE** CATCH BASIN CENTERLINE CURB AND GUTTER CUBIC FEET PER SECOND CONCRETE DOMESTIC WATER DRAWING END OF CURVE EASEMENT END CURB RETURN ELEVATION EDGE OF PAVEMENT FEET PER SECOND FINISH GRADE FRONT OF HEADWAI FLOWLINE ELEVATIO FINISH SURFACE FEET GRADE BREAK HORIZONTAL INTERSECTION LENGTH LINEAR FEET LEFT MAXIMUM MANHOLE MINIMUM NUMBER NOT TO SCALE ON CENTER ON CURVE POINT OF INTERSECTION POINT OF REVERSE CURVATURE PROPOSED POINT OF VERTICAL INTERSECTION RADIUS **REINFORCED CONCRETE PIPE** RETAINING RIGHT RIGHT OF WAY STORM DRAIN SQUARE FEET SANITARY SEWER STREET STATION **STANDARD** STRUCTURE TOP OF CURB TYPICAL

AYALA DR.

SEE SHE

FITZGERALD AVE.

CFS

DW

DWG

EC

ESMT

ECR

ELEV

FPS

F.O.H

HORIZ

INT

MAX

MIN

NO.

NTS

OC

0.C.

PRC

PROP

PVI

RCP

RET

RT

SD

SS

ST

STA

STD

STR

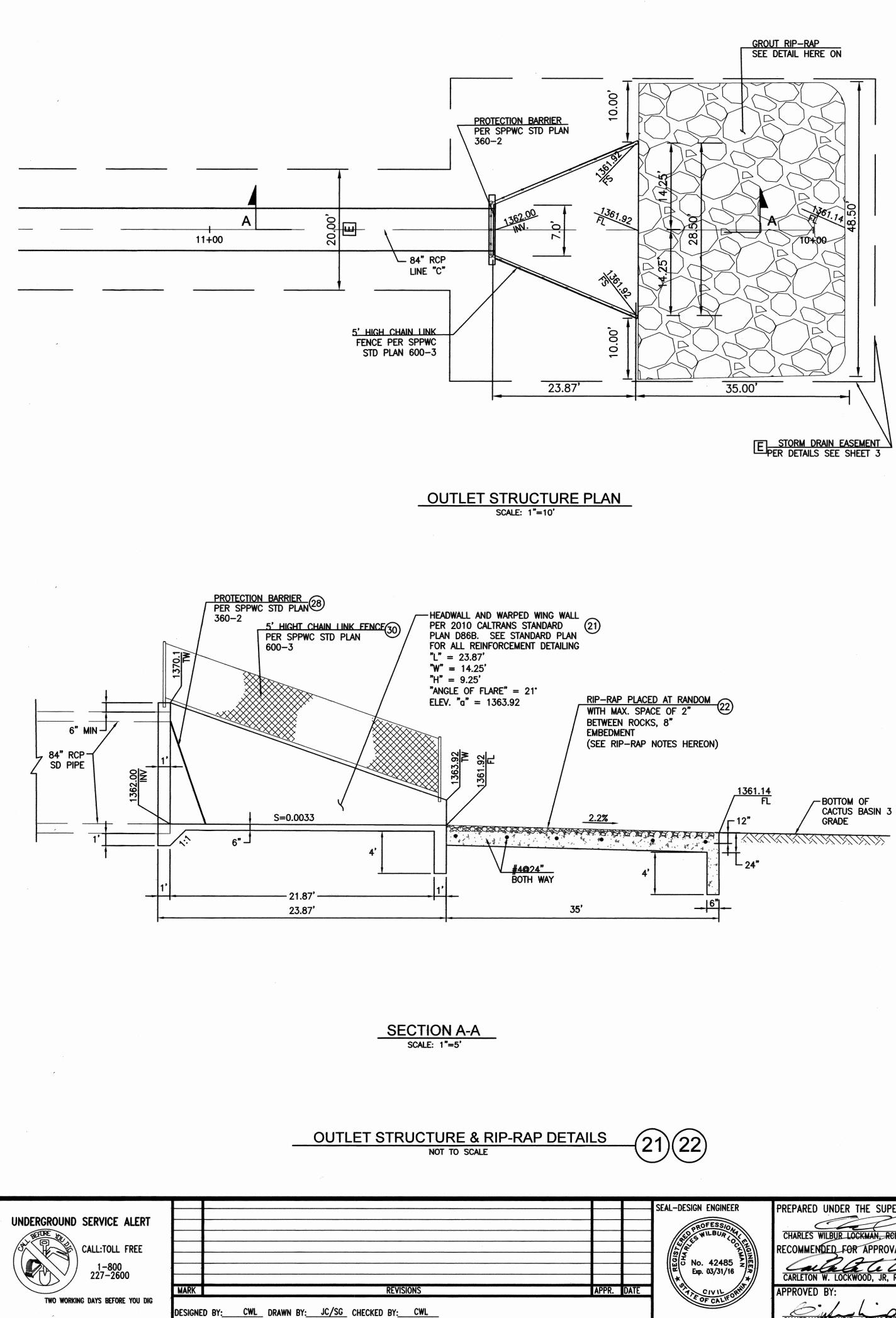
TC

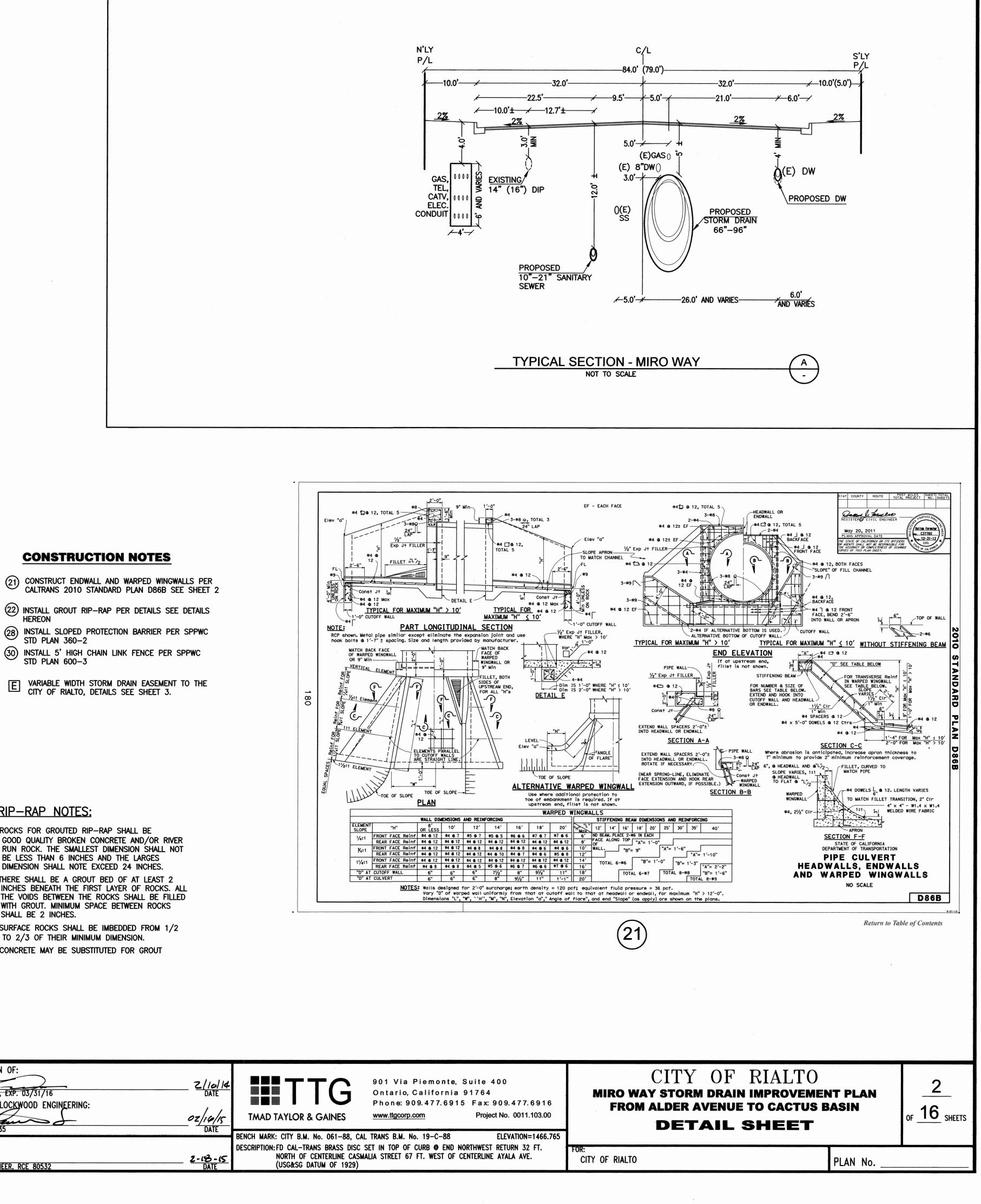
TYP

2.

