INITIAL STUDY/NEGATIVE DECLARATION

[Pursuant to Public Resources Code Section 21080(c) and California Code of Regulations, Title 14, Sections 15070-15071]

LEAD AGENCY: San Joaquin County Community Development Department

PROJECT APPLICANT: Jaspal S. Sindhu

PROJECT TITLE/FILE NUMBER(S): PA-2200279

PROJECT DESCRIPTION: <u>A Site Approval to establish truck parking for 102 truck and trailers and a 4,464-square-foot structure with 3 truck repair bays and a truck wash. Repairs and wash are for on site parked trucks only and are accessory to the truck parking use. On site utilities to include a private well, septic system, and detention pond. Proposed ingress/egress is via one driveway on French Camp Road and one driveway on El Dorado Street. (Use Type: Truck Services – Parking)</u>

The project site is located on the west side of El Dorado Street, at the intersection of French Camp Road, in French Camp.

ASSESSORS PARCEL NO(S).: 193-020-56

ACRES: 6.85 acres

GENERAL PLAN: C/G

ZONING: <u>C-G</u>

POTENTIAL POPULATION, NUMBER OF DWELLING UNITS, OR SQUARE FOOTAGE OF USE(S): 4,464 square foot shop and truck wash and 218,857 square feet of paving for truck parking and manuevering.

SURROUNDING LAND USES:

NORTH: Undeveloped commercial; City of Stockton; French Camp Slough

SOUTH: Undeveloped commercial; San Joaquin County General Hospital

EAST: Industrial; Union Pacific Railroad

WEST: Undeveloped commercial; Interstate 5

REFERENCES AND SOURCES FOR DETERMINING ENVIRONMENTAL IMPACTS:

Original source materials and maps on file in the Community Development Department including: all County and City general plans and community plans; assessor parcel books; various local and FEMA flood zone maps; service district maps; maps of geologic instability; maps and reports on endangered species such as the Natural Diversity Data Base; noise contour maps; specific roadway plans; maps and/or records of archeological/historic resources; soil reports and maps; etc.

Many of these original source materials have been collected from other public agencies or from previously prepared EIR's and other technical studies. Additional standard sources which should be specifically cited below include on-site visits by staff (note date); staff knowledge or experience; and independent environmental studies submitted to the County as part of the project application. Copies of these reports can be found by contacting the Community Development Department.

TRIBAL CULTURAL RESOURCES:

Have California Native American tribes traditionally and culturally affiliated with the project area requested consultation pursuant to Public Resources Code section 21080.3.1? If so, is there a plan for consultation that includes, for example, the determination of significance of impacts to tribal cultural resources, procedures regarding confidentiality, etc.?

<u>Yes. Yes.</u>

GENERAL CONSIDERATIONS:

1. Does it appear that any environmental feature of the project will generate significant public concern or controversy?

Nature of concern(s): Enter concern(s).

No

2. Will the project require approval or permits by agencies other than the County?

Agency name(s): **SJAPCD**

3. Is the project within the Sphere of Influence, or within two miles, of any city?

City: Stockton

ENVIRONMENTAL FACTORS POTENTIALLY AFFECTED:

The environmental factors checked below would be potentially affected by this project, involving at least one impact that is a **"Potentially Significant Impact"** as indicated by the checklist on the following pages.

Aesthetics	Agriculture and Forestry Resources	Air Quality
Biological Resources	Cultural Resources	Energy
Geology / Soils	Greenhouse Gas Emissions	Hazards & Hazardous Materials
Hydrology / Water Quality	Land Use / Planning	Mineral Resources
Noise	Population / Housing	Public Services
Recreation	Transportation	Tribal Cultural Resources
Utilities / Service Systems	Wildfire	Mandatory Findings of Significance

DETERMINATION: (To be completed by the Lead Agency) On the basis of this initial evaluation:

I find that the proposed project <u>COULD NOT</u> have a significant effect on the environment, and a <u>NEGATIVE</u> <u>DECLARATION</u> will be prepared.

I find that although the proposed project could have a significant effect on the environment, there will not be a significant effect in this case because revisions in the project have been made by or agreed to by the project proponent. A <u>MITIGATED NEGATIVE DECLARATION</u> will be prepared.

I find that the proposed project MAY have a significant effect on the environment, and an **<u>ENVIRONMENTAL</u> <u>IMPACT REPORT</u>** is required.

I find that the proposed project <u>MAY</u> have a "potentially significant impact" or "potentially significant unless mitigated" impact on the environment, but at least one effect 1) has been adequately analyzed in an earlier document pursuant to applicable legal standards, and 2) has been addressed by mitigation measures based on the earlier analysis as described on attached sheets. An <u>ENVIRONMENTAL IMPACT REPORT</u> is required, but it must analyze only the effects that remain to be addressed.

I find that although the proposed project could have a significant effect on the environment, because all potentially significant effects (a) have been analyzed adequately in an earlier <u>EIR</u> or <u>NEGATIVE DECLARATION</u> pursuant to applicable standards, and (b) have been avoided or mitigated pursuant to that earlier <u>EIR</u> or <u>NEGATIVE</u> <u>DECLARATION</u>, including revisions or mitigation measures that are imposed upon the proposed project, nothing further is required.

isa Dulart

Signature

6-24-2024

Date

EVALUATION OF ENVIRONMENTAL IMPACTS:

- 1) A brief explanation is required for all answers except "No Impact" answers that are adequately supported by the information sources a lead agency cites in the parentheses following each question. A "No Impact" answer is adequately supported if the referenced information sources show that the impact simply does not apply to projects like the one involved (e.g., the project falls outside a fault rupture zone). A "No Impact" answer should be explained where it is based on project-specific factors as well as general standards (e.g., the project will not expose sensitive receptors to pollutants, based on a project-specific screening analysis).
- 2) All answers must take account of the whole action involved, including off-site as well as on-site, cumulative as well as project-level, indirect as well as direct, and construction as well as operational impacts.
- 3) Once the lead agency has determined that a particular physical impact may occur, then the checklist answers must indicate whether the impact is potentially significant, less than significant with mitigation, or less than significant. "Potentially Significant Impact" is appropriate if there is substantial evidence that an effect may be significant. If there are one or more "Potentially Significant Impact" entries when the determination is made, an EIR is required.
- 4) "Negative Declaration: Less Than Significant With Mitigation Incorporated" applies where the incorporation of mitigation measures has reduced an effect from "Potentially Significant Impact" to a "Less Than Significant Impact." The lead agency must describe the mitigation measures, and briefly explain how they reduce the effect to a less than significant level (mitigation measures from "Earlier Analyses," as described in (5) below, may be crossreferenced).
- 5) Earlier analyses may be used where, pursuant to the tiering, program EIR, or other CEQA process, an effect has been adequately analyzed in an earlier EIR or negative declaration. Section 15063(c)(3)(D). In this case, a brief discussion should identify the following:
 - a) Earlier Analysis Used. Identify and state where they are available for review.
 - b) Impacts Adequately Addressed. Identify which effects from the above checklist were within the scope of and adequately analyzed in an earlier document pursuant to applicable legal standards, and state whether such effects were addressed by mitigation measures based on the earlier analysis.
 - c) Mitigation Measures. For effects that are "Less than Significant with Mitigation Measures Incorporated," describe the mitigation measures which were incorporated or refined from the earlier document and the extent to which they address site-specific conditions for the project.
- 6) Lead agencies are encouraged to incorporate into the checklist references to information sources for potential impacts (e.g., general plans, zoning ordinances). Reference to a previously prepared or outside document should, where appropriate, include a reference to the page or pages where the statement is substantiated.
- 7) Supporting Information Sources: A source list should be attached, and other sources used or individuals contacted should be cited in the discussion.
- 8) This is only a suggested form, and lead agencies are free to use different formats; however, lead agencies should normally address the questions from this checklist that are relevant to a project's environmental effects in whatever format is selected.
- 9) The explanation of each issue should identify:
 - a) the significance criteria or threshold, if any, used to evaluate each question; and
 - b) the mitigation measure identified, if any, to reduce the impact to less than significance.

Less Than Potentially Significant with Less Than Analyzed Significant Mitigation Significant No In The Impact Incorporated Impact Impact Prior EIR

I. AESTHETICS.

Except as provided in Public Resources Code Section 21099, would the project:

- a) Have a substantial adverse effect on a scenic vista?
- b) Substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic buildings within a state scenic highway?
- c) In non-urbanized areas, substantially degrade the existing visual character or quality of public views of the site and its surroundings? (Public views are those that are experienced from publicly accessible vantage points). If the project is in an urbanized area, would the project conflict with applicable zoning and other regulations governing scenic quality?
- d) Create a new source of substantial light or glare which would adversely affect day or nighttime views in the area?

	×	
	×	
	×	
	×	

Impact Discussion:

a) San Joaquin County is set within the greater Central Valley, composed of large expanses of generally flat, agricultural lands and urban development, and framed by the foothills of the Diablo Range to the west and the foothills of the Sierra Nevada to the east. According to the County's General Plan, scenic resources within the County include waterways, hilltops, and oak groves (County of San Joaquin 2035).

The project includes a proposal to develop the parcel for truck parking. The project site is located on E. French Camp Road and S. El Dorado Street, south of the City of Stockton, in the urban community of French Camp, in an area of heavy commercial and industrial uses. Because the site is at the edge of existing development, and because there are no scenic vistas in the area, the project's impact on a scenic vista is expected to be less-than-significant.

b) There are two officially designated state scenic highways in San Joaquin County: I-580 and I-5 (County of San Joaquin 2035). Due to distance, the project site is not visible from 1-580 or from I-5 therefore the project is not expected to impact scenic resources.

In addition, the County has designated 26 roadways within the County as local scenic routes (County of San Joaquin 2035). Neither S. El Dorado Street nor E. French Camp Road are designated scenic routes. Therefore, the project would have a less-than-significant impact associated with scenic resources within a state- or locally- designated scenic route.

- c) The project site is located in the urban community of French Camp in an area of heavy commercial and industrial development. The proposed project will not conflict with applicable zoning or other regulations. The area is generally flat and there are no particular vantage points. Therefore, the project will likely not conflict with applicable zoning and other regulations governing scenic quality.
- d) The existing lighting and glare conditions in the project area are typical of an area with 24-hour services. New lighting for the project would include outdoor building lighting and parking lot lighting. Parking lot lighting standards stipulate that all lighting be designed to confine direct rays to the premises, with no spillover beyond the property line except onto public thoroughfares, provided that such light does not cause a hazard to motorists (Development Title Section 9-1015.5). Therefore, the project is expected to have a less than significant impact from new sources of light or glare on day or nighttime views in the area.

In determining whether impacts to agr are significant environmental effects, refer to the California Agricultural Land Evaluation and Site Assessment Model (1997) prepared by the California Dept. of Conservation as an optional model to use in assessing impacts on agriculture and farmland. In determining whether impacts to forest resources, including timberland, are significant environmental effects, lead agencies may refer to information compiled by the California Department of Forestry and Fire Protection regarding the state's inventory of forest land. including the Forest and Range Assessment Project and the Forest Legacy Assessment project; and forest carbon measurement methodology provided in Forest Protocols adopted by the California Air Resources Board. -- Would the project:

- a) Convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to a nonagricultural use?
- b) Conflict with existing zoning for agricultural use, or a Williamson Act contract?
- c) Conflict with existing zoning for, or cause rezoning of, forest land (as defined in Public Resources Code section 12220(g)), timberland (as defined by Public Resources Code section 4526), or timberland zoned Timberland Production (as defined by Government Code section 51104(g))?
- d) Result in the loss of forest land or conversion of forest land to non-forest use?
- e) Involve other changes in the existing environment which, due to their location or nature, could result in conversion of Farmland, to non-agricultural use or conversion of forest land to non-forest use?

Impact Discussion:

- a) The project includes a proposal to develop the lot for truck parking on a parcel zoned C-G (General Commercial). The parcel is not classified as Prime Farmland or Unique Farmland on maps provided by the California Department of Conservation's Farmland Mapping and Monitoring Program. Therefore, the project will not result in the conversion of Prime Farmland, Unique Farmland, or Farmland of State Importance to a nonagricultural use.
- b) The project is zoned C-G (General Commercial) and is not under a Williamson Act contract. Therefore, the project will not conflict with existing zoning for agricultural use, nor will it conflict with a Williamson Act contract.
- c-d) There are no forest resources or zoning for forestlands or timberland, as defined by Public Resources Code and Government Code, located on or near the project site, therefore, the project will have no impact on corresponding zoning or conversion of such land.

II. AGRICULTURE AND FORESTRY

RESOURCES.	Impact	Incorporated
ricultural resources lead agencies may		

Potentially

Significant

X			
	X		
		×	
		×	
		×	

Mitigation

Analyzed In The No Impact Impact Prior EIR

	Potentially Significant Impact	Less Than Significant with Mitigation Incorporated	Less Than Significant Impact	No Impact	Analyzed In The Prior EIR	
d by ution wing						
the			×			
se of on is state			×			
utant			×			
nose Intial			×			

III. AIR QUALITY.

Where available, the significance criteria established the applicable air quality management or air pollut control district may be relied upon to make the follow determinations. Would the project:

- a) Conflict with or obstruct implementation of applicable air quality plan?
- b) Result in a cumulatively considerable net increase any criteria pollutant for which the project region non-attainment under an applicable federal or st ambient air quality standard?
- c) Expose sensitive receptors to substantial pollut concentrations?
- d) Result in substantial emissions (such as the leading to odors) adversely affecting a substan number of people?

Impact Discussion:

a-d) The project is an expansion of truck parking on a parcel zoned C-G (General Commercial) in the urban community of French Camp, CA. The project site is located within the San Joaquin Valley Air Basin which lies within the jurisdiction of the San Joaquin Valley Air Pollution Control District (APCD). APCD is the local agency established by the State of California Air Resources Board to regulate air guality sources and minimize air pollution.

The project was referred to APCD for review on April 7, 2023. APCD issued a response dated May 11, 2023, with the determination that the project was subject to Rule 9510 Indirect Source Review and required an Air Impact Analysis (AIA) to estimate potential construction and operational mobile and stationary emission sources, proximity to sensitive receptors and existing emission sources, which the applicant completed. In a letter from APCD, dated June 10, 2024, APCD informed the applicant that the AIA was approved and had determined that the mitigated baseline emissions for construction and operation will be less than two tons NOx per year and two tons PM10 per year therefore, the project was exempt from the requirements of Section 6.0 (General Mitigation Requirements) and Section 7.0 (Off-site Emission Reduction Fee Calculations and Fee Schedules) of District Rule 9510 Section 4.3. As such, the District determined that the project complies with the emission reduction requirements of District Rule 9510 and is not subject to payment of off-site fees to reduce project impacts on air quality.

Because these types of trucking activities can result in potentially significant health impacts to sensitive receptors within 1.000 feet of these activities, it is important to note that the nearest sensitive receptor is a non-conforming residence located 1,560 feet north of the project site. Pursuant to the analysis, because of air pollution dispersion, any trucking-related emissions generated from the proposed project site would not be expected to have a localized impact on the nearest sensitive receptors 1,560 feet (0.3 miles) away from the project site.

With implementation of the District Rules' requirements and implementation of recommendations, the project's impact on air quality is expected to be less than significant.

IV. BIOLOGICAL RESOURCES.

Would the project:

- a) Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Game or U.S. Fish and Wildlife Service?
- b) Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, regulations or by the California Department of Fish and Game or US Fish and Wildlife Service?
- c) Have a substantial adverse effect on state or federally protected wetlands (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means?
- d) Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites?
- e) Conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance?
- f) Conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan?

X		
	×	
	×	
X		
X		

Impact Discussion:

a-f) The California Department of Fish and Wildlife Natural Diversity Database lists *Buteo Swainsoni* (Swainson's hawk), *athene cunicularia* (burrowing owl), and *Agelauis tricolor* (tricolored blackbird), as rare, endangered, or threatened species or habitat located within a two-mile radius of the site for the proposed project. Referrals have been sent to the San Joaquin Council of Governments (SJCOG), the agency responsible for verifying the correct implementation of the *San Joaquin County Multi-Species Habitat Conservation and Open Space Plan* (SJMSCP), which provides compensation for the conversion of Open Space to non-Open Space uses which affect the plant, fish and wildlife species covered by the Plan. Pursuant to the Final EIR/EIS for SJMSCP, dated November 15, 2000, and certified by SJCOG on December 7, 2000, implementation of the SJMSCP is expected to reduce impacts to biological resources resulting from the proposed project to a level of less-than-significant.

SJCOG responded to this project referral in a letter dated April 10, 20231, that the project is subject to the SJMSCP. The applicant has confirmed that he will participate in SJMSCP. With the applicant's participation, the proposed project is consistent with the SJMSCP and any impacts to biological resources resulting from the proposed project will be reduced to a level of less-than-significant.

<u>V.</u>	CULTURAL RESOURCES.	Potentially Significant Impact	Less Than Significant with Mitigation Incorporated	Significant	No	Analyzed In The Prior EIR
Wc	ould the project:					
a)	Cause a substantial adverse change in the significance of a historical resource pursuant to§ 15064.5?			×		
b)	Cause a substantial adverse change in the significance of an archaeological resource pursuant to § 15064.5?			×		
c)	Disturb any human remains, including those interred outside of dedicated cemeteries?			×		

Impact Discussion:

a-c) The proposed project includes a proposal to reclassify the zoning of a 4.96-acre parcel from AG-40 (General Agriculture, 40-acre minimum) to I-W (Warehouse Industrial) and to develop the parcel for truck parking. The site was formerly used for crop production and has not been previously developed.

A search of the National Register of Historic Places, the Office of Historic Preservation's list of California Historical Resources, and of the Register of Historic Places within San Joaquin County did not uncover any known historical resources on or near the project site as defined in CEQA Guidelines Section 15064.5.

In the event human remains are encountered during any portion of the project, California state law requires that there shall be no further excavation or disturbance of the site or any nearby area reasonably suspected to overlie adjacent remains until the coroner of the county has determined manner and cause of death, and the recommendations concerning the treatment and disposition of the human remains have been made to the person responsible for the excavation (California Health and Safety Code - Section 7050.5). At the time development, if Human burials are found to be of Native American origin, the developer shall follow the procedures pursuant to Title 14, Division 6, Chapter 3, Article 5, Section 15064.5(e) of the California State Code of Regulations.

In this way, the project would have a less-than-significant impact with regard to an adverse change in the significance of a historical resource as defined in CEQA Guidelines Section 15064.5.

Less Than Potentially Significant with Less Than Analyzed Significant Mitigation Significant No In The Impact Incorporated Impact Impact Prior EIR VI. ENERGY. Would the project: a) Result in a potentially significant environmental impact due to wasteful, inefficient, or unnecessary Х consumption of energy, or wasteful use of energy resources, during project construction or operation? b) Conflict with or obstruct a state or local plan for renewable energy or energy efficiency?

Impact Discussion:

a-b) The California Energy Code (also titled The Energy Efficiency Standards for Residential and Non-residential Buildings) was created by the California Building Standards Commission in response to a legislative mandate to reduce California's energy consumption. The code's purpose is to advance the state's energy policy, develop renewable energy sources and prepare for energy emergencies. The code includes energy conservation standards applicable to most buildings throughout California. These requirements will be applicable to the proposed project ensuring that any impact to the environment due to wasteful, inefficient, or unnecessary consumption of energy will be less than significant and preventing any conflict with state or local plans for energy efficiency and renewable energy.

Less Than Significant with Less Than Potentially Analyzed Significant Significant Mitigation No Impact Incorporated Impact Impact Prior EIR X X

Х

X

X

Х

ii) Strong seismic ground shaking?

iii) Seismic-related failure. including ground liquefaction?

a) Directly or indirectly cause potential substantial adverse effects, including the risk of loss, injury, or

Rupture of a known earthquake fault, as

delineated on the most recent Alguist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other

substantial evidence of a known fault? Refer to Division of Mines and Geology Special

iv) Landslides?

Publication 42.

VII. GEOLOGY AND SOILS.

Would the project:

i)

death involving:

- b) Result in substantial soil erosion or the loss of topsoil?
- c) Be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the project, and potentially result in on- or off-site landslide, lateral spreading, subsidence, liquefaction or collapse?
- d) Be located on expansive soil and create direct or indirect risks to life or property?
- e) Have soils incapable of adequately supporting the use of septic tanks or alternative waste water disposal systems where sewers are not available for the disposal of waste water?
- f) Directly or indirectly destroy а unique paleontological resource or site or unique geologic feature?

Impact Discussion:

a) According to the California Department of Conservation's California Geological Survey, the project site is not located within an earthquake fault zone. However, similar to other areas located in seismically active Northern California, the project area is susceptible to strong ground shaking during an earthquake, although the site would not be affected by ground shaking more than any other area in the region.

The Project would be required to comply with the most recent version of the California Building Code (CBC), which contains universal standards related to seismic load requirements and is codified within the San Joaquin County Ordinance Code under Section 8-1000. In addition, a soils report is required pursuant to CBC § 1803 for foundations and CBC appendix § J104 for grading. All recommendations of the Soils Report will be incorporated into the construction drawings. As a result, impacts associated with seismic ground shaking or possible ground liquefaction are expected to be less than significant.

11

In The

The project site is located in an area that is relatively flat and does not contain any slopes that could result in landslides. Therefore, impacts associated with landslides are expected to be less than significant.

- b) The project would not result in substantial soil erosion or the loss of topsoil because the project will require a grading permit in conjunction with a building permit. Therefore, the grading will be done under permit and inspection by the San Joaquin County Community Development Department's Building Division. As a result, impacts to soil erosion or loss of topsoil will be less than significant.
- c) As part of the project design process, a soils report will be required for grading and foundations and all recommendations from a soils report must be incorporated into the construction plans. As a result of these grading recommendations, which are required by the California Building Code (CBC), the project would not be susceptible to the effects of any potential lateral spreading, subsidence, or liquefaction. Compliance with the CBC and the engineering recommendations in the site-specific soils report would ensure structural integrity in the event that seismic-related issues are experienced at the project site. Therefore, impacts associated with unstable geologic units are expected to be less than significant.
- d) The Soil Survey of San Joaquin County does not classify the project site soil as expansive. As a result, the effects of expansive soil on the project buildings are expected to be less than significant.
- e) The project will be served by an onsite septic system for the disposal of wastewater. The Environmental Health Department is requiring a soil suitability/nitrate loading study to determine the appropriate system and design prior to issuance of building permit(s). The sewage disposal system shall comply with the onsite wastewater treatment systems standards of San Joaquin County. A percolation test that meets absorption rates of the manual of septic tank practice or E.P.A. Design Manual for onsite wastewater treatment and disposal systems is required for each parcel. With these standards in place, only soils capable of adequately supporting the use of septic tanks will be approved for the septic system. As a result, impacts to soils from wastewater are expected to be less than significant.
- f) The project area has not been determined to contain significant historic or prehistoric archeological artifacts that could be disturbed by project construction, therefore, damage to unique paleontological resources or sites or geologic features is expected to be less than significant.

Less Than Potentially Significant with Less Than Significant Mitigation Significant Impact Incorporated Impact

VIII. GREENHOUSE GAS EMISSIONS.

Would the project:

a) Generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment?

b) Conflict with an applicable plan, policy or regulation adopted for the purpose of reducing the emissions of greenhouse gases?

	×	
	×	

Analyzed

In The

Impact Prior EIR

No

Impact Discussion:

a-b) Emissions of GHGs contributing to global climate change are attributable in large part to human activities associated with the industrial/manufacturing, utility, transportation, residential, and agricultural sectors. Therefore, the cumulative global emissions of GHGs contributing to global climate change can be attributed to every nation, region, and city, and virtually every individual on earth. An individual project's GHG emissions are at a micro-scale level relative to global emissions and effects to global climate change; however, an individual project could result in a cumulatively considerable incremental contribution to a significant cumulative macro-scale impact. As such, impacts related to emissions of GHG are inherently considered cumulative impacts.

Implementation of the proposed project would cumulatively contribute to increases of GHG emissions. Estimated GHG emissions attributable to future development would be primarily associated with increases of carbon dioxide (CO₂) and, to a lesser extent, other GHG pollutants, such as methane (CH₄) and nitrous oxide (N₂O) associated with area sources, mobile sources or vehicles, utilities (electricity and natural gas), water usage, wastewater generation, and the generation of solid waste. The primary source of GHG emissions for the project would be mobile source emissions. The common unit of measurement for GHG is expressed in terms of annual metric tons of CO₂ equivalents (MTCO₂e/yr).

As noted previously, the proposed project will be subject to the rules and regulations of the SJVAPCD. The SJVAPCD has adopted the *Guidance for Valley Land- use Agencies in Addressing GHG Emission Impacts for New Projects under CEQA* and the *District Policy – Addressing GHG Emission Impacts for Stationary Source Projects Under CEQA When Serving as the Lead Agency.1* The guidance and policy rely on the use of performance-based standards, otherwise known as Best Performance Standards (BPS) to assess significance of project specific greenhouse gas emissions on global climate change during the environmental review process, as required by CEQA. To be determined to have a less-than-significant individual and cumulative impact with regard to GHG emissions, projects must include BPS sufficient to reduce GHG emissions by 29 percent when compared to Business As Usual (BAU) GHG emissions. Per the SJVAPCD, BAU is defined as projected emissions for the 2002-2004 baseline period. Projects which do not achieve a 29 percent reduction from BAU levels with BPS alone are required to quantify additional project-specific reductions demonstrating a combined reduction of 29 percent. Potential mitigation measures may include, but not limited to: on-site renewable energy (e.g. solar photovoltaic systems), electric vehicle charging stations, the use of alternative-fueled vehicles, exceeding Title 24 energy efficiency standards, the installation of energy-efficient lighting and control systems, the installation of energy-efficient lighting and control systems, the installation of energy-efficient lighting and control systems, the installation of drought-tolerant landscaping, efficient irrigation systems, and the use of low-flow plumbing fixtures.

It should be noted that neither the SJVAPCD nor the County provide project-level thresholds for construction-related GHG emissions. Construction GHG emissions are a one-time release and are, therefore, not typically expected to generate a significant contribution to global climate change. As such, the analysis herein is limited to discussion of long-term operational GHG emissions.

1 San Joaquin Valley Air Pollution Control District. *Guidance for Valley Land-use Agencies in Addressing GHG Emission Impacts for New Projects under CEQA*. December 17, 2009.San Joaquin Valley Air Pollution Control District. *District Policy Addressing GHG Emission Impacts for Stationary Source Projects Under CEQA When Serving as the Lead Agency*. December 17, 2009.

Potentially Significant Impact	Less Than Significant with Mitigation Incorporated	Less Than Significant Impact	No Impact	Analyzed In The Prior EIR

IX. HAZARDS AND HAZARDOUS MATERIALS.

Would the project:

- a) Create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials?
- b) Create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment?
- c) Emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school?
- d) Be located on a site which is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5 and, as a result, would it create a significant hazard to the public or the environment?
- e) For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project result in a safety hazard or excessive noise for people residing or working in the project area?
- f) Impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan?
- g) Expose people or structures, either directly or indirectly, to a significant risk of loss, injury or death involving wildland fires, including where wildlands are adjacent to urbanized areas or where residences are intermixed with wildlands?

Impact Discussion:

- a-c) Pursuant to the Hazardous Materials Disclosure Survey submitted with the application, there will not be any storage of hazardous materials on site. Regulations related to the storage of hazardous materials require the owner/operator to report the use or storage of these hazardous materials to the California Environmental Reporting System (CERS) and must comply with all applicable federal, state, and local regulations pertaining to the storage of hazardous materials. In this way, impacts related to the use, transport, or disposal of hazardous materials are expected to be less than significant.
- d) The project site is not listed as a hazardous materials site on the California Department of Toxic Substances Control EnviroStor database map, compiled pursuant to Government Code 65962.5 and, therefore, will not result in creating a significant hazard to the public or the environment.
- e) The project site is located within the Stockton Metropolitan Airport area of influence Zone 7a Traffic Pattern Zone and is approximately 1.79 miles west of the airport runway. Pursuant to the San Joaquin County Airport Land Use Compatibility Plan (Amended 2018), the current noise exposure contour and the future noise exposure contour are

	×		
	×		
	×		
		X	
	×		
		×	
	×		

approximately one mile away from the project site. Therefore, due to the project site's distance from the airport noise contours, the project's risk of exposing people residing or working in the project area to safety hazards or excessive noise is less than significant.

- f) The County of San Joaquin Emergency Operations Plan is an all-hazards document describing the County's incident management structure, compliance with relevant legal statutes, other relevant guidelines, whole community engagement, continuity of government focus, and critical components of the incident management structure. According to the Emergency Operations Plan, major transportation route I-5, would be a possible evacuation route in the event of an emergency. The Project would not affect this route, and moreover, the Project would not affect the County's ability to implement its Emergency Operations Plan in the event of an emergency. Notwithstanding, the Project would not impede access to any public route that might be needed as an evacuation route. As a result, the Project's impact on emergency response or evacuation activities is expected to be less than significant.
- g) The project location is not identified as a Community at Risk from Wildfire by Cal Fire's "Fire Risk Assessment Program". Communities at Risk from Wildfire are those places within 1.5 miles of areas of High or Very High wildfire threat as determined from CDF-FRAP fuels and hazard data. Therefore, the impact of wildfires on the project are expected to be less than significant.

X. HYDROLOGY AND WATER QUALITY.

Would the project:

- a) Violate any water guality standards or waste discharge requirements or otherwise substantially degrade surface or ground water guality?
- b) Substantially decrease groundwater supplies or interfere substantially with groundwater recharge such that the project may impede sustainable groundwater management of the basin?
- c) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river or through the addition of impervious surfaces, in a manner which would:
 - i) result in substantial erosion or siltation on- or offsite;
 - ii) substantially increase the rate or amount of surface runoff in a manner which would result in flooding on- or off-site;
 - iii) create or contribute runoff water which would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff; or
 - iv) impede or redirect flood flows?
- d) In flood hazard, tsunami, or seiche zones, risk release of pollutants due to project inundation?
- e) Conflict with or obstruct implementation of a water quality control plan or sustainable groundwater management plan?

Impact Discussion:

a) The proposed project's impact on hydrology and water is expected to be less than significant. The project, development of a truck parking facility, will be served by a private well for water and a private, onsite septic system. Construction of a well and a sewage disposal system will be under permit and inspection by the Environmental Health Department to ensure that it complies with standards of San Joaquin County.

For stormwater discharges associated with construction activity in the State of California, the State Water Resources Control Board (SWRCB) has adopted the General Permit for Storm Water Discharges Associated with Construction and Land Disturbance Activities (Construction General Permit) to avoid and minimize water quality impacts attributable to such activities. The Construction General Permit applies to all projects in which construction activity disturbs 1 acre or more of soil. Because land disturbance for this project would exceed one acre, the project applicant would be required to obtain coverage under the Construction General Permit issued by the SWRCB prior to the start of construction. The Construction General Permit requires the development and implementation of a Stormwater Pollution Prevention Plan (SWPPP), which would include and specify water quality Best Management Practices (BMPs) designed to prevent pollutants from contacting stormwater and keep all products of erosion from moving off site into receiving waters.

PA-2200279 - Initial Study

Analyzed

In The

y		×		
e e		×		
of of e h		×		
-		×		
of n		×		
d d f;		X		
k		×		
er er		×		

Routine inspection of all BMPs is required under the provisions of the Construction General Permit, and the SWPPP must be prepared and implemented by qualified individuals as defined by the State Water Resources Control Board (SWRCB).

During project operation, stormwater quality is regulated by the Stormwater Quality Control Criteria Plan (SWQCCP), which sets standards that apply to all new development. As part of the project, a new engineered stormwater drainage system would be designed and constructed to collect and treat all on-site stormwater in a method that meets the requirements of the SWQCCP.

In summary, project construction would be completed in accordance with an NPDES-mandated SWPPP, which would include standard BMPs to reduce potential off-site water quality impacts related to erosion and incidental spills and hazardous substances from equipment. Surface water runoff during project operations would be managed through an engineered stormwater drainage system, as required by the SWQCCP. Therefore, impacts associated with water quality standards, waste discharge requirements, and surface water or groundwater quality are expected to be less than significant.

- b) The proposed project, development of a truck parking facility, proposes developing all of the 6.85-acre parcel with paved parking for 102 semi-trucks and trailers. The site will utilize an onsite retention pond for stormwater to allow it to collect and percolate into the ground. Therefore, although development of the site will create impervious areas equal to the size of the parcel, with the stormwater system returning stormwater to the ground, the project's interference with groundwater recharging is expected to be less than significant.
- c) The construction of the proposed project would result in grading and soil-disturbing activities and the installation of new impervious surfaces. A grading permit will be required which requires plans and grading calculations, including a statement of the estimated quantities of excavation and fill, prepared by a Registered Design Professional. The grading plan must show the existing grade and finished grade in contour intervals of sufficient clarity to indicate the nature and extent of the work and show in detail that it complies with the requirements of the California Building Code (CBC). The plans must also show the existing grade on adjoining properties in sufficient detail to identify how grade changes will conform to the requirements of the CDC. A drainage plan must be submitted for review and approval, prior to release of a building permit. In this way, any impacts to the existing drainage pattern of the site will be less than significant.
- d) The flood zone information contained on the San Joaquin County Flood Information viewer is provided using the Digital Flood Insurance Rate Map data received from the US Department of Homeland Security, Federal Emergency Management Agency (FEMA). Pursuant to this information, the area containing the project site has been determined to be outside of the 0.2% annual chance (500-year) floodplain. Development of this project will does not require compliance with Development Title Section 9-1605 regarding flood hazards.