R/V

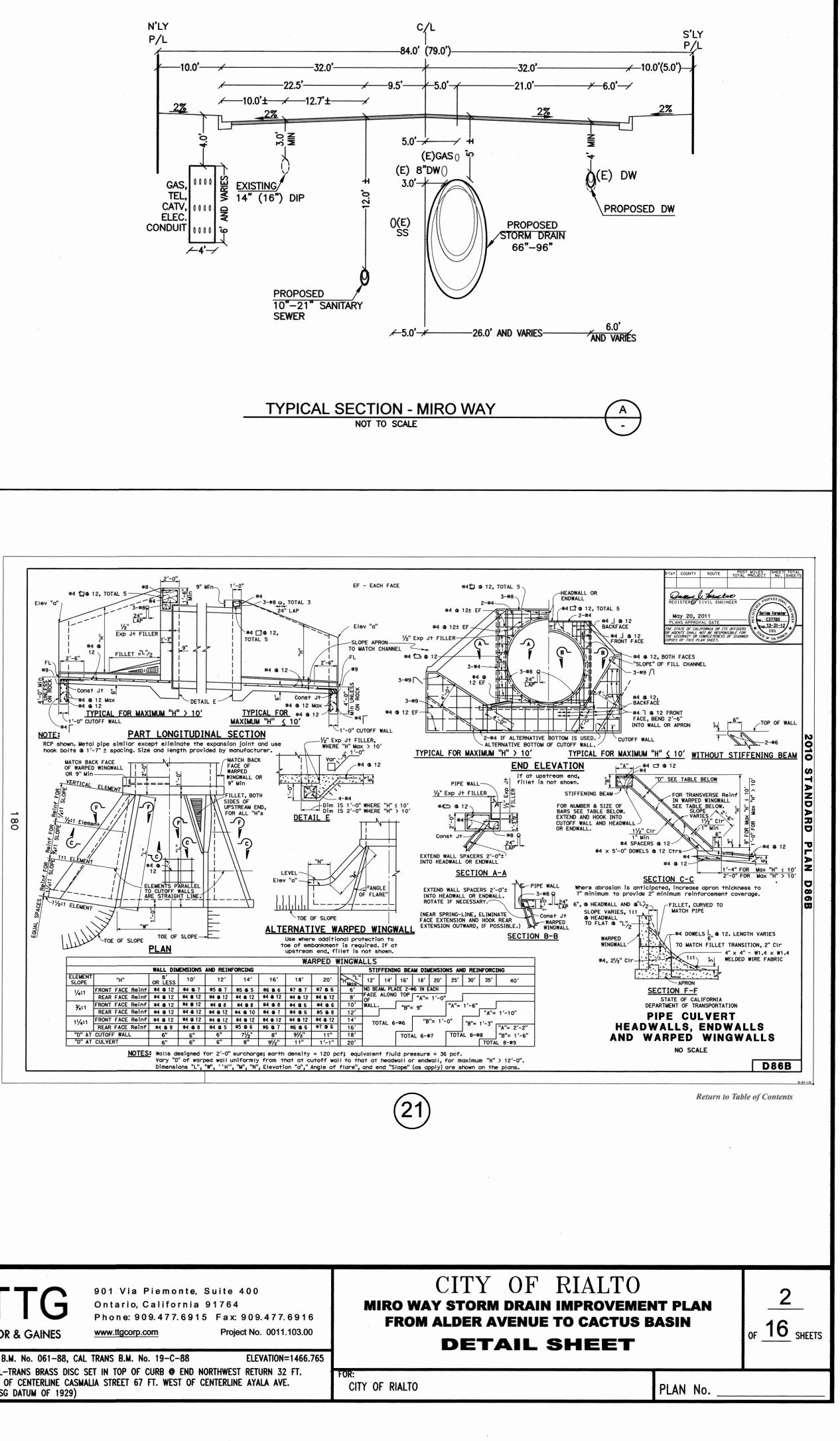
PI


FP

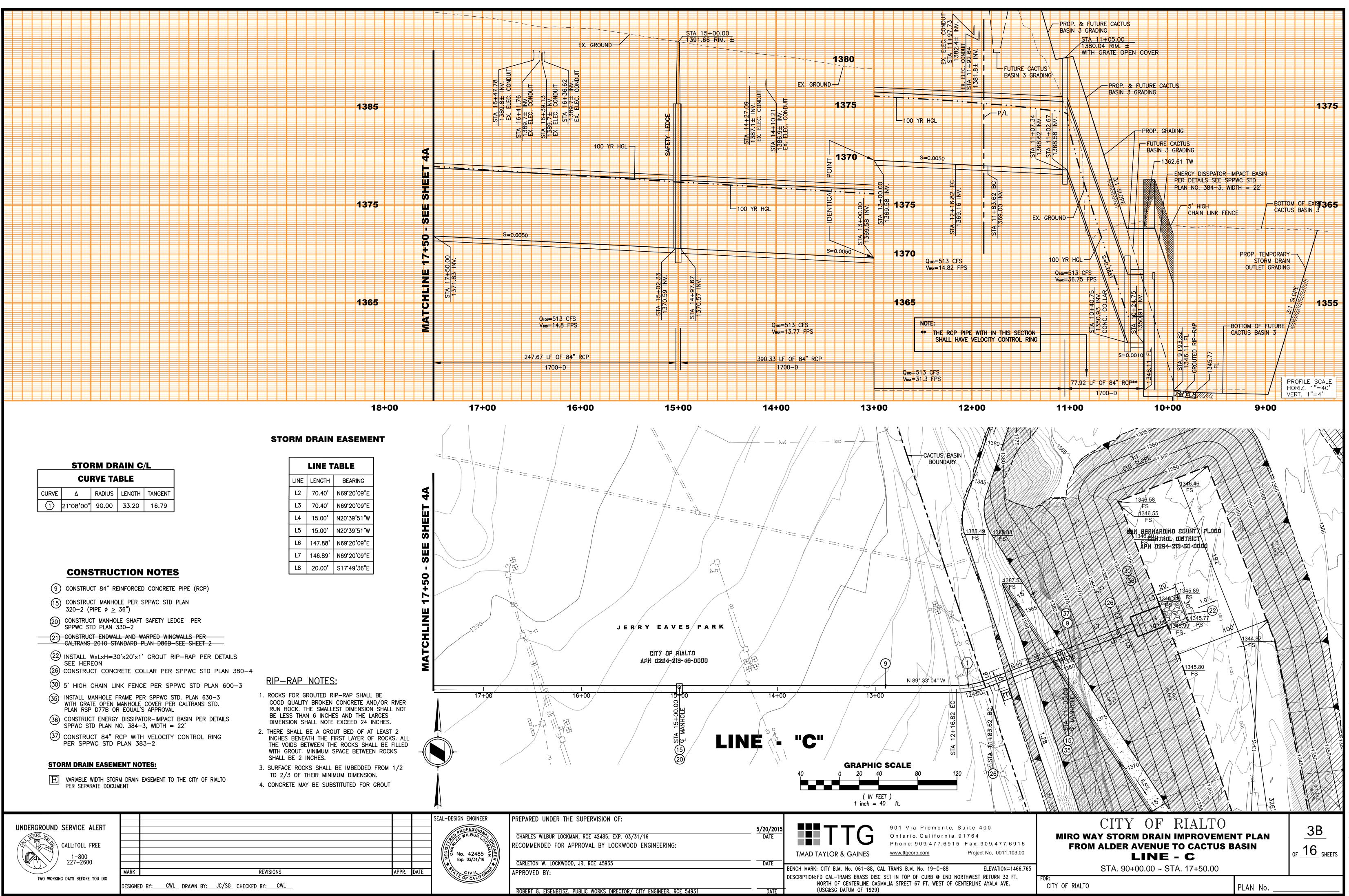

FG

FS

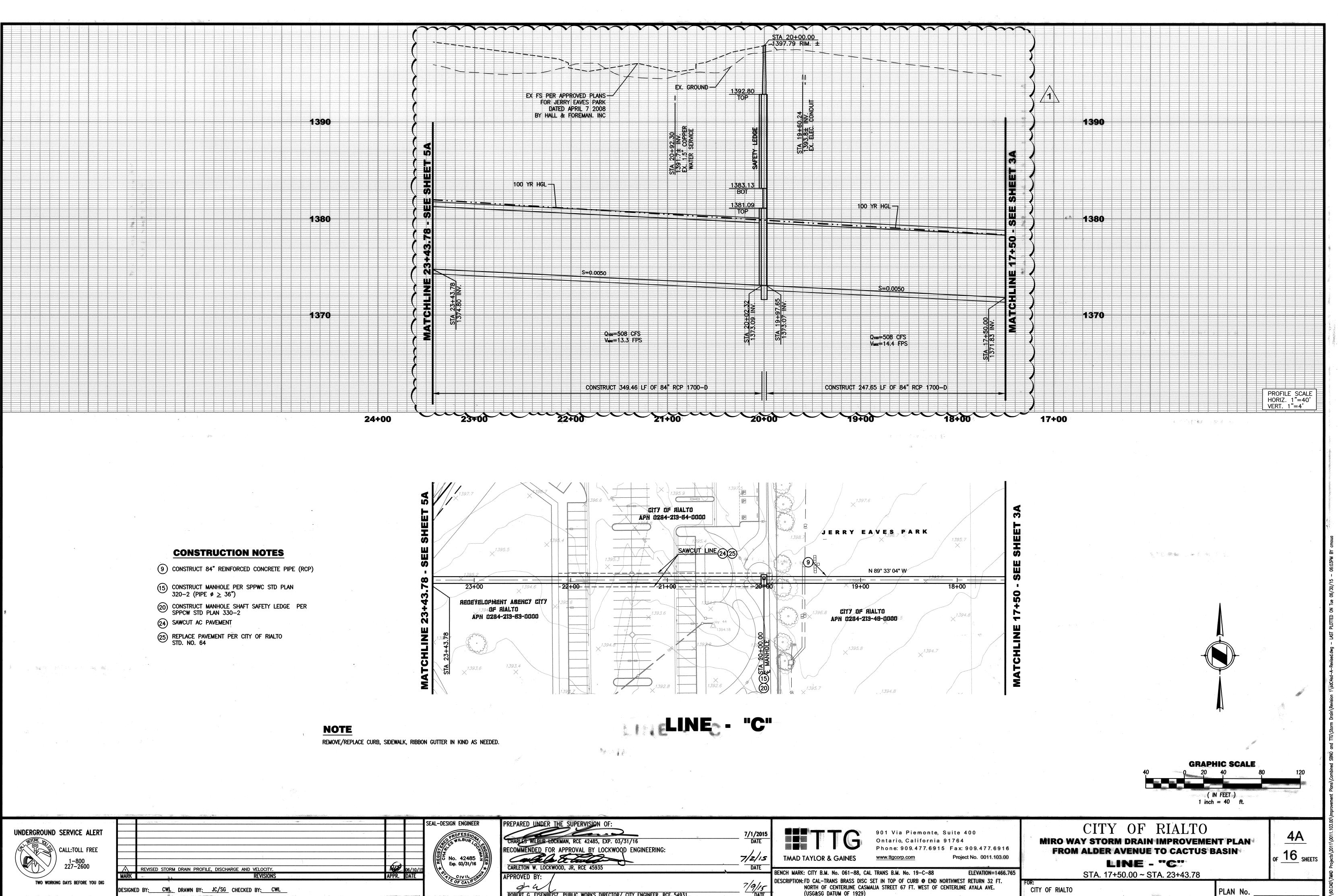
CONC



CONSTRUCTION NOTES

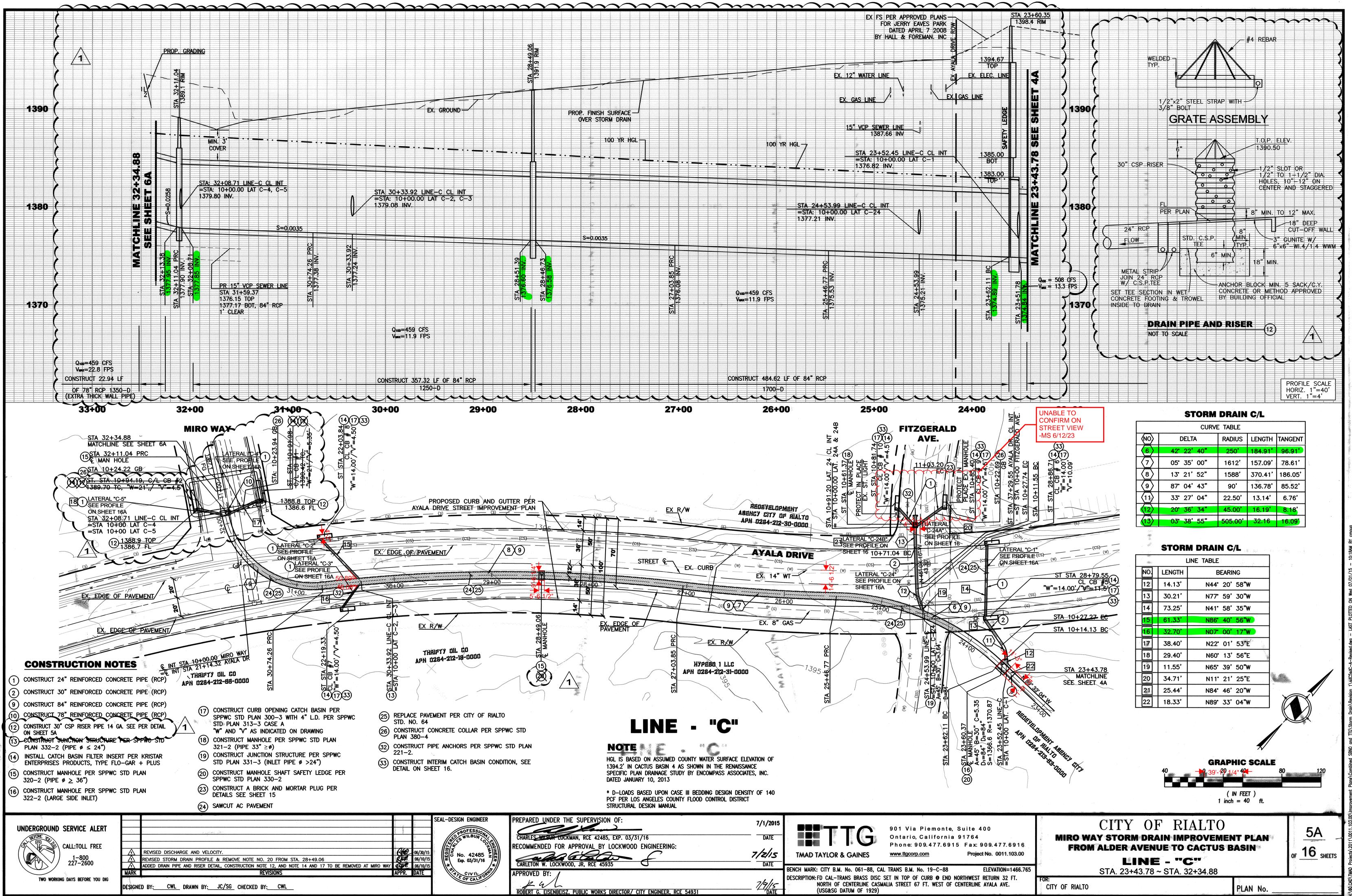

- HEREON
- (30) INSTALL 5' HIGH CHAIN LINK FENCE PER SPPWC STD PLAN 600-3
- E VARIABLE WIDTH STOKM DIVAN LACENCE CITY OF RIALTO, DETAILS SEE SHEET 3. VARIABLE WIDTH STORM DRAIN EASEMENT TO THE

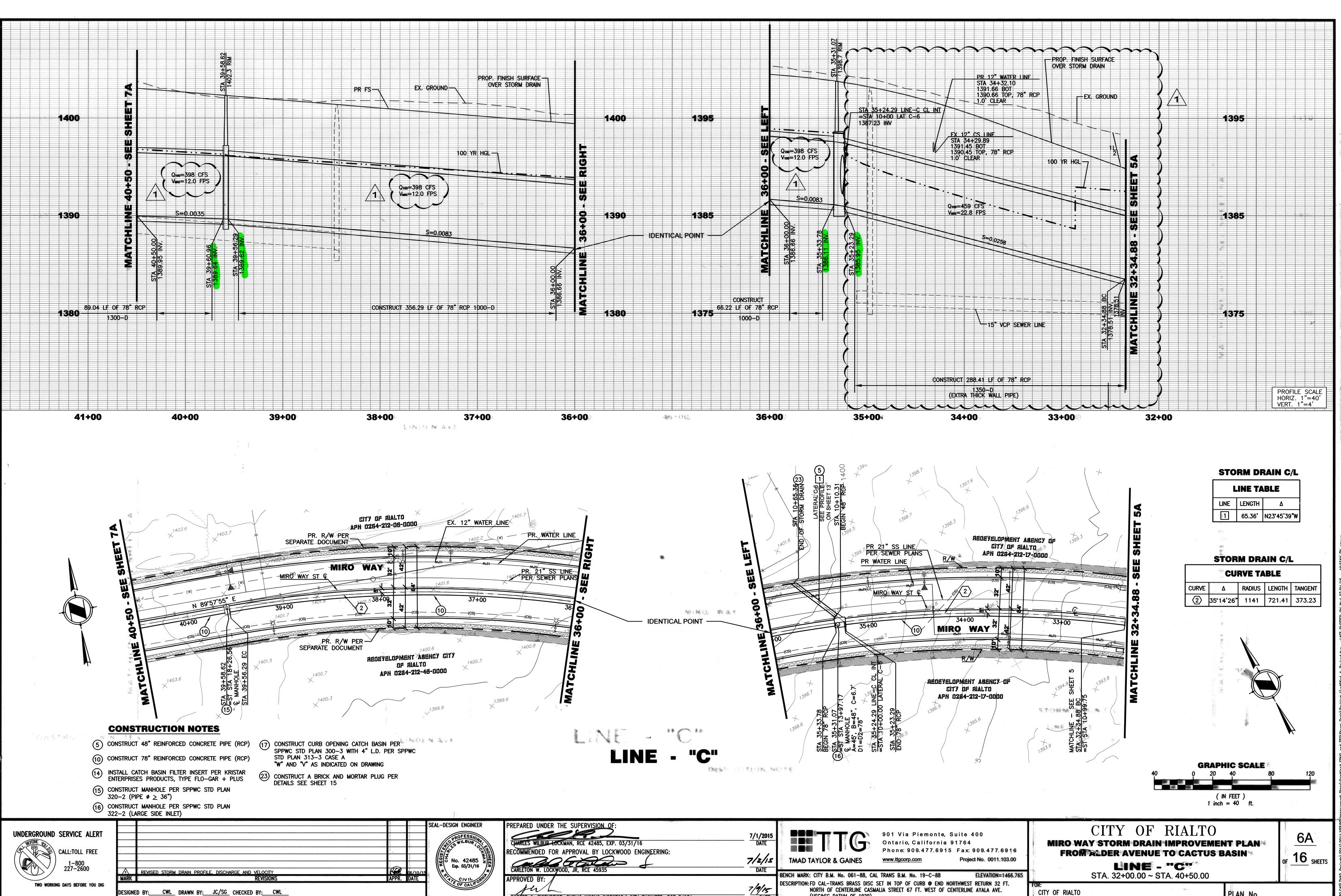
- 1. ROCKS FOR GROUTED RIP-RAP SHALL BE GOOD QUALITY BROKEN CONCRETE AND/OR RIVER RUN ROCK. THE SMALLEST DIMENSION SHALL NOT BE LESS THAN 6 INCHES AND THE LARGES DIMENSION SHALL NOTE EXCEED 24 INCHES.
- 2. THERE SHALL BE A GROUT BED OF AT LEAST 2 INCHES BENEATH THE FIRST LAYER OF ROCKS. ALL THE VOIDS BETWEEN THE ROCKS SHALL BE FILLED WITH GROUT. MINIMUM SPACE BETWEEN ROCKS SHALL BE 2 INCHES.
- 3. SURFACE ROCKS SHALL BE IMBEDDED FROM 1/2 TO 2/3 OF THEIR MINIMUM DIMENSION.
- 4. CONCRETE MAY BE SUBSTITUTED FOR GROUT


SIGN ENGINEER	PREPARED UNDER THE SUPERVISION OF:	-		
PROFESSION	Cheller -	2/10/14		901 Via Piemonte
OF WILBUR OF	CHARLES WILBUR LOCKMAN, RCE 42485, EXP. 03/31/16	DATE		Ontario, Californi
a' CKE	RECOMMENDED FOR APPROVAL BY LOCKWOOD ENGINEERING:	/		Phone: 909.477.69
No. 42485 2 Exp. 03/31/16	Callete Ce Cantana	02/16/15	TMAD TAYLOR & GAINES	www.ttgcorp.com
/★//	CARLETON W. LOCKWOOD, JR, RCE 45935	DATE	DENOU MADY OFFY D.M. M. OCA CO. OM	
TTE OF CALIFORNIE	APPROVED BY:		BENCH MARK: CITY B.M. No. 061-88, CA	
OFCALIF	Q-11.		DESCRIPTION: FD CAL-TRANS BRASS DISC	
	GIANFRANCO LAURIE, ACTING CITY ENGINEER, RCE 80532	<u> </u>	(USG&SG DATUM OF 1929)	ALIA STREET 67 FT. WEST OF