The project site is not located in a tsunami nor a seiche zone.

e) The applicant will apply for permits from the Central Valley Regional Water Quality Control Board (CVRWQCB) to protect surface and groundwater on site and to ensure that the project doesn't conflict or obstruct a water quality control plan or sustainable groundwater management plan.

XII. MINERAL RESOURCES.	Potentially Significant Impact	Less Than Significant with Mitigation Incorporated	Less Than Significant Impact	No	Analyzed In The Prior EIR
Would the project:					
a) Result in the loss of availability of a known_mineral resource that would be of value to the region and the residents of the state?			×		
 Result in the loss of availability of a locally- important mineral resource recovery site delineated on a local general plan, specific plan or other land use plan? 			×		

Impact Discussion:

a-b) Pursuant to the San Joaquin County General Plan Background Report, Chapter 10 - Natural Resources, the primary extractive resource in San Joaquin County is sand and gravel, with the principal areas of sand and gravel extraction located in the southwestern part of the county and along the Mokelumne, Calaveras, and Stanislaus rivers in the eastern portion of the county. The project site is located in the central portion of the county and pursuant to the California Geological Survey (CGS), the project site is in a MRZ-1 zone, an area where adequate geologic information indicates that no significant mineral deposits are present, or where it is judged that little likelihood exists for their presence. This zone is applied where well developed lines of reasoning, based on economic-geologic principles and adequate data, indicate that the likelihood for occurrence of significant mineral deposits is slight or nil. Therefore, the project's impact on the loss of important minerals is expected to be less than significant.

Less Than Potentially Significant with Less Than Analyzed Significant Mitigation Significant No In The Impact Incorporated Impact Prior EIR Impact XI. LAND USE AND PLANNING. Would the project: a) Physically divide an established community? b) Cause a significant environmental impact due to a conflict with any land use plan, policy, or regulation Х adopted for the purpose of avoiding or mitigating an environmental effect?

Impact Discussion:

- a) The proposed project is development of a truck parking facility for 102 semi-trucks and trailers. The project does not include construction of any feature that would impair mobility within an existing community, nor does it include removal of a means of access between a community and outlying area. The project site is not used as a connection between established communities. Instead, connectivity with the area surrounding the project is facilitated via local roadways. Therefore, the project will not result in dividing an established community.
- b) The project site is zoned General Commercial (C-G) which allows development of a truck parking facility with an approved Site Approval (now Administrative Use Permit). Therefore, the proposed use will be consistent with all land use policies and regulations of the County Development Code and 2035 General Plan, therefore, the project's impact on the environment due to land use conflict is expected to be less than significant.

Less Than Potentially Significant with Less Than Significant

Mitigation

Significant

Analyzed No In The

XIII. NOISE.

Would the project result in:

- a) Generation of a substantial temporary or permanent increase in ambient noise levels in the vicinity of the project in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies?
- b) Generation of excessive groundborne vibration or groundborne noise levels?
- c) For a project within the vicinity of a private airstrip or an airport land use plan, or where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels?

Impact	Incorporated	Impact	Prior EIR
		X	
		×	
		X	

Impact Discussion:

- a-b) The project site is located on S. El Dorado Street and S. French Camp Road, 1,000 feet east of Interstate 5 and 2,000 feet west of the Union Pacific railroad tracks. The west half of the parcel is in the 65dB noise contour of S. French Camp Road. The surrounding area is developed with trucking and other industrial uses. The project will result in a temporary increase in ambient noise level associated with project construction activities to include grading and use of heavy machinery and equipment however, the operation of the truck parking facility will contribute to the area ambient noise level. Additionally, truck uses can contribute to ground-borne vibrations however, not to an excessive level. However, due to the existing noise exposure, noise impacts from the proposed project and impacts on vibrations are expected to be less than significant.
 - The project site is located within the Stockton Metropolitan Airport area of influence Zone 7a Traffic Pattern Zone and C) is approximately 1.79 miles west of the airport runway. Pursuant to the San Joaquin County Airport Land Use Compatibility Plan (Amended 2018), the current noise exposure contour and the future noise exposure contour are approximately one mile away from the project site. Therefore, due to the project site's distance from the airport noise contours, the project's risk of exposing people working in the project area to safety hazards or excessive noise is less than significant.

Less Than Potentially Significant with Less Than Analyzed Significant Mitigation In The Significant No Impact Incorporated Impact Impact Prior EIR **XIV. POPULATION AND HOUSING.** Would the project: a) Induce substantial unplanned population growth in an area, either directly (for example, by proposing new homes and businesses) or indirectly (for X example, through extension of roads or other infrastructure)? b) Displace substantial numbers of existing people or necessitating the housing, construction of replacement housing elsewhere?

Impact Discussion:

a-b) The project will not induce substantial population growth in the area either directly or indirectly because the project is not anticipated to result in an increase in the number of jobs available. The proposed project would not displace substantial numbers of people or existing housing, necessitating the construction of replacement housing elsewhere because no residences will be removed. Therefore, the project's impact on population and housing is expected to be less than significant.

XVI. RECREATION.	Potentially Significant Impact	Less Than Significant with Mitigation Incorporated	Less Than Significant Impact	No	Analyzed In The Prior EIR
a) Would the project increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated?				×	
b) Does the project include recreational facilities or require the construction or expansion of recreational facilities which might have an adverse physical effect on the environment?				X	

Impact Discussion:

a-b) The project is not expected to result in a large number of employees nor is there any residential development as part of the project. Therefore, the project is not expected to result in an increase in demand for neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility. Therefore, the project will have no impact on recreation facilities.

XVII. TRANSPORTATION.

Would the project:

a)	Conflict with a program plan, ordinance, or policy addressing the circulation system, including transit, roadways, bicycle, and pedestrian facilities?		×	
b)	Would the project conflict or be inconsistent with CEQA Guidelines section 15064.3, subdivision (b)?		×	
c)	Substantially increase hazards due to a geometric design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)?		X	
d)	Result in inadequate emergency access?		X	
Im	pact Discussion:	 		

a) The project site is located on S. El Dorada Street and S. French Camp Road, 1,000 feet east of Interstate 5. Access to the project site is proposed from both S. El Dorado Street and S. French Camp Road, both county-maintained roads. Regional access to the site is provided by Interstate 5, a north-south roadway. South French Camp Road provides a west-east nexus to the project site.

Pursuant to Development Title Section 9-608.050(a), a Traffic Study for a development project is required when traffic caused by the development project is expected to exceed 50 vehicles during any hour. A Traffic Technical Memorandum may be required in lieu of a Traffic Study when the development project exceeds the 50 vehicles per hour threshold, and the Director of Public Works deems that the existing roadway capacity and traffic operations are not expected to be significantly impacted as a result of the additional traffic generated by the project. The project was referred to the Department of Public Works on April 7, 2023. The Department responded with a requirement for a Traffic Technical Memorandum. The Memorandum was completed by engineering consultant Kimley-Horn and is dated February 2. 2024. The Memorandum estimates that the project will generate 201 daily trips and the traffic produced by the project will not create deficiencies at the nearby intersections therefore, no mitigation measures were required.

In the project vicinity, due to the rural nature of the area, most of the roadways lack sidewalks and crosswalks. Bicycle facilities do not currently exist in the project vicinity. There is no transit service within the project vicinity.

To conclude, with the information from the Traffic Technical Memorandum, impacts from the project on the circulation system, including transit, roadways, bicycle, and pedestrian facilities is expected to be less than significant.

- b) The project proposes a truck parking facility for 102 semi-trucks and trailers. For VMT forecasting, the San Joaquin County Transportation Analysis Guidelines (September 2020, page 5) states that VMT is only relevant for daily automobile travel. As this project is a truck parking facility, only the site buildings will be analyzed for the VMT significance criteria. Under CEQA, small office projects that are consistent with the San Joaquin County General Plan and are smaller than 11,300 square feet in size are exempt from VMT analysis and thus do not have a significant VMT impact. Since the total build out component for this project totals only 4,464 square feet, it is found to have an insignificant impact on VMT. The truck parking terminal project is also strategically located 3,000 feet from the French Camp/Arch Airport interchange of Interstate 5. decreasing the need for trucks to travel further to find adequate parking facilities. The project site is also located 1.3 miles from the Stockton Metropolitan Airport. Thus, the proposed truck parking project would have a less than significant impact on VMT.
- c) The Department of Public Works will require the applicant to improve the driveway approach in accordance with the requirements of San Joaquin County Improvement Standards Drawing No. R-13 providing return radii for truck-trailer egress designed to prevent encroachment onto opposing lanes of traffic. With these improvements, the project's impact on transportation hazards is expected to be less than significant.

d) The project site would be accessed from S. El Dorado Street and S. French Camp Road. A driveway and circulation
 PA-2200279 – Initial Study

route that meets the San Joaquin County Fire Chiefs' Association guidelines for providing fire apparatus access is required by the California Fire Code (CFC) is required. Therefore, site access will provide adequate space for fire trucks and emergency vehicles to enter and turn around, and the project's impact on emergency access is expected to be less than significant.

Less Than Potentially Significant with Less Than Significant Mitigation

Significant No

Analyzed

In The

XVIII. TRIBAL CULTURAL RESOURCES.

- a) Would the project cause a substantial adverse change in the significance of a tribal cultural resource, defined in Public Resources Code section 21074 as either a site, feature, place, cultural landscape that is geographically defined in terms of the size and scope of the landscape, sacred place, or object with cultural value to a California Native American tribe, and that is:
 - i) Listed or eligible for listing in the California Register of Historical Resources, or in a local register of historical resources as defined in Public Resources Code section 5020.1(k), or
 - ii) A resource determined by the lead agency, in its discretion and supported by substantial evidence, to be significant pursuant to criteria set forth in subdivision (c) of Public Resources Code Section 5024.1. In applying the criteria set forth in subdivision (c) of Public Resource Code Section 5024.1, the lead agency shall consider the significance of the resource to a California Native American tribe.

Impact	Incorporated	Impact	Impact	Prior EIF
			X	
		×		

Impact Discussion:

a)

- The project site is undeveloped, therefore no buildings are listed on the State Office of Historic Preservation i) California Register or the National Register of Historic Places. Therefore, the project will not result in a substantial adverse change in the significance of a historical resource as defined by CEQA.
- The project proposes to develop a truck parking facility. At the time of development, if human remains are ii) encountered, all work shall halt in the vicinity and the County Coroner shall be notified immediately. At the same time, a gualified archaeologist shall be contacted to evaluate the finds. If Human burials are found to be of Native American origin, steps shall be taken pursuant to Section 15064.5(e) of Guidelines for California Environmental Quality Act.

Potentially Significant with Less Than Mitigation Significant

Less Than

In The

XIX. UTILITIES AND SERVICE SYSTEMS.

Would the project:

- a) Require or result in the relocation or construction of new or expanded water, wastewater treatment, or storm water drainage, electric power, natural gas, or telecommunications facilities, the construction or relocation of which could cause significant environmental effects?
- b) Have sufficient water supplies available to serve the project and reasonably foreseeable future development during normal, dry and multiple dry years?
- c) Result in a determination by the wastewater treatment provider which serves or may serve the project that it has adequate capacity to serve the project's projected demand in addition to the provider's existing commitments?
- d) Generate solid waste in excess of State or local standards, or in excess of the capacity of local infrastructure, or otherwise impair the attainment of solid waste reduction goals?
- e) Comply with federal, state, and local management and reduction statutes and regulations related to solid waste?

Impact Discussion:

a-e) This project is the development of a truck parking facility. Water will be provided by a private on-site agricultural well and wastewater treatment system. Both well and on-site wastewater treatment systems are subject to the rules and regulation of the Environmental Health Department. Storm water drainage will be subject to the rules and regulations of the Department of Public Works. Therefore, the impact to utility and service systems is anticipated to be less than significant.

Impact	Incorporated	Impact	Prior EIR
		×	
		×	
		×	
		×	
		×	

Potentially Significant Impact	Less Than Significant with Mitigation Incorporated	Less Than Significant Impact	No Impact	Analyzed In The Prior EIR
	•	•		

XX. WILDFIRE.

If located in or near state responsibility areas or lands classified as very high fire hazard severity zones, would the project:

- a) Substantially impair an adopted emergency response plan or emergency evacuation plan?
- b) Due to slope, prevailing winds, and other factors, exacerbate wildfire risks, and thereby expose project occupants to pollutant concentrations from a wildfire or the uncontrolled spread of a wildfire?
- c) Require the installation or maintenance of associated infrastructure (such as roads, fuel breaks, emergency water sources, power lines or other utilities) that may exacerbate fire risk or that may result in temporary or ongoing impacts to the environment?
- d) Expose people or structures to significant risks, including downslope or downstream flooding or landslides, as a result of runoff, post-fire slope instability, or drainage changes?

	×	
	X	
	×	
	×	

Impact Discussion:

a-d) The project location is located in French Camp, CA. It is not identified as a Community at Risk from Wildfire by Cal Fire's "Fire Risk Assessment Program". Communities at Risk from Wildfire are those places within 1.5 miles of areas of High or Very High wildfire threat as determined from CDF-FRAP fuels and hazard data. Therefore, the impact of wildfires on the project are expected to be less than significant.

XXI. MANDATORY FINDINGS OF SIGNIFICANCE.

a) Does the project have the potential to substantially degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, substantially reduce the number or restrict the range of a rare or endangered plant or animal or eliminate important examples of the major periods of California history or prehistory?

b) Does the project have impacts that are individually limited, but cumulatively considerable? ("Cumulatively considerable" means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects)?

c) Does the project have environmental effects which will cause substantial adverse effects on human beings, either directly or indirectly?

Potentially Significant Impact	Less Than Significant with Mitigation Incorporated	Less Than Significant Impact	No Impact	Analyzed In The Prior EIR
		×		
		×		
		×		

Impact Discussion:

a-c) Review of this project has not indicated any features which might significantly impact the environmental quality of the site and/or surrounding area. Mitigation measures have been identified in areas where a potentially significant impact has been identified and these measures, included as conditions of approval, will reduce these impacts to a less than significant level.

Kimley»Horn

Memorandum

То:	Brian Singh Ace Building Company
From:	Tyler Mickelson Chris Gregerson, P.E., T.E., AICP
Re:	French Camp Truck Parking DRAFT Local Transportation Analysis
Date:	February 2, 2024

The purpose of this memorandum is to summarize the local transportation analysis (LTA) completed for the proposed Truck Parking Facility (the "proposed project" or "project") located at 6344 S French Camp Road in French Camp, California. The project location (APN 193-020-560-000) is shown in **Exhibit 1**. The project proposes a truck parking facility which will include 102 truck parking stalls, as well as 6 passenger car parking stalls for a total of 108 parking spaces. In addition, the project proposes one 4,464 structure which will include both a truck wash facility and two truck repair bays. The project site plan is shown in **Exhibit 2**.

Study Facilities and Analysis Methodology

Study facilities were selected, and analysis methodology was performed in general accordance with the *San Joaquin County Traffic Impact Study Guidelines* (June 2002) as described in the following sections.

Study Facilities

The following study facilities, also illustrated in **Exhibit 1**, were identified for evaluation in this study:

Study Intersections

- 1. French Camp Road @ I-5 Southbound Ramps
- 2. French Camp Road @ I-5 Northbound Ramps
- 3. French Camp Road @ French Camp Road/Arch Airport Road
- 4. French Camp Road @ El Dorado Street
- 5. El Dorado Street @ Matthews Road
- 6. Project Driveway @ Eldorado Street (Project Conditions Only)
- 7. Project Driveway @ French Camp Road (Project Conditions Only)

Study Roadway Segments

- 1. French Camp Road, north of El Dorado Street
- 2. El Dorado Street, south of French Camp Road

Study Scenarios

Weekday AM and PM peak-hour Level of Service (LOS) and queueing analysis was conducted for the following scenarios:

- A. Existing (2023) Conditions
- B. Existing (2023) plus Pending and Approved Projects Conditions
- C. Existing (2023) plus Pending and Approved Projects plus Project Conditions

Kimley Worn

Level of Service (LOS) Definitions

The LOS of a facility is a qualitative measure used to describe operational conditions. LOS ranges from A, which represents minimal delay, to F, which represents heavy delay and a facility that is operating at or near its functional capacity. LOS was determined using methods defined in the *Highway Capacity Manual* (HCM) and using Synchro[®] traffic analysis software.

Study Intersections

The HCM includes procedures for analyzing side-street stop controlled (SSSC), all-way stop controlled (AWSC), and signalized intersections. The SSSC procedure defines LOS as a function of average control delay for the worst (most delay) minor street approach or movement. The AWSC and signalized intersection procedures define LOS as a function of average control delay for the intersection as a whole. **Table 1** presents intersection LOS definitions as defined in the HCM.

Level of	Un-Signalized	Signalized
Service (LOS)	Average Control Delay [*] (sec/veh)	Average Control Delay (sec/veh)
А	≤ 10	≤ 10
В	> 10 - 15	> 10 - 20
С	> 15 - 25	> 20 - 35
D	> 25 – 35	> 35 – 55
E	> 35 – 50	> 55 - 80
F	> 50	> 80

Table 1 – Intersection Level of Service Criteria

Source: Highway Capacity Manual, 7th Edition * Applied to the worst lane/lane group(s) for SSSC

Study Roadway Segments

Roadway segments were evaluated using the HCM methodology for analyzing two-lane roadway segments, as shown in **Table 2**, and multilane roadway segments, as shown in **Table 3**. Two-lane roadway segments use follower density (followers/mile/lane) as the appropriate measure of effectiveness while multilane roadway segments use vehicle density (passenger cars/mile/lane) as the appropriate measure of effectiveness.

The HCM 7th Edition, the current version at the time of this project evaluation, contains a new analysis methodology separate from previous methodologies. The analysis methodology described in the HCM 7th Edition focuses on the number of followers behind a motorist while the previous methodology for analyzing 2-lane roadways focused on the percent time spent following (PTSF). The follower density is provided for two types of 2-lane roadways, those with a posted speed limit greater or equal to 50 mph, and those with a posted speed limit less than 50 mph. The analyses completed for this project analyzed roadways with posted speed limits less than 50 mph.

Kimley»Horn

Level of Service (LOS)	Follower Density (followers/mi/ln) Lower Speed Highways (< 50 mph)
A	≤ 2.5
В	> 2.5 - 5.0
С	> 5.0 - 10.0
D	> 10.0 - 15.0
E	> 15.0

Table 2 - Two-Lane Roadway Level of Service Criteria

Source: Highway Capacity Manual, 7th Edition

	Table 3 –	Multilane Roadway	y Level of Service Criter	ia
--	-----------	-------------------	---------------------------	----

Level of Service (LOS)	<u>Density</u> (pc/mi/ln)
А	≤ 11
В	> 11 - 18
С	> 18 - 26
D	> 26 - 35
E	> 35 – 45
F	> 45*

Source: Highway Capacity Manual, 7th Edition * Density exceeds capacity

Deficiency Evaluation Criterion

Deficiencies to study facilities were determined by comparing conditions with the proposed project to those without the project. Impacts are created when traffic from the proposed Project results in the LOS to fall below a specific threshold. The project study facilities are under the jurisdiction of San Joaquin County and the County standards specify the following:

"As defined in the San Joaquin County 2010 General Plan, adopted in 1992, all County roadways shall operate at a LOS of C or better (except in a City sphere of influence where the City had adopted LOS D); intersections shall operate at an overall LOS D or better on minor arterials and roadways of higher classification; and LOS C on all other roads; all freeways and State highways shall operate at a LOS D. The methods contained in the 'Transportation Research Board, 1997 Highway Capacity Manual' (or latest edition) shall be used to determine LOS.

If the LOS for conditions at a given location is already at an unacceptable LOS, then the impacts must be assessed in terms of...delay (for intersection approaches)...If the delay at a given intersection approach under the 'Existing plus Approved Projects plus Proposed Project' conditions...exceeds the delay for the same intersection approach under 'Existing plus Approved Projects Conditions' then recommendations must be provided that would return the delay to the 'Existing' level."

Existing (2023) Conditions

Intersections

Exhibit 3 depicts the study intersections, traffic control, and lane geometries, while the turning movement volumes for Existing Conditions are summarized in **Exhibit 4**. The peak-hour intersection turning movement volumes were collected on August 1, 2023, and the traffic count sheets are provided in **Attachment A**.

Kimley Worn

Using the volumes presented in **Exhibit 4**, intersection delays were estimated for the study intersections using the Highway Capacity Manual (HCM) 7th Edition and Synchro[®] software. Resulting intersection delays and associated level of service results are presented in **Table 4**, while the analysis output sheets can be found in **Attachment B**.

ID	Intersection	Control	Peak Hour	Existing		
				Delay [sec]	LOS	
1	1 French Camp Road @ I-5 Southbound Ramps	Signal	AM	6.7	А	
rench Camp	French Camp Road @ 1-5 Southbound Ramps		PM	6.2	А	
2 French Camp Road @ I-5 Northb	Franch Comp Bood @ LE Northbound Bomps	Signal	AM	11.5	В	
	French camp Road @ 1-5 Northbound Ramps		PM	9.1	А	
3	French Camp Road @ French Camp Road/Arch		AM	14.1	В	
3 Airport Ro	Airport Road	Signal	PM	14.0	В	
4	French Camp Road @ Eldorado Street	Signal	AM	22.8	С	
4			PM	33.5	С	
F	El Darada Streat @ Matthewa Daad	A)A/SC	AM	13.7	В	
5	El Dorado Street @ Matthews Road	AWSC	PM	18.7	С	

Table 4 – Existing (2023) Intersection	LOS Summary
--	-------------

All intersections have an LOS D threshold and **Bold** represents unacceptable operations.

As shown in **Table 4**, the study intersections are estimated to operate between LOS A and LOS C for Existing (2023) Conditions.

Roadway Segments

Exhibit 3 depicts the study intersections, traffic control, and lane geometries, while the turning movement volumes for Existing Conditions are summarized in **Exhibit 4**. The roadway segment volumes were collected on August 1, 2023, and the traffic count sheets are provided in **Attachment A**.

Using the volumes presented in **Exhibit 4**, the follower density was calculated for the study roadway segments using the Highway Capacity Manual (HCM) 7th Edition methodologies. Resulting level of service results are presented in **Table 5**, while the analysis output sheets can be found in **Attachment B**.

As shown in **Table 5**, the study roadway segments are estimated to operate between LOS A and LOS B for Existing (2023) Conditions.

Kimley»Horn

ID	Intersection	Peak Hour	Direction	Existing			
				Follower Density, Seg 1 (followers/mi/ln) or Density, Seg 2 (pc/hr/ln)	LOS		
		AM	NB	1.6	А		
1			SB	1.1	А		
1 French Camp Road @ I-5 S	French Camp Road @ I-5 Southbound Ramps	DNA	NB	2.7	В		
		PM	SB	1.8	А		
		АМ	NB	2.2	А		
	French Camp Road @ I-5 Northbound Ramps		SB	3.2	А		
2		5 h l	NB	5.0	A		
		PM	SB	3.2	А		

Table 5 – Existing (2023) Roadway Segment LOS Summary

All segments have an LOS D threshold and **Bold** represents unacceptable operations.

Existing (2023) plus Pending and Approved Project Conditions

Per County guidance, the Existing (2023) plus Pending and Approved Project Conditions included the vehicle trips associated with pending and approved projects that have active planning applications with the County as found on the county website. These vehicle trips are anticipated to contribute traffic to the study facilities of this analysis and thus, were added to the Existing (2023) vehicle counts collected. There were four such projects identified, namely:

- 1. Truck Parking Facility at 6800 S El Dorado Street, French Camp (October 2020) Status: Assigned
 - a. Operating at the time the Existing (2023) counts were collected, so no additional vehicle trips associated with the project were added to the network
- 2. Valley Truck Sales at 7400 S El Dorado Street, French Camp (September 2023) Status: Assigned
 - a. Trips generated based on project description and distributed were assigned to the local roadway network based on existing travel distributions, knowledge of local traffic patterns, and engineering judgement.
- Religious Assembly at 9698 S Priest Road, French Camp (June 2020) Status: Denied
 a. Not added to the study facilities due to project being denied
- 4. Trans Truck System Truck Facility at 707 E Roth Road, French Camp (June 2020) Status: Withdrawn
 - a. Not added to study facilities as application was withdrawn

As directed by the County, the additional trips associated with the approved projects were added to the collected counts for Existing (2023) Conditions.

Intersections

As no geometric modifications are expected for this analysis scenario, **Exhibit 3** depicts the study intersections, traffic control, and lane geometries, while the turning movement volumes for Existing Plus Pending and Approved Projects Conditions are summarized in **Exhibit 5**.

Using the volumes presented in **Exhibit 5**, intersection delays were estimated for the study intersections using the Highway Capacity Manual (HCM) 7th Edition and Synchro[©] software. Resulting intersection delays and associated level of service results are presented in **Table 6**, while the analysis output sheets can be found in **Attachment C**.

Kimley Worn

ID Inter	Intersection	Control	Peak Hour	Existing		Existing Plus Pending and Approved Projects		
				Delay [sec]	LOS	Delay [sec]	LOS	
1 French Camp Road @ I-5 Southbound Ramps	ci I	AM	6.7	A	6.7	A		
	French Camp Road @ 1-5 Southbound Ramps	Signal	PM	6.2	A	6.2	A	
2	French Camp Road @ I-5 Northbound Ramps	Signal	AM	11.5	В	11.5	В	
2	French camp Road @ 1-5 Northbound Ramps		PM	9.1	A	9.1	A	
3	French Camp Road @ French Camp Road/Arch	Signal	AM	14.1	В	14.1	В	
3	Airport Road		PM	14.0	В	14.1	В	
4	Encade Concer Decid & Eldenido Street	Signal	AM	22.8	С	22.8	С	
4	French Camp Road @ Eldorado Street		PM	33.5	С	33.5	С	
-		AWSC	AM	13.7	В	13.7	В	
5	El Dorado Street @ Matthews Road		PM	18.7	С	18.7	С	

Table 6 – Existing (2023) plus Pending and Approved Projects Intersection LOS Summary

All intersections have an LOS D threshold and **Bold** represents unacceptable operations.

As shown in **Table 6**, the study intersections are estimated to operate between LOS A and LOS C for Existing (2023) plus Pending and Approved Projects Conditions.

Roadway Segments

Using the volumes presented in **Exhibit 5**, the follower density was calculated for the study roadway segments using the Highway Capacity Manual (HCM) 7th Edition methodologies. Resulting level of service results are presented in **Table 7**, while the analysis output sheets can be found in **Attachment C**.

 Table 7 – Existing (2023) plus Pending and Approved Projects Roadway Segment LOS Summary

ID Intersection				Existing plus Pending and Approved Projects			
	Peak Hour	Direction	Follower Density, Seg 1 (followers/mi/ln) or Density, Seg 2 (pc/hr/ln)	LOS			
	French Camp Road @ I-5 Southbound Ramps	АМ	NB	1.6	А		
1			SB	1.1	А		
1			NB	2.7	В		
		PM	SB	1.8	А		
	French Camp Road @ I-5 Northbound Ramps	АМ	NB	2.2	А		
			SB	3.2	А		
2			NB	5.1	A		
		PM	SB	3.2	A		

All segments have an LOS D threshold and **Bold** represents unacceptable operations.

As shown in **Table 7**, the study roadway segments are estimated to operate between LOS A and LOS B for Existing (2023) plus Pending and Approved Projects Conditions.

Trip Generation

The number of trips anticipated to be generated by the proposed Project was approximated using data provided by San Joaquin County staff¹. The data provided by the County included trip generation rates for

¹ Email from Jeffrey Levers, Senior Transportation Engineer. September 7, 2023.

Kimley»Horn

other truck parking lots in the general area of the proposed project. The trip generation rates were provided for the peak-hour and were based on the total acreage of each project. The trip generation rates ranged from a low of 2.46 trips per acre to a high of 4.96 trips per acre. As the proposed project is a 6.7-acre site, the peak-hour trips would range between 16 and 33 trips. As the specifics of each truck parking site were not provided, a conservative estimate of 33 peak-hour trips was used for the proposed project.

As the number of daily trips were not provided by the County, ITE's *Trip Generation Manual, 11th Edition* trip data for land use code 950 (Truck Stop) was used. The number of trips generated by the proposed project for the day, AM peak-hour, and PM peak-hour are presented in **Table 8**. As shown in **Table 8**, the proposed project is estimated to generate 201 daily trips, with 33 occurring during the AM and PM peak-hours.

Table 8 – Project Trip Generation

Source	Land Use	Size		Daily	AM Peak ²			PM Peak ²		
		Size Units	Trips ¹	Total	In	Out	Total	In	Out	
SANDAG	Truck Parking Facility	6.7	Acres	201	33	5	28	33	6	27
Total External Project Trips		201	33	5	28	33	6	27		

1. Daily trip rates are based on San Diego Municipal Code Land Development Code Trip Generation Manual, May 2003, Truck Parking Facility Otay Mesa Rate

2. Peak hour trip generation is based on rates provided by County Staff.

3. Entering and exiting distribution are based on ITE Trip Gen Manual 11th Edition Truck Time-of-Day Data LUC 950

Trip Distribution

The trips generated by the proposed project were distributed to the surrounding roadway network based on existing counts, input from the project applicant, and engineering judgement. The trip distribution percentages developed are illustrated in **Exhibit 6**. The following distribution percentages were found for the proposed project:

- 35% are expected to head south on I-5 via the French Camp Road interchange with I-5
- 40% are expected to head north on I-5 via the French Camp Road interchange with I-5
- 10% are expected to head east on Arch Airport Road
- 10% are expected to head south on El Dorado Street
- 5% are expected to head east on S French Camp Road

Existing (2023) plus Pending and Approved Project plus Project Conditions

Intersections

Peak-hour traffic associated with the proposed project was added to the Existing (2023) plus Pending and Approved Projects traffic volumes previously noted, and levels of service were determined at the study intersections. Existing (2023) plus Pending and Approved Projects plus Project peak-hour traffic volumes are presented in **Exhibit 7**. The analysis worksheets for this scenario are provided in **Attachment D**.

Using the volumes presented in **Exhibit 7**, intersection delays were estimated for the study intersections using the Highway Capacity Manual (HCM) 7th Edition and Synchro[®] software. Note that for the intersection and roadway segment analysis, the heavy vehicle percentage was modified to account for the additional project trips all being heavy vehicles (e.g., if there were 100 vehicles at a specific movement, the heavy vehicle percentage was 10-percent, and 10 project trips were added, the new heavy vehicle percentage would be modified to be 18-percent). Resulting intersection delays and associated level of service results are presented in **Table 9**, while the analysis output sheets can be found in **Attachment D**.
Kimley Worn

Table 9 - Existing (2023) plus Pending and Approved Projects plus Project Intersection LOS Summary

ID	Intersection	Control	Peak Hour	Existing Plu and Approve		Existing Plu and Approve plus Pr	d Projects
				Delay [sec]	LOS	Delay [sec]	LOS
1	French Camp Road @ I-5 Southbound Ramps	Signal	AM	6.7	А	6.7	А
T	French Camp Koad @ 1-3 Southbound Kamps	Signal	PM	6.2	А	6.3	А
2	French Camp Road @ I-5 Northbound Ramps	Signal	AM	11.5	В	11.7	В
2	French Camp Road @ 1-5 Northbound Ramps	Signal	PM	9.1	A	9.2	А
3	French Camp Road @ French Camp Road/Arch	Signal	AM	14.1	В	14.5	В
5	Airport Road	Signal	PM	14.1	В	14.5	В
4	French Camp Road @ Eldorado Street	Signal	AM	22.8	С	22.9	С
4	French Camp Koad @ Eldolado Street	SIGLIGI	PM	33.5	С	34.0	С
5	Cl Davada Streat @ Matthewa Davad	AWSC	AM	13.7	В	13.8	В
5	El Dorado Street @ Matthews Road	AVVSC	PM	18.7	С	19.0	С
C	Project Driveway @ Eldorado Street	SSSC	AM			13.6	В
6	(Project Conditions Only)	3350	PM]		17.2	С
7	Project Driveway @ French Camp Road		AM	Does no	DT EXIST	0.1	А
7	(Project Conditions Only)	SSSC	PM			0.1	A

All intersections have an LOS D threshold and **Bold** represents unacceptable operations.