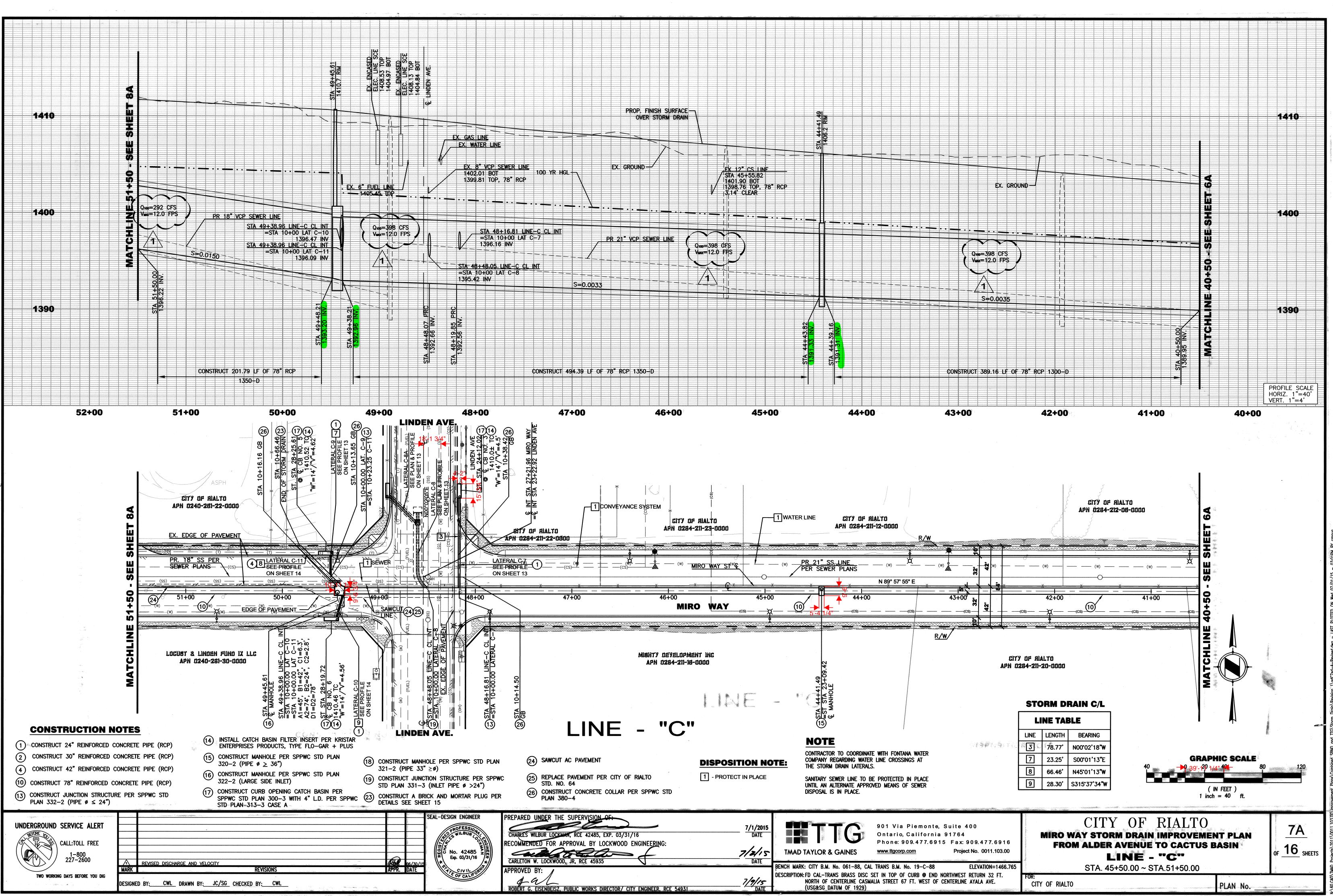
STORM	DRAIN	C/L	

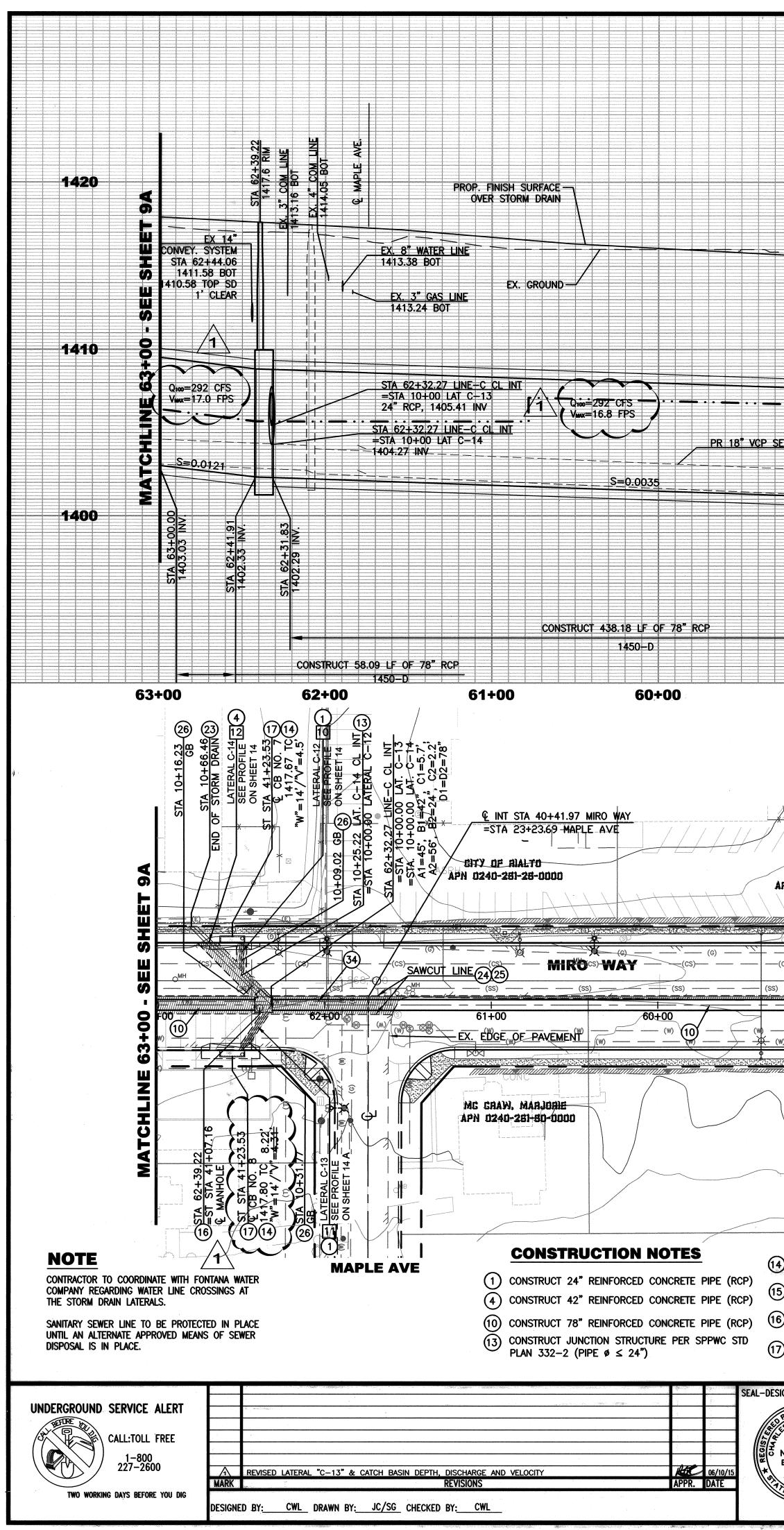
CURVE TABLE							
CURVE	Δ	RADIUS	LENGTH	TANGENT			
$\langle 1 \rangle$	21*08'00"	90.00	33.20	16.79			


					SEAL-D
UNDERGROUND SERVICE ALERT					
HEFERE					
CALL:TOLL FREE					A REGISTER
1-800					REC
227-2600					
	MARK	REVISIONS	APPR.	DATE	
TWO WORKING DAYS BEFORE YOU DIG	DESIGNE	D BY: CWL DRAWN BY: JC/SG CHECKED BY: CWL			

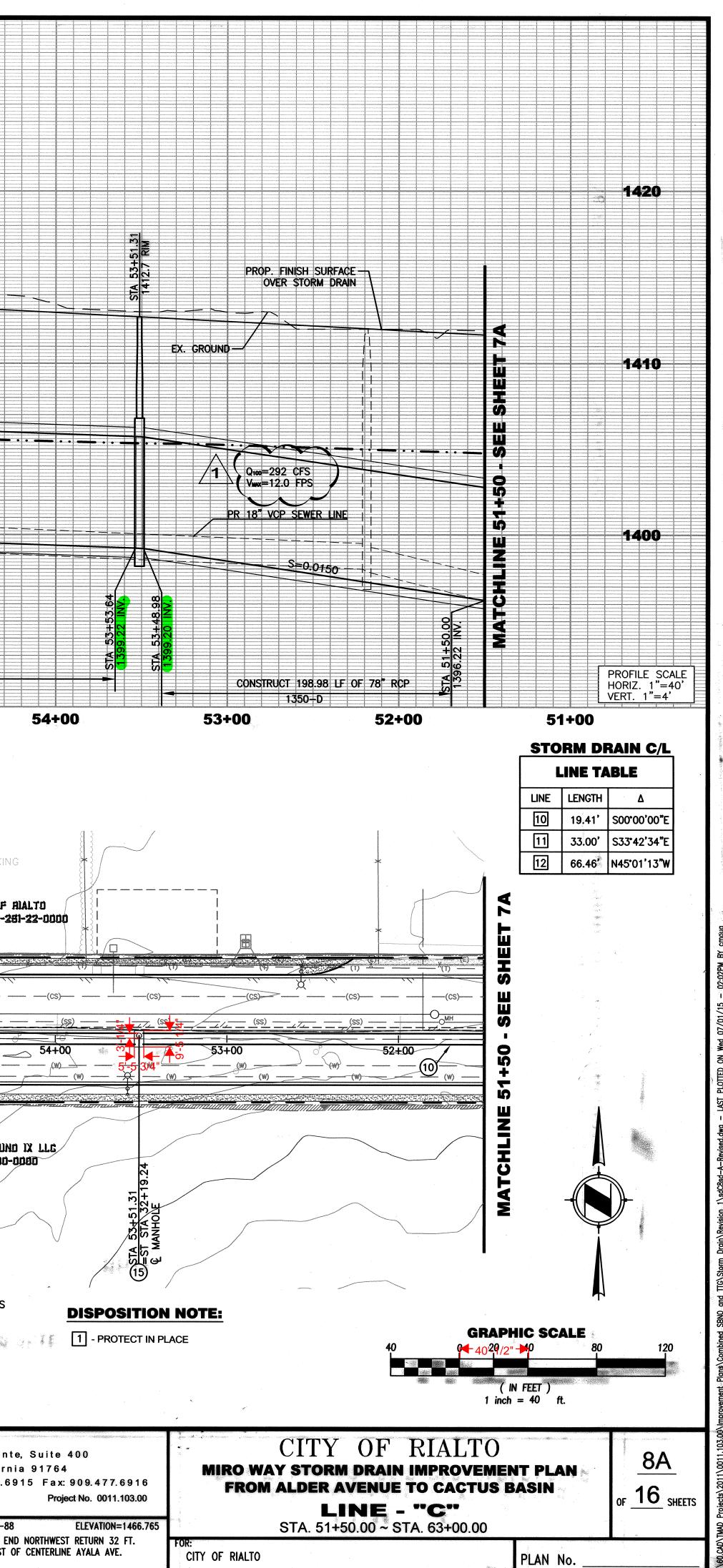


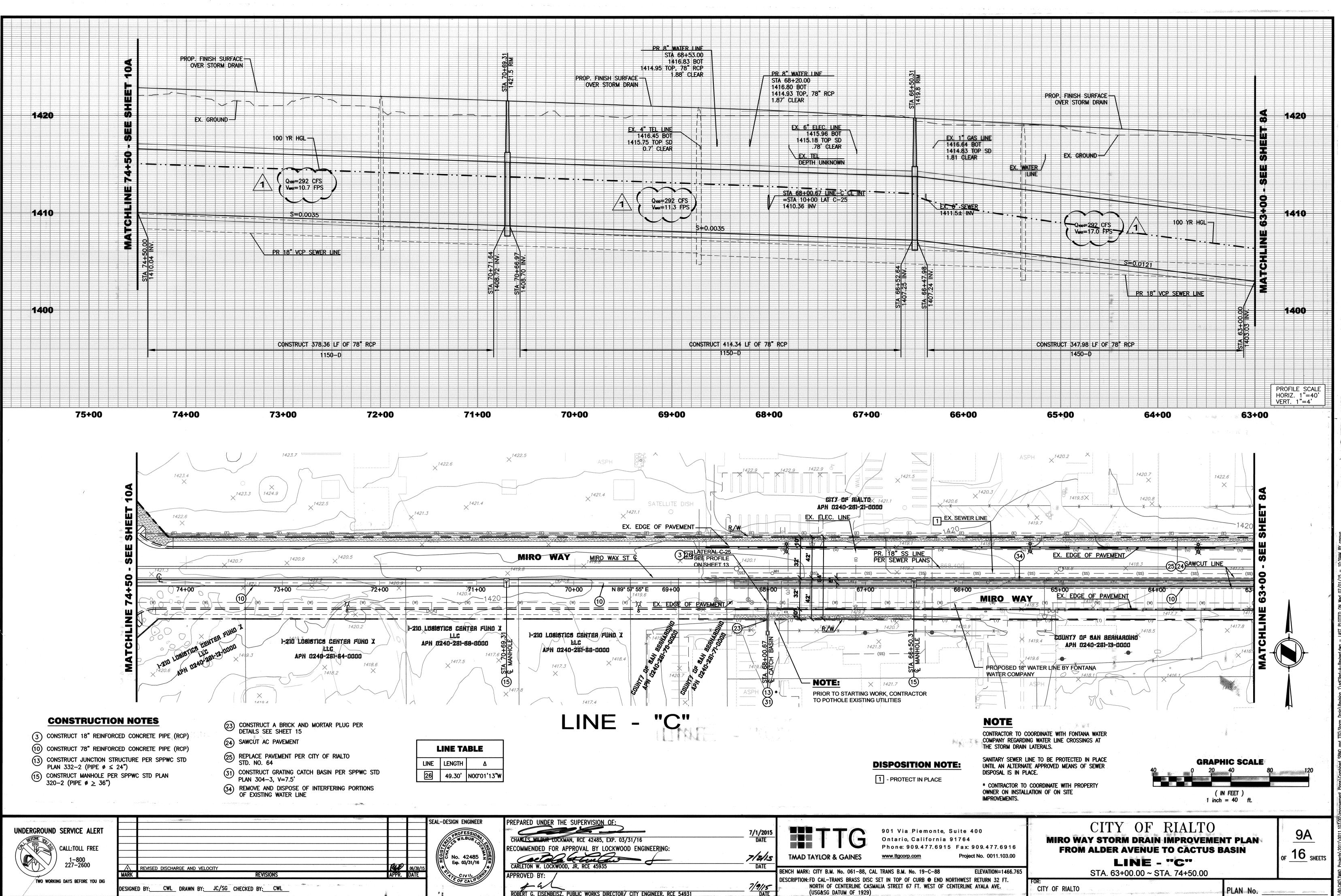
and and a second second second second second second second second second second second second second second se Second second second second second second second second second second second second second second second second	- 27% -		-	·.	SEAL-I
UNDERGROUND SERVICE ALERT					
UNDERGROUND SERVICE ALERI					
A CONTRACTOR OF THE OWNER	-				BEGIOL
CALL:TOLL FREE					
			x.		
			10		š
227-2000	Λ	REVISED STORM DRAIN PROFILE, DISCHARGE AND VELOCITY.		06/10/15	
	MARK	REVISIONS	APPR.	DATE	-
TWO WORKING DAYS BEFORE YOU DIG					
	DESIGNE	D BY: <u>CWL</u> DRAWN BY: JC/SG CHECKED BY: <u>CWL</u>			
an an an ann an Albana an Albana an Albana an Albana ann an an an an an an an an an an an					


And the second second second second second second second second second second second second second second second		สินที่สี่ของร่างระจะสามาณณ์ที่สี่พร้องสีวัตสีสีสร้าง สามาระจะจะจะ	Millitanterittinen in statistista andala andala andala andala andala andala andala andala andala andala andala	a an an an an an an an an an an an an an
PROFESSION PROFESSION SWILBUR OCTURE ALS No. 42485 Z	PREPARED UNDER THE SUPERVISION OF: CHARLES WILBUR LOCKMAN, RCE 42485, EXP. 03/31/16 RECOMMENDED FOR APPROVAL BY LOCKWOOD ENGINEERING:	<u>7/1/2015</u> DATE 7/2/15	TMAD TAYLOR & GAINES	901 Via Piemonte Ontario, Californi Phone: 909.477.69 <u>www.ttgcorp.com</u>
/★//	CARLETON W. LOCKWOOD, JR, RCE 45935	DATE	DENCIL MADY: CITY D.M. No. 061 99 CA	
TTE OF CALIFORNIE	APPROVED BY: /		BENCH MARK: CITY B.M. No. 061-88, CA	
OF CALIF	POPERT A FIGENERICZ DUDING WODING DIDECTOR / CITY ENCINEER DOF 54071	7/9/15 DATE	DESCRIPTION: FD CAL-TRANS BRASS DISC NORTH OF CENTERLINE CASM (USG&SG DATUM OF 1929)	IALIA STREET 67 FT. WEST O
and and a state of the second state of the second state of the second state of the second state of the second s	ROBERT G. EISENBEISZ, PUBLIC WORKS DIRECTOR/ CITY ENGINEER, RCE 54931	JAIL	COOCOUSO DATOM OF TS25)	en anten konkelen en en konkelen en de ser i de ser i de ser en de ser en de ser en de ser en de ser en de ser

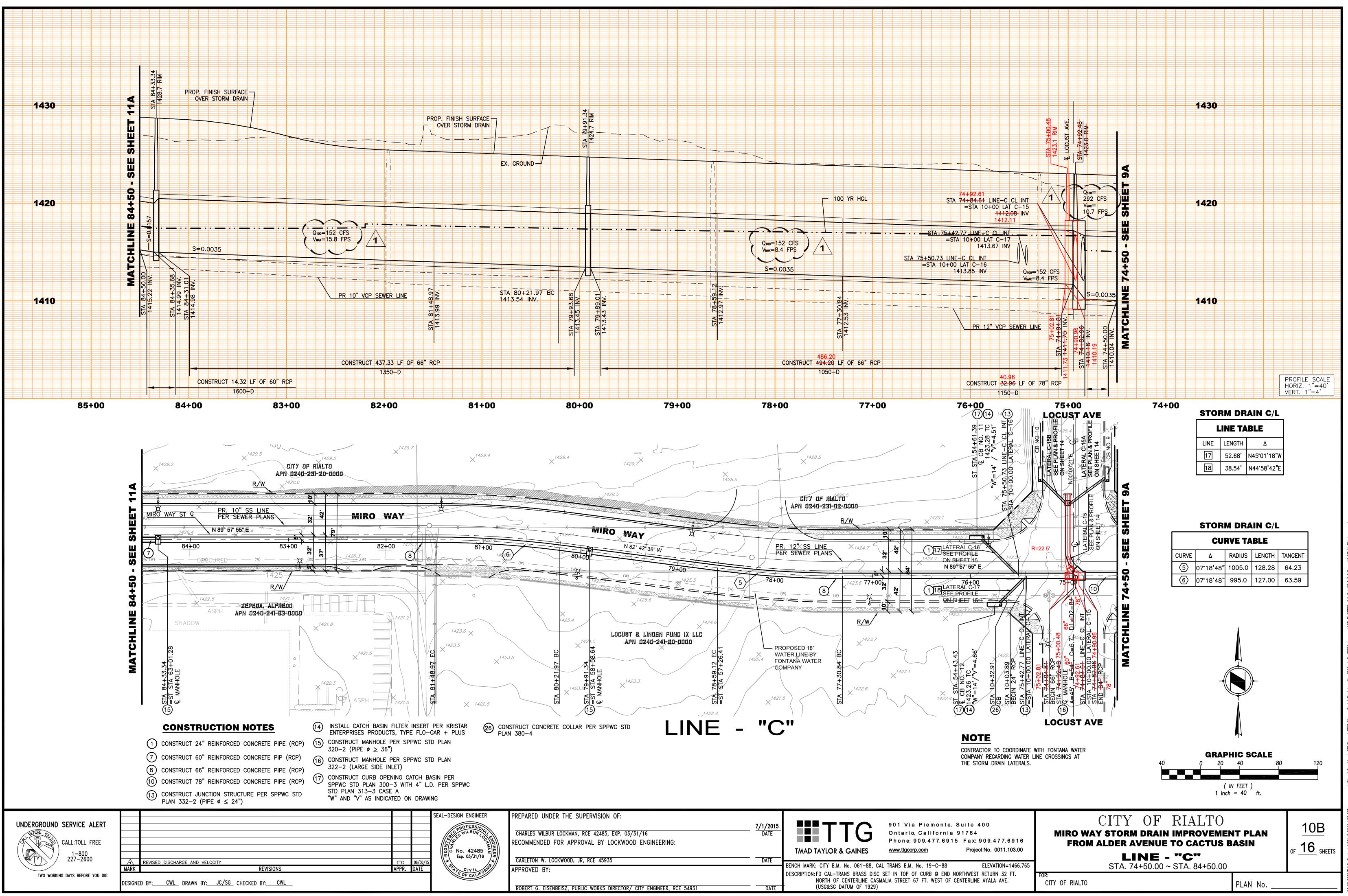

Anna and a second second second second second second second second second second second second second second s				and a second second second second second second second second second second second second second second second
SIGN ENGINEER	PREPARED UNDER THE SUPERVISION OF: CHARLES WILBUE LOCKMAN, RCE 42485, EXP. 03/31/16 RECOMMENDED FOR APPROVAL BY LOCKWOOD ENGINEERING:	7/1/2015 DATE 7/2/15	TMAD TAYLOR & GAINES	901 Via Piemonte Ontario, California Phone: 909.477.69 www.ttgcorp.com
TTE OF CALIFORN	CARLETON W. LOCKWOOD, JR, RCE 45935 APPROVED BY: MC ROBERT G. EISENBEISZ, PUBLIC WORKS DIRECTOR/ CITY ENGINEER, RCE 54931	DATE 7/9/15 DATE	BENCH MARK: CITY B.M. No. 061-88, CA DESCRIPTION: FD CAL-TRANS BRASS DISC NORTH OF CENTERLINE CASM (USG&SG DATUM OF 1929)	