As shown in **Table 9**, the study intersections are estimated to operate between LOS A and LOS C for Existing (2023) plus Pending and Approved Projects plus Project Conditions.

Roadway Segments

Using the volumes presented in **Exhibit 7**, the follower density was calculated for the study roadway segments using the Highway Capacity Manual (HCM) 7th Edition methodologies. Resulting level of service results are presented in **Table 10**, while the analysis output sheets can be found in **Attachment D**.

Table 10 – Existing (2023) plus Pending and Approved Projects plus Project Roadway Segment LOSSummary

				Existing Plus Pending an Projects plus Pro			
ID	Intersection	Peak Hour	Direction	Follower Density, Seg 1 (followers/mi/ln) or Density, Seg 2 (pc/hr/ln)	LOS	Benchmark LOS	Deficiency
		AM	NB	1.8	A		No Deficiency
	French Cross David O L 5 Crosthbound Domon	AM	SB	1.2	A	D	No Deficiency
1	French Camp Road @ I-5 Southbound Ramps		NB	2.9	В		No Deficiency
		PM	SB	1.9	А	1 F	No Deficiency
			NB	2.2	А		No Deficiency
_		AM	SB	3.3	A		No Deficiency
2	French Camp Road @ I-5 Northbound Ramps		NB	5.1	A	D	No Deficiency
		PM	SB	3.3	А	1 1	No Deficiency

All segments have an LOS D threshold and **Bold** represents unacceptable operations.

As shown in **Table 10**, the study roadway segments are estimated to operate between LOS A and LOS B for Existing (2023) plus Pending and Approved Projects plus Project Conditions and thus, no roadway segment deficiencies were identified.

Kimley»Horn

Off-Site Queuing and Access Evaluation

Off-Site Queuing Analysis

Vehicle queuing for critical movements at the study intersections was evaluated to determine the 95th percentile queue. The 95th percentile queues represent a worst-case condition, as 95-percent of the time, vehicle queues are anticipated to less than the calculated lengths. **Table 11** compares the calculated 95th percentile queues to available vehicle storage lengths. Analysis worksheets are provided in **Attachments B, D, and E**.

	S. S. S. S.	AM Pea	k-Hour	PM Pea	k-Hour
Intersection / Analysis Scenario	Movement	Available Storage (ft)	95 th % Queue (ft)	Available Storage (ft)	95 th % Queue (ft)
#1, French Camp Road @ I-5 SB Ramps	SBL				
E>	kisting (2023)		35		26
Existing (2023) plus Pending and Appro	oved Projects	530	35	530	26
Existing (2023) plus Pending and Approved Project	s plus Project		36		27
#2, French Camp Road @ I-5 NB Ramps	NBR			College and	
Ex	kisting (2023)		167		62
Existing (2023) plus Pending and Appro	oved Projects	425	167	425	62
Existing (2023) plus Pending and Approved Project	s plus Project		169		159
#3, French Camp Road @ Arch Airport Road	NBL	State State			
	kisting (2023)		52		73
Existing (2023) plus Pending and Appr	oved Projects	255	52	255	73
Existing (2023) plus Pending and Approved Project	s plus Project		60		81
	EBL				
E>	kisting (2023)		73		56
Existing (2023) plus Pending and Appr	oved Projects	240	73	240	56
Existing (2023) plus Pending and Approved Project	s plus Project		73		56
#4, French Camp Road @ El Dorado Street	NBL				
E	kisting (2023)		32		47
Existing (2023) plus Pending and Appr	oved Projects	120	33	120	49
Existing (2023) plus Pending and Approved Project	s plus Project		34		50

Table 11	– 95 th Percentile Queues	
----------	--------------------------------------	--

Source: Highway Capacity Manual (HCM) 7th Edition methodology per Synchro[®] v11.

As seen in **Table 11**, the 95th percentile queue lengths are not anticipated to exceed available storage. Due to sufficient capacity within the available storage provided no improvements at study intersections are anticipated.

Access Evaluation

The site plan for the proposed project (**Exhibit 2**) was qualitatively reviewed for general access and on-site circulation. Specifically, the two access driveways, one along French Camp Road and one along El Dorado Street were reviewed to determine whether they would adequately allow for heavy vehicles turning into and out of the project site.

Both driveways are designed to be 40-feet wide, with the driveway along French Camp Road perpendicular to the roadway and the driveway along El Dorado Street being off-set from the roadway and parallel with the northern edge of the project parcel. When reviewing the driveways and sharing the site plan with San Joaquin County staff, they indicated that they had concerns the driveways will not be

Kimley»Horn

able to fully accommodate trucks as currently designed². The specific feedback provided by the County states, "[f]or the French Camp Road driveway, our concern is twofold – first, that 40' will not be wide enough for a truck to enter if a vehicle is waiting to exit, and second, that the driveway radii are not large enough to accommodate trailer tracking. For the El Dorado Street driveway, we have the same two concerns, and also concern about the driveway's angle affecting exiting trucks to make the right turn onto El Dorado Street." County staff indicated they would like to see a revised site plan that addresses these concerns.

Conclusions

Based on the analysis provided herein, the following is concluded:

- As shown in **Table 8**, the proposed project is estimated to generate 201 daily trips, with 33 occurring during the AM and PM peak-hours.
- As shown in Table 9, the study intersections are estimated to operate between LOS A and LOS C for Existing (2023) plus Pending and Approved Projects plus Project Conditions. Therefore, no deficiencies that require recommended improvements are necessary.
- As shown in Table 10, the study roadway segments are estimated to operate between LOS A and LOS B for Existing (2023) plus Pending and Approved Projects plus Project Conditions. Therefore, no deficiencies that require recommended improvements are necessary.
- As seen in **Table 11**, the 95th percentile queue lengths are not anticipated to exceed available storage. Due to sufficient capacity within the available storage provided no improvements at study intersections are anticipated.
- When reviewing the driveways and sharing the site plan with San Joaquin County staff, they indicated that they had concerns the driveways will not be able to fully accommodate trucks as currently designed. County staff indicated they would like to see a revised site plan that addresses their concerns.

Attachments

- Exhibit 1 Project Vicinity Map
- Exhibit 2 Project Site Plan
- Exhibit 3 Study Intersections, Traffic Control, and Lane Geometry
- Exhibit 4 Existing (2023) Peak-Hour Traffic Volumes
- Exhibit 5 Existing (2023) plus Pending and Approved Projects Peak-Hour Traffic Volumes
- Exhibit 6 Project Trip Distribution
- Exhibit 7 Existing (2023) plus Pending and Approved Projects plus Project Peak-Hour Traffic Volumes

Attachment A – Traffic Count Data Sheets

- Attachment B Existing (2023) Analysis Worksheets
- Attachment C Existing (2023) plus Pending and Approved Projects Analysis Worksheets
- Attachment D Existing (2023) plus Pending and Approved Projects plus Project Analysis Worksheets

² Email from Jeffrey Levers, July 18, 2023.

Frank Arch Airport Rd NOT TO SCALI French Camp Rd З The W Mathews Rd - In Ja 1 5 LEGEND S El Dorado St **Project Location** Study Intersection **Roadway Segments** A. French Camp Road, North of El Dorado Street B. El Dorado Street, South of French Camp Road Future Driveway

Kimley Worn

Exhibit 1 Project Vicinity Map

Kimley Worn

Exhibit 2 Project Site Plan

Kimley Worn

Study Intersections, Traffic Control, and Lane Geometries

Kimley Worn

Existing (2023) Peak-Hour Traffic Volumes

Kimley»Horn

Existing (2023) plus Pending and Approved Proejcts Peak-Hour Traffic Volumes

San Joaquin County, French Camp Truck Parking - Trip Generation and Distribution

Kimley»Horn

Exhibit 6 Project Trip Distribution

Kimley Worn

Existing (2023) plus Pending and Approved Proejcts plus Project Peak-Hour Traffic Volumes

Kimley»Horn

Attachment A Traffic Count Data Sheets Prepared by National Data & Surveying Services

1-5 SB Ramps & French Camp Rd

Prepared by National Data & Surveying Services

1-5 NB Ramps & French Camp Rd

French Camp Rd/Frank W Cir & French Camp Rd/Arch Airport Rd

French Camp Rd/Frank W Cir ID: 23-090083-003 Day: Tuesday City: French Camp Date: 8/1/2023 SOUTHBOUND COUNT PERIODS 07:00 AM - 08:00 AM AM 91 7:00 AM - 08:00 AM PEAK HOURS 14 4 10 0 AM NONE NOON 0 0 0 0 0 NOON NONE 05:00 PM - 06:00 PM 5:00 PM - 06:00 PM PM 43 10 9 0 12 PM 介 6 AM NOON PM 2 PM NOON AM 1 1 0 1 French Camp Rd/Arch Airport Rd 2 0 13 French Camp Rd/Arch Airport Rd 993 🕽 0 636 EASTBOUND WESTBOUND CONTROL 719 0 483 3 20 Signalized 23 0 44 25 0 0 58 0 8 TEV 1685 0 1863 0 0 0 1 0 5 NOON AM PM PHF 771 0 620 3 0.80 0.87 797 668 0 155 0 134 2 0 2 1 0 Υ NOON AM NOON PM PM AM Cars (AM) PM 190 0 187 2 39 PM HT (AM) NOON 0 0 0 0 0 NOON 54 13 10 4 4 AM 161 0 119 20 16 AM 612⇒ **4** 327 159 → **-** 156 < 6 **F**14 NORTHBOUND 127 122 🥆 €9 ~ 4 5 101 16 10 French Camp Rd/Frank W Cir 18 Cars (NOON) HT (NOON) Pedestrians (Crosswalks) 0 NOON 0 NOON 0 0 10 0. ٥ ئ AM PN AN PM 0 0 0 0 -0 ← 0 0 0 51 0 **F** 0 **F** 0 07 0 0 0 0 0 ŧ 1 PM ΡM 0 ō 0 0 ō ō 0 NOON 0 NOON 0 AM 0 AM Cars (PM) HT (PM) 0 AM AM 0 1 NOON NOON n 43 10 0 PM PM 0 0 0 0 2 0 0 ٤0 6. 2 T NOON NOON 482⇒ **4** 609 138⇒ **+** 110 AM AM PM PM 0 92 0 117 1445 € 20 5 0 0 ♠ 0 182 34

Prepared by National Data & Surveying Services

S El Dorado St & French Camp Rd

Prepared by National Data & Surveying Services

S El Dorado St & W Mathews Rd

Prepared by National Data & Surveying Services **VOLUME** French Camp Rd W/O S El Dorado St

Day: Tuesday Date: 8/1/2023

7 - 9 Volume

7 - 9 Peak Hour

7 - 9 Pk Volume

Pk Hr Factor

285

7:00

149

0.909

277

7:30

170

0.885

562

7:30

317

0.911

4 - 6 Volume

4 - 6 Peak Hour 4 - 0 rk Volume Pk Hr Factor City: French Camp Project #: CA23_090084_001

386

17:00

199 0.858 493

16:30

287

0.886

879

16:30

484

0.945

States and	DAILY TOTALS	a state	-28-20	NB		SB		EB	WB	-	and the second	-	Sec. 1		Тс	otal
	DAILT TOTALS		1.4.2.4	0	19-19	0		2,583	2,811	C. C.	1000				5,3	394
AM Period	NB SB	EB		WB		тс	DTAL	PM Period	NB	SB	EB		WB		то	TAL
0:00		3		7		10		12:00			52		45		97	
0:15		5		5		10		12:15			33		29		62	
0:30		3		5		8	23.23	12:30			42		32		74	
0:45		5	16	4	21	9	37	12:45			47	174	50	156	97	33
1:00		8		4		12		13:00			36		36		72	
1:15		6		6		12	2215	13:15			54		33		87	
1:30		1	10	7	22	8		13:30			49		37		86	
1:45		4	19	5	22	9	41	13:45			36	175	38	144	74	31
2:00 2:15		3 7		10 5		13	1	14:00 14:15			52		60		112	
2:30		3		3		12 6		14:30			33 47		42 44		75 91	
2:45		9	22	6	24	15	46	14:45			47	174	44 53	199	91	37
3:00		4	22	7	24	11	40	15:00			42	1/4	49	199	91	57
3:15		13		3		16		15:15			47		52		99	
3:30		5		6		11		15:30			53		56		109	
3:45		12	34	10	26	22	60	15:45			44	186	69	226	113	41
4:00		12		8		20		16:00			49		69		118	12
4:15		9		14		23	19.23	16:15			57		59		116	
4:30		17		5		22	Sec. Sin	16:30			46		81		127	
4:45		23	61	19	46	42	107	16:45			35	187	67	276	102	46
5:00		17		19		36		17:00			58		70		128	
5:15		23		14		37	50.66	17:15			58		69		127	
5:30		20		26		46		17:30			41		40		81	
5:45		26	86	18	77	44	163	17:45			42	199	38	217	80	41
6:00		22		18		40	1.000	18:00			30		42		72	
6:15		32		17		49	Stork of	18:15			21		37		58	
6:30		41		19		60		18:30			34		32		66	
6:45		36	131	41	95	77	226	18:45			29	114	30	141	59	25
7:00		36		35		71	14. The	19:00			31		34		65	
7:15		37		29		66	12.2	19:15			31		32		63	
7:30		35 41	149	48	150	83	207	19:30 19:45			18	105	31	122	49	22
7:45 8:00		36	149	46	158	87 80	307	20:00			<u>25</u> 13	105	35 26	132	60 39	23
8:15		35		32		67	5. 5.	20:00			23		20		59	
8:30		32		17		49		20:30			16		23		39	
8:45		33	136	26	119	59	255	20:45			13	65	17	95	30	16
9:00		25	100	28	115	53	255	21:00			10	05	26	35	36	10
9:15		28		26		54		21:15			12		20		32	
9:30		36		25		61	1.26.90	21:30			5		32		37	
9:45		34	123	50	129	84	252	21:45			9	36	24	102	33	13
10:00		31		31		62	141.00	22:00			9		20		29	
10:15		33		26		59	1	22:15			9		13		22	
10:30		52		30		82		22:30			8		12		20	
10:45		39	155	31	118	70	273	22:45			12	38	22	67	34	10
11:00		29		38		67		23:00			8		12		20	
11:15		47		35		82	1.1.1.1.1	23:15			7		12		19	
11:30		43		49		92		23:30			9		12		21	
11:45		49	168	44	166	93	334	23:45			6	30	19	55	25	8
TOTALS			1100		1001		2101	TOTALS				1483		1810		329
SPLIT %			52.4%		47.6%		39.0%	SPLIT %				45.0%		55.0%		61.
	DAILY TOTALS	1.1	1	NB		SB		EB	WB				- and		the second s	otal
			and the second	0	A Participation	0		2,583	2,811	21232	To Barris Part	-			5,	394
AM Peak Hour			11:15	1	11:15		11:15	PM Peak Hour				15:30		16:30	133	16:
AM Pk Volume			191		173		364	PM Pk Volume				203		287		48
Pk Hr Factor			0.918	-	0.883	1	0.938	Pk Hr Factor		-	722 2	0.890	and and	0.886		0.9
7-9Volume			285		277		562	4 - 6 Volume				296		102		970

Prepared by National Data & Surveying Services **VOLUME** French Camp Rd W/O S El Dorado St

Day: Wednesday Date: 8/2/2023 City: French Camp Project #: CA23_090084_001

			Constant of	NB	Sec.	SB	1000	EB	WB		1.400	10000		1000	Тс	otal
A THE ARE	DAILY TOTALS			0	12119	0		2,509	2,707	11000			and -		5,	216
AM Period	NB SB	EB	1000	WB		TC	TAL	PM Period	NB	SB	EB		WB		TO	TAL
0:00		2		11		13		12:00			49		47		96	1
0:15 0:30		3 0		1 6		4		12:15 12:30			42 48		41 30		83 78	
0:45		5	10	6	24	11	34	12:45			48 38	177	30	151	78	328
1:00		4	10	3	27	7	54	13:00			49	1//	35	101	84	520
1:15		3		5		8		13:15			33		39		72	
1:30		3		5		8		13:30			35		52		87	
1:45		7	17	4	17	11	34	13:45			42	159	56	182	98	341
2:00		5		2		7		14:00			50		41		91	
2:15 2:30		3 7		4 5		7 12		14:15 14:30			45 41		41 48		86 89	
2:30		10	25	8	19	12	44	14:45			41	178	48 50	180	89 92	358
3:00		5	25	5	15	10		15:00			44	1/0	48	100	92	330
3:15		8		10		18		15:15			41		46		87	
3:30		10		2		12		15:30			47		41		88	
3:45		8	31	14	31	22	62	15:45			38	170	61	196	99	366
4:00		11		7		18		16:00			51		48		99	
4:15 4:30		8 23		12		20 37		16:15 16:30			47		48		95	
4:30		23 15	57	14 22	55	37	112	16:45			53 53	204	58 57	211	111 110	415
5:00		17	57	15	55	32	112	17:00			49	204	51	211	100	415
5:15		30		20		50		17:15			49		60		109	
5:30		20		15		35		17:30			45		56		101	
5:45		27	94	16	66	43	160	17:45			33	176	54	221	87	397
6:00		17		20		37		18:00			38		46		84	
6:15		32		17		49		18:15			26		53		79	
6:30 6:45		35 35	119	31 33	101	66 68	220	18:30 18:45			30 24	118	43 23	1.05	73 47	202
7:00		34	119	39	101	73	220	19:00			30	118	30	165	60	283
7:15		39		27		66		19:15			19		39		58	
7:30		28		41		69		19:30			18		33		51	
7:45		39	140	40	147	79	287	19:45			15	82	19	121	34	203
8:00		39		24		63		20:00			23		20		43	
8:15		28		36		64		20:15			27		32		59	
8:30		44	150	28	100	72	070	20:30			22	0.4	30	00	52	100
8:45 9:00		45 24	156	34 38	122	79 62	278	20:45 21:00			<u>12</u> 12	84	<u>16</u> 23	98	28 35	182
9:15		45		23		62 68		21:15			9		23		35	
9:30		24		30		54		21:30			14		22		36	
9:45		25	118	42	133	67	251	21:45			13	48	15	83	28	131
10:00		36		37		73		22:00			11		10		21	
10:15		29		38		67		22:15			13		16		29	
10:30		30	45-	37	1	67		22:30			9		15		24	
10:45		30	125	31	143	61	268	22:45			9	42	11	52	20	94
11:00 11:15		42 40		42 32		84 72		23:00 23:15			7 8		8 9		15 17	
11:15		40 36		32 34		70		23:15			8 5		9 11		1/ 16	
11:45		37	155	45	153	82	308	23:45			4	24	8	36	12	60
TOTALS			1047		1011		2058	TOTALS				1462		1696		3158
SPLIT %			50.9%	1.5	49.1%		39.5%	SPLIT %				46.3%		53.7%		60.5%
		1 Carlos Francisco	A REAL PROPERTY.	NID	1. 1. 1. 1. 1. 1.	CD		FP	14/2	200 200 AM	0.00		Concerner of		-	
	DAILY TOTALS			NB 0		SB 0		EB 2,509	<u>WB</u> 2,707							otal 216
	the state of the s					-		2,505	2,707					and the second second	Э,	

	The local distance of the			9	0	2,305	2,707				5,210
AM Peak Hour			11:45	11:30	11:45	PM Peak Hour			16:00	16:30	16:30
AM Pk Volume			176	167	339	PM Pk Volume			204	226	430
Pk Hr Factor			0.898	0.888	0.883	Pk Hr Factor			0.962	0.942	0.968
7 - 9 Volume		D	296	269	565	4 - 6 Volume		To an Eugenin	380	432	812
7 - 9 Peak Hour			8:00	7:00	7:00	4 - 6 Peak Hour			16:00	16:30	16:30
7 - 9 Pk Volume			156	147	287	4-0PR			204	226	430
Pk Hr Factor		arm.	0.867	0.896	0.908	Pk Hr Factor			0.962	0.942	0.968

Prepared by National Data & Surveying Services **VOLUME** S El Dorado St S/O French Camp Rd

Day: Tuesday Date: 8/1/2023 City: French Camp Project #: CA23_090084_002

Date.	0, _, _ 0												1105	ett #: CA	23_05	0004_00	2	
	D/		OTA		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	NB	SB		EB		WB				-	and the second	and the second value of th	otal
And the second	DF	AILTI	UTP	ALS	1994	4,338	3,618	;	0		0				1.1		7,	956
AM Period	NB		SB		EB	WB	TC	TAL	PM Period	NB		SB		EB	١	WB	TC	TAL
0:00	16		6				22		12:00	51		61					112	
0:15 0:30	10 7		6 8				16 15		12:15 12:30	51 61		49 54					100 115	
0:45	7	40	9	29			16	69	12:45	51	214	40	204				91	418
1:00	7		6				13		13:00	47		50					97	
1:15	14		8				22		13:15	50		57					107	
1:30 1:45	8 9	38	5 10	29			13 19	67	13:30 13:45	64 58	219	48 50	205				112 108	424
2:00	18	50	11	25			29	07	14:00	55	215	60	205				115	424
2:15	4		6				10		14:15	70		63					133	
2:30	9	45	7	25			16		14:30	89	202	66	2.42				155	
2:45 3:00	14 13	45	<u>11</u> 20	35			25 33	80	14:45 15:00	89 114	303	54 60	243				143	546
3:15	7		13				20		15:15	124		50					174	
3:30	7		26				33	Sel.	15:30	157		78					235	
3:45	8	35	33	92			41	127	15:45	268	663	63	251				331	914
4:00	9 24		32 33				41 57	2	16:00 16:15	232 195		89					321 275	
4:15 4:30	24 18		33 42				60		16:15	195		80 43					275	
4:45	21	72	35	142			56	214	16:45	152	771	65	277				217	1048
5:00	14		35				49		17:00	111		67					178	
5:15	26		58				84		17:15	69		44					113	
5:30 5:45	18 19	77	66 50	209			84 69	286	17:30 17:45	70 55	305	55 47	213				125 102	518
6:00	26		48	205			74	200	18:00	51	505	30	215				81	510
6:15	26		59				85		18:15	59		34					93	
6:30	27	445	52	240			79	224	18:30	46	202	42	100				88	
6:45 7:00	36 38	115	60 46	219			96 84	334	18:45 19:00	46	202	30 29	136				76	338
7:15	21		38				59	S. Marson	19:15	35		41					76	
7:30	28		52				80		19:30	39		33					72	
7:45	38	125	52	188			90	313	19:45	23	141	30	133				53	274
8:00 8:15	28 36		52 42				80 78	1992	20:00 20:15	29 19		28 26					57 45	
8:30	39		35				74		20:30	26		28					54	
8:45	35	138	46	175			81	313	20:45	28	102	24	106				52	208
9:00	39		39				78		21:00	30		20					50	1631
9:15	40		35				75		21:15 21:30	23		25					48	
9:30 9:45	36 38	153	60 40	174			96 78	327	21:30	22 15	90	14 33	92				36 48	182
10:00	33	100	37	1/1			70	527	22:00	16	50	12	52				28	102
10:15	45		41				86		22:15	12		10					22	
10:30	53		40				93		22:30	20	50	10					30	
10:45 11:00	43	174	46 55	164			89 95	338	22:45 23:00	5 18	53	15 14	47				20	100
11:15	50		51				101	1	23:15	18		6					24	
11:30	60		63				123		23:30	14		12					26	
11:45	49	199	46	215			95	414	23:45	14	64	8	40			1 2 2 2	22	104
TOTALS		1211		1671				2882	TOTALS		3127		1947	2 mil		1		5074
SPLIT %		42.0%		58.0%				36.2%	SPLIT %	N.S.	61.6%		38.4%					63.8%
	D	AILY 1				NB	SB	and the	EB		WB	3000		1		-	Т	otal
100000000000000000000000000000000000000		AILT I		11.5	and the second	4,338	3,618	3	0	100	0	A TANK		North P		and the second	7,	956
AM Peak Hour		11:45		5:30				11:15	PM Peak Hour		15:45		15:30				10000	15:30
AM Pk Volume		212		223				431	PM Pk Volume		887		310					1162
Pk Hr Factor	131/2	0.869	1	0.845	1.1.1.1.1.1		36.32	0.876	Pk Hr Factor		0.827	4	0.871					0.878
7 - 9 Volume		263		363				626	4 - 6 Volume		1076		490					1566
7 - 9 Peak Hour		7:45		7:30				7:30	4 - 6 Peak Hour		16:00		16:00					16:00
7 - 9 Pk Volume		141		198				328	Volumo		771		277					1048
Pk Hr Factor	Contract N	0.904		0.952	1 980		Al and and	0.911	Pk Hr Factor		0.831		0.778	N. P.	000	12 1 4.0		0.816

Prepared by National Data & Surveying Services VOLUME S El Dorado St S/O French Camp Rd

Day: Wednesday Date: 8/2/2023

City: French Camp Project #: CA23_090084_002

	D	AILY T	ΌΤΑ	LS		<u>NB</u> 3,555	SB 3,514		EB 0		WB 0							otal 069
AM Period	NB	and Local	SB		EB	WB		TAL	PM Period	NB		SB		В	WB			TAL
0:00	8		5				13		12:00	44		53					97	
0:15 0:30	5 8		4 8				9 16	535	12:15 12:30	59 49		54 53					113 102	
0:45	4	25	4	21			8	46	12:45	48	200	45	205				93	405
1:00	11		6				17		13:00	43		53					96	
1:15 1:30	7 5		9 9				16 14		13:15 13:30	61 49		52 61					113 110	
1:45	14	37	9	33			23	70	13:45	76	229	53	219				129	448
2:00 2:15	5 11		4 5				9 16		14:00 14:15	67 62		57 49					124 111	1
2:30	13		11				24		14:30	77		57					134	
2:45	18	47	16	36			34	83	14:45	81	287	57	220				138	507
3:00 3:15	9 8		9 18				18 26		15:00 15:15	92 96		49 53					141 149	A.S.
3:30	8		30				38		15:30	96		61					157	632
3:45	12	37	36	93			48	130	15:45	113	397	72	235				185	632
4:00 4:15	8 13		33 39				41 52		16:00 16:15	95 72		58 67					153 139	
4:30	15		35				50		16:30	98		62					160	
4:45 5:00	16 20	52	39 50	146			55 70	198	16:45 17:00	84 61	349	56 62	243				140 123	592
5:15	25		75				100		17:15	102		56					125	
5:30	21		79				100		17:30	88		66					154	
5:45 6:00	24	90	57 48	261			81	351	17:45 18:00	70 53	321	51 30	235				121 83	556
6:15	25		51				76		18:15	52		39				1	91	
6:30	23		52				75		18:30	34		32					66	
6:45 7:00	25 33	95	41 45	192			66 78	287	18:45 19:00	41 28	180	31 29	132				72 57	312
7:15	32		33				65		19:15	29		22					51	
7:30	26	447	46	470			72	202	19:30	32	447	25	100				57	247
7:45 8:00	26 46	117	52 42	176			78 88	293	19:45 20:00	28 23	117	24	100				52 47	217
8:15	36		43				79		20:15	27		38					65	
8:30	41	107	47	100			88 81	226	20:30 20:45	27	00	25	115				52	214
8:45 9:00	44 38	167	37 40	169			78	336	20:45	22 29	99	28 12	115				50 41	214
9:15	35		44				79		21:15	17		18					35	
9:30 9:45	44 38	155	36 45	165			80 83	320	21:30 21:45	22 16	84	18 10	58				40 26	142
10:00	49	155	56	105			105	520	22:00	17	04	16	50				33	142
10:15	29		42				71		22:15	8		13					21	
10:30 10:45	46 40	164	59 31	188			105 71	352	22:30 22:45	16 8	49	17 4	50				33 12	99
11:00	51	104	33	100			84	332	23:00	8	75	11	50				19	
11:15	66		55				121		23:15	18		6					24	
11:30 11:45	39 45	201	56 49	193			95 94	394	23:30 23:45	11 19	56	5 7	29				16 26	85
TOTALS		1187		1673				2860	TOTALS		2368		1841					4209
SPLIT %		41.5%		58.5%				40.5%	SPLIT %		56.3%		43.7%					59.5%
	-		OT		200 42	NB	SB		EB		WB		1200				Тс	otal
	D	AILY T		ALS		3,555	3,514		0		0	-		1.2.2.2.2	and the		7,	069
AM Peak Hour		10:30		5:00				11:15	PM Peak Hour		15:15		15:45	122				15:15
AM Pk Volume		203		261				407	PM Pk Volume		400		259					644
Pk Hr Factor	-	0.769		0.826				0.841	Pk Hr Factor	1	0.885	-	0.899		-		-	0.870
7 - 9 Volume 7 - 9 Peak Hour		284 8:00		345 7:45				629 8:00	4 - 6 Volume 4 - 6 Peak Hour		670 16:00		478 16:15					1148 16:00
7 - 9 Peak Hour 7 - 9 Pk Volume		167		184				336	4-0FR Volume		349		247					592
Pk Hr Factor		0.908	-	0.885		1. 1. 1. ma	0	0.955	Pk Hr Factor		0.890	1	0.922	2.00	d	000.0		0.925

Kimley»Horn

Attachment B Existing (2023) Analysis Worksheets

French Camp Truck Storage 1: French Camp Rd & I - 5 Southbound Ramps

		+	A.	1	1
Lane Group	EBT	WBT	WBR	SBL	SBR
Lane Group Flow (vph)	633	286	330	681	207
v/c Ratio	0.31	0.26	0.29	0.42	0.34
Control Delay	7.6	7.9	0.7	7.3	3.2
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	7.6	7.9	0.7	7.3	3.2
Queue Length 50th (ft)	17	13	0	21	0
Queue Length 95th (ft)	29	28	0	35	18
Internal Link Dist (ft)	761	603		1157	
Turn Bay Length (ft)			570	530	780
Base Capacity (vph)	5356	2820	1122	4471	1348
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.12	0.10	0.29	0.15	0.15
Intersection Summary			E. N.	11. A.	

French Camp Truck Storage 1: French Camp Rd & I - 5 Southbound Ramps

	۶	-	-		5	1
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		1111	^	7	ካካዣ	7
Traffic Volume (veh/h)	0	506	229	264	484	226
Future Volume (veh/h)	0	506	229	264	484	226
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00			1.00	1.00	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No	No		No	
Adj Sat Flow, veh/h/ln	0	1870	1796	1248	1752	1900
Adj Flow Rate, veh/h	0	632	286	0	661	222
Peak Hour Factor	0.80	0.80	0.80	0.80	0.80	0.80
Percent Heavy Veh, %	0	2	7	44	10	0
Cap, veh/h	0	1954	1036		1654	532
Arrive On Green	0.00	0.30	0.30	0.00	0.33	0.33
Sat Flow, veh/h	0	6958	3503	1058	5005	1610
Grp Volume(v), veh/h	0	632	286	0	661	222
Grp Sat Flow(s), veh/h/ln	0	1609	1706	1058	1668	1610
Q Serve(g_s), s	0.0	1.9	1.6	0.0	2.5	2.6
Cycle Q Clear(g_c), s	0.0	1.9	1.6	0.0	2.5	2.6
Prop In Lane	0.00	1.3	1.0	1.00	1.00	1.00
Lane Grp Cap(c), veh/h	0.00	1954	1036	1.00	1654	532
	0.00	0.32	0.28		0.40	0.42
V/C Ratio(X)	0.00	5886	3122		5800	1866
Avail Cap(c_a), veh/h				1.00		
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	0.00	1.00	1.00	0.00	1.00	1.00
Uniform Delay (d), s/veh	0.0	6.6	6.5	0.0	6.4	6.4
Incr Delay (d2), s/veh	0.0	0.1	0.1	0.0	0.2	0.5
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	0.0	0.2	0.2	0.0	0.5	0.5
Unsig. Movement Delay, s/veh						
LnGrp Delay(d),s/veh	0.0	6.7	6.7	0.0	6.5	6.9
LnGrp LOS	A	A	А		A	A
Approach Vol, veh/h		632	286		883	
Approach Delay, s/veh		6.7	6.7		6.6	
Approach LOS		А	А		А	
Timer - Assigned Phs		12.12.1	192.8	4		6
Phs Duration (G+Y+Rc), s	10200	1999-2019	and the second	12.0	3.20.7	12.6
Change Period (Y+Rc), s				4.5		4.5
Max Green Setting (Gmax), s				22.5		28.5
Max Q Clear Time (g_c+l1), s				3.9		4.6
Green Ext Time (p_c), s				3.6		3.5
w = 7:	12.032.63			100 1 1 M		0.000000
Intersection Summary			6.7			
HCM 6th Ctrl Delay						
HCM 6th LOS			А			
ataa	The second second	N. State of the	2. 20 2 20	1211222	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

Notes

User approved volume balancing among the lanes for turning movement.

Unsignalized Delay for [WBR] is excluded from calculations of the approach delay and intersection delay.

HCM 6th Signalized Intersection Summary Kimley-Horn

Synchro 11 Report Page 2

French Camp Truck Storage 2: I - 5 Northbound Ramps & French Camp Rd

		\mathbf{r}	-	1	M
Lane Group	EBT	EBR	WBT	NBL	NBR
Lane Group Flow (vph)	811	220	505	101	459
v/c Ratio	0.54	0.34	0.59	0.06	0.79
Control Delay	15.9	4.5	18.2	6.6	22.0
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	15.9	4.5	18.2	6.6	22.0
Queue Length 50th (ft)	66	0	60	7	96
Queue Length 95th (ft)	106	29	108	14	167
Internal Link Dist (ft)	369		148	574	
Turn Bay Length (ft)		300		430	430
Base Capacity (vph)	1947	777	1119	2438	881
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.42	0.28	0.45	0.04	0.52
Intersection Summary	and search	al the			

French Camp Truck Storage 2: I - 5 Northbound Ramps & French Camp Rd

	-	7	1	+	1	1
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	***	1		<u>^</u>	ሻኘ	1
Traffic Volume (veh/h)	649	176	0	404	81	367
Future Volume (veh/h)	649	176	0	404	81	367
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)		1.00	1.00		1.00	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No			No	No	
Adj Sat Flow, veh/h/ln	1767	1870	0	1426	1826	1396
Adj Flow Rate, veh/h	811	220	0	505	101	459
Peak Hour Factor	0.80	0.80	0.80	0.80	0.80	0.80
Percent Heavy Veh, %	9	2	0	32	5	34
Cap, veh/h	1488	489	0	836	1527	536
Arrive On Green	0.31	0.31	0.00	0.31	0.45	0.45
Sat Flow, veh/h	4982	1585	0	2852	3374	1183
Grp Volume(v), veh/h	811	220	0	505	101	459
Grp Sat Flow(s), veh/h/ln	1608	1585	0	1354	1687	1183
Q Serve(g_s), s	5.3	4.2	0.0	6.0	0.6	13.1
Cycle Q Clear(g_c), s	5.3	4.2	0.0	6.0	0.6	13.1
Prop In Lane	0.0	1.00	0.00	0.0	1.00	1.00
Lane Grp Cap(c), veh/h	1488	489	0.00	836	1527	536
V/C Ratio(X)	0.55	0.45	0.00	0.60	0.07	0.86
Avail Cap(c_a), veh/h	2305	757	0.00	1294	2955	1036
HCM Platoon Ratio	1.00	1.00	1.00	1294	1.00	1.00
Upstream Filter(I)	1.00	1.00	0.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	10.8	10.5	0.0	11.1	5.8	9.2
	0.3	0.6	0.0	0.7	0.0	9.2
Incr Delay (d2), s/veh			0.0			4.1
Initial Q Delay(d3),s/veh	0.0	0.0		0.0	0.0	
%ile BackOfQ(50%),veh/In	1.2	1.0	0.0	1.2	0.1	2.4
Unsig. Movement Delay, s/veh		14 4	0.0	11.0	F 0	10.0
LnGrp Delay(d),s/veh	11.1	11.1	0.0	11.8	5.8	13.3
LnGrp LOS	В	B	A	B	<u>A</u>	B
Approach Vol, veh/h	1031			505	560	
Approach Delay, s/veh	11.1			11.8	12.0	
Approach LOS	В			В	В	
Timer - Assigned Phs		2	1999	4	Na alla	
Phs Duration (G+Y+Rc), s	- Searne	21.6	alley ?	16.1	The state and	
Change Period (Y+Rc), s		4.5		4.5		
Max Green Setting (Gmax), s		33.0		18.0		
Max Q Clear Time (g_c+I1), s		15.1		7.3		
Green Ext Time (p_c), s		2.0		4.4		
Intersection Summary			1000	Coloradore Coloradore	Section and	
			14 5		-	
HCM 6th Ctrl Delay			11.5			
HCM 6th LOS			В			

French Camp Truck Storage 3: French Camp Rd & Arch Airport Rd & Frank West Cir

Existing Conditions Timing Plan: AM PEAK HOUR

	٨	-	\mathbf{r}	1	-		1	1	5	÷.	1	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	98	964	168	29	604	16	149	45	13	5	18	
v/c Ratio	0.35	0.50	0.13	0.17	0.46	0.02	0.31	0.12	0.08	0.03	0.05	
Control Delay	28.4	13.4	2.5	30.1	17.9	0.1	27.3	15.9	31.4	30.0	0.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	28.4	13.4	2.5	30.1	17.9	0.1	27.3	15.9	31.4	30.0	0.3	
Queue Length 50th (ft)	30	67	0	9	63	0	23	6	4	2	0	
Queue Length 95th (ft)	73	134	10	32	93	0	52	33	20	11	0	
Internal Link Dist (ft)		356			582			682		429		
Turn Bay Length (ft)	285		330	230		340	260		140		70	
Base Capacity (vph)	452	2751	1739	225	2263	1029	653	703	156	605	673	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.22	0.35	0.10	0.13	0.27	0.02	0.23	0.06	0.08	0.01	0.03	
Intersection Summary								No. of Street,	1.23	N. M. C. C. C.		23

French Camp Truck Storage 3: French Camp Rd & Arch Airport Rd & Frank West Cir

Existing Conditions Timing Plan: AM PEAK HOUR

	۶	-		1	-		-	Ť	1	1	ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	***	77	ሻ	***	7	ኘኘ	4Î		۲	1	7
Traffic Volume (veh/h)	78	771	134	23	483	13	119	20	16	10	4	14
Future Volume (veh/h)	78	771	134	23	483	13	119	20	16	10	4	14
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	C
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1752	1589	1767	1322	1426	1900	1678	1604	1337	1455	1530	1589
Adj Flow Rate, veh/h	98	964	168	29	604	16	149	25	20	12	5	18
Peak Hour Factor	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80
Percent Heavy Veh, %	10	21	9	39	32	0	15	20	38	30	25	21
Cap, veh/h	129	1649	1002	42	1310	542	285	152	121	21	164	145
Arrive On Green	0.08	0.38	0.38	0.03	0.34	0.34	0.09	0.18	0.18	0.02	0.11	0.11
Sat Flow, veh/h	1668	4337	2635	1259	3892	1610	3100	825	660	1386	1530	1346
Grp Volume(v), veh/h	98	964	168	29	604	16	149	0	45	12	5	18
Grp Sat Flow(s), veh/h/ln	1668	1446	1317	1259	1297	1610	1550	0	1485	1386	1530	1346
Q Serve(g_s), s	2.7	8.2	2.0	1.1	5.7	0.3	2.1	0.0	1.2	0.4	0.1	0.6
Cycle Q Clear(g_c), s	2.7	8.2	2.0	1.1	5.7	0.3	2.1	0.0	1.2	0.4	0.1	0.6
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.44	1.00		1.00
Lane Grp Cap(c), veh/h	129	1649	1002	42	1310	542	285	0	273	21	164	145
V/C Ratio(X)	0.76	0.58	0.17	0.69	0.46	0.03	0.52	0.00	0.16	0.56	0.03	0.12
Avail Cap(c_a), veh/h	484	3124	1898	230	2385	987	700	0	782	164	641	564
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	21.0	11.5	9.5	22.2	12.1	10.3	20.1	0.0	16.0	22.7	18.6	18.8
Incr Delay (d2), s/veh	8.9	0.3	0.1	17.8	0.3	0.0	1.5	0.0	0.3	21.0	0.1	0.4
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	1.2	1.9	0.4	0.5	1.2	0.1	0.8	0.0	0.4	0.2	0.0	0.2
Unsig. Movement Delay, s/veh				0.0		•	010	010			0.0	012
LnGrp Delay(d),s/veh	29.9	11.8	9.6	40.0	12.4	10.4	21.6	0.0	16.3	43.7	18.7	19.2
LnGrp LOS	C	В	A	D	В	В	C	A	B	D	В	B
Approach Vol, veh/h	11-25-25	1230		Same and	649	1		194	1000	The second	35	2.2.2.3
Approach Delay, s/veh		13.0			13.6			20.4			27.5	
Approach LOS		B			B			C			C	
											Ŭ	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				1.00
Phs Duration (G+Y+Rc), s	5.2	13.1	6.1	22.2	8.8	9.5	8.1	20.2				
Change Period (Y+Rc), s	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5				
Max Green Setting (Gmax), s	5.5	24.5	8.5	33.5	10.5	19.5	13.5	28.5				
Max Q Clear Time (g_c+l1), s	2.4	3.2	3.1	10.2	4.1	2.6	4.7	7.7				
Green Ext Time (p_c), s	0.0	0.2	0.0	7.4	0.2	0.0	0.1	3.9				
Intersection Summary			B.		A PARTIN		1275	1911				
HOM 6th Ctrl Delay			14.1									2121
HCM 6th Ctrl Delay HCM 6th LOS												

French Camp Truck Storage 4: El Dorado Street & French Camp Road

	-	\mathbf{r}	-		1	Ť	1	5	↓	1	
Lane Group	EBT	EBR	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Group Flow (vph)	144	28	154	83	23	105	19	97	161	22	
v/c Ratio	0.48	0.09	0.51	0.06	0.16	0.08	0.04	0.52	0.11	0.04	
Control Delay	32.1	0.5	32.2	0.1	33.8	20.9	0.2	42.6	17.6	0.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	32.1	0.5	32.2	0.1	33.8	20.9	0.2	42.6	17.6	0.1	
Queue Length 50th (ft)	54	0	58	0	9	16	0	38	18	0	
Queue Length 95th (ft)	110	0	115	0	32	40	0	#108	55	0	
Internal Link Dist (ft)	350		828			628			994		
Turn Bay Length (ft)		100		100	115		150	150		150	
Base Capacity (vph)	517	458	497	1346	153	1304	487	198	1440	577	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.28	0.06	0.31	0.06	0.15	0.08	0.04	0.49	0.11	0.04	
Intersection Summary	and the second	1211-16			1000	Theresa	149				

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

French Camp Truck Storage 4: El Dorado Street & French Camp Road

Existing Conditions Timing Plan: AM PEAK HOUR

	٠	-	\mathbf{r}	1	-	*	1	Ť	1	5	Ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ଶ୍	7		ર્સ	7	ሻ	††	1	۲	^	7
Traffic Volume (veh/h)	19	107	25	17	119	73	20	92	17	85	142	19
Future Volume (veh/h)	19	107	25	17	119	73	20	92	17	85	142	19
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1426	1811	1366	1292	1737	1604	1455	1693	937	1618	1544	1040
Adj Flow Rate, veh/h	22	122	0	19	135	0	23	105	0	97	161	0
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Percent Heavy Veh, %	32	6	36	41	11	20	30	14	65	19	24	58
Cap, veh/h	30	167		26	181		38	1122		118	1169	1.00
Arrive On Green	0.11	0.11	0.00	0.12	0.12	0.00	0.03	0.35	0.00	0.08	0.40	0.00
Sat Flow, veh/h	275	1523	1158	213	1513	1359	1386	3216	794	1541	2934	882
Grp Volume(v), veh/h	144	0	0	154	0	0	23	105	0	97	161	0
Grp Sat Flow(s), veh/h/ln	1797	0	1158	1726	0	1359	1386	1608	794	1541	1467	882
Q Serve(g_s), s	4.0	0.0	0.0	4.5	0.0	0.0	0.9	1.1	0.0	3.2	1.8	0.0
Cycle Q Clear(g_c), s	4.0	0.0	0.0	4.5	0.0	0.0	0.9	1.1	0.0	3.2	1.8	0.0
Prop In Lane	0.15		1.00	0.12		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	197	0		207	0		38	1122	1100	118	1169	
V/C Ratio(X)	0.73	0.00		0.74	0.00		0.61	0.09		0.82	0.14	
Avail Cap(c_a), veh/h	620	0		596	0		175	1122		231	1169	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	22.5	0.0	0.0	22.2	0.0	0.0	25.1	11.4	0.0	23.7	10.0	0.0
Incr Delay (d2), s/veh	5.2	0.0	0.0	5.2	0.0	0.0	14.9	0.2	0.0	13.2	0.2	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	1.8	0.0	0.0	1.9	0.0	0.0	0.4	0.3	0.0	1.4	0.5	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	27.6	0.0	0.0	27.4	0.0	0.0	40.0	11.6	0.0	37.0	10.2	0.0
LnGrp LOS	С	A		C	A		D	В		D	В	010
Approach Vol, veh/h	141114	144	201915912		154	0.029		128		The last	258	
Approach Delay, s/veh		27.6			27.4			16.7			20.3	
Approach LOS		C			C			В			C	
	4			4		0						
Timer - Assigned Phs	1	2		4	5	6	1222	8			N. Com	
Phs Duration (G+Y+Rc), s	8.5	22.7		10.2	5.9	25.3		10.8				61 (A)
Change Period (Y+Rc), s	4.5	4.5		4.5	4.5	4.5		4.5				
Max Green Setting (Gmax), s	7.8	18.2		18.0	6.6	19.4		18.0				
Max Q Clear Time (g_c+l1), s	5.2	3.1		6.0	2.9	3.8		6.5				
Green Ext Time (p_c), s	0.0	0.4		0.5	0.0	0.7		0.5				
Intersection Summary	212 2141	1678						A. S. S.				
HCM 6th Ctrl Delay			22.8									
HCM 6th LOS			С									

Notes

Unsignalized Delay for [NBR, EBR, WBR, SBR] is excluded from calculations of the approach delay and intersection delay.

HCM 6th Signalized Intersection Summary Kimley-Horn

Synchro 11 Report Page 8

Intersection

Intersection Delay, s/veh13.7 Intersection LOS B

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			4		۲	朴ኈ		۲	ት ኈ		1
Traffic Vol, veh/h	18	129	30	23	214	11	90	77	53	24	119	22	
Future Vol, veh/h	18	129	30	23	214	11	90	77	53	24	119	22	
Peak Hour Factor	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	
Heavy Vehicles, %	11	8	33	13	12	9	37	35	23	17	30	9	
Mvmt Flow	22	157	37	28	261	13	110	94	65	29	145	27	
Number of Lanes	0	1	0	0	1	0	1	2	0	1	2	0	
Approach	EB	1949 ST		WB		No.	NB		123722	SB	State 2		
Opposing Approach	WB			EB			SB			NB			
Opposing Lanes	1			1			3			3			
Conflicting Approach Le	eft SB			NB			EB			WB			
Conflicting Lanes Left	3			3			1			1			
Conflicting Approach Ri	ightNB			SB			WB			EB			
Conflicting Lanes Right	3			3			1			1			
HCM Control Delay	13.7			17.2			11.7			11.3			
HCM LOS	В			С			В			В			

Lane	NBLn1	NBLn2	NBLn3	EBLn1V	VBLn1	SBLn1	SBLn2	SBLn3
Vol Left, %	100%	0%	0%	10%	9%	100%	0%	0%
Vol Thru, %	0%	100%	33%	73%	86%	0%	100%	64%
Vol Right, %	0%	0%	67%	17%	4%	0%	0%	36%
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	90	51	79	177	248	24	79	62
LT Vol	90	0	0	18	23	24	0	0
Through Vol	0	51	26	129	214	0	79	40
RT Vol	0	0	53	30	11	0	0	22
Lane Flow Rate	110	63	96	216	302	29	97	75
Geometry Grp	7	7	7	7	7	7	7	7
Degree of Util (X)	0.238	0.126	0.175	0.396	0.551	0.062	0.196	0.14
Departure Headway (Hd)	7.8	7.251	6.557	6.608	6.556	7.591	7.303	6.679
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Сар	458	491	544	542	547	469	489	533
Service Time	5.585	5.036	4.341	4.39	4.331	5.383	5.095	4.47
HCM Lane V/C Ratio	0.24	0.128	0.176	0.399	0.552	0.062	0.198	0.141
HCM Control Delay	13	11.1	10.7	13.7	17.2	10.9	11.9	10.6
HCM Lane LOS	В	В	В	В	С	В	В	В
HCM 95th-tile Q	0.9	0.4	0.6	1.9	3.3	0.2	0.7	0.5

,		+	A.	1	1
Lane Group	EBT	WBT	WBR	SBL	SBR
Lane Group Flow (vph)	651	515	335	475	145
v/c Ratio	0.29	0.40	0.26	0.34	0.29
Control Delay	6.4	7.4	0.5	6.3	3.7
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	6.4	7.4	0.5	6.3	3.7
Queue Length 50th (ft)	15	23	0	11	0
Queue Length 95th (ft)	28	46	0	26	22
Internal Link Dist (ft)	761	603		1157	
Turn Bay Length (ft)			570	530	780
Base Capacity (vph)	6069	3419	1282	4288	1310
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.11	0.15	0.26	0.11	0.11
Intersection Summary					

French Camp Truck Storage 1: French Camp Rd & I - 5 Southbound Ramps

			-		1	,	
		-	-		۱.	-	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		tttt	**	7	ሻሻዥ	7	
Traffic Volume (veh/h)	0	605	479	312	332	245	
Future Volume (veh/h)	0	605	479	312	332	245	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00			1.00	1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach		No	No		No		
Adj Sat Flow, veh/h/ln	0	1870	1900	1515	1707	1885	
Adj Flow Rate, veh/h	0	651	515	0	310	313	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	
Percent Heavy Veh, %	0	2	0	26	13	1	
Cap, veh/h	0	2160	1212		871	856	
Arrive On Green	0.00	0.34	0.34	0.00	0.27	0.27	
Sat Flow, veh/h	0	6958	3705	1284	3252	3195	
Grp Volume(v), veh/h	0	651	515	0	310	313	
Grp Sat Flow(s), veh/h/ln	0	1609	1805	1284	1626	1598	
Q Serve(g_s), s	0.0	1.7	2.5	0.0	1.8	1.8	
Cycle Q Clear(g_c), s	0.0	1.7	2.5	0.0	1.8	1.8	
Prop In Lane	0.00	1.1	2.0	1.00	1.00	1.00	
_ane Grp Cap(c), veh/h	0.00	2160	1212	1.00	871	856	
V/C Ratio(X)	0.00	0.30	0.42		0.36	0.37	
	0.00	7226	4054		3652	3589	
Avail Cap(c_a), veh/h HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
	0.00	1.00	1.00	0.00	1.00	1.00	
Upstream Filter(I)	0.00	5.6	5.8	0.00	6.7	6.7	
Uniform Delay (d), s/veh							
Incr Delay (d2), s/veh	0.0	0.1	0.2	0.0	0.2	0.3	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/In	0.0	0.1	0.2	0.0	0.3	0.3	
Unsig. Movement Delay, s/veh	0.0	F 7	0.4	0.0	70	7.0	
LnGrp Delay(d),s/veh	0.0	5.7	6.1	0.0	7.0	7.0	
LnGrp LOS	<u> </u>	A	A		A	Α	
Approach Vol, veh/h	1.	651	515		623		
Approach Delay, s/veh		5.7	6.1		7.0		
Approach LOS		А	А		А		
Timer - Assigned Phs				4		6	8
Phs Duration (G+Y+Rc), s				12.1		10.6	12.1
Change Period (Y+Rc), s				4.5		4.5	4.5
Max Green Setting (Gmax), s				25.5		25.5	25.5
Max Q Clear Time (g_c+l1), s				3.7		3.8	4.5
Green Ext Time (p_c), s				3.9		2.4	2.9
		1.04. M. 1.			121111111		
Intersection Summarv							
Intersection Summary HCM 6th Ctrl Delay			6.2				

Notes

User approved volume balancing among the lanes for turning movement.

Unsignalized Delay for [WBR] is excluded from calculations of the approach delay and intersection delay.

HCM 6th Signalized Intersection Summary Kimley-Horn

Synchro 11 Report Page 2

French Camp Truck Storage 2: I - 5 Northbound Ramps & French Camp Rd

		\mathbf{r}	-	•	M
Lane Group	EBT	EBR	WBT	NBL	NBR
Lane Group Flow (vph)	567	246	625	244	368
v/c Ratio	0.36	0.36	0.60	0.16	0.69
Control Delay	12.6	4.1	15.8	7.4	17.1
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	12.6	4.1	15.8	7.4	17.1
Queue Length 50th (ft)	34	0	58	15	62
Queue Length 95th (ft)	82	41	146	36	157
Internal Link Dist (ft)	369		148	574	
Turn Bay Length (ft)		300		430	430
Base Capacity (vph)	2391	926	1591	2717	949
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.24	0.27	0.39	0.09	0.39
Intersection Summary					

French Camp Truck Storage 2: I - 5 Northbound Ramps & French Camp Rd

Vement EBT EBR WBL WBT NBL NBR e Configurations ↑↑↑ ↑↑
e Configurations *** ** *** *** *** *** fic Volume (veh/h) 516 224 0 569 222 335 ure Volume (veh/h) 516 224 0 569 222 335
fic Volume (veh/h) 516 224 0 569 222 335 ıre Volume (veh/h) 516 224 0 569 222 335
re Volume (veh/h) 516 224 0 569 222 335
-Bike Adj(A_pbT) 1.00 1.00 1.00 1.00
king Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00
k Zone On Approach No No No No
Sat Flow, veh/h/ln 1767 1885 0 1693 1900 1426
Flow Rate, veh/h 567 246 0 625 244 368
k Hour Factor 0.91 0.91 0.91 0.91 0.91 0.91
cent Heavy Veh, % 9 1 0 14 0 32
, veh/h 1556 516 0 1038 1387 478
ve On Green 0.32 0.32 0.00 0.32 0.40 0.40
Flow, veh/h 4982 1598 0 3385 3510 1208
Volume(v), veh/h 567 246 0 625 244 368
Sat Flow(s), veh/h/ln 1608 1598 0 1608 1755 1208
erve(g_s), s 2.9 3.9 0.0 5.2 1.4 8.5
le Q Clear(g_c), s 2.9 3.9 0.0 5.2 1.4 8.5
p In Lane 1.00 0.00 1.00 1.00
e Grp Cap(c), veh/h 1556 516 0 1038 1387 478
Ratio(X) 0.36 0.48 0.00 0.60 0.18 0.77
il Cap(c_a), veh/h 2947 976 0 1965 3466 1193
V Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00
tream Filter(I) 1.00 1.00 0.00 1.00 1.00 1.00
form Delay (d), s/veh 8.3 8.7 0.0 9.1 6.3 8.4
Delay (d2), s/veh 0.1 0.7 0.0 0.6 0.1 2.7 al Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0
BackOfQ(50%), veh/ln 0.5 0.8 0.0 1.0 0.3 1.4
ig. Movement Delay, s/veh
roach Delay, s/veh 8.7 9.6 9.2
roach LOS A A A
er - Assigned Phs 2 4
Duration (G+Y+Rc), s 17.1 14.8
ange Period (Y+Rc), s 4.5 4.5
Green Setting (Gmax), s 31.5 19.5
(Q Clear Time (g_c+l1), s 10.5 5.9
en Ext Time (p_c), s 2.2 3.7
rsection Summary
VI 6th Ctrl Delay 9.1
M 6th LOS A

French Camp Truck Storage 3: French Camp Rd & Arch Airport Rd & Frank West Cir

Existing Conditions Timing Plan: PM Peak Hour

	٦			1	-		1	1	1	-↓	1	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	60	713	178	29	826	2	215	47	10	11	49	
v/c Ratio	0.26	0.44	0.16	0.16	0.57	0.00	0.37	0.09	0.05	0.05	0.14	
Control Delay	28.3	14.3	3.1	29.7	18.2	0.0	25.1	8.8	30.1	29.0	0.9	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	28.3	14.3	3.1	29.7	18.2	0.0	25.1	8.8	30.1	29.0	0.9	
Queue Length 50th (ft)	19	49	0	9	89	0	35	1	3	4	0	
Queue Length 95th (ft)	56	110	17	35	139	0	73	25	18	19	0	
Internal Link Dist (ft)		356			582			682		429		
Turn Bay Length (ft)	285		330	230		340	260		140		70	
Base Capacity (vph)	361	2610	1700	219	2417	950	828	795	193	759	754	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.17	0.27	0.10	0.13	0.34	0.00	0.26	0.06	0.05	0.01	0.06	
Intersection Summary	1. S. S. S.					137-14				1.29.22	A COMPANY	1242

French Camp Truck Storage 3: French Camp Rd & Arch Airport Rd & Frank West Cir

Existing Conditions Timing Plan: PM Peak Hour

	۶	-	\mathbf{r}	<	-	*	1	Ť	1	5	÷.	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ň	***	77	٦	^	7	ሻሻ	ef (۲		7
Traffic Volume (veh/h)	52	620	155	25	719	2	187	2	39	9	10	43
Future Volume (veh/h)	52	620	155	25	719	2	187	2	39	9	10	43
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1722	1574	1796	1604	1678	1900	1856	1900	1707	1900	1900	1900
Adj Flow Rate, veh/h	60	713	178	29	826	2	215	2	45	10	11	49
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Percent Heavy Veh, %	12	22	7	20	15	0	3	0	13	0	0	0
Cap, veh/h	97	1453	906	52	1434	504	365	14	321	24	215	183
Arrive On Green	0.06	0.34	0.34	0.03	0.31	0.31	0.11	0.21	0.21	0.01	0.11	0.11
Sat Flow, veh/h	1640	4297	2679	1527	4580	1610	3428	69	1552	1810	1900	1610
Grp Volume(v), veh/h	60	713	178	29	826	2	215	0	47	10	11	49
Grp Sat Flow(s), veh/h/ln	1640	1432	1340	1527	1527	1610	1714	0	1621	1810	1900	1610
Q Serve(g_s), s	1.6	5.8	2.1	0.8	6.7	0.0	2.6	0.0	1.0	0.2	0.2	1.2
Cycle Q Clear(g_c), s	1.6	5.8	2.1	0.8	6.7	0.0	2.6	0.0	1.0	0.2	0.2	1.2
Prop In Lane	1.00	010	1.00	1.00	011	1.00	1.00	010	0.96	1.00	0.12	1.00
Lane Grp Cap(c), veh/h	97	1453	906	52	1434	504	365	0	335	24	215	183
V/C Ratio(X)	0.62	0.49	0.20	0.56	0.58	0.00	0.59	0.00	0.14	0.42	0.05	0.27
Avail Cap(c_a), veh/h	428	3069	1914	260	2856	1004	972	0.00	1011	226	883	748
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	20.3	11.6	10.3	21.0	12.7	10.4	18.8	0.0	14.3	21.6	17.4	17.9
Incr Delay (d2), s/veh	6.3	0.3	0.1	9.1	0.4	0.0	1.5	0.0	0.2	11.5	0.1	0.8
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.0	1.3	0.0	0.0	1.7	0.0	1.0	0.0	0.0	0.0	0.0	0.0
Unsig. Movement Delay, s/veh		1.0	0.4	0.4	1.7	0.0	1.0	0.0	0.5	0.2	0.1	0.4
LnGrp Delay(d),s/veh	26.6	11.8	10.5	30.1	13.1	10.4	20.3	0.0	14.5	33.1	17.5	18.7
LIGIP Delay(d), siven	20.0 C	H.0 B	10.5 B	50.1 C	B	10.4 B	20.3 C	0.0 A	14.5 B	55.1 C	17.5 B	10.7 B
	U	951	D	0	857	D	0	262	D	U	70	<u> </u>
Approach Vol, veh/h												
Approach Delay, s/veh		12.5			13.6			19.3			20.5	00.0780/00
Approach LOS		В			В			В			С	
Timer - Assigned Phs	1	2	3	4	5	6	7	8	1997 - 19			and the
Phs Duration (G+Y+Rc), s	5.1	13.6	6.0	19.4	9.2	9.5	7.1	18.3				
Change Period (Y+Rc), s	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5				
Max Green Setting (Gmax), s	5.5	27.5	7.5	31.5	12.5	20.5	11.5	27.5				
Max Q Clear Time (g_c+l1), s	2.2	3.0	2.8	7.8	4.6	3.2	3.6	8.7				
Green Ext Time (p_c), s	0.0	0.2	0.0	5.5	0.4	0.1	0.1	5.1				
Intersection Summary			S. C. S.		1.11		and the second			1		Sec.
HCM 6th Ctrl Delay			14.0						Street.			
HCM 6th LOS			В									
French Camp Truck Storage 4: El Dorado Street & French Camp Road

	-	\mathbf{r}	-		1	Ť	1	1	↓	-	
Lane Group	EBT	EBR	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Group Flow (vph)	210	44	219	122	46	323	22	165	227	19	
v/c Ratio	0.79	0.11	0.65	0.08	0.32	0.38	0.06	0.89	0.21	0.03	
Control Delay	50.7	0.5	37.8	0.1	40.1	25.8	0.3	79.6	21.9	0.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	50.7	0.5	37.8	0.1	40.1	25.8	0.3	79.6	21.9	0.1	
Queue Length 50th (ft)	92	0	97	0	21	67	0	79	45	0	
Queue Length 95th (ft)	#157	0	139	0	47	93	0	#162	67	0	
Internal Link Dist (ft)	350		828			628			994		
Turn Bay Length (ft)		100		100	115		150	150		150	
Base Capacity (vph)	307	444	448	1553	150	855	392	186	1099	569	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.68	0.10	0.49	0.08	0.31	0.38	0.06	0.89	0.21	0.03	
Intersection Summary						119.24		12 01 -4			

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

French Camp Truck Storage 4: El Dorado Street & French Camp Road

Existing Conditions Timing Plan: PM Peak Hour

	۶	-	>	1	-	*	•	1	1	1	Ļ	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ধ	7		ર્સ	7	ሻ	*	7	ኘ	^	7
Traffic Volume (veh/h)	17	147	34	7	164	95	36	252	17	129	177	15
Future Volume (veh/h)	17	147	34	7	164	95	36	252	17	129	177	15
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1470	1100	1633	1470	1856	1841	1781	1826	1292	1856	1767	1707
Adj Flow Rate, veh/h	22	188	0	9	210	0	46	323	0	165	227	0
Peak Hour Factor	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78
Percent Heavy Veh, %	29	54	18	29	3	4	8	5	41	3	9	13
Cap, veh/h	25	211		11	266		72	911		199	1116	
Arrive On Green	0.22	0.22	0.00	0.15	0.15	0.00	0.04	0.26	0.00	0.11	0.33	0.00
Sat Flow, veh/h	115	979	1384	76	1776	1560	1697	3469	1095	1767	3357	1447
Grp Volume(v), veh/h	210	0	0	219	0	0	46	323	0	165	227	0
Grp Sat Flow(s),veh/h/ln	1094	0	1384	1852	0	1560	1697	1735	1095	1767	1678	1447
Q Serve(g_s), s	12.9	0.0	0.0	7.9	0.0	0.0	1.9	5.3	0.0	6.3	3.4	0.0
Cycle Q Clear(g_c), s	12.9	0.0	0.0	7.9	0.0	0.0	1.9	5.3	0.0	6.3	3.4	0.0
Prop In Lane	0.10		1.00	0.04		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	236	0		277	0		72	911		199	1116	
V/C Ratio(X)	0.89	0.00		0.79	0.00		0.64	0.35		0.83	0.20	
Avail Cap(c_a), veh/h	284	0		481	0		161	911		199	1116	1.15.6
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	26.4	0.0	0.0	28.4	0.0	0.0	32.7	20.8	0.0	30.1	16.6	0.0
Incr Delay (d2), s/veh	24.5	0.0	0.0	5.0	0.0	0.0	9.1	1.1	0.0	24.6	0.4	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	4.7	0.0	0.0	3.6	0.0	0.0	0.9	2.0	0.0	3.8	1.2	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	50.9	0.0	0.0	33.4	0.0	0.0	41.8	21.9	0.0	54.7	17.0	0.0
LnGrp LOS	D	A		С	A		D	С		D	В	
Approach Vol, veh/h		210			219			369			392	
Approach Delay, s/veh		50.9			33.4			24.4			32.8	
Approach LOS		D			С			С			С	
Timer - Assigned Phs	1	2	345 B	4	5	6		8		1 17/2		17.4
Phs Duration (G+Y+Rc), s	12.3	22.7		19.5	7.4	27.6		14.9				
Change Period (Y+Rc), s	4.5	4.5		4.5	4.5	4.5		4.5				
Max Green Setting (Gmax), s	7.8	18.2		18.0	6.6	19.4		18.0				
Max Q Clear Time (g_c+l1), s	8.3	7.3		14.9	3.9	5.4		9.9				
Green Ext Time (p_c), s	0.0	1.3		0.3	0.0	1.0		0.6				
Intersection Summary								NAME OF				
HCM 6th Ctrl Delay	Dieles.		33.5									Sec.21
HCM 6th LOS			С									

Notes

Unsignalized Delay for [NBR, EBR, WBR, SBR] is excluded from calculations of the approach delay and intersection delay.