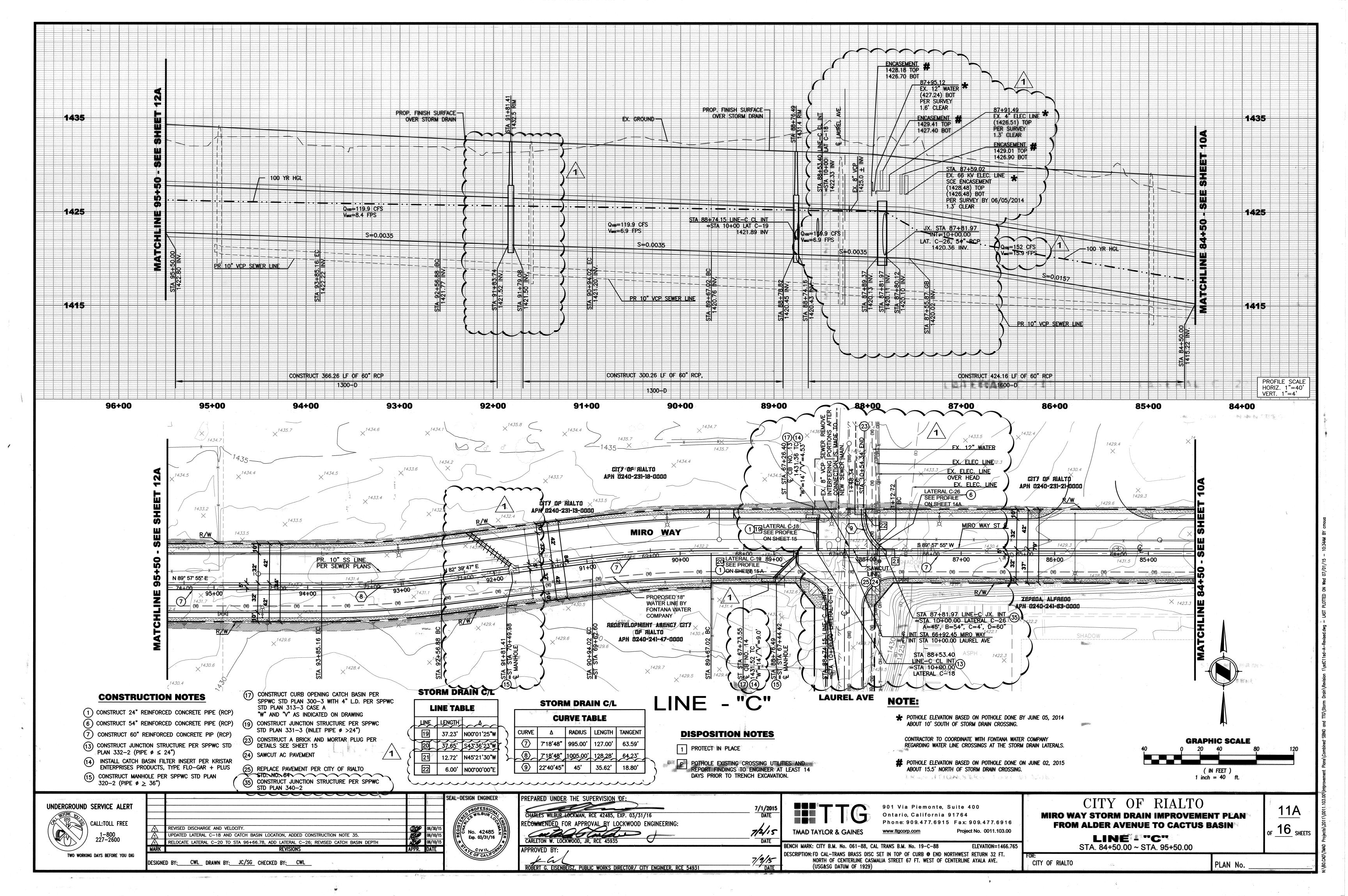
PLAN No.

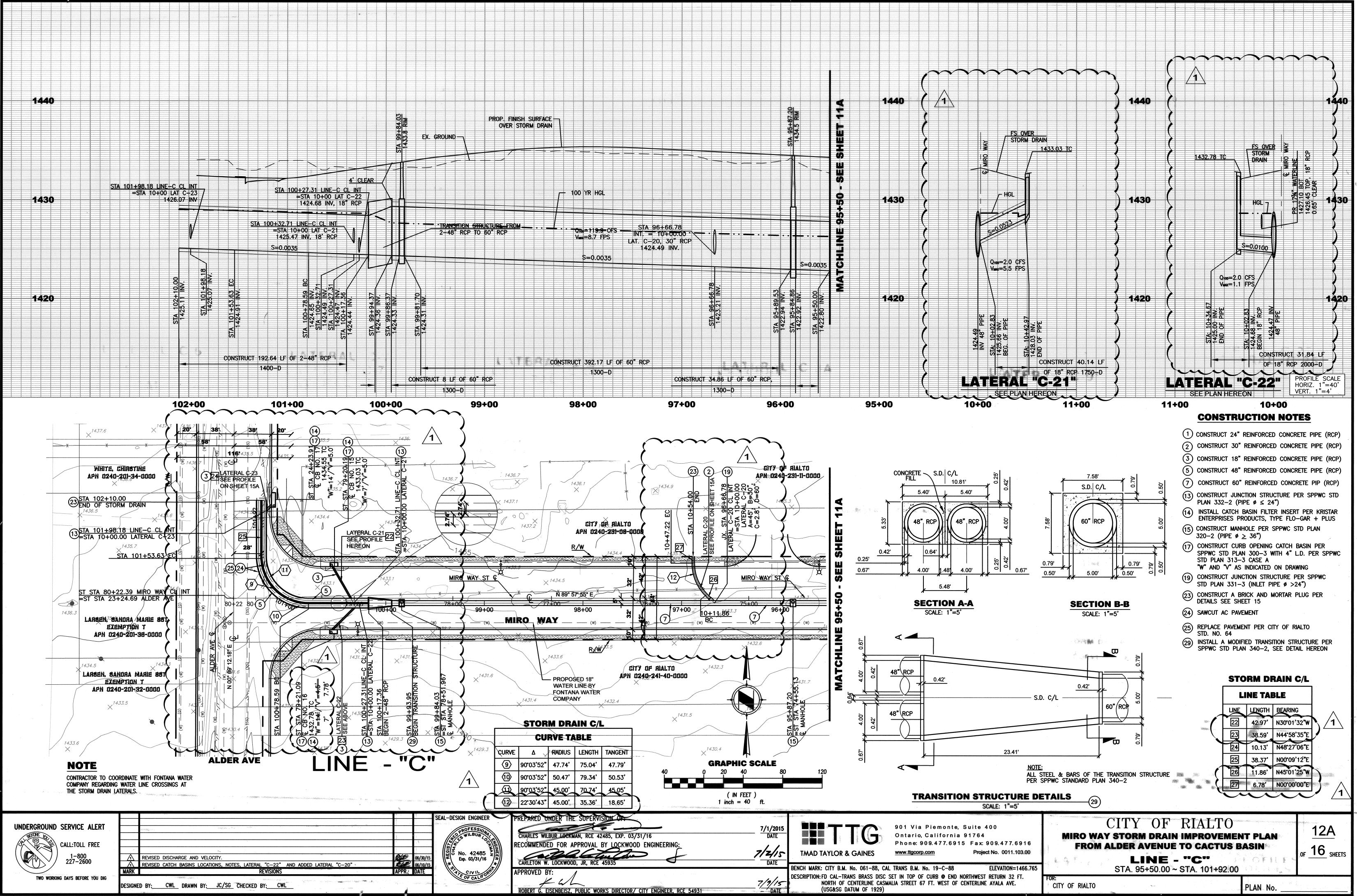

weathr.


N:\6U.CAU\1MAU Projects\2011\U011.1U3.0U\Improvement Plans\Combined SBNU and 116\Storm Drain\Revision 1\sdC/sd-A-Revised.dwg - LAST PLOTED ON Wed 07/01/15 - 0.

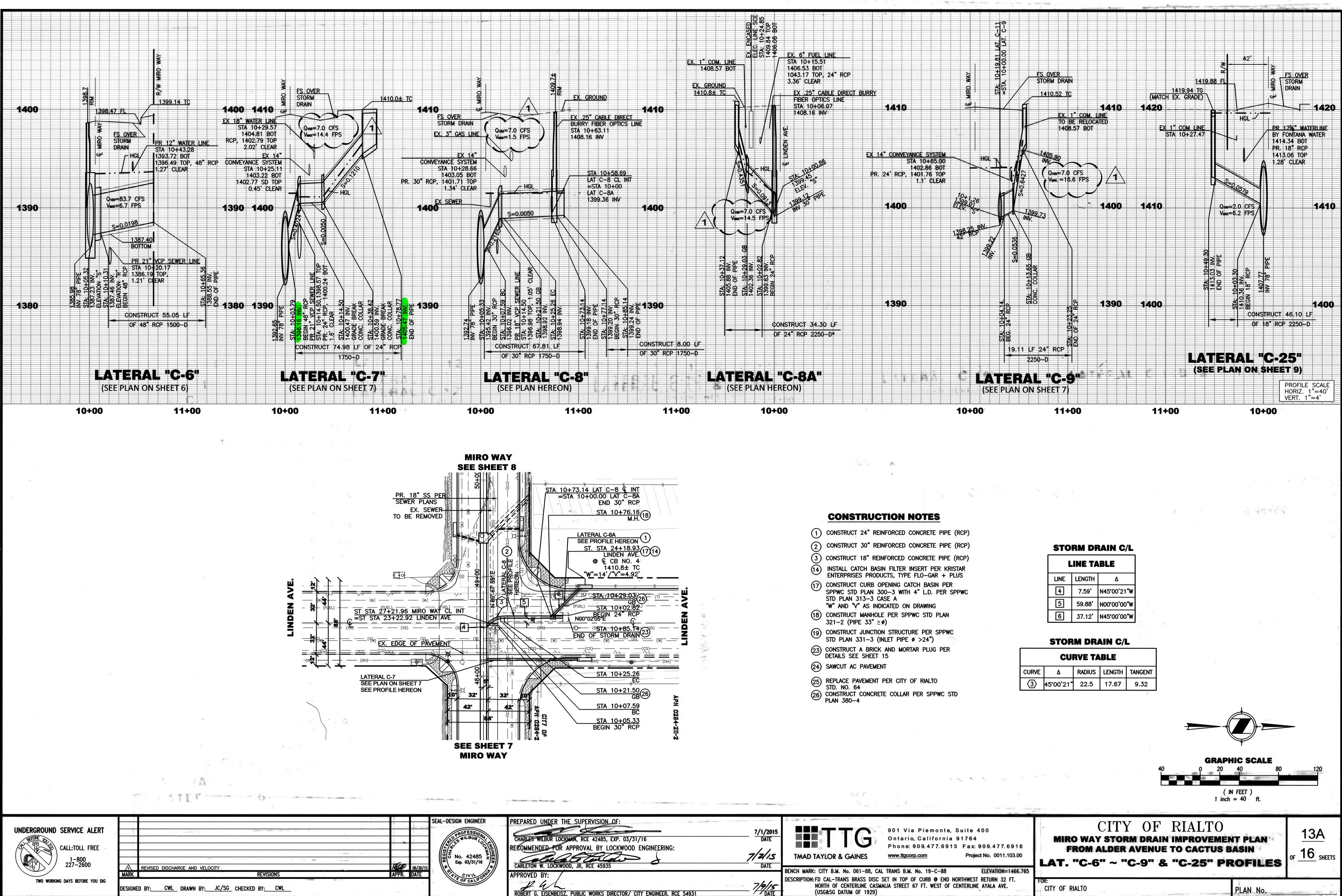
		100 YR HGL-			
•••					
			1 Vwv=9.0	2 CFS 1	
		PR_18'	VCP SEWER LINE		
			S=0.0		
	74 IN				
	STA 57+93.64 1400.76 INV. STA 57+88.98 1400.74 INV.				
			CONST	RUCT 435.34 LF OF 78"	PCD
				1300-D	
59+00	58+00	57+00	56+00	55 [,]	+00
<u>× × × × × × × × × × × × × × × × × × × </u>	* * * * * * * * * * * * * * * * * * *	LID MIN			UNPAVED PARKIN
City of Aialto PN 0240-251-24-0000	ASPH A	ATT DE ALETTO DUD			сіту оғ Арн 0240-2
		st file gth R/W		NITARY SEWER LINE	
		10			
(G)(CS)(CS)	- MIRO WAY ST & - COPER	18" SS LINE R SEWER PLANS		OF PAVEMENT (CS)	
			(55)	1, (00) 1/1	
(w)	58+00 N 89° 57' 5	5" E 57+00	56+00	(W) (W)	+00 (10) 1(m ¹⁵) -
) <u> </u>	(W) (W)				
JASPER FAMILY		<u>R/W</u>			
1415 B/19 APN 0240-2	281-48-0000				Locust & Linden Fun Apn 0240-281-30
	57+91.31 57+91.31 ANHOLE				
	HOLE + 91				
	STA 51 MAN			Y	
	FILTER INSERT PER KRISTAR 23 CO S, TYPE FLO-GAR + PLUS DE	NSTRUCT A BRICK AND MORTAR F TAILS SEE SHEET 15	PLUG PER 34	REMOVE AND DISPOSE (OF EXISTING WATER LIN	OF INTERFERING PORTIONS
) CONSTRUCT MANHOLE F 320-2 (PIPE $\emptyset \ge 36$ ")	PER SPPWC STD PLAN	WCUT AC PAVEMENT			
) CONSTRUCT MANHOLE P 322-2 (LARGE SIDE INI	PER SPPWC STD PLAN (25) RE	PLACE PAVEMENT PER CITY OF RI D. NO. 64	ALTO		•
) CONSTRUCT CURB OPEN SPPWC STD PLAN 300- STD PLAN 313-3 CASE	-3 WITH 4" L.D. PER SPPWC	NSTRUCT CONCRETE COLLAR PER AN 380-4	SPPWC STD		
GN ENGINEER PREPA	RED UNDER THE SUPERVISION OF:	n a stand an an an an an an an an an an an an an	an an an an an an an an an an an an an a	n an an an an an an an an an an an an an	
	LES WILBUR LOCKMAN, RCE 42485, EXP. 03/31,		7/1/2015 DATE	ETTG	901 Via Piemon Ontario, Califori Phone: 909.477.6
No. 42485 Z	MENDED FOR APPROVAL BY LOCKWOOD		7/2/15 TM	AD TAYLOR & GAINES	www.ttgcorp.com
CARLE	ETON W. LOCKWOOD, JR, RCE 45935 WED BY:		DESCOID		, CAL TRANS B.M. No. 19−C−8 NSC SET IN TOP OF CURB @ E
ROBE	L WL RT G. EISENBEISZ, PUBLIC WORKS DIRECTOR/ CI	TY ENGINEER, RCE 54931	7/9/15 DATE		CASMALIA STREET 67 FT. WEST
- -		n en en en en en en en en en en en en en		anna an an an ann an Anna an Anna an Anna an Anna an Anna Anna Anna Anna Anna Anna Anna Anna Anna Anna Anna Ann Anna Anna	n an de menore de la companya de la companya de la companya de la companya de la companya de la companya de la La companya de la companya de la companya de la companya de la companya de la companya de la companya de la com La companya de la companya de la companya de la companya de la companya de la companya de la companya de la com


STA 57+91.31 1415.0 RIM




ESIGNED	BY:	CWL	DRAWN BY:	JC/SG	CHECKED	BY:	
	-1798),				·····		

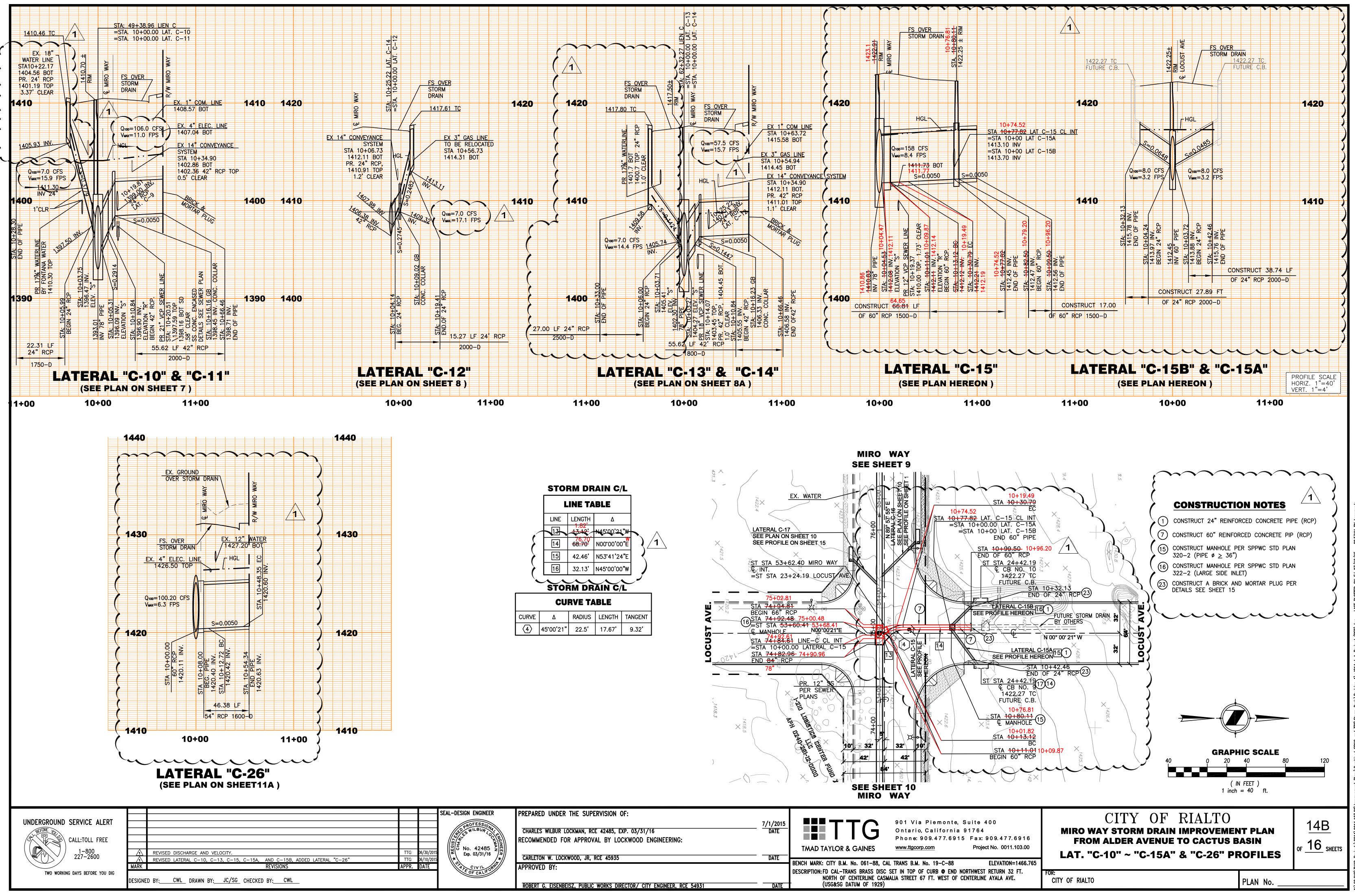
a second and second competing states of				
DESIGN ENGINEER	PREPARED UNDER THE SUPERVISION OF:	7/1/2015		901 Via Piemont
EQ SWILBURY OF FIX	CHARLES WILDUR LOCKMAN, RCE 42485, EXP. 03/31/16 RECOMMENDED FOR APPROVAL BY LOCKWOOD ENGINEERING:	DATE		Ontario, Californ Phone: 909.477.6
A T T T No. 42485 Z Exp. 03/31/16	CARLETON W. LOCKWOOD, JR, RCE 45935	7/2/15 DATE	TMAD TAYLOR & GAINES	www.ttgcorp.com
TIE OF CALIFORN	APPROVED BY:	7/9/15	BENCH MARK: CITY B.M. No. 061–88, CA DESCRIPTION: FD CAL-TRANS BRASS DISC NORTH OF CENTERLINE CASM	SET IN TOP OF CURB @ EN
A construction of the second se	ROBERT G. EISENBEISZ, PUBLIC WORKS DIRECTOR/ CITY ENGINEER, RCE 54931	DATE	(USG&SG DATUM OF 1929)	nna an an an tha an tha an tha an tha an tha an tha an tha an tha an tha an tha an tha an tha an tha an tha an Tha an tha an tha an tha an tha an tha an tha an tha an tha an tha an tha an tha an tha an tha an tha an tha an t