Intersection

Intersection Delay, s/veh18.7 Intersection LOS C

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			4		۲	† î»		۲	朴ኈ		
Traffic Vol, veh/h	46	281	19	17	152	27	80	183	33	40	145	16	
Future Vol, veh/h	46	281	19	17	152	27	80	183	33	40	145	16	
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	
Heavy Vehicles, %	6	6	47	6	7	0	19	8	9	5	12	12	
Mvmt Flow	53	323	22	20	175	31	92	210	38	46	167	18	
Number of Lanes	0	1	0	0	1	0	1	2	0	1	2	0	
Approach	EB		1. Strate	WB			NB	3/3-28	1	SB		17. T. C.	
Opposing Approach	WB			EB			SB			NB			
Opposing Lanes	1			1			3			3			
Conflicting Approach Le	eft SB			NB			EB			WB			
Conflicting Lanes Left	3			3			1			1			
Conflicting Approach R	ightNB			SB			WB			EB			
Conflicting Lanes Right	3			3			1			1			
HCM Control Delay	29.1			15.9			12.8			12.4			
HCM LOS	D			С			В			В			

Lane	NBLn1	NBLn2	NBLn3	EBLn1V	VBLn1	SBLn1	SBLn2	SBLn3
Vol Left, %	100%	0%	0%	13%	9%	100%	0%	0%
Vol Thru, %	0%	100%	65%	81%	78%	0%	100%	75%
Vol Right, %	0%	0%	35%	5%	14%	0%	0%	25%
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	80	122	94	346	196	40	97	64
LT Vol	80	0	0	46	17	40	0	0
Through Vol	0	122	61	281	152	0	97	48
RT Vol	0	0	33	19	27	0	0	16
Lane Flow Rate	92	140	108	398	225	46	111	74
Geometry Grp	7	7	7	7	7	7	7	7
Degree of Util (X)	0.209	0.291	0.217	0.767	0.454	0.104	0.24	0.156
Departure Headway (Hd)	8.179	7.467	7.23	6.946	7.254	8.161	7.765	7.584
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Сар	439	481	496	521	496	439	462	472
Service Time	5.934	5.221	4.984	4.69	5.007	5.92	5.524	5.343
HCM Lane V/C Ratio	0.21	0.291	0.218	0.764	0.454	0.105	0.24	0.157
HCM Control Delay	13.1	13.3	12	29.1	15.9	11.9	13	11.8
HCM Lane LOS	В	В	В	D	С	В	В	В
HCM 95th-tile Q	0.8	1.2	0.8	6.8	2.3	0.3	0.9	0.5

iioje							
Analys	t	Kimley-Horn	Date			11/7/2023	
Agency	у	San Joaquin County	Analy	/sis Year		2023	
Jurisdie	ction	San Joaquin County	Time	Time Analyzed		AM Peak-Hour - Existin	
Project	t Description	French Camp Road, Nor of El Dorado Street, NB	th Units			U.S. Customary	
		Seg	gment	: 1			
Vehie	cle Inputs						
Segme	ent Type	Passing Constrained	Leng	th, ft		5280	
Lane W	Vidth, ft	12	Shou	lder Width, f	ït	4	
Speed	Limit, mi/h	45	Acce	ss Point Den	sity, pts/mi	2.0	
Dem	and and Capacity						
Directional Demand Flow Rate, veh/h		209	Oppo	osing Deman	-		
Peak Hour Factor		0.75		Trucks, %	19.00		
Segment Capacity, veh/h		1700	Dem	and/Capacity	y (D/C)	0.12	
Inter	mediate Results						
Segment Vertical Class		1	Free-	Flow Speed,	mi/h	48.8	
Speed	Slope Coefficient (m)	3.20336	Spee	d Power Coe	efficient (p)	0.41674	
PF Slop	pe Coefficient (m)	-1.37129	PF Pc	ower Coeffici	ent (p)	0.73135	
In Pass	sing Lane Effective Length?	No	Total	Segment De	ensity, veh/mi/ln	1.6	
%lmpr	ovement to Percent Followers	0.0	%lm	provement to	0.0		
Subs	segment Data						
# 9	Segment Type	Length, ft	Radius, ft		Superelevation, %	Average Speed, mi/h	
1 1	Tangent	5280	-		-	47.5	
Vehi	cle Results						
Averag	ge Speed, mi/h	47.5	Perce	ent Followers	5, %	35.4	
Segme	ent Travel Time, minutes	1.26	Follo	wer Density	(FD), followers/mi/ln	1.6	
Vehicle LOS A							
Facil	ity Results						
Т	VMT veh-mi/AP	VHD veh-h/p		Follower Density, followers/ mi/ln		LOS	
	39	0.02		1.6		А	

Project Information

Analys	st	Kimley-Horn	Date		11/7/2023	
Agenc	у	San Joaquin County	Analysis	Year	2023	
Jurisdi	ction	San Joaquin County	Time An	alyzed	AM Peak-Hour - Existin	
Projec	t Description	French Camp Road, Nor of El Dorado Street, SB	th Units		U.S. Customary	
		Seg	gment 1			
Vehi	cle Inputs	a state of the				
Segme	ent Type	Passing Constrained	Length,	ft	5280	
Lane V	Nidth, ft	12	Shoulde	r Width, ft	4	
Speed	l Limit, mi/h	45	Access P	Point Density, pts/mi	2.0	
Dem	and and Capacity					
Direct	ional Demand Flow Rate, veh/h	171	Opposin	ng Demand Flow Rate, veh/h	-	
Peak Hour Factor		0.92	Total Tru	ıcks, %	14.00	
Segment Capacity, veh/h		1700	Demand	l/Capacity (D/C)	0.10	
Inte	rmediate Results					
Segme	ent Vertical Class	1	Free-Flo	w Speed, mi/h	48.9	
Speed	Slope Coefficient (m)	3.21238	Speed P	ower Coefficient (p)	0.41674	
PF Slo	pe Coefficient (m)	-1.37112	PF Powe	er Coefficient (p)	0.73117	
In Pass	sing Lane Effective Length?	No	Total Seg	gment Density, veh/mi/ln	1.1	
%Impi	rovement to Percent Followers	0.0	%Improv	vement to Speed	0.0	
Subs	segment Data	The second second				
#	Segment Type	Length, ft	Radius, ft	Superelevation, %	Average Speed, mi/h	
1	Tangent	5280	-	-	47.9	
Vehi	cle Results					
Avera	ge Speed, mi/h	47.9	Percent	Followers, %	31.4	
Segme	ent Travel Time, minutes	1.25	Follower	r Density (FD), followers/mi/ln	1.1	
Vehicl	e LOS	A				
Facil	lity Results					
Т	VMT veh-mi/AP	VHD veh-h/p	Fo	bllower Density, followers/ mi/ln	LOS	
1	39	0.02		1.1	А	

Ex-Seg1-SB-AM.xuf

Proje	ect Information				
Analys	st	Kimley-Horn	Ďate		11/7/2023
Agenc	y	San Joaquin County	Analys	sis Year	2023
Jurisdi	ction	San Joaquin County	Time	Analyzed	AM Peak-Hour - Existing
Projec	t Description	French Camp Road, Nc of El Dorado Street, SB	orth Units		U.S. Customary
		Se	egment	1	
Vehi	cle Inputs	The second second second second			
Segme	ent Type	Passing Constrained	Lengt	h, ft	5280
Lane V	Width, ft	12	Shoul	der Width, ft	4
Speed	l Limit, mi/h	45	Acces	s Point Density, pts/mi	2.0
Dem	and and Capacity				
Directi	ional Demand Flow Rate, veh/h	170	Орро	sing Demand Flow Rate, veh/h	-
Peak Hour Factor		0.92	Total ⁻	Trucks, %	14.00
Segment Capacity, veh/h		1700	Dema	nd/Capacity (D/C)	0.10
Inter	rmediate Results				
Segment Vertical Class		1	Free-I		48.9
Speed	I Slope Coefficient (m)	3.21238	Speed	Power Coefficient (p)	0.41674
PF Slo	pe Coefficient (m)	-1.37112	PF Po	wer Coefficient (p)	0.73117
In Pass	sing Lane Effective Length?	No	Total	Segment Density, veh/mi/ln	1.1
%lmpi	rovement to Percent Followers	0.0	%Imp	rovement to Speed	0.0
Subs	segment Data	and a second second		a internet and	
#	Segment Type	Length, ft	Radius, ft	Superelevation, %	Average Speed, mi/h
1	Tangent	5280	-	-	47.9
Vehi	icle Results				
Avera	ge Speed, mi/h	47.9	Perce	nt Followers, %	31.2
		1.25	Follow	ver Density (FD), followers/mi/ln	1.1
Vehicle LOS A		A			
Facil	lity Results				
Т	VMT veh-mi/AP	VHD veh-h/p		Follower Density, followers/ mi/ln	LOS
1	39	0.02	100.000	1.1	А

Copyright © 2023 University of Florida. All Rights Reserved.

Generated: 11/07/2023 16:22:49

Project Ir	nformation						
Analyst		Kimley-Horn		Date		11/7/2023	
Agency		San Joaquin County		Analysis Year		2023	
Jurisdiction		San Joaquin County		Time Analyzed		PM Peak-Hour - Existing	
Project Desci	ription	French Camp Road, N of El Dorado Street, S		Units		U.S. Customary	
		S	Segm	nent 1			
Vehicle Ir	nputs						
Segment Typ	0e	Passing Constrained		Length, ft		5280	
ane Width,	ft	12		Shoulder Width	, ft	4	
Speed Limit,	mi/h	45		Access Point De	ensity, pts/mi	2.0	
Demand	and Capacity						
Directional D	emand Flow Rate, veh/h	228		Opposing Dema	and Flow Rate, veh/h	-	
Peak Hour Factor 0		0.85		Total Trucks, %		9.00	
egment Capacity, veh/h 1700		1700		Demand/Capac	ity (D/C)	0.13	
Intermed	liate Results						
Segment Ver	tical Class	1		Free-Flow Spee	d, mi/h	49.1	
Speed Slope	Coefficient (m)	3.22141		Speed Power Co	pefficient (p)	0.41674	
PF Slope Coe	efficient (m)	-1.37094		PF Power Coeffi	cient (p)	0.73098	
In Passing La	ne Effective Length?	No		Total Segment I	Density, veh/mi/ln	1.8	
%Improveme	ent to Percent Followers	0.0		%Improvement to Speed		0.0	
Subsegm	ent Data						
# Segme	ent Type	Length, ft	Rad	ius, ft	Superelevation, %	Average Speed, mi/h	
1 Tanger	nt	5280	-		-	47.7	
Vehicle R	esults						
Average Spe	ed, mi/h	47.7		Percent Followe	ers, %	37.2	
		1.26		Follower Densit	y (FD), followers/mi/ln	1.8	
		A					
Facility R	esults						
т	VMT veh-mi/AP	VHD veh-h/p		Follower Density, followers/ mi/In		LOS	
1	49	0.03		1.8		А	

Copyright © 2023 University of Florida. All Rights Reserved.

HCSTM Highways Version 2023 Ex-Seg1-SB-PM.xuf

Generated: 11/07/2023 16:24:38

HCS Multilane Highway Report

.....

..

Project Information			
Analyst	Kimley-Horn	Date	11/7/2023
Agency	San Joaquin County	Analysis Year	2023
Jurisdiction	San Joaquin County	Time Analyzed	AM Peak-Hour - Existing
Project Description	El Dorado Street, South of French Camp Road	Units	U.S. Customary
Direction 1 Geometric Data			States and the
Direction 1	NB		
Number of Lanes (N), In	2	Terrain Type	Level
Measured or Base Free-Flow Speed	Base	Percent Grade, %	-
Base Free-Flow Speed (BFFS), mi/h	45.0	Grade Length, mi	-
Lane Width, ft	12	Access Point Density, pts/mi	4.0
Median Type	Undivided	Left-Side Lateral Clearance (LCR), ft	6
Free-Flow Speed (FFS), mi/h	42.4	Total Lateral Clearance (TLC), ft	12
Direction 1 Adjustment Fact	ors		
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		
Direction 1 Demand and Ca	pacity		
Volume (V) veh/h	118	Heavy Vehicle Adjustment Factor (fHV)	0.794
Peak Hour Factor	0.81	Flow Rate (V _p), pc/h/ln	92
Total Trucks, %	26.00	Capacity (c), pc/h/ln	1900
Single-Unit Trucks (SUT), %	-	Adjusted Capacity (cadj), pc/h/ln	1900
Tractor-Trailers (TT), %	-	Volume-to-Capacity Ratio (v/c)	0.05
Direction 1 Speed and Dens	ity		
Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	42.4
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	2.2
Median Type Adjustment (fM)	1.6	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	1.0		

Direction 2 Geometric Data			
Direction 2	SB		
Number of Lanes (N), In	2	Terrain Type	Level
Measured or Base Free-Flow Speed	Base	Percent Grade, %	-
Base Free-Flow Speed (BFFS), mi/h	45.0	Grade Length, mi	-
Lane Width, ft	12	Access Point Density, pts/mi	4.0
Median Type	Undivided	Left-Side Lateral Clearance (LCR), ft	6
Free-Flow Speed (FFS), mi/h	42.4	Total Lateral Clearance (TLC), ft	12
Direction 2 Adjustment Fact	tors		
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		
Direction 2 Demand and Ca	pacity		
Volume (V) veh/h	175	Heavy Vehicle Adjustment Factor (fHV)	0.794
Peak Hour Factor	0.81	Flow Rate (Vp), pc/h/ln	136
Total Trucks, %	26.00	Capacity (c), pc/h/ln	1900
Single-Unit Trucks (SUT), %	-	Adjusted Capacity (cadj), pc/h/ln	1900
Tractor-Trailers (TT), %	-	Volume-to-Capacity Ratio (v/c)	0.07
Direction 2 Speed and Dens	ity		
Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	42.4
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	3.2
Median Type Adjustment (fM)	1.6	Level of Service (LOS)	А
Access Point Density Adjustment (fA)	1.0		

Copyright © 2023 University of Florida. All Rights Reserved.

HCS T Highways Version 2023 Ex-Seg2-AM.xuf

Generated: 11/07/2023 17:03:56

HCS Multilane Highway Report

Project Information

· · · · · · · · · · · · · · · · · · ·			
Analyst	Kimley-Horn	Date	11/7/2023
Agency	San Joaquin County	Analysis Year	2023
Jurisdiction	San Joaquin County	Time Analyzed	PM Peak-Hour - Existing
Project Description	El Dorado Street, South of French Camp Road	Units	U.S. Customary
Direction 1 Geometric Data			
Direction 1	NB		
Number of Lanes (N), In	2	Terrain Type	Level
Measured or Base Free-Flow Speed	Base	Percent Grade, %	-
Base Free-Flow Speed (BFFS), mi/h	45.0	Grade Length, mi	-
Lane Width, ft	12	Access Point Density, pts/mi	4.0
Median Type	Undivided	Left-Side Lateral Clearance (LCR), ft	6
Free-Flow Speed (FFS), mi/h	42.4	Total Lateral Clearance (TLC), ft	12
Direction 1 Adjustment Fact	ors		Lander Make
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		
Direction 1 Demand and Ca	pacity		
Volume (V) veh/h	281	Heavy Vehicle Adjustment Factor (fHV)	0.935
Peak Hour Factor	0.70	Flow Rate (Vp), pc/h/ln	214
Total Trucks, %	7.00	Capacity (c), pc/h/ln	1900
Single-Unit Trucks (SUT), %	-	Adjusted Capacity (cadj), pc/h/ln	1900
Tractor-Trailers (TT), %	-	Volume-to-Capacity Ratio (v/c)	0.11
Direction 1 Speed and Dens	ity		
Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	42.4
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	5.0
Median Type Adjustment (fM)	1.6	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	1.0	100 State 1	- Service Service

Direction 2 Geometric Data			
Direction 2	SB		
Number of Lanes (N), In	2	Terrain Type	Level
Measured or Base Free-Flow Speed	Base	Percent Grade, %	-
Base Free-Flow Speed (BFFS), mi/h	45.0	Grade Length, mi	-
Lane Width, ft	12	Access Point Density, pts/mi	4.0
Median Type	Undivided	Left-Side Lateral Clearance (LCR), ft	6
Free-Flow Speed (FFS), mi/h	42.4	Total Lateral Clearance (TLC), ft	12
Direction 2 Adjustment Fact	tors		
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		
Direction 2 Demand and Ca	pacity		Market State
Volume (V) veh/h	210	Heavy Vehicle Adjustment Factor (fHV)	0.901
Peak Hour Factor	0.87	Flow Rate (Vp), pc/h/ln	134
Total Trucks, %	11.00	Capacity (c), pc/h/ln	1900
Single-Unit Trucks (SUT), %	-	Adjusted Capacity (cadj), pc/h/ln	1900
Tractor-Trailers (TT), %	-	Volume-to-Capacity Ratio (v/c)	0.07
Direction 2 Speed and Dens	ity		
Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	42.4
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	3.2
Median Type Adjustment (fM)	1.6	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	1.0		

Copyright © 2023 University of Florida. All Rights Reserved.

HCS 100 Highways Version 2023 Ex-Seg2-PM.xuf

Generated: 11/07/2023 17:15:32

Kimley»Horn

Attachment C Existing (2023) plus Pending and Approved Projects Analysis Worksheets

French Camp Truck Storage 1: French Camp Rd & I - 5 Southbound Ramps

	-	-		1	4
Lane Group	EBT	WBT	WBR	SBL	SBR
Lane Group Flow (vph)	634	288	330	681	207
v/c Ratio	0.31	0.27	0.29	0.42	0.34
Control Delay	7.6	7.9	0.7	7.3	3.2
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	7.6	7.9	0.7	7.3	3.2
Queue Length 50th (ft)	17	13	0	21	0
Queue Length 95th (ft)	29	28	0	35	18
Internal Link Dist (ft)	761	603		1157	
Turn Bay Length (ft)			570	530	780
Base Capacity (vph)	5354	2819	1122	4468	1347
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.12	0.10	0.29	0.15	0.15
Intersection Summary					

French Camp Truck Storage 1: French Camp Rd & I - 5 Southbound Ramps

	۶	+	+		1	1	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		1111	**	7	ኘኘዣ	7	
Traffic Volume (veh/h)	0	507	230	264	484	226	
Future Volume (veh/h)	0	507	230	264	484	226	
nitial Q (Qb), veh	0	0	0	0	0	0	and the second
Ped-Bike Adj(A_pbT)	1.00			1.00	1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Nork Zone On Approach		No	No		No		
Adj Sat Flow, veh/h/ln	0	1870	1796	1248	1752	1900	
dj Flow Rate, veh/h	0	634	288	0	661	222	
eak Hour Factor	0.80	0.80	0.80	0.80	0.80	0.80	
ercent Heavy Veh, %	0.00	2	0.00	44	10	0.00	
ap, veh/h	0	1957	1038	77	1653	532	
rrive On Green	0.00	0.30	0.30	0.00	0.33	0.33	
	0.00	6958	3503	1058		1610	
at Flow, veh/h					5005		
rp Volume(v), veh/h	0	634	288	0	661	222	
rp Sat Flow(s),veh/h/ln	0	1609	1706	1058	1668	1610	
Serve(g_s), s	0.0	1.9	1.6	0.0	2.5	2.6	
cle Q Clear(g_c), s	0.0	1.9	1.6	0.0	2.5	2.6	
op In Lane	0.00			1.00	1.00	1.00	
ne Grp Cap(c), veh/h	0	1957	1038		1653	532	
C Ratio(X)	0.00	0.32	0.28		0.40	0.42	
ail Cap(c_a), veh/h	0	5881	3119		5794	1864	
M Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
stream Filter(I)	0.00	1.00	1.00	0.00	1.00	1.00	
iform Delay (d), s/veh	0.0	6.6	6.5	0.0	6.4	6.4	
cr Delay (d2), s/veh	0.0	0.1	0.1	0.0	0.2	0.5	
tial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
le BackOfQ(50%),veh/ln	0.0	0.2	0.2	0.0	0.5	0.5	
nsig. Movement Delay, s/veh		0.2		0.0	010	010	
Grp Delay(d),s/veh	0.0	6.7	6.7	0.0	6.5	6.9	
Grp LOS	A	A	A	0.0	A	0.5 A	
the second s	Λ	634	288		883	~	
proach Vol, veh/h							
proach Delay, s/veh		6.7	6.7		6.6		
proach LOS		А	А		А		
mer - Assigned Phs				4		6	8
ns Duration (G+Y+Rc), s				12.0		12.6	12.0
nange Period (Y+Rc), s				4.5		4.5	4.5
ax Green Setting (Gmax), s				22.5		28.5	22.5
ax Q Clear Time (g_c+l1), s				3.9		4.6	3.6
een Ext Time (p_c), s				3.6		3.5	1.5
tersection Summary			12.24	19.312			
CM 6th Ctrl Delay			6.7				
CM 6th LOS			А				
-1			1.2.2.2.2.2.6	17. 17. 17 A	Martin Contractor		

Notes

User approved volume balancing among the lanes for turning movement.

Unsignalized Delay for [WBR] is excluded from calculations of the approach delay and intersection delay.

HCM 6th Signalized Intersection Summary Kimley-Horn

Synchro 11 Report Page 2

		\mathbf{r}	-	•	r
Lane Group	EBT	EBR	WBT	NBL	NBR
Lane Group Flow (vph)	813	220	506	101	459
v/c Ratio	0.54	0.34	0.59	0.06	0.79
Control Delay	15.9	4.5	18.2	6.6	22.0
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	15.9	4.5	18.2	6.6	22.0
Queue Length 50th (ft)	66	0	60	7	96
Queue Length 95th (ft)	107	29	108	14	167
Internal Link Dist (ft)	369		148	574	
Turn Bay Length (ft)		300		430	430
Base Capacity (vph)	1947	777	1119	2438	881
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.42	0.28	0.45	0.04	0.52
Intersection Summary			No.		

French Camp Truck Storage 2: I - 5 Northbound Ramps & French Camp Rd

	-	\mathbf{r}	1	-	1	r	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	***	1		<u></u>	ኘኘ	1	
Traffic Volume (veh/h)	650	176	0	405	81	367	
Future Volume (veh/h)	650	176	0	405	81	367	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)		1.00	1.00		1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No			No	No		
Adj Sat Flow, veh/h/ln	1767	1870	0	1426	1826	1396	
Adj Flow Rate, veh/h	812	220	0	506	101	459	
Peak Hour Factor	0.80	0.80	0.80	0.80	0.80	0.80	
Percent Heavy Veh, %	9	2	0	32	5	34	
Cap, veh/h	1488	489	0	836	1527	535	C. C. L. C.
Arrive On Green	0.31	0.31	0.00	0.31	0.45	0.45	
Sat Flow, veh/h	4982	1585	0	2852	3374	1183	
Grp Volume(v), veh/h	812	220	0	506	101	459	
Grp Sat Flow(s), veh/h/ln	1608	1585	0	1354	1687	1183	
Q Serve(g_s), s	5.3	4.2	0.0	6.0	0.6	13.1	
Cycle Q Clear(g_c), s	5.3	4.2	0.0	6.0	0.6	13.1	
Prop In Lane	0.0	1.00	0.00	0.0	1.00	1.00	
Lane Grp Cap(c), veh/h	1488	489	0.00	836	1527	535	
V/C Ratio(X)	0.55	0.45	0.00	0.61	0.07	0.86	
Avail Cap(c_a), veh/h	2303	757	0.00	1294	2954	1036	
HCM Platoon Ratio	1.00	1.00	1.00	12.04	1.00	1.00	
Upstream Filter(I)	1.00	1.00	0.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh	10.8	10.5	0.00	11.1	5.8	9.2	
	0.3	0.6	0.0	0.7	0.0	9.2	
Incr Delay (d2), s/veh			0.0	0.7	0.0	4.1	
Initial Q Delay(d3),s/veh	0.0 1.2	0.0		1.2		2.4	
%ile BackOfQ(50%),veh/In		1.0	0.0	1.2	0.1	2.4	
Unsig. Movement Delay, s/veh		11 1	0.0	11.0	FO	10.0	
LnGrp Delay(d),s/veh	11.1	11.1	0.0	11.8	5.8	13.3	
LnGrp LOS	B	В	A	B	A	В	
Approach Vol, veh/h	1032			506	560		
Approach Delay, s/veh	11.1			11.8	12.0		
Approach LOS	В			В	В		
Timer - Assigned Phs	1250.1	2		4			8
Phs Duration (G+Y+Rc), s	Server.	21.6		16.1	No.		16.1
Change Period (Y+Rc), s		4.5		4.5			4.5
Max Green Setting (Gmax), s		33.0		18.0			18.0
Max Q Clear Time (g_c+l1), s		15.1		7.3			8.0
Green Ext Time (p_c), s		2.0		4.4			2.2
Intersection Summary		1.00		1975.20		15-22-54	
HCM 6th Ctrl Delay		Contraction of	11.5			1	
HCM 6th LOS			B				
			U				

French Camp Truck Storage 3: French Camp Rd & Arch Airport Rd & Frank West Cir

Existing Plus Pending and Approved Timing Plan: AM Peak Hour

	۶	-	\mathbf{r}	1	-	*	•	1	1	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR
Lane Group Flow (vph)	98	964	169	29	604	16	150	45	13	5	18
v/c Ratio	0.35	0.50	0.13	0.17	0.46	0.02	0.31	0.12	0.08	0.03	0.05
Control Delay	28.4	13.4	2.5	30.1	17.9	0.1	27.3	15.9	31.4	30.0	0.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	28.4	13.4	2.5	30.1	17.9	0.1	27.3	15.9	31.4	30.0	0.3
Queue Length 50th (ft)	30	67	0	9	63	0	23	6	4	2	0
Queue Length 95th (ft)	73	134	10	32	93	0	52	33	20	11	0
Internal Link Dist (ft)		356			582			682		429	
Turn Bay Length (ft)	285		330	230		340	260		140		70
Base Capacity (vph)	452	2751	1739	225	2263	1029	653	703	156	605	673
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.22	0.35	0.10	0.13	0.27	0.02	0.23	0.06	0.08	0.01	0.03

French Camp Truck Storage 3: French Camp Rd & Arch Airport Rd & Frank West Cir

Existing Plus Pending and Approved Timing Plan: AM Peak Hour

	۶	-	>	1	-	*	1	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ኘ	***	77	ሻ	ተተተ	7	ኘኘ	ĥ		ኘ	4	7
Traffic Volume (veh/h)	78	771	135	23	483	13	120	20	16	10	4	14
Future Volume (veh/h)	78	771	135	23	483	13	120	20	16	10	4	14
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1752	1589	1767	1322	1426	1900	1678	1604	1337	1455	1530	1589
Adj Flow Rate, veh/h	98	964	169	29	604	16	150	25	20	12	5	18
Peak Hour Factor	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80
Percent Heavy Veh, %	10	21	9	39	32	0	15	20	38	30	25	21
Cap, veh/h	129	1649	1002	42	1310	542	285	152	121	21	164	145
Arrive On Green	0.08	0.38	0.38	0.03	0.34	0.34	0.09	0.18	0.18	0.02	0.11	0.11
Sat Flow, veh/h	1668	4337	2635	1259	3892	1610	3100	825	660	1386	1530	1346
Grp Volume(v), veh/h	98	964	169	29	604	16	150	0	45	12	5	18
Grp Sat Flow(s),veh/h/ln	1668	1446	1317	1259	1297	1610	1550	0	1485	1386	1530	1346
Q Serve(g_s), s	2.7	8.2	2.0	1.1	5.7	0.3	2.1	0.0	1.2	0.4	0.1	0.6
Cycle Q Clear(g_c), s	2.7	8.2	2.0	1.1	5.7	0.3	2.1	0.0	1.2	0.4	0.1	0.6
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.44	1.00		1.00
Lane Grp Cap(c), veh/h	129	1649	1002	42	1310	542	285	0	273	21	164	145
V/C Ratio(X)	0.76	0.58	0.17	0.69	0.46	0.03	0.53	0.00	0.16	0.56	0.03	0.12
Avail Cap(c_a), veh/h	484	3123	1897	230	2384	986	700	0	782	164	641	564
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	21.0	11.5	9.6	22.2	12.1	10.3	20.2	0.0	16.0	22.7	18.6	18.8
Incr Delay (d2), s/veh	8.9	0.3	0.1	17.8	0.3	0.0	1.5	0.0	0.3	21.0	0.1	0.4
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	1.2	1.9	0.4	0.5	1.2	0.1	0.8	0.0	0.4	0.2	0.0	0.2
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	29.9	11.8	9.6	40.1	12.4	10.4	21.7	0.0	16.3	43.7	18.7	19.2
LnGrp LOS	С	В	A	D	В	В	С	A	В	D	В	B
Approach Vol, veh/h		1231			649			195			35	
Approach Delay, s/veh		13.0			13.6			20.4			27.5	
Approach LOS		В			В			С			С	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	5.2	13.1	6.1	22.2	8.8	9.5	8.1	20.2				
Change Period (Y+Rc), s	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5				
Max Green Setting (Gmax), s	5.5	24.5	8.5	33.5	10.5	19.5	13.5	28.5				
Max Q Clear Time (g_c+l1), s	2.4	3.2	3.1	10.2	4.1	2.6	4.7	7.7				
Green Ext Time (p_c), s	0.0	0.2	0.0	7.4	0.2	0.0	0.1	3.9				
Intersection Summary					in the							
HCM 6th Ctrl Delay			14.1									
HCM 6th LOS			В									

French Camp Truck Storage 4: El Dorado Street & French Camp Road

		\mathbf{r}	-	*	1	1	P	1	↓	1	
Lane Group	EBT	EBR	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	ty hade
Lane Group Flow (vph)	144	30	154	83	24	105	19	97	161	22	
v/c Ratio	0.48	0.09	0.51	0.06	0.17	0.08	0.04	0.52	0.11	0.04	
Control Delay	32.1	0.6	32.2	0.1	33.9	20.9	0.2	42.6	17.6	0.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	32.1	0.6	32.2	0.1	33.9	20.9	0.2	42.6	17.6	0.1	
Queue Length 50th (ft)	54	0	58	0	9	16	0	38	18	0	
Queue Length 95th (ft)	110	0	115	0	33	40	0	#108	55	0	
Internal Link Dist (ft)	350		828			628			994		
Turn Bay Length (ft)		100		100	115		150	150		150	
Base Capacity (vph)	517	458	497	1346	153	1304	487	198	1440	577	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.28	0.07	0.31	0.06	0.16	0.08	0.04	0.49	0.11	0.04	

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

French Camp Truck Storage 4: El Dorado Street & French Camp Road

Existing Plus Pending and Approved Timing Plan: AM Peak Hour

	۶	-	7	1	-	*	1	1	1	1	ŧ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ર્લ	7		ર્લ	7	ሻ	††	7	ሻ	^	7
Traffic Volume (veh/h)	19	107	26	17	119	73	21	92	17	85	142	19
Future Volume (veh/h)	19	107	26	17	119	73	21	92	17	85	142	19
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1426	1811	1366	1292	1737	1604	1455	1693	937	1618	1544	1040
Adj Flow Rate, veh/h	22	122	0	19	135	0	24	105	0	97	161	0
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Percent Heavy Veh, %	32	6	36	41	11	20	30	14	65	19	24	58
Cap, veh/h	30	167		26	181		39	1122		118	1166	
Arrive On Green	0.11	0.11	0.00	0.12	0.12	0.00	0.03	0.35	0.00	0.08	0.40	0.00
Sat Flow, veh/h	275	1523	1158	213	1513	1359	1386	3216	794	1541	2934	882
Grp Volume(v), veh/h	144	0	0	154	0	0	24	105	0	97	161	0
Grp Sat Flow(s),veh/h/ln	1797	0	1158	1726	0	1359	1386	1608	794	1541	1467	882
Q Serve(g_s), s	4.0	0.0	0.0	4.5	0.0	0.0	0.9	1.1	0.0	3.2	1.8	0.0
Cycle Q Clear(g_c), s	4.0	0.0	0.0	4.5	0.0	0.0	0.9	1.1	0.0	3.2	1.8	0.0
Prop In Lane	0.15		1.00	0.12		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	197	0		207	0		39	1122		118	1166	
V/C Ratio(X)	0.73	0.00		0.74	0.00		0.61	0.09		0.82	0.14	
Avail Cap(c_a), veh/h	620	0		596	0		175	1122		231	1166	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	22.5	0.0	0.0	22.2	0.0	0.0	25.1	11.4	0.0	23.7	10.0	0.0
Incr Delay (d2), s/veh	5.2	0.0	0.0	5.2	0.0	0.0	14.7	0.2	0.0	13.2	0.2	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	1.8	0.0	0.0	1.9	0.0	0.0	0.4	0.3	0.0	1.4	0.5	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	27.6	0.0	0.0	27.4	0.0	0.0	39.7	11.6	0.0	37.0	10.3	0.0
LnGrp LOS	С	А		С	А		D	В		D	В	
Approach Vol, veh/h		144			154			129			258	
Approach Delay, s/veh		27.6			27.4			16.8			20.3	
Approach LOS		С			С			В			С	
Timer - Assigned Phs	1	2	15.1	4	5	6		8				
Phs Duration (G+Y+Rc), s	8.5	22.7		10.2	6.0	25.2		10.8	SC SER	S. P.	1000	100383
Change Period (Y+Rc), s	4.5	4.5		4.5	4.5	4.5		4.5				
Max Green Setting (Gmax), s	7.8	18.2		18.0	6.6	19.4		18.0				1993
Max Q Clear Time (g_c+l1), s	5.2	3.1		6.0	2.9	3.8		6.5				
Green Ext Time (p_c), s	0.0	0.4		0.5	0.0	0.7		0.5				
Intersection Summary	in the second				193.54			122.50				Strain .
HCM 6th Ctrl Delay			22.8									02526
HCM 6th LOS			С									

Notes

Unsignalized Delay for [NBR, EBR, WBR, SBR] is excluded from calculations of the approach delay and intersection delay.

Intersection

Intersection Delay, s/veh13.7 Intersection LOS B

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			4		۲	朴ኈ		ሻ	朴诤		
Traffic Vol, veh/h	18	129	30	23	214	11	90	77	53	24	119	22	
Future Vol, veh/h	18	129	30	23	214	11	90	77	53	24	119	22	
Peak Hour Factor	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	
Heavy Vehicles, %	11	8	33	13	12	9	37	35	23	17	30	9	
Mvmt Flow	22	157	37	28	261	13	110	94	65	29	145	27	
Number of Lanes	0	1	0	0	1	0	1	2	0	1	2	0	
Approach	EB	No. of the second		WB		1. N. S.	NB			SB	Stre		
Opposing Approach	WB			EB			SB			NB			
Opposing Lanes	1			1			3			3			
Conflicting Approach L	eft SB			NB			EB			WB			
Conflicting Lanes Left	3			3			1			1			
Conflicting Approach R	lightNB			SB			WB			EB			
Conflicting Lanes Right	t 3			3			1			1			
HCM Control Delay	13.7			17.2			11.7			11.3			
HCM LOS	В			С			В			В			

Lane	NBLn1	NBLn2	NBLn3	EBLn1V	VBLn1	SBLn1	SBLn2	SBLn3
Vol Left, %	100%	0%	0%	10%	9%	100%	0%	0%
Vol Thru, %	0%	100%	33%	73%	86%	0%	100%	64%
Vol Right, %	0%	0%	67%	17%	4%	0%	0%	36%
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	90	51	79	177	248	24	79	62
LT Vol	90	0	0	18	23	24	0	0
Through Vol	0	51	26	129	214	0	79	40
RT Vol	0	0	53	30	11	0	0	22
Lane Flow Rate	110	63	96	216	302	29	97	75
Geometry Grp	7	7	7	7	7	7	7	7
Degree of Util (X)	0.238	0.126	0.175	0.396	0.551	0.062	0.196	0.14
Departure Headway (Hd)	7.8	7.251	6.557	6.608	6.556	7.591	7.303	6.679
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Сар	458	491	544	542	547	469	489	533
Service Time	5.585	5.036	4.341	4.39	4.331	5.383	5.095	4.47
HCM Lane V/C Ratio	0.24	0.128	0.176	0.399	0.552	0.062	0.198	0.141
HCM Control Delay	13	11.1	10.7	13.7	17.2	10.9	11.9	10.6
HCM Lane LOS	В	В	В	В	С	В	В	В
HCM 95th-tile Q	0.9	0.4	0.6	1.9	3.3	0.2	0.7	0.5

French Camp Truck Storage 1: French Camp Rd & I - 5 Southbound Ramps

Existing Plus Pending and Approved Timing Plan: PM Peak Hour

		-		1	1
Lane Group	EBT	WBT	WBR	SBL	SBR
Lane Group Flow (vph)	653	517	335	475	145
v/c Ratio	0.29	0.40	0.26	0.34	0.29
Control Delay	6.4	7.4	0.5	6.3	3.7
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	6.4	7.4	0.5	6.3	3.7
Queue Length 50th (ft)	15	23	0	11	0
Queue Length 95th (ft)	28	46	0	26	22
Internal Link Dist (ft)	761	603		1157	
Turn Bay Length (ft)			570	530	780
Base Capacity (vph)	6069	3419	1282	4288	1310
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.11	0.15	0.26	0.11	0.11
Intersection Summary					

French Camp Truck Storage 1: French Camp Rd & I - 5 Southbound Ramps

	≯	-	+		1	1
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		tttt	#	7	ካካዣ	1
Traffic Volume (veh/h)	0	607	481	312	332	245
Future Volume (veh/h)	0	607	481	312	332	245
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00			1.00	1.00	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No	No		No	
Adj Sat Flow, veh/h/ln	0	1870	1900	1515	1707	1885
Adj Flow Rate, veh/h	0	653	517	0	310	313
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh, %	0	2	0	26	13	1
Cap, veh/h	0	2163	1214		871	855
Arrive On Green	0.00	0.34	0.34	0.00	0.27	0.27
Sat Flow, veh/h	0	6958	3705	1284	3252	3195
Grp Volume(v), veh/h	0	653	517	0	310	313
Grp Sat Flow(s), veh/h/ln	0	1609	1805	1284	1626	1598
Q Serve(g_s), s	0.0	1.7	2.5	0.0	1.8	1.8
Cycle Q Clear(g_c), s	0.0	1.7	2.5	0.0	1.8	1.8
Prop In Lane	0.00			1.00	1.00	1.00
Lane Grp Cap(c), veh/h	0	2163	1214		871	855
V/C Ratio(X)	0.00	0.30	0.43		0.36	0.37
Avail Cap(c_a), veh/h	0	7219	4050		3649	3585
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	0.00	1.00	1.00	0.00	1.00	1.00
Uniform Delay (d), s/veh	0.0	5.6	5.8	0.0	6.7	6.8
Incr Delay (d2), s/veh	0.0	0.1	0.2	0.0	0.2	0.3
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	0.0	0.1	0.2	0.0	0.3	0.3
Unsig. Movement Delay, s/veh						
LnGrp Delay(d),s/veh	0.0	5.6	6.1	0.0	7.0	7.0
LnGrp LOS	A	A	A		A	A
Approach Vol, veh/h		653	517		623	
Approach Delay, s/veh		5.6	6.1		7.0	
Approach LOS		A	A		A	
Timer - Assigned Phs				4		6
				12.1		
Phs Duration (G+Y+Rc), s						10.6
Change Period (Y+Rc), s				4.5		4.5
Max Green Setting (Gmax), s				25.5		25.5
Max Q Clear Time (g_c+l1), s				3.7		3.8
Green Ext Time (p_c), s				3.9		2.4
Intersection Summary		12		3		
HCM 6th Ctrl Delay			6.2			
HCM 6th LOS			А			
	and the second second					and the second second second

Notes

User approved volume balancing among the lanes for turning movement.

Unsignalized Delay for [WBR] is excluded from calculations of the approach delay and intersection delay.

HCM 6th Signalized Intersection Summary Kimley-Horn

Synchro 11 Report Page 2

French Camp Truck Storage 2: I - 5 Northbound Ramps & French Camp Rd

Existing Plus Pending and Approved Timing Plan: PM Peak Hour

	-	\mathbf{r}	-	1	1
Lane Group	EBT	EBR	WBT	NBL	NBR
Lane Group Flow (vph)	569	246	627	244	368
v/c Ratio	0.36	0.36	0.60	0.16	0.69
Control Delay	12.6	4.1	15.8	7.4	17.1
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	12.6	4.1	15.8	7.4	17.1
Queue Length 50th (ft)	34	0	59	15	62
Queue Length 95th (ft)	82	41	146	36	157
Internal Link Dist (ft)	369		148	574	
Turn Bay Length (ft)		300		430	430
Base Capacity (vph)	2388	925	1589	2716	948
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.24	0.27	0.39	0.09	0.39
Intersection Summary					Chiefe St

French Camp Truck Storage 2: I - 5 Northbound Ramps & French Camp Rd

	-	>	1	-	1	1
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	***	7		^	ካካ	1
Traffic Volume (veh/h)	518	224	0	571	222	335
Future Volume (veh/h)	518	224	0	571	222	335
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)		1.00	1.00		1.00	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No			No	No	
Adj Sat Flow, veh/h/ln	1767	1885	0	1693	1900	1426
Adj Flow Rate, veh/h	569	246	0	627	244	368
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91
Percent Heavy Veh, %	9	1	0	14	0	32
Cap, veh/h	1559	516	0	1040	1387	477
Arrive On Green	0.32	0.32	0.00	0.32	0.40	0.40
Sat Flow, veh/h	4982	1598	0.00	3385	3510	1208
	and the second se					368
Grp Volume(v), veh/h	569	246	0	627	244	
Grp Sat Flow(s),veh/h/ln	1608	1598	0	1608	1755	1208
Q Serve(g_s), s	2.9	3.9	0.0	5.2	1.4	8.5
Cycle Q Clear(g_c), s	2.9	3.9	0.0	5.2	1.4	8.5
Prop In Lane		1.00	0.00		1.00	1.00
Lane Grp Cap(c), veh/h	1559	516	0	1040	1387	477
V/C Ratio(X)	0.36	0.48	0.00	0.60	0.18	0.77
Avail Cap(c_a), veh/h	2943	975	0	1963	3461	1191
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	0.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	8.3	8.6	0.0	9.1	6.3	8.4
Incr Delay (d2), s/veh	0.1	0.7	0.0	0.6	0.1	2.7
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	0.5	0.8	0.0	1.0	0.3	1.4
Unsig. Movement Delay, s/veh						
LnGrp Delay(d),s/veh	8.4	9.3	0.0	9.7	6.3	11.1
LnGrp LOS	A	A	A	A	A	В
Approach Vol, veh/h	815			627	612	
Approach Delay, s/veh	8.7			9.7	9.2	
Approach LOS	0.7 A			9.7 A	9.2 A	
Approach LOS	A			A	A	
Timer - Assigned Phs	132	2	and the	4		
Phs Duration (G+Y+Rc), s		17.1		14.8		
Change Period (Y+Rc), s		4.5		4.5		
Max Green Setting (Gmax), s		31.5		19.5		
Max Q Clear Time (g_c+l1), s		10.5		5.9		
Green Ext Time (p_c), s		2.2		3.7		
				en.	100000000000000000000000000000000000000	
Intersection Summary		2000	~ 1	No. State		and the second
HCM 6th Ctrl Delay			9.1			
HCM 6th LOS			А			

French Camp Truck Storage 3: French Camp Rd & Arch Airport Rd & Frank West Cir

Existing Plus Pending and Approved Timing Plan: PM Peak Hour

	۶	-	\mathbf{r}	1	-		1	Ť	5	Į.	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR
Lane Group Flow (vph)	60	713	180	29	826	2	217	47	10	11	49
v/c Ratio	0.26	0.44	0.16	0.16	0.57	0.00	0.37	0.09	0.05	0.05	0.14
Control Delay	28.3	14.3	3.1	29.8	18.2	0.0	25.1	8.8	30.1	29.1	0.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	28.3	14.3	3.1	29.8	18.2	0.0	25.1	8.8	30.1	29.1	0.9
Queue Length 50th (ft)	19	49	0	9	89	0	36	1	3	4	0
Queue Length 95th (ft)	56	110	17	35	139	0	73	25	18	19	0
Internal Link Dist (ft)		356			582			682		429	
Turn Bay Length (ft)	285		330	230		340	260		140		70
Base Capacity (vph)	360	2607	1698	219	2414	949	827	794	192	758	753
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.17	0.27	0.11	0.13	0.34	0.00	0.26	0.06	0.05	0.01	0.07
Intersection Summary						169.44	29243	1. 2.	12 3.2	1997 - 19	1000

French Camp Truck Storage 3: French Camp Rd & Arch Airport Rd & Frank West Cir

Existing Plus Pending and Approved Timing Plan: PM Peak Hour

	۶	-	>	1	-	×	1	1	1	1	ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	***	**	ሻ	ተተተ	7	ካካ	4î		ኘ	1	7
Traffic Volume (veh/h)	52	620	157	25	719	2	189	2	39	9	10	43
Future Volume (veh/h)	52	620	157	25	719	2	189	2	39	9	10	43
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1722	1574	1796	1604	1678	1900	1856	1900	1707	1900	1900	1900
Adj Flow Rate, veh/h	60	713	180	29	826	2	217	2	45	10	11	49
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Percent Heavy Veh, %	12	22	7	20	15	0	3	0	13	0	0	0
Cap, veh/h	97	1452	905	52	1433	504	368	14	322	24	215	182
Arrive On Green	0.06	0.34	0.34	0.03	0.31	0.31	0.11	0.21	0.21	0.01	0.11	0.11
Sat Flow, veh/h	1640	4297	2679	1527	4580	1610	3428	69	1552	1810	1900	1610
Grp Volume(v), veh/h	60	713	180	29	826	2	217	0	47	10	11	49
Grp Sat Flow(s),veh/h/ln	1640	1432	1340	1527	1527	1610	1714	0	1621	1810	1900	1610
Q Serve(g_s), s	1.6	5.8	2.1	0.8	6.7	0.0	2.7	0.0	1.0	0.2	0.2	1.2
Cycle Q Clear(g_c), s	1.6	5.8	2.1	0.8	6.7	0.0	2.7	0.0	1.0	0.2	0.2	1.2
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.96	1.00		1.00
Lane Grp Cap(c), veh/h	97	1452	905	52	1433	504	368	0	336	24	215	182
V/C Ratio(X)	0.62	0.49	0.20	0.56	0.58	0.00	0.59	0.00	0.14	0.42	0.05	0.27
Avail Cap(c_a), veh/h	427	3066	1912	259	2853	1003	971	0	1009	225	882	748
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	20.3	11.6	10.4	21.0	12.7	10.4	18.8	0.0	14.3	21.6	17.5	17.9
Incr Delay (d2), s/veh	6.3	0.3	0.1	9.1	0.4	0.0	1.5	0.0	0.2	11.5	0.1	0.8
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	0.7	1.3	0.4	0.4	1.7	0.0	1.0	0.0	0.3	0.2	0.1	0.4
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	26.6	11.9	10.5	30.2	13.1	10.4	20.3	0.0	14.5	33.2	17.6	18.7
LnGrp LOS	С	В	В	С	В	В	С	А	В	С	В	В
Approach Vol, veh/h		953			857			264			70	
Approach Delay, s/veh		12.5			13.7			19.3			20.6	
Approach LOS		B			В			В			С	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	5.1	13.7	6.0	19.4	9.2	9.5	7.1	18.3			N. Constant	S. Carlo
Change Period (Y+Rc), s	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5				
Max Green Setting (Gmax), s	5.5	27.5	7.5	31.5	12.5	20.5	11.5	27.5				
Max Q Clear Time (g_c+l1), s	2.2	3.0	2.8	7.8	4.7	3.2	3.6	8.7				
Green Ext Time (p_c), s	0.0	0.2	0.0	5.5	0.4	0.1	0.1	5.1				
Intersection Summary	1-2-12										163700	
HCM 6th Ctrl Delay			14.1									
HCM 6th LOS			В									

French Camp Truck Storage 4: El Dorado Street & French Camp Road

	-	\mathbf{r}	-		1	Ť	1	5	Ŧ	1	
Lane Group	EBT	EBR	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Group Flow (vph)	210	46	219	122	49	323	22	165	227	19	
v/c Ratio	0.79	0.11	0.65	0.08	0.34	0.38	0.06	0.89	0.21	0.03	
Control Delay	50.7	0.6	37.8	0.1	40.7	25.8	0.3	79.6	21.9	0.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	50.7	0.6	37.8	0.1	40.7	25.8	0.3	79.6	21.9	0.1	
Queue Length 50th (ft)	92	0	97	0	22	67	0	79	45	0	
Queue Length 95th (ft)	#157	0	139	0	49	93	0	#162	67	0	
Internal Link Dist (ft)	350		828			628			994		
Turn Bay Length (ft)		100		100	115		150	150		150	
Base Capacity (vph)	307	444	448	1553	150	855	392	186	1099	569	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.68	0.10	0.49	0.08	0.33	0.38	0.06	0.89	0.21	0.03	
Intersection Summary		Salar a	S. T.	S. Carlos			Server Star	a state			

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

French Camp Truck Storage 4: El Dorado Street & French Camp Road

	≯	-	7	1	-	A.	1	Ť	1	\$	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ર્સ	7		र्स	7	ሻ	^	7	ሻ	^	7
Traffic Volume (veh/h)	17	147	36	7	164	95	38	252	17	129	177	15
Future Volume (veh/h)	17	147	36	7	164	95	38	252	17	129	177	15
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1470	1100	1633	1470	1856	1841	1781	1826	1292	1856	1767	1707
Adj Flow Rate, veh/h	22	188	0	9	210	0	49	323	0	165	227	0
Peak Hour Factor	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78
Percent Heavy Veh, %	29	54	18	29	3	4	8	5	41	3	9	13
Cap, veh/h	25	211		11	266		75	911		199	1111	
Arrive On Green	0.22	0.22	0.00	0.15	0.15	0.00	0.04	0.26	0.00	0.11	0.33	0.00
Sat Flow, veh/h	115	979	1384	76	1776	1560	1697	3469	1095	1767	3357	1447
Grp Volume(v), veh/h	210	0	0	219	0	0	49	323	0	165	227	0
Grp Sat Flow(s),veh/h/ln	1094	0	1384	1852	0	1560	1697	1735	1095	1767	1678	1447
Q Serve(g_s), s	12.9	0.0	0.0	7.9	0.0	0.0	2.0	5.3	0.0	6.3	3.4	0.0
Cycle Q Clear(g_c), s	12.9	0.0	0.0	7.9	0.0	0.0	2.0	5.3	0.0	6.3	3.4	0.0
Prop In Lane	0.10		1.00	0.04		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	236	0		277	0		75	911		199	1111	
V/C Ratio(X)	0.89	0.00		0.79	0.00		0.66	0.35		0.83	0.20	
Avail Cap(c_a), veh/h	284	0		481	0		161	911		199	1111	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	26.4	0.0	0.0	28.4	0.0	0.0	32.6	20.8	0.0	30.1	16.6	0.0
Incr Delay (d2), s/veh	24.5	0.0	0.0	5.0	0.0	0.0	9.3	1.1	0.0	24.6	0.4	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	4.7	0.0	0.0	3.6	0.0	0.0	0.9	2.0	0.0	3.8	1.2	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	50.9	0.0	0.0	33.4	0.0	0.0	42.0	21.9	0.0	54.7	17.1	0.0
LnGrp LOS	D	А		С	А		D	С		D	В	
Approach Vol, veh/h		210			219			372	19-1-18-3 19-1-18-3		392	
Approach Delay, s/veh		50.9			33.4			24.5			32.9	
Approach LOS		D			С			С			С	
Timer - Assigned Phs	1	2		4	5	6		8		7905		-
Phs Duration (G+Y+Rc), s	12.3	22.7		19.5	7.6	27.4		14.9			Steely.	STATISTICS IN
Change Period (Y+Rc), s	4.5	4.5		4.5	4.5	4.5		4.5				
Max Green Setting (Gmax), s	7.8	18.2		18.0	6.6	19.4		18.0				1976
Max Q Clear Time (g_c+l1), s	8.3	7.3		14.9	4.0	5.4		9.9				
Green Ext Time (p_c), s	0.0	1.3		0.3	0.0	1.0		0.6				S. Sector
Intersection Summary	12 Feb	13122			1.							
HCM 6th Ctrl Delay			33.5									
HCM 6th LOS			С									
		A COLUMN TWO IS NOT						and the state of the state		and the second	and the second second second	and the second se

Notes

Unsignalized Delay for [NBR, EBR, WBR, SBR] is excluded from calculations of the approach delay and intersection delay.

Intersection

Intersection Delay, s/veh18.7 Intersection LOS C

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			4		ሻ	† î»		ሻ	≜ î≽		
Traffic Vol, veh/h	46	281	19	17	152	27	80	183	33	40	145	16	
Future Vol, veh/h	46	281	19	17	152	27	80	183	33	40	145	16	
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	
Heavy Vehicles, %	6	6	47	6	7	0	19	8	9	5	12	12	
Mvmt Flow	53	323	22	20	175	31	92	210	38	46	167	18	
Number of Lanes	0	1	0	0	1	0	1	2	0	1	2	0	
Approach	EB	and a second	27.0	WB			NB	12. 3		SB			
Opposing Approach	WB			EB			SB			NB			
Opposing Lanes	1			1			3			3			
Conflicting Approach Le	eft SB			NB			EB			WB			
Conflicting Lanes Left	3			3			1			1			
Conflicting Approach R	ightNB			SB			WB			EB			
Conflicting Lanes Right	3			3			1			1			
HCM Control Delay	29.1			15.9			12.8			12.4			
HCM LOS	D			С			В			В			

Lane	NBLn1	NBLn2	NBLn3	EBLn1V	VBLn1	SBLn1	SBLn2	SBLn3
Vol Left, %	100%	0%	0%	13%	9%	100%	0%	0%
Vol Thru, %	0%	100%	65%	81%	78%	0%	100%	75%
Vol Right, %	0%	0%	35%	5%	14%	0%	0%	25%
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	80	122	94	346	196	40	97	64
LT Vol	80	0	0	46	17	40	0	0
Through Vol	0	122	61	281	152	0	97	48
RT Vol	0	0	33	19	27	0	0	16
Lane Flow Rate	92	140	108	398	225	46	111	74
Geometry Grp	7	7	7	7	7	7	7	7
Degree of Util (X)	0.209	0.291	0.217	0.767	0.454	0.104	0.24	0.156
Departure Headway (Hd)	8.179	7.467	7.23	6.946	7.254	8.161	7.765	7.584
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Сар	439	481	496	521	496	439	462	472
Service Time	5.934	5.221	4.984	4.69	5.007	5.92	5.524	5.343
HCM Lane V/C Ratio	0.21	0.291	0.218	0.764	0.454	0.105	0.24	0.157
HCM Control Delay	13.1	13.3	12	29.1	15.9	11.9	13	11.8
HCM Lane LOS	В	В	В	D	С	В	В	В
HCM 95th-tile Q	0.8	1.2	0.8	6.8	2.3	0.3	0.9	0.5

Project	t Information						
Analyst		Kimley-Horn	Date	9		11/7/2023	
Agency		San Joaquin County	Ana	lysis Year		2023	
Jurisdictio	on	San Joaquin County	Tim	e Analyzed		AM Peak-Hour - Existing plus Pending and Approved Projects	
Project D	vescription	French Camp Road, Nor of El Dorado Street, NB	th Unit	S		U.S. Customary	
		Se	gmen	t 1			
Vehicle	e Inputs	1					
Segment	Туре	Passing Constrained	Len	gth, ft		5280	
Lane Wid	lth, ft	12	Sho	ulder Width,	ft	4	
Speed Lir	mit, mi/h	45	Acc	ess Point Der	sity, pts/mi	2.0	
Demar	nd and Capacity						
Direction	al Demand Flow Rate, veh/h	211	Opp	osing Demai	nd Flow Rate, veh/h	-	
Peak Hou	ur Factor	0.75	Tota	l Trucks, %		18.00	
Segment	Capacity, veh/h	1700	Der	nand/Capacit	y (D/C)	0.12	
Interm	nediate Results						
Segment	: Vertical Class	1	Free	e-Flow Speed	, mi/h	48.8	
Speed Slo	ope Coefficient (m)	3.20516	Spe	ed Power Co	efficient (p)	0.41674	
PF Slope	Coefficient (m)	-1.37125	PF F	Power Coeffic	ient (p)	0.73132	
In Passing	g Lane Effective Length?	No	Tota	l Segment D	ensity, veh/mi/ln	1.6	
%Improv	ement to Percent Followers	0.0	%In	nprovement t	o Speed	0.0	
Subseg	gment Data						
# Seg	gment Type	Length, ft	Radius, f	t	Superelevation, %	Average Speed, mi/h	
1 Tan	ngent	5280	-		-	47.5	
Vehicle	e Results						
Average Speed, mi/h		47.5	Per	cent Follower	s, %	35.5	
Segment Travel Time, minutes		1.26	Foll	ower Density	(FD), followers/mi/ln	1.6	
Vehicle L	OS	A					
Facility	y Results						
т	VMT veh-mi/AP	VHD veh-h/p		Follower Density, followers/ mi/In		LOS	
1	40	0.02	25.5		1.6	А	

Copyright © 2023 University of Florida. All Rights Reserved.

Projec	ct Information						
Analyst		Kimley-Horn	Dat	e		11/7/2023	
Agency		San Joaquin County	Ana	alysis Year		2023	
Jurisdict	ion	San Joaquin County		e Analyzed		PM Peak-Hour - Existir plus Pending and Approved Projects	
Project I	Description	rth Uni	ts		U.S. Customary		
		Se	gmen	it 1			
Vehic	le Inputs						
Segmen	it Type	Passing Constrained	Ler	igth, ft		5280	
Lane Wi	idth, ft	12	Sho	oulder Width,	ft	4	
Speed L	imit, mi/h	45	Aco	ess Point Der	nsity, pts/mi	2.0	
Dema	and and Capacity						
Directio	nal Demand Flow Rate, veh/h	299	Ор	posing Dema	nd Flow Rate, veh/h	-	
Peak Ho	our Factor	Tot	al Trucks, %		4.00		
Segmen	nt Capacity, veh/h	1700	De	mand/Capacit	ty (D/C)	0.18	
Interr	mediate Results						
Segmer	nt Vertical Class	1	Fre	e-Flow Speed	l, mi/h	49.3	
Speed S	Slope Coefficient (m)	3.23043	Spe	eed Power Co	efficient (p)	0.41674	
PF Slope	e Coefficient (m)	-1.37075	PF	Power Coeffic	cient (p)	0.73079	
In Passir	ng Lane Effective Length?	No	Tot	al Segment D	ensity, veh/mi/ln	2.7	
%Impro	vement to Percent Followers	0.0	%1	mprovement 1	to Speed	0.0	
Subse	egment Data						
# Se	egment Type	Length, ft	Radius,	ft	Superelevation, %	Average Speed, mi/h	
1 Ta	angent	5280	-		-	47.6	
Vehic	le Results						
Average	e Speed, mi/h	Per	cent Follower	rs, %	43.3		
Segmer	nt Travel Time, minutes	1.26	Fol	lower Density	/ (FD), followers/mi/ln	2.7	
Vehicle	LOS	В					
Facilit	ty Results						
Т	VMT veh-mi/AP	VHD veh-h/p		Follower Density, followers/ mi/ln		LOS	
1	56	0.04			2.7	В	

Copyright © 2023 University of Florida. All Rights Reserved.

Project	t Information						
Analyst		Kimley-Horn	Dat	te		11/7/2023	
Agency		San Joaquin County	An	alysis Year		2023	
Jurisdictic	on	San Joaquin County	Tim	ne Analyzed		AM Peak-Hour - Existi plus Pending and Approved Projects	
Project De	escription	French Camp Road, N of El Dorado Street, S		its	U.S. Customary		
		S	egmer	nt 1			
Vehicle	e Inputs						
Segment	Туре	Passing Constrained	Ler	ngth, ft		5280	
Lane Wid	th, ft	12	Sho	oulder Width,	ft	4	
Speed Lin	nit, mi/h	45	Aco	cess Point Den	sity, pts/mi	2.0	
Demar	nd and Capacity						
Direction	al Demand Flow Rate, veh/h	171	Ор	posing Demai	nd Flow Rate, veh/h	-	
Peak Hou	ır Factor	0.92	Tot	al Trucks, %		14.00	
Segment	Capacity, veh/h	1700	De	mand/Capacit	y (D/C)	0.10	
Interm	ediate Results			The second			
Segment	Vertical Class	1	Fre	e-Flow Speed	, mi/h	48.9	
Speed Slo	ope Coefficient (m)	3.21238	Spe	eed Power Co	efficient (p)	0.41674	
PF Slope	Coefficient (m)	-1.37112	PF	Power Coeffic	ient (p)	0.73117	
In Passing	g Lane Effective Length?	No	Tot	al Segment D	ensity, veh/mi/ln	1.1	
%Improv	ement to Percent Followers	0.0	%1	mprovement t	o Speed	0.0	
Subseg	gment Data						
# Seg	gment Type	Length, ft	Radius,	ft	Superelevation, %	Average Speed, mi/h	
1 Tan	igent	5280	-		-	47.9	
Vehicle	e Results						
Average Speed, mi/h 47.9		47.9	Per	cent Follower	s, %	31.4	
Segment	Travel Time, minutes	1.25	Fol	lower Density	(FD), followers/mi/ln	1.1	
Vehicle LO	OS	A					
Facility	Facility Results						
т	VMT veh-mi/AP	VHD veh-h/p		Follower Density, followers/ mi/ln		LOS	
1	39	0.02			1.1	А	

Copyright © 2023 University of Florida. All Rights Reserved.

		HCS Two-Lan	e Highwa	ay Report	
Proj	ject Information				
Analy	/st	Kimley-Horn	Date		11/7/2023
Agen	су	San Joaquin County	Analysis Y	ear	2023
Jurisc	liction	San Joaquin County	Time Anal	yzed	PM Peak-Hour - Existing plus Pending and Approved Projects
Project Description		French Camp Road, Nor of El Dorado Street, SB	th Units		U.S. Customary
		Se	gment 1		
Veh	icle Inputs				
Segm	nent Type	Passing Constrained	Length, ft		5280
Lane Width, ft		12	Shoulder	Width, ft	4
Speed Limit, mi/h		45	Access Po	int Density, pts/mi	2.0
Den	nand and Capacity				
Direc	tional Demand Flow Rate, veh/h	231	Opposing	Demand Flow Rate, veh/h	-
Peak Hour Factor		0.85	Total Truc	ks, %	9.00
Segment Capacity, veh/h		1700	Demand/	Capacity (D/C)	0.14
Inte	ermediate Results		and the second		
Segment Vertical Class		1	Free-Flow	Speed, mi/h	49.1
Speed Slope Coefficient (m)		3.22141	Speed Por	wer Coefficient (p)	0.41674
PF Slo	ope Coefficient (m)	-1.37094	PF Power	Coefficient (p)	0.73098
In Passing Lane Effective Length?		No	Total Segr	ment Density, veh/mi/ln	1.8
%lmp	provement to Percent Followers	0.0	%Improve	ement to Speed	0.0
Sub	segment Data				
#	Segment Type	Length, ft	Radius, ft	Superelevation, %	Average Speed, mi/h
1	Tangent	5280	-	-	47.7
Veh	icle Results				
Average Speed, mi/h		47.7	Percent Fe	ollowers, %	37.4
Segment Travel Time, minutes		1.26	Follower I	Density (FD), followers/mi/ln	1.8
Vehicle LOS		A			
Faci	ility Results				
т	VMT veh-mi/AP	VHD veh-h/p	Foll	ower Density, followers/ mi/ln	LOS
1	49	0.03		1.8	A

Copyright © 2023 University of Florida. All Rights Reserved.

Generated: 11/07/2023 16:30:25

HCS Multilane Highway Report

Project	Information	
riujec	intornation	

Project mormation			
Analyst	Kimley-Horn	Date	11/7/2023
Agency	San Joaquin County	Analysis Year	2023
Jurisdiction	San Joaquin County	Time Analyzed	AM Peak-Hour - Existing plus Pending and Approved Projects
Project Description	El Dorado Street, South of French Camp Road	Units	U.S. Customary
Direction 1 Geometric Data			
Direction 1	NB		
Number of Lanes (N), In	2	Terrain Type	Level
Measured or Base Free-Flow Speed	Base	Percent Grade, %	-
Base Free-Flow Speed (BFFS), mi/h	45.0	Grade Length, mi	-
Lane Width, ft	12	Access Point Density, pts/mi	4.0
Median Type	Undivided	Left-Side Lateral Clearance (LCR), ft	6
Free-Flow Speed (FFS), mi/h	42.4	Total Lateral Clearance (TLC), ft	12
Direction 1 Adjustment Fact	ors		
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		
Direction 1 Demand and Ca	pacity		AN STRACT
Volume (V) veh/h	118	Heavy Vehicle Adjustment Factor (fHV)	0.794
Peak Hour Factor	0.81	Flow Rate (V _P), pc/h/ln	92
Total Trucks, %	26.00	Capacity (c), pc/h/ln	1900
Single-Unit Trucks (SUT), %	-	Adjusted Capacity (cadj), pc/h/ln	1900
Tractor-Trailers (TT), %	-	Volume-to-Capacity Ratio (v/c)	0.05
Direction 1 Speed and Dens	ity		
Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	42.4
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	2.2
Median Type Adjustment (fM)	1.6	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	1.0		

Direction 2 Geometric Data				
Direction 2	SB			
Number of Lanes (N), In	2	Terrain Type	Level	
Measured or Base Free-Flow Speed	Base	Percent Grade, %	-	
Base Free-Flow Speed (BFFS), mi/h	45.0	Grade Length, mi	-	
Lane Width, ft	12	Access Point Density, pts/mi	4.0	
Median Type	Undivided	Left-Side Lateral Clearance (LCR), ft	6	
Free-Flow Speed (FFS), mi/h	e-Flow Speed (FFS), mi/h 42.4 Total Lateral Clearance (TLC), ft		12	
Direction 2 Adjustment Fact	tors			
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000	
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000	
Driver Population CAF	1.000			
Direction 2 Demand and Ca	pacity			
Volume (V) veh/h	175	Heavy Vehicle Adjustment Factor (fHV)	0.794	
Peak Hour Factor	0.81	Flow Rate (Vp), pc/h/ln	136	
Total Trucks, %	26.00	Capacity (c), pc/h/ln	1900	
Single-Unit Trucks (SUT), %	- Adjusted Capacity (cadj), pc/h/ln		1900	
Tractor-Trailers (TT), %	Trailers (TT), % - Volume-to-Capacity Ratio (v/c)		0.07	
Direction 2 Speed and Dens	ity			
Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	42.4	
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	3.2	
Median Type Adjustment (fM)	1.6	Level of Service (LOS)	A	
Access Point Density Adjustment (fA)	1.0			

Copyright © 2023 University of Florida. All Rights Reserved.