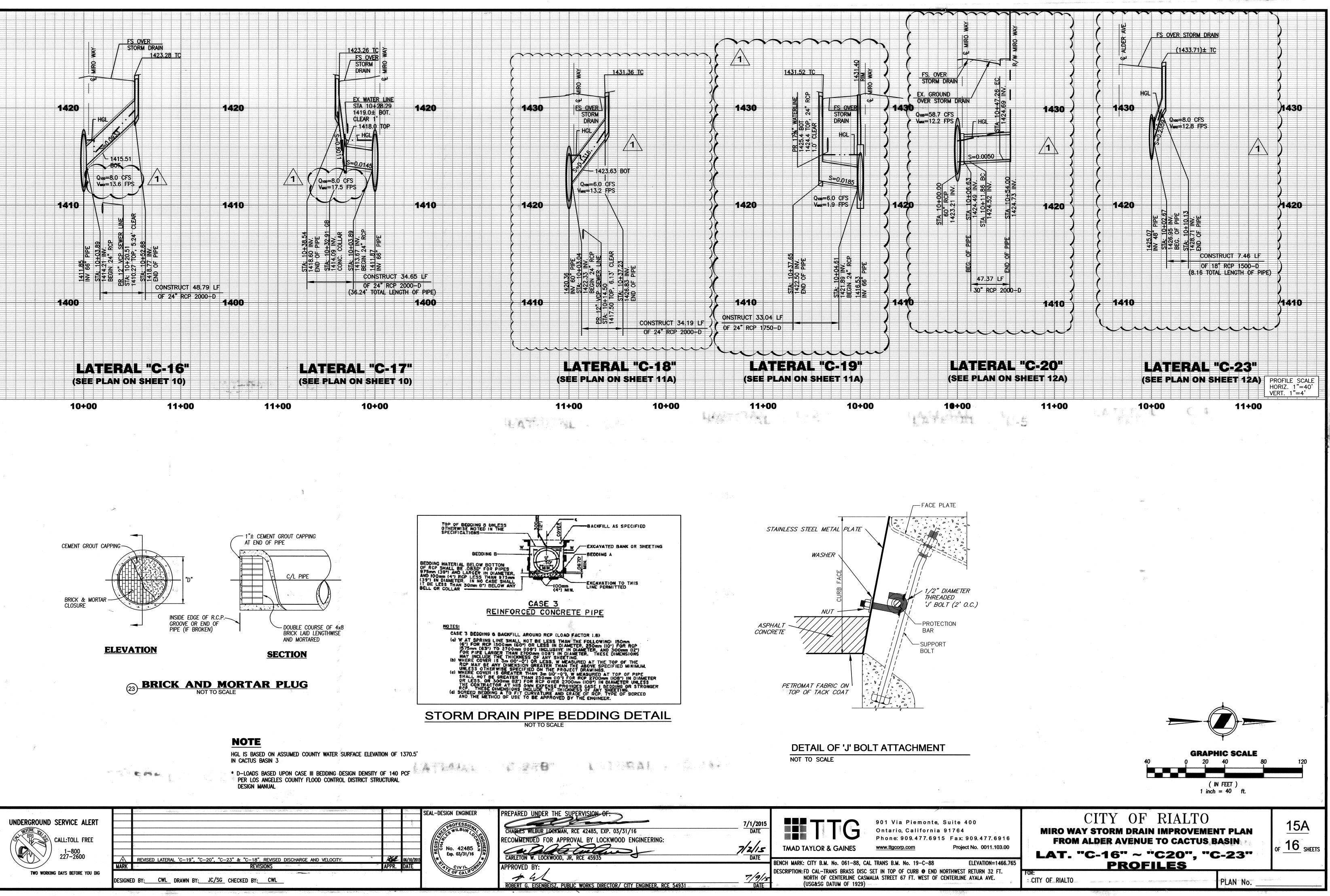
DESIGN ENGINEER	PREPARED UNDER THE SUPERVISION OF:			
ALD PROFESSION Y , IN A LO PROFESSION Y , IN		7/1/2015	TTG	901 Via Piemont
2/45	CHARLES WILBUR LOCKMAN, RCE 42485, EXP. 03/31/16	DATE		Ontario, Californ
A KIG	RECOMMENDED FOR APPROVAL BY LOCKWOOD ENGINEERING:			Phone: 909.477.6
C IG T IG			TMAD TAYLOR & GAINES	www.ttgcorp.com
Exp. 03/31/16	CARLETON W. LOCKWOOD, JR, RCE 45935	DATE		
	APPROVED BY:		BENCH MARK: CITY B.M. No. 061-88, CA	L TRANS B.M. No. 19-C-88
TYPE OF CALIFORNIE	AFFROVED DI.		DESCRIPTION: FD CAL-TRANS BRASS DISC	SET IN TOP OF CURB @ EN
			NORTH OF CENTERLINE CASM	IALIA STREET 67 FT. WEST (
	ROBERT G. EISENBEISZ, PUBLIC WORKS DIRECTOR/ CITY ENGINEER, RCE 54931	DATE	USG&SG DATUM OF 1929)	

Sans in present in the program in the second state of the second s

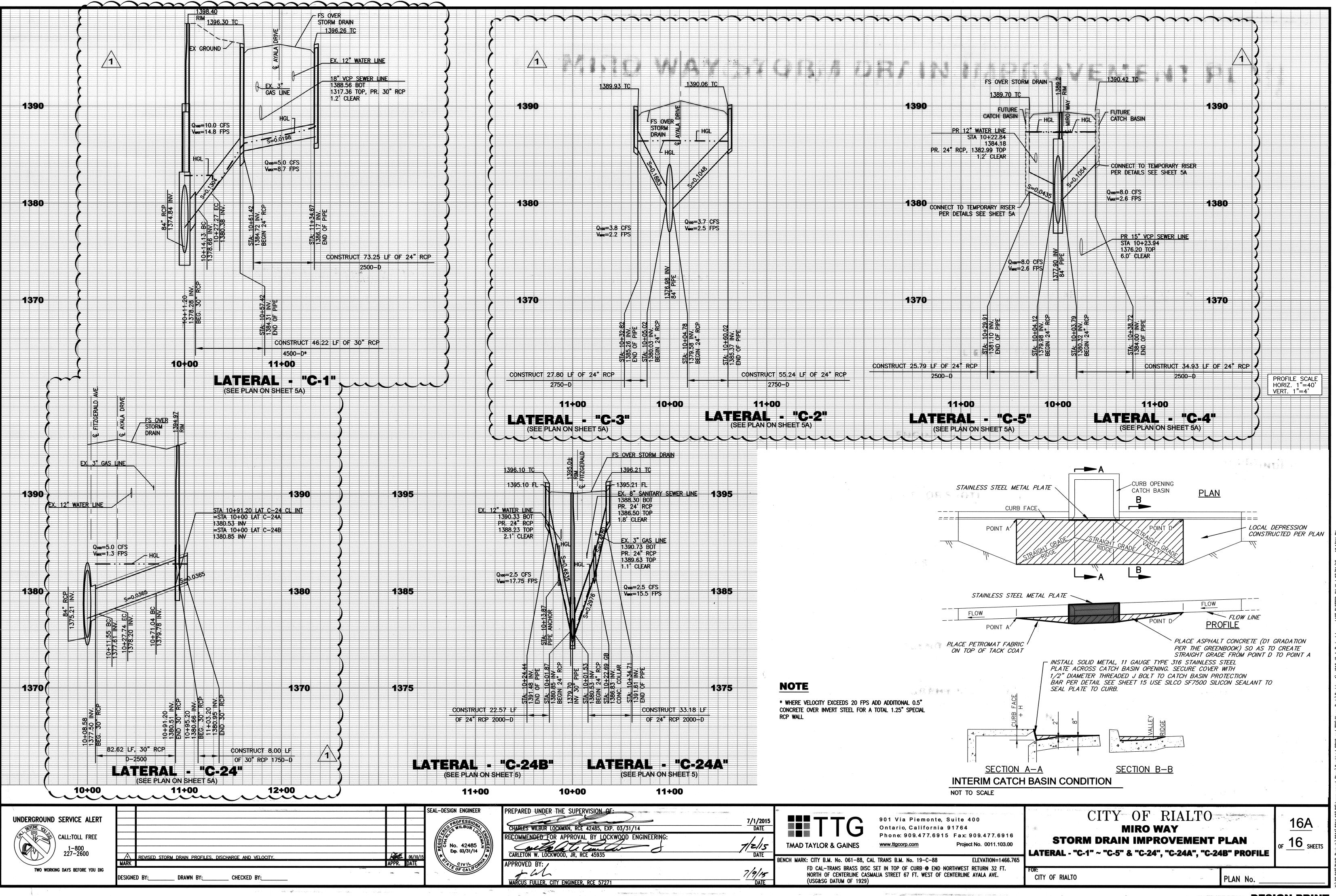
 $= (\mathcal{S}_1, \mathcal{S}_2, \mathcal{S}_3, \mathcal$


, she through a

ESIGN ENGINEER	PREPARED UNDER THE SUPERVISION OF:	angen hjer og senerskeligere signigetet er og	
ROFESSIO	Cal gain	7/1/2015	901 Via Piemont
PROFESSION	CHARLES WILBUR LOCKMAN, RCE 42485, EXP. 03/31/16	DATE	Ontario, Californ
ALL CKI	RECOMMENDED FOR APPROVAL BY LOCKWOOD ENGINEERING:	11	Phone: 909.477.69
4 ² C ² , 16 5 No. 42485 2 Π Exp. 03/31/16 <i>π</i>	alifation of	7/2/15	TMAD TAYLOR & GAINES www.ttgcorp.com
	CARLETON W. LOCKWOOD, JR, RCE 45935	DATE	
TTE OF CALIFORNIE	APPROVED BY:	. b	BENCH MARK: CITY B.M. No. 061-88, CAL TRANS B.M. No. 19-C-88
E OF CALIF	man prof. And a second s	76/1-	DESCRIPTION: FD CAL-TRANS BRASS DISC SET IN TOP OF CURB @ EN
			NORTH OF CENTERLINE CASMALIA STREET 67 FT. WEST ((USG&SG DATUM OF 1929)
	ROBERT G. EISENBEISZ, PUBLIC WORKS DIRECTOR/ CITY ENGINEER, RCE 54931	V VAIE	


STO	RM	DRA	IN	C/L
				-,-

LINE TABLE				
LINE	LENGTH	Δ		
4	7.59'	N45'00'21"W		
5	59.88'	N00°00'00"W		
6	37.12'	N45'00'00"W		


CURVE TABLE						
CURVE	Δ	RADIUS	LENGTH	TANGENT		
3	45 • 00'21"	22.5	17.67	9.32		

ESIGN ENGINEER	PREPARED UNDER THE SUPERVISION OF:			
D PROFESSION		7/1/2015	TTG	901 Via Piemont
·/ < > <ov< td=""><td>CHARLES WILBUR LOCKMAN, RCE 42485, EXP. 03/31/16</td><td>DATE</td><td></td><td>Ontario, Californ</td></ov<>	CHARLES WILBUR LOCKMAN, RCE 42485, EXP. 03/31/16	DATE		Ontario, Californ
A CXX	RECOMMENDED FOR APPROVAL BY LOCKWOOD ENGINEERING:			Phone: 909.477.6
4. δ No. 42485 2 Err Exp. 03/31/16 7			TMAD TAYLOR & GAINES	www.ttgcorp.com
/*//	CARLETON W. LOCKWOOD, JR, RCE 45935	DATE		
TTE OF CALIFORNIE	APPROVED BY:		BENCH MARK: CITY B.M. No. 061-88, CAL	TRANS B.M. No. 19-C-88
E OF CALIFO			DESCRIPTION: FD CAL-TRANS BRASS DISC S	ET IN TOP OF CURB 🕑 EN
			NORTH OF CENTERLINE CASMA	LIA STREET 67 FT. WEST (
	ROBERT G. EISENBEISZ, PUBLIC WORKS DIRECTOR/ CITY ENGINEER, RCE 54931	DATE	USG&SG DATUM OF 1929)	

2012 - 1994 - 1994 - 1994					and the second second second second second second second second second second second second second second second
ESIGN ENGINEER	PREPARED UNDER THE SUPERVISION OF: CHARLES WILBUR LOCKMAN, RCE 42485, EXP. 03/3 RECOMMENDED FOR APPROVAL BY LOCKWOOD CARLETON W. LOCKWOOD, JR, RCE 45935	the second state of the second second second second second second second second second second second second sec	<u>7/1/2015</u> DATE 7/2/1.5 DATE	TMAD TAYLOR & GAINES	901 Via Piemont Ontario, Californ Phone: 909.477.6 www.ttgcorp.com
TE OF CALIFORNIA	APPROVED BY:	CITY ENGINEER, RCE 54931		BENCH MARK: CITY B.M. No. 061-88, CAL DESCRIPTION: FD CAL-TRANS BRASS DISC S NORTH OF CENTERLINE CASM (USG&SG DATUM OF 1929)	SET IN TOP OF CURB @ EN