HCSTM Highways Version 2023 EPAP-Seg2-AM.xuf

Generated: 11/07/2023 17:24:11
HCS Multilane Highway Report

Project Information			
Analyst	Kimley-Horn	Date	11/7/2023
Agency	San Joaquin County	Analysis Year	2023
Jurisdiction	San Joaquin County	Time Analyzed	PM Peak-Hour - Existing plus Pending and Approved Projects
Project Description	El Dorado Street, South of French Camp Road	Units	U.S. Customary
Direction 1 Geometric Data			
Direction 1	NB		
Number of Lanes (N), In	2	Terrain Type	Level
Measured or Base Free-Flow Speed	Base	Percent Grade, %	-
Base Free-Flow Speed (BFFS), mi/h	45.0	Grade Length, mi	-
Lane Width, ft	12	Access Point Density, pts/mi	4.0
Median Type	Undivided	Left-Side Lateral Clearance (LCR), ft	6
Free-Flow Speed (FFS), mi/h	42.4	Total Lateral Clearance (TLC), ft	12
Direction 1 Adjustment Fact	tors		
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		
Direction 1 Demand and Ca	pacity		
Volume (V) veh/h	282	Heavy Vehicle Adjustment Factor (fHV)	0.935
Peak Hour Factor	0.70	Flow Rate (Vp), pc/h/ln	216
Total Trucks, %	7.00	Capacity (c), pc/h/ln	1900
Single-Unit Trucks (SUT), %	-	Adjusted Capacity (cadj), pc/h/ln	1900
Tractor-Trailers (TT), %	-	Volume-to-Capacity Ratio (v/c)	0.11
Direction 1 Speed and Dens	ity		
Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	42.4
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	5.1
Median Type Adjustment (fM)	1.6	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	1.0		

Direction 2 Geometric Data			
Direction 2	SB		
Number of Lanes (N), In	2	Terrain Type	Level
Measured or Base Free-Flow Speed	Base	Percent Grade, %	-
Base Free-Flow Speed (BFFS), mi/h	45.0	Grade Length, mi	-
Lane Width, ft	12	Access Point Density, pts/mi	4.0
Median Type	Undivided	Left-Side Lateral Clearance (LCR), ft	6
Free-Flow Speed (FFS), mi/h	42.4	Total Lateral Clearance (TLC), ft	12
Direction 2 Adjustment Fact	tors		
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		
Direction 2 Demand and Ca	pacity		
Volume (V) veh/h	211	Heavy Vehicle Adjustment Factor (fHV)	0.901
Peak Hour Factor	0.87	Flow Rate (Vp), pc/h/ln	134
Total Trucks, %	11.00	Capacity (c), pc/h/ln	1900
Single-Unit Trucks (SUT), %	-	Adjusted Capacity (cadj), pc/h/ln	1900
Tractor-Trailers (TT), %	-	Volume-to-Capacity Ratio (v/c)	0.07
Direction 2 Speed and Dens	ity		
Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	42.4
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	3.2
Median Type Adjustment (fM)	1.6	Level of Service (LOS)	А
Access Point Density Adjustment (fA)	1.0		

Copyright © 2023 University of Florida. All Rights Reserved.

HCSTM Highways Version 2023 EPAP-Seg2-PM.xuf

Generated: 11/07/2023 17:19:41

Kimley»Horn

Attachment D Existing (2023) plus Pending and Approved Projects plus Project Analysis Worksheets

French Camp Truck Storage 1: French Camp Rd & I - 5 Southbound Ramps

		-		1	-
Lane Group	EBT	WBT	WBR	SBL	SBR
Lane Group Flow (vph)	634	288	343	684	207
v/c Ratio	0.31	0.27	0.31	0.42	0.34
Control Delay	7.6	7.9	0.7	7.3	3.2
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	7.6	7.9	0.7	7.3	3.2
Queue Length 50th (ft)	17	13	0	21	0
Queue Length 95th (ft)	29	28	0	36	18
Internal Link Dist (ft)	761	603		1157	
Turn Bay Length (ft)			570	530	780
Base Capacity (vph)	5354	2819	1106	4468	1347
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.12	0.10	0.31	0.15	0.15
Intersection Summary					5.0%

French Camp Truck Storage 1: French Camp Rd & I - 5 Southbound Ramps

	≯	+	+	×	1	1	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		1111	^	7	ካካዣ	7	
Traffic Volume (veh/h)	0	507	230	274	486	226	
Future Volume (veh/h)	0	507	230	274	486	226	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00			1.00	1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach		No	No		No		
Adj Sat Flow, veh/h/ln	0	1870	1796	1218	1752	1900	
Adj Flow Rate, veh/h	0	634	288	0	664	222	
Peak Hour Factor	0.80	0.80	0.80	0.80	0.80	0.80	
Percent Heavy Veh, %	0	2	7	46	10	0	
Cap, veh/h	0	1956	1038		1655	532	
Arrive On Green	0.00	0.30	0.30	0.00	0.33	0.33	
Sat Flow, veh/h	0	6958	3503	1032	5005	1610	
Grp Volume(v), veh/h	0	634	288	0	664	222	
Grp Sat Flow(s), veh/h/ln	0	1609	1706	1032	1668	1610	
Q Serve(g_s), s	0.0	1.9	1.6	0.0	2.5	2.6	
Cycle Q Clear(g_c), s	0.0	1.9	1.6	0.0	2.5	2.6	
Prop In Lane	0.00			1.00	1.00	1.00	
Lane Grp Cap(c), veh/h	0	1956	1038		1655	532	
V/C Ratio(X)	0.00	0.32	0.28		0.40	0.42	
Avail Cap(c_a), veh/h	0	5877	3117		5791	1863	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	0.00	1.00	1.00	0.00	1.00	1.00	
Uniform Delay (d), s/veh	0.0	6.6	6.5	0.0	6.4	6.4	
Incr Delay (d2), s/veh	0.0	0.1	0.1	0.0	0.2	0.5	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/In	0.0	0.2	0.2	0.0	0.5	0.5	
Unsig. Movement Delay, s/veh							
LnGrp Delay(d),s/veh	0.0	6.7	6.7	0.0	6.5	6.9	
LnGrp LOS	A	A	A		A	А	
Approach Vol, veh/h	Sec. 17	634	288	N. Yes	886	ne - The	
Approach Delay, s/veh		6.7	6.7		6.6		
Approach LOS		A	A		A		
Timer - Assigned Phs	1.6.2.5	0.00		4	1100.15	6	8
Phs Duration (G+Y+Rc), s				12.0		12.6	12.0
Change Period (Y+Rc), s				4.5		4.5	4.5
Max Green Setting (Gmax), s				22.5		28.5	22.5
Max Q Clear Time (g_c+l1), s				3.9		4.6	3.6
Green Ext Time (p_c), s				3.6		3.5	1.5
Intersection Summary	200200	000000000	-		Caller State		
HCM 6th Ctrl Delay		and the second	6.7				
HCM 6th LOS			0.7 A				
			~				

Notes

User approved volume balancing among the lanes for turning movement.

Unsignalized Delay for [WBR] is excluded from calculations of the approach delay and intersection delay.

HCM 6th Signalized Intersection Summary Kimley-Horn

Synchro 11 Report Page 2

French Camp Truck Storage 2: I - 5 Northbound Ramps & French Camp Rd

	-	\mathbf{r}	-	1	1
Lane Group	EBT	EBR	WBT	NBL	NBR
Lane Group Flow (vph)	815	220	519	101	461
v/c Ratio	0.55	0.34	0.61	0.06	0.80
Control Delay	16.2	4.5	18.8	6.5	22.3
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	16.2	4.5	18.8	6.5	22.3
Queue Length 50th (ft)	67	0	63	7	98
Queue Length 95th (ft)	107	29	111	14	169
Internal Link Dist (ft)	369		148	574	
Turn Bay Length (ft)		300		430	430
Base Capacity (vph)	1927	771	1099	2421	868
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.42	0.29	0.47	0.04	0.53
Intersection Summary			15-18-18-18-18-18-18-18-18-18-18-18-18-18-		1999

French Camp Truck Storage 2: I - 5 Northbound Ramps & French Camp Rd

Existing Plus Pending Plus Project Timing Plan: AM Peak Hour

	-	\mathbf{r}	1	-	1	1
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	***	1		^	ኘኘ	7
Traffic Volume (veh/h)	652	176	0	415	81	369
Future Volume (veh/h)	652	176	0	415	81	369
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)		1.00	1.00		1.00	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No			No	No	
Adj Sat Flow, veh/h/ln	1767	1870	0	1411	1826	1381
Adj Flow Rate, veh/h	815	220	0	519	101	461
Peak Hour Factor	0.80	0.80	0.80	0.80	0.80	0.80
Percent Heavy Veh, %	9	2	0	33	5	35
Cap, veh/h	1481	487	0	823	1542	535
Arrive On Green	0.31	0.31	0.00	0.31	0.46	0.46
Sat Flow, veh/h	4982	1585	0	2822	3374	1171
Grp Volume(v), veh/h	815	220	0	519	101	461
Grp Sat Flow(s), veh/h/ln	1608	1585	Ő	1340	1687	1171
Q Serve(g_s), s	5.4	4.3	0.0	6.3	0.6	13.5
Cycle Q Clear(g_c), s	5.4	4.3	0.0	6.3	0.6	13.5
Prop In Lane	0.1	1.00	0.00	0,0	1.00	1.00
Lane Grp Cap(c), veh/h	1481	487	0.00	823	1542	535
V/C Ratio(X)	0.55	0.45	0.00	0.63	0.07	0.86
Avail Cap(c_a), veh/h	2275	748	0.00	1264	2917	1012
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	0.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	11.00	10.6	0.00	11.4	5.8	9.3
Incr Delay (d2), s/veh	0.3	0.7	0.0	0.8	0.0	9.3 4.2
Initial Q Delay(d3),s/veh	0.3	0.7	0.0	0.0	0.0	4.Z 0.0
	1.3	1.1	0.0	1.3	0.0	2.5
%ile BackOfQ(50%),veh/ln Unsig. Movement Delay, s/veł		1.1	0.0	1.5	0.1	2.0
	11.3	11.3	0.0	12.2	5.8	13.5
LnGrp Delay(d),s/veh	П.3 В	П.3 В		12.2 B	5.8 A	13.5 B
LnGrp LOS		D	A			D
Approach Vol, veh/h	1035			519	562	
Approach Delay, s/veh	11.3			12.2	12.1	
Approach LOS	В			В	В	
Timer - Assigned Phs	Carlo Sta	2		4	Strain Strain	18182
Phs Duration (G+Y+Rc), s		21.9		16.2		
Change Period (Y+Rc), s		4.5		4.5		
Max Green Setting (Gmax), s		33.0		18.0		
Max Q Clear Time (g_c+l1), s		15.5		7.4		
Green Ext Time (p_c), s		2.0		4.3		
Intersection Summary		The state of the s	States N		The State	199
HCM 6th Ctrl Delay			11.7	1. S.		12.98.029
HCM 6th LOS			В			
			D			

French Camp Truck Storage 3: French Camp Rd & Arch Airport Rd & Frank West Cir

Existing Plus Pending Plus Project Timing Plan: AM Peak Hour

	۶	-	\mathbf{r}	1	-		1	Ť	5	÷.	1	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	194
Lane Group Flow (vph)	98	966	171	29	604	16	176	45	13	5	18	
v/c Ratio	0.38	0.53	0.14	0.18	0.50	0.02	0.41	0.10	0.09	0.03	0.05	
Control Delay	29.4	14.5	2.6	30.9	19.0	0.1	28.7	15.7	31.9	30.2	0.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	29.4	14.5	2.6	30.9	19.0	0.1	28.7	15.7	31.9	30.2	0.3	
Queue Length 50th (ft)	30	71	0	9	64	0	27	6	4	2	0	
Queue Length 95th (ft)	73	134	11	32	93	0	60	33	20	11	0	
Internal Link Dist (ft)		356			582			682		429		
Turn Bay Length (ft)	285		330	230		340	260		140		70	
Base Capacity (vph)	403	2612	1646	200	2037	951	522	628	139	539	625	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.24	0.37	0.10	0.14	0.30	0.02	0.34	0.07	0.09	0.01	0.03	
Intersection Summary		1-1.34%	i shares					123235				

French Camp Truck Storage 3: French Camp Rd & Arch Airport Rd & Frank West Cir

Existing Plus Pending Plus Project Timing Plan: AM Peak Hour

	۶	-	\mathbf{r}	•	-	*	1	1	1	1	Ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ካ	***	オオ	ሻ	***	7	ሻሻ	1⇒		ኘ	•	7
Traffic Volume (veh/h)	78	773	137	23	483	13	141	20	16	10	4	14
Future Volume (veh/h)	78	773	137	23	483	13	141	20	16	10	4	14
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1752	1589	1752	1322	1426	1900	1485	1604	1337	1455	1530	1589
Adj Flow Rate, veh/h	98	966	171	29	604	16	176	25	20	12	5	18
Peak Hour Factor	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80
Percent Heavy Veh, %	10	21	10	39	32	0	28	20	38	30	25	21
Cap, veh/h	128	1643	990	42	1307	541	271	156	125	21	163	143
Arrive On Green	0.08	0.38	0.38	0.03	0.34	0.34	0.10	0.19	0.19	0.02	0.11	0.11
Sat Flow, veh/h	1668	4337	2613	1259	3892	1610	2744	825	660	1386	1530	1346
Grp Volume(v), veh/h	98	966	171	29	604	16	176	0	45	12	5	18
Grp Sat Flow(s),veh/h/ln	1668	1446	1306	1259	1297	1610	1372	0	1485	1386	1530	1346
Q Serve(g_s), s	2.7	8.4	2.0	1.1	5.7	0.3	2.9	0.0	1.2	0.4	0.1	0.6
Cycle Q Clear(g_c), s	2.7	8.4	2.0	1.1	5.7	0.3	2.9	0.0	1.2	0.4	0.1	0.6
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.44	1.00		1.00
Lane Grp Cap(c), veh/h	128	1643	990	42	1307	541	271	0	282	21	163	143
V/C Ratio(X)	0.77	0.59	0.17	0.69	0.46	0.03	0.65	0.00	0.16	0.56	0.03	0.13
Avail Cap(c_a), veh/h	479	3088	1860	227	2357	975	612	0	773	162	634	558
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	21.3	11.7	9.7	22.5	12.3	10.5	20.4	0.0	15.9	23.0	18.9	19.0
Incr Delay (d2), s/veh	9.1	0.3	0.1	17.9	0.3	0.0	2.6	0.0	0.3	21.0	0.1	0.4
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	1.2	1.9	0.4	0.5	1.2	0.1	0.9	0.0	0.4	0.2	0.0	0.2
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	30.4	12.0	9.8	40.4	12.5	10.5	23.0	0.0	16.2	44.0	18.9	19.4
LnGrp LOS	С	В	А	D	В	В	С	Α	В	D	В	В
Approach Vol, veh/h		1235		- 4.1	649	A CAN		221		1	35	2 Carlos
Approach Delay, s/veh		13.2			13.7			21.6			27.8	
Approach LOS		В			В			С			С	
Timer - Assigned Phs	1	2	3	4	5	6	7	8		75.35		
Phs Duration (G+Y+Rc), s	5.2	13.4	6.1	22.3	9.1	9.5	8.1	20.3	1775 A	12.24		
Change Period (Y+Rc), s	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5				
Max Green Setting (Gmax), s	5.5	24.5	8.5	33.5	10.5	19.5	13.5	28.5				
Max Q Clear Time (g_c+l1), s	2.4	3.2	3.1	10.4	4.9	2.6	4.7	7.7				
Green Ext Time (p_c), s	0.0	0.2	0.0	7.5	0.3	0.0	0.1	3.9				
Intersection Summary	2272	10000			a fille a fill		Service 14		States			
HCM 6th Ctrl Delay			14.5							1987, 18		
HCM 6th LOS			В									

French Camp Truck Storage 4: El Dorado Street & French Camp Road

	-	\mathbf{r}	-		1	1	1	1	4	1	
Lane Group	EBT	EBR	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Group Flow (vph)	144	33	154	83	25	105	19	98	161	22	
v/c Ratio	0.48	0.10	0.51	0.06	0.18	0.08	0.04	0.53	0.11	0.04	
Control Delay	32.1	0.7	32.3	0.1	34.2	20.9	0.2	43.2	17.7	0.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	32.1	0.7	32.3	0.1	34.2	20.9	0.2	43.2	17.7	0.1	
Queue Length 50th (ft)	54	0	58	0	10	16	0	38	18	0	
Queue Length 95th (ft)	110	0	116	0	34	40	0	#111	56	0	
Internal Link Dist (ft)	350		828			628			994		
Turn Bay Length (ft)		100		100	115		150	150		150	
Base Capacity (vph)	517	445	493	1335	151	1303	487	196	1439	577	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.28	0.07	0.31	0.06	0.17	0.08	0.04	0.50	0.11	0.04	
Intersection Summary			and the second	14 M. M	154 ME 21						

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

French Camp Truck Storage 4: El Dorado Street & French Camp Road

	۶	-	\mathbf{r}	•	-	*	•	1	1	5	ŧ.	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		લી	7		ર્સ	7	ሻ	^	7	۲	个个	7
Traffic Volume (veh/h)	19	107	29	17	119	73	22	92	17	86	142	19
Future Volume (veh/h)	19	107	29	17	119	73	22	92	17	86	142	19
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1426	1811	1292	1292	1722	1589	1426	1693	937	1604	1544	1040
Adj Flow Rate, veh/h	22	122	0	19	135	0	25	105	0	98	161	0
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Percent Heavy Veh, %	32	6	41	41	12	21	32	14	65	20	24	58
Cap, veh/h	30	167	COLORS .	25	181		40	1119	00	119	1164	00
Arrive On Green	0.11	0.11	0.00	0.12	0.12	0.00	0.03	0.35	0.00	0.08	0.40	0.00
Sat Flow, veh/h	275	1523	1095	211	1500	1346	1358	3216	794	1527	2934	882
Grp Volume(v), veh/h	144	0	0	154	0	0	25	105	0	98	161	002
	1797		1095	1712	0	1346	1358	1608	794	1527	1467	882
Grp Sat Flow(s),veh/h/ln		0										
Q Serve(g_s), s	4.1	0.0	0.0	4.5	0.0	0.0	1.0	1.2	0.0	3.3	1.8	0.0
Cycle Q Clear(g_c), s	4.1	0.0	0.0	4.5	0.0	0.0	1.0	1.2	0.0	3.3	1.8	0.0
Prop In Lane	0.15	•	1.00	0.12	•	1.00	1.00	1110	1.00	1.00	1101	1.00
Lane Grp Cap(c), veh/h	197	0		206	0		40	1119		119	1164	14251
V/C Ratio(X)	0.73	0.00		0.75	0.00		0.63	0.09		0.83	0.14	
Avail Cap(c_a), veh/h	619	0		589	0		171	1119		228	1164	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	22.5	0.0	0.0	22.2	0.0	0.0	25.1	11.5	0.0	23.8	10.1	0.0
Incr Delay (d2), s/veh	5.2	0.0	0.0	5.3	0.0	0.0	15.5	0.2	0.0	13.3	0.2	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	1.8	0.0	0.0	1.9	0.0	0.0	0.4	0.3	0.0	1.5	0.5	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	27.7	0.0	0.0	27.5	0.0	0.0	40.6	11.7	0.0	37.1	10.3	0.0
LnGrp LOS	С	А		С	А		D	В		D	В	
Approach Vol, veh/h		144			154			130		1. 4 A & A	259	194 C 194
Approach Delay, s/veh		27.7			27.5			17.2			20.4	
Approach LOS		С			С			В			С	8-12 m
Timer - Assigned Phs	1	2		Λ	5	6		0	5 25/2375	104C345.28		
Phs Duration (G+Y+Rc), s	8.6	22.7		4 10.2	6.0	25.2		10.8				
Change Period (Y+Rc), s	4.5	4.5		4.5	4.5	4.5		4.5				
Max Green Setting (Gmax), s	7.8	18.2		18.0	6.6	19.4		18.0				1.
Max Q Clear Time (g_c+l1), s	5.3	3.2		6.1	3.0	3.8		6.5				
Green Ext Time (p_c), s	0.0	0.4		0.5	0.0	0.7		0.5				
	0.0	0.4		0.0	0.0	0.7		0.0				
Intersection Summary	All and a	2.35 204			and the second	S. S. F. S.	A CONTRACTOR	22 Carden	100 million 100 million	Part Part	100	10000
HCM 6th Ctrl Delay			22.9									a start
HCM 6th LOS			С									
	the second s	A REPORT OF A		State State State State	Contraction of the second	Contra Data and St	No. of Concession, Name	Contraction of the local distance of the loc	A DOWN DATE OF STREET	and the second second	and the second second	

Notes

Unsignalized Delay for [NBR, EBR, WBR, SBR] is excluded from calculations of the approach delay and intersection delay.

HCM 6th Signalized Intersection Summary Kimley-Horn

Intersection

Intersection Delay, s/veh13.8 Intersection LOS B

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	Charles States	
Lane Configurations		4			4		ሻ	朴ኈ		۲	朴诤			
Traffic Vol, veh/h	18	129	30	23	214	11	90	78	53	24	122	22		
Future Vol, veh/h	18	129	30	23	214	11	90	78	53	24	122	22		
Peak Hour Factor	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82		
Heavy Vehicles, %	11	8	33	13	12	9	37	36	23	17	32	9		
Mvmt Flow	22	157	37	28	261	13	110	95	65	29	149	27		
Number of Lanes	0	1	0	0	1	0	1	2	0	1	2	0		
Approach	EB	No.	4.912	WB		1. 1.4	NB	And State	1997	SB		1. 4. 2.		
Opposing Approach	WB			EB			SB			NB				
Opposing Lanes	1			1			3			3				
Conflicting Approach Le	eft SB			NB			EB			WB				
Conflicting Lanes Left	3			3			1			1				
Conflicting Approach R				SB			WB			EB				
Conflicting Lanes Right	3			3			1			1				
HCM Control Delay	13.8			17.2			11.8			11.3				
HCM LOS	В			С			В			В				

Lane	NBLn1	NBLn2	NBLn3	EBLn1	VBLn1	SBLn1	SBLn2	SBLn3
Vol Left, %	100%	0%	0%	10%	9%	100%	0%	0%
Vol Thru, %	0%	100%	33%	73%	86%	0%	100%	65%
Vol Right, %	0%	0%	67%	17%	4%	0%	0%	35%
Sign Control	Stop							
Traffic Vol by Lane	90	52	79	177	248	24	81	63
LT Vol	90	0	0	18	23	24	0	0
Through Vol	0	52	26	129	214	0	81	41
RT Vol	0	0	53	30	11	0	0	22
Lane Flow Rate	110	63	96	216	302	29	99	76
Geometry Grp	7	7	7	7	7	7	7	7
Degree of Util (X)	0.238	0.128	0.176	0.397	0.552	0.062	0.202	0.142
Departure Headway (Hd)	7.812	7.281	6.571	6.629	6.576	7.6	7.348	6.692
Convergence, Y/N	Yes							
Сар	458	490	542	540	547	469	486	532
Service Time	5.598	5.066	4.356	4.409	4.349	5.39	5.137	4.481
HCM Lane V/C Ratio	0.24	0.129	0.177	0.4	0.552	0.062	0.204	0.143
HCM Control Delay	13	11.1	10.8	13.8	17.2	10.9	12	10.6
HCM Lane LOS	В	В	В	В	С	В	В	В
HCM 95th-tile Q	0.9	0.4	0.6	1.9	3.3	0.2	0.7	0.5

Intersection					15 2	
Int Delay, s/veh	0.1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W			4TP	≜ ∱	
Traffic Vol, veh/h	3	1	0	184	246	3
Future Vol, veh/h	3	1	0	184	246	3
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized		None		None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	,# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	85	85	85	85	85	85
Heavy Vehicles, %	100	100	100	18	25	100
Mvmt Flow	4	1	0	216	289	4
Major/Minor	Minor2	Ν	Major1	N	Major2	12762
Conflicting Flow All	399	147	293	0		0
Stage 1	291	147	293	U	-	U
•	108	-	-	-	-	-
Stage 2 Critical Hdwy	8.8	8.9	6.1		-	
	0.0 7.8		0.1	-		-
Critical Hdwy Stg 1	7.8	-		-	-	
Critical Hdwy Stg 2	4.5	- 4.3	- 3.2		-	-
Follow-up Hdwy	383	635	778	-	-	-
Pot Cap-1 Maneuver				-		
Stage 1	508 677	-	-	-	-	-
Stage 2	0//	-	-		-	
Platoon blocked, %	202	COF	770	-	-	-
Mov Cap-1 Maneuver	383	635	778	-	-	-
Mov Cap-2 Maneuver	383	-	-	-	-	-
Stage 1	508	(B =)	-	-	-	-
Stage 2	677	-	-	-	-	-
Approach	EB		NB	13310	SB	and the second
HCM Control Delay, s	13.6		0		0	127.34
HCM LOS	В					
Minor Lane/Major Mvm	+	NBL	NRT	EBLn1	SBT	SBR
	<u>n</u>					1.
Capacity (veh/h)		778	-	425 0.011	-	-
HCM Lane V/C Ratio		-			-	-
HCM Control Delay (s) HCM Lane LOS		0	-	_	-	-
HCM Lane LOS HCM 95th %tile Q(veh)		A 0	-		-	-
		0		0	-	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1

Int Delay, s/veh 0 Movement WBL WBR NBT NBR SBL	
WOVERNEIN WOL WOR NOT NOR SOL	SBT
Lane Configurations	ef.
Traffic Vol, veh/h 0 0 159 1 2	152
Future Vol, veh/h 0 0 159 1 2	152
Conflicting Peds, #/hr 0 0 0 0 0	0
5	Free
	Vone
Storage Length 0	-
Veh in Median Storage, # 0 - 0	0
Grade, % 0 - 0	0
Peak Hour Factor 75 75 75 75 75	75
Heavy Vehicles, % 100 100 19 100 100	15
Mvmt Flow 0 0 212 1 3	203
Major/Minor Minor1 Major1 Major2	
Conflicting Flow All 422 213 0 0 213	0
Stage 1 213	-
Stage 2 209	-
Critical Hdwy 7.4 7.2 5.1	-
Critical Hdwy Stg 1 6.4	-
Critical Hdwy Stg 2 6.4	-
Follow-up Hdwy 4.4 4.2 3.1	-
Pot Cap-1 Maneuver 440 632 940	-
Stage 1 636	-
Stage 2 639	-
Platoon blocked, %	-
Mov Cap-1 Maneuver 438 632 940	-
Mov Cap-2 Maneuver 438	-
Stage 1 636	-
Stage 2 636	-
Approach WB NB SB	
HCM Control Delay, s 0 0 0.1	
HCM LOS A	
	SBT
Capacity (veh/h) 940	-
Capacity (veh/h) - - 940 HCM Lane V/C Ratio - - 0.003	-
Capacity (veh/h) - - 940 HCM Lane V/C Ratio - - 0.003 HCM Control Delay (s) - - 0 8.8	- 0
Capacity (veh/h) - - 940 HCM Lane V/C Ratio - - 0.003	-

French Camp Truck Storage 1: French Camp Rd & I - 5 Southbound Ramps

		-		1	1
Lane Group	EBT	WBT	WBR	SBL	SBR
Lane Group Flow (vph)	653	517	345	477	145
v/c Ratio	0.28	0.40	0.27	0.34	0.29
Control Delay	6.4	7.4	0.5	6.4	3.7
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	6.4	7.4	0.5	6.4	3.7
Queue Length 50th (ft)	15	23	0	11	0
Queue Length 95th (ft)	28	46	0	27	22
Internal Link Dist (ft)	761	603		1157	
Turn Bay Length (ft)			570	530	780
Base Capacity (vph)	6062	3381	1262	4283	1308
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.11	0.15	0.27	0.11	0.11
Intersection Summary					

French Camp Truck Storage 1: French Camp Rd & I - 5 Southbound Ramps

	۶	-	-	×.	1	-	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		tttt	† †	1	ካካዣ	1	
Traffic Volume (veh/h)	0	607	481	321	334	245	
Future Volume (veh/h)	0	607	481	321	334	245	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00			1.00	1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach		No	No		No		
Adj Sat Flow, veh/h/ln	0	1870	1885	1485	1707	1885	
Adj Flow Rate, veh/h	0	653	517	0	311	314	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	
Percent Heavy Veh, %	0	2	1	28	13	1	
Cap, veh/h	0	2162	1204		872	857	
Arrive On Green	0.00	0.34	0.34	0.00	0.27	0.27	
Sat Flow, veh/h	0	6958	3676	1259	3252	3195	
Grp Volume(v), veh/h	0	653	517	0	311	314	
Grp Sat Flow(s),veh/h/ln	0	1609	1791	1259	1626	1598	
Q Serve(g_s), s	0.0	1.7	2.5	0.0	1.8	1.8	
Cycle Q Clear(g_c), s	0.0	1.7	2.5	0.0	1.8	1.8	
Prop In Lane	0.00			1.00	1.00	1.00	
Lane Grp Cap(c), veh/h	0	2162	1204		872	857	
V/C Ratio(X)	0.00	0.30	0.43		0.36	0.37	
Avail Cap(c_a), veh/h	0	7213	4016		3646	3582	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	0.00	1.00	1.00	0.00	1.00	1.00	
Uniform Delay (d), s/veh	0.0	5.6	5.9	0.0	6.7	6.8	
Incr Delay (d2), s/veh	0.0	0.1	0.2	0.0	0.2	0.3	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/In	0.0	0.1	0.2	0.0	0.3	0.3	
Unsig. Movement Delay, s/veh							
LnGrp Delay(d),s/veh	0.0	5.7	6.1	0.0	7.0	7.0	
LnGrp LOS	Α	А	А		А	А	
Approach Vol, veh/h		653	517		625		
Approach Delay, s/veh		5.7	6.1		7.0		
Approach LOS		А	А		А		
Timer - Assigned Phs	CAR	514-33	142 %	4	al Print	6	8
Phs Duration (G+Y+Rc), s			Right	12.1	-1	10.6	12.1
Change Period (Y+Rc), s				4.5		4.5	4.5
Max Green Setting (Gmax), s				25.5		25.5	25.5
Max Q Clear Time (g_c+l1), s				3.7		3.8	4.5
Green Ext Time (p_c), s				3.9		2.4	2.9
Intersection Summary	1993					12 million	
HCM 6th Ctrl Delay			6.3	1			
HCM 6th LOS			A				
			А				

Notes

User approved volume balancing among the lanes for turning movement. Unsignalized Delay for [WBR] is excluded from calculations of the approach delay and intersection delay.

HCM 6th Signalized Intersection Summary Kimley-Horn

Synchro 11 Report Page 2

French Camp Truck Storage 2: I - 5 Northbound Ramps & French Camp Rd

	-	\mathbf{r}	-	1	r
Lane Group	EBT	EBR	WBT	NBL	NBR
Lane Group Flow (vph)	571	246	637	244	370
v/c Ratio	0.36	0.35	0.62	0.16	0.69
Control Delay	12.6	4.1	16.1	7.4	17.4
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	12.6	4.1	16.1	7.4	17.4
Queue Length 50th (ft)	34	0	61	16	64
Queue Length 95th (ft)	82	41	150	36	159
Internal Link Dist (ft)	369		148	574	
Turn Bay Length (ft)		300		430	430
Base Capacity (vph)	2362	917	1544	2691	940
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.24	0.27	0.41	0.09	0.39
Intersection Summary		1.000			

French Camp Truck Storage 2: I - 5 Northbound Ramps & French Camp Rd

	-	\mathbf{r}	1	-	1	1	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	***	1		††	ኘኘ	1	
Traffic Volume (veh/h)	520	224	0	580	222	337	
Future Volume (veh/h)	520	224	0	580	222	337	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)		1.00	1.00		1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No	1.00	1.00	No	No	1.00	
Adj Sat Flow, veh/h/ln	1767	1885	0	1663	1900	1426	
Adj Flow Rate, veh/h	571	246	0	637	244	370	4
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	
Percent Heavy Veh, %	9	1	0.01	16	0.01	32	
Cap, veh/h	1579	523	0	1035	1387	478	
Arrive On Green	0.33	0.33	0.00	0.33	0.40	0.40	
	4982	1598		3326	3510	1208	
Sat Flow, veh/h		and the second se	0				
Grp Volume(v), veh/h	571	246	0	637	244	370	
Grp Sat Flow(s), veh/h/ln	1608	1598	0	1580	1755	1208	
Q Serve(g_s), s	2.9	4.0	0.0	5.5	1.5	8.7	
Cycle Q Clear(g_c), s	2.9	4.0	0.0	5.5	1.5	8.7	
Prop In Lane		1.00	0.00		1.00	1.00	
Lane Grp Cap(c), veh/h	1579	523	0	1035	1387	478	
V/C Ratio(X)	0.36	0.47	0.00	0.62	0.18	0.77	
Avail Cap(c_a), veh/h	2898	960	0	1898	3407	1173	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	0.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh	8.3	8.7	0.0	9.2	6.4	8.6	
Incr Delay (d2), s/veh	0.1	0.7	0.0	0.6	0.1	2.7	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/In	0.6	0.8	0.0	1.1	0.3	1.5	
Unsig. Movement Delay, s/veh							
LnGrp Delay(d),s/veh	8.5	9.3	0.0	9.8	6.4	11.3	
LnGrp LOS	A	A	A	A	A	В	
Approach Vol, veh/h	817		100000	637	614	111330	North Contraction
Approach Delay, s/veh	8.7			9.8	9.4		
Approach LOS	A			A	A.		
	Л	0			TX		0
Timer - Assigned Phs	6.12/19	2	and and	4			8
Phs Duration (G+Y+Rc), s		17.3		15.1			15.1
Change Period (Y+Rc), s		4.5		4.5			4.5
Max Green Setting (Gmax), s		31.5		19.5			19.5
Max Q Clear Time (g_c+l1), s		10.7		6.0			7.5
Green Ext Time (p_c), s	127212	2.2	120035-331	3.7			3.1
Intersection Summary			12				
HCM 6th Ctrl Delay			9.2				
HCM 6th LOS			А				

French Camp Truck Storage 3: French Camp Rd & Arch Airport Rd & Frank West Cir

Existing Plus Pending Plus Project Timing Plan: PM Peak Hour

	٠		\mathbf{r}	1	+		1	1	1	÷.	1	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	See State
Lane Group Flow (vph)	60	715	183	29	826	2	240	47	10	11	49	
v/c Ratio	0.26	0.45	0.17	0.16	0.57	0.00	0.42	0.09	0.05	0.05	0.14	
Control Delay	28.6	14.7	3.2	30.1	18.5	0.0	25.8	8.8	30.3	29.3	0.9	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	28.6	14.7	3.2	30.1	18.5	0.0	25.8	8.8	30.3	29.3	0.9	
Queue Length 50th (ft)	20	51	0	10	92	0	40	1	3	4	0	13189
Queue Length 95th (ft)	56	111	18	35	139	0	81	25	18	19	0	
Internal Link Dist (ft)		356			582			682		429		
Turn Bay Length (ft)	285		330	230		340	260		140		70	
Base Capacity (vph)	355	2548	1663	216	2379	937	750	784	190	747	745	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	and the second
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	×
Reduced v/c Ratio	0.17	0.28	0.11	0.13	0.35	0.00	0.32	0.06	0.05	0.01	0.07	
Intersection Summary		-		a la tria						1 1. 199		

French Camp Truck Storage 3: French Camp Rd & Arch Airport Rd & Frank West Cir

Existing Plus Pending Plus Project Timing Plan: PM Peak Hour

	۶	-	\mathbf{r}	1	+	*	•	1	1	5	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	***	77	٦	ተተተ	7	ኘኘ	ĥ		۲	^	7
Traffic Volume (veh/h)	52	622	159	25	719	2	209	2	39	9	10	43
Future Volume (veh/h)	52	622	159	25	719	2	209	2	39	9	10	43
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1722	1559	1781	1604	1678	1900	1722	1900	1707	1900	1900	1900
Adj Flow Rate, veh/h	60	715	183	29	826	2	240	2	45	10	11	49
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Percent Heavy Veh, %	12	23	8	20	15	0	12	0	13	0	0	0
Cap, veh/h	96	1425	890	52	1420	499	383	15	339	24	211	179
Arrive On Green	0.06	0.33	0.33	0.03	0.31	0.31	0.12	0.22	0.22	0.01	0.11	0.11
Sat Flow, veh/h	1640	4256	2657	1527	4580	1610	3182	69	1552	1810	1900	1610
Grp Volume(v), veh/h	60	715	183	29	826	2	240	0	47	10	11	49
	1640	1419	1329	1527	1527	1610	1591	0	1621	1810	1900	1610
Grp Sat Flow(s),veh/h/ln		6.0	2.2	0.8	6.8	0.0	3.2	0.0		0.2	0.2	1.3
Q Serve(g_s), s	1.6								1.1			
Cycle Q Clear(g_c), s	1.6	6.0	2.2	0.8	6.8	0.0	3.2	0.0	1.1	0.2	0.2	1.3
Prop In Lane	1.00	1405	1.00	1.00	1100	1.00	1.00	0	0.96	1.00	011	1.00
Lane Grp Cap(c), veh/h	96	1425	890	52	1420	499	383	0	354	24	211	179
V/C Ratio(X)	0.62	0.50	0.21	0.56	0.58	0.00	0.63	0.00	0.13	0.42	0.05	0.27
Avail Cap(c_a), veh/h	419	2979	1860	254	2798	984	884	0	990	221	865	733
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	20.7	12.0	10.7	21.4	13.1	10.7	18.8	0.0	14.2	22.0	17.9	18.3
Incr Delay (d2), s/veh	6.5	0.3	0.1	9.2	0.4	0.0	1.7	0.0	0.2	11.6	0.1	0.8
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	0.7	1.4	0.5	0.4	1.7	0.0	1.1	0.0	0.3	0.2	0.1	0.4
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	27.2	12.2	10.8	30.7	13.5	10.7	20.5	0.0	14.3	33.6	18.0	19.2
LnGrp LOS	С	В	В	С	В	В	С	А	В	С	В	В
Approach Vol, veh/h	a the last	958	1.22.2.19		857	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Salara	287			70	
Approach Delay, s/veh		12.9			14.0			19.5			21.0	
Approach LOS		В			В			В			С	
	1		2	1		C	7					
Timer - Assigned Phs	1	2	3	4	5	6	7	8 10 E	1	1000 - 100 -		
Phs Duration (G+Y+Rc), s	5.1	14.3	6.0	19.6	9.9	9.5	7.1	18.5				
Change Period (Y+Rc), s	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5				
Max Green Setting (Gmax), s	5.5	27.5	7.5	31.5	12.5	20.5	11.5	27.5				
Max Q Clear Time (g_c+l1), s	2.2	3.1	2.8	8.0	5.2	3.3	3.6	8.8				
Green Ext Time (p_c), s	0.0	0.2	0.0	5.5	0.5	0.1	0.1	5.1				
Intersection Summary	C.S.S.	1.1.32	1.525	9749 A.			1 martin		11.21	States !!		
HCM 6th Ctrl Delay			14.5									
HCM 6th LOS			В									

French Camp Truck Storage 4: El Dorado Street & French Camp Road

	-	\mathbf{r}	-		1	Ť	1	1	ŧ	-	
Lane Group	EBT	EBR	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Group Flow (vph)	210	50	219	122	50	323	22	167	227	19	
v/c Ratio	0.79	0.13	0.65	0.08	0.35	0.38	0.06	0.90	0.21	0.03	
Control Delay	50.7	0.7	37.8	0.1	41.3	25.8	0.3	83.3	21.9	0.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	50.7	0.7	37.8	0.1	41.3	25.8	0.3	83.3	21.9	0.1	
Queue Length 50th (ft)	92	0	97	0	23	67	0	80	45	0	
Queue Length 95th (ft)	#157	0	139	0	50	93	0	#166	67	0	
Internal Link Dist (ft)	350		828			628			994		
Turn Bay Length (ft)		100		100	115		150	150		150	
Base Capacity (vph)	307	430	448	1553	148	855	392	185	1099	569	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.68	0.12	0.49	0.08	0.34	0.38	0.06	0.90	0.21	0.03	
Intersection Summary				States.	10.075	38 A.	1.0.34		Start Start		

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

French Camp Truck Storage 4: El Dorado Street & French Camp Road

	≯	-	\mathbf{r}	1	-	*	1	1	1	1	Ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		÷.	7		ર્લ	7	ሻ	^	7	ኘ	^	7
Traffic Volume (veh/h)	17	147	39	7	164	95	39	252	17	130	177	15
Future Volume (veh/h)	17	147	39	7	164	95	39	252	17	130	177	15
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1470	1100	1559	1470	1856	1841	1752	1826	1292	1841	1767	1707
Adj Flow Rate, veh/h	22	188	0	9	210	0	50	323	0	167	227	0
Peak Hour Factor	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78
Percent Heavy Veh, %	29	54	23	29	3	4	10	5	41	4	9	13
Cap, veh/h	25	211		11	266		74	911		197	1109	1
Arrive On Green	0.22	0.22	0.00	0.15	0.15	0.00	0.04	0.26	0.00	0.11	0.33	0.00
Sat Flow, veh/h	115	979	1321	76	1776	1560	1668	3469	1095	1753	3357	1447
Grp Volume(v), veh/h	210	0	0	219	0	0	50	323	0	167	227	0
Grp Sat Flow(s),veh/h/ln	1094	0	1321	1852	0	1560	1668	1735	1095	1753	1678	1447
Q Serve(g_s), s	12.9	0.0	0.0	7.9	0.0	0.0	2.0	5.3	0.0	6.5	3.4	0.0
Cycle Q Clear(g_c), s	12.9	0.0	0.0	7.9	0.0	0.0	2.0	5.3	0.0	6.5	3.4	0.0
Prop In Lane	0.10		1.00	0.04		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	236	0		277	0		74	911		197	1109	
V/C Ratio(X)	0.89	0.00		0.79	0.00		0.67	0.35		0.85	0.20	
Avail Cap(c_a), veh/h	284	0		481	0		159	911		197	1109	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	26.4	0.0	0.0	28.4	0.0	0.0	32.6	20.8	0.0	30.2	16.7	0.0
Incr Delay (d2), s/veh	24.5	0.0	0.0	5.0	0.0	0.0	10.0	1.1	0.0	27.4	0.4	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	4.7	0.0	0.0	3.6	0.0	0.0	1.0	2.0	0.0	4.0	1.2	0.0
Unsig. Movement Delay, s/veh		0.0	0.0	0.0	0.0	0.0	1.0	2.0	0.0	110	112	0.0
LnGrp Delay(d),s/veh	50.9	0.0	0.0	33.4	0.0	0.0	42.7	21.9	0.0	57.6	17.1	0.0
LnGrp LOS	D	A	0.0	C	A	0.0	D	C	0.0	E	B	0.0
Approach Vol, veh/h	5	210			219			373			394	
Approach Delay, s/veh		50.9			33.4			24.7			34.3	
Approach LOS		50.9 D			00.4 C			C 24.7			04.0 C	1. 17. 17. 1
											U	
Timer - Assigned Phs	1	2		4	5	6		8	A HE A			
Phs Duration (G+Y+Rc), s	12.3	22.7		19.5	7.6	27.4		14.9				
Change Period (Y+Rc), s	4.5	4.5		4.5	4.5	4.5		4.5				
Max Green Setting (Gmax), s	7.8	18.2		18.0	6.6	19.4		18.0				
Max Q Clear Time (g_c+l1), s	8.5	7.3		14.9	4.0	5.4		9.9				
Green Ext Time (p_c), s	0.0	1.3		0.3	0.0	1.0		0.6				
Intersection Summary		ater and							1211/3	North Co		
HCM 6th Ctrl Delay			34.0									
HCM 6th LOS			С									

Notes

Unsignalized Delay for [NBR, EBR, WBR, SBR] is excluded from calculations of the approach delay and intersection delay.

HCM 6th Signalized Intersection Summary Kimley-Horn

Intersection

Intersection Delay, s/veh 19 Intersection LOS C

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			4		۲	朴诤		ሻ	≜ ∱}		
Traffic Vol, veh/h	46	281	19	17	152	27	80	184	33	40	148	16	
Future Vol, veh/h	46	281	19	17	152	27	80	184	33	40	148	16	
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	
Heavy Vehicles, %	7	6	47	6	7	0	19	9	9	5	14	13	
Mvmt Flow	53	323	22	20	175	31	92	211	38	46	170	18	
Number of Lanes	0	1	0	0	1	0	1	2	0	1	2	0	
Approach	EB			WB			NB	1949-	and the second	SB	12-12	Section of	
Opposing Approach	WB			EB			SB			NB			
Opposing Lanes	1			1			3			3			
Conflicting Approach Le	eft SB			NB			EB			WB			
Conflicting Lanes Left	3			3			1			1			
Conflicting Approach R	ightNB			SB			WB			EB			
Conflicting Lanes Right	3			3			1			1			
HCM Control Delay	29.7			16			12.9			12.4			
HCM LOS	D			С			В			В			

Lane	NBLn1	NBLn2	NBLn3	EBLn1V	VBLn1	SBLn1	SBLn2	SBLn3
Vol Left, %	100%	0%	0%	13%	9%	100%	0%	0%
Vol Thru, %	0%	100%	65%	81%	78%	0%	100%	76%
Vol Right, %	0%	0%	35%	5%	14%	0%	0%	24%
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	80	123	94	346	196	40	99	65
LT Vol	80	0	0	46	17	40	0	0
Through Vol	0	123	61	281	152	0	99	49
RT Vol	0	0	33	19	27	0	0	16
Lane Flow Rate	92	141	108	398	225	46	113	75
Geometry Grp	7	7	7	7	7	7	7	7
Degree of Util (X)	0.21	0.294	0.218	0.772	0.456	0.104	0.246	0.159
Departure Headway (Hd)	8.202	7.507	7.253	6.986	7.281	8.179	7.818	7.622
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Сар	438	478	494	517	493	438	458	469
Service Time	5.959	5.263	5.009	4.73	5.036	5.94	5.579	5.383
HCM Lane V/C Ratio	0.21	0.295	0.219	0.77	0.456	0.105	0.247	0.16
HCM Control Delay	13.1	13.4	12	29.7	16	11.9	13.1	11.8
HCM Lane LOS	В	В	В	D	С	В	В	В
HCM 95th-tile Q	0.8	1.2	0.8	6.9	2.3	0.3	1	0.6

Intersection		1 starts	1	and and a second	12.33	Carline .
Int Delay, s/veh	0.1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W			412	≜ î∌	
Traffic Vol, veh/h	3	1	0	364	321	3
Future Vol, veh/h	3	1	0	364	321	3
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	100	None	100	None		
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	83	83	83	83	83	83
Heavy Vehicles, %	100	100	0	6	7	100
Mymt Flow	4	1	0	439	387	4
5.4. 1 (8.4 ¹	A' 0				1 ' 0	(*****************
	Minor2		Major1		Aajor2	
Conflicting Flow All	609	196	391	0	-	0
Stage 1	389	-	-	-	-	-
Stage 2	220	-	-	-	-	-
Critical Hdwy	8.8	8.9	4.1	-	-	-
Critical Hdwy Stg 1	7.8	-	-	-	-	-
Critical Hdwy Stg 2	7.8	-	-	-	-	-
Follow-up Hdwy	4.5	4.3	2.2	-	-	-
Pot Cap-1 Maneuver	258	578	1179	-	-	-
Stage 1	435	-	-	-	-	-
Stage 2	568	-	-	-		- 101
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	258	578	1179	-	-	
Mov Cap-2 Maneuver	258	-	-	-	-	-
Stage 1	435	-	-	1. The second	-	-
Stage 2	568	-	-	-	-	-
	E ANS					
Approach	EB		NB	10000	SB	ACCHICES OF
Approach						Carlos Carlos
HCM Control Delay, s	17.2		0		0	
HCM LOS	С					
Minor Lane/Major Mvm	t	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1179	-	299	-	-
HCM Lane V/C Ratio		_	-	0.016	-	-
HCM Control Delay (s)		0	-	17.2	-	-
HCM Lane LOS		A	-	С	-	-
HCM 95th %tile Q(veh))	0	-		-	

Intersection	1725					19.32
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		4			4
Traffic Vol, veh/h	0	0	217	1	2	200
Future Vol, veh/h	0	0	217	1	2	200
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized		None	-		-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage,	# 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	74	74	74	74	74	74
Heavy Vehicles, %	0	0	5	100	100	10
Mvmt Flow	0	0	293	1	3	270
		-				
	linor1		Major1		Major2	1.534
Conflicting Flow All	570	294	0	0	294	0
Stage 1	294	-	-		-	-
Stage 2	276	-	-	-	-	-
Critical Hdwy	6.4	6.2	-	-	5.1	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	-	-	3.1	-
Pot Cap-1 Maneuver	486	750	-	-	867	-
Stage 1	761	-	-	-	-	-
Stage 2	775	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	484	750	-	-	867	-
Mov Cap-2 Maneuver	484	-	-	-	-	-
Stage 1	761	-	-	-	- 12	-
Stage 2	772	-	-	-	-	-
Oldgo Z	112					
A	14.00		LIP		0.5	
Approach	WB	1222	NB		SB	
HCM Control Delay, s	0		0		0.1	
HCM LOS	A					
Minor Lane/Major Mvm		NBT	NBR	WBLn1	SBL	SBT
Capacity (veh/h)		-	-		1 1000 1000	-
HCM Lane V/C Ratio		-	-		0.003	-
HCM Control Delay (s)		-	-	0	9.2	0
HCM Lane LOS		-	-		A	
HCM 95th %tile Q(veh)					0	-
How sour soure a(ven)					0	

HCS Two-Lane Highway Report

Project	Information					
Analyst		Kimley-Horn	Da	te		11/7/2023
Agency		San Joaquin County		alysis Year		2023
Jurisdictior	1	San Joaquin County		Time Analyzed		AM Peak-Hour - Existing plus Pending and Approved Projects plus Project
Project De	scription	French Camp Road, Nor of El Dorado Street, NB	th Un	ts		U.S. Customary
		Se	gmer	it 1	Mar Sandara	
Vehicle	Inputs					
Segment T	уре	Passing Constrained	Ler	igth, ft		5280
Lane Widtl	h, ft	12	She	oulder Width,	ft	4
Speed Lim	it, mi/h	45	Aco	ess Point Der	nsity, pts/mi	2.0
Deman	d and Capacity					
Directional Demand Flow Rate, veh/h		225	Op	posing Dema	nd Flow Rate, veh/h	-
Peak Hour Factor		0.75	Tot	al Trucks, %		24.00
Segment Capacity, veh/h		1700	De	Demand/Capacity (D/C)		0.13
Interme	ediate Results					
Segment Vertical Class		1	Fre	e-Flow Speed	d, mi/h	48.6
Speed Slope Coefficient (m)		3.19433	Spe	eed Power Co	0.41674	
PF Slope C	Coefficient (m)	-1.37144	PF	Power Coeffic	cient (p)	0.73154
In Passing	Lane Effective Length?	No	Tot	al Segment D	ensity, veh/mi/In	1.8
%Improve	ment to Percent Followers	0.0		%Improvement to Speed		0.0
Subseg	ment Data					
# Segr	nent Type	Length, ft	Radius, ft		Superelevation, %	Average Speed, mi/h
1 Tang	jent	5280	-	-		47.3
Vehicle	Results					
Average S	peed, mi/h	47.3	Per	cent Follower	rs, %	36.9
Segment T	Travel Time, minutes	1.27	Fo	lower Density	/ (FD), followers/mi/ln	1.8
Vehicle LOS		A				
Facility	Results					
т	VMT veh-mi/AP	VHD veh-h/p		Follower Density, followers/ mi/In		LOS
1	42	0.02	12.2.2	1.8		А

HCS Two-Lane Highway Report

Proje	ect Information					
Analys	st	Kimley-Horn		e	11/7/2023	
Agency	у	San Joaquin County	Ana	lysis Year	2023	
Jurisdio			Tim	e Analyzed	PM Peak-Hour - Existing plus Pending and Approved Projects plus Project	
Project	t Description	French Camp Road, North of El Dorado Street, NB		ts		U.S. Customary
	the man have been	Se	gmen	t 1		
Vehi	cle Inputs					
Segme	ent Type	Passing Constrained	Len	gth, ft		5280
Lane V	Vidth, ft	12	Shc	ulder Width,	ft	4
Speed	l Limit, mi/h	45	Acc	ess Point Den	sity, pts/mi	2.0
Dem	and and Capacity					
Directional Demand Flow Rate, veh/h		312		Opposing Demand Flow Rate, veh/h		
Peak Hour Factor		0.75		Total Trucks, %		9.00
Segment Capacity, veh/h		1700		Demand/Capacity (D/C)		0.18
Inter	rmediate Results					
Segment Vertical Class		1		e-Flow Speed	mi/h	49.1
Speed	l Slope Coefficient (m)	3.22141		Speed Power Coefficient (p)		0.41674
PF Slo	pe Coefficient (m)	-1.37094		Power Coeffic	ient (p)	0.73098
In Pass	sing Lane Effective Length?	No		al Segment D	ensity, veh/mi/ln	2.9
%Impr	rovement to Percent Followers	0.0		%Improvement to Speed		0.0
Subs	segment Data					
#	Segment Type	Length, ft	Radius, f	ť	Superelevation, %	Average Speed, mi/h
1	Tangent	5280	-	-		47.4
Vehi	cle Results					
Averag	ge Speed, mi/h	47.4	Per	Percent Followers, %		44.3
Segment Travel Time, minutes		1.27	Fol	Follower Density (FD), followers/mi/ln		2.9
Vehicle LOS		В				
Facil	lity Results					
Т	VMT veh-mi/AP	VHD veh-h/p		Follower Density, followers/ mi/In		LOS
1	59	0.04	121	2.9		В

		HCS Two-Lan	e Hig	hway Re	eport	
Project	Information					
Analyst		Kimley-Horn	Date	9		11/7/2023
Agency		San Joaquin County	Ana	lysis Year		2023
Jurisdiction	n	San Joaquin County	Tim	e Analyzed		AM Peak-Hour - Existing plus Pending and Approved Projects plus Project
Project De	escription	French Camp Road, Nor of El Dorado Street, SB	th Unit	ts		U.S. Customary
		Se	gmen	t 1		
Vehicle	Inputs					
Segment 1	Гуре	Passing Constrained	Len	gth, ft		5280
Lane Widt	h, ft	12	Sho	ulder Width, f	ît	4
Speed Lim	iit, mi/h	45	Acc	ess Point Den	sity, pts/mi	2.0
Deman	d and Capacity					
Directiona	I Demand Flow Rate, veh/h	174	Opp	oosing Demar	nd Flow Rate, veh/h	-
Directional Demand Flow Rate, veh/h Peak Hour Factor Segment Capacity, veh/h		0.92	Tota	Total Trucks, %		15.00
Segment Capacity, veh/h		1700		nand/Capacity	y (D/C)	0.10
Intermo	ediate Results					
Segment \	Vertical Class	1	Free	e-Flow Speed,	mi/h	48.9
Segment Vertical Class Speed Slope Coefficient (m)		3.21058	Spe	Speed Power Coefficient (p)		0.41674
Speed Slope Coefficient (m) PF Slope Coefficient (m)		-1.37116	PF F	Power Coeffici	ent (p)	0.73120
PF Slope Coefficient (m) In Passing Lane Effective Length?		No		Total Segment Density, veh/mi/ln		1.2
%Improve	ement to Percent Followers	0.0		%Improvement to Speed		0.0
Subseg	ment Data					and the second
# Segi	ment Type	Length, ft	Radius, f	t	Superelevation, %	Average Speed, mi/h
1 Tang	gent	5280	-		-	47.8
Vehicle	Results					
Average S	peed, mi/h	47.8	Perc	cent Followers	5, %	31.7
Segment ⁻	Travel Time, minutes	1.25	Foll	ower Density	(FD), followers/mi/ln	1.2
Vehicle LC	DS	A				
Facility	Results					
т	VMT veh-mi/AP	VHD veh-h/p		Follower D	ensity, followers/ mi/ln	LOS
1	40	0.02	1263	1.2		A

Copyright © 2023 University of Florida. All Rights Reserved.

Generated: 11/07/2023 16:44:30

HCS Two-Lane Highway Report

Project	Information					
Analyst		Kimley-Horn		te	Ŷ	11/7/2023
Agency		San Joaquin County		alysis Year		2023
Jurisdictio	on	San Joaquin County		Time Analyzed		PM Peak-Hour - Existing plus Pending and Approved Projects plus Project
Project De	escription	French Camp Road, Nor of El Dorado Street, SB	th Un	its		U.S. Customary
		Se	gmer	nt 1		
Vehicle	Inputs	NEW AND				
Segment ⁻	Туре	Passing Constrained	Ler	ngth, ft		5280
Lane Widt	th, ft	12	She	oulder Width,	ft	4
Speed Lim	nit, mi/h	45	Ace	cess Point Der	nsity, pts/mi	2.0
Deman	nd and Capacity					
Directional Demand Flow Rate, veh/h		234		Opposing Demand Flow Rate, veh/h		-
Peak Hour Factor		0.85	Tot	al Trucks, %		10.00
Segment Capacity, veh/h		1700		Demand/Capacity (D/C)		0.14
Interm	ediate Results					
Segment Vertical Class		1		Free-Flow Speed, mi/h		49.1
Speed Slo	ope Coefficient (m)	3.21960		Speed Power Coefficient (p)		0.41674
PF Slope (Coefficient (m)	-1.37098		Power Coeffic	cient (p)	0.73102
In Passing	g Lane Effective Length?	No		al Segment D	ensity, veh/mi/ln	1.9
%Improve	ement to Percent Followers	0.0		%Improvement to Speed		0.0
Subseg	jment Data					
# Seg	iment Type	Length, ft	Radius,	ft	Superelevation, %	Average Speed, mi/h
1 Tang	gent	5280	-	-		47.7
Vehicle	e Results					
Average S	Speed, mi/h	47.7	Per	Percent Followers, %		37.8
Segment ⁻	Travel Time, minutes	1.26		Follower Density (FD), followers/mi/ln		1.9
Vehicle LOS		A				
Facility	/ Results					
т	VMT veh-mi/AP	VHD veh-h/p		Follower Density, followers/ mi/ln		LOS
1	50	0.03	1	1.9		A

Copyright © 2023 University of Florida. All Rights Reserved.

HCS Multilane Highway Report

Project Information			
Analyst	Kimley-Horn	Date	11/7/2023
Agency	San Joaquin County	Analysis Year	2023
Jurisdiction	San Joaquin County	Time Analyzed	AM Peak-Hour - Existing plus Pending and Approved Projects plus Project
Project Description	El Dorado Street, South of French Camp Road	Units	U.S. Customary
Direction 1 Geometric Data			
Direction 1	NB		
Number of Lanes (N), In	2	Terrain Type	Level
Measured or Base Free-Flow Speed	Base	Percent Grade, %	-
Base Free-Flow Speed (BFFS), mi/h	45.0	Grade Length, mi	-
Lane Width, ft	12	Access Point Density, pts/mi	4.0
Median Type	Undivided	Left-Side Lateral Clearance (LCR), ft	6
Free-Flow Speed (FFS), mi/h	42.4	Total Lateral Clearance (TLC), ft	12
Direction 1 Adjustment Fact	ors	A State State State	
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		
Direction 1 Demand and Ca	pacity		
Volume (V) veh/h	119	Heavy Vehicle Adjustment Factor (fHV)	0.794
Peak Hour Factor	0.81	Flow Rate (Vp), pc/h/ln	92
Total Trucks, %	26.00	Capacity (c), pc/h/ln	1900
Single-Unit Trucks (SUT), %	-	Adjusted Capacity (cadj), pc/h/ln	1900
Tractor-Trailers (TT), %	-	Volume-to-Capacity Ratio (v/c)	0.05
Direction 1 Speed and Dens	ity		
Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	42.4
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	2.2
Median Type Adjustment (fM)	1.6	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	1.0		

Direction 2 Geometric Data						
Direction 2	tion 2 SB					
Number of Lanes (N), In	2	Terrain Type	Level			
Measured or Base Free-Flow Speed	Base	Percent Grade, %	-			
Base Free-Flow Speed (BFFS), mi/h	45.0	Grade Length, mi	-			
Lane Width, ft	12	Access Point Density, pts/mi	4.0			
Median Type	Undivided	Left-Side Lateral Clearance (LCR), ft	6			
Free-Flow Speed (FFS), mi/h	42.4	Total Lateral Clearance (TLC), ft	12			
Direction 2 Adjustment Fact	tors					
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000			
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000			
Driver Population CAF	1.000					
Direction 2 Demand and Ca	pacity		1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -			
Volume (V) veh/h	178	Heavy Vehicle Adjustment Factor (fHV)	0.781			
Peak Hour Factor	0.81	Flow Rate (Vp), pc/h/ln	140			
Total Trucks, %	28.00	Capacity (c), pc/h/ln	1900			
Single-Unit Trucks (SUT), %	-	Adjusted Capacity (cadj), pc/h/ln	1900			
Tractor-Trailers (TT), %	-	Volume-to-Capacity Ratio (v/c)	0.07			
Direction 2 Speed and Dens	ity					
Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	42.4			
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	3.3			
Median Type Adjustment (fM)	1.6	Level of Service (LOS)	A			
Access Point Density Adjustment (fA)	1.0					

Copyright © 2023 University of Florida. All Rights Reserved.

HCSTM Highways Version 2023 EPAP_PP-Seg2-AM.xuf Generated: 11/07/2023 17:34:17

HCS Multilane Highway Report

Project Information			
Analyst	Kimley-Horn	Date	11/7/2023
Agency	San Joaquin County	Analysis Year	2023
Jurisdiction	San Joaquin County	Time Analyzed	PM Peak-Hour - Existing plus Pending and Approved Projects plus Project
Project Description	El Dorado Street, South of French Camp Road	Units	U.S. Customary
Direction 1 Geometric Data			
Direction 1	NB		
Number of Lanes (N), In	2	Terrain Type	Level
Measured or Base Free-Flow Speed	Base	Percent Grade, %	-
Base Free-Flow Speed (BFFS), mi/h	45.0	Grade Length, mi	-
Lane Width, ft	12	Access Point Density, pts/mi	4.0
Median Type	Undivided	Left-Side Lateral Clearance (LCR), ft	6
Free-Flow Speed (FFS), mi/h	42.4	Total Lateral Clearance (TLC), ft	12
Direction 1 Adjustment Fact	tors		
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		
Direction 1 Demand and Ca	pacity		
Volume (V) veh/h	283	Heavy Vehicle Adjustment Factor (fHV)	0.935
Peak Hour Factor	0.70	Flow Rate (Vp), pc/h/ln	216
Total Trucks, %	7.00	Capacity (c), pc/h/ln	1900
Single-Unit Trucks (SUT), %	-	Adjusted Capacity (cadj), pc/h/ln	1900
Tractor-Trailers (TT), %	-	Volume-to-Capacity Ratio (v/c)	0.11
Direction 1 Speed and Dens	ity		
Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	42.4
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	5.1
Median Type Adjustment (fM)	1.6	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	1.0		

Direction 2 Geometric Data			and the second
Direction 2	SB		
Number of Lanes (N), In	2	Terrain Type	Level
Measured or Base Free-Flow Speed	Base	Percent Grade, %	-
Base Free-Flow Speed (BFFS), mi/h	45.0	Grade Length, mi	-
Lane Width, ft	12	Access Point Density, pts/mi	4.0
Median Type	Undivided	Left-Side Lateral Clearance (LCR), ft	6
Free-Flow Speed (FFS), mi/h	42.4	Total Lateral Clearance (TLC), ft	12
Direction 2 Adjustment Fac	tors		
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		
Direction 2 Demand and Ca	pacity		
Volume (V) veh/h	214	Heavy Vehicle Adjustment Factor (fHV)	0.893
Peak Hour Factor	0.87	Flow Rate (Vp), pc/h/ln	138
Total Trucks, %	12.00	Capacity (c), pc/h/ln	1900
Single-Unit Trucks (SUT), %	-	Adjusted Capacity (cadj), pc/h/ln	1900
Tractor-Trailers (TT), %	-	Volume-to-Capacity Ratio (v/c)	0.07
Direction 2 Speed and Dens	ity		
Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	42.4
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	3.3
Median Type Adjustment (fм)	1.6	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	1.0		

Copyright © 2023 University of Florida. All Rights Reserved.

HCS 112 Highways Version 2023 EPAP_PP-Seg2-PM.xuf Generated: 11/07/2023 17:37:03